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CHAPTER I 

 

INTRODUCTION 

 

Several challenges make analyzing health data with current machine learning methods 

difficult. Among these challenges are that the data are: largely and not randomly missing; collected 

irregularly in response to irregular clinic visits; and asynchronously collected at different visits.  

 In this dissertation, I explore the utility of modeling clinical data using various 

representations and whether they can be used to overcome the problems of sparsity, irregularity, and 

asynchrony from health data. I accomplish this through two means. First, I will perform a 

quantitative analysis of how data representation complexity of non-specific laboratory elements 

affects the discriminative performance of binary classifier models for highly specific procedural and 

demographic outcomes. I hypothesize that the representation that allows models to most effectively 

use non-specific information distributed throughout the medical record laboratory results will 

provide the best discrimination, calibration and confidence. Second, I explore the use of 

longitudinal, continuous data representations to query against particular combinations of laboratory 

results. I hypothesize that these experiments will demonstrate the potential value of this method for 

identifying rare phenotypes associated with unique clinical findings.  

 

Non-technical summary 

In biomedical research, one major focus is on identifying as-yet-unknown associations 

between clinical findings, diseases, outcomes, and successful treatments. For instance, it is desirable 

for a doctor to know that a patient with a particular genetic marker will have a less favorable 
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reaction to a drug than another patient, so that they can potentially prescribe a drug that would work 

better for the patient.  

Traditional ways that medical researchers approach uncovering these associations are 

randomized controlled trials and cohort studies. In both research designs, care is taken to ensure 

that the data about the study participants are correct, complete, and collected at the appropriate time 

designated by the study.  Discoveries made using these approaches are considered reliable, but come 

with the increased cost of assuring the integrity of the data.  

More recently, electronic health records have allowed medical researchers to explore 

associations between findings and diseases using information that is recorded as a byproduct of 

regular clinical care. Unlike trials and cohort studies, medical records data allow for analysis of larger 

populations over longer times, and this benefit can lead to discoveries which may have not been 

possible using more traditional methods. However, the data collected for patient care is significantly 

less curated than trial or cohort study data, and characteristics of the data make them more difficult 

to use for discovering new associations. Several methods of addressing the problems caused by these 

characteristics have been described. My work in this dissertation explores how these different 

methods affect researchers’ ability to use electronic health data for identifying patterns and 

associations.  

For example, the choice of how to represent the data that is extracted from the medical 

record may determine the performance of computerized methods used to discover relationships, 

even if the method and the relationships are the same across data representations. In order to 

provide some insight into the effects of the choice of data representation, I selected a specific 

computerized learning method and applied that method to several problems. In each problem, the 

goal was to distinguish between records of patients with a particular outcome of interest, such as a 

gall bladder surgery or a hip replacement, and those without, using only laboratory data found in the 
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medical record. I show that more complex data representations do not necessarily lead to improved 

model performance. Chapter III contains the details on these experiments.  

I also explored using continuous representations of laboratory data. With these 

representations, it was possible to look for associations, even for events that did not occur at the 

same time. I showed that continuous data representations could be used to explore which diagnostic 

codes are associated with particular laboratory findings. The details of these experiments are found 

in Chapter IV. 
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CHAPTER II 

 

BACKGROUND 

 

An electronic health record (EHR) is a computerized version of a patient's medical history 

over time. It contains many data elements related to a patient's medical care (Table 2.1)[1].  

 

Table 2.1. Data domains contained within electronic health records. 

Administrative and billing data 

Patient Demographics 

Progress notes 

Vital signs 

Medical histories 

Diagnoses 

Medications 

Immunization dates 

Allergies 

Radiology images 

Lab and test results 
 

 

EHRs have improved clinical practice in terms of day-to-day record keeping. For example, 

EHRs are capable of simplifying the tasks of accessing, retrieving, and analyzing clinical information; 

electronic lookup reduces the need to sift through paper records. Rapid copying of electronic 

records allows for data to be easily shared with the patients, their families and all the members of the 

care team. Additionally, EHRs alleviate problems of illegibility that can arise during recording by 

hand.  
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However, many of potential benefits of EHR lie in their ability to enhance or enable more 

complex capabilities [2]. Here, I discuss three such capabilities: computerized physician order entry 

(CPOE) [3,4], clinical decision support (CDS) [5,6], and health information exchange (HIE) [7].  

CPOE allows providers to use a computer to prescribe medications and place orders for 

laboratory and radiology tests, rather than filling out paper forms. Like EHR, structured CPOE also 

reduces errors arising from legibility or faulty interpretation of free text orders. Electronic input 

helps to reduce medical errors due to illegible writing or ambiguous units for ordered medications.  

As most CPOE systems interact directly with the EHR, this also removes the additional step of 

recording orders into the medical record, which reduces erroneous information.  

A CDS system aids the provider in making medical decisions such as ordering tests or 

prescribing medications. Such systems can function by providing information and guidance to the 

provider during their decision process, allowing the treatment for an individual patient to be 

informed by evidence accumulated across many different studies [8]. This support may be given in 

the form of a clickable hyperlink, which could display current clinical guidelines for the management 

of a patient's disease. Alternatively, the support may be more active, opening a window and asking 

the provider if they really meant the information that they entered. The information delivered via 

CDS may also be patient-specific; allergy information or genetic markers of drug metabolism stored 

in the medical record can be shared with providers at the point of decision making in order to avoid 

potential hypersensitivity reactions or drug over- or under-dosing.  Systems which combine CPOE 

and CDS systems have been shown to have moderate to high effects on doctors ordering the correct 

treatment, and some small effects on patient mortality [9]. 

HIE allows for efficient sharing of information between different clinical organizations. This 

is critical for improved care, as few patients receive all of their medical treatment at one institution. 

HIE may decrease overall costs to the system by reducing unnecessary repeat testing and 
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inappropriate admissions [10,11]. HIE can also decrease wait time for physicians who need clinical 

records from another institution [12]. Traditionally, such records needed to be faxed, causing delays 

in decision making or clinical care. Even so, HIE does not ensure that the data are standardized and 

compatible between institutions, and mapping to formal ontologies may be necessary in order for 

systems to operate on the data that is exchanged [13]. 

Powerful in their own rights, the combination of CPOE, CDS, and HIE working together 

can further improve patient care. For instance, while ordering errors can be significantly reduced by 

the use of CPOE only, this effect is greatly increased when combined with CDS that alerts 

physicians to potentially better alternatives based on the orders entered. Moreover, displaying 

information that could alter a physician's decision based on patient history would greatly benefit 

from access to clinical records outside individual medical systems; HIE can allow CDS to use this 

information.    

 

Secondary data usage  

In addition to these direct operational benefits, EHRs can advance our understanding of 

health, medicine and medical care through "secondary use" of clinical data [14]. Especially compared 

to traditional methods of medical research, such as randomized controlled trials and cohort studies, 

the use of EHRs compares favorably in terms of cost, patient heterogeneity and representativeness, 

and length of records [15]. 

Aside from the upfront cost of EHR implementation and the necessary upkeep of the 

system, the additional cost of extracting and utilizing clinical data for research is minimal, as these 

data are collected during routine clinical care; the largest remaining cost is that of data cleaning [16]. 

Compare this to the cost of data collection in a clinical trial or cohort study, where additional 

workers must be hired to rigorously collect information about the participants. While the 
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completeness of data from trials or cohorts may be superior to that of data collected during the 

processes of clinical care, the larger number of data elements captured, the larger sample size, and 

the relative cost of EHRs make them an appealing resource for research and discovery [17,18].  

EHRs typically do not have strict criteria for the inclusion of patients into the record, except 

that the patient receives medical care; this is in contrast to randomized controlled trials and cohort 

studies, which often exclude patients that do not have desired characteristics. As a result, EHRs 

typically contain more data on populations that are underrepresented in trials and studies, such as 

the elderly, patients with multimorbidity, and patients of racial minority background [19].   

EHRs are longitudinal by nature, and this characteristic lends these data to long-term 

outcomes research beyond what is feasible in a trial or cohort setting. This allows researchers to ask 

significantly more questions of the data, including identification of late-term effects of interventions 

that a shorter clinical trial may not be able to detect. Perhaps most powerfully, the discoveries made 

from secondary use of EHRs can directly feed back into the clinical environment. The benefits of 

CPOE, CDS, and HIE systems rely on current clinical guidelines and information in order for 

providers to continually improve care. A virtuous cycle of research findings leading to improved 

clinical care which spurs further research is the basis for the idea of a learning health system that 

facilitates quality improvement, clinical research and other data-driven approaches to improving 

health [20].  

 

Learning from EHRs 

Using large data sets such as EHRs to identify patterns and relationships requires methods 

that allow researchers to efficiently analyze large amounts of data. Ideally, such analysis should be 

performed efficiently, automatically, and make use of as much data as possible. 



 

8 
 

Statistical and machine learning approaches (sometimes collectively termed data science) are 

algorithmic methods for modeling complex data sets in order to learn and recognize patterns [21]. 

These approaches have gained widespread use in recent years, and this popularity has been driven by 

advancements in computational methods as well as the explosion of widely available large data sets. 

Data science techniques have been used in such varied tasks as image analysis, voice recognition, 

spam filtering, and many more, including medical diagnosis [22,23], prognosis [24] and phenotyping 

[25].  

There are two main branches of learning algorithms: supervised and unsupervised [26]. 

Generally, supervised learning is concerned with learning relationships between data elements based 

on at least a subset of labeled data (output variables). Examples of such tasks could be predicting a 

patient’s diastolic blood pressure given their systolic blood pressure, or classifying patients as having 

diabetes or not. These tasks could be performed using typical statistical approaches, such as linear or 

logistic regression, or using machine learning techniques such as random forests [27], support vector 

machines [28], or artificial neural network classifiers [29]. 

Unsupervised learning, on the other hand, deals largely with extracting underling structure 

from the data in the absence of clear labels. The input variables could be similar to those used in 

supervised learning, but instead of dividing instances into different classes, unsupervised learning 

tries to identify relationships and structure between the input variables. Examples of this type of 

learning in include clustering [30], dimensionality reduction [31], and signal separation techniques 

[32]. 

Clinical data can be useful for either supervised or unsupervised learning for discovering 

clinical associations. Here, I discuss the major types of data found in EHRs and some examples 

where they been used to learn patterns and identify associations in a clinical context.  
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Images 

Medical images such as x-rays, MRIs, blood smear images, and microbiology slide 

preparations, are important components of EHRs. From these images, physicians can determine a 

patient's likely diagnosis and expected prognosis. Traditionally, such images have been reviewed by 

radiologists and pathologists, and the interpretations have been entered into the medical record for 

review by other healthcare professionals. While these summaries do provide high level 

interpretability of the image findings, they contain only partial information.  

Recently, data science techniques have been applied to medical image analysis [33]. In this 

context, the features directly produced by the imaging technique can be identified via learning 

algorithms, labeled as having outcomes of interest, and directly used for pattern recognition. 

Example applications of such approaches include classification of different ultrasound heart views 

[34] , analysis of peripheral blood smears [35], automatic diagnosis of diabetic retinopathy from 

ophthalmology images [36], and detection of lung and colorectal cancers from thoracic imaging [37].  

 

Free text forms 

A significant portion of EHR data is stored as free text, or fields in which a provider can 

type whatever description or commentary about the patient's medical history they choose. Allowing 

such descriptive entries can be beneficial, in that subtle impressions about a patient's state can be 

flexibly recorded. Examples of such free text fields include patient history and physical, clinical 

progress notes, laboratory or radiology reports, and discharge summaries. 

Natural language processing (NLP) is an approach for automatically parsing free text and converting 

it to meaningful representations [38–43]. These representations can then be used as substrates for 

machine learning, and have been successfully used to surveil for postoperative complications [44], 
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identify the presence of chronic and acute diseases [45],and assign appropriate ICD-9 billing codes 

to radiology reports [46]. 

 

Structured Data 

Unlike free text data, which can include almost any information, structured data has specific 

limitations on how and where it can be recorded. For instance, the data pertinent to a patient 

diagnosis might be recorded as the patient's name or medical record number, the diagnosis code 

assigned to that person, and the timestamp for when the code was assigned. Laboratory 

measurements could include the name of the laboratory test, the results of the test, whether the 

results were normal or abnormal, and a timestamp of the event. Structured data forms include 

diagnosis and billing codes, laboratory results, and tick boxes which indicate the presence of a 

finding or procedure. 

While structured medical data does not allow the expressiveness of free text entries, the 

semantic homogeneity with which elements are recorded makes structured data more interpretable. 

Structured data have less ambiguous meanings for the same field than free text; for instance, two 

glucose measurements recorded in mg/dL mean the same thing, even if the actual values are 

different. This quality can allow for simpler aggregation of multiple patient records, as it can be 

assumed that a structured field for one patient has approximately the same interpretation for other 

patients. Structured medical data has been used to identify records with acute coronary syndrome 

[47], acute kidney injury[48], and myriad other conditions.  

In this dissertation, I used only structured data; namely, laboratory results and billing codes. 

Laboratory results are added to a patient’s record as tests are ordered and returned, and these inform 

the healthcare team about the physiologic state of the patient. Billing codes are assigned to a 

patient’s medical record during interactions with the healthcare system, and they are typically used to 
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indicate diagnoses that related to the medical trajectory of the patient. Historically, these codes have 

been coded using the International Classification of Diseases, Ninth Revision[49]. 

 

Challenges to learning from medical data 

 Despite these and many other examples of successful learning from clinical data, the task of 

extracting meaning from medical records remains difficult. Overcoming these difficulties is 

necessary for improving our ability to use clinical data for research and discovery. In this section I 

describe some of the specific challenges to learning from clinical data, as well as examples of how 

previous work has addressed these issues. While each data type in clinical records has its own 

specific considerations, I focus here on challenges that are common to most clinical data types, and 

specifically on ways they have been handled when using structured medical data as I have in this 

dissertation.  

 

Error and Uncertainty 

 Within clinical data, there are numerous sources of unmodeled variation, also colloquially 

termed noise, and all can affect the outcomes of analyses if not accounted for.  One particular 

example of potential data errors in a clinical setting is the uncertainty associated with measurements 

[50]. While laboratory measurements are largely accurate, there is still uncertainty in their values. In 

the best case, this might not affect the analysis at all; in the worst case however, the uncertainty 

could lead to false discoveries [50].  

 Another source of noise arises from misreporting information into the record, or even 

omitting important information entirely. Such errors could arise from recording correct information 

into the wrong patient’s chart, copying and pasting a previous clinical note without appropriately 
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updating the information, or simply forgetting to chart a clinical event [51]. As with the uncertainty 

associated with measurements, this can lead researchers to erroneous conclusions.  

 By far the most common method of addressing noise in biomedical models is to ignore it. 

This is an understandable approach; even though the laboratory measurements are an imperfect 

proxy for the underlying physiology of the patient, they are still the most likely value for the true 

state of the lab given the information available. However, this can still lead to errors as described 

above[52].  

 Simple data cleaning can go a long way in reducing errors found in medical records. 

Sometimes, this can be as simple as converting a result recorded in one unit of measurement to 

another, or recognizing that the recorded value is not biologically compatible with the clinical 

history. However, this can be problematic in some cases; without more information, there are many 

instances where a person’s recorded weight would be a reasonable value, whether the intended units 

were kilograms or pounds. Determining the intended value for such a measurement can be difficult 

[53].  

 Some biomedical models address noise by modeling the uncertainty around the point 

estimates provided by the observed values. For instance, Gaussian process regression can be used to 

interpolate noisy observations while accounting for uncertainty [54,55], as can multiple imputation 

[56]. 

 While the research in this dissertation does not directly address the issue of clinical data 

noise, the work in Chapter III can potentially be used to address missing and miscoded information.  

Experiments in both Chapters III and IV are designed with consideration of potential sources of 

error in the data.  
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Sparsity 

 Medical data is sparse, both in terms of time and in terms of recorded information. Across 

most patients’ lifetimes, overwhelmingly more time is spent outside a clinical setting than in one. If 

Accordingly, if one imagines a patient’s life as a timeline, the majority of data are not recorded in an 

EHR.  As such, clinicians and researchers are left with only the limited view of the patient’s risk 

factors and experiences that is recorded in their medical chart. Furthermore, many clinical systems 

do not communicate information about patients with other systems effectively, leading to missing 

data through failure to communicate.  Sometimes this problem can be overcome by including 

information from associated registries or the Center for Medicare and Medicaid Services claims data, 

but such data validation is not available for all patients [57,58]. 

 Even within the context of the clinical encounter, the data recorded are sparse. Of the 

thousands of possible measurements, procedures, and diagnosis codes available to physicians, only a 

small fraction are recorded in a patient’s chart at any given visit. Part of this is intentional and largely 

positive; it makes little sense for a clinician to order a chest x-ray on every patient who comes in for 

an annual checkup. Additionally, the decisions about which data are recorded in a chart are driven by 

the actual practice of medicine, meaning that the data in the record are not missing at random 

[59,60].  

 In the statistics literature, the mechanism of data missingness has typically been described in 

terms of three categories: missing at random (MAR), missing completely at random (MCAR), and 

missing not at random (MNAR)[61]. Data that are missing at random mean that any differences 

between missing and observed values can be explained entirely by the observed data. Missing 

completely at random data go further, such that there are no systematic differences between missing 

values and observed values. MAR and MCAR data require fewer assumptions for valid inference. 

On the other end of the spectrum, missing not at random data are influenced to be missing by the 
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values of the missing data. Returning to EHRs, data that are not collected by the physician because 

of their belief that the results will not be helpful for treatment decisions are clearly MNAR, which 

will complicate data analysis [62].  

 One method that has been used to control the effect of observation sparsity in medical 

studies has been to use only records that have at least a certain amount of data. This can be as 

extreme as only including records for patients that have entries for all of the variables of interest; a 

complete-case analysis [61]. However, given that the data are not missing at random, this sometimes 

leads to biased sampling and non-representativeness of populations. For instance, it was found that 

high risk surgical patients had over five times as much data as lower risk patients [63]. Using the 

amount of data as a decision tool for which records should be included in the model would over-

represent the sicker populations.  

 Another method used to handle missing data is imputation[61], or setting a missing value to 

some reasonable guess. The simplest form of imputation is to just replace missing values with the 

population mean or median, which is a naïve estimate. However, if a significant proportion of data is 

missing, this can break dependencies between the variables of interest and cause models built on the 

imputed data to perform poorly [64].  

 The missing values can also be replaced conditionally on the non-missing observations for a 

record. In other words, given that the observed variables took the observed values, what is the most 

likely result for the missing value? Like naïve imputation, single imputation methods like this are 

subject to potential biases and can lead to incorrect conclusions [64]. Extending from single 

imputation, it is possible to produce several possible imputations, and average the results for 

inference. This has been demonstrated to be more robust than single imputation [56]. Multiple 

imputation has been shown to be effective at handling high proportions of missing data [65,66]. 
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In my work, I address missing values and sparsity two different ways. In Chapter III, I 

explore the effect of different data representations on model performance. Where my input variables 

are counts of events, I do not have to impute; zero events are valid entries for this approach. I 

elected to replace missing values for laboratory results with the population mean. In Chapter IV, I 

demonstrate a method of handling missing values by interpolating between observed values, and 

setting values beyond the first and last values to the record-specific median.   

 

Irregularity 

 Medical data are entered into patient charts as they are needed for clinical care. As a result, 

there is no standard frequency at which entries are made. It is likely that a patient will not see a 

medical provider for months or years, and then develop an illness which will require multiple clinical 

encounters over a short period of time.   

 Some researchers avoid irregularity, using only regularly sampled data such as is collected in 

intensive care units, fetal monitoring or continuous echocardiograms [67,68]. However, for the 

majority of medical data, this is not plausible.  

 Separating time into discrete bins is an approach that manages irregularity [69]. In the 

extreme case, a bin may be as large as the entire patient record; in terms of a binary event, this is 

equivalent to an indicator of whether the event occurred or not. From a data perspective, binning 

solves the problem of irregularity but induces another challenge: determining the resolution at which 

the data should be recorded and encoded for processing by a learning algorithm. If the data are 

captured at too low a resolution (much less often than the observed data points), then the 

information contained in the encounters associated with the acute event are significantly 

compressed. If on the other hand the data are captured at too high a resolution (much more often 

than the observations), then many of the entries would have missing values, and the data now 
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exhibits the problems of sparsity described above. Additionally, inferences and predictions may be 

very sensitive to the choice of bin thresholds. 

 In this dissertation, I address data irregularity by using bins as well. In Chapter III, I 

represent the clinical data using bins at several different resolutions, and exploring the effect of these 

data representations on model performance. Within each bin, a summary measure such as the total 

count or mean result substitute for all of the values that fall within that time period. In Chapter IV, I 

transform the data into longitudinal functions. After this transformation, there is an interpolated 

estimate for every division at any arbitrary resolution. 

 

Asynchrony 

 While irregularity is a property of the sampling rate of any individual variable, asynchrony is 

about a property of the relationship between sampled variables. As mentioned previously, not all 

variables are recorded for a patient at each of their visits; what is included in the chart is largely 

determined by clinical need. However, if a researcher wanted to look for associations between two 

related entities, such as hypertension and insomnia, they would want to be able to look at whether 

one affects the other. Yet, it is hard to determine such an effect if the variables are not observed at 

the same time. This leads to the question: “How temporally close is close enough to say that two things 

happened at the same time?”.  

 As with irregularity, binning has been the main method of addressing asynchrony. Once the 

data are binned appropriately, say into discrete years, it is a matter of determining if two events 

happened within the same bin. Another more flexible approach is the sliding window, in which a 

specific bin width is designated, but the window is translated down the timeline. If any two events 

ever fall within the sliding window, they can be considered to have occurred close together. In any 
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of these approaches, the challenge still remains determining what level of temporal relatedness is 

most appropriate.  

 The methods I used to manage irregularity also extend to managing asynchrony. In Chapter 

III, I binned all results into the same specific time bins, and results for different laboratory 

measurements that occupy the same relative time bin are assumed to have occurred at approximately 

the same times. In Chapter IV, the continuous longitudinal transformations allow all of the 

laboratory measurements able to be binned at any resolution. As a result, any arbitrary cross section 

of a record contains an interpolated estimate of all of the laboratory values of interest.  
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CHAPTER III 

 

USING DATA ABSTRACTION MODELS OF NON-SPECIFIC  
LABORATORY RESULTS FOR CLASSIFICATION TASKS 

 

Introduction 

 Computational approaches to phenotype identification often limit themselves to a small 

number of highly specific, expert-engineered features when defining phenotypes of interest 

[47,48,70]. This is in contrast to physicians, who generally use all available medical data when making 

diagnosis and treatment decisions, even if only through the use of heuristics.  While the decision to 

include only strongly predictive features does provide computational and time savings, it also limits 

the sensitivity and specificity of the phenotype identification process.  Exploring methods that allow 

computational approaches for phenotype discovery to make use of a larger portion of medical data 

elements is an essential step on the path to data-driven precision medicine [25,55,71–73]. 

An important source of such medical data are electronic health records (EHR)[14]. In 

addition to serving as a record of a patient’s clinical care, EHR data may allow researchers to 

improve detection of patient conditions, procedures, or outcomes in situations where administrative 

coding is missing, or miscoded [57,74].  

In this work, I distinguish between specific and non-specific evidence for an outcome of 

interest. For example, findings in the medical record that are specific for diabetes mellitus may 

include an elevated glucose result, the presence of metformin within a patient’s medication list, or an 

ICD-9 code 250. In contrast, non-specific information may have either a known or unknown 

relationship with the outcome of interest, and is likely also associated with many other outcomes. 

The findings of coronary artery disease, increased serum creatinine, and medication orders for the 

antihypertensive drug Lisinopril are associated with, but not specific for, diabetes[75].   
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In aggregate however, such non-specific information may be useful in indicating the 

presence or absence of an outcome of interest. If the highly-specific indicators of a condition are 

missing or miscoded, as is common in EHR data, using non-specific information may allow for high 

fidelity labeling of cases and controls.  Even when the outcome of interest is known with high 

confidence, inclusion of these other data elements could allow researchers to more precisely define 

distinct subpopulations of patients that may be of interest.  

 While much research has focused on the use of specific, expert-engineered features 

[55,67,70,76], comparatively little has explored the use of non-specific predictors in phenotype 

identification tasks. Where non-specific features have been included in models, their performance 

has often surpassed that of similar models with only expert-selected features. For instance, including 

the most common diagnoses, medications, and other information from the EHR improved 

detection of as-yet-undiagnosed diabetes over conventional risk models which used only BMI, 

smoking status, hypertensive status, gender, and age [77].  A natural language processing model 

identified clinical concepts mentioned in electronic medical records, which were then used to train 

adaptive elastic net penalized regression models with AUCs of 0.951 and 0.929 for identifying 

rheumatoid arthritis and coronary artery disease, respectively [78]. Sparse tensor factorization of 

unselected ICD-9 diagnosis codes and Healthcare Common Procedure Coding System procedure 

codes produced interpretable, concise phenotypes [79]. Joint probabilistic graphical models of free-

text notes, medication orders, diagnosis codes, and laboratory tests identified phenotypes with 

higher normalized pointwise mutual information than models derived with Latent Dirichlet 

Allocation [80]. Topographical modeling of patients using high-dimensional genetic data, laboratory 

results, medications and vital signs allowed identification of subtypes of type II diabetes mellitus 

[81].  
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While these studies made use of non-specific predictors in building their models, none to my 

knowledge have assessed the discriminative ability of non-specific information without including 

selected, highly-specific, expert-generated features in the model, or which data representations best 

allow models to make use of this non-specific information. In this work, I explore the effect of 

different data representations on model performance, recognizing that greater representation 

complexity can come at a higher cost in computational resources and research effort. I also quantify 

the discriminative power of non-specific information distributed among laboratory test results. I 

accomplish this by applying a standard classification algorithm to several different binary 

classification tasks. I hypothesize that the representations that allow models to most effectively use 

non-specific information distributed throughout the medical record laboratory results will provide 

models with the best discrimination, calibration and confidence. 

 

Background 

 In these experiments, I explored the effect of modeling clinical data using several different 

representations on model performance by building random forest classifiers for several demographic 

and surgical outcomes. I quantitatively evaluated the model performance using area under the 

receiver operating characteristic curve, a standard measure of discrimination, as well as the 

logarithmic scoring rule, which is a measure of model calibration, discrimination and confidence. 

Below, I provide background on the random forest classifier and these two measures of model 

performance. 
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Random forests 

The random forest algorithm is a machine learning technique that has been used extensively 

in recent years for classification and regression problems [82]. While simple to parameterize, random 

forests often perform near the top of classification tasks compared other machine learning 

approaches [83,84]. Here, I provide background to the random forest and some intuition regarding 

its performance.  

In order to understand random forests, it is appropriate to first understand classification 

trees, sometimes referred to as decision trees [85]. Such trees are simple representations of a greedy 

process for classifying instances in a data set. Classification trees are related to regression trees, 

except that the predicted outcome of a classification tree is a nominal class, while the predicted 

output of a regression tree is a real number.  

The typical approach to learning the structure of a classification tree is to create recursive 

binary splits of the data set of interest. At each split, a single variable and threshold is selected; this is 

typically the variable and threshold that most reduce the heterogeneity of the data after the split is 

performed. Recursive splitting is continued in this way until a user-specified rule is achieved, such as 

a minimum accuracy or a maximum number of instances per terminal node in the tree. However, 

decision trees are typically poor classifiers and strongly dependent on the training data [86], which is 

in part why they have fallen out of favor for learning tasks.  

A random forest classifier is an ensemble of classification trees, but with sources of 

randomness injected into their creation. This randomness decreases the correlation between 

individual trees, improving the strength of the overall forest classifier. Unlike classification or 

regression trees, individual trees in a random forest do not have access to the entire data set. For 

each tree in the random forest, the data are sampled with replacement to create a new training set. In 
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addition to the randomly selected training set, each tree is only allowed access to a subset of the 

available input features when determining the optimal binary split.  

As with typical classification trees, this recursive splitting continues until a specified rule is 

achieved. Often, this rule is that all instances from the data set be classified into distinct terminal 

nodes. The predictions for each instance in the data are then made on a per-tree basis and averaged 

over the total number of trees [27]. 

Random forests have many desirable properties that make them amenable to widespread use 

in machine learning. They typically scale well with the size of a training data set. They are more 

robust to output noise than some other machine learning approaches [27].  

Tasks with many input features with weak predictive power can be efficiently used by 

random forests [27]. Random forests have the ability to learn non-linear combinations of weakly 

predictive variables to provide classifications with generally favorable error rates. Learning these 

non-linear relationships is automatic for the random forest algorithm, unlike regression approaches 

where any interactions or non-linearities of interest must be specified for inclusion in the model [27].   

One practical benefit of random forests is that they provide an internal estimate of 

generalization error without the need of a separate test set. This is a result of the sampling that 

occurs when selecting a separate training set for each tree in the forest. On average, approximately 

36% of the data are excluded from the new training set when sampling with replacement; these 

excluded instances are termed "out of bag" samples. When estimating the performance of a random 

forest classifier, the error achieved in classifying these out of bag instances approximates what would 

be found by classifying data from a separate test set.  

Furthermore, this out of bag set can be used to determine the relative importance of 

individual predictors in the random forest. The effect on classification error of adding noise to each 
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of the input variables can be quantified, revealing which variables are most important for accurate 

classification.  

The properties of random forests are not all desirable. Compared to parametric models, 

random forests and other nonparametric methods typically run slower and require more parameters 

to be learned, despite their more relaxed assumptions. In many cases, the decision to use a 

parametric or nonparametric model will depend largely on how confident one is in the underlying 

distribution of their data [87].  

While random forests perform well on tasks with some level of class imbalance, extreme 

imbalance can affect their performance. Several approaches have been proposed to improve 

performance on imbalanced data [88,89]. For my work, I selected an approach based on random 

balanced sampling of the majority and minority classes, which has been shown to improve 

discrimination performance[88]. Instead of simple sampling with replacement from the original set 

for each tree, sampling is performed with replacement from the instances in the minority class, then 

from the majority class to produce the same number. As a result, each tree is trained on a one-to-

one ratio of cases to controls. This approach improves classification performance, even when still 

considering only out of bag performance.  

 

Receiver operating characteristic curves 

For machine learning tasks that produce probabilistic estimates, one of the most widely used 

tools of analysis is the receiver operating characteristic (ROC) curve, which is used to assess model 

discrimination, or the ability to separate positive and negative instances [90]. Visually, ROC curves 

provide a representation of the trade-off between true positive rate and false positive rate for a 

particular binary classification task over the entire range[90]. As the probability for correctly for 
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detecting the outcome of interest increases, the likelihood of wrongly determining that an instance 

has the outcome of interest is non-decreasing.  An example of an ROC curve is shown below. 

 

Figure 3.1. An example ROC plot. The dashed line represents 50% accuracy. The solid line 
represents the ROC curve at each of the potential setting of false positive and true positive rates. 
Better ROC curves will approach the upper left-hand corner of the graph, which is a 100% true 
positive rate and a 0% false positive rate.  

 

While the visual interplay of true positive rate and false positive rate at various thresholds 

represented by the ROC curve may be of interest to some researchers, the area under the curve 

(AUC) is the most often used numerical representation of test discrimination. Though several 

interpretations of AUC have been offered, one common conceptual explanation of AUC is that it is 

equal to the probability that the test will produce a higher predicted value for a randomly chosen 

positive example than for a randomly chosen negative example.  

One benefit of AUC over simply quantifying how many instances the model classifies 

correctly is that AUC is insensitive to the prevalence of the outcome. For demonstration, imagine a 
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scenario where there are many examples without the outcome of interest and relatively few with the 

outcome.  In terms of raw accuracy, simply assigning all examples to the majority class with 

probability 1 would provide a high estimate of accuracy, but AUC would be close to 0.5, or random 

guessing. Using AUC instead of raw accuracy, on the other hand, provides an estimate of the 

classifier's ability to discriminate between positive and negative examples independent of the balance 

of the two classes.  

AUC measures are also insensitive to miscalibration of the output probability estimate. Since 

the AUC measures the probability that a randomly chosen positive example has a score higher than 

a randomly chosen negative example, only the rank ordering of the estimates determines the AUC, 

not the actual predictions. Even if all the probability estimates are grossly wrong, they will produce 

the same AUC measure if their order remains unchanged. This also makes AUCs resistant to high- 

or low-probability outliers.  

 

Logarithmic scoring rule 

Another measure of model performance that is less frequently used in biomedical 

informatics is the logarithmic scoring rule. The logarithmic scoring rule is calculated as 𝑠 =

1

𝑁
∑ 𝑠𝑖 =   

1

𝑁
∑ ln (𝑟𝑖), where 𝑟𝑖 is the probability assigned to the correct label for instance 𝑖. In the 

case of a binary 𝑦 ∈ [0,1] classifier predicting  ∈ [0,1] , this can be simplified to 𝑟 =

𝑝𝑦(1 − 𝑝)1−𝑦[91].  

This scoring rule is statistically strictly proper, meaning that the performance of a model 

measured by the rule is optimized uniquely when the classifier accurately predicts the true 

probabilities of the outcomes. There are three characteristics of the model that can be improved in 

order to increase the logarithmic scoring rule: calibration, discrimination, and confidence. 

Calibration is the agreement between the predicted probability of the outcome of interest and the 
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true probability of that outcome. Confidence, in this sense, is how near to certainty the model 

predicts correct classifications. In other words, a classifier will have a higher (better) logarithmic 

scoring rule when the calibration, discrimination, or confidence (or any combination of the three) of 

the prediction is improved. This characteristic can make identifying which component is responsible 

for any improvement difficult, but the logarithmic scoring rule is still useful for comparing 

performance on a particular task even without this capability.  

The logarithmic scoring rule ranges from -∞ to 0, where a score of zero is equivalent to 

assigning the correct class with probability 1, and −∞ is equivalent to assigning the incorrect class 

with probability 1. To provide intuition for this result, the score can be converted back to the 

probability of predicting the correct class through exponentiation of the scoring rule. A classifier 

with a logarithmic scoring rule of -0.08 is equivalent to predicting the positive class probability 

𝑒−0.08 = 0.923 for all positive examples and 1 - 0.923 = 0.077 for all negative examples.  

 

Methods 

I trained random forest classifiers for eleven different classification problems with outcomes 

that were easy to extract from administrative data and that I believed would be essentially noiseless 

(Table 3.1, Appendix A). I selected these specific classification problems because they could be 

posed as binary classification tasks, and because these classification tasks using only laboratory data 

represented varying degrees of expected difficulty. For race, I simplified the model to predict white 

versus non-white.  I assumed sex, race and CPT codes to perfectly indicate the presence of each 

outcome of interest - with acknowledged data limitations discussed in the background section - 

against which I could compare the predictive power of non-specific laboratory tests. In addition, I 

trained two additional models on what I expected to be very difficult conditional problems: 1) given 

that the patient received either a kidney or liver transplant or both, did the patient receive a kidney 
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transplant, and 2) given that the patient received a hip or knee replacement or both, did they receive 

a hip replacement?  I hypothesized that these conditional questions would be difficult problems 

because there would be significant overlap in the variable importance between the two questions.   

Although the prevalence of some procedures in this sample is lower than one percent, these 

numbers are in line with literature findings [92]. 

 

Table 3.1. Study population characteristics. The data set is highly imbalanced for many of the 
outcomes.   

Outcome Number (Proportion) with finding 

Sex 152538 (46.87%) Male 

Race 263849 (81.07%) White 

Splenectomy 879 (00.27%) 

Cholecystectomy 2843 (00.87%) 

Pancreatectomy 557 (00.17%) 

Appendectomy 1148 (00.35%) 

Hemorrhoid Surgery 441 (00.14%) 

Kidney Transplant 877 (00.27%) 

Liver Transplant 1525 (00.47%) 

Hip Replacement 2471 (00.76%) 

Knee Replacement 2969 (00.91%) 

 

I used data from the Vanderbilt University Medical Center Synthetic Derivative, the 

deidentified mirror of the hospital's electronic medical record used for research purposes [93]. This 

resource contains data on over 2.5 million patients going back as far as twenty years. After obtaining 

IRB consent, I selected the 150 most commonly recorded laboratory tests as potential model 



 

28 
 

features; these account for roughly 95% of all laboratory results recorded in the Vanderbilt record. 

Of these, I excluded seven because they were not laboratory measurements (medication dose, IV 

start time, patient location, schedule, the provider who performed a specific test, the user’s 

screenname, date for microbiology plate). I limited my study sample to the most recent eight years 

of data per record. I also required that individual records have results for at least 10 of the remaining 

143 laboratory tests, at least one test for which there were three or more recordings, and no missing 

data for sex or race. This left a final study population of 325,461 records for training and testing.  

I standardized the records by subtracting the population mean and dividing by the standard 

deviation for each laboratory test.  I transformed the data into eight increasingly complex data 

representations for each patient record and classification task. These were 1) binary, or whether the 

test was ever ordered, 2) total counts of orders made for the test over the eight-year period, 3) 

counts per year for each of the eight years, 4) cumulative counts by year, 5) mean of all results in the 

eight-year span, 6) quintiles of all results in the eight-year span as defined by the sample population, 

and 7) a combination of order counts and result means (Table 3.2).  
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Table 3.2. Example representations of clinical data. Binary, counts, and means representations 
compress the data for a single laboratory into one number. Counts and cumulative counts 
incorporate a longitudinal component, and quintiles approximate the distribution of the record’s 
laboratory results compared to the rest of the population. 
 

 Glucose Na Cl TRPI 

Binary [1] [1] [1] [1] 

Counts [20] [5] [5] [1] 

Counts/yr. [0, 2, 0, 1, 4, 5, 4, 4] [0, 0, 0, 0, 1, 2, 1, 1] [0, 0, 0, 0, 1, 2, 1, 1] [0, 0, 0, 0, 0, 1, 0, 0] 

Cumulative [0, 2, 2, 3, 7, 12, 16, 20] [0, 0, 0, 0, 1, 3, 4, 5] [0, 0, 0, 0, 1, 3, 4, 5] [0, 0, 0, 0, 0, 1, 1, 1] 

Mean [-0.10] [0.32] [-0.42] [0.35] 

Quintiles [2, 5, 8, 5, 0] [0, 0, 3, 2, 0] [0, 3, 1, 1, 0] [0, 0, 0, 0, 1] 

Combo [(20, -0.10)] [(5, 0.32)] [(5, -0.42)] [(1, 0.35)] 

  

I built random forest classifiers for each combination of representation and task, totaling 91 

models. Given the high imbalance in my data for some of the classification tasks, I down-sampled 

the majority class to the same number of minority class examples, both sampled with replacement. 

This resulted in a one-to-one ratio of cases to controls for each decision tree in the forest. I 

optimized each forest’s parameters to the specific task and representation for which it was trained. 

For each task and representation, I report three measures of performance: AUC; the 

logarithmic scoring rule; and the average runtime per task. AUC and logarithmic scoring rule were 

computed only on out-of-bag samples.  

Calculations were performed in the R statistical environment using packages downloaded 

from the Comprehensive R Archive Network (CRAN)[83,94–96]. This work was performed on a 

Linux server with 64 GenuineIntel 6 processors and 500GB of RAM.  Random forests were built on 

25 CPUs running in parallel, but the same configuration was used for all tasks and representations. 



 

30 
 

Results 

The AUCs of the models ranged from 0.664 to 0.996 (Figure 3.2, Table 3.3). The easiest 

problem, on average, was detection of kidney transplant, while the hardest was the determination of 

whether a joint replacement patient received surgery on their hip or their knee; however, the 

performance of the classifier for identifying race using only the binary representation of laboratory 

data performed the worst overall. The models built using more complex data representations tended 

to have longer runtimes. The logarithmic scoring rules also showed varying levels of performance, 

ranging from -0.781 to -0.135 and largely tending to agree with the results from evaluating the AUCs 

(Table 3.4). 
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Figure 3.2.  Area under the ROC curve for thirteen outcomes and seven data representations. Lines 
connect results using the same representation. For the tasks of classifying race and sex, notice that 
the models using representations which do not include information about the laboratory result 
values perform significantly worse than models which make use of test values.  
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Table 3.4. Logistic scoring rule results for thirteen outcomes and seven data representations. The 

best performing representation for each task is bolded.  

Outcome Binary Counts Means Quintiles Year 
Bins 

Cumulative Combo 

Sex -0.718 -0.559 -0.436 -0.450 -0.580 -0.575 -0.427 

Race (white v all) -0.657 -0.564 -0.486 -0.500 -0.575 -0.575 -0.486 

Splenectomy -0.301 -0.271 -0.257 -0.262 -0.285 -0.286 -0.248 

Cholecystectomy -0.392 -0.359 -0.373 -0.381 -0.374 -0.373 -0.354 

Pancreatectomy -0.265 -0.238 -0.259 -0.256 -0.260 -0.255 -0.232 

Appendectomy -0.437 -0.404 -0.383 -0.390 -0.405 -0.413 -0.379 

Hemorrhoid Surgery -0.487 -0.429 -0.431 -0.420 -0.423 -0.424 -0.424 

Kidney Transplant -0.084 -0.070 -0.096 -0.070 -0.093 -0.085 -0.064 

Liver Transplant -0.165 -0.135 -0.176 -0.149 -0.156 -0.143 -0.137 

Kidney v Liver -0.280 -0.187 -0.237 -0.214 -0.242 -0.200 -0.182 

Hip Replacement -0.332 -0.217 -0.269 -0.247 -0.250 -0.247 -0.220 

Knee Replacement -0.291 -0.154 -0.219 -0.193 -0.198 -0.184 -0.160 

Hip v Knee -0.781 -0.597 -0.617 -0.596 -0.615 -0.612 -0.589 

 

 

Discussion 

I demonstrated the benefit of using non-specific laboratory results as input features to 

random forest classifiers predicting demographic and surgical labels.  Using only low-specificity 

laboratory values, I achieved good discriminative prediction accuracy.  This performance did not 

require the use of expert-derived features; nor did it require much data processing to achieve, as 

models built using lower complexity representations often performed as well as more complex ones. 
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Most often, models containing only the concatenation of mean test results and counts of orders 

performed the best on each task, with close to the minimum compute time. In other words, using 

result means and counts of laboratory orders alone was an efficient way to encode test results. While 

I used only random forest classifiers to explore the effect of including non-specific variables in 

various data representations, I expect that my results will extend to other classification algorithms, at 

least those that are as effective as random forests in extracting complex nonlinear relationships 

between input variables.  

The calculated logarithmic scoring rules largely reaffirm the AUC rankings of the data 

representations. While it is impossible to separate whether the performance is due to model 

calibration, model discrimination, or model confidence, it is generally true that the models that 

performed the best in terms of AUC also performed the best in terms of logarithmic scoring rule.   

The most important variables as determined by the random forests were not always the same 

among different data abstraction models within a specific task. For example, while the presence of 

an order for urine squamous epithelia or thyroid stimulating hormone (both of which are tests 

performed more often on women) was highly discriminative of sex in the binary representation, the 

mean results of creatinine, hemoglobin and mean corpuscular hemoglobin concentration were the 

most predictive features in the mean result value representation.  An ordered test for the level of the 

anti-rejection drug tacrolimus was important for identifying records with a liver transplant; however, 

the total number of counts for liver function tests was more predictive in the abstraction model 

which contained count data.  

For some tasks using the combination mean-count data abstraction models, the count of a 

particular laboratory result is more important than the mean value (Figure 3.3), and vice versa 

(Figure 3.4). For instance, the number of times a laboratory for lipase was ordered was the most 

important variable for determining the cholecystectomy status of a patient record, while the mean 
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value of lipase proved to be more important for identifying records with appendectomy. The full 

suite of variable importance plots is included in Appendix B.  

 

Figure 3.3. Variable importance plot for classifier predicting cholecystectomy using a combination 
representation consisting of counts and means of laboratory results. 
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Figure 3.4. Variable importance plot for classifier predicting appendectomy using a combination 
representation consisting of counts and means of laboratory results. 

 

 

 

Binary data representations for sex and race predictions performed significantly worse than 

other representations for these tasks. These representations contained no information about the 

values of laboratory results, only the fact that they were ordered. This suggests that orders do not 

depend on sex or race, but the results themselves do.  Certainly, some differences are to be expected 

because some diseases are more common in men than women or in minorities than white patients. 

These small differences may be what the random forest is using to differentiate patients on the basis 

of race or sex.  
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Different data abstraction models caused the classifiers to focus on different variables. 

Representations that rely on counts of orders may be identifying features of clinical practice related 

to a particular outcome of interest; physicians will have specific patterns of ordering laboratory tests. 

It does not necessarily follow, however, that these clinical patterns are representative of the 

underlying physiology of the patient [97]. For instance, orders for blood levels of tacrolimus may 

have little to do with a patient’s physiology, and more to do with making sure that the levels of 

tacrolimus remain in the therapeutic range; just counting the orders for this test would give a strong 

indication that the patient is in fact a transplant recipient. Representations that included information 

about the laboratory results, on the other hand, were likely picking up both information about the 

physical state of the patient and information about the practice pattern of the physician, through 

which the physiologic state can be altered. 

While both the tasks of identifying patients with kidney transplant and patients with liver 

transplant separately were apparently simple tasks, it was surprising that the conditional task of 

determining which transplant had occurred given that it was one of these two was itself also a fairly 

simple proposition. For each task individually, either the presence or the results of tacrolimus level 

tests were discriminating features. But because both transplants require the use of tacrolimus, this 

variable was not as important when differentiating between procedures.  Biological analytes related 

to the disease processes underlying the need for transplant were more important; for kidney 

transplant, these were such kidney-related entities as creatinine, blood urea nitrogen and phosphate, 

while for liver transplant the pertinent variables were alanine aminotransferase, aspartate 

aminotransferase, and alkaline phosphatase.  

In the tasks of identifying records with knee replacement and with hip replacement, 

performance was good at even the lowest-complexity binary representation. However, when trying 

to identify which type of joint surgery had occurred in the record, performance dropped.  
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 The variables that the random forests found to be most important for each individual task 

were very similar and non-specific: clotting test results such as prothrombin time, partial 

thromboplastin time, and international normalized ratio. When attempting to identify which type of 

joint surgery had occurred, these non-specific markers were no longer as useful, and the lack of any 

other strong predictors did not allow for high accuracy on that conditional classification problem.  

To better understand the performance of the predictive models, I examined examples of 

records that were misclassified with high confidence, i.e., the predicted probability of the label was 

high but wrong. I believed this might provide some clues as to what was driving misclassifications. 

Interestingly, nineteen of the twenty records with the highest predicted probability of having a 

kidney transplant but labeled as a control turned out to be correctly classified by the algorithm, and 

misclassified by the CPT codes used as a gold standard label. This finding demonstrates that relying 

on high specificity markers of phenotypes is not without risks, as noise in that single value can 

corrupt the ability to identify records with the finding of interest. However, this was partially 

ameliorated by using the non-specific, diffuse information spread throughout the laboratory test 

results.  

The timing of orders for laboratories appears to be less important than whether the order 

was placed at all. Counts per year and year-over-year cumulative counts only performed as well as 

total counts, not better. In the case of the count abstraction model, this may be due to the nature of 

the random forest and how variables are selected for inclusion in each tree. If the sum count of 

orders is the most information-dense representation, then a random forest classifier would need to 

select many individual variables from a representation of counts binned by year to encode the same 

data.  As evidence for this hypothesis, the most common pattern of variable importance in counts 

by year and cumulative counts by year representations was that the most recent entry of counts per 

year and the most recent entry of year-over-year cumulative counts (which is equal to the sum of all 
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counts over the eight years) were selected as most important. The cumulative abstraction model 

allowed the random forest classifiers access to total counts of laboratory orders, as well as 

intermediate counts. That the classifiers chose not to use these intermediate results is evidence that 

the distribution of counts over time was much less important than the total number of counts. 

There are some limitations of this study. As with any research using EHR data, errors may 

have affected the performance of my classifiers. Extreme physiologic outliers of results and missing 

or miscoded entries were neither adjusted nor excluded. While this may have decreased accuracy of 

some models, the effect is likely negligible given the sheer volume of data.  

While this work provides proof of concept that unselected, non-specific evidence from an 

EHR can be used to identify patients with specific conditions, future work in this area could make 

use of more data types to provide improved pattern recognition and discovery. Incorporating 

features medication orders, demographic information, and the output of natural language processing 

will likely improve the performance of such approaches. 
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CHAPTER IV 

 

QUERYING DISEASES AGAINST EXACT LABORATORY COMBINATIONS 
USING CONTINUOUS DATA ABSTRACTION MODELS 

 

Introduction 

The irregular and asynchronous nature of medical data present challenges for using health 

records to identify relationships between clinical findings and the complex phenotypes with which 

patients may present[55]. As mentioned in Chapter II, information is entered into the patient chart 

as needed for clinical care, meaning there is no regular frequency at which data is recorded. 

Additionally, the choice of which data elements are collected is largely based on clinical decisions; 

with only a small subset of potential events measured simultaneously, determining which diseases are 

present at the same time as particular findings remains difficult. Addressing these issues requires 

significant decision making on the part of the medical researcher, such as how to handle missing 

data and how densely to bin the data for analysis. These decisions can have a large impact on the 

algorithm’s performance [98].   

In this work, I begin to investigate the utility of modeling clinical data as a means of 

addressing current limitations to using this data as substrates for statistical and machine learning 

algorithms.  Specifically, I explore the use of inferred longitudinal functions of laboratory data and 

PheWAS [70] diagnosis codes for the purpose of querying of diagnosis codes against exact values 

for specific sets of laboratory results, or target, via correlations between a similarity metric between 

records and the target. After demonstrating face validity of this approach through univariate 

correlational analysis, I also show that accurately predicting the similarity score from a linear 

combination of diagnosis codes is achievable through linear regression. 
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Background 

In these experiments I modeled laboratory and billing code data using two different 

interpolation techniques. I also explored methods of identifying associations between laboratory 

findings and PheWAS codes for diseases. Below, I provide some background on the data models 

and association measures explored.   

 

Data models 

 I modeled the laboratory results and billing code data as being generated from continuous 

functions. I used two interpolation techniques, piecewise cubic Hermite interpolation polynomials 

and continuous intensity curves, to generate estimates of these underlying functions given the 

observed data.  

 

Piecewise cubic Hermite interpolation polynomials 

 While several methods of interpolation are in wide use [99,100], I chose to use piecewise 

cubic Hermite interpolation polynomials (pchip),  a shape-preserving, smooth interpolation where 

the slope is calculated such that the values of the function do not locally overshoot the known 

function values [99]. Figure 4.1 shows a sample pchip interpolation.  

 



 

42 
 

Figure 4.1. Piecewise cubic Hermite interpolation polynomial applied to example data. 

 

Continuous intensity curves 

 While pchip can efficiently interpolate functions with real-valued dimensions, transforming 

events which are either present or absent is a different task. Gaussian processes can be used to infer 

the intensity function of a sequence of events, but this is computationally demanding and time-

intensive [101]. A faster alternative uses an approximation based on k-nearest neighbor density 

estimation, which I use in this work[102]. 

 

Similarity score 

 Attempting to find associations between specific combinations of laboratory findings 

requires a method to compare two entities, each possibly containing multiple values, into a single 

numeric summary. I selected the measure  𝑠(𝑥, 𝑥′) =  
1

𝑛
∑

1

|𝑑𝑖|+1

𝑛
𝑖=1  , where 𝑑𝑖(𝑥, 𝑥′) =  |𝑥𝑖 − 𝑥𝑖

′|, 

where 𝑖 indicates an entry in 𝑥 and a corresponding entry in 𝑥′. Subsequently, 𝑠𝑖 ∈ [0,1]; records 
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that perfectly match the target are assigned a similarity score of 1, and records that are perfect 

mismatches (meaning 𝑑𝑖 = ±∞) are assigned a score of 0. Applying this method to laboratory 

values that have been standardized, as mine have been, gives the additional interpretation that a 

score of 0.5 (a half-match to the target) is equivalent to a record where ∑ 𝑑𝑖 = 1 (one standard 

deviation off).  

 When using this similarity measure for targets with multiple laboratory values, it is 

noteworthy that there are many different ways to achieve the same similarity result. For instance, a 

record that is within one standard deviation of the target in both laboratory results of a two-lab 

target would get a similarity score of 0.5. This is the same score that would be achieved by a record 

that is a perfect match on one of the laboratory values and a perfect mismatch on the other. This 

result stems from the summation occurring outside the fraction when calculating the similarity score.  

 

Measures of association 

 In these experiments, I chose to explore two methods of assessing association between 

variables. I used correlation to measure the strength of univariate association between similarity 

measures and intensity of PheWAS codes [73]. In addition, I built penalized linear regression models 

to explore these associations while adjusting for associations between the similarity measures and 

other PheWAS codes [103].  

 

Correlation 

 Correlation is a standard statistical tool for measuring the strength of association between 

two variables. One popular way of calculating correlation is Spearman’s 𝜌[104]. To calculate 

Spearman’s 𝜌,  each instance in the data set is ranked from lowest to highest value. Spearman’s 𝜌 is 
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then calculated by 𝜌 =  
𝑐𝑜𝑣(𝑟𝑋,𝑟𝑌)

𝜎𝑟𝑋
𝜎𝑟𝑌

, where 𝜎𝑟𝑋
 and 𝜎𝑟𝑌

are the standard deviations for the rank 

variables and 𝑐𝑜𝑣(𝑟𝑋, 𝑟𝑌) is the covariance of the rank variables. Spearman’s 𝜌 ∈ [−1,1]; the closer 

the value of 𝜌 is to ±1, the stronger the association between the two variables.  If one of the 

variables tends to increase as the other increases, Spearman’s 𝜌 will be positive; if one variable 

decreases as the other increases, 𝜌 will be negative. A Spearman correlation of 0 means that there is 

no relationship between the two variables  

 Unlike Pearson’s product moment correlation (another measure of association) [105], 

Spearman’s 𝜌 is able to identify non-linear relationships because it uses the ranked values of the 

variables instead of the raw data. Furthermore, Spearman’s 𝜌 is more resistant to extreme values of 

variables, as the influence of any instance is limited to the value of its rank [106].  

 

Linear regression 

  While correlation coefficients are an appropriate method of measuring the 

association between two variables, they do not adjust for other associated variables. To this end, 

regression models may be better suited.  

 Linear regression is a widely known and used approach for predicting one outcome from 

several simultaneously observed input variables. Linear regression predicts outcome 𝑦 from input 

variables 𝑋 using 𝑦̂ =  𝛽̂0 +  𝑥1𝛽̂1 + ⋯ + 𝑥𝑚𝛽̂𝑚, where the 𝜷 ̂ = (𝛽̂0, … , 𝛽̂𝑚) are estimated 

coefficients for each input variable that minimizes some measure of error between the predicted 

outcome 𝑦̂ and the observed outcome 𝑦 of interest. Optimizing the fit of the regression model is 

equivalent to solving the problem min
𝛽0,𝛽

1

𝑁
∑ 𝑤𝑖

𝑁
𝑖=1 𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖).  

 However, standard linear regression techniques such as ordinary least squares do not 

perform well in terms of generalizability beyond the training set [103]. They can also fail to provide 
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simple and interpretable models [107]. Penalized regression is a means of improving model 

performance and interpretation [103].  

 There are two main flavors of regression penalties: the 𝐿2, or ridge regression penalty, and 

the 𝐿1, or lasso penalty. The ridge regression penalty applies an 𝐿2 bound to a regression model, 

which serves to continuously shrink the coefficients by placing a penalty on the sum of squared 

coefficients [103]. As a result of this coefficient shrinkage, which shrinks the variance of the 

estimates, the regression model tends to achieve better performance than unpenalized regression. 

Furthermore, variables with similar effect sizes retain penalized coefficients of similar magnitudes. 

However, ridge regression does not remove any of the coefficients; in a complex model with many 

coefficients, interpretation can be challenging.  

 The lasso penalizes a regression model by imposing the 𝐿1 penalty on the sum of the 

absolute value of the regression coefficients [108]. It is a continuous shrinkage method, like ridge 

regression, but it also allows for the coefficients of the model to be driven to zero if the penalty is 

high enough. As a result, the lasso can be used for automatic feature selection through effectively 

setting the regression coefficients for irrelevant variables to zero. However, the lasso has its own set 

of caveats: if there are several highly correlated variables in the model, the lasso tends to select only 

one of the variables and remove all the others.  

 The elastic net is a regression model that is a weighted average of the lasso and ridge 

penalties [103]. This regression modeling strategy allows for automatic feature selection through 

lasso's sparsity induction, but does not have the limitation that only one variable out of several 

correlated features be kept.  The elastic net fits a generalized model via penalized maximum 

likelihood, solving the problem min
𝛽0,𝛽

1

𝑁
∑ 𝑤𝑖

𝑁
𝑖=1 𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖) + 𝜆[(1 − 𝛼)‖𝛽‖2

2/2 +  𝛼‖𝛽‖1] , 

where 𝑙(𝑦, 𝜂) is the negative log-likelihood for observation 𝑖. Notice this is similar to the objective 
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function for standard linear regression, except that there are now two terms representing the ridge 

‖𝛽‖2
2 and lasso ‖𝛽‖1 penalties.  The mixing parameter 𝛼 ∈ [0,1] controls the ratio of lasso to ridge 

penalty for a given model; α=1 is a pure lasso penalty, and α= 0 is pure ridge regression.   

Typically, building an elastic net involves tuning 𝜆, typically via cross-validation, to determine 

the optimum penalty for minimizing mean squared error [109]. When describing the model, it is 

common to report the model coefficients that are maintained at the largest 𝜆 where the cross-

validated mean squared error is within one standard error of the minimum cross-validated mean 

squared error the 𝜆1𝑠𝑒. Practically, this represents selecting a model that is essentially 

indistinguishable from the best-performing model in terms of mean squared error, while decreasing 

the risk that the model overfits to the data. I follow this approach in my experiments.  

 

Methods 

 In my experiments, I used abstraction models of clinical data to determine univariate 

association measures and build regression models over values from the models of the data, instead 

of over the data itself.  

I began with the same cohort of 325,461 records used in Chapter III. Members of the lab 

generated smooth interpolations by applying pchip to the standardized laboratory values at a 

resolution of 1000 total points over the eight-year period, or roughly one interpolated value every 

three days. I extrapolated values for each laboratory result outside of the first and last recorded value 

using the record-specific median. If a record did not have an instance of a particular laboratory test, 

I used the population mean for the entire length of the record.  

I generated continuous intensity curve representations of ICD9 diagnosis codes represented 

at the highest level PheWAS diagnosis codes used in prior studies [70]. If a record did not have three 

or more entries for a particular PheWAS code, no curve was generated for that code-record 
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combination. The intensity function was inferred for each highest-level PheWAS code for the most 

recent eight years of each patient record, with the initial years containing zero events if the record is 

shorter than eight years   These intensities were computed with one point per day resolution, and 

then reduced by max pooling to 1000 points over eight years.  As a result, the intensity curves and 

the continuous lab value interpolations were aligned to cover the same eight-year period per patient. 

In order avoid handling collinearity within records while still using data from as many 

records as possible given computational constraints, I selected one cross section of laboratory results 

and PheWAS codes from each record. I selected this cross section uniformly and randomly from the 

section of curves between the first and last PheWAS code for each record. We excluded records for 

which there were no PheWAS codes, leaving 288,966 records from which we sampled cross sections 

to perform the association analysis.  

 

Testing the approach 

 To explore whether using the data models would allow identification of known associations, 

I identified clinical targets with strong relationships based on clinical knowledge and expert 

recommendation. Using these target laboratory values, I calculated the similarity measure for each 

record and measured the correlation between these similarity scores and the intensity values for each 

of the high level PheWAS codes.  I queried against single laboratory targets with strong known 

associations, as well as multiple distinct values for single laboratory targets where the value was 

known to determine the associated phenotypes. Based on early experiments, I selected a correlation 

threshold of 0.1 above which the majority of associations appeared correct. However, for some 

queries, no associations were correlated above 0.1. In my results, I report at least the top three 

correlated PheWAS diagnosis codes, as well as all PheWAS codes with correlations above 0.1. To 
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assess the face validity of the resultant correlations, I employed clinical knowledge and non-

exhaustive searches of the medical literature.  

 To investigate whether my method could identify clinical guidelines as well as biological 

associations, I turned my attention to measured blood levels of tacrolimus and cyclosporine, two 

commonly-measured anti-rejection medications given to transplant patients. I calculated correlation 

coefficients between the major transplant types and several levels of these drugs. Specific organ 

transplant surgeries should be more highly correlated with the laboratory values of tacrolimus and 

cyclosporine when the blood levels of these drugs are in the therapeutic range. Most patients who 

are taking these drugs will have had a transplant, and I hypothesized that I would be able to 

reasonably identify the transplanted organ based on the blood levels of these drugs.  Even so, one 

difficulty for this task is that after most transplants, patients tend to continuously decrease their 

doses of these immunosuppressants, which can lead to a very wide therapeutic target when not 

considering time since operation [110,111].       

To explore whether the associations identified would be affected by simultaneously 

considering other associations, I built penalized regression models using elastic net, predicting the 

similarity scores using the available PheWAS codes. After an initial grid search to optimize the α 

parameter, I determined that the relationship between α and the estimation error achieved by the 

models was very gradual. I therefore elected to use α = 0.5 for my mixing parameter. The models 

were trained using 10-fold cross validation to determine the optimal penalty setting.  Models were 

built in the R programming environment using the package glmnet [103,112].  

For the penalized regression models, I evaluated the results qualitatively to see if the 

remaining regression terms had overlap with the PheWAS codes identified as being the most highly 

correlated with the similarity to the target value. I also quantitatively assessed the fit of the models 

by mean squared error, calculated as the average MSE over the ten cross-validation folds at the 𝜆1𝑠𝑒. 



 

49 
 

Exploring the Data 

 To explore the data in our population, I targeted multiple laboratory results simultaneously 

to identify correlated findings by including additional results with the single laboratory targets. My 

hypothesis was that additional data elements would induce a new set of correlations between 

PheWAS codes and lab targets, and that some of these may be unexpected and novel. For any such 

query, I required that the record have data for at least one of the target laboratory measurements, 

but did not require that the record have a PheWAS code. I considered the absence of a PheWAS 

code informative in terms of diagnoses assigned to the record; while the absence of a laboratory 

result is informative of clinical practice and decision making, the absence of a PheWAS code does 

not theoretically contribute to information regarding the similarity of a record to the target of 

interest.  

 For these experiments, I chose to look at two use cases. First, I explored how the method 

would handle an abnormally high blood glucose measurement in the context of a normal 

hemoglobin A1C. Hemoglobin A1C is a measure of long-term glucose control, so a normal value 

would imply that the patient in question would have consistently had well-controlled blood glucose 

levels, despite the fact that their current glucose level is very high [113].  

 I also explored whether combinations of low packed cell volume (PCV), red cell distribution 

width (RDW), and mean corpuscular volume (MCV) could be used to identify known and novel 

relationships with different classes of anemia. This is a clinically relevant question, as RDW and 

MCV are often used in combination to classify anemias and to suggest potential etiologies [114,115].  
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Results 

These results are in no way exhaustive of the potential findings, but instead should be 

considered as examples of the types of queries that could be asked of electronic health data using 

this approach. 

 

Testing the approach 

Extreme values for single laboratory values with known univariate associations were detected 

by my method (Table 4.1).  Known associations with values of mean corpuscular volume from very 

low to very high were also detected by my method (Table 4.2).  

I also demonstrate graphically the relationship between the laboratory results for tacrolimus 

and cyclosporine, two anti-rejection medications that must be tested in transplanted patients, and the 

main transplants associated with these drug levels (Figure 4.2).  

 Penalized regression predicting these single laboratory targets produced models with variable 

numbers of non-zero coefficients (Table 4.3, Appendices C, D). Of note, several of the models 

found suitable fits in terms of mean squared error by setting all coefficients to zero, equivalent to 

estimating the population mean similarity score for all instances. Regardless of the number of 

coefficients retained by the model, the fit as determined by the cross-validated mean squared error 

(Table 4.3).  
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Table 4.1. Top correlated PheWAS codes for selected single-laboratory targets.  
MSE = cross-validated mean squared error. 

Analyte 
Target 

(Normal) 
PheWAS Code Description Correlation 

Glucose 450 mg/dL Diabetes mellitus 0.3573 

 (70-100) Hypertension 0.1309 

  Ischemic heart disease 0.1301 

    

Creatinine 5.9 mg/dL Renal failure 0.3290 

 (0.70-1.50) Hypertension 0.2875 

  Ischemic heart disease 0.2559 

  Disorders of lipoid metabolism 0.2152 

  Congestive heart failure, nonhypertensive 0.1782 

  Diabetes mellitus 0.1628 

  Disorders of the kidney & ureters 0.1463 

  Cardiac dysrhythmias 0.1441 

  Gout and other crystal arthropathies 0.1331 

  Cardiac conduction disorders 0.1255 

  Cancer of kidney and urinary organs 0.1177 

  Nonspecific chest pain 0.1175 

  Cardiomyopathy 0.1165 

  Kidney replaced by transplant 0.1109 

  Hyperplasia of prostate 0.1073 

  Heart valve disorders 0.1047 
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Troponin I 0.8 ng/mL Renal failure 0.1481 

 (<=0.03) Congestive heart failure, nonhypertensive 0.1350 

  Respiratory failure; insufficiency; arrest 0.1321 

  Pleurisy 0.1137 

  Cardiomegaly 0.1098 

  Fluid, electrolyte, & acid-base balance disorders 0.1051 

  Cardiac dysrhythmias 0.1036 

    

Troponin I 50 ng/mL Ischemic heart disease 0.2760 

 <=0.03 Congestive heart failure, nonhypertensive 0.1658 

  Respiratory failure; insufficiency; arrest 0.1371 

  Renal failure 0.1174 

  Cardiomyopathy 0.1098 

  Shock 0.1080 

  Pleurisy 0.1063 

  Cardiomegaly 0.1007 

  Abnormal serum enzyme levels 0.1004 

    

Lipase 1200 U/L Diseases of pancreas 0.1311 

 (10-60) Chronic liver disease and cirrhosis 0.0827 

  Alcohol-related disorders 0.0766 

    

Cholesterol 500 mg/dL Menopausal and postmenopausal disorders 0.0898 
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 (115-200)     Osteoporosis, osteopenia, & pathological fractures 0.0688 

 Abnormal findings on mammogram or breast exam 0.0674 

Vitamin B12 50 pg/mL Vitamin deficiency 0.0478 

 (180-1000) Known or suspected fetal abnormality 0.0456 

  Other conditions of the mother complicating 
pregnancy 

0.0417 

    

Vitamin B12 1500 pg/mL Chronic liver disease and cirrhosis 0.0803 

 (180-1000) Fluid, electrolyte, & acid-base balance disorders 0.0792 

  Other anemias 0.0785 

    

PCV 30% Other anemias 0.2179 

 (35-45) Respiratory failure; insufficiency; arrest 0.1441 

  Fluid, electrolyte, & acid-base balance disorders 0.1424 

  Fever of unknown origin 0.1296 

 Pulmonary collapse; interstitial/compensatory emphysema 0.1219 

  Protein-calorie malnutrition 0.1188 

  Renal failure 0.1159 

  Pleurisy 0.1149 

  Bacterial infection NOS 0.1136 

  Septicemia 0.1116 

  Pneumonia 0.1003 
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Table 4.2. Top correlated PheWAS codes at varying levels of mean corpuscular volume (MCV) 
using Spearman’s correlation. 

Value (fL) 

(normal 80-100) 
PheWAS Code Description Correlation 

60 (low) Lack of normal physiological development 0.0972 

 Known or suspected fetal abnormality 0.0670 

 Iron deficiency anemias 0.0663 

   

75 (slightly low) Lack of normal physiological development 0.0972 

 Known or suspected fetal abnormality 0.0662 

 Acute upper respiratory infections 0.0628 

   

90 (normal) Disorders of lipoid metabolism 0.0888 

 Hypertension 0.0610 

 Pain in joint 0.0553 

105 
(slightly high) 

 
Other perinatal conditions 

 

0.1271 

 
Short gestation; low birth weight; and fetal growth 

retardation 
 

0.1141 

 Alcohol-related disorders 0.0748 

   

120 (high) Other perinatal conditions 0.1430 

 
Short gestation; low birth weight; and fetal growth 

retardation 
 

0.1342 

 Alcohol-related disorders 0.0744 
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Figure 4.2. Spearman’s 𝜌 for different transplant procedures at seven different blood levels of 
tacrolimus and cyclosporine. Bars across the top of plots show the desired blood levels of each drug 
to achieve therapeutic benefit. 
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Table 4.3. Coefficients maintained in elastic net models at cross-validated𝜆1𝑠𝑒, and cross validated 
model mean squared error (MSE).  

Analyte 
(Model MSE) 

Target 
(Normal) 

PheWAS Code Description 𝛽 

Glucose 450 mg/dL None - 

(0.0017) (70-100)   

    

Creatinine 5.9 mg/dL Renal failure 0.4158 

(0.0018) (0.70-1.50) Hypertension 0.0312 

  Ischemic heart disease 0.0269 

  Diabetes mellitus 0.0131 

  Congestive heart failure, nonhypertensive 0.0066 

  Respiratory failure; insufficiency; arrest -0.0045 

  Short gestation; low birth weight; and fetal 
growth retardation 

-0.0099 

  
Other perinatal conditions 

- 0.0209 

  Cardiac & circulatory congenital anomalies -0.0227 

    

Troponin I 0.8 ng/mL Ischemic heart disease -0.0526 

(0.0143) (<=0.03)   

    

Troponin I 50 ng/mL None - 

(0.0025) (<=0.03)   

    

Lipase 1200 U/L None - 

(0.0011)    
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Cholesterol 500 mg/dL None - 

(0.0006) (115-200)   

 

Vitamin B12 50 pg/mL Mood disorders 0.0355 

(0.0195) (180-1000) Substance addiction and disorders 0.0074 

  Intracranial hemorrhage 0.0057 

  Anxiety, phobic & dissociative disorders 0.0037 

  Cerebrovascular disease 0.0036 

  

For remaining coefficients, see Appendix C. 

  

Vitamin B12 1500 pg/mL None - 

(0.0118) (180-1000)   

    

PCV 30% Cancer of other female genital organs 0.8287 

(0.0298) (35-45) Chemotherapy 0.7697 

  Cancer of kidney and urinary organs 0.6907 

  Cancer of bone & connective tissue 0.6682 

  Known or suspected fetal abnormality 0.6182 

  Early or threatened labor 0.6060 

  For remaining coefficients, see Appendix D.  
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Exploring the Data 

 By including a normal measure of hemoglobin A1C along with the elevated glucose result, 

my method was able to identify a correlation with the diagnosis code for abnormal glucose 

measurements that was weaker when the only information available was an elevated glucose. 

Diabetes mellitus, the most highly correlated diagnosis code without information on hemoglobin 

A1C, no longer breaks the correlation threshold of 0.1 (Table 4.4).  

 Unlike the penalized regression model predicting the similarity of records to the target of 

just high glucose, the elastic net model of the target containing both a high glucose and normal 

hemoglobin A1C retained 176 correlation coefficients greater than zero at the 𝜆1𝑠𝑒(Table 4.5, 

Appendix E). 

 Using PCV, RDW and MCV, I was able to identify some known associations between these 

combinations and known anemia phenotypes. However, many of the correlation coefficients were 

below my threshold of 0.1 (Table 4.6) 
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Table 4.4. Inclusion of a normal hemoglobin A1C induces a different set of observed correlations.  

Analytes 
Target 

(Normal) 
PheWAS Code Description Correlation 

Glucose 450 mg/dL Diabetes mellitus 0.3573 

 (70-100) Hypertension 0.1309 

  Ischemic heart disease 0.1301 

    

Glucose, HbA1C 450 mg/dL, 5.5% Abnormal glucose 0.1366 

 (70-100; 4.0-6.5) Hypertension 0.1272 

    Ischemic heart disease 0.1018 

 
 
Table 4.5. Coefficients maintained in elastic net model of high glucose and normal  

hemoglobin A1C at cross-validated 𝜆1𝑠𝑒. 
 

Analytes 
(Model MSE) 

Target 
(Normal) 

PheWAS Code Description 𝛽 

Glucose, HbA1C 450 mg/dL, 5.5% Gestational diabetes 0.2115 

(0.0031) (70-100; 4.0-6.5) Abnormal glucose 0.2507 

  Disorders of lipoid metabolism 0.1759 

  Heart valve disorders 0.1532 

  Sleep disorders 0.1071 

  Overweight 0.1051 

  For remaining coefficients, see Appendix E.  
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Table 4.6. Top correlated PheWAS codes at varying levels of packed cell volume (PCV), red cell 
distribution width (RDW), and mean corpuscular volume (MCV).  A low PCV is indicative of an 
anemia. RDW and MCV together are often used to classify anemias and point to particular 
etiologies.  
 

Analytes 
Target 

(Normal) 
PheWAS Code Description Correlation 

PCV, RDW 30%, 13% Known or suspected fetal abnormality 0.1033 

 (35-45; 11.5-14.5) 
 

Early or threatened labor 0.0857 

  

 
Other conditions of the mother 

complicating pregnancy 0.0714 

    
PCV, RDW, 

MCV 30%, 13%, 60 fL Known or suspected fetal abnormality 0.1138 

 
(35-45; 11.5-14.5; 

80-100) Early or threatened labor 0.0947 

  

  
Other conditions of the mother 

complicating pregnancy 0.0818 

    
PCV, RDW, 

MCV 30%, 13%, 75 fL Known or suspected fetal abnormality 0.1178 

 
(35-45; 11.5-14.5; 

80-100) Early or threatened labor 0.0987 

  

 
Other conditions of the mother 

complicating pregnancy 0.0896 

    
PCV, RDW, 

MCV 30%, 13%, 90 fL Known or suspected fetal abnormality 0.0757 

 
(35-45; 11.5-14.5; 

80-100) Early or threatened labor 0.0619 

  

 
Fracture of the vertebral column without 

mention of spinal cord injury 0.0469 

    
PCV, RDW, 

MCV 30%, 13%, 105 fL Known or suspected fetal abnormality 0.0673 

 
(35-45; 11.5-14.5; 

80-100) 

 
Fracture of the vertebral column without 

mention of spinal cord injury 0.0561 

  
 

Early or threatened labor 0.0556 
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PCV, RDW, 

MCV 30%, 13%, 120 fL Known or suspected fetal abnormality 0.0916 

 
(35-45; 11.5-14.5; 

80-100) Early or threatened labor 0.0758 

  

 
Fracture of the vertebral column without 

mention of spinal cord injury 0.0609 

    

PCV, RDW 30%, 17% Other anemias 0.2407 

 (35-45; 11.5-14.5) 
 

Respiratory failure; insufficiency; arrest 0.1822 

  

 
Fluid, electrolyte, & acid-base balance 

disorders 0.1797 

    
PCV, RDW, 

MCV 30%, 17%, 60 fL Other anemias 0.2351 

 
(35-45; 11.5-14.5; 

80-100) Respiratory failure; insufficiency; arrest 0.1751 

  

 
Fluid, electrolyte, & acid-base balance 

disorders 0.1734 

    
PCV, RDW, 

MCV 30%, 17%, 75 fL Other anemias 0.2126 

 
(35-45; 11.5-14.5; 

80-100) Respiratory failure; insufficiency; arrest 0.1582 

  

 
Fluid, electrolyte, & acid-base balance 

disorders 0.1571 

    
PCV, RDW, 

MCV 30%, 17%, 90 fL Other anemias 0.1683 

 
(35-45; 11.5-14.5; 

80-100) Respiratory failure; insufficiency; arrest 0.1453 

  

 
Fluid, electrolyte, & acid-base balance 

disorders 0.1249 

    
PCV, RDW, 

MCV 30%, 17%, 105 fL Other anemias 0.2332 

 
(35-45; 11.5-14.5; 

80-100) Respiratory failure; insufficiency; arrest 0.1808 

  

 
Fluid, electrolyte, & acid-base balance 

disorders 0.1792 
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PCV, RDW, 

MCV 30%, 17%, 120 fL Other anemias 0.2411 

 
(35-45; 11.5-14.5; 

80-100) 

 
Respiratory failure; insufficiency; arrest 

 
0.1836 

 

  
Fluid, electrolyte, & acid-base balance 

disorders  0.1817 

 

Discussion 

Using continuous data representations, I was able to recover known associations between 

combinations of laboratory results and phenotypes of interest. Using penalized regression, I 

demonstrated that it is possible to use linear combinations of PheWAS codes to accurately predict 

specific values of multiple laboratory tests simultaneously. I was able to abstract away some of the 

difficulties in modeling electronic health data that arise from irregularity and asynchrony using 

continuous, longitudinal transformations of the data.   

 

Testing the approach 

In the single laboratory value correlation studies, the most positively correlated PheWAS 

codes have face validity for known associations. Elevated glucose, for example, is a defining feature 

of diabetes mellitus. The other top hits, hypertension and ischemic heart disease, are common 

comorbidities of diabetes [116]. Hypertension and ischemic heart disease are also known to be 

associated with renal failure, the primary cause of elevated creatinine [117,118]. Lipase elevated to 

ten-times the upper limit of normal is strongly correlated with diseases of the pancreas [119], but 

also chronic liver disease and alcohol abuse [120].  

While the correlations identified for troponin and cholesterol may not be intuitively correct, 

a review of the literature suggests that they may be valid findings. Although elevated troponin is 

most often considered in the context of acute myocardial infarction, it is also associated with renal 
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failure, congestive heart failure, and pulmonary embolism [121]. Menopause is known to increase 

cholesterol levels in women [122]  and studies suggest there may be links between high cholesterol 

and both osteoporosis and breast cancer [123,124].  

It is clear from the example of mean corpuscular volume that different levels of a laboratory 

result are associated with different phenotypes. While it is widely known that a common cause of 

microcytosis is iron deficiency and a common cause of macrocytosis is alcoholism, exploring an 

association between these two phenotypes without the ability to target specific laboratory values 

would have required two models; one for the association between MCV and alcoholism, and one for 

the association between MCV and iron deficiency. Here, the one model is able to identify both 

relationships, dependent only on the specified target lab values. One caveat to these interpretations 

is that while MCV is largely homogenous in the adult population, it varies significantly across a 

lifespan, especially in neonates, children, and teenagers. It is possible that some of the signal I 

detected, such as problems associated with pregnancy or failure to thrive, were driven by one or 

more of the age groups within the population. As I did not collect the ages of the study population, 

it is difficult to say this definitively.  

Exploring correlations between the intensities of diagnosis codes for transplant surgeries and 

the blood levels of anti-rejection drugs tacrolimus and cyclosporine, I was able to loosely recover 

clinical guidelines for the therapeutic drug levels for each surgery [110,111]. However, my method 

did not perfectly identify the clinical guidelines. One major reason for the discrepancy between my 

findings and clinical guidelines may be that the therapeutic level for each surgery changes as a 

function of time since the operation. Calculating the correlations using only cross-sections of the 

continuous functions, it was impossible for my method to be able to identify that dimension. In 

spite of this known limitation, my method still was nonetheless able to identify rough regions of 

therapeutic levels for tacrolimus and cyclosporine.  
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 The penalized regression models allowed for exploration of the relationships between 

laboratory results and PheWAS codes in the context of other lab-code relationships. Surprisingly, 

diagnosis codes that were strongly correlated with a laboratory of interest when not accounting for 

other associations, such as glucose and diabetes or lipase and pancreatitis, were occasionally included 

in regression models of the same problem. In some other cases, like the slightly elevated creatinine 

and slightly decreased PCV, significantly more coefficients were included in the regression model 

than would be expected based on the correlation coefficients.  

 Perhaps one reason for this discrepancy is the extreme nature of some of the values I 

selected. Using PheWAS diagnosis codes for diabetes and pancreatitis to predict elevated glucose 

and lipase levels may not have been included in the models because such extreme cases made up a 

very small percentage of the populations. Conversely, models predicting the slightly elevated 

creatinine and slightly decreased PCV from PheWAS diagnosis codes maintained a significant 

number of predictors in the models. This could be because there are more than just one or two 

diagnosis codes that are necessary in order to predict these values. In other words, there may be 

more than one etiology for these lab abnormalities.  

 

Exploring the Data 

 The ability of this method to handle targets with more than one laboratory value is one of its 

most promising features. As demonstrated by the example of combining elevated glucose and 

normal glycosylated hemoglobin, adding additional constraints on the laboratory target can 

drastically change which PheWAS codes are found to be correlated. Unconstrained by any other 

information, a glucose measurement of 450 mg/dL would strongly suggest a diabetic patient, 

potentially one in an acute exacerbation. However, including the information that their hemoglobin 

A1C (a measure of long-term glucose control) is normal makes the diagnosis code of chronic 
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diabetes less likely, and increases the correlation to the PheWAS code for an abnormal glucose 

measurement.  

 As with elevated creatinine and slightly decreased PCV in the univariate sense, the elastic net 

model kept the coefficients for many PheWAS codes when predicting the combination of high 

glucose and normal hemoglobin A1C. The largest coefficient in the model is gestational diabetes, an 

acute metabolic syndrome that occurs during pregnancy.  This result makes sense, as this disease 

could easily lead to an increased glucose and normal hemoglobin A1C.  

 Several other diagnosis codes that were kept in this model seem to share a common 

relationship to acutely elevated glucose; namely, they are either transplant surgeries or conditions 

that could reasonably lead to transplant surgeries. With these surgeries, patients would be required to 

take anti-rejection medications, including steroids, which are known to acutely elevate glucose levels. 

  Using the combined laboratory values for PCV, RDW and MCV provided a less 

clear result. At RDW levels of 13%, the dominant correlated phenotypes were fetal abnormalities 

and early labor. When RDW levels were 17%, the correlated phenotypes were anemias, respiratory 

failure, and acid-base disorders. This is not entirely as one would expect; because we set the value of 

PCV to 30% across all comparisons, every one of the instances should have returned some 

indication of anemia. However, the lower RDW values seem to be driving the correlation with 

pregnancy-related outcomes. Across the range of MCV values, it does not seem that MCV 

contributes meaningfully to the correlated phenotypes after RDW and PCV are considered. Again, 

this result could be due to uneven age distributions in this sample, but which would be difficult to 

determine with the data I collected.  

 Compared to previous methods of identifying associations between findings and diseases, 

using continuous data representations allows many advantages. In order to achieve the same type of 

analysis without a continuous representation, a researcher would have to make at least two decisions 
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about how to use their data. First, they would have to determine how temporally close together two 

clinical events would have to be in order to be considered simultaneous. Second, they would also 

need to decide how close in value a laboratory result would need to be to the target to be considered 

identical. The answer to both of these questions has traditionally been binning of both time and 

laboratory result variables. However, as noted above, this type of approach is an approximation for 

the type of analysis I am able to perform using continuous data representations and my similarity 

measure.  

There are some limitations of this approach. As with all exploratory data analysis, it is 

entirely possible that many of the associations discovered are simply data artifacts. The same analysis 

could be run in a separate set of clinical records, or even another hospital’s record, to determine if 

the findings replicate. A review of medical literature may be able to show whether there is prior 

evidence for the correlations I have uncovered. Finally, associations that are identified in this way 

could serve as hypotheses for designing other experiments to test for replication. 

In its current incarnation, it is impossible to determine whether a diagnosis preceded or 

followed a particular set of lab results. Unfortunately, this removes all possibility of identifying 

which associated findings may be used as risk factors in prediction or prognosis. It would be 

possible to overcome this limitation by retaining the entire estimated function for all lab results and 

PheWAS codes for all patients, which would allow the user to determine how two correlated events 

are temporally related. However, this would have led to a significant increase in computational 

demand, as well as required adjustments to the model formulation in order to account for intra-

record correlations.  

My threshold of 0.1 for flagging correlations as interesting was determined by trial and error 

on early experiments.  It is likely, however, that there are a host of considerations that should go into 

determining the appropriate correlation cutoff for each query. For instance, values that were more 
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extreme often had higher correlation with known associated diseases. This was not always the case, 

as extremely high vitamin B12 values did not have any correlation coefficients over my threshold 

and could be due to the lower rate of vitamin B12 testing among this clinical population. Further 

work is required to better understand the relationships between strength of association, magnitude 

of deviation from the population mean, and the prevalence of test orders. 

It is also likely that the decision to require at least three PheWAS codes in order to generate 

a trace washed out some of the correlations that would have been found if I had included traces for 

these codes. This may explain why the slightly elevated troponin measurement was not highly 

associated with ischemic heart disease (the PheWAS code which subsumes myocardial infarction), 

even though this diagnosis is the most likely etiology of an elevated troponin. Perhaps the acute 

nature of a myocardial infarction, combined with the decision to ignore PheWAS codes with fewer 

than three entries, limited my ability to find this known association. Even so, ischemic heart disease 

is the most positively correlated PheWAS code for troponins that are sufficiently elevated.  

The granularity of PheWAS available for this work also likely limited the kinds of 

associations that I was able to identify. In this set, the code for diabetes mellitus subsumes both 

insulin-dependent and non-insulin dependent forms, as well as the acute event of diabetic 

ketoacidosis. There is also no PheWAS code in this dictionary for a normal pregnancy. As a result, 

labs which are elevated in a fair proportion of normal pregnancies may have falsely shown up as  

associated with complications of pregnancy or congenital problems with the newborn, assuming 

these complications do not change the underlying pregnancy physiology which elevates those 

specific labs in the first place. Future work to identify more specific associations will require a more 

precise vocabulary of diagnosis codes, as well as the inclusion of other types of data, such as 

medication administrations, vital signs and demographic information. 
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CHAPTER V 

 

DISCUSSION 

 

 The major challenges to making use of health data for identifying more precise phenotypes 

can be tackled by one of two approaches: 1) developing new methodologies to analyze the irregular, 

asynchronous nature of the data, or 2) abstracting and transforming the data to be amenable to 

standard analysis methodologies. In this dissertation I have explored some of the properties of 

various methods to address these issues, and demonstrated that each may have its place in particular 

circumstances.  

 I have shown that, in the case of classifying records by presence or absence of high-

specificity procedure codes or demographics, low-complexity abstraction models to alleviate these 

problems are an efficient method of encoding health data. These data representations also allow for 

the creation of models that can utilize non-specific, diffuse information spread throughout the 

health record, and provide classifications with respectable discrimination, calibration and confidence.  

 Using simple data abstraction models to more accurately identify patients with a phenotype 

of interest could be a low-cost, simple way to improve the quality of populations used for 

phenotyping analysis. Such an approach could even be used to impute missing data, which 

commonly arise because of lack of interoperability between clinical record systems. Such low-cost, 

simple methods are appealing, and could potentially have large returns in terms of the usability of 

clinical data.  

While I have demonstrated that simple data representations can be used to accurately 

identify patients with phenotypes of interest, I have not fully explored using the continuous data 

representations from Chapter IV in a similar manner. Preliminary results suggest that, at least in the 
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paradigm of a random forest or similar classifier, such a longitudinal representation may not provide 

additional improvement in discrimination.  

One may question why, when continuous representations proved so useful in targeting 

specific combinations of laboratory results in Chapter IV, they do not greatly outperform simpler 

methods in predicting high-specificity binary phenotypes. One possible explanation has already been 

suggested: namely, that the random forest model employed requires too much data to make a 

complete representation of the problem, and methods that compress the longitudinal record into 

small dimensional space are more efficient.  

Another possible explanation may be that these two tasks are exploring two different types 

of phenotypes. In Chapter III, I had defined my outcomes of interest and wanted to determine if 

there was evidence in the record that the event had ever happened. In Chapter IV, I was less 

interested in whether an event had ever happened, and wanted to see which phenotype codes were 

associated with particular laboratory results. Because laboratory results can change over time, it 

made sense to look at diagnosis codes over time as well. Presuming a constant level for the 

phenotypes of interest throughout the patient’s trajectory would have likely dispersed any signal 

throughout the medical record, making association mining nearly impossible.  

 I have also demonstrated the utility of using continuous longitudinal data abstraction models 

of health data, obviating the need for binning time variables when modeling health record data 

which is captured irregularly and asynchronously. Calculations and models can be built at any time 

points over the period of interest because of the specification of continuous functions over the 

input space; all time points have either an observed or estimated value for the entity of interest.  

 I have shown that these continuous representations, because of their ability to abstract away 

irregularity and asynchrony, can be used to query against combinations of exact laboratory values. 
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Unlike previous methods, this allows for the identification of correlations between unique sets of 

clinical findings and phenotypes of interest.   

 Querying against specific clinical findings has a clear potential use in clinical decision 

support. The inspiration for this approach came largely from the use case of a perplexed physician, 

unsure how to interpret uncommon, confusing combinations of laboratory values. While it would 

not make sense for a seasoned physician to query against well-known associations, it may prove 

beneficial to augment their clinical knowledge with information about the most likely reasons for 

their patients’ difficult-to-diagnose complaints or ambiguous test results.   

Another potential use of such a method may manifest as decision support for ordering 

laboratory tests. While my method can currently identify associations, it is imaginable that a 

modified version of my method could be used to 1) identify the highest probability diagnoses, and 2) 

identify the laboratory test that has the highest likelihood of differentiating between the most likely 

diseases, perhaps through estimating the information value of particular tests. The principled use of 

laboratory tests and medication trials could help to decrease the cost of medical care by decreasing 

uncertainty, a timely goal given the ever increasing cost of medicine worldwide.  

 

Open Questions 

In my work, I selected cross-sections from each of the records, where each cross-section 

contained the estimated function value for all laboratory results and diagnosis code intensity curves. 

This was done in order to remove the need to address intra-record correlation.  However, given time 

and computing power, it would be feasible to calculate correlations on not just cross-sections of 

records, but on the entire records themselves. Similarity measures could be computed somewhat 

equivalently, the exception being that instead of a single value per record, this measure would yield a 

function of similarity values for a record over time. Using appropriate transformation approaches 
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such as Fisher’s 𝑧, it would be possible to combine and average these correlations, thus allowing the 

use of all records and all the data points within a specific record.  

One particularly interesting opportunity is the question of whether temporal relations other 

than simultaneity can be explored using continuous data representations. Were it possible to 

calculate correlations between similarity measures and PheWAS diagnosis code intensities over an 

entire record, as I just discussed, then it would also be possible to calculate cross-variance between 

the function of similarity measures and the PheWAS code intensities. This might allow for 

identification of clinical laboratory entities that occur either before or after a rise in the intensity of a 

diagnosis code. Using this type of approach, it is possible that my task of recovering clinical 

guidelines for anti-rejection medications might be improved.  

Gaussian process regression is a method that has been used to quantify the uncertainty 

around point estimates of a function. Given the time demands of modeling clinical data in this way, 

I elected to use simpler methods that do not include this uncertainty term and even remove 

information about when the observed data points occurred. However, it is likely that information 

about the exact location of observed data points and the estimated uncertainty throughout the 

function would provide additional uses for the utility of these methods.  

Methods utilizing continuous representations of medical data can be applied to more than 

just structured elements. As mentioned in Chapter II, there are several additional types of medical 

data, such as images and free text forms. To learn from these types of data, one approach has been 

to extract features from their structure. With these features extracted, it is entirely possible to model 

the occurrence of these features using continuous representations, just as I did with structured 

laboratory results and diagnosis codes. In this way, heterogeneous data sources such as clinical 

concepts encoded in free text or visual features from radiology images could be seamlessly 

combined with structured data elements, all in a way that would be immediately computable by 



 

72 
 

machine learning algorithms, allowing researchers the ability to efficiently and automatically perform 

analysis on large complex medical data sets.  

 

Conclusion 

This dissertation demonstrates that it is possible to overcome some of the problems of 

medical data sparsity, irregularity and asynchrony by modeling clinical data at different levels of 

abstraction and using samples from those models as substrates to machine learning algorithms. 

Modeling clinical data using summary measures such as counts or means is an efficient way to 

encode data, and these representations can be used to build highly discriminative classification 

models. Modeling clinical data as continuous functions from which samples can be drawn alleviates 

the complications that arise from the irregular and asynchronous nature of the clinical environment. 

Samples from these functions can be used as the substrates for standard learning algorithms. The 

methods I have proposed here show the advantages of modeling medical data by overcoming some 

of the challenges that hamper wider use of machine learning in medicine.   
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APPENDIX A.  

Lists of CPT and ICD-9 codes used to identify records with outcomes of interest. All codes are CPT 
codes unless marked with a “*”.  

 
Outcome Codes   Outcome Codes 

Appendectomy 44950  Hip Replacement 27090 

 44955   27091 

 44960   27125 

 44970   27130 

 44979   27132 

    27134 

Cholecystectomy 47562   27136 

 47563   27137 

 47564   27138 

 47570  Kidney Transplant 50360 

 47579   50365 

 47600    

 47605  Knee Replacement 27438 

 47610   27446 

 47612   27447 

 47620   27486 

    27487 

Hemorrhoid Surgery 46083   27488 

 46200    

 46220  Pancreatectomy 48140 

 46221   48145 

 46230   48146 

 46250   48148 

 46255   48150 

 46257   48152 

 46258   48153 

 46260    

 46261  Splenectomy 38100 

 46262   38101 

    38102 

Liver Transplant 47135   38115 

 47136   38120 

 *50.51    

 *50.59    

  *v42.7       
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APPENDIX B.  

Full set of variable importance plots for seven different representations and thirteen different 
classification tasks.  
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APPENDIX C.  

Coefficients remaining in penalized regression model predicting Vitamin B12 at 50 pg/mL. 
 

PheWAS Code Description β 

Mood disorders 0.0355 

Substance addiction and disorders 0.0074 

Intracranial hemorrhage 0.0057 

Anxiety, phobic & dissociative disorders 0.0037 

Cerebrovascular disease 0.0036 

Urinary tract infection -0.0006 

Hypothyroidism -0.003 

Bacterial infection NOS -0.0101 

Chemotherapy -0.0133 

Sepsis and SIRS -0.0163 

Pleurisy -0.0165 

Cancer of other lymphoid, histiocytic tissue -0.0193 

Secondary malignant neoplasm -0.0198 

Malaise and fatigue -0.0213 

Diabetes mellitus -0.0237 

Respiratory failure; insufficiency; arrest -0.0265 

Ascites (non-malignant) -0.0288 

Dysphagia -0.041 

Leukemia -0.0484 

Other symptoms of respiratory system -0.0606 

Viral hepatitis -0.0651 

Alcohol-related disorders -0.0681 

Fluid, electrolyte, & acid-base balance 
disorders 

-0.0758 

Other anemias -0.077 

Protein-calorie malnutrition -0.0841 

Neurological disorders -0.0848 

Pneumonia -0.0899 

Purpura and other hemorrhagic conditions -0.0934 

Congestive heart failure, nonhypertensive -0.1082 

Septicemia -0.1447 

Renal failure -0.2396 

Chronic liver disease and cirrhosis -0.2711 
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APPENDIX D.  

Coefficients remaining in penalized regression model predicting PCV at 30%.  
 

PheWAS Code Description β 

Cancer of other female genital organs 0.8287 

Chemotherapy 0.7697 

Cancer of kidney and urinary organs 0.6907 

Cancer of bone & connective tissue 0.6682 

Known or suspected fetal abnormality 0.6182 

Early or threatened labor 0.6060 

Pancreatic cancer 0.5982 

Colorectal cancer 0.5843 

Fracture of lower limb 0.5519 

Cancer of the upper GI tract 0.5351 

Infections involving bone 0.5242 

Other conditions of the mother complicating pregnancy 0.5094 

Stomach cancer 0.5028 

Cancer within the respiratory system 0.4985 

Retinal disorders 0.4902 

Fracture of ankle and foot 0.4779 

Abnormality of organs & soft tissues of pelvis complicating pregnancy, childbirth, or the puerperium 0.4746 

Breast cancer 0.4534 

Fracture of pelvis 0.4524 

Chronic ulcer of skin 0.4375 

Curvature of spine 0.4320 

Hereditary hemolytic anemias 0.4297 

Fracture of unspecified bones 0.4245 

Cervical cancer and dysplasia 0.4151 

Other anemias 0.4145 

Osteoarthrosis 0.4139 

Acute bronchitis and bronchiolitis 0.4105 

Hypertension complicating pregnancy 0.4045 

Heart valve disorders 0.4044 

Peripheral vascular disease 0.3953 

Other aneurysm 0.3947 

Iron deficiency anemias 0.3868 

Cancer of the digestive organs and peritoneum 0.3692 

Other biliary tract disease 0.3584 

Diseases of esophagus 0.3506 

Cancer of other lymphoid, histiocytic tissue 0.3434 

Gestational diabetes 0.3386 

Viral infection 0.3305 
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Secondary malignant neoplasm 0.3267 

Lack of normal physiological development 0.3262 

Other disorders of intestine 0.3241 

Arthropathy associated with infections 0.3229 

Hodgkin's disease 0.3226 

Ileostomy status 0.3178 

Edema 0.3175 

Fever of unknown origin 0.3108 

Fracture of vertebral column without mention of spinal cord injury 0.3024 

Other upper respiratory disease 0.3018 

Chronic liver disease and cirrhosis 0.2993 

Congenital anomalies of face and neck 0.2992 

Uterine cancer 0.2989 

Postoperative infection 0.2969 

Ischemic Heart Disease 0.2896 

Muscular dystrophies and other myopathies 0.2890 

Pneumonitis due to inhalation of food or vomitus 0.2870 

Bone marrow or stem cell transplant 0.2868 

Leukemia 0.2825 

Hemorrhage during pregnancy; childbirth and postpartum 0.2824 

Lymphadenitis 0.2701 

Cancer of mouth 0.2671 

Open wounds of extremities 0.2602 

Atherosclerosis 0.2600 

Nephritis; nephrosis; renal sclerosis 0.2560 

Pyelonephritis 0.2552 

Liver replaced by transplant 0.2539 

Urinary tract infection 0.2450 

Inflammatory diseases of female pelvic organs 0.2423 

Pleurisy 0.2400 

Nausea and vomiting 0.2381 

Contusion 0.2374 

Empyema and pneumothorax 0.2328 

Fracture of upper limb 0.2318 

Decreased white blood cell count 0.2300 

Kidney replaced by transplant 0.2286 

Hepatic cancer 0.2284 

Open wounds of head; neck; and trunk 0.2274 

Protein-calorie malnutrition 0.2243 

Skull fracture and other intracranial injury 0.2239 

Prostate cancer 0.2129 

Disorders of the kidney & ureters 0.2125 

Intracranial hemorrhage (injury) 0.2105 
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Disorders of liver 0.2088 

Meningitis 0.2068 

Fracture of ribs 0.2058 

Lung disease due to external agents 0.2006 

Problems associated with amniotic cavity and membranes 0.1980 

Renal failure 0.1975 

Retention of urine 0.1966 

Diseases of pancreas 0.1962 

Other symptoms of respiratory system 0.1915 

Heart transplant/surgery 0.1898 

Spinal stenosis 0.1880 

Venous complications in pregnancy and the puerperium 0.1847 

Peptic ulcer 0.1830 

Esophageal cancer 0.1787 

Gastrointestinal hemorrhage 0.1787 

Erythematous conditions 0.1763 

Ascites (non-malignant) 0.1748 

Acute upper respiratory infections 0.1742 

Pneumonia 0.1724 

Fluid, electrolyte, & acid-base balance disorders 0.1674 

Spinal cord injury without evidence of spinal bone injury 0.1674 

Infective connective tissue disorders 0.1619 

Otitis media & Eustachian tube disorders 0.1602 

Candidiasis 0.1576 

Other disorders of stomach and duodenum 0.1575 

Other diseases of lung 0.1563 

Septicemia 0.1515 

Other disorders of bladder 0.1485 

Human immunodeficiency virus 0.1475 

Chronic airway obstruction 0.1467 

Bacterial infection NOS 0.1449 

Epilepsy, recurrent seizures, convulsions 0.1428 

Infection/inflammation of internal prosthetic device, implant or graft 0.1413 

Respiratory abnormalities 0.1409 

Venous embolism & thrombosis 0.1395 

Cancer, suspected or other 0.1383 

Polyarteritis nodosa and allied conditions 0.1370 

Delirium dementia and amnestic disorders 0.1359 

Rash and other nonspecific skin eruption 0.1351 

Cardiac conduction disorders 0.1340 

Diabetes mellitus 0.1301 

Other local infections of skin and subcutaneous tissue 0.1248 

Abnormal movement 0.1247 
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Abnormal heart sounds 0.1247 

Other paralytic syndromes 0.1246 

Gangrene 0.1245 

Other infectious diseases 0.1228 

Symptoms of the muscles 0.1213 

Protein plasma/amino-acid transport and metabolism disorder 0.1209 

Nervous system congenital anomalies 0.1203 

Other peripheral nerve disorders 0.1183 

Peritonitis and retroperitoneal infections 0.1180 

Encounter for long-term use of antibiotics 0.1166 

Respiratory failure; insufficiency; arrest 0.1157 

Excessive vomiting in pregnancy 0.1144 

Intestinal obstruction without mention of hernia 0.1137 

Encephalitis 0.1107 

Intracranial hemorrhage 0.1074 

Other and unspecified complications of birth; puerperium affecting management of mother 0.1060 

Short gestation; low birth weight; and fetal growth retardation 0.1001 

Pulmonary collapse; interstitial/compensatory emphysema 0.1001 

Lung transplant 0.0994 

Osteoporosis, osteopenia, & pathological fractures 0.0953 

Influenza 0.0949 

Persistent mental disorders due to other conditions 0.0894 

Disorders of adrenal glands 0.0888 

Infections of genitourinary tract during pregnancy 0.0887 

Fracture of hand or wrist 0.0887 

Early complications of trauma or procedure 0.0872 

Cardiac dysrhythmias 0.0872 

Inflammatory bowel disease 0.0861 

Mechanical complications of cardiac/vascular device, implant, and graft 0.0857 

Hypotension 0.0853 

Immune disorders 0.0844 

Anomalies of respiratory system, congenital 0.0827 

Other complications of pregnancy NEC 0.0822 

Hemangioma and lymphangioma, any site 0.0815 

Abdominal pain 0.0808 

Hypothyroidism 0.0792 

Other nutritional deficiency 0.0789 

Spondylosis and allied disorders 0.0778 

Herpes simplex 0.0771 

Superficial cellulitis & abscess 0.0755 

Neurological disorders 0.0754 

Hemorrhage or hematoma complicating a procedure 0.0746 

Other symptoms involving abdomen and pelvis 0.0744 
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Complication of internal orthopedic device 0.0700 

Noninfectious disorders of lymphatic channels 0.0700 

Major puerperal infection 0.0698 

Rhabdomyolysis 0.0675 

Muscle weakness 0.0673 

Other disorders of peritoneum 0.0673 

Abnormal sputum 0.0635 

Intestinal infection 0.0619 

Carditis 0.0618 

Dislocation 0.0615 

Asthma 0.0614 

Hypertension 0.0609 

Disorders resulting from impaired renal function 0.0607 

Other disorders of circulatory system 0.0605 

Aplastic anemia 0.0583 

Hepatitis NOS 0.0578 

Purpura and other hemorrhagic conditions 0.0563 

Other complications of the puerperium NEC 0.0555 

Traumatic amputation 0.0522 

Parkinson's disease 0.0507 

Other cerebral degenerations 0.0501 

Phlebitis and thrombophlebitis 0.0488 

Alcohol-related disorders 0.0481 

Miscarriage; stillbirth 0.0466 

Viral hepatitis 0.0431 

Other specified nonpsychotic and/or transient mental disorders 0.0431 

Amyloidosis 0.0427 

Congestive heart failure, nonhypertensive 0.0397 

Abdominal hernia 0.0387 

Neoplasm of uncertain behavior 0.0378 

Congenital musculoskeletal anomalies 0.0373 

Anorexia 0.0368 

Infantile cerebral palsy 0.0361 

Infectious & parasitic conditions complicating pregnancy 0.0302 

Cancer of other endocrine glands 0.0296 

Cerebral laceration and contusion 0.0293 

Adverse drug events and drug allergies 0.0290 

Dysphagia 0.0290 

Symptoms and disorders of the joints 0.0287 

Abnormal findings examination of lungs 0.0272 

Arterial embolism and thrombosis 0.0270 

Long-term use of anticoagulants 0.0267 

Disorders of function of stomach 0.0262 
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Complication of amputation stump 0.0254 

Abnormal serum enzyme levels 0.0243 

Non-inflammatory female genital disorders 0.0238 

Benign neoplasm of brain and other parts of nervous system 0.0227 

Complications of labor and delivery NEC 0.0194 

Symptoms involving nervous and musculoskeletal systems 0.0192 

Functional digestive disorders 0.0180 

Diseases of the larynx and vocal cords 0.0177 

Malaise and fatigue 0.0153 

Developmental delays and disorders 0.0145 

Post-inflammatory pulmonary fibrosis 0.0125 

Disorders of sweat glands 0.0125 

Other conditions of brain 0.0121 

Other disorders of the nervous system 0.0114 

Swelling of limb 0.0114 

Cerebrovascular disease 0.0107 

CNS infection and poliomyelitis 0.0096 

Coagulation defects 0.0080 

Myeloproliferative disease 0.0042 

Infection of the eye 0.0030 

Degenerative disease of the spinal cord -0.0006 

Elevated prostate specific antigen -0.0008 

Hemiplegia -0.0012 

Sepsis and SIRS -0.0066 

Glaucoma -0.0077 

pulmonary heart disease -0.0110 

Abnormal results of function study of liver -0.0129 

Nonspecific chest pain -0.0168 

Menopausal & postmenopausal disorders -0.0195 

Digestive congenital anomalies -0.0215 

Acquired hemolytic anemias -0.0230 

Acute sinusitis -0.0232 

Substance addiction and disorders -0.0240 

Other abnormal blood chemistry -0.0264 

Disturbance of skin sensation -0.0282 

Migraine -0.0319 

Rheumatoid arthritis & related inflammatory polyarthropathies -0.0332 

Conduct disorders -0.0340 

Musculoskeletal symptoms referable to limbs -0.0402 

Shock -0.0419 

Other conditions of brain, NOS -0.0437 

Thyroid cancer -0.0480 

Disorders of synovium, tendon, and bursa -0.0497 
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Acute and subacute necrosis of liver -0.0513 

Abnormal findings on mammogram or breast exam -0.0548 

Disorders of other cranial nerves -0.0563 

Multiple sclerosis -0.0594 

Schizophrenia and other psychotic disorders -0.0636 

Vitamin deficiency -0.0664 

Disorders of parathyroid gland -0.0685 

Light-headedness and vertigo -0.0702 

Mood disorders -0.0776 

Pulmonary congestion and hypostasis -0.0871 

Intestinal malabsorption -0.0888 

Anxiety, phobic & dissociative disorders -0.0905 

Pervasive developmental disorders -0.0933 

Eating disorder -0.0977 

Infections specific to the perinatal period -0.0982 

Back pain -0.1030 

Other headache syndromes -0.1075 

Tobacco use disorder -0.1182 

Nontoxic nodular goiter -0.1229 

Sleep apnea -0.1297 

Acid-base balance disorder -0.1348 

Cervicalgia -0.1737 

Diseases of sebaceous glands -0.1803 

Sleep disorders -0.1809 

Peripheral enthesopathies -0.1861 

Abnormal glucose -0.1901 

Degenerative skin conditions and other dermatoses -0.2238 

Other perinatal conditions -0.2394 

Cataract -0.2443 

Pain in joint -0.2530 

Psoriasis & related disorders -0.2653 

Testicular dysfunction -0.2685 

Elevated C-reactive protein -0.3088 

Disorders of lipoid metabolism -0.5259 

Allergic rhinitis -0.5769 
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APPENDIX E.  

Coefficients remaining in penalized regression model predicting  
glucose at 450 mg/dL and HgbA1C at 5.5% 
 

PheWAS Code Description β 

Gestational diabetes 0.2115 

Abnormal glucose 0.2057 

Disorders of lipoid metabolism 0.1759 

Heart valve disorders 0.1532 

Sleep disorders 0.1071 

Overweight 0.1051 

Known or suspected fetal abnormality 0.0986 

Lung transplant 0.0970 

Other conditions of the mother complicating pregnancy 0.0764 

Allergic rhinitis 0.0758 

Other and unspecified complications of birth; puerperium affecting management of mother 0.0713 

Heart transplant/surgery 0.0712 

Back pain 0.0711 

Tobacco use disorder 0.0666 

Abnormality of organs & soft tissues of pelvis complicating pregnancy, childbirth, or the puerperium 0.0663 

Pulmonary collapse; interstitial/compensatory emphysema 0.0649 

Pain in joint 0.0596 

Liver replaced by transplant 0.0574 

Vitamin deficiency 0.0573 

Ischemic Heart Disease 0.0496 

Complications of labor and delivery NEC 0.0481 

Hypertension 0.0420 

Cardiomegaly 0.0417 

Cerebrovascular disease 0.0367 

Kidney replaced by transplant 0.0349 

Sleep apnea 0.0342 

Problems associated with amniotic cavity and membranes 0.0342 

Hypothyroidism 0.0307 

Long-term use of anticoagulants 0.0293 

Cardiomyopathy 0.0266 

Bone marrow or stem cell transplant 0.0257 

Asthma 0.0257 
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Human immunodeficiency virus 0.0243 

Neurological disorders 0.0238 

Cervicalgia 0.0227 

Other aneurysm 0.0219 

Cardiac dysrhythmias 0.0217 

Dysphagia 0.0170 

Hypertension complicating pregnancy 0.0168 

Myalgia and myositis NOS 0.0158 

Musculoskeletal symptoms referable to limbs 0.0157 

Cataract 0.0149 

Renal failure 0.0137 

Early or threatened labor 0.0131 

Shock 0.0124 

Malaise and fatigue 0.0120 

Bariatric surgery 0.0098 

Nonspecific chest pain 0.0098 

Fluid, electrolyte, & acid-base balance disorders 0.0083 

Light-headedness and vertigo 0.0078 

Venous embolism & thrombosis 0.0076 

Carditis 0.0066 

Coma 0.0056 

Degenerative skin conditions and other dermatoses 0.0045 

Pleurisy 0.0043 

Ovarian dysfunction 0.0031 

Chronic liver disease and cirrhosis 0.0030 

Symptoms/disorders of the urinary system 0.0023 

Intracranial hemorrhage 0.0021 

Hyperplasia of prostate 0.0020 

Peripheral enthesopathies 0.0020 

Other specified nonpsychotic and/or transient mental disorders 0.0015 

Elevated transaminase or LDH 0.0014 

Other symptoms of respiratory system 0.0013 

Disorders of menstruation 0.0006 

Cystic fibrosis 0.0005 

Infection/inflammation of internal prosthetic device, implant or graft 0.0000 

Encephalitis -0.0002 

Acute upper respiratory infections -0.0003 
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Other headache syndromes -0.0006 

Cancer of mouth -0.0008 

Jaundice -0.0009 

Contusion -0.0012 

Disorders of the kidney & ureters -0.0014 

Abnormal sputum -0.0022 

Inflammatory and toxic neuropathy -0.0022 

Symptoms of the muscles -0.0027 

Developmental delays and disorders -0.0030 

Pyelonephritis -0.0033 

Fracture of ankle and foot -0.0033 

Infective connective tissue disorders -0.0036 

Cardiac conduction disorders -0.0039 

Disorders of liver -0.0041 

Mood disorders -0.0043 

Chronic airway obstruction -0.0046 

Viral infection -0.0049 

Stomach cancer -0.0052 

Peritonitis and retroperitoneal infections -0.0058 

pulmonary heart disease -0.0060 

Urinary tract infection -0.0062 

Other conditions of brain, NOS -0.0066 

Other symptoms involving abdomen and pelvis -0.0066 

Mycoses -0.0068 

Other abnormal blood chemistry -0.0069 

Adverse drug events and drug allergies -0.0074 

Sepsis and SIRS -0.0074 

Other anemias -0.0078 

Other cerebral degenerations -0.0081 

Uterine cancer -0.0082 

Respiratory failure; insufficiency; arrest -0.0090 

Cancer of other female genital organs -0.0090 

Delirium dementia and amnestic disorders -0.0096 

Genitourinary congenital anomalies -0.0097 

Purpura and other hemorrhagic conditions -0.0101 

Chemotherapy -0.0102 

Suicidal ideation or attempt -0.0103 
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Leukemia -0.0104 

Pancreatic cancer -0.0109 

Bacterial infection NOS -0.0109 

Intracranial hemorrhage (injury) -0.0111 

Substance addiction and disorders -0.0120 

Arthropathy associated with infections -0.0124 

Cancer of other lymphoid, histiocytic tissue -0.0125 

Spinal cord injury without evidence of spinal bone injury -0.0133 

Other pulmonary inflammation or edema -0.0134 

Congestive heart failure, nonhypertensive -0.0135 

Diseases of respiratory system NEC -0.0136 

Poisoning by analgesics, antipyretics, and antirheumatics -0.0147 

Pneumonia -0.0160 

Abnormal heart sounds -0.0163 

Infections specific to the perinatal period -0.0164 

Gastrointestinal hemorrhage -0.0172 

Fracture of unspecified bones -0.0177 

Decreased white blood cell count -0.0179 

Diseases of white blood cells -0.0192 

Intestinal obstruction without mention of hernia -0.0193 

Pneumonitis due to inhalation of food or vomitus -0.0195 

Fracture of upper limb -0.0198 

Congenital musculoskeletal anomalies -0.0204 

Acquired hemolytic anemias -0.0208 

Cancer, suspected or other -0.0211 

Colorectal cancer -0.0212 

Skin cancer -0.0214 

Esophageal cancer -0.0215 

Open wounds of extremities -0.0215 

Epilepsy, recurrent seizures, convulsions -0.0216 

Empyema and pneumothorax -0.0216 

Fracture of vertebral column without mention of spinal cord injury -0.0226 

Other paralytic syndromes -0.0230 

Protein-calorie malnutrition -0.0232 

Abnormal movement -0.0243 

Hemiplegia -0.0249 

Eating disorder -0.0262 
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Congenital anomalies of face and neck -0.0279 

Alcohol-related disorders -0.0286 

Nervous system congenital anomalies -0.0288 

Respiratory abnormalities -0.0292 

Digestive congenital anomalies -0.0294 

Rhabdomyolysis -0.0314 

Abdominal pain -0.0317 

Skull fracture and other intracranial injury -0.0322 

Short gestation; low birth weight; and fetal growth retardation -0.0326 

Acute bronchitis and bronchiolitis -0.0327 

Other disorders of circulatory system -0.0331 

Meningitis -0.0332 

Cancer within the respiratory system -0.0334 

Cancer of the upper GI tract -0.0334 

Secondary malignant neoplasm -0.0338 

Hereditary hemolytic anemias -0.0351 

Superficial cellulitis & abscess -0.0352 

Cholelithiasis and cholecystitis -0.0364 

Open wounds of head; neck; and trunk -0.0371 

Cancer of bone & connective tissue -0.0373 

Nausea and vomiting -0.0407 

Fever of unknown origin -0.0409 

Infections involving bone -0.0411 

Muscular dystrophies and other myopathies -0.0416 

Fracture of ribs -0.0420 

Malignant neoplasm of brain and nervous system -0.0436 

Other perinatal conditions -0.0440 

Fracture of pelvis -0.0481 

Inflammatory bowel disease -0.0520 

Cardiac & circulatory congenital anomalies -0.0529 

Cancer of kidney and urinary organs -0.0535 

Lack of normal physiological development -0.0541 

Fracture of lower limb -0.0550 

Diabetes mellitus -0.1500 
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