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CHAPTER I 
 

INTRODUCTION 

 

The following chapter provides an overview of the state of the field in coelomic 

vasculogenesis and mesothelial development prior to the completion of the research 

presented herein. Though the research presented in this volume focuses on the 

intestine, the foundational concepts of these studies are based in cardiac research which 

will be reviewed in detail.  

 

Adult Mesothelium: Structure and Function 

In the adult, mesothelium is a simple squamous epithelium that forms the surface 

layer of all coelomic organs. Typically, mesothelia are found in conjunction with an 

underlying thin connective tissue layer in a serosal membrane. Serosal membranes are 

named regionally based on the organ or body cavity they line: epicardium (heart), 

parietal pericardium (pericardial cavity), visceral pleura (lungs), parietal pleura (pleural 

cavities), visceral peritoneum (abdominal viscera), and parietal peritoneum (abdominal 

cavity). Despite the varied organs and compartments that mesothelium envelops, its 

structure remains consistent throughout the body (Di Paolo et al., 2007; Herrick and 

Mutsaers, 2004; Michailova and Usunoff, 2006). 

The major structural features of mesothelium reflect its epithelial nature. 

Mesothelial cells are polarized with apical surface modifications including microvilli and 

cilia (Bird, 2004) and have an underlying basement membrane (Margetts et al., 2005; 

Michailova and Usunoff, 2006). Tight junctions, evidenced by the localization of ZO-1 

(Foley-Comer et al., 2002), create a diffusion barrier between the coelomic space and 

the submesothelial connective tissue. E-cadherin (Lopez-Cabrera et al., 2006; Margetts 
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et al., 2005) and cytokeratin [mostly subtypes 8, 18, and 19] (Connell and Rheinwald, 

1983; Mackay et al., 1990) confer further cell-cell adhesion and structural support. 

Interestingly, mesothelial cells also express N-cadherin (Davidson et al., 2001; Han et 

al., 1997; Pelin et al., 1994) and vimentin (Connell and Rheinwald, 1983; Mackay et al., 

1990) proteins classically considered to be mesenchymal markers though the 

significance of this is not known.  

The primary function of mesothelium in the adult is to form a non-adhesive 

surface for the movement of coelomic organs against each other and the body wall. 

Mesothelial cells in all body cavities secrete an apical coating composed of 

glycosamineglycans [primarily hyaluronan] (Yung et al.), proteoglycans (Yung and Chan, 

2007c; Yung et al., 1995) and phospholipids including phosphatidylcholine (Beavis et al., 

1994), the major component of pulmonary surfactant (Yung and Chan, 2007a). This 

layer provides a non-adhesive surface for organ movement. Other functions include 

regulation of the ionic and cellular components of coelomic fluid and regulation of 

inflammation and fibrinolysis (Cheong et al., 2001; Yung and Chan, 2007b).  

In the developing embryo, mesothelia are essential for organogenesis. 

Mesothelial layers serve as important signaling centers and as a cellular progenitor 

population for coelomic organs. Mesothelial derivatives include vascular mural cells and 

fibroblasts. The origins and development of mesothelial layers are discussed in detail 

below. 

 

Coelomic Organogenesis 

 Prior to gastrulation, the early avian embryo is composed of two layers of cells, 

the dorsal epiblast and ventral hypoblast, joined only at the margin lying on top of a large 

yolk sac (Figure 1.1 A). The embryo proper will be formed entirely by cells of the epiblast 

while the hypoblast gives rise to extraembryonic tissues. Gastrulation begins with a 
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Figure 1.1 Avian gastrulation and organogenesis. A) The avian blastoderm 
composed of epiblast (EB) and hypoblast (HB) sits on top of the large yolk sac. B) 
During gastrulation, single epiblast cells migrate in through the primitive streak (PS). 
Endodermal cells move downward and outward to replace the hypoblast. Mesodermal 
cells populate the cavity. C) The mesoderm forms the midline notochord (N), paraxial 
mesoderm which generates somites (S), intermediate mesoderm (I) and lateral plate 
mesoderm which divides into somatic (So) and splanchnic (Sp) mesoderm. The lateral 
cavities (LC) are located between the lateral plate mesoderm layers. An endothelial 
plexus (EP) lies between the splanchnic mesoderm and endoderm. D) In the majority of 
the coelomic cavity, the endoderm is enveloped by splanchnic mesoderm to generate 
the gut tube. E) The heart is generated by bringing the two sides of cardiogenic 
splanchnic mesoderm together at the midline to form the myocardium (M). The 
endoderm is displaced dorsally. The endothelial plexus forms the endocardium (EC). 
CC, coelomic cavity; DA, dorsal aorta, E, endoderm; EB, epiblast; EC, endocardium; EP, 
endothelial plexus; HB, hypoblast; I, intermediate mesoderm; LC, lateral cavity; M, 
myocardium; N, notochord; NT, neural tube; PS, primitive streak; S, somite; So, somatic 
mesoderm; Sp, splanchnic mesoderm.  
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thickening in the epiblast called the primitive streak that initially forms at the posterior 

region of the future embryo. The primitive streak gradually elongates from posterior to 

anterior led by Hensen’s node, a structure analogous to the amphibian blastopore. 

Single cells from the epiblast migrate in through the primitive streak and Hensen’s node 

to generate the endoderm and mesoderm (Figure 1.1 B). The endoderm migrates first 

and takes the place of the hypoblast cells. The mesoderm follows and populates the 

space between the epiblast and endoderm. Once the primitive streak has reached its 

most anterior location, it regresses back along the same axis, anterior to posterior. 

Gastrulation is complete once Hensen’s node has reached the tail portion of the embryo. 

The embryo now consists of three germ layers: dorsal ectoderm, middle mesoderm, and 

ventral endoderm. 

In the area of the future coelomic cavity, the mesoderm is divided into regions 

along the medial-lateral axis. At the midline is the notochord, an important signaling 

center in the embryo.  The paraxial, intermediate, and lateral plate mesoderm segments 

extend from the midline on both the right and left sides of the embryo (Figure 1.1 C). The 

paraxial mesoderm will generate the somites. The intermediate mesoderm contributes to 

the kidneys and gonads. The lateral plate mesoderm forms the body wall musculature 

and the mesodermal components of all the coelomic organs. 

 Organogenesis begins with division of the lateral plate mesoderm into two layers. 

The dorsal layer, termed somatic mesoderm, associates with the overlying ectoderm. 

The ventral layer, called splanchnic mesoderm, is closely associated with the underlying 

endoderm. The space between the two layers of lateral plate mesoderm generates the 

future coelomic cavity bounded by mesoderm. Lateral folding of the embryo brings the 

right and left lateral plates and the underlying endoderm together in the midline 

generating a tube. Loss of the ventral mesentery unites the right and left coelomic 

cavities into a common coelom. Throughout the majority of the coelomic cavity, the 
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splanchnic mesoderm envelops the endoderm (Figure 1.1 D). However, the heart tube 

forms by displacing the endoderm dorsally as the lateral splanchnic mesoderm layers 

are brought together (Figure 1.1 E).   

 The tube formed of endoderm and splanchnic mesoderm generates the gut tube 

including the esophagus, crop, proventriculus, ventriculus, small and large intestine and 

cloaca of the adult bird. The lungs, liver, and pancreas are formed by endodermal buds 

from the gut tube that associate with the surrounding splanchnic mesoderm. The spleen 

is a mesodermal only outgrowth that forms within the dorsal mesentery of the gut tube. 

Thus, the majority of coelomic organs are formed from a combination of endoderm and 

mesoderm. The heart and spleen are the only exceptions. 

 

Coelomic Vasculogenesis 

The vasculature has long been a focus of developmental biology studies. In 

1980, Meier performed a scanning electron microscopy study of the early avian embryo 

and demonstrated that as early as Hamburger and Hamilton stage (HH) 10, an extensive 

vascular plexus resides between the splanchnic mesoderm and endoderm (Meier, 

1980). Since then, antibodies have been developed that recognize endothelial antigens. 

In 1996, Sugi and Markwald utilized the antibody QH1, which recognizes a cell surface 

antigen that appears early in endothelial differentiation of the quail, to trace the 

development of the vascular system. They found that an endothelial plexus is first 

observed in development within the region of the cardiogenic splanchnic mesoderm prior 

to fusion of the bilateral heart fields. Endothelial cells were later noted within the 

extracardiac region in communication with the cardiac plexus. The endothelial cells were 

positioned uniformly between the splanchnic mesoderm and endoderm in the same 

location as Meier observed (Meier, 1980; Sugi and Markwald, 1996). A similar 
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developmental pattern was observed in the mouse with the endothelial plexus first 

observed in the cardiogenic regions (Drake and Fleming, 2000). 

 

Endocardium 

 The heart has two distinct endothelial populations: the endocardium lining the 

lumen of the heart and the endothelium of the coronary vasculature. The coronary 

vasculature will be described in depth below. The initial vascular plexus described above 

observed in the cardiogenic region forms the endocardium. As the bilateral heart fields 

unite, the endocardial cells are brought together at the midline to form the luminal lining 

of the heart tube (DeRuiter et al., 1993).  

The origin of the endocardial progenitor cells, however, remains controversial. 

Genetic lineage tracing studies in the mouse have suggested that the endocardium and 

myocardium arise from a multipotent progenitor within the cardiogenic splanchnic 

mesoderm (Laugwitz et al., 2008; Misfeldt et al., 2009). In the avian embryo, cell lineage 

tracing studies have long suggested an alternative possibility. Single cells within the 

epiblast of chick embryos were tagged with a retrovirus prior to ingression through the 

primitive streak. The embryos were then incubated until after heart tube formation. 

Labeled myocardial or endocardial clonal cell clusters were identified but an individual 

clone never contained both cell types (Cohen-Gould and Mikawa, 1996; Wei and 

Mikawa, 2000). These studies indicated the endocardial and myocardial lineages 

diverged prior to gastrulation and that the cardiogenic splanchnic mesoderm housed two 

separate progenitor populations. Recently Milgrom-Hoffman et al. demonstrated by live 

imaging in avian embryos that cardiac endocardium was derived from ingrowth of 

endothelial cells of the extracardiac plexus into the cardiac crescent. The cardiac and 

extracardiac endothelial plexuses remained in communication throughout this process. 

Endothelial cells transplanted into the cardiogenic region gave rise to endocardial but not 
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myocardial progeny. Furthermore, through murine lineage tracing studies, the authors 

demonstrated heterogeneity among endocardial populations and suggested at least a 

subset of endocardial cells in the mouse were derived from endothelial cells (Milgrom-

Hoffman et al., 2011). Thus, in the avian embryo it appears the endocardial and 

myocardial lineages diverge prior to ingression of cells through the primitive streak. The 

endocardium is then derived from the endothelial plexus that resides between the 

splanchnic mesoderm and endoderm of the embryo. Further research is needed to 

clarify the origin of endocardium in the mouse. Currently, a multipotent cardiogenic 

progenitor and/or a distinct endothelial progenitor are possible. 

 

Other coelomic organs 

Though the endothelial plexus of the embryo is first observed between the 

mesoderm and endoderm near or within the cardiogenic region, this plexus is later 

distributed throughout much of the embryo as demonstrated by Meier (Meier, 1980). 

Through generation of chick-quail chimeras, Pardanaud et al. determined that the 

splanchnopleure (combination of splanchnic mesoderm and endoderm) had extensive 

vasculogenic potential while the somatopleure (combination of somatic mesoderm and 

ectoderm) was exceedingly limited in its ability to generate endothelial cells. Early quail 

organ rudiments of the gut tube, pancreas, lung, and spleen were transplanted into the 

coelomic cavity of chick embryos. All the transplanted fragments generated extensive 

vascular networks within the grafted tissue and established a connection with the host. 

In contrast, transplanted limb buds (derived from the somatopleure) were unable to 

generate a vasculature; instead, host vessels invaded and populated the grafts. At the 

time of tissue isolation for transplantation, an endothelial plexus was already present 

between the endoderm and mesoderm while limited endothelial cells were present within 

the somatopleure (Pardanaud et al., 1989). Later studies by the same group 
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demonstrated the endoderm promoted endothelial formation and invasion of the host 

while the ectoderm was inhibitory accounting for the variable vasculogenic potential 

(Pardanaud and Dieterlen-Lievre, 1999). Thus, the endothelial plexus associated with 

the splanchnic mesoderm and endoderm that gives rise to the endocardium has 

extensive vasculogenic potential in multiple coelomic organs.  

In-depth studies of vascular formation and remodeling in specific organs offer 

further detail on the origins of endothelial cells to coelomic organs. A study of avian 

development revealed that in the lungs, endothelial cells surrounded the endodermal 

bud as it first formed. This plexus was then remodeled to generate the entirety of both 

the pulmonary and bronchial vasculatures. The investigators in the study did not observe 

sprouting from the dorsal aorta, atria, or cardinal veins throughout this process (DeRuiter 

et al., 1993). Expansion of the pulmonary plexus in the avian embryo has been 

demonstrated to occur through both sprouting angiogenesis and vasculogenesis from 

the surrounding mesenchyme (Anderson-Berry et al., 2005; Makanya et al., 2007). To 

clarify terminology, angiogenesis is defined as growth from pre-existing endothelial 

vessels while vasculogenesis is the de novo differentiation of endothelial cells (Patel-

Hett and D'Amore, 2011). Angiogenesis from the primary endothelial plexus and 

vasculogenesis from the periphery have also been demonstrated to be a major 

mechanism of pulmonary vascular formation in the mouse (deMello et al., 1997; 

Schwarz et al., 2009). Interestingly, the primary pulmonary endothelial plexus of the 

mouse lacked arterial-venous fate specification suggesting extensive plasticity exists in 

the early plexus (Schwarz et al., 2009).  

The murine liver bud forms in a similar fashion as the lung bud. Matsumoto and 

colleagues demonstrated that endothelial cells formed a plexus around the endodermal 

cells that will generate the liver bud and loss of endothelium resulted in abnormal liver 

morphogenesis (Matsumoto et al., 2001). In the human, it was observed that the 
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vasculature of the liver was derived from remodeling of this primitive vascular plexus. 

The initial endothelial plexus expanded via angiogenesis to reach the outer periphery of 

the liver with some additional vasculogenesis from the surrounding mesenchyme 

contributing after the initial remodeling (Gouysse et al., 2002). 

The intestinal splanchnopleure is continuous with the yolk sac which is the site of 

an extensive vasculature. Bilateral vitelline arteries and veins supply both the forming 

gut tube and the yolk sac. The initial vascular plexus present between the endoderm and 

splanchnic mesoderm extends from the embryo proper into the yolk sac. Noble, et al. 

demonstrated that this plexus lacked venous or arterial specification. Through live 

imaging in avian embryos, they observed that capillaries of the primitive endothelial 

plexus fused to generate first the vitelline arteries and then the vitelline veins. 

Interestingly, the venous circulation was subsequently enlarged by addition of arterial 

sprouts that broke off from the circulation creating small pockets of blood before 

reconnecting to the venous side. Blood flow was essential for both arterial and venous 

patterning and specification (le Noble et al., 2004). Thus, remodeling of the primitive 

endothelial plexus appears to be the major mechanism of vascular formation in the 

intestine. 

 Taken together, these studies demonstrate that the early endothelial plexus 

present between the splanchnic mesoderm and endoderm is remodeled within each 

coelomic organ individually to generate the majority of the vasculature of that organ.  

There is significant plasticity throughout the process of remodeling and the initial plexus 

lacks arterial and venous specification. Avian lineage tracing studies suggest these 

endothelial cells may be specified even prior to gastrulation (Cohen-Gould and Mikawa, 

1996; Wei and Mikawa, 2000). A potential and notable exception to the above method of 

coelomic vasculogenesis is found within the coronary circulation. The primary 

endothelial plexus within the heart tube generates the endocardium but is not thought to 
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contribute to the coronary circulation in any significant way. Instead, the coronary 

vasculature is formed through de novo vasculogenesis requiring the presence of the 

cardiac mesothelium (Katz et al., 2012; Riley and Smart, 2011). 

 

Cardiac Mesothelial Development 

 

Discovery of the proepicardium 

Development of mesothelium has been studied almost exclusively in the heart. In 

1969, Francis Manasek performed one of the first studies that led to our current 

understanding of cardiac mesothelial development. Through examination of the early 

heart tube with light and transmission electron microscopy, Manasek concluded that 

epicardial cells originated outside of the initial myocardial layer though did not identify a 

source. This observation contradicted the prevailing dogma of the day that stated that 

the splanchnic mesoderm of the heart tube, termed the “epi-myocardium”, contained 

both mesothelial progenitors and myoblasts (Manasek, 1969). Manasek also noted that 

coronary blood vessels were absent from the early myocardium and suggested 

epicardium may play a role in their development (Manasek, 1969; Manasek, 1970). Nine 

years later, with the use of scanning electron microscopy, Ho and Shimada identified villi 

projecting from the region of the sinus venosus and concluded these cells were the 

origin of the epicardium (Ho and Shimada, 1978). These villous projections, that would 

later be termed the proepicardium (PE), contacted the heart and migrated as a sheet to 

envelop the myocardium [Figure 1.2 A-B]; (Ho and Shimada, 1978). In 1992, Mikawa 

and Fischman demonstrated that coronary blood vessels form by in situ vasculogenesis 

and not by angiogenic sprouts from the aorta. A few years later, Mikawa and Gourdie 

definitively identified the PE as an origin of vascular smooth muscle cells and 

endothelium of the coronary blood vessels as well as fibroblasts of the heart (Mikawa 
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Figure 1.2 Development of the proepicardium. A) The PE forms near the liver bud 
(LB) and sinus venosus (SV) of the heart (H) on the dorsal body wall of the embryo. B) 
Proepicardial villi cross the pericardial cavity to contact the myocardium (M) and migrate 
out over the myocardium to establish the epicardium (Ep). C) Epicardial cells delaminate 
and migrate into the myocardium to give rise to fibroblasts (F) and blood vessels (BV). 
BV, blood vessel; EC, endocardium; F, fibroblast; H, heart tube; LB, liver bud; M, 
myocardium; PE, proepicardium; SV, sinus venosus. 
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 and Gourdie, 1996). However, as mesenchymal cells were present within the PE when 

it first formed, it was unclear whether the mesenchymal cells migrated with the epithelial 

PE to give rise to the fibroblasts and blood vessels or if mesothelial cells directly 

contributed to the stroma of the heart. It was subsequently discovered that epicardial 

cells underwent epithelial-to-mesenchymal transition (EMT) after reaching the heart to 

generate the cellular derivatives observed by Mikawa and Gourdie  [Figure 1.2] 

(Dettman et al., 1998). 

These studies established the fundamental concepts of epicardial development 

including an exogenous origin of mesothelial progenitors, migration as an epithelial 

sheet, delamination and invasion into the myocardium, and differentiation into vascular 

cells and fibroblasts (Figure 1.2). Since that time, epicardial research has expanded 

enormously. Topics of particular relevance to the following studies include vasculogenic 

potential, origin and induction of the PE, and molecular cross-talk with the myocardium. 

 

Origin of coronary endothelium 

As described above, it has been clearly demonstrated that the coronary arteries 

do not sprout from the aorta. Rather, an endothelial plexus forms just below the 

epicardium and coalesces to form the coronary arteries. These vessels then pierce the 

aorta to establish blood flow (Eralp et al., 2005). While the proepicardial origin of 

vascular smooth muscle cells and cardiac fibroblasts is well accepted, there is some 

controversy over whether mesothelial cells contribute cells to the coronary endothelium. 

Other proposed origins for coronary endothelial cells include the hepatic endothelium 

(Lie-Venema et al., 2005; Poelmann et al., 1993; Viragh et al., 1993), sinus venosus 

(Red-Horse et al., 2010; Vrancken Peeters et al., 1997), and endocardium (Katz et al., 

2012; Red-Horse et al., 2010).  
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Isolated quail proepicardia transplanted into the pericardial cavities of host chick 

embryos have been documented to give rise to coronary endothelial cells in multiple 

studies (Guadix et al., 2006; Perez-Pomares et al., 2002). However, both mesothelium 

and mesenchymal cells of the PE are transplanted in these experiments. Static images 

of sections through the region of the avian PE appear to demonstrate sprouting of 

endothelial cells from both the sinus venosus and hepatic endothelium into the 

proepicardial mesenchyme (Viragh et al., 1993; Vrancken Peeters et al., 1997). 

Poelmann et al found that the vasculogenic potential of transplanted PE was entirely 

dependent on co-transplantation with a piece of the hepatic primordium. Thus, the 

authors concluded mesothelial cells of the PE did not give rise to endothelial cells but 

rather the PE served as a conduit for endothelial cells of the hepatic sinusoids to reach 

the heart (Poelmann et al., 1993). The variation observed in PE transplantation 

experiments could be due to stage dependent changes if, for example, proepicardial 

mesothelial cells become progressively specialized. Additionally, endothelial progenitors 

have not been reported to localize to the PE until HH17 (Vrancken Peeters et al., 1997).  

Other studies have suggested that mesothelium gives rise directly to endothelial 

cells. A vital dye labeled applied to the quail epicardium revealed labeled coronary 

endothelial cells within the myocardium after 48 hours of development suggesting a 

direct mesothelial contribution to coronary endothelium (Perez-Pomares et al., 2002). 

Additionally, the mesothelial marker Wt1 and the endothelial marker QH1 have been 

shown to be co-expressed in a subset of proepicardial cells indicating endothelial cells 

arise from mesothelial progenitors (Ishii et al., 2009).  

The consensus in the field appears to be that the avian PE delivers at least a 

subpopulation if not the major population of coronary endothelial cells to the developing 

heart (Ishii et al., 2009; Riley and Smart, 2011). The relative contribution to endothelial 

cells from mesenchymal versus mesothelial cells of the PE is not known. The origin of 
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the mesenchymal endothelial progenitors within the PE is also not clear though they 

potentially arise from multiple sources including the sinus venosus, hepatic sinusoids, 

and proepicardial mesothelial cells.  

Murine genetic lineage tracing studies of the PE have offered additional 

conflicting data on the origin of coronary endothelium. Tbx18 and Wt1 encode 

transcription factors expressed in the PE from the earliest stages of proepicardial 

development. However, both the Tbx18 and Wt1 genetic lineages do not include cardiac 

endothelial cells (Cai et al., 2008; Zhou et al., 2008a). Thus, murine PE has been 

thought to have a very limited vasculogenic potential. 

The lack of an apparent proepicardial origin of endothelium in the mouse led 

researchers to examine other potential sources. The PE attaches to the atrioventricular 

region of the heart in close proximity to the sinus venosus and then migrates outward 

over the myocardium. The appearance of endothelial cells within the myocardium follows 

a similar pattern thought to be due to arrival and endothelial progenitors with the PE. 

Red-horse and colleagues hypothesized this pattern could alternatively be due to 

angiogenic outgrowth from the sinus venosus. On close examination, they identified 

angiogenic sprouts from the sinus venosus and through organ culture experiments 

concluded the sinus venosus was indeed a potential origin of coronary endothelium. 

They next utilized a tamoxifen inducible VE-cadherin-cre mouse line crossed with a 

Rosa26RlacZ reporter strain to trace the potential origin of endothelial cells. Tamoxifen 

was administered in low doses to induce single cell recombination between E7.5 and 

E9.5, a time when VE-cadherin was not detected in the PE but was present in the sinus 

venosus. They later identified labeled clones extending from the sinus venosus 

endothelium into the coronary endothelium. They also identified a minor potential 

contribution to coronary endothelium from the endocardium. The authors concluded the 

sinus venosus endothelium was the major source of both arterial and venous coronary 
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endothelial cells and the PE was not the origin of coronary endothelium (Red-Horse et 

al., 2010).   

Subsequent studies have added additional insights regarding the role of the PE 

in coronary development. Cossette et al. examined markers of endothelium, including 

Pecam, FLK1, and VE-cadherin, in mice through early stages of PE development. 

Notably, VE-Cadherin was identified within the PE at E9.5 (Cossette and Misra, 2011) 

suggesting the previous single cell lineage tracing studies reported by Red-Horse et al. 

could have labeled proepicardial mesenchymal cells in addition to sinus venosus 

endothelium (Red-Horse et al., 2010). Cossette and colleagues identified three different 

populations of endothelial cells within the mesenchyme of the PE: those appearing to 

sprout from the sinus venosus, those appearing to sprout from the hepatic sinusoids and 

those associated with neither the sinus venosus nor the liver and thought to be derived 

from mesothelial contributions to the mesenchyme (Cossette and Misra, 2011). In this 

regard, the murine PE actually closely resembled the avian PE with apparent 

contributions of mesenchymal endothelial cells from all three neighboring tissues (Ishii et 

al., 2009; Viragh et al., 1993; Vrancken Peeters et al., 1997). It was, however, unclear if 

these endothelial cells with the proepicardial mesenchyme subsequently migrated to the 

heart with the PE (Cossette and Misra, 2011). 

 Recently, two additional markers have been identified that label the PE, 

Scleraxis, (Scx) and Semaphorin3D (Sema3D). Interestingly, these markers identify a 

proepicardial subpopulation largely unmarked by Wt1 or Tbx18. Descendants of Scx or 

Sema3d expressing cells include epicardial cells, fibroblasts, sinus venosus 

endothelium, a minor endocardial population and importantly, coronary endothelium 

(Katz et al., 2012). Thus, similar to the avian PE, a picture has emerged in the mouse of 

a mixed population of endothelial progenitors within the PE. Endothelial cells appear to 
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migrate to and from the PE, sinus venosus, and hepatic endothelium and potentially mix 

with a minor population of the endocardium.  

 

Origin of the proepicardium 

Similar to the endothelial cells of the PE, the exact origin of the proepicardial 

mesothelial cells is still debated. The PE develops in close proximity to the liver bud and 

sinus venosus of the heart tube (Figure 1.2 A). Both hepatic mesothelium and sinus 

venous mesoderm have been described as potential origins of the PE in avian embryos 

(Dettman et al.; Ishii et al., 2007; Manner, 1992; van Wijk et al., 2009). Each of these 

proposed origins describes the same morphological location. The 3-dimensional 

morphology of the region is complex due to the looping of the heart, the presence of the 

anterior intestinal portal, the liver bud, and the continuous mesodermal lining over the 

surface of all of the structures in the area. A slight variation in the plane, level of section, 

or developmental timing demonstrates different anatomical relationships so that the PE 

locationally encompasses the region over both the sinus venosus and liver bud (Viragh 

et al., 1993). However, the proposed tissue origins also imply different potential lineages 

for the PE: either originating from coelomic mesothelium (entirely extracardiac) or 

diverging from the cardiac lineage. The lineal relationship of epicardial and myocardial 

cells is of interest in the field due to the ongoing search for a source of multipotent 

progenitor cells that may have a regenerative capacity in the adult mammalian heart 

(Laugwitz et al., 2008).  

Ishii et al. demonstrated that the avian liver bud was capable of inducing 

expression of the PE marker genes Wt1, Tbx18 and Cfc1 in competent regions of the 

lateral plate mesoderm posterior to the heart (Ishii et al., 2007). However, the molecular 

basis for the inductive capability of the liver has not yet been identified and since these 

studies relied on heterotopic transplantation, it is not known if the liver bud is necessary 
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for induction of the PE in situ. These data suggest coelomic mesothelium and the PE 

may share a molecular regulatory network. However, it is not known what normally 

regulates mesothelial differentiation throughout the remainder of the coelom (see below). 

For example, the great arteries of the heart do not derive their mesothelial lining from the 

PE. When outgrowth of the PE is inhibited, this additional mesothelial population can 

partially compensate for the lack of epicardium by forming a mesothelial layer over the 

outflow tract myocardium. However, the origin of this mesothelial progenitor population 

and the signaling mechanisms regulating its development are unknown (Gittenberger-de 

Groot et al., 2000). Until we understand mesothelial differentiation in organs other than 

the heart, it will be difficult to place epicardial development into the context of other 

mesothelial lineages.  

Other studies have suggested the avian PE arises from a common 

myocardial/epicardial progenitor residing in or near the inflow region of the heart 

(Kruithof et al., 2006; van Wijk et al., 2009). This was initially suggested by the 

observation that avian proepicardia removed from the embryo and placed in culture 

spontaneously differentiated into cardiomyocytes (Kruithof et al., 2006). Though notably, 

propepicardia transplanted in vivo into the pericardial cavity of a host embryo have not 

been observed to differentiate into cardiomyocytes (Manner, 1999; Perez-Pomares et 

al., 1997). A second study in avian embryos in support of a common 

epicardial/myocardial progenitor demonstrated that a vital dye label placed on the 

mesoderm just caudal to the cardiac inflow tract prior to PE differentiation led to labeled 

cells within both the PE and inflow tract myocardium. The region at the time of labeling 

uniformly expressed Tbx18, a proepicardially enriched gene. However, as numerous 

cells were targeted with the initial vital dye label, the authors acknowledge this technique 

could not distinguish between a single population of multipotent progenitors or a mixed 

pool of already specified epicardial and myocardial progenitors (van Wijk et al., 2009). 
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Genetic lineage tracing studies of murine cardiac development indicate major lineages of 

the heart including atrial and ventricular cardiomyocytes and the conduction system 

arise from an Islet1+ common precursor cell (Laugwitz et al., 2008). However, there is 

conflicting data as to whether the PE is derived from this Islet1+ progenitor population 

(Sun et al., 2007; Zhou et al., 2008b). Taken together, these studies indicate the PE may 

share a developmental origin with myocardium and/or coelomic mesothelium. Further 

research including single cell lineage tracing will help determine when these lineages 

diverge. 

 

Induction of the proepicardium 

The molecular signals inducing localized formation of the PE are also not yet 

clear though both bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) 

signaling are involved. BMP2 expressed by the myocardium was identified as a crucial 

regulator of epicardial villi protrusion in avian embryos. Inhibition of BMP signaling 

through induced expression of Noggin (a gene encoding a protein that binds to BMP 

ligands preventing their interaction with their receptor) in the myocardium led to 

decreased villi formation from the PE and, in 30% of cases, failure to attach to the 

myocardium. In contrast, overexpression of BMP2 by the myocardium led to increased 

villi protrusion and attachment to the heart (Ishii et al., 2010). Thus, in this study, BMP2 

promoted epicardial development. However, data from another laboratory demonstrated 

that BMP2-expressing cells transplanted within the right sinus horn of the heart inhibited 

PE differentiation. Interestingly, this effect was also seen with transplanted Noggin-

loaded beads.  Epicardial differentiation of PE explants was also inhibited with treatment 

with either BMP2 or Noggin (Schlueter et al., 2006). These data suggest that the level of 

BMP2 signaling is essential and that epicardial differentiation can be inhibited by either 

excessive or reduced BMP2. In an additional study, Kruithof et al. examined expression 
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patterns of BMP and FGF ligands in the region of the PE. They identified, among others, 

BMP2 in the myocardium and base of the PE and FGF2 throughout the PE. They then 

conducted in vitro PE differentiation assays. From these experiments, they concluded 

BMP2 expression at the base of the PE promoted myocardial differentiation at the 

expense of epicardial development. FGF2 induced epicardial differentiation and 

prevented myocardial formation (Kruithof et al., 2006). The same group perturbed BMP2 

and FGF signaling in vivo though injections of ligands or inhibitors into the yolk sac of 

chick embryos. They found that combined BMP2 stimulation and FGF inhibition led to 

failure of PE development. However, BMP2 stimulation alone had no effect on PE 

differentiation (van Wijk et al., 2009). The variable effects of BMP2 reported throughout 

these studies could be due simply to the concentration or location of the BMP2 signal. A 

signal from within the sinus horn or yolk sac presumably reaches the base of the PE 

while a myocardial signal reaches the apical surface. A single injection of a protein or 

inhibitor will also lead to a very different concentration profile than that observed with 

continuous production from either transplanted cells or transduction of resident cells. 

Additionally, it is clear the presence or absence of other signaling factors can modulate 

the observed effect. These data do demonstrate that both BMP and FGF signaling are 

likely involved in the specification and development of the PE and potentially balanced 

against one another.   

 

Signaling functions of the epicardium 

Inhibition of epicardial development either mechanically or molecularly leads to a 

spectrum of defects ranging from a thin, disorganized myocardium to necrosis, 

pericardial hemorrhaging and death of the embryo (Gittenberger-de Groot et al., 2000; 

Kwee et al., 1995; Mellgren et al., 2008; Moore et al., 1999; Tevosian et al., 2000; Yang 

et al., 1995). One of the primary functions of epicardium is to give rise to cardiac 
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fibroblasts and cells of the coronary vasculature. Thus, defects in the myocardium 

observed in epicardial deficient animals can at least partially be attributed to the lack of a 

coronary blood supply and absence of cardiac fibroblasts contributing to the expansion 

of the heart wall (Snider et al., 2009). 

Beyond a cellular contribution, molecular crosstalk between the epicardium and 

myocardium is well documented. Stuckmann, et al demonstrated the epicardium 

promoted in vitro proliferation of the myocardium. This capability was dependent on 

erythropoietin (EPO) and retinoic acid (RA) signaling through an unidentified molecular 

mediator (Stuckmann et al., 2003). In 2005, Lavine et al. identified FGF9 as a potential 

downstream mediator of the mitogenic effect of RA. Treatment of epicardial cells or 

explanted hearts with RA induced FGF9 expression in the epicardium and inhibition of 

FGF9 signaling in murine hearts led to decreased myocardial proliferation. However, 

FGF9 was expressed transiently in the epicardium encompassing only a brief period of 

myocardial proliferation and was also expressed in the endocardium (Lavine et al., 

2005). Thus, epicardial FGF9 was clearly not continuously required for myocardial 

proliferation as much of myocardial expansion occurred after FGF9 expression was 

maintained only in the endocardium. In a subsequent study, the same group determined 

FGF signaling induced sonic hedgehog (Shh) expression within the epicardium. Shh 

then signaled to the myocardium and induced expression of vascular endothelial growth 

factor (VEGF) ligands and angiopoietin-2 (Ang-2). These factors then regulated 

development of the coronary vasculature (Lavine et al., 2008; Lavine et al., 2006). An 

additional study of FGF signaling in avian embryos demonstrated FGFR1 expressed in 

the epicardium was involved in regulating epicardial EMT, myocardial invasion by 

epicardially derived cells, and the lineage decision between coronary endothelium and 

vascular smooth muscle (Pennisi and Mikawa, 2009). These studies pointed to a role for 

FGF signaling in regulating coronary vascular development and thus, indirectly 



 

21 
 

supporting myocardial proliferation. Another FGF ligand, FGF10, expressed in the 

myocardium promoted development of the cardiac fibroblast lineage (Vega-Hernandez 

et al., 2011). Importantly, cardiac fibroblasts have been demonstrated to signal directly 

to the myocardium to regulate proliferation (Ieda et al., 2009). Thus, the pro-mitotic 

influence of FGF signaling on cardiomyocytes may not be through direct paracrine 

signaling but rather related to promotion of coronary vessel and cardiac fibroblast 

development.  

 Insulin like growth factor-2 (IGF2) expressed by the epicardium has also been 

identified as a mediator of cardiomyocyte proliferation. Disruption of IGF2 or its receptors 

led to decreased myocardial proliferation in the mouse (Li et al., 2011). Brade et al. 

proposed a molecular cascade in which RA signaling induced production of EPO by the 

liver. Secreted EPO then crossed the pericardial cavity to bind to epicardial surface 

receptors and induce IGF2 expression within the epicardium (Brade et al., 2011). Thus, 

these studies present IGF2 as a molecular mediator for the mitogenic influence of the 

epicardium. 

 

Hepatic Mesothelium Development 

 In contrast to the well studied PE and epicardium, relatively little is known about 

the development of mesothelia of other coelomic organs. The liver develops in close 

proximity to the PE as described above. The septum transversum mesenchyme is 

described as the origin of hepatic mesothelium though this has not been examined 

directly (Asahina et al., 2011).  

The descendants of hepatic mesothelium have been investigated in both the 

avian and murine embryo. The developing hepatic mesothelium of the quail directly 

labeled with a vital dye was observed to give rise to liver sinusoid endothelium and 

hepatic stellate cells, a specialized fibroblast population (Perez-Pomares et al., 2004). 
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Wt1 has also been identified in hepatic mesothelial and submesothelial cells. Genetic 

lineage tracing of Wt1-expressing cells within the murine liver identified hepatic stellate 

cell and perivascular mesenchymal cell descendants including vascular smooth muscle. 

However, hepatic endothelial cells were not derived from the Wt1-lineage (Asahina et 

al., 2011). Taken together, these studies indicate the hepatic mesothelium shares a 

similar potential with the PE in giving rise to fibroblasts, vascular smooth muscle and 

potentially endothelium. Notably, the discrepancy in the mesothelial origin of hepatic 

endothelium again arises between data derived from direct labeling of cells for lineage 

tracing studies in the avian embryo versus murine genetic lineage tracing experiments.  

There have been a few studies of the embryonic signaling function of hepatic 

mesothelium. Similar to the epicardium, hepatic mesothelium has been implicated in 

regulating hepatoblast proliferation during development. Increased proliferation of 

murine embryonic hepatoblasts was observed when co-cultured with hepatic 

mesothelium. Wt1-deficient mesothelial cells lacked this pro-mitotic influence (Onitsuka 

et al., 2010). Decreased proliferation of hepatoblasts has also been observed in vivo in 

Wt1-deficient-mice. These mice also exhibited precocious differentiation of hepatic 

stellate cells. Knockout of Wt1 resulted in loss of hepatic mesothelial expression of the 

retinoic acid (RA) synthesizing enzyme, RALDH2. Molecular inhibition of RA synthesis in 

vivo in chicken embryos also led to decreased liver size and treatment of hepatic 

explants with RA increased proliferation. Thus, synthesis of RA by hepatic mesothelium 

was proposed as the mechanism by which mesothelial cells promote hepatoblast 

proliferation (Ijpenberg et al., 2007). Hepatic mesothelium was also demonstrated to be 

FGF9-positive (Colvin et al., 1999) and isolated mesothelial cells expressed other 

potential mediators of hepatoblast proliferation including pleiotrophin and hepatocyte 

growth factor (Onitsuka et al., 2010). The specific function of mesothelial expression of 

these proteins in liver morphogenesis is currently unknown. These studies demonstrate 
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parallel features of epicardium and hepatic mesothelium in regulating proliferation of 

underlying parenchymal cells. 

 

Pulmonary Mesothelium Development 

The origin and lineage of pleural mesothelium has not been studied in avian 

embryos. In mouse studies, it has been found that similar to the heart and liver, the Wt1-

positive mesothelial lineage of the lungs gives rise to perivascular cells through 

delamination from the epithelium and migration (Morimoto et al., 2010; Que et al., 2008). 

However, only 25% of all pulmonary vascular smooth muscle cells were derived from 

mesothelium with the remaining 75% of unknown origin. Additionally, mesenchymal 

cells, and potentially a limited population of endothelial cells were derived from the 

mesothelium (Que et al., 2008).  

Signaling functions of mesothelium also have been studied only in the mouse. 

The mesothelium and the endodermal epithelium of the lungs both express FGF9. 

FGF9-deficient mice develop hypoplastic lungs due to reduced airway branching and a 

decrease in mesenchymal cells (Colvin et al., 2001). Recently, Yin et al. determined that 

pulmonary mesothelial- and endodermal-derived FGF9 have distinct functions in 

pulmonary development and regulate mesenchymal proliferation and airway branching, 

respectively (Yin et al., 2011). Weaver et al. additionally reported that FGF9 inhibited 

visceral smooth muscle cell differentiation in the lungs and postulated secretion of FGF9 

from the mesothelium maintains the outer mesenchymal cells in an undifferentiated state 

(Weaver et al., 2003). RALDH2 and IGF1 have been demonstrated to be expressed by 

early postnatal pleural mesothelium and adult pleural cell lines, respectively, but the 

developmental expression or function of these genes is not known (Hind et al., 2002; 

Lee et al., 1993). Thus, the Wt1-lineage and the potential signaling function of 

mesothelium in the lungs are similar to other coelomic organs.  
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Pancreatic Mesothelium 

The development of pancreatic mesothelium has not been investigated. 

However, induced deficiency of Wt1 in adult mice led to rapid onset organ failure and 

death. These mice exhibited an array of defects including atrophy of the exocrine 

pancreas. Interestingly, the liver, lungs, and intestine did not have any apparent 

deficiencies. The rapid progression to death of the animals was likely due to advanced 

glomerulosclerosis and failure of erythropoiesis. The only cells detected in the wild type 

adult pancreas to express Wt1 were mesothelium and pancreatic stellate cells. The 

investigators postulated the loss of Wt1 in the adult pancreas led to activation of cytokine 

expression by pancreatic stellate cells which then promoted atrophy. Furthermore, they 

hypothesized based on the Wt1 expression pattern that pancreatic stellate cells may be 

derived from mesothelium during development (Chau et al., 2011). Additional research is 

needed to determine the function of pancreatic mesothelium in the embryo and adult. 

 

Intestinal Mesothelium Development 

Finally, a small number of studies in the mouse have provided insight into 

intestinal mesothelial development. A study from our laboratory demonstrated that Wt1-

positive intestinal mesothelial cells delaminated from the epithelium and migrated into 

the mesenchyme. The Wt1-lineage gave rise to over 75% of intestinal vascular smooth 

muscle cells but less than 10% of endothelial cells. Additionally, expression of Wt1 in the 

embryonic mouse intestine was observed to start within the dorsal mesentery and then 

progressively encompass the gut tube. This observation suggested Wt1-positive 

mesothelial progenitors may migrate onto the surface of the gut tube as seen in the 

heart. However, sections through the gut tube did not clearly demonstrate a migratory 

cellular population (Wilm et al., 2005). Thus, the origin of intestinal mesothelium 
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remained unclear though the mesothelial lineage again encompassed vascular smooth 

muscle.  

Little is known regarding the paracrine functions of intestinal mesothelium. The 

intestinal FGF9 expression pattern resembles that of the lungs with both the endoderm 

and mesothelium expressing FGF9 sandwiching non-expressing mesenchyme (Colvin et 

al., 1999; Lavine et al., 2005). FGF9-deficient mice have been reported to develop a 

shortened small intestine due to decreased mesenchymal proliferation and premature 

differentiation (Geske et al., 2008). However, the relative function of endodermal versus 

mesothelial FGF9 in the intestine is not known.  

 

Summary 

The heart diverges from the basic pattern of other coelomic organs in two ways: 

first, the heart does not include endodermally derived tissues and second, the early 

endothelial plexus of the embryo does not remodel to form the vasculature supplying the 

parenchyma of the heart. Mesothelium is intimately tied to vascular formation in all 

coelomic organs investigated to date. In the heart, cardiac mesothelium is derived from 

an external, migratory population. It is not known if this mechanism of mesothelial 

formation is also unique to the heart or if other coelomic organs employ a similar 

developmental mechanism.  

The intestinal vasculature resides near the surface of the parenchyma below the 

serosal membrane similar to the location of the coronary blood vessels. Additionally, the 

gut tube is the parent structure of the majority of coelomic organs. Thus, we sought to 

determine the origin of the mesothelium and vasculature of the developing intestine.  
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Dissertation Hypothesis and Summary of Aims 

Mesothelium lines the surface of all coelomic organs and the internal body wall 

and is an essential tissue for embryogenesis. However, mesothelial development has 

only been extensively investigated in a single organ—the heart. The research presented 

herein will address the following question: is the mechanism of mesothelial formation 

observed in the heart also utilized by other coelomic organs? The lungs, liver, and 

pancreas all develop as buds from the gut tube and the intestine is structurally similar to 

the heart. Thus, the gut tube is an ideal organ for investigations of mesothelial 

development. My central hypothesis is that the intestinal mesothelium arises from an 

extrinsic, migratory precursor population similar to the epicardium.  

Importantly, in the adult organism, mesothelial cells are thought to give rise to 

invasive fibrotic cells in several pathological conditions including idiopathic pulmonary 

fibrosis, peritoneal sclerosis and peritoneal adhesions. The involvement of mesothelium 

in these diseases reflects the embryonic potential of mesothelial cells to undergo an 

epithelial to mesenchymal transition and generate fibroblasts. However, mesothelia in 

the embryo can also give rise to vascular cells, a potentially supportive cell type for 

repairing injured adult tissues.  Identifying the normal mechanisms that govern 

mesothelial formation and differentiation in diverse organs is essential to understand and 

potentially modulate the behavior of these cells in the injured adult toward healing and 

away from fibrosis. Determining the origin of mesothelia throughout the coelom is a 

critical first step for studies of mesothelial developmental biology to progress. Three 

aims were designed to test the central hypothesis that the cardiac model of mesothelial 

and vascular formation can be applied to diverse coelomic organs including the intestine. 

Aim 1. Description of mesodermal development in the intestine. Before 

detailed investigations of mesothelial and vascular development could proceed, a basic 

description of mesodermal development within the intestine was necessary. 
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Immunohistochemistry and transgenic quail were utilized to examine development of the 

intestine from the first establishment of the organ primordium through generation of the 

definitive structure. Mesothelium was first present in the intestine at day six of 

development. An obvious migratory source of progenitor cells was not observed contrary 

to the cardiac model of mesothelial formation. Additionally, the major surface blood 

vessels of the intestine were first present within the mesentery and then later observed 

over the intestine. This aim is detailed in Chapter II. 

Aim 2. Determine the origin of intestinal mesothelial cells. To determine if 

mesothelial cells of the intestine were indeed derived from resident progenitor cells, the 

splanchnic mesoderm was labeled by delivery of a reporter plasmid to surface cells via 

electroporation or by infection with a replication incompetent retrovirus. Additionally, 

chimeric intestines were generated by transplanting quail intestinal primordia into the 

coelomic cavity of chick embryos. These assays demonstrated the major mechanism of 

mesothelial formation in the intestine was through differentiation of resident progenitors 

cells distributed along the anterior-posterior axis of the intestinal primordium. This aim is 

detailed in Chapter III. 

Aim 3. Determine the origin of intestinal vascular cells. To determine the 

origin of vascular smooth muscle and endothelial cells of the intestine, chimeras were 

again generated utilizing donor splanchnopleure derived from transgenic quail that 

expressed a fluorescent protein localized to the nuclei of endothelial cells. These 

experiments demonstrated that endothelial cells at all levels of the intestinal vasculature 

including the large surface blood vessels were derived from remodeling of a primitive 

vascular plexus resident to the splanchnopleure. Additionally, vascular smooth muscle 

cells of the intestine were derived from resident cells. This aim is detailed in Chapter IV. 

Taken together, these studies demonstrate that the intestinal primordium 

contains resident mesothelial, vascular, and endothelial progenitors. This is in direct 
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contrast to the heart in which these lineages must be recruited from an extrinsic source. 

My hypothesis that there was a common mechanism of mesothelial formation utilized 

throughout the coelom was therefore rejected as at least two mechanisms of mesothelial 

generation exist within the coelomic cavity. These studies demonstrate mesothelial 

populations may be more heterogeneous than previously suspected despite their 

common structural appearance. Further research will elucidate whether additional 

mechanisms can be identified for generation of this essential cell type.. 
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CHAPTER II 

 

A COMPREHESIVE TIMELINE OF MESODERMAL DEVELOPMENT IN THE QUAIL 
SMALL INTESTINE 
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same title with the following authors:  
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Abstract 

To generate the mature intestine, splanchnic mesoderm diversifies into six different 

tissue layers each with multiple cell types through concurrent and complex 

morphogenetic events. Hindering the progress of research in the field is the lack of a 

detailed description of the fundamental morphological changes that constitute 

development of the intestinal mesoderm. We utilized immunofluorescence and 

morphometric analyses of wild type and Tg(tie1:H2B-eYFP) quail embryos to establish a 

comprehensive timeline of mesodermal development in the avian intestine. The following 

landmark features were analyzed from appearance of the intestinal primordium through 

generation of the definitive structure: radial compartment formation, basement 

membrane dynamics, mesothelial differentiation, mesenchymal expansion and growth 

patterns, smooth muscle differentiation, and maturation of the vasculature. In this way, 

structural relationships between mesodermal components were identified over time. This 

integrated analysis presents a roadmap for investigators and clinicians to evaluate 

diverse experimental data obtained at individual stages of intestinal development within 

the longitudinal context of intestinal morphogenesis. 
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Introduction 

Intestinal disorders affect a large number of individuals in both pediatric and adult 

settings. Many of these conditions including intestinal atresia, motility disorders, 

Hirschprung’s disease, and gastrointestinal stromal tumors (GIST) have multiple and 

incompletely understood etiologies (Louw and Barnard, 1955; Mazur and Clark, 1983; 

Sanders, 1996; Hirota et al., 1998; Newgreen and Young, 2002; Heanue and Pachnis, 

2007; Streutker et al., 2007; Appelman, 2011; Guzman et al., 2011). One of the 

difficulties in deciphering the mechanisms underlying these diseases is the lack of 

information available on the development of a major component of the gut tube—the 

intestinal mesoderm. Understanding development of the mesoderm is essential for a 

complete picture of the mechanisms leading to congenital as well as adult intestinal 

disorders. A description of the structure of the adult intestine reveals the complexity of 

the mesodermal tissues generated in the embryo. 

The structure of the mature vertebrate intestine is remarkably conserved. The 

innermost layer, the mucosal epithelium, is comprised primarily of columnar epithelial 

cells resting on a basement membrane. Supporting the mucosal epithelium is a 

mesenchymal core called the lamina propria, which is composed of a capillary plexus, 

lymphatic vessels, nerves, myofibroblasts and fibroblasts. The lamina propria and 

mucosal epithelium are arranged into fingerlike projections, called villi, protruding into 

the lumen of the intestine. External to the mucosal epithelium, minor variations in 

structure are observed between the avian and mammalian intestine. The adult chick 

intestine lacks a submucosal connective tissue layer and muscularis mucosa. Instead, 

there are four concentric visceral smooth muscle cell layers that begin just subjacent to 

the lamina propria and are positioned outwardly in the following order: inner longitudinal, 

inner circular, outer circular and outer longitudinal (Gabella, 1985; Yamamoto, 1996). 

The inner longitudinal muscle layer of the avian is analogous to the mammalian  
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Figure 2.1 Schematic depicting the intestinal primordium, primitive intestinal tube, 
and adult intestine. A) Transverse section through an embryonic day (E) 2.1 quail 
embryo equivalent to Hamburger and Hamilton (HH) stage 14. At this stage, the 
intestinal primordium is open and comprised of splanchnic mesoderm (red; SpM), 
endoderm (yellow; En) and an intervening endothelial plexus (green, EP). B) At E6, the 
intestine is completely closed and composed of mesothelium (orange), a two layered 
endothelial plexus (green), a single visceral smooth muscle layer (red), and endoderm 
(yellow; En). C) In the adult intestine, villi are lined with a mucosal epithelium (yellow; 
Mu) and contain a lamina propria (LP) composed of capillaries, a lymphatic lacteal, and 
connective tissue. A four-layered muscularis externa (ME) surrounds the lamina propria. 
A serosal membrane (Se) lines the coelomic surface.  
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muscularis mucosa. The circular muscle layer of mammals including mice and humans 

can also be divided into two layers due to structural differences though is often referred 

to singularly (Eddinger, 2009).  Thus, the most significant variation is the presence or 

absence of a submucosal connective tissue layer. The large blood vessels of the chick 

intestine reside within or just deep to the thin outer longitudinal visceral smooth muscle 

cell layer and extend circumferentially. Vascular branches dive deep into the intestinal 

layers to eventually supply the endothelial plexus of the villi (Jacobson and Noer, 1952). 

The enteric neuronal network is divided into two main regions: the first adjacent to the 

large blood vessels near the surface described above and the second between the inner 

circular and inner longitudinal smooth muscle layers (Gabella, 1985). Finally, at the 

coelomic surface is a serosal membrane composed of a flat sheet of epithelial cells 

called mesothelium with an underlying basement membrane and thin connective tissue 

layer (Figure 2.1).  

On first examination, the embryonic intestinal primordium offers only hints of its 

eventual elaborate structure.  After gastrulation in the avian embryo, the lateral plate 

mesoderm splits into splanchnic and somatic mesoderm bilaterally generating a right 

and left coelomic cavity between the two layers. The splanchnic mesoderm, underlying 

endoderm, and an intervening endothelial plexus compose the intestinal anlage and are 

initially organized as a flat sheet (Figure 2.1 A, (Meier, 1980; Pardanaud et al., 1989). 

This anlage folds laterally and from the anterior and posterior ends to meet at the ventral 

midline giving rise to a tube and uniting the right and left coelomic cavities into a 

common coelom (Figure 2.1 B, (Wells and Melton, 1999; Zorn and Wells, 2009). The 

epithelial endoderm gives rise to the mucosa that lines the villi and intestinal crypts 

(Mitjans et al., 1997; Madison et al., 2005; Dauça et al., 2007; Grosse et al., 2011). The 

splanchnic mesoderm diversifies to generate the connective tissue, vasculature, smooth 

muscle and serosal layers (McHugh, 1995; Hashimoto et al., 1999; Wilm et al., 2005; 
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Kim et al., 2007; Powell et al., 2011; Winters et al. 2012, in press). Migratory neural crest 

cells invade to form the enteric nervous system and the vascular system organizes from 

incompletely identified progenitors (Young and Newgreen, 2001; Young et al., 2004; 

Burns et al., 2009; Nagy et al., 2009). Throughout these processes, the intestine must 

undergo a dramatic increase in length and diameter herniating outside of the body cavity 

to accommodate its tremendous growth (Savin et al., 2011). Thus, cells of all three germ 

layers must coordinate invasion, migration, differentiation, growth, and tissue 

morphogenesis to generate the mature intestinal structure.  

Despite comprising the majority of the adult intestine, development of the 

mesoderm is poorly described relative to the more extensively studied endodermal and 

neuronal components. Within the mesoderm, multiple cellular types and tissue layers 

develop in concert. Most studies are focused on the differentiation of a specific cell type 

during a narrow developmental window. Furthermore, studies utilize a variety of model 

organisms. Thus, assembling the available data distributed within the literature into a 

basic timeline of the major morphological changes that occur during intestinal 

development is extremely difficult. Knowledge of the temporal and spatial relationships 

of developmental events in the intestine is essential to design experiments and interpret 

data. 

We sought to establish a comprehensive timeline of the major events in intestinal 

mesoderm development from the first appearance of the intestinal anlage to formation of 

the definitive structure in a single species. Quail embryos were selected due to their 

availability in large quantities, emerging transgenic models, and the ability to easily time 

their development with precision (Huss et al., 2008). Additionally, small intestine 

development has not been described in the quail (Grey, 1972; Gabella, 1985; 

Yamamoto, 1996; Hashimoto et al., 1999; Hiramatsu and Yasugi, 2004; Kim et al., 2007; 

Mao et al., 2010). Importantly, the major structural features of the avian intestine, with 
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the above noted variations, correspond with the mammalian intestine and thus the 

information obtained from studies of the avian embryo is widely applicable. We describe 

landmark features of intestinal mesoderm formation throughout embryogenesis that if 

analyzed at any single stage, provide an inclusive snapshot of the status of mesodermal 

development. Furthermore, through this integrated approach, we identified pivotal 

developmental time points at which key processes occur simultaneously. These data 

provide the field with the fundamental developmental and morphological guideposts in 

intestinal mesoderm development upon which variation in organogenesis caused by 

genetic, experimental and surgical intervention can be compared and further analyzed.  

 

Materials and Methods 

 

Embryos 

Quail embryos (Coturnix coturnix japonica) were obtained from Ozark Egg Farm (Stover, 

Missouri). Tg(tie1:H2B-eYFP) quail embryos were a generous gift from Dr. Rusty 

Lansford (Caltech, Pasadena, CA). All eggs were incubated at 37°C in humidity and 

staged according to the Japanese quail and the Hamburger and Hamilton staging chart 

(Hamburger and Hamilton, 1992; Ainsworth et al., 2010). Adult intestines were isolated 

from mature four month old wild type quail.  

 

Immunofluorescence 

All embryos and tissues were fixed in 4% formaldehyde (Sigma F1635) in 1XPBS (pH 

7.4) at room temperature or 4°C depending on tissue size. The samples were washed 

with 1XPBS (pH 7.4), cryoprotected in 30% sucrose, embedded in OCT (TissueTek 

4583) and transverse sectioned (unless otherwise noted) at 5μm. Sections were 

rehydrated, washed with 1XPBS, and permeabilized with a 0.2% Triton-X 100 (Sigma 
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T9284) for 10 minutes, washed with 1XPBS, and blocked in 10% goat serum (Invitrogen 

16210-072) + 1% BSA (Sigma A2153) in PBS. Samples were then treated with primary 

antibodies (see below) overnight at 4°C. Slides were then washed with 1XPBS and 

incubated with secondary antibodies (see below) for 60 minutes at room temperature. 

Slides were washed and mounted with ProLong Gold mounting agent (Invitrogen 

P36930).  

 

Antibodies 

Primary antibodies: laminin (Abcam ab11575; 1:200), cytokeratin (Abcam ab9377; 

1:200), laminin (DSHB, 3H11 and 31 or 31-1; 1:25 (each)), anti-GFP (Invitrogen, 

A11122; 1:200), anti-αSMA Clone 1A4 (Sigma A2547; 1:200), αSMA (Abcam ab5694; 

1:200), γSMA (MP Biomedicals 69133; 1:600). Secondaries: Alexa 488 and 568 

(Invitrogen A11001, A11004; 1:500), TOPRO-3 (Invitrogen T3605; 1:1000), DAPI 

(Invitrogen D3571; 1:10,000). 

 

Microscopy 

Immunofluorescence was imaged using an Olympus Fluo-View1000 confocal 

microscope (Vanderbilt CISR Core). Images were taken in z-stack format and analyzed 

using FV-1000, Metamorph and Photoshop software. Brightness and contrast were 

adjusted for visual representation in Photoshop.  

 

Morphometric Analysis  

Small intestine sections were stained with laminin antibody and imaged on an EVOS 

microscope (Joe Roland, Goldenring Lab, Vanderbilt). ImageJ software was used to 

measure the distance between the outer and endodermal basement membranes of 

intestines aged E1.9 through E6 (eight to twenty samples analyzed at each stage). The 
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distances were averaged and the standard deviation and standard error of the mean 

were calculated in Excel. To determine the area of the mesenchymal space, six to ten 

samples were analyzed for each intestinal region (posterior, middle posterior, middle 

anterior, anterior) of each intestinal stage including: E8, E10, E12, E14, E16. Metamorph 

software (Vanderbilt CISR) was utilized to specify the mesenchymal region (area 

between outer and endodermal basement membrane). Average, standard deviation, and 

standard error of the mean were calculated in Excel. To determine the total length of the 

intestines, samples were dissected from quail embryos and the mesentery and vessels 

completely removed. Four to ten samples were measured for each stage including E6, 

E8, E10, E12, E14, E16. Averages, standard deviation, and standard error of the mean 

were calculated in Excel. 

    

Results 

 

Establishment and maturation of the major intestinal compartments 

 As described above, the adult avian intestine has seven concentric tissue layers, 

six of which are derived from the splanchnic mesoderm. However, there are only two 

continuous basement membranes within the intestine; one resides below the mucosal 

epithelium and the other is subjacent to the outer serosal mesothelium (Simon-Assmann 

et al., 1995; Lefebvre et al., 1999). These basement membranes divide the seven layers 

of the intestine into three compartments: the mucosa, the middle connective and 

muscular tissue (largest component), and the outer serosa. Notably, the intestinal 

primordium is composed of two epithelial sheets, endoderm and splanchnic mesoderm. 

Importantly, both epithelia have an underlying basement membrane. The epithelia 

enclose an intervening space that will eventually house the mesenchyme. Thus, similar 

to the adult structure, the intestinal primordium is divided by two basement membranes 
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into three compartments: endoderm (En), mesenchyme/mesenchymal space (M), 

splanchnic mesoderm (SpM)/outer epithelium (Mes) (Figure 2.1 A, black lines). While 

subsequent morphogenetic events will greatly increase the complexity of the cellular and 

tissue relationships, the arrangement of these basement membranes may represent one 

of the few histological similarities between the embryonic and adult intestine (Figure 2.1).  

 To determine whether this basic structural relationship is maintained throughout 

embryogenesis into adult life, we examined laminin staining throughout development of 

the intestine. Laminin is an integral component of basement membranes. At embryonic 

day 1.9 (E1.9, equivalent to HH12) in the quail embryo, two basement membranes with 

solid, uninterrupted laminin staining were identified below the endoderm and the 

splanchnic mesoderm, respectively (Figure 2.2 A-B, arrowheads). The basement 

membranes were distinctly separated along the majority of the medial-lateral axis though 

they did appear to contact one another at discrete points (Figure 2.2 B, arrows). The 

mesenchymal space was very narrow and sparsely populated with cells (Figure 2.2 B, 

asterisk). At E2.1 (HH14), laminin staining of the outer basement membrane appeared 

slightly fragmented (white arrowheads) and in limited, sporadic regions, the 

mesenchymal space contained a single layer of cells (Figure 2.2 C-D, asterisks). At E2.2 

(HH16), the basement membrane underlying the outer epithelium was well dispersed 

evidenced by discontinuous laminin staining (Figure 2.2 E-F, white arrowheads). There 

were also multiple cell layers within the mesenchyme (Figure 2.2 F, asterisks). At E3.5 

(HH21), the anterior and posterior portions of the intestine had folded into a tube while 

the middle portion remained open ventrally. In both the open and closed regions, the 

outer epithelial basement membrane had returned to an unbroken configuration 

(arrowheads) now enclosing a well-populated mesenchymal compartment (Figure 2.2 G-

J,).  
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Figure 2.2 Early basement membrane dynamics in generation of the mesenchymal 
compartment. Schematics in left column depict quail embryos at each stage and the 
red line denotes the plane of section. A-B) At E1.9, a continuous basement membrane 
lined the splanchnic mesoderm (white arrowhead) and endoderm (yellow arrowhead) 
with multiple apparent points of contact (arrows). Asterisk denotes a rare mesenchymal 
cell. C-D) The outer basement membrane began to break down at E2.1 (white 
arrowheads) and mesenchymal cells were more common (asterisks). The endodermal 
basement membrane remained solid (yellow arrowhead) E-F) At E2.2, there were 
multiple mesenchymal cell layers (asterisks) and the outer basement membrane was 
dispersed (white arrowheads). Yellow arrowhead denotes endodermal basement 
membrane. G-J) At E3.5, both the outer epithelial (white arrowhead) and endodermal 
(yellow arrowhead) basement membranes were continuous in the closed and open 
intestinal regions. Scale bars: 50μm (A, C, E, G, I) and 10μm (B, D, F, G, J). DA, dorsal 
aorta; Ec, ectoderm; En, endoderm; FL, forelimb; H, head; Hrt, heart; HL, hindlimb; L, 
lumen; LC, lateral cavity; LPM, lateral plate mesoderm; M, mesenchyme; nc, notochord; 
NT, neural tube; OE, outer epithelium; S, somites; SoM, somatic mesoderm; SpM, 
splanchnic mesoderm. 
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Figure 2.3 Basement membrane dynamics throughout gut tube closure and 
mesenchymal differentiation. Schematics in left column depict quail embryos at each 
stage and the red line denotes the plane of section. A-B) At E5, the outer epithelial 
basement membrane appeared dispersed (white arrowhead). Yellow arrowhead denotes 
endodermal basement membrane. C-D) At E6, both the outer (white arrowhead) and 
endodermal (yellow arrowhead) basement membranes were unbroken. E-F) At E10, villi 
(V) were present and both basement membranes were continuous (arrowheads). G-H) 
At E16, the mesenchyme was condensed (compare F and H). The outer basement 
membrane was robust and unbroken (white arrowhead) while the mucosal basement 
membrane weakly stained with laminin (yellow arrowhead). Scale bars: 50μm (A, C, E, 
G,) and 10μm (B, D, F, H). En, endoderm; FL, forelimb; H, head; HL, hindlimb; L, lumen; 
Le, leg; M, mesenchyme; Mes, mesothelium; Mu, mucosa; OE, outer epithelium; V, villi; 
W, wing. 
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Between E5 and E6, the gut tube completed ventral closure. At E5 (HH27), the 

outer epithelial basement membrane was again dispersed (Figure 2.3 A-B, white 

arrowhead) but quickly returned to a continuous configuration by E6 (HH29) (Figure 2.3 

C-D, white arrowhead). Once solidified at E6, no further changes in the outer epithelial 

basement membrane were observed through E16. However, the mesenchymal layer 

underwent dynamic changes over these stages including contributing to villus formation 

at E10 (Figure 2.3 E-F) and mesenchymal compaction and differentiation (Figure 2.3 G-

H). Additionally at E16, laminin staining in the endodermal basement membrane 

appeared diffuse (Figure 2.3 G-H, yellow arrowhead). Thus, though the outer basement 

membrane oscillates between discontinuous and continuous states, both basement 

membranes observed in the intestinal primordium were readily identified throughout 

development defining the three basic tissue compartments of the intestine. 

 

Development of the outer epithelium 

In the adult, the outer epithelium is a simple squamous cell layer, termed 

mesothelium, that is important for protection of coelomic organs and providing a non-

adhesive surface for movement (Mutsaers, 2002; Mutsaers, 2004; Yung and Chan, 

2007). We next sought to determine if the periodic dissociation of the outer basement 

membrane was correlated with differentiation of the outer epithelium into mesothelium. 

In the embryo and adult, the mesothelium expresses the intermediate filament protein 

cytokeratin and resides upon a continuous, laminin-enriched basement membrane. A 

recent lineage tracing study from our laboratory demonstrated that cells within the 

splanchnic mesoderm of the developing gut tube eventually give rise to the intestinal 

mesothelium (Winters et al., 2012, in press).  

To investigate the development of the outer epithelium, we stained serial 

sections of the quail midgut with antibodies for the epithelial markers cytokeratin and 
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laminin. As described above, the outer epithelium and mesenchyme first appeared as 

distinct cellular layers at E2.1 (HH14). At this time, the outer epithelium was stratified 

and the underlying basement membrane was fragmented (see above, Figure 2.2 D). At 

E3.5 (HH21), the outer epithelium remained stratified and cytokeratin-negative. Laminin 

staining in the outer basement membrane (arrows) had returned to an unbroken 

configuration (Figure 2.4 A-C). Twelve hours later, at E4 (HH23), the outer epithelium 

was, for the first time, a single cell layer thick (arrowheads) though still cytokeratin-

negative (Figure 2.4 D-F). At E5 (HH27), we observed weak cytokeratin staining (red) 

within the outer epithelium but dispersed laminin staining in the basement membrane 

(Figure 2.4 G-I, arrowheads). Finally, at E6 (HH29) a simple squamous epithelium with 

robust cytokeratin staining (red) and a continuous basement membrane (arrows) was 

present at the surface of the midgut characteristic of the adult structure (Figure 2.4 J-L). 

This mature configuration of the outer epithelium was observed throughout the 

remainder of development. Thus, the transition of the basement membrane to an 

unbroken conformation at E3.5 was associated with conversion of the outer epithelium 

from a stratified to simple layer. The subsequent breakdown and solidification of the 

outer basement membrane at E5-E6 was concurrent with differentiation of the outer cell 

layer into a mature, cytokeratin-positive mesothelium. 

 

Expansion of the mesenchymal compartment  

As described in Figure 2 and 3, the mesenchymal compartment underwent a 

dramatic expansion over these early stages of intestinal development. We next 

quantified the change in size of the mesenchymal compartment over time to determine if 

there was any correlation with basement membrane breakdown. We measured the 

distance between the endoderm and outer epithelial basement membranes at multiple 

medial-lateral positions to determine the average width of the mesenchymal  
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Figure 2.4 Mesothelial differentiation. Schematic in upper-left corner depicts the 
region of the gut tube that was imaged. A-C) At E3.5, the outer epithelium (arrowheads) 
was stratified (asterisks) and the basement membrane was continuous (arrows). No 
cytokeratin staining was evident at this time. D-F) At E4, the outer epithelium was a 
single cell layer thick (arrowheads) with a continuous basement membrane (arrows). 
Cytokeratin staining remained negative. G-I) At E5, laminin staining in the outer 
basement membrane was dispersed (arrows). Cytokeratin staining was present at low 
levels. J-L) At E6, laminin staining (arrows) was unbroken and cytokeratin staining was 
robust within the mesothelium (arrows). Scale bars: 10μm. DM, dorsal mesentery; En, 
endoderm; L, lumen; M, mesenchyme; OE, outer epithelium. 
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compartment at each stage. The mesenchymal space at E1.9 (HH12) was narrow 

averaging 7.5 µm in width. At E2.1 (HH14), despite the slight increase in the number of 

cells found in the mesenchymal space at this time, the overall average width was 6.4 

µm. Between E2.1-E3.5 (HH14-HH21) the mesenchymal compartment expanded 

abruptly from 6.4 μm to 103 μm in width. This time period corresponded to the stages 

over which the outer basement membrane was broken down. Interestingly, after the 

basement membrane solidified again at E3.5, the distance between the two basement 

membranes decreased to 74 μm by E4. The second instance of outer basement 

membrane breakdown at E5 also correlated with a small increase in mesenchymal 

compartment width though generally the mesenchymal width trended downward 

between E3.5 and E6 (Figure 2.5 A).  

Over subsequent stages, the outer basement membrane was solid and the 

intestinal tube was closed. We next examined mesenchymal cross-sectional area and 

intestinal length to determine if these variables changed proportionately over time. We 

quantified mesenchymal cross-sectional area by outlining both the inner and outer 

basement membranes and calculating the intervening pixels using Metamorph software. 

We divided the small intestine into quarters along the length of the tube, small intestine 

(SI) 1-4, and analyzed each region individually at each stage. We also measured the 

length of the small intestine over the same stages by dissecting away the mesentery and 

extending the intestine out in a straight line. The anterior regions of the small intestine 

had consistently larger mesenchymal areas than the posterior regions over all stages 

examined. Between E8 and E12, the mesenchymal area of each region remained 

surprisingly constant (Figure 2.5 B). However, there was a dramatic increase in small 

intestinal length (17.6 mm at E8 to 71.1 mm at E12) over the same time period. Indeed, 

between E6 and E12, the small intestine roughly doubled in length every two days 

elongating at an average rate of 11 mm/day (Figure 2.5 C).  
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Figure 2.5 Quantification of mesenchymal expansion over time. A) Graph of the 
distance between the outer epithelial and endodermal basement membranes measured 
at key stages between E1.9 and E8. The dashed line represents the time period over 
which the outer basement membrane was dispersed. Solid lines indicate a continuous 
outer basement membrane was present. B) Four regions along the anterior-posterior 
axis of the small intestine (SI 1-4) were analyzed individually for mesenchymal cross-
sectional area between E8 and E16. The cross-sectional area of each region was 
graphed independently. C) Small intestinal length measured between E6 and E16 (left 
axis, black circles). Fold change in intestinal length over the same time period (right axis, 
grey triangles). D) Photomontage of isolated small intestines with mesentery and blood 
vessels removed and pinned out to demonstrate their length.  
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Between E12 and E16, there was a notable increase in cross-sectional area 

throughout all four regions of the small intestine (Figure 2.5 B). There was also an 

increase in small intestinal length over these stages. The rate of intestinal lengthening 

between E6 and E16 was relatively steady averaging close to 10 mm/day (Figure 2.5 C, 

black line). However, this steady rate of growth represented a 4-fold increase in length 

between E8 and E12 and only a 1.5-fold increase between E12 and E16 (Figure 2.5 C, 

gray line). Thus, the rapid increase in mesenchymal cross-sectional area at E12 

correlates with a decrease in the relative change in length. 

 

Development of the muscularis layers and myofibroblasts 

We next examined differentiation of the mesenchymal compartment. While 

initially uniform in appearance, the mature mesenchymal compartment is composed of 

varied tissue types including multiple layers of visceral smooth muscle that provide the 

force for peristaltic contractions. Other mesenchymal cells with limited contractile ability 

include the subepithelial myofibroblasts that closely surround the crypts and line the 

mucosa up into the villi. Using studies of the chicken as a reference, we expected four 

layers of visceral smooth muscle to develop in the quail small intestine: inner 

longitudinal, inner circular, outer circular, and outer longitudinal (Gabella, 1985; Gabella, 

2002). These layers are largely distinguished based on morphological features; 

however, the outer circular layer of the adult chicken can also be identified molecularly 

as α-smooth muscle actin (α-SMA) expression is almost entirely replaced by γ-smooth 

muscle actin (γ-SMA) expression (Gabella, 1985; Yamamoto, 1996). 

We utilized immunofluorescence for α- and γ-SMA to generate a comprehensive 

timeline of visceral smooth muscle and myofibroblast development in the quail small 

intestine. Faint staining for both α- and γ-SMA was first observed at E6 in a rudimentary 

circular layer (OC) within the mesenchyme (Figure 2.6 A-D). SMA-negative 
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mesenchymal cells were found on both the luminal and coelomic aspects (Figure 2.6 A-

D, asterisks). At E10, an α-SMA-positive, γ-SMA-negative outer longitudinal (OL) layer 

was first observed within the submesothelial region (Figure 2.6 E-H). The inner circular 

(IC) layer was first distinguishable at E14 due to high levels of α-SMA and low levels of 

γ-SMA at the innermost aspect of the circular muscle layer (Figure 2.6 I-L). Also at E14, 

α-SMA-positive cells could occasionally be identified within the villi (data not shown). At 

E16, an α- and γ-SMA-positive inner longitudinal layer (IL) was visible and robust α-

SMA-positive staining was present within the villi (arrowheads, Figure 2.6 M). The 

submucosal mesenchyme was concurrently reduced to a thin layer (asterisk) and the 

outer circular layer exhibited decreased staining for α-SMA (Figure 2.6 M-P). Finally, in 

the adult small intestine, γ-SMA was identified in all four layers of visceral smooth 

muscle but the outer circular layer did not stain for α-SMA at appreciable levels (Figure 

2.6 Q-T). Additionally, the intestinal crypts were directly adjacent to the inner longitudinal 

visceral smooth muscle layer without any intervening submucosal mesenchyme (Figure 

2.6 Q-T, arrows). Thus, the structure of the adult quail small intestine is similar to other 

avians, including the chicken (Gabella, 1985). The current study demonstrates that 

contractile cell differentiation in the quail intestine occurs in the following progression: 

outer circular layer at E6, outer longitudinal layer at E10, inner circular layer at E14, and 

inner longitudinal layer and subepithelial myofibroblasts at E16. 

 

The organization of the endothelial plexus 

Elaboration of the vasculature is critical for organ formation. The vasculature of 

the intestine is housed within the mesenchymal layer. The major arteries supplying the 

intestine (mesenteric arteries) branch from the aorta and reach the intestine by means of 

a mesentery (two mesothelial membranes closely apposed to one another). Once the 

mesenteric arteries reach the intestine, the large, muscularized branches stay near the  
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Figure 2.6 Differentiation of visceral smooth muscle. A-D) At E6, faint staining for α-
SMA and γ-SMA defined the outer circular muscle layer. Asterisks represent SMA-
negative mesenchymal cells bordering the outer circular muscle layer. E-H) Robust 
staining for α-SMA marked the outer circular and outer longitudinal muscle layers. γ-
SMA was observed in the outer circular but not the outer longitudinal layer. SMA-
negative submucosal mesenchyme was still present (asterisk). I-L) By E14, the inner 
circular layer (α-SMA-positive, weak γ-SMA) was evident. Asterisk denotes SMA-
negative submucosal mesenchyme. M-P) At E16, four muscle layers were present 
including the inner longitudinal layer. All layers stained for both α-SMA and γ-SMA. 
Double asterisks denote submucosal neuronal plexus. Limited SMA-negative 
submucosal mesenchyme was present (asterisk). Arrowheads in M indicate SMA-
positive staining within the villi. Q-T) In the adult intestine, the four visceral smooth 
muscle layers were directly subjacent to the lamina propria (arrow) with no intervening 
submucosal mesenchyme. The outer circular layer was α-SMA-negative. Scale Bars: 
50μm (A, E, I, M, O) and 10μm (B-D, F-H, J-L, N-P, R-T). En, endoderm; IC, inner 
circular; IL, inner longitudinal; LP, lamina propria; L, lumen; M, mesenchyme; Mes, 
mesothelium; Mu, mucosa; OC, outer circular; OL, outer longitudinal; V, villi.  
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surface subjacent to the thin outer longitudinal layer of visceral smooth muscle. Other 

branches dive deep to supply a second tier of blood vessels that resides near the 

junction of the lamina propria and inner longitudinal smooth muscle layer. The third and 

most expansive tier is the extensive capillary network extending into the villi and 

localized just below the mucosal epithelium (Powell et al., 2011). The initial arrangement 

of the intestinal primordium with both basement membranes within microns of one 

another (Meier, 1980) allows a single, central endothelial plexus to contact both 

basement membranes and epithelia. The expansion of the mesenchyme necessitates 

growth and remodeling of the vascular plexus for this relationship to be maintained.  

To understand how the vasculature of the intestine is remodeled from a single 

centrally located endothelial plexus into a multi-tiered vascular network, we utilized QH1 

(early quail endothelial cell marker) staining and Tg(tie1:H2B-eYFP) quail embryos. 

These transgenic embryos express an H2B-eYFP fusion protein under control of the 

endothelial specific Tie1 promoter (Poynter and Lansford, 2008; Sato et al., 2010). At 

E2.1 (HH14), endothelial cells were in close approximation to both the endoderm and 

splanchnic mesoderm (Figure 2.7 A-B, arrowheads). At E3 (HH18), YFP-positive 

endothelial cells were distributed along the medial-lateral axis of the intestinal 

primordium but remained within the middle of the mesenchymal layer thus losing close 

contact with both the endodermal and outer epithelial basement membranes (Figure 2.7 

C-D, arrowheads). This configuration was maintained until E6 at which time the YFP-

positive cells were organized into two layers one subjacent to the mesothelium and 

another layer juxtaposed to the developing submucosal layer (Figure 2.7 E-F, 

arrowheads). The two tiered endothelial network visible at E6 was also reported in Nagy 

et al. (2009).  

At E10, the external endothelial layer was localized below the newly 

differentiated outer longitudinal visceral smooth muscle cell layer thus occupying the  
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Figure 2.7 Generation of a two-tiered endothelial plexus. A-B) At E2.1, an 
endothelial plexus marked by QH1 (arrowheads) was present between the endoderm 
and splanchnic mesoderm. C-F: Sections through Tg(tie1:H2B-eYFP) quail intestinal 
primordia. C-D) At E3, the endothelial plexus (arrowheads) was detected in the middle of 
the multilayered mesenchyme. E-F) At E6, the endothelial plexus was organized into two 
concentric layers below the endoderm and mesothelium, respectively (arrowheads). 
Scale bars: 50μm (A, C, E) and 10μm (B, D, F). DA, dorsal aorta; En, endoderm; L, 
lumen; M, mesenchyme; Mes, mesothelium; OE, outer epithelium; SpM, splanchnic 
mesoderm. 
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Figure 2.8 Endothelial plexus remodeling during villi formation. Schematic in upper-
left corner depicts the regions of the intestine that were sectioned. E10 intestines were 
isolated from Tg(tie1:H2B-eYFP) embryos. A-F) Villi were present in the anterior region 
of the intestine. The endothelial plexus (YFP-positive) was organized in two concentric 
rings (arrowheads) but did not extend into the villi. G-J) In the posterior small intestine, 
ridges but no villi were identified. The endothelial plexus remained organized in two 
concentric rings (arrowheads). All images are to the same scale. Scale bars: 50μm (A-
L). DM, dorsal mesentery; L, lumen; M, mesenchyme; Mes, mesothelium; Mu, mucosa, 
V, villi. 
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Figure 2.9 Extension of endothelial cells into the villi. Images are of sections through 
Tg(tie1:H2B-eYFP) quail. A-B) At E14, YFP-positive endothelial cells (arrowheads) were 
localized within the base of the villi in low numbers. C) The outer endothelial plexus was 
substantial at E14 (arrows). D-E) By E16, endothelial cells had reached the tip of the villi 
(arrowheads) and were present in high numbers. F) The outer endothelial plexus thinned 
by E16 (arrows). Scale bars: 50μm (A, D), 10μm (B-C, E-F). L, lumen; M, mesenchyme; 
Mes, mesothelium; Mu, mucosa; V, villi. 
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same space where the major vessels will be found in the adult. At this stage, villi were 

also first observed in the anterior region of the small intestine (Figure 2.8 A-F) though 

the posterior region only had small ridges protruding into the lumen (Figure 2.8 G-L). 

Notably, endothelial cells of the internal plexus (arrowheads) throughout both the 

anterior and posterior small intestine did not extend into the villi or ridges (Figure 2.8 A-

L). We first observed endothelial cells within the villi at E14 in low numbers, four days 

after villi were apparent in the anterior portion of the gut tube (Figure 2.9 A-C, 

arrowheads). By E16, endothelial cells were found in abundance within the villi (Figure 

2.9 D-F, arrowheads). Cells within the outer endothelial tier became fewer in number 

over time (Figure 2.9 C, F, arrows). Thus, development of the enteric endothelial 

network progresses through four phases. First, endothelial cells are scattered throughout 

the mesenchymal space. Second, they organize into two layers in the submesothelial 

region and submucosal mesenchyme, respectively. Third, differentiation of the outer 

longitudinal smooth muscle leads to localization of the external plexus below the muscle 

layer. Finally, endothelial cells penetrate the lamina propria of the villi. 

 

Generation of muscularized surface blood vessels  

While the vasculature of the villi remains as a capillary plexus, the vessels near 

the surface of the adult intestine are large caliber and muscularized. We next examined 

Tg(tie1:H2B-eYFP) intestines in whole mount to determine when large surface blood 

vessels were formed. At E6, the stage at which two distinct layers of endothelial cells 

were first apparent within the gut wall, there were not any major surface vessels (Figure 

2.10 A, B). Instead, endothelial cells were uniformly distributed in a honeycomb-like 

pattern (Figure 2.10 B). By E10, mesenteric branches extending to the intestine were 

observed (arrows) though there were still no large vessels visible on the intestine proper 

(Figure 2.10 C, D). At E11, we first observed large blood vessels extending from the 
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dorsal mesentery over the gut tube proper (Figure 2.10 E, F, arrowheads). Throughout 

subsequent stages, the major vessels elongated to encompass a greater portion of the 

intestinal circumference (Figure 2.10 G-J, arrowheads).  

A further mark of blood vessel maturity is recruitment and differentiation of 

vascular smooth muscle cells. We used immunofluorescence for α-SMA to determine 

when cells of the intestinal vasculature were muscularized. At E12, α-SMA staining was 

present within the outer longitudinal and outer circular smooth muscle layers but was not 

identified surrounding the YFP-positive endothelial cells (Figure 2.11 A-B). At E14, a 

single layer of α-SMA-positive cells surrounded the large blood vessels found near the 

surface of the intestine (Figure 2.11 C-D, arrowheads). At E16, rare blood vessels were 

observed containing multiple layers of vascular smooth muscle cells (Figure 2.11 E-F, 

arrowheads). In the adult intestine, large arteries with multiple layers of vascular smooth 

muscle were readily identified (Figure 2.11 G-H, arrowheads). Neighboring veins were 

large caliber though still poorly muscularized (Figure 2.11 G-H, arrows).  Thus, the major 

blood vessels of the intestine are not muscularized until near hatching.  

 

Discussion 

Splanchnic mesoderm generates the bulk of the intestine and will diversify into 

serosa, connective tissue, musculature, and the enteric vasculature. However, relatively 

little is known about the development of the intestinal mesoderm. Our study provides a 

comprehensive examination of the major morphological changes that occur within the 

intestinal mesoderm starting with the establishment of the intestinal primordium and 

ending with the definitive structure. Through concurrent examination of multiple features 

we were able to identify temporal and spatial coordination between previously unlinked 

developmental events (Table 1). An examination of four critical time periods in intestinal 

mesoderm development is presented below highlighting novel correlations illustrated by  
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Figure 2.10 Development of large blood vessels of the small intestine. All panels 
are whole mount images of YFP fluorescence in isolated gut tubes from Tg(tie1:H2B-
eYFP) quail. A-B: At E6, YFP-positive endothelial cells were evident in the wall of the 
small intestine in a honeycomb pattern. C-D: At E10, mesenteric vessels were visible 
(arrows) but large vessels on the small intestine proper were not observed. E-F: At E11, 
major vessels near the surface of the small intestine were present (arrowheads) Arrows 
denote mesenteric blood vessels. G-J: Major small intestinal vessels displayed further 
branching at E12 and E13 (arrowheads). Arrows denote mesenteric blood vessels. 
Scale bars: 1mm (A, C, E, G, I); 200μm (B, D, F, H, J). C, caeca; SI, small intestine; 
Ven; ventriculus. 
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Figure 2.11 Muscularization of small intestinal blood vessels. Schematic in upper-
left corner depicts the small intestine (SI), blood vessels (BV) and the orientation of 
sections (black slice). A-F: Sections from Tg(tie1:H2B-eYFP) intestines. A-B: At E12, 
YFP-positive endothelial cells subjacent to the coelomic surface were in close proximity 
to the visceral smooth muscle layers (OC, OL) but were not invested by vascular smooth 
muscle cells. C-D: At E14, vascular smooth muscle cells (α-SMA-positive, arrowheads) 
arranged in a single layer were identified surrounding YFP-positive endothelial cells 
localized near the coelomic surface of the small intestine. E-F: At E16, the vascular 
smooth muscle cells appeared more mature and were in multiple layers surrounding 
endothelial cells (arrowheads). G-H: QH1 staining of a wild type adult quail small 
intestine revealed mature vessels with multiple layers of vascular smooth muscle cells in 
large arteries (arrowheads) but only a single layer in veins (arrows). Scale bars: 50μm 
(A, C, E, G) and 10μm (B, D, F, H). A, artery; L, lumen; Mes, mesothelium; Mu, mucosa; 
OC, outer circular muscle layer; Ve, vein; V, villi.  
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Table 2.1 Stages at which key developmental events occur throughout the 
development of quail intestinal mesoderm. 
 

E1.9 E2.2 E3.5 E4 E5 E6 
• Continuous 

outer 
basement 
membrane 

• Narrow 
mesenchymal 
space  

• Single layered 
endothelial 
plexus 

• Open gut tube 
(GT) 

• Dispersed 
outer 
basement 
membrane 

• Scattered 
mesenchymal 
cells 

• Single 
endothelial 
plexus 

• Open GT 

• Continuous 
outer 
basement 
membrane 

• Multilayered 
mesenchyme 

• Peak in 
mesenchymal 
width 

• Stratified 
outer 
epithelium 

• Anterior and 
posterior 
closure of GT 
 

• Continuous 
outer basement 
membrane 

• Contraction of 
mesenchymal 
width 

• Single layered 
outer 
epithelium 

• Dispersed outer 
basement 
membrane 

• Increased 
mesenchymal 
width 

• Cytokeratin-
positive outer 
epithelium 

• Continuous 
outer 
basement 
membrane 

• Decreased 
mesenchymal 
width 

• Mesothelium  
• Completely 

closed GT 
• Endothelial 

plexus splits 
into two 
layers 

• Outer circular 
muscle layer 

• Length: 6mm  
E10 E11 E12 E14 E16 

• Villi present 
• Outer 

Longitudinal 
muscle layer 

• Submesothelial 
layer of SMA-
positive cells  

• Length: 42mm 

• Large surface 
blood vessels  

• Sharp 
increase in 
mesenchymal 
area 

• Length: 
72mm 

• Endothelial 
cells at  base of 
villi 

• Myofibroblasts 
in lamina 
propria 

• Inner circular 
muscle layer 

• Single layer of 
vascular 
smooth muscle 

• Length: 85mm 

• Endodermal 
basement 
membrane 
dispersed 

• Endothelial cells 
in tips of villi 

• Inner 
longitudinal 
muscle layer 

• Multilayered 
vascular media 

• Limited 
submucosal 
mesenchyme 

• Length: 110mm 
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this study. These data provide developmental biologists and clinicians with a detailed 

baseline of normal development—the context with which perturbations of intestinal 

development generated by experimental manipulation and disease can be evaluated. 

Finally, this comprehensive analysis reveals heretofore unidentified cell and tissue 

relationships that generate numerous questions for future study. 

 

Appearance of the intestinal anlage 

Although not immediately apparent, the eventual architecture of the mature 

intestine is in fact represented in three features of the intestinal primordium. At the most 

fundamental level, the endoderm is localized ventrally and the mesoderm, dorsally in the 

flat intestinal anlage. Thus, when a tube is formed by folding the flat sheet ventrally, the 

endoderm will line the lumen and the mesoderm will form the coelomic surface reflecting 

their position in the adult structure. Second, the primordium is split into three 

compartments by two basement membranes, an arrangement maintained into maturity. 

Finally, from its earliest appearance, the vascular plexus is localized in the mesenchymal 

compartment juxtaposed to both basement membranes (Meier, 1980). These basic 

elements form the structural scaffold around which the flat sheet of the primordium folds 

to form a tube. Within this context, the mesenchymal space and its resident cells expand 

to generate the largest intestinal compartment, and the vasculature matures into a multi-

tiered network. 

 

Development of the mesenchymal compartment: E1.9-E5 

Starting from this basic structure, the first significant change in intestinal 

mesoderm development is the generation of a multi-layered mesenchyme. Though 

forming the bulk of the intestine in the adult, this layer is essentially absent in the 

primordium—the endothelial plexus of the intestine is the only cell population to reside in 
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the mesenchymal compartment and contacts the basement membranes of both the 

endoderm and splanchnic mesoderm. The rapid cellular expansion of the mesenchymal 

compartment between E2.2 and E3.5 occurred concurrently with a breakdown of the 

outer basement membrane likely due to an ingress of cells from the outer epithelium into 

the mesenchyme. At E3.5, the mesenchymal compartment peaked in width and the 

outer epithelial basement membrane returned to an unbroken configuration. Throughout 

the subsequent stages in which a solid basement membrane was present the width of 

the mesenchymal compartment gradually decreased. A slight increase in mesenchymal 

width was observed at E5, which correlated with a second brief breakdown of the outer 

epithelial basement membrane. These features suggest the following sequence: inward 

migration of cells from the outer epithelium into the mesenchyme, cessation of migration 

and repair of the basement membrane, a second wave of inward migration, and final 

repair of the basement membrane. The potential of two temporally separated waves of 

migration into the mesenchymal space may indicate that specific mesenchymal lineages 

are added sequentially as suggested but not conclusively proven by cell lineage tracing 

studies (Wilm et al., 2005; Winters et al. 2012, in press). 

 

Completion of intestinal tube formation: E5-E6 

The next major change in intestinal development is the completion of tube 

formation that occurs at E6. At this stage, the mesothelium is fully differentiated, SMA is 

first observed in the outer circular visceral smooth muscle layer and the endothelial 

plexus splits into two layers. Each of these topics is considered below. 

Mesothelial differentiation in the intestine has only recently been studied in any 

detail (Wilm et al., 2005; Kawaguchi et al., 2007; Winters et al, 2012, in press). In 

contrast, mesothelial development in the heart has been examined extensively. Cardiac 

mesothelium is derived from a localized, extrinsic progenitor pool that migrates to the 
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heart. Once at the surface of the heart, individual mesothelial cells undergo an epithelial-

mesenchymal transition (EMT) to invade the underlying myocardium and give rise to 

vascular smooth muscle cells and intracardiac fibroblasts (Mikawa and Gourdie, 1996; 

Dettman et al., 1998; Männer, 1999; Pérez-Pomares et al., 2002; Guadix et al., 2006). 

Mesothelial cells of the intestine have a similar potential demonstrated by genetic 

lineage tracing in the mouse but are derived from a broadly distributed progenitor 

population intrinsic to the forming gut tube (Wilm et al., 2005; Winters et al., 2012 in 

press). The second brief breakdown of the outer basement membrane of the intestine 

occurred as the outer epithelium differentiated into a mesothelial layer. Thus, the second 

wave of inward migration into the mesenchyme may be specific to mesothelial cells or 

their progenitors providing cells of the future vascular or fibroblast lineage. The 

molecular regulation of EMT of the cardiac mesothelium has been investigated utilizing 

multiple murine genetic models (Wu et al., 2010; Baek and Tallquist, 2012). It may be of 

interest to examine these genetic models in the context of intestinal development to 

determine if a similar molecular network regulates EMT of mesothelia in the two organs. 

In addition to contributing cells, mesothelium is also a signaling center during 

development (White, 2006; Olivey and Svensson, 2010; Svensson, 2010). The first 

visceral smooth muscle layer of the intestine differentiates in close proximity to the 

mesothelium with only a small layer of intervening SMA-negative cells. Endodermal Shh 

signals are known to be repressive to visceral smooth muscle differentiation in the chick 

thus positioning the initial smooth muscle cell layer at a distance from the mucosa 

(Sukegawa et al., 2000; Gabella, 2002). However, both Shh and Ihh knockouts in the 

mouse led to reduced visceral smooth muscle differentiation suggesting the role of Shh 

is not repressive alone (Ramalho-Santos et al., 2000; Mao et al., 2010). Intestinal 

mesothelial signaling has not been investigated though frequently developmental 

patterning is the result of integration of signals from two opposing sources (Irish et al., 
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1989; Meinhardt, 2009). Precise positioning of the initial circular muscle layer and 

subsequent layers of smooth muscle may be the result of both endodermal and 

mesothelial signaling events though further investigation is required. 

The endothelial plexus also divides into two layers at E6 (Nagy et al., 2009). 

Signals that pattern the intestinal vasculature are currently unknown. As cells are added 

to the mesenchyme, the endothelial plexus remains centrally located with increasing 

distance separating it from both basement membranes; thus, hypoxia might be proposed 

as a potential regulatory signal. However, quantification of the width of the mesenchymal 

compartment revealed there is actually a decrease in the distance separating the two 

basement membranes between E3.5 and E6. Thus, division of the endothelial plexus 

into two layers at this time may not be related simply to increased hypoxia due to 

mesenchymal growth. The division into two layers that reside near the mesothelial and 

mucosal surface, respectively, suggests chemotactic cues may originate from both 

epithelia to produce this pattern though further research is needed in this area. 

 

Maturation of visceral smooth muscle and vascular components: E6-E16 

 The next major changes that occur within the mesenchymal compartment include 

differentiation of the remaining visceral smooth muscle cell layers, vascular remodeling 

and maturation, and extensive growth. It is unknown what directs the sequential 

differentiation of individual visceral smooth muscle cell layers though, as described 

above, roles for both the endoderm and mesothelium are possible. Interestingly, the 

appearance of the villi is temporally associated with generation of the outer circular and 

outer longitudinal visceral smooth muscle cell layers suggesting a potential mechanical 

relationship. 

In studies of murine intestinal development, endothelial cells appear to play an 

important role in villus formation and remain in close association with the endoderm 



 

72 
 

throughout (Hashimoto et al., 1999; Kim et al., 2007). In the quail, villi form independent 

of a close morphological relationship with the vasculature. Indeed, endothelial cells do 

not invade the villi until days after they are formed. The cues leading to endothelial 

ingrowth into the villi are unknown. Also of potential interest, subepithelial myofibroblasts 

differentiate concurrent with endothelial migration into villi. Endothelial cells in 

endodermally-derived organs function in paracrine signaling independent of their 

function in supplying vascular flow to an area (Lammert et al., 2001; Matsumoto et al., 

2001; Yoshitomi and Zaret, 2004; Jacquemin et al., 2006). Thus, regulation of villus 

maturation and myofibroblast differentiation may be related to signaling events from the 

nearby endothelial cells. 

Finally, while the endothelial plexus of the intestinal primordium is known to be 

derived from the splanchnic mesoderm (Meier, 1980; Pardanaud et al., 1989), the origin 

of the large surface blood vessels is unclear. They are first visible in the mesentery and 

subsequently over the intestine suggesting they may grow via angiogenesis from the 

vitelline artery. Alternatively, they may be derived completely from remodeling of the 

existing endothelial plexus. 

 As detailed above, there remains much to be understood about intestinal 

development. Knowledge of the morphological underpinnings is vital if investigations of 

intestinal formation are to be placed into the larger context in which they occur. These 

studies provide a timeline of intestinal mesodermal development integrating information 

about multiple foundational features. With a broad view of intestinal development, 

potential interactions can be identified that range from the level of gene function, through 

cellular interactions, to tissue morphogenesis leading to the establishment of the 

definitive structure. 
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CHAPTER III 

 

IDENTIFICATION OF A NOVEL DEVELOPMENTAL MECHANISM IN THE 
GENERATION OF MESOTHELIA 

 

This chapter was accepted in Development on May 22, 2012 under the same title with 

the following authors: 

Nichelle I. Winters, Rebecca T. Thomason, David M. Bader 

 

Abstract 

Mesothelium is the surface layer of all coelomic organs and critical for the generation of 

their vasculature. Still, our understanding of the genesis of this essential cell type is 

restricted to the heart where a localized, exogenous population of cells, the 

proepicardium, migrates to and envelops the myocardium supplying mesothelial, 

vascular, and stromal cell lineages. Currently it is unknown whether this pattern of 

development is specific to the heart or applies broadly to other coelomic organs. Using 

two independent long term lineage tracing studies, we demonstrate that mesothelial 

progenitors of the intestine are intrinsic to the gut tube anlage. Furthermore, a novel 

chick-quail chimera model of gut morphogenesis reveals these mesothelial progenitors 

are broadly distributed throughout the gut primordium and are not derived from a 

localized and exogenous proepicardium-like source of cells. These data demonstrate an 

intrinsic origin of mesothelial cells to a coelomic organ and provide a novel mechanism 

for the generation of mesothelial cells.  

 

Introduction 

The vertebrate coelom, or body cavity, and internal organs housed therein are all 

lined by a simple squamous epithelium called mesothelium. In the healthy adult, 
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mesothelia are relatively quiescent—their primary function is to form a non-adhesive 

surface for the movement of organs (Mutsaers and Wilkosz, 2007). However, mesothelia 

are also recognized as critical players in peritoneal sclerosis (Chegini, 2008; Yung and 

Chan, 2009), in the regulation of the injury microenvironment in myocardial infarction 

(Zhou et al., 2011) and for their ability to promote revascularization of diverse tissues 

including the heart (Takaba et al., 2006; Zhang et al., 1997). These functions of 

mesothelium in injury and repair reflect the dynamic behavior of mesothelia in embryonic 

development. While mesothelia are universally distributed in the pericardial, pleural and 

peritoneal cavities of all vertebrates, our understanding of mesothelial development is 

largely restricted to one organ, the heart.  

Manasek (1969) and Ho and Shimada (1978) demonstrated that cardiac 

mesothelium (epicardium) originated from a discrete population of cells termed the 

proepicardium (PE) localized outside of the initial heart tube (Ho and Shimada, 1978; 

Manasek, 1969). Originating from the region of the sinus venosus, these cells migrate as 

an epithelium across the pericardial space to contact the naked myocardium (Ishii et al., 

2010). Further dorsal-ventral migration of this epithelium over the heart tube leads to 

formation of the epicardium. Thus, epicardial precursors do not arise in situ but are 

recruited from a localized cell source exogenous to the splanchnic mesoderm of the 

developing organ. 

Subsequent lineage tracing studies revealed that specific cells within the 

epicardium undergo epithelial-mesenchymal transition (Wu et al., 2010), invade the 

myocardium, and differentiate into fibroblasts, vascular smooth muscle, and endothelial 

cell populations (Dettman et al., 1998; Mikawa and Gourdie, 1996). Hepatic, pulmonary, 

and intestinal mesothelia have since been shown to provide vasculogenic and stromal 

populations to their respective organs (Asahina et al., 2011; Eralp et al., 2005; Morimoto 

et al., 2010; Perez-Pomares et al., 2004; Que et al., 2008; Wilm et al., 2005).  
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Wilm et al. demonstrated that the mesothelial marker Wilms’ tumor protein 1 

(Wt1) first appeared in the mesentery of the intestine and then later encompassed the 

gut tube in a dorsal-ventral direction. This expression pattern mirrored the dorsal-ventral 

migration of the epicardium seen in the heart and, from these data, our group 

hypothesized that “non-resident cells migrate to and over the gut to form the serosal 

mesothelium” (Wilm et al., 2005). These data in conjunction with the shared 

vasculogenic potential of mesothelia suggested the mechanism of mesothelial 

development and the function of this cell type in embryogenesis may be conserved in 

diverse coelomic cavities.  

In contrast to the extensive analysis of epicardial development, careful 

examination of the primary literature reveals that little if anything is known about the 

origin of mesothelial cells in any coelomic organ other than the heart. Additionally, a 

change in terminology contributes to confusion in the literature regarding this cell type. 

The term “mesothelium” originally referred to the entire epithelial component of 

mesoderm as differentiated from the loose mesenchyme (Minot, 1890). The term did not 

refer to the specific simple squamous cell type we currently identify as mesothelium. 

Still, a review authored by Minot in 1890 using this original terminology appears to form 

the basis for the modern description on the origin of vertebrate coelomic mesothelia 

(Moore and Persaud, 1998; Mutsaers, 2002). An extensive review of the literature 

reveals no primary data addressing the origin of mesothelium. Taken together, it is clear 

that the program of proepicardial/epicardial development stands alone as a definitive 

model of development of this widely distributed cell type that is so critical for vertebrate 

organogenesis.  

A question arises: Is there a common mechanism of mesothelial development?  

Fundamental to the resolution of this question is determining the origin of mesothelial 

precursors in diverse coelomic organs. Thus, we examined intestinal development to 



 

81 
 

determine whether mesothelium originated from an exogenous, localized source as seen 

in the heart or, conversely from a resident population of mesothelial progenitors within 

the gut itself. Using three independent experimental models, we demonstrate that the 

intestine derives its mesothelial layer from progenitor cells broadly resident within the 

splanchnic mesoderm and not from a PE-like structure extrinsic to the developing organ. 

These data provide new information concerning a fundamental process of intestinal 

development and reveal diversity in mechanisms regulating the generation of 

mesothelia.  

 

Materials and Methods 

 

In situ hybridization (ISH) 

ISH was performed according to standard protocols (McGlinn and Mansfield, 2011). Wt1 

template (GenBank accession number AB033634.1) was kindly provided by Dr. Jorg 

Manner (Georg-August University of Gottingen, Germany) (Schulte et al., 2007).  

 

Immunohistochemistry (IHC) and co-localization analysis 

Immunohistochemical analysis of sectioned chick (Gallus gallus) or quail (Coturnix 

japonica) embryos was as published (Osler and Bader, 2004). All animal procedures 

were performed in accordance with institutional guidelines and IACUC approval. Chick 

embryos were staged according to Hamburger and Hamilton (Hamburger and Hamilton, 

1992). The following primary antibodies were used: Anti-GFP (Invitrogen A11122, 

1:200); Anti-laminin (Abcam Ab11575, 1:50); Anti-Laminin (DSHB 31 or 31-2 1:25); Anti-

neurofilaments (DSHB RT97 1:50); Anti-smooth muscle actin (Sigma A2547 1:200), 

Anti-smooth muscle actin (Abcam Ab5694 1:200), QCPN (DSHB undiluted), 8F3 (DSHB 

1:25), Anti-PGP9.5 (Zymed 38-1000, 1:200); Anti-cytokeratin (Abcam Ab9377, 1:100), 
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QH1 (DSHB, 1:200). The following secondary antibodies were used at a 1:500 dilution: 

Alexa fluor 488 or 568 Goat anti-rabbit (Invitrogen); Alexa fluor 488 or 568 Goat anti-

mouse (Invitrogen). TOPRO-3 (Invitrogen T3605) at 1 µmol/L was applied for 20 min. 

Sections were imaged in Z-stacks using a LSM510 META Confocal with 0.4 µm optical 

slices. Each optical slice was analyzed for co-localization of the red and green channels 

using ImageJ followed by Z-projection for counting of cells. All IHC images presented in 

figures are Z-projections. 

 

Microinjection 

Windowed chick embryos (HH14-17) were lightly stained by placing a dried strip of 

neutral red (0.2 mg/mL) in 1% agar on top of the embryo. For contrast, 0.2 uL of 10% 

fast green solution (sterile filtered) was added to 5 µl viral or pCIG suspension (7 µg/µL) 

and then loaded into a pulled glass needle. The agar strip was removed and 

approximately 25-30 nanoliters were injected into both lateral cavities with aid of a 

micromanipulator and use of a Narishige IM300 microinjector with 2msec pulses at 

38PSI.  

 

Electroporation 

pCIG-GFP in which GFP expression is driven by the chicken β-actin promoter was kindly 

provided by Dr. Michael Stark (Brigham Young University, Provo, UT, USA) (Lassiter et 

al., 2007). Chick eggs incubated 2.5 days were windowed by withdrawing 4 ml of 

albumin and cutting a hole in the top of the egg shell. The vitelline membrane over the 

posterior region of windowed HH14-HH17 embryos was removed with a tungsten 

needle. After pCIG-GFP microinjection, a small hole was made outside of the 

vascularized region through which the positive electrode was inserted below the embryo. 

The negative electrode was placed on top of the embryo and 5-7, 10 msec pulses at 15 
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V were delivered (ECM 830 electroporator; BTX Harvard Apparatus). After addition of 

Tyrode’s salts solution with 1% pen/strep, the eggs were resealed with tape and 

incubated 8 days.  

 

Production of pSNID retrovirus 

The following plasmids were used: pSNID with both a GFP and βgal reporter a generous 

gift of Dr. Jeanette Hyer (UCSF, San Francisco, CA, USA) (Venters et al., 2008); pCI-

VSVG (Addgene 1733); pCAGGS Gag/Pol (generous gift of Dr. Connie Cepko, Harvard 

University, Cambridge, MA, USA). Virus was produced in Phoenix-GP cells. Pheonix-GP 

cells (ATCC SD-3514) were grown to 70-80% confluence in DMEM supplemented with 

10% FBS and split 1:3 onto four, 10 cm plates the night prior to transfection. Media was 

exchanged prior to transfection.  For each plate, 4 ug DNA (2 ug pSNID, 1 ug VSV-G, 1 

ug Gag/pol) was diluted in 100 uL serum free DMEM. To the DNA suspension, 24 uL 

PEI (1 mg/mL PEI, pH7; MW25K, Polysciences Inc 23966-2) was added, mixed by 

vortexing, incubated 15 min at room temperature, added to the cells overnight. Media 

was exchanged, media collected after 24 hrs, and stored at -80°C. 5 ml new media was 

added, media collected at 48 hrs, pooled with 24 hr collection, syringe filtered (45 um) 

and concentrated by ultracentrifugation (SW-28 rotor, 18000 RPM, 2 hours, 4°C). 

Supernatant was discarded and the ultracentrifuge tube drained by inverting for 60 sec. 

The viral pellet was resuspended in media that remained in the ultracentrifuge tube (~50-

80 uL). Polybrene (Sigma H9268) was added to the viral suspension at final 

concentration of 100 ug/mL. After microinjection, infected cells were detected by GFP 

expression in whole mount using a fluorescence-detecting dissecting microscope or in 

section by staining with an anti-GFP antibody.  
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Titer assay 

D17 cells were grown to 60% confluence in 6-well plates. Fresh media (DMEM + 7% 

FBS) with 10 µg/ml polybrene was added to the plates prior to infection. Concentrated 

viral suspension was serially diluted and added to the 6-well plates. At 48 hrs, cells were 

stained with Xgal to detect viral infection. The total number of positive clones in a well 

were counted to determine the total number of virions added. Viral titers reaching at 

least 107 virions/mL were aliquoted and stored at -80°C.   

 

Generation of chick-quail chimeras 

Splanchnopleure was dissected away from quail embryos staged 14-17. Dissection was 

carried out in sterile Tyrode’s salt solution. Isolated splanchnopleure was bisected into 

anterior and posterior regions by cutting at the vitelline artery and then anterior and 

posterior splanchnopleure was further subdivided into 3-4 pieces. Chick embryos in 

windowed eggs were lightly stained with a strip of neutral red in agar. The vitelline 

membrane was removed with a tungsten needle and a small hole made through the 

somatopleure over the vitelline artery. The quail splanchnopleure graft was transferred 

into the chick egg and pushed through the hole with forceps and a tungsten needle into 

the right lateral cavity. Tyrode’s salt solution with 1% penicillin/steptomycin was added to 

replace volume and eggs were then sealed with tape and incubated for 1-14 days. The 

number of graft and host derived mesothelial cells was determined by analyzing a 

subset of graft-derived gut tubes at multiple levels. The mesothelial layer was 

distinguished by morphology combined with cytokeratin or laminin staining. Nuclei within 

the mesothelial layer were manually identified and then subsequently identified as either 

QCPN or 8F3 positive. 
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Results 

 

Trilaminar organization of the intestine is established prior to tube formation 

The adult intestine is composed of three subdivisions or compartments: the inner 

mucosa with an underlying basement membrane, the middle “mesenchymal” layers 

harboring stromal and visceral smooth muscle cells, and the outer mesothelium with its 

own basement membrane. We used immunohistochemical staining for cytokeratin, an 

intermediate filament expressed by epithelia, and laminin, a component of basement 

membranes, to examine the intestine for establishment of these three compartments. By 

close examination of formation of these compartments, we sought to identify any 

potential mesothelial progenitor population within the gut tube either of a proepicardial-

like morphology or any other tissue arrangement. 

The splanchnopleure posterior to the heart tube of chick embyos was examined 

at early stages of intestinal morphogenesis, prior to gut tube closure. At the earliest 

stage examined, HH13, the splanchnopleure was bilaminar composed of endoderm and 

splanchnic mesoderm with almost no intervening mesenchymal cells (Figure 3.1 A-C, 

arrowhead). Each layer was individually underlain by a laminin-positive basement 

membrane that extended along the entire dorsal-ventral axis of the splanchnopleure 

(Figure 3.1 A-C, arrows).  

At HH15, the splanchnopleure transitioned from having two major compartments 

to three. This was due to the establishment of a mesenchymal layer between the two 

basement membranes of the splanchnopleure (Figure 3.1 D-F). For ease of reference, 

we termed the three compartments endoderm, mesenchyme, and outer epithelium 

though at this time the outer epithelium does not express cytokeratin (Figure 3.1 F’). The 

transition to three compartments occurred evenly throughout the splanchnopleure, and 

no localized PE-like structure was observed throughout the entirety of the peritoneal 
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Figure 3.1 A trilaminar gut tube was generated by HH15. A) HH13 splanchnopleure 
was composed of two layers. B-C) Boxed regions shown in A). The splanchnic 
mesoderm appeared stratified and was underlain by a basement membrane (yellow 
arrow). The endoderm had its own basement membrane (white arrow). Arrowheads in C 
indicate a single mesenchymal cell. C’) The endoderm but not the splanchnic mesoderm 
was cytokeratin positive at HH13. D-F) At HH15, a mesenchymal layer was observed 
residing between the aforementioned basement membranes (arrows). F’) The outer 
epithelium was not cytokeratin positive at HH15. G-I) At HH19 the mesenchymal layer 
had expanded (space between two arrows) and the basement membrane of the outer 
epithelium had fragmented (outer arrow). I’) The endoderm but not the outer epithelium 
was cytokeratin positive. E, endoderm; Me, mesenchyme; NT, neural tube; OE, outer 
epithelium; S, somite; So, somatic mesoderm; Sp, splanchnic mesoderm. 
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cavity. The outer epithelium remained stratified/pseudostratified, was underlain by a 

fragmented basement membrane (yellow arrow) and formed a uniform layer over the 

mesenchyme (Figure 3.1 D-F). With the appearance of the mesenchymal layer, the 

splanchnopleure was now in a trilaminar configuration which, as described above, is the 

basic organization of the adult intestine. The mesenchymal layer expanded through 

HH19 and the basement membrane of the outer epithelium remained fragmented 

(Figure 3.1 G-I, yellow arrow).  The mesothelial marker Wt1 was, however, not 

expressed specifically in the outer epithelium at these stages though Wt1 staining was 

observed in the mesothelial component of the PE over the same period of time (Figure 

3.2). Four days after the initial appearance of the outer epithelium (HH29, day 6) the 

layer attained the simple squamous morphology and robust cytokeratin expression of a 

definitive mesothelium (Figure 3.3 A-D). Thus, the three compartments of the intestine 

including a potential mesothelial progenitor layer, the outer epithelium, are established 

very early in development prior even to intestinal tube formation. 

 

Mesothelial progenitors are resident to the splanchnic mesoderm 

As a first step in identifying the origin of mesothelial progenitors, it was necessary to 

determine whether the outer epithelium was derived from resident cells of the splanchnic 

mesoderm layer or a migratory progenitor population undetected by the analyses 

described above. Thus, we devised a method to label and trace cells of the splanchnic 

mesoderm over time. A reporter plasmid expressing green fluorescent protein (GFP) 

from the chick β-actin promoter was injected into the lateral cavities of HH14 chick 

embryos, the stage prior to establishment of the mesenchymal layer (Figure 3.4 A). 

Microinjection was followed by electroporation with the electrodes oriented directly 

above and below the embryo to direct the DNA ventrally into the splanchnic mesoderm.  

Embryos were incubated for six hours post-electroporation to allow for GFP to 
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Figure 3.2 In situ hybridization for Wt1. Nephric precursors and the urogenital ridge 
expressed Wt1 at all stages examined (HH13-HH19). Arrows denote the ventral 
boundary of positive staining. A-B) At HH14, Wt1 was not present within the anterior 
splanchnopleure except at the most dorsal aspect (arrows). C) The mesoderm over the 
vitelline vein (VV) also was Wt1 positive anteriorly at HH14. D-F) In the posterior region 
of HH14 embryos, Wt1 not identified in the splanchnopleure. G-I) At HH15, Wt1 
expression was variable along the A-P axis though expression did extend into the 
splanchnic mesoderm at some levels. Expression was not clearly restricted to the outer 
epithelium (arrows). J-K) At HH19, expression of Wt1, while still variable, was found 
extending throughout the entire splanchnic mesoderm up to the vitelline veins and 
including the mesenchymal layer (arrows). L) Representative image demonstrating Wt1 
expression in the PE (arrows). Note the lack of staining over the myocardium (M). DA, 
dorsal aorta; E; endoderm; FG, foregut; ND, nephric duct; NT, neural tube; S, somite; 
So, somatic mesoderm; Sp, splanchnic mesoderm; SV, sinus venosus; UR, urogenital 
ridge; VV, vitelline vein. Scale bar 40 µm. 
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Figure 3.3 Definitive intestinal mesothelium is present at HH29 (Day 6). A) At day 6, 
a simple squamous, cytokeratin positive (green) meosthelium is present surrounding the 
intestine. B) A basement membrane underlies the mesothelium (red, yellow arrow). 
White arrow indicates the endodermal basement membrane. C) Merge. D) Higher 
magnification of boxed region shown in C). E, endoderm; Me, mesenchyme; OE, outer 
epithelium.   
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Figure 3.4 Electroporation of the splanchnic mesoderm at HH14 demonstrates 
labeling of the outer epithelium and mesenchyme. A) Schematic demonstrating 
injection of the GFP reporter plasmid into the right lateral cavity of an embryo in ovo. B) 
Wholemount image of the ventral surface of an embryo electroporated at HH14 and then 
incubated for 6 hours. Electrodes were placed near the vitelline artery. GFP was 
observed in the region near the vitelline artery and was restricted to the lateral plates 
(arrows). C) GFP-positive cells localized to the splanchnic mesoderm. D) Boxed area 
shown in C). GFP-positive cells were found primarily within the outer epithelium (arrows) 
with a few cells within the mesenchymal layer (arrowheads). No GFP-positive cells were 
identified in the endoderm. E) Merge of D with TOPRO-3. BV, blood vessel; GN, glass 
needle; H, heart; LC, lateral cavity; LP, lateral plate; Me, mesenchymal layer; N, 
notochord; NT, neural tube; OE, outer epithelium; S, somite, VA, vitelline artery. 
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accumulate to a detectable level and also encompass the time over which the 

splanchnopleure transitions from two to three layers. Whole mount imaging of 

electroporated embryos revealed bilateral GFP expression restricted to the region of the 

lateral plate near the vitelline arteries demonstrating the accuracy of the targeting 

method (Figure 3.4 B, arrows). Fluorescent imaging of sections through the targeted 

regions at six hours post-electroporation demonstrated that GFP-positive cells were 

present predominantly within the outer epithelium (71%; 454/640 total cells counted from 

four embryos, arrows) but also in the underlying mesenchyme (29%, 186/640 total cells 

counted, Figure 3.4 C-E, arrowheads). At no time was endoderm labeled with this 

method. Embryos electroporated between HH15-HH17 demonstrated similar labeling 

with 66% of GFP-positive cells within the outer epithelium (316/482 total cells counted, 

Figure 3.5). The presence of labeled cells in the outer epithelium and mesenchyme 

indicates the splanchnic mesoderm provides cells to both layers.  

We next sought to determine if cells of the splanchnic mesoderm later gave rise 

to the mesothelium. For this experiment, embryos were electroporated between HH15-

HH17 and incubated for eight days (the limit of GFP detection using this method) to day 

10 of chick development. Examination of resulting small intestines revealed labeled cells 

were clearly resident within the mesothelial layer. These GFP-positive cells exhibited 

features typical of mesothelium including a close association with the basal lamina and a 

squamous morphology (Figure 3.6 A-D, arrows). In addition to the mesothelium, GFP-

positive cells were identified throughout the gut tube including the muscularis externa 

(arrows) and penetrating as deep as the submucosa (arrowhead, Figure 3.6 E-H). 

Labeled cells were never observed in the endodermal mucosa. These data demonstrate  

that mesothelial precursors are resident to the splanchnic mesoderm and outer epithelial 

layer of the primitive intestine. 
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Figure 3.5. Electroporation of the splanchnic mesoderm at HH15. A) Section though 
an embryo 6 hours post-electroporation. Both right and left sides of the embryo were 
targeted (boxed areas) B-E) Higher power views of boxed areas. Cells within the outer 
epithelium (arrows) and mesenchyme (arrowheads) were GFP-positive. DA, dorsal 
aorta; E, endoderm; LC, lateral cavity; Me, mesenchymal layer; NT, neural tube; OE, 
outer epithelium; S, somite. 
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Figure 3.6 DNA electroporation demonstrates that splanchnic mesoderm harbors 
mesothelial progenitors. Sections through gut tubes of embryos electroporated at 
HH15-HH17 and incubated 8 days. A-D) GFP-positive cells (arrows) were identified 
within the squamous mesothelial layer of the intestine associated closely with the 
basement membrane (laminin, red). E) GFP-positive cells were also identified within the 
forming alpha-smooth muscle actin (SMA) positive muscularis externa (boxed region) 
and into the submucosa (arrowhead). F-H) Higher magnification of boxed region. GFP-
positive cells within the muscularis externus were not SMA-positive (arrows). ME, 
muscularis externa; Mu, mucosa; SM, submucosa. 
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We utilized a second direct labeling approach to confirm and extend our findings. 

For these experiments, we used a replication incompetent retrovirus with broad tropism 

and a GFP reporter gene. Incorporation of the retroviral genome into infected cells 

allows for long term tracing without dilution of the label through cell division. High titer 

retrovirus was injected into the lateral cavities of HH14-17 embryos in the same manner 

as the electroporation plasmid to label the surface cells throughout the time points at 

which the splanchnopleure transitions between two to three compartments. Embryos 

were then incubated 14 days (to day 17 of development, hatching occurs at day 21) 

before the gut tubes were harvested. 

Isolated gut tubes were first examined in whole mount for GFP expression. In 

embryos infected at HH14, a time prior to appearance of the middle mesenchymal layer, 

GFP-positive cells were present throughout the gut tube and mesentery and many 

appeared localized to the surface (Figure 3.7 A, arrows). GFP-positive cells also clearly 

associated with the vascular tree (Figure 3.7 B-B’, arrows) and distributed in deep layers 

(Figure 3.7 C, arrows).Upon sectioning, surface GFP-positive mesothelial cells with a 

squamous morphology were clearly identified in close association with the external basal 

lamina (Figure 3.8 A-B, arrowhead). GFP-positive vascular smooth muscle cells were 

also present consistent with previously published data (Wilm et al., 2005). Other GFP-

positive, SMA-negative cells were identified peripheral to the vascular media within the 

adventitia (Figure 3.8 C-D). We did not identify any GFP-positive endothelial cells. GFP-

positive cells were also identified within the submucosa and muscularis externa but not 

within the mucosal epithelium (Figure 3.8E). Only 5% of GFP-positive cells localized 

within the muscularis externa were visceral smooth muscle cells (alpha-smooth muscle 

actin (SMA)-positive and spindle shaped) (Figure 3.8 F-H, arrowheads). The phenotype 

of the remaining cells could not be identified by morphology or by specific markers of 

smooth muscle, neurons, or epithelia and might best be characterized as 
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Figure 3.7 Long term retroviral lineage tracing of splanchnic mesoderm. 
Wholemount images of intestine from embryos infected with virus between HH14-HH17 
and analyzed 14 days later. A) High magnification of intestinal surface demonstrated 
cells resembling mesothelium with prominent nuclei and broad cell processes (arrows). 
B) Brightfield image of gut tube demonstrating the vasculature (arrows). B’) GFP 
fluorescence of gut tube pictured in B). GFP-positive cells surrounded the vasculature 
within the mesentery and intestine (arrows). C) GFP-positive cells were also found 
distributed deeply in the intestine (arrows). GT, gut tube; VA, vitelline artery. 
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Figure 3.8 Lineage tracing of splanchnic mesoderm reveals mesothelial, 
perivascular, and mesenchymal derivatives. A-H) Sections of intestine from embryos 
infected between HH13-14 and isolated 14 days later. A) Squamous GFP-positive cells 
frequently populated the mesothelium (arrowheads) closely associating with the 
basement membrane (red, laminin). B) High magnification of boxed area in A). C) GFP-
positive cells associated with large mesenteric blood vessels. D) High magnification of 
boxed area in C) demonstrates GFP-positive vascular smooth muscle cells (arrow) and 
perivascular cells (arrowhead). E) GFP-positive cells were identified within the 
muscularis externa. F-H) High magnification of boxed area shown in E). A rare 
population of GFP-positive cells found within the muscularis externus were spindle 
shaped and SMA-positive (arrowheads). I-L) Sections of intestine from embryos infected 
between HH15-17 and isolated 14 days later. I) Squamous GFP-positive cells populated 
the mesothelium (arrowheads) closely associating with the basement membrane (red, 
laminin). J) SMA-negative mesenchymal cells within the muscularis externa layer 
(arrowheads). K) GFP-positive vascular smooth muscle cells (arrowheads). L) 
Submucosal GFP-positive, SMA-negative cells. M, mesothelium; ME, muscularis 
externus; Mes, mesentery; Mu, mucosa, SM, submucosa.  
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stromal/mesenchymal by their location within the organ wall (Figure 3.8 J, L and data not 

shown). In embryos infected with the retrovirus between stages 15-17, after division of 

the splanchnic mesoderm into outer epithelium and mesenchyme, the same GFP-

positive populations were identified at day 17 of development (Fig. 3.8 I-L). This 

independent assay confirmed that resident splanchnic mesoderm was the origin of 

mesothelium and that these cells are maintained within the definitive mesothelium.  

 

Intestinal mesothelial progenitors are localized broadly throughout the splanchnic 
mesoderm 
 

The current data establish that cells resident to the splanchnic mesoderm give 

rise to intestinal mesothelium. We next sought to determine if the majority of cells were 

derived from this resident population of progenitors and if the potential to generate 

mesothelium from resident cells was distributed broadly throughout the splanchnic 

mesoderm or restricted to subdivisions of the gut.   

To address these questions, we developed a chick-quail chimera assay to 

analyze gut development. Bilateral splanchnopleure was isolated from HH13-17 quail 

embryos, divided into 6-7 pieces along the A-P axis, and then transplanted individually 

into the right lateral cavities (precursor to the coelomic cavity) of chick embryos staged 

between HH16-18 (Figure 3.9 A). The host chick embryos were incubated for 14 days 

post-transplantation (corresponding to day 16.5 of quail development) and then 

harvested to identify where the transplanted tissue incorporated and whether mesothelial 

differentiation transpired. Strikingly, the transplanted splanchnopleure did not incorporate 

into the host gut tube but rather formed an independent “gut tube” within the coelomic 

cavity connected to the host only through a mesentery (Figure 3.9 B). At 14 days post-

transplantation, graft-derived gut tubes were similar to a normally developing small 

intestine with an elongated tubular shape and a single dorsal mesentery (Figure 3.9 C,  
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Figure 3.9 Transplanted splanchnopleure forms a highly structured gut tube. A) 
Transplants were generated by cutting along the dorsal aspect of the splanchnopleure 
(1) and the ventral edges near the vitelline veins (2). The splanchnopleure was then cut 
along the A-P axis (3) to generate 6-7 pieces for transplantation. B) A representative 
graft-derived gut tube 8 days after transplantation. The graft had generated a tube and 
attached to the mesentery of the host gut tube. C) A representative graft-derived gut 
tube 14 days after transplantation (G, bracketed). The graft-derived gut tube was 
attached to the host (H) via a mesentery. D) The mesentery of the graft-derived gut tube 
contained a regular arrangement of blood vessels (arrowheads). E-G) Sections through 
the graft-derived gut tube demonstrated normal morphogenesis with villi (arrowheads), 
submucosa (SM), and a SMA-positive muscularis externus layer. All layers were derived 
from quail cells (QCPN-positive, green). E, endoderm; Ec, ectoderm; G, graft-derived gut 
tube; H, host gut tube; LC, lateral cavity; M, mesothelium; ME, muscularis externa; Mu, 
mucosa; NT, neural tube; S, somite; So, somatic mesoderm; Sp, splanchnic mesoderm; 
SM, submucosa; VA, vitelline artery; VV, vitelline vein. 
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 brackets) housing a well organized vasculature (Figure 3.9 D, arrowheads; observed in 

16 chick-quail chimeras). Transverse sections through graft-derived gut tubes 

demonstrated a remarkable intestinal organization with an inner mucosa with villus folds 

(arrowheads), a submucosa, and a muscularis externa with smooth muscle 

differentiation (Figure 3.9 E-G). Staining for quail specific QCPN demonstrated all layers 

of the graft were quail derived (Figure 3.9 E-G). Specific regions in the graft did not stain 

with QCPN but were positive for a pan-neuronal marker, PGP9.5 (Figure 3.10 A-E 

asterisks). Co-staining for a marker of chick cells (8F3) and PGP9.5 confirmed these 

cells originated from host neural crest cells (Figure 3.10 F-J). Interestingly, the host-

derived neural crest cells that invaded the graft organized into typical submucosal and 

myenteric plexuses (Figure 3.10). Transplanted splanchnopleure isolated both prior to 

(HH13-HH14) and after (HH15-17) establishment of a trilaminar configuration produced 

identical results (Figure 3.11). 

Co-staining for QCPN with cytokeratin revealed that mesothelium covering the 

graft-derived gut tube and within the mesentery originated from transplanted quail 

splanchnopleure (Figure 3.11 A-F, arrowheads). We quantified the number of 

mesothelial cells in graft-derived gut tubes that were QCPN-positive and found that on 

average 85% of mesothelial cells were quail derived. Furthermore, 94% of mesothelial 

cells in graft-derived gut tubes were negative for a marker specific to chick cells (8F3) 

(Figure 3.11 G-I). The difference between the two percentages is likely due to the 

variation in staining patterns; QCPN is a perinuclear antigen often with distinct puncta of 

staining while 8F3 is cytoplasmic and more easily visualized (Figure 3.11 J-L). Both 

figures denote the great majority of graft-derived mesothelial cells were derived from 

transplanted tissue. 

Tissue morphogenesis was identical between both anterior and posterior derived 

grafts and, critical to the current studies, the mesothelium was always quail-derived 
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regardless of whether the graft was obtained from an anterior or posterior location in the 

source splanchnopleure (100% of cases examined, Figure 3.11 A-F). Taken together, 

these data demonstrate that mesothelial progenitors are broadly distributed along the A-

P axis of the intestine and there is not a localized or restricted PE-like source of 

mesothelial cells. 

 

Discussion 

Mesothelia are essential for the generation of diverse cell types within all 

coelomic organs investigated thus far (Asahina et al., 2011; Eralp et al., 2005; Mikawa 

and Gourdie, 1996; Perez-Pomares et al., 2004; Que et al., 2008; Wilm et al., 2005). 

Despite the importance of this cell type in organogenesis, the origin of mesothelium had 

only been established in the heart where mesothelium is derived from a localized, 

extrinsic cell population, the PE. Identification of the origin of mesothelial cells is 

essential for studies of the molecular regulation of mesothelial differentiation, vascular 

formation, and mesothelial-dependent signaling in intestinal development and 

organogenesis in general. Here, using three independent methods, we demonstrate that 

intestinal mesothelium is derived from a resident population of cells broadly distributed 

within the splanchnic mesoderm. Thus, gut mesothelium does not arise in the same 

manner as described in the heart and reveals a novel paradigm for the generation of this 

essential cell type. Discovery of the origin of gut mesothelium is critical for further 

analysis of regulatory mechanisms governing mesothelial development, repair in the 

adult, and origin of disease 

Previously, we demonstrated through a genetic lineage tracing study in mouse 

that vascular smooth muscle cells of the intestine were derived from mesothelium. 

Furthermore, expression of Wt1 was first observed in the mesentery and then 

progressively encompassed the intestinal tube suggesting a migratory mesothelial 
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Figure 3.10 Invasion of graft-derived gut tube by chick neural crest. A) Neuronal 
cells identified by PGP9.5 staining were found throughout the graft-derived gut tube 
organized into submucosal (arrow) and myenteric plexuses (arrowhead). B-E) Higher 
magnification of boxed area in A). QCPN-negative cells within the graft (asterisks) were 
PGP9.5-positive (arrowheads). F-J) Staining for the chick cell marker 8F3 co-localized 
with PGP9.5 staining (arrowheads). K-N) Immunostaining for QCPN and PGP9.5 in a 
host gut tube demonstrating the typical organization into submucosal (arrow) and 
myenteric (arrowhead) plexuses. L) QCPN-positive cells were not found within the host 
gut tube. M, mesothelium; ME, muscularis externa; Mu, mucosa; SM, submucosa. 
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Figure 3.11 Graft mesothelium is quail derived. A-C) Section of graft-derived gut tube 
generated from tissue isolated from the anterior splanchnopleure of a HH16 quail donor. 
Co-staining for QCPN and cytokeratin demonstrated that the mesothelial cells lining the 
graft were quail derived (arrowheads). D-F) Section of a graft-derived gut tube generated 
from the posterior splanchnopleure of a HH14 quail donor. QCPN staining demonstrates 
the mesenteric mesothelium is quail derived (arrowheads). G-I) Host-derived cells (8F3-
positive) were also identified within the graft (arrows). However, 8F3-positive chick cells 
were only rarely (6%) identified within the mesothelial layer (arrowheads) of the graft-
derived gut tube.  J-L) Staining of a chick (host) gut tube reveals mesothelial cells 
(arrowheads) robustly label with the chick marker 8F3. GT, gut tube; Mes, mesentery. 
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population may exist as observed in the heart (Wilm et al., 2005). However, a PE-like 

structure or clear evidence of a migratory population was not identified. Furthermore, 

Wt1 is not a marker specific only to mesothelium (Zhou et al., 2011). Here, through the 

use of direct labeling and transplantation studies in the avian embryo, we have 

demonstrated that mesothelial progenitors of the intestine are broadly resident to the 

splanchnic mesoderm and not derived from an exogenous migratory source. This 

progenitor population is present prior to tube formation but does not specifically express 

Wt1. While there may be variation between species in intestinal mesothelial origin and 

Wt1 expression patterns, it is possible that murine mesothelial progenitors are also 

resident broadly in the intestine and Wt1 is expressed in a dorsal-ventral direction as 

mesothelial differentiation proceeds. Still, further experimentation is needed to resolve 

this issue amongst different species. 

The intestines, lungs, liver, and pancreas are all gut tube derivatives formed from 

endoderm or endodermal buds that are surrounded by splanchnic mesoderm. In 

contrast, the heart wall is not a gut tube derivative but rather is derived solely from 

splanchnic mesoderm excluding endoderm dorsally. The splanchnic mesoderm, which 

makes up the majority of the heart wall, is not thought to contain mesothelial progenitors 

(Gittenberger-de Groot et al., 2000.; Manner et al., 2005). In contrast, the present study 

demonstrates that mesothelial precursors are resident broadly to the surface of the 

developing gut splanchnic mesoderm prior to endodermal budding and mucosal 

differentiation. Considering the unique features of cardiac development and the early 

specialization of the cardiac splanchnic mesoderm (i.e. it is a contractile tube before PE-

derived mesothelium contacts the organ), we postulate mesothelial development in the 

lungs, liver and pancreas as gut tube derivatives will be found to more closely resemble 

the intestinal rather than the cardiac model of mesothelial development. 
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The molecular foundation for the variation in proepicardial and intestinal 

mesothelial development is currently unknown. However, Ishii et al. report that the liver 

bud is at least partially responsible for induction of markers of the PE including Wt1, 

Tbx18 and capsulin. Liver bud transplanted ectopically into the lateral embryo distal to 

the heart induced Wt1 in the closely adjoining tissue. Interestingly, the lung bud and 

stomach did not have similar inductive capabilities in that system (Ishii et al., 2007). For 

the majority of the mesothelium not in contact with the liver bud, alternative inductive 

tissues and signals must be involved. Other studies have uncovered potential roles for 

BMP in villous protrusion of the PE (Ishii et al., 2010), a behavior observed in cardiac but 

not intestinal mesothelial development (from the current study), and for both BMP and 

FGF signals in the lineage specification of epicardial cells (Kruithof et al., 2006; 

Schlueter et al., 2006). With identification of the fundamental mechanism of intestinal 

mesothelial formation, studies on the molecular regulation of behaviors unique to either 

the intestinal or cardiac mesothelium can proceed. 

While the origin of mesothelial cells in the intestine and heart are clearly 

divergent, there do exist conserved features of mesothelial development and 

differentiation. The presence of a small number of host mesothelial cells in graft-derived 

gut tubes suggests that intestinal mesothelium can be migratory as previously observed 

with epicardial mesothelium. Whether this is a normally occurring event in gut 

development or simply a “blending” of cells in this particular experimental model, it is 

evident that mesothelial progenitors of the gut and/or definitive gut mesothelium are 

capable of movement or active migration. Mesothelial cells in the heart, lungs, intestines, 

and liver all give rise to stromal cells including vascular smooth muscle, endothelium, 

fibroblasts, and other “mesenchymal” cells (Asahina et al., 2011; Dettman et al., 1998; 

Eralp et al., 2005; Mikawa and Gourdie, 1996; Perez-Pomares et al., 2004; Que et al., 

2008; Wilm et al., 2005). Both cardiac and peritoneal mesothelia of the adult retain the 
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ability to generate stromal progeny. When stimulated, adult omental mesothelial cells 

differentiate into vascular smooth muscle cells and can directly contribute cells to an 

injured blood vessel (Kawaguchi et al., 2007; Shelton et al., 2012). Fibroblast and 

vascular smooth muscle cell differentiation from previously quiescent mesothelium has 

also been observed following myocardial infarction (Zhou and Pu, 2011). Thus, while the 

mechanism generating intestinal mesothelial cells is different from that of the heart, once 

established, these two progenitor populations appear to have similar differentiative 

potentials.  

Other disease processes involving mesothelia reflect the developmental potential 

of this cell type. For example, peritoneal sclerosis, a fibrotic thickening of the abdominal 

serosal membranes, is frequently observed following peritoneal dialysis (Devuyst et al., 

2010). Mesothelial cells have recently been recognized both as a source of fibrotic cells 

and a signaling center for aberrant vasculogenesis (Aroeira et al., 2005; Braun et al., 

2011; Yanez-Mo et al., 2003; Yung and Chan, 2009). In another example, pulmonary 

fibrosis is first observed as a fibrotic thickening just below the pulmonary mesothelium 

that progressively moves inward (King et al., 2011). The role of mesothelium in this 

disease has also recently been the focus of studies and reviews as a signaling center or 

source of fibrotic cells (Acencio et al., 2007; Decologne et al., 2007; Mutsaers et al., 

2004). These pathologies have a direct root in the developmental potential of 

mesothelium to give rise to fibroblasts and vascular smooth muscle. Thus, investigation 

of the diversity of mesothelial populations is critical to understanding their behavior in 

these various organs systems and disease processes.  

Following discovery of the proepicardium, studies on development of cardiac 

mesothelium were able to rapidly progress. Currently, our understanding of epicardial 

biology encompasses the detailed cell lineage, mechanisms of molecular differentiation 

during development, and pathological behavior. We are now poised to move forward 



 

106 
 

with similar studies of non-cardiac mesothelial populations. Mesothelial cells of diverse 

organs and body cavities have been considered a uniform population due to their 

ultrastructural similarity and apparent shared developmental potential. Our data 

demonstrate that at least cardiac and intestinal mesothelia are heterogeneous 

populations with varied developmental histories that must be considered independently. 

Understanding the developmental origin of diverse mesothelia is essential for 

understanding the role mesothelial, vascular, and stromal cells may play in the 

development and homeostasis of these organs in the adult. 

 

References 
 

Acencio, M. M., Vargas, F. S., Marchi, E., Carnevale, G. G., Teixeira, L. R.,  
 Antonangelo, L. and Broaddus, V. C. (2007). Pleural mesothelial cells mediate  
 inflammatory and profibrotic responses in talc-induced pleurodesis. Lung 185,  
 343-8. 
 
Aroeira, L. S., Aguilera, A., Selgas, R., Ramirez-Huesca, M., Perez-Lozano, M. L.,  
 Cirugeda, A., Bajo, M. A., del Peso, G., Sanchez-Tomero, J. A., Jimenez- 
 Heffernan, J. A. et al. (2005). Mesenchymal conversion of mesothelial cells as a  
 mechanism responsible for high solute transport rate in peritoneal dialysis: role of  
 vascular endothelial growth factor. Am J Kidney Dis 46, 938-48. 
 
Asahina, K., Zhou, B., Pu, W. T. and Tsukamoto, H. (2011). Septum transversum- 
 derived mesothelium gives rise to hepatic stellate cells and perivascular  
 mesenchymal cells in developing mouse liver. Hepatology 53, 983-95. 
 
Braun, N., Alscher, D. M., Fritz, P., Edenhofer, I., Kimmel, M., Gaspert, A., Reimold, F.,  
 Bode-Lesniewska, B., Ziegler, U., Biegger, D. et al. (2011). Podoplanin-positive  
 cells are a hallmark of encapsulating peritoneal sclerosis. Nephrol Dial  
 Transplant 26, 1033-41. 
 
Chegini, N. (2008). TGF-beta system: the principal profibrotic mediator of peritoneal  
 adhesion formation. Semin Reprod Med 26, 298-312. 
 
Decologne, N., Kolb, M., Margetts, P. J., Menetrier, F., Artur, Y., Garrido, C., Gauldie, J.,  
 Camus, P. and Bonniaud, P. (2007). TGF-beta1 induces progressive pleural  
 scarring and subpleural fibrosis. J Immunol 179, 6043-51. 
 
Dettman, R. W., Denetclaw, W., Jr., Ordahl, C. P. and Bristow, J. (1998). Common  
 epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts,  
 and intermyocardial fibroblasts in the avian heart. Dev Biol 193, 169-81. 
 



 

107 
 

Devuyst, O., Margetts, P. J. and Topley, N. (2010). The pathophysiology of the  
 peritoneal membrane. J Am Soc Nephrol 21, 1077-85. 
 
Eralp, I., Lie-Venema, H., DeRuiter, M. C., van den Akker, N. M., Bogers, A. J., Mentink,  
 M. M., Poelmann, R. E. and Gittenberger-de Groot, A. C. (2005). Coronary artery  
 and orifice development is associated with proper timing of epicardial outgrowth  
 and correlated Fas-ligand-associated apoptosis patterns. Circ Res 96, 526-34. 
 
Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Bergwerff, M., Mentink, M. M.  
 and Poelmann, R. E. (2000). Epicardial outgrowth inhibition leads to  
 compensatory mesothelial outflow tract collar and abnormal cardiac septation  
 and coronary formation. Circ Res 87, 969-71. 
 
Hamburger, V. and Hamilton, H. L. (1992). A series of normal stages in the  
 development of the chick embryo. 1951. Dev. Dyn. 195, 231-272.  
 
Ho, E. and Shimada, Y. (1978). Formation of the epicardium studied with the scanning  
 electron microscope. Dev Biol 66, 579-85. 
 
Ishii, Y., Langberg, J. D., Hurtado, R., Lee, S. and Mikawa, T. (2007). Induction of  
 proepicardial marker gene expression by the liver bud. Development 134, 3627- 
 37. 
 
Ishii, Y., Garriock, R. J., Navetta, A. M., Coughlin, L. E. and Mikawa, T. (2010). BMP  
 signals promote proepicardial protrusion necessary for recruitment of coronary  
 vessel and epicardial progenitors to the heart. Dev Cell 19, 307-16. 
 
Kawaguchi, M., Bader, D. M. and Wilm, B. (2007). Serosal mesothelium retains  
 vasculogenic potential. Dev Dyn 236, 2973-9. 
 
King, T. E., Jr., Pardo, A. and Selman, M. (2011). Idiopathic pulmonary fibrosis. Lancet  
 378, 1949-61. 
 
Kruithof, B. P., van Wijk, B., Somi, S., Kruithof-de Julio, M., Perez Pomares, J. M.,  

Weesie, F., Wessels, A., Moorman, A. F. and van den Hoff, M. J. (2006). BMP 
and FGF regulate the differentiation of multipotential pericardial mesoderm into 
the myocardial or epicardial lineage. Dev Biol 295, 507-22. 
 

Lassiter, R. N., Dude, C. M., Reynolds, S. B., Winters, N. I., Baker, C. V. and Stark,  
M. R. (2007). Canonical Wnt signaling is required for ophthalmic trigeminal 
placode cell fate determination and maintenance. Dev Biol 308, 392-406. 
 

Manasek, F. J. (1969). Embryonic development of the heart. II. Formation of the  
 epicardium. J Embryol Exp Morphol 22, 333-48. 
 
Manner, J., Schlueter, J. and Brand, T. (2005). Experimental analyses of the function of  
 the proepicardium using a new microsurgical procedure to induce loss-of- 
 proepicardial-function in chick embryos. Dev Dyn 233, 1454-63. 
 
McGlinn, E. and Mansfield, J. H. (2011). Detection of gene expression in mouse  
 embryos and tissue sections. Methods Mol Biol 770, 259-92. 



 

108 
 

Mikawa, T. and Gourdie, R. G. (1996). Pericardial mesoderm generates a population of  
 coronary smooth muscle cells migrating into the heart along with ingrowth of the  
 epicardial organ. Dev Biol 174, 221-32. 
 
Minot, C.-S. (1890). The mesoderm and the coelom of vertebrates. The American  
 Naturalist 24, 877-898. 
 
Moore, K. L. and Persaud, T. V. N. (1998). The developing human : clinically oriented  
 embryology. Philadelphia: Saunders. 
 
Morimoto, M., Liu, Z., Cheng, H. T., Winters, N., Bader, D. and Kopan, R. (2010). 

 Canonical Notch signaling in the developing lung is required for determination of  
arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell  
Sci 123, 213-24. 
 

Mutsaers, S. E. (2002). Mesothelial cells: their structure, function and role in serosal  
 repair. Respirology 7, 171-91. 
 
Mutsaers, S. E., Prele, C. M., Brody, A. R. and Idell, S. (2004). Pathogenesis of pleural  
 fibrosis. Respirology 9, 428-40. 
 
Mutsaers, S. E. and Wilkosz, S. (2007). Structure and function of mesothelial cells.  
 Cancer Treat Res 134, 1-19. 
 
Osler, M. E. and Bader, D. M. (2004). Bves expression during avian embryogenesis.  
 Dev Dyn 229, 658-67. 
 
Perez-Pomares, J. M., Carmona, R., Gonzalez-Iriarte, M., Macias, D., Guadix, J. A. and  
 Munoz-Chapuli, R. (2004). Contribution of mesothelium-derived cells to liver  
 sinusoids in avian embryos. Dev Dyn 229, 465-74. 
 
Que, J., Wilm, B., Hasegawa, H., Wang, F., Bader, D. and Hogan, B. L. (2008).  
 Mesothelium contributes to vascular smooth muscle and mesenchyme during  
 lung development. Proc Natl Acad Sci U S A 105, 16626-30. 
 
Schlueter, J., Manner, J. and Brand, T. (2006). BMP is an important regulator of  
 proepicardial identity in the chick embryo. Dev Biol 295, 546-58. 
 
Schulte, I., Schlueter, J., Abu-Issa, R., Brand, T. and Manner, J. (2007). Morphological  
 and molecular left-right asymmetries in the development of the proepicardium: a  
 comparative analysis on mouse and chick embryos. Dev Dyn 236, 684-95. 
 
Shelton, E., Poole, S., Reese, J. and Bader, D. (2012). Omental grafting:a cell-based  
 therapy for blood vessel repair. J Tissue Eng Regen Med, doi: 10.1002/term.528. 

 
Takaba, K., Jiang, C., Nemoto, S., Saji, Y., Ikeda, T., Urayama, S., Azuma, T., Hokugo,  
 A., Tsutsumi, S., Tabata, Y. et al. (2006). A combination of omental flap and  
 growth factor therapy induces arteriogenesis and increases myocardial perfusion  
 in chronic myocardial ischemia: evolving concept of biologic coronary artery  
 bypass grafting. J Thorac Cardiovasc Surg 132, 891-99. 
 



 

109 
 

Venters, S. J., Dias da Silva, M. R. and Hyer, J. (2008). Murine retroviruses re- 
 engineered for lineage tracing and expression of toxic genes in the developing  
 chick embryo. Dev Dyn 237, 3260-9. 
 
Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. and Bader, D. M. (2005). The serosal  
 mesothelium is a major source of smooth muscle cells of the gut vasculature.  
 Development 132, 5317-28. 
 
Wu, M., Smith, C. L., Hall, J. A., Lee, I., Luby-Phelps, K. and Tallquist, M. D. (2010).  
 Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell  
 19, 114-25. 
 
Yanez-Mo, M., Lara-Pezzi, E., Selgas, R., Ramirez-Huesca, M., Dominguez-Jimenez,  
 C., Jimenez-Heffernan, J. A., Aguilera, A., Sanchez-Tomero, J. A., Bajo, M. A.,  
 Alvarez, V. et al. (2003). Peritoneal dialysis and epithelial-to-mesenchymal  
 transition of mesothelial cells. N Engl J Med 348, 403-13. 
 
Yung, S. and Chan, T. M. (2009). Intrinsic cells: mesothelial cells -- central players in  
 regulating inflammation and resolution. Perit Dial Int 29 Suppl 2, S21-7. 
 
Zhang, Q. X., Magovern, C. J., Mack, C. A., Budenbender, K. T., Ko, W. and Rosengart,  
 T. K. (1997). Vascular endothelial growth factor is the major angiogenic factor in  
 omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res 67,  
 147-54. 
 
Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., Lin, R. Z., Melero- 
 Martin, J. M., Dolmatova, E., Duffy, H. S. et al. (2011). Adult mouse epicardium  
 modulates myocardial injury by secreting paracrine factors. J Clin Invest 121,  
 1894-904. 
 
Zhou, B. and Pu, W. T. (2011). Epicardial epithelial-to-mesenchymal transition in injured  
 heart. J Cell Mol Med 15, 2781-3. 
 

 

 

 

 

 

 

 

 

 



 

110 
 

CHAPTER IV 

 

CHICK-TRANSGENIC QUAIL CHIMERAS IN STUDIES OF EMBRYONIC 
DEVELOPMENT 

 

Abstract 

The first chick-quail chimera was generated over 40 years ago to study 

embryonic development; however, the technique is used relatively infrequently today. 

The generation of transgenic quail offers a powerful tool to use in conjunction with 

classical chimera-based experimentation. We utilized transgenic quail that express a 

fluorescent protein in endothelial cells as donors to generate chick-quail chimeras to 

examine in detail the origin and development of the intestinal and limb vasculature. The 

combination of these methodologies provides developmental biologists with a novel 

approach to answer long standing questions in embryology. 

 

Introduction 

Chick-quail chimeras have long been used as a lineage tracing method in studies 

of embryology (Le Douarin, 1973). Their unique utility lies in the ability to reliably 

distinguish quail from chick cells thus providing an inheritable and irreversible mark (Le 

Douarin, 1973; Le Douarin et al., 2008). Furthermore, avian embryos are easily 

accessed within the egg and tolerate surgical procedures well. Japanese quail offer the 

additional advantage of small size and rapid sexual maturation (Huss et al., 2008). The 

major disadvantage of avian embryos has been the lack of methods to generate 

transgenic animals. However, through the use of retroviral transduction, both transgenic 

chick and quail have been generated (McGrew et al., 2008; Sato et al., 2010) and other 

non-retroviral based methods are under research (Mizushima et al., 2010; Park and 

Han, 2012).  



 

111 
 

Vascular development is an area of particular interest to scientists and 

physicians of many fields ranging from developmental biology to oncology. Endothelial 

networks vary greatly between coelomic organs not only in their basic architecture but 

also in their molecular profile (Atkins et al., 2011). Furthermore, disease is often specific 

to an individual vascular bed or even to a region of a single vascular bed (Davies et al., 

2010). It is not known if there is an embryological basis for the endothelial variation 

observed in the adult or in disease. Indeed, the embryological origins of endothelial cells 

are still not entirely known. Coelomic organs are thought to derive their vasculature from 

remodeling of an intrinsic vascular plexus rather than recruiting a vascular network from 

elsewhere as has been demonstrated to occur in the limbs (Pardanaud et al., 1989). 

However, in the heart, the coronary blood vessels must be recruited to the myocardial 

wall presenting an exception to this general rule of coelomic vasculogenesis (Dettman et 

al., 1998; Mikawa and Gourdie, 1996). Multiple origins of coronary endothelial cells have 

been proposed including the proepicardium, sinus venosus, and endocardium (Ishii et 

al., 2009; Katz et al.; Red-Horse et al., 2010).Thus, despite the many studies focused on 

endothelial development, much remains to be discovered. 

Through use of transgenic quail generated by Dr. Rusty Lansford (Cal Tech; 

(Sato et al., 2010)), we generated chick-quail chimeras in which the vasculature of the 

graft could be viewed by fluorescence in whole mount. A segment of transplanted quail 

splanchnopleure formed a morphologically mature intestinal tube within the chick host 

coelomic cavity. The graft-derived gut tube demonstrated remarkable remodeling of the 

endothelial plexus. Both arterial and venous endothelial cells were derived from grafted 

tissue as were vascular smooth muscle cells. Transplantation of somatopleure revealed 

novel vascular contributions to the limb. Taken together, this study demonstrates the 

combination of transgenics with the classical embryological technique of chimera 

generation can be of great utility in experimental developmental biology. 
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Materials and Methods 

 

Preparation of host chick embryos  

Eggs were incubated for approximately 60 hours to stage HH15-17, windowed and 

stained with Neutral Red as described in Chapter 3.  

 

Generation of splanchnopleure chimera 

Tg(tie1:H2B-eYFP) transgenic quail were incubated for approximately 56 hours to HH15-

17. Splanchnopleure was isolated and transplanted as described in Chapter 3.  

 

Generation of somatopleure chimera 

Tg(tie1:H2B-eYFP) quail were incubated for approximately 56 hrs. Embryos were 

dissected in sterile Tyrode’s solution + 1% penicillin/streptomycin. The somatopleure 

was isolated by cutting transversely through the embryo just posterior to the heart, 

separating the splanchnopleure and somatopleure with a tungsten needle, and then 

cutting adjacent to the somites/segmental plate on both the right and left sides. Special 

care was taken to exclude somitic tissue. The isolates were transferred into a tissue 

culture dish containing DMEM with high glucose. The isolate from each side was then 

cut into four pieces along the anterior posterior axis. The neutral red agar strip was 

removed from a host chicken embryo and the vitelline membrane removed with a 

tungsten needle. A hole was then made through the somatopleure of the host embryo 

near the vitelline artery. An individual donor somatopleure segment was transferred with 

forceps into the host chicken egg. The transplant was then pushed into the coelomic 

cavity with a tungsten needle and forceps. Syringe filtered Tyrode’s solution + 1% 

penicillin/streptomycin was added to the egg to replace volume. The chick eggs were 

sealed with two layers of transparent tape and placed into a humidified incubator. 
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Imaging 

After 7 to 14 days incubation, host chick embryos were isolated and a midline incision 

was made from the region of the yolk sac through the thoracic cavity. Host embryos with 

attached grafts were then submerged in PBS in a culture dish with a layer of Sylgard at 

the bottom. Insect pins were used to hold the body wall of the host embryos open. A 

Zeiss M165FC fluorescent dissecting microscope with a Retiga EXi Fast1394 camera 

was used to image the eYFP fluorescence in whole mount.   

 

Fixation and sectioning 

 After imaging, grafts were isolated in combination with the directly adherent chick tissue 

and fixed overnight in 4% formaldehyde. Tissue was washed 3X5 min in PBS rolling at 

room temperature and placed in 30% sucrose in PBS overnight. Tissue was transferred 

to an embedding mold and excess sucrose was removed with a transfer pipette. The 

tissue was covered with OCT and incubated at room temperature for 30 min to 1 hour 

depending on the tissue size to allow the OCT to infiltrate around the tissue. The molds 

were then placed in ethanol cooled with dry ice to freeze. Blocks were stored at -20°C. 

Sections were cut at 6µm on a Leica CM3050 cryostat and stored at -20°C. 

 

Immunohistochemistry and confocal imaging 

As described in Chapter 3. 

 

Results 

 

Generation of chick-transgenic quail splanchnopleure chimeras 

An endothelial plexus is present between the splanchnopleure and endoderm as 

early as the 4 somite stage (HH8) in the quail embryo [DeRuiter et al., 1993] (Figure 4.1 
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A-B). We isolated donor tissue from Tg(tie1:H2B-eYFP) quail that express an eYFP-H2B 

fusion protein under control of the Tie-1 promoter. The gene Tie-1 encodes a receptor 

tyrosine kinase expressed specifically in endothelial cells. The entire splanchnopleure 

posterior to the heart of a donor quail embryo was isolated and divided into six equal 

segments. At the time of isolation, an endothelial plexus was present within the 

splanchnopleure between the splanchnic mesoderm and endoderm (Figure 4.1 A-B, 

arrows). An individual segment of splanchnopleure was transplanted into the coelomic 

cavity near the vitelline artery of a HH15-HH17 host chick embryo. After transplantation, 

the host embryos were incubated for at least 24 hours and up to two weeks. 

Remarkably, at 24 hours post-transplantation, the earliest time point examined, the 

donor splanchnopleure segments had already formed a vascular attachment to the host. 

The grafts were typically attached to the host via a single vessel (Figure 4.1 C-D, arrow). 

At this time point, while endothelial cells were clearly present in abundance within the 

graft, no obvious organization of the vasculature was observed other than the 

attachment to the host (Figure 4.1 D). 

We isolated two week post-transplantation grafts to determine how the graft 

vascular network was remodeled over time. At 14 days, the grafted splanchnopleure 

segments had generated a well-formed intestinal tube with a mesentery (Figure 4.2 A). 

The grafts were typically supplied by a single major blood vessel of quail origin (eYFP- 

positive) connected directly to the host vitelline artery (inset, arrow) that then ramified 

within the graft mesentery (Figure 4.2 B-C). Both arteries (arrow) and veins (arrowhead) 

contained eYFP-positive endothelial cells (Figure 4.2 D). Cross-sections through a 

representative graft revealed the vasculature was organized into a three-tiered plexus: 

external layer near the surface of the intestine, an internal layer near the base of the villi, 

and a capillary network extending into the lamina propria of the villi (Figure 4.2 E-F). The 

blood vessels were in close approximation to HNK-1-positive enteric neural crest cells. 
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Figure 4.1 Splanchnopleure plexus and host attachment. A) Transverse section of a 
HH14 quail embryo. B) Boxed region show in A). QH1-positive endothelial cells (arrows) 
reside between the basement membranes (laminin, green) of the splanchnic mesoderm 
(SpM) and endoderm (E). C) Twenty-four hours post-transplantation the 
splanchnopleure graft has formed a ball (arrow) within the coelomic cavity of the host 
chick embryo. D) Wholemount eYFP fluorescence of the graft (G) within the coelomic 
cavity. A quail derived blood vessel (arrow) attached the graft to the host chick body 
wall.  DA, dorsal aorta; E, endoderm; G, graft; HT, heart tube; lam, laminin; NT, neural 
tube; P-T, post-transplantation; S, somite; SpM, splanchnic mesoderm.  



 

116 
 

 

Figure 4.2 Two week post-transplantation graft-derived gut tube. A) Bright field of 
14 day post-transplantation graft attached to host mesentery and vitelline artery. B) 
eYFP-positive quail-derived endothelial cells were found in a well organized vascular 
network within the graft. C) A single quail-derived vessel (arrows, inset) attached to the 
host vitelline artery (VA). D) Both veins (arrowhead) and arteries (arrow) were eYFP-
positive. E) Cross-section through 14 day post-transplantation graft. F) Boxed region in 
E. QH1-positive endothelial cells were organized into an outer and inner endothelial 
layer (arrows) and extended into the villi (arrowheads). The two outer endothelial layers 
closely associated with HNK-1-positive neural crest cells (red) of the submucosal and 
myenteric plexuses. M, mesothelium; ME, muscularis externa; P-T, post-transplantation; 
V, villi; VA, vitelline artery 
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Thus, the vasculature of the graft was organized in the same manner as a normally 

developing quail intestine (Thomason et al, submitted; Nagy et al., 2012) 

In a chimera sectioned through the host vitelline artery, the fusion of the quail 

vessel and chick vitelline artery was observed directly. Staining for eYFP and QCPN 

revealed that quail endothelial cells formed the complete lining of a large blood vessel 

that penetrated the host vitelline artery forming a contiguous lumen (Figure 4.3 A-B). 

Blood cells were present within the lumens of both the chick and quail vessel indicating 

flow between the two likely occurred (Figure 4.3 B, blue). Interestingly, the smooth 

muscle layers surrounding the quail vessel were derived from the chick near the point of 

fusion (Figure 4.3 A-B). Very few non-endothelial quail cells (arrowhead) were found 

within the host mesentery housing the vitelline artery indicating the endothelial cells of 

the graft were the major invasive cell type (Figure 4.3 A). Cross sections through graft-

derived gut tubes revealed both endothelial (arrowheads) and vascular smooth muscle 

cells (arrows, identified by their morphology and close association with endothelial cells) 

were QCPN positive indicating their quail origin (Figure 4.3 C, arrows). These data 

indicate vascularization of the graft including generation of both veins and arteries 

largely occurs by the differentiation or remodeling of endothelial cells intrinsic to the 

intestinal splanchnopleure. The vascular smooth muscle of the graft is also generated 

from resident progenitor cells.  

 

Generation of chick-transgenic quail somatopleure chimeras 

Somatopleure, composed of ectoderm and somatic mesoderm, gives rise to the 

body wall and limb buds. We isolated somatopleure from HH14 Tg(tie1:H2B-eYFP) quail 

embryos prior to limb bud formation and divided it along the anterior-posterior axis into  

small segments for transplantation into the coelom of a host chicken embryo (Winters, 

2012 In press). After 7 days incubation, host embryos were sacrificed to visualize  
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Figure 4.3 Vascular smooth muscle cells of the graft. A) A quail-derived vessel 
penetrated the host vitelline artery (arrows). Quail endothelial cells were eYFP-positive. 
QCPN-positive cells near the host were almost entirely endothelial. Rare eYFP-negative 
QCPN-positive quail cells (arrowhead) were identified near the host vitelline artery. B) 
Vascular smooth muscle cells near the host vessel were chick derived. The lumens of 
the two vessels were contiguous (arrows) with blood flowing between (blue). C) Within 
the graft, QCPN-positive vascular smooth muscle cells surrounded the eYFP-positive 
endothelial cells (arrowhead). M, mesothelium; ME, muscularis externa; VA, vitelline 
artery.  
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maturation of the grafts. Some degree of limb formation was observed in 6/10 embryos 

(Figure 4.4 A). Interestingly, in all cases, the grafts attached to the body wall near the 

apex of the thoracic cavity—the internal aspect of where the host wing emerged. 

Additionally, the grafts were firmly embedded in the host body wall (Figure 4.4 A). This is 

in contrast to the grafted splanchnopleure which connected to the host via only a 

mesentery in almost all cases (Figure 4.2). 

Examination of the somatopleure grafts for eYFP fluorescence in whole mount 

revealed a subset of vessels derived from the transplanted tissue (Figure 4.4 B). The 

graft derived vessels ran along the medial and lateral aspects of the limb digits reflecting 

the typical vascular organization of a normally developing limb (Figure 4.4 C-D). 

Interestingly, only arteries (arrows) appeared to be quail-derived with adjacent veins 

(containing pooled blood) negative for eYFP (Figure 4.4 D, arrowhead). A large, quail-

derived major supply vessel that directly contacted the host could be observed in some 

cases (Figure 4.4 E-F, arrow). However, more often, the vasculature extending between 

the graft and host was host derived (Figure 4.4 E-F, arrowheads). Overall, the 

somatopleure grafts had much fewer quail-derived vessels than the splanchnopleure 

grafts consistent with prior data (Pardanaud, et al., 1989). 

 

Discussion 

Our study demonstrates the utilization of transgenic quail tissue in the generation 

of a chimera. Previous studies demonstrated the broad potential of splanchnic 

mesoderm to generate endothelial cells (Pardanaud et al., 1989). However, it was 

unknown if transplanted tissue underwent typical vascular remodeling including 

differentiation into veins and arteries. With the use of transgenic quail tissue, the overall 

architecture of the vascular network could be observed. Transplanted splanchnic 

mesoderm generated a complete vascular network including vascular smooth muscle  
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Figure 4.4 Somatopleure graft 7 days post-transplantation. A-B) A somatopleure 
graft (G) attached to host body wall within the apex of the thoracic cavity. The graft 
exhibited features of the hind limb including two toes (arrowheads) and feather buds 
(FB). C-D) A small number of blood vessels of the graft were derived from the quail 
(arrows, eYFP-positive). Adjacent blood vessels were eYFP-negative (arrowhead). E-F) 
The major supply vessel to the graft branched from the aorta (A) and was partly 
composed of quail endothelial cells (arrow). Other vascular segments of the supply 
vessel were eYFP-negative (arrowheads). A, aorta; G, graft; H, heart; L, liver; R, ribs; W, 
wing. 
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from mesenteric vessels to the capillary plexus of the villi. Both veins and arteries were 

generated by quail tissue. This demonstrates intestinal splanchnopleure contains all of 

the necessary progenitor cells to generate a complete vasculature. The somatic 

mesoderm displayed a marked reduction in vasculogenic potential compared to 

splanchnic mesoderm, as expected (Pardanaud et al., 1989). However, a significant 

vascular contribution from grafted tissue was observed. Interestingly, the vasculature 

that differentiated from somatic mesoderm appeared to be arterial and not venous 

suggesting an early specification of endothelial progenitor cells may occur within the 

vascular progenitors contained within the somatopleure. Future studies with this 

methodology will focus on other coelomic organs including the heart which has a 

potentially unique method of vasculogenesis.  

The objective of developmental biologists is often to isolate a particular gene or 

cell type for study. Transgenic techniques have allowed considerable control over certain 

variables, such as gene expression, and correspondingly advanced experimental 

designs. The combination of transgenics with surgical manipulations allows an additional 

layer of control and isolation from confounding variables. For example, knockout of a 

particular gene often affects multiple cell types and can lead to embryonic lethality even 

though the organ of interest is not essential for embryonic survival (Moore et al., 1999; 

Phoon et al., 2004; Saito et al., 2012). Isolation of the organ and in vitro culture is 

effective in some situations though is constrained by the lack of a vascular supply (Burke 

et al., 2010). Transplantation of the same organ into a host embryo provides a vascular 

supply and allows strikingly normal development to proceed. Additionally, tissues of 

interest can be recombined or treated with a retrovirus or small molecule before 

transplantation. Mouse-chick chimeras can also be generated (Fontaine-Perus et al., 

1997; Pudliszewski and Pardanaud, 2005). 
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Coelomic transplantation in particular offers several unique advantages. The 

technique is simple to perform and does not require replacement of the host tissue. As 

demonstrated here, grafted tissue may attach to regions near the natural environment 

and undergo remarkably normal morphogenesis. The host can be grown until hatching 

(or beyond) to allow long term growth and differentiation of the graft. Thus, 

transplantation of transgenic quail tissue into the chick coelom, an old trick with a new 

twist, has wide applicability for answering questions of developmental biology.  
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The studies presented here provide a detailed analysis of both vascular and 

mesothelial formation in the developing intestine. Summating the three studies, we 

propose the following model of intestinal development. The intestine begins as a flat 

sheet including splanchnic mesoderm and endoderm. The future mucosal and 

mesothelial basement membranes of the adult intestine are already present within the 

intestinal primordium subjacent to the endoderm and splanchnic mesoderm, respectively 

(Figure 2.2, 2.3). Cells within the stratified splanchnic mesoderm layer are specified to a 

mesothelial, fibroblast, or visceral smooth muscle cell fate. These progenitors are 

organized with the mesothelial precursors near the surface and the visceral smooth 

muscle cell progenitors deep, adjacent to the inner basement membrane (Ch. III—

absence of visceral smooth muscle cell progeny identified by labeling surface cells). The 

mesenchymal layer of the intestine is established by migration of fibroblast and visceral 

smooth muscle cell progenitors through the outer basement membrane. This migration is 

concurrent with breakdown of the outer basement membrane (Figure 2.2, 2.5, 3.4). The 

migratory fibroblast and visceral smooth muscle cell progenitors join the endothelial 

plexus that resides between the splanchnic mesoderm and endoderm (Figure 2.7). 

Throughout this process, the mesothelial progenitors remain on the surface of the 

intestine external to the outer basement membrane. A second wave of migration through 

the outer basement membrane occurs as mesothelial cells delaminate and migrate into 

the mesenchyme providing vascular smooth muscle cell progenitors (Figure 2.4, 3.8). 

The mesenchyme at this time consists of endothelial, stromal, visceral smooth muscle 

and vascular smooth muscle cell progenitors. The endothelial network of the adult 
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intestine is formed by remodeling and expansion of the primordial endothelial network 

(Figure 4.2). Vascular smooth muscle cells differentiate late in development though the 

progenitors are present throughout the intestinal primordium (Figure 2.11, 4.3). The 

model is summarized in Figure 5.1. 

This model of intestinal development departs from what is known about cardiac 

development in two fundamental ways. First, at least the majority of cardiogenic 

splanchnic mesoderm does not retain the potential to differentiate into mesothelium, 

fibroblasts, or vascular smooth muscle. Thus, the splanchnic mesoderm layer of the 

heart gives rise to a relatively homogenous population including cardiomyocytes and 

related cells of the cardiac conduction system (Laugwitz et al., 2008). Within a limited 

area at the inflow tract of the heart, the splanchnic mesoderm may contain a mixed pool 

of progenitors able to give rise both to the PE and cardiomyocytes (van Wijk et al., 

2009). This is in contrast to the splanchnic mesoderm of the intestine which contains 

throughout its anterior-posterior axis the progenitors for visceral and vascular smooth 

muscle, mesothelium, and fibroblasts. Second, the primordial endothelial plexus of the 

embryo contained within the cardiogenic region does not give rise to the blood vessels 

supplying the myocardium but rather contributes only to the endocardium. This is in 

contrast to all other coelomic organs that have been investigated to date in which the 

primordial endothelial plexus expands and remodels to generate the mature vascular 

network of the adult (DeRuiter et al., 1993; Gouysse et al., 2002; le Noble et al., 2004; 

Pardanaud et al., 1989).  

The remaining coelomic organs are all gut tube derivatives developing from 

endodermal buds that grow into the surrounding splanchnic mesoderm. Thus, these 

organs may be expected to more closely resemble the intestine in their generation of 

mesothelium than the heart. Future studies will investigate mesothelial formation in the 

lung, liver, pancreas and spleen through the same methodology applied in determining 
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Figure 5.1 Model of intestinal development. 
A) Schematic of a transverse section through an early avian embryo depicting the region 
of the splanchnopleure that will generate the intestine (boxed). B) The intestinal anlage 
is composed of splanchnic mesoderm (SpM) and endoderm (E) with two basement 
membranes (thick black lines). The splanchnic mesoderm contains mesothelial (orange), 
visceral smooth muscle cell (red) and fibroblast (gray) progenitors. The mesothelial 
progenitors are localized at the surface with other progenitors localized deep. An 
endothelial plexus (green) resides within the mesenchymal space (between the two 
basement membranes). C) Visceral smooth muscle and fibroblast progenitors migrate 
through the dispersed outer basement membrane to establish the mesenchyme (M) 
leaving mesothelial progenitors on the surface. D) A second wave of migration occurs 
when mesothelial progenitors invade the mesenchyme to give rise to vascular smooth 
muscle cell progenitors.  
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the origins of intestinal mesothelium described in Chapter III including electroporation, 

retroviral labeling and chick-quail chimera generation. These proposed studies will 

determine if the heart is unique or represents just one of multiple mechanisms of 

mesotheliogenesis 

The mechanism underlying the variation in mesothelial formation between the 

heart and intestine is unknown. However, several observations point at the exclusion of 

endoderm in the heart tube as an essential discrepancy. The splanchnic mesoderm of 

the intestine maintains a close morphological relationship with the endoderm throughout 

development and crosstalk between the endoderm and mesoderm is well documented 

(Noah et al., 2011). We demonstrate here that mesothelial progenitors are resident 

throughout the intestinal primordium. In contrast, in the heart, the splanchnic mesoderm 

is in contact with the endoderm for only a short period. However, the PE develops in 

close approximation to the liver bud, an endodermal outgrowth, at the caudal end of the 

heart tube. At the rostral end of the heart tube where it again comes into close 

approximation to the endoderm, an additional minor source of mesothelial progenitors is 

present. This mesothelial population normally lines the great vessels of the heart but can 

migrate over a portion of the myocardium when proepicardial development is inhibited 

(Gittenberger-de Groot et al., 2000). Thus, the majority of the heart tube splanchnic 

mesoderm is removed from the endoderm and does not generate mesothelial cells. 

However, mesothelial progenitors are present at both the rostral and caudal ends of the 

heart tube at the points at which the splanchnic mesoderm is brought back into close 

association with the endoderm. These observations suggest endoderm may be a source 

of inductive cues leading to mesothelial development. 

To determine if the endoderm is required for mesothelial specification, in vitro 

culture and chick-quail chimera experiments will be employed. The endoderm and 

mesoderm can easily be isolated from one another with a brief enzymatic treatment. 
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Thus, intestinal mesoderm can be isolated and cultured with or without endoderm to 

determine if mesothelial differentiation occurs as determined by expression of 

mesothelial markers including Wt1 and Tbx18. Furthermore, isolated splanchnic 

mesoderm transplanted into the coelomic cavity does not form an independent structure 

but rather attaches to and merges with the body wall (data not shown). Thus, this 

provides an in vivo model to determine whether mesothelial differentiation from the 

splanchnic mesoderm occurs when it develops at a distance from the endoderm. Finally, 

intestinal splanchnopleure or mesoderm alone will be transplanted into the region of the 

cardiac crescent to determine if the transplanted mesoderm can incorporate into the 

heart tube and generate mesothelium within the cardiac environment.  

The precise inductive signals leading to mesothelial formation are still largely 

unknown even in the extensively studied PE. In the intestine, the mesothelial lineage 

appears to diverge from the visceral smooth muscle lineage and localize to the surface 

of the mesoderm soon after formation of the intestinal anlage. Thus, the cues leading to 

mesothelial differentiation in the intestine must be present before this time. Maintenance 

signals may also be required to retain mesothelial specification. Future studies will focus 

on identifying candidate genes that may be involved in the induction of mesothelium in 

the intestine.  

Other tissues may offer further insight into the inductive tissue interactions and 

signals involved in mesothelial development. Mesothelium lines the entire coelom 

including the body wall which is derived from somatopleure. Additionally, the spleen is 

generated entirely by mesodermal derivatives and does not include endoderm. The 

origin of mesothelium for both the body wall and the spleen is unknown but is of 

particular interest in determining the potential role of endoderm in mesothelial 

development and identifying mechanisms of mesothelial formation. Chick-quail chimeras 

in which a region of the chick somatopleure is replaced with quail tissue will address the 
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origin of body wall mesothelium. Development of splenic mesothelium will be 

investigated as described above. These proposed experiments will explore in depth the 

mechanisms of mesotheliogenesis throughout the coelomic cavity. 

The heart also appears to be an exception to the general mechanism of vascular 

formation among coelomic organs. The resident endothelial plexus of the heart has a 

relatively limited potential for remodeling. It generates the endocardium but does not 

contribute to the vasculature supplying the organ. Thus, the myocardial wall must recruit 

a vascular supply from other sources. All other coelomic organs have an intrinsic 

capacity to generate blood vessels (Gouysse et al., 2002; Pardanaud et al., 1989). 

However, the origin of coronary endothelium may still have roots in the primary 

endothelial plexus established in the embryo. The PE serves, at least in part, as a 

conduit for hepatic and sinus venosus endothelium to vascularize the myocardium. Both 

the sinus venosus and hepatic endothelium are derived from remodeling of the primary 

endothelial network that resides between the splanchnic mesoderm and endoderm 

(DeRuiter et al., 1993; Gouysse et al., 2002). The limited endothelial plasticity within the 

heart may be related to a functional restriction (i.e. the intact endocardium is required for 

cardiac function) and/or a lack of inductive signals promoting remodeling and 

angiogenesis. 

The endoderm has been demonstrated to be critical for vasculogenesis 

(Pardanaud et al., 1989). Recombining somatic mesoderm, which normally has a very 

limited vasculogenic potential, with endoderm prior to transplantation into the coelom of 

a host embryo led to increased vasculogenesis from the somatic mesoderm and 

additionally supported invasion of the host by transplant-derived vessels (Pardanaud 

and Dieterlen-Lievre, 1999). Thus, endoderm appears to promote vasculogenesis from 

mesodermal tissue and angiogenesis from existing endothelial networks. The absence 

of endoderm within the heart may promote the stability of the endocardium. To 
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determine if the endoderm can promote angiogenesis from the endocardium into the 

myocardium, quail heart tubes isolated prior to epicardial formation will be placed in 

culture with or without a segment of endoderm placed within the lumen. The presence of 

endothelial cells within the myocardium will be determined by staining for QH1. 

Cardiogenic mesoderm with the underlying endoderm will also be isolated prior to tube 

formation for transplantation into the coelom of a host embryo or for explant culture to 

determine if cardiac endothelial behavior is altered by the presence of endoderm.  

The studies presented herein offer many novel insights into intestinal and 

mesothelial development and impact broadly our consideration of coelomic 

organogenesis and vasculogenesis. Ongoing studies will further elucidate the 

mechanisms leading to mesothelial differentiation throughout the coelomic cavity and the 

unique method of vascular formation in the heart. 
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