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CHAPTER I

INTRODUCTION

Throughout human history, man’s fascination with flight has been evident in litera-

ture, science and innovation. In Greek mythology, the skilled artificer, Daedalus, upon

imprisonment on the island of Crete, set to work to fabricate wings for himself and his

young son Icarus. By attaching feathers with wax and thread, he gave the wing a gradual

curvature like the wing of a bird. After completing his work and upon waving his wings,

the artist found himself buoyed aloft, supported by the beaten air. Equipping his son in

a similar fashion, Daedalus cautioned Icarus not to fly too high as the heat of the sun

would melt the wax, nor too low as the sea would wet the wings making them too heavy

to fly. The father and son then flew away passing Samos, Delos and Lebynthos. Elated

by his newfound ability, the boy began to soar upward as if to reach heaven. The Sun’s

heat melted the wax which was binding the feathers, and Icarus fell fatally into the sea

as his father cried and bitterly lamented his own arts [12].

Perhaps the desire to soar is rooted in man’s inherent need for freedom, to cast off

the shackles of gravity and ground-based travel. In the late 1400s, Leonardo da Vinci

made significant advancements in the study of flight. His contribution included over 100

drawings that illustrated his theories on flight, and although he would never see one of his

machines in operation, his ideas and theories were revolutionary at the time. In fact, the

modern day helicopter bears a striking resemblance to one of Leonardo’s flying machines

[13]. It would take several hundred more years for Leonardo’s dream of manned flight to

become a reality.

Although they are perhaps the most famous, the Wright brothers were not the first

to achieve flight. In fact, Sir George Cayley, the inventor of the science of aerodynamics,

built a successful passenger-carrying glider in 1853. But Orville and Wilbur Wright did

build the first practical, controllable and self-powered airplanes. Their first successful test

flights were in 1903, and by 1904 their Flyer III was capable of fully-controllable stable

flight for substantial periods [14].
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Motivation

The Wright brothers’ successful demonstrations helped aircraft gain acceptance in the

scientific and civilian communities as a viable option for transportation, recreation and

eventually warfare. Since then, advancement in the technology has been rapid and the

diversity of vehicles developed has become broad. In addition to airplanes, helicopters

were also being constructed at the beginning of the 20th century. In 1907, the brothers

Louis and Jacques Bréguet, inspired by the work of French scientist Charles Richet, built

their first human-carrying helicopter, the Bréguet-Richet Gyroplane No. 1, a quad-rotor,

consisting of four light, fabric covered biplane-type wings per rotor. Diagonally opposite

pairs rotated in different directions, thereby canceling the torque produced by air drag on

the rotating blades, and power was generated by a 40 h.p., 8-cylinder Antionette internal

combustion engine. The pilot had no means of control and stability was found to be

very poor. However, the vehicle was reported to have briefly lifted off the ground as

high as 1.5 m (5 ft). Although detractors point out that the helicopter would have been

operating in the ground effect, it proved for the first time that powered rotors had the

ability for vertical lift of pilot and machine [19]. Nowadays, helicopters are indispensable

for operations where a runway is unavailable, or where sustained hover is required. This

is evidenced by their wide use in search and rescue, emergency medical and military

transport, as well as media and law enforcement surveillance just to name a few.

In recent years, the use of unmanned aerial vehicles (UAVs) has gained considerable

attention for applications in which manned operation is considered dangerous or infea-

sible. The current generation of military UAVs has been in development for defense

applications since the late 1980s [7]. The Department of Defense (DoD) currently pos-

sesses five major UAVs: the Air Force’s Predator and Global Hawk, the Navy and Marine

Corps’ Pioneer, and the Army’s Hunter and Shadow. Military operations in Afghanistan

and Iraq in 2002 and 2003 have gained UAVs considerable acceptance in their ability to

observe, track, target and even attack enemy forces. During the 1990s, the DoD invested

more than $3 billion in UAV development, procurement and operations. That number
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is expected to reach $10 billion by 2010. In addition, Section 220 of the DoD Autho-

rization Act for FY01 specifies that a goal for the armed services is for one-third of the

operational deep-strike aircraft fleet to be unmanned by 2010 [7]. Often referred to as re-

motely piloted vehicles (RPVs), drones, or robot planes, UAVs are defined by the DoD as

a powered air vehicle that does not carry a human operator; can be land-, air-,
or ship-launched; uses aerodynamic forces to provide lift; can be autonomous
or remotely piloted; can be expendable or recoverable and can carry a lethal
or non-lethal payload [7].

UAVs offer many advantages over manned aircraft. They eliminate risk to the pilot, are

lightweight, hard to detect, cheaper to procure and they can exhibit a longer operational

presence. They don’t require life-support systems for pilots and can perform missions

in which extremely small aircraft are required. Radio-controlled pilotless aircraft were

used widely as targets for anti-aircraft gunnery training during WWII [8]. In addition to

fixed-wing aircraft, pilotless helicopters are also now widely available. Helicopter UAVs

(HUAVs) have distinct advantages over their fixed-wing cousins, due to their versatility

in maneuverability, ability to hover for prolonged periods of time and take off and land

vertically. Most commercial and military helicopters consist of a single rotor (with a tail

rotor to oppose induced moment). Although exceptionally practical in some environ-

ments, use of a single-rotor helicopter indoors or in confined spaces can be dangerous due

to control difficulties and exposed rotor blades. Another option is the use of four-rotor

helicopters, whose blades can be smaller and can approach an obstacle with less danger

of striking a rotor. Unlike the early Richet-Bréguet-Richet Gyroplane No. 1, today’s

four-rotor helicopters are fully controlled as HUAVs and piloted machines.

A major challenge in the current generation of UAV solutions is the ability to guar-

antee mission completion involving multiple autonomous vehicles. Indeed, the DoD has

acknowledged the need for cooperative UAV flight. Although conflicts between manned

and unmanned systems in Kosovo were resolved by segregating the airspace, the ultimate

goal is to integrate UAVs with existing manned aircraft for increased effectiveness. Unlike

the Predator which requires a team of people including a remote pilot and sensor crew to
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operate, the next generation of UAVs will be required to position themselves when and

where commanded for optimum use, whether maintaining close formations with other

aircraft or keeping station in wide spread constellations [26]. Therefore, a method is

needed that will guarantee multiple-vehicle mission execution while ensuring that safety

constraints are met. Because this formulation will act as an interface between the human

and machine world, the language involved must be understandable to both humans and

computers.

Hybrid System Based Design

In this thesis a model-based system approach is taken to solve the multi-vehicle coordi-

nation and control problem, relying on a hybrid model and the concept of a bisimulation

relation and system composability. Based on the high level mission control objectives

and the low level vehicle specifics, we develop the system with a “meet-in-the-middle”

approach, developing the system inward from top and bottom as shown in Figure 1.

Figure 1: System design approach.

We can verify the design at each level and conclude with a high-level hybrid automaton

(HA) model that is bisimular to the physical system and can be verified against specific

constraints using verification tools that are commonly available.
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A method for modeling the behavior of real-time systems has been developed in [2]

using timed automata. A timed automaton (TA) is a finite state machine that has been

extended with the use of clock variables. Several tools have recently been developed to

design and analyze timed automata. One such tool is UppAal, developed jointly by Upp-

sala University and Aalborg University. UppAal is a tool designed to verify systems that

can be modeled as networks of timed automata extended with integer variables, struc-

tured data types and channel synchronization [3]. Originally released in 1995, UppAal

can be used to verify certain model specifications, for example, liveness and reachability,

using computational tree logic (CTL). CTL is a formal specification language that can

describe temporal attributes of a given system. The user can specify requirements such as

“Vehicle A will never hit Vehicle B”, or “Vehicle C will eventually reach destination X.”

It can be shown that the real-time system can be modeled using a multi-modal hybrid

system [16]. By capturing the hybrid behaviors of the real-time multi-modal system, and

provided that certain guarantees can be made about the real-time temporal properties,

we shall see that the timed automaton can bisimulate the real-time system. Based on

the CTL specifications, motion sequences generated by the UppAal model checker can

be used as high-level commands for the real-time system.

Object of Study

In the Embedded Computing Software Laboratory (ECSL) at Vanderbilt University,

we have developed the Vanderbilt Embedded Computing Platform for Autonomous Vehi-

cles (VECPAV), an end-to-end design platform for the rapid development and deployment

of control and motion planning solutions for unmanned aerial vehicles. This platform

greatly simplifies and speeds the design and test stages of our model-based approach and

allows us to demonstrate our methodology.

The final system is composed of several subsystems, utilizing a variety of concepts

adopted from linear and nonlinear systems theory, state estimation theory, and hybrid

and discrete event systems theory. At the lowest level, our focus is directed to the

continuous-time control of an RC quad-rotor helicopter. The inherent instability of an
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aerial vehicle such as this provides a challenging control problem. We address this problem

using linear state feedback, nonlinear back-stepping, and approximate linearization [17]

methods.

At the top layer we are interested in specifying a mission using a formal language

that can be understood by humans and computers alike, thereby providing an interface

through which an operator can communicate with the system. We use (CTL) as this

interface. These specifications can be verified using UppAal and a timed automata

model of the system based on the design by Quottrup et al. [27]. The verification can

generate high-level motion commands to drive the vehicles.

We bridge the gap between the top and bottom levels by designing a multi-modal

command interface to translate high level motion commands into signals that the real-time

controller can understand. This is shown in Figure 2. The combination of the command

Figure 2: Hybrid system architecture.

interface and the real-time controller is then modeled using a hybrid automaton. It can

be shown that there is a bisimulation relation between the timed automaton and the

hybrid automaton. Thus, by using the commands generated by the TA verification as

high level motion commands to the TA we can guarantee that the TA specifications will

hold for the HA and our real-time hybrid system implementation.
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Scope of the Thesis

In Chapter II, we present the techniques for developing the UAV model which is

divided into two subsystems, a nonlinear continuous-time outer subsystem and a discrete-

time linear inner subsystem. By assuming that the helicopter is a rigid body upon

which forces and moments act, we derive a dynamical model based on the Newton-Euler

equations. We obtain a model of the inner subsystem by performing system identification

(SID). We obtain the SID input-output data by first flying the helicopter manually and

recording the control and flight data. Later, we use the closed loop controller and excite

the system by injecting a bandlimited signal onto each control input. Using the data

gathered, we derive a 6th-order, discrete-time linear model based on the SID Techniques

from [20].

In addition, we show that we can provide full state feedback by using an Extended

Kalman Filter (EKF) to do state estimation. The EKF serves two purposes: it provides

filtered values of the measurement data which is corrupted with noise from the sensors,

and it provides estimates of the system states that are not otherwise measurable. We

show that the EKF can provide reasonable estimates of the system states, and explain

how to construct the EKF from the discrete and continuous models to obtain estimates

for the states of both inner and outer subsystems.

In Chapter III we present the controller design. Here we take advantage of the fact

that the system is differentially flat. All states and outputs of differentially flat systems

can be expressed as functions of the outputs and their derivatives [18]. The controller

is divided into two subsystems, an outer nonlinear controller utilizing the differential

flatness, and an inner controller designed using the model obtained from performing

SID and the state estimates available from the EKF. We use the position and heading

as outputs, which are available as measurements from the tracking system. However,

taking their derivatives magnifies the noise. Instead we can use the state estimates from

the EKF. We then use the SID model, along with the nonlinear outer model to design

the controller in simulation using Simulink. Once a suitable controller is designed, it is

tested in implementation and parameters are tuned accordingly. If the model is accurate,
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the simulation reflects the actual implementation within a certain range and parameter

tuning is minimal. The process can be repeated if the model is not representative of the

actual system, which can happen if the dynamics are not sufficiently excited and since

we do not model the system noise.

In Chapter IV, we focus on the hybrid system architecture. Using a multi-phase

modeling approach consisting of the vehicle model, the real-time controller, a hybrid

system based command interface and mission controller, we show that the total hybrid

system can bisimulate the timed automata model created using the UppAal tool. In

addition we can scale the system to include multiple vehicles. The system and scaling is

shown in Figure 3.

Figure 3: Hybrid system architecture for multiple vehicles.

By guaranteeing certain temporal properties of the real-time performance, we can

create a series of [timed/event]-triggered commands to direct the robots to specific way-

points, which have been verified against the specifications formulated using CTL for

certain safety and reachability characteristics. We thereby coordinate the multi-robot

movement while ensuring that certain constraints have not been violated.

In Chapter V, we give an overview of the integrated development platform (VEC-

PAV) that has been designed in the ECSL at Vanderbilt. Although currently enabled
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for two Draganflyers, the platform is designed in such a way that extending control to

other types of vehicles is straightforward, and incorporating additional similar vehicles is

simple. The platform contains two main components in addition to the vehicles and the

model checker: a tracking system designed by Phoenix Technologies for highly accurate

motion capture and real-time sensor data processing, and an off the shelf highly auto-

mated and integrated system for simulation, code generation, compilation, distribution

and hard real-time processing developed by Opal-RT Technologies. The combination of

these components greatly speeds the controller and system development and deployment

phases by reducing the programming and compilation burden on the lab researchers, and

eliminating the risks associated with translating code manually. In addition, the platform

is scalable and flexible due to the vehicle-independent tracking system and the ability to

simultaneously track a large number of vehicles.
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CHAPTER II

SYSTEM MODEL AND STATE ESTIMATION

Helicopter Model

A UAV helicopter possesses certain abilities and advantages that make it highly desir-

able for both military and civilian applications in which other aircraft could not operate.

Among these advantages are their versatility in maneuverability, ability for vertical take-

off and landing (VTOL), ability to hover for long periods of time and the fact they can

operate in constrained locations like indoors or in urban environments. However, in or-

der to take full advantage of these features, control and coordination systems should be

in place that can carry out multi-agent, multi-objective missions and free the operator

to concentrate on sensor information being relayed back. The design of these control

and coordination systems can be highly challenging and complex. In order to reduce

the complexity we can use compositional methods, which break the system into manage-

able subsystems. UAV flight management systems often contain controllers for switching

between different modes of operation [16]. For example, there could be different control

modes for hovering, trajectory following, and takeoff and landing. Combining the discrete

and continuous elements of these systems can be a challenging aspect of the analysis and

design. Fortunately, we can model the continuous and discrete components using a hybrid

system, which is a system containing both discrete-time and continuous-time dynamics.

Chapter IV will go focus on the hybrid system design and analysis. In this chapter we

present the helicopter model and a method for estimating the states.

Control of a helicopter is accomplished by producing forces and moments to generate

accelerations and thereby change the position, velocity and orientation of the vehicle. In

order to sustain a hover, a helicopter must balance these forces that act to move it from

its equilibrium. The most commonly known helicopter contains two rotors, an overhead

rotor to provide thrust and thereby lift the helicopter off the ground, and a tail rotor

to counterbalance the induced moment caused by air drag on the main rotor. Typical

10



helicopters can adjust the tilt of the main rotor to produce rolling and pitching action,

and increase or decrease the tail rotor to affect the yaw. In addition, the pilot can adjust

the vertical thrust produced by the main rotor. In contrast to the single-rotor helicopter,

a quad-rotor like the Draganflyer IV, balances the induced moment by rotating two rotors

clockwise and the other two rotors counterclockwise as shown in Figure 4.

Figure 4: Draganflyer IV rotation of rotors.

The Draganflyer maneuvers by varying the lift force and induced moment of each of

its four rotors. Because there is no control over blade attack angle or pitch angle, the

Draganflyer can only change individual rotor lift forces and moments by varying the rotor

speed as shown in Figure 5. Here the total thrust T ∈ R, and torque τ b ∈ R3 is the sum

of the forces f b
1 , f b

2 , f b
3 and f b

4 and moments τ b
1 , τ b

2 , τ b
3 and τ b

4 , respectively.

To make flying the vehicle easier, Draganfly Innovations Inc. has incorporated three

gyroscopes and various onboard electronics. The electronics serve several purposes: to

process the radio commands, help stabilize the roll, pitch and yaw rates, and map the

commands on the four radio channels (ailerons, elevator, throttle, rudder) to appropriate

rotor speeds. In order to model the quad-rotor helicopter, we divide the vehicle into
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Figure 5: Individual forces generated by the Draganflyer.

three subsystems, the onboard electronics, force and moment generation, and rigid body

dynamics. The combination of these subsystems, along with their respective inputs and

outputs is shown in Figure 6. In this paper we regard the helicopter as a rigid body in

Figure 6: Block diagram of helicopter system.

order to apply the Newton-Euler equations of motion for such a system. In addition,

because we do not have direct access to the motor speeds, as this is handled by the

onboard electronics, we have chosen to combine the onboard electronics and force and

moment generation systems and obtain an approximate model of this section of the

helicopter system using system identification techniques. We will rely on this derived

model throughout the design process for simulation and state estimation purposes.

Rigid Body Dynamics

The helicopter is a highly nonlinear dynamical system. Consider the system depicted

in Figure 7. We can express the motion of the helicopter using the Newton-Euler equations

for a rigid body. Rigid motion preserves the distances between points and the angles

between vectors. Although the Draganflyer frame will flex and vibrate in operation,
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Figure 7: Helicopter coordinate system.

attempting to measure and model the dynamics and effects of this perturbation would

be extremely difficult, and the overall effect would probably be negligible. Therefore, the

rigid body assumption is reasonable. In addition, because the helicopter will be moving at

slow speeds, the air drag acting on the frame during translational and rotational motion

is small and will therefore be neglected in the modeling.

Newton equations

As in [25] let p ∈ R3 be the position and R ∈ SO(3) a rotation matrix associated

with a coordinate frame attached to the center of mass of a rigid body, relative to an

inertial frame. The notation SO abbreviates special orthogonal as given in [25]. We let

f ∈ R3 be the force applied at the center of mass m, with coordinates of f specified with

respect to the inertial frame. Since the mass is constant, we can write the equations for

the translational motion based on Newton’s Law as

f = mp̈ (1)

which is independent of the angular motion because we have used the center of mass to

represent the position.
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Euler equations

The equations for the angular motion are derived by equating the applied torque to

a change in the angular momentum of the system. The angular momentum is given by

I ′ωs where ωs ∈ R3 is the spatial angular velocity and

I ′ = RIRT

is the instantaneous inertial tensor. The equations for the angular motion can then be

found from

τ =
d

dt
(RIRT ωs)

where τ ∈ R3 is the torque specified relative to the inertial frame. Carrying out the

differentiation yields

τ = ṘIRT ωs + RIṘT ωs + RIRT ω̇s

= ṘRTI ′ωs + I ′RṘT ωs + I ′ωs

= ωsI ′ × ωs − I ′ωs × ωs + I ′ωs

where we have used the that RRT = I, ṘRT + RṘT = 0, where I is an identity matrix,

and ωs = ṘRT . The term I ′ωs × ωs in the above equation is zero, giving the dynamic

equation as

ωsI ′ × ωs + I ′ωs = τ (2)

which is called Euler’s equation. Rewriting (1) and (2) in terms of the body coordinates

yields the Newton-Euler equation given by




mI 0

0 I







v̇b

ω̇b


 +




ωb ×mvb

ωb × Iωb


 =




f b

τ b


 (3)

where I ∈ R3×3 is an identity matrix, vb ∈ R3 is the body velocity vector, ωb ∈ R3 is the

body angular velocity vector and I ∈ R3×3 is the inertia tensor in body coordinates. The
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position p ∈ R3 and velocity v = ṗ ∈ R3 of the center of mass are specified relative to the

spatial frame in North-East-Down (x-y-z) configuration, where x = [1 0 0]T , y = [0 1 0]T

and z = [0 0 1]T . The sum of forces and torques applied to the helicopter result from

the combination of forces and moments produced by all the rotors. It is important to

point out that there is significant cross coupling between forces and moments produced

by the four rotors. For example, changes in the rolling (pitching) moments will have

a direct effect on the lateral (longitudinal) acceleration. An in-depth analysis of the

cross-couplings and inertias associated with the Draganflyer has been presented in [23].

The complexity required to model the individual rotor forces and moments is outside

the scope of this paper, therefore we will model the helicopter as a lumped system and

assume that all four rotor shafts are perfectly aligned with the (vertical) z-axis. We define

the thrust, T ∈ R, to be the combined lift force of the four rotors. Therefore, the body

force f b = [0 0 T ]T , expressed in the body coordinates, contains no elements in x or y

directions. In addition, the Inertia tensor I will be assumed to be an identity matrix. As

shown in [17], for several choices of output variables exact input-output linearization fails

to linearize the whole state space and results in having unstable zero dynamics. We will

adopt the method given in [17] in which the weak couplings between forces and moments

are neglected and an approximated model is used.

Let R ∈ SO(3) be a rotation matrix that gives the orientation of the body coordinate

frame with respect to the spatial coordinate frames. We next derive an expression for R

parameterized by ZY X Euler angles Θ = [φ θ ψ]T ∈ S3 rotated about the x, y, z axes

respectively. As shown in [25], if we rotate about a given axis α = [α1 α2 α3]
T ∈ R3 at

unit velocity for t units of time, then the net rotation is given by R(α, t) = eα̂t. Where

α̂ ∈ so(3) is a skew-symmetric matrix given by

α̂ =




0 −α3 α2

α3 0 −α1

−α2 α1 0




. (4)
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We define the following elementary rotations about the x-, y-, z-axes:

Rx(φ) := ex̂φ =




1 0 0

0 cφ −sφ

0 sφ cφ




, (5)

Ry(θ) := eŷθ =




cθ 0 sθ

0 1 0

−sθ 0 cθ




, (6)

Rz(ψ) := eẑψ =




cψ −sψ 0

sψ cψ 0

0 0 1




, (7)

where sθ and cθ are short for sin(θ) and cos(θ) respectively. Using these definitions we

can derive the rotation matrix as

R(Θ) = eẑψeŷθex̂φ

=




cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ




. (8)

We obtain an expression for Θ̇ by direct differentiation of the rotation matrix R. As

shown in [6] we see that

ṘRT =




0 −ωb
z ωb

y

ωb
z 0 −ωb

x

−ωb
y ωb

x 0




, (9)
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where

ωb =




ωb
x

ωb
y

ωb
z




. (10)

From (9) we can extract the following independent equations

ωb
x = ṙ31r21 + ṙ32r22 + ṙ33r23

ωb
y = ṙ11r31 + ṙ12r32 + ṙ13r33 (11)

ωb
z = ṙ21r11 + ṙ22r12 + ṙ23r13

where ṙij and rij are the elements of the ith row and jth column of Ṙ and R, respectively

and i, j ∈ {1, 2, 3}. It can be shown, as in [6], that the relation between Θ̇ and ωb can be

expressed as

ωb = E(Θ)Θ̇ (12)

where E(Θ) ∈ R3×3 is a Jacobian given as

E(Θ) =




1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ




. (13)

Letting Ψ(Θ) = E−1(Θ) we get the following dynamic equation for the Euler angles:

Θ̇ = Ψ(Θ)ωb (14)

=




1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ




ωb, (15)

where tθ is an abbreviation for tan(θ). The ZY X Euler angle parameterization of R

contains singularities at θ = ±π/2. During normal operation, the trajectory of the

helicopter should not pass through these singularities. However, if it happens that the
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helicopter is forced to travel through the singularities, we can easily switch to another

angle set convention for parameterization of the rotation matrix. Since v = R(Θ)vp, we

can write the equations of motion as

ṗ = v, (16)

v̇ =
1

m
R(Θ)f b, (17)

Θ̇ = Ψ(Θ)ωb, (18)

ω̇b = I−1(τ b − ωb × Iωb). (19)

As mentioned above, we combine the components of the helicopter into a lumped model

in order to simplify the modelling. The onboard controller computes the necessary Vm for

regulating the body angular velocities, ωb, and thrust, T , according to the input signals,

ωb
d ∈ R3 and Td ∈ R provided by the radio transmitter.

System Composition

We divide the system into an outer and inner subsystem as shown in Figure 8.

Figure 8: Inner and outer subsystems.

Outer Subsystem

The outer system is defined as

ΣO :





yO =




p

ψ




ẋO = fO(xO, yI)

, (20)
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where yO ∈ R3 × S is the outer output vector and xO = [pT vT ]T ∈ R6 is the outer state

vector. The vector field of the outer dynamics is defined by

fO(xO, yI) =




v

− 1
m

R(Θ)e3T + e3g


 , (21)

where e3 = [0 0 1]T and g is the acceleration due to gravity.

Inner Subsystem

The inner system is defined as

ΣI :





yI =




Θ

T




ẋI = fI(xI , uI).

(22)

where yI ∈ S3 × R is the inner output vector, uI = [ωbT
d Td]

T ∈ R4 is the inner input

vector, and xI = [ΘT ωbT xT
m]T ∈ S3×R3×Rnm is the inner state vector. The vector xm ∈

Rnm is related to the dynamics of the motors and micro-controller. Since the onboard

micro-controller is running much faster than our real-time controller, we assume that the

motor and micro-controller dynamics are described by a set of continuous-time dynamical

equations. The order nm ∈ R will be determined during the system identification process.

Because we collect system identification input-output data at a fixed sampling rate, the

inner system model obtained will consist of a set of linear, discrete-time state equations

to represent the actual system. The inner system consists of the SID model and the inner

dynamic equations as shown in Figure 9. The vector field of the inner dynamics is defined

by:

fI(xI , uI) =




Ψ(Θ)ωb

I−1(τ b − ωb × Iωb)

f(xm, uI)




. (23)

In the next section we obtain the inner model PIm by performing system identification.
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Figure 9: Inner subsystem components.

System Identification

Obtaining an accurate model for a helicopter that represents the system in different

modes of operation can be extremely difficult. For this reason, a common method is to

perform system identification on the vehicle during separate modes of operation and then

use the appropriate model for each mode. Because our model will be moving relatively

slowly, system identification (SID) is done in hover mode while exciting the inputs suffi-

ciently enough that the subsequent change in dynamics will cover most motions we will

perform during normal operation. By modelling the inner system using SID methods we

avoid the complexities of trying to derive a mathematical model. In addition, the fact

that we do not have access to the parameters associated with the onboard electronics,

such as feedback gains, makes the internal vehicle dynamics somewhat of a mystery. In

this section we first show how to linearize and discretize the continuous-time nonlinear

model of the inner system. Then, a brief description of the SID process is presented, fol-

lowed by an overview of the variables used, and finally the model and validation results

will be discussed.

Linearization and Discretization

The standard nonlinear continuous-time system is given by

ẋ = f(x, u) (24)

y = h(x) (25)
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where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and y ∈ Rq is the

output vector. The behavior of the system around an equilibrium point can be found

by linearizing the system with respect to that point [15]. Expanding the equations in a

Taylor Series about the equilibrium point (xe, ue), gives

ẋ = f(xe, ue) +
∂f(x, u)

∂x
|x,u=xe,ue(x− xe) (26)

+
∂f(x, u)

∂u
|x,u=xe,ue(u− ue) + H.O.Tf (27)

y = h(x)|x=xe +
∂h

∂x
|xe(x− xe) + H.O.Th (28)

where H.O.Tf and H.O.Th are higher order terms in f and h respectively. Letting x̃ =

x− xe, ũ = u− ue, ỹ = y − ye, where ye = h(x)|x=xe , we get

˙̃x = ẋ− ẋe (29)

=
∂f

∂x
|x,u=xe,ue x̃ +

∂f

∂u
|x,u=xe,ueũ + H.O.Tf (30)

ỹ =
∂h

∂x
|xe x̃ + H.O.Th (31)

By examining the system in a sufficiently small region around (xe, ue), the H.O.T.f and

H.O.T.h can be neglected. Therefore, we can drop these terms and approximate the

nonlinear state equations with the following linear state equations:

˙̃x = Ax̃ + Bũ (32)

ỹ = Cx̃ (33)

where A = ∂f
∂x
|x,u=xe,ue , B = ∂f

∂u
|x,u=xe,ue , and C = ∂h

∂x
|x=xe . This method can be extended

to the discrete-time system with

x [k + 1] = F (x [k] , u [k]) (34)

y [k + 1] = H(x [k + 1]) (35)
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Following the same steps from above and letting x̃ [k] = x [k]− xe, ũ [k] = u [k]− ue and

ỹ [k] = y [k]− ye gives

x̃ [k + 1] =
∂F

∂x
|x,u=xe,ue x̃ [k] +

∂F

∂u
|x,u=xe,ueũ [k] + H.O.TF (36)

ỹ [k + 1] =
∂H

∂x
|x=xex̃ [k + 1] + H.O.TH (37)

The H.O.TF and H.O.TH can once again be neglected by examining the system in a

sufficiently small region around (xe, ue). Therefore, we can approximate the nonlinear

discrete-time state equations with the following linear discrete-time state equations

x̃ [k + 1] = Ax̃ [k] + Bũ [k] (38)

ỹ [k + 1] = Cx̃ [k + 1] (39)

where A = ∂F
∂x
|x,u=xe,ue , B = ∂F

∂u
|x,u=xe,ue , and C = ∂H

∂x
|x=xe

SID Process

The SID process can be divided into three stages: 1) Data Acquisition is performed to

collect input and output data during manual or automated flight, 2) Data Preprocessing

is then performed to obtain or compute relevant variables which are then scaled and

detrended to within appropriate ranges, 3) finally, Model Generation and Validation using

the processed IO data is performed. Since we can collect data in open- or closed-loop

operation, we will use the Direct Identification approach [20], which uses the output of

the process and input to the system in the same way for open- and closed-loop operation,

ignoring any feedback and disregarding the reference signal in the identification procedure.
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Data Acquisition

The first step in the SID process is IO data acquisition. We are interested in modeling

the inner system whose dynamics are given in (23), specifically we will focus on the input1

uI = [u1 u2 u3 u4] ∈ [0, 255]4 sent from the radio transmitter to the helicopter which effects

the output ym = [ωb
x ωB

y ωb
z T ] ∈ R4. The radio controls and helicopter motions can be

seen in Figure 10. Each input channel from the radio transmitter has an effect on a

Figure 10: Radio controls and vehicle motions.

corresponding output of the helicopter. The correspondence is given as follows:

u1 7→ −ωb
x,

u2 7→ −ωb
y,

u3 7→ T,

u4 7→ ωb
z.

(40)

The motion tracking system only provides us with measurements of the position p and

the Euler angles Θ. Therefore, we can not directly measure the output values desired

1The radio transmitter sends an FM signal containing the four channels values (ailerons, elevator,
throttle, rudder) to the helicopter. The received signal is translated into a PWM signal of four control
values, each quantized by a byte ∈ [0, 255].
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for performing SID. However, due to the flatness of the model, we can obtain ωb using

(18) after differentiating Θ, and we can obtain T using (129) after twice differentiating

p. Likewise, when using the model output values in simulation, we can use the same

equations and derive Θ and p by integration. The IO data is aligned temporally by

storing the data and time-stamp in a Simulink scope. The Simulink model is shown in

(a) Radio control signal reception (b) Input output data capture

Figure 11: System identification data acquisition Simulink models.

Figure 11, where the S-function vz get rb data function is called to retrieve the

rigid body data [pT ΘT ]T from the motion tracking system. Although the rigid body

data is available from the motion tracking software at a rate of 100Hz, a fixed-step solver

with a step size (i.e. sample step size) of Ts = .022s is used during the data acquisition.

The sampling rate is constrained by the bandwidth of the PWM signal sent to the radio

controller, which is approximately 55Hz or 1 sample per .018s. The subsequent plots in

this chapter detail the identification process performed on Draganflyer 1 (DF1) in closed-

loop operation. Although the duration of flight was around 195 seconds, a window of 145s

seconds of valid2 data was used to perform the identification. In order to sufficiently excite

the dynamics of the helicopter, we inject band-limited Gaussian noise into the control

input stream. Because over-exciting the dynamics has the potential to make the system

2In practice the data collection starts and ends while the helicopter is resting on the ground. However,
we are only interested in the data during flight. The time axis will reflect the window of time in which
data is used for SID.
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unstable or fly dangerously, there is a tradeoff between system safety and the range of

dynamics represented by the model. The noise injection and closed loop control help

to balance these conflicting issues and make the identification process easier and more

productive. The noise injection signal is generated off-line and tested in simulation before

being used in operation. If the noise signal is sufficient, it is saved to a file for use in the

SID flight. The noise injection and augmented input control values for our SID process of
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Figure 12: Noise injection and control signal during closed-loop operation.

interest are shown in Figure 12. Since the controller is actively regulating the position of

the helicopter, the augmented control signal is a combination of the noise injection and

appropriate control reaction to position changes. The measured data values are given

in Figure 13. The controller for the outer system attempts to regulate the position and

heading of the helicopter about [pT
d ψd]

T = [0 0 −.2 0]T , where the units of pd and ψd are

m and rads, respectively. The real-time flight data is then saved to a file for offline data

preprocessing.

Data Preprocessing

As shown in [20], data that has been collected for SID purposes may contain certain

deficiencies that decrease the accuracy of the identification method. Among these are

high frequency disturbances above the frequencies of interest to the dynamics, outliers or
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Figure 13: Measured data collected during closed-loop operation.

gaps in the data record, and low frequency disturbances, i.e. drift and offset. Handling

the low frequency disturbances can be accomplished by either pretreatment of the data,

or allowing the noise model to take care of the disturbance. Several methods exist to deal

with outliers and missing data including interpolation, Kalman Filter estimation, and

data merging techniques. Prefiltering of the IO data can be done to remove high or low

frequency disturbances that are not desirable in the modeling. An in-depth analysis of

these methods is presented in Chapter 14 of [20]. In our approach we detrend and scale

(i.e. pretreat) the input-output data to remove the low frequency disturbances, and then

apply a low pass filter to reject the high-frequency disturbances from sensor noise.

Input-Output Data Detrending

We detrend the input data by subtracting the mean computed over the data set to

obtain detrended input signals with a zero mean value. The trim values ue ∈ [0, 255]4 of

the four control channels that keep the helicopter in stationary hover are found by aver-

aging the set of input values that correspond to body angular velocity and translational

acceleration equal to zero. In addition, because the helicopter depletes the battery during

operation, the measured throttle value may have a slowly increasing drift as the controller

seeks to compensate the loss in altitude. By finding a straight-line approximation of the

throttle level over the entire data set, we can remove any drift that occurs. The input
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data is next scaled via element-wise division by uscale = [−255 − 255 255 255]T to reside

in the range [−1, 1]. The negative sign on the first two scale factors reflects the fact a

given negative (positive) change in the input results in a positive (negative) change in

the output. The input detrending is given as

ũI = αu(uI) (41)

= (uI − uoffset)./uscale (42)

where ũI is the detrended input signal, αu(uI) is a function to scale and normalize the

inputs, and ./ is element-wise division. For the output values, remember that although we

measure and collect the position and orientation, we will use the body angular velocities

and thrust, ωb and T for our SID output variables. These can be computed due to

the flatness of the system. Detrending is done on the orientation data to compensate for

misalignment in sensor placement or vehicle center of gravity, both of which can effectively

add an offset to the roll and pitch angles. Detrending Θ is necessary because both Θ

and it’s derivative Θ̇ are needed to compute ωb, whereas only the second derivative of

the position p̈ is needed to compute T , and therefore offsets in p will not have any effect

on the thrust computation. The output values are detrended by subtracting an offset

yoffset = [0 0 0 mg]T from the output values. The mass, m, can be found by weighing the

helicopter and g = 9.81m/s2 is the acceleration due to gravity. We then scale the outputs

via element-wise division by yscale = [5 5 5 mg]T so that the resulting values reside in the

range [−1, 1] as we did with the inputs. This process is given as

ỹm = αy(ym) (43)

= (ym − yoffset)./yscale (44)

where ỹm is the detrended output vector and αy(ym) is a function to scale and normalize

the outputs. For simulating the final model, we need to be able to un-scale and remove

the offset from the data generated by the model. We can obtain values in the range of
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the original output data with a function given by

ym = βy(ȳm) (45)

= ȳm ∗ yscale + yoffset. (46)

Input-Output Data Filtering

We wish to filter out the high frequency noise that is associated with the sensors.

We can do this with a low-pass filter, but we must first determine what an appropriate

cutoff frequency is. Looking at the frequency spectrum of the input-output data gives us

a better idea of what a reasonable cutoff frequency should be. We plot the frequencies

using an FFT to obtain the frequency components from the time-domain information, as

shown in Figures 14, 15 and 16 for inputs, body angular velocities and thrust, respectively.
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Figure 14: Frequency components of the input signals.

Based on the the results from the frequency decomposition, we choose a cutoff fre-

quency of fc = 2.5Hz. We then use this value to generate the coefficients for a 1st order
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Butterworth filter. These coefficients are applied to a zero-phase forward and reverse dig-

ital filter3. After filtering in the forward direction, the filtered sequence is then reversed

and run back through the filter. The result has zero phase distortion and magnitude

modified by the square of the filter’s magnitude response. We apply this filter to the

detrended and scaled input and output values. Prefiltering the input and output data

through the same filter does not change the input-output relation, however it does have

an effect on the noise model[20]. But, because we do not use the noise model, this action

is appropriate to remove the high frequency noise. The results of filtering the input values

are shown in Figure 17. If we look closely at the plot for channel 3 of the input signal
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Figure 17: Input signal after detrending and filtering.

(i.e. the throttle, u3) we can see that the slowly increasing drift has been removed in the

detrended and filtered signal. The filtering results for ωb and T are given in Figures 18

and 19, respectively. In Figure 19 we can see that the filtered thrust values start and

trail below the actual data, caused by the filter initial conditions and the fact that the

3Uses the filtfilt command in Matlab.
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filter makes two passes. In order to discard the filter startup and end values which would

make the model less accurate, we truncate the first and last 10 data points before saving

the actual data to be used in the model fitting. Because computing the thrust requires

calculating the first and second derivatives of the position, we see that the noise is mag-

nified and there is considerable attenuation to the unfiltered thrust signal in the final

filtered thrust signal. We thereby obtain the SID variables ū ∈ [−1, 1]4 and ȳ ∈ [−1, 1]4.

A plot of the each input signal overlayed with the strongest correlated corresponding

output signal (u1 → y1, u2 → y2, u3 → y4, u4 → y3) is shown in Figure 20. We can see

even from a brief glance at this plot that the IO is highly correlated. In addition, we see

that there exists some cross coupling most notably from u3 to y1,and y2, but also from u4

to y1 and y2. This effect will show up as non-zero off-diagonal elements4 of the transfer

function matrix T (s) = C(sI −A)−1B + D, and can also be seen by looking at a plot of

a step input response. Having obtained ūI and ȳI we are now ready to find a model that

sufficiently represents the system based on this IO data.

4After exchanging rows 3 and 4
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Obtaining a Model

We generate a state space model using the n4sid method from the Matlab System

Identification toolbox. As shown in [20], the n4sid is a subspace-based method used to

estimate the system matrices, A, B, C , D and K from the following state space model

in the innovations form

x(t + Ts) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t)
(47)

The n4sid method obtains a least squares estimate of the A and C matrices from the

IO data and appropriate weighting matrices, and then using linear regression techniques,

obtains estimates of B, D, and x(0). For our purposes we do not use the K matrix or e(t)

associated with the disturbance model and the D matrix is 0. After performing several

SID iterations, it was found that for the Draganfly IV, a 6th-order model generally was

able to sufficiently represent the system dynamics in simulation and estimation purposes.

Higher order models did not provide significant improvements in accuracy and served

only to increase the computational cost. Lower order models often did not sufficiently

represent the system behavior and performed poorly during the validation process.

Sixth-order Model

Using the IO data from preprocessing, we obtain the following parameters to our

linear, discrete-time model based on the state space model in (47) with a step time of

Ts = .022s, and neglecting K(t) and e(t):

A =




0.916 0.013 −0.020 0.015 0.025259 −0.015

−0.004 0.840 −0.006 −0.017 0.19506 −0.088

0.004 0.045 0.835 −0.049 0.040995 0.176

0.011 −0.008 −0.001 0.877 0.021964 0.010

0.011 −0.082 −0.013 0.140 0.74224 0.096

−0.024 0.019 −0.142 0.151 0.057988 0.785



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B =




0.0166 0.0406 −0.0152 0.0613

0.150 −0.022 0.082 −0.042

0.068 0.071 0.090 0.027

−0.019 0.007 0.101 −0.014

0.057 −0.282 −0.052 0.043

0.316 0.310 −0.108 0.013




C =




−0.032 0.354 0.491 0.017 0.053 0.044

−0.064 −0.611 0.335 0.014 −0.054 0.051

1.133 −0.008 0.016 0.009 0.009 −0.005

0.135 0.024 0.070 2.347 −0.015 −0.031




D =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




The eigenvalues of the A matrix are given as:

λ1,2 = 0.7595± 0.1385i

λ3 = 0.9240

λ4 = 0.8755

λ5,6 = 0.8394± 0.1186i

Examining the eigenvalues we see that they are all inside the unit circle, which for discrete-

time systems implies that the system is stable. Although the poles all lie within the unit

circle, several of the system zeros lie outside the unit circle, implying that the system is

non-minimum phase. A pole-zero map of the model is shown in Figure 21.
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Figure 21: Pole-zero map of the model obtained via SID.

Model Validation

In order to validate the model that has been generated, we can simulate the model

with inputs from the same data acquisition trial, or better yet, with data from a different

data acquisition trial. We do this passing the input, ūI , to the model and comparing the

simulated model output ys to the actual output ȳm. The validation results for the same

data acquisition trial are given in Figure 22 and the results using a different validation

data set are given in Figure 23. We can see that the model performs fairly well in

simulating the actual output for the original data set. The fit of the model is computed

by

fit = (1− norm(ȳ − ys)/norm(ȳ −mean(ȳ))) ∗ 100. (48)

In practice we have found that fit values above 30% indicate that the model in simulation

will sufficiently represent the system in operation. The validation results using a different

input output data set reinforce that the model is sufficient. The low fit value in y4 is due

to a very small dc offset, and upon examination of the simulated and actual data, they
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Figure 22: Model validation results using original input output data set.
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Figure 23: Model validation results using a different input output set.
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are found to be reasonably close.

To see the effect of each input on the outputs, we can look at the response to a step

input. We provide a (multi-)input step to the model and observe the output. The step

response is given in Figure 24. From the step input we can see that the strongest input-
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Figure 24: Multi-input step response for the model generated via identification.

output connections are as follows: u1 → y1, u2 → y2, u3 → y4, u4 → y3. In addition, we

can see some of the couplings between the other input-output pairs, although these are

relatively small for the most part, however they do highlight the coupled nature of the

onboard electronics and rotor dynamics.

Incorporating the Model

After obtaining a suitable model, we are ready to perform simulation and use the

SID results in our Kalman Filter design. Because the model is a discrete-time model, we

use a zero-order hold to hold the output between time steps. The input is sampled at
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the same rate as the controller, ie. every 22 ms. A block diagram of the model PIm as

used in simulation is shown in Figure 25. Note that we must use our scaling functions

Figure 25: Block diagram of the model used in simulation.

to get appropriate data ranges on the input and output. The output of the inner system

[ΘT T ]T becomes the input to the outer system. We obtain the inner system input by

integrating the equation Θ̇ = Ψ(Θ)ωb to obtain Θ and combining it with T at each time

step.

Extended Kalman Filter

The controller we will design requires online computation of the first and second deriv-

atives of position to obtain the thrust. One drawback to this approach is that taking

the derivatives of a noisy signal tends to magnify the noise. Passive filtering online has

the effect of introducing phase lag and thereby changing the nature of the controller.

One way to address this issue is with the use of state estimators that incorporate the

input, information about the noise, and the dynamics of the system in order to gen-

erate a real-time filtered estimate of the states. In addition, using a state estimator

provides us with states that would otherwise be unobservable (ie. the inner dynamics

of the helicopter), and are therefore available for state-feedback control. An Extended

Kalman Filter (EKF) will be employed to provide state estimates for feedback control

purposes. The EKF is a form of the Kalman Filter that has been “extended” to non-

linear dynamical systems, and is developed using a two-stage process of prediction and

correction [24], with the assumption that the measurement noise is Gaussian. The EKF

uses information about the model in addition to current input values to compute the

state estimates. A block diagram of the EKF and the system model is shown in Figure
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Figure 26: Block diagram of the EKF and system models.

26. We now derive the equation for generating the state estimates. The system dynamics

for a nonlinear, time-invariant, continuous-time system can be described by the following

state and measurement equations:

Σ :





ẋ(t) = f [x(t), u(t)] + w(t)

z(t) = h[x(t)] + v(t)
(49)

where x ∈ Rn is the state, u ∈ Rl is the control input, w ∈ Rp is process noise and

z ∈ Rm and v ∈ Rm are the measurement and measurement noise, respectively. Given a

nominal input u∗(t), we can compute the nominal state x∗(t), and nominal output z∗(t)

which satisfy the following equations:

ẋ∗(t) = f [x∗(t), u∗(t)] (50)

z∗(t) = h[x∗(t)] (51)

Expanding f [x(t), u(t)] and h[x(t)] in a Taylor Series about the nominal values, x∗(t) and

u∗(t), yields

f [x(t), u(t)] = f [x∗(t), u∗(t)] + Fx[x
∗(t), u∗(t)](x(t)− x∗(t))

+Fu[x
∗(t), u∗(t)](u(t)− u∗(t)) + H.O.T. (52)

h[x(t)] = h[x∗(t)] + Hx[x
∗(t)](x(t)− x∗(t)) + H.O.T. (53)
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where Fx ∈ Rn×n, Fu ∈ Rn×l and Hx ∈ Rm×n are Jacobian matrices given by

Fx[x
∗(t), u∗(t)] =




∂f1/∂x1 · · · ∂f1/∂xn

...
. . .

...

∂fn/∂x1 · · · ∂fn/∂xn




∣∣∣∣∣∣∣∣∣∣
x(t)=x∗(t),u(t)=u∗(t)

(54)

Fu[x
∗(t), u∗(t)] =




∂f1/∂u1 · · · ∂f1/∂ul

...
. . .

...

∂fn/∂u1 · · · ∂fn/∂ul




∣∣∣∣∣∣∣∣∣∣
x(t)=x∗(t),u(t)=u∗(t)

(55)

Hx[x
∗(t)] =




∂h1/∂h1 · · · ∂h1/∂xn

...
. . .

...

∂hm/∂x1 · · · ∂hm/∂xn




∣∣∣∣∣∣∣∣∣∣
x(t)=x∗(t)

(56)

Prediction Equation

Our first step in the filter design is to derive the prediction equation. Note we have

neglected the noise term as no prediction about the noise can be made. Characteristics

about the noise will be used later in the correction equations. Neglecting the “higher-

order terms” we can write equation (52) as

f [x∗(t), u∗(t)] = Fx[x
∗(t), u∗(t)]x∗(t) + Fu[x

∗(t), u∗(t)]u∗(t)

+{f [x(t), u(t)]− Fx[x
∗(t), u∗(t)]x(t)

−Fu[x
∗(t), u∗(t)]u(t)} (57)

If x∗(t), u∗(t) is sufficiently close to x(t), u(t) then we can write (57) as

f [x∗(t), u∗(t)] ' Fx[x
∗(t), u∗(t)]x∗(t) + Fu[x

∗(t), u∗(t)]u∗(t) (58)
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The Kalman Filter provides estimates of the state at time t using knowledge about the

system dynamics and the current measurement. We will use the form x̂(t|tk) to denote

the estimate of the state at time t based on information up until time t = tk, and will

use the shorthand notation x̂(k + 1|k) to represent x̂(t|tk). Define

δx̂(t|tk) = x̂(t|tk)− x∗(t), for t ∈ [tk, tk+1]. (59)

By linearizing the state equation about x̂(k|k) at each time step tk, then it can be shown

that

x∗(t) = x̂(t|tk), ∀t ∈ [tk, tk+1]. (60)

Therefore δx̂(t|tk) = 0, and by substituting (60) into (50) it can be shown that

x̂(k + 1|k) = x̂(k|k) +

∫ tk+1

tk

f [x̂(t|tk), u∗(t)]dt. (61)

This is called the EKF prediction equation. Note we have used the fact that x∗(tk+1) =

x̂(k + 1|k).

Now, since we evaluate the Jacobian matrices associated with the linearization at

x(t) = x∗(tk), u(t) = u∗(tk), and since u∗(t) is fixed over the time interval [tk, tk+1] then

for t ∈ [tk, tk+1], Fx[x
∗(t), u∗(t)] and Fu[x

∗(t), u∗(t)] are constant and can be expressed as

Fx[x
∗(t), u∗(t)] = Fx[x̂(k|k), u∗(tk)] (62)

Fu[x
∗(t), u∗(t)] = Fu[x̂(k|k), u∗(tk)] (63)

which we will write as Fx and Fu. In addition, Hx[x
∗(t), u∗(t)] will be evaluated at the

predicted value x̂(k + 1|k) and is therefore also constant over the time interval. It can

therefore be expressed as

Hx[x
∗(t)] = Hx[x̂(k + 1|k))] (64)
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which we will write as Hx for short. Then, we can write the approximated linearized

equation as

f [x̂(k|k), u∗(tk)] ' Fxx̂(k|k) + Fuu
∗(tk) (65)

A solution to this equation is

x̂(k + 1|k) = Φ(tk+1, tk) x̂(k|k) +

∫ tk+1

tk

Φ(tk+1, τ)Fuu
∗(tk)dτ (66)

where

Φ(tk+1, tk) = eFxTs (67)

and Ts = tk+1−tk. We will use Φ(k+1, k) to represent Φ(tk+1, tk). The matrix exponential

eFxTs can be written as the Taylor series

eFxTs = I + FxTs + F 2
x

T 2
s

2
+ F 3

x

T 3
s

3!
+ · · · (68)

Then for sufficiently small values of Ts, we have the following term that will be used in

our prediction and correction equations:

eFxTs ' I + FxTs (69)

thus we will use

Φ(k + 1, k) = I + FxTs (70)
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Applying this result to the integration term in (66) and using the fact that u(t) = u∗(t)

is constant for t ∈ [tk, tk+1], by integrating term by term it can be shown that

∫ tk+1

tk

Φ(tk+1, τ)Fudτ =

∫ tk+1

tk

I + Fx(tk+1 − τ)Fudτ

' FuTs + FxFutk+1Ts − FxFu

∫ tk+1

tk

τdτ

' FuTs + FxFu
T 2

s

2
' FuTs. (71)

We will denote FuTs as Ψ(k + 1, k). Applying this result yields

x̂(k + 1|k) = Φ(k + 1, k)x̂(k|k) + Ψ(k + 1, k)u∗(tk) (72)

= [I + FxTs]x̂(k|k) + FuTsu
∗(tk) (73)

which is our closed-form prediction equation.

Correction Equation

We next present the EKF correction equation, which is given as

x̂(k + 1|k + 1) = x̂(k + 1|k)

+K(k + 1){z(k + 1)− ẑ(k + 1|k)} (74)

where

ẑ(k + 1|k) = h[x̂(k + 1|k)]. (75)
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Note that we must also compute the EKF gain matrix, K(k + 1). This is an n × m

Kalman gain matrix specified by the set of relations

P (k + 1|k) = Φ(k + 1, k)P (k|k)ΦT (k + 1, k)

+Q(k + 1, k) (76)

K(k + 1) = P (k + 1|k)HT
x (k + 1)[Hx(k + 1)

P (k + 1|k)HT
x (k + 1) + R(k + 1)]−1 (77)

P (k + 1|k + 1) = [I −K(k + 1)Hx(k + 1)]P (k + 1|k) (78)

where I ∈ Rn×n is an Identity matrix, P (k + 1|k + 1) ∈ Rn×n is the error covariance

matrix, and Q(k + 1, k) is the covariance of w(k) which is defined as Q(k + 1, k) ,

E{w(k)wT (k)}, where E{·} is the linear expectation operator. Also note that we use

the predicted estimate, x̂(k + 1|k) in equations (76)-(78). In implementing the EKF

equations, Q(k + 1, k) and R(k + 1) can be initialized by constant diagonal matrices

Q ∈ Rp×p and R ∈ Rm×m. Also note that we have used Ψ(k + 1, k) and R(k + 1) to

represent parameters in our EKF equations. We also use the symbols Ψ and R in the

system dynamic equations to describe the mapping and rotation matrix. It should be

clear from the context whether we are referring to the EKF parameters or the system

dynamics values. We use the closed-form solutions in our implementation of the EKF

predictor-corrector equations. The steps are provided in Appendix B.

Application

In order to implement the EKF, we need to combine the nonlinear continuous time

model and the linear discrete time inner model to obtain a complete estimate of the

system states which we present in this section. Recall from Chapter II that we have the

following system composed of inner and outer subsystems as shown in Figure 27.

The inner system state vector and output vector are xI = [ΘT ωbT xT
m]T and yI =

[ΘT T ]T , respectively. The linear discrete-time model of the inner system PIm, with state

xm, was obtained by performing SID. The state and output equations for the inner model
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Figure 27: Inner and outer system.

are given by:

xm[k + 1] = AxI [k] + BūI [k] (79)

ȳm[k + 1] = CxI [k + 1] (80)

where xm ∈ Rnm is the inner state , ūI ∈ [−1, 1]4 is the control input, ȳm ∈ [−1, 1]4 is

the output equation, A ∈ Rnm×nm , B ∈ Rnm×4 and C ∈ R4×nm . In the development of

the inner plant model, the input-output data was normalized before performing System

Identification. When using the model, the input and output values are converted back

to the operating ranges using equations (41), (43) and (45). The output of the inner

system yI can be obtained from the output of the discrete-time model ym, the conversion

functions and the dynamic equations. Thus we can write the inner model output as

ym =




ωb
x

ωb
x

ωb
x

T




= βy(Cxm) (81)
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The output of the inner system yI is used as the input to the outer system, i.e. uO = yI .

The nonlinear continuous-time outer state, output and input vectors are given by

xO(t) =




p(t)

v(t)


 (82)

yO(t) =




p(t)

ψ(t)


 (83)

uO(t) =




Θ(t)

T (t)


 (84)

The dynamics are given by

ẋO(t) =




ṗ(t)

v̇(t)


 =




v(t)

1
m

(e3mg −R(Θ(t))e3T (t))


 (85)

which we write as

ẋO(t) = fO[xI(t), uO(t)] (86)

yO(t) = hO[xI(t)] (87)

We wish to combine the inner and outer system models to form the augmented state

x ∈ R6 × S3 × Rnm where

x =




xO

xI


 =




p

v

Θ

xm




. (88)

In addition, we will have the measurement vector used by the estimator given as

z =




p

Θ


 . (89)
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where z ∈ R3 × S3 will be sampled at fixed intervals. For the prediction equation we

compute Φ(k + 1, k) and Ψ(k + 1, k) for the augmented state based on the current state

estimate x̂(k|k). Because we have a continuous-time model for the outer system, we

must be careful when combining it with the inner discrete-time model. We will use

the techniques presented in the previous section along with the prediction equations for

the inner system to derive the necessary parameters for the EKF. For the outer system

prediction equations we have

x̂O(k + 1|k) = ΦO(k + 1, k)x̂O(k|k) + ΨO(k + 1, k)uO(k). (90)

Recall that we use

Φ(k + 1, k) = I + FxTs (91)

Ψ(k + 1, k) = FuTs (92)

The prediction equation for a discrete-time linear system is given by the system dynamics.

So for the inner system we can write

x̂i(k + 1|k) = Ax̂I(k|k) + BūI(k). (93)

In addition, we have

ym(k + 1|k) = CxI(k + 1|k), (94)

yI(k + 1|k) = yscale ∗ ym(k + 1|k). (95)

We will combine the inner and outer system dynamic equations to come up with aug-

mented matrices. these matrices to get the combined prediction and correction equations

for the EKF. Since uO = yI = βy(CxI), we obtain the augmented Φ(k + 1, k) and
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Ψ(k + 1, k) matrices given as

Φ(k + 1, k) =




I + FxO
Ts FuO

TsyscaleC

0 A


 (96)

and

Ψ(k + 1, k) =




0

B


 (97)

where Ts = .022s is the time interval tk+1 − tk. In addition, we obtain the augmented

matrix associated with the measurement as

Hx =

[
∂yO

∂x
∂yI

∂x

]
=

[
HxO

0

]
(98)

where HxO
∈ R6×(9+nm). We now have all the equations necessary for performing estima-

tion using the EKF for state feedback.
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CHAPTER III

REAL-TIME CONTROLLER DESIGN

Two-stage Controller

The controller consists of two stages. In each stage, a nominal system and a perturba-

tion are considered, and the controller is designed so that the perturbed system is stable.

A block diagram of the two-stage controller and helicopter model is shown in Figure 28.

Figure 28: System with feedback control.

Inner System State Feedback Controller

We first focus on the inner controller CI as shown in Figure 28. The output of

the inner controller directly drives the helicopter inner model PI , whose state vector is

xI = [ΘT ωbT xT
m]T . We will design a state feedback controller, utilizing the available

state estimates from the EKF to drive ωb → ωb
d and T → Td. We will derive wd and Td

later in the chapter. A major advantage in using the SID model and the EKF is that the

model generated is guaranteed to be observable and controllable. We can therefore use

the inversion theory for discrete-time systems to generate the control signal. Consider

the linear discrete-time inner system model given by

x[k + 1] = Ax[k] + Bu[k], (99)

y[k + 1] = Cx[k + 1]. (100)
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We construct the following vector of output signals:

Yn = [y(0)T y(1)T · · · y(n− 1)T ]T , n = 6. (101)

which we can then write as

Yn =




C

CA

CA2

...

CAn−1




x(0) +




0 0 0 · · · 0

CB 0 0 · · · 0

CAB CB 0 · · · 0

...
...

...
. . .

...

CAn−1B CAn−2B · · · · · · 0







u(0)

u(1)

u(2)

...

u(n)




(102)

We consider a nominal output vector Y ∗
n , state vector x∗ and input vector u∗ that satisfy

the dynamic equations. At steady state, we can write Y ∗
n ' Yn, x∗ ' x(0) and u∗ ' u(0).

Therefore we get

Y ∗
n =




C

CA

CA2

...

CAn−1




x∗ +




0

CB

CAB

...

CAn−1B + CAn−2B + . . .




u∗ (103)

(104)

=




C
... 0

CA
... CB

CA2 ... CAB + CB

...
...

...

CAn−1 ... CAn−1B + CAn−2B + . . .




︸ ︷︷ ︸
Λ




x∗

u∗


 . (105)
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Now we have 


x∗

u∗


 = Λ−1Y ∗

n , (106)

where we can take the pseudoinverse of Λ given by Λ−1 = (ΛT Λ)−1ΛT , because the model

generated from the SID process is guaranteed to be observable. We populate the nominal

output with the desired values yd = [ωbT
d Td], therefore we may write




x∗

u∗


 =

(ΛT Λ)−1ΛT




I4

...

I4




︸ ︷︷ ︸

yd,

Λ∗

(107)

where I4 is a 4× 4 identity matrix. Using the model parameters obtained by performing

SID we can compute Λ−1 and Λ∗ which we obtain as

Λ∗ =




−0.0131 −0.0135 0.8786 −0.0036

0.8009 −1.1124 −0.0663 0.0053

1.3937 0.7760 0.0980 −0.0042

−0.0409 −0.0036 −0.0534 0.4247

0.1106 −0.3796 0.1860 −0.0569

0.5595 0.7432 −0.1210 −0.0931

1.0310 0.0274 −0.0246 −0.1850

−0.0272 0.9360 −0.0113 0.0988

0.1653 −0.1199 −0.0301 0.4946

0.1506 0.1721 1.1542 −0.0041




(108)

We next consider designing a controller for the system

ẋ∗ = Ax∗ + Bu∗. (109)
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Letting xe[k] = x[k]− x∗ and using the control law given by

u[k] = u∗ −K(x[k]− x∗), (110)

it can be shown that

xe[k + 1] = (A−BK)xe[k] (111)

= Axe[k]−Bue[k], (112)

where

ue[k] = −Kxe[k] (113)

then by appropriate selection of K, we can drive the error dynamics xe[k + 1] to zero.

We can always use this method since the SID process is guaranteed to generate a model

that is controllable. We use a deadbeat controller and choose the poles of (A− BK) to

lie on the origin, however we also could have used linear quadratic regulator (LQR) to

drive the system with the cost function given by

J =

∫ ∞

0

(xT Qx + uT Ru)dτ, (114)

for which tools exist to find the minimum realization. Using one of these methods we can

drive the output [ωbT T ]T → [ωbT
d Td]

T . Next we consider the outer system controller that

will generate the desired trajectories for the inner system controller.

Outer System Nonlinear Controller

We will design two components in the outer system controller the first will generate

the reference trajectories for the inner controller and the second will drive the position p

to pd. Consider the inner dynamics, ΣI . The output of the system is yI = [ΘT T ]T and we

specify the desired output as yid = [ΘT
d Td]

T . Having assumed that the inner controller
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will drive (ωb, T ) → (ωb
d, Td) as t → ∞, we can drive (Θ) to (Θd). Using equation (18),

namely Θ̇ = Ψ(Θ)ωb, we replace ωb with ωb
d in order to derive the controller. Since

Ψ−1(Θ) exists except at the singularities, we can apply feedback linearization for control

design. Next define

Θ̇ = vΘ (115)

ωb
d = Ψ−1(Θ)vΘ (116)

where vΘ ∈ R3 is the Euler angle velocity vector. Choosing vΘ = Θ̇d−KΘ(Θ−Θd) where

KΘ ∈ R3×3, the error dynamics of the Euler angles can be described by

żΘ = AΘzΘ (117)

where zΘ = Θ − Θd and AΘ = −KΘ ∈ R3×3. By choosing the appropriate matrix KΘ,

we can ensure that the equilibrium point zΘ = 0 is exponentially stable. Hence, we see

that Θ → Θd as t → ∞. However, the statement is true only if ωb = ωb
d. We will show

that Θ → Θd as t →∞ only if ωb → ωb
d as t →∞.

Define the perturbed system as

ż = f(z, t) + ρ. (118)

We will show that this system is stable. First we assume that the equilibrium point z = 0

of the nominal system

ż = f(z, t) (119)

is exponentially stable and ρ → 0 as t → ∞. Based on the Lyapunov Theorem for

Exponential Stability and its Converse [28], the system is locally exponentially stable if
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and only if there exists a Lyapunov function v(z, t) such that for all z ∈ Bh, and t ≥ 0

α1‖z‖2 ≤ v(z, t) ≤ α2‖z‖2 (120)

∂v(z, t)

∂t
+

∂v(z, t)

∂z
f(z, t) ≤ −α3‖z‖2 (121)

∣∣∣∣
∣∣∣∣
∂v(z, t)

∂z

∣∣∣∣
∣∣∣∣ ≤ α4‖z‖ (122)

for some constants α1, α2, α3, α4, h > 0, where Bh is a ball of radius h centered at z = 0.

Theorem III.0.1. Let z = 0 be an exponentially stable equilibrium point of the nominal

system (119). Let V (z, t) be a Lyapunov function of the nominal system that satisfies

(120),(121) and (122). Suppose that the perturbation term ρ of the equation (118) satisfies

ρ → 0 as t →∞, then the solution of the perturbed system z → 0 as t →∞.

Proof. The derivative of V (z, t) along the trajectories of the perturbed system (118)

satisfies the inequality

V̇ (z, t) ≤ −α3‖z‖2
2 + α4ρ‖z‖2

Using (120), we can show that V̇ (z, t) is restricted to

V̇ (z, t) ≤ −α3

α2

V (z, t) +
α4√
α1

ρ
√

V (z, t)

Letting W (t) =
√

V (z, t) and rewriting the inequality yields

Ẇ (t) ≤ −σW (t) + βρ

where σ = α3

2α2
and β = α4

2
√

α1
. Thus,

W (t) ≤ e−σ(t)W (0) +

∫ t

0

βe−σ(t−τ)ρ(τ)dτ

Since ρ → 0 as t →∞, we have

W (t) → 0 as t →∞.
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Hence,

z → 0 as t →∞

since ‖z‖2 ≤ 1√
α1

W (t)

Therefore, provided the nominal system is exponentially stable, the system is ex-

tremely robust in terms of exponential stability to any vanishing perturbation.

Lemma III.0.2. Consider the dynamics of the Euler angles that satisfy (18). Given the

control design ωb
d = Ψ−1(Θ)(Θ̇d −KΘ(Θ − Θd)), if ωb → ωb

d as t → ∞ then Θ → Θd as

t →∞.

Proof. Rewrite (18) as

Θ̇ = Ψ(Θ)ωb
d + Ψ(Θ)(ωb − ωb

d),

then substitute ωb
d into the equation. Thus, we have

żΘ = AΘzΘ + ρΘ (123)

where the perturbation vector ρΘ = Ψ(Θ)(ωb − ωb
d). Hence, if ωb → ωb

d as t → ∞, then

ρΘ → 0 as t →∞. Since the nominal system żΘ = AΘzΘ is exponentially stable, we can

apply Theorem III.0.1 to show that zΘ → 0 as t → ∞. Therefore, we have shown that

Θ → Θd as t →∞.

Consider the outer system whose dynamics are given by (21) and whose input is the

output of the inner system, yI = [ΘT T ]T . The outer system output is the position vector,

yO = [pT ψ]T . Since we know that (ωb, T ) → (ωb
d, Td) as t → ∞ is guaranteed by the

inner system, we are interested in designing a controller to drive p to pd and Θ to Θd.

We will base the outer controller design on the concept of differential flatness, which

was originally defined by Martin Fliess. A system is differentially flat if we can find a

set of outputs (equal in number to the inputs) such that all states and inputs can be

determined from these outputs without integration as shown in [22]. Given some system

with states x ∈ Rn and inputs u ∈ Rm then the system is flat if there can be found
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outputs y ∈ Rm of the form

y = h(x, u, u̇, . . . , u(r)), (124)

such that

x = ϕ(y, ẏ, . . . , y(q)), (125)

u = α(y, ẏ, . . . , y(q)). (126)

Many classes of systems commonly used in nonlinear control theory are flat, including any

system that can be linearized by change of coordinates, static feedback transformations, or

dynamic feedback transformations. Flatness indicates that the nonlinear structure of the

system can be exploited for designing control algorithms for motion planning, trajectory

generation, and stabilization. As shown in [17], the outer system ΣO is differentially flat

with respect to the output (px, py, pz, ψ). Therefore, by definition, the state and input

trajectories can be written as algebraic functions of the output trajectories and their

derivatives. We next show how this is done. As mentioned before we have the outputs

for the outer system from (20). We rewrite the dynamic equation from (21) as




p̈x

p̈y

p̈z




︸ ︷︷ ︸
p̈

= eẑψeŷθex̂φ




0

0

−T/m




+




0

0

g


 (127)

and performing some algebraic manipulations gives us

e−ẑψ




p̈x

p̈y

p̈z − g




= eŷθex̂φ




0

0

−T/m




. (128)

Computing the 2-norm of both sides yields
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T = m
√

(p̈x)2 + (p̈y)2 + (p̈z − g)2. (129)

Using (128) again we can write

e−ẑψ




p̈x

p̈y

p̈z − g



− m

T
= eŷθex̂φ




sθcφ

−sφ

cφcθ




. (130)

It can then be shown that

φ = sin−1

(−p̈x sin ψ + p̈y cos ψ

T/m

)
(131)

θ = atan2

(
p̈x cos ψ + p̈y sin ψ

−T cos φ/m
,

p̈z − g

−T cos φ/m

)
(132)

ψ = ψ (133)

where φ, θ 6= ±π/2.

Therefore, there exists a smooth mapping from (p̈, ψ) to (Θ, T ):

Π : R3 × S → S3 × R

(p̈, ψ) 7→ (Θ, T )

defined by the equations (129), (131), (132) and (133).

Next we replace (Θ, T ) with (Θd, Td) for deriving the controller. Given the mapping Π,

instead of using (Θd, Td) for design, we focus on (p̈d, ψd). Since p̈d describes the desired

second derivative of the position vector, we can use the vector to specify the desired

position dynamics. Define an error vector as zp = [pT vT ]T − [pT
d 0]T . If we choose

p̈d = −Kvṗ−Kp(p− pd), (134)

57



where Kp, Kv ∈ R3×3, the error dynamics of the position can be described by

żp = Apzp (135)

where

Ap =




03×3 I3×3

−Kp −Kv




where 03×3 is a 3 × 3 zero matrix and I3×3 is a 3 × 3 Identity matrix. By appropri-

ately choosing the matrices Kp, Kv, we can ensure that the equilibrium point zΘ = 0 is

exponentially stable. Therefore, given (p̈d, ψd), we can derive the desired input by using

(Θd, Td) = Π(p̈d, ψd) (136)

If (Θ, T ) = (Θd, Td) for t ≥ 0, we have p → pd as t → ∞. Similarly, we can show that

p → pd as t →∞ only if (Θ, T ) → (Θd, Td) as t →∞.

Lemma III.0.3. Consider the dynamics of the outer system given in (21). Given the

control design (Θd, Td) = Π(p̈d, ψd) where p̈d = −Kvṗ − Kp(p − pd) from (134). If

(Θ, T ) → (Θd, Td) as t →∞ then p → pd as t →∞.

Proof. Rewrite (21) as




ṗ

v̇


 =




v

1
m

R(Θ)e3Td + e3g + 1
m

(R(Θ)e3T −R(Θ)e3Td),




then substitute (Θd, Td) = Π(p̈d, ψd) into the equation to give

żp = Apzp + ρp, (137)

where the perturbation vector is given by

ρp =




03

1
m

(R(Θ)e3T −R(Θd)e3Td)


 .
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Hence, if (Θ, T ) → (Θd, Td) as t →∞, then ρp → 0 as t →∞. Since the nominal system

żp = AΘzp is exponentially stable, we can apply Theorem III.0.1 to show that zp → 0 as

t →∞. Therefore, we have shown that p → pd as t →∞.

Parameter Tuning

Once we have designed the control law, tuning the parameters will consist of two

parameter tuning stages done in simulation and then again in implementation. Because

the model we obtain from system identification is not perfect and does not model the

noise, there will be differences in the simulation and implementation. Using the model

parameters (A,B, C,D) obtained from SID we design a deadbeat controller for the inner

system and place the poles of (A − BK) at the origin. This involves solving for K. We

can then generate the nominal values for our controller from the inversion theory. Based

on our model parameters, we get the following result for K:

K =




−2.5587 7.0763 10.2035 −20.8095 −0.7268 −1.9013

−4.2786 −8.1504 −2.2246 15.0945 0.5334 5.3280

5.2256 −1.9796 −7.3453 22.3769 2.3690 1.6205

19.7891 5.7049 −0.3287 −6.6071 −0.2105 −4.4321




(138)

which gives us all the components for the inner controller. Next we tune the components

of the outer system KΘ, Kv and Kp. The results obtained in simulation are given next.

The results for KΘ are

KΘ =




−8 0 0

0 −8 0

0 0 −2




. (139)

The outer system position control gains are set to

Kp =




−5 0 0

0 −5 0

0 0 −3




(140)

59



and

Kv =




−3 0 0

0 −3 0

0 0 −2




. (141)

The simulation results for applying step inputs to the desired position are shown in Figure

29. Note that the state estimate is plotted along with the measured and desired position
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Figure 29: Simulation response to position step input.

values. We can also see the coupled nature of the system in Figure 29 by looking at the

change in pz given a transition in px or py. The simulation results for the Euler angles,

velocity, thrust, body angular velocities and inputs are given in Figures 30 through 34.

In the simulation, we add a Gaussian random noise signal with zero mean and variance

equal to [1; 1; 1; .1; .1; .1] to the measurement vector to simulate the sensor noise on

the measurement [pT ΘT ]T .
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Figure 30: Plot of Euler angle values.
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Figure 31: Plot of velocity values.
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Figure 32: Plot of thrust values.
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Figure 33: Plot of ω values.
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Figure 34: Plot of input values.

State Feedback Control Implementation

Next we implement the controller in our real-time system. Using the same values that

were derived in simulation we set the helicopter to hover in one place. In addition we

add a ramp-up and ramp-down stage to the throttle input to force a slow takeoff and

landing. This happens at t = 10s and t = 20s. The results for the real time flight are

given below. Comparison of the results of the hover in real-flight to a simulated hover

is shown in Figure 41.

As the Draganflyer is flying the battery slowly depletes. The Draganflyer will sustain

flight for 5-8 minutes depending on the amount of manuevering. As it uses the battery

power, additional throttle is needed to compensate the loss in battery power. We end up

with a slow drift away from the desired position as seen in Figures 42and 41. In addition,

we can see from the plot that the system is sensitive to invalid sensor data, which can

occur for instance, if an led marker on the helicopter is occluded and the measurement

signal has a “blip”. When an invalid data point is measured, the system will prolong the

error effect as the EKF estimates try to re-converge to the actual states again.
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Figure 35: Implementation plot during hover.
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Figure 36: Plot of Euler angle values.
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Figure 37: Plot of velocity values.
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Figure 38: Plot of thrust values.
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Figure 39: Plot of ω values.

0 20 40 60 80 100 120 140 160
0

100

200

300
Radio Control Levels

A
ile

ro
ns

 (
R

ol
l)

0 20 40 60 80 100 120 140 160
0

100

200

E
le

va
to

r 
(P

itc
h)

0 20 40 60 80 100 120 140 160
0

100

200

T
hr

ot
tle

 (
T

hr
us

t)

0 20 40 60 80 100 120 140 160
50

100

150

200

Time (s)

R
ud

de
r 

(Y
aw

)

Figure 40: Plot of input values.
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Figure 41: Comparison of simulated vs real flight hovering.

Since we have shown that the system can stabilize in hover mode using the state-

feedback controller, we are interested to see the response for changes in the position

reference. The results for the real time flight are given below. Looking at the results

of the response to changes in reference input, we see that the system does not track

the desired z-position well when making a transition. It is possible that with a more

accurate model and a more refined or optimal controller, the system performance would

be adequate. However, based on the performance of the feedback controller we determine

that a more robust and less sensitive controller should be used to perform the multi-

vehicle coordination. A more basic controller that had already been tested and tuned is

used to control the multiple vehicle coordination to simplify the design and provide more

performance reassurance. By using a PI controller with T − Td as the error vector, we

can solve the battery depletion issue. In addition, because during hover the helicopter is

close to the equilibrium point, we can design a proportional controller to drive wb
d and

make the assumption that the onboard controller can drive (wb → wb
d). The equation for

wb
d is given as wb

d = Ψ−1(Θ)(−KΘ(Θ − Θd). In addition, for small values of Θ, Ψ−1(Θ)
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Figure 42: Implementation plot during hover.
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Figure 43: Plot of Euler angle values.
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Figure 44: Plot of velocity values.
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Figure 45: Plot of thrust values.
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Figure 46: Plot of ω values.

0 20 40 60 80 100 120
0

100

200

300
Radio Control Levels

A
ile

ro
ns

 (
R

ol
l)

0 20 40 60 80 100 120
0

100

200

300

E
le

va
to

r 
(P

itc
h)

0 20 40 60 80 100 120
0

100

200

300

T
hr

ot
tle

 (
T

hr
us

t)

0 20 40 60 80 100 120
0

100

200

300

Time (s)

R
ud

de
r 

(Y
aw

)

Figure 47: Plot of input values.
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is close to identity matrix. We use the same form of the outer controller for controlling

the position and generating Θd and Td. Tuning this more basic controller in simulation

results in

KΘ =




−3 0 0

0 −3 0

0 0 −2




(142)

KT = −.2 (143)

The step response for Θd and Td are given in Figures 48 and 49.
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Figure 48: Inner controller Θ step response.

Rise times for φ, θ, ψ and T are .35s, .4s, 1s and .6s respectively.

The outer controller parameters are now designed. We design the outer controller

parameters to yield a response that is slower than the inner system by a factor of 5. This

means a response between 1.75s to 5s. The simulation model for the outer controller is

shown in shown in Figure 50. The outer controller parameters are found to be
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Figure 49: Inner controller T step response.

Figure 50: Outer controller simulation model.
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Kp =




−2 0 0

0 −2 0

0 0 −.35




(144)

Kv =




−2 0 0

0 −2 0

0 0 −.75




(145)

A plot of the values given a step input for pd are given in Figure 51. Rise times for px,
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Figure 51: Outer controller step response for p.

py, and pz are 2.5s, 2.5s and 4s respectively which matches with our design goal.

Upon implementing the controller with the parameters tuned in simulation, it is found

that there is considerable overshoot with measured and desired values for the inner con-

troller, namely with Θ. Possible reasons for this are the processing and radio signal

delays not represented in the simulation and discrepancies between the model and actual

system. Therefore, we reduce the gain KΘ. In addition, we address the battery discharge
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problem and steady state offset in pz by adding the integral term KTI to the thrust error.

The final gains are tuned to the following values:

KΘ =




−1.5 0 0

0 −1.5 0

0 0 −1




(146)

KT = −.15 (147)

KTI = −.1 (148)

Gains for the outer controller are changed to

Kp =




−2 0 0

0 −2 0

0 0 −1




(149)

Kv =




−1.5 0 0

0 −1.5 0

0 0 −.5




(150)

We apply a step input to the position reference while the helicopter is hovering. In

order to get the helicopter to hover first, we slowly increase the throttle while providing

a position reference input. The results in the figures below show the vertical takeoff,

three step inputs and the landing. Also note that due to the North-East-Down frame

assignment, vertical lift is in the negative z direction. The results for applying a step

input during hover are shown in Figures 52, 53, 54 and 55.

Outer system response times are approximately 2.4s, 3s, and 3.5s for px, py, and pz

which meets our specifications. A comparison between the position values for the simu-

lated and measured step responses is given in Figure 56. Here the gain values designed

in implementation have been used in the simulation. This controller will be used in the

final implementation of the multi-robot coordination.
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Figure 52: Position values for controller implementation.
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Figure 53: Euler angle values for controller implementation.
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Figure 54: Thrust values for controller implementation.
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Figure 55: Radio control signals for controller implementation.
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Figure 56: Comparison of simulated and actual flight with step input.
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CHAPTER IV

HYBRID SYSTEM ARCHITECTURE

Hybrid systems have been used successfully to model the behavior of dynamical sys-

tems that exhibit both continuous state and discrete state dynamics. Several well-known

examples are the bouncing ball, thermostat and two-tank systems. In these systems,

within each discrete state of operation, the system may behave differently and can be de-

scribed by a specific set of dynamic equations. A fundamental problem we wish to solve in

this paper is the coordination of multiple robots in such a way that certain specifications

are met, such as the avoidance of collisions and completion of waypoint navigation.

Hierarchical System Design

Our design method involves a model based approach that is motivated by the de-

sire to be able formally specify a multi-vehicle mission and be able to make guarantees

about the system performance. The multi-stage modeling approach is shown in Figure

57. Therefore, we design the system with information in mind about the bottom layer

Figure 57: Multi-stage modeling approach.

(vehicle) and the top level (mission). We choose a specification language CTL, that is un-

derstandable to humans and computers, thus forming an interface, and generate a timed

automaton (TA) to represent the multi-vehicle system. A TA is a finite state machine

that has been extended by the use of clock variables. Except for the clocks, the TA is

mainly a discrete event system. In order to bridge the gap between this discrete system
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and our real-time vehicle, we design a hybrid automata (HA) to represent the vehicle

system which can be viewed as a multi-modal system. It can be shown that the TA is

bisimular to the HA, meaning that specifications checked on the TA will hold for the HA,

and the two systems will give the same input-output data. In addition, because bisimilar

system preserve branching time properties, the branching time calculation in the symbolic

verification will cover the trajectories exhibited by the real-time hybrid system. 1

The TA is developed using a tool called Uppaal, a software program used to verify

the specification requirements in computational tree logic (CTL) and generate trajecto-

ries if any exist that satisfy the specifications. Our design of the TA is motivated by

fact that we wish to be able to generate trajectories for complex missions while guaran-

teeing that safety and performance specifications are met. By extracting the trajectory

information from the verification results we can provide the real-time hybrid-system with

commands that will meet the specifications that have been verified. A major benefit to

this design is that at each stage of the design we construct a model that bisimulates

the combined components lower in the hierarchy, so that the TA bisimulates the hybrid

automata/command interface subsystem, the hybrid automata bisimulates the real-time

controller/vehicle model subsystem and so on. Therefore we can guarantee that specifi-

cations verified using the TA will hold for the constructed system.

Timed Automata

A TA is a finite-state machine that has been extended to include real-valued clocks,

which proceed simultaneously and measure the amount of time elapsed since being reset.

We will use a network of TA to bisimulate the hybrid system and the verification tool

Uppaal to test certain specifications about the system. The network, which consists of

the robots, the environment and the control, communicate over synchronization channels.

We adopt the convention used in [2] to define the TA.

Definition 4.2 (Timed Automaton): A timed automaton (TA) is a tupleA = (L, linit, E, I, V )

defined over actions Act, propositions P , clocks C and guards B(C) where:

1For a detailed review of bisimilar systems refer to [9] or [10].
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• L is a set of control locations;

• linit is the initial control location;

• E ⊆ L× B(C)× Act× 2C × L is a finite set of edges;

• I : L → B(C) is the invariant condition of the control location;

• V : L → 2P assigns a proposition to each location, where 2P is the power set ofP .

Essentially, a TA is a hybrid system in which the clock dynamics are defined by

ċj = 1,∀ci ∈ C and can accept only non-negative values.

Partitioning the Physical Space

Because we wish to manage the multi-vehicle motion in the physical environment, we

decompose the continuous state space X ⊆ R3 in which the vehicles move into a finite

number of cells by a partition π = {Xi}n
i=1. The dimensions are identical for each Xi

and were determined by examining the behavior of the closed-loop system. The partition

satisfies

X =
⋃
n

Xi (151)

∅ = Xi ∩Xj,∀i 6= j (152)

Uppaal represents the partition as a 3D array, in which elements can be assigned a value

of 1 if the physical location is occupied or currently reserved for transition purposes or a

0 if the cell is unoccupied.

Vehicle Process

We consider a group of Hm helicopters confined to the physical environment X ⊆ R3.

The helicopters can move in positive and negative directions along the x−, y−, and

z−axes between adjacent cells. Each helicopter motion behavior is assigned a discrete

control location, so we have

L = {INIT, STOP, M PX, M MX, M PY, M MY, M PZ, M MZ}. In addition,

the temporal motion behavior is defined by τ ∈ [τ1, τ2], the possible time to transition
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from one cell to another. In the TA for the helicopter, a clock is assigned to each robot

in order to represent the time it takes for the physical system to complete the motion

command. Once a transition is made in the vehicle TA, it will remain in that state until

the clock value falls within τ . The model checker tests the specification by evaluating all

possible transitions within that time range, thereby representing the non-deterministic

nature of the physical system. The TA model of the helicopter, AH , is given by:

• L = {INIT, STOP, M PX, M MX, M PY, M MY, M PZ, M MZ}
• linit is the initial control location;

• E ⊆ L× B(C)× Act× 2C × L is the set of edges,

e0 = (INIT, INIT )

e1 = (INIT, STOP )

e2 = (STOP, movePX?, M MX)

e3 = (M MX, τ1 < c < τ2, c = 0, STOP )

e4 = . . .

• I : L → B(C) is the invariant condition of the control location;

The automaton associated with the helicopter is shown in Figure 58. Initially, the au-

Figure 58: Automaton associated with helicopter vehicle.

tomaton starts in the INIT location, transitions to STOP and then is free to move
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accordingly. Multiple vehicles can be created by instantiation within the Uppaal system

editor. Therefore, scaling the system is very straightforward.

Control Process

The helicopter automaton synchronizes with the control automaton shown in Figure

59 through the six synchronization channels. The vehicle process location is changed

Figure 59: Automaton associated with control motions.

when control signals are received from the control process. In addition, all automata

have access to the state-space partition represented as a 3D array, partX[x][y][z],

stored in a shared memory location as a global variable. Vehicles are prevented from

occupying spaces that are currently occupied and spaces that are being used to move to

or from another cell.

Specification Verification

We are concerned with verifying whether a system satisfies certain specifications. In

order to make guarantees about the behavior of a given system, it is preferable to use

a formal method that can be tested, proven and repeated. One such method involves

the use of temporal logics, specifically computational tree logic (CTL) to reason about

the time-changing state of the system. CTL enables us to inquire about a wide range of

branching time properties. Given a system containing multiple autonomous vehicles and
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its environment modeled as a network of TA, we can obtain a set of motion commands

that will satisfy the required specifications such as collision avoidance and arrival to

desired waypoints. CTL specifies the ability to eventually reach a destination and avoid

collisions as liveness and safety properties, respectively. Although we cannot check these

properties simultaneously, by using a correct-by-construction approach in modeling the

TA and then using the Uppaal model checker to determine the liveness property we

can verify guarantee that if a path exists, the vehicles will reach their destinations while

avoiding collision. We are concerned with this specification for the purposes of this paper.

We therefore pose the following CTL query in Uppaal given a team of two vehicles H1

and H2 with initial positions H1.pinit and H2.pinit:

E<>(H1.x==H1.xd and H1.y==H1.yd and H1.z==H1.zd and

H2.x==H2.xd and H2.y==H2.yd and H2.z==H2.zd)

As part of the symbolic verification of the CTL query, a trace file is generated that

contains all the transition events and intermediate states as well as the branching clock

value. We parse this trace file to obtain a sequence of motion commands L associated

with the discrete command locations of the control process.

Hybrid Architecture

Next, we show how the complete hybrid architecture is constructed from the vehicle

model, real-time controller, command interface and mission controller.

Vehicle Model

We begin by modeling the physical system as shown in Chapter 2. This is done by

collecting input-output data from the vehicle in manual or closed-loop operation and

performing system identification. The input to the plant is u = [u1 u2 u3 u4]
T ∈ [0, 255]4.

The output from the vehicle model is the state vector x = [pT vT ΘT xT
m]T ∈ R6×S3×R6

obtained from the EKF state estimator.

83



Real-time Controller

Based on the vehicle model, we design the real-time controller in simulation and

further tune the controller parameters in actual flight as shown in Chapter 3. The real-

time controller accepts as a high-level commands the reference position r = [pT
d ψd]

T ∈
R3 × S, and based on the state of the vehicle, x, computes the control signal, u and

returns the continuous position, p to the command interface.

Hybrid Automaton

In order to model the different behaviors associated with the hybrid automata, we

will use a descriptive language as shown in [21].

Definition 4.2 (Hybrid Automaton): A hybrid automaton H is a collection H =

(Q,X, f, Σ, Init, E,G, R) where

• Q = {q1, q2, . . .} is a set of discrete states;

• X = Rn is a set of continuous states;

• f(·):Q×X → Rn is a vector field;

• Σ is a set of events {σ1, σ2, . . .}

• Init ⊆ Q×X is a set of initial states;

• E ⊆ Q×Q is a set of edges;

• G(·) : E → P (X) is a guard condition;

• R(·, ·) : E ×X → P (X) is a reset map.

P (X) denotes the power set of X, and we refer to (q, x) ∈ Q × X as the state of H.

Hybrid automata therefore describe the possible continuous state evolutions of x stating

from (q0, x0) ∈ Init flowing according to the differential equation

ẋ = f(q0, x), (153)

x(0) = x0. (154)
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while q remains constant.

For our system we have the hybrid automata defined by H = (Q × X, f, Σ, Init, G, R)

where

• Q = {qi}6
i=0 is a set of discrete states;

• X ⊆ R3 is the physical state space in which the vehicle moves;

• p = [px py pz]
T ∈ X is the continuous position of the vehicle

• Init is the initial set (q0, p0);

• Σ = {σi}6
i=0 is a set of events; The vector field

• f is defined by:

f(q, x) =





[0 0 0]T

[µx 0 0]T

[−µx 0 0]T

[0 µy 0]T

[0 − µy 0]T

[0 0 µz]
T

[0 0 − µz]
T

if q = q0,

if q = q1,

if q = q2,

if q = q3,

if q = q4,

if q = q5,

if q = q6.

(155)

where .2 <= µx, µy, µz <= 1 are based on our travel cell times. The guard is given by

G(qi, qj) = X × σj, and the reset by R(qi, qj, x) = x. The hybrid automaton that models

our real-time system is shown in Figure 60.

Let us now look at the components of the hybrid system. Once the real-time controller

is designed, the next step is designing the command interface. In order to do this we

must determine the parameters of the closed-loop (i.e. controller and vehicle) system. In

our final design we partition the 3-D state space into a collection of discrete locations or

cells (actually 3-D polyhedra). To determine the dimensions of these cells we study the

behavior of the closed-loop system. Let βδr be a ball of radius δr ∈ R centered at a given

reference position pd ∈ R3 with respect to the inertial frame. We wish to determine δr
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Figure 60: Hybrid automaton that models the real-time system.

such that the position of the vehicle ( i.e. the c.g.) remains inside βδr during hover. This

constraint is given as

‖p− pd‖ < δr. (156)

We find by δr experimentally by flying the helicopter in hover mode at a fixed reference

point and looking at the deviation from that point. A plot showing one of these trials

is shown in Figure 61. After several trials, δr is determined to be 12.5cm. This means

that given a fixed reference point, the c.g. of the helicopter will stay within a ball

of radius 12.5cm centered at that reference point. Note that 12.5cm is a conservative

determination as most of the trials resulted in flight regions of approximate radius equal to

5cm. However, due to disturbances and possible offsets caused by c.g. changes or twisting

of the helicopter frame, 12.5cm is a reasonable conservative determination. Although the

position of the c.g. will remain inside βδr , the actual helicopter occupies a much larger

space. We compute the total space occupied during flight by adding δr to the physical

dimensions of the helicopter. The dimensions of the helicopter are 75cm×75cm×15cm

(l×w×h). Therefore, we will use a cell size of 100cm×100cm×40cm (x×y×z) as shown

in Figure 62. We can now use this information to design the command interface.
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Figure 61: Determining δr by experimentation.

Figure 62: Operating region for helicopter in hover.
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Command Interface

The command interface is a finite state machine (FSM) that accepts high-level com-

mands σ ∈ L, where L ∈ {l0, l1, l2, . . . , l6}, is a set of motion commands and L ∈ L is

a finite sequence of motion commands extracted form the verification trajectory. The

Simulink model of the command interface is shown in Figure 63. In Figure 63, dx1, dy1,

Figure 63: Finite state machine of the command interface.

and dz1 are the cell dimensions obtained from the hybrid automata; rx1, ry1, and rz1 are

the vehicle reference coordinates sent to the real-time controller (we set ψd = 0); e is an

event indicating that the vehicle has reached the desired reference point; pinB is a guard

condition defined by

pinB =





1 if ‖p− pd‖ < δρ

0 if ‖p− pd‖ ≥ δρ

, (157)
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where δρ ∈ R and 0 < δρ < δr. The other guard conditions mpx, mmx, mpy, mmy, mpz,

and mmz are determined by the high level motion command σ as

mpx =





1 if σ = 1

0 if σ 6= 1
(158)

mmx =





1 if σ = 2

0 if σ 6= 2
(159)

mpy =





1 if σ = 3

0 if σ 6= 3
(160)

mmy =





1 if σ = 4

0 if σ 6= 4
(161)

mpz =





1 if σ = 5

0 if σ 6= 5
(162)

mmz =





1 if σ = 6

0 if σ 6= 6
. (163)

The command interface acts as a mid-level position controller, receiving commands from

the mission controller and translating them into reference coordinates for the real-time

controller to follow. In developing the command interface, we determined the parameters

necessary to create the hybrid automata. We now need the temporal properties associated

with the combined system to create the TA, in particular we need to determine the travel

time range τ = [τ1, τ2] representing the minimum and maximum time for the vehicle

to go from one cell region to another. In particular, we seek the time range for the

vehicle to travel from anywhere in βδr , a ball of radius δr centered at one cell origin

to anywhere in βδρ , a ball of radius δρ centered at an adjacent cell origin as shown in

Figure 64. Again, we determine the parameters by experimentation, and after several

trials we determine that the time range to travel between two adjacent cells as define

above is τ = [1.25s, 4.5s]. An example trial is shown in Figure 65. We are now ready

to design the TA that will bisimulate the hybrid system. Finally, the mission controller
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Figure 64: Vehicle cell travel time determination.
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Figure 65: Vehicle cell travel time experimentation.
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will be based on the trajectories generated by the verification of the TA against the CTL

specifications.

Mission Controller

Based on the sequence L obtained from parsing the verification trace file, (explained

subsequently in the TA section) we develop the mission controller, which is essentially

a finite state machine as a command dispatcher that feeds the sequence of motion com-

mands to the command interpreter. The command interpreter returns an event ei ∈ [0, 1]

signalling that vehicle Hi has arrived at its desired location (within a ball of radius δrho

centered at the desired position). Additionally, the dispatcher must synchronize the mo-

tion commands of all robots. It does this by only releasing a new motion command signal

when all vehicles have reached their target locations for the current motion command

iteration. A vehicle that has received a new command to stop will have already reached

its desired position and will signal this to the mission controller. The mission controller

receives a sequence L of motion commands and dispatches a motion command signal σi

to each vehicle when all have reached their target locations, which they signal with the

event ei. The simulation model is shown in Figure 66. The mission controller has three

Figure 66: Mission controller finite state machine.

states for dispatching the current motion command, resetting the sigma value, and then

91



waiting for all vehicles to reach their target locations. The complete hybrid system con-

sisting of the (discrete) multi-modal mission controller, command interface, closed-loop

(continuous) real-time controller and vehicle system is shown in Figure 67. The signals

Figure 67: Multi-level hybrid architecture.
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associated with the Hybrid System are given as:

• L ∈ {0, 1, 2, . . . , 6} : is a set of motion control commands;

• L ⊂ L : is a finite sequence of motion commands;

• σi ∈ L : is a control command for the ith vehicle;

• ri ∈ R3 × S : is the ith vehicle reference value r = [pd ψd]
T ;

• pi ∈ R3 × S : is the ith vehicle continuous position p = [px py pz ψ]T ;

• δρ ∈ R : is the radius of a ball centered at ri

• ei ∈ {0, 1} : is an event signalling the ith vehicle has reached its target

such that‖p− r‖ < δρ

• u ∈ [0, 255]4 : is the radio control signal to the vehicle

• x ∈ R6 × S3 × R6 : is the state vector for the plant model where

x = [pT vT ΘT xT
m]T

v ∈ R3 is the translational velocity of the center of mass,

Θ ∈ S3 is the Euler angle vectorΘ = [φ θ ψ]T

xm ∈ R6 is the linear discrete-time inner model state vector

Multi-Vehicle Coordination Results

The resulting sequence L associated with the above query, given H1.pinit=[1 1 1]T ,

H2.pinit=[2 2 1]T , H1.pd=[2 2 2]T , and H2.pd=[1 1 0]T is:

L =




1 0 3 0 5 0 . . . 0

0 2 0 4 0 6 . . . 0




Therefore, helicopter 1 (H1) will move forward, right, down and helicopter 2 (H2) will

move backward, left, up. The results for actual flight with two helicopters are shown in

Figures 68 and 69. In the actual flight, the trajectory navigation starts at 70 seconds

after an initial mode to begin the hover; this can be seen in the plot for pz. A 2-D

projection onto the x − y plane is shown in Figure 70. In order to understand the

significance of the verification and the validity of the bisimulation, we can look at the
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Figure 68: H1 position flight results.
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Figure 69: H2 position flight results.
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Figure 70: Projection of H1 and H2 flight position onto x-y plane.

timing that is provided in the trace file of the verification results. Because UppAal can

only handle integer values for guard conditions, we have chosen to use a time range of

τ = [1s, 5s] instead of the original τ = [1.5s, 4.5s]. Since our new range covers the

old range, the bisimulation still holds, in fact it is a more conservative approximation.

Looking at the sequence and given these new times, we should see that the first transition

(for both vehicles) should take place in the range [70s, 75s], the second transition during

[72s, 80s], and the third transition between [73s, 85s]. Transition times (to get to the

new cell) for H1 are 72.25s, 76.15s, and 80s, and for H1 are 74.2s, 77.9s, and 82.6s.

This can be seen in Figures 68 and 69 and also in Figure 71. Thus, we see that the

branching times generated from the symbolic verification of the specification accurately

cover the actual times measured in real flight, demonstrating the validity and power of

this approach. Although this trajectory is fairly simple, as long as the model obeys the

temporal properties determined during the development of the hybrid automata, a more

complex trajectory involving many more vehicles can be generated and guarantees based

on the specifications will be honored.
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(a) t ∈ [60s, 62.5s] (b) t ∈ [62.5s, 65s] (c) t ∈ [65s, 67.5s]

(d) t ∈ [67.5s, 70s] (e) t ∈ [70s, 72.5s] (f) t ∈ [75s, 77.5s]

(g) t ∈ [77.5s, 80s] (h) t ∈ [80s, 82.5s] (i) t ∈ [82.5s, 85s]

Figure 71: Progression of flight trajectory and acceptable cell occupation.
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CHAPTER V

VANDERBILT EMBEDDED COMPUTATION PLATFORM FOR
AUTONOMOUS VEHICLES

Real-time systems must react to events in the environment within precise time speci-

fications. A large number of systems rely on computer control, in fact real-time comput-

ing is critical in areas such as chemical and nuclear plant control, automotive systems,

telecommunications and flight control systems [4]. Despite this diverse application do-

main, real-time computing is often misunderstood, and design and development method-

ologies tend to be either ad hoc or based on some heuristic approach. Often, control

programs are written as one large piece of assembly code, with customized timers, device

drivers, and interrupt priorities. Although programs produced using this approaches may

run efficiently, there are several disadvantages to this method including

• Laborious programming. Trying to design and develop high level control pro-

grams using assembly can be onerous and result in code inefficiency.

• Code illegibility. The resulting code is often unreadable and incomprehensible to

anyone but the original programmers.

• Distribution and maintenance problems. Errors can be introduced when dis-

tributing the code manually and maintenance often proves tedious and difficult.

• Time constraint verification. Without formal hardware and software analysis

methods, the verification of time constraints becomes extremely difficult.

The end result is that control programs can become unpredictable, and appear to work

at the outset, while failure may be lurking around the corner.

The ECSL group is currently doing work on the coordination and control of multiple

autonomous aerial vehicles, specifically small RC helicopters. Controlling a helicopter

in a confined environment is a time-critical control challenge. Stable control requires a

system that is capable of performing reliably in real-time. Unlike ground-based mobile

robots, a helicopter cannot stop and wait for late or missing control commands as this
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would prove catastrophic. In an effort to eliminate some of pitfalls associated with an ad

hoc design, we have designed the VECPAV platform to enable the rapid development and

deployment of autonomous aerial vehicles. There are two major components to the archi-

tecture, an integrated HW/SW system for rapid and code generation and distribution,

and a hybrid-system/model-based design methodology for verification and generation of

vehicle coordination. Both components are highly automated, reducing the burden on

programmers and hastening the pace of design, development and implementation. The

hybrid systems/model-based design for development and verification was detailed in the

Chapter IV. In this chapter we give an overview of the integrated programming environ-

ment and system infrastructure that enables a fast, flexible and reliable design process.

The process is highlighted in Figure 72. After the design has been completed, we can

Figure 72: VECPAV automated design flow.

compile, assign targets, load and execute code automatically with just the click of a

mouse.

Highly Automated Code Development and Distribution

As the backbone of our systems integration and code development we use the RT-Lab

system from Opal-RT Technologies. Opal-RT Technologies provides a complete range

of Hardware-in-the-Loop (HIL) simulation services and products - from distributed real-

time technologies to turnkey engineering simulators - specializing in applications where

plant model fidelity and fault tolerance requirements push rapid control prototyping and
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HIL testing to their limits. The system consists of software to automate the editing,

compilation, distribution and execution of control code, in addition to the hardware

consisting of several stations (nodes) running on the QNX real-time operating system.

In addition, RT-Lab handles all the communication and synchronization between QNX

nodes. This allows the developer to focus on the control design and high level system

functionality and reduces the tedious job of compilation, translation, distribution, and

execution to simply a few clicks of a mouse. Operations are carried out through the use

of the RT-Lab main console as shown in Figure 73. From this console the developer has

Figure 73: RT-Lab main console.

at his command the ability to edit the model in Simulink, compile, assign target nodes,

distribute code, and begin control execution. All development is done in Simulink in

Matlab and there is no need to worry about C coding or low-level timing constraints.

This provides for a very streamlined and rapid design. The system hardware setup is

shown in Figure 74. The system is setup as follows. The draganflyer is equipped with

sensors that are detected by the PTI Motion Tracker. The motion tracker continuously

sends the 3-D position of all the sensors to the VZSoft/VZanalyzer programs running on

a Windows machine, Boxx. These programs calculate the position and rotation of the

vehicle with respect to a pre-configured reference frame and pass this information to the

controllers running on the QNX machines. The QNX machines get this data, derive the
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Figure 74: VECPAVs overall system setup.

appropriate correction based on the desired position and orientation, and send a signal to

the radio transmitter that is controlling the helicopter. Thus the control loop is closed.

We will now go into detail about each of the subsystems.

Vehicle System Setup

The vehicle that we focus on in this paper is the Draganfly IV. The Draganflyer IV

can be equipped with a camera or additional sensors which make it ideal as an indoor

search and rescue vehicle or for use in confined spaces where maneuverability is crucial.

Due to the affordability, ease of construction and repair and durability of the vehicle, the

popularity of the Draganflyer in the research and development of flight systems for small-

unmanned aerial vehicles is increasing. For instance researchers at Stanford [11] have

demonstrated sustained outdoor autonomous flight with a Draganflyer. A vision based

stabilization and output tracking control method for the Draganflyer was presented by

Altug et al. [1], a constraint model-based predictive controller for longitudinal and lateral

trajectory control is derived by Cheng et al. [5] and modeling of the Draganflyer is shown

by McKerrow [23].
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The Draganflyer is designed as an integrated flight vehicle. Onboard electronics map

the radio transmitter commands to changes in rotor speed in addition to providing ad-

ditional stability functions. The remote control system consists of a 4-channel Futaba

R©transmitter, using a conventional FM control signal. The Draganflyer has all the ma-

neuverability of a normal helicopter. It solves the induced moment problem by rotating

two sets of rotors clockwise and two sets counter-clockwise. Let the rotors be numbered

clockwise 1 through 4, starting with the front rotor. Clockwise (counterclockwise) yaw

is produced by increasing(decreasing) rotors 2,4 and decreasing(increasing) rotors 1,3.

In this way the altitude remains the same because the overall thrust has not changed.

Roll (pitch) is produced by varying speeds on left/right (front/back) rotors. Additional

thrust can be generated by increasing all rotors equally. This is depicted in Figure 75.

The led markers that perform the localization are powered by the same onboard battery

Figure 75: Draganfly motion generation.

used to power the Draganflyer. The onboard sensor system consists of the led markers,

a receiver and a control module that receives commands from the PTI tracking system
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when enabled through the use of the VZSoft program. The system is completely wireless

and the receiver and control module fit neatly onboard next to the Draganflyer battery.

The marker setup is shown in Figure 76.

Figure 76: Draganfly marker setup.

Motion Tracking System

Localization of the helicopter vehicles is done using an active-optical motion capture

system originally designed to track human motion. The PTI motion tracking system,

developed by Phoenix Technologies Inc., repeatedly captures the 3D positions of led

markers affixed to the helicopter. The 3D position of each marker is processed to provide

position and orientation of the helicopter with an update rate of 100 Hz.

VZSoft

There are two user interfaces provided as part of the PTI system. The first is VZSoft,

in which the operator can set the world coordinate frame and enable individual markers

for tracking. VZSoft also permits the real-time capture of motion data for later playback

and analysis. The user screen is shown in Figure 77. In Figure 77 in the left window

pane, we can see the two sets of markers associated with two helicopters. In order to get

the 3-axis rotation information, we need at least three markers attached to the helicopter.
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Figure 77: PTI VZSoft graphical user interface.

In our case we use four markers, aligned with the struts of the helicopter as can be seen

in Figure 77.

VZAnalyzer

The second user interface is the VZAnalyzer program, in which a rigid body repre-

sentation is created by selecting markers that are currently enabled. In addition to the

3-axis rotation, we also obtain the position of the center of the rigid body. The VZAn-

alyzer user screen is shown in Figure 78. Visible in the user window are the coordinate

reference frames assigned to each rigid body and also the world coordinate frame (all

in North-East-Down configuration). Rotational units are in degrees and position coor-

dinates are in millimeters. From this screen the user can also zoom in, zoom out, pan

and rotate to change the viewing perspective. In addition, multiple rigid bodies can be

created which allows us to easily scale the project to include many vehicles. The motion

tracking and display is done in real-time and therefore movements of the helicopter can

be seen simultaneously on the user screen.

103



Figure 78: PTI VZAnalyzer graphical user interface.

Matlab Control Design

Our control design is done in Simulink. In order to obtain the rigid body data in

Matlab from VZAnalyzer we use an S-function. This provides an array containing position

and rotation values for as many objects have been created in VZAnalyzer. The top-level

Simulink model for a two-controller implementation is shown in Figure 79. Since we

have two helicopters, the model consists of two controller system blocks, SM Control

and SS Control 2, two sending blocks SS Send1 and SS Send2, and the user console

SC Control. At execution time, the control and sending blocks reside on the QNX

nodes, while the console block runs on a windows machine (BOXX) running the PTI

motion tracking software. Target node assignment is left to the user. After connecting

to the model in Figure 79 via the RT-Lab main console, we can compile, distribute, and

execute the real-time code. The deployment is shown in Figure 80.
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Figure 79: Top level controller Simulink model.

Figure 80: Code deployment stage.
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CHAPTER VI

CONCLUSION

Conclusions

In this thesis, a method for the coordination and control of multiple autonomous

robots is presented using a hybrid systems based design and a model-based approach. It

has been shown that motion commands based on a set of specifications can be generated

for the real-time system. Furthermore, these motion commands have been verified with

a model checker to meet certain specifications by using a timed automata to represent

the real-time system thus guaranteeing that the specifications will hold. We design the

system hierarchically using information about the top and bottom level in order to “meet-

in-the-middle.” At the lowest level, we obtain a discrete-time linear model by capturing

input-output data and performing system identification and an Extended Kalman Filter

(EKF) to generate estimates of the states for filtering and feedback control purposes. At

the highest level we design a timed automaton that can be checked for certain safety and

performance specifications. Connecting these levels is a hybrid automata that represents

the discrete modes and continuous dynamics of the real-time system and is bisimular to

the timed automata. Therefore we can guarantee that the if the specifications hold for

the timed automata, they will hold for our hybrid system.

Summary of Contributions

1. We demonstrated that we can represent a real-time control application by modeling

it as a hybrid system. By proper construction, there exists a bisimular timed

automata by which we guarantee certain real-time performance specifications.

2. We demonstrate the use of combined linear and nonlinear controllers using the

results of a system identification process and a Kalman Filter for state estimates.
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3. We show how an Extended Kalman Filter can be constructed to estimate the states

of a system whose model is described by both nonlinear continuous-time and linear

discrete-time linear dynamic equations.

4. We demonstrate the model based design for bridging the gap between high-level

mission objectives often specified in a formal language and low level dynamic system

whose behavior is often described by continuous-time dynamic equations.

5. We construct and demonstrate a method for the rapid development and deployment

of embedded system designs.

Future Work

There are many ways in which this research could be extended and improvements on

the project made.

1. The project can be extended to include swarms of vehicles flying in a virtual environ-

ment with obstacles and boundaries. Complex mission objectives such as formation

configuration and mass vehicle transit could be incorporated in the mission speci-

fication. It will be interesting to see how the system performs with the number of

vehicles scaled up.

2. The generation of motion commands is currently produced via the verification

process offline and then transferred to the system at run-time. This should be

automated so that commands can be generated in real time given a changing en-

vironment and the occurrence of unforseen events. This will however, involve the

development of a more complex model to represent the physical environment.

3. Although the controller we have developed performs adequately for current oper-

ations, it is possible that more robust and effective controller could be developed

using modern control theories. As of this writing, frequent calibration of angle off-

sets and trim values is needed, or the the helicopter exhibits a slight steady state

position offset. This could be addresses using a model-based predictive controller
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to adjust to changes in the environment and changes in the vehicle dynamics as the

helicopter is flying.

108



APPENDIX A

SYMBOLS

m(kg) : Total mass of the robot

g(Nm/s2) : Acceleration due to gravity, g = 9.81m/s2

p(m) : Position∗ of c.g., p = [px py pz]
T p ∈ R3

v(m/s) : Velocity∗ of c.g., v = [vx vy vz]
T v ∈ R3

Θ(rad) : Orientation∗ (Euler angles), Θ = [φ θ ψ]T Θ ∈ S3

φ(rad) : Euler roll angle φ ∈ S
θ(rad) : Euler pitch angle θ ∈ S
ψ(rad) : Euler yaw angle ψ ∈ S
ωb(rad/s) : Body angular velocity ω = [ωb

x ωb
y ωb

z]
T ωb ∈ R3

T (N) : Thrust acting along body z-axis T ∈ R
R(Θ) : Rotation matrix R ∈ SO(3)

Ψ(Θ) : Mapping function Ψ : S3 → R3×3

xm : ΣI state vector

xm[k + 1] = Axm[k] + BūI [k] xm ∈ Rnm

uI : Tx input uI = [u1 u2 u3 u4]
T u ∈ [0, 255]4

u1(byte) : Radio Tx ailerons signal (roll) u1 ∈ [0, 255]

u2(byte) : Radio Tx elevator signal (pitch) u2 ∈ [0, 255]

u3(byte) : Radio Tx throttle signal (throttle) u3 ∈ [0, 255]

u4(byte) : Radio Tx rudder signal (yaw) u4 ∈ [0, 255]

ΣI : Inner System

ΣO : Outer System

ūI : ΣI input ūI = (uI − uscale)/uoffset ūI ∈ [−1, 1]4

ȳm : ΣI output ȳm = Cxm = [ȳm1 ȳm2 ȳm3 ȳm4]
T ȳm ∈ [−1, 1]4

yI : ΣI output yI = [ωT T ]T yI ∈ R4

∗ : relative to inertial frame
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xO : ΣO state xO = [pT vT ΘT xT
m]T xO ∈ R6 × S3 × Rn

uO : ΣO input uO = [pT
d ψd]

T uO ∈ R3 × S
yO : ΣO output yO = [pT ψ]T yO ∈ R3 × S
nm : Inner system model order

Ts(s) : Fixed sample time interval Ts ∈ R
EKF Variables

z : EKF measurement vector z = [pT ΘT ]T zF ∈ R3 × S3

x(k) : Augmented State at time t = tk, x = [xT
OxT

I ]t x ∈ R6 × S3 × Rnm

x̂(k|k) : Estimate of x(k) at time t = tk x ∈ R6 × S3 × Rnm

fO(x, u) : Outer system dynamics fO ∈ R6 × S3 × Rnm

hO(x) : Outer system measurement hO ∈ R3 × S
FxO

: Jacobian (w.r.t x) from fO Fx ∈ R9×9

FuO
: Jacobian (w.r.t u) from fO Fu ∈ R9×4

HxO
: Jacobian (w.r.t x) from hO Hx ∈ R6×9

HuO
: Jacobian (w.r.t u) from hO Hu ∈ R6×6

Φ(k + 1, k) : Parameter for augmented state Φ ∈ R(9+nm)×(9+nm)

Ψ(k + 1, k) : Parameter for augmented state Ψ ∈ R(9+nm)×4

ΦO(k + 1, k) : Parameter for outer system ΦO ∈ R9×9

ΨO(k + 1, k) : Parameter for outer system ΨO ∈ R9×4

R(k + 1) : Measurement error covariance R ∈ R6×6

Q(k + 1) : System noise covariance Q ∈ R(9+nm)×(9+nm)
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APPENDIX B

SYSTEM IDENTIFICATION SPECIFICS

System Identification Variables

The variables used during system identification are shown in Table B.

Table B.1: Variables Used in the System Identification

System ID Variables

Data
Acquisition

u ∈ [0, 255]4 u = [u1 u2 u3 uT
4 Tx Channels

p ∈ R3 p = [px py pz]
T Position

Θ ∈ S3 Θ = [φ θ ψ]T Euler Angles
∆ ∈ R ∆ = .022s Time Step
Tf ∈ R+ t ∈ [0, Tf ] Acq. Duration

Data
Processing

v ∈ R3 v = ṗ Spatial Velocities
a ∈ R3 a = v̇ Spatial Acceleration

ωb ∈ R3 ωb = Ψ−1(Θ)Θ̇ Body Ang. Velocities
T ∈ R T Thrust

SID of
Inner
System

u ∈ [0, 255]4 u = [u1 u2 u3 u4]
T SID Input

y ∈ R4 y = [ωb
x ωb

y ωb
y T ]T SID Output

k ∈ [2, K − 2] K = Tf/∆ Step Index

In computing the trim values, we consider the following conditions:

1. Rigid body subject to body forces f b ∈ R3 and torques τ b ∈ R3 applied at the

center of mass.

2. The trim conditions (xe ∈ R3, ue ∈ [0, 255]4) are derived when f b(xe, ue) = 0,

τ b(xe, ue) = 0. Using the Newton-Euler equations leads to the following criteria for
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evaluating the trim conditions:

a ∼= 03

ω̇b ∼= 03

ωb ∼= 03

We let B(0, ε) ∈ R3 be a ball of radius ε centered at the origin, so that for our analysis:

a ∈ B(0, ε1)

ω̇b ∈ B(0, ε2)

ωb ∈ B(0, ε3)

where ε1 > 0, ε2 > 0 and ε3 > 0. The trim conditions are determined via experimentation.

Jacobian Matrices

Jacobian matrices for linearizing about the nominal state are given as

Fxo =




∂ṗ
∂p

∂ṗ
∂v

∂ṗ
∂Θ

∂v̇
∂p

∂v̇
∂v

∂v̇
∂Θ

∂Θ̇
∂p

∂Θ̇
∂v

∂Θ̇
∂Θ




where

∂ṗ

∂p
=




0 0 0

0 0 0

0 0 0




,
∂ṗ

∂v
=




1 0 0

0 1 0

0 0 1




,
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∂ṗ

∂Θ
=




0 0 0

0 0 0

0 0 0




,
∂v̇

∂p
=




0 0 0

0 0 0

0 0 0




,
∂v̇

∂v
=




0 0 0

0 0 0

0 0 0




,

∂v̇

∂Θ
=




−T
m

(−sφsθcψ + cφsψ) −T
m

(cφcθcψ) −T
m

(−cφsθsψ + sφcψ)

−T
m

(−sφsθsψ − cφcψ) −T
m

(cφcθsψ) −T
m

(cφsθcψ + sφsψ)

−T
m

(−sφcθ) −T
m

(−cφsθ) 0




,

∂Θ̇

∂p
=




0 0 0

0 0 0

0 0 0




,
∂Θ̇

∂v
=




0 0 0

0 0 0

0 0 0




,

∂Θ̇

∂Θ
=




ωycφtθ − ωzsφtθ ωysφ/c2θ + ωzcφ/c2θ 0

−ωysφ− ωzcφ 0 0

ωycφ/cθ − ωzsφ/cθ ωysφtθ/cθ + ωzcφtθ/cθ 0




,

and

Fuo =




∂ṗ
∂ω

∂ṗ
∂T

∂v̇
∂ω

∂v̇
∂T

∂Θ̇
∂ω

∂Θ̇
∂T



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where

∂ṗ

∂ω
=




0 0 0

0 0 0

0 0 0




,
∂v̇

∂ω




0 0 0

0 0 0

0 0 0




,
∂Θ̇

∂ω
= Ψ(Θ),

∂ṗ

∂T
=




0

0

0




,
∂v̇

∂T




−1
m

(cφsθcψ + sφsψ)

−1
m

(cφsθsψ − sφcψ)

−1
m

(cφcθ)




,
∂Θ̇

∂T
=




0

0

0




and

Hxo =




∂pI

∂p
∂pI

∂v
∂pI

∂Θ

∂Θ
∂p

∂Θ
∂v

∂Θ
∂Θ


 =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




∂v̇

∂xi

=




yscale4c41
1
m

(cφsθcψ + sφsθ) . . . yscale4c46
1
m

(cφsθcψ + sφsθ)

yscale4c41
1
m

(cφsθsψ − sφcψ) . . . yscale4c46
1
m

(cφsθsψ − sφcψ)

yscale4c41
1
m

(cφcθ) . . . yscale4c46
1
m

(cφcθ)




,

∂Θ̇

∂xm

=




sc1c11 + sc2c21sφtθ + sc3c31cφtθ . . . sc1c1n + sc2c2nsφtθ + sc3c3ncφtθ

sc2c21cφ− sc3c31sφ . . . sc2c2ncφ− sc3c3nsφ

sc2c21sφ/cθ + sc3c31cφ/cθ . . . sc2c2nsφ/cθ + sc3c3ncφ/cθ




,
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∂ẋi

∂p
=




0 0 0

...
...

...

0 0 0




,
∂ẋm

∂v
=




0 0 0

...
...

...

0 0 0




∂ẋm

∂Θ
=




0 0 0

...
...

...

0 0 0




,
∂ẋm

∂xm

=




A11 . . . A1nm

...
. . .

...

Anm1 . . . Anmnm




,

EKF Computation Steps

1. Given T , Q, R, x̂(0|0), P (0|0)

For each k:

2. Compute Fx, Fu

3. Compute Φ(k + 1, k), Ψ(k + 1, k)

(a) Φ(k + 1, k) = I + Fx[x̂(k|k), u∗(tk)]T

(b) Ψ(k + 1, k) = Fu[x̂(k|k), u∗(tk)]T

4. Prediction equation

(a) x̂(k + 1|k) = {I + Fx[x̂(k|k), u∗(tk)]T}x̂(k|k) + FuT [x(k|k, u∗(tk)])

5. Compute P (k + 1|k)

(a) P (k + 1|k) = Φ(k + 1, k)P (k|k)ΦT (k + 1, k) + Q

6. Compute Hx

7. Update Kalman gain matrix K

(a) K(k + 1) = P (k + 1|k)HT
x {HxP (k + 1|k)HT

x + R]}−1

8. Update error covariance matrix
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(a) P (k + 1|k + 1) = [I −K(k + 1)Hx]P (k + 1|k)

9. Correction equation

(a) x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1){z(k + 1)− h[x̂(k + 1|k), u∗(tk+1)]}
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