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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

Mechanical components in engineering systems are often subjected to cyclic loads 

leading to fatigue and progressive crack growth. It is essential to predict the performance 

of such components to facilitate risk assessment and management, inspection and 

maintenance scheduling, and operational decision-making. In 1978, the National Bureau 

of Standards and Battelle Laboratories completed an exhaustive study that estimated the 

total cost associated with material fracture and failure in the United States to be over $88 

billion dollars per year (corresponding to almost 4% of the national GDP at the time) [1].    

The study concluded that substantial material, transportation, and capital investment costs 

could be saved if technology transfer, combined with research and development, 

succeeded in reducing the factors of uncertainty related to structural reliability.  Emphasis 

on fracture mechanics, material properties, and improved inspection schedules/techniques 

were identified as potential methods of improving structural reliability while reducing 

material usage and replacement of critical components. Among the major industry sectors 

where fatigue and fracture of structural components are of critical concern is that of the 

aeronautical and aerospace industry.  

Originally, the aeronautical community adopted the safe life design approach in 

order to increase structural integrity throughout the design life of a component. Within 

the safe life design method, components are assumed to be flaw free and are designed and 
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tested to withstand a pre-determined design life.  The mean fatigue life of the structure is 

estimated and then divided by a subjective safety factor in order to assure a safe operation 

life of the component. Under this design philosophy, components are retired from service 

following this safe life time period, regardless of their current condition. The 

disadvantages of this approach are that components tend to be over-engineered, a large 

percentage of components are retired long before their actual useful lives have been 

reached, safety factors are not statistically evaluated, and the method does not account for 

single “rogue” defects that could grow to a critical size during the design life.  The 

damage tolerance approach was later adopted in order to overcome some of these 

limitations. 

The U.S. Air Force became the first organization in the United States to formally 

require damage tolerance design with the issuance of MIL-A-83444 Airplane Damage 

Tolerance Requirements in 1974, which specifies that cracks shall be assumed to exist in 

all primary aircraft structures [2].  Damage tolerance design is based on the assumption 

that initial flaws (cracks, scratches, inclusions, etc) exist in any structure and such flaws 

will propagate under repeated cyclic loading conditions which are substantially less than 

the yield strength of the material, ultimately causing structural failure.  Damage tolerance 

concepts are based on fracture mechanics principles and have been pursued for fixed-

wing aircraft structures since mid 1970‟s [3].  This approach to structural analysis has 

forced engineers to develop a more thorough understanding of relevant component 

service loads and stress spectrums, material properties, and crack growth mechanisms.   

Although significant work has been pursued for fixed wing aircraft over the past 

few decades, relatively little work has been completed on its application to rotorcraft due 
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to complex component geometries, high cycle, low stress dynamic loading conditions, 

and the necessity for accurate small crack, near threshold crack growth modeling. 

Following a detailed assessment in 1999 by the Federal Aviation Administration (FAA) 

and the Technical Oversight Group for Aging Aircraft (TOGAA) on the current 

approaches to rotorcraft design for fatigue, the TOGAA recommended that a damage 

tolerance philosophy should be used to supplement the existing safe-life methodology for 

rotorcraft design and certification.  In response to the assessment and recommendation, 

the FAA initiated the process to revise FAR 29.571, Fatigue evaluation to include 

damage tolerance requirements and developed a rotorcraft damage tolerance (RCDT) 

R&D roadmap identifying multiple areas of research instrumental to development of 

rotorcraft specific damage tolerance techniques and tools [4]. Much of the research 

contained within this dissertation is motivated by the updated FAA RCDT initiative and 

directly supports the critical research areas identified within the RCDT R&D roadmap 

including, but not limited to, initial flaw state determination, fatigue crack growth 

analysis, and risk assessment - probabilistic modeling.  

The traditional damage tolerance (DT) approach to aircraft structures has assumed 

a deterministic damage accumulation process where deterministic crack growth curves, 

constant material properties, and specific initial flaw sizes are used. For DT-based design, 

a safety factor is commonly used to ensure structural integrity. However, fatigue crack 

growth is a stochastic process and there are different kinds of uncertainty – physical 

variability, data uncertainty and modeling errors – that should be included within the 

analysis to more accurately represent the fatigue life of the component.  In order to 

accurately assess the risk of failure of structural components, these sources of uncertainty 
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need to be identified and their statistical characteristics quantified.  The probabilistic 

method is more appropriate for damage tolerance analysis since it can properly account 

for various uncertainties and assist the decision-making process with respect to design 

and maintenance scheduling.  Uncertainty appears at different stages of analysis and the 

interaction between these sources of uncertainty cannot be modeled easily. Additionally, 

the uncertainty quantification and propagation methodology must be developed to be 

computationally efficient since the reliability assessment may require repeated evaluation 

for accurate predictions. 

The remaining sections within this chapter provide an overview of relevant topics 

to fatigue crack growth analysis and will detail the research objectives and contributions 

of this work.  In order to provide a baseline level of understanding which is necessary for 

later development and discussion, Section 1.2 reviews some of the major topics that are 

relevant to crack growth analysis. Section 1.3 discusses some of limitations that exist in 

the previous methodology and clearly states the main objectives of this research. A brief 

summary of the major contributions contained in the subsequent chapters of this work 

within the areas of uncertainty quantification and fatigue crack growth analysis is also 

provided.  Additionally, the demonstration problem to which the methods developed 

within this work are applied is given within this section. The final section within this 

chapter provides details on the overall organization of the subject material contained 

within the remaining chapters of the dissertation. 
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1.2 Fatigue Crack Modeling Background 

As mentioned previously, the damage tolerance approach can be utilized to ensure 

that structural components have the capacity to withstand environmental loading even 

under the presence of cracks or other defects.  Inherent to this philosophy is the 

underlying assumption that all structures have some initial flaws, which will propagate 

under fatigue loading conditions. Linear elastic fracture mechanics (LEFM) based 

methodologies have been used extensively to better characterize the fatigue crack growth 

process in metals and are based on the application of classical linear elasticity to cracked 

bodies.  Linear elastic fracture mechanics theory is applicable for analysis of stable crack 

growth resulting from repeated fluctuating loading conditions and can be used within the 

damage tolerance approach to address structural integrity concerns by considering both 

the damage propagation (growth) and the residual strength of the flawed component.   

Residual strength is the amount of static strength of the structure available at any 

time during a component‟s service life.  The residual strength is expected to decrease 

with increasing severity of damage.  Plane strain fracture toughness is a material property 

which describes the ability of a material containing a crack to resist fracture (rapid, 

unstable crack growth), and is denoted by the parameter KIC.  The structural safety of the 

system of interest is maintained by ensuring that damage is never allowed to grow to a 

sufficient size such that the stress intensity factor at the damage location exceeds KIC and 

the residual strength of the system does not drop below the maximum in-service load 

value.  By enforcing these two conditions, it is possible to identify a critical crack size 

over which the structural integrity of the system is insufficient. A schematic of the 
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relationship between residual strength and crack size is shown in Figure 1 and that of 

stress intensity to crack size is shown in Figure 2.   

 

      

Figure 1: Schematic of structural residual strength with respect to crack size 

 

      

Figure 2: Schematic of relationship between stress intensity factor and crack size 

 

Fatigue crack propagation occurs as a result of cyclic loading conditions with 

cracks growing a given increment (Δa) in a given number of loading cycles (ΔN).  When 

the crack size reaches a critical level, crack growth becomes unstable and failure occurs.  

According to linear elastic fracture mechanics (LEFM), the plastic deformation near the 
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crack tip is controlled by the stress intensity factor range (ΔK), and is applicable provided 

the small scale yielding (SSY) condition is satisfied. The fatigue crack growth rate is 

typically represented with the nonlinear functional relationship 

   
 ,...,,,, aKKRKf

N

a

dN

da
thIc




    (1) 

where da/dN is the crack growth rate per cycle, f is a non-negative function, ΔK is the 

range of the stress intensity factor, R is the ratio between the minimum and maximum 

applied loading, KIc is the plane strain fracture toughness, Kth is the threshold stress 

intensity factor, and a is the crack length.  KIc and Kth are both material properties and are 

depicted within the schematic in Figure 3.  The stress intensity factor (ΔK) is viewed as 

the primary parameter, and is related to the applied loading, crack length, and geometry 

of the component.  Different empirical formulas have been proposed to represent some 

portion(s) of the fatigue crack growth rate curve, with the Paris [5], Forman [6], and 

Walker [7] laws given in Eqns. (2), (3), and (4) respectively.  
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 The traditional fatigue crack growth rate curve is based on long crack behavior 

and generally is sigmoidial in shape with three distinct regions; the near threshold, linear 
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(Paris), and the near critical regions.  A representative plot of the fatigue crack growth 

rate curve is shown in Figure 3. 

 

 

Figure 3: Idealized fatigue crack growth rate curve for metals. 

 

The near threshold region (Region I) is that part of the curve generally below 10
-8

 

in/cycle (10
-10

 m/cycle) and is characterized by the stress intensity factor range (ΔK) too 

low to effectively propagate a crack.  The linear/Paris region (Region II) encompasses 

data where the crack growth rate has a linear relation with the stress intensity factor range 

and is commonly modeled by the Paris law [5].  The final region of the crack growth rate 

curve is related to the fracture toughness of the material, where a small increase in the 

stress intensity amplitude produces a large increase in crack growth rate as the material 

approaches unstable fracture. For the high cycle fatigue crack growth problem, in which a 

large number of small growth cycles are expected, it is essential that the near threshold 
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region of the fatigue crack growth curve is accurately represented by the fatigue crack 

growth model used in the analysis.   

Table 1:   Proposed fatigue crack growth models 

 
 

 Since the early 1960's when Paris [5] initially proposed the relationship between the 

fatigue crack growth rate and the stress intensity factor range, many models have been 

developed to represent the fatigue crack growth rate curve for various materials.   Several 

researchers have proposed different models of varying complexity including Forman [6], 

Walker [7], Erdogan and Ratwani [8], among others. A more comprehensive, but far 

from exhaustive, list of models is included in Table 1. As mentioned previously, for the 

high cycle fatigue crack growth problem, in which a large number of small growth cycles 
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are expected, it is essential that the near threshold region of the fatigue crack growth 

curve is accurately represented, and therefore future discussion will focus on those 

models that meet this minimum requirement.  

Under constant amplitude loading conditions, the fatigue life of the structure can 

be found by simple integration of the fatigue crack growth rate model given in Eqn. (1).  

However, most finite-life structures are subjected to random variable amplitude loading 

while in service, which makes the fatigue life calculation significantly more difficult.  

The most common method for dealing with crack growth propagation under variable 

amplitude loading conditions is through the use of a cycle-by-cycle prediction method in 

which the crack growth increment (da/dN) is evaluated for a given ΔK, and R  

corresponding to each cycle within the variable amplitude history.   However, relying on 

a cycle-by-cycle calculation can become computationally expensive, particularly within a 

probabilistic reliability analysis framework in which many life predictions must be 

evaluated.  This computational burden is again increased when a multiaxial variable 

amplitude load is applied to a structure.  Chapters 3 and 5 will further comment on the 

challenges inherent to fatigue crack growth modeling under multi-axial variable 

amplitude loading and will develop methods to address these issues for planar and non-

planar fatigue crack growth modeling within a probabilistic framework.  

Since the damage tolerance methodology assumes an initial flaw/defect in the 

material, and the key result of the analysis is focused on accurately predicting the number 

of cycles for this initial crack to grow to a critical crack length.  Key questions that need 

to be addressed before crack analysis can be performed include: 

1.) What initial crack shape should be used? 
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2.) What initial crack size should be used? 

3.) How will crack propagation be modeled (single point, two-point, multiple 

points along crack front)? 

4.) What direction is the crack allowed to propagate (planar, non-planar)? 

 Although seemingly simple questions, clear answers are not always obvious and 

can be problem dependent and subject to engineering judgment.  Several different 

approaches have been developed and reported within the literature to address each of 

these issues, and the remaining portion of this section presents many of the methods that 

have been used within previous research. However, most of these questions currently 

remain open areas of research within the fatigue and fracture research community, where 

improved methods and techniques are currently under investigation.  

Most cracks and planar flaws can be classified within one of five general 

categories: i.) surface-breaking flaws, ii.) through flaws, iii.) subsurface/embedded flaws, 

iv.) corner flaws, and v.) edge flaws [9]. Although actual flaws contained within 

structural components may have irregular shapes, these flaws are typically represented by 

simpler, idealized shapes within crack growth studies. Two main factors are responsible 

for the common practice of crack shape idealization; insufficient information of true 

crack shapes within components and limited theoretical and modeling capabilities of 

highly complex crack shapes.  Most common nondestructive evaluation techniques are 

incapable of characterizing detailed crack front profile, providing only limited crack 

characterization information on crack size and location. Although advanced techniques 

such as the scanning electron microscope (SEM) can be used to see microstructure level 

defects, this technology is not widely available and can be expensive to operate. 
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Additionally, even if realistic crack front shapes were known, standard fracture 

mechanics solutions as well as reliable crack front modeling capabilities are generally 

only available for simple shapes. As a result, the shapes of surface, subsurface, 

embedded, and corner flaws are typically represented as semi-elliptical, elliptical, and 

quarter elliptical respectively, and through and edge cracks are generally assumed to have 

a rectangular shape [9].  

For any fatigue critical structural component, the smaller the initial crack size, the 

higher the residual strength capacity, and the longer the overall fatigue life. Therefore, the 

estimation of the initial flaw size is of critical importance.  Several different methods are 

available for determining initial crack sizes within as-manufactured components, and are 

briefly discussed below.  

If the size and shape of the true flaws can be identified using SEM or by some 

other means, or if initial flaws are known to exist in the component (such as notches or 

surface scratches), idealized crack sizes should be defined as the maximum extent of the 

actual flaw [9]. That is to say, the idealized crack shape should fully inscribe the actual 

shape, thus making the area of the idealized crack greater than that of the true crack 

shape.  In doing so, a larger crack size is assumed and a conservative fatigue life 

prediction can be expected.  

Another typical method for quantifying initial crack sizes within as-manufactured 

material is by using nondestructive inspection techniques. Nondestructive inspection 

(NDI) can be defined as the use of nonintrusive methods to ascertain the integrity of a 

material or structure. Many different inspection methods have been developed to evaluate 

the existence of flaws including liquid penetrant, magnetic particle, eddy current, 



13 

 

ultrasonic, and radiographic, among others [10]. NDI techniques are typically used on 

fracture critical parts to detect flaws that are equal to or larger than a threshold crack 

size.  The threshold crack size is defined as the minimum crack size that can be 

consistently detected using a given inspection method, and varies depending on the 

inspection method used.  Using information obtained from NDI techniques, engineers are 

able to characterize initial flaw sizes based on the flaw sizes found within the inspected 

components.  Since NDI techniques are not capable of reliably detecting crack sizes less 

than their threshold values, if no flaws are detected, engineers typically set the initial flaw 

size as the minimum detectable flaw size for the specific NDI technique used. The U.S. 

air force damage tolerant design handbook [11] reported ranges of approximate crack 

lengths that are reliably detected using different NDI techniques, the results are 

summarized in Table 2. 

Table 2: Approximate limits of reliable crack size detectability limits 

Solid Cylinder Hollow Cylinder

Specimen Type Straight Filleted Straight Filleted

Liquid Penetrant Lab 0.16 0.09 x 0.31

Production x x x x

Ultrasonic Lab 0.14 0.09 0.10 0.13

Production 0.14 0.07 x 0.13

Eddy Current Lab 0.20 0.23 x 0.14

Production 0.16 0.30 x x

Magnetic Particle Lab 0.12 0.07 0.10 0.13

Production 0.12 0.13 x x  

* x represents cases where data was not reported 

 

When no additional information is available for the characterization of initial flaw 

sizes within a fatigue critical part, handbooks and standards can be used as references to 
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identify suitable values.   Within the aerospace industry, the USAF damage tolerant 

design handbook [11] specifies conservative initial flaw size assumptions for intact 

structures. For edge cracks and corner cracks at holes the handbook suggests an initial 

flaw size of 0.05 inches, whereas for through and surface cracks at locations other than 

holes it suggests an initial half crack length (c) and depth of 0.125 inches (for surface 

crack configurations in slow growth components). These values can be used for 

subsequent fatigue life analyses.  

The concept of equivalent initial flaw size (EIFS) has also been used for 

determining the size distribution of initial cracks. The equivalent initial flaw size 

approach has been used to derive initial flaw sizes from the distribution of fatigue cracks 

occurring later in the service life of a component, typically using back extrapolation 

techniques. Although mentioned here for completeness, the concept of EIFS will be 

discussed in more detail within Section 3.2.  

Several approaches, of various levels of sophistication, have been used within the 

literature to extend the crack front of pre-existing flaws.  Crack front extension at a single 

point (surface), two points (along the semi-major and semi-minor axis locations 

corresponding to surface and depth positions), or multiple points (all along the crack 

front) have been used for 2D and/or 3D crack propagation.  In selecting one of these 

approaches for crack modeling, the engineer imposes one of three crack shape 

development schemes, namely; circular, elliptical, or a general case.  

For illustration, suppose an initial semi-circular surface crack is under 

consideration. The usual method of dealing with propagating cracks is to assume that a 

particular crack shape is maintained during the fatigue process. This is equivalent to a 
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single point extension modeling approach where the stress intensity factor is determined 

at a single point (typically at the surface location where the highest stress intensity factor 

is commonly found), and the entire crack front is extended by a single value [
12

]. 

Implementing this approach will result in an initially circular crack remaining circular for 

the entire duration of the crack modeling process.  The next level of sophistication 

considers crack growth at the semi-major and semi-minor axis locations [13] where the 

stress intensity factors and crack growth are performed at the semi-major and semi-minor 

axis locations only.  Using this method an initial semi-circular crack may develop into an 

elliptical surface crack if the crack growth rate at one location (surface or depth) is 

calculated to be faster than the other point.  In a general case, the crack front may be 

divided into n points. For each point along the crack front, a stress intensity factor is 

determined, crack growth rate is calculated and each point is extended accordingly [14].  

This modeling approach allows an initially semi-circular crack to develop into a general 

crack shape that may not necessarily be easily captured by a simple geometric shape (e.g. 

semi-circular or semi-elliptical).  

  

    (a.)       (b.) 

Figure 4: Schematic of crack growth methods a.) semi-circular extension (constant along 

crack front) b.) semi-elliptical extension (different crack extension at semi-major and 

semi-minor locations) 
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Obviously, there exists a tradeoff between accurate/meaningful crack shape 

evolution and crack modeling complexity. Although the multiple point advancement 

scheme may provide the most flexibility in terms of crack shape development, it also 

provides several additional modeling and computational complexities including multiple 

stress intensity factors and crack extension computations, as well as complicated 

remeshing requirements that simpler methods may avoid.  It is mentioned here to make 

the reader aware not only of the necessary considerations for accurate crack shape 

representation, but also of the realistic computational limitations that exist for performing 

fatigue crack growth propagation analysis within a probabilistic framework.  These issues 

will be discussed in later chapters as the crack modeling frameworks are developed for 

both planar and non-planar analyses.  

Fracture mechanics concepts provide the tools to enable fatigue life assessment of 

structural components through crack growth analysis. In principle, the prediction of crack 

growth using fracture mechanics requires the following steps: 

(1) Identify the relevant crack growth properties (crack growth rate as a function 

of the stress intensity factor, fatigue threshold, fracture toughness, etc) for the 

material used in design 

(2) Determine the initial flaw size, shape, and location  

(3) Establish the cyclic stress time history  

(4) Determine the stress intensity factor solution as a function of crack size, 

shape, geometry, and loading 

(5) Select a fatigue crack growth rate model and damage accumulation rule 
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(6) Propagate fatigue crack from initial flaw size to final (critical) flaw size 

Each of these steps must be performed in order to obtain a prediction for the fatigue life 

of a component, and several different methods and techniques which are available to 

engineers, have been presented within this section.  Inherent to each available method are 

certain benefits, drawbacks, and limitations that must be considered when performing this 

type of analysis. This research will focus on investigating various tools and techniques, 

which are based on fundamental fracture mechanic principles, for fatigue crack growth 

analysis under uncertainty.   

The previous discussion within this section has focused on traditional, 

deterministic fracture mechanics (DFM) principles and procedures. The DFM approach 

assumes single, well defined, deterministic values for all model inputs. The result of the 

deterministic approach is a single model prediction value. Traditional methods employing 

deterministic approaches lack the ability to consider model predictions under uncertain 

conditions and cannot answer “what-if” questions under operating or environmental 

conditions which differ slightly from the values under which they were evaluated. In fact, 

all the necessary inputs to a fracture mechanics analysis are rarely accurate to a high 

degree of certainty, leaving the deterministic approach less than desirable [15].  To 

overcome this limitation, engineers have used a worst-case scenario approach, in which 

conservative values for all model inputs were assumed and used within a deterministic 

analysis. If a system could perform safely under the worst-case conditions, then it also 

would be functional under less severe load conditions. However, tradeoffs usually exist 

between those factors that increase safety and those which increase performance or 

economic considerations, and an optimal design for system safety under worst case 
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considerations may lead to an overdesigned structure with poor performance capabilities 

(e.g. larger and thicker components have more strength, but result in increased vehicle 

weight leading to decreased speed or maneuverability).   

Probabilistic fracture mechanics (PFM) can be used to remove the unrealistic 

conservatism that is inherent to the worst-case approach (i.e. simultaneous occurrence of 

several improbable events), by combining known, assumed, or proposed statistical 

variations of the controlling parameters within traditional engineering models [15]. 

Fracture mechanics and probability theory are implemented within the PFM framework 

to account for both mechanistic and stochastic aspects of the fracture problem and PFM is 

gaining popularity as a method for realistic evaluation of fracture response and reliability 

of cracked structures [16].  PFM is based on the fundamental principles of deterministic 

fracture mechanics but considers one or more of the input variables to be random rather 

than having deterministic values. Therefore, rather than calculating a single fatigue life 

prediction and using a safety factor based on engineering judgment, a range of fatigue life 

predictions are calculated and appropriate values are selected to maintain a sufficiently 

low,  but cost effective, failure probability [17].  

Early work using PFM in aircraft applications mainly focused on capturing the 

inherent random nature in the applied loads or stresses in structural components. Much of 

this work addressed crack initiation, rather than crack growth [18,19]. More recent work 

has proposed additional methods in the area of PFM by treating various fracture 

mechanics inputs as random variables (initial crack size, crack detection probability, 

material properties, and service conditions [15]) with increased emphasis on crack 

propagation methods. Examples of PFM analysis where certain input variables, such as 
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stresses, yield strength, and fracture strength, have been treated as random variables can 

be seen in ref [15].   

The failure probability at any given time may be determined by combining 

conventional fracture mechanics calculations with an appropriate statistical approach. 

Generally, the component failure is defined through some limit state function, g(…), 

which defines the boundary between the region of safe operating conditions and that of 

failure. Typically, the limit state function is expressed in terms of structural capacity and 

structural demand.  Failure is expected when the demand exceeds the capacity of the 

system and is typically expressed as the limit state being < 0. The probability of failure is 

the multiple integral of the joint probability density function in the region of failure (g(xi) 

< 0) given by 

   

    n

D

nif dxdxxxfxgPP 11........0)(    (5) 

where D={(x1….xn): g(x1….xn) <0} is the region of failure, Pf is the probability of failure, 

f(x1….xn) is the joint probability density function of the parameters x1….xn, and the 

function g() is the limit state function defined above.  The driving parameters, x1….xn, for 

fatigue failure may be the component strength and the applied load, flaw size and critical 

size, or stress intensity factor and fracture toughness [20].  Numerical based techniques 

are then used to evaluate the failure probabilities of complex problems. Monte Carlo 

simulation is broadly applicable to the generation of numerical results from PFM models 

[21] and will be used within this work due to its scope, depth, and relative ease of 

implementation for evaluating probabilistic component life predictions considering 

multiple sources of uncertainty.  
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The probabilistic approach is capable of identifying the sources of variables 

affecting the fatigue life and fatigue strength of the structure in terms of risk, while 

eliminating the over-conservatism that maintains safety. It has been proven that the 

probabilistic method can be extended to provide useful information to help managers in 

making decisions regarding the operation and inspection time of the fleet in order to 

maintain airworthiness [3]. The probabilistic method for damage tolerance analysis 

presents the foundation on which this work is built and enables a systematic framework 

for uncertainty quantification considering physical variability, data uncertainty, and 

modeling uncertainty to be included within an overall component life prediction.  

 

1.3 Problem Statement and Research Objectives 

As the overall population of our aviation fleet (both fixed wing and rotary) ages 

and existing aircraft are required to function long beyond their initial design life, 

increasing emphasis has been placed on improving the understanding and modeling of the 

fatigue crack growth problem. Amid ever shrinking budgets and resources, engineers are 

tasked with the enormous responsibility of developing lower weight structures with 

increased design lives, which still meet the high reliability requirements that have 

become expected within the aviation industry. However, uncertainties exist at all levels of 

the fatigue damage tolerance modeling process, resulting in unknown confidence bounds 

on component life predictions made by engineers.  In order to overcome this limitation, a 

systematic framework for stochastic fatigue crack growth modeling must be developed 

which accounts for uncertainty at all levels of the damage tolerance analysis. It is the goal 
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of this dissertation to provide a methodical and practical framework for quantifying 

various sources of uncertainty and analyzing their effects on component reliability 

predictions over time. The objectives of this dissertation are: 

1.) Develop statistics based uncertainty quantification techniques for fatigue 

crack model inputs and model parameters. Fatigue crack growth modeling 

involves numerous input quantities such as initial flaw size, loading, and 

material properties as well as various model parameters which should be 

treated in a probabilistic manner.  Each input may have a different form or use 

within the fatigue modeling procedure and quantification must be performed 

in such a way that additional new information can be easily incorporated into 

the overall framework. 

2.) Develop a methodology to perform fatigue crack growth analysis for 

components subjected to multi-axial variable amplitude loading within a 

probabilistic framework. The methodology must incorporate the random input 

and parameter values which are quantified in the previous objective and 

provide an accurate component reliability prediction over time. Uncertainty 

quantification requires multiple analyses, therefore, the overall methodology 

must also be computationally efficient to implement.   

3.) Develop and implement necessary methods for quantification of error and 

uncertainty in model predictions considering numerical solution error and 

model form error. Each model within the crack growth process introduces 

additional error, and this error must be accounted for and included within the 

overall component reliability prediction.  
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4.) Implement methods developed in objectives 1, 2, and 3 for planar and non-

planar crack growth analysis. Three dimensional crack growth modeling 

introduces additional uncertainties arising from model form (extension and 

direction criteria) and numerical modeling approximations. These 

uncertainties need to be evaluated from a statistical viewpoint and included 

within the probabilistic fatigue life prediction.  

 

Relatively little work has been completed on the application of the damage 

tolerance method to rotorcraft structures due to their complex geometries, high frequency 

dynamic loading, and mixed mode loading conditions.  This research will help address 

some of the limitations posed by the traditional damage tolerance modeling approach for 

rotorcraft structures by further investigating the near threshold crack growth behavior and 

material properties, overcoming small crack growth modeling restrictions, and 

developing efficient computational methods which are suitable for  mixed mode loading 

conditions. These improvements to the current analysis methodology are developed to be 

compatible with a probabilistic treatment of the fatigue crack growth process.   

The overall goal of this research is to develop and implement an overarching 

framework for fatigue crack growth under multi-axial, variable amplitude loading which 

includes systematic uncertainty quantification at all levels of the fatigue crack growth 

modeling process.  Key contributions have been made to both planar and non-planar 

crack growth analysis.  A significant contribution contained within this work for planar 

crack growth analysis is the development of a new framework for probabilistic fracture 

mechanics which enables fatigue crack growth modeling under multi-axial, variable 
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amplitude loading conditions incorporating finite element analysis, surrogate modeling, 

and cyclic crack growth modeling methods.  Included in this area are novel approaches to 

fatigue crack growth rate representation, surrogate model development, and model error 

assessment.  Contributions to the area of non-planar crack growth analysis include 

uncertainty assessment in fatigue crack growth models resulting from the use of different 

crack extension and direction criterion as well as an „equivalent planar‟ fatigue crack 

growth modeling approach which reduces the computational expense of numerical 

simulations while retaining valuable features of a full scale non-planar crack growth 

analysis. 

 

Demonstration Problem Description 

The methods developed throughout this research will be applied to a 

demonstration problem which is of general interest to the rotorcraft community. In 

evaluating potential candidate problems several key characteristics were desired 

including: 

1. Metallic component 

2. Principal structural element  

3. Non-redundant part 

4. Complex structural geometry 

5. Subject to multiaxial, variable amplitude fatigue loading 

6. Fatigue failure observed in the field 

The rotorcraft mast structural component meets the above criteria and was identified as a 

suitable demonstration problem that will be used throughout this research for application 
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of developed techniques to a practical problem.  In order to allow practical considerations 

to be presented directly alongside the methodology development, the application of 

techniques developed within each section of this dissertation will be evaluated on the 

rotorcraft mast problem. Relevant numerical results will be presented in each section 

following the technical considerations and methodology development.   

  

 

Figure 5:  Schematic showing typical rotorcraft mast component, rotorcraft blades, and 

gearbox assembly 

 

Materials that are used in aerospace structural components are generally restricted 

to steels (4340, 9310, D6AC), and aluminums (7000 and 2000 series) as a result of their 

high strength and high fracture toughness [22, 23].  Special focus will be placed on 

analysis of the 4340 steel alloy and Aluminum 7075 within this work, as they are most 

commonly used materials for rotorcraft masts and other critical structural components. 
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Analysis results using data from other common aerospace grade materials will also be 

shown on occasion.  

Mixed mode loading conditions are known to exist within the mast structure.  

Typically, tension, torsion, and bending forces are present during regular in-service 

conditions.  As the rotor system operates, upward thrust is generated by the blades and is 

transferred to the rotorcraft body through the mast system. This causes tension loading to 

exist within the mast system, and is the primary force that keeps the system air-born.  

Torsion exists due to the twisting of the rotor system and the torque that is applied at the 

top of the mast system from the rotating rotor blades.  Finally, bending forces are 

introduced as a result of the centrifugal force, resulting from the rotor system rotation, 

which causes forces to act outward and perpendicular to the rotorcraft mast system. 

Although all three loading conditions exist within the main rotor mast during in-service 

conditions, tension typically only accounts for less than 5% of the overall applied loading 

within the structure and can be deemed relatively insignificant for this problem.  For this 

reason, only bending and torsion are considered within this research, however, their 

application does induce all three modes of loading (I, II, and III) within the cracked 

structural component.  

The rotorcraft mast component (and associated materials) will be referred to 

throughout this work and will be used to demonstrate the applicability of methods for 

probabilistic damage tolerance analysis presented in this research to a realistic structural 

component.  
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1.4 Organization of the Dissertation 

The content of this dissertation can be considered to address three major topics 

with respect to the overall stochastic fatigue crack growth analysis process, namely; 

quantification of the inherent uncertainty in model inputs, development of a flexible and 

efficient fatigue crack growth propagation method, and quantification of the resulting 

uncertainty in model outputs including modeling errors.  A schematic showing the 

various components of this work as related to the overall component fatigue life 

prediction modeling approach is included in Figure 6.   

The first topic is concerned with statistically quantifying model inputs and model 

parameters.  When individual variables are under consideration, statistical methods can 

be used to fit probability density functions to experimental data sets.  Chapter 2 addresses 

uncertainty quantification techniques for parameters/processes that are common to both 

the planar and non-planar crack growth methods. Additional sources of uncertainty that 

are unique to the planar and non-planar crack growth analysis are addressed within 

Chapter 3 and Chapter 5, respectively.  

The second major topic covered within this dissertation focuses on developing a 

framework to accurately model the fatigue crack growth process while including those 

uncertainties which were previously identified and quantified. This task is addressed 

within Chapter 3 for the planar fatigue crack growth modeling scenario and again in 

Chapter 5 for non-planar crack growth analysis.  

The last major topic analyzes the uncertainty of model outputs. Again, this topic 

is addressed in two different chapters, corresponding to model output resulting from the 

planar and non-planar fatigue crack modeling frameworks.  Uncertainties in model 
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outputs are addressed in Chapter 4 and Chapter 6 for planar and non-planar crack growth, 

respectively. Included in this topic is the quantification of modeling errors for each of the 

models included in the overall crack modeling methodology.  Discretization errors, 

surrogate modeling errors, and various crack growth model form errors are identified and 

statistically evaluated.  Additionally, Chapter 6 analyzes the uncertainties in fatigue crack 

shape and model prediction resulting from the use of different crack growth extension 

and direction modeling criteria within the non-planar fatigue crack growth analysis 

framework.  

The final chapter summarizes the overall work contained within the dissertation 

and provides recommendations for areas of future research.  

 

 

Figure 6:  Flow chart depicting dissertation outline and of methodology development for 

stochastic fatigue crack growth evaluation 
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CHAPTER II 

UNCERTAINTY QUANTIFICATION OF MODEL INPUTS AND PARAMETERS 

 

2.1 Introduction 

The reliability of an engineering system can be defined as the ability to fulfill its 

design purpose for some time period [24].  For structural systems, reliability can be most 

simply viewed as the capacity of the structure exceeding some demand.  Typically 

capacity is expressed in terms of structural strength, and demand is given by loads or 

stress. Engineers are expected to design these systems so that the capacity of the structure 

is maintained despite uncertainties in system performance over time (typically due to 

degradation) and/or uncertain use and environmental conditions.  Traditional engineering 

approaches simplify the analysis by considering uncertain variables to be deterministic, 

and then apply empirical safety factors on top of deterministic solutions. However, 

empirical safety factors are typically based on past experience and/or engineering 

judgment, and statistical justification for the choice of their values is not always 

available.  As a result, structural systems designed using empirical safety factors can be 

either significantly overdesigned or operating at unacceptably low reliability levels.  

The probabilistic approach to engineering design provides a method for 

incorporating uncertainty within the structural analysis in a logical and meaningful way.  

Uncertainty exists in the architecture, parameters, abstraction, and unknown aspects of an 

engineering system. Additional uncertainty is introduced as a result of the predictive 

models, simplifying assumptions, and analysis methods used [24]. Quantification of the 
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uncertainty inherent in each of these sources needs to be implemented within a structural 

analysis to better understand the overall uncertainty within the analysis and how each 

affects the overall variability in system performance. 

 Generally, uncertainties can be identified to be of two types; aleatory or 

epistemic.  Aleatory uncertainty can be defined as uncertainty arising from or associated 

with the inherent, irreducible, natural randomness of a system or process. Additional 

knowledge about this type of uncertainty is aimed not at reducing the uncertainty, but in 

better quantifying the actual physical state of the system or process.  Examples of 

aleatory uncertainty are seen in material properties data and loading.  Typically, a 

probabilistic interpretation can be developed to capture this type of uncertainty assuming 

enough statistically relevant data is available. Epistemic uncertainty is also known as 

reducible uncertainty, or subjective uncertainty, and is associated with a general lack of 

knowledge of the system or process under consideration. The epistemic uncertainty can, 

in principle, be eliminated with sufficient study. However, for complex systems or 

processes, this may not always be possible in practice. Typically, epistemic uncertainty 

exists when there is non-existent, sparse, or incomplete experimental data, when multiple 

plausible models are available or model approximations are made, when subjective expert 

opinions/observations are used, and in any other cases where there exists a general lack 

of information or knowledge about the behavior of the physical process or system.  

Much of the traditional damage tolerance (DT) research has used deterministic 

modeling approaches under well defined, simple loading conditions.  Deterministic 

fatigue failure analysis has been described as non-representative of the conditions during 

flight, too conservative due to the application of generic safety factors, or inaccurate due 
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to the limited information and uncertain knowledge [25]. Melis and Zaretsky [26] state 

that deterministic methods assume full and certain knowledge exist for service conditions 

and material properties, which is hardly practical. For actual structural systems, elements 

of uncertainty are inherent to the system and operating conditions themselves and result 

in unpredictable behavior to some extent. As explained in Lust [27] and Xiaoming [28], 

the non-deterministic nature of fatigue failure is the result of material and geometric 

tolerance uncertainties, environmental conditions, uncertainty in service loading, as well 

as variations in manufacturing and assembly processes. Additionally, the physical 

modeling process itself introduces many additional sources of uncertainty that need to be 

accounted for in addition to the natural variability previously discussed.  These sources of 

uncertainty should be included in the component analysis, and their influence on the 

overall life prediction should be evaluated.  

Svensson [29] identified five categories that contribute to the uncertainty in life 

prediction namely; material properties, structural properties, load variation, parameter 

estimation, and model error. The first three categories represent inherent variability 

through random variables, whereas the last two categories focus on the uncertainty 

associated with model and parameter selection. Much research and experimental testing 

has been performed for better estimation of the mechanical properties of materials which 

has reduced some of the uncertainty resulting from material and structural property 

estimation.   

Several researchers have worked on uncertainty quantification of some aspects of 

the damage tolerance problem, however a systematic analysis which incorporates 

multiple sources and multiple types of uncertainty that are inherent in the fatigue crack 
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growth modeling procedure has not been completed. In this chapter, focus will be placed 

on statistically quantifying the model inputs and parameters that are particularly relevant 

to the high cycle fatigue crack growth problem. Additionally, stochastic variable 

amplitude loading conditions will be considered and addressed in an effort to more 

realistically represent in-service loading conditions.   

The remaining sections within this chapter focus on the uncertainty within model 

inputs for fatigue crack growth analysis. Topics which are covered include uncertainty in 

material properties, uncertainty in fatigue crack growth rate parameters, and uncertainty 

in variable amplitude, multi-axial loading.  Each source of uncertainty will be detailed 

and suitable methods for quantification will be implemented and demonstrated for 

rotorcraft damage tolerance analysis. 

 

2.2 Uncertainty in Material Properties 

Several researchers have attempted to address uncertainties in material properties 

through statistical distribution functions. Among the material properties that have been 

considered relevant to the fatigue damage tolerance analysis are the threshold stress 

intensity factor, fracture toughness, ultimate tensile strength, and yield strength [30, 31, 

32, 33, 34].   

 

Threshold Stress Intensity Factor Range  

Experimental data shows that the fatigue crack propagation rate tends to zero at 

some critical value of the stress intensity factor, ΔK.  The threshold exists because fatigue 
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crack growth rates of less than about one lattice spacing per cycle are not possible on 

physical grounds [35].  The threshold stress intensity factor range, ΔKth, is the parameter 

which defines separation between no crack growth and slow crack growth in the near 

threshold region of the fatigue crack growth rate curve and is critical for accurately 

assessing the fatigue lifetimes for components subjected to high cycle fatigue. 

However, the threshold is not sharply defined [36], and has been shown to be 

sensitive to loading factors, such as stress ratio, which is important when performing 

analysis under variable amplitude loading conditions. The threshold stress intensity factor 

tends to decrease with increasing R ratio and has been expressed by Backlund [37] to be 

related to the stress ratio, R, and the threshold stress intensity factor at R=0, ΔKo, through 

the relationship 

   
    o

d

oRth KRCK  1
   

(6)  

where Co and d are fitting constants. For this relationship to be determined, it is essential 

that the quantity ΔKo is available through experimental testing. Klesil and Lukas [38] 

proposed a simpler version of Eqn. (6) by setting the constant Co=1. Barsom [39] further 

simplified the expression by enforcing the fitting constant d to be set equal to 1.  In cases 

where the two fitting constants are not available, the value of Co = d = 1 will give 

conservative results for the threshold stress intensity factor, ΔKth for R ≥ 0 [40], and will 

result in the relationship: 

        oRth KRK  1    (7)  

Under variable amplitude load conditions, it is necessary to properly account for 

load ratio effects (min load/max load) that exist in experimental data prior to any 
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uncertainty quantification method.  Rather than constructing distribution functions for 

each of the threshold stress intensity factors obtained under different loading conditions, 

it is preferable to first remove the underlying loading effects and quantify a baseline 

material property that can be used for a variety of loading conditions.  As a result, the 

Backlund equation given in Eqn. (6) will be used within this work prior to distribution 

fitting.  

Fatigue crack growth rate data collected under different load ratios for Steel 4340, 

representative of the material typically used in rotorcraft mast components, has been used 

within this section for numerical investigation.  A parametric study is first performed to 

identify fitting parameter C and d for the Steel 4340 experimental data set with threshold 

data collected at multiple R ratios. It was determined that C=0.4 and d=1 provided the 

best results and effectively reduced data to single curve that could be used for baseline 

analysis.  Statistical distribution fitting techniques were performed to identify the most 

appropriate distribution function for accurately representing the scatter found in the 

threshold stress intensity factor experimental data.  

The lognormal distribution was compared to the experimental data through the 

chi-squared test, the  Kolmogorov-Smirnov (K-S) statistical test at a 5% significance 

level, as well as through traditional probability plot techniques as shown in Figure 8 [41].  

The lognormal distribution function was found to accurately represent the data using all 

three techniques.  The histogram of the threshold stress intensity factor along with the 

probability density function (PDF) of the fitted lognormal distribution are shown in 

Figure 9, and the corresponding cumulative distribution function (CDF) is shown in 

Figure 10.  By quantifying the baseline condition without the effect of load ratio, the 
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fitted distribution function can be used, along with the Backlund equation (Eqn. (6)) to 

sample statistical-based realizations of the baseline threshold stress intensity factor which 

can be adjusted for particular load cases.  

 

 

Figure 7: Fatigue crack growth rate threshold data for 4340 steel  a.) raw data b.) 

adjusted  Ko data using Backlund equation [37] 
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Figure 8:  Probability plot showing Adjusted Ko data to lognormal distribution function 
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Figure 9: Histogram of Adjusted Ko data from experiment data and PDF of fitted 

lognormal distribution function 
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Figure 10: Adjusted Ko data from experiment data and CDF of fitted lognormal 

distribution function 

 

Fatigue Limit 

The fatigue limit has been traditionally used within the safe-life design 

methodology as a means of matching the infinite fatigue life of specimen subjected to 
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low magnitude cyclic loading. The fatigue limit is the amplitude (or range) of cyclic 

stress that can be applied to the material without causing fatigue failure [42]. The fatigue 

limit has generally been determined through traditional S-N experiments, in which a 

known stress is repeatedly applied to the specimen, and the number of cycles to failure is 

recorded. Ferrous and titanium alloys tend to have a distinct fatigue limit, whereas other 

materials, such as aluminum, tend to not have as well defined thresholds. Typically, for 

these materials, the stress which corresponds to a value of 10
7
 cycles is taken as a good 

approximation for the fatigue limit of the material. The metallic materials properties 

development and standardization (MMPDS) handbook [43] is recognized as a reliable 

source of aircraft materials data from which accurate materials strength data and material 

properties can be obtained.  

 

 

Figure 11: Typical S-N Curves for Steel and Aluminum materials 

 

However, performing material tests to define the fatigue limit of the material can 

be time consuming and costly, because of the large number of cycles that must be applied 
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before structural failure is observed and the numerous test that are required to fully 

capture the S-N curve. For this reason, sparse data may again exist for the statistical 

quantification of the fatigue limit of the material of interest.  
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Figure 12: Fatigue Limit data for aluminum alloy 7075-T6 and fitted lognormal 

distribution function 

 

When only sparse experimental data sets are available for distribution fitting 

purposes, confidence in statistical quantities, such as mean and variance, may be 

somewhat limited. That is to say, uncertainties may exist in the statistical fitting 

parameters themselves. To overcome the limitations that sparse data pose to statistically 

meaningful parameter estimation, resampling methods can be used.  McDonald et al.[44] 

proposed a method to account for data uncertainty, in which in the quantity of interest can 

be represented using a probability distribution, whose parameters are in turn represented 

by probability distributions.  The accurate distribution representations of the fatigue limit 

and the threshold stress intensity factor are important within this work as they are later 

used for the numerical evaluation of the equivalent initial flaw size (EIFS) which 

describes the statistical characteristics of the initial flaws sizes to be considered in the 

material. Sparse experimental data is common for both of these material properties as a 
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result of the expensive and time consuming experimental tests which are necessary for 

their determination.  As a result, uncertainty may exist in the probability density 

functions which are used to represent the statistical characteristics, which will directly 

affect the statistical representation of other parameters which are derived from this 

quantity, such as the equivalent initial flaw size (EIFS). The uncertainty resulting from 

sparse data is addressed below and can easily be included within the overall uncertainty 

quantification approach.  Additional information on the specific EIFS formulation used 

within this research is presented within Section 3.2. 

A variety of resampling methods exist within the field of statistics, including both 

bootstrapping and jackknifing.  The bootstrap technique is a statistical method for 

estimating the sampling distribution of an estimator by sampling with replacement from 

the original sample set [45]. The jackknife technique is similar to bootstrapping, and can 

be used to estimate the bias and standard error in a statistic, when a random sample of 

observations is used to calculate it. The jackknife estimator technique systematically 

recomputes the statistic estimate leaving out one observation at a time from the sample 

set [46].  

Consider a random variable X whose statistics are to be determined from 

experimental data, given by x = {x1, x2 .. xn}. For the sake of illustration, suppose that the 

random variable X follows a normal distribution, then the parameters (P) of this 

distribution, i.e. mean and variance,  of X can be estimated from the entire data set x. 

However, due to sparseness of data, these estimates of mean and variance are not 

accurate. Using resampling techniques such as bootstrapping method, jackknifing etc. the 

probability distributions (fP(P)) of the parameters (P) can be calculated. Hence for each 
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instance of a set of parameters (P), X is defined by a particular normal distribution. 

However, because the parameters (P) themselves are stochastic, X is defined by a family 

of normal distributions. For a detailed implementation of this methodology, refer to 

McDonald [44]. 

The current research uses similar resampling techniques to calculate the 

distribution of the parameters (P), however does not define a family of distributions. 

Instead, it recalculates the unconditional distribution of the random variable X [41]. The 

probability density of X conditioned on the set of parameters (P) is denoted by fX|P(x).  

The parameters are represented by the joint probability density fP(P). Hence, the 

unconditional probability distribution of X (fX(x)) can be calculated as shown in Eqn.(8). 

 

        fxfxf PXX  | P(P)dP   (8)    

The integral in Eqn. (8) can be evaluated through quadrature techniques or 

advanced sampling methods such as Monte Carlo integration or Markov chain Monte 

Carlo Integration. Hence, the unconditional distribution of X which accounts for 

uncertainty in input data can be calculated.  This method can be used to be able to better 

characterize the distribution of threshold stress intensity factor (ΔKth) and fatigue limit 

(Δσf) when only limited experimental data is available. 

 

Yield Strength and Ultimate Tensile Strength 

The probability distributions used to represent fracture toughness are also often 

used to characterize the yield strength and ultimate tensile strength and include normal, 

lognormal, and Weibull [47, 30].  In reality, these parameters may be variable and might 
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require probabilistic treatment. However, these properties are regularly monitored, have 

tight manufacturing tolerances, and are easily tested by standard techniques. Therefore, 

within this work it is assumed that these properties have limited uncertainties and will be 

treated as deterministic values. 

 

2.3 Uncertainty in Fatigue Crack Growth Rate Parameters 

As mentioned previously, numerous crack growth rate empirical models have 

been proposed within the literature. For the high cycle fatigue crack growth problem, 

only those models which are capable of capturing the non-linear behavior within the 

near-threshold region are relevant, since strictly linear models will drastically 

overestimate crack growth rates within this region leading to unnecessarily short fatigue 

life predictions. For the purpose of demonstration and general application of the methods 

developed in the research, the modified Paris model [85] will be used as a result of the 

multiple fitting parameters included in the model, the near threshold and linear region 

modeling capabilities, and the familiarity of fatigue community with its functional form.     

The modified Paris model is given by the relation: 

    

 
p

thn

K

K
KC

dN

da












 1    (9) 

By fitting crack growth rate models to available experimental data, it is observed 

that natural scatter is seen in the data resulting in some fitting parameters remaining 

relatively constant, while others tend to vary significantly. Stochastic parameters have 

been introduced into various empirical crack growth models by Yang [48], Provan [49], 
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Moore [50], Cruse [51], and others to try to capture this phenomenon.  By using 

experimental data to fit model parameters to distribution functions, the uncertainties in 

model parameters can be quantified. Various forms of probabilistic fatigue crack growth 

models have been proposed, and can generally be divided into two distinct categories. 

The first type of method accounts for the stochastic behavior in fatigue crack 

growth data by treating the crack growth rates at specific stress intensity factors as 

random variables that are completely uncorrelated to each other. This assumption is 

equivalent to treating the crack growth process as a white noise process. This approach 

will be referred to as the statistical FCG approach and results in the smallest statistical 

variability (underestimates the variance) [52].  Yang‟s [48, 53] method using a hyperbolic 

sine (SINH) fatigue crack growth model with an additional term representing a 

homogeneous Gaussian random process fits into this category. By defining the 

correlation function of the Gaussian random process equal to zero, the Gaussian term 

represents a random white noise process. Although computationally feasible, this 

approach artificially introduces randomness in the model prediction through a noise term, 

and ignores the intuitive physical relationship that exists between stress intensity factor 

and crack growth rate data.  It has been inferred within the literature that the white noise 

process is not valid for fatigue crack propagation, and therefore will not be included 

within this research.  

The second type of method treats coefficients of the deterministic crack growth 

models as random variables.  The statistics of the parameters are described using 

common distribution functions, such as lognormal or Weibull distributions, and are 

determined by fitting the model to available fatigue crack growth rate data. In numerous 
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reliability studies, the fatigue crack growth model coefficients, such as the Paris C and n 

parameters, have been assumed to follow the lognormal distribution [54,55,56, 57, 58]].   

By treating these parameters as random variables, the fatigue crack growth model 

is randomized and probabilistic analysis is possible.  This approach is equivalent to 

assuming the random variables are fully correlated and is commonly referred to as a 

percentile crack growth curve approach.  Due to its broad applicability and 

understanding, as well as its straightforward implementation, this method will be further 

evaluated within this work for the high cycle fatigue crack growth problem and numerical 

parameter distribution fitting to relevant experimental data will be presented following 

this initial discussion.  

A more realistic approach to this problem is to model the correlation of the 

random variables somewhere between the two extremes mentioned above, that is, 0 < ρ < 

1.  This approach will be referred to as the partial correlation based approach. Yang and 

Manning [59] considered the correlation effect and proposed a second-order approximate 

method to calculate the failure probability. The underlying assumption is that a lognormal 

random process could be added to deterministic fatigue crack growth models as  

,.....)()(
)(

KftX
dt

tda
    (10) 

where a(t) is the crack size at time t, ΔK is the stress intensity factor, and X(t) is a 

stationary lognormal random process with median value of 1 and a standard deviation of 

σx.   
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(a.) 

 
(b.) 

     
(c.) 

Figure 13: Stochastic fatigue crack growth curves using; a.) no correlation; b.) full 

correlation; c.) partial correlation 
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Liu and Mahadevan [52] have proposed a Karhunen-Loeve random process 

expansion technique for stochastic SN analysis that accounts for realistic correlation 

effects in fatigue damage accumulation simulation.  The KL expansion technique is not 

dependent on the Gaussian assumption and non-Gaussian methods for random field 

representation are easily adopted. The KL expansion technique has been shown to agree 

well with experimental data collected from various types of steel [52].  Some of the 

benefits of approaching stochastic modeling by this approach are that the Gaussian 

assumption is not necessary, the correlation is accurately represented to be 0 < ρ < 1, and 

the variance is not restricted to a constant value.   

Two distinct methods for probabilistic fatigue crack growth rate modeling are the 

percentile and partial correlation based crack growth models. The percentile approach 

offers a simple, straightforward method for representing the randomness seen in 

experimental data, but may not realistically represent the correlation structure between 

the stress intensity factor and the crack growth rate due to the method‟s implicit 

assumption of a perfect correlation structure. The partial correlation based approach 

overcomes this deficiency by providing the flexibility to represent any correlation value 

between 0 and 1, however, in doing so, adds model complexity in the form of 

representation and implementation. Each of the methods provides a benefit to the analyst, 

and, therefore, both are implemented within this work and are presented below.   First, 

the percentile crack growth method is detailed and statistical distributions are fit to 

common fatigue crack growth model parameters using experimental data.  Following the 

discussion of the percentile based approach, a partial correlation based method is 

presented and implemented for the same experimental data set. The methodology 
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developed by Liu and Mahadevan [52] for stochastic fatigue damage modeling using the 

stochastic SN approach is extended for fatigue crack growth rate modeling using fracture 

mechanics principles.  The mathematical construct of the method is provided in detail for 

the new application.  By extending this methodology to fatigue crack growth modeling, it 

is possible to not only use state of the art fatigue crack growth modeling techniques, but 

also maintain all of the above benefits from stochastic representation. Details of the 

numerical implementation of each method are included below.  

It should be noted that initial implementation of both the percentile crack growth 

approach and the partial correlation based crack growth approach will be presented 

assuming adequate data is available.  It is clear that material crack growth data has to be 

available to justify the choice of the type and value of the distribution function used for 

the stochastic parameter estimation.  

 

Percentile crack growth approach 

In order to quantify the uncertainties from experimental data using this approach, 

Eqn. (9) was randomized.  This process is performed by using a multi step approach in 

which the data in each region is used to fit the corresponding parameters.  The parameters 

are first estimated by solving a non-linear curve fitting problem in the least squares sense.  

This is accomplished by finding the coefficients that best fit the equation 

    



m

i

ii ydataxdataxFxMin
1

2
,

2

1
   (11) 
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given input data xdata, and the observed output ydata, where xdata and ydata are vectors 

of length m,  and F(x,data) is a vector-valued function.  After the parameters have been 

estimated, some are held as constants while others are assumed to be random variables.  

For each data point within a given data set, a realization of the random variable is 

obtained, and, after all the realizations are collected, the parameter can be fitted to a 

probability distribution.  In order to choose the best fit for a given distribution, the 

Anderson-Darling (A-D) statistic is used.  The main fitting parameters corresponding to 

the linear region of the Modified Paris fatigue crack growth model are C and n shown in 

Eqn. (9).  Using the non-linear curve fitting procedure outlined above, data within the 

linear region could be used to evaluate Eqn. (11) to determine the best values for the   

parameters C and n. After estimates for both parameters where obtained, n was held at its 

mean value, and realizations of C were obtained for each data point within the data set. 

The experimental data fitting results could then be fit to a well defined distribution 

function.   

Experimental fatigue crack growth rate data collected for Steel 4340 is included 

for demonstration purposes. The analysis is limited to only the fatigue crack growth rate 

data that corresponds to the linear region of the crack growth rate curve (see Figure 3). 

The experimental data is analyzed to determine the statistical distributions of fatigue 

crack growth rate model parameters corresponding to the linear region of the curve.  The 

results from this numerical study are presented here to demonstrate uncertainty 

quantification of fatigue crack growth model parameters, and the uncertainty 

quantification results obtained here are applied to the overall probabilistic fatigue crack 

growth modeling analysis presented in Chapter 3.    
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Figure 14: Probability plot showing Modified Paris parameter C data and lognormal 

distribution function 
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Figure 15: Histogram of Modified Paris parameter C calculated from experiment data 

and PDF of fitted lognormal distribution function 
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Figure 16: Modified Paris parameter C calculated from experimental data and CDF of 

fitted lognormal distribution function 

 

Statistical goodness of fit tests are used to analyze the experimental results with 

theoretical distribution functions. Several common distribution functions were compared 

to the experimental data set and it was determined that the lognormal distribution well 

characterized the data. The lognormal distribution was compared to the experimental data 

through the chi-squared test, the Kolmogorov-Smirnov (K-S) statistical test at a 5% 

significance level, as well as through traditional probability plot techniques, and was 

found to pass all of the statistical tests considered. The numerical analysis revealed that 

the fatigue crack growth parameter C could be well characterized by the lognormal 

distribution function with a mean value of 2.4378*10
-9

 and a standard deviation of  

8.074*10
-10

, corresponding to a coefficient of variation (COV) of approximately 0.33.   

For the high cycle fatigue crack problem, it is not only necessary to capture the 

uncertainty in the linear region of the fatigue crack growth rate curve, but also critical to 

incorporate the uncertainty in the near threshold region. Similar to the statistical method 
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outlined above for the linear region parameters C and n, so too can the statistics of the 

model parameters in the near threshold region be treated as random variables.  The main 

parameters corresponding to the near threshold region of the Modified Paris fatigue crack 

growth model are ΔKth and p shown in Eqn. (9).   

The parameter p in Eqn. (9)  is used to help capture the transition from the near 

threshold to the linear region of the fatigue crack growth rate curve. The transition from 

the near vertical threshold region to the sloped linear region appears smoother and more 

gradual when p increases, and becomes increasingly sharp as p decreases. Values of p 

found for aerospace grade aluminum and steel materials are generally ≤ 1.  When 

compared to experimental data, it is seen that the gradient of the fatigue crack growth rate 

in the transition zone from the near threshold to linear region appears consistent, 

indicating that p can be treated as a deterministic value. As a result, p is treated as an 

empirically fitted deterministic constant within this dissertation and can be best fit using 

the least squares method outlined above.  

The other primary parameter within the near threshold region is the threshold 

stress intensity factor, ΔKth.  The threshold stress intensity factor range, ΔKth, is the 

parameter which defines separation between no crack growth and slow crack growth in 

the near threshold region of the fatigue crack growth rate curve. ΔKth should be treated as 

a random variable and a detailed discussion of its significance as related to the high cycle 

fatigue problem as well as appropriate techniques for statistical characterization has been 

previously included in Section 2.2. It was found that the baseline near-threshold stress 

intensity factor (lacking load ratio effects) for steel 4340 could be well represented by the 

lognormal distribution function as shown in Figure 8, Figure 9, and Figure 10 in Section 
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2.2.  The reader is encouraged to refer to the previous section for additional details and 

discussion on this topic.  

Methods to fit model parameters from fatigue crack growth rate models to 

statistical distribution functions using experimental data sets has been presented. Crack 

growth rate models within the near-threshold and linear regions should be analyzed 

separately using only experimental data contained in the region which is relevant to the 

model parameters. It was found that for the 4340 steel data set which was considered, the 

lognormal distribution function provided the best fit for both the C and Kth parameters 

contained in Eqn. (9).   However, it should be noted that different distribution functions 

such as Normal, or Weibull distributions may provide a better fit when considering 

different datasets or different materials, and the most accurate distribution function 

should be used within subsequent analysis. The framework proposed within the following 

chapter is flexible and allows for the use of any distribution function for the 

representation of fatigue crack growth rate model parameters.  

Once the crack growth rate parameters are fit to distribution functions, the 

percentile approach offers a simple, straightforward method for representing the 

randomness seen in experimental data by treating the stress intensity factor and fatigue 

crack growth rate as perfectly correlated random variables. The result of this assumption 

is shown schematically in Figure 13 b.  Uncertainty in fatigue crack growth rate data can 

be captured using this technique by randomly sampling the statistical distributions of 

each random parameter for each fatigue crack growth analysis performed.   
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Partial Correlation based crack growth approach 

The partial correlation based crack growth approach treats the crack growth rate at 

any specific stress intensity factor as a random variable and a stochastic process modeling 

method is used to avoid the assumption that crack growth rates at different stress intensity 

factors are either completely correlated or completely uncorrelated as previously 

developed methods assume [52].  The method detailed below is an extension of a stress 

life (SN) based approach developed by Liu and Mahadevan [52] and details of the 

methodology as they relate to crack growth modeling using fracture mechanics principles 

is included below.  

Within this section, for the sake of illustration, the fatigue crack growth rates at 

given stress intensity factors are assumed to follow the lognormal distribution.  The 

lognormal assumption makes log(da/dN(ΔK) a Gaussian process with a mean value 

process of E[log(da/dN(ΔK)] and a standard deviation of σlog(da/dN(ΔK). It should be noted 

that non-Gaussian methods for random field representation are available, and that the 

Gaussian assumption is not a requirement, but has been made to simplify the discussion 

[52].  The mean value, E[log(da/dN(ΔK)], is representative of the mean da/dN vs. ΔK 

curve found through deterministic analysis.  The mean curve can be found using any 

available general crack growth model. 

It can be seen within experimental data that the variance of da/dN is not constant, 

but rather is a function of stress intensity factor range, ΔK. Significant scatter may exist in 

both the near threshold and linear crack growth regions.  If σlog(da/dN(ΔK) represents the 
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scatter in the data, then the process given by Eqn. (12) is a normal Gaussian process with 

zero mean and unit variance.  

))(/log(

))])(/[log())(/(log(
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KdNda
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
  (12) 

The random process, Z(ΔK), can be expressed using the Karhuenen-Loeve 

expansion technique [60, 61] as a sequence of statistically independent random variables. 

Generally, the expansion is expressed as  
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    (13) 

where )( i is a set of independent random variables, and i and )( Kfi   are the i
th

 

eigenvalues and eigenfunctions of the covariance function C(ΔK1,ΔK2), evaluated by 

solving the homogenous Fredholm integral equation analytically or numerically.  The 

homogenous Fredholm integral equation is given by 

)()(),( 1221 KfKfKKC iii

D

    (14) 

The autocovariance function, C(ΔK1,ΔK2), can be expressed through the 

exponential decay function of Z(s) as: 
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
   (15) 

where μ is a measure of the correlation distance of Z(ΔK) and depends on the material.  

Through the control of the parameter μ, the exponential decay function can model 

covariance structures ranging from fully correlated (μ 0) to fully uncorrelated (μ 

+∞).  These two extreme cases correspond to the percentile and statistical stochastic 

models respectively. 
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Based on Eqns. (13) through (15), the fatigue crack growth rate can be modeled 

as: 

))])(/[log(*)()())(/(log( ))(/log(

1
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        (16) 

This equation not only expresses the fatigue crack growth rate as a function of ΔK 

through the deterministic mean term, but also includes terms from the KL expansion 

which introduces stochastic behavior in the crack growth prediction and captures the 

correlation structure. A typical fatigue crack growth curve representation which is 

obtained after applying this method can be seen in Figure 13 (c).  Only a finite number of 

terms within the KL expansion are necessary to effectively model the stochastic behavior 

seen in most practical applications.  Usually, 10-20 terms suffice for providing 

sufficiently precise results under the standard Gaussian assumption [52].  

Since da/dN increases with increasing stress intensity factor range, ΔK, it is a non-

stationary random process.  In order to accurately model the variance of da/dN over the 

entire range of ΔK values, the crack growth rate curve can be subdivided into n sections 

(or regions), with the variance determined within each section from experimental data.  

As the number of sections, n, increases, the general trend of variance of da/dN over the 

range of ΔK values can be determined and can be closely approximated by a common 

functional form (linear, power, etc).  Once the variance is determined, the standard 

deviation (σ) can easily be found and used within Eqn. (16).  Figure 17 shows the 

standard deviation determined over the each interval of da/dN (standard deviation 

evaluated from data within each order of magnitude) for data collected under several 
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different R-ratios for 2024-T3 Aluminum alloy.  As can be seen in the figure, the 

standard deviation appears to be independent of R ratio, thus allowing it to be modeled by 

a single function for all R ratios.    
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Figure 17: Standard deviation of fatigue crack growth rate data 

 

Figure 18 shows 5 realizations of the fatigue crack growth rate curve obtained by using 

the partial correlation method along with experimental crack growth rate data.  A random 

realization of the fatigue crack growth curve can be generated for each simulation within 

the overall stochastic fatigue crack growth modeling framework. 
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Figure 18: Ensemble of 5 stochastic fatigue crack growth curves generated using partial 

correlation technique 

 

Either the partial correlation method or the percentile fatigue crack growth rate 

modeling approach can be used to represent the variability that exists in experimental 

fatigue crack growth rate data.  Additionally, each can be easily incorporated within an 

overall crack growth probabilistic analysis. However, the partial correlation based fatigue 

crack growth rate modeling approach using a K-L expansion technique offers several 

advantages over previous methods, including: 

1.) More realistic correlation structure representation of the crack growth rate at 

different stress intensity factor ranges   

2.) Can be used to exactly model statistical and percentile crack growth 

representations    

3.) Capability of modeling Gaussian and non Gaussian stochastic behavior  
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4.) Flexibility to include changes in variance within specific regions of the crack 

growth rate curve as dictated by the data set under consideration 

 

The partial correlation method for representation of fatigue crack growth rate data can be 

used within a Monte Carlo simulation method for stochastic fatigue crack growth 

prediction in order to account for the natural scatter observed in experimental fatigue 

crack growth rate data.  

 

2.4 Uncertainty in Variable Amplitude, Multi-axial Loading  

As part of the certification process for rotorcraft and fixed wing aircraft, assumed 

design load spectra must be verified on the basis of actual flight load measurement. These 

lengthy, irregular time histories contain the fatigue relevant load information that is 

necessary for life prediction. Measured time histories contain all of the information about 

the loading history including all phasing, frequency, sequence, magnitude, and mean 

effects [62], however they contain so much data that they are difficult to decipher and 

compare. In order to accurately characterize load histories in a meaningful way, the 

content of a measured signal must be able to be summarized and quantified in an efficient 

and concise way [63].   Various methods exist to quantitatively assess recorded time 

histories, and are generally grouped into two distinct categories; frequency domain 

methods and time domain methods [35].  

Different harmonic analysis methods can be used to determine the “frequency 

content” of the signal by characterizing the frequencies or wavelengths of the built up 
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signal.  Although some research has been published that uses traditional frequency 

domain based methods for fatigue evaluation [64,65], such analysis is generally relevant 

only to determine the vibration characteristics of the structure, and is not very descriptive 

of the fatigue damage of the loading [63].   

It is generally agreed that the structural load variations used in metal fatigue 

analysis should be characterized in the time domain since it is the maxima and minima, 

and the number of cycles (rather than time) which are the main controlling parameters 

[35, 66], and the shape of the intervening curve between a maximum and a minimum is 

of little importance [67]. Time domain methods typically work by identifying 

occurrences of specific “events” in a load-time sequence. Typical events of interest 

include the occurrence of load peaks/maximums at specific levels, the exceedance or 

crossings of specific levels, and the occurrence of load changes or ranges of a specific 

size [63]. Methods which help identify fatigue relevant “events” within a complex load 

history are generally referred to as simply counting methods. Many counting techniques 

are available including: level crossing, peak count, mean crossing peak count, range 

count, and range-pair counting techniques [68,69], however, the rain-flow counting 

method (range pair-range) is widely recognized as the most accurate and meaningful way 

of representing variable amplitude loading [66]. 

It is obvious that in-service operational loading on many structures is a stochastic 

process and typically cannot be adequately characterized by a single constant or variable 

amplitude load history. Statistical investigation of the variable amplitude load cycle 

distribution is often a critical task, as the structural reliability under service loading has 

strong dependence on the accurate quantification and representation of such loads.  The 



58 

 

majority of research has been performed under constant amplitude conditions, and only 

limited effort has been put into developing statistical tools for fatigue load 

characterization when the loads are both variable amplitude and  stochastic [70].  An 

efficient and accurate method is needed for quantification and characterization of the 

fatigue content (load reversals) contained within a variable amplitude load spectrum.   

Additionally, methods are needed to capture and represent the inherent uncertainty that 

exists within the environmental loading condition.  

Several counting techniques are discussed in detail below and implemented in this 

research for initial load quantification purposes. Load characterization using the rainflow 

counting method is presented first, followed by methods using the Markov method.  The 

results obtained from each of these methods are later used within Chapter 4 to generate 

stochastic load simulations with similar loading characteristics as the original measured 

history within a probabilistic crack growth framework.   

 

Load Quantification using Rainflow Counting Method 

The majority of the previous research that includes rainflow counting methods has 

been used in combination with the stress-life (S-N) or strain-life (ε-N) methods [69] in 

which the damage in each cycle is computed based on data gathered from constant 

amplitude tests using a damage accumulation rule such as Miner‟s Rule.  This research 

uses the rainflow counting method as an initial fatigue loading quantification method and 

then implements a stochastic regeneration technique for variable amplitude load spectrum 

simulation which can be used within a fracture mechanics based crack growth analysis 

procedure.  The load quantification method using the rainflow cycle counting procedure 
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will be presented within this section, whereas the stochastic generation of additional load 

histories will be presented later in Chapter 3.  

The rainflow method was originally proposed by Matsuiski and Endo [71], and is 

viewed by many to be the most popular and best method of cycle counting. The method 

separates high and low amplitude load cycles and records them in a physically 

meaningful way. To briefly summarize the method, for each local peak (smax) within the 

time history, the rainflow algorithm finds the corresponding local trough (smin) to form a 

hysteresis loop.  The stress range as well as the mean stress for each cycle is determined, 

and the results are stored in matrix form.  In this way, the complex load history is reduced 

to a simple rainflow matrix which contains information about the stress amplitudes, mean 

values, and number of occurrences of each loading cycle. Additional details of the 

rainflow counting method are available in various literature sources [68, 69].  

The objective of the rain-flow method or the range pair-range method is to 

extract and count cycles of various sizes. These load cycles are considered to be the basic 

elements of a load sequence. The final counting result is contained in a matrix A of size 

(k+1) x (k+1), in which the element aij gives the number of counted cycles from load 

level i to load level j, and  k is a user defined number of discretization levels, usually set 

to 32, 64, or 128 depending on accuracy and computational efficiency desired [72,73]. 

Plots of a generated load history signal and its corresponding rainflow matrix are shown 

within Figure 19.  
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(a.)          (b.) 

Figure 19: (a.) Generated variable amplitude load history (b.) Graphical representation 

of rainflow matrix showing cycle counts for discrete load levels as calculated from (a) 

 

Although cycle counting methods have typically been viewed as deterministic 

methods for characterizing load histories, the obtained results from such methods can be 

easily transformed for use within a statistical framework in one of two ways. The first 

method simply uses the counted load cycles within the rainflow matrix within a 

stochastic regeneration technique to produce random fatigue load history simulations. 

The second method fits the elements in the rainflow matrix to a joint distribution, for full 

statistical representation of the loading characteristics.  In order to accomplish this, both 

the "from" load level and "to" load level within the rainflow matrix are considered as 

random variables, say x and y, respectively. Assuming that the rainflow counting results 

are discrete values, the joint probability mass function (PMF) of x and y is denoted as 

),(, yxp YX  and the joint cumulative distribution function (CDF) given by [74]: 


 


xx yy

jiYXYX

i j

yxpyxF ),(),( ,,    (17) 
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The variables x and y can also be approximated as continuous variables with their joint 

PDF denoted by ),(, yxf YX  and the joint CDF given by: 

dvduvufyYxXPyxF

x y

YXYX  
 

 ),(),(),( ,,   (18) 

The histogram of extracted values as well as the marginal PDF (obtained from the 

rainflow matrix shown in Figure 19 is shown in Figure 20. 

 

 

Figure 20: Plot of histogram and fitted marginal PDF of load cycles from rainflow 

matrix 

 

A schematic of the procedure for the uncertainty quantification of the variable 

amplitude load spectrum is shown in Figure 21.  By using the rainflow counting 

procedure in combination with statistical distribution fitting techniques, a complex load 

history can be easily broken down into its elementary cycles and efficiently represented 

by a joint probability density function.  
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Figure 21: Elements of the uncertainty quantification (UQ) procedure using rainflow 

representation 

 

Load Quantification using Markov Chain Method 

The Markov method uses the loading information contained within a 

representative fatigue cycle history to construct a probability based transition matrix.  

The transition matrix contains discretized load levels with the "from" load level and "to" 

load level composing the axes, and is populated by placing all level transitions contained 

within the stress history in the discrete (i,j) position according to the nominal stress 

values (σi, σj) that they represent.  

For a realistic loading history, not only the load amplitude at a certain time 

instance is random, but also the load amplitudes at adjacent time instances may be 

correlated, i.e., the amplitude at time instance Tk can affect the amplitude at time instance 

Tk+1. Given this assumption, the fatigue loading history with m discrete load levels are 
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modeled as a discrete time Markov chain {Xn}, which is a Markov stochastic process 

whose state space (the set of discretized load levels) is a finite set, and for which n is a 

discrete time instance ( n = T0, T1, T2, …, ) [75].  Let event Ek,i denote that the loading 

amplitude at time instance Tk equals to load level i, and let event Ek+1,j denotes that the 

loading amplitude at Tk+1 equals load level j. With a further assumption that the one-step 

transition is independent of time instances, i.e., the transition between Ek,i and Ek+1,i 

depends on i and j only, and not on previous values, a stationary Markov chain transition 

matrix is constructed as: 
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where Ii,j is the one-step stationary transition count between Ek,i and Ek+1,i, which can be 

obtained directly from the original load spectrum.  The elements above the main diagonal 

in I represent the transitions from minima to maxima, whereas the elements below the 

main diagonal represent the transition from maxima to minima. 

Given a load spectrum with discrete load levels from time T0 to Te, the element of 

the stationary Markov chain transition probability matrix Pi,j can be estimated using the 

number of occurrences of that the event Ek,i is followed by the event Ek+1,i, i.e., 
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where Ii,j(k) is a indicator function, 
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Figure 23 shows the conversion of a Markov transition matrix given by Eqn. (19) 

to a transition probability matrix as determined from Eqn. (21) for the simple turning 

point load history shown in Figure 22.  A proper transition matrix satisfies the property 

that the sum of cycle counts in each cell of a row above the diagonal must equal the sum 

of cycle counts in each cell of the column opposite and below the diagonal.  Once the 

transition probability matrix is constructed, random samples of loading history can be 

easily generated using random number generators.  
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Figure 22:  Simple turning point load history 
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     a.)       b.) 

   Figure 23: a.) Transition matrix  b.) Transition probability matrix 

 

Although measured time histories contain all of the information about the loading 

history, it is difficult to obtain a clear understanding of the key characteristics of the data 

when it is in this format, and makes load comparison between different histories virtually 

impossible. To accurately characterize load values in a meaningful way, the content of a 

measured signal must be summarized and quantified in an efficient and concise way.  

Within this section, rainflow and Markov-based methods are presented as tools which 

simplify the representation of fatigue loading within a complex, variable amplitude load 

history.  Additionally, methods are presented to more generally express the fatigue 

loading content contained within a history by joint distribution functions and transition 

probability matrices.  Each of the load quantification methods contained within this 

section is further developed within Chapter 3 to enable stochastic load simulation within 

a probabilistic crack growth framework. 
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2.5 Summary 

Much of the traditional damage tolerance (DT) research has used deterministic 

modeling approaches under well defined, simple loading conditions. However, several 

sources of uncertainty exist and each needs to be statistically quantified and included 

within subsequent analyses for meaningful component life prediction results.  The 

probabilistic approach to engineering design is offered as a method for incorporating 

uncertainty within the structural analysis in a logical and meaningful way.   

A general overview of uncertainty with respect to the fatigue life prediction 

method is presented within Section 2.1.  The different sources of uncertainty in model 

inputs identified for this class of problem include material properties, model parameters, 

and applied loading.  Section 2.2 applies statistical techniques for uncertainty 

quantification to material properties, such as the threshold stress intensity factor and the 

fatigue limit. Each of these material properties is treated as a random variable, whose 

statistics are determined and compared to common distribution functions. Two different 

methods for characterizing the randomness in fatigue crack growth rate model parameters 

are given in Section 2.3. The first method assumes a perfect correlation structure exists 

between the crack growth rate per cycle, da/dN, and the stress intensity factor, ΔK, and is 

referred to as the percentile approach.  Different fatigue crack growth rate model 

parameters may be treated as random variables using this approach, and each can be fit to 

standard distribution functions using experimental crack growth rate data. A new 

approach to fatigue crack growth rate modeling is developed which includes a more 

realistic representation of the correlation that exists between crack growth rate and stress 

intensity factor data. This approach is called the partial correlation based method. Section 
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2.4 investigates two different methods for quantification and representation of variable 

amplitude fatigue loading data. The rainflow cycle counting method can be used for this 

purpose, and detailed methods of further fatigue relevant fatigue representation is 

provided. The Markov based method is also presented within this section as an alternative 

method for load characterization and quantification.  

The different statistical methods presented within this chapter are given as useful 

tools which can be used to characterize the randomness that exists in several of the model 

inputs and/or model parameter values that are typically used within a damage tolerance 

based fatigue life prediction analysis. Each method can be used individually to represent 

a single random input, or collectively to more fully represent the overall stochastic nature 

of inputs to the fatigue crack growth analysis.  Chapter 3 develops a fatigue crack growth 

modeling framework which enables systematic and efficient probabilistic fatigue life 

prediction considering the uncertainty in model inputs identified and quantified within 

this chapter. 
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CHAPTER III 

PLANAR FATIGUE CRACK GROWTH MODELING  

 

3.1 Introduction 

This chapter explains the overall methodology that has been developed to model 

fatigue crack propagation under multiaxial loading conditions using a planar fatigue 

crack growth approach. The methodology has been developed with probabilistic analysis 

in mind, where uncertainties at various levels of modeling can easily be included within 

the overall framework. 

For each deterministic analysis within the Monte Carlo scheme, input variables 

such as initial crack size, crack shape, and crack growth model parameter values are 

sampled from their given distributions. A stochastic load history is simulated based on 

fatigue relevant statistics determined from a representative load history. A cycle by cycle 

approach is adopted where a stress intensity factor is evaluated for the current loading 

cycle and crack configuration using a trained surrogate model. Crack growth rate 

calculations can be performed along the crack front using a stochastic fatigue crack 

growth rate model and the crack front can be appropriately extended. Cyclic crack growth 

analysis is repeated using the same load history from the initial crack size until a user 

defined critical crack size is reached, at which time the results are stored and the 

procedure is repeated for the next realization of input variables.  After many simulations 

are completed, it is possible to extract probabilistic information such as the probability 

distribution of the crack size at any given time, t, or, conversely the probability 
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distribution of the time necessary for a crack to reach a critical size, as shown in Figure 

24.  This information can ultimately allow for prognosis, risk assessment and inspection 

scheduling.  A flowchart of the overall approach is presented in Figure 25.  Details of the 

methodology can be found in the following sections.  

 

Figure 24:  Summary of typical results using proposed methodology 

 

Figure 25: Monte Carlo simulation scheme for fatigue crack growth using proposed 

methodology. 
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3.2 Initial Flaw Size & Location 

The first step in performing a damage tolerance analysis, in which an initial flaw 

is assumed to be contained within the component of interest, is to fully characterize the 

flaw which is to be modeled. For this research, only surface crack configurations will be 

considered.  The surface crack configuration is controlled by two parameters, namely; 

crack length (2c) and aspect ratio.  Here, aspect ratio is defined as the ratio of half the 

crack length over the crack depth (c/a) as shown in Figure 26. 

 

Figure 26: Semi-Elliptical Crack showing crack length (2c) and depth (a) 

definitions 

 

 It is clear that different locations within the component will be subjected to 

different stresses based on the type of applied loading and the geometry of the component 

of interest.  Since fatigue crack propagation depends not only on the crack size and shape, 

but also on the stress concentration at the crack front, cracks with the same initial 

configuration but at different locations within the component will have different 

propagation rates, and thus, will cause different component life predictions.   Based on 

this information, the most critical location is that which will cause the crack to grow the 

fastest, causing the component to break in the least amount of time. MIL-A-83444 

handbook [76] states that “the analyses shall assume the presence of flaws placed in the 
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most unfavorable location and orientation with respect to the applied stresses and 

material properties.” 

In order to identify this critical location, a preliminary stress analysis of the 

uncracked component can be completed.  Loading conditions similar to those expected 

in-service are applied to the component and the stress field can then be analyzed to 

identify the region with the highest stress concentration.  By performing this analysis on 

an uncracked component, the critical location can be identified and a crack can be 

inserted in the structural model such that it is perpendicular to the maximum principal 

stress direction at that location.    

 

 

Figure 27: Plot of typical stress profile within rotorcraft mast component under applied 

mixed mode loading 

 

Ideally, fatigue life prediction could be performed starting from an actual, as-

manufactured initial flaw size, accounting for actual voids, non-metallic inclusions, or 

surface scratches contained within the material.  However, determining the true 

distribution of initial flaw sizes within an as-manufactured part is, often times, difficult to 

accomplish due to inadequate resources and/or the limited capability of non-destructive 

evaluation (NDE) techniques for reliably detecting small crack sizes.  If the actual initial 
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crack size can be accurately determined and is found to be large (> 0.02 inches), then 

long crack growth models such as the Paris, Walker or Forman models can be used 

directly.  However, this is not the case in many applications, and initial flaws contained 

within the material might be on the order of the grain size of the material.  When cracks 

of this type are present, their growth is controlled by grain boundaries and cannot be 

described by linear elastic fracture mechanics [40]. Additionally, the crack growth rate 

behavior of small cracks (on the order of grain size) is not easily characterized and cannot 

be represented by traditional crack growth rate laws. The concept of an equivalent initial 

flaw size (EIFS) was proposed to bypass the poorly understood small crack growth 

analysis and make direct use of a long crack growth law for fatigue life prediction. 

However, EIFS does not represent any physical quantity and cannot be directly 

measured using experiments. Initially, certain researchers used empirical crack lengths 

between 0.25 mm and 1 mm for metals (JSSG [77]; Gallagher [78]; Merati [79]). Later, 

several researchers (Yang [80]; Moreira [81]; Fawaz [82]; White [83]; Molent [84]) used 

back-extrapolation techniques to estimate the value for equivalent initial flaw size.  

Recently, Liu and Mahadevan [85] proposed a methodology based on the Kitagawa-

Takahashi diagram [86] and the El-Haddad Model [87] to derive an analytical expression 

for the equivalent initial flaw size.  The value of EIFS is calculated from material 

properties and is given by the expression 
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where ao is the EIFS, ΔKth is the threshold stress intensity factor range, Δσf is the fatigue 

limit, and Y is the geometry correction factor.  

The current research work uses Eqn. (22) to calculate the statistics of EIFS by 

using the probability distribution functions of the threshold stress intensity factor and 

fatigue limit.  The distribution functions of these material properties were determined 

within Chapter III of this work, considering both natural variability in experimental data 

and data uncertainty due to sparse data. By using this physics based approach, the 

analytical expression in Eqn. (22) can be used to determine a distribution of the EIFS.  

The distribution of EIFS for 7075-T6 Aluminum alloy is included within Figure 28 and 

can be sampled within the subsequent probabilistic crack growth analysis. Since both the 

threshold stress intensity factor and the fatigue limit have been determined to fit the 

lognormal distribution function for this material, the EIFS will also be a lognormal 

variable.  However, this is not a necessary condition, and the distribution of EIFS can be 

easily determined (despite the distribution functions of ΔKth and σf, through simple 

sampling techniques.   
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Figure 28: 10,000 calculated EIFS value and best fit lognormal distribution function for 

Aluminum Alloy 7075-T6 
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3.3 Component Stress Analysis 

For standard fatigue specimen subjected to uniaxial loading conditions, handbook 

solutions for stress intensity factors are available [88]. For structures having complicated 

geometry or complex multi-axial loading conditions, a handbook solution for the stress 

intensity factor, ΔK, may not be available and finite element analysis (FEA) may be 

required.  Although the computational expense can be significant for high fidelity 

models, FEA analysis is still necessary in some capacity to determine the stress state at 

the crack tip, and must be performed for complex geometry and loading conditions. 

A two level approach is adopted for finite element analysis within this work, 

using a global model and a submodel.  The crack region represents a relatively small 

volume of material that lies within the larger volume of the overall component and is 

constructed within a submodel for better computational efficiency and accuracy.  The 

submodel method is a technique to obtain a more accurate numerical value for the 

specific region in the analyzed model with high efficiency, and is sometimes referred to 

as the cut-boundary displacement method or the specified boundary displacement 

method. The boundary of the sub model represents a cut through the coarse model, where 

displacement boundary conditions are enforced.  
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Figure 29: Depiction of full model and sub model used in FEA for planar crack analysis 

 

The submodel is composed of a crack 'block' and a crack 'tunnel' in the vicinity of 

the surface crack location and has a much more refined mesh than does the full model. In 

order to create the cracked configuration within the submodel, an auxiliary area is first 

swept through the semi-elliptical arc defining the crack front shape (as defined by crack 

length and aspect ratio) and is then reflected about the crack plane.  This volume is 

generally referred to as the crack 'tunnel'.  The crack tunnel volume is meshed using a 

very fine mesh with singular elements around the crack front and non-singular elements 

elsewhere in order to have accurate representation of the stress field around the crack tip. 

By merging all coincident nodes and keypoints within the crack block, except for those 

along the crack faces, connectivity is ensured between the crack tunnel mesh and the 

slightly coarser mesh created in the remainder of the crack block.  The submodel 

technique is based on the St. Venant's principle, which states that if an actual distribution 
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of forces is replaced by a statically equivalent system, the distribution of stress and strain 

is altered only near the regions of load application.  That is to say, if the boundaries of the 

sub model are far enough away from the stress concentration along the crack front, 

accurate results can be expected. Figure 30 shows a stepwise schematic of the FEA 

submodel creation process.  

 

Figure 30: Detailed view of finite element crack submodel volume a.) unmeshed 

and b.) meshed configurations 

 

The finite element software package ANSYS [89] version 11.0 is used to build 

and analyze the finite element model.  The crack configuration is built by extruding a 

projection of the semi-circular crack through the mast body at the crack location.  The 

immediate volumes on either side of the crack face are identified and subdivided in order 

to allow for SIF evaluation at various locations along the crack front.  The crack faces 

(coinciding upper and lower surfaces of the previously mentioned volumes) are then 
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modeled as surface to surface contact elements (CONTACT174 and TARGET170 

elements) in order to prevent the surface penetration of the crack's upper and lower 

surfaces.  The augmented Lagrangian method is the algorithm used for contact 

simulation.  Additionally, friction effect is included in the material properties of the 

contact element, in which a Coulomb friction model is used.  This model defines an 

equivalent shear stress which is proportional to the contact pressure and the friction 

coefficient.  Friction coefficients between two crack faces are difficult to measure and are 

generally assumed to vary between 0 and 0.5 [90]. The friction coefficient, μ, used within 

this study is assumed to be a deterministic quantity and taken to be equal to 0.1.   

Since the primary quantity of interest is the stress intensity factor at the crack tip, 

the volume along the crack front is subdivided into many smaller blocks, which allows 

for better mesh control and enables SIF evaluation at various locations along the crack 

front.  The ¼ node displacement method proposed by Henshell and Shaw [91] and 

Barsoum [92] has been commonly used to enable the square root singularity of stresses 

and strains at the crack tip to be modeled accurately by shifting the mid-point nodes to 

the quarter-point locations in the region around the crack front. Stress intensity factors at 

the surface and depth locations are calculated and are used within fatigue crack growth 

models for crack extension calculations, allowing for initial semi-circular surface cracks 

to develop into semi-elliptical cracks over time.  
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3.4 Equivalent Mixed-Mode Stress Intensity Factor 

Many mechanical and structural components are subjected to some combination 

of tension, bending, bearing, and torsion, in which some combination of mode I, mode II, 

and mode III loading conditions exist (e.g. mast in rotorcraft, railroad wheels, turbine 

blades, shafts of automobiles
 
[93,94,95]), however only limited research has been 

reported in the literature.  Carpinteri [96,97] analyzed hollow pipes with elliptical surface 

cracks under bending moment and axial loading separately. Fonte [98] applied bending 

moment to a round bar with a circumferential elliptical crack and validated his results 

with previously published results in the literature, followed by an analysis of torsion 

loading only. He then applied both bending moment and torsion loading, and checked the 

superposition principle.  Results showed that the application of bending moment induced 

only Mode I at the crack front, whereas the application of torsion induced all three modes 

of loading at the crack front.  

The stress intensity factor is the primary parameter used for fatigue crack growth 

rate prediction and is typically used with many commonly used fatigue crack growth rate 

models including the Walker [7], Forman [6], and  Forman-Newman-de Koning [99] 

models.  

Several parameters have been used to correlate fatigue crack growth rates under 

mixed mode conditions. These include equivalent stress intensity factors, equivalent 

strain intensity factors, strain energy density, and the J-integral [69].  These methods 

develop different expressions for an equivalent stress intensity factor range, ΔKeqv, which 

has been used to obtain the crack growth rate for mixed-mode loading condition in a 

Paris-type equation [69].  
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This research uses a characteristic plane-based model for multi-axial fatigue 

damage modeling proposed by Liu and Mahadevan [100,101], which is applicable to a 

wide range of metallic materials and has been validated using multiaxial fatigue 

experimental data. The characteristic plane-based model enables the calculation of an 

equivalent mixed mode stress intensity factor which can be used for mixed mode fatigue 

crack propagation and life prediction calculations. A detailed derivation and explanation 

of the model can be found in Liu and Mahadevan [101] and the concepts will only be 

briefly summarized within this section as necessary for basic understanding of the 

methodology.  

The characteristic plane-based approach seeks to reduce the dimension of the 

multiaxial fatigue problem by considering the stress components on a given plane, the 

characteristic plane, so that traditional crack growth models can be implemented, and in 

doing so, also reduces the necessary computational effort [101].  The formula under 

general mixed mode I+II+III loading is derived as 
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where kI, kII, and kIII are the mode I, II and III loading factors with the same unit of stress 

intensity factors, and KI,th, KII,th, and KIII,thI are the fatigue crack threshold values, 

respectively. k
H
 is the hydrostatic stress related term, and A and B are material parameters 

which can be determined by tension and shear fatigue limits. The characteristic plane for 

a given material is determined through minimizing the contribution of the hydrostatic 

stress amplitude to zero.  
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Table 3: Material Properties for fatigue damage accumulation using characteristic plane 

approach 
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Following the derivation outlined by Liu [101], the equivalent mixed mode stress 

intensity factor using the characteristic plane approach can be expressed as  
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The equivalent uniaxial stress intensity factor, eqvmixedK , , could be used within any 

available fatigue crack growth model by a simple substitution of the mode I stress 

intensity factor, ΔKI, used in the original formulation with the newly defined parameter 

ΔKmixed, eqv. 
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3.5 Surrogate Model Development 

The previous two sections within this chapter presented methods for the 

multiaxial stress analysis of a fatigue critical component using FEA, and a stress intensity 

factor dimension reduction technique for calculation of equivalent, uniaxial stress 

intensity factor.  Within a damage tolerance analysis, where initial cracks are grown 

incrementally until they reach a critical crack size, each of these steps is necessary for 

each crack growth increment within the analysis, requiring substantial computational 

effort. The computational expense associated with the stress intensity factor calculation 

typically results from the need to implement an expensive finite element code for the 

current crack size and loading conditions. In order to implement this type of analysis 

within a probabilistic framework, where many full simulations are necessary, a more 

efficient method for determining the stress intensity factor at the ever evolving crack 

front must be developed.  

Response surface methodology can be used in place of expensive finite element 

models for iterative fatigue analysis to reduce the computational effort needed to 

calculate the stress intensity factor at the crack tip. A response surface approximation is 

constructed to approximately capture the relationship between the input variables (crack 

length, location, and load values) and the output variables (stress intensity factors), using 

only a few sample points within the design space. Instead of using a finite element model 

to determine the stress intensity factors at every load step within every simulation, the 

model is analyzed for a small number of crack configurations and loading conditions to 

"train" a surrogate model to an acceptable degree of accuracy. Once trained, the surrogate 

model is used in place of the full finite element model.  By developing an accurate 
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surrogate model and drastically reducing the computational effort needed at load cycle 

within the analysis, it is possible to use a Monte Carlo simulation technique for 

component reliability assessment.  

Many different types of surrogate models have been developed and reported 

within the literature including: locally weighted polynomial regression, quadratic 

response surface regression (QREG), random forest regression (RF), gradient boosting 

machine (GBM), multivariate adaptive regression  splines (MARS),  support vector and 

relevance vector regression, neural networks and Gaussian process models [102,103]. An 

initial study of several methods was performed to evaluate the relative performance of 

each as applied to the FEA/stress analysis problem. Results from the study are included 

in Table 4, and revealed the Gaussian process model to have an overall better 

performance when compared to the other methods with the same level of training.  The 

Gaussian process model will be implemented within this research due to its flexibility 

and relative performance when compared with other available methods.  

 

Table 4: Comparison of surrogate model performance for stress analysis application 

Surrogate Model Sum of Squares of Errors

Polynomial Chaos Expansion 57.7 units

Support Vector Regression 55.1 units

Relevance Vector Regression 54.9 units

Gaussian Process Interpolation 50.3 units  

 

Gaussian process (GP) modeling (which is in most cases equivalent to the family 

of methods which go by the name of “Kriging” predictors) is a powerful technique based 

on spatial statistics for interpolating data. Gaussian process models are increasingly being 
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used as surrogates to expensive computer simulations for the purposes of optimization 

and uncertainty propagation [104,105], and will be investigated within this paper as 

method to improve computational efficiency by replacing the expensive stress intensity 

factor calculation.  

The basic idea of the GP model is that the response values, Y, are modeled as a 

group of multivariate normal random variables, with a defined mean and covariance 

function.  A recently developed greedy point selection technique can be used to select 

training points for the GP model to build up the response surface to a desired level of 

accuracy [106].  The benefits of GP modeling is that the method requires only a small 

number of sample points (usually 30 or less), and is capable of capturing highly nonlinear 

relationships that exist between input and output variables without the need for an 

explicit functional form.  Additionally, Gaussian process models can be used to fit 

virtually any functional form and provide a direct estimate of the uncertainty associated 

with all predictions in terms of model variance.   

In order to accurately capture the functional relationship between input and output 

quantities, the Gaussian Process model must be "trained" using a set of observed inputs 

and outputs.  The Greedy Point algorithm [106] can be used to identify which points 

within the design space would be the most advantageous to use as training points. As 

mentioned previously, the variance associated with model predictions is available as a 

result of the Gaussian Process formulation.  The Greedy Point algorithm uses this 

information to identify the set of input variable values (design space location) which 

correspond to the largest variance in the design space, and selects the next training point 

to be at that location, thus improving the model by minimizing the model prediction 
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error.  By repeating the Greedy Point algorithm iteratively, training points can be 

identified that minimize the variance of the surrogate model until a sufficiently accurate 

model is generated, say within 1% or 5% of FEA.  This training point selection method 

eliminates the subjectivity associated with typical design of experiments methods which 

use a pre-determined fixed set of training points, and ensures that the identified training 

points are adding the most value (accuracy) to the surrogate model per additional full 

simulation run.  

Suppose that there are n training points, x1, x2, x3 … xn of a d-dimensional input 

variable (the input variables being the crack size and loading conditions here), yielding 

the resultant observed random vector Y(x1), Y(x2), Y(x3) … Y(xn). R is the n x n matrix of 

correlations among the training points. Under the assumption that the parameters 

governing both the trend function (f
T
(xi) at each training point) and the covariance (λ) are 

known, the conditional expected value of the process at an untested location  x* is 

calculated as in Eqn. (25) and Eqn. (26) respectively. 

 

         )(| 1****  FYRxrxfxYEY TT  
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In Eqn. (25) and Eqn. (26), F is a matrix with rows  i

T xf , r is the vector of 

correlations between x* and each of the training points, β represents the coefficients of 

the regression trend. McFarland [106] discusses the implementation of this method in 

detail. 
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Figure 31: Schematic of GP training process using iterative greedy point algorithm 

 

The GP surrogate modeling technique offers several advantages which prove 

useful.   The first is that the GP modeling approach is a non-parametric technique, 

meaning that assumptions about the functional form (linear, quadratic, power, etc.) are 

not necessary.  The framework is flexible and can capture linear and non-linear 

relationships that exist within the design space.  A second significant attribute of the GP 

modeling approach is that the method has the ability to provide a direct representation of 

the uncertainty associated with its interpolative approximation [106]. This uncertainty 

representation has been shown to provide usefulness in improving both the efficiency of 

optimization [107] and reliability estimation [108]. 
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3.6 Variable Amplitude Load Generation 

By reducing the complex load history into its elementary load cycles and storing 

the information in a rainflow or Markov transition matrix representation, significant 

advantages are gained in terms of ease of quantification of the measured load spectrum. 

However, the sequence of the loading is lost. Loading sequence is of importance since it 

is well known that amplitude changes in fatigue loading conditions can result in 

significant retardation or acceleration of fatigue crack growth rates [109].  This section 

address this issue and presents stochastic regeneration techniques that can be used to 

produce multiple realizations of load histories that contain the same fatigue loading 

characteristics as the original representative load history 

It is well known that crack growth can be significantly affected by prior events in 

the load history [69].  There is vast literature showing that tensile overloads can cause 

retardation or arrest in fatigue crack growth and compressive overloads can also have 

significant effects on the rate of subsequent crack propagation [110].  Ignoring such 

effects can lead to significant error in fatigue life estimation.  Therefore, it is necessary to 

incorporate a methodology that uses the sequence of loadings in the life prediction. 

Several different reconstruction techniques have been reported within the literature 

including traditional power spectral density techniques [111], Markov simulations [72], 

rainflow [112], among others.  It is proposed that by utilizing stochastic reconstruction 

methods in combination with the load quantification results developed in Chapter 2, it is 

possible to generate multiple realizations of the fatigue content to represent several 

different load sequences.  
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Rainflow Stochastic Load Reconstruction  

The basic objective of the stochastic rainflow reconstruction algorithm is to create 

a systematic method to reconstruct a load history given a rainflow matrix and its residual.  

Dreβler [113] presents an algorithm for reconstruction and approaches the problem so 

that an optimal randomization of the reconstructed series is attained. Rainflow 

reconstructions are based on the idea of extracting cycles from the rainflow matrix and 

placing them in valid locations in the history under construction.  Several rules exist to 

ensure that cycles are inserted within the residual in such a way as to yield a similar 

rainflow matrix as the original signal.   

Reconstruction is performed in such a way that fatigue cycles are reinserted into 

the residual in order of their respective amplitudes, with largest amplitudes inserted first.  

Randomness is introduced into the load reconstruction process by first identifying all of 

the „allowable‟ locations for reinsertion of the current load cycle under consideration, and 

then sampling from a distribution function to randomly select the insertion location. After 

insertion, the cycle is deleted from the rainflow matrix, and the cycle with the next largest 

amplitude is considered. This process is repeated until the rainflow matrix is empty and 

all cycles have been reinserted into the residual.  Numerous random sequences can be 

generated in this manner, and used to quantify the effect of load sequence on fatigue life 

prediction.   

Assuming a fully populated rainflow matrix is available, an algorithm can be 

implemented to reproduce a new turning point sequence, whose rainflow counting result 

is identical to that obtained from the original spectrum. Due to the fact that inserting a 

turning point pair (max-min or min-max pair) does not affect the possibility of inserting 
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any pair of equal or smaller amplitude, the reconstruction algorithm starts by selecting the 

largest cycle first.  The size of any cycle pair is indicated within the rainflow matrix 

construction by its relative distance from the central diagonal, hence, small cycles are 

found near the main diagonal while larger ones are farther away. Cycle counts along the 

same sub-diagonal indicate the same amplitude.  Once the largest cycle is inserted, the 

next largest amplitude cycle is identified and inserted. For illustration purposes, Figure 

32 shows a simple 5x5 rainflow matrix configuration with the relative order of cycle 

insertion indicated within each cell.  

 

Figure 32: Relative order for cycles contained in 5x5 rainflow matrix 

 

For each load cycle to be inserted, allowable locations for reinsertion are identified using 

the inverse rules for cycle extraction under the rainflow counting algorithm [112]. The 

reinsertion rules are as follows: 

If the cycle that is to be inserted is ordered max-min (i.e. in the lower triangle of 

the rainflow matrix), then it can be placed anywhere within the turning point sequence 

provided:  
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1. If the receiving cycle is ordered min-max (row # < column #), then receiving 

row must be less than or equal to the inserting column, and the receiving 

column must be greater than or equal to the inserting row  

2. If the receiving cycle is ordered max-min (row # > column #), then the 

receiving row must be greater than or equal to the inserting row, and the 

receiving column must be less than or equal to the inserting column 

Similarly, if the cycle that is to be inserted is ordered min-max (i.e. in the upper 

triangle of the rainflow matrix), then it can be placed anywhere within the turning point 

sequence provided:  

3. If the receiving cycle is ordered max-min (row # > column #), then receiving 

row must be greater than or equal to the inserting column, and the receiving 

column must be less than or equal to the inserting row  

4. If the receiving cycle is ordered min-max (row # < column #), then the 

receiving row must be less than or equal to the inserting row, and the 

receiving column must be greater than or equal to the inserting column 

Additionally, the reconstruction must alternate between local minimum and maximum 

values, i.e. maintain a turning point sequence. These rules ensure that the inserting cycle 

is smaller in amplitude than the receiving cycle and that all cycles within the rainflow 

matrix are guaranteed to have at least one feasible insertion location. As a result, the 

newly constructed load history is guaranteed to have the identical rainflow count as that 

obtained from the original history.  
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Markov Chain Stochastic Load Reconstruction  

Stochastic load reconstruction using the Markov chain method is simple and 

straightforward. The reconstruction technique utilizes both the transition probabilities 

contained within the Markov transition probability matrix as well as random number 

generators. First, the transition probabilities contained within each row within the upper 

diagonal of the transition probability matrix given in Eqn. (21) are converted to 

cumulative density functions. Since the Markov transition matrix is composed of n 

discrete load levels (as detailed in Section 2.4 and shown in Eqn. (19)), the cumulative 

distribution function for any load transition from level i can be calculated by the 

summation of the individual transition probabilities. To maintain the turning point 

sequence, i.e. maintain minimummaximumminimum order, the cumulative discrete 

distribution function can be calculated as: 
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Assume an initial load minimum at state i is known.  Stochastic simulation of the 

subsequent load state j can be performed through the following steps 

1.  Calculate the CMF along row i using the transition probability information 

above the main diagonal 

2.  Generate a uniform random number, x, within the bounds [0,1] 

3. Compare the random number, x,  to the CMF contained within each level j  

4. Select the new load level j for which x is ≥ CMFj-1 and ≤ CMFj and add to 

turning point history 
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5. Set i = j and repeat steps 14 

 

For the purpose of illustrating the applicability of the reconstruction methods 

outlined within this section,  the scaled helicopter combat maneuver loading history as 

presented in Khosrovaneh [114] and shown in Figure 33, is presented with numerical 

reconstruction using both the rainflow and Markov chain stochastic methods.  The 

reconstructed load histories using the rainflow technique are seen in Figure 34 and 

closely resemble the original load sequence by retaining major sequence trends and load 

magnitudes. 
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Figure 33: Original helicopter load spectrum 
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Figure 34: Three reconstructed helicopter load spectra using the rainflow method 
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Similarly, load reconstruction can be performed for the same helicopter spectrum 

using the Markov method.  Two simulated load histories obtained using this method can 

be seen in Figure 35.  
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Figure 35: Reconstructed helicopter load spectra using the Markov transition method 

 

As can be seen within Figure 35, the Markov method appears to be capable of 

stochastic reconstruction of variable amplitude load histories, however, the newly 

constructed loads appear to be slightly more randomly structured than those histories 

constructed using the rainflow methods. This is evident by looking at the major trend 

contained within the original load history (Figure 33) between approximately the 400 and 

1000 cycle. An overall positive trend is observed in both the original spectrum as well as 

the reconstructed rainflow spectra.  Both of the reconstructions using the Markov method 

failure to capture this major trend, and appear to have a more stationary random behavior 

than the original data set.  However, the simulated load history using the Markov method 



94 

 

still retains the same loading transition probability structure as that of the original history, 

and therefore remains a viable option for meaningful stochastic simulation of variable 

amplitude load histories.   

It should be noted that both of these reconstruction methods assume that the 

original spectrum contains all relevant loading information and is representative of a 

typical load spectrum experienced by the component.  This is an important distinction to 

make since all reconstructions are based on the original signal, and do not currently 

include extreme usage or load extrapolation methods. If desired, these extreme loading 

conditions can be adapted from regular use spectrum data using available methods, but 

should be performed prior to load quantification techniques such that the quantified 

history is representative of the use condition under consideration. 

 

3.7 Fatigue Crack Growth Modeling 

As discussed previously in Chapter 2, crack growth analysis can be performed 

using any number of published crack growth laws or crack growth rate representations, in 

which the crack extension, da/dN, for the current load step is calculated as some function 

of stress intensity factor range, ΔK.  For variable amplitude loading, load sequence 

effects can be significant, in which the order of the applied loading affects crack growth 

rate and component life prediction. Theses load sequence effects can be addressed 

through the use of crack growth retardation models such as those proposed by Wheeler 

[115], and Willenborg [116] which are available in the literature. 
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Within this research, the fatigue crack growth rate is modeled using the modified 

Paris fatigue crack growth law, as initially presented in Eqn. (9), along with Wheeler‟s 

crack retardation model to include load sequence effects given by Eqn. (28).   
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In Eqn. (28), υ
r
 refers to the retardation parameter, and is equal to unity if ai + rp,i > aOL 

+ rp,OL where aOL is the crack length at which the overload is applied, ai is the current 

crack length, rp,OL is the size of the plastic zone produced by the overload at aOL, and rp,i 

is the size of the plastic zone produced at the current crack length ai.  Else, υ
r
 is 

calculated
 
as shown in Eqn. (29) 
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where λ is the curve fitting parameter for the original Wheeler model termed the shaping 

exponent.  Sheu et al. [117] and Song et al. [118] observed that crack growth retardation 

actually takes place within an effective plastic zone. Hence the size of the plastic zone 

can be calculated in terms of the applied stress intensity factor (K) and yield strength (σ) 

as: 
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In Eqn. (30), α is referred to as the effective plastic zone size constant which is 

calculated experimentally [119].  Immediately following the overload, the retardation 

parameter υ
r
 < 1.  As the crack growths through the overload plastic zone, υ

r
 increases 
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monotonically to a value of 1, at which point the crack is assumed to have grown out of 

the influence of the overload, or until another overload is applied. The retardation 

parameter, υ
r
, is required to be less than or equal to 1.  

 
 

Figure 36: Schematic of crack front showing Wheeler model parameters for plastic zone 

based retardation correction 

 

The expressions in Eqn. (29) and Eqn. (30) can be combined with Eqn. (28) and 

used to calculate the crack growth as a function of number of cycles. By integrating the 

expression in Eqn. (28), the number of cycles (N) to reach a particular crack size aN can 

be calculated as shown in Eqn. (31). 
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For structures with complicated geometry and loading conditions, the integral in 

Eqn. (31) is to be evaluated cycle by cycle, calculating the stress intensity factor in each 
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cycle of the crack growth analysis. Since the stress intensity factor varies along the 

periphery of the crack front, so too will the predicted crack growth rate.  

Within this study, the stress intensity factor for a planar crack will be calculated at 

two points along the crack front; at the crack tip at the surface and at the crack tip at the 

depth (semi-major and semi-minor axis locations). This modeling approach allows for 

initially semi-circular cracks to develop into semi-elliptical cracks. For the planar crack 

growth analysis procedure, the crack growth direction remains in-plane with the initial 

crack orientation.  

  

3.8 Summary 

This chapter presented various methods which, when used in combination, enable 

efficient probabilistic fatigue crack growth analysis of planar, semi-elliptical surface 

cracks under multiaxial, variable amplitude loading conditions.  Several different topics 

were covered including the statistical representation of the initial flaw size using EIFS 

concepts, efficient stress intensity factor determination using FEA and surrogate 

modeling techniques, stochastic load representation, and crack growth modeling.   

The methodology incorporates some key features which enable efficient 

probabilistic fatigue crack growth analysis considering multiple sources of uncertainty. 

One key improvement over previous research includes the statistical representation of the 

initial crack size by sampling the statistical distributions of material properties (threshold 

stress intensity factor and fatigue limit).  The EIFS concept enables the use of well 

defined, long crack growth modeling which overcomes the limitations associated with 
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small crack growth modeling and provides a physics-based approach for EIFS 

formulation. Another key contribution is the development of a new modeling construct 

for fatigue crack growth analysis which allows for accurate and efficient component 

stress analysis and stress intensity factor determination using finite element models and 

surrogate modeling techniques. The Gaussian process interpolation response surface is 

used to replace the computationally expensive hierarchical finite element analysis and 

provides quick and accurate stress intensity factor solutions for any combination of crack 

sizes, shapes, and loading parameters that are within the design space, without the need 

for constant remeshing at the crack front. A new method is implemented to determine 

which input variable combinations should be evaluated within the FEA by identifying 

regions within the design space which are not well characterized by the current model.  

Two methods for variable amplitude stochastic load reconstruction are also developed for 

use within the cyclic fatigue crack growth analysis in order to consider the uncertainty in 

load sequence which may result from different use conditions.  Both methods appear to 

be capable of regenerating stochastic load realizations based on the statistical 

characterization of the original load sequence. 

The uncertainty quantification techniques presented in Chapter 2 can be used with 

the proposed framework developed in this chapter by implementing a sampling based 

strategy within a Monte Carlo framework.  Chapter 4 will investigate the additional 

uncertainties introduced by the numerical methods introduced in this chapter and will 

develop suitable methods for quantifying and incorporating these additional uncertainties 

within the overall component fatigue life prediction.   
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CHAPTER IV 

UNCERTAINTY QUANTIFICATION IN PLANAR CRACK GROWTH 

ANALYSIS 

 

4.1 Introduction 

As our dependence upon both numerical and finite element models increases for 

stress intensity factor calculation and fatigue life estimation, it is important that we 

acknowledge that modeling error exists in each model used. Contained within each 

model, be it numerical or some other form, simplifications and assumptions are made in 

order to enable analysis of a real system by means of the model.  Therefore, some errors 

will exist in the model predictions when compared with reality.  By improving the 

resolution or complexity of the models and limiting the number of simplifications and 

assumptions contained within them, it is possible to reduce model error, but at the 

expense of computational efficiency.   

The use of various numerical simulation models for the analysis of complex 

system performance incorporates many approximations and assumptions which result in 

errors in model predictions. Before higher system level analysis can be performed, it is 

first necessary to evaluate the accuracy of the simulation model itself in order to 

accurately assess and quantify model errors.  Model errors can generally be categorized 

into numerical solution errors and model form errors [120] and each type may be 

significant. 
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Model uncertainty typically begins at the conceptual modeling stage, due to 

inadequate understanding, information, or assumptions made about the actual physical 

phenomenon [121].  These errors become quantifiable at the mathematical modeling 

stage, when a mathematical model is chosen to represent the physical process of interest. 

At this stage, model form error exists (discrepancy between the mathematical model and 

the physical reality) as a result of the incorrect or inexact mathematical representation of 

the true process, improper selection of input parameters and values, and other 

assumptions.  

Additional errors can occur in the form of numerical solution errors that can occur 

as a result of data error, discretization error, and measurement error.  Numerical error can 

result from finite element discretization (finite mesh size), convergence tolerances, and 

truncation (from response surface methods) [121].  A general schematic of sources of 

errors that occur during modeling can be seen in Figure 37.  

      

Figure 37: Schematic showing sources of error during various stages of modeling and 

simulation 
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All of these different sources of error contribute to the overall model error. 

Typically these errors combine in a nonlinear form that is impossible to derive explicitly.  

However, several methods exist to try to estimate the different types of errors that may 

exist within the model prediction.  The true value can be assumed to be equal to the 

observed test result plus the experimental error as given by the expression 

exp obstrue yy     (32) 

where ytrue is the true value,  yobs is the experimental observation, and εexp is the error in 

the experimental observation and generally consists of both systematic and random error 

[122]. It can then be stated that the following relation exists 

nummfpredobs yy   exp   (33) 

where ypred is the model prediction, εmf  is model form error, and εnum is numerical errors. 

Several methods will be examined and investigated to determine the best way to estimate 

the various sources of model error.  The error in experimental error, εexp, may be 

estimated from repeated observations and experimental measurements, if available, or 

may need to be estimated based on expert opinion and data availability. 

If multiple models exist, as is the case when deciding between which crack growth 

model to use (i.e. Walker vs. Forman vs. Forman-Newman-de Koning models), Bayesian 

model averaging (BMA) can be implemented to reduce the model form uncertainty and 

help with selection of the most relevant model [123] and model form errors, εmf, can be 

evaluated using sensitivity analysis.  Additionally, the statistics of numerical errors, εnum, 

within the finite element model may be estimated by using the distribution of model 

outputs at both course and fine element meshes [121].   
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Although there may be different types of errors existing throughout the modeling 

process, some may be more relevant and significant than others. This chapter will present 

methods for uncertainty quantification of model outputs from the primary models used in 

fatigue crack propagation analysis. Model errors will be evaluated and the results of these 

assessments will be systematically included within the overall component reliability 

framework.  

 

4.2 Finite Element Discretization Error 

Theoretically, an infinitesimally small mesh size will lead to the exact solutions 

but this is difficult to implement in practice. Hence, finite element analyses are carried at 

a particular mesh size and the error in the solution, caused due to discretization needs to 

be quantified.  To reduce the finite element modeling error and due to the stress 

singularity near the crack front, a very high-resolution model (i.e., very fine mesh) is 

desired. However, the fatigue crack propagation problem usually spans different length 

scales from micro-level to macro-level, and the requirement for a high resolution model 

at all levels makes the analysis extremely time consuming and computationally 

demanding.   

Several methodologies have been proposed to calculate the stress (or stress 

intensity factor) efficiently and accurately, such as Automated, Global, Intermediate, 

Local Evaluation (AGILE) method by Chen and Le [124]. The key idea is to break down 

the problem into several smaller scale analyses. In each stage (global, intermediate, 

local), a different resolution can be used to reduce the overall computational cost. This 
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type of approach is proven to provide efficient and effective solutions for relatively small 

cracks in highly complex structures as compared with other available methods. This 

hierarchical method has been demonstrated to offer substantial improvement in 

computational efficiency for RCDT analysis [125].  Liu and Mahadevan [126] proposed a 

similar computational methodology for fatigue crack propagation analysis and applied the 

methodology to fatigue cracking in railroad wheels. Similar to AGILE, the problem is 

broken down to hierarchical stages: Full-model, Sub-model and Local crack model 

(FSL). 

The results obtained from any finite element analysis are dependent on the mesh 

density used with finer density models producing the most accurate results.  If a coarse 

meshed model is used in place of highly refined meshed model, in order to improve 

computational efficiency, what errors are introduced into the solution?  Since a two level 

model is used within this research, discretization is performed at two distinct length 

scales; the full component model and the cracked sub model. Therefore, it is possible that 

the level of discretization used at both the full model level and the sub model level will 

introduce some level of modeling error in the solution. First, in order to determine the 

effect the full model discretization had on the overall solution, the sub model mesh 

density was held constant while the full model mesh density was refined. Results could 

then be analyzed using the Richardson extrapolation technique as described within the 

next section. After this analysis was performed, the full model mesh density was held 

constant while the sub model mesh was refined.  The analysis was again performed to 

determine the errors introduced by the sub model discretization.  By using this approach, 

it is possible to identify and quantify the magnitude of the modeling errors introduced at 
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each level of the modeling process and include these errors within future fatigue crack 

growth analysis.   

Several methods are available in literature for discretization error assessment but 

many of them quantify some surrogate measure of error to facilitate adaptive mesh 

refinement. The Richardson extrapolation (RE) method has been found to come closest to 

quantifying the actual discretization error and this method has been extended from 

Richards original formulation [127] to stochastic finite element analysis by Rebba [120]. 

It should be noted that the use of Richardson extrapolation to calculate discretization 

error requires the model solution to be convergent and the domain to be discretized 

uniformly [120]. Sometimes, in the case of coarse models, the assumption of monotone 

truncation error convergence is not valid. 

In the Richardson extrapolation method, the discretization error due to grid size, 

for a coarse mesh is given by Eqn.(34) 
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In Eqn. (34) f1 and f2 are solutions for a coarse mesh and a fine mesh respectively. 

If the corresponding mesh sizes were denoted by h1 and h2, then the grid refinement ratio, 

denoted by r is calculated as h2/h1. The order of convergence of p is calculated as: 
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Where f3 represents the solution for a coarse mesh of size h3, with the same grid 

refinement ratio, i.e. r = h3/h2. 
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The estimated discretization error will not be accurate if even the finest mesh used 

in an analysis is not fine enough [121]. For this reason, initial convergence studies should 

be performed to ensure that solution convergence is obtained from the model.  The 

Richardson extrapolation technique also requires that asymptotic convergence of the 

finite element solution is observed when the mesh size is reduced, i.e. y1,y2,y3 in Eqn. 

(35) should either progressively decrease or increase [128]. 

When using a global-local hierarchical finite element approach, it is necessary to 

perform the Richardson Extrapolation technique on both the full model and sub model in 

order to accurately represent the overall discretization error introduced within the 

modeling process. As a result, finite element solutions were needed for 3 different mesh 

densities within the full model while the sub model refinement was held constant, and 

then solutions were needed for 3 different mesh densities within the sub model while the 

full model refinement was held constant. By analyzing the solutions obtained from the 

different mesh densities, modeling error could be estimated for each crack configuration 

and loading condition. 

The solutions f1, f2, f3 are dependent on the inputs (loading, current crack size, 

aspect ratio and angle of orientation) to the finite element analysis and hence the error 

estimates are also functions of these input variables. For each set of inputs, a 

corresponding error is calculated and this error is added to the (coarse mesh) solution 

from finite element analysis to calculate the true solution. 

A series of finite element analyses were performed for various model input 

combinations. For each model input combination, the model error resulting from the 

meshing of the finite element model was evaluated using the Richardson extrapolation 
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technique.  This analysis required three levels of discretization within the full model in 

order to determine the rate of convergence and ultimately quantify the discretization error 

associated with the coarsest mesh density.  After performing the error analysis, it was 

found that absolute value of error caused by the coarse mesh in the full model ranged 

from 0.58% up to 3.53% depending on the crack configuration (length and aspect ratio) 

and loading condition considered.  A histogram of the model error is shown in Figure 38. 

As indicated within the figure, it was determined that the distribution of the model error 

fit the lognormal distribution function well, with a mean value of 2.144 and a variance of 

0.154.   
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Figure 38: Histogram of Percent Errors found during full-model refinement analysis 

with results compared to lognormal distribution 

 

Similar analysis can be performed to evaluate the discretization error caused by 

the mesh choice within the sub model.  In order to determine its effect on the overall 

stress intensity factor solution, the full model mesh size is held constant while the mesh 

density within the sub model is varied.  For the sub model analysis, it is important to 
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accurately model the crack front with singular elements of adequate shape and size in 

order to capture the stress state within the region, as more fully discussed in Section 3.3. 

As a result, some limitations on the mesh density are necessary to ensure basic solution 

convergence and non-irregular element shapes. After performing the Richardson 

extrapolation analysis on the results obtained from the sub model refinement analysis, it 

is found that the error caused by using even the coarsest mesh is relatively insignificant, 

less than 1% for all cases. This is not a significant source of error for the purposes of 

component life prediction and the discretization errors within the submodel are not 

included in the overall probabilistic crack growth analysis. 

It is not surprising that the discretization error evaluated for the submodel is 

determined to be insignificant. This result can be explained by comparing the relative size 

and mesh densities of the sub model when compared to the full model.  The overall size 

of the sub model is very small compared to that of the full model.  As a result, the 

relatively large elements in the full model are replaced by thousands of smaller elements 

within the sub model.  In order to maintain minimum element shape tolerances and 

provide suitable mesh configurations for stress intensity factor calculations, even the 

coarsest mesh density in the sub model analysis maintained a relative high mesh density 

and provided accurate solutions.   

The Richardson extrapolation technique has been shown to be a suitable way to 

evaluate the inherent modeling errors that result from using a coarse mesh within a finite 

element model, and has been applied to a hierarchical rotorcraft mast demonstration 

problem. The method requires evaluating the model for three distinct mesh densities to 

determine solution convergence rates. It should be noted that the discretization error 
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obtained using this method is a discrete error (as opposed to random error) that arises due 

to the specific geometric configuration of the problem under consideration. As a result, 

the  modeling errors determined through this analysis should be directly added to the 

corresponding stress intensity factors to provide adjusted solutions that more closely 

match the true solution (void of any discretization errors).  These “adjusted” model 

solutions can be used to train the surrogate model as initially described in Section 4.5 and 

analyzed within the next section.  The histogram and distribution functions shown in 

Figure 38 are included only to provide an overall summary of the individual results 

obtained in this study and are not meant to (nor should they be) used for sampling 

purposes in subsequent model evaluations.  

 

4.3 Surrogate Model Error 

The use of an efficient surrogate model allows for efficient cycle by cycle fatigue 

crack growth evaluation for components subjected to variable amplitude multiaxial 

loading by eliminating the computational burden that otherwise exists for calculation of 

the stress intensity factor at the crack front.  However, the surrogate model is itself an 

approximation method to an already uncertain model, thus its use introduces another 

uncertainty within the modeling framework that needs to be addressed.  

The successful use of any surrogate modeling technique depends on the ability of 

the surrogate to accurately match the underlying function shape, and a successful method 

for identifying suitable data to most effectively train the surrogate. As discussed in 

Section 3.5, the Gaussian process model is capable of accurately modeling the non-linear 
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relationship that exists between the input variables and output variables within the fatigue 

crack growth modeling application. Therefore, the primary question is, if only limited 

training points can be generated, which set of training points should be used to most 

effectively train the surrogate model?  The answer to the question depends on what 

criteria (maximum error, average error, maximum variance, etc) is used to evaluate the 

effectiveness of training, and several methods have been developed which approach this 

problem from different perspectives.  Three main methods offered within the literature 

for training point selection are the traditional design of experiments [129], model error 

minimization [130], and model variance minimization [106]. Within this research, 

traditional DOE methods are first used to select a small set of initial training points, 

followed by an iterative model variance minimization method using the Greedy point 

algorithm. Details of the model error assessment resulting from the Gaussian Process 

surrogate model is discussed below.  

As detailed in Section 3.5, one of the advantages of using the Gaussian Process 

surrogate modeling technique is that the method has the ability to provide a direct 

representation of the uncertainty associated with its interpolative approximation.  The 

uncertainty in the model prediction is given by the model variance. The Greedy Point 

algorithm can utilize the model variances across the entire design space to determine the 

precise location which proves to have the largest model uncertainty (variance).  The next 

training point is set to be the combination of input variable values corresponding to that 

particular location within the design space, the full FEA is evaluated to provide the 

“correct” solution and is used to update the surrogate model. By repeating the Greedy 

Point algorithm iteratively, training points can be identified that minimize the variance of 
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the surrogate model.  This training point selection method eliminates the subjectivity 

associated with typical design of experiments methods which use a pre-determined fixed 

set of training points, and ensures that the surrogate model is iteratively improved by 

adding new information that most efficiently reduces the maximum uncertainty in model 

predictions.   
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Figure 39: Maximum GP model variance vs. # of Training points used 

 

Table 5: Number of Training Points used in surrogate vs. Maximum Model Variance 

# of Training Points Max. Model Variance

16 54.787240

24 1.145149

32 0.065271

40 0.040791

48 0.040660

56 0.009858

64 0.005758

72 0.002637

100 0.002064

200 0.000975

300 0.001683

400 0.000511

500 0.000542  
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Since the surrogate model is built using an iterative process, it is easy to track the 

maximum model variance for different numbers of training points used. The maximum 

model variance (model prediction uncertainty) is observed to decrease as additional 

training points are used to train the surrogate.  This trend can be clearly seen within 

Figure 39 and Table 5 as the maximum model variance within the surrogate is shown as a 

function of number of training points used. Since the model variance at any untested 

location x* is based on its relative proximity to available training points as well as the 

correlation structure between them,  the overall variance is expected to decrease with 

increasing training points within the design space.   

The Greedy Point method which uses a model variance minimization technique 

for training point selection has been compared to a recently proposed method which uses 

a hierarchical decomposition of the approximation error for training point selection 

method [130].  Comparisons of model predictions at different levels of training for the 

fatigue analysis application described herein show the model variance and model error 

minimization techniques to have very similar performance in terms of overall solution 

accuracy.  

For demonstration purposes, the Gaussian process model shown in Figure 39 was 

trained for an overly large number of training points, as reflected by the small values of 

model variance near the bottom of Table 5, resulting in a very small value of surrogate 

model uncertainty. However, in practical applications where only limited finite element 

runs may be possible, the associated surrogate model prediction uncertainty at different 

locations within the design space may be more significant. The Gaussian process model 

provides an easy and convenient method for quantifying the uncertainty in model 
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predictions when limited training points are available. Under these circumstances, model 

predictions made using the surrogate model can be treated as Gaussian random variables 

with closed form solutions for  their  mean values given by Eqn. (25) and variances given 

by Eqn. (26). In doing so, the associated model uncertainty can be easily included within 

the fatigue crack growth modeling framework.  

 

4.4 Methodology to Incorporate Uncertainty in Final Prediction 

The physical modeling process itself introduces many additional sources of 

uncertainty that need to be accounted for in addition to the natural variability that is 

inherent in physical processes.  This chapter identified several uncertainties associated 

with different types of numerical models that are typically used in fatigue crack growth 

analysis.  It is important that each of these uncertainties is quantified and included within 

the stochastic fatigue crack growth modeling framework for component life prediction.  

A systematic and rigorous probabilistic component life assessment can be performed by 

combining the various sources of uncertainty detailed in Chapter 2, the modeling errors 

discussed within this chapter, and the overall fatigue crack growth framework developed 

in Chapter 3.  Each input variable and modeling technique introduces additional 

uncertainty that must be carefully combined within the analysis to provide a meaningful 

and useful component life prediction under uncertainty.  

The overall objective of a probabilistic damage tolerance analysis is to determine 

the probability of component failure over the lifetime of the component. A sampling 

methodology is used within this research to include many different sources of uncertainty 
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including physical variability, data uncertainty, and modeling errors. The approach 

enables the evaluation of the distribution of the amount of time, t, for an initial flaw to 

grow to a critical size, or conversely, the distribution of crack sizes at any time t . This 

type of information can be used by fleet managers and maintenance personnel for 

inspection planning and decision making. The various steps in this procedure are outlined 

here. 

I. Initial uncertainty quantification is performed to determine statistical distributions 

of model parameters and input values including: material properties, crack growth 

rate model parameters, and loading.  

II. Component stress analysis is completed to identify critical crack location and 

orientation 

III. EIFS distribution is constructed from distributions of material properties (obtained 

in step I) to statistically characterize the initial flaw size 

IV. Finite element analysis is performed to provide necessary training points for the 

Gaussian process surrogate model. Discretization error is evaluated and FEA 

results using the coarse model are adjusted accordingly. 

V. Updated FEA results are used for construction of initial GP model, and the Greedy 

point algorithm is implemented to identify additional training points until a 

satisfactory level of performance is reached 

VI. The fully trained GP model is used exclusively for calculating the stress intensity 

factor as a function of crack size, loading, aspect ratio and angle of orientation. 

VII. A realization of a variable amplitude loading history is reconstructed using either 

the rainflow or Markov reconstruction techniques.  
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VIII. A single realization of EIFS is sampled from its statistical distribution as calculated 

based on material properties. 

IX. For the current load cycle (obtained from history generated in Step VII), the stress 

intensity factor is sampled from the GP model (where the mean and variance are 

accounted for in model prediction) and the corresponding stress intensity factor is 

used within a crack growth rate model to determine crack extension magnitude.  

X. Cycle-by-cycle crack growth is evaluated at both the semi-major and semi-minor 

locations along the crack front, thus allowing for semi-elliptical to semi-elliptical 

crack shape development. Crack growth rate modeling is randomized by using 

either the percentile or partial correlation approach detailed in Section 2.3. The 

crack front is grown in plane and Steps IX and X are repeated until a critical crack 

length is obtained.  

XI. Steps VII  X are repeated within a Monte Carlo scheme  

 

The straightforward sampling procedure in combination with an efficient cycle-

by-cycle fatigue crack growth evaluation enables a multiple realization of fatigue crack 

growth analyses to be performed quickly and without the need for much user 

intervention. The analysis method enables the determination of statistical characterization 

of fatigue crack sizes over time.  Despite the addition of probabilistic representation of 

model inputs, the computational efficiency afforded by the modeling framework enables 

many simulations within the Monte Carlo framework to be performed without significant 

computational expense.  
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A numerical example is included to show typical results that are obtained through 

the use of this method. For this example, the material considered is aluminum alloy 7075-

T6. The material properties of the aluminum alloy are included within Table 6.  

 

Table 6: Material Properties of 7075-T6 Aluminum alloy 

7075-T6 Aluminum Alloy

SI Units US Units

Modulus of Elasticity 71.7 GPa 10400 Ksi

Poisson Ratio 0.33 0.33

Yield Stress 503 MPa 73 Ksi

Ultimate Stress 572 MPa 83 Ksi  

 A Monte Carlo based method is used to perform the analysis method outlined 

above.  Typical results obtained within each step have been previously presented within 

the original sections in which they were presented, and therefore, will not be repeated 

here. As mentioned previously, the Monte Carlo implementation generates a random 

realization of each stochastic variable and performs a cyclic fatigue crack growth analysis 

from an initial size to a final size using either the percentile or partial correlation fatigue 

crack growth rate representation. The crack growth results obtained from all realizations 

can then be used to determine the statistics of the fatigue life predictions under 

uncertainty.    

 Figure 40 and Figure 41 show numerical crack growth modeling results obtained 

from the stochastic fatigue crack growth analysis procedure using both the percentile and 

partial correlation crack growth rate modeling approaches.  Similar simulation results are 

obtained using either stochastic crack growth rate representations indicating that the 

choice in stochastic crack growth rate representation (percentile and partial correlation) 
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does not have a significant effect on the overall fatigue life prediction. Each method 

appears to equally represent the scatter in the fatigue crack growth rate data and results in 

the same overall model prediction when all the other sources of uncertainty are 

considered.  A typical crack profile which results from the planar crack growth analysis is 

shown in Figure 42 after many crack growth increments are completed. 
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Figure 40: Plot showing simulated fatigue crack growth curves considering natural 

variability, information uncertainty, and modeling error 
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(b.) 

Figure 41: Plot showing mean and 90% confidence bounds on component life prediction 

obtained using the a.) percentile b.) partial correlation crack growth rate representations 

 

The probabilistic crack growth method not only can provide a mean prediction for 

component fatigue life, but can also estimate the variance to be expected in life prediction 

considering uncertainty, as seen in Figure 41 a) and b.).  One of the key benefits of using 

the probabilistic based modeling approach is the ability to extract from the simulation 

results a crack size probability distribution at any given time, t, or, conversely the 

probability distribution of the time necessary for a crack to reach a critical size.  These 
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results can be easily expressed through statistical distributions functions.  Figure 43 a.) 

and b.) show simulation results with the lognormal probability density function and 

cumulative density function, respectively, for the number of load cycles necessary for an 

initial crack to grow to a critical size extracted from the results obtained using the  

percentile crack growth rate representation. Similar statistical distributions can be 

evaluated to represent the crack size population after any given number of load cycles.  
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Figure 42: Typical fatigue crack profile showing crack growth due to fatigue loading 
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(b.) 

Figure 43:  a.) PDF and b.) CDF of Lognormal distribution function of number of cycles 

to reach a critical crack size shown with simulation results 

 

The use of various models for the analysis of complex system performance 

incorporates many approximations and assumptions which result in errors in model 

predictions. This chapter has presented methods to evaluate different types of modeling 

errors including finite element discretization error and surrogate modeling error and has 
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demonstrated how uncertainties at all levels of the crack growth modeling approach can 

be incorporated within an overall probabilistic fatigue life assessment.  

Both deterministic and random errors have been addressed within this work and 

can easily be included within the overall probabilistic crack growth modeling framework. 

Finite element discretization errors represent deterministic errors that result from the 

specific mesh densities used within finite element models.  Error resulting from using a 

coarse mesh density is determined using a Richardson extrapolation technique and is a 

deterministic error should be evaluated and directly applied to the model prediction. 

Deterministic errors should not be treated using sampling techniques as their effects are 

directly related to specific configurations.  The stress intensity factors evaluated using the 

Gaussian Process (GP) surrogate model represent uncertain model predictions, which 

produce random model errors. These types of errors can be included by sampling 

techniques.  

Multiple sources of uncertainty including natural variability, data uncertainty, and 

modeling errors can be incorporated into the methods developed in previous chapters. 

The methods for implementation of the developed methodology to a realistic rotorcraft 

component have been provided within this chapter and executed on the rotorcraft mast 

demonstration problem.  Overall, the fatigue crack growth framework developed in 

Chapter 3 is capable of performing cycle-by-cycle fatigue crack growth analysis while 

considering several different sources of uncertainty in model input values and parameters 

described in Chapter 2 as well as model errors which have been classified in this chapter. 
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CHAPTER V 

NON-PLANAR FATIGUE CRACK GROWTH MODELING  

 

5.1 Introduction 

Damage tolerance based design has increased the necessity for better 

understanding of fatigue crack growth mechanisms in mechanical components. 

Traditional applications of fracture mechanics, as well as most experimental testing, have 

focused on cracks growing under pure mode I conditions. Characterization of fatigue 

crack growth under Mode I loading conditions using the stress intensity factor range is 

based on the assumption that the path of the crack is linear and that its plane of growth is 

normal to the loading axis [131]. Therefore, the crack growth direction remained in plane 

with the original crack orientation, resulting in planar (non-kinked) cracks even after the 

occurrence of several crack growth increments. The fatigue crack growth modeling 

framework developed in Chapter 3 adopted this approach for probabilistic fatigue life 

prediction under uncertainty.   

 It is, however, well known that on a microscopic level, cracks seldom propagate 

in a linear fashion (even under Mode I loading), and on a macroscopic level, cracks in 

structures are often subjected to mixed-mode conditions, resulting in crack kinking and 

other non-planar propagation paths. As a result, there is a growing interest in 

investigating the mechanics and crack growth modeling capabilities associated with the 

nonlinearities in the crack path.  When considering non planar crack growth modeling, it 

is important to be able to predict and model both the crack extension magnitude and the 
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crack path direction.  Nonlinearities in the crack path have been generally ignored in 

fatigue life prediction because of the difficulties in incorporating crack meandering 

effects in estimates of the stress intensity factor range [131], crack extension criteria, and 

crack model meshing capabilities.  In order to try to capture the nonlinear crack extension 

behavior that has been seen in both experimental results and realistic applications, 

numerous crack growth direction and extension criteria have been proposed within the 

literature by different authors over the past few decades.  This chapter will investigate the 

fatigue crack growth modeling capabilities for non-planar fatigue cracks. Additionally, it 

will provide a suitable method for fatigue crack growth simulation with the goal of 

investigating the uncertainty in crack path and component life predictions resulting from 

different criteria for crack extension magnitude and direction.   

There are two dominant modes of fatigue crack propagation: tensile and shear 

dominated crack growth [132].  Tensile dominated crack growth is also sometimes 

referred to as maximum principal stress dominated, and is the class most often observed 

in metal fatigue. Under the tensile dominated case, a Mode I crack usually (but not 

always) tends to propagate in a direction that is perpendicular to the maximum principal 

tensile stress within the uncracked specimen [133]. The second dominant mode is shear 

dominated crack propagation (Mode II type), which usually takes place on planes of 

maximum shear stress and is an important exception to the tendency to Mode I fatigue 

crack propagation [134]. In metal fatigue, the shear dominated mode of crack propagation 

is often observed when the crack tip plastic zone becomes large, and is generally 

applicable to micro cracks that are characterized as stage I cracks in Forsyth's notation 

[143] (as shown in Figure 45). Additionally, a third mode of fatigue crack propagation is 
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sometimes observed and is called slant crack propagation.  This type is another exception 

to Mode I, and is often observed in thin sheets and is characterized by a transition zone 

between Mode I and Mode III fatigue growth. A schematic of generalized crack growth 

under mixed mode loading is shown in Figure 44. 

 

Figure 44: Schematic showing development of fracture surface for a.) in plane crack 

opening subjected to mode I; b.) crack kinking under mode II; c.) crack front twisting 

under mode III; d.) deflected crack for superimposed modes I, II, and III 

 

In the last four decades there have been substantial advances in the understanding 

of macroscopic aspects of fatigue crack paths and their prediction [134].  However, at the 

present state of the art, the factors controlling the path taken by a propagating fatigue 

crack are not completely understood, and, in general, crack paths are difficult to predict 

[134].  Under mixed mode loading, the fatigue crack growth rate is typically expressed 

[134,163] with the same functional relation as that of the uniaxial case where the stress 

intensity factors in multiple modes are replaced by a single equivalent stress intensity 

factor range, ΔKeqv.  

      
 eqvKf

dN

da


  
(36) 
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One approach that is commonly seen within the literature is to ignore any 

nonlinearity in the crack path direction due to the difficulties in incorporating crack 

meandering effects in estimates of the stress intensity factor range.
 
Fatigue crack path 

prediction for a planar crack is essentially two dimensional, regardless of whether a 

single point, two point, or multiple point extension criterion is used. Ultimately, it 

reduces to making the assumption that crack propagation direction is perpendicular to the 

current crack front, and calculating crack growth increment (s) using a standard crack 

growth law, such as one listed in Table 1.  Many of the existing three-dimensional 

fracture simulation codes actually fall under this category since only planar crack 

extension is considered.  

 
Theoretical justifications for a planar crack growth assumption are that local 

variations in the path of a long fatigue crack are normally overcome during subsequent 

propagation over a short distance under certain loading conditions [131], and that 

projection of the initial mixed mode crack onto an appropriate plane can provide an 

accurate method for estimating SIFs for a kinked crack [135].  Additionally, it has been 

pointed out by numerous authors that on a macroscopic scale, and under essentially 

elastic conditions, most fatigue cracks in isotropic metallic materials tend to propagate in 

Mode I [134], that is, approximately perpendicular to the maximum principal tensile 

stress. These authors include Borberg [136], Cotterell [137], Knauss [138], Minoshima 

[139], Parton[140], Pook [133,141], and Vinas-Pich [142].  Under this observation, 

cracks that are classified to stage II in Forsyth's notation [143] often show crack growth 

behavior that is confined to a particular plane [143]. 
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Figure 45: Forsyth's notation of fatigue crack growth evolution [143] 

 

Although many commercial software codes can perform accurate stress analysis 

of cracked structures, most have difficulty in implementing a suitable propagation 

scheme for non-planar, three-dimensional crack growth. Various three-dimensional 

fracture simulations have been reported within the literature with emphasis on numerical 

analysis development [144, 145, 146, 147]. However, most programs do not acknowledge 

the critical issues of crack representation and automated propagation, which are necessary 

for efficient implementation on realistic structures [148]. To model an evolving crack 

efficiently and automatically in a complex three-dimensional structure, one requires two 

integral components in a simulator: crack representation and crack growth mechanics.  

Here, crack representation includes the geometry of the cracked body and updating the 

description to reflect crack growth; which includes both the real geometry and the 

mathematical representation (i.e. the mesh), and crack growth mechanics refers to stress 

analysis, extraction of relevant crack growth parameters, and determination of shape, 

extension, and direction of crack growth [148].   
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For the case in which the initial fatigue crack is allowed to grow in a non-planar 

fashion, both crack extension and crack direction model predictions are necessary and 

lead to an increase in the complexity of the crack shape development and computational 

modeling considerations. The following section discusses many of the existing non-

planar crack growth criteria which have been reported within the literature with particular 

emphasis on the various theoretical and empirical forms available for the crack kink 

angle and equivalent stress intensity factor under mixed mode I, II, and III conditions.  

Section 5.3 provides details of the specific methods which are used for component stress 

analysis and non-planar crack modeling within this research. The remaining sections of 

this chapter focus on the challenges associated with surrogate modeling development for 

non-planar crack growth analysis and a proposed equivalent planar method which links 

the insight obtained using a more sophisticated non-planar crack growth analysis to the 

planar crack growth analysis presented in earlier chapters of this dissertation.  

 

5.2 Existing Non-Planar Crack Growth Criterion 

For the case of mixed mode I + II loading and non-planar crack growth modeling, 

the most commonly used criterion for tensile crack propagation is the maximum 

tangential stress (MTS) criterion as proposed by Erdogan and Sih (1963) [149].  The 

tangential stress, σθ, near the tip of a crack subjected to mixed I+II mode is expressed by 
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where the crack deflection angle, θσ, can be obtained from solving the equations  
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which yields the angle, θσ, at the maximum σθ that is obtained from the expression 
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The equivalent SIF for mode I, ΔKIeqv, for mixed mode cracks is then given by the 

expression 
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where ΔKI, ΔKII are the mode I and mode II stress intensity factors for the initial crack, 

and θ is the crack propagation angle.  

Richard [150] later approximated the ΔKIeqv expression given by Erdogan and Sih for 

Mode I+II as  
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and also approximated the crack deflection angle by 
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which has been proven to be a good approximation by a large number of experiments 

[151].  Richard later extended previous approximation functions to be used for crack 

growth prediction under the general mixed mode I+II+III loading case.  The function in 

Eqn. (42) has been extended to the three dimensional case as follows 
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where θo<0
o
 for KII>0 and θo>0

o
 for KII<0 and KI≥0.  The equivalent stress intensity 

factor is then suggested to take the form of 
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With α1=KIC/KIIC=1.155 and α2=KIC/KIIIC=1.0, excellent agreement has been observed 

with that obtained from the σ1' criterion (given in Eqn. (61) ). 

Pook [141] made another approximation to the original MTS criterion with the 

expression  
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And Yan [152] suggested another functional form for mixed mode I+II loading given by 
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where θσ is the crack growth direction obtained from the maximum tangential stress 

criterion determined through Eqn. (38).  

Tanaka [153] proposed the parameter  
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which can be extended to the Mode I+II+III case
 
as follows 
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or, based on the energy release rate criterion for mixed mode I+II,  
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and for the extended to the Mode I+II+III case as  
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The rate of mixed mode crack propagation using any of these criteria is higher than that 

predicted from ΔKI only, and the inclusion of mode II and III stress intensity range is 

necessary in the crack propagation law [156].  

 Another criterion that has been used for the tensile crack growth direction is the 

Local Symmetry (LS) criterion proposed by Kitagawa [154]. The LS criterion assumes 

that a crack propagates in the direction where the mode II stress intensity factor of a 

kinked crack is zero, and the stress field is symmetrical with respect to the mode I crack. 

Additionally, the maximum strain energy release rate criterion proposed by Palaniswamy 

and Knauss [155] assumes that the crack grows in the direction where the strain energy 

release rate is the maximum and that the maximum value is a material constant.  The 

crack growth directions predicted by the LS criterion and the maximum strain energy 

release criterion are generally very close to the direction predicted by the MTS criterion 

[156]. 

For shear mode fatigue crack growth, the maximum shear stress (MSS) criterion 

proposed by Otsuka [157] has been used.  The shear stress, trθ, near the crack tip is given 

by 
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where the angle, θr, for the maximum shear stress, trθ, is 
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For fatigue crack propagation, the range of the SIFs is substituted in the above equation, 

and the equivalent SIF for Mode II, ΔKIIeqv, for mixed mode cracks is given by 


































 )1cos3(

2

1
sin

2

1

2
cos tIItI

t
IIeqv KKK 



  

(53) 

Pook [158] later approximated the above expression to the simpler form of 

     

2/1
2

6.2
1






































IIeqv

I

IIeqv

II

K

K

K

K

   

(54) 

At low stress levels, the shear growth of fatigue cracks is not stable, and in most 

cases cracks propagate in the direction predicted by MTS or LS criteria where the 

propagation mode quickly kinks to make ΔKII=0. At high stresses, however, aluminum 

alloys show shear-mode crack growth under mode II loading [159]. The rate of shear 

propagation of fatigue cracks in self-similar manner can be expressed by the equivalent 

SIF, ΔKeqv, which is a combination of ΔKI and ΔKII.  

For the mixed mode I+II+III case,  Sih [160,161] proposed a popular mixed mode 

model known as the strain energy density criterion, which is based on the strain energy 

density around the crack tip. The strain energy density factor, S, is given by the 

expression: 
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where the coefficients under plane strain are 
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where μ is the shear modulus of elasticity and   is Poisson's ratio. The crack angles, θ 

and ψ are derived by minimizing S  
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Crack extension occurs when the strain energy density factor reaches a critical value in a 

direction defined by θo, which corresponds to the direction of minimum strain energy 

density. For cyclic loading, a cyclic strain energy density factor is defined by 
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which includes both the stress range and the mean stress, and can be used after 

determining the direction of crack growth from Eqn. (57). The crack growth rate is 

directly related to ΔS through the expression  
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Schollmann [162] proposed the σ1' crack growth criterion that also can be applied to the 

three dimensional case. The criterion is based on the assumption that crack growth 

develops perpendicularly to the direction of σ1', which is a special maximum principal 

stress. σ1' can be defined by the near-field stresses σθ, σz, and τθ,z as follows 
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Due to the assumption that the crack growth direction is perpendicular to σ1' , the crack 

deflection angle, θo, can be calculated by  

     

0
'

1 




 o



  and  0

2

'

1

2






 o




   

(62) 

After substituting the near-field stress solutions and differentiating partially with respect 

to θ, the following formulation can be found 
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The equivalent stress intensity factor can then be calculated as 


































































 2

2

22 4
2

sin
2

3

2
cos

2
sin

2

3

2
cos

2
cos

2

1
III

o
II

o
I

o
II

o
I

o
eqv KKKKKK



        

 (64) 



133 

 

As evident from the lengthy discussion above, numerous criteria have been developed to 

approximate the crack kinking phenomenon that has been observed under mixed mode 

loading conditions for both the crack kinking direction and equivalent stress intensity 

factor solutions. For mixed I+II+III mode loading conditions a good literature review can 

be found in Richard [163], Tanaka [156], and Marquis and Socie [164].  Additionally, the 

work by Liu [165] provides a thorough review of both S-N based multiaxial fatigue 

models as well as mixed mode fatigue crack growth models.   

While various theoretical models to predict non-planar crack kinking behavior 

have been proposed, none has been widely accepted as a universal theory.  Each of the 

above criterions is different from the others, but it is not clear exactly how much 

difference will be observed in the fatigue life prediction resulting from each criterion.  

Some criteria may predict similar crack trajectories and only slight differences will exist, 

while others may result in significantly different crack paths and fatigue life predictions.  

 In addition to the mathematical representation of the fatigue crack path prediction 

provided by the equations above, it is also necessary to be able to incorporate the crack 

direction modeling approach within the current finite element model.  There needs to 

exist a method to update crack shapes and sizes within the finite element model for 

accurate determination of the local stresses at the crack tip for various cracked 

configurations. For the three-dimensional fatigue crack problem, where surface cracks 

can grow in a non-planar fashion with different kink angles along the entire crack front, 

creating robust crack extension and local remeshing algorithms for all of the criteria 

mentioned above is not a trivial task.  It is impractical to try to evaluate all of the 

candidate non planar fatigue crack growth models as a result of the high computational 
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expense and implementation time necessary to do so. Therefore, for the purposes of this 

research, only a few of the most common models are evaluated.  

 

5.3 Component Stress Analysis and Non-Planar Crack Modeling 

The software Fracture Analysis Code in 3-Dimensions/Next Generation 

(FRANC3D/NG) is used for its crack insertion and local remeshing algorithms which 

help to simplify the modeling complexities that exist in modeling the non-planar fatigue 

crack growth problem using finite element software. FRANC3D/NG is a newer version 

of the original FRANC3D crack growth simulation software package developed by the 

Cornell Fracture Group and the Fracture Analysis Consultants [166].  In addition to other 

improved features, FRANC3D/NG uses finite element software instead of the boundary 

element method for component stress analysis and incorporates both stress analysis and 

crack propagation capabilities within its construct. FRANC3D/NG has the capability to 

adaptively insert and extend cracks and/or voids in pre-existing finite element meshes, 

and has been developed to work in conjunction with commercial finite element software 

packages such as ANSYS, ABAQUS, and NASTRAN.  

For the non-planar crack growth framework within this study, stress analysis is 

performed using the ANSYS version 11.0 commercial software package, same as in 

Chapter 3 for planar cracks. Initial crack insertion within the finite element model is 

performed within the FRANC3D/NG software and local remeshing at the crack location 

is performed using crack tunnel and singular elements at the crack front as presented in 

Section 3.3.  Once a crack is inserted into a finite element model, the commercial finite 
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element software ANSYS is used to solve the stress analysis of the cracked component. 

Stress intensity factors can be calculated using the displacement correlation or M-integral 

(interaction integral) method and can be used for subsequent crack growth modeling.  To 

ensure that a significant additional model form error was not introduced into the problem 

by the choice in methods to calculate the stress intensity factors, solution comparisons 

were performed using the two different methods. Typical results obtained using the two 

methods are included within Figure 46.  As can be seen in the figure, the two methods 

had good agreement along the entire crack front. Therefore, an additional model form 

error term was not necessary for this analysis and the stress intensity factors extracted 

from the finite element analysis were treated as deterministic values.  
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Figure 46:  Typical stress intensity factor calculations along crack front obtained using 

displacement correlation and M-integral methods.  
 

Figure 47 presents a schematic of the workflow and individual steps that are 

performed within the ANSYS and the FRANC3D/NG software codes.   
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Figure 47: Work flow chart of FRANC3D/NG and finite element software for non-planar 

fatigue crack modeling 

 

At the present time, no universally accepted non-planar three-dimensional crack 

extension criteria currently exists, however, many two-dimensional models have been 

presented in the literature. The current state of the art for three-dimensional crack 

extension modeling is to evaluate the crack propagation direction at several discrete 

points along the crack front using two-dimensional plane strain equations.  Plane strain 

equations are applied in the plane normal to the crack front tangent to determine the 

direction of propagation using one of several available crack propagation criteria. This 

technique effectively reduces the three-dimensional crack growth problem to a series of 

two-dimensional problems, evaluated at discrete points along the crack front.  

The application of this method results in the relative extension of each node along 

the crack front based on local stress conditions at that specific location.  The result of this 
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approach is a theoretical new crack front shape and location, based on a finite number of 

nodes. In order to maintain suitable finite element meshes at the crack front location, a 

best fit polynomial function is used to represent the updated crack front location. In doing 

so, a necessary approximation is made to the predicted crack front location leading to a 

smoother crack front representation than was initial predicted by the theoretical models. 

However, the suitability of this approximation can be monitored throughout the crack 

growth simulation to ensure that a reasonable crack front representation is maintained. 

Figure 48 a.) shows an example of a non-planar crack growth analysis where a 

theoretical crack front location is indicated by the green nodal positions and the best fit 

location is shown by the blue nodal locations and the “crack tunnel”. Additionally, this 

relationship can also be shown through simple plots such as that one shown in Figure 48 

b.), which depicts the theoretically predicted nodal extensions by the individual dots and 

the best fit polynomial by the solid line (with good correspondence shown here for a 3
rd

 

order polynomial). 
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(a.)         (b.) 

Figure 48: Non-planar crack growth analysis showing crack surface as well as predicted 

and „best fit‟ crack extension locations 

 

For the purpose of this work, two common crack direction modeling criteria will 

be evaluated within the non-planar crack growth framework; the maximum tangential 

stress (MTS) criterion, and the modified strain energy release rate criterion. These criteria 

are chosen based on the fact that they have already been incorporated within the 

FRANC3D/NG code, as well as for the familiarity of the fatigue research community 

with their functional forms.  

For the general mixed mode I+II+III condition, the maximum tangential stress 

criterion identifies the crack kinking angle, θ, as given in Eqn. (65)  

     

 Kink

 

  such that 
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(65) 

and a transition to the maximum shear stress criterion can be incorporated by including 

shear terms, which results in the expression 
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(66) 

where KIC , KIIC ,and  KIIIC are the mode I, mode II, and mode III fracture toughness 

values.  The modified strain energy release rate criterion identifies the crack kinking 

angle, θ, as given in Eqn. (67)  
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For crack growth modeling, stress analysis is performed on the cracked 

component, and the local stress conditions are used within either the maximum tangential 

or the modified strain energy release rate models to determine crack extension directions 

at discretized points along the crack front.  Stress intensity factors are evaluated from the 

local stress results and the relative advance at each point along the crack front can be 

evaluated using a crack growth law.  

Several options exist for modeling crack extension magnitude, including cycle-

by-cycle, incremental block-type, and median extension based approaches. For the cycle-

by-cycle crack growth, crack extensions are performed for each and every load cycle 

using traditional fatigue crack growth laws, such as those presented in Table 1.   

Although the cycle-by-cycle approach is considered to be the most accurate of the above 

crack growth modeling approaches, it also presents significant computational challenges 

during numerical evaluation. For the high cycle fatigue problem, much of the crack 

growth occurs in the near threshold and the lower portion of the Paris/linear region of the 
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fatigue crack growth curve (shown schematically in Figure 3). Cycle-by-cycle crack 

extension within these regions is of the order of 10
-10

 - 10
-8

 in/cycle, meaning hundreds of 

thousands of individual stress analyses, crack extensions, and local remeshing functions 

are needed to double the size of an initial crack of 0.01 inch.  

In addition to the substantial computational expense that the cycle-by-cycle 

approach demands, other limitations exist in the forms of mesh size and crack shape 

representations.  In theory, the minimum element size contained within the mesh must be 

able to capture the crack profile. Therefore, to accurately represent cyclic crack extension 

within the near threshold region, the mesh size must be of the order of the crack 

extension, that is ~10
-10

 inches, resulting in an unacceptably large number of elements 

contained within the finite element model. For non-planar crack propagation, not only is 

the extension magnitude calculated for each analysis, but also the direction of crack 

growth is necessary. For the cycle-by-cycle case, each individual crack growth step may 

have different propagation directions, leading to a highly complex, small scale zigzag 

type crack path.  Again, this type of crack profile across the entire crack front presents 

problems for accurately and efficiently remeshing the crack front. From a computational 

time and numerical stability standpoint, a more reasonable crack propagation approach 

must be adopted.  

An alternative to the cycle-by-cycle approach is to adopt a block-type crack 

growth extension method. This approach is similar to that of the cycle-by-cycle approach, 

with the exception that crack extension and direction modeling is held constant over a 

user-defined number of cycles.  The block-type extension technique is based on the idea 
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of extending points along the crack front by a multiple of the crack growth increment 

determined for a single load cycle.  Mathematically, this can be represented as 

   
iuser

i

userupdate aN
dN

da
Na  **

   

(68) 

where Δaupdate is the total crack growth applied to the current crack,  Nuser is the user 

defined block increment, and 
idN

da

 

is the crack growth magnitude for the current load 

cycle. This method allows for cyclic based crack extension, without requiring crack 

updating and remeshing for every load cycle, and is well suited to represent block-type 

loading conditions where the load history is composed of many sub-blocks of constant 

amplitude loading.  

The median extension crack growth approach can also be used to overcome both 

the efficiency and stability issues that are inherent in the cycle-by-cycle approach.  The 

median extension technique is based on the idea of extending points along the crack front 

in some proportion to a user-defined extension length. The proportion of crack extension 

at a given location is determined from the ratio of the stress intensity at that location 

compared to the mean stress intensity factor found at any point along the entire crack 

front.  Mathematically, this relationship can be represented as given in Eqn. (69).  
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where Δauser_mean is the user-defined allowable median crack length extension.  Using this 

formulation, the stress intensity factor at each crack front node is evaluated , ΔKnode_i, and 

crack extension is evaluated by comparing the stress intensity factor at that location to the 

mean stress intensity factor obtained along the entire crack front, ΔKmean.  The parameter f 
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can be related to standard crack growth laws such as the Paris power law or the 

NASGRO/FNK growth equation, and represents the proportionality constant which is 

used for relative crack extension along the crack front. Although the median extension 

method is a departure from the classic cycle-by-cycle approach in which crack growth is 

evaluated for each and every load cycle, it presents a convenient way to update the crack 

size only after a minimum crack extension is determined while retaining relevant 

information pertaining to the relative stress concentrations along the crack front.   

It is clear that each of these methods will result in a different crack length after a 

given number of crack growth increments, resulting in model prediction uncertainty due 

to simplifying assumptions. For the high cycle fatigue problem, the cycle-by-cycle 

approach does not present a computationally practical method as a result of the 

overwhelming number of small crack growth increments that would be required. The 

incremental block-type approach improves upon this limitation by updating the crack size 

only after a set number of load cycles.  However, practical and numerical limitations 

remain on the acceptable values for the user-defined parameter Nuser in Eqn. (68). This is 

because minimum element sizes must be maintained within the FEA mesh to avoid 

excessively large models.  However, if the updating increments can be set such that crack 

extension is possible, then the cyclic crack growth values can be retained within model 

simulations. Ultimately, the crack growth rate curve should be used on a cyclic basis so 

that the crack extension can be directly related to the number of applied load cycles, 

allowing for fatigue life assessment of a cracked component in terms of number of load 

cycles which can easily be related to flight hours.  The median extension method departs 

altogether from the cycle-based crack growth approach, as crack extension along the 



143 

 

crack front is dictated by user input as opposed to number of applied load cycles. This 

approach arbitrarily imposes crack extensions in an attempt to ensure numerical stability 

and to better manage the relative extensions of the crack front at each load step.   

Depending on the characteristics of the applied load history as well as the overall 

goal of the numerical simulation, either the incremental or the median extension method 

might be more appropriate.  

 

5.4 Surrogate Model Development  

Response surface methodology can be used in place of expensive finite element 

models for iterative fatigue analysis to reduce the computational effort needed to 

calculate the stress intensity factor at the crack tip. This is particularly useful in 

uncertainty analysis where multiple simulations of cycle-by-cycle crack growth analysis 

have to be executed. In Chapter 3, a response surface approximation was developed to 

approximately capture the relationship between the input variables (crack length, shape, 

and load value) and the output variable (mixed mode stress intensity factor) within the 

planar fatigue crack growth modeling framework.  The finite element model was used to 

"train" a Gaussian process surrogate model to an acceptable degree of accuracy by 

evaluating the FEA at selected points within the design space identified by using the 

greedy point algorithm. The use of a surrogate model drastically improves the 

computational effort needed to perform crack growth analysis by eliminating the need for 

repeated evaluation of the full finite element model for each load cycle and crack 

configuration.  
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A surrogate modeling approach would provide extremely useful within the non-

planar fatigue crack growth modeling framework for similar reasons. However, 

construction of a meaningful and useful surrogate model for the non-planar crack growth 

case is a significant challenge for several reasons. The first major obstacle in constructing 

a surrogate model is how to precisely define the three-dimensional complex crack shape. 

The crack shape for a non-planar three-dimension crack depends on the surface crack 

length, crack depth, and the individual kink angles along the crack front for each previous 

crack growth evaluation.  As opposed to the planar crack shape, which could be well 

characterized by a few simple parameters, the non-planar crack shape is most fully suited 

to characterization by a three-dimensional, undulating surface.  Therefore, crack 

characterization using basic parameters becomes a challenge. As a result, it is difficult to 

define the input parameters for crack characterization to be used to train the surrogate 

model. 

A further challenge exists in the capability to generate complex crack 

configurations.  Within the current non-planar modeling framework, a simple crack is 

introduced into the structural component and then is allowed to evolve into a non-planar 

crack due to the applied loading and crack extension criteria.  As a result, complex crack 

shapes develop from simpler shapes over time, rather than being inputted directly.  The 

capability to generate and evaluate any possible crack configuration are necessary and an 

accurate and efficient method to accomplish this is not currently available.  

Another major complication in developing a surrogate model for general three-

dimensional non-planar crack growth analysis is related to the form of the predicted 

model outputs. For this application, the nodal extension magnitude and directions are 
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needed to be predicted for each crack configuration. This means that the number of nodes 

along the crack front is known a priori, the surrogate model can identify and 

appropriately handle physical model boundaries, and that the surrogate modeling method 

itself is capable of predicting multiple output values in vector form.  

Currently, these limitations present a significant challenge for easy extension of 

the surrogate modeling approach developed in Chapter 3 to the non-planar crack growth 

framework investigated in this chapter. Further research is needed to expand the current 

modeling approach in this application.  

 

5.5 Equivalent Planar Method 

An equivalent planar approximation is presented within this section as a method 

which may be valuable for reducing the computational expense of performing non-planar 

fatigue crack analysis within a probabilistic framework.  The method creates a link 

between the non-planar crack growth analysis methods presented within this chapter, and 

the simpler planar crack growth analysis method described in Chapter 3.  The method 

aims to retain valuable information obtained through initial non-planar crack propagation 

analyses for use within the planar analysis.  

The basic idea behind the modeling approach is to try to use the results from the 

non-planar fatigue crack growth analyses to identify crack characteristics that can be 

transferred to a simpler planar crack configuration. A simplified initial crack can then be 

based on the characteristics of the non-planar fatigue crack, and can be grown in a planar 

fashion using the probabilistic planar crack growth analysis method developed in 



146 

 

Chapters 2, 3, and 4 to determine the statistics of the component fatigue life prediction.  

If a planar crack (with a defined initial orientation) can be used to reasonably represent a 

more complex non-planar crack within the FEA, then the computational expense can be 

reduced and crack representation can be simplified without significantly sacrificing 

accuracy in the model prediction. 

Initially, a full fatigue crack growth analysis is necessary in which the initial crack 

is modeled such that it is allowed to grow in a non-planar fashion.  The load history is 

applied to the component and non-planar fatigue crack modeling is performed using the 

methods outlined in Section 5.3.  Once the crack has reached a critical size, relevant 

crack characteristics can be extracted from the resulting final non-planar crack 

configuration.  An “equivalent” planar representation can then be developed that captures 

the main features determined from the final non-planar crack analysis result.  Such 

features may include, but are not limited to, flaw orientation/angle, surface crack edge 

length, and crack depth. Quantities such as crack length and depth can be measured 

directly using the total lengths along the various kinked surfaces, or approximated by 

simply using the tip to tip distance (ignoring crack kinking in between) which can be 

viewed to be essentially equivalent to a simple projection method.  The flaw is introduced 

into the component with an initial orientation that matches that of the final kinked crack 

profile and planar crack growth analysis is performed on the new equivalent crack.  The 

new crack is grown from an initial size until the previously identified critical non-planar 

size is reached using a planar extension rule.   

It is necessary to evaluate the performance and accuracy of the equivalent planar 

crack growth modeling approach to results obtained using the non-planar kinked crack 
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approach.  In order to make a fair comparison, the stress intensity factors obtained using 

the two different methods at the same crack size (length) and loading condition need to 

be compared. Additionally, plots of the resulting equivalent planar and non-planar crack 

fronts can be used to show differences that exist in the crack shapes resulting from the 

two different modeling strategies. A numerical evaluation comparing the two crack 

growth modeling approaches is presented in Section 6.5.  

   

 

Figure 49:  Final crack configuration (surface profile) of initial horizontal surface crack 

subjected to remote bending + torsion 2 block non-proportional loading. The crack is 

seen to kink towards two primary kink angles, θ1 and θ2 depending on applied loading 
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   a.)         b.) 

 

Figure 50:  a.) submodel showing final kinked crack shape after non-planar crack 

growth analysis; b.) submodel showing extraction of key flaw characteristics for use in 

equivalent planar crack analysis 

 

5.6 Summary 

The crack growth modeling strategy adopted in this chapter allows for crack 

kinking and other non-planar propagation path behavior which may result from changes 

in loading conditions.  Inclusion of crack path nonlinearities within the crack growth 

modeling framework is not a trivial task.  When considering three dimension non-planar 

crack growth modeling, it is necessary to be able to predict and model both the crack 

extension magnitude and the crack path direction.  In order to accomplish these 

objectives, advanced theoretical crack direction criteria which consider mixed mode 

stresses at the crack tip, as well as advanced crack tip extension and meshing algorithms 

are required.   

Existing mixed mode crack growth models, which consider mixed mode stresses 

at the crack front can be used to determine relative crack kink direction and extension, 
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and a thorough review of several proposed methods has been presented in Section 5.2.  

The FRANC3D/NG commercial software code is used in this study to perform non-

planar crack growth analysis using several different non planar crack kinking criteria and 

crack extension rules. The steps necessary for non-planar crack growth modeling in 

combination with finite element analysis are discussed in Section 5.3.  An equivalent 

planar methodology is then presented in Section 5.4 in order to reduce the computational 

expense and facilitate probabilistic analysis.   

Since non-planar crack growth modeling requires both crack extension and crack 

direction predictions, it is necessary to investigate the uncertainty in the crack shape and 

the component fatigue life predictions that results from the use of different non-planar 

crack growth criteria.  Further uncertainty is introduced by the equivalent planar crack 

approach. The contribution of these sources of model uncertainty to the overall 

uncertainty in crack growth prediction will be addressed in Chapter 6.  
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CHAPTER VI 

UNCERTAINTY QUANTIFICATION IN NON-PLANAR CRACK GROWTH 

ANALYSIS 

 

6.1 Introduction 

Fatigue crack growth modeling considering non-planar crack kinking behavior 

significantly increases the complexity of both the analytical models and the 

computational modeling demands. Crack growth under non-planar modeling approaches 

not only need to predict the crack extension per cycle, but also need to predict crack 

growth direction as well. As the dimensionality of the problem increases from the 2-

dimensional case to the 3-dimensional case, additional complexities are introduced as the 

need to predict crack growth directions and extensions at multiple locations along the 

crack front arises.  The result of non-planar, three dimensional crack growth modeling is 

a complex and potentially irregular crack configurations that no longer can be easily 

defined by a simple geometric shape. Rather, non-planar crack configurations may better 

be defined as fluctuating three dimensional surfaces with changing orientations at the 

crack front.  Properly representing these complex crack configurations within theoretical 

fracture mechanics equations or within finite element meshes can prove to be a difficult 

task.  

Non-planar crack growth is an incremental process where current crack 

configurations are dependent on previous crack growth applications. That is to say, the 

current crack shape is highly dependent on those stages of crack growth that preceded it. 
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Additionally, the current crack configuration directly affects the stress gradient at the 

crack tip, therefore affecting the subsequent crack direction and extension steps. In this 

way, the uncertainty associated with crack growth modeling at any previous step is 

contained within the current crack configuration, and will have some effect on the current 

model prediction.  

It is clear from the lengthy discussion in Chapter 5, that many different crack 

propagation models for mixed-mode fatigue growth are available in the literature. Each 

presents a unique formulation, and therefore, a unique solution to the non-planar fatigue 

crack growth modeling analysis.  This chapter focuses on uncertainties in crack shape 

development and model predictions resulting from the use of different non-planar crack 

propagation criteria.  

A numerical evaluation of the uncertainty in model outputs resulting from the use 

of the different crack extension and direction criteria discussed in Chapter 5 is performed 

within this chapter.  First, uncertainty resulting from different extension criteria will be 

examined. This section will focus on differences in crack shape and stress intensity factor 

solutions resulting from using different fatigue crack growth models; namely the Paris 

model [5] and the NASGRO (F-N-K) model [167].  The next section focuses on the 

differences in the crack shape development resulting from the use of different crack 

direction criteria. Crack shapes and stress intensity factor solutions obtained through 

numerical simulation will be compared for different methods. The third section 

investigates the uncertainties in non-planar crack shape development arising from 

uncertainty in load sequences. For this numerical investigation, crack growth modeling is 

performed under several different load sequences. The resulting crack shapes are used to 
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compare model predictions under different load sequences. Lastly, the uncertainties and 

modeling error resulting from replacing a non-planar analysis with an equivalent planar 

crack growth method is investigated.  Detailed results corresponding to each of these 

topics is included within the following sections.  

 

6.2 Uncertainty Resulting from Extension Criteria  

In order to demonstrate the differences in crack shape that can develop as a result 

of different crack extension modeling approaches, two crack growth models of different 

sophistication will be examined.  One of the earliest and most simple crack growth rate 

models is the Paris equation [5].  Here the predicted crack growth rate is modeled by the 

stress intensity factor raised to a power and multiplied by a constant, as given in Eqn. (2).   

This model assumes a linear relationship between the stress intensity factor and the crack 

growth rate when plotted in on a log-log scale. Another crack growth rate representation 

is the NASGRO (F-N-K) equation [167].  The NASGRO equation is substantially more 

complicated than the Paris model and conforms to the sigmoidial shape (in log-log scale) 

which is typical of fatigue crack growth rate data. The NASGRO equation is a full-range 

model that mathematically represents all three regions of the FCG curve with multiple 

empirically fitted constants and is given by: 
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where C and n are empirical parameters describing the linear region of the curve (similar 

to the Paris and Walker models) and p and q are empirical constants describing the 

curvature in the FCG data that occurs near threshold (Region I) and near instability 

(Region III), respectively. ΔKth is the threshold stress intensity factor, Kc is the critical 

stress intensity factor (related to the fracture toughness of the material), and the parameter 

f corresponds to the crack opening function. Additional details of the model and 

associated parameters can be found in ref [167].  These two crack growth rate equations 

represent the extremes in terms of crack growth rate model sophistication. Numerical 

investigation into the differences observed in fatigue crack profiles and the corresponding 

stress intensity factor solutions at various crack growth stages using these two models is 

investigated below.   

For the numerical study, the load history consisted of two block variable 

amplitude loading conditions where both bending and torsion were applied to the 

structure. The crack extension criterion was set to the mean extension criteria for both 

simulations.  The initial flaw was set as a semi-circular surface flaw within the fillet 

radius region of the rotorcraft mast component. The initial flaw half length (c) and depth 

(a) were set to 0.05 inches. 12 individual crack growth increments with a median 

extension length of 0.01 inches were performed under alternating loading.  Within the 

simulation, crack extension at each node along the crack front was evaluated for each 

growth increment using 2D plane strain approach outlined in Chapter 5. The results of the 

analysis can be seen in Figure 51 and Figure 52 the crack front profiles obtained using 

the Paris and NASGRO crack growth model are given. In order to improve the 

readability of the plots, only the initial crack front and the crack fronts obtained after 6 
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and 12 crack front extensions are plotted in the figures, however new crack front 

locations were calculated at each crack growth increment.  

 

 

Figure 51: Isometric view of non-planar crack shape development showing initial crack, 

kinked crack profile after 6 growth increments, and kinked crack profile after 12 growth 

increments 
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    a.)        b.) 

 

Figure 52: a.) Plan and b.) Elevation view of non-planar crack shape development 

showing initial crack, kinked crack profile after 6 growth increments, and kinked crack 

profile after 12 growth increments (showing same crack profiles as Figure 51) 

 

It can be seen that the crack front profiles obtained from using the Paris and 

NASGRO crack growth models differs slightly.  When compared, the Paris extension 

model appears to predict slightly larger crack growth in the crack depth position, and 

slightly less crack growth at the free surface of the cylinder. Additionally, at the free 

surface of the cylinder the crack edge predicted by the NASGRO equation appears to 

have a slightly larger kink angle after several crack growth steps have been made. The 

apparent difference in crack kink angle at the later stages of crack growth (clearly 

observable after the 6
th

 crack growth increment) can be attributed to the differences in 

crack length at the surface locations. Using the NASGRO extension method, the crack 

length at the free surface is seen to be larger than that predicted by the Paris model after 

the 6
th

 growth increment has been performed. This phenomenon can be seen within 

Figure 52 b.) where the crack length predicted by the Paris model is ~+/- 0.11 and by 

NASGRO is ~+/- 0.125 and the predicted crack kink angles have remained consistent for 



156 

 

both methods up to that point.  As a result of the noticeable increase in crack length 

predicted by the NASGRO equation, the crack profiles predicted by each method at this 

crack growth stage are slightly different.  The different crack profiles result in different 

stress gradients at the crack tip (during the subsequent load cycle), and the crack growth 

increment and direction prediction for the following crack growth stages will be different 

for each model.  

This numerical simulation clearly shows how the use of different fatigue crack 

growth extension criterion can not only affect the predicted crack lengths, but also the 

predicted crack path.  Different criterion will predict slightly different extensions at 

different points along the crack front, which will affect the stress gradient and SIF 

solution at the following load step, which will again affect the direction and extension 

predictions.  As a result, it is clear that crack shape development under non-planar crack 

growth modeling is dependent on both the crack extension and crack direction criteria 

used.  

 

6.3 Uncertainty Resulting from Direction Criteria  

Several common crack direction modeling criteria are evaluated within the non-

planar crack growth framework; these include the maximum tangential stress (MTS) 

criterion, maximum shear stress (MSS) criterion, and the modified strain energy release 

rate (MSERR) criterion. A transition from the maximum tangential stress criterion to the 

maximum shear stress (MSS) criterion can be performed by considering the mode I and 

mode II fracture toughness material properties.  Each of these non-planar crack direction 
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criteria presents a unique solution to the non-planar fatigue crack growth modeling 

analysis.  Therefore, this analysis produces three unique crack profiles that can be 

compared at each crack propagation step. These three direction criteria are chosen for 

numerical evaluation since they can be evaluated within the FRANC3D/NG code, as well 

as for the familiarity of the general fatigue community with their functional forms.   

For the general mixed mode I+II+III condition, the maximum tangential stress 

criteria considering tensile only, and tensile + shear (MTSMSS), is given by Eqn. (65), 

Eqn. (66), respectively and the modified strain energy release rate criterion is given by 

Eqn. (67).  For the numerical study, the load history consisted of two block variable 

amplitude loading conditions wherein both bending and torsion were applied to the 

structure. The crack extension criterion was set to the mean extension criteria for all 

simulations.  The results of the analysis can be seen in Figure 53 a. & b. where the crack 

front profiles obtained using the three different crack direction modeling criteria are 

compared. Additionally, since crack shape can have an effect on the stress gradient at the 

crack front, the stress intensity factors obtained at the same stage in the crack propagation 

analysis (same loading, same number of growth cycles) are compared within Figure 54. 

If significant differences can be seen in the resulting stress intensity factors, then different 

crack growth rates can be expected, and different component life predictions will be seen.  
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Figure 53: Simulated crack profiles using MTS (tensile only), MTS (tensile or shear) and 

MSERR criteria for crack kink direction modeling a.) isometric view; b.) plan view 

 

As can be seen within Figure 53, the predicted crack fronts for the three different 

methods do not appear to vary significantly from each other. As a result, it is also seen 

that the stress intensity factors for each of the simulated cracks also appear consistent.  

These results indicate that the crack direction is dominated by the tensile component of 

the stress, and that the shear component is not large enough for transition from tensile to 

shear dominated crack growth. In other words, the σθθ(θ) component of Eqns. (65), (66) 

and (67) dominates the other terms for the loading conditions considered in this 

evaluation. 
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Figure 54: SIF solution comparisons at different stages of crack propagation for crack 

profiles obtained using different crack kink direction criteria. Comparisons shown at a.) 

0.1 b.) 0.5 and c.) 0.9 of normalized distance along the crack front. 
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The applied loading history was modified from that used within the previous 

analysis to one that contained more dominant shear loading component (increased torsion 

component while decreasing bending). The applied torsion load was increased by a factor 

of 2.5 while the bending load did not increase from its previous levels.  A similar crack 

growth analysis was performed under the new, shear dominated loading conditions to 

determine if any significant difference could be observed in the crack shape development. 

It can be seen in Figure 55 that under increased shear loading conditions, the maximum 

shear stress and the maximum normal stress criteria lead to different crack kinking angles 

and crack shape development. The increased torsion load on the component resulted in an 

overall increase in the mode III stress intensity factor, which experienced its largest value 

along the crack front in the depth direction (0.5 normalized distance along the crack 

front). The crack kinking angle predicted by the maximum shearing stress (MSS) criteria 

was determined to be smaller than the kink angle predicted by the maximum tangential 

stress (MTS) criteria. As evident within the figure, when shear loads cause the mode II 

and mode III stress intensity factors to be of the same order as the mode I stress intensity 

factor, the crack kinking angle predicted using the MTS and MSS criteria may be 

different.  As a result, the crack shape development is expected to differ after several 

crack growth increments. 
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(a.) 

 

 
(b.) 

 

Figure 55: Simulated crack profiles using MSS criteria for crack kink direction modeling 

a.) plan view; b.) elevation view 

 

6.4 Uncertainty Resulting from Load Sequence  

Crack extension and direction predictions are based on the local stress gradient at 

the crack front location, which is directly related to the applied loading at the current load 

step.  In addition to the influence that specific crack growth extension and direction 

criterion have on the crack shape development throughout the non-planar fatigue crack 

propagation (as discussed in previous sections within this chapter), the sequence of the 

applied loadings will also affect the crack shape development.  This section investigates 

the role that load sequence has on crack shape development and crack tip orientation over 
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the course of a non-proportional multi-axial variable amplitude loading history.  

Numerical crack growth simulations are performed to determine differences in crack 

shapes and orientations at different stages of crack growth and comparisons are made at 

the final crack size. Included within this section are analyses which compare crack shape 

development for load histories with the same load values but different load sequence as 

well as for load histories which have different load sequences and load combinations. 

Details of each analysis are included below. 

The first set of analyses focus on crack shape development and final flaw 

orientation for crack growth which is performed under load histories which contain the 

exact same load values (in number and magnitude) but which have unique load 

sequences.   For the sake of this study, four block variable amplitude load histories which 

contain both applied bending and torsion are considered. Details of the different load 

cases contained in the load histories are given in Table 7.  

Table 7: Details of load cases composing 4 block VAL histories 

         Normalized  

Load # Bending Torsion

1 0.75 0.25

2 0.5 0.5

3 0.5 1

4 0.25 1  
 

FRANC3D/NG was used to simulate the non-planar fatigue crack propagation for 

a crack with an initial size until the crack reached a user-defined critical crack size. Each 

crack growth simulation was performed for a different load history that was composed of 

a specified combination of the four load cases given in the Table 7 and was set to have a 

unique load sequence.  Three individual crack growth profiles developed from numerical 
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simulation can be seen within Figure 56.  Crack kinking behavior was predicted using the 

MTS criterion, and an initial horizontal oriented crack was allowed to grow in a non-

planar fashion at each applied load step. It is seen that the crack shape development is 

dependent on the applied loading conditions and that each load sequence results in a 

unique crack shape and crack tip orientation at each stage of the crack growth analysis.   
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Figure 56: a.) Full crack; b.) crack tip “A” surface profiles obtained from numerical 

simulation showing crack shape development for 3 distinct load sequences under 4 block 

variable amplitude loading conditions 

 

Although each individual load sequence was seen to cause a unique crack front 

orientation at each crack growth increment, it was found that the crack tip location after 

Tip A 

Tip B 

Crack Growth 

Direction 
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application of all of the load steps was similar for all three of the numerical simulations.  

This result can be seen within Figure 56 within the lower left hand side of the figure and  

indicates that although the individual crack orientations at each crack growth increment 

may be different, the combination of all of individual crack kinks result in a similar 

overall crack front location.  This conclusion is dependent on the fact that each load 

history contained exactly the same number and magnitude of applied loading and is based 

on the simulation results obtained using the incremental crack growth methodology 

detailed in Chapter 5.  Based on these results, it appears that the load sequence affects the 

crack shape development for interim crack growth stages, but ultimately will not 

significantly change the final crack tip location if the number and magnitude of applied 

loadings remains consistent from one history to another.  

The next set of analyses focus on the differences in crack shape development 

under load histories which contain different combinations of the loads contained in Table 

7 and which also have which have unique load sequences.  This numerical study differs 

from the previous case by allowing each load history to contain any combination and any 

sequence of the four load cases (whereas the previous study required the same 

combination of loads).  Crack growth simulation was performed in a similar manner 

using the incremental crack growth method and MTS criterion where an initial horizontal 

crack was grown to a user-defined critical crack length for each unique load history.  

Individual crack growth profiles developed from numerical simulations can be 

seen within Figure 57 for this analysis.  Similar to the results within the previous 

analysis, it is again seen that the crack shape development is dependent on the applied 

loading conditions and that each load sequence results in a unique crack shape and crack 
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tip orientation at different stages of the crack growth analysis.  However, since each load 

history is composed of different combinations of the loading values given in Table 7, the 

crack tip locations at the conclusion of the analysis differ from one another. This is the 

result of some histories containing a larger number of loadings which are bending 

dominated (load case #1 in Table 7) which leads to a less severe crack kinking angle, and 

some histories containing a larger number of loading which are torsion dominated (load 

case #4 in Table 7) which leads to a more severe crack kinking angle.  
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Figure 57: a.) Full crack; b.) crack tip “A” surface profiles obtained from numerical 

simulation showing crack shape development for 3 distinct load histories with different 

loads and sequences under 4 block variable amplitude loading conditions 
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It can be seen by comparing Figure 56 and Figure 57 that as the uncertainty in the 

applied loading is increased (completely known vs. any combination of specified load 

levels), the uncertainty in the resulting crack shape also increases.  For the case where 

load histories are allowed to contain any combination of the specified loads (as was the 

case in the current analysis), it is possible to determine upper and lower bounds the crack 

front location by constructing histories that contain only the most extreme loading cases. 

For this example problem, these extremes are represented by load case #1 (bending 

dominated) and load case #4 (torsion dominated). Typical results for the crack shape 

development under these loading conditions are shown in Figure 58, where the solid 

black lines represent the bounds and all crack growth paths containing other 

combinations of the loading are expected to be within the two paths determined by 

performing crack growth under these extreme spectra. For comparison purposes, the 

other crack front profiles included in Figure 57 are also included within Figure 58. The 

final tip to tip angles obtained for the crack fronts developed under the extreme load 

spectra were found to be 25.7
o
 for the upper bound and 4.7

o
 for the minimum bound. All 

crack fronts developed under different combinations of loading were found to have final 

tip to tip angles between the two extreme values.  
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Figure 58: Upper and lower bounds on crack front paths determined by performing 

crack growth simulation under extreme load histories 

 

Through several numerical crack growth studies, it is shown that the sequence of 

the applied loadings can have a significant effect on the crack shape development over 

time.  For the most general case, where possible load histories can only be characterized 

by the load levels (without any indication of how frequent each load level is or how often 

it is encountered), non-planar crack shapes may significantly deviate from one another 

depending on the combination of loads contained within each history. However, it is 

possible to determine the upper and lower bounds on the crack front location by 

identifying the loading cases which cause the most severe (largest and smallest) kink 

angles, and performing non-planar analysis using load histories containing only these 

values.  As additional information is available on the expected frequency of each load 

level within the load history, less scatter is expected in the crack path predictions made 

under different load sequences. It was found that for the limiting case where each history 

is composed of loads which differ only in the sequence and not the magnitude or 

number/frequency of each applied load, the crack path differed during each crack growth 
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increment but converged to the same general location after all crack growth steps had 

been performed.  Overall, it was determined that loading and load sequence can have a 

significant effect on the crack shape development when considering non-planar crack 

growth under variable amplitude, multi-axial loading conditions, and that uncertainty in 

the characterization of the applied loads results in increased uncertainty in the non-planar 

crack profile.  

 

6.5 Non-Planar vs. Equivalent Planar Comparison 

An equivalent planar crack growth modeling strategy has been presented in 

Chapter 5, which proposes the use of an equivalent planar crack, which can be 

characterized by various features extracted from the initial non-planar result, as an 

approximate representation of the more sophisticated non-planar approach. Errors will 

exist in the equivalent planar representation when compared to the original non-planar 

result as a result of these simplifications. These errors need to be quantified in order to be 

able to estimate the uncertainty in model predictions using the equivalent planar 

modeling approach.  

This section will examine the crack growth modeling results for crack growth 

simulations using the equivalent planar method. The first investigation will use a simple 

constant amplitude loading condition (in both bending and torsion) to investigate the case 

where a single crack kink angle is expected.  The second investigation will consider a two 

block loading condition where multiple crack kinking angles are expected. The final 

investigation will analyze the equivalent planar approximation under the four block load 
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history where load sequence effects are also considered.  The initial crack size and 

location within the component remain the same as previous studies. The result of the 

analyses is included below.  

The first comparison of the accuracy of the equivalent planar method in 

representing the non-planar crack growth modeling considered the simplest loading case, 

where only constant amplitude bending and torsion loading are applied. For this specific 

analysis, the applied loading was set to load level #3 in Table 7.  Figure 59 a) b) and c) 

show comparison plots at different normalized distances around the crack front (0.1, 0.5, 

and 0.9 respectively) of the stress intensity factor results at various stages of crack growth 

for the non-planar and equivalent planar simulations under the constant amplitude 

bending + torsion loading conditions. For the constant amplitude load case only one 

primary kink angle is expected, resulting in the equivalent planar crack to be oriented 

directly at this kink angle.  As seen in the plots, the planar representation is able to 

closely match those found using the non-planar crack methodology for this load case, as 

might be expected.  The percent error between the equivalent planar and the non-planar 

analysis at any location along the crack front is found to be less than 15% at all stages of 

crack growth, and less than 6% for all stages after the initial crack growth increment, 

with an overall absolute mean error of 3.7%. 
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(c.) 

Figure 59: Comparison plots of stress intensity factor solutions found using non-

planar crack growth methodology and equivalent planar crack growth methodology for 

CAL load case. Plots show SIFs along the crack front at a.) 0.1 normalized distance 

(near surface); b.) 0.5 normalized distance (depth); c.) 0.9 normalized distance (near 

surface) 
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The second comparison of the accuracy of the equivalent planar method in 

representing the non-planar crack growth modeling considered a two block variable 

amplitude loading case, where both bending and torsion loading are applied. For this 

specific analysis, the applied loading was restricted to load level #1 and load level #3 in 

Table 7.  Figure 60 a) b) and c) show comparison plots at different normalized distances 

around the crack front (0.1, 0.5, and 0.9 respectively) of the stress intensity factor results 

at various stages of crack growth for the non-planar and equivalent planar simulations 

under the 2 block variable amplitude bending + torsion loading condition.  Under the 

two-block loading case, two distinct kink angles are to be expected resulting in a zigzag 

type crack edge profile (as seen in Figure 49), and the resulting equivalent planar crack 

orientation essential becomes the average kink angle of the two loading conditions.  

As seen from the plots, the planar representation is also able to closely match 

those found using the non-planar crack methodology for this 2 block load case. The 

largest discrepancy between the two results is seen during the first growth stage. At this 

point in the simulation, the two configurations are the most different as the crack has an 

initial orientation of 0
o
 for the non-planar crack growth before kinking, and ~17

o
 in the 

case of planar crack growth. This large difference in orientation was found to effectively 

reduce the magnitude of both the mode II and III stress intensity factors for the planar 

analysis at the surface locations (as opposed to depth location), thus lowering the overall 

ΔKeqv value for this crack size. However, after several crack growth steps, it is found that 

the planar approximation more closely matched that of the non-planar analysis. The 

percent error between the equivalent planar and the non-planar analysis are found to be 
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less than 18% at all stages of crack growth, and less than 7% for all stages after the initial 

crack growth increment, with an overall absolute mean error of 2.9%.  
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(c.) 

Figure 60: Comparison plots of stress intensity factor solutions found using non-

planar crack growth methodology and equivalent planar crack growth methodology for 2 

block VAL load case. Plots show SIFs along the crack front at a.) 0.1 normalized 

distance (near surface); b.) 0.5 normalized distance (depth); c.) 0.9 normalized distance 

(near surface) 
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The final analysis of the equivalent planar method considers the four block 

variable amplitude loading case wherein the load sequence is flexible.  The three unique 

non-planar crack growth results obtained from previous analyses in Section 6.4 (and 

shown in Figure 56) are used to show how multiple non-planar crack growth results can 

be combined for a single equivalent planar crack analysis.  Three different load histories 

(composed of the same loading values, but with different sequences) were used to 

perform non-planar crack growth simulations. The final angle of orientation between the 

crack tips at the surface locations was determined using the method detailed in Section 

5.5 for each simulation result.  For the three cracks shown in Figure 56 corresponding to 

the three different load sequences, the angles of the equivalent flaw size were determined 

to be 13.18, 13.50, and 13.95 degrees. The orientation of the equivalent planar crack was 

set to be the average value obtained from the three individual results and planar crack 

growth analysis was performed and results compared. Figure 61 a), b), and c) show 

comparison plots at different normalized distances around the crack front (0.1, 0.5, and 

0.9 respectively) of the stress intensity factor results at various stages of crack growth for 

the non-planar and average equivalent planar simulation for the 4 block variable 

amplitude history.  Plots showing similar results are obtained when the stress intensity 

factors obtained from the average equivalent planar results are compared to those from 

the non-planar for other load histories.   
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(c.) 

Figure 61: Comparison plots of stress intensity factor solutions found using non-

planar crack growth methodology and equivalent planar crack growth methodology for 2 

block VAL load case. Plots show SIFs along the crack front at a.) 0.1 normalized 

distance (near surface); b.) 0.5 normalized distance (depth); c.) 0.9 normalized distance 

(near surface) 
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For the more general load case where the exact combination of applied loadings 

contained within a load history is not precisely known, the orientation of the final non-

planar crack has been shown to be dependent on both the applied load values and the 

sequence in which they are applied.  This makes it difficult to accurately predict the final 

orientation of the fatigue crack without a full non-planar analysis for a specific load 

history.  As a result, the need for an efficient and accurate method for non-planar crack 

shape development is desired to be able to predict the final crack orientation under unique 

load histories. This topic remains an open area of research and would enable a broader 

applicability to the current equivalent planar methodology by providing final flaw 

orientations without the expensive task of component stress and crack growth analysis.   

Overall, the equivalent planar crack growth modeling approach appears to provide 

a reasonable approximation to the non-planar crack growth analysis.  Comparative results 

are included for simple constant amplitude, two-block, and four-block variable amplitude 

load histories.  Errors in the stress intensity factors at similar stages of crack growth 

resulting from the simplification to a planar crack representation were found to be 

anywhere from 5-20% for the cases considered.  The equivalent planar method reduces 

the necessary computational effort and complex crack shape characterization by using the 

results from a non-planar analysis and effectively reducing them onto a single plane 

orientation.  In doing so, this method reduces the complex non-planar crack growth 

problem to a planar type problem which can be effectively modeled using techniques 

developed in the previous chapters of this dissertation.  
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6.6 Summary 

Non-planar crack kinking behavior significantly increases the complexity of both 

the analytical models and the computational modeling demands. Since non-planar crack 

growth modeling requires both crack extension and crack direction predictions and no 

universal theory exists, uncertainties are introduced into the model predictions resulting 

from the use of different non-planar crack growth criteria. The choice of crack extension 

and direction modeling criteria has an influence on crack shape, the stress gradient at the 

crack tip, and the overall predicted fatigue life. The use of different criteria may result in 

differences in fatigue crack growth model predictions and the differences between the 

various methods will be problem specific. It is important that crack growth model 

predictions to compare mode predictions to experimental and in-service physical 

specimens whenever possible. 

Since non-planar crack growth is an incremental process where the crack shape 

development is dependent on previous crack growth predictions, the sequence and 

magnitude of applied loads may have an effect on the final crack size, shape, and 

orientation within the structural component.  Uncertainty in the composition of loading 

values contained within a load history as well as loading sequence has been shown to 

have an effect on the crack shape development under multiaxial variable amplitude 

loading conditions. However, it is possible to determine upper and lower bounds on the 

crack tip orientation under different load combinations by performing non-planar analysis 

for extreme load spectra. 

This chapter also investigated the uncertainty in stress intensity factor solutions 

and crack growth predictions using an equivalent planar crack growth modeling approach 
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in place of a more computationally demanding non-planar analysis. The equivalent planar 

method appears to provide reasonable approximations for most crack configurations and 

load combinations where a full non-planar analysis is possible and has been investigated 

under constant amplitude as well as variable amplitude block type loading conditions.   
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CHAPTER VII 

SUMMARY & FUTURE WORK 

 

7.1 Summary 

The traditional damage tolerance (DT) approach to aircraft structures has assumed 

a deterministic damage accumulation process where deterministic crack growth curves, 

constant material properties, and specific initial flaw sizes are used.  However, 

uncertainties exist at all levels of the fatigue damage tolerance modeling process, 

resulting in unknown confidence bounds on component life predictions made by 

engineers.  In order to overcome this limitation, a systematic framework for stochastic 

fatigue crack growth modeling must be developed which accounts for different kinds and 

sources uncertainty that exist at all levels of the damage tolerance analysis.  Each 

individual source of uncertainty, resulting from physical variability, data uncertainty, or 

modeling errors, needs to be identified and its statistical characteristics quantified in 

order to accurately assess the risk of failure of structural components.  It is the goal of 

this dissertation to provide a methodical and practical framework for quantifying various 

sources of uncertainty and analyzing their effects on component reliability predictions 

over time.   

The first several chapters of this work focus on uncertainty quantification, 

probabilistic fatigue crack growth modeling, and model error assessment for planar crack 

growth analysis.  This research provides methods for uncertainty quantification of many 

fundamental material properties which are important to fatigue crack growth, such as the 
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threshold stress intensity factor and the fatigue limit, with particular attention focused on 

accurately representing the near threshold and linear (Paris) regions of the crack growth 

rate curve which are important to the high cycle fatigue problem.  As each additional 

model within the fatigue crack growth analysis framework is used to represent the crack 

propagation, additional uncertainties are introduced into the model predictions as a result 

of model form errors.  This research focuses on quantifying the statistical uncertainty in 

each model prediction to more accurately represent the overall uncertainty in component 

fatigue life predictions.  Included in this area are topics ranging from uncertainty in 

fatigue crack growth rate model representation, finite element discretization errors, and 

uncertainty in surrogate model predictions.  Each of these individual sources of modeling 

uncertainty needs to be represented in different ways, and this work provides a 

methodical approach for accurate quantification and inclusion within an overall 

probabilistic fatigue life assessment. 

The latter half of this dissertation shifts focus to identify additional sources of 

uncertainty which are introduced when non-planar fatigue crack growth modeling is 

performed.  When considering non-planar crack growth modeling, it is important to be 

able to predict and model both the crack extension magnitude and the crack path 

direction.  This leads to an increase in the complexity of crack shape representation as 

well as computational modeling considerations. In order to try to capture the nonlinear 

crack extension behavior that has been seen in both experimental results and realistic 

applications, numerous crack growth direction and extension criteria have been proposed 

within the literature.  However, to date no single criteria has been identified as a 

universally applicable model. This research investigates the differences in fatigue crack 
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shape development and fatigue life predictions which result from the use of different 

crack extension and direction modeling criteria. It is seen through numerical simulation 

results that the choices of both the extension and direction criteria can have an effect on 

the crack shape development of fatigue cracks growing under multiaxial variable 

amplitude loading conditions. Since crack growth analysis is an incremental process, 

where subsequent crack growth steps are directly dependent on previous crack growth 

steps (through the stress gradient at the crack tip), small differences in crack orientation 

and crack extension at each growth step can lead to different crack shape representations 

after a finite number of crack growth increments.  

An equivalent planar crack representation method is developed within this work 

to try to utilize the information obtained about the crack shape development and final 

crack orientation from the more sophisticated non-planar analysis, while enabling the use 

of simpler crack representation and modeling approach afforded by the planar 

representation. The method proposes to utilize a finite number of non-planar crack 

growth analyses to characterize the non-planar crack shape development under multiaxial 

variable amplitude loading conditions.  The orientation of the final crack shape is then 

used to determine a suitable angle of orientation of an initial crack within the component 

that can be used within a planar crack growth analysis procedure. The equivalent planar 

representation is an approximation to the more realistic non-planar crack growth method, 

but appears to provide reasonable results when compared to full non-planar analyses for 

constant amplitude and multiple block variable amplitude histories.  

Overall, this dissertation systematically identifies, quantifies, and incorporates 

different types of uncertainties within an overall probabilistic life prediction modeling 
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approach.  The uncertainty quantification (UQ) methodology is implemented with 3-

dimensional planar and non-planar fatigue crack modeling, for structural components 

subjected to multi-axial, variable amplitude loading conditions.  Included within the 

scope of this work are UQ methods for material properties and model parameters, as well 

as methods which focus on model error quantification – including FEA discretization 

error and surrogate modeling error. Additionally, the uncertainty quantification and 

propagation methodology is developed to be computationally efficient to enable the 

component reliability assessment to be performed within a Monte Carlo Scheme.  

Sensitivity analysis is presented to identify the contribution that each source of 

uncertainty has on the overall component life prediction.  

Some of the key contributions contained within this work include: 

 Extended stochastic field expansion technique to fatigue crack propagation 

modeling, which enables a more realistic representation of the correlation among 

the fatigue crack growth rate test data  

 New framework for PFM enabling fatigue crack growth modeling under  multi-

axial, variable amplitude loading conditions incorporating FEA, characteristic 

plane, surrogate model, and cyclic crack growth modeling methods  

 Developed new application of Gaussian Process surrogate modeling technique for 

mixed mode SIF evaluation under multi-axial loading for improved computational 

efficiency  

 Implemented new technique for identifying critical input parameter combinations 

that help reduce uncertainty in the training point selection for the design of 

experiments (DOE) of the full model FEA 
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 Quantified and incorporated finite element discretization modeling errors within 

component fatigue life assessment framework  

 Quantified and incorporated surrogate modeling (response surface) modeling errors 

within component fatigue life assessment framework  

 Proposed an „equivalent planar‟ fatigue crack growth modeling approach to reduce 

the computational expense of numerical simulations while retaining valuable 

features of a full scale non-planar crack growth analysis 

 Quantified uncertainty in crack shape and stress intensity factor solutions  resulting 

from use of different crack extension criteria for non-planar crack growth 

modeling 

 Quantified uncertainty in crack shape and stress intensity factor solutions  resulting 

from use of different crack direction criteria for non-planar crack growth 

modeling 

 Evaluated model errors for an „equivalent planar‟ fatigue crack growth modeling 

approach compared to traditional non-planar results 

 

7.2 Future Research Needs 

This study implemented fatigue crack growth analysis using both planar and non-

planar fatigue crack growth modeling techniques. While the area of planar crack growth 

under constant amplitude and variable amplitude loading has been well documented 

within the fatigue research community, non-planar crack growth modeling, particularly in 

three dimensions, is a more recent area of interest. From a theoretical point of view, 
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continued research is necessary on developing a universal fatigue crack growth extension 

and direction criteria.  Currently, many different criteria exist, and different researchers 

argue as to the appropriateness of each under different loading conditions and in 

reference to different experimental results.  In order to develop a universal criteria that is 

widely applicable to different load conditions, it is necessary to increase the current 

physical understanding of fatigue crack growth mechanisms under multiaxial loads. 

Efforts are underway to increase experimental testing under multi-axial loads for 

different materials, where only simple uniaxial tensile load cases have previously been 

performed. However, one current limitation which makes direct comparison and data 

transfer possible difficult is the lack of a standardized and detailed multiaxial testing 

procedure and standard test specimen. As a result, results obtained from different sources 

and researchers tend to use different testing procedures on a wide range of test specimen 

which raises the question of whether differences seen in the results for mixed mode 

fatigue crack growth properties are the result of natural variability or whether they are 

simply the product of different testing methods. Further research in this area is necessary 

before a meaningful and thorough database of mixed mode material properties can be 

built.  

Surrogate modeling techniques were implemented within the planar fatigue crack 

growth analysis to efficiently capture the relationship between the crack shape, size, and 

current loading conditions and the stress intensity factors along the crack tip. Within the 

non-planar crack growth analysis procedure, the development of a similar method is 

much more involved as a result of the complexity in crack shape representation and the 

interdependence between the previous loads and the crack shape development. A 
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promising area of future research exists in developing an efficient and accurate method 

for three dimensional non-planar crack shape predictions.  New methods must be 

developed which address the issue of how to best represent the complex, non-planar three 

dimensional crack surface.  Any surrogate modeling technique must also be able to 

capture the direct relationship that exists between the previous applied load sequence and 

the current crack shape representation.  Once developed, these methods will still rely on 

accurate non-planar crack growth analysis for training data under multiaxial load 

histories. As a result, continued effort and resources should be focused on improved finite 

element models, remeshing algorithms, increased computational efficiency, and more 

robust crack growth modeling capabilities.   

Overall, many advanced topics in the fields of fatigue and fracture mechanics for 

multiaxial crack growth still exist and are worth pursuing.  As new theoretical and 

computational methods are developed and proposed, it is necessary that a sufficient 

amount of meaningful and representative experimental results are available to compare, 

verify, and validate the proposed methods against those which have been previously 

developed.  
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