
DOCUMENTATION MANAGEMENT AND GENERATION

 FOR DOMAIN-SPECIFIC MODELS

By

Kiran Kumar Guragain

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

August, 2010

Nashville, Tennessee

Approved:

Dr. Akos Ledeczi

Dr. Gabor Karsai

I

DEDICATION

Dedicated to my beloved parents Bharat Prasad Guragain and Sunita Guragain

II

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Akos Ledeczi, for providing guidance and support

during my graduate education at Vanderbilt University. I am grateful to, Dr. Gabor Karsai, for

his insightful comments and suggestions on my Master‟s Thesis. I appreciate all the help

and support that I received from my friends, fellow graduates and staff members at Institute

for Software Integrated Systems.

I am thankful to my mother, Sunita Guragain, and father, Bharat Prasad Guragain, for

their inspiration and encouragement during my graduate studies.

III

TABLE OF CONTENTS

DEDICATION .. I

ACKNOWLEDGEMENTS ... II

TABLE OF CONTENTS ...III

LIST OF FIGURES ... V

I. INTRODUCTION .. 1

II. RELATED WORK ... 4

 Hyperdoc ... 5

 Javadoc ... 5

 Simulink Web View .. 6

 Microsoft Visio .. 7

 IBM Rational .. 7

III. BACKGROUND ... 9

 Design and Architecture ..10

IV. IMPLEMENTATION ...14

 Interpreter ..14

 HTML/ JavaScript ..14

 Model Documenter ...15

 Advantages of using HTML ..16

 Recording Documentation/Comments ..16

 External Editor ..18

 Syncing Source and Design View ..19

 Web Exporter ..20

IV

 Exporting model image ..21

 Conversion to PNG ..21

 Exporting Model Locations ..23

 Mapping location ...24

 Exporting to HTML ...25

 Generating the Tree Browser...26

 Navigation ...27

V. CASE STUDY ..29

 Signal Flow Example ...29

 VI. SUMMARY AND FUTURE WORK ..33

REFERENCES ..34

V

LIST OF FIGURES

Figure 1 General System Architecture ...11

Figure 2 Model Documenter Architecture ..12

Figure 3 Web Exporter Architecture ...13

Figure 4 Model Documenter Window ...16

Figure 5 Example of saving documentation in registry ...18

Figure 6 Original model as it appears in GME ...22

Figure 7 Exported model from GME ..23

Figure 8 Object Hierarchy and corresponding HTML code which is read by Yahoo library

to construct tree browser ...27

Figure 9 Model Documenter window that takes documentation29

Figure 10 Dialog asking to select a folder ..30

Figure 11 Exported HTML in Web Browser ...31

1

CHAPTER I

INTRODUCTION

Documentation is essential to every system as it helps in disseminating knowledge

about the system. Automatic Documentation exploits existing design or data, with a little or

no effort from the user to create documentation. Automatic documentation has been of

interest mainly because of its ability to reduce effort that is required to create

documentation. Most of the system designs have enough information that can be exploited

to generate some of the documentation. This approach has several advantages such as

reduced cost, consistency with the design and ease of maintenance. Though automation

might not eliminate cost altogether, it is likely to reduce cost associated with documentation.

Cost can still be incurred in areas such as document editing and proof reading because

machine generated documents might not be of the highest quality. When a system is

designed and documented, it is highly likely that different people might be involved in these

jobs; this might result in discrepancies between the design and the documentation.

Generating documentation using an existing knowledgebase such as a design itself, helps

eliminate this problem. Another pronounced advantage is maintenance; a change in the

design simply requires rerunning the automatic documentation generator, assuming that the

generated documentation is not modified. This is likely to save a lot of effort needed to

update the document and also to prevent inconsistencies that may occur when documents

are manually updated.

2

 In case of modeling, documentation can be useful to explain the purpose of the model

and the relationships among different parts of the model. The designer can always add

information that he thinks is necessary to understand or use the model. This information can

act as a means through which the developer of the model communicates with the other

designers or users. This thesis describes an automatic documentation generation tool for

the Generic Modeling Environment (GME) [12], a domain specific modeling tool developed

by Institute of Software Integrated Systems at Vanderbilt University. GME lacks proper

documentation generation facility that is relatively common in modeling tools. In this work we

have developed one such tool that helps the user describe the modeling objects and

generate the corresponding documentation automatically.

The tool runs as a GME interpreter and generates HTML documentation that contains all

the graphical model views that can be navigated just like in the GME. As such, it visualizes

the model and also presents the textual description the modeler provided. The description

can include HTML formatted text and hyperlinks that help explain the model or convey other

important information. At a high level, our tool consists of two parts. The first part is the

documenter which is used for providing textual description for the models and the second

part is the exporter which is used to assemble the graphical model views and the attached

description into a set of interlinked web pages.

Manually documenting GME models would be a cumbersome process. For example, this

would involve exporting every model as an image and then writing corresponding HTML files

that describe the model. Of course, all of these processes cannot be automated as the

description to associate with an object needs to be provided by the user. The user is

responsible for including documentation for each and every object that he thinks requires it.

3

Other tasks such as exporting the graphical models and generating HTML pages are

performed automatically. This approach has a marked advantage over manual

documentation because manually writing, appropriately formatting and publishing all the

information is monotonous, take a lot of time and are error prone.

The remainder of this thesis is organized in the following manner. Chapter II describes

the existing works in automatic documentation generation. Chapter III introduces the

background concepts needed to understand this work and describes our system

architecture. Chapter IV discusses our implementation in detail and Chapter V presents a

case study of the Signal Flow Model. We conclude by highlighting the future work that can

be done in Chapter VI.

4

CHAPTER II

RELATED WORK

 There have been efforts in the past to automate the documentation process. Natural

Language Generation [1] is a technique that can generate coherent documentation in

multiple languages. NLG based system is used in [1] to generate online interactive

documentation and paper manuals. The system is capable of modeling the domain and the

linguistics and the user has the ability to control the degree of automation in the generation

process. The text generated by the system is a series of steps in which each step is

described in a single sentence. The domain is described using an Object Oriented model

and each entity is represented by a set of all the elementary components. Each of these

elementary components contains description of the events, properties and actions. The user

can change properties and descriptions through a GUI. The system also allows existing

components to be reused in a new design. For example, some of the specifications of a

DVD player can be used for designing the model of a TV (like Power buttons and power

connectors). From these specifications, Planner [1] is used to generate a plan which is a

sequence of steps that transitions the system from the user specified source state to the

goal state. As an automatically generated plan may not be optimal, the system provides

capability of editing plans. The plans generated can be grouped to compose the document

[1].

5

Hyperdoc

HyperDoc [2] is a system that generates manuals for interactive systems like tape

players. The system is based on Finite State Machines. Each state represents the

operation that the system performs and state transition occurs when user presses a button.

So, for the system to go from one state to another multiple buttons might be used. For

example, when a tape is playing, a user may need to press stop button first (transition to

stopped playing state) and then press eject to remove the tape from the system (transition to

no tape state). Given a source state and a target state, the system can generate instructions

for moving from the source state to the target state. It is used for creating answers to How–

To questions. The system uses a graph internally and finds the shortest path between the

source and the target state and then generates a series of moves that are necessary to

bring the system to the target state. In a real system, the moves may involve pressing

different buttons. This approach can be used to generate documentation automatically.

From each state, the steps to reach the other state can be answered by computing all pairs

of the shortest paths for the state machine. However, computing all pairs of the shortest

paths may take a long time and generate very lengthy documentation. [2] describes a

method that can be used to produce minimal documentation by computing a minimum

spanning tree for the graph. This approach is interesting and can save a lot of

documentation effort and prevent human errors. However, it can be very complicated for

non trivial systems and most of the time it is desirable to have control over the way the

documentation is created.

Javadoc

Apart from these earlier approaches, there have been significant efforts in creating

documentation automatically, especially in the areas of programming languages and

6

modeling. Most programming languages such as Java and .NET have tools that can collect

information from the code (including comments) and create documentation that is useful for

programmers. One popular example is Javadoc, a tool that parses source files for

specialized comments, classes and methods and generates a navigable HTML

documentation. Javadoc requires that the documentation precede the class, field or the

member method definition and be enclosed by /**… */ delimiter. It also supports different

tags within the comments to distinguish the method parameters, return type etc.

Simulink Web View

Web View is included in the Simulink Report Generator and can be used to export the

Simulink and the Stateflow models into interactive web pages. Web view can be used by

anyone and doesn‟t require the Matlab software to view the models. This enables the

developed models to be shared among the users without much difficulty. The export feature

in the Simulink is similar to our export tool. It supports navigation of the models using a tree

browser. Elements of the model can be clicked for navigation and hovering the mouse

pointer over an element displays the attributes of the element using a tooltip. One

advantage of Simulink Web View is that, it allows selective export of models. By selective

we mean that, it has the option of exporting parts of the model hierarchy. The export options

include the overall model, the current model in view, current and above, and current and

below. One significant difference from our work is that there is no description associated

with the exported model. Though Simulink allows users to enter a description for each

Simulink block that they use in the model, the web view doesn‟t export those descriptions.

Even if the description was exported, it supports plain text descriptions only and therefore,

proper style and formatting cannot be applied.

7

The exported pages use frames to divide the page into sections as opposed to our

approach of using inline frames (iframe). The format used for exporting the image is

Scalable Vector Graphics (SVG). SVG is an XML based format and uses vector graphics.

Using vector graphics, quality of the image is maintained when it is magnified. Individual

elements in SVG graphics are selectable and can react to input events. Also, texts in a SVG

image are searchable.

Microsoft Visio

Microsoft Visio is a modeling tool that helps visualize and model complex systems. It

supports UML diagrams, circuit diagrams, flowchart, ER diagrams (database modeling),

general block diagrams, workflow diagrams, organizational chart and many others. It can

automatically export these models into web pages; however the exported pages are not

interactive. The page consists of a tree browser which can be used to view the model. The

diagrams can also be exported into a pdf file or images. Though it allows a model to have a

description, it does not get exported to the web pages. Unlike Simulink, which exports model

in the SVG format, Visio can export models in various formats such as GIF, JPEG, PNG,

SVG and PNG.

IBM Rational

Exporting models is a relatively common feature in the UML modeling tools.IBM Rational

is a very popular product that supports UML/SysML modeling. The UML diagrams can be

used to generate code in languages such as Java and C++. IBM also has a separate IBM

Rational Publishing Engine which is used to create the documentation automatically. The

documentation can be created based on a predefined template. The engine supports

graphical template editing and is easy to use. The data for the documentation can come

8

from various sources such as IBM Rational Models, Rational Doors etc. It can also be used

to generate documentation from third party sources if the sources are based on XML format.

It supports publishing documentation in different formats such as Word, PDF, and HTML.

The early systems were mostly concerned about automatically generating user manuals.

They viewed the system as state machine and computed the necessary steps for

transitioning the system from one state to another. These series of steps is then described

automatically to create documentation. Most of the current programming languages and

modeling tools also have automatic documentation built into them. These systems exploit

the presence of information in the source code or model to create documentation. Modeling

systems such as Simulink and Microsoft Visio, allow users to associate descriptions with a

model. But they do not export the description to the generated documents. The

documentation is mainly published in the form of web pages or pdf.

9

CHAPTER III

BACKGROUND

Model Integrated Computing (MIC) [9] places model at the center of the system lifecycle.

Models are created while designing a system and are stored in a model database. Models

are used to describe the domain, environment and system architecture. A model interpreter

[9], is a software written to analyze the models and generate executables or artifacts that

compose the system [11]. Hence, an Interpreter defines the relationship between a problem

representation and a solution. MIC consists of various tools that help designers construct a

system. These tools include Generic Modeling Environment (GME), Universal Data Model

Package (UDM), Graph Rewriting and Transformation Language (GReAT), Design Space

Exploration Tool (DESERT) and the Open Tool Integration Framework (OTIF) [10].

GME is a graphical modeling tool that is used to create a domain specific model. This

involves creating a metamodel for a domain. This metamodel represents the syntax and

semantics of the domain such as the relationship between the components and how they

can be connected together. Constraints can be applied to these relationships or properties

of an object. Besides syntactic and semantic description, the metamodel can also be used

to control the way a model can be viewed. Using metamodel, different models can be

created for the domain. The model can be transformed by an interpreter to generate

program code, configuration files, or data. The output of an interpreter can be either an end

product or an input to other systems. For example, an interpreter might convert GME model

10

into Simulink model that can be fed into Simulink. GME has component based architecture

and supports access to model data through various programmatic interfaces [11].

Design and Architecture

We had several alternatives for the design of the documentation system and the model

export tool. Our initial idea was to export all the information contained in the model into an

XML file and images. The XML file would serve as a data source for the system. We could

use server side scripts such as PHP or Java to read the XML file and load images. The

documentation could be constructed dynamically by gathering information from the XML file.

The problem with this approach was that, it required a server to run server side scripts. One

workaround would be to use a single server to host the documentation for all the people in

an organization. However, a common server requires each update to be sent to the server.

Another alternative was to allow users to modify the documentation once it is exported.

Although this is convenient, it introduces another problem; the users might update the

documentation but forget to update the model with the changes. One solution to this

problem would have been to write another interpreter which would update the model with

the changes. This would work if the users run the interpreter after they make changes to the

documentation. The users are likely to forget to interpret after making changes to the

documentation. This can result in inconsistencies. This approach would also require a

server because changes cannot be made on the client side using just JavaScript and HTML.

11

Figure 1 General System Architecture

Given the demerits of having a server, we eliminated all the design alternatives that

required it. Our goal was to implement the system using only HTML and JavaScript. To

avoid a server, all the necessary information is exported in the HTML files and is

manipulated using JavaScript. As discussed in introduction, the system consists of two

parts. The first part is the documenter which is used for entering descriptions. It is named

“Model Documenter”. The other part is responsible for exporting the model into HTML Pages

and is named “Web Exporter”. Model Documenter is used for writing descriptions about an

object whereas the Web Exporter is used to export the graphical models, attributes and

descriptions.

12

Figure 1 shows the high level architecture of our system. The two components sit on top of

GME and interact with GME to accomplish their tasks. Model Documenter can associate

description with an object by interacting with GME. Web Exporter on the other hand obtains

information from GME, organizes them in a HTML format and then writes to a file. Figure 2

and Figure 3 shows the architecture of the Model Documenter and the Web Exporter

respectively. The Model Documenter is quite simple and has an input module which takes

description from the user. The central component in the Model Documenter is the

Description Manager which is responsible for managing descriptions. When the interpreter is

invoked, the Description Manager is responsible for loading the descriptions into the Input

module. The users can then add, modify or remove descriptions. Once the user has finished

editing the description, the manager pulls the data and sends it to the GME registry for

Figure 2 Model Documenter Architecture

13

storage so that it can be retrieved later. The Web Exporter also has a central component

Documentation Creator which generates documentation with the help of other components.

It uses PNG Converter to convert EMF images into PNG format. HTML tags are created

using HTML tag writer and then are written to an HTML file. The location and the size of the

objects in the GME are obtained by using Location Reader component. The Tree Generator

generates hierarchical representation of the objects that can be navigated and the HTML

File writer is used to write the HTML files.

Figure 3 Web Exporter Architecture

14

CHAPTER IV

IMPLEMENTATION

 Interpreter

GME provides programmatic access to a model. One popular method for access is to

write an interpreter. Interpreters can be useful for manipulating models, generating

configuration files, generating program code, or transforming models from one format to

another to ensure compatibility [10]. Interpreters are generally written in C++ and are

accompanied by classes and utilities that make the job of writing it really easy. It also has

support for Visitor Pattern which can really be useful for traversing the model hierarchy.

HTML/ JavaScript

HTML is more attractive than plain text because it supports formatting, inclusion of links,

images etc. It doesn‟t need anything extra than a web browser. JavaScript on the other hand

helps add interactivity to the HTML pages. Using only JavaScript and HTML the need for a

server is eliminated and the user has a freedom in generating and using the documentation.

The system is implemented as two interpreters and consists of the Model Documenter

and the Web Exporter. The Model Documenter is used for describing an object. The

description can be entered in HTML format. Therefore, it can be formatted as desired. The

description entered is saved in the GME registry and is loaded when the Model Documenter

is invoked for the object. The Web Exporter navigates each and every element in the model

and exports its graphical view, attributes and descriptions into HTML pages. The generated

15

pages are interactive and allow navigation similar to the GME. The navigation is

implemented using JavaScript. The web page has four sections: tree browser, graphical

view, attributes and description.

 The implementation consists of various modules and is described in detail below.

Model Documenter

 When it is invoked, it displays a window with two views: Source view and Design view.

In Source View, there is an input textbox for each aspect that the element is visible in (figure

4). There is an additional tab that takes the description for all aspects (the documentation

will apply to all aspects). The textbox takes plain text as input which means that all the

HTML tags needed for formatting must be coded manually. In Design View, the user can

directly insert description in the HTML format. The user can use keyboard shortcuts for

appropriate formatting. The Design View component employed is the Internet Explorer (IE)

HTML control. Therefore, it supports any shortcuts that are supported by the IE control. The

program is in no way meant to have full fledged HTML designing and editing capabilities.

Therefore, there is a support for using an external editor. The users can use their favorite

editor to edit HTML. The changes made through external editor will automatically be taken

by the program and saved in the registry. Details on using an external editor are explained

later.

16

Figure 4 Model Documenter Window

Advantages of using HTML

Having an ability to insert documentation in HTML is always a plus. Users can always

highlight the points they want to emphasize by using appropriate formatting (bold, italic etc.)

Moreover HTML can be visually appealing to the readers of the documentation. Whenever

one requires pointing to external material for explanation or wants to include a picture, it can

be achieved using HTML.

Recording Documentation/Comments

Users can start the Documenter by selecting the object that they are interested in and

then invoking the interpreter. A dialog box is displayed, asking the user for a description that

he would like to associate with the object. The user can enter description for different

aspects of the same object and also provide a description that is common to all aspects.

17

This is useful because the same description need not be copied to multiple aspects. Users

can switch between the aspects and add, modify or remove text. Once the description has

been edited, it can be saved and the user can restart working on the model. When the user

saves the documentation, the interpreter goes through each aspect and collects the

descriptions. Then it creates a description entry for each aspect in the GME registry. The

entry is named using the identifier of the object followed by the aspect name. The

description is saved under this entry. While retrieving the description, the interpreter first

finds out the object identifier and the aspects that it supports. Then it constructs the registry

entry name as mentioned before. If description is present, it is loaded in the appropriate

textboxes. For example if an object has identifier XYZ and supports aspects Aspect1 and

Aspect2, then the first call to save documentation will create a registry node called

Description and under it, it will create nodes for each aspect and an extra node

representing all the aspects. Each description is stored under the respective aspect. Figure

5 shows how it looks like when exported in XML format. The figure doesn‟t show HTML tags

for simplicity. The tags such as <a href>, etc present in the model will automatically

converted to XML acceptable format. Users can use hyper links to support their description.

The link can be used by entering <a href ..> tag in source view.

18

External Editor

The users can use an external editor for HTML editing. Rather than making an attempt

to provide a good HTML Editing feature, we thought it would be more beneficial for the users

to be able to leverage the power of existing HTML editors. The user can register an external

editor by clicking on the link provided at the bottom of the description input dialog box. The

registered external editor‟s path is saved in the Windows registry. The path could have been

saved in the GME registry but the model may be copied across systems. The path of the

external editor is dependent on the system and may not work when copied to another

machine, as executable locations might differ. The path is saved under

HKEY_CURRENT_USER\Software\GME\Descriptions with the key name editor. If the

model is copied to another machine, the user can always register an editor that is present in

the new machine. While loading the Model Documenter the Windows registry key is read

and if it exists the editor is set. The user can launch the external editor anytime by clicking

<model id = “XYZ” >
 <regnode name = “Description” >
 <regnode name = “XYZ” >
 <value> …… </value>
 <regnode name = “Aspect1” >
 <value> …… </value>
 </regnode>
 <regnode name = “Aspect2” >
 <value> …… </value>
 </regnode>
 </regnode>
 </regnode>
</model>

Figure 5 Example of saving documentation in registry

19

on the External Editor Button. When the button is clicked, the system writes the current

description into a file in the temporary directory and creates the external editor process by

making the CreateProcess API call with editor and the temporary file as arguments. This will

open the external editor with the description. The user can then edit and save the

description. When the external editor is open, the GME window cannot take the user events,

until the Model Documenter is notified that the editing is complete. This is achieved by

displaying a message box that needs an acknowledgement from the user. As a result of this,

the users are also prevented from switching to another aspect while the external editor is

open. . If the users need to edit descriptions for two or more aspects, they should do it one

aspect at a time. The message is acknowledged by pressing the OK button in the message

box. After the acknowledgement is received, the Model Documenter loads the changes.

Syncing Source and Design View

As the user can edit both the source and the design, it‟s necessary for the system to

synchronize the update in one view with the other. When the user is typing in the source

view, the design view is updated only when the user stops typing for a second. This is done

by recording the time stamp of the last edit and comparing it with the current time. There is a

timer running every second which checks if the textbox has been inactive for a second. If it

has been inactive for a second, the design view is updated. If user edits the textbox before a

second expires then the design view is not updated. In the case of design view, there is no

check for inactivity; the source view gets automatically updated every second. The source or

design view is not updated if the design or source view hasn‟t been changed respectively.

20

Web Exporter

The Web exporter is used to export the model and the descriptions that are attached to

the objects. The model is exported in the form of HTML pages and can be navigated. The

steps involved in the export are:

1. Ask the user for a destination folder. This folder will be used for storing the output

files. Attributes and descriptions are stored in subfolders that are created by the

program.

2. Go through each aspect of each model in the hierarchy and export its view in the

form of a Windows Metafile. Also export the model geometry in an xml file. The xml

file contains the location of each object and its name. The location is present for

every aspect of an object.

3. For each exported image, convert it into PNG format.

4. For all such images create an Image tag and add an Image map. The map will define

a region for each object that is present in the image. Create Click and Double click

JavaScript events for each of those regions.

5. Write attributes and descriptions of each object in the subfolder.

6. Write the HTML files.

The important processes in exporting to html pages are explained below:

21

Exporting model image

In order to export the model into web pages, the first step is to export the graphical view

of the model. GME allows models to be exported as Enhanced Metafile (EMF). GME

exposes this functionality as a COM interface and thus, the interpreter calls the interface to

export the graphical view of the model. EMF is an image file format developed by Microsoft

and is used in Windows based systems.

Conversion to PNG

Since EMF is a Windows based and relatively uncommon format, we opted for a format

that is compatible across different operating systems. This led PNG (Portable Network

Graphics) to be chosen as the image format. PNG is a lossless format and is supported

across many browsers.

In the implementation, the presence of PNG encoders across different Windows based

systems has been exploited. Using the encoder that is built into GDI+, a Windows API that

helps application programmers write graphical applications, the EMF formatted image is

converted to PNG format. The conversion is achieved in two steps:

1. First step is to obtain the encoder; this is done by enumerating all image encoders

that are available in the system and searching for the PNG encoder. The encoders

can be obtained by making GdiPlus::GetImageEncoders() call. Once the list of

encoders is obtained, the PNG encoder can be searched. The search matches the

PNG format name with the format name of each encoder in the list.

22

2. After obtaining the encoder, a new GdiPlus::Image object from the EMF file is

created. The image object is then saved to a new file. The save method of the image

object takes an image encoder as a parameter. This leads the format conversion

from EMF to PNG.

While exporting EMF files, the GME truncates extra spaces that surround the model.

This is the default behavior of the Windows API that is used by the GME to export a model.

The truncation is useful as it makes the image look neat and professional. But it introduces a

problem of mapping the location in the image that corresponds to the location in the GME

window. The problem is illustrated in figure 6. The figure shows the original model in the

GME window. The figure has extra spaces at the top and the left. The location reported by

the GME is the location in the GME window. For example, in Figure 5 the leftmost and

topmost object coordinates was (237,146). The same view exported to an image (as shown

Figure 6 Original model as it appears in GME

23

in figure 7) has the coordinates of (3, 46). The problem is solved by mapping the smallest x

and y coordinates reported by the GME to the smallest x and y coordinates found by

searching the image. The details of the solution are discussed later.

Figure 7 Exported model from GME

Exporting Model Locations

The GME registry only provides the top left corner coordinate of an object. The location

and bounds can be obtained by calling the GME interface that exports object locations and

boundaries in a XML file. The exported file contains locations of every object contained in

the model. The locations are present in the file for every aspect that an object is visible in.

The interpreter reads the object location from the file. The XML files are exported for every

model present in project. This is an inconvenient approach and suffers from overhead of

24

reading XML files. It would have been better if the GME interface had provided a proper API

for reading an object‟s bounds.

Mapping location

As discussed earlier, the truncation of exported image necessitates mapping the location

obtained from the XML file to the location in the image. The problem is solved by finding the

minimum x and y coordinates in the xml file and searching the exported image for the

minimum x and y coordinates. The two coordinates are equivalent. Based on these two

coordinates, a correction can be applied to obtain an object‟s position in the exported image.

The algorithm is given below:

1. MinX = MinY = infinity

2. Search for minimum x1 and y1 coordinate in XML file (x and y can be

coordinates of different objects)

3. Start reading value of pixels from top left corner moving towards right until x =

MinX or x = Image Width

4. If current pixel (x2,y2) is not the background color and x2 < MinX then MinX =

x2

5. Similarly obtain MinY

6. For any object location (x,y) apply correction x = x + x1 – MinX and y = y+ y1 –

Miny

25

This algorithm is based on the fact that the GME exports the images without including

background color. This algorithm takes O (mn) time where m = vertical resolution and n =

horizontal resolution of the image. Though worst number of searches is m * n, it is always

less than that because minimum x and y values will be found before all the pixels are

searched. To make this efficient, we could only search the rectangle formed by top left hand

corner and the minimum x and y coordinates obtained from the xml file. However, it was

observed that sometimes space gets added to the image. This is the case when the image

has very little extra space before or after the objects in the model. So using minimum

coordinate from the XML file, may never find the minimum coordinates in exported image.

We can get around this by searching the whole image.

Exporting to HTML

The exported image is divided into regions using an image map. Each region represents

an object in the image. The regions are obtained by mapping locations as described earlier.

Each area in the image map is associated with JavaScript onClick() and onDblClick()

events. The necessary information needed for navigation is written while generating the

HTML files. The onClick() event handler currently takes 5 parameters. Those parameters

are coordinates of the object, its unique ID assigned by the GME, and 3 Boolean values

indicating whether it has children, attributes and documentation. For example, if an object

has attributes then it will be set to true in the event handler call. onDblClick() event handler

also takes same set of parameters excluding the coordinates.

ID is needed as a parameter because the attributes, descriptions and html files are

named using the ID. This makes it easy to find the appropriate file. A Boolean value, which

indicates whether the object has children, attributes and description respectively, is used to

26

decide whether such HTML documents exist. It‟s needed because JavaScript and iframe

have no explicit way of knowing whether the given file exists. This is particularly true for web

browser environments because of the security reasons.

Initially, all the aspects that were used by the paradigm were listed at the top of the view.

But it is desirable to display only those aspects that are supported by the current model.

Therefore, we decided to display only those aspects. The aspect names that appear at the

top of the window, are in a separate iframe. Whenever the view is changed, the aspect

supported by the current view is loaded. To achieve this, the aspects that are supported by

the model are placed in a hidden div tag and when the HTML page is loaded the data from

hidden div tag is copied to the aspect iframe. So only the aspects that the object supports

are available.

Generating the Tree Browser

The Tree Browser component is taken from the Yahoo UI Library. The library requires

the tree hierarchy to be represented by and tags. The interpreter navigates the

object hierarchy and puts sibling objects in the same list and the immediate descendants in

the child list to fulfill the Tree Browser Component requirement. Figure 8, shows a simple

example of how the Tree Browser is constructed. Additional information (not shown in

figure) is also present in the list items. The information include the ID, the ID of the parent,

type of the object, aspects that the object has and the Boolean values indicating whether the

object has child, attributes and documentation. Except for two new arguments, others have

similar meanings as discussed earlier in Exporting to HTML. For example, the aspect name

and ID are used to construct the file name of the appropriate model that is to be loaded in

the iframe. The two new arguments are Parent ID and Aspects. Parent ID was needed

27

because when an item is clicked on the Tree Browser, it is loaded in the view iframe.

However, the leaf objects (atoms, sets etc) don‟t have views. So it was appropriate to load

the parent view for such objects. To locate the parent view, Parent ID is required. When an

object is opened in the parent view, the child object is highlighted. If the system is currently

in a different aspect that is not supported by the object then a random aspect is selected.

The selected aspect is used to display the object.

Object Hierarchy HTML Code Using List

RootFolder
 ModelA
 AtomA
 ModelB
 AtomB

 RootFolder

 Model A

 AtomA

 ModelB
 AtomB

Figure 8 Object Hierarchy and corresponding HTML code which is read by Yahoo library to construct

tree browser

Navigation

The exported model is navigated using JavaScript. Clicking an object in the view selects

the object and double clicking an object brings the object into view. The selection of object is

achieved by making the object bordered with thick black rectangle. Internally, this employs a

28

div whose border is set to thick black using CSS. When user clicks on the object, the div‟s

coordinates are made equal to the object‟s coordinates. This makes a div layer to appear

above the object. This creates a problem as the click and double click now go to the div

layer. To circumvent this problem, the onClick and onDblClick event handler of the image

area is set as the event handler for corresponding events of the div layer.

Whenever an object is clicked, the aspect name and ID are used to construct the

attribute and description filename. The filename is the Aspect name followed by an

underscore which is followed by the object ID. Thus onClick() checks whether object has

attributes and description using the Boolean parameters. If the parameters are true, the file

is loaded in the respective iframe. If no such files exist, then „No attributes‟ or „No

Description‟ message is displayed.

29

CHAPTER V

CASE STUDY

Signal Flow Example

The case study applies the interpreters to the Signal Flow example model that comes

with the GME. The first step before exporting the model is to describe objects in the model.

As discussed earlier, this can be done by running the Model Documenter interpreter. A

particular object in the GME window is selected and then the interpreter is invoked. This will

pop up a dialog as shown in Figure 9 (in this case the interpreter has been run for the

Envelope2 object in the model). Tabs are created for every aspect that the object supports

and the user can switch between tabs to enter a description. The source view is on the left

and the design view is on the right. The source view takes plain text as input. So any

Figure 9 Model Documenter window that takes documentation

30

required HTML tags have to be written manually. The design view on the other hand can

directly accept HTML tags. For example, typing a bold text in source view requires

specifying and tags whereas in design view it is a simple matter of pressing Ctrl +

B shortcut key. The editing capability is pretty basic and therefore use of an external editor

is supported. The external editor can be launched by pressing External Editor Button. Once

the external editor is launched, description can be written using the editor. After editing is

finished, the editor needs to be closed. The changes would then be reflected in the Model

Documenter window. The description is saved when the user clicks the OK button.

Figure 10 Dialog asking to select a folder

The Web Exporter tool is launched to export the model into HTML pages. The tool

asks the user to select a destination folder where the files should be stored. The dialog is

shown in figure 10. The folder can be selected by navigating the tree browser. Once the

31

proper folder is selected, the OK button is pressed to designate the folder as the export

folder. The tool then starts exporting the files. This will take some time because it requires

processing each and every object present in the model. When the export is complete, it

displays a message saying the files have been exported successfully. When the message is

acknowledged by pressing the OK button, default web browser is launched with the

tree.html file. The model can then be browsed in the web browser.

Figure 11 Exported HTML in Web Browser

32

Figure 11 shows how the exported document looks like. As said earlier, there is a tree

browser on the left. This browser contains all the objects in the hierarchy and is expandable.

At the top is always the root element followed by its descendents. If a model has child

objects then they will be the child nodes of the model node. Clicking an item in the browser

will bring the item into view. For example if a model is clicked, it will bring that model into

view. If the model has children then the model‟s view is opened, else its parent view is

opened. This is not true for folders because they don‟t have views.

On the top of window there is an Aspects tab which allows users to switch between

aspects. Only the aspects that are applicable to the current model in view is displayed.

Below the Aspects tabs, there is a frame which shows the model. The objects on the model

can be selected by clicking on them. Clicking the object displays its attributes on the bottom

left hand side and the description on the bottom right hand side. One can also double click

the object to bring it in the view. This is true for models that have children. For atoms and

sets, it does nothing. For Reference types, double clicking will load the referred object‟s

parent with the referred object highlighted.

33

CHAPTER VI

SUMMARY AND FUTURE WORK

In this thesis, we built the Model Documenter and the Web Exporter. The tools run as

GME interpreters and can be invoked from the GME window. The documenter is used to

associate description with the objects in the model. Using the documenter, the user can

explain the model, which can be helpful to other users. External references, links etc. can be

used for the explanation. The exporter is used to export graphical view of the models,

attributes and descriptions to HTML pages. The exported pages can be navigated to view

the model, attributes and description. The HTML pages can be viewed by any user with a

web browser. This makes it easy to share models among users.

The tools can be improved in different ways. The model export tool lacks support for

Connections since they are not currently selectable in the exported model and their

attributes and descriptions are not available. Connections are difficult to handle because

their shapes can consists of several line segments. This could be solved by using single div

tag for each line segment, but this can be complicated when connections cross each other.

Currently, attributes and descriptions are only visible for objects other than Folders. The

system can be extended to support folders. Another improvement for the model export tool

would be to use the SVG format instead of the PNG format. SVG format stores images as a

set of points, lines and other shapes and therefore, the quality of the image is maintained

when scaled up.

34

REFERENCES

[1] Miliaev, N., Cawsey, A., and Michaelson, G. 2002. Technical Documentation: An

Integrated Architecture for Supporting the Author in Generation and Resource
Editing. In Proceedings of the 10th international Conference on Artificial intelligence:
Methodology, Systems, and Applications (September 04 - 06, 2002). D. R. Scott,
Ed. Lecture Notes In Computer Science, vol. 2443. Springer-Verlag, London, 122-
131.

[2] Harold Thimbleby, Combining Systems and Manuals. In Proceedings Conference

on Human-Computer Interaction, HCI'93, Vol. VIII, BCS.

[3] Reiter, E., Mellish, C., and Levine, J. 1998. Automatic generation of technical

documentation. In Readings in intelligent User interfaces, M. T. Maybury and W.
Wahlster, Eds. Morgan Kaufmann Publishers, San Francisco, CA, 141-156.

[4] http://java.sun.com/j2se/javadoc/

[5] http://www.mathworks.com/

[6] http://www.microsoft.com/visio

[7] http://www.ibm.com/software/rational/

[8] http://jude.change-vision.com

[9] Sztipanovits, J. and Karsai, G. 1997. Model-Integrated Computing. Computer 30, 4

(Apr. 1997), 110-111.

[10] Karsai, G., Ledeczi, A., Neema, S. and Sztipanovits, J. "The Model-Integrated

Computing Toolsuite: Metaprogrammable Tools for Embedded Control System
Design". Proc. of the IEEE Joint Conference CCA, ISIC and CACSD, Munich,
Germany, 50-55, October, 2006.

[11] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., and

Karsai, G. 2001. Composing Domain-Specific Design Environments. Computer 34,
11 (Nov. 2001), 44-51.

[12] Karsai, G.; Sztipanovits, J.; Ledeczi, A.; Bapty, T.; , "Model-integrated development

of embedded software," Proceedings of the IEEE , vol.91, no.1, pp. 145- 164, Jan
2003.

35

[13] Ledeczi, A.; Balogh, G.; Molnar, Z.; Volgyesi, P.; Maroti, M.; , "Model Integrated
Computing in the Large," Aerospace Conference, 2005 IEEE , vol., no., pp.1-8, 5-12
March 2005.

[14] Lurdes, J., and Carapuca, R. Automatic generation of documentation for information
systems: Lecture Notes in Computer Science, vol. 593. Springer, Berlin, 48-64.

[15] Estevez, E.; Marcos, M.; Sarachaga, I.; Lopez, F.; Burgos, A.; Perez, F.; Orive, D.; ,

"Model based documentation of automation applications," Industrial Informatics,
2009. INDIN 2009. 7th IEEE International Conference on , vol., no., pp.768-774, 23-
26 June 2009.

[16] Murphy, S. and MacKinnon, N. 2008. Designing UML and UML-based diagrams for

technical documentation: where are we now?. In Proceedings of the 26th Annual
ACM international Conference on Design of Communication (Lisbon, Portugal,
September 22 - 24, 2008). SIGDOC '08. ACM, New York, NY, 9-14. DOI=
http://doi.acm.org/10.1145/1456536.1456539.

