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CHAPTER I 

Introduction 

 

1.1. The social fearfulness spectrum 

Social anxiety disorder—characterized by the fear and avoidance of social 

interactions—is one of the most common psychiatric illnesses, affecting up to 13% of 

the population each year (Stein et al, 1994; Kessler et al, 2005b, 1994). People with 

social anxiety disorder experience intense distress and discomfort in social situations, 

especially those that carry the potential for social evaluation or scrutiny from others. The 

distress and discomfort of social situations is often overwhelming, leading to avoidance 

of social interaction and disability. Disability associated with social anxiety disorder can 

range from mild to severe and is often the result of avoidance of important social 

situations, such as school or work. Although individuals with social anxiety disorder 

often have fears of public speaking, less than 5% of individuals meet criteria for the 

diagnosis based exclusively on public speaking fears (Burstein et al, 2011; Stein et al, 

1996; Kessler et al, 1998). Instead, the vast majority of individuals with social anxiety 

disorder experience significant fears in most social situations. Social anxiety disorder 

has a typical onset in adolescence (Kessler et al, 2005a, 2010, 1998; Wittchen and 

Fehm, 2003) and is highly persistent throughout the entire life course (Kessler et al, 

2010), resulting in reduced educational attainment (Schneier et al, 1994; Liebowitz et al, 

1985), low occupational and financial status (Schneier et al, 1994; Wittchen and Fehm, 

2003; Patel et al, 2002), and reduced quality of life (Saarni et al, 2007; Patel et al, 2002; 

Wittchen and Fehm, 2003; Ruscio et al, 2008). Social anxiety disorder also has high 
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comorbidity with other psychiatric illness (Wittchen et al, 1999; Wittchen and Fehm, 

2003; Beesdo et al, 2009, 2007; Buckner et al, 2008), particularly depression and 

substance abuse, making it an important  target for early intervention. 

However, an expanded view beyond the strict clinical boundaries of social 

anxiety disorder may be warranted. Social anxiety disorder likely represents the most 

extreme end of a general dimension of social fearfulness (Figure 1) that incorporates 

traits like shyness (moderate distress in some social situations) and social inhibition 

(avoidance of social novelty) (Stein et al, 1994; Schneier et al, 2002; Davidson et al, 

1994; Stein et al, 2004; Furmark, 2002). Although not without controversy (Heiser et al, 

2009), the view of a social fearfulness spectrum is supported by evolutionary theories 

Figure 1. The social fearfulness spectrum. A spectrum encompassing non-clinical, 
sub-threshold, and clinical manifestations of social fear. 
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(Hermans and van Honk, 2006), developmental theories (Pérez-Edgar and Fox, 2005), 

and clinical theories (Hofmann et al, 2004) of social anxiety and is in line with 

observation that these various phenomena share many common neural, behavioral, and 

cognitive correlates (Pérez-Edgar and Fox, 2005). Additionally, when diagnostic 

thresholds are extended to include people with sub-threshold social anxiety disorder, it’s 

estimated that up to 18% of the population is affected by significant levels of impairment 

as a result of social fears (Stein et al, 1994; Schneier et al, 2002; Davidson et al, 1994; 

Stein et al, 2004; Furmark, 2002). Notably, people with sub-threshold social anxiety 

experience similar functional impairment, including reduced educational attainment, 

occupational status, and quality of life, as those with a diagnosis (Davidson et al, 1994), 

indicating that a broader understanding of the dimension of social fearfulness might 

have a significant impact on public health.  

The consequences of extreme social fear—on job, career, grades, relationships 

and self-esteem—are significant (Schneier et al, 1994; Wittchen and Fehm, 2003; Patel 

et al, 2002; Liebowitz et al, 1985), yet social fear is an easily-minimized phenomenon; 

for example, the majority of people have had to cope with uncontrollable stage-fright 

when confronted with a large audience for the first time. Although social anxiety disorder 

often extends far beyond public speaking fears, it’s reasonable to assume that the 

physiological response to public speaking experienced by an average person overlaps 

to some extent with the response experienced by people with social anxiety disorder. 

Therefore, unlike psychotic illness, for instance, the symptoms of social anxiety disorder 

are at least imaginable for most. For most, the experience of social fear is common and 

adaptive; in fact, some social fear may improve performance (Eysenck and Calvo, 
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1992). However, this differs markedly from the experience of a person with extreme 

social fear, in which anxiety is chronically debilitating and maladaptive. People with 

extreme social fears have severe autonomic, cognitive, and somatic reactions to even 

the suggestion of a social situation where evaluation may occur (Cuthbert et al, 2003), 

and the fear is often so great that the person will avoid social situations at all costs, 

even to the severe detriment of personal goals and relationships. In contrast to adaptive 

social fear, extreme social fear is associated with distinctly decreased cognitive 

performance ability (Eysenck and Calvo, 1992), suggesting that the experience of 

extreme social fear is qualitatively distinct from adaptive social fear. 

Social fearfulness encompasses an ecologically-valid spectrum of fear states, 

including both adaptive and maladaptive expressions. As with most fears, maladaptive 

social fears develop from an adaptive fear state (Rosen and Schulkin, 1998). Fears 

have long been recognized as circumscribed to a limited group of categories, including 

natural situations (e.g., water, heights), predators (e.g., spiders, snakes), and 

threatening conspecifics (American Psychiatric Association, 2013). A spectrum of fear 

exists within each of these categories, including both a highly-adaptive range of fear 

and a pathological extreme. For example, an average person will feel a rush of fear 

when they nearly step on a snake in their path—a real, present, nearby snake is a 

potentially serious threat, and in this case, fear is a crucial emotion that protects us from 

harm. Fear motivates adaptive responses, such as focused attention and sympathetic 

system activation (“fight or flight”), that increases our chances of navigating a 

threatening situation successfully (Marks and Nesse, 1994). From an evolutionary 

perspective, social fear, or fear of threatening conspecifics, is an evolutionarily-
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conserved response akin to fear of snakes, spiders, heights, deep water, and all 

manner of natural threats (Ohman, 1986; Hermans and van Honk, 2006). For social 

animals, such as humans, the ability to perceive and respond appropriately to an angry 

encounter has far-reaching consequences. Social groups have historically provided 

protection, support, and the potential to find a mate. Even in modern society, ostracism 

from a social circle is a serious outcome which may negatively impact career 

advancement, friendships, and overall wellbeing. This advantage is illustrated in the 

“Hawk-Dove” game (Smith, 1982), where bold Hawks and fearful Doves compete for 

resources. Hawks have the opportunity to gain large rewards (e.g., friends, career 

advancement) in safe environments but are also more likely to incur costs in threatening 

environments (e.g., getting into fights, catching communicable diseases). In contrast, 

Doves are likely to take fewer risks, protecting themselves from negative consequences 

but also gaining fewer advantages when the environment is safe (Korte et al, 2005). In 

the Hawk-Dove game, the ability to accurately detect threat is critical in determining an 

appropriate response—over-detection of threat by Doves in a safe environment leads to 

over-protection from risk and inability to gain necessary resources. However, the 

experience of fear in the absence of a real and present threat is maladaptive, often 

leading to distress, avoidance, and disability.  

Social fears become maladaptive when they are expressed in situations that 

present little risk of harm. People with social anxiety disorder chronically detect threat in 

social situations which pose little threat, such as talking to acquaintances at a party or 

giving a talk in front of classmates. Detection and assessment of threat is necessary in 

order to employ an effective survival strategy (e.g., fight or flight). However, over-
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detection of threat in social situations may result in chronic avoidance of social 

encounters, resulting in an inability to gain resources (friends, education) and leading to 

disability. Therefore, a critical question is whether the ability to accurately evaluate the 

safety of a social environment contributes to maladaptive social fears. As detection of 

threat is a critical function in everyday life, subserved by numerous brain regions, it’s 

reasonable to assume that over-detection of threat may stem from neural differences in 

these regions. 

The social fearfulness spectrum represents a pragmatic approach to studying 

neural detection of threat—the availability of specific dimensional biomarkers, such as 

markers of response to threat, are essential for the early identification of risk and the 

assessment of treatment response (Kessler, 2002). However, clinically useful 

dimensional biomarkers are currently unavailable. Prior studies of social anxiety 

disorder have overwhelmingly used case/control designs, which are comprised of 

heterogeneous patient groups and reflect multiple symptoms. While research using 

case/control designs has made important contributions to broadly defining which brain 

regions are involved in social anxiety disorder (Freitas-Ferrari et al, 2010), the 

heterogeneity of patient groups may limit the discovery of specific underlying 

neurobiological mechanisms contributing to social fearfulness. 

 

1.2. Evidence for disrupted threat processing in social fear 

Because social anxiety disorder represents an extreme end of the social 

fearfulness spectrum, studies of patients with social anxiety disorder are ideal in gaining 

initial insight into which brain regions contribute to social fears. People with social 
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anxiety disorder show a consistent pattern of altered brain activation in response to 

potential threats (Lang et al, 2000; Walker and Davis, 1997; Gray, 1983; Blanchard et 

al, 2011; Mobbs et al, 2009; Adolphs et al, 1999; Gray and McNaughton, 2003), 

suggesting that disrupted threat processing in the brain may contribute to social anxiety 

symptoms. These regions, shown in Figure 2, include the amygdala, hippocampus, 

medial prefrontal regulatory regions (medial orbitofrontal cortex, ventromedial prefrontal 

cortex), and visual and face processing regions (primary visual cortex, extrastriate 

cortex, fusiform face area). Together, these brain regions form an interconnected 

 

network responsible for visual social threat processing (Stefanacci et al, 1996; Akirav 

and Richter-Levin, 1999; Iidaka et al, 2001; Phelps, 2004; Amaral et al, 2003; 

Mohedano-Moriano et al, 2007; Muñoz and Insausti, 2005; Gabbott et al, 2005; Roberts 

et al, 2007; Ghashghaei and Barbas, 2002; Quirk and Beer, 2006; Wager et al, 2009a).  

Figure 2. Key brain regions involved in social fearfulness. Fusiform face area (FFA); 
medial orbitofrontal cortex (mOFC); ventromedial prefrontal cortex (vmPFC); primary 
visual cortex (V1). 
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Elevated activity in limbic regions, including the amygdala and hippocampus, has 

been the most common neural feature associated with social anxiety symptoms. The 

amygdala, a small almond-shaped structure located in the medial forebrain, is central to 

the evaluation of social threat. The amygdala is critically important in the detection of 

environmental threat (Öhman, 2005) and in the expression of fear and anxiety (Lang et 

al, 2000; Davis, 1997), and there is strong evidence for amygdala involvement in social 

fear, with convergent findings across multiple modalities, species, and threat tasks (for 

reviews see Freitas-Ferrari et al, 2010; Furmark, 2009; Mathew and Ho, 2006; Miskovic 

and Schmidt, 2012). Lesions of the amygdala produce a striking lack of fear to 

environmental and social threat in monkeys (Amaral, 2003; Klüver and Bucy, 1939), and 

bilateral amygdala damage in humans is associated with difficulty recognizing fearful 

expressions (Adolphs et al, 1999). Functional neuroimaging studies have found 

elevated amygdala activity in people with social anxiety disorder in response to various 

types of social threat, such as viewing of threatening faces (Phan et al, 2006; Blair et al, 

2008; Stein et al, 2002) or anticipation of public speaking (Tillfors et al, 2002; 

Lorberbaum et al, 2004). Significantly, amygdala activity in response to social threat is 

reduced following successful social anxiety treatment (Furmark et al, 2002, 2005). 

Together, these findings converge to support a critical role for the amygdala in the 

detection of social threat, and indicate that hyperactivity of the amygdala in response to 

negative or threatening social stimuli may at least partially underlie social anxiety 

symptoms. 

There is also evidence for altered hippocampal activity in people with social 

anxiety (Freitas-Ferrari et al, 2010; Furmark, 2009; Mathew and Ho, 2006; Miskovic and 
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Schmidt, 2012). The hippocampus has been associated with the overgeneralization of 

anxiety (Cannistraro and Rauch, 2003; Gray and McNaughton, 2003)—potentially a 

critical component of extreme social fearfulness. In people with social anxiety disorder, 

social threat is associated with elevated activity in the hippocampus and 

parahippocampal gyrus compared to controls (Stein et al, 2002; Straube et al, 2004; 

Tillfors et al, 2002); additionally, people with social anxiety disorder show attenuated 

hippocampal activity to social threat following successful social anxiety treatment 

(Furmark et al, 2005). Although the hippocampus has been less well-studied than the 

amygdala, these findings suggest that the hippocampus may be important in the 

development and expression of social anxiety. 

The medial prefrontal cortex is involved in the regulation of emotions, such as 

social fear, and under-engagement of the prefrontal cortex to potential threats may be 

important in the development of inappropriate fears. Two regions of the medial 

prefrontal cortex in particular, the medial orbitofrontal cortex (mOFC) and the 

ventromedial prefrontal cortex (vmPFC), have been implicated in social anxiety. The 

mOFC, which forms the ventral surface of the medial prefrontal cortex, is involved in 

tracking the affective value of stimuli and in guiding advantageous choices (Stalnaker et 

al, 2015), potentially guiding the valuation of social experiences. Across a variety of 

social threat studies, activity in the mOFC is elevated in patients with social anxiety 

disorder compared to controls (Miskovic and Schmidt, 2012; Freitas-Ferrari et al, 2010) 

suggesting a broad role in social threat evaluation. The vmPFC is a complex region, 

located dorsal to the mOFC along the medial wall of the prefrontal cortex (Price, 1999), 

encompassing several functional regions central to social and affective function (Quirk 
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and Beer, 2006; Zald et al, 2002; Milad and Rauch, 2007; Milad et al, 2006) and is an 

important regulator of mood and anxiety symptoms (Myers-Schulz and Koenigs, 2012; 

Price, 1999). Higher activity in the vmPFC is associated with fewer social anxiety 

symptoms (Lungwitz et al, 2014; Riga et al, 2014), and the vmPFC is consistently found 

to be underactive in people with social anxiety disorder (Freitas-Ferrari et al, 2010; 

Furmark, 2009; Mathew and Ho, 2006; Miskovic and Schmidt, 2012) relative to controls. 

Following therapeutic treatment for social anxiety symptoms, activity in the vmPFC is 

increased (Evans et al, 2009) suggesting a regulatory role over anxiety symptoms. 

Together, evidence suggests that the mOFC and vmPFC provide an abstract 

knowledge of the social world (Krueger et al, 2009) critically important for social 

cognition and social function. 

 Although limbic and medial prefrontal regions have been more extensively 

investigated in relation to social threat evaluations, detection of visual social threat may 

begin early in the visual processing stream—people with social anxiety disorder show 

structural and functional differences in face processing and early visual processing 

regions (Freitas-Ferrari et al, 2010; Miskovic and Schmidt, 2012). The fusiform face 

area (FFA), located in the fusiform cortex, is specialized for face processing (Kanwisher 

et al, 1997; Loffler et al, 2005), and activity in the FFA has been shown to be elevated in 

social anxiety patients during a task involving harsh or threatening faces (Frick et al, 

2013a; Goldin et al, 2009; Straube et al, 2004, 2005). There are also preliminary 

indications that people with social anxiety disorder show differences in structure and 

function within primary visual processing areas; people with social anxiety disorder have 

greater visual cortex volume (Frick et al, 2014) and cortical thickness than controls 
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(Frick et al, 2013b), and show altered visual cortex activity during viewing of faces 

(McTeague et al, 2011). Together, these preliminary findings suggest that visual 

indicators of potential social threat, such as faces, may be processed differently in 

people with social anxiety—with evidence of over-detection of threat present even early 

in the visual processing stream in people with social anxiety. 

 

1.3. Faces are salient social cues 

The basic ability to detect and process facial information is critical for gauging 

appropriate social response, which is the foundation of successful social interactions. 

Many studies investigating social fear have used face stimuli to elicit a social threat 

response in the brain. In people with social anxiety disorder, a static picture of a face 

elicits activity in similar regions as other social stressors (e.g., public speaking) (Freitas-

Ferrari et al, 2010), indicating that faces are potent signals of potential threat. Faces are 

one of the most important social cues that we perceive—even a short glimpse of a face 

conveys a wealth of information about an individual critical for social functioning, 

including identity, mood, and intent. The importance of face processing is evidenced by 

three distinct features: 1) humans are born with an innate ability to process and 

recognize faces (Pascalis and Slater, 2003) and already show processing patterns 

during infancy similar to adults (Farzin et al, 2012); 2) face recognition is highly specific 

and dissociable from both general intelligence and from other types of recognition 

memory, like object recognition (Wilmer et al, 2010; Zhu et al, 2010); and 3) face 

processing relies on a dedicated neural substrate—the FFA (McKone et al, 2007; Tsao 

and Livingstone, 2008; Tsao et al, 2006; Wilmer et al, 2010; Kanwisher et al, 1997).  
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Although fearful, negative, or threatening faces are often utilized to elicit neural 

responses in threat evaluation circuitry, faces don’t need to be inherently threatening to 

elicit similar threat evaluation responses. People with social anxiety disorder show an 

elevated amygdala response to neutral faces compared to controls (Birbaumer et al, 

1998; Cooney et al, 2006), although to a lesser extent than threatening faces. Neutral 

expressions are more emotionally ambiguous than other facial expressions (Massaro 

and Egan, 1996), and there is preliminary evidence that people with social anxiety 

disorder tend to view neutral expressions as slightly threatening (Winton et al, 1995), 

perhaps due to their ambiguity. Therefore, elevated amygdala activity to neutral faces 

further supports the hypothesis of an over-perception of social threat.  

 

1.4. Novel faces are cues of potential social threat 

Response to novel faces is an important dimension of the affective brain 

(Weierich et al, 2010) and are associated with increased feelings of arousal (Weierich et 

al, 2010) and increased state anxiety (Ousdal et al, 2014). As with neutral faces, novel 

faces are emotionally ambiguous—a novel face can be threatening, rewarding, or 

inconsequential. Because a novel face must be evaluated quickly to determine the 

appropriate response, novel faces are highly salient in the brain; novel faces provoke an 

automatic orienting response (Sokolov, 1963) and rapid reallocation of sensory 

processing resources that sharpen arousal, perception, motivation, and memory 

(Schomaker and Meeter, 2015) in order to determine the appropriate behavioral 

response. The ability of novelty to effectively harness vast neural resources has likely 

been selected for through evolution; rapid detection and processing of novelty for 
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potential threat is crucial for survival, as failure to respond quickly to a threat may result 

in serious harm. In support of this link, infants as young as 6 months old show 

heightened orienting response and neural activity to novel faces compared to novel 

objects (Snyder and Keil, 2008).  

Novel faces elicit strong activity in threat detection regions—the amygdala and 

hippocampus both have a well-defined role in face and novelty detection, containing 

neurons that respond preferentially to faces (Fried et al, 1997; Wilson and Rolls, 1993) 

and neurons which respond only to the first presentation of a stimulus (Fried et al, 1997; 

Wilson and Rolls, 1993; Rutishauser et al, 2006). In the medial prefrontal cortex, both 

the vmPFC and mOFC have been shown to be engaged by novel faces relative to 

familiar faces (Weierich et al, 2010), suggesting that these medial prefrontal regions 

may also play a role in processing novel social information. Even in early visual 

processing regions, such as V1 and extrastriate cortex, novel faces elicit differential 

activation compared to familiar faces (Weierich et al, 2010). Activity in the FFA is also 

modulated by face familiarity (Gobbini and Haxby, 2006)—the FFA is involved in the 

representation of invariant features of faces and, therefore, is thought to play a key role 

the recognition of novel face identities.  

Importantly, brain regions involved in the detection of novel faces—the 

amygdala, hippocampus, vmPFC, mOFC, FFA, V1, and extrastriate—also show altered 

function in social anxiety disorder, suggesting that novel face processing and over-

detection of threat are linked. One of the most important aspects of the novelty 

response is the ability to habituate to a novel stimulus that is not threatening or 

rewarding. As neutral novel stimuli are repeatedly encountered they become familiar 
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and safe, and critical neural resources are freed up to detect and process new stimuli. 

The ability to quickly distinguish a familiar from novel face is likely key in effectively 

navigating a social environment, and may underlie differences in detection of social 

threat.  

 

1.5. Habituation as a mechanism for social fearfulness 

Habituation, the decrease in response to a repeated stimulus, is one of the 

simplest forms of learning and memory (Thompson and Spencer, 1966; Thompson, 

2009). Although habituation has been well-characterized behaviorally, the neural 

mechanisms underlying habituation remain largely unknown (Ramaswami, 2014; Wilson 

and Linster, 2008). It is widely-accepted that neural habituation, often referred to as 

repetition suppression, is key in 

filtering novel from familiar sensory 

experience (Ramaswami, 2014) and 

focusing attention on important 

stimuli; therefore, neural habituation 

is a prerequisite of all other forms of 

learning. Single-unit recording 

studies have shown that neural 

habituation usually occurs rapidly, 

with the greatest decrease in 

response observed between the first 

and second stimulus repetition 

Figure 3. A hypothetical habituation curve in 
response to repeated stimuli. In single 
neuron recordings (Wilson and Rolls, 1993) and 
within regions measured by fMRI (Ishai et al, 
2004), habituation follows a typical pattern, 
occurring rapidly between the first and second 
stimulus presentation, with the most habituation 
occurring by the third to fifth presentation. 
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(Figure 3) (Fried et al, 1997; Wilson and Rolls, 1993), providing a critical neuronal code 

for familiarity (Fried et al, 1997; Wilson and Rolls, 1993; Gonsalves et al, 2005; Dubois 

et al, 1999; Wright et al, 2001). In contrast, failure to rapidly habituate to repeated 

stimuli has been associated with feelings of uncertainty and unfamiliarity (Fried et al, 

1997; Wilson and Rolls, 1993; Gonsalves et al, 2005; Wright et al, 2001; Dubois et al, 

1999). Although habituation is a basic process, individual differences in habituation 

appear as early as infancy (Bushnell, 1982; Snyder and Keil, 2008) and these 

differences have been proposed to fundamentally underlie individual differences in 

mood and anxiety (Davidson, 2002; Schuyler et al, 2012). Prolonged neural response 

within novelty processing regions likely contributes to delayed feelings of safety and 

familiarity in novel social situations, resulting in feelings of fear and anxiety (Stout et al, 

2013). Previous work in our lab demonstrated a link between habituation to novelty and 

social fears; while people with low shyness habituated rapidly to repeated faces, people 

with high levels of shyness failed to habituate over repeated presentations (Figure 4) 

(Blackford et al, 2013). Additional evidence comes from studies of autism, a disorder 

marked by social difficulties. In people with autism, slow habituation of the amygdala to 

novel faces has been associated with more severe social impairment (Kleinhans et al, 

2009). Preliminary findings in social anxiety disorder are less clear. In an early study 

investigating habituation in people with social anxiety disorder, patients showed an 

altered pattern of amygdala habituation to novel emotional faces, although group 

differences in the rate of habituation were not found (Campbell et al, 2007). In a recent 

study, amygdala habituation was found in social anxiety disorder patients, but not 

controls (Sladky et al, 2012). However, in both studies, participants were required to 
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perform a task while viewing faces; in contrast, habituation studies in shyness have 

used passive viewing of faces. Task demands may significantly alter amygdala activity 

(Lieberman et al, 2011; Costafreda et al, 2008; Zald, 2003).  

 

 

Figure 4. Amygdala and hippocampus fail to habituate in highly shy 
individuals. (A) The two shyness groups significantly differed in their rate 
of amygdalar habituation to faces (k=15 voxels). (B) In the low shy group, 
amygdala fMRI activity was significantly diminished in Block 4 relative to 
its initial response in Block 1 (Block 4 - Block 1; *p<.05). However, in the 
highly shy group, amygdala fMRI activity failed to habituate from its initial 
response in Block 1. fMRI signal for Blocks 2-4 are normalized to Block 1. 
(C) The two shyness groups also significantly differed in their rate of 
hippocampal habituation to faces (k=57 voxels). (D) In the low shy group, 
hippocampal fMRI activity was significantly diminished in Block 4 relative 
to its initial response in Block 1 (Block 4 - Block 1; *p<.05). However, 
hippocampal fMRI activity was sustained over time in the highly shy 
group. fMRI signal for Blocks 2-4 are normalized to Block 1. 
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1.6. A social fearfulness network 

Together, each of the brain regions showing disrupted activity in people with 

social anxiety disorder—including the amygdala, hippocampus, vmPFC, OFC, FFA, and 

visual cortex (including V1 and extrastriate cortex—form a structurally and functionally 

interconnected network of bottom-up and top-down processing of visual social threat 

(Figure 5) (Stefanacci et al, 1996; Akirav and Richter-Levin, 1999; Iidaka et al, 2001; 

Phelps, 2004; Amaral et al, 2003; Mohedano-Moriano et al, 2007; Muñoz and Insausti, 

2005; Gabbott et al, 2005; Roberts et al, 2007; Ghashghaei and Barbas, 2002; Quirk 

and Beer, 2006; Wager et al, 2009a). Activity across this network is likely important in 

 

the experience of social fear. For example, a recent study has shown enhanced 

connectivity between the two nodes of this network, the amygdala and FFA, in social 

Figure 5. The social fearfulness network. Brain regions implicated in social 
fearfulness comprise a highly-interconnected network responsible for processing visual 
social threats. 
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anxiety patients (Frick et al, 2013a). FFA–amygdala connectivity is critical in the 

detection of novel faces and the processing of threat. The FFA receives low-level visual 

information about color, contrast and motion from primary visual processing regions, 

such as primary visual cortex (V1) and extrastriate cortex, and in turn, forwards 

information about face identity and expression to the both the amygdala and 

hippocampus through direct projects (Amaral et al, 2003; Mohedano-Moriano et al,  

2007; Muñoz and Insausti, 2005). Through reciprocal connections, the amygdala and 

hippocampus send highly processed information back to FFA and primary visual  

processing regions (Amaral et al, 2003; Mohedano-Moriano et al, 2007; Muñoz and 

Insausti, 2005). Given its central role in face and threat processing, connectivity 

between the FFA and amygdala may be central to the experience of fear in response to 

novel faces.  

Interactions between the amygdala and hippocampus have also been shown to 

significantly influence social behavior (Felix-Ortiz and Tye, 2014). The amygdala and 

hippocampus are densely structurally interconnected (Stefanacci et al, 1996) and have 

important influence over each other in the process of forming and retrieving emotional 

memories (Akirav and Richter-Levin, 1999; Iidaka et al, 2001; Phelps, 2004). Neural 

processing of the surrounding environment, including evaluation of potential threats, 

appears to involve a complex interaction between the amygdala and the hippocampus, 

with the amygdala influencing memory-related plasticity in the hippocampus (Akirav and 

Richter-Levin, 1999), and the hippocampus providing contextual information to the 

amygdala that may help modulate amygdala activity during social threat (Iidaka et al, 

2001; Guyer et al, 2008). Amygdala-hippocampal connectivity is likely important in 
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inhibition of behavior in social situations (Gray, 1983; Gray and McNaughton, 2003) and 

may be critical in dysfunction and disability associated with extreme social fears. 

Connectivity with the medial prefrontal cortex has also been shown to be 

disrupted in social anxiety disorder; in particular, the mOFC, a region with dense 

structural connections with the amygdala, shows disrupted functional connectivity with 

the amygdala in people with social anxiety disorder (Sladky et al, 2013). Another region 

of the medial prefrontal cortex, the vmPFC also has direct structural interconnections 

with the amygdala (Gabbott et al, 2005; Roberts et al, 2007; Ghashghaei and Barbas, 

2002; Quirk and Beer, 2006) and lower activity in the vmPFC during a social threat task is 

associated with sympathetic system activation, a marker of fear and arousal (Wager et al, 

2009b). This is in line with the vmPFC’s hypothesized role in regulation of amygdala 

activity (Motzkin et al, 2014; Hartley and Phelps, 2010; Quirk and Beer, 2006). 

Connections between the amygdala and medial prefrontal cortex are important in the 

regulation of activity and may fail to provide external control over the amygdala in social 

fearfulness. Together, activity across this visual social threat processing network 

contributes to social anxiety disorder, and there is preliminary evidence that it also varies 

dimensionally with social fear. However, a comprehensive assessment of activity across 

this network in social fearfulness is lacking.  

 

1.7. Summary 

 Initial response and habituation to novelty are two fundamental processes by 

which we learn about the environment around us, and are key in detecting and filtering 

salient sensory information. As an individual learns that a stimulus in the environment is 
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neither threatening nor rewarding, the stimulus becomes safe and familiar, resulting in 

habituation at both the behavioral and neural levels. However, failure to habituate to 

non-threatening stimuli in the environment may trigger feelings of uncertainty or 

unfamiliarity, resulting in fear and anxiety. Evidence in shyness supports the hypothesis 

that habituation may be related to increased social fearfulness. For example, shy people 

are typically slow to acclimate to new people and objects, consistent with slower 

habituation. Additionally, our lab has recently shown that shy individuals fail to show 

habituation to novel faces in the amygdala and hippocampus, two brain regions 

associated with fear and evaluation of threat. However, no studies to date have been 

conducted exploring initial response and habituation as separable processes. Because 

individual differences in both initial amplitude of response and habituation to social stimuli 

may provide an important neurobiological marker for risk for psychiatric illness, such as 

social anxiety disorder, we propose that exploration of these two fundamental processes 

in individuals ranging from low to high in social fearfulness is critical. 

 

1.8. Specific aims 

The goal of this dissertation is to test the hypothesis that neural differences in 

initial amplitude and habituation to novelty mediate individual differences in social 

fearfulness. For social animals, initially heightened neural processing of a novel social 

stimulus is a highly adaptive response that facilitates quick behavioral reaction (Mobbs 

et al, 2009; Blanchard et al, 2011) in order to protect one’s self from danger. However, 

social stimuli that are non-threatening are associated with a rapid return to baseline in 

healthy people (Breiter et al, 1996). Our hypothesis is that failure to rapidly habituate to 
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non-threatening social information may contribute to increased social fearfulness.  

To characterize neural habituation in social fearfulness, we study a core set of 

brain regions that play a critical role in the processing and expression of anxiety and 

fear (Lang et al, 2000; Davis, 1997; Gray and McNaughton, 2003; Gray, 1983; 

Blanchard et al, 2011; Mobbs et al, 2009; Adolphs et al, 1999), including the amygdala, 

hippocampus, mOFC , vmPFC, FFA, V1, and extrastriate cortex. Current evidence 

points to an overall difference in activity in these regions in people with social anxiety 

disorder (Freitas-Ferrari et al, 2010; Furmark, 2009; Mathew and Ho, 2006; Miskovic 

and Schmidt, 2012); however, the temporal course of the brain’s response in these 

regions is unclear.  

 

The specific aims of this dissertation are to: 

 

1. Characterize neural habituation to repeated faces in a group of adults 

representative of the full spectrum of social fearfulness (Chapter 2);  

 

2. Examine habituation of neural connectivity to repeated faces across the social 

fearfulness spectrum (Chapter 3); 

 

3. Examine whether habituation differences are specific to faces by testing 

whether an association exists between social fearfulness and habituation to 

repeated objects (Chapters 4 and 5); 
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4. Examine whether associations between social fearfulness and face processing 

are specific to social fearfulness by testing for unique effects of social fear, trait 

anxiety, and depression (Chapter 5). 
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CHAPTER II 

Associations between social fearfulness and neural  

response to novel and repeated faces 

 

2.1. Introduction 

 The evaluation of visual social threat is dependent on a key network of brain 

regions—including the amygdala, hippocampus, mOFC, vmPFC, FFA, V1, and 

extrastriate cortex (Figure 2) (Freitas-Ferrari et al, 2010; Miskovic and Schmidt, 2012; 

Lungwitz et al, 2014; Riga et al, 2014; Straube et al, 2004; McTeague et al, 2011)—with 

each of these brain regions showing dysfunction in people with social anxiety disorder. 

However, the mechanism underlying disrupted function in these brain regions remains 

unknown. Many neuroimaging studies have sought to understand social anxiety by 

studying the magnitude of response to social stimuli, with magnitude representing the 

average signal across the entire experiment (sometimes 30 minutes or more). One 

common takeaway from this type of experiment is that social anxiety is a disorder of 

functional magnitude, with many threat processing regions showing an elevated 

magnitude of response to social threat, and regulatory regions showing dampened 

magnitudes. However, the averaging of signal magnitude across an experiment 

obscures two fundamental elements of the brain’s reaction to a stimulus—initial 

amplitude of response to the social stimulus, and habituation to the stimulus over time.  

Initial amplitude and habituation of neural response serve largely differing 

functions in the brain, and dysfunction in one or both elements implicates 

distinguishable functional processes underlying social fear. For social animals, initially 
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heightened neural processing of a potential social threat is a highly adaptive response 

that facilitates quick behavioral reaction (Blanchard et al, 2011; Mobbs et al, 2009) in 

order to protect one’s self from danger. Novel stimuli elicit a strong orienting response 

(Sokolov, 1963) and sharpened attention, perception and memory (Schomaker and 

Meeter, 2015). Elevated initial amplitudes may reflect a maladaptive over-engagement 

of these neural resources, potentially leading to an inability to disengage from a 

stimulus. In contrast, neural habituation is a fundamental learning mechanism, and 

deficits in this process may reflect a deficit in social learning. As an individual learns that 

a stimulus is neither threatening nor rewarding, the stimulus becomes safe and familiar, 

resulting in habituation at the behavioral and neural level. Social stimuli that are non-

threatening are associated with a rapid return to baseline in healthy individuals (Breiter 

et al, 1996; Pedreira et al, 2010; Rey et al, 2014; Blackford et al, 2010; Schwartz et al, 

2003b; Fischer et al, 2003; Wright et al, 2001). However, failure of habituation is a 

maladaptive response that may be associated with higher levels of social fear. A recent 

finding from our lab demonstrated a link between social function and habituation failure; 

highly shy individuals failed to show habituation in the amygdala and hippocampus, two 

key brain regions associated with fear and evaluation of threat (Blackford et al, 2013, 

2011). This finding is consistent with findings of slower behavioral habituation in 

shyness; shy individuals are typically slow to acclimate to new people and objects 

(Kagan et al, 1987; Garcia-Coll et al, 1984). Because initial amplitude and habituation 

subserve separate processes in the brain, distinguishing the relative contribution of 

each to social fearfulness may help guide appropriate intervention and treatment 

strategies.  
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To determine whether initial amplitude, habituation of response to faces, or both 

contribute to the experience of social fearfulness, we used functional magnetic 

resonance imaging (fMRI) to measure brain activity to novel and repeated faces. 

Participants were selected to represent the social fearfulness spectrum. While 

case/control studies of social anxiety disorder have contributed to a broad 

understanding of which brain regions are involved in social fear, dimensional studies are 

essential in identifying neurobiological mechanisms. The National Institute of Mental 

Health’s Research Domain Criteria project (RDoC) has proposed the use of dimensional 

approaches, which focus on understanding the neurobiology of specific traits that span 

the range from normal to pathological, is the critical next step in enabling neuroscience 

research to inform diagnosis and treatment of psychiatric disorders. An ideal candidate 

for a dimensional approach is social fearfulness, a trait that ranges from minimal to 

extreme and encompasses both sub-syndromal and clinical manifestations of social 

anxiety (Stein et al, 1994; Schneier et al, 2002; Davidson et al, 1994; Stein et al, 2004; 

Furmark, 2002). We propose that understanding the neurobiological correlates of social 

fearfulness is an essential step in defining a dimensional biological marker for social 

anxiety. We designed a “repeated faces” task to study response to faces, wherein 

participants viewed a set of novel face identities repeated up to 7 times throughout the 

experiment. Because habituation is ubiquitous in the brain, we restricted our analysis to 

a set of regions previously identified as showing dysfunction in social anxiety (Figure 2). 
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2.2. Methods 

2.2.1. Participants 

Characteristics. Twenty-nine young adults (13 female) were included in this analysis. 

Participants were selected based on social fearfulness scores, with an oversampling at 

the low and high ends of the social fearfulness continuum (see Recruitment and 

selection, below). Participants were on average 22 years old (SD = 2), Caucasian (72%) 

and right-handed (79%). There were no associations between social fearfulness and 

age, sex, race, or handedness (Table 1). 

 

Recruitment and selection. Participants between the ages of 18-25 were recruited from 

the Vanderbilt University community and surrounding Nashville area using 

advertisements and recruitment databases. Because observations across the 

continuum of social fearfulness are necessary for the reliable and precise estimate of 

the relationship between social fear and neural activity, we used a specialized 

recruitment strategy—general advertisements seeking individuals to participate in a 

study “to learn how differences in personality may relate to brain functions” were used to 

recruit a normally-distributed range of shyness from the population; additionally, 

targeted advertisements seeking “especially shy” or “especially outgoing” individuals 

were used to provide an oversampling at the extreme ends of the continuum. Shyness 

in many ways parallels the physiological, cognitive and behavioral correlates of social 

anxiety and social fearfulness (Heiser et al, 2003).  

Prior to enrollment, individuals responding to study advertisements completed an 

online screening  (Revised Cheek and Buss Shyness Scale (RCBS); Hopko et al, 
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2005). We selected the RCBS as a screener because it is a short (13 question), well-

validated measure of shyness (Hopko et al, 2005). To ensure recruitment of the full  

 

Table 1. Participant characteristics.      

 Mean S.D. Min Max Skewness Kurtosis 

Age (years) 22 2 18 25 -.22 -1.07 
Social fearfulness (SHY-
SR) 56 34 3 120 .51 -.84 

Shyness screen (RCBS) 33 11 15 56 .53 -.67 

Trait anxiety (STAI-Trait) 35 12 20 64 .58 -.69 
Depression (BDI-II) 7 6 0 27 1.32 2.16 
       
 Count      

Gender (M / F) (16 / 13)      

Race (C / AA / A) (21 / 2 / 6)      
Handedness (R / L / 
Amb) (23 / 4 / 2)      

Note: Male (M); Female (F); Caucasian (C); African-American (AA); Asian (A); Right (R); Left 
(L); Ambidextrous (Amb) 

shyness distribution we used a stratified recruitment strategy, recruiting approximately 

equal numbers of participants into each of four levels:  not at all shy ≤ 15th percentile; a 

little shy = 16th – 49th percentile; moderately shy = 50th – 84th percentile; very shy ≥ 85th 

percentile. Potential scores on the RCBS range from 13 to 65, with higher scores 

indicating higher levels of shyness. In our sample, participants’ screening scores ranged 

from 15 (not at all shy) to 56 (very shy) and were normally distributed (Table 1). Social 

fearfulness scores (see below) were well-correlated with shyness screening scores (r = 

.67, p < .001). 

 

Social fearfulness measurement. We assessed social fearfulness following enrollment 

in the study using the Social Anxiety Spectrum Self-Report (SHY-SR) (Dell’Osso et al, 



28 
 

2014, 2002). The SHY-SR is a 168-item questionnaire specifically developed to assess 

the dimension of social anxiety and fearfulness, including clinical and sub-clinical 

symptoms, as well as atypical presentations and isolated symptoms. The SHY-SR 

ranges from 0-164, with higher scores indicating higher social fearfulness. In our 

sample, participants’ scores spanned the continuum of social fearfulness, ranging from 

3 (low social fear) to 120 (high social fear), and were normally distributed across the 

spectrum (Table 1).  

 

Other measures. High negative affect is a characteristic associated with social 

fearfulness (Schmidt et al, 1997), and is considered a general risk factor for emotional 

disorders, including social anxiety disorder (Grupe and Nitschke, 2013). We included 

two commonly-used measures sensitive to negative affect (Watson and Clark, 1984), 

the State-Trait Anxiety Inventory (STAI) (Spielberger, C, Gorsuch, R, Luschene, R, 

Vagg, P, Jacobs, 1983) and the Beck Depression Inventory (BDI-II) (Beck, A, Steer, R, 

Ball, R, Ranieri, 1996). The STAI is comprised of 20 questions assessing general (trait) 

anxiety and 20 questions assessing current (state) anxiety on a 4-point Likert scale; 

only trait anxiety scores were included in this study. STAI-trait scores range from 20-80, 

with higher scores indicating higher trait anxiety and negative affect. Participants’ scores 

ranged from 20 (low trait anxiety) to 64 (high trait anxiety). The BDI-II is a 21-item 

measure of current depression symptoms. Individual items are scored on a Likert scale 

ranging from 0-3, with total BDI-II scores ranging from 0-63. Participants’ scores ranged 

from 0 (minimal current depression) to 27 (moderate current depression). 
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Exclusion criteria. Participants were excluded for past or current psychiatric illness 

based on the Structured Clinical Interview for the DSM-IV (SCID) (Spitzer et al, 1992) 

with the exception of untreated social anxiety disorder in socially fearful participants. 

Social anxiety is common in socially fearful individuals; therefore, exclusion of socially 

fearful individuals with a diagnosis of social anxiety may result in a sample of 

exceptionally resilient individuals and reduce the generalizability of the study findings. 

Two participants with high social fear scores (both ≥ 68) had significant social anxiety 

symptoms based on the clinical interview. Participants were also excluded for current 

use of psychoactive medications (prev. 6 months) as these may affect brain function. 

Other exclusion criteria included:  significant medical or neurological illness; pregnancy; 

developmental disability or intellectual deficit; head injury resulting in loss of 

consciousness; or any conditions that preclude MR scanning (e.g. metal implants). 

Thirty-two individuals were consented for the study; however, 3 individuals were 

excluded from the analysis for beginning psychoactive medication treatment between 

the first and second study visit (n = 1), at the request of the participant (n = 1), and for 

errors in data collection (n = 1) (see fMRI procedures below), resulting in a final sample 

of 29 participants.  

The Vanderbilt Institutional Review Board approved the study and we obtained 

written informed consent after providing participants with a complete description of the 

study. 
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2.2.2. Experimental paradigm 

Repeated faces task. We designed a “repeated faces” task to investigate neural 

habituation to social stimuli (Figure 6). The repeated faces task was comprised of 8 

face presentation blocks presented across 2 fMRI runs, with each run lasting 

approximately 4 m, 50 s. Each functional run began with a 10 s fixation crosshair 

followed by 4 blocks of faces. Blocks consisted of 16 face presentations followed by a 

10 s fixation crosshair. Each face presentation lasted a total 1 s followed by a black 

screen shown for 2 - 4 s. At the beginning of the repeated faces task, participants were 

told ‘In this study faces will appear in the middle of the screen. Your job is to stay 

focused on the screen and look at each face. The faces will flash quickly’. Participants 

were shown a series of 32 face identities, with each face identity shown a total of 1 time, 

3 times, 5 times, or 7 times, for a total of 128 face presentations. Faces were shown in 

Figure 6. Repeated faces and repeated objects task design. There were a total of 
32 neutral face stimuli and 32 neutral object stimuli presented in each task. Each 
stimulus was presented either 1 time, 3 times, 5 times, or 7 times. Stimuli were 
presented in pseudo-random order for 1 s followed by a black screen for 2 – 4 s. 
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pseudorandom order using a jittered, event-related design to maximize fMRI signal 

measurement efficiency (Friston et al, 1999). Stimulus jitter was randomly distributed 

across presentations. The repeated faces task was presented using E-Prime software 

(Version 2.0, Psychology Software Tools, Pittsburgh, PA, USA).  

 

Face stimuli. We used faces with a neutral expression, which are ideally-suited to study 

individual differences in social fearfulness—while strong stimuli (e.g., fear faces) 

maximize response across individuals, potentially creating a ceiling effect that obscures 

individual differences, weaker stimuli (e.g., neutral faces) facilitate the detection of 

individual differences (Lissek et al, 2006). Face stimuli were derived from two standard 

sets of human face images with neutral-valenced expressions (Gur et al, 2001; 

Lundqvist, D, Flykt, A, Ohman et al, 1998). All face stimuli were edited to ensure 

uniform size, midtone, contrast, level equalization, eye position, and vertical nose bridge 

position. Extraneous features such as hair and shirt collars were removed from face 

stimuli. Selection of neutral face stimuli was pseudorandom, counterbalanced for 

gender and stimulus set.  

 

2.2.3. MRI data 

Acquisition. Structural and functional MRI data were collected using a 3 Tesla Philips 

scanner equipped with a 32-channel head coil (Philips Healthcare, Inc., Best, The 

Netherlands). High-resolution T1-weighted structural images were collected (256 mm 

FOV, 189 slices, 1 mm slice thickness, 0 mm gap). Functional echo planar images (EPI) 

were acquired using a sequence optimized to reduce signal loss in the ventral forebrain, 
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including amygdala and OFC:  2 s TR; 28 ms TE; 90° flip angle; 1.8 SENSE factor; 240 

mm FOV; 3 x 3 mm in-plane resolution using an 80 x 80 matrix; and higher order 

shimming to limit susceptibility artifacts. Each volume contained 38 3.2 mm (0 gap) axial 

oblique slices (tilted 15° anterior higher than posterior relative to the intercommissural 

plane), which provided whole-brain coverage. 

 

Preprocessing. MRI data were analyzed using statistical parametric mapping (SPM8; 

Wellcome Department of Cognitive Neurology, Institute of Neurology, London, United 

Kingdom) and MATLAB (Version 7.10 64-bit, The MathWorks, Inc., Natick, MA, USA). 

fMRI data were preprocessed for slice time correction, realigned to the mean slice to 

correct for motion, spatially normalized into standard stereotactic space (MNI T1 

template) using both linear (12-parameter affine) and nonlinear transformations. Data 

were smoothed with a 6 mm FWHM Gaussian kernel to account for individual 

differences in brain anatomy. Functional EPI images were visually inspected for artifacts 

and signal dropout. Volumes with excessive motion (> 3 mm) or signal artifacts (signal > 

1.8% of mean) were removed from the analysis using Artifact Detection software (ART; 

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)). Volume 

artifacts were not correlated with participants’ social fearfulness scores or the repeated 

faces task. 

 

2.2.4. Regions of interest (ROIs) 

 We selected seven regions previously shown to play a role in social anxiety: the 

amygdala (Freitas-Ferrari et al, 2010; Furmark, 2009; Mathew and Ho, 2006; Miskovic 
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and Schmidt, 2012); hippocampus (Freitas-Ferrari et al, 2010; Furmark, 2009; Mathew 

and Ho, 2006; Miskovic and Schmidt, 2012); ventromedial prefrontal cortex (vmPFC; 

Freitas-Ferrari et al, 2010; Furmark, 2009; Mathew and Ho, 2006; Miskovic and 

Schmidt, 2012); the medial orbitofrontal cortex (Freitas-Ferrari et al, 2010; Furmark, 

2009; Mathew and Ho, 2006; Miskovic and Schmidt, 2012); the fusiform face area (see 

FFA localizer details below; Freitas-Ferrari et al, 2010; Miskovic and Schmidt, 2012); 

the primary visual cortex (Demenescu et al, 2013; Frick et al, 2014); and the extrastriate 

visual cortex (Freitas-Ferrari et al, 2010; Straube et al, 2007; Demenescu et al, 2013; 

Frick et al, 2014). Each of these regions has been shown to play a role in expression of 

fear (Lang et al, 2000; Davis, 1997; Gray and McNaughton, 2003; Gray, 1983; 

Blanchard et al, 2011; Mobbs et al, 2009; Adolphs et al, 1999), and together these 

regions form a structurally and functionally interconnected network for processing visual 

social threat (Stefanacci et al, 1996; Akirav and Richter-Levin, 1999; Iidaka et al, 2001; 

Phelps, 2004; Amaral et al, 2003; Mohedano-Moriano et al, 2007; Muñoz and Insausti, 

2005; Gabbott et al, 2005; Roberts et al, 2007; Ghashghaei and Barbas, 2002; Quirk 

and Beer, 2006; Wager et al, 2009a). 

 

Anatomical atlas regions. The amygdala, hippocampus, primary visual cortex (calcarine 

fissure), and extrastriate cortex (lingual gyrus, inferior and middle occipital cortex) ROIs 

were defined using the AAL standard masks (Automated anatomical labeling; Tzourio-

Mazoyer et al, 2002) implemented in Wake Forest University Pick Atlas (WFU Pick 

Atlas; Maldjian, Laurienti, & Burdette, 2004; Maldjian, Laurienti, Kraft, & Burdette, 2003). 

The vmPFC and mOFC ROIs were defined according to population masks of human 
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architectonic areas based on comparative cytoarchitecture in humans and non-human 

primates (Mackey and Petrides, 2010):  the vmPFC was defined as areas 14m, 25, 24 

and 32; the mOFC was defined as areas 14r, 14rr, 14c, and 11m. 

 

FFA ROI. FFA ROIs were functionally defined for each participant (see FFA localizer 

task below). Individual ROIs were maintained for analysis, as previous studies have 

shown that this approach is stronger, relative to a group overlap ROI, in selectively 

analyzing face processing signal (Saxe et al, 2006). A contrast of faces > scenes was 

created for each participant and activations within the fusiform gyrus were examined 

(AAL; WFU pickatlas). A minimum cluster size of 8 voxels (p = .005) provided a cluster-

corrected α = .05. Statistical thresholds were adjusted for each participant to constrain 

activations to a maximum cluster size of 37 voxels (999 mm3) in the right fusiform and 

19 voxels (513 mm3) in the left fusiform—maximum cluster sizes were based on a 

review of published studies reporting FFA volumes (Berman et al, 2010). Significant 

clusters were found for the majority of participants in both the right and left 

hemispheres. Six participants had activation in either the left (n = 3) or the right (n = 3) 

hemisphere only. Two participants did not have significant FFA activity in either 

hemisphere. There were no associations between FFA cluster size and social 

fearfulness, or between detection of FFA clusters and social fearfulness. 

 

FFA localizer task. Because the precise location of the FFA cannot be anatomically 

defined and differs across individuals, it is necessary to identify the FFA using a 

functional task. We used a standard FFA localizer task (Wong and Gauthier, 2010) to 
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functionally define our FFA ROI in each subject. The FFA localizer task consisted of 2 

fMRI runs lasting 3 m, 56 s each. Each run began with a 10 s fixation block followed by 

9 blocks (16 s each) of face, scene, or scrambled images separated by fixation periods 

(5 – 16 s), ending with a 10 s fixation block. Face, place and scrambled images were 

presented for 750 ms, followed by a 250 ms blank screen. Blocks were presented in a 

pseudorandom order and participants performed a 1-back task (1 – 3 repeated images / 

block) to promote attention to the images.  

 

2.2.5. Data analysis 

fMRI data modeling. The first-level (participant) temporal model was estimated using a 

general linear model (GLM; Friston et al, 1995). The design matrices included 4 task 

regressors, one for each face exposure category (1, 3, 5, 7), convolved to the SPM 

default hemodynamic response function (HRF). Motion parameters were also included 

as additional covariates of no interest. Data were high-pass filtered (128 s) to attenuate 

low frequency signal (linear scanner drift).  

 

Habituation. Habituation is dependent on initial amplitude of response; that is, there is 

more opportunity for signal to attenuate over time if signal is initially high, while 

habituation over repeated faces will be minimal (floor effect) if initial signal to faces is 

low. However, response to novel faces and habituation to repeated faces may be 

influenced by different mechanisms in the brain. To disentangle habituation from initial 

amplitude differences, we calculated a normalized habituation slope (b') independent of 

initial amplitude differences for each participant (Montagu, 1963; Plichta et al, 2014). 
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We first extracted percent signal change from each ROI using MarsBar (Brett et al, 

2002). Percent signal change in the left and right hemispheres were highly correlated 

across ROIs; to increase statistical power and minimize type I error, data from left and 

right ROIs were averaged. However, for completeness, we also include a secondary 

analysis to specifically test for laterality effects.  

 Neural habituation slopes were modeled for each participant using the regression  

𝑌 = 𝑏𝑋 + 𝑎 

where the mean ROI response (Y) is predicted by the log-transformed face presentation 

number (X). Face presentations 1, 2, 3, 4, 5, 6, and 7 were natural log-transformed to 0, 

.69, 1.1, 1.39, 1.61, 1.79, and 1.95. The natural log transform linearizes the habituation 

curve, which is steepest during early face repetitions, enabling linear regression 

analysis. We then calculated b' for each participant as 

𝑏′ = 𝑏 − 𝑐(𝑎 −  𝑎�) 

where b is the participant’s regression slope, c is the mean regression parameter 

estimate (time) of the sample, and a is the initial amplitude estimate (intercept). SAS 

software (Version 9.3, SAS Institute Inc., Cary, NC, USA) was used to perform all 

statistical analyses. 

 

Social fearfulness analysis. Correlations tested for associations between social 

fearfulness and initial amplitude (intercept) of response to novel faces, and between 

social fearfulness and normalized habituation slope (b') to repeated faces (habituation 

from 1st to 7th face presentation). Correlation results were considered significant at α ≤ 

.05. R2 values were computed as a measure of effect size. To visually display the 
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pattern of results, data were split into three groups (tertiles of social fearfulness scores) 

and means and standard errors are presented as bar graphs.  

 Previous results from our lab indicate that shy individuals show a non-linear 

pattern of behavioral habituation across a similar repeated faces task, with the strongest 

differences in behavior occurring at the 3rd and 5th face presentation, and with 

responses across all participants reaching an asymptote by the 7th face presentation 

(Avery et al, 2015). Therefore, we conducted planned secondary analyses to examine 

associations between social fearfulness and habituation to faces within three discrete 

repetition windows: 1st to 3rd presentation; 3rd to 5th presentation; 5th to 7th presentation. 

Secondary habituation analyses were considered significant at α ≤ .0167 (.05 / 3), 

Bonferroni-corrected for multiple comparisons. 

 

Arousal/valence. Although face stimuli were derived from neutral-valenced standard 

sets, differences in how each participant perceived the neutral images could contribute 

to differences in initial neural response and rate of habituation. Therefore, following all 

MRI scanning procedures, participants were re-shown each face stimulus on a 

computer outside the MRI scanner and asked to make arousal and valence ratings. 

Arousal and valence are dimensional measures used to characterize affective 

experience. The dimension of arousal ranges from calm to exciting. The dimension of 

valence ranges from negative to positive. For each face, arousal rating was made first 

followed by valence rating. Arousal and valence ratings were made on a scale of 1 

(“very excited” or “very unpleasant”) to 7 (“very calm” or “very pleasant”). A rating of 4 

was indicated as “not excited or calm” or “not pleasant or unpleasant”. Correlations 
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tested for associations between arousal/valence rating and social fearfulness. 

Correlations were considered significant at α ≤ .05. 

 

Laterality. Although neural measures were similar across left and right hemispheres, 

there is evidence for significant laterality in the brain (Gotts et al, 2013; Knecht, 2000; 

Roth and Hellige, 1998). Therefore, we conducted a secondary analysis to test for initial 

amplitude and habituation differences across hemispheres. Neural habituation slopes 

were modeled for each participant by hemisphere and initial amplitude and b' slopes 

were calculated. We first performed t-tests between hemispheres to directly test for 

laterality effects in initial amplitude and habituation. To further explore possible 

differences in laterality, we conducted the main analysis separately for left and right 

hemispheres. Using α’s consistent with the main analysis; initial amplitude and 

habituation (1st – 7th) results were considered significant at α ≤ .05; secondary 

habituation results (1st – 3rd; 3rd – 5th; 5th – 7th) were considered significant at α ≤ .0167, 

Bonferroni-corrected for multiple comparisons. 

 

2.3. Results 

2.3.1. Arousal/valence ratings 

 Differences in how participants perceived faces could influence initial reactivity 

and habituation rates; to ensure that faces were viewed as neutral by all participants, 

we asked participants to make arousal and valence ratings for each face. Participants 

rated faces on a scale from 1 to 7 with a rating of 4 indicating a neutral arousal/valence. 

Participants rated faces as neutral on both arousal and valence (arousal, mean = 4.14, 
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SD = .60, range = 3.50 – 6.81; valence, mean = 3.87, SD = .32, range = 3.07 – 4.80). 

There were no associations between social fearfulness and arousal or valence ratings 

(all p’s > .43). 

 

2.3.2. Initial amplitude  

Social fearfulness was correlated with heightened initial amplitude to novel faces 

in two regions, the hippocampus and the vmPFC (hippocampus, r = .49, p = .008; 

vmPFC, r = .48, p = .008; Table 2; Figure 7). There were no correlations between 

social fearfulness and smaller initial amplitudes. To illustrate associations, data were 

split into social fearfulness groups (tertiles). Overall, the low social fear group showed 

minimal response to novel faces, with small initial amplitudes in the hippocampus and, 

on average, no response in the vmPFC. In contrast, the high social fear group had a 

strong initial response to novel faces in both regions (Figure 8). Values for initial 

response to faces are presented in Table 3. 

 

2.3.3. Habituation 

1st – 7th face presentation. Social fearfulness was correlated with habituation differences 

in the hippocampus (r = .46, p = .01; Table 2; Figure 7). Visualizing low and high social 

fear groups, a consistent pattern was illustrated:  the low social fear group showed 

negative b' slopes in the hippocampus, indicating habituation across repeated face 

presentations; in contrast, the high social fear group had b' slopes near or above zero, 

demonstrating a failure to habituate to faces (Figure 8). To visualize neural response to 
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repeated faces over time, we extracted percent signal change values from each region; 

values are presented in Table 3. 

 

1st – 3rd face presentation. We conducted planned secondary analyses to explore 

habituation differences during early (1st – 3rd), middle (3rd – 5th), and late (5th – 7th) 

repetition windows. During early face presentations, social fearfulness was correlated 

with habituation differences in the extrastriate cortex (r = .43, p = .01; Table 2; Figure 

7). Visualizing social fearfulness by groups, the low social fear group demonstrated 

negative b' slopes in the extrastriate cortex, indicating rapid habituation to faces during 

early presentations. In contrast, the high social fear group had b' slopes near or above 

zero, indicating a sustained or increasing response across early face presentations 

(Figure 8). 

 

3rd – 5th face presentation. During the middle face presentation window (3rd – 5th), social 

fearfulness was correlated with habituation differences across multiple brain regions—

including V1, extrastriate cortex, amygdala, hippocampus, mOFC and vmPFC (V1, r = 

.52, p = .004; extrastriate, r = .57, p = .001; amygdala, r = .45, p = .01; hippocampus, r = 

.56, p = .002; mOFC, r = .44, p = .02; vmPFC, r = .51, p = .005; Table 2; Figure 7). 

Visualizing habituation by group, a consistent within-group pattern is illustrated across 

regions—on average, low social fear had consistently negative b' slopes, indicating 

habituation in low social fear participants, while the high social fear group showed b' 

slopes near or above zero, indicating a sustained or increasing response to repeated 

faces through the middle presentation window (Figure 8). 
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Table 2. Correlations between social fearfulness and neural response to faces. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 .06 .004 .75 -.03 .001 .88 .35 .12 .06 .52 .32 .004 -.07 .005 .72 

Extrastriate .27 .07 .27 .14 .02 .48 .43 .18 .01 .57 .32 .001 .02 .0004 .93 

FFA .11 .01 .59 .25 .06 .22 .39 .15 .04 .33 .11 .09 .18 .03 .37 

Amygdala .36 .13 .06 .31 .10 .11 .34 .12 .07 .45 .20 .01 -.15 .02 .44 

Hippocampus .49 .24 .008 .46 .21 .01 .39 .15 .04 .56 .31 .002 -.21 .04 .28 

mOFC .20 .04 .31 -.05 .03 .79 .35 .12 .06 .44 .19 .016 -.01 .0001 .96 

vmPFC .48 .23 .008 .36 .13 .06 .28 .08 .14 .51 .26 .005 .06 .004 .75 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary analysis results were considered significant at α ≤ .0167. 

  



42 
 

  

Figure 7. Correlations between social fearfulness and neural response to faces. Scatterplots show the 
relationship between social fearfulness and neural response to novel and repeated faces. Asterisks (*) denote 
significant correlations. Intercept values above zero indicate an initial response (greater than baseline) to novel faces. 
Slope (b') values below zero indicate habituation to repeated faces; b' slope values at or above zero indicate sustained 
or increasing signal to repeated faces, respectively. Social fearfulness was correlated with heightened initial amplitudes 
to faces in the hippocampus and vmPFC, and with sustained response to repeated faces in the hippocampus (1st - 
7th). To further explore habituation differences, we examined signal change over three repetition windows in a 
secondary habituation analysis (shaded in grey). Secondary habituation contrasts revealed a correlation between 
social fearfulness and sustained signal in the extrastriate cortex across early (1st - 3rd) face presentations, and in V1, 
extrastriate cortex, amygdala, hippocampus, mOFC, and vmPFC across middle (3rd - 5th) face presentations. There 
were no social fearfulness differences in habituation across late (5th - 7th) face presentations. 
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Figure 8. Neural response to faces by social fearfulness tertile. Bar graphs show initial amplitude (intercept) and 
habituation (b') slope values by social fearfulness tertile for novel and repeated faces. Asterisks (*) denote significant 
correlations. Intercept values above zero indicate an initial response (greater than baseline) to novel faces. Slope (b') 
values below zero indicate habituation to repeated faces; b' slope values at or above zero indicate sustained or 
increasing signal to repeated faces, respectively. 



44 
 



45 
 

 

5th – 7th face presentation. Social fearfulness was not correlated with habituation 

differences in any region during the late presentation window (all p’s > .28; Table 2; 

Figure 7). Overall, b' slopes across all groups were near zero during the late 

presentation window, indicating a sustained pattern of response once faces had been 

seen many times (Figure 8).  

  

2.3.4. Laterality 

 We tested for laterality of initial amplitude and habituation of neural response in a 

secondary analysis. We found a single difference in response to novel faces in V1 

(Table 4) indicating that magnitude of signal across participants was larger in left than 

right hemisphere; however, social fearfulness correlations in the left and right 

hemispheres were consistent with the bilateral findings (Table 2; Table 5) supporting 

the combination of hemispheres to examine effects of social fearfulness.  

 

2.4. Discussion 

The goal of this study was to investigate the neural basis of social fearfulness, a 

dimensional characteristic that fundamentally influences social behavior. Using fMRI, 

we examined two key aspects of neural response to faces—initial response to novel 

faces, a neural response corresponding to attentional orienting, and habituation to 

repeated faces, a neural mechanism involved in learning that stimuli are familiar and 

safe. The main findings from this study are that social fearfulness is associated with 1) 

higher initial amplitude of neural response to novel faces and 2) failure to habituate to 



46 
 

repeated faces. Social fearfulness was dimensionally associated with sustained 

signaling across visual social threat processing regions—including the amygdala, 

hippocampus, mOFC, vmPFC, V1, and extrastriate cortex. Two regions—the 

hippocampus and vmPFC—also showed heightened initial amplitude of response to  

 

 

 

Table 4. T-tests for laterality of neural responses to faces. 

 Initial 
amplitude Habituation 

(left – right) (left – right) 
 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 

Region t p-value t p-value t p-value t p-value t p-value 

V1 2.14 .04 .68 .50 .63 .53 -.30 .77 .30 .77 

Extrastriate -1.64 .11 .48 .63 .28 .78 -.03 .97 .23 .82 

FFA .23 .82 .25 .81 -.59 .56 .32 .75 .58 .57 

Amygdala .76 .45 -.81 .42 -.04 .97 -.62 .54 -.18 .86 

Hippocampus .99 .33 -.53 .60 -.36 .72 -.02 .99 -.22 .83 

mOFC .08 .94 .17 .86 .05 .93 .52 .60 -.18 .85 

vmPFC -.08 .94 .14 .89 .19 .85 -.05 .96 -.03 .98 

Note:   significant correlations in bold; shaded area indicates secondary tests; initial amplitude 
and overall habituation (1st – 7th) results were considered significant at α ≤ .05; secondary 
results were considered significant at α ≤ .0167. 

 

novel faces, suggesting that heightened orienting response is also involved in 

maladaptive social fear (Figure 9).  
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Elevated initial amplitude to novel faces in the hippocampus and vmPFC may 

underlie heightened novelty/threat detection and attentional orienting responses in 

socially fearful people. The hippocampus contains neurons that respond selectively to 

novel stimuli, indicating a critical role in detection of novelty (Fried et al, 1997; Wilson 

and Rolls, 1993; Rutishauser et al, 2006; Blackford et al, 2010). The hippocampus is 

hypothesized to encode the “cold hard” facts of a novel or threatening stimulus (Squire 

and Zola-Morgan, 1991; Eichenbaum, 2001), including the identity of a novel face 

(Haxby et al, 1996) and the context in which it was encountered (LeDoux, 2003). 

Elevated initial response to novelty in the hippocampus likely reflects heightened 

orienting to threat stimuli, which has been implicated in automatic orienting responses to 

novelty; lesions of the hippocampus result in a marked deficit in orienting to novel 

stimuli (Hendrickson et al, 1969). The vmPFC has direct structural interconnections with 

the hippocampus (Riga et al, 2014) and plays a well-documented role in automatic 

regulation of emotional responses and fear learning through these connections (Motzkin 

et al, 2014; Hartley and Phelps, 2010; Quirk and Beer, 2006; Ray and Zald, 2012).   

Social fearfulness was associated with habituation differences across visual 

threat processing regions. Social fearfulness was associated with an overall failure of 

hippocampal habituation across the experiment (1st – 7th face presentation). Additional 

analyses revealed temporally-dependent differences in habituation associated with 

social fearfulness, with the majority of habituation differences found in the middle 

presentation window; social fearfulness was associated with sustained signal from the 
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Figure 9. Sumary of social fearfulness differences in response to faces. Social fearfulness was associated with 
differences in response to novel and repeated faces across visual threat processing regions. The pattern of differences 
associated with social fearfulness is illustrated on the brain in red and blue. Social fearfulness was correlated with higher 
initial amplitudes to novel faces in the hippocampus and vmPFC, with both regions also showing sustained signaling over 
repeated face presentations in socially fearful participants (red/blue stripes). Social fearfulness was also correlated with 
sustained response in the amygdala, mOFC, V1, and extrastriate cortex (blue). The temporal pattern of initial amplitude 
and habituation differences for each region is illustrated in graphs surrounding the brain. The hippocampus and vmPFC 
showed initial amplitude differences (red line). The hippocampus also showed an overall habituation difference across the 
experiment (blue line, 1st - 7th). Most regions (except FFA) showed habituation differences in the middle presentation 
window (blue box, 3rd - 5th). The extrastriate cortex also showed habituation differences in the early presentation window 
(blue box, 1st - 3rd). There were no differences in habituation by social fearfulness during late face presentations (5th - 
7th). 
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3rd to 5th face presentation across most regions, including the amygdala, hippocampus, 

mOFC, vmPFC, V1, and extrastriate cortex. In contrast, in the earliest time window (1st 

to 3rd face presentation), only the extrastriate cortex showed a significant difference in 

rate of habituation by social fearfulness. There were no correlations between social fear 

and habituation rate differences during the late presentation window (5th to 7th face 

presentation), indicating that rate of change remained stable across all participants 

during later face presentations. Although we found no evidence of habituation in people 

with high social fearfulness—across regions, b' slope values in the high social fear 

group remained near or above zero across all analysis windows —it is possible that 

people with high social fearfulness would show habituation to a baseline response with 

further exposures to face stimuli. Future studies should consider increasing the number 

of face stimulus presentations to determine whether a delay vs. a deficit in habituation 

exists.  

We found strong habituation differences by social fearfulness between the 3rd 

and 5th face presentation. This finding is in line with previous work in our lab showing 

behavioral habituation differences by shyness. Using a similar repeated faces task, we 

measured recognition memory for faces seen 1, 3, 5, or 7 times. We found that shyness 

was correlated with slower increases in recognition memory with increased exposure, 

with high shyness participants showing less recognition for faces seen 3, 5, and 7 times 

than low shyness participants, with the strongest behavioral differences associated with 

the 5th face presentation (Avery et al, 2015). Habituation often occurs rapidly, with the 

majority of decrease in response occurring across initial stimulus presentation. Indeed, 

during early face presentations (1st – 3rd) all regions showed moderate, although non-
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significant, correlations (all r’s > .28) with social fearfulness, suggesting that some 

habituation differences exist after initial face presentations. However, habituation occurs 

most rapidly when stimuli are presented sequentially; intervening stimuli and/or time can 

result in slower habituation or recovery of response (Rankin et al, 2009). In this task, 

face identities were distributed pseudo-randomly across the experiment window (~10 

minutes), which may have dampened the rate of habituation in lower social fear 

participants during early face presentations.  

Habituation is one of the most basic forms of non-associative learning and 

represents a fundamental mechanism for learning about the world. Acting as a sensory 

filter, neural habituation allows familiar or predictable information to be ignored in favor 

of devoting neural resources to salient or novel stimuli. Failure to habituate to repeated 

faces likely reflects a deficit in the ability to learn that a social environment is 

predictable, familiar and safe. People with high levels of social anxiety fail to show 

habituation of negative expectations or self-reported nervousness to repeated social 

threat situations (Eckman and Shean, 1997), and show a corresponding failure of 

autonomic arousal (heart rate, sweat activity) habituation (Eckman and Shean, 1997), 

suggesting sustained feelings of environmental threat in people with higher social 

anxiety.  

In healthy adults, neural habituation to repeated faces has been demonstrated 

across regions involved in salience detection and processing, including the amygdala 

(Breiter et al, 1996; Wright et al, 2001; Schwartz et al, 2003b; Fischer et al, 2003; 

Plichta et al, 2014), hippocampus (Wright et al, 2001; Fischer et al, 2003), medial 

prefrontal cortex (Wendt et al, 2012), fusiform gyrus (Ishai et al, 2004), and occipital 
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lobe (Ishai et al, 2004; Müller et al, 2013; Ousdal et al, 2014). The amygdala plays a 

central role in triggering autonomic arousal in response to threat (LeDoux et al, 1988), 

and failure of amygdala habituation has been associated with increased state-based 

anxiety in healthy adults (Ousdal et al, 2014). Similarly, the hippocampus also has a 

well-established role in habituation to novel environments; lesions of the hippocampus 

in rats result in deficits in habituation as well as increased anxiety behaviors (Leussis 

and Bolivar, 2006). Sustained activity in both the mOFC and vmPFC in socially fearful 

individuals is consistent with the role of the medial prefrontal cortex in regulating 

emotional responses to threat. The mOFC plays a role in guiding and maintaining 

emotional responses through extensive connections with the amygdala (Milad and 

Rauch, 2007), and lesions of the OFC have been shown to reduce anxiety behaviors in 

monkeys (Fox et al, 2010; Kalin et al, 2007). The vmPFC critically regulates the 

amygdala during processing of aversive images (Quirk and Beer, 2006; Shin and 

Liberzon, 2010; Riga et al, 2014; Phelps et al, 2004), and elevated activity in the 

vmPFC is associated with both self-reported anxiety and elevated heart rate during 

anticipation in healthy adults (Simpson et al, 2001). Similarly, in rodents, lesions of the 

vmPFC result in decreased stress-response (Myers-Schulz and Koenigs, 2012). Both 

the mOFC and vmPFC play a critical role in extinction learning of fear (Milad et al, 2006; 

Riga et al, 2014); although not actively involved in the initial acquisition of extinction 

learning, which appears to be dependent on the amygdala, the mOFC and vmPFC 

appear to be involved in the long-term consolidation of fear extinction (Santini et al, 

2004; Do-Monte et al, 2015). Intriguingly, this suggests that failure of habituation in both 
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the mOFC and vmPFC may underlie deficits in long-term extinction of social fears, likely 

through disrupted functional interactions with the amygdala. 

We found sustained signaling in visual processing regions in socially fearful 

participants, including V1 and extrastriate cortex. Neuronal signals for salience are 

evident even in early sensory processing regions, and elevated processing of novel 

visual stimuli is likely directed through top-down regulation by the amygdala (Kastner 

and Ungerleider, 2000; Ousdal et al, 2014). This regulation likely serves to reallocate 

visual processing to the most salient features of a stimulus. The amygdala has 

extensive connections with the visual cortex and likely subserves this enhancement in 

visual activity. The amygdala also has extensive connections with FFA. However, 

examinations of FFA activity in social anxiety disorder patients have yielded equivocal 

results, with some studies finding elevated activity and others finding either no 

differences or lower activity in patients compared to controls (Freitas-Ferrari et al, 2010; 

Miskovic and Schmidt, 2012). Our results did not show differences in FFA activity by 

social fearfulness, suggesting that emotion-related enhancements in visual processing 

may occur earlier in the visual processing stream. Alternately, neutral faces may not 

enhance activity in the FFA in the same way as more emotional faces (e.g., fear), which 

are more consistently associated with FFA enhancements (Vuilleumier and Driver, 

2007). 

We did not find associations between hemispheric lateralization and social 

fearfulness in any brain region, a finding largely consistent with existing literature 

regarding hemispheric asymmetries. Early visual areas (V1 and V2) appear to perform 

identical functions for the left and right halves of the visual field. However, further along 
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the posterior-anterior visual processing pathway, connections crossing the midline 

steadily diminish the distinction between separate visual fields, suggesting that 

processing in higher-order visual areas may become less visual field dependent and 

more content-dependent and lateralized(e.g., FFA); in line with this hypothesis, early 

neuroimaging studies suggested that face processing in FFA was lateralized to the right 

hemisphere (Kanwisher et al, 1997; McCarthy et al, 1997). Therefore, we were 

interested in testing for lateralization of social fearfulness associations. However, we did 

not detect lateralization of FFA activity, a finding in line with recent evidence indicating 

that both the left and right FFA perform complementary face processing functions that 

would not be differentially affected by our repeated faces task (Meng et al, 2012). Early 

studies also proposed right lateralization of the amygdala in detection of faces and 

habituation to emotional stimuli (Phelps et al, 2001; Wright et al, 2003; Gläscher and 

Adolphs, 2003); however, studies from our lab (Blackford et al, 2013, 2011) and others 

(Plichta et al, 2014; Guyer et al, 2008) have found evidence for strong bilaterality in 

amygdala function. Similarly, laterality findings in the prefrontal cortex and hippocampus 

have been equivocal, suggesting that subtle differences in task design or analysis 

techniques may play a role in laterality findings (Ochsner and Gross, 2008; Wager et al, 

2003).  

A frequently observed characteristic of habituation is that weak stimuli produce 

rapid habituation, while intense stimuli may yield no discernible habituation even after 

many exposures (Rankin et al, 2009). All participants viewed a standardized set of 

neutral face stimuli during this experiment, which may be considered a “weak” stimulus; 

however, people with social anxiety disorder tend to rate neutral faces as slightly more 
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threatening (Winton et al, 1995), a finding supported by elevated amygdala activity in 

patients relative to controls when viewing neutral faces (Birbaumer et al, 1998; Cooney 

et al, 2006). In this study, high social fear participants did not rate faces as more intense 

or arousing than low social fear participants. However, as arousal and valence ratings 

were collected following repeated face exposures, habituation of emotional reaction to 

faces may have occurred by the time ratings were made. Therefore, we cannot exclude 

the possibility that neural habituation differences were the result of neutral faces being 

perceived as more arousing or intense by high social fear participants. Future studies 

should consider measuring subjective arousal to face stimuli in real-time, such as 

through skin conductance response. 

 

2.5. Conclusions  

In conclusion, this is the first study to investigate two separate fundamental 

elements of neural response—initial amplitude and habituation—in relation to trait 

differences in social fear. Our findings show that both initial amplitude to novel faces 

and habituation to repeated faces are associated with higher levels of social fear, 

suggesting that social fears may be maintained by both an overactive orienting 

response to novel social stimuli and a failure to filter familiar social stimuli, leading to 

elevated detection of novelty and feelings of anxiety. Together, these findings paint a 

picture of the temporal characteristics of neural response in social fearfulness—in 

people with low social fearfulness, novelty evokes an orienting response and threat 

processing that habituates over time, while in people with high social fearfulness, 

novelty evokes a strong orienting response and sustained threat processing over an 
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extended period. Exposure therapy is one of the most successful therapies in the 

reduction of social fears, and both orienting response and habituation are improved by 

successful exposure therapy (Matthews et al, 2015; Leutgeb et al, 2009), suggesting 

that the critical mechanism underlying successful exposure therapy may be a 

dampened response and rapid habituation of neural activity to social stimuli. Future 

studies should directly investigate the effects of exposure therapy on neural responses 

to novel and repeated social stimuli. Elevated, sustained neural signal may also 

contribute to risk for social anxiety disorder—future studies should examine amplitude 

and habituation responses in high and low risk children to determine whether these 

fundamental differences in response to novelty are present during development. 
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CHAPTER III 

Associations between social fearfulness and functional  

connectivity during novel and repeated faces 

 

3.1. Introduction 

Complex psychiatric disorders are increasingly thought of as disorders of neural 

connectivity (Vuilleumier and Driver, 2007; Greicius, 2008; van den Heuvel and Hulshoff 

Pol, 2010). As such, disrupted functional connectivity has been consistently associated 

with increased anxiety and anxiety disorders (Etkin and Wager, 2007; Etkin, 2010), 

including social anxiety disorder (Freitas-Ferrari et al, 2010; Etkin and Wager, 2007; 

Goldin et al, 2009; Miskovic and Schmidt, 2012). The amygdala is key in fear 

processing and expression of social anxiety (Freitas-Ferrari et al, 2010; Furmark, 2009; 

Mathew and Ho, 2006; Miskovic and Schmidt, 2012) and is a central hub in the social 

threat processing network (Freitas-Ferrari et al, 2010; Stefanacci et al, 1996; Akirav and 

Richter-Levin, 1999; Iidaka et al, 2001; Phelps, 2004; Amaral et al, 2003; Mohedano-

Moriano et al, 2007; Muñoz and Insausti, 2005; Gabbott et al, 2005; Roberts et al, 2007; 

Ghashghaei and Barbas, 2002; Quirk and Beer, 2006; Wager et al, 2009a); through its 

vast connections, the amygdala plays an important role in top-down modulation of 

attentional processes involved in salience detection (Freitas-Ferrari et al, 2010; 

Miskovic and Schmidt, 2012). Disruptions in amygdala circuits may contribute to social 

anxiety disorder—coupling between the amygdala and vmPFC is disrupted in anxiety 

disorders (Rauch et al, 2006; Milad et al, 2006) and recent functional connectivity 

studies have shown greater connectivity between the amygdala and visual cortices, and 
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lower connectivity between the amygdala and medial prefrontal cortex in social anxiety 

disorder patients relative to controls (Miskovic and Schmidt, 2012). Communication 

between the amygdala and regulatory regions has been hypothesized to play a key role 

in social anxiety; impaired communication between amygdala and the mOFC and 

vmPFC likely contributes to the elevated amygdala activity seen in people with social 

anxiety, resulting in increased amygdala responsiveness to salient stimuli and sustained 

threat processing (Akirav and Maroun, 2007).  Directional connectivity studies have 

supported this hypothesis, demonstrating dampened regulatory influence from the 

medial prefrontal cortex over the amygdala in patients with social anxiety disorder 

relative to controls, along with a corresponding heightened influence of the amygdala on 

visual cortices (Liao et al, 2010; Sladky et al, 2013).  

Neuronal habituation in threat processing regions signals safety and familiarity 

(Fried et al, 1997; Wilson and Rolls, 1993; Gonsalves et al, 2005; Wright et al, 2001; 

Dubois et al, 1999) and the ability to habituate is critical in the regulation of emotion. 

However, little is known about habituation of functional connectivity to anxiety-provoking 

stimuli. Findings of dampened functional connectivity between medial prefrontal 

regulatory areas and the amygdala in social anxiety patients suggest a failure of this 

circuit across repeated exposures to salient stimuli (Liao et al, 2010). However, a recent 

study directly examining habituation of functional connectivity found that amygdala-

medial prefrontal regulatory circuits habituate normally in social anxiety disorder 

patients (Sladky et al, 2012); although, note that in this study the control group did not 

show the expected pattern of amygdala-regulatory circuit habituation, suggesting that 

task demands may have altered amygdala signaling. Recent findings have also 
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indicated heightened connectivity between the amygdala and visual cortex plays a role 

in anxiety (Ousdal et al, 2014; Liao et al, 2010); communication between the amygdala 

and visual cortex may be important for attention reallocation and boosting sensory 

processing of novel, salient stimuli (Vuilleumier, 2005; Padmala and Pessoa, 2008; 

Weierich et al, 2010). However, the temporal dynamics of this functional connection 

also remain unexplored. Therefore, the question of whether temporally-altered signaling 

between the amygdala and threat processing regions contributes to social anxiety 

remains unresolved. 

In this study we examined the temporal pattern of amygdala functional 

connectivity across social fearfulness. Amygdala connectivity was explored across the 

visual threat processing network, including the hippocampus, mOFC, vmPFC, FFA, V1, 

and extrastriate cortex (Figure 5). To examine differences related to detection of novel 

stimuli, we first tested for social fearfulness differences in initial amplitude of amygdala 

connectivity to novel faces. Next, to explore the temporal pattern of connectivity, we 

tested for social fearfulness differences in habituation of functional connectivity to 

repeated faces. Based on previous findings, we hypothesized that socially fearful 

people would show stronger amygdala connectivity during novel face presentations, and 

would also show a slower habituation of amygdala connectivity over repeated face 

presentations.  
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3.2. Methods 

3.2.1. Participants 

Characteristics. All participants (n = 29) were included in the functional connectivity 

analysis. See Chapter 2 for recruitment and screening procedures. Participant 

characteristics are detailed in Table 1. 

 

3.2.2. Functional connectivity 

Experimental design. To determine whether social fearfulness is associated with altered 

habituation of functional connectivity during repeated face presentations, we used a 

generalized psychophysiological interaction analysis (gPPI; McLaren et al, 2012)—gPPI 

assesses how brain regions interact in a task-dependent manner and can reveal 

important insights into brain-behavior relationships. gPPI analyses were conducted 

between the amygdala (seed region) and functionally- and structurally-connected brain 

regions involved in social fear (see Chapter 2 for ROI details). For the amygdala seed 

region, we used an amygdala mask from the AAL atlas (Automated anatomical labeling; 

Tzourio-Mazoyer et al, 2002) implemented in the Wake Forest University Pick Atlas 

(WFU Pick Atlas; Maldjian et al, 2003, 2004). The target ROIs for the gPPI analysis 

were:  the hippocampus, V1, and extrastriate cortex, which were defined using the AAL 

standard masks; the FFA, defined using a functional localizer task (see Chapter 2 for 

FFA localizer details); and the vmPFC and mOFC, defined according to population 

masks of human architectonic areas based on comparative cytoarchitecture in humans 

and non-human primates (Mackey and Petrides, 2010).  
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3.2.3. Data analysis 

gPPI. Using the gPPI toolbox, average fMRI time series data were extracted from the 

amygdala seed region during the repeated faces task (Figure 4; also, see Chapter 2 for 

a detailed description of the repeated faces task paradigm). gPPI analysis uses three 

regressors: the physiological regressor, the psychological regressor, and the interaction 

regressor. The physiological regressor was the fMRI time series, and the psychological 

regressor was the habituation contrast of 1st – 7th face presentation. Planned secondary 

analyses also examined habituation of functional connectivity in three discrete time 

windows:  1st – 3rd face presentation; 3rd – 5th face presentation; and 5th – 7th face 

presentation. The interaction regressor modeled the change in amygdala connectivity 

between the conditions in the contrast (i.e., change from 1st to 3rd face). The regressors 

were used to model the fMRI time series in each participant, producing an estimate of 

connectivity between the amygdala and each ROI for each contrast.  

 

Habituation of functional connectivity. We calculated a normalized habituation of 

connectivity slope (b') for each participant independent of initial connectivity differences 

(Montagu, 1963; Plichta et al, 2014). Normalized habituation of connectivity was 

calculated as described in Chapter 2. Because percent signal change in the left and 

right hemispheres were highly correlated, signal was averaged across hemispheres and 

b' connectivity slopes were calculated bilaterally. SAS software (Version 9.3, SAS 

Institute Inc., Cary, NC, USA) was used to perform all statistical analyses. 

 



62 
 

Social fearfulness analysis. Correlations tested for associations between social 

fearfulness and initial amygdala connectivity to novel faces, and between social 

fearfulness and normalized habituation of amygdala connectivity slopes (b') to repeated 

faces across participants (habituation from 1st to 7th face presentation). Results were 

considered significant at α ≤ .05. R2 values were computed as a measure of effect size. 

Means and standard errors of social fearfulness groups are presented as bar graphs.  

To explore potential non-linear differences in habituation of connectivity, we 

conducted a secondary analysis examining correlations between habituation of 

connectivity within constrained windows (1st – 3rd; 3rd – 5th; 5th – 7th) and social 

fearfulness (α ≤ .0167, Bonferroni-corrected for multiple comparisons). 

 

Exploratory functional connectivity analysis. We conducted a post hoc analysis to 

explore functional connectivity across the visual threat processing network. Percent 

signal change for novel and repeated faces was extracted from each ROI and 

correlations tested for relationships in initial amplitude and habituation across regions; 

to reduce type I error, we limited the analysis to the habituation contrast (3rd – 5th), as 

this contrast yielded the strongest habituation findings (Chapter 2, Table 2). To 

determine the effect of social fearfulness on correlations between regions, correlations 

were performed with and without controlling for social fearfulness and were compared 

by converting r values to z scores to test for differences (α ≤ .05). 
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3.3. Results 

3.3.1. Initial connectivity 

Social fearfulness was not associated with differences in amygdala connectivity 

during novel face presentations (Table 6, Figure 10). Initial connectivity beta values are 

presented in Table 7. 

 

3.3.2. Habituation of functional connectivity 

1st – 7th face presentation. To test for social fearfulness differences in habituation of 

connectivity, we contrasted amygdala connectivity during the 1st face presentation with 

connectivity during the 7th face presentation. Social fearfulness was not associated with 

differences in habituation of connectivity between the amygdala and other regions (all 

p’s > .09; Table 6; Figure 10). Across regions, b' slope values were near or below zero 

for most participants, indicating an overall pattern of sustained or habituating 

connectivity across regions by the last face presentation (Figure 11). To visualize 

response to repeated objects over time, we extracted percent signal change values by 

region; values are presented in Table 7. 

 

1st – 3rd face presentation. We next conducted planned secondary analyses to test for 

differences in habituation of connectivity across early (1st – 3rd), middle (3rd – 5th), and 

late 5th – 7th) repetition windows. Social fearfulness was not associated with differences 

in habituation of amygdala connectivity in the early face presentation window (all p’s > 

.08; Table 6; Figure 10). Across most participants, b' slope values were near or below  
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Table 6. Correlations between social fearfulness and amygdala connectivity during face viewing. 

 
Initial amplitude Habituation 

  1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 .09 .008 .64 .02 .00 .93 .27 .07 .16 .45 .20 .01 -.09 .008 .64 

Extrastriate .16 .03 .40 .26 .07 .17 .33 .11 .08 .49 .24 .007 -.05 .003 .80 

FFA .08 .006 .70 .17 .03 .43 .21 .04 .31 .25 .06 .24 .36 .13 .09 

Hippocampus -.02 .00 .93 .18 .03 .35 .16 .03 .40 .36 .13 .05 -.21 .04 .27 

mOFC .15 .02 .43 -.06 .004 .78 .21 .04 .27 .31 .10 .10 .02 .00 .93 

vmPFC .30 .09 .12 .32 .10 .09 .26 .07 .18 .40 .16 .03 .05 .003 .78 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st  - 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Figure 10. Correlations between social fearfulness and amygdala functional connectivity during face 
presentations. Scatterplots show relationships between social fearfulness and amygdala functional 
connectivity during novel and repeated faces. Asterisks (*) denote significant correlations. Intercept values 
above zero indicate initial amygdala connectivity (greater than baseline) to novel faces. Slope (b') values 
below zero indicate habituation of amygdala connectivity to repeated faces; b' slope values at or above zero 
indicate sustained or increasing amygdala connectivity to repeated faces, respectively. There were no social 
fearfulness differences in initial amygdala connectivity or overall change in amygdala connectivity (1st - 7th) 
across the experiment. Secondary habituation contrasts (shaded in gray) revealed a correlation between 
social fearfulness and sustained amygdala connectivity in V1 and extrastriate cortex across middle (3rd - 5th) 
face presentations. 
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Figure 11. Functional connectivity to faces by social fearfulness tertile. Bar graphs show initial amplitude of 
amygdala connectivity (intercept) and habituation (b') slope values of functional connectivity by social fearfulness 
tertile over novel and repeated face presentations. Asterisks (*) denote significant correlations. Intercept values 
above zero indicate initial amygdala connectivity (greater than baseline) to novel faces. Slope (b') values below 
zero indicate habituation of amygdala connectivity to repeated faces; b' slope values at or above zero indicate 
sustained or increasing amygdala connectivity to repeated faces, respectively. 
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zero, suggesting a pattern of sustained or habituating connectivity across regions 

(Figure 11).  

 

3rd – 5th face presentation. Social fearfulness was associated with differences in 

habituation of connectivity between the amygdala and two brain regions—V1 and 

extrastriate cortex—in the middle repetition window (V1, r = .45, p = .01; extrastriate, r = 

.49, p = .007; Table 6; Figure 10). For both regions, the low social fear group 

demonstrated negative b' connectivity slopes, indicating a decrease in amygdala 

connectivity with repeated face presentations, while the high social fear group had b' 

connectivity slopes near or above zero, indicating sustained or increasing amygdala 

connectivity across repeated face presentations (Figure 11).  

 

5th – 7th face presentation. Social fearfulness was not associated with differences in 

habituation of amygdala connectivity in the late face presentation window (all p’s > .09; 

Table 6; Figure 10). Across regions, b' slope values were near zero for most 

participants, indicating sustained amygdala connectivity during later face presentations 

(Figure 11). 

 

3.3.3. Exploratory functional connectivity across regions 

Initial connectivity to novel faces. The visual threat processing network is densely 

structurally and functionally interconnected, with many direct connections between 

regions. To explore associations between social fearfulness and the rest of the network, 

we performed a secondary functional connectivity analysis. We first tested for 
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correlations in initial response to novel faces across the sample. Overall, areas 

performing similar functions showed strong correlations with each other; visual and face 

processing regions showed a similar initial amplitude of response (V1, extrastriate 

cortex, FFA), as did novelty and threat processing regions (amygdala, hippocampus). In 

contrast, medial prefrontal regions (mOFC, vmPFC) showed a weak correlation in initial 

amplitude of response (Table 8). We found no associations between functional 

connectivity and social fearfulness (all p’s > .05, Table 8), suggesting that overall 

functional connectivity between regions is not significantly influenced by trait social fear. 

  

3rd – 5th face presentation. Because rate of habituation in the middle presentation 

window (3rd – 5th presentation) showed the strongest correlation with social fearfulness, 

we explored connectivity for this middle repetition window across regions. Across 

participants, habituation between the 3rd and 5th face presentation was positively 

correlated across regions, with regions performing similar functions showing the 

strongest correlations with each other. Additionally, visual and face processing regions 

also showed strong positive correlations with novelty and threat detection regions 

(Table 8). There were no associations between functional connectivity and social 

fearfulness (all p’s > .05, Table 8), suggesting that overall functional connectivity 

between regions is not significantly influenced by trait social fear. 
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3.4. Discussion 

The goal of this study was to investigate temporal changes in amygdala functional 

connectivity during processing of novel and repeated social stimuli and the relationship 

with social fearfulness. Using gPPI functional connectivity analysis, we examined both 

initial connectivity to novel faces and habituation of connectivity to repeated faces. Our 

findings indicate that socially fearful people have sustained amygdala-visual cortex 

connectivity across repeated face presentations—social fearfulness was dimensionally 

associated with sustained amygdala connectivity with two primary visual processing 

regions, V1 and extrastriate cortex (Figure 12).  

Associations between social fearfulness and sustained amygdala-visual cortex 

connectivity were found in the middle face presentation window (3rd – 5th), which is in 

line with our previous findings showing strong sustained signal in the same regions—

amygdala, V1 and extrastriate cortex—in the middle face presentation window (Chapter 

2; Table 2).  The amygdala may be key in driving sustained visual cortex activity in 

socially fearful individuals—a previous study in social anxiety disorder patients 

demonstrated a driving role of the amygdala over visual processing regions (Liao et al, 

2010). Our current results provide further evidence that amygdala-visual cortex 

connectivity may be an important neural substrate of social fearfulness. However, as 

recent findings have suggested that the amygdala is sufficient, but not necessary, to 

enhance emotion-related visual cortex activity (Edmiston et al, 2013), future studies 

should investigate the role of a broader set of brain regions (Pessoa and Adolphs, 

2010)in emotion-related enhancement of visual cortex activity in social fear.
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Figure 12. Summary of social fearfulness differences in amygdala functional connectivity during 
face viewing. Social fearfulness was associated with differences in amygdala connectivity across 
repeated face presentations in visual and prefrontal cortex. Amygdala connectivity findings are illustrated 
on the brain, with arrows showing significant amygdala connections with brain regions (shaded in blue). 
Social fearfulness was correlated with sustained amygdala connectivity with both V1 and extrastriate 
cortex. Both visual cortex regions showed sustained amygdala connectivity in the middle presentation 
window (3rd - 5th). There were no connectivity differences by social fearfulness in early or late face 
presentation windows, nor were there differences in initial connectivity to novel faces by social 
fearfulness. 
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Previous studies have shown elevated visual cortex activity in response to 

novel (vs. familiar) stimuli (Schwartz et al, 2003a, 2003b; Ousdal et al, 2014; Weierich 

et al, 2010). Elevated visual cortex activity may serve to enhance visual processing of 

salient stimuli (Padmala and Pessoa, 2008; Vuilleumier, 2005).  Activity in primary 

visual cortex has been associated with increased memory for affective visual stimuli 

(Padmala and Pessoa, 2008). Neural habituation in visual cortex may mechanistically 

underlie increased memory; recent work has identified a link between synaptic plasticity 

in V1, resulting in neural habituation of signaling, and long-term behavioral memory in 

mice (Cooke et al, 2015). Importantly, increased visual processing, and resulting 

increased visual attention and memory, are thought to be driven by amygdala circuits 

(Vuilleumier and Driver, 2007). Our findings of sustained amygdala-visual cortex 

connectivity in social fearfulness are in line with a previous finding of heightened 

connectivity in social anxiety (Liao et al, 2010). Taken together, these findings suggest 

an enhancement in visual attention to novel social stimuli in people with social anxiety 

subserved by increased functional connectivity between amygdala and visual cortex. 

We did not find significant associations between social fearfulness and 

amgydala-medial prefrontal connectivity, although there was a trend for sustained 

amygdala-vmPFC connectivity in social fearfulness. This finding is in contrast to the 

inverse coupling between vmPFC and amygdala that has been demonstrated in anxiety 

disorders (Rauch et al, 2006; Milad et al, 2006) including social anxiety (Liao et al, 

2010). However, sustained amygdala-vmPFC connectivity is in line with more recent 

studies showing that the vmPFC can also have an excitatory influence over amygdala 

activity. The vmPFC exerts regulatory control over the amygdala during processing of 
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aversive stimuli through heterogeneous connections that serve to both inhibit and 

enhance amygdala outputs (Myers-Schulz and Koenigs, 2012; Shin and Liberzon, 2010; 

Riga et al, 2014; Phelps et al, 2004). Consistent with an excitatory influence, increased 

activity in the vmPFC has been associated with increased glucocorticoid response to 

stress in healthy adults (Jahn et al, 2010). Therefore, sustained functional interaction 

between the vmPFC and amygdala may enhance anxiety by potentiating amygdala 

output (Myers-Schulz and Koenigs, 2012). Our trend-level association consistent with 

an excitatory amygdala-vmPFC circuit and suggests that increased amygdala-vmPFC 

connectivity may be important in social fearfulness, although future studies should 

replicate this preliminary finding. 

While the amygdala is a central driver of communication across the visual 

threat processing network, extensive structural and functional connections exist 

between regions, with many important connections bypassing the amygdala (Stefanacci 

et al, 1996; Akirav and Richter-Levin, 1999; Iidaka et al, 2001; Phelps, 2004; Amaral et 

al, 2003; Mohedano-Moriano et al, 2007; Muñoz and Insausti, 2005; Gabbott et al, 

2005; Roberts et al, 2007; Ghashghaei and Barbas, 2002; Quirk and Beer, 2006; Wager 

et al, 2009a). To further explore connectivity differences within the visual threat 

processing network, we conducted an exploratory connectivity analysis across all 

regions. Our findings indicate widespread connectivity across the visual threat 

processing network (Table 6). The strongest correlations were within processing 

modalities (e.g., visual and face processing regions, novelty/threat detection regions), 

and between novelty/threat detection regions (amygdala, hippocampus) and visual and 

face processing regions (V1, extrastriate cortex, FFA), indicating that increased 
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interactions across these modalities may be important in social fear.  In contrast, 

interactions between medial prefrontal regulatory areas (mOFC, vmPFC) and other 

nodes of the visual threat processing network showed mostly small, non-significant 

correlations. However, correlations were similar when controlling for social fearfulness, 

suggesting that, across the brain, social fearfulness did not account for a significant 

amount of variance in connectivity values. Overall, this finding is in line with recent 

research showing that functional connectivity within subcortical and primary sensory 

(unimodal) regions is largely independent of participant characteristics, showing 

relatively low individual variability, while functional connectivity with higher-level 

multimodal regions shows greater individual variability in connectivity and are more 

strongly related to cognitive differences (Mueller et al, 2013).  

 

3.5. Conclusions 

 In conclusion, here we show that sustained signaling between the amygdala and 

the visual cortex is associated with individual variability in social fearfulness. 

Connections between the amygdala and visual cortex are key in the rapid detection of 

visual threat and in focusing attentional processing on salient visual stimuli. These 

findings support the notion that social anxiety is subserved by sustained amygdala-

visual cortex activity, and suggest that enhanced attention to salient visual stimuli may 

be important in social fearfulness.  
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CHAPTER IV 

Specificity of neural response to faces  

in social fearfulness 

 

4.1. Introduction  

 In the previous chapters we showed that social fearfulness is related to altered 

neural response to faces. An important question is whether these findings represent an 

overall deficit in the processing of novelty, or rather are specific to the processing of 

social stimuli. Heightened processing of social threat is considered a core feature of 

social anxiety, and studies have overwhelmingly used social stimuli (e.g., faces) and 

social situations (e.g., public speaking) to study brain regions related to social threat 

detection and processing (Freitas-Ferrari et al, 2010). Social processing differences 

show some specificity for social anxiety symptoms (Schofield et al, 2009), and 

heightened response to social novelty is hypothesized to be more closely linked to risk 

for social anxiety disorder than response to non-social novelty (Dyson et al, 2011). 

 Evolutionary theories, however, suggest that detection and processing of social 

and non-social novelty are major functions of the brain, and are fundamentally 

biologically linked (Chang et al, 2013). In humans, the tendency to respond to both 

social and non-social novelty with wariness and avoidance—inhibited temperament—is 

often assessed together as the construct of behavioral inhibition (Clauss et al, 2015). 

Behavioral inhibition has been shown to be heritable (Clauss et al, 2015; Robinson et al, 

1992), providing evidence for a biological link in trait response to social and non-social 

novelty. A recent study investigating the ‘shy-bold’ continuum in baboons found that 
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boldness in exploring novel non-social and social stimuli is heritable (Johnson et al, 

2015). Boldness in exploring social and non-social stimuli is also predictive of later 

social behavior in peer groups (Johnson et al, 2015), suggesting an association 

between novelty response and social function.  

 However, little is known about the specificity of social processing differences in 

the brain. The goal of this study was to determine whether social fearfulness is uniquely 

related to disrupted processing of social stimuli. We used a “repeated objects” task to 

examine non-social neural responses. Participants viewed a set of novel objects 

repeated up to 7 times while neural responses were measured using fMRI. Initial 

amplitude of response to novel objects and habituation of response to repeated objects 

was measured across brain regions previously identified as showing dysfunction in 

social fearfulness, including the amygdala, hippocampus, mOFC, vmPFC, FFA, V1 and 

extrastriate cortex (Figure 2).  

 

4.2. Methods 

4.2.1. Participants 

Characteristics. All participants (n = 29) were included in the object habituation analysis. 

See Chapter 2 for recruitment and screening procedures. Participant characteristics are 

detailed in Table 1. 

 

4.2.2. Experimental paradigm 

Repeated objects task. We used a “repeated objects” task to investigate neural 

habituation to non-social stimuli (Figure 6). The repeated objects task used an identical 
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design as the repeated face task (see Chapter 2 for a detailed description). Briefly, 

participants were shown a series of 32 neutral objects, with each object shown a total of 

1 time, 3 times, 5 times, or 7 times, for a total of 128 object presentations. Objects were 

shown in pseudorandom order using a jittered, event-related design to maximize fMRI 

signal measurement efficiency (Friston et al, 1999). The repeated objects task was 

presented using E-Prime software (Version 2.0, Psychology Software Tools, Pittsburgh, 

PA, USA). 

 

Object stimuli. Images of common, neutral objects (e.g. an umbrella, a vase, a lamp) 

were obtained from internet photo databases. All stimuli were edited to ensure uniform 

size, midtone, contrast, and level equalization. Selection of neutral object stimuli for the 

familiar or novel groups was random.  

 

4.2.3. MRI data 

Acquisition and preprocessing. Structural and functional MRI data were collected using 

a 3 Tesla Philips scanner (Philips Healthcare, Inc., Best, The Netherlands) as described 

in Chapter 2. MRI data were analyzed using statistical parametric mapping (SPM8; 

Wellcome Department of Cognitive Neurology, Institute of Neurology, London, United 

Kingdom) and MATLAB (Version 7.10 64-bit, The MathWorks, Inc., Natick, MA, USA). 

fMRI data were preprocessed for slice time correction, realigned to the mean slice to 

correct for motion, spatially normalized into standard stereotactic space (MNI T1 

template), and smoothed using 6 mm FWHM Gaussian kernel. Functional and structural 

data were visually inspected for artifacts. Volumes with excessive motion (> 3 mm) or 
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signal artifacts (signal > 1.8% of mean) were removed from the analysis using Artifact 

Detection software (ART; Neuroimaging Informatics Tools and Resources 

Clearinghouse (NITRC)). Volume artifacts were not correlated with participants’ social 

fearfulness or with the repeated object task. 

 

4.2.4. Regions of interest (ROIs) 

Anatomical and functional ROIs. Habituation analyses were conducted within seven 

ROIs (amygdala, hippocampus, mOFC, vmPFC, FFA, V1, and extrastriate cortex). 

Functional connectivity analyses were conducted between the amygdala and each of 

the ROIs. For a full description of ROI selection, see Chapter 2.  

 

4.2.5. Data analysis 

fMRI data modeling. The first-level (participant) temporal model was estimated using a 

general linear model (GLM; Friston et al, 1995). The design matrices included 4 task 

regressors, one for each object exposure category (1, 3, 5, 7), convolved to the SPM 

default hemodynamic response function (HRF). Motion parameters were also included 

as additional covariates of no interest. Data were high-pass filtered (128 s) to attenuate 

low frequency signal (linear scanner drift). 

 

Habituation. Habituation slopes normalized for initial amplitude of response (b') were 

calculated for each participant (Montagu, 1963; Plichta et al, 2014). Normalized 

habituation slopes were calculated as described in Chapter 2. Percent signal change in 

the left and right hemispheres were highly correlated across ROIs; therefore, to 
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increase statistical power and minimize type I error, data from left and right ROIs were 

averaged. SAS software (Version 9.3, SAS Institute Inc., Cary, NC, USA) was used to 

perform all statistical analyses. 

 

Functional connectivity. To determine whether social fearfulness is associated with 

altered habituation of functional connectivity during repeated object presentations, we 

used a generalized psychophysiological interaction analysis (gPPI; McLaren et al, 

2012). gPPI analyses were conducted as described in Chapter 3. Briefly, gPPI analyses 

were conducted between the amygdala (seed region) and each ROI.  

 

Habituation of functional connectivity. Habituation of connectivity slopes normalized for 

initial connectivity (b') were calculated for each participant. Normalized habituation of 

connectivity was calculated as previously described (see Habituation, above). Because 

percent signal change in the left and right hemispheres were highly correlated, signal 

was averaged across hemispheres and b' connectivity slopes were calculated 

bilaterally. 

 

Social fearfulness analysis. Statistical analyses were conducted as described in 

Chapters 2 and 3. To examine differences in response to novel and repeated objects, 

we used correlations to test for associations between social fearfulness and initial 

amplitude (intercept) of response to novel objects and between social fearfulness and 

normalized habituation slope (b') to repeated objects (habituation from 1st to 7th object 

presentation). To examine differences in amygdala functional connectivity in response 
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to novel and repeated objects, we conducted correlations between social fearfulness 

and initial amygdala connectivity (intercept) to novel objects, and between social 

fearfulness and normalized habituation of amygdala connectivity slopes (b') to repeated 

objects across participants (habituation from 1st to 7th face presentation). Results were 

considered significant at α ≤ .05. R2 values were computed as a measure of effect size. 

To visualize patterns of response, data were also split into three groups (tertiles of 

social fearfulness scores) and means and standard errors are presented as bar graphs.  

 As habituation differences may not occur linearly but rather at varying rates 

between the 1st and 7th presentation, planned secondary analyses were conducted to 

examine associations between social fearfulness and habituation to objects within three 

discrete repetition windows: 1st to 3rd presentation; 3rd to 5th presentation; 5th to 7th 

presentation. Secondary analyses were considered significant at α ≤ .0167, Bonferroni-

corrected for multiple comparisons. 

 

Specificity to faces. Correlations between response to faces and objects were 

performed to explore overall associations across participants. Results were considered 

significant at α ≤ .05. To partial the unique effects of faces, we performed correlations 

between social fearfulness and neural responses to faces while controlling for 

responses to objects. To test whether responses to objects significantly explained the 

variance in neural responses to faces, we directly compared social fearfulness 

correlations with and without correction for objects by converting r values to z scores 

and computing p-values. Consistent with the main analysis, partial correlations with 

initial amplitude and overall habituation (1st – 7th) were considered significant at α ≤ .05; 
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secondary results (habituation contrasts 1st – 3rd, 3rd – 5th, 5th – 7th) were considered 

significant at α ≤ .0167, Bonferroni-corrected for multiple comparisons. R2 values were 

computed as a measure of effect size.  

 

4.3. Results 

4.3.1. Response to objects 

Initial amplitude. Here we report associations between social fearfulness and neural 

response to objects. Social fearfulness was correlated with a dampened initial response 

to novel objects in the mOFC (r = -.39, p = .04; Table 9; Figure 13). There were no 

correlations between social fearfulness and heightened initial response to novel objects. 

In the mOFC, the low social fear group had the expected response to novelty, showing 

an initial response greater than baseline to novel objects. However, the high social fear 

group had an initial response below baseline to novel objects (Figure 14), suggesting 

that initial response to novel objects may be suppressed in this group. To visualize 

neural responses to novel objects, we extracted percent signal change values from 

each region; values are reported in Table 10. 
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Table 9. Correlations between social fearfulness and neural response to objects. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 -.27 .07 .16 .07 .005 .72 .06 .004 .76 -.23 .05 .24 -.15 .02 .43 

Extrastriate -.24 .06 .21 -.05 .003 .81 .004 .00 .98 -.29 .08 .13 -.08 .006 .66 

FFA -.32 .10 .10 -.23 .05 .26 .01 .00 .98 -.07 .005 .71 .01 .00 .95 

Amygdala -.30 .09 .12 -.16 .04 .41 .13 .02 .50 -.06 .004 .74 -.03 .001 .87 

Hippocampus .02 .00 .93 .12 .01 .55 .14 .02 .46 .08 .006 .68 -.06 .004 .76 

mOFC -.39 .15 .04 -.29 .08 .12 -.24 .06 .22 -.53 .28 .003 -.002 .00 .99 

vmPFC -.34 .12 .07 -.18 .03 .36 -.28 .08 .14 -.50 .25 .006 .06 .004 .78 

Note:  significant correlations in bold; shaded area indicate secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Figure 13. Correlations between social fearfulness and neural response to objects. 
Scatterplots show the relationship between social fearfulness and neural response to novel and 
repeated objects. Asterisks (*) denote significant correlations. Intercept values above zero 
indicate an initial response (greater than baseline) to novel objects. Slope (b') values below zero 
indicate habituation to repeated objects; b' slope values at or above zero indicate sustained or 
increasing signal to repeated objects, respectively. Social fearfulness was correlated with 
dampened initial amplitude of response in the mOFC to novel objects. Secondary habituation 
contrasts (shaded in gray) revealed a correlation between social fearfulness and greater 
habituation in the mOFC and vmPFC across middle (3rd - 5th) object presentations. There were 
no social fearfulness differences in habituation across early (1st - 3rd) or late (5th - 7th) object 
presentations, nor were there overall differences in habituation (1st - 7th) by social fearfulness. 
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Figure 14. Neural response to objects by social fearfulness tertile. Bar graphs show initial amplitude 
(intercept) and habituation (b') slope values by social fearfulness tertile for novel and repeated objects. Asterisks 
(*) denote significant correlations. Intercept values above zero indicate an initial response (greater than 
baseline) to novel objects. Slope (b') values below zero indicate habituation to repeated objects; b' slope values 
at or above zero indicate sustained or increasing signal to repeated objects, respectively. 
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1st – 7th object presentation. Social fearfulness was not correlated with habituation 

differences between the 1st and 7th object presentation (all p’s > .12; Table 9; Figure 

13). Across social fearfulness groups b' slopes were mostly negative, indicating an 

overall pattern of habituation across participants between the 1st and 7th object 

presentation (Figure 14). To visualize neural responses to objects over time, we 

extracted percent signal change values from each region; values are reported in Table 

10. 

 

1st – 3rd object presentation. We conducted secondary analyses to test for differences in 

habituation across early, middle, and late repetition windows. Social fearfulness was not 

correlated with habituation differences in any region during the early presentation 

window (all p’s > .14; Table 9; Figure 13). Across social fearfulness groups b' slopes 

were mostly negative, indicating rapid habituation during early object repetitions (Figure 

14).  

 

3rd – 5th object presentation. Social fearfulness was correlated with habituation 

differences in the mOFC and vmPFC during the middle repetition window (mOFC, r = -

.53, p = .003; vmPFC, r = -.50, p = .006; Table 9; Figure 13). The low social fear group 

had positive b' slope values in both the mOFC and vmPFC, indicating a sustained or 

increasing response to repeated objects. In the context of rapid habituation during early 

object repetitions, this suggests that responses were maintained near baseline during 

the middle repetition window. However, the high social fear group had negative b' slope 
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values in both regions, indicating continued habituation to repeated objects during the 

middle presentation window (Figure 14).  

 

5th – 7th object presentation. Social fearfulness was not correlated with habituation 

differences in any region during the late repetition window (all p’s > .43; Table 9; Figure 

13). Across social fearfulness groups, b' slopes were near zero indicating an overall 

sustained response to objects during later repetitions (Figure 14). 

 

4.3.2. Functional connectivity to objects 

Initial connectivity. Social fearfulness was not correlated with differences in initial 

connectivity during novel object presentations (all p’s > .10; Table 11, Figure 15). Beta 

values for initial amygdala connectivity are reported in Table 12.  

 

1st – 7th object presentation. Social fearfulness was not correlated with differences in 

habituation of amygdala connectivity between the 1st and 7th object presentation (all p’s 

> .12; Table 11, Figure 15). Across regions, b' slope values were near or below zero for 

most participants, indicating that participants showed an overall pattern of sustained or 

habituating connectivity between the 1st and 7th object presentation (Figure 16). To 

visualize patterns of amygdala connectivity over time, we extracted functional 

connectivity beta values for each region (Table 12).  
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Table 11. Correlations between social fearfulness and amygdala connectivity during object viewing. 

 
Initial amplitude Habituation 

  1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 -.18 .03 .36 .03 .001 .88 -.15 .02 .45 -.22 .05 .26 -.18 .03 .36 

Extrastriate -.08 .006 .69 .007 .00 .97 -.37 .14 .05 -.29 .08 .13 -.09 .008 .66 

FFA -.35 .12 .10 -.33 .11 .12 -.36 .13 .09 -.18 .03 .41 .12 .01 .59 

Hippocampus .17 .03 .39 .19 .04 .33 -.06 .004 .75 -.01 .00 .94 -.07 .005 .70 

mOFC -.10 .01 .62 -.26 .07 .17 -.32 .10 .10 -.48 .23 .008 .03 .001 .88 

vmPFC -.15 .02 .43 -.09 .008 .65 -.36 .13 .05 -.51 .26 .004 .08 .006 .67 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Figure 15. Correlations between social fearfulness and amygdala functional connectivity during 
object presentations. Scatterplots show relationships between social fearfulness and amygdala functional 
connectivity during novel and repeated objects. Asterisks (*) denote significant correlations. Intercept values 
above zero indicate an initial response (greater than baseline) to novel objects. Slope (b') values below zero 
indicate habituation to repeated objects; b' slope values at or above zero indicate sustained or increasing 
signal to repeated objects, respectively. Secondary habituation contrasts (shaded in gray) revealed 
correlations between social fearfulness and greater habituation of amygdala connectivity with the mOFC and 
vmPFC across middle (3rd - 5th) object presentations. There were no social fearfulness differences in initial 
amygdala connectivity to novel objects, habituation of amygdala connectivity in early (1st - 3rd) or late (5th - 
7th) object presentations, or in overall habituation to objects (1st - 7th). 
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Figure 16. Functional connectivity to objects by social fearfulness tertile. Bar graphs show initial 
amplitude of amygdala connectivity (intercept) and habituation (b') slope values of functional connectivity by 
social fearfulness tertile over novel and repeated object presentations. Asterisks (*) denote significant 
correlations. Intercept values above zero indicate an initial response (greater than baseline) to novel objects. 
Slope (b') values below zero indicate habituation to repeated objects; b' slope values at or above zero 
indicate sustained or increasing signal to repeated objects, respectively. 
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1st – 3rd object presentation. Social fearfulness was not correlated with habituation of 

amygdala connectivity from the 1st to the 3rd object presentation (all p’s > .05; Table 11; 

Figure 15). Across most participants, b' slopes were below zero indicating habituation 

of connectivity to objects during early repetitions (Figure 16). 

 

3rd – 5th object presentation. In the middle repetition window, social fearfulness was 

correlated with differences in habituation of connectivity between the amygdala and two 

regions, the mOFC and vmPFC (mOFC, r = -.48, p = .008; vmPFC, r = -.51; p = .004; 

Table 11; Figure 15). There was a similar pattern across both regions—the low social 

fear group had positive b' connectivity slopes in the mOFC and vmPFC, indicating 

sustained or increasing connectivity with the amygdala during repeated object 

presentations. In the context of minimal initial response to novel objects (Table 10) and 

habituation of connectivity during early object presentations, this suggests that the low 

social fear group maintained connectivity near baseline during repeated object 

presentations. In contrast, the high social fear group had negative b' connectivity slopes 

in the mOFC and vmPFC, suggesting continued habituation of amygdala connectivity 

below baseline during the middle object presentation window (Figure 16). 

 

5th – 7th object presentation. There were no social fearfulness differences in habituation 

of connectivity in the late repetition window (all p’s > .36; Table 11; Figure 15). Across 

participants, b' connectivity values were near zero indicating sustained connectivity with 

the amygdala across regions during later object repetitions (Figure 16).  
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4.3.3. Specificity of effects of social stimuli 

Initial amplitude. To determine whether social fearfulness effects were unique to faces, 

we performed correlations with faces controlling for effects of objects. Social fearfulness 

showed similar correlations with initial amplitudes to faces when controlling for objects 

compared to not controlling for objects (Table 2; Table 13), with social fearfulness 

associated with higher initial amplitudes in the hippocampus and vmPFC in both 

analyses, indicating that objects accounted for little variance in neural response to novel 

faces. To further test whether initial responses to faces were unique, we directly 

compared social fearfulness correlation values when controlling for objects compared to 

not controlling for objects; direct comparison of correlation values revealed no 

significant differences (Table 14).  

 

Habituation. Similarly, correlations between social fearfulness and habituation to faces 

were similar when controlling for objects compared to not controlling for objects (Table 

2; Table 13). Social fearfulness was associated with dampened rate of habituation 

across most regions, with predominant effects in the middle (3rd – 5th) face presentation 

window in both analyses, indicating that objects accounted for little variance in 

habituation to faces. Direct comparison of correlation values revealed no significant 

differences (Table 14).  
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Table 13. Correlations between social fearfulness and neural response to faces, controlling for objects. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 .20 .04 .31 -.06 .004 .75 .35 .12 .07 .57 .33 .002 -.08 .006 .70 

Extrastriate .30 .09 .13 .14 .02 .49 .44 .19 .02 .55 .30 .003 .007 .00 .97 

FFA .26 .07 .21 .27 .07 .18 .39 .15 .05 .35 .12 .08 .19 .04 .36 

Amygdala .38 .14 .04 .34 .12 .08 .36 .13 .06 .45 .20 .016 -.15 .02 .45 

Hippocampus .49 .24 .009 .45 .20 .016 .39 .15 .04 .56 .31 .002 -.20 .04 .31 

mOFC .28 .08 .15 -.06 .004 .78 .33 .11 .09 .53 .28 .004 -.01 .00 .96 

vmPFC .42 .18 .03 .37 .14 .06 .24 .06 .23 .36 .13 .06 .07 .005 .74 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Table 14. Specificity of neural response to faces: comparison of response to faces with and without 
correction for response to objects. 

 

Initial 
amplitude 
(intercept) 

Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region z p-value z p-value z p-value z p-value z p-value 

V1 -.51 .61 .11 .91 0 1 -.26 .80 .04 .97 

Extrastriate -.12 .91 0 1 -.04 .97 .11 .91 .05 .96 

FFA -.56 .58 -.08 .94 0 1 -.08 .94 -.04 .97 

Amygdala -.08 .94 -.12 .91 -.08 .94 0 1 0 1 

Hippocampus 0 1 .05 .96 0 1 0 1 -.04 .97 

mOFC -.31 .76 .61 .54 .08 .94 -.43 .67 0 1 

vmPFC .27 .79 -.04 .97 .15 .88 .67 .50 -.04 .97 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and 
overall habituation (1st – 7th) results were considered significant at α ≤ .05; secondary results were 
considered significant at α ≤ .0167. 
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Initial connectivity. We found similar correlations between social fearfulness and initial 

amygdala connectivity to novel faces when controlling for objects compared to not 

controlling for objects (Table 6; Table 15), indicating that objects accounted for little 

variance in connectivity to novel faces. Direct comparison of correlation values showed 

no significant differences (Table 16).  

 

Habituation of connectivity. Similarly, habituation of amygdala connectivity to faces 

showed a similar associations with social fearfulness when controlling for objects 

compared to not controlling for objects (Table 6; Table 15), with social fearfulness 

associated with higher amygdala connectivity with V1 and extrastriate cortex in both 

analyses, indicating little influence of objects on neural activity to faces. Direct 

comparison of correlation values showed no significant differences (Table 16). 

 

4.4. Discussion 

 The goal of this study was to determine whether social fearfulness was uniquely 

related to differences in social (vs. non-social) neural processing. We found that neural 

responses to faces were associated with social fearfulness even when controlling for 

neural responses to objects. Our findings indicate that rather than a difference in novelty 

processing per se, which would suggest differences in general neuronal function in 

socially fearful people, social fearfulness is associated with specific differences in face 

processing. These findings are consistent with studies demonstrating that social 

inhibition has a stronger relationship with social anxiety disorder symptomatology than 

non-social inhibition  
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Table 15. Correlations between social fearfulness and amygdala connectivity to faces, controlling for objects. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 .22 .05 .26 .003 .00 .99 .27 .07 .16 .45 .20 .016 -.08 .006 .70 

Extrastriate .22 .05 .25 .26 .07 .18 .26 .07 .19 .45 .20 .016 -.05 .003 .79 

FFA .21 .04 .34 .27 .07 .21 .26 .07 .23 .26 .07 .23 .34 .12 .11 

Hippocampus -.03 .001 .90 .17 .03 .38 .15 .02 .44 .37 .14 .05 -.22 .05 .26 

mOFC .22 .05 .25 -.05 .003 .79 .28 .08 .14 .42 .18 .03 .01 .00 .96 

vmPFC .28 .08 .16 .34 .12 .07 .35 .12 .07 .21 .04 .30 .06 .004 .78 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Table 16. Specificity of amygdala connectivity to faces: comparison of amygdala connectivity to 
faces with and without correction for response to objects. 

 

Initial 
amplitude 
(intercept) 

Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region z p-value z p-value z p-value z p-value z p-value 

V1 -.48 .63 .06 .95 0 1 0 1 -.04 .97 

Extrastriate -.22 .83 0 1 .28 .78 .19 .85 0 1 

FFA -.48 .63 -.38 .70 -.19 .85 -.04 .97 .08 .94 

Hippocampus .04 .97 .04 .97 .04 .97 .13 .90 .99 .32 

mOFC -.26 .80 -.04 .97 -.27 .79 -.46 .65 .04 .97 

vmPFC .08 .94 -.08 .94 -.36 .72 .76 .45 -.04 .97 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and 
overall habituation (1st – 7th) results were considered significant at α ≤ .05; secondary results were 
considered significant at α ≤ .0167. 
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(Van Ameringen et al, 1998; Schofield et al, 2009; Dyson et al, 2011), and with  

the finding that deficits in social processing are specifically associated with social 

anxiety symptoms (Schofield et al, 2009).  

 Evolutionary theories suggest that brain regions critical for survival in lower 

species—that is, brain regions that detect novelty—have been elaborated and 

repurposed to incorporate social processing in species more dependent on social 

groups, such as primates (Chang et al, 2013). A striking example is mormyrid fish, 

whose electrosensory system, originally purposed for orienting and detection of motion, 

now subserves social function absent in ancestral states (Katz, 2006; Chang et al, 

2013). Another example of this repurposing exists in the evolution of oxytocin signaling 

in the brain—while oxytocin serves an ancestral role in decreasing anxiety and 

approach behavior, it is has evolved to support parenting, maternal bonding, and mating 

in primates (Chang et al, 2013). Because social function is critical for human health, 

welfare and survival, it is intuitive that brain regions specialized for the rapid detection of 

non-social novelty would also develop the ability to respond to social novelty and 

evaluation of social threat. However, our findings provide support for functional 

specialization within these brain regions, with differences in response to social 

information coexisting alongside normal, adaptive responses to non-social information.  

 In examining responses to novel objects, we found that social fearfulness was 

associated with alterations in medial prefrontal cortex responses to objects. Socially 

fearful participants showed a dampened initial response to novel objects in the mOFC 

and greater habituation to objects in the mOFC and vmPFC. Exploring functional 

connectivity, we found greater habituation of amygdala connectivity with the mOFC and 
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vmPFC in socially fearful participants during repeated object presentations. Together, 

these findings may indicate a disruption in amygdala-medial prefrontal connectivity in 

socially fearful people during processing of non-social stimuli. These findings suggest 

that assessing medial prefrontal-amygdala circuit function to both social and non-social 

stimuli may be important for future studies.  

 

4.5. Conclusions 

 In conclusion, we show that differences in processing of social stimuli are unique 

in social fearfulness—we found no evidence of a generalized deficit in novelty 

processing across stimulus types. As heightened response to social novelty has been 

more closely linked to risk for social anxiety disorder (relative to response to non-social 

novelty) (Dyson et al, 2011), these findings suggest that investigation of the neural basis 

of social fearfulness may inform risk for development of social anxiety disorder. These 

findings may have implications for evaluating response to treatment in patients with 

social anxiety disorder; given this preliminary evidence that overall response to non-

social novelty is not disrupted in people with high levels of social fear, non-social novelty 

may serve as a valuable baseline against which to gauge change in neural responses to 

social stimuli following treatment in social anxiety disorder.  
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CHAPTER V 

Specificity of effects to social fearfulness 

 

5.1. Introduction 

A major challenge in psychiatric neuroimaging is showing specificity of 

associations between neural responses and traits of interest. We have shown that 

neural response to social stimuli varies along the dimension of social fearfulness. A 

component of social fearfulness is high negative affect, a stable trait in which people 

tend to view themselves negatively and experience a broad range of negative emotions 

including nervousness, fear, anxiety, and guilt (Watson and Clark, 1984). Traits such as 

social fearfulness, anxiety, and depression share a common component of high 

negative affect, and therefore show consistently strong correlations with each other 

(Schmidt et al, 1997; Watson et al, 1988).  

A critical question is whether social fears show a unique neural signature in the 

brain, or whether components of the social fearfulness response to faces are related to 

the separate but overlapping characteristic of high negative affect. In general, negative 

affect is associated with higher incidence of psychopathology, although there’s little 

evidence that negative affect increases risk for a specific type of diagnosis (Watson and 

Clark, 1984). However, for accurate identification and effective early treatment of at-risk 

individuals, a specific neural signature of risk for social anxiety is critical. Here, we 

tested for specificity of associations between neural response to faces and social 

fearfulness. To determine whether the association between social fearfulness and 

neural response to faces could be explained by negative affect, we tested for unique 
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effects of trait anxiety and depression—two characteristics that strongly overlap with 

negative affectivity—on initial amplitude and habituation.  

 

5.2. Methods 

5.2.1. Participants 

Characteristics. All participants (n = 29) were included in the specificity analysis. See 

Chapter 2 for recruitment and screening procedures. Trait anxiety was measured using 

the State-Trait Anxiety Inventory (STAI) and depression was measured using the Beck 

Depression Inventory (BDI-II) (see Chapter 2 for details). Participant characteristics are 

detailed in Table 1. 

 

5.2.2. Data analysis 

Regions of interest (ROIs). Habituation analyses were conducted within seven ROIs 

(amygdala, hippocampus, mOFC, vmPFC, FFA, V1, and extrastriate cortex). For a full 

description of ROI selection, see Chapter 2. 

 

Specificity to social fearfulness. Correlations between social fearfulness, anxiety, and 

depression were performed to explore overall associations across participants. To 

partial the unique effects of social fearfulness, we performed correlations between 

social fearfulness and neural response to faces while controlling for 1) trait anxiety 

(STAI-trait) or 2) depression (BDI-II). Consistent with the main analysis, partial 

correlations with initial amplitude and overall habituation (1st – 7th) were considered 

significant at α ≤ .05; secondary results (habituation contrasts 1st – 3rd, 3rd – 5th, 5th – 7th) 
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were considered significant at α ≤ .0167, Bonferroni-corrected for multiple comparisons. 

R2 values were computed as a measure of effect size. To test whether trait anxiety or 

depression significantly explained associations between social fearfulness and neural 

responses to faces, we directly compared social fearfulness correlations with and 

without correction for 1) anxiety or 2) depression by converting r values to z scores and 

computing p-values (primary analyses were set at α ≤ .05; secondary comparisons were 

determined significant at α ≤ .0167, Bonferroni corrected for multiple comparisons).  

 

5.3. Results 

5.3.1. Specificity of associations with social fearfulness 

We first determined correlations between measures; as expected, social 

fearfulness scores were highly correlated with both trait anxiety and depression scores 

across participants, indicating shared variance across measures (r’s > .66, p’s < .001; 

Table 17).  

 

Trait anxiety. Trait anxiety and social fearfulness were associated with unique patterns 

of activity in response to novel faces. Trait anxiety and social fearfulness had opposing 

effects on neural response to novelty in the extrastriate cortex and FFA—trait anxiety 

was correlated with lower initial amplitudes in both regions (extrastriate, r = -.43, p = .03; 

FFA, r = -.41, p = .04; Table 18) while social fearfulness was correlated with higher 

initial amplitudes (extrastriate, r = .47, p = .02; FFA, r = .39, p = .05; Table 19). Trait 

anxiety was also uniquely correlated with higher initial amplitudes in the vmPFC (r = .45, 

p = .02; Table 18) while social fearfulness was uniquely correlated with sustained signal 
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Table 17. Correlations between social fearfulness, trait anxiety and 
depression scores across participants. 

Measure 

Social fearfulness 

Trait anxiety 

D
epression 

r p-value r p-value r p-value 

Social fearfulness 1 -- .78 < .001 .66 < .001 

Trait anxiety   1 -- .71 < .001 

Depression      1 -- 

Note:  significant correlations in bold; results were considered 
significant at α ≤ .0167. 

 

in the extrastriate cortex (r = .48, p = .01; Table 19). Direct comparisons revealed that 

the only brain region that showed a significant difference after controlling for trait anxiety 

was the vmPFC (initial amplitude, p = .05; Table 20). The correlation between social 

fearfulness and initial amplitude in the vmPFC was no longer significant after controlling 

for trait anxiety scores.  

 

Depression. Similarly, depression and social fearfulness accounted for unique patterns 

of activity in response to faces. Depression was uniquely correlated with lower initial 

amplitudes in the FFA (r = -.44, p = .03; Table 21) and dampened rates of habituation in 

the hippocampus (habituation (1st – 3rd), r = .46, p = .01) (Table 21). In contrast, social 

fearfulness was uniquely associated with elevated initial amplitudes in the amygdala 

and extrastriate cortex (amygdala, r = .44, p = .02; extrastriate, r = .42, p = .03; Table 

22). The direct comparison demonstrated that depression scores did not significantly 

account for any effects of social fearfulness (Table 23).  
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Table 18. Correlations between trait anxiety and neural response to faces, controlling for social fearfulness. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 -.24 .06 .24 -.12 .01 .57 -.08 .006 .69 -.24 .06 .24 .22 .05 .28 

Extrastriate -.43 .19 .03 -.05 .03 .81 .06 .004 .77 -.21 .04 .30 .26 .07 .19 

FFA -.41 .17 .04 -.19 .04 .35 -.04 .002 .83 -.27 .07 .18 .25 .06 .22 

Amygdala -.05 .03 .83 -.04 .002 .86 .25 .06 .22 .13 .02 .52 .31 .10 .12 

Hippocampus .12 .01 .57 .02 .00 .94 -.05 .03 .81 -.15 .02 .46 .37 .14 .07 

mOFC -.24 .06 .24 .31 .10 .13 .41 .17 .04 .16 .03 .43 -.04 .002 .83 

vmPFC .45 .20 .02 .26 .07 .21 .28 .08 .17 .43 .19 .03 .23 .05 .25 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Table 19. Correlations between social fearfulness and neural response faces, controlling for trait anxiety. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 .22 .05 .29 .007 .00 .97 .23 .05 .27 .45 .20 .02 -.16 .03 .45 

Extrastriate .47 .22 .02 .08 .006 .70 .18 .03 .38 .48 .23 .01 -.18 .03 .37 

FFA .39 .15 .05 .30 .09 .13 .29 .08 .14 .41 .17 .04 -.07 .005 .72 

Amygdala .23 .05 .27 .18 .03 .37 .02 .00 .93 .16 .03 .44 -.32 .10 .11 

Hippocampus .22 .05 .29 .26 .07 .19 .27 .07 .19 .44 .19 .03 -.38 .14 .06 

mOFC .28 .08 .17 -.28 .08 .17 -.08 .006 .71 .18 .03 .39 .06 .004 .78 

vmPFC -.03 .001 .89 .005 .00 .98 -.02 .00 .93 .02 .00 .94 -.11 .01 .60 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Table 20. Specificity of effects of social fearfulness: comparison of social fearfulness effects with 
and without correction for trait anxiety. 

 

Initial 
amplitude 
(intercept) 

Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region z p-value z p-value z p-value z p-value z p-value 

V1 -.59 .56 -.13 .90 .47 .64 .33 .74 .33 .74 

Extrastriate -.84 .40 .22 .83 1 .32 .45 .65 .73 .47 

FFA -1.09 .28 -.20 .84 .41 .68 -.33 .74 .91 .36 

Amygdala .51 .61 .5 .62 1.2 .23 1.17 .24 .62 .52 

Hippocampus 1.13 .26 .83 .41 .49 .62 .58 .56 .67 .50 

mOFC -.31 .76 -.47 .64 1.61 .11 1.05 .29 -.25 .80 

vmPFC 1.99 .05 1.34 .18 1.11 .27 1.96 .05 .18 .86 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and 
overall habituation (1st – 7th) results were considered significant at α ≤ .05; secondary results were 
considered significant at α ≤ .0167. 
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Table 21. Correlations between depression and neural response to faces, controlling for social fearfulness. 
 Initial amplitude 

(intercept) Habituation (b') 

 1st – 7th 1st – 3rd 3rd – 5th 5th – 7th 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 -.31 .10 .11 -.03 .001 .90 .22 .05 .26 -.08 .006 .70 .06 .004 .75 

Extrastriate -.34 .12 .08 .17 .03 .40 .42 .18 .03 .06 .004 .75 .03 .001 .90 

FFA -.44 .19 .03 -.01 .00 .96 .17 .03 .42 -.27 .07 .18 .19 .04 .35 

Amygdala -.28 .08 .15 -.13 .02 .52 .28 .08 .15 .11 .01 .58 .12 .01 .56 

Hippocampus .06 .004 .76 .28 .08 .16 .46 .21 .01 .11 .01 .58 .23 .05 .25 

mOFC .17 .03 .38 .20 .04 .32 .43 .19 .02 .41 .17 .03 .10 .01 .60 

vmPFC .27 .07 .17 .28 .08 .14 .17 .03 .40 .04 .002 .86 .19 .04 .34 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 



110 
 

 

 

 

Table 22. Correlations between social fearfulness and neural response to faces, controlling for depression. 
 Initial amplitude 

(intercept) 
Habituation (b') 

 1 - 7 1 - 3 3 - 5 5 - 7 
Region r r2 p-value r r2 p-value r r2 p-value r r2 p-value r r2 p-value 

V1 .26 .07 .19 -.006 .00 .98 .14 .02 .48 .46 .21 .02 -.09 .008 .63 

Extrastriate .42 .18 .03 -.008 .00 .97 .09 .008 .66 .43 .19 .02 -.003 .00 .99 

FFA .38 .14 .06 .20 .04 .34 .21 .04 .30 .42 .18 .03 .01 .00 .94 

Amygdala .44 .19 .02 .31 .10 .11 .09 .008 .64 .30 .09 .12 -.19 .04 .34 

Hippocampus .35 .12 .07 .21 .04 .29 .01 .00 .95 .40 .16 .04 -.30 .09 .12 

mOFC .04 .002 .86 -.17 .03 .39 .002 .00 .99 .11 .01 .60 -.08 .006 .70 

vmPFC .24 .06 .22 .10 .01 .61 .11 .01 .57 .38 .14 .04 -.08 .006 .69 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and overall habituation (1st – 7th) results 
were considered significant at α ≤ .05; secondary results were considered significant at α ≤ .0167. 
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Table 23. Specificity of effects of social fearfulness: comparison of social fearfulness effects with 
and without correction for depression. 

 

Initial 
amplitude 
(intercept) 

Habituation (b') 

 1 - 7 1 - 3 3 - 5 5 - 7 
Region z p-value z p-value z p-value z p-value z p-value 

V1 -.74 .46 -.09 .93 .81 .42 .28 .78 .07 .94 

Extrastriate -.62 .54 .54 .56 1.33 .18 .68 .50 .08 .94 

FFA -1.04 .30 .19 .85 .72 .47 -.38 .70 .62 .54 

Amygdala -.34 .73 0 1 .95 .34 .63 .53 .15 .88 

Hippocampus .62 .54 1.02 .31 1.45 .15 .75 .45 .35 .73 

mOFC .59 .56 .44 .66 1.31 .19 1.3 .19 .25 .80 

vmPFC 1 .32 1 .32 .64 .52 .59 .56 .51 .61 

Note:  significant correlations in bold; shaded area indicates secondary tests; initial amplitude and 
overall habituation (1st – 7th) results were considered significant at α ≤ .05; secondary results were 
considered significant at α ≤ .0167. 
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5.4. Discussion 

The goal of this analysis was to determine the specificity of the effect of social 

fearfulness on initial amplitude and habituation of neural responses to faces. Overall, we 

found evidence for specificity of social fearfulness in neural response to faces, with trait 

anxiety accounting for only one unique effect. Trait anxiety significantly accounted for 

the relationship between social fearfulness and elevated initial amplitude to novel faces 

in the vmPFC. Because trait anxiety is associated with generally increased risk for 

developing psychopathology, including anxiety disorders and depression (Hankin and 

Abela, 2005), this suggests that elevated activity in the vmPFC may account for more 

general risk for illness in socially fearful participants while activity across the rest of the 

circuit provides a specific dimensional marker of risk for social anxiety. Depression did 

not account for any unique effects of neural activity. Together, these findings indicate 

that social fearfulness is associated with a signature neural response, particularly in 

novelty detection and visual processing regions, that is specific to social fear and not 

accounted for the more general trait of negative affect.  

Of interest, we found a dissociation in visual cortex responses by trait anxiety 

and social fearfulness. In the extrastriate cortex and FFA, social fearfulness was 

uniquely associated with higher initial amplitudes to novel faces, while trait anxiety was 

uniquely associated with lower amplitudes during novel face presentations. Studies 

have shown enhanced orienting response and “hyperscanning” of faces, including direct 

fixations on the eyes, in people with high trait anxiety (Bradley et al, 2000; Mogg et al, 

2000), while shyness has been associated with fewer eye movements around a face 

and avoidance of the eyes (Wang et al, 2012). This suggests differences in viewing of a 
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face as a possible mechanism for differences in neural response to novel faces. An 

additional possibility is that people with trait anxiety employ stronger regulation of visual 

processing regions during face viewing—trait anxiety was uniquely related to elevated 

initial amplitude in the vmPFC, a region with extensive connections to the visual cortex 

(Sesack et al, 1989; Chiba et al, 2001). Functional interactions between the vmPFC and 

visual cortex have been associated with expectation-based top-down regulation of 

visual search (Pantazatos et al, 2012). Although trait anxiety and social fearfulness are 

partially overlapping traits, with a shared component of negative affect, these findings 

suggest that important differences between the two traits may exist in neural function, 

and in orienting to and evaluation of faces. Future studies assessing dissociable 

responses to novel faces may uncover important mechanisms differentiating these 

overlapping traits. 

A limitation of the study is the high degree of overlap between trait anxiety and 

social fearfulness. Participants with high social fearfulness were also highly likely to 

have high trait anxiety, with approximately 60% shared variance in the two traits. 

Therefore, it’s possible that results are driven by unique participants showing 

divergence in trait anxiety and social fearfulness scores. Future studies are necessary 

to replicate these findings in larger sample. 

 

5.5. Conclusions 

 Our results support a specific neural signature for social fearfulness. Trait anxiety 

was also associated with dampened visual cortex and face processing responses to 

novel faces, providing preliminary evidence for a neural dissociation between the 
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overlapping traits of anxiety and social fearfulness. These findings may have important 

implications for guiding future studies in at-risk populations. Negative affect is 

associated with a broad, non-specific risk in psychopathology while social fearfulness is 

associated with a relatively specific elevated risk for social anxiety disorder; therefore, 

our findings provide initial evidence for neural mechanisms contributing to both broad 

and specific risk for development of mental illness.  
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CHAPTER VI 

Discussion and future directions 

 

6.1. Discussion 

 Social anxiety disorder is highly prevalent and chronic illness affecting more than 

1 in 10 Americans each year. Due to its early onset during adolescence, social anxiety 

disorder has cascading consequences throughout development, resulting in decreased 

educational attainment, lower occupational status, and decreased quality of life. Social 

anxiety disorder is also a significant risk factor for other major psychiatric illness, such 

as depression and substance abuse. Early identification and effective treatment of 

social anxiety disorder would have a substantial impact on public health. The availability 

of specific dimensional biological markers is essential for the early identification of risk 

and the assessment of treatment response; however, clinically useful dimensional 

biological markers are currently unavailable.  

In this study, we identified a dimensional relationship between neural response to 

novelty and trait social fearfulness. We describe two neural mechanisms—response to 

novel faces and habituation to repeated faces—in socially fearful people that 

fundamentally influence individual variability in response to social stimuli. Neural 

response to novelty is critical in attentional orienting responses; however, equally 

important is the ability to habituate to novel stimuli that are safe. Here we show that 

socially fearful people have both an elevated response to novel faces and fail to 

habituate to repeated faces in multiple brain regions involved in processing of novelty 

and threat; specifically, we found elevated response to novel faces in the hippocampus 



116 
 

and vmPFC, and a significant difference in habituation rate in the  amygdala, 

hippocampus, mOFC, vmPFC, V1, and extrastriate cortex. Critically, we show that 

altered brain activity did not reflect a general impairment in novelty processing; social 

fearfulness was not associated with an elevated or sustained response to novel objects, 

indicating a unique deficit in social novelty processing.  

 

The neural mechanisms of habituation. Habituation is a fundamental mechanism by 

which we learn about the world around us. Habituation of sensory stimuli is critical in 

filtering information that is safe and familiar while allowing neural resources to new, 

potentially threatening stimuli. While the neural mechanisms of habituation remain 

partially unknown (Ramaswami, 2014), inhibitory signals between brain regions are key 

in focusing attentional processing and may play a role in habituation. In particular, top-

down feedback from the amygdala to primary sensory systems has been shown to play 

a key role in focusing sensory processing on behaviorally-relevant stimuli (Vuilleumier 

and Driver, 2007). We found sustained functional connectivity between the amygdala 

and early visual processing areas in social fearfulness—including V1 and extrastriate 

cortex—suggesting that amygdala-visual circuits may be specifically enhanced in social 

fear. Together, these findings comprise a neural signature of social fearfulness, 

including differences in novelty detection, habituation, and connectivity across a visual 

threat processing network. 

 

A model of failed medial prefrontal regulation in social fear. Elevated initial response in 

the vmPFC was uniquely explained by trait anxiety, suggesting that activity in vmPFC 
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may be a general risk factor for psychopathology rather than social anxiety per se. 

Additionally, we found that overall amplitude remained higher in socially fearful 

participants throughout face viewing, despite a similar rate of habituation across 

participants. Although vmPFC activity may not be a specific marker of risk for social 

anxiety, examination of differences in this region may help elucidate the neural factors 

that increase the risk for developing comorbid illness in people with social anxiety. In 

particular, depression is common in people with social anxiety disorder (Beesdo et al, 

2007). Depression is also consistently linked with altered vmPFC activity (Myers-Schulz 

and Koenigs, 2012).  Consistent with findings in depression, our combined results 

suggest a model of weak, chronically-engaged vmPFC regulation of amygdala activity 

(Myers-Schulz and Koenigs, 2012). For example, during neutral face viewing, low social 

fear participants had little response in the amygdala or vmPFC; in contrast, high social 

fear participants had an elevated amygdala response to neutral faces. We suggest that 

during viewing of neutral faces, low social fear participants required little vmPFC 

regulation of the amygdala, while high social fear participants required an elevated 

vmPFC response in an attempt to regulate elevated amygdala activity. However, as 

vmPFC-amygdala activity remained high throughout the task in socially fearful 

participants. Based on these findings, we propose that vmPFC regulation fails during 

viewing of neutrally-valenced faces.   

The strength of a stimulus is critical in eliciting neural responses. The use of 

strong stimuli (e.g., fear faces) may create uniformity in response, while weak stimuli 

(e.g., neutral faces) better elicit individual differences (Lissek et al, 2006). Numerous 

studies have demonstrated inverse functional connectivity between the medial 
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prefrontal cortex and amygdala in anxiety patients (Goldin et al, 2009; Kim et al, 2011). 

However, each of these studies used negatively-valenced faces to examine neural 

response; no studies to date have investigated medial prefrontal-amygdala connectivity 

using neutrally-valenced faces, as we did here. Based on our findings, we propose that 

medial prefrontal cortex regulation fails during viewing of both negatively- and neutrally-

valenced faces, with the only difference between the two conditions being a stronger 

amygdala response to negative stimuli that far exceeds medial prefrontal response, 

leading to findings of inverse coupling. In further support of this model, we found a 

dissociation in prefrontal-amygdala regulation within our own participants dependent on 

stimulus strength (neutral faces vs. neutral objects)—while we found a trend for 

sustained vmPFC-amygdala activity to faces (a stronger stimulus), vmPFC-amygdala 

activity showed a stronger rate of habituation in response to objects (a weaker stimulus) 

in high social fear participants. As social animals, social stimuli are an inherently salient 

and relatively strong stimuli (Lissek et al, 2006); in contrast, non-social stimuli are a 

relatively weak stimulus and have little salient value. In accordance, the medial 

prefrontal cortex and amygdala both respond strongly to social stimuli, with the 

strongest response in socially fearful people, while amygdala activity is similar across all 

participants to non-social stimuli. Overall, these findings suggest a weak, chronically-

engaged vmPFC-amygdala regulatory circuit may contribute to trait anxiety in social 

fearfulness.  

 

Evidence for hippocampal involvement. We found strong evidence of hippocampal 

differences in social fearfulness. In our habituation analysis, the hippocampus was the 
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only region where we detected both elevated response to novel faces and an overall 

sustained response to repeated faces across the entire course of the experiment in 

socially fearful participants. Although we did not specifically investigate habituation of 

connectivity of the hippocampus in this study, correlations between the hippocampus 

and other nodes of the social threat network were among the strongest detected in our 

exploratory connectivity analysis. We also found evidence that habituation differences 

were not distinctly related to negative affect, an emotional trait largely attributed to 

amygdala function (Gray and McNaughton, 2003), providing further indication that brain 

regions other than the amygdala play an important role in social fearfulness. These 

findings are in line with Gray’s theory of septo-hippocampal inhibition, which states that 

the hippocampus plays a central role in production of anxiety. In this theory, the drive to 

approach novelty competes with the drive to avoid potential threats, with the 

hippocampus playing a critical role in behavioral inhibition in order to avoid potential 

threat (Gray and McNaughton, 2003; Gray, 1983). Our findings broadly support a 

central role for the hippocampus in social fearfulness, providing support for this theory. 

We suggest that further investigation of the hippocampus in social fearfulness is 

strongly warranted, particularly in its role in habituation to social novelty. 

 

From adaptive to maladaptive neural response. Our findings suggest that social 

fearfulness is driven by hyperactivity of threat detection circuits. However, little is known 

about the progression from adaptive, healthy social fear to maladaptive, extreme 

variants. Preliminary evidence suggests that two mechanisms play a role: 1) a reduced 

threshold for activation in threat detection regions; and 2) hyperexcitability of brain 
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regions developed through a sensitization process (Rosen and Schulkin, 1998). During 

an adaptive fear response, activity in threat detection regions increases then subsides 

as the threat is reduced or eliminated. However, in people sensitive to social threat, 

chronic activation of threat detection circuits may lead to hyperexcitability, wherein 

circuits are more sensitive to threat and more readily activated in the future. Subsequent 

social fear responses would be more easily triggered by less-threatening stimuli, leading 

to a pattern of chronic social fear response to everyday situations. It’s possible that a 

biological predisposition for slow habituation may underlie sensitization processes in the 

brain. Sensitization to threat has been shown to be driven by release of glucocorticoids 

and corticotropin-releasing hormone, a response critically controlled by activity in the 

amygdala and hippocampus. Prolonged activation of the amygdala and hippocampus, 

through slow habituation, may lead to increased release of glucorticoids and trigger 

long-term changes in how the brain processes threatening information. This suggests 

that identification of biological determinates of habituation in the brain may aid in 

identifying those individuals most at risk for developing psychopathology.  

However, the molecular mechanisms underlying neural habituation remain 

unclear, although molecular processes known to support learning and memory are 

hypothesized to play a role. For example, cyclic guanacine monophosphate (cGMP), a 

second messenger molecule underlying long-term cellular changes, is likely important in 

both short and long-term cellular habituation (Soibam et al, 2013). cGMP is crucially 

involved in synaptic plasticity (Kleppisch and Feil, 2009) and plays a significant role in 

learning and memory formation (Bernabeu et al, 1996).  Inhibiting the enzymes that 

break down cGMPs has been shown to increase cognitive function and improve 
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recognition memory in aged rats (Baratti and Boccia, 1999; Prickaerts et al, 2004), as 

well as ameliorate cognitive deficits in Huntington’s chorea and Alzheimer’s disease by 

increasing cGMP in the hippocampus (Puzzo et al, 2009; Cuadrado-Tejedor et al, 2011; 

Saavedra et al, 2013). Recent findings in humans have also described a link between 

memory, the amygdala, and a gene encoding cGMP degradation enzymes (Knowles et 

al, 2015). As habituation is a fundamental memory process, it’s likely that differences in 

cGMP regulation of cellular plasticity play a role in neural habituation processes. 

Disruptions in four key neurotransmitter systems—the serotonergic, dopaminergic, 

GABAergic, and endocannabinoid systems—have also been shown to regulate neural 

habituation in rodents (Leussis and Bolivar, 2006; Salomons et al, 2013; Patel and 

Hillard, 2008; Gunduz-Cinar et al, 2012), with most systems implicated in human 

behavioral habituation as well (Wiggins et al, 2013; Bunzeck et al, 2013; Conzelmann et 

al, 2012; Hariri et al, 2009). Follow up studies in humans should directly test for genetic 

and memory differences that may link to disruptions in molecular habituation processes.  

Our results may also have implications for targeted therapies aimed at regulating 

amygdala response. Treatments regulating norepinephrine signaling may be particularly 

useful in strengthening vmPFC-amygdala regulation in socially fearful people. Because 

social situations are ubiquitous, social fearfulness likely results in greater daily stress 

and chronic stress exposure. Stress is a potent catalyst for change in the brain and has 

profound effects on both the medial prefrontal cortex and the amygdala, resulting in 

strengthening of amygdala function, reduced firing of medial prefrontal neurons, and 

strengthened norepinephrine signaling in both regions (Arnsten et al, 2015). High levels 

of norepinephrine released during stress exposure impairs medial prefrontal cortex 
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function via actions at alpha-1 receptors. Treatments that block norepinephrine 

signaling in the brain (e.g., alpha-1 receptor antagonists) have been shown to 

strengthen medial prefrontal regulatory function and weaken amygdala response 

(Arnsten, 2009) and are effective in reducing symptoms in post-traumatic stress 

disorder (Raskind et al, 2003). A possible mechanism for norepinephrine-mediated 

regulation of anxiety symptoms may be strengthening of habituation of neural activity in 

the medial prefrontal cortex and amygdala; future studies should determine whether 

treatments targeting norepinephrine signaling regulate habituation of neural response. 

Gray’s theory of septo-hippocampal inhibition in anxiety further emphasizes a potential 

role for noradrenergic signaling in the neural basis of social fear. Norepinephrine 

signaling is critical in regulation of hippocampal function, and both hippocampal lesions 

(Gray and McNaughton, 2003) and lesions of the dorsal ascending noradrenergic 

pathway (McNaughton and Mason, 1980) cause strong anxiolytic effects.  

At the circuit level, the dynamics of habituation also remain obscure 

(Ramaswami, 2014). Neural habituation likely involves many processes in the brain, 

including molecular signaling at the synapse, activation of local inhibitory circuits, and 

activation of top-down regulatory processes, with current evidence suggesting that each 

of these processes plays a partial role. From a circuit perspective, habituation may 

occur either between regions that comprise a circuit or within local inhibitory circuits. 

Although influences within and across regions are difficult to discern, models that 

predict different habituation outcomes based on circuit interactions may be useful in 

designing studies. From one perspective habituation is a top-down regulatory response 

that reflects integration of multiple forms of sensory information within higher-level 



123 
 

regions. In this view, habituation of sensory systems (e.g., visual) is simply a mirror of 

regulatory feedback (e.g., amygdala). Key to this view of habituation, habituation to one 

stimulus promotes generalization to stimuli within the same modality (Rankin et al, 

2009). For example, in a centralized system, habituation to one type of visual threat 

(individual face) in the amygdala would generalize to similar types of visual threat (all 

faces), because the habituation is being regulated by a single central region. Our 

findings, from a centralized circuit viewpoint, would suggest that failure of habituation of 

amygdala activity is the basis for failed habituation in the visual cortex. However, we did 

not detect associations between social fearfulness and overall habituation to faces as a 

category (regardless of being novel or familiar), suggesting that differences in 

centralized habituation are not key in social fear.   

In an opposing viewpoint, habituation processes occur within sensory modalities 

themselves and are transmitted upstream to integration regions such as the amygdala 

to guide novelty and threat detection processes. From this viewpoint, habituation to one 

stimulus does not easily generalize to other stimuli in the same modality; in other words, 

habituation is specific to a single stimulus, such as a specific person’s face. Our results 

provide preliminary support for this de-centralized view of habituation in social fear—

across randomized face presentations where more novel and more familiar face 

presentations were mixed, participants generally showed higher activity to faces that 

were more novel and lower neural activity to faces that had been seen many times. This 

suggests that differences in neural habituation (or failure of habituation) in social 

fearfulness are driven by local inhibitory circuits within individual regions.  
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Specificity to social fear. Finally, we found that the majority of neural differences related 

to social fearfulness were specific to this trait. A specific neural signature of risk for 

social anxiety is critical for accurate identification and effective early treatment of at-risk 

individuals. Here, we find that although social fearfulness, trait anxiety, and depression 

share core characteristics, social fearfulness uniquely explained neural differences in 

response to social stimuli.  

 

Limitations. There are several limitations that should be taken into account when 

evaluating the findings from these studies. Because our primary goal was to examine 

response to faces, participants always viewed face blocks prior to object blocks in order 

to maximize attention to faces. Therefore, it’s possible that neural responses to objects 

are an effect of time/fatigue. A direct investigation of objects in future studies may be 

beneficial in further untangling individual differences in processing of “strong” vs. “weak” 

stimuli (Lissek et al, 2006). Online arousal/anxiety ratings were not collected during 

stimulus presentations as cognitive tasks, such as conscious ratings of anxiety levels, 

have been shown to alter neural response to stimuli (Pérez-Edgar et al, 2007). 

However, differences in arousal/anxiety during the task could influence differences in 

neural response (Choi et al, 2012). Future studies should consider collecting an online 

measure of arousal during face presentations, such as skin conductance response.  

 

Conclusions. In sum, we found that level of social fearfulness predicted response to 

novelty and habituation across a core network of brain regions involved in social 

information processing. Individuals who were high in social fearfulness displayed both 
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an elevated and sustained response to faces across a network of regions involved in 

visual threat processing, and a sustained pattern of functional connectivity between the 

amygdala and visual cortices.  In individuals who were low in social fearfulness, 

response to faces was characterized by low initial amplitudes and habituation of neural 

activity. This dimensional neural signature is specific to social stimuli and is independent 

of trait anxiety and depression, indicating a specific association with social fear.   

  

6.2. Clinical implications 

 The ability to feel familiar and safe in social situations is important and may have 

far reaching consequences. The presence of a familiar social partner greatly enhances 

the ability to overcome specific fears and subsequent anxiety (Lungwitz et al, 2014). 

Socially-familiar peers may serve as a robust safety signal in a variety of situations. 

Lacking this safety signal, socially fearful people may show greater inhibition in fear-

provoking non-social situations (e.g., riding a rollercoaster, watching a scary movie), 

with cascading consequences for both social and non-social development. Recent 

research has also identified a link between slow habituation of autonomic arousal to 

stressful events and greater body mass index (Feda et al, 2015), suggesting that 

habituation differences contribute broadly to physical health risk.  

Characterizing a specific neural mechanism underlying the dimension of social 

fearfulness has the potential to: 1) Guide individualized treatment selection. Psychiatric 

treatment selection often involves trial and error, which can delay provision of effective 

treatment. Using knowledge about an individual patient to guide treatment choice has 

innumerable benefits and may provide insight into which individuals would benefit most 
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from particular therapies; 2) Identify individuals at risk for social anxiety disorder. A 

specific biological marker of social fearfulness will provide a more precise predictive tool 

for risk assessment; 3) Guide development of scientifically-based treatments. 

Characterization of neural habituation in social fearfulness can provide the first step 

toward the development of novel therapeutics. Using animal models of habituation, new 

drugs and therapies could be developed; 4) Address the need for dimensional 

neurobiological measures of psychopathology across diagnostic categories. Social 

fearfulness is a trait that cuts across multiple diagnostic categories, including autism 

(van Steensel et al, 2011) and schizophrenia (Pallanti et al, 2004), leading to significant 

increased disability, and preliminary studies have suggested that neural habituation may 

play a role in each of these illnesses (Kleinhans et al, 2009; Holt et al, 2005). Therefore, 

neural habituation may provide a useful neurobiological marker across multiple 

disorders. This approach is consistent with the National Institute of Mental Health’s 

RDoC initiative calling for “the development, for research purposes, of new ways of 

classifying psychopathology based on dimensions of observable behavior and 

neurobiological measures”. 

 

6.3. Future directions 

Social anxiety disorder is a highly prevalent and costly illness, and early 

identification and effective treatment of social anxiety would have a substantial impact 

on public health. The availability of specific dimensional biological markers are essential 

for the early identification of risk and the assessment of treatment response (Kessler, 

2002). Our findings provide preliminary evidence that two fundamental elements of 
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neural response to social stimuli—initial amplitude and habituation—vary dimensionally 

with social fearfulness, a spectrum including both clinical and sub-threshold social 

anxiety. We hope that these results serve as a springboard for future studies of the 

temporal dynamics of neural response and their impact on social functioning. We 

suggest the following future research directions. 

 

1. Examine novelty response and habituation across development. The 

ability to predict who is at risk for developing social anxiety disorder is an 

important goal and has the potential to significantly impact early treatment and 

prevention. Most cases of social anxiety disorder occur during early adolescence, 

at a time when the ‘social brain’ is undergoing major structural and functional 

development (Blakemore, 2008). This early onset has cascading implications for 

social development, school performance, and career choice. Detection of brain 

changes during this period that contribute to risk for social anxiety disorder could 

have a profound impact on development of new, preventative therapies. 

Investigation of fundamental aspects of response to social novelty—both initial 

amplitude of response and habituation to repeated stimuli—in adolescents may 

shed new light on this developmental process and provide a valuable 

mechanisms for early treatment. 

 

2. Determine the relationship with functional impairment. How habituation to 

novelty contributes to the development of functional impairment—the hallmark of 

social anxiety disorder—remains unknown. While the diagnosis of social anxiety 
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disorder is associated with high levels of social fear, and will therefore fall at the 

upper end of the social fear continuum, social anxiety disorder is not 

synonymous with social fearfulness; it requires an additional consideration of 

impairment, or the extent of dysfunction and distress in a person’s life resulting 

from the social anxiety (Rapee and Spence, 2004). Although functional 

impairment is related to social fear severity, it is also a distinct factor. Studies 

within social anxiety disorder patients determining associations between neural 

response to novel and repeated social stimuli and extent of impairment are 

necessary to distinguish the contribution of these neural mechanisms to this 

critical factor.  

 

3. Identify effective treatments. Psychiatric treatment selection often involves 

trial and error, which can delay effective treatment. Using knowledge about an 

individual patient to guide treatment choice has innumerable benefits. For 

example, although there are several effective treatments for social anxiety 

disorder, these treatments only work for approximately 50% of social anxiety 

disorder patients (van Vliet et al, 1994; Stein et al, 1998; Heimberg et al, 1998). 

Exposure therapy, one of the most effect treatments for social anxiety disorder, is 

fundamentally a learning process, and we would predict that habituation is one of 

the target mechanism of this type of therapy (Protopopescu et al, 2005). Indeed, 

preliminary evidence has linked faster rate of habituation following exposure 

therapy with lowered behavioral avoidance of phobic stimuli (Matthews et al, 

2015). The ability to characterize an individual’s neural habituation response may 
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provide insight into which individuals would benefit most from exposure therapy. 

Characterization of neural habituation in people with high social fearfulness can 

also provide the first step toward the development of novel therapeutics. Using 

rodent models of behavioral habituation (Salomons et al, 2013; Leussis and 

Bolivar, 2006; Patel and Hillard, 2008), studies have suggested that behavioral 

habituation may serve as a new behavioral test for anxiolytic response to 

therapy.  
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