
Time-dependent and Privacy-Preserving Decentralized Routing using
Federated Learning

By

Chinmaya Samal

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

August 9, 2019

Nashville, Tennessee

Approved:

Abhishek Dubey, Ph.D.

Aniruddha Gokhale, Ph.D.

ACKNOWLEDGMENTS

I am grateful to all those who helped me complete this work, especially my advisor Dr.

Abhishek Dubey. He not only helped me by giving the right direction and vision to this

research work but also opened my eyes to the bigger picture of this entire area of research.

I appreciate his constant encouragement and guidance, which has made a significant con-

tribution to the completion of this thesis. I would like to thank Dr. Aniruddha Gokhale for

serving on the committee of my thesis. He has offered helpful guidance on my research in

classes and projects in the past few years.

I would like to express my special thanks to my parents, Mr. Muralidhar Samal and

Mrs. Swadhini Samal for their sacrificial love and best wishes. This research could not have

been possible without the support of my friends, Geoffrey Pettet, Michael Wilbur, Sanchita

Basak, Shreyas Ramakrishna, and Scott Eisele, who directly encouraged and supported me

in research and writing.

Finally, I would like to acknowledge the research funding from National Science Foun-

dation (NSF), Vanderbilt Initiative in Smart City Operations and Research, a trans-institutional

initiative funded by the Vanderbilt University, for supporting the various research projects

in which I have participated.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

I Introduction . 1

I.1 Problem Overview . 1
I.2 Open Challenges . 2
I.3 Our Contributions . 2
I.4 Organization . 3

II Background and Related work . 4

II.1 Graph fundamentals . 4
II.2 Transportation network as a Graph . 5
II.3 Centralized Route Planning Architecture 6
II.4 Related work for Route Planning . 8
II.5 Limitations of Centralized Route Planning 10

III Decentralized Route Planner . 11

III.1 Architecture . 11
III.2 Data collection . 13
III.3 Network setup . 13

III.3.1 Network setup for Central Server 13
III.3.2 Network setup for RSU . 15

III.4 Training prediction models . 16
III.4.1 Travel time predictor . 17
III.4.2 Equivalent Grid Routing predictor 18

III.5 Decentralized Route Planning . 19
III.5.1 Algorithm . 19
III.5.2 Example . 20
III.5.3 Properties . 25
III.5.4 Metrics for evaluating performance 26

iii

IV Experiments and Results . 28

IV.1 Evaluation metrics . 28
IV.2 Experiment setup . 31
IV.3 Evaluation of prediction models . 33

IV.3.1 Travel time predictor . 33
IV.3.2 Equivalent Grid Routing predictor 34

IV.4 Evaluation of Decentralized Route planner 36

V Conclusion and Future work . 38

A Encoding . 40

A.1 One-hot encoding . 40
A.2 Geohash encoding . 40

BIBLIOGRAPHY . 41

iv

LIST OF TABLES

Table Page

II.1 List of symbols . 5

III.1 Feature description for Travel time predictor. 18

III.2 Feature description for Equivalent Grid Routing predictor. 19

IV.1 Regions covered by RSUs. 31

IV.2 Resource consumption for Travel time predictor. 34

IV.3 Resource consumption for Equivalent Grid Routing predictor. 36

IV.4 Evaluation of routing algorithms. 36

v

LIST OF FIGURES

Figure Page

II.1 Centralized architecture for route planning 7

III.1 Decentralized architecture for route planning 12

III.2 Decentralized Route Planning example 23

III.3 Sequence Diagram of Decentralized Route Planning example 24

IV.1 Example showing inefficiency between an optimal route R∗ and an esti-
mated route R̂ returned by our decentralized route planner. 29

IV.2 Partition of Nashville metropolitan area into grids of area 1.44km2 and
placement of grids in RSUs . 32

IV.3 MAE vs Epoch curve during training of Travel time predictor 33

IV.4 Loss vs Epoch curve during training of Equivalent Grid Routing predictor 35

vi

CHAPTER I

Introduction

I.1 Problem Overview

Cities are evolving at a rapid pace. Over half the world’s population currently lives in

urban areas. By 2050, that number is expected to jump to 70%, according to the Population

Division report from the UNs Department of Economic and Social Affairs (1). Along

with a growing population, new challenges are emerging as an increase in housing density,

population, and traffic can cause inefficiencies in services provided by the city. Managing

and responding to urban incidents such as traffic accidents, fire and crime are fundamental

challenges faced by a city, where any inefficiency can lead to loss of lives and erode the

trust in the system.

The problem of dispatching emergency responders involves (a) a model that determines

which responder to dispatch given incident location, time and (b) finding a route with min-

imum travel time to reach the incident location. In our prior research (2), we focused on

the former. In this thesis, we focus on solving the latter.

Cities use third party services (3) to avail the emergency dispatch service and hence it

comes with a cost that may not be affordable to cities with a limited budget. Furthermore,

state of the art solutions (4; 5; 6) for route planning assumes a centralized approach, where

a travel time model coupled with the shortest path routing algorithm finds a route for an

emergency responder. One of the problems with this approach is that if there is a commu-

nication failure due to natural disasters, then the responders will fail to get a route plan and

thus could not reach incident locations in time, which might result in loss of precious lives.

Cities are looking to improve everything from infrastructure to connectivity by develop-

ing technology to help cities efficiently provide necessary services. Hence they are invest-

ing in computation resources called Road Side Units (RSUs) that are strategically placed

1

at certain roads, highways and can wirelessly communicate with vehicles. There is a need

for a decentralized approach that can utilize a set of RSUs distributed in a city, to find a

route plan for the emergency responders. As everyday devices are becoming more power-

ful (7), such an approach can effectively tackle the urban routing problem by harnessing

the device resources and will particularly help cities with a limited budget and network

coverage, provide self-sustaining mobility services for its residents while still preserving

their privacy.

I.2 Open Challenges

Route planning is a well-studied topic in large part due to its practical relevance in real-

world applications. The process of route planning often involves a human, which initiates

a request to find a feasible route from origin to the destination which satisfies user prefer-

ences. State of the art solutions for route planning in a time-dependent network involves a

centralized approach, where parallelization of the search algorithm uses a shared memory

model. Hence, its deployment is limited to multiprocessing environment such as in a data

center, where it is assumed that a shared memory allows a constant time direct communi-

cation between each pair of processors. It is not well suited for a distributed setting, which

is prone to communication failures and can incur higher response times due to network

latency. Furthermore, storing and using location data of users raises privacy concerns. We

discuss this in more detail with a literature review in Section II.

I.3 Our Contributions

The goal of this thesis is to develop a routing algorithm that can efficiently search time-

dependent network in a distributed manner and to develop a decentralized architecture

where individual RSUs which have limited resources can operate in an environment with

intermittent network connectivity. To this end, we make the following contributions in this

thesis:-

2

1. We leverage recent advances in Federated learning (8) to collaboratively learn shared

prediction models online while keeping all the training data on the device, thus pre-

serving privacy.

2. We develop a resilient, decentralized approach for route planning in a time-dependent

network, that leverage the models learned in the RSUs.

3. Finally, we show the effectiveness of our approach and provide analysis using a case

study from the Metropolitan Nashville area. Our approach uses 1.2 - 6 times less

memory per compute node than the central approach. Our approach has a moderately

higher query response time than the central server approach, but our decentralized

architecture makes it resilient in case of system failures and has high scalability.

Please note that while we discuss our approach with an example for emergency dispatch

vehicles, our approach is still applicable for any vehicle and compute nodes can be mobile

too.

I.4 Organization

The remainder of this thesis is organized as follows. We define basic notion for graphs

including time-dependent network, discuss state of the art solutions for centralized route

planning and its limitations in Chapter II. In Chapter III we present our decentralized ar-

chitecture for route planning and discuss each component of the architecture and how they

coordinate with each other to plan routes. We then evaluate our decentralized architecture

with a case study for the Nashville metropolitan region in Chapter IV. In the same chapter,

we first discuss our experiment setup and the data used in our experiments, then we eval-

uate different prediction models used in our work and finally, we evaluate our approach

and compare it with state of the art solutions for centralized route planning. We then con-

clude the thesis, suggest avenues of further investigation in Chapter V. The source code is

available on Github1

1https://git.isis.vanderbilt.edu/dabhishe/decentralized-routing

3

CHAPTER II

Background and Related work

In this section, we first develop basic notations which will be used throughout the work.

Then we discuss the state of the art solutions for centralized route planning and its limi-

tations in a decentralized setting. Table II.1 summarizes the symbols we used throughout

this paper.

II.1 Graph fundamentals

Graphs: A graph is a tuple G = (V,E) consisting of a finite set of vertices V and edges

E ⊆V ×V . There is an edge from u ∈V to v ∈V if and only if (u,v) ∈ E. Note that we use

the terms graph and network interchangeably. We assume that our graph G is directed, i.e

each edge e ∈ E has a direction.

Edge weights: A graph is said to be weighted when a numerical label (i.e. weight) is

assigned to each of its edges. For instance, there might be a cost involved in traveling from

a vertex to one of its neighbors, in which case the weight assigned to the corresponding

edge can represent such a cost. Let this cost be travel time and T (e) be the travel time

function which depends only on edge. Since T (e) is constant over Π, where Π depicts

a set of time points or time-period (seconds, minutes or hours of a day), T (e) is called

time-independent (9).

Routes: In time-independent graphs, a route query is defined by a tuple (s,d), where

s ∈ V is the source and d ∈ V is the destination. Finding the shortest path or route R

for the query (s,d) involves finding a sequence of edges [e1,e2, · · · ,en] from source s to

reach destination v, such that ei ∈ E holds. Note that we use the terms path and route

interchangeably. The length of the route len(R) is defined as the sum of weights for each

edge in route, such that len(R) = ∑e∈R T (e).

4

Table II.1: List of symbols

Symbol Description
R Real Numbers
N0 Natual numbers
G Static graph, G = (V,E)
V Set of network vertices
E Set of network edges
τi Actual time interval i of a day
τ̂i Estimated time interval i of a day
Π Set of time points or time-period (seconds, minutes or hours of a day)

RSUi Road Side Unit i
R Directed path from source vertex s ∈ V to destination vertex d ∈ V , at time interval from

source τs

Rs
d Partial route from source vertex s∈V to destination vertex d ∈V , at time interval from source

τs

len(R) Travel time of the route R
Gτ State of time-dependent graph (V,E) at time τ

Vτ Set of vertices at at time interval τ

Eτ Set of edges at at time interval τ

T Travel time function
T̂ Travel time predictor
Ê Equivalent Grid Routing predictor
SP Shortest path algorithm that uses Travel time predictor T̂ to find route with minimum travel

time
gi Grid i
Gi Subgraph whose each vertices and edges maps to grid i
t̂u
v Estimated travel time from vertex u ∈V to vertex v ∈V using Travel time predictor T̂

II.2 Transportation network as a Graph

Graphs: Transportation network can be realized as a time-dependent graph (9) since state

of the network changes over time. Let Gτ = (Vτ ,Eτ) be the time-dependent, directed graph,

where Vτ is the set of vertices, Eτ ⊆ Vτ ×Vτ the set of edges of a road network at time

interval τ . There is an edge from u ∈Vτ to v ∈Vτ , if and only if (u,v) ∈ Eτ .

Edge weights: Since the graph Gτ is time-dependent, the travel time on an edge e ∈

Eτ varies with time. All edges in a transportation network is weighted by periodic time-

dependent travel time function T (e,τ) : Π→ N0 where Π depicts a set of time points or

time-period (seconds, minutes or hours of a day).

The function T (e,τ) is impacted by the routes taken by all the vehicles in the road

5

network or graph Gτ and often can be modeled as a latency function (10). It can be learned

from historical states of the network {G0,G1, ...,Gτ−1} and the current state of the network

Gτ , to get expected travel times for time intervals {τ +1,τ +2, · · · ,τ + f}, where f is the

number of time intervals in future. To differentiate this from the actual travel time function,

we denote the learned travel time function as T̂ (e,τ). The accuracy of estimates from T̂

can result in inefficient route plan given as response by routers and thus affect the network

congestion.

Routes: In time-dependent graphs, the shortest path depends on the departure time at

the source node. Hence the route query is defined by a tuple (s,d,τs), where s ∈ Vτs is

the source, d ∈ Vτd is the destination, τs is the departure time from s and τd is the arrival

time at destination d. This might result in shortest paths of different length for different

departure times or even a completely different route. In contrast to the time-independent

graph, here the directed route R for the query (s,d,τs) involves finding a sequence of edges

along the time [(e1,τ1),(e2,τ2), · · · ,(en,τn)] from source s at time τs to reach destination

d at time τd . The length of the route len(R), in time-dependent graph is defined as the

sum of time-dependent weights function T (e,τ) for each edge in route, such that len(R) =

∑(e,τ)∈R T (e,τ).

II.3 Centralized Route Planning Architecture

In the context of emergency dispatch service, the goal is to minimize the variance in the

operational delay between the time incidents are reported and when responders arrive on the

scene. A critical component of this system is to find a route with minimum travel time. The

process of route planning often involves an emergency responder or vehicle, which initiates

a request to find a feasible route from origin to a destination which satisfies its preferences.

State of the art solutions (4; 5; 6) for route planning assumes a centralized approach, where

a central server or a set of servers in a data center manage network setup, handle real-time

network updates, learn travel time models that aid a central router in finding shortest path

6

Figure II.1: Centralized architecture for route planning

queries. The central approach for route planning reduces network latency and also makes

it efficient since all the data management can be done centrally and can be horizontally

scaled if more resources are needed. Figure II.1 shows typical architecture for centralized

route planning used in the state of the art solutions. We give a brief description of entities

involved in the centralized architecture below:

1. Vehicle: It acts as a client to the Central Server. Multiple vehicles can be present in

the system and each of them periodically sends location data to the Central Server in

form of (e,τ, t), where e is the edge traversed, τ is the time interval of the day and t is

the time taken to traverse e. It also sends timed routing queries to the Central Server

in form of (s,d,τs), where s is the source vertex, d is the destination vertex and τs is

the departure time from s.

2. Admin: It is responsible for adding the full time-dependent road network G = (V,E)

to the Central Server and handling real-time updates to the network G. It also designs

and deploy travel time model T (e,τ) that helps the Central Router in finding a route

7

with minimum travel time.

3. Central Server: It abstracts a compute node and can scale its resources horizontally

on demand. It consists of the following components:

(a) Database: This component is responsible for storing data provided by Vehicle

and Admin. It periodically collects location data from multiple vehicles and

are stored as a set {(e1,τ1, t1),(e2,τ2, t2), · · · ,(en,τn, tn)}, where ei is the edge

traversed, τi is the time interval of the day. It also stores and updates network

data G = (V,E) provided by Admin.

(b) Travel time model: Location data collected from multiple vehicles as discussed

earlier, coupled with the road network, are used to train a data-driven model T̂ .

(c) Central Router: It is responsible for finding a route given a query (s,d,τs)

from Vehicle, where s ∈ V is the source, d ∈ V is the destination, τs is the

departure time from s. It uses network stored in the Database and the Travel

time model to find a route with minimum travel time. Inaccuracy in Travel time

model can lead to inefficient route plans, i.e routes with increased or decreased

travel times.

II.4 Related work for Route Planning

Given a timed query (s,d,τs), where s is the source vertex, d is the destination vertex and

τs is the departure time from s, the goal of Central Router is to find a route with minimum

travel time. To this end, we draw on two bodies of work in routing algorithms that heavily

influence the central architecture for route planning. The first is the literature on single

server routing where it is assumed that the network resides entirely in a physical node or

server, to which any client sends routing queries to. The second is the literature on parallel

routing where the network still resides in a physical node but is partitioned to multiple

processes and the routing queries are processed concurrently using multiple processes.

8

Single server approach: Dijkstra (11) and Bellman and Ford (12; 13) proposed some

of the first algorithms to solve the routing problem in a single server. Although these

algorithms are quite old, many advanced route planning algorithms that exist today are

variants of them. While these algorithms compute optimal shortest paths, they are too

slow to process real-world data sets such as those deriving from large-scale road networks.

To address this issue, there are many techniques aimed at speeding up these algorithms.

Such techniques often are based on clever heuristics that accelerate the basic shortest paths

algorithms by reducing their search space. Bi-directional search (14; 6), e.g., not only

computes the shortest path from the source s to the target t, but simultaneously computes the

shortest path from t to s on the backward graph. Goal-directed search such as A∗ (15) uses

other heuristics to guide the search. Goldberg et al. proposed the ALT approach in which

they enhance A∗ by introducing landmarks to compute feasible potential functions using

the triangle inequality (6; 16). In other work, contraction techniques are used to speed-up

the shortest path computation; e.g., highway hierarchies (17; 4) exploits the hierarchical in

road networks, while contraction hierarchies (5) is based on contracting the graph.

Parallel approach: In this approach, a full road network is partitioned into multiple

processes and the edge expansion proceeds similarly to Dijkstra. But here the difference

is that unlike Dijkstra, the priority queue is based on a shared memory model where it is

assumed that shared memory allows a constant time direct communication between each

pair of processors (18; 19). This parallel priority queue supports simultaneous insertion

and simultaneous decrease key of an arbitrary sequence of elements ordered according to

key, in addition to find-minimum and single element delete operations (18; 20). Techniques

to parallelize advanced routing algorithms such as contraction hierarchies discussed earlier,

is only limited to the pre-processing step where the contraction of nodes can be done in

parallel (21). Sets of nodes which can be contracted in parallel are iteratively found. By

restricting the nodes to be contracted in each iteration node, contraction is done in parallel.

9

II.5 Limitations of Centralized Route Planning

As discussed earlier, our goal is to utilize a set of RSUs distributed in a city, to find a route

plan for the emergency responders. The RSUs are resource-constrained and operate in an

environment with intermittent network connectivity. We need a decentralized approach for

route planning using these RSUs. However, the centralized architecture discussed above

have limitations in a decentralized setting.

Some of the prior work discussed earlier, for parallel route planning (18; 19; 20), as-

sume that the graph network has static weights, which doesn’t hold in real transportation

network where traffic congestion changes with time. In a time-dependent network, edge

expansion depends on arrival/departure time at each edge, hence it needs to proceed se-

quentially. So, multiple processors cannot start expanding edges simultaneously. There

are some approaches (21) which model the time-dependent nature of the network but the

parallelization is only limited to the pre-processing phase and not during real-time query.

Furthermore, all of these approaches use a parallel shared memory model where an

assumption is made that the shared memory allows a constant time direct communication

between each pair of processors. This holds in a multiprocessing system and possibly in a

data center, but this assumption is not realistic in a decentralized setting where nodes have

intermittent connectivity and can fail anytime.

10

CHAPTER III

Decentralized Route Planner

In this chapter, we first give a brief overview of our decentralized architecture for route

planning. Each component in our architecture can be better explained by their interactions

with other components and the functionality they provide as a result of it. So, we first

explain how the network is set up, then we discuss how data is collected, then we discuss

in detail different prediction models we use to aid our decentralized route planner, then we

discuss decentralized planning algorithm and finally we discuss how failures are handled

in our architecture.

III.1 Architecture

Figure III.1 shows our decentralized architecture for route planning. Here are the function-

alities of various entities in the system:

1. Road Side Unit (RSU): This component abstracts a compute node that is installed

by city planners near roads and highways. These nodes are assumed to have compu-

tational resources equal to those of Raspberry Pis or similar and are assumed to have

intermittent network connectivity. It is responsible for preconfigured geographic re-

gion and aggregates real-time location data from the vehicles in the region config-

ured. It also collects the trip data of vehicles. It facilitates the collaborative learning

of shared prediction models while the data never leaves. We discuss more about

the data collection and prediction models in Section III.2 and Section III.4 respec-

tively. Finally, these prediction models are used by the decentralized route planning

algorithm discussed in Section III.5.

2. Central Server: This component also abstracts a compute node, but it is assumed

to have more resource available that can scale horizontally on demand. It is also

11

Figure III.1: Decentralized architecture for route planning

assumed to be a reliable backup node and is a central location for all the RSU to get

the resources they need to function properly. We will discuss more the functionality

of each component it contains, in the next sections.

3. Vehicle: It has same functionality as what discussed in Section II.3. The only dif-

ference here is that it sends real-time location data to the nearest RSU instead of a

Central Server in a centralized architecture. Similarly, it also sends timed queries for

route plans to the nearest RSU.

4. Admin: It has same functionality as what discussed in in Section II.3. The difference

lies in the deployment of the model. In a centralized architecture, the inference was

done on the Central Server, while in our approach, the inference is done in each

RSUs where the data resides. We will discuss more this in the next sections.

This is different from the centralized architecture we discussed in Section II.3, in that

most of the functionalities such as the route planning, learning prediction models and stor-

ing real-time data are now managed by RSU.

12

III.2 Data collection

Following types of data are stored in RSUs:

1. Location data: This data is periodically collected from from multiple vehicles and

are stored as a set {(e1,τ1, t1),(e2,τ2, t2), · · · ,(en,τn, tn)}, where ei is the edge tra-

versed, τi is the time interval of the day. This data is used by the Travel time predic-

tor, as discussed later in Section III.4.1.

2. Trip data: This data consists of a set of route plans {R1,R2, · · · ,Rn} where each

route is a sequence of edges along the time Ri = [(e1,τ1),(e2,τ2), · · · ,(ep,τp)], as

discussed earlier. The route is returned by Decentralized Router as a response for

a user query (s,d,τs), where s is the source, d is the destination, τs is the departure

time from s. This data is used by the Equivalent Grid Routing predictor predictor, as

discussed later in Section III.4.2.

3. Network data: Network data G = (V,E) is added and updated by Admin. This data

is used by the Decentralized router, as discussed later in Section III.5.

III.3 Network setup

In this section, we discuss the workflow for network setup. Contrary to centralized archi-

tecture discussed in Section II.3, here the network is given by Admin is first partitioned

into regular grids and then stored in Central Server. Each RSU then request network for a

subset of the grids and store in locally, which is then used by the Decentralized router, as

discussed later in Section III.5.

III.3.1 Network setup for Central Server

The network setup process for Central Server proceeds as follows:

1. The process starts with initial addition of network by the Admin. Admin sends a

graph G= (V,E) and a geohash precision value to the Network Partitioner in Central

13

Algorithm 1: Partition Network
Data: A graph G = (V,E), g = {g1,g2, · · · ,gn}, prec = geohash precision value.

1 begin
2 foreach v ∈V do
3 v.grid = gh.encode(v, prec);

4 foreach ei ∈ E do
5 (u,v) = ei;
6 if u.grid 6= v.grid then
7 Initialize Vb = Set of boundary vertices;
8 [g1,g2, · · · ,gk] = intersection(ei,g);
9 foreach g j ∈ [g1,g2, · · · ,gk] do

10 v j. j+1
i = intersection(ei,g j,g j+1);

11 v j. j+1
i .grid = (g j,g j+1);

12 Vb.append(v j. j+1
i);

13 [e1,e2, · · · ,elen(Vb)+1] = split(ei,Vb);
14 G.remove(ei);
15 G.add(Vb);
16 G.add([e1,e2, · · · ,elen(Vb)+1]);

17 foreach (u,v) ∈ E do
18 (u,v) = e;
19 e.grid = u.grid;

Server. Here geohash precision value, as discussed in Appendix A.2, determines the

resolution or area of the desired grids.

2. The Network Partitioner receives the graph G = (V,E) and geohash precision value

from the Admin and partitions the network into regular grids {g1,g2, · · · ,gk} using

Algorithm 1. The algorithm proceeds by first annotating each vertex in the net-

work with the grid they belong to, by using geohash encoding as discussed in Ap-

pendix A.2. Then for each edge in the network, it checks if both the endpoints of the

edge are in the same or different grid. If they are in a different grid, then boundary

vertices are found by geospatial intersection of a pair of grids and an edge. Then

the edges are split by their boundary vertices and the graph is updated accordingly.

Finally, all the edges are also annotated with the grid information.

14

3. As a result of the partition algorithm, each vertex and edge in the graph G = (V,E)

is annotated with their respective grid information. This will help in filtering out the

graphs for any given grid, thus dividing graph G into subgraphs {G1,G2, · · · ,Gk},

where i in Gi refers to the grid gi. This partitioned network is then stored in the

Central Server. Finally, the result of data storage is returned to the Admin.

Algorithm 2: Grid Network Mapping
Data: A graph G = (V,E), g = {g1,g2, · · · ,gk}
Result: {G1,G2, · · · ,Gk}

1 begin
2 Initialize GridNetworkList;
3 foreach gi ∈ g do
4 Initialize graph Gi;
5 foreach v ∈V do
6 if v.grid == gi then
7 Gi.add(v);

8 foreach e ∈ E do
9 if e.grid == gi then

10 Gi.add(e);

11 GridNetworkList.append(Gi);

12 return GridNetworkList

III.3.2 Network setup for RSU

The network setup process for RSU proceeds as follows:

1. The process starts with each RSU sending a set of grids {g1,g2, · · · ,gk} (that has

been pre-configured to each RSU), to the Central Server.

2. The Central Server receives the set of grids {g1,g2, · · · ,gk} and maps the network for

each grid using Algorithm 2. The partitioned graph stored in Central Server already

has each vertex and edge in the graph G = (V,E), annotated with their respective grid

information. This algorithm is simple and just filters out the graphs for any given

grid. So, the response is a set of subgraphs {G1,G2, · · · ,Gk} where each vertices and

edges in a graph Gi maps to grid gi.

15

III.4 Training prediction models

We need prediction models to aid our decentralized route planner. Before we discuss in

detail each prediction model that is being used in our architecture, we would need to dis-

cuss the procedure used to train these data-driven models. This is due to the assumptions

placed by us that the data only resides in RSUs and not Central Server. Hence the standard

approach to train data-driven models needs to be changed. Instead of sending data to the

Central Server for training model, we bring the model training to RSUs. We achieve this

by leveraging recent advances in Federated Learning (8) which enables RSUs to collabo-

ratively learn a shared prediction model while keeping all the training data on the device,

decoupling the ability to do machine learning from the need to store the data in the Central

Server. We briefly describe the Federated learning below.

Federated learning: The goal of Federated Learning is to learn a model with parame-

ters embodied in a real matrix W ∈ Rd1×d2 , from data stored across all the RSUs. Here W

is a 2D matrix to represent the parameters of each layer in a fully-connected feed-forward

network (22). d1 and d2 represents the output and input dimensions respectively. the tasks

proceed in rounds and each round alternates between local and global model update.

1. Distribute Global model: Admin randomly initializes the weights W0 of the pre-

diction model and stores it in Central Server. In round t ≥ 0, the Central Server

distributes the current model Wt to a subset St of nt RSUs.

2. Local update: Each RSU then independently update the model based on their local

data. Let the updated local models be W1
t ,W2

t , · · · ,W
nt
t , so the update of each RSU i

can be written as Hi
t := Wi

t−Wt, for i ∈ St . These updates could be a single gradient

computed on the RSU, but typically will be the result of a more complex calculation,

for example, multiple steps of stochastic gradient descent (SGD) (23) taken on the

RSU’s local dataset. Each selected RSU then sends the update back to the Central

Server.

16

3. Global update: It is computed by aggregating all the local updates received from

RSUs:

Ht :=
1
nt

∑
i∈St

Hi
t,Wt+1 := Wt +ηtHt.

Here ηt is learning rate. For simplicity we can choose ηt = 1.

We use Federated Learning procedure to train the prediction models discussed next.

III.4.1 Travel time predictor

To estimate a route with minimum travel time, the search procedure needs to better estimate

the time it will take in future to arrive at some edge ei during exploration. Hence we need

to learn travel time predictor T̂ (ei,τi) that estimate travel time on an edge ei in time interval

τi. Let edge ei defines a directed edge from vi to vi+1, then travel time function can also be

defined as T (vi,vi+1,τi) and here τi refers to the departure time at vertex vi.

For this model, we build a feature set with quantities described in Table III.1. The

resulting feature space has 228 dimensions. Since time value τ is categorical, we need to

convert it into a form that could be provided to machine learning algorithms to do a better

job in prediction. Hence, we used one-hot encoding as discussed in Appendix A.1, to map

τi to one-hot encoded binary for Week of year, Day of week, Hour of day, Minutes of hour

features.

vi and vi+1 are location data which are represented by geographical coordinates in terms

of latitude, longitude pair and are also categorical, but encoding them using one-hot encod-

ing can lead to billions of dimensions which can make training inefficient. So, we used

geohash encoding, as discussed in Appendix A.2 to map vi and vi+1 to geohash encoded

binary features From location, To location respectively. geohash encoding gives control

over precision or resolution of the grid represented by each geohash. For vertices in our

network, we needed a resolution such that each vertex covers the width of the road. A res-

17

Table III.1: Feature description for Travel time predictor.

Feature Dim Description
From location 42 Geohash encoded binary indication of From coordi-

nate of an edge
To location 42 Geohash encoded binary indication of To coordinate

of an edge
Week of year 52 One-hot encoded binary indication of Week of year

used to sample travel time data
Day of week 7 One-hot encoded binary indication of Day of week

used to sample travel time data
Hour of day 24 One-hot encoded binary indication of Hour of day

used to sample travel time data
Minutes of hour 60 One-hot encoded binary indication of Minutes of hour

used to sample travel time data
Travel time 1 One-hot encoded binary indication of the true travel

time data collected from HERE API.

olution higher than that could cause multiple vertices to belong to the same geohash which

can make the model inaccurate, while a resolution lower than that would increase the di-

mensions of the feature space, take more compute resources and is not necessary. After

extensive testing, we found a resolution of 9.5m which uses 42 bits, matches the width of

most of the major road segments in the United States.

III.4.2 Equivalent Grid Routing predictor

The search procedure can extend to multiple RSUs. As more RSU are included in the

search, it can incur huge delays due to communication costs. Hence, the goal is to minimize

the number of message exchanges needed during search and this can happen if we have a

good estimate of sequence of grids, a search algorithm go through to reach a destination.

Hence we need to learn a Equivalent Grid Routing predictor Ê, such that Ê(s,d,τs) gives

next best possible grid to reach from source s to travel to destination d and τs is the departure

time from s.

For this model, we build a feature set with quantities described in Table III.2. The

resulting feature space has 255 dimensions. This is similar to the feature description table

discussed previously for travel time predictor T̂ . The only difference here is in the output

label which predicts a geohash encoded binary of a grid instead. Similarly, here s and

18

Table III.2: Feature description for Equivalent Grid Routing predictor.

Feature Dim Description
From location 42 Geohash encoded binary indication of From coordi-

nate of an edge
To location 42 Geohash encoded binary indication of To coordinate

of an edge
Week of year 52 One-hot encoded binary indication of Week of year

used to sample travel time data
Day of week 7 One-hot encoded binary indication of Day of week

used to sample travel time data
Hour of day 24 One-hot encoded binary indication of Hour of day

used to sample travel time data
Minutes of hour 60 One-hot encoded binary indication of Minutes of hour

used to sample travel time data
Next Grid 28 Geohash encoded binary indication of a Grid

d are the location data and are mapped to 42-bit geohash encoded binary features From

location, To location respectively, which has a resolution of 9.5m. Time value τs is mapped

to one-hot encoded binary for Week of year, Day of week, Hour of day, Minutes of hour

features.

III.5 Decentralized Route Planning

III.5.1 Algorithm

The goal of the decentralized route planning is to distribute the query among different

RSUs. One of the problems we discussed earlier that state of the art solutions for paral-

lelizing the query fails in a time-dependent network. We mitigate this problem by using

Travel time predictor T̂ . To minimize the number of RSUs that are communicated during

the search or to guided our search efficiently we use Equivalent Grid Routing predictor Ê.

Algorithm 3 handles decentralized routing queries from vehicles. We first list some utility

functions that are used in the algorithm and then discuss the algorithm in detail.

Here is a list of utility functions that we have used in our algorithm:

1. gh.encode(v): This function uses geohash encoding discussed in Appendix A.2 to

find the grid to which the vertex belong to.

19

2. GetRSU(gi): This function finds the RSU mapping for any grid i

3. SP(G,s,d,τs): This function uses network G, Dijkstra algorithm (11) and Travel

time predictor T̂ to find route from source s at departure time τs to destination d with

minimum travel time.

4. msg(type,RSUi,val): This is an async call for sending the type of message (type)

and actual message (val) to a RSU i. The actual sending of the message to RSU i is

handled by a network client. Each of the messages requires different processing and

thus the actual message (val) they need. In our approach, three types of messages are

being handled. They are:

• query: The RSU upon receiving a message of this type, executes Algorithm 3

and pass the actual message (val) as arguments to the function that implements

this algorithm.

• partial path: The RSU upon receiving a message of this type, executes Al-

gorithm 4 and pass the actual message (val) as arguments to the function that

implements this algorithm. If the final route plan is returned as a response, it is

communicated to the client which made the routing query request.

III.5.2 Example

Figure III.2 shows an example where a network is partitioned into 4 RSUs. For simplicity,

this example does not have any redundancy, i.e if a grid gi is mapped only to one RSU.

Figure III.3 shows sequence diagram for this example. The route planning process proceeds

as follows:

1. The process starts with a route query (id,s,d,τs) from a client or vehicle, where id is

the unique identifier given by the client identify to this query, s is the source vertex, d

is the destination vertex, τs is the departure time from s. The route planning process

20

Algorithm 3: Handle Query
Data: A graph G = (V,E),s ∈V,d ∈V , τs = departure time from vertex s, RSUo =

RSU from where the query origins, id: Unique identifier to identify this query.
1 begin
2 save(id,(s,d,τs));
3 gs = gh.encode(s);
4 gd = gh.encode(d);
5 if gs 6= gd then
6 gnext = Ê(s,d,τs);
7 RSUnext = GetRSU(gnext);
8 {v1,v2, · · · ,vb} = gs.intersect(gd);
9 foreach v ∈ {v1,v2, · · · ,vb} do

10 t̂s
v = T̂ (s,v,τs);

11 msg(“query”,RSUnext,{id,v,d,τs + t̂s
v,RSUo});

12 foreach v ∈ {v1,v2, · · · ,vb} do
13 Rp = SP(G,s,v,τs);
14 msg(“partial path”,RSUo,{id,s,v,τs,Rs

v});
15 else
16 Rp = SP(G,s,d,τs);
17 msg(“partial path”,RSUo,{id,s,d,τs,Rs

d});

is decentralized, asynchronous and each RSU might be processing multiple requests

simultaneously, hence we needed a id to differentiate each request. Please note that a

query can be sent to any RSU. For simplicity, let us assume that the client sends this

route query to the nearest RSU, which is RSU1.

2. Processing at RSU1: Here are the sequence of steps executed in RSU1:

(a) It receives the route query (id,s,d,τs) from client and calls Algorithm 3 to find

route. Since the source s and destination d do not belong to the same grid,

then Equivalent Grid predictor is used find the next best possible grid to reach

destination d. Let us assume that the grid is g2, which is present in RSU2.

(b) Then the algorithm finds the nodes at the intersection of the current grid (grid

which has s and the next best grid. We call these nodes as boundary nodes. In

our example, there is only one boundary node v12.

21

Algorithm 4: Handle Partial Path
Data: A graph G = (V,E),u ∈V,v ∈V , τu = departure time from vertex u, R =

Route from u to v, starting at τu, id: Unique identifier to identify this query.
Result: Final Route plan (id,R f inal) or NULL

1 begin
2 (s,d,τs) = get(id);
3 if v == d then
4 R f inal = SP(Gid,s,d,τs);
5 return (id,R f inal);
6 else
7 Gid = GetGraph(id);
8 if Gid == NULL then
9 Initialize Graph Gid;

10 foreach (ei,τi) ∈ R do
11 Gid.add(ei);
12 Gid[ei] = (τi,τi+1− τi);

13 SaveGraph(id, Gid);
14 return NULL;

(c) After getting all the boundary vertices, for each boundary vertex, the algorithm

uses Travel time predictor to estimate the time it will take to reach each the

boundary vertex. In our example, we got t̂s
v12

as the estimated travel time to

reach v12 from source s and departure time τs from s. So the estimated time of

arrival at v12 from s is τs + t̂s
v12

and we denote it by τ̂v12 .

(d) Then an asynchronous message (“query”, id,v12,d, τ̂v12,RSU1) is sent to RSU2.

(e) After sending the message, the RSU1 proceeds in finding actual route from s to

boundary vertex v12. Let Rs
12 be the route, indicating that the route is from ver-

tex s to v12. After getting the route Rs
12, a message (“partial path”, id,s,v12,τs,Rs

12)

is prepared. This message is meant to be sent to the RSU to which the client sent

the request. Since it’s RSU1, which is itself, a function call is made to handle

this message where the function arguments are the same as the message. This

function implements Algorithm 4 which handles the partial routes or paths. We

call it partial route because this is still not the final route that needs to be given

22

Figure III.2: Decentralized Route Planning example

to the client.

(f) The goal of Algorithm 4 is to create a new graph with With the id given by the

request or get it if it exists already, add all partial routes to the graph and finally,

do a simple shortest path routing on it. Since the route Rs
12 does not have the

destination, the algorithm just saves the graph with the id given by the request.

(g) At this step, RSU waits from partial routes from other RSUs for this request

identified by its id and executes 4 if it receives a message with the partial route

in it until it gets a partial route which has the destination in it.

3. Processing at RSU2: Here are the sequence of steps executed in RSU2:

(a) It receives route query (id,v12,d, τ̂v12,RSU1) from RSU1 and calls Algorithm 3

to find route. Since the source v12 and destination d do not belong to the same

grid, then Equivalent Grid predictor is used find the next best possible grid to

reach destination d. Let us assume that the grid is g4, which is present in RSU4.

23

Figure III.3: Sequence Diagram of Decentralized Route Planning example

(b) Following similar steps in Algorithm 3 as discussed earlier, we find v25 be the

boundary vertex. An asynchronous message (“query”, id,v25,d, τ̂v25 ,RSU1) is

sent to RSU4.

(c) After sending the message, the RSU2 proceeds in finding actual route from v12

to boundary vertex v25, with departure time τ̂v12 from v12. It then sends this

partial route to RSU1, which is RSU from which the route query originated.

4. Processing at RSU4: Here are the sequence of steps executed in RSU4:

(a) It receives route query (id,v25,d, τ̂v25,RSU1) from RSU2 and calls Algorithm 3

to find route. Since the source v25 and destination d belong to the same grid,

a simple shortest path routing is done to find actual route. Then it sends this

24

partial route to RSU1, which is RSU from which the route query originated.

5. Finally, RSU1 gets partial route from RSU4 which has a partial route to d in it. At

this step, Algorithm 4 executes shortest path routing on the graph identified by the

request identifier id and the final route plan (id,R f inal) is sent to the client.

III.5.3 Properties

As discussed in Chapter II, A∗ is a classic algorithm for informed search. It relies on a

heuristic function, which for any given vertex, gives the estimated cost to reach the des-

tination. This function guides the search procedure. Our approach for route planning is

essentially an informed search procedure where Equivalent Grid Routing Predictor acts

as a heuristic function. So, we compare our approach to A∗ and discuss how it fares with

them on two important criteria that any informed search procedure should have:

• Termination and Completeness: It is well established that if a graph G is finite and

edge weights are negative, then A∗ is guaranteed to terminate and is complete, i.e

it will always find a route from source to destination if one exists. Our approach is

similar to A∗, but it cannot give guarantees on its termination and hence may not be

complete. It is because Equivalent Grid Routing Predictor used in our approach

cannot guarantee that its predictions are always true.

Furthermore, the decentralized nature of our approach can violate this condition, such

as during failures, communication failure, or if RSUs do not have memory and needs

to delete the grids they store and so on. This can be mitigated however if all the grids

are active, i.e must be present in at minimum in one RSU and it must be reachable,

i.e no communication failure. Hence a proactive approach is needed to guarantee this

state in the cluster of RSUs.

• Admissibility: It is also well established that A∗ guarantees to return an optimal

solution if the heuristic function it uses, is admissible, i.e at any given vertex the

25

estimated cost given by the heuristic function must always be lower than or equal to

the actual cost of reaching the goal state. Our approach cannot guarantee this too. It

is because Travel time predictor does not guarantee its travel time predictions and

similarly, Equivalent Grid Routing Predictor cannot guarantee that the next possible

grid it predicts is always true.

III.5.4 Metrics for evaluating performance

To measure the performance of our decentralized search algorithm, we use the following

metrics:

• Space complexity: We discussed in the previous section that our algorithm uses Di-

jkstra to find partial routes. Dijkstra algorithm has a space complexity of O(|V |2),

where |V | is the number of vertices in graph G. Since our graph is divided among

RSUs, space complexity should be less than O(|V |2) on average and it depends on

the network and mapping of grids to RSUs. If all grids are mapped to same RSU,

then O(|V |2) is the space complexity.

• Time complexity: The time complexity of Dijkstra is O(|E|log|V |), where |V | is

the number of vertices and |E| is the number of edges in graph G. Similar to our

previous discussion on Space complexity, since our graph is divided among RSUs,

the time complexity should also be less than O(|E|log|V |) in each RSU. However this

might not hold for following reasons: (1) multiple RSUs are finding partial routes

simultaneously, (2) the time complexity of our approach depends on the accuracy of

Equivalent Grid Routing Predictor, (3) the communication overhead among RSUs

depends on the accuracy of Equivalent Grid Routing Predictor. Hence, we cannot

give theoretical bounds on the time complexity of our approach.

• Route inefficiency: Even if the search completes successfully, the routes given by

our approach or in general any search procedure that uses a data-driven travel time

26

prediction model, is not guaranteed to be optimal. If R∗ is the optimal route given

by a search algorithm by using actual location collected and R̂ is the route given

by our approach, then |len(R∗)− len(R̂)| tells how far our route is from optimal

or how inefficient our route is. If len(R∗)− len(R̂) is negative, then our approach

overestimated the travel time and if len(R∗)− len(R̂) is positive, then our approach

underestimated the travel time.

27

CHAPTER IV

Experiments and Results

In this chapter, we evaluate our decentralized architecture for route planning. We needed

a moderately scaled region where we could get required datasets and conduct our experi-

ments. Hence, we chose Nashville metropolitan region for our case study. First, we discuss

our experimental setup and the data used in our experiments, then we evaluate different

prediction models used in our work and finally, we evaluate our approach and compare it

with state of the art solutions for centralized route planning.

IV.1 Evaluation metrics

Before we discuss the set up of our experiment and evaluate our approach on large scale

using Nashville metropolitan region, we want to discuss the metrics used in our experiments

to evaluate the prediction models in Section IV.3 and our decentralized route planning

approach in Section IV.4. We discuss this with an example route query from Institute for

Software Integrated Systems to Music City Central, Nashville, TN by car and the departure

time for the request is at 9 AM. Figure IV.1 shows the estimated route returned by our

approach (denoted by R̂) and the optimal route given by Dijkstra shortest path algorithm

(denoted by R∗). To evaluate the prediction models we used the following metrics:

• Error: Travel time predictor estimates travel time, hence it is a regression model and

we use Mean Absolute Error (MAE) (24) for this. On the other hand, Equivalent Grid

Routing predictor estimates best possible grid, hence it is a classification model and

we use Cross-Entropy Loss (25) here. If the loss is MAE, then the unit is minutes,

while Cross-Entropy Loss has not units.

• Route inefficiency: The error functions discussed earlier only helps in estimating

how good a model predicts compared to a test set of ground truth values. Errors

28

Figure IV.1: Example showing inefficiency between an optimal route R∗ and an estimated
route R̂ returned by our decentralized route planner.

in predictions can lead to error in shortest path evaluation and may result in inef-

ficient routes. We discuss this metric in detail in the previous chapter. If we con-

sider our example, the route R̂ given by our approach has a travel time of approxi-

mately len(R̂) = 7mins and the optimal route R∗ has a travel time of approximately

len(R∗) = 9mins. Hence, here the inefficiency is |len(R∗)− len(R̂)| = 2mins and

since len(R∗)− len(R̂) is positive, our approach underestimated the travel time.

• CPU per RSU: For this metric, we periodically log the change in CPU consumption

for each RSU, while the training is being done. We are particularly interested in the

29

median and maximum change in CPU consumption for an RSU.

• Memory per RSU: Similar to CPU consumption, we periodically log the change in

Memory consumption for each RSU, while the training is being done and report the

median and maximum megabytes consumed (MB) for an RSU.

• # Messages: Total number of message sent during training phase only pertains to

the Federated learning. In Central learning, the training is done on a single machine.

Hence, there is no message passing during Central learning.

To evaluate our decentralized route planning approach we used the following metrics:

• CPU per RSU: For this metric, we periodically log the change in CPU consump-

tion for each RSU, while the routing queries are being made. We are particularly

interested in the median and maximum change in CPU consumption for an RSU.

• Memory per RSU: Similar to CPU consumption, we periodically log the change in

Memory consumption for each RSU, while the routing queries are being made and

report the median and maximum megabytes consumed (MB) for an RSU.

• Query time per trip request: For this metric, we log the response time in seconds,

for each route query and get median and maximum travel time in minutes, for a

trip. Note that, we are not logging the number of messages here since we are more

interested in the query response time for an algorithm rather than the number of the

message passed. The query time metric already captures the overhead due to the

message passing.

30

Table IV.1: Regions covered by RSUs.

RSU Bounding box
RSU1 (-87.1875, 36.21093, -86.83593, 36.38671)
RSU2 (-86.83593, 36.21093, -86.48437, 36.38671)
RSU3 (-87.1875, 36.03515, -86.48437, 36.21093)
RSU4 (-87.1875, 35.85937, -86.83593, 36.03515)
RSU5 (-86.8359, 35.85937, -86.48437, 36.03515)

IV.2 Experiment setup

In this section, we discuss some necessary setup needed before we can start evaluating

the prediction models in and our decentralized route planning approach. The necessary

configurations are listed below:

1. RSUs: Cluster of 5 RSUs simulated by Docker1 containers. RSUs are static, i.e their

location does not change with time. Table IV.1 shows exact bounding boxes, which

are the regions covered by RSUs in Nashville. Figure IV.2 shows the RSUs and the

region covered by RSUs in the map of Nashville.

2. Network setup for Central Server: We use OpenStreetMap2 data for Nashville

metropolitan area whose bounding box is (−87.04999,35.97,−86.510,36.42). There

are a total of 233,123 nodes and 474,213 edges in this region.

For partitioning the network within this region, in Central Server using the Algo-

rithm 1 discussed earlier, we used a geohash precision value of 28 bits, which gives

grids area of 1.44km2. A total of 1034 grids are created as a result of partition.

Our reason for choosing grid area of 1.44km2 is adhoc. Grid area affects the resource

consumption of RSU. One approach is to conduct a lot of tests and get a fair estimate

of how much area RSU can contain depending on its memory constraints. Another

approach is to have grids with a small area and move grids among RSUs at runtime.

We chose the latter and have smaller grids with an area of 1.44km2.
1https://www.docker.com/
2https://www.openstreetmap.org

31

Figure IV.2: Partition of Nashville metropolitan area into grids of area 1.44km2 and place-
ment of grids in RSUs

3. Network setup for RSUs: Now that the geographical region for each RSU and par-

tition of the region into bounding boxes are done, each RSU can now get graphs for

their grids using Algorithm 2. We have assumed that our cluster of 5 RSUs never runs

out of memory and hence we do not move grids among RSUs at runtime. Figure IV.2

shows the placement of grids in RSUs.

4. Location data: To simulate vehicle locations in the region, we use historical traf-

fic data collected at an interval of 1 minute, via the HERE API3 for the Nashville

metropolitan area. We do not know how HERE API gets actual traffic speed values

for road segments and hence we assume that the traffic speed reported by them are

accurate. Traffic data from January 1 to January 31, 2018, is used for training and

data from Feb 1 to Feb 7, 2018, is used for testing.

3https://www.here.com/en

32

Figure IV.3: MAE vs Epoch curve during training of Travel time predictor

5. Trip data: To simulate routing queries from vehicles, we synthetically generate

1,000,000 source and destination pairs are chosen randomly from the Nashville metropoli-

tan area. For each of these source-destination pairs, departure times were chosen uni-

formly from 9am-5pm. 800,000 trips have departure times from January 1 to January

31, 2018, and 200,000 trips have departure times from Feb 1 to Feb 7, 2018.

IV.3 Evaluation of prediction models

IV.3.1 Travel time predictor

We use a deep feed-forward neural network (DNN) (26) for a regression that estimates

travel time of an edge. Extensive tuning both in the configuration of hidden layers and

the activation and optimization functions was done during training. SGD (23) is chosen

as optimizer for the neural network. The configuration for hidden layers were chosen as

[200,190,170,150,100,50,20,10]. Early stopping criteria are employed to avoid overfit-

ting. Fig. IV.3 the change in validation Mean Absolute Error (MAE) with epoch steps

during the training phase of this predictor.

33

Table IV.2: Resource consumption for Travel time predictor.

CPU per RSU (%
used)

Memory per RSU
(MB)

Messages

Central Learn-
ing

78% (median)
97% (max)

191 (median)
307 (max) N/A

Federated
Learning

67% (median)
84% (max)

51 (median)
88 (max) 6255

Figure IV.3 shows the Federated learning took more time to train than Central learning.

MAE for a model trained with Central learning is 1.16 minutes which is less than the

model trained from Federated learning– 3.31 minutes. More importantly, errors in travel

time prediction model led to 11.4% of route queries return routes with 1.3 - 1.7 times

decreased travel times than the actual.

Table IV.2 evaluates the resource consumption of this model when trained with Fed-

erated learning and Central learning. Results show that Federated learning uses less CPU

than Central learning in both models. Federated learning uses 3.4 - 3.7 times less Memory

per node than Central learning, which was expected since each node use their local model

and data while training compared to Central learning which is trained in a single node with

all data. Federated learning sent 6255 messages while training, while it is not applicable in

Central learning since the training happens locally in a single node.

IV.3.2 Equivalent Grid Routing predictor

We use a deep feed-forward neural network (DNN) (26) for a binary classification that

gives the next best possible grid for a given pair of source, destination along with the time

interval. For binary classification, the activation function used in the output layer is a

sigmoid function (27). Extensive tuning both in the configuration of hidden layers and the

activation and optimization functions was done during training. Adam optimizer is chosen

as an optimizer for the neural network. The configuration for hidden layers were chosen as

[250,200,170,100,50,20,10]. Fig. IV.4 shows the loss vs epoch curve during the training

34

Figure IV.4: Loss vs Epoch curve during training of Equivalent Grid Routing predictor

phase for this predictor. Federated learning took more time to train than Central learning.

The loss for a model trained with Central learning is 0.32 which is less than the model

trained from Federated learning– 0.37. More importantly, errors in Grid prediction model

led to no route for 0.8% of users and 7.6% of routing queries returned inefficient routes,

i.e routes with increased or decreased travel time than actual.

Table IV.3 evaluates the resource consumption of this model when trained with Fed-

erated learning and Central learning. Results show that Federated learning uses less CPU

than Central learning on average, while Federated learning used more CPU on max. There

is no clear reason why. Federated learning uses 3.3 - 3.6 times less Memory per node

than Central learning, which was expected since each node use their local model and data

while training compared to Central learning which is trained in a single node with all data.

Federated learning sent 9543 messages while training, while it is not applicable in Central

learning since the training happens locally in a single node.

35

Table IV.3: Resource consumption for Equivalent Grid Routing predictor.

CPU per RSU (%
used)

Memory per RSU
(MB)

Messages

Central Learn-
ing

81% (median)
93% (max)

217 (median)
336 (max) N/A

Federated
Learning

74% (median)
97% (max)

64 (median)
91 (max) 9543

Table IV.4: Evaluation of routing algorithms.

Algorithm CPU per RSU (%
used)

Memory per RSU
(MB)

Query time per
trip request (s)

Single server Di-
jkstra

23% (median)
31% (max) 5.78 0.97 (median)

Parallel Dijkstra 27% (median)
36% (max)

0.76 (median)
1.14 (max)

9.2 (median)
19.13 (max)

Contraction Hi-
erarchies

18% (median)
23% (max) 13.36 0.016 (median)

Parallel Con-
traction Hierar-
chies

13% (median)
21% (max)

3.31 (median)
5.79 (max)

5.78 (median)
10.21 (max)

Our approach 52% (median)
67% (max)

0.94 (median)
1.31 (max)

2.43 (median)
5.81 (max)

IV.4 Evaluation of Decentralized Route planner

For evaluating our route planning approach, we use the metrics discussed in Section III.5.4.

For evaluating Space complexity we measure memory consumption and similarly for eval-

uating Time complexity we measure Query response times. In addition to that, we also

measure CPU consumption to evaluate parallelism of our approach.

Table IV.3 evaluates the resource consumption of our approach and compares it with

state of the art solutions for centralized route planning in a time-independent. We summa-

rize the results below:

CPU consumption:

• Our approach uses more CPU than Single server Dijkstra or Parallel Dijkstra because

36

in our approach shortest paths are calculated between boundary nodes in parallel

when the request is received.

• Contraction Hierarchies and Parallel Contraction Hierarchies uses less CPU than rest.

Its because they consume more memory for caching shortcut edges, which pays off

during query time when there are very few edges to explore.

Memory consumption:

• Our approach uses less Memory than Single server Dijkstra because the network is

divided among different nodes contrary to single server Dijkstra.

• Our approach uses more Memory than Parallel Dijkstra, because in our approach

inference models are used, which takes up more runtime memory contrary to Parallel

Dijkstra.

• Contraction Hierarchies and Parallel Contraction Hierarchies uses far more Memory

than rest. Its because they consume more memory for caching shortcut edges, which

pays off during query time when there are much fewer edges to explore.

Query response times:

• Single server Dijkstra and Contraction hierarchies has far less query time than our

approach because there is no network communication involved.

• Contraction hierarchies have the least query time.

• Parallel algorithms such as parallel Dijkstra and parallel Contraction hierarchies have

higher query times than our approach since their search proceeds sequentially be-

cause of time-dependency of the network.

• Parallel Dijkstra has the highest query times because there are no shortcut edges

cached such as in parallel Contraction hierarchies and thus the search space is not

guided. Our Grid prediction model guides our search, thus incur fewer query times.

37

CHAPTER V

Conclusion and Future work

Route planning in a time-dependent network is relevant to many problems faced by cities.

Centralized approach for planning routes is a well-studied topic and there are a lot of stud-

ies done on optimizing the algorithm to decrease response times for any query from the

client. Some techniques have a pre-processing phase whose goal is to reduce the search

space during query time. Other techniques use a shared memory model to plan routes in

a parallel manner. The central approach for route planning does reduce network latency

and also makes it efficient since all the data management can be done centrally and can be

horizontally scaled if more resources are needed.

While there are many advantages to central route planning, they fell short in solving the

problem that motivated this thesis, which is to help cities with a limited budget and network

coverage, provide self-sustaining mobility services for its residents while still preserving

their privacy. Our goal was to use the limited compute resources available to the city and are

dispersed throughout the region, to plan routes in a time-dependent network. To this end,

we presented a decentralized approach for route planning in a time-dependent network,

where the computing devices have limited resources. We leveraged recent advances in

federated learning to collaboratively learn shared prediction models online while keeping

all the training data on the device, thus preserving privacy. Experiments show that our

approach uses 1.2 - 6 times less memory per compute node than central approach and has

moderately higher query response time than central server approach, but our decentralized

architecture makes it resilient in case of system failures and has high scalability.

The core of our architecture relies on data-driven models that estimates travel times and

guides the search procedure during query time. However, there are still some problems that

should be further investigated before it can be deployed in production. First, further studies

38

are needed to improve travel time and grid prediction models to mitigate the impact of

errors on user trips. Second, our approach does not guarantee termination and completion

of algorithms, hence further studies are needed to develop data-driven models that can

enable us to get theoretical bounds for our search procedure. Third, more experiments are

needed to test our architecture for a different system and network failures and evaluate the

resiliency of our approach. Finally, our approach can be extended to allow multiple modes

of transportation and integrate with a decentralized computation market platform.

39

Appendix A

Encoding

A.1 One-hot encoding

Categorical problems are quite commonplace in machine learning problems and are more

challenging to deal with. In particular, many machine learning algorithms require that their

input is numerical to perform gradient descent properly and there is not necessarily any

ordering between categories (e.g. a feature ’CompanyName’ with names of companies

such as ’Honda’, ’Volkswagen’, ’Boeing’ and so on.). Hence, categorical features must be

transformed into numerical features before we can use any of these algorithms. In One-

hot encoding, for each unique value in a feature (say ’Honda’), one column is created (say

”CompanyName-Honda”), where the value is 1 if for that instance the original feature takes

that value and 0 otherwise. So, the number of dimensions that are added, is equal to the

number of unique values in the categorical feature.

A.2 Geohash encoding

Geographical locations are also considered as a categorical feature since there is no or-

dering among geographical locations. Using One-hot encoding to represent geographical

location data can lead to billions of dimensions and the training becomes difficult. Geohash

(28) converts geographical coordinates to a short alphanumeric or binary string. Greater

precision allows greater precision or resolution. For example, with 28 bits, Geohash en-

coding can encode a geographical coordinate with a resolution of 2.8km. With 42 bits,

Geohash encoding can encode a geographical coordinate with a resolution of 9.5m.

40

BIBLIOGRAPHY

[1] United Nations Department of Economic and Social Affairs, “68% of the world
population projected to live in urban areas by 2050,” 2018, [Online; accessed
22-July-2019]. [Online]. Available: https://www.un.org/development/desa/en/news/
population/2018-revision-of-world-urbanization-prospects.html

[2] A. Mukhopadhyay, G. Pettet, C. Samal, A. Dubey, and Y. Vorobeychik, “An on-
line decision-theoretic pipeline for responder dispatch,” in Proceedings of the 10th
ACM/IEEE International Conference on Cyber-Physical Systems. ACM, 2019, pp.
185–196.

[3] Omnigo, “911 dispatch software,” 2019. [Online]. Available: https://www.omnigo.
com/solutions/computer-aided-dispatch-software

[4] P. Sanders and D. Schultes, “Engineering highway hierarchies,” in ESA, vol. 6.
Springer, 2006, pp. 804–816.

[5] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction hierarchies:
Faster and simpler hierarchical routing in road networks,” Experimental Algorithms,
pp. 319–333, 2008.

[6] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search meets graph
theory,” in Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2005, pp. 156–165.

[7] Businness Insider, “Morgan stanley: 75 billion devices will be con-
nected to the internet of things by 2020,” https://www.businessinsider.com/
75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10?IR=T,
2013.

[8] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al., “Communication-efficient
learning of deep networks from decentralized data,” arXiv preprint arXiv:1602.05629,
2016.

[9] T. Pajor, “Multi-modal route planning,” Universität Karlsruhe, 2009.

[10] T. A. Manual, “Bureau of public roads,” US Department of Commerce, 1964.

[11] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[12] L. R. Ford Jr, “Network flow theory,” RAND CORP SANTA MONICA CA, Tech.
Rep., 1956.

[13] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16, no. 1,
pp. 87–90, 1958.

41

[14] G. Dantzig, Linear programming and extensions. Princeton university press, 2016.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[16] A. V. Goldberg and R. F. F. Werneck, “Computing point-to-point shortest paths from
external memory.” in ALENEX/ANALCO, 2005, pp. 26–40.

[17] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest path queries,”
in European Symposium on Algorithms. Springer, 2005, pp. 568–579.

[18] G. Di Stefano, A. Petricola, and C. Zaroliagis, “On the implementation of parallel
shortest path algorithms on a supercomputer,” in International Symposium on Parallel
and Distributed Processing and Applications. Springer, 2006, pp. 406–417.

[19] Y. Tang, Y. Zhang, and H. Chen, “A parallel shortest path algorithm based on graph-
partitioning and iterative correcting,” in 2008 10th IEEE International Conference on
High Performance Computing and Communications. IEEE, 2008, pp. 155–161.

[20] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization of dijkstra’s
shortest path algorithm,” in International Symposium on Mathematical Foundations
of Computer Science. Springer, 1998, pp. 722–731.

[21] C. Vetter, “Parallel time-dependent contraction hierarchies,” Student Research
Project, p. 134, 2009.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, 2010, pp. 249–256.

[23] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-
ceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[24] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (mae) over
the root mean square error (rmse) in assessing average model performance,” Climate
research, vol. 30, no. 1, pp. 79–82, 2005.

[25] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural
networks with noisy labels,” in Advances in neural information processing systems,
2018, pp. 8778–8788.

[26] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT Press,
2016, vol. 1.

[27] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathemat-
ics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[28] T. Vukovic, “Hilbert-geohash-hashing geographical point data using the hilbert space-
filling curve,” Master’s thesis, NTNU, 2016.

42

