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Chapter 1

Introduction

1.1 Motivation

The advancement of technology over the last few decades has led to the ubiquity of em-

bedded systems in everyday lives. Traditional embedded system technologies emphasize

the computational elements and how to design these elements to perform a certain task or

objective. Research over the past ten years has bridged the link between the computational

elements and the physical dynamics into cyber-physical systems (CPS). CPS are complex

engineering systems that integrate computational, communication, and control elements

with physical dynamics [3]. Examples of CPS include automotive systems, aeronauti-

cal systems, industrial process control systems, electrical power grids, and environmental

monitoring systems, etc. As the computational components in modern CPS increase in

both number and complexity, great challenges arise for their integration with the physical

domain [9]. Consequently, rigorous engineering methods are needed for the integration of

computational components with the physical system in order to achieve predictable, correct

behavior. Model-based design is an important method for CPS that efficiently connects all

development phases of control software and ensures desirable system performance.

Composition is a fundamental idea in engineering that reduces system complexity, de-

creases cost, and allows for scalability and re-usability. The predominant challenge in the

composition of CPS is heterogeneity caused by the different layers of CPS. Traditionally,

composition is done in an ad hoc way in which components are individually designed and

integrated into the system with the objective of “making it work”. As the field of CPS con-

tinues to grow and evolve, more problems emerge from the interaction of heterogeneous

domains which leads to a loss of compositionality, which significantly hampers the sys-

tem integration process [3]. The physical and computational domains are distinguished by
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the fundamental difference in how time is represented, i.e. continuous-time for physical

domains and discrete-time for computational domains. In software systems, processes exe-

cute in sequential steps and are commonly represented by difference equations. In physical

systems, processes exist in parallel which are represented by differential equations [10].

Careful formulation of a modeling framework is needed to integrate physical and compu-

tational elements.

The system integration problem has been a challenge for the automotive industry for

many years. An automotive CPS typically consists of plants (vehicle dynamics components

such as transmission and wheels), controllers (computational components where control al-

gorithms are implemented), and sensors/actuators (links the control signals with the vehi-

cle dynamics) integrating through a communication network [11]. The original equipment

manufacturers (OEMs) purchase controllers and subsystems from a wide variety of suppli-

ers; since suppliers design subsystems differently, OEMs treat these controllers and sub-

systems as “black boxes” and must test and verify that the final integrated product behaves

properly. Although automobiles have existed in this capacity since electronics were first

introduced to them, advancements in technology and the exponential growth in the num-

ber of computational elements within modern vehicles necessitate an extensive amount of

prototyping which increases the cost of development [12].

1.2 Research Challenges

CPS contain a plethora of computational and physical components working together to

achieve an objective. The design method of these CPS becomes important because of the

ability to simulate, analyze, and identify design flaws in the system before prototyping. As

the number of components and interactions increase with advancements in technology, the

complexity of CPS also increases, which necessitates component-based design methods

where components are individually defined and implemented. Component-based design

and modeling is desirable because it allows for scalability, substitutablity, and reusability
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when modeling large-scale systems. Several challenges arise for the compositional design

and modeling of CPS which is addressed in this dissertation.

Heterogeneous domains present a significant challenge to the modeling of CPS. The

composition of physical and computational domains is inherently heterogeneous due to the

differences in how the variables change with respect to time (continuous-time vs. discrete-

time). Furthermore, there are sub-domains within both physical and computational do-

mains which are commonly modeled in different frameworks. In the physical domain there

can be physical elements which are modeled using different modeling paradigms such as

circuit diagrams or free-body diagrams. In the computational domain there can be com-

putational elements which have different memory sizes, sampling times, processor speeds,

and architectures. In this dissertation we address the modeling of heterogeneous domains

by using the port-Hamiltonian system (PHS) modeling framework.

Interactions present a significant challenge to the simulation of CPS. Interactions are

either causal, where one variable acts as the cause and the other variable acts as the effect,

or acausal, where both variables are related via equation statements without any causality

implications. In the computational domain, components interact through an input-output

characteristic where causality is explicit in the model. In the physical domain, components

interact through shared variables based on the physics of the system where the notion of

causality is ambiguous [9]. In this dissertation we address the challenge of interactions by

using PHS, which can be expressed as either causal or acausal models, to unify the physical

and computational domains.

Hybrid dynamics and nonlinearities present significant challenges for the control de-

sign of CPS. A hybrid system exhibits both continuous and discrete behavior and is used

to model a large class of CPS. Most physical dynamics are nonlinear by nature, and non-

linear systems do not obey the superposition principle. Problems that arise from nonlinear

systems are difficult to solve and are commonly approximated using linear methods. The

PHS framework contains specifications and rules for implementing hybrid dynamics and
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nonlinearities.

Safety is important for CPS because of the benefits of keeping the system operating

within an appropriate and safe region. In order to have safe and reliable CPS, safety anal-

ysis methods must be scalable and be able to address a large class of systems. Heteroge-

neous domains and hybrid dynamics create significant challenges for the safety of CPS;

though there are many well-established methods for systems that are either purely discrete

or purely continuous, more advanced techniques are needed for systems containing a mix-

ture of discrete and continuous dynamics. Nonlinearities add an additional challenge to the

safety of CPS; most nonlinear systems are solved by approximation using linear methods

and many methods handle nonlinearities with similar linearization methods.

1.3 Organization

In this section we provide an overview of the dissertation and contributions towards

addressing the challenges in the compositional design and modeling of CPS. The technical

contributions of this dissertation are contained in Chapters 4 - 8.

• Chapter 2 presents various related work in the area of CPS research. We begin by pro-

viding an overview on the various modeling methods for CPS such as bond graphs,

PHS, and Modelica. Simulation of both causal and acausal models of computation

are presented with an emphasis on software tools. A brief description of passivity

is presented. Safety of hybrid systems is also presented. Finally, we end the related

work chapter with a discussion on automotive CPS.

• Chapter 3 presents detailed theoretical background on PHS, passivity, and safety

analysis. Equations which describe PHS are detailed which show how systems in-

teract. Passivity as an analysis tool is then presented in both continuous-time and

discrete-time format. Passivity indexes and passivity-based control are introduced

to characterize control systems. Finally, safety analysis of CPS is presented with an
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emphasis on barrier certificates. The technical details presented in this chapter are

used in the subsequent chapters of this dissertation.

• Chapter 4 presents a method for the component-based modeling and simulation of

CPS using PHS. A domain-specific modeling language based on PHS developed us-

ing the principles of Model-Integrated Computing is presented. The unique structure

of PHS allows for the modeling of CPS with nonlinearities, hybrid dynamics, and

heterogeneous domains in a component-based way. Simulation methods for PHS

using its Dirac structure is presented in both acausal and causal forms. Interactions

between domains occur through ports which are captured by the Dirac structure and

constituent equations.

• Chapter 5 presents a compositional model-based control design method for CPS us-

ing PHS with a specific emphasis on automotive applications. Hybrid dynamics and

nonlinearities are modeled in the PHS framework, and controllers are designed to

ensure passivity for the closed-loop system. We choose control gains which ensures

that the system stabilizes to desired values. We apply the method to an in-depth

case study of an autonomous vehicle and demonstrate the process of modeling of the

control and vehicle dynamics.

• Chapter 6 presents a safety analysis method for PHS by using the Hamiltonian func-

tion as a barrier function. Using the Hamiltonian function, we are able to derive for-

mal proofs of safety which ensures safe operation of the PHS. This method was mo-

tivated by the unsafe skidding behavior on autonomous vehicles when the speed con-

trol and steering control systems have conflicting objectives. We apply the method

to the same case study from Chapter 5 and show how this safety method imposes

additional constraints on the control parameters.

• Chapter 7 shows an extension to the work in Chapter 6 by applying a discretization

scheme called conservative time-discretization to the safety analysis method which
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allows us to guarantee that the system remains safe despite discretization effects. We

show how the different control design scheme is able to offset the loss in passivity

the PHS experienced during discretization.

• Chapter 8 shows the simulation results of both the continuous-time and discrete-

time control designs deployed on the hardware-in-the-loop platform. We present an

overview of the platform itself. Implementation effects such as discretization and

quantization will affect the passivity of the closed-loop system and are discussed.

• Chapter 9 concludes this dissertation. A summary of the overall content of this disser-

tation is described succinctly. Finally, we introduces some ideas for future directions

for the work presented in this dissertation.
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Chapter 2

Related Work

Cyber-physical system (CPS) is a multi-disciplinary research topic involving heteroge-

neous domains/components spanning many fields of research. In this chapter we present

related work that are relevant to the topics of this dissertation. In Section 2.1 we re-

view the design and modeling of CPS, covering bond graph modeling (Section 2.1.1),

port-Hamiltonian system (PHS) modeling (Section 2.1.2), and Modelica modeling (Sec-

tion 2.1.3). In Section 2.2 we provide an overview of simulation in CPS. Simulation of

causal models is presented in Section 2.2.1, detailing the concept of causality and how it

converts bond graph models to signal-flow graphs and block diagrams. In Section 2.2.2

we discuss the simulation of acausal models with an emphasis on the Modelica simulation

environment. In Section 2.3 we present background on the control design of CPS where

passivity is introduced as a control design tool. In Section 2.4 we present background on

the safety analysis of hybrid systems specifically discussing ellipsoidal techniques and bar-

rier certificates. Finally, we end the related work chapter in Section 2.5 with CPS in the

automotive context. First we present background for adaptive cruise control (ACC) systems

in Section 2.5.1, which focuses on controlling the longitudinal dynamics of a vehicle. We

then present background for lane keeping control (LKC) systems in Section 2.5.2, which

focuses on controlling the lateral dynamics of a vehicle.

2.1 Modeling

Component-based modeling of CPS is a challenging problem because of the inher-

ent heterogeneity within CPS [13]. Components are implemented as well-defined Mod-

els of Computation (MoC) and abstract semantics are used to define interactions between

them [10]. Each MoC is converted into an abstraction; abstract algebra is used to formulate
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Figure 2.1: The three design layers in CPS [3]

their interconnections. As a result, a CPS is formed as an amalgamation of heterogeneous

abstract MoCs held together with well-defined abstract connections.

The intricacies of both acausal and causal modeling can be captured using a Domain-

Specific Modeling Language (DSML) [14]. Physical components interact with each other

through an acausal flow of energy representing the underlying laws of physics. Computa-

tional components interact with each other through an input-output characteristic. Interac-

tions between the physical and computational components are formalized through unidi-

rectional physical signals and computational signals [15].

The difference in abstraction between physical dynamics and computational elements

continues to pose a significant challenge [16]. The abstractions regarding computational

and networking elements will need to be redefined in a way that merge the layers of

CPS [17]; in order to accurately model the interactions of the computational and phys-

ical components in the systems, interfaces need to be well formulated [18]. Port-based

modeling has garnered attention over the years since it captures the underlying physics of

the system. Port-based modeling of lump-parameter complex physical systems leads to a

class of systems called PHS, where the central concept is energy transfer [19]. The dy-
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namics of the PHS is determined by its storage elements (the Hamiltonian function) and

its resistive elements; The interconnection of these elements contributes to its geometric

structure. PHS is derived from bond graph modeling [2].

2.1.1 Bond Graphs

A PHS is graphically represented using a network of bond graphs. A bond graph is

domain-independent, and is a useful tool for the modeling of physical systems; different

physical domains such as electrical, mechanical rotational, hydraulic, and thermodynam-

ics are all described in the same way through a physical exchange of energy. Its major

distinction from tools such as signal-flow graphs is that every arc (bond) in a bond graph

model represents a bi-directional exchange of energy, rather than a uni-directional flow

of signals. Bond graphs exhibit strong topological and graphical similarities to schematic

models of the corresponding physical system (e.g. free-body diagrams, electrical circuit

diagrams) [20].

A bond graph is a directed graph, where vertexes represent physical phenomena and

edges (bonds) represent idealized energy connections. Bond graphs allow for the recursive

decomposition of a system into subsystems, where each vertex is represented by a bond

graph model [21]. Each bond is represented by a half arrow, where the direction of the

arrow denotes the flow of positive energy [22]. Similar to the passive sign convention of

electrical circuits, the positive direction of energy flow is arbitrary; the model is valid as

long as its choice of energy flow direction is consistent. The transfer of energy between dif-

ferent subsystems and physical domains occur through real-world engineering interactions

such as mechanical actuators, electrical wires, and pulleys, etc.

Power = Effort×Flow (2.1)

Power is a ubiquitous concept in all physical domains, and is the inner product of two
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physical variables. Each bond in a bond graph consists of two power conjugate variables,

called effort and flow, whose product is power, as shown in (2.1). Table 2.1 shows different

physical domains and their corresponding power conjugate variables.

Table 2.1: Table of efforts and flows in different physical domains [1]

Domain Effort (e) Flow ( f )
Electrical Voltage (V ) Current (A)

Mechanical Translational Force (N) Velocity (m/s)
Mechanical Rotational Torque (Nm) Angular Velocity (rad/s)

Hydraulic Pressure (N/m2) Volume Flow (m3/s)
Thermodynamic Temperature (K) Entropy Flow (Js/K)

At the lowest level of hierarchy, vertexes are represented by bond graph elements which

represent distinct physical processes [23]:

1. Distribution (one or zero junction): Junctions connect two or more bond graph ele-

ments in a power-continuous manner; power entering the junction must be equal to

the power leaving the junction. The difference between the two types of junctions

is the power conjugate variable that is held constant on all attached bonds; in a one

junction the flow variable is held constant, while in a zero junction the effort variable

is held constant. A common way of interpreting junctions is using circuit theory;

a zero junction represents Kirchhoff Current Law, while a one junction represents

Kirchhoff Voltage Law.

2. Transformation (transformer or gyrator): Transformation elements connect two bond

graph elements in a power-continuous manner. In a transformer there is a modulation

term which the efforts on the two bonds are related by a variable k and the flows on

the two bonds are related by the inverse of k. Typically, transformers represent the

transferring of energy inside a domain (e.g. hydraulic cylinders). In a gyrator there is

a similar modulation term l in which the effort and flow on the two bonds are related

by a variable l and the opposite variables are related by the inverse of l. Typically,
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gyrators represent the transferring of energy between different domains (e.g. electric

motor).

3. Conversion (resistive element): A linear resistive element relates the effort and flow

variables of its corresponding bonds through a constant value. The power sign con-

vention on these resistive elements imply that power flows into them are dissipated.

A damper is a mechanical example of a resistive element that dissipate power into

heat. If the relationship between the effort and flow variable is not a constant value,

then the resistive element is classified as nonlinear.

4. Storage (storage element): Storage elements store energy. Energy is described in

relation to either the effort or the flow, through a generalized momentum or displace-

ment variable. The generalized momentum variable, p, is obtained through the in-

tegration of the effort variable; the generalized displacement variable, q, is obtained

through the integration of the flow variable. Table 2.2 shows the generalized mo-

mentum and displacement variables in the various domains. Though most domains

contain two types of energy storage elements (and consequently both a generalized

momentum and displacement variable), some domains such as the thermodynamic

and chemical only contain one type of energy storage element and are therefore omit-

ted from the table.

The bond graph elements discussed so far are all passive elements which either store

energy, dissipate energy, or conserve energy. Active elements are categorized into sources

and sinks; they are not part of the bond graph model, but represent the boundary conditions

in which the bond graph model interacts with the environment [24]. Sources either impose

an effort or a flow value onto the rest of the bond graph model, depending on if it is a source

of effort or source of flow. Sources can either be constant or time-dependent.

11



Table 2.2: Table of momentum and displacement in different physical domains [1]

Physical domain Sub-domain Flow f Effort e State x

Electric circuit
Electrical Current Voltage Electric charge
Magnetic Voltage Current Magnetic flux

Mech. translation
Potential Velocity Force Displacement
Kinetic Force Velocity Momentum

Mech. rotation
Potential Ang. velocity Torque Ang. displacement
Kinetic Torque Ang. velocity Ang. momentum

Hydraulic
Potential Vol. flow Pressure Volume
Kinetic Pressure Vol. flow Flow momentum

Figure 2.2: Model-based observer control scheme [2]

2.1.1.1 Control Design Using Bond Graphs

The use of bond graphs in physical domain control design leads to a method called

Model-Based Observer (MBO) Control, in which the physical system being controlled as

well as the controller and observer are all implemented as bond graphs [25]. MBO allows

for the retention of physical properties of the system through the use of bond graphs, and

can also be transformed into other representations (transfer functions, state-space repre-

sentations, etc.) for simulation purposes. MBO has been shown to be robust to errors in

physical parameters and state variables [26]
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The MBO control architecture is shown in Figure 2.2 in which the system box represents

the system being controlled and is treated as a black box; its output ys feeds into the MBO

controller and receives the control signal u. In the MBO controller, the model, controller

feedback, and observer feedback blocks are all implemented as bond graph models:

1. Model: A dynamic simulation model of the system block implemented as a bond

graph. It uses the same input, u, as the system block.

2. Controller Feedback: Control algorithm which generates the control signal u based

on virtual sensor signals yi from the model and the set-point w. The purpose of the

controller feedback bond graph is to make the system behave in a certain way.

3. Observer Feedback: provides virtual sensor values, ui, to the model block using e =

ys− y, as the model error. The purpose of the observer feedback bond graph is to

drive the model error to zero, thereby ensuring that the model bond graph is a good

representation of the system.

The idea of using bond graphs as a tool for control design is by formulating systems us-

ing the idea of power ports, allowing for the preservation of important physical properties.

2.1.2 Port-Hamiltonian Systems

In order to provide insight into the physical properties of the system, a mathematical

framework is needed to describe the graphical model. The equations of a non-causal bond

graph model extends to a PHS, which centers on a power-conserving interconnection struc-

ture called the Dirac structure. Generalized bond graph modeling is different from bond

graph modeling in two ways, absence of causality and use of symplectic gyrators [27]. A

symplectic gyrator is a unit gyrator that inverts the roles of the effort and flow [22]. In gen-

eralized bond graphs, symplectic gyrators are attached to I-storage elements, which unifies

the treatment of C and I storage elements. Table 2.3 shows the various domains and their
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Figure 2.3: Port-Hamiltonian system [2]

corresponding characteristics from a PHS context. Energy-storage and resistive elements

make up the internal ports; control and interaction elements make up the external ports.

PHS are represented by Figure 2.3, where a set of ports (control, interaction, resistive, and

storage) are interconnected through a Dirac structure [2]. Detailed technical details on PHS

are shown in Section 3.1.

Table 2.3: Table of characteristics of domains in the PHS context [2]

Domain Effort Flow Displacement Momentum
Electro-Magnetic Voltage Current Charge Flux Linkage

Mech. Translational Force Velocity Displacement Momentum
Mech. Rotational Torque Ang. Velocity Ang. Displacement Ang. Momentum

Hydraulic Pressure Volume Flow Volume Tube Momentum
Thermodynamic Temperature Entropy Flow Entropy N/A

2.1.3 Modelica

Modelica can be used to model and simulate acausal bond graph models. Modelica

was developed in 1996 with the goal of modeling physical systems by components through

a standardized format. Modelica is an acausal object-oriented language; equations denote

equality rather than assignments [5]. There are many Modelica software tools including

OpenModelica [28], JModelica [29], and Dymola [4]. Modelica has become the standard
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Figure 2.4: RLC example implemented in Dymola [4]

for acausal modeling of physical systems; the language and standard library continues to

expand as it becomes widely adopted in both industry and academia [30].

System modeling in Modelica is done through the Modelica Standard Library (MSL) [31],

which is an open-source library developed by the Modelica Association for the model-

ing of mechanical, electrical, thermal, fluid, and control systems. Models are decom-

posed into a set of interconnected components, and are represented graphically using the

graphical editor of a Modelica modeling environment [32]. To demonstrate the graphical

representation, we present a simple series-RLC circuit modeled in Dymola (Figure 2.4).

The Modelica text (Figure 2.5) has two parts which describe the topology of the sys-

tem: components and connections. Components are defined in the Modelica Standard

Library and are referenced through the library hierarchy; for example, the statement “Mod-

elica.Electrical.Analog.Basic.Resistor R(R=5)” instantiates a resistor R with resistive value

5 of the Resistor class in the Modelica Electrical Components library.

Connections specify the interconnection between components in a Modelica model; in

the case of the series RLC circuit each connection is specified as an interaction of voltage

and current, where the voltages obey Kirchhoff Voltage Law and the currents obey Kirch-

hoff Current Law. In order to assist with the integration with other software environments,

variable type definitions in the Modelica Standard Library reflect the naming conventions
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Figure 2.5: Modelica text of the RLC example implemented inside Dymola [4]

for physical quantities given by the International System of Units. In addition to using

components and connections provided by the MSL, the designer can also create his/her

own components and connections using the Modelica language specification [33]. The

Modelica language also contains many advanced capabilities [34]:

1. Matrix Equations: Useful for multi-body modeling. Allows the designer to build

equations based on matrices.

2. Model Class Parameters: defining a model class as a parameter using the “redeclare”

construct so that only one version of the model class is needed.

3. Discontinuous and Instantaneous Equations: Useful for modeling hybrid and switched

systems. These equations allow for the modeling of discontinuities, discrete events,

and changes to the structure of the equations.

4. Algorithms and Functions: Useful for when the system contains parts pertaining to

procedural programming. Because of the special semantic meaning for the equal sign

in Modelica (strict equality as opposed to an assignment), assignments in procedural

programming are implemented using “:=”.

Each Modelica model begins as a .mo file containing a series of interconnected compo-

nents. The translator flattens the equations of the .mo file, which includes processes such

as type checking, inheritance matching, and import statements. The optimizer then applies

Pantelide’s Algorithm to the flatten model equations in an effort to reduce the index of
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the differential and algebraic equations (DAE) system [35]. The optimized flatten equa-

tions are then used by the code generator to generate source code (e.g. C code) needed for

simulation, which the compiler transforms into an executable [36].

2.2 Simulation

Causal models, consisting of hierarchical block diagrams, are commonly used for the

computational domain because of the explicit input/output format; transmission of a signal

occurs through a connection between the blocks, and the signal represents the value of the

variable that is being transferred between the blocks. However, in the physical domain,

acausal models are used to preserve the physical reality of the modeled system; using a set

of declarative equations, physically intuitive relationships are defined among the variables.

As a result of the innate differences between causal and acausal models, simulation

is handled differently. Causal models are simulated through a set of ordinary differential

equations (ODE); Simulink is an example of a causal simulation environment that simu-

lates systems using either a fixed-step or variable-step ODE solver. Acausal models are

simulated through a set of DAEs [5]; Modelica is an example of an acausal simulation en-

vironment that simulates systems using DAE solvers [37]. A DAE is a more general form

of an ODE, where variables are implicitly defined, and reducing its index involves the use

of Pantelide’s Algorithm [35].

Because CPS contains both physical and computational domains, co-simulation plat-

forms have been developed. Extension of physical domain simulators to including com-

putational elements has certain shortcomings which inhibits its ability to apply to a more

general network scheme [38]. Extension of computational domain simulators to including

physical dynamic elements is also problematic because physical models are characterized

by DAEs, which are difficult to capture in a computational domain [39]. Recent research

has been focused on the integration of a full computational domain simulator with a full

physical domain simulator [40].
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2.2.1 Simulation of Causal Models

MATLAB/Simulink is a popular graphical tool for the simulation of block diagrams [41].

Simulink is widely used for control design and digital signal processing and has become a

powerful tool for the design of CPS. For the design of CPS, integration between compo-

nents of different domains is essential. S-functions in the Simulink environment extends

the capabilities of Simulink by allowing the interfacing with other software packages. For

example, CarSim, a commercial software package which models and simulates a vehi-

cle’s performance given driver action and environment interfaces with Simulink through

S-functions [42]. Previous work done on the hardware-in-the-loop simulation platform in-

volves the design of control software using Simulink and simulating and verifying the sys-

tem using CarSim S-functions; C-code is then generated from Simulink and implemented

on the HIL platform which simulates the behavior of the vehicle in real time [7] [8].

Similar to S-functions, Functional Mockup Interface (FMI) was developed with the goal

of defining a standardized interface for the development of complex CPS. The development

of FMI was influenced by the idea of component-based design; a virtual system which

is assembled from a set of components, each with its physical laws and computational

dynamics captured [43]. Because CPS contain tightly integrated components of different

domains, the use of different software environments for each domain is desirable; FMI

allows the integration of these different software domain through model exchange or co-

simulation [44]. Comparatively, FMI provides a few advantages over S-functions [43]:

1. S-function DLL is specific to the Simulink simulator, whereas for FMI the DLL is

specific to the modeling environment.

2. S-function is not suitable for embedded systems because of the large memory over-

head caused by storing all information in the DLL. For FMI only the minimum

amount of information is stored in the DLL; the information not required for sim-

ulation is put on an XML file.
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3. Complexity of the S-function definition dwarfs the complexity of FMI definition.

4. S-function is proprietary to Mathworks, Inc, which can cause legal problems. FMI,

on the other hand, uses a BSD license which imposes minimal restrictions.

Bond graphs present a physical representation of systems, and while the representation

is intuitive, generation of equation is not possible without determining the causal relation-

ship among the variables. Each bond in the model is interpreted as a bi-directional signal

flow. Through a process called causality analysis, the signal directions in each bond can

be determined, which allows for the generation of equations [45]. Causality analysis uses

causal strokes, which indicate the direction of the imposition of effort. Different bond

graph elements have different constraints regarding the imposition of effort or flow, which

results in the following causality rules:

1. Fixed Causality: the constituent equations of the bond graph element only allows for

one of the two power conjugate variables to be the outgoing variable. There are two

cases in which fixed causality can occur, either through source elements or nonlinear

elements. A source element delivers either an effort or a flow into the system by

definition, depending on whether it is a source of effort or source of flow. In nonlinear

elements the constituent equations are singular, which forces one variable to be the

output; nonlinearities commonly occur in resistive and storage elements.

2. Constrained Causality: causality of one of the bonds attached to the element imposes

constraints on all other bonds attached to the element. Zero junctions, one junctions,

linear transformers, and linear gyrators are examples of bond graph elements with

constrained causality. In zero junctions, one bond must impose effort, whereas all

other bonds must impose flow. The opposite occurs for one junctions, where one

bond imposes flow, while all other bonds must impose effort. For transformers, one

bond impose effort while the other bond impose flow. For gyrators, both bonds im-

pose either effort or flow.
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3. Indifferent Causality: there are no causality constraints on these bond graph ele-

ments. The best example for an indifferent causality element is the linear resistor,

where either power conjugate variables can be the output variable.

4. Preferred Causality: there is a preference for the causality of the bond. Preferred

causality occurs at linear storage elements, where causality determines either an in-

tegration or a differentiation for the constituent equations. Since integration with re-

spect to time is a process that is realizable, integration is considered to be ”preferred”

compared to differentiation. Differentiation requires future information which results

in an anti-causal system.

Once causality analysis is applied to the bond graph model, a series of equations can

be derived from the bond graph model. In the case that there are no causality conflicts

in the model, a set of ordinary-differential equations are derived. In the case that there

are causality conflicts in the model, a set of differential and algebraic equations are then

derived [46]. An ODE solver can then be used to simulate the bond graph model and

obtain simulation results. The Sequential Causal Assignment Procedure is an algorithm

that assigns causality to every bond in a bond graph model [21]; an application to hybrid

bond graphs allows for the derivation of state equations [47].

2.2.2 Simulation of Acausal Models

The model translation and simulation process for acausal simulation in a Modelica

environment is depicted in Figure 2.6. Each Modelica model begins as a .mo file containing

a series of interconnected components. The translator flattens the equations of the .mo

file, which includes processes such as type checking, inheritance matching, and import

statements. The optimizer then applies Pantelide’s Algorithm to the flatten model equations

in an effort to reduce the index of the DAE system to an ODE [35]. The optimized flatten

equations are then used by the code generator to generate C code needed for simulation,
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Figure 2.6: Modelica simulation process [5]

which the compiler transforms into an executable [36].

By modeling systems in Modelica, the designer is allowed to skip the causality assign-

ment procedure. In a way, instead of needing to transform the physical models through a

computational procedure involving causality, the designer models the physics of the system

and lets the simulation environment do the rest.

2.3 Passivity

Control design is traditionally implemented as part of the computational domain, where

signals have explicit input-output formats. However, many control design techniques for

CPS are focused on the energy of the system, which introduces passivity [48]. The con-

cept of passivity originated in circuit theory, where a filter consisting of only transformers,

resistors, inductors, and capacitors does not generate energy; additionally, these filters are

guaranteed to be stable and are robust to disturbances [49]. Consequently, passivity is a

powerful tool used for control design and system analysis [48].

A passive system is guaranteed to be stable if a positive definite storage function is
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used [50]. Therefore, passivity provides a sufficient condition for the stability of a sys-

tem; a passive system, when unforced, is Lyapunov stable [51] [52]. In the case that the

storage function used is positive semi-definite instead, additional conditions on zero-state

detectability is needed to ensure that the passive system remains stable [53]. In addi-

tion to stability, passive systems also contain phase properties [54]. Passive systems have

minimum-phase and possess a low relative degree [55] [56]. Technical details on passivity

are shown in Section 3.2.

2.4 Safety of Cyber-Physical Systems

As a result of complex dynamics within CPS, safety analysis of CPS becomes an im-

portant problem [57]. When a system contains purely discrete dynamics, techniques such

as temporal logic can be used to verify and ensure that these systems always operate within

a safe region [58]. On the other hand, a system which contains purely continuous dy-

namics can be verified using theorems and principles developed in control theory (stability

analysis) [59]. However, since CPS contains both discrete and continuous dynamics, new

methods are required for its safety analysis extending beyond methods use for purely dis-

crete or purely continuous systems.

Hybrid systems have been commonly used to model many kinds of CPS, and in this

section we present several methods for safety analysis of hybrid systems. Analysis of hy-

brid systems revolves around the determination of the reachable sets for the continuous

dynamics of the system [60]. Most early methods for determining safety requires the cal-

culation of either the exact set of reachable states or an approximated set of reachable states,

using a wide variety of techniques such as quantifier elimination [61], geometric program-

ming relaxations [62], ellipsoidal calculus [63], and polygonal approximations [64] [65].

Safety analysis using ellipsoidal calculus is interesting because the Hamiltonian function

of a PHS is quadratic, being the sum of squares of the state variables, and is inherently

ellipsoidal [66] [67].
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Barrier certificates, which are similar in structure to Lyapunov functions, were intro-

duced for the purpose of verifying nonlinear systems with uncertainties [68]. The use of

barrier certificates allows for the validation of a larger class of continuous-time nonlinear

models, including differential-algebraic systems, models with uncertain inputs, and hybrid

models [69]. Barrier certificates are functions of state-parameter-time which denote that

there are no state trajectories starting from a given set of initial conditions that ends up

in an unsafe region of operation; the sufficient condition states that if there exists a barrier

certificate for a system, then the system is safe [70]. Technical details on barrier certificates

are shown in Section 3.3.

2.5 Automotive Cyber-Physical Systems

The first automobiles were designed to transport people and supplies from one place

to another; these automobiles were completely characterized by their physical dynamics,

and the many advancements in this area has enabled automobiles to become a popular

choice for meeting society’s transportation demands [71]. However, problems such as traf-

fic congestion and safety concerns have spurred the addition of autonomous controllers to

automobiles, which changes automobiles from pure physical dynamics to complex CPS. As

the number of controllers added to automobiles increase, automotive CPS becomes more

complex and rigorous engineering methods are needed to ensure the safety and operations

of modern vehicles [12].

Automotive Open System Architecture (AUTOSAR) is a worldwide development part-

nership with the goal establishing an open-source and standardized software architecture

for automotive ECUs. AUTOSAR contains details which describe standardized software

modules, define how application software components interface with one another, and build

a universal design approach using a standardized exchange format. These details allow

AUTOSAR to help innovate automotive electronic systems to further improve the perfor-

mance, safety, and efficiencies of modern vehicles. The scalability of different software
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Figure 2.7: High level controller configuration for ACC [6]

and hardware components over the vehicle product life cycle is also facilitated by AU-

TOSAR. AUTOSAR strives to assist in the design and development of future vehicles and

to improve the cost efficiency of integrating new technologies [72].

2.5.1 Adaptive Cruise Control

An Adaptive Cruise Control (ACC) system extends from the traditional cruise control

system, where the vehicle maintains the user’s set speed by automatically tracking the

speed with respect to the throttle angle [73]. Studies have shown that ACC systems can

improve traffic flow characteristics and lead to more efficient vehicles [74]. The ACC

behaves just like the traditional cruise control system when the host vehicle does not detect

a leading vehicle. However, if the radar system of the host vehicle detects a lead vehicle,

the ACC determines a new set speed for which the host vehicle is allowed to travel. If

the lead vehicle is traveling at a speed slower than the host vehicle, then the ACC will

push the host vehicle’s speed to match that of the lead vehicle speed while maintaining a

safe distance. Doing so ensures that the host vehicle drives comfortably and also avoids

potential collisions.

Early development of adaptive cruise control systems focused on extending the tra-

ditional cruise control system by adding hybrid dynamics in the form of throttling and
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braking. Individual control algorithms within the ACC were implemented as either PID

controllers with fixed gains or adaptive controllers where the gains are determined by gain

scheduling [75]. As vehicle systems get more complicated, a more complicated control

architecture is needed to ensure that the vehicle behaves properly under the influence of

the ACC. Recent development in ACC has prompted a more hierarchical control architec-

ture, where an upper level controller determines the desired acceleration of the vehicle,

and the lower level controller computes the throttle or brake command based on the de-

sired acceleration. The two controllers work together to achieve two stability conditions:

individual stability, where the vehicle on its own will asymptotically reach a desired speed

and spacing, and also platoon stability, where a legion of vehicles will all satisfy individual

stability [76]. Control barrier functions have also been used in a control design approach

demonstrated for ACC and place constraints on the host vehicle’s acceleration and deceler-

ation [77]. They balance the objectives of maintaining a desired host vehicle velocity and

a relative distance above a minimum threshold.

2.5.2 Lane Keeping Control

The concept of Lane Keeping Control (LKC) first began as an extension of the lane

departure warning system which have started to appear on high end vehicles in the early

2000’s. The technology has matured since then and many car manufacturers have extended

its functionality, resulting in a semi-autonomous vehicle when coupled with the ACC [78].

The objective of an LKC system is to control the steering of the vehicle in order to keep

the vehicle in the center of the lane [79]. The LKC either steers the vehicle towards the

center of the lane when it detects that the vehicle is drifting or it proactively keeps the

vehicle in the center of the lane [80]. New systems are being developed which increases

the functionality of LKC further by including lane changing maneuvers [81].

Lane keeping controllers are commonly designed using nested PID algorithms, see Fig-

ure 2.8 [7]. Through the use of sensors and cameras, the LKC is able to detect when the
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Figure 2.8: High level controller configuration for LKC [7]

vehicle is about to depart from the lane and adjust the steering wheel accordingly to keep

the vehicle in lane [82]. A vehicle, not unlike an airplane, has three degrees of freedom in

terms of rotational motion: pitch, roll, and yaw. Under most normal driving circumstances,

the rotational motions of pitch and roll are ignored for obvious reasons. The LKC affects

the yaw of the vehicle by adjusting the steering [83].

For the vehicle dynamics, the lateral dynamics and longitudinal dynamics are related.

The lateral dynamics model is dependent on the speed of the vehicle. This can sometimes

cause a problem which manifests through the interaction of LKC and ACC. The scenario

in which the ACC drives the vehicle to approach a curve at a high speed may hamper the

LKC’s ability to keep the vehicle in the lane; this is potentially catastrophic as the vehicle

can spin out of control. This problem is alleviated by the introduction of a supervisory

controller, which will limit the vehicle’s speed when taking a curve, ensuring that the LKC

can satisfy its control objective [84].

2.6 Comparison with Dissertation Work

Heterogeneity is a major challenge for the component-based modeling and design of

CPS. As CPS continue to increase in complexity and scale, traditional ad hoc ways of

integration become more and more unreliable which results in the need for more rigorous

methods of integration. The goal of the work in this dissertation is to address problems and

challenges which are highlighted in Section 1.2. In particular, we developed methods and

tools for the modeling, design, and analysis of CPS using PHS.

Modeling of CPS Most of the literature on this subject focuses on the heterogeneous
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modeling of different computational and physical domain, then integrating them together

through an abstraction of each layer. This form of modeling can become complex and

requires well-defined interactions between the different layers of CPS. The modeling ap-

proach presented in this dissertation is inspired by the port-based modeling of physical

systems, in which different domains are integrated together through a common notion of

power and energy. By modeling the computational domain of CPS using PHS, we can

ensure passivity when integrated with the physical domain.

Simulation of CPS Traditional bond graph simulation requires the causality assignment

of the global model, which generates a large set of equations pertaining to the model. The

simulation technique presented in this dissertation approaches the causality assignment

procedure in a compositional way. By instantiating each component as a generalized bond

graph, we derive its Dirac structure in the form of a kernel representation and and a hybrid-

input-output representation. The kernel representation provides an acausal computational

model which we simulate using Modelica, and the hybrid-input-output representation pro-

vides a causal computational model which we simulate using Simulink.

Control design in CPS The work presented in this dissertation is influenced by passivity-

based control. We use the interconnection rules of PHS to ensure that the resulting con-

troller, and the subsequent closed-loop system, is passive. We model hybrid and switching

dynamics through PHS, which ensures that passivity is not affected. Control ports and

Dirac structures allow for the composition of multiple controllers with the plant system.

This control design method will serve as the first step of the greater model-design pro-

cess. We also implemented the end-to-end process on a hardware-in-the-loop simulation

platform.

Safety analysis of CPS (Specifically referring to the contents of Section 3.3)Safety anal-

ysis methods such as ellipsoidal approximations and barrier certificates contain complex

mathematical definitions which precludes the system from beginning in a safe state and

ending in an unsafe state. In the case of barrier certificates these bounds and conditions
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are derived using sum of squares decomposition methods, which can more than adequately

handle systems whose dynamics can be described as polynomials. However, many CPS

contain components which are highly non-polynomial, which necessitates a different way

of obtaining the barrier certificate. In this dissertation we propose to use the Hamiltonian

function of the PHS as a barrier certificate in order to show safety.

Automotive CPS The automotive CPS that we consider in this dissertation are systems

which contribute to autonomous driving, specifically ACC and LKC systems. By working

together they eliminate the need for a driver to make sure that the vehicle stays on the

road and moves at an appropriate speed. Composition of different automotive systems are

typically done in an ‘ad hoc’ way in which individual components are designed separately

and then composed together under the supervision of a supervisory controller. The work

done in this dissertation uses PHS so that there is an actual composition rule, which makes

it easier to introduce additional systems.
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Chapter 3

Background

In this chapter we present some theoretical background on port-Hamiltonian systems

(PHS), passivity, and barrier certificates. In Section 3.1 we show technical details on PHS,

including an extension to multi-modal PHS used to described hybrid/switched systems. In

Section 3.2 we present background on the basics of continuous-time (Section 3.2.1) and

discrete-time (Section 3.2.2) passivity. In Section 3.2.3 we show how passivity is applied

to hybrid/switched systems. In Section 3.2.4 we present the compositional property of

passivity and passivity indexes. In Section 3.2.5 we show how passivity is used in PHS for

the purpose of control design. We conclude the background chapter with a review of barrier

certificates and how they are used to validate the safety of nonlinear and hybrid systems

(Section 3.3).

3.1 Port-Hamiltonian Systems

Physical systems are generally described a set of differential and algebraic equations,

since algebraic constraints between state variables are a possibility [19]. Though implicit

equations create problems in simulation, they generally have no effect on mathematical

formulations. In particular, PHS model both implicit and explicit systems through the

Dirac structure [85].

Definition 1. [2] Let F be an n-dimensional linear space of flow variables f , and F∗ be its

dual space of effort variables e, power is defined as:

P = ⟨e, f ⟩,( f ,e) ∈ F×F∗.
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Definition 2. [2] A Dirac structure on F ×F∗ is a subspace D ⊂ F ×F∗ if the following

two conditions are true:

1. ⟨e, f ⟩ where = 0, for all ( f ,e) ∈ D,

2. dim[D] = dim[F ].

There are various ways to represent Dirac structures, with each representation using

different structural matrices. The kernel representation is an acausal representation of the

Dirac structure where there are no explicit input-output relationships between the effort and

flow variables.

Definition 3. [2] Every Dirac structure D⊂ F×F∗ can be represented in a kernel repre-

sentation as:

D(x) = {( f ,e) ∈ F×F∗ : F(x) f +E(x)e = 0},

where the matrices E(x) and F(x) satisfy the following two conditions:

1. rank[F(x)|E(x)] = dim[F ],

2. E(x)FT(x)+F(x)ET(x) = 0.

The constrained input-output representation is a causal representation of the Dirac

structure. Using a matrix J a cause-effect relationship is defined between the effort and

flow variables.

Definition 4. [2] A Dirac structure D⊂ F×F∗ can be represented in a constrained input-

output representation as:

D(x) = {( f ,e) ∈ F×F∗ : f = J(x)e+G(x)λ ,GT(x)e = 0}.
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In the case of algebraic constraints between the effort and flow variables, it may not

be possible to derive a constrained input-output representation. This necessitates the for-

mulation of the hybrid input-output representation, where certain effort and flow variables

are interchanged. Suppose that the effort and flow variables are split as
[

e1 e2

]T
and[

f1 f2

]T
. Correspondingly, the matrices E(x) and F(x) are also split as

[
E1(x) E2(x)

]
and

[
F1(x) F2(x)

]
.

Definition 5. [2] A Dirac structure D⊂F×F∗ can be represented in a hybrid input-output

representation as:

D(x) = {( f ,e) ∈ F×F∗ :
[

e1 f2

]T
= J(x)

[
f1 e2

]T
},

where J(x) is a skew-symmetric matrix given by:

J(x) =−JT(x) =
[

E1(x) F2(x)

]−1[
F1(x) E2(x)

]
.

Regardless of the representation, Dirac structures establish the power balancing equa-

tion which is fundamental to PHS:

d
dt

H = eTR fR + eTC fC + eTI fI. (3.1)

H in (3.1) denotes the Hamiltonian function of the PHS. The Hamiltonian function

represents the energy stored in the system; the flows of the energy storage are given by

the rate ẋ of the energy state variables x; the efforts are given by the co-energy variables

∂H
∂x [86]. eR and fR denote the effort and flow variables associated with internal energy

dissipation, where the relationship between the power conjugate variables obey a static

resistive relationship of the form:

R( fR,eR) = 0.
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A special case of resistive relationship arises if the relationship between eR and fR can

be expressed in an explicit input-output form:

fR =−F(eR), (3.2)

where the function F(∗) relates the effort and flow variables. (3.2) is the general equation

for a non-linear resistive element. For a linear resistive element (3.2) simplifies down to:

fR =−R̃eR,

where R̃ is a positive semi-definite symmetric matrix. eC and fC denote effort and flow

variables associated with external control; these control port variables are accessible to

controller action; one variable acts as the actuator and the conjugate variable acts as the

sensor. The final terms in (3.1), eI and fI , denote effort and flow variables associated with

interactions of the PHS with the environment.

A PHS with a Hamiltonian function H, energy storage ports S, resistive ports R, control

ports C, interconnection ports I, and a Dirac structure D can be written in a formal model

in (3.3),

Σ = (H,R,C, I,D), (3.3)

which leads to the the implicitly defined PHS dynamics:

Σ : (−x′(t),
∂H
∂x

, fR(t),eR(t), fC(t),eC(t), fI(t),eI(t)) ∈ D. (3.4)

(3.4) simplifies down to an input-state-output PHS when there are no algebraic con-

straints on the state variables [87]:
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Σ :


ẋ = [J(x)−R(x)]∂H

∂x +G(x)u+K(x)d

y = GT(x)∂ H
∂x

z = KT(x)∂H
∂ x

(3.5)

Its Dirac structure is summarized in the following skew-symmetric matrix:

D :



−J(x) −GR(x) −G(x) −K(x)

GT
R(x) 0 0 0

GT(x) 0 0 0

KT(x) 0 0 0


,

where the term GR(x) denotes the resistive structure of the system. An important property

of PHS is compositionality. The interconnection of PHS occurs through interaction ports

of their respective Dirac structures.

Definition 6. [88] Let DA be a Dirac structure defined on the linear space F1×F2, and

DB be Dirac structure defined on the linear space F2×F3, where F2 is the space of shared

power conjugate variables between DA and DB. The composition of DA and DB, DC =

DA||DB, is a Dirac structure defined on the linear space F1×F3.

Definition 6 shows that the composition of two Dirac structures yields another Dirac

structure [89]. By extension, the composition of PHS is shown in Definition 7 [90].

Definition 7. [2] Let Σi = (Hi,Fi,Di), where i = 1,2, . . . ,k, be k PHS interconnected

through a Dirac structure on the space of F1×F2× . . .×Fk. This results in a PHS Σ =

(H,F,D) where H = H1 +H2 + . . .+Hk and DI = D1||D2|| . . . ||Dk.

An important generalization of PHS is the multi-modal PHS, which is useful for de-

scribing hybrid/switched system. The formulation of multi-modal PHS were inspired by

the modeling of switching power converters [91]. Given a plant system with a Hamiltonian

function Hp(xp), continuous states xp ∈ Xp ⊆Rnp , discrete states sp ∈ Sp, disturbances δ ∈
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Ro , and a control system a Hamiltonian function Hc(xc), continuous states xc ∈ Xc ⊆ Rnc ,

and discrete states sc ∈ Sc, where {np,nc,o} ∈ N4, we can write the set of dynamic equa-

tions of the closed-loop system as an input-state-output multi-modal PHS with Hamiltonian

function H(x) = Hp(xp)+Hc(xc), continuous states x =
[

xp xc

]T
∈ X = Xp×Xc, discrete

states s =
[

sp sc

]T
∈ S = Sp× Sc, initial states X0 = Xp0× Sp0×Xc0× Sc0, and discrete

transitions T⊆ (X×S)→ (X×S):


ẋ = [J(x,s)−R(x,s)]∂H

∂x +

Lp(xp,sp)

0

δ

ζ =

[
LT

p (xp,sp) 0

]
∂H
∂x

(3.6)

J(x,s) =

 Jp(xp,sp) −Gp(xp,sp)GT
c (xc,sc)

Gc(xc,sc)GT
p (xp,sp) Jc(xc,sc)

 ,

R(x,s) =

Rp(xp,sp) 0

0 Rc(xc,sc)

 ,

where Jp(xp,sp) ∈ Rnp×np and Jc(xc,sc) ∈ Rnc×nc are skew-symmetric interconnection

matrices, Rp(xp,sp) ∈ Rnp×np and Rc(xc,sc) ∈ Rnc×nc are symmetric positive semi-definite

damping matrices, Gp(xp,sp) ∈ Rnp×m, Gc(xc,sc) ∈ Rnc×m, Lp(xp,sp) ∈ Rnp×o, and (δ ,ζ )

are the input-output pairs corresponding to the disturbance port.

3.2 Passivity

Passivity is a mathematical concept which describes power and energy conservation of

physical systems [50]. Furthermore, passivity applies in cases of abstract energy, where

there is no physical meaning of the energy in the system; this property makes passivity

useful in characterizing a larger class of systems [85].

34



3.2.1 Continuous-Time Passivity

Passivity is commonly defined in the state-space approach, where the energy stored in

the system is related to the external energy coming into the system [92]. First we provide a

formal definition of a continuous-time dynamical system.

Definition 8. [93] A dynamical system, J, is described by the following state space real-

ization, where x ε X ⊂ Rn, u ε U ⊂ Rm and y ε Y ⊂ Rm are the state, input, and output

variables, respectively; X, U, and Y are the state, input, and output spaces, respectively:

J :

 ẋ = f (x,u)

y = h(x,u)

A supply function, W , is then defined as follows:

Definition 9. [93] The supply rate W (t) = W (u(t),y(t)) is a function defined on U ×Y ,

such that W (t) satisfies the following constraint:

∫ t

t0
|W (t)|dt < ∞.

Using both Definitions 8 and 9, we can provide the following definition for a dissipative

system:

Definition 10. [93] A dynamical system, J, is dissipative with respect to its supply rate

W (t) if there exists a non-negative storage function V (x) such that:

∫ t

t0
W (τ)dτ ≥V (x)−V (x0). (3.7)

The inequality presented in (3.7) is called the dissipation inequality, which leads to

several choices for the supply rate function, V (x) [56]. This results in the formulation of

QSR dissipativity supply rates, which assumes that the system is a black box and only

relates the inputs to the system with the outputs of the system [50].
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Definition 11. [56] Given constant matrices Q, S, and R, with Q and R symmetric, a

dynamical system, J, is QSR Dissipative if it is dissipative with respect to the supply rate,

W, defined as:

W (u,y) = yTQy+2yTSu+uTRu.

Specific choices of the matrices Q, S, and R results in different cases of passivity, where

ε , δ , are positive constants and γ is an arbitrary constant:

1. Passive if Q = 0,S = 1
2 I,R = 0.

2. Strictly Input Passive (SIP) if Q = 0,S = 1
2I,R =−δ I.

3. Strictly Output Passive (SOP) if Q =−εI,S = 1
2 I,R = 0.

4. Very Strictly Passive (VSP) if Q =−εI,S = 0,R =−δ I.

5. Finite-Gain Stable (FGS) if Q =−I,S = 0,R = γ2I.

From these conditions, we can see that passivity is a specific form of QSR dissipativity

when the system is constrained to being a square system (consisting of the same number

of inputs and outputs). The applicability of passivity arises from the fact that its definition

applies to a wide variety of systems: linear or nonlinear, time-invariant or time-variant,

continuous time or discrete time. For the continuous-time definition of input-output pas-

sivity, we must first describe the L2-space. A signal y is in the L2-space of functions if it

has has finite energy:

∫ ∞

0
yTy(t)< ∞. (3.8)

The only functions that satisfies the constraints of (3.8) are functions which asymptot-

ically approach zero. In order to define the passivity using an input-output structure, first

we must define an inner product:
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Definition 12. [50] The inner product of L2-space signals u and y is defined as:

⟨u,y⟩=
∫ ∞

0
uT(t)y(t)dt.

Using definition 12, (3.8) can be rewritten as

∫ ∞

0
yTy(t) = ⟨y,y⟩< ∞. (3.9)

In the case of a non-∞ start time

⟨u,y⟩T =
∫ T

0
uT(t)y(t)dt.

(3.9) implies that the finite truncation of any signal that is part of the L2-space must

have finite energy.

⟨y,y⟩T =
∫ T

0
yT(t)y(t)dt = ||y||2.

Using all the definitions above and the QSR dissipativity of definition 11, we can define

passivity in terms of input u and output y as follows:

Definition 13. [50] Given a dynamical system, J, with input signal u and output signal y

in L2-space:

1. J is passive if there exists a constant β such that:

⟨Ju,u⟩T = ⟨y,u⟩T ≥−β ,∀T ≥ 0.

2. J is strictly output passive if there exist constants β and ε ≥ 0 such that:

⟨Ju,u⟩T = ⟨y,u⟩T ≥ ε⟨y,y⟩T −β ,∀T ≥ 0.
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3. J is strictly input passive if there exist constants β and δ ≥ 0 such that:

⟨Ju,u⟩T = ⟨y,u⟩T ≥ δ ⟨u,u⟩T −β ,∀T ≥ 0.

4. J is very strictly passive if there exist constants β and ε,δ ≥ 0 such that:

⟨Ju,u⟩T = ⟨y,u⟩T ≥ δ ⟨u,u⟩T + ε⟨y,y⟩T −β ,∀T ≥ 0.

5. J is finite gain stable if there exist constants β and γ such that:

⟨Ju,Ju⟩T = ⟨y,y⟩T ≤ γ⟨u,u⟩T −β ,∀T ≥ 0.

3.2.2 Discrete-Time Passivity

Similar to the definitions of continuous-time passivity of the previous section, discrete-

time passivity is also defined in terms of the state space approach extended from the QSR

dissipativity supply rates [94]. The definitions for passivity in discrete-time is similar in

format to those in continuous-time. A discrete-time dynamical system is defined as follows:

Definition 14. [94] A dynamical system, J, is described by the following state space re-

alization, where x ε X ⊂ Rn, u ε U ⊂ Rm and y ε Y ⊂ Rm are the state, input, and output

variables, respectively; X, U, and Y are the state, input, and output spaces, respectively:

J :

 x(k+1) = f (x(k),u(k))

y(k) = h(x(k),u(k))

A supply function, W (k), is then defined as follows:

Definition 15. [94] The supply rate W (k) =W (u(k),y(k)) is a function defined on U×Y ,

such that W (k) satisfies the following constraint:

38



∞

∑
k=0

W (k)< ∞.

Using both definitions 14 and 15, we can provide the following definition for a discrete-

time dissipative system:

Definition 16. [94] A dynamical system, J, is dissipative with respect to its supply rate

W (k) if there exists a non-negative storage function V (k) such that:

N

∑
k=0

W (u(k),y(k))≥V (k+1)−V (0).

The QSR Dissipativity Supply Rate, converted to discrete-time, provides the following

extension to definition 16:

Definition 17. [94] Given constant matrices Q, S, and R, with Q and R symmetric, a

dynamical system, H, is QSR dissipative if it is dissipative with respect to the supply rate,

W(k), as:

W (u(k),y(k)) = yT(k)Qy(k)+2yT(k)Su(k)+uT(k)Ru(k).

Similar conditions for Q, S, and R, such as those in definition 11 apply for the various

forms of discrete-time passivity [95]. The formal discrete-time definition of input-output

passivity has signal y is in the L2-space of functions if it has has finite energy [96]:

∞

∑
k=0

yT(k)y(k)< ∞. (3.10)

The inner product in discrete time is similarly defined as:

Definition 18. [50] The inner product of L2-space signals u(k) and y(k) is defined as:

⟨u(k),y(k)⟩=
∞

∑
k=0

uT(k)y(k).
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Using Definition 18, (3.10) can be rewritten as:

∞

∑
k=0

yT(k)y(k) = ⟨y(k),y(k)⟩< ∞.

In the case of a non-∞ end time,

⟨u(k),y(k)⟩N =
N

∑
k=0

uT(k)y(k).

⟨y(k),y(k)⟩N =
N

∑
k=0

yT(k)y(k)dt = ||y(k)||2.

Using all of the definitions above and the QSR dissipativity of Definition 17, we can

define passivity in terms of input u(k) and output y(k) as follows [97]:

Definition 19. [94] Given a dynamical system, J, with input signal u(k) and output signal

y(k) in L2-space:

1. J is passive if there exists a constant β such that:

⟨Ju(k),u(k)⟩N = ⟨y(k),u(k)⟩N ≥−β ,∀N ∈ N.

2. J is strictly output passive if there exist constants β and ε ≥ 0 such that:

⟨Ju(k),u(k)⟩N = ⟨y(k),u(k)⟩N ≥ ε⟨y(k),y(k)⟩N−β ,∀N ∈ N.

3. J is strictly input passive if there exist constants β and δ ≥ 0 such that:

⟨Ju(k),u(k)⟩N = ⟨y(k),u(k)⟩N ≥ δ ⟨u(k),u(k)⟩N−β ,∀N ∈ N.
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4. J is very strictly passive if there exist constants β and ε,δ ≥ 0 such that:

⟨Ju(k),u(k)⟩N = ⟨y(k),u(k)⟩N ≥ δ ⟨u(k),u(k)⟩N + ε⟨y(k),y(k)⟩N−β ,∀N ∈ N.

5. J is finite gain stable if there exist constants β and γ such that:

⟨Ju(k),Ju(k)⟩N = ⟨y(k),y(k)⟩N ≤ γ⟨u(k),u(k)⟩N−β ,∀N ∈ N.

3.2.3 Passivity of Hybrid/Switched Systems

Passivity of hybrid systems is based on the energy of the system in the presence of

switching behaviors [98] [99] [100]. Instead of formulating a global Lyapunov or storage

function, stability of hybrid systems is analyzed through the stability of each mode [101] [102].

Passivity for hybrid systems is defined in terms of the storage functions of each mode [103].

Definition 20. [104] A hybrid system given by the tuple H is passive if for every mode

i there exists a continuously differentiable storage function Vi(x) such that the following

conditions hold for non-negative δ and ε , and a positive semi-definite function ϕ(x):

1. The system is instantaneously passive while each mode is active,

uTy≥ dVi

dt
+δuTu+ εyTy+ψ(x).

2. When switching to each mode, the energy that each subsystems accumulates while

inactive is bounded by the energy supplied during the time interval,

∫ t

t0
uTydτ ≥Vi(x(t))−Vi(x(t0)).

Passivity of hybrid and switched systems is formulated in PHS through the use of

switches [105]. From a bond graph point of view, a switch is defined as either a zero
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source of effort or a zero source of flow [106]. Regardless of the mode of the switch, it

always delivers zero power into the system, thus never affecting the total energy of the sys-

tem [107]. As result, as long as modes of the system can be represented as passive PHS,

even the introduction of switching behavior will not change the overall passivity of the sys-

tem [108]. A more general definition for passivity is defined for switched systems, which

has a more relaxed set of assumptions. Switched systems are a special class of hybrid sys-

tem, where emphasis is placed on the continuous dynamics and the discrete dynamics as

finite switching [99].

Definition 21. [100] A switched system is passive if for every mode i there exists a storage

function Vi(x) such that the following conditions hold for non-negative δ and ε:

1. The system is instantaneously passive while each mode is active,

uTy≥ dVi

dt
+δuTu+ εyTy.

2. Each mode is dissipative during its inactive time,

w(u,y)≥ dVi

dt
+δuTu+ εyTy.

3. There exist functions ϕ i
j for each cross supply rate that are absolutely summable and

such that,

wi
j(u,y,x, t)≤ ϕ j

i ,∀ j ̸= i.

3.2.4 Passivity Indexes

There are three interconnection rules for the construction of large scale passive systems

through passive subsystems: parallel interconnection, feedback interconnection, and sym-

metric input-output transformation [109]. By following these three simple rules, we can
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Figure 3.1: Parallel interconnection of two systems, A and B.

guaranteed that the overall system is passive as long as each subsystem is passive. These

composition rules form the foundation of passivity-based control design [110].

Theorem 1. [111] The parallel interconnection of two passive systems (Figure 3.1) results

in a passive overall system.

Proof. Since each system, A and B, is passive, there exists storage functions VA and VB

such that ∫ t

t0
uTy1dτ ≥VA(xA(t))−VA(xA(t0)), (3.11)

∫ t

t0
uTy2dτ ≥VB(xB(t))−VA(xB(t0)). (3.12)

We then define a new storage function for the composed system, V (x):

V (x) =VA(xA)+VB(xB).

Now summing the two inequalities in (3.11) and (3.12):

∫ t
t0 uTy1dτ +

∫ t
t0 uTy2dτ ≥ VA(xA(t))−VA(xA(t0))+VB(xB(t))−VA(xB(t0))∫ t

t0 uT(y1 + y2)dτ ≥ [VA(xA(t))+VB(xB(t))]− [VA(xA(t0))+VA(xB(t0))]∫ t
t0 uTydτ ≥ V (x(t))−V (x(t0))

43



Figure 3.2: Feedback interconnection of two systems, A and B.

The input-output mapping of u to y is passive.

Theorem 2. [111] The feedback interconnection of two passive systems (Figure 3.2) re-

sults in a passive overall system.

Proof. Since each system, A and B, is passive, there exists storage functions VA and VB

such that

∫ t

t0
uT1 y1dτ ≥VA(xA(t))−VA(xA(t0)), (3.13)

∫ t

t0
uT1 y2dτ ≥VB(xB(t))−VA(xB(t0)). (3.14)

Now summing the two inequalities in (3.13) and (3.14):

∫ t
t0 uT1 y1dτ +

∫ t
t0 uT2 y2dτ ≥ VA(xA(t))−VA(xA(t0))+VB(xB(t))−VA(xB(t0))∫ t

t0(r1− y2)
Ty1dτ +

∫ t
t0(r2− y1)

Ty2dτ ≥ [VA(xA(t))+VB(xB(t))]− [VA(xA(t0))+VA(xB(t0))]∫ t
t0 rTydτ ≥ V (x(t))−V (x(t0))

The input-output mapping of r to y is passive.
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Figure 3.3: Symmetric input-output transformation of system A

Theorem 3. [55] The system composition (Figure 3.3) where the inputs of a passive system

A are pre-multipled by a matrix, M, and the outputs of the passive system are are post-

multiplied by the transpose of the same matrix, MT, results in a passive overall system.

Proof. Since the system A is passive, there exist a storage function V

∫ t

t0
uT1 y1dτ ≥V (x(t))−V (x(t0)).

Now transforming u1 and y1 to u and y through the matrices M and MT, respectively:

∫ t
t0(Mu)T((MT)−1y)dτ ≥ V (x(t))−V (x(t0))∫ t

t0 uTMT(MT)−1ydτ ≥ V (x(t))−V (x(t0))∫ t
t0 uTydτ ≥ V (x(t))−V (x(t0))

The input-output mapping of u to y is passive.

These interconnection rules and the preservation of passivity leads to the concept of

passivity index. Passivity as a property is inherently binary, where a system is either passive

or not passive. Passivity indexes extends the passivity formulation by determining the

degree of passivity or how far a system is from being passive [112]. A system that is not

passive may be close to being passive in that a small feedback or feed-forward gain will

passify it. A system which is excessively passive can be used to connect in parallel or

feedback to a non-passive system in order to passify it. A positive value for an index means

that the system has an excess of passivity; a negative value for an index means that the

system has a shortage of passivity. There are two passivity indexes: input feed-forward
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Figure 3.4: Input feed-forward passivity

Figure 3.5: Output feedback passivity

passivity (IFP) and output feedback passivity (OFP) [113].

Definition 22. [114] The input feed-forward passivity index (shown in Figure 3.4), IFP(ν),

is the largest gain that can be put in a negative parallel interconnection with a system such

that the interconnected system is passive.

Definition 23. [114] The output feedback passivity index (shown in Figure 3.5), OFP(ρ),

is the largest gain that can be put in a positive feedback interconnection with a system such

that the interconnected system is passive.

The IFP index measures the minimum-phase property of the system, while the OFP

index measures the stability of the system [115]. When a system lacks IFP it is non-

minimum phase and can be made passive only if the system is stable; conversely, when

a system lacks OFP it is unstable and can be made passive if the system has low relative

degree and is minimum phase. Even though the two passivity indexes are independent of
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each other, both indexes need to be determined in order to determine the passivity level of

the system.

Definition 24. [116] A system H has input feedforward passivity index ν and output feed-

back passivity index ρ if there exists a constant β such that the following inequality holds:

∫ t

t0
[(1+νρ)uTy−ρyTy−νuTu]dτ ≥−β .

There are two special cases of passivity that are considered. The system is input strictly

passive when the system has an excess of IFP; the system is output strictly passive when

the system has an excess of OFP. A system that is output strictly passive is also finite-gain

L2 stable. Applying passivity indexes to (3.7) results in:

∫ t

t0
uTydτ ≥V (x(t))−V (x(t0))+

∫ t

t0
νuTudτ +

∫ t

t0
ρyTydτ. (3.15)

Definition 25. [113] A system is input strictly passive if (3.15) holds for ν > 0 and ρ ≥ 0.

Definition 26. [113] A system is output strictly passive if (3.15) holds for ν ≥ 0 and ρ > 0.

3.2.5 Passivity-Based Control Design Using Port-Hamiltonian Systems

A controlled system consists of a plant (typically passive) and a control algorithm in-

teracting with the plant through sensors and actuators [117]. Traditional control design

require that the system being controlled is represented in a format specific to the control

design technique [118]. For example, the root-locus control design method requires that

system be represented as a pole-zero plot and the control gains affect the placement of

the poles and zeros. However, because the system is abstracted into a mathematical for-

mat, specific physical attributes of the system are lost. In order to preserve the physical

representation of the system, the design and modeling of controllers with an emphasis on

the physical model was developed [119]. By extension, control design using PHS is also
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based on the idea of emphasizing the energy and power of the system through these power

ports [120]. Consider the PHS in (3.5), ignoring the interaction port (d,z):

ẋ = [J(x)−R(x)]
∂H
∂x

+G(x)u.

The derivative of the Hamiltonian function is defined by [2]:

Ḣ(x) = (∂H(x))T[J(x)−R(x)]∂H(x)+(∂H(x))TG(x)u. (3.16)

Through substitution and other mathematical manipulations, (3.16) simplifies down to:

Ḣ(x) =−(∂H(x))TR(x)∂H(x)+ yTu, (3.17)

where Ḣ(x) denotes the stored power in the system, (∂H(x))TR(x) denotes the dissipated

power, and yTu denotes the supplied power. So long as the dissipation of the system is non-

negative (R(x)≥ 0), the unforced system (u= 0) is asymptotically stable (Ḣ(x)≤ 0), which

indicates that the Hamiltonian function is a Lyapunov function [121]. Energy-balancing

control using PHS extends (3.17) to the energy-balance equation of the system [2]:

H(x(t))−H(x(0)) =−d(t)+
∫ t

0
yT(τ)u(τ)dτ, (3.18)

where H(x(t))−H(x(0)) denotes the stored energy, d(t) denotes the dissipated energy, and∫ t
0 yT(τ)u(τ)dτ denotes the supplied energy. The control objective is to operate the system

at a nonzero equilibrium point [122], x∗, given a control input u = β (x)+ v.

Ha(x(t))−Ha(x(0)) =−
∫ t

0
yT(τ)β (x(τ))dτ, (3.19)

where Ha is the energy supplied by the controller. Using both (3.18) and (3.19) we can

establish a new energy-balance equation for the closed-loop system,
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Hd(x(t))−Hd(x(0)) =−dd(t)+
∫ t

0
yT(τ)v(τ)dτ, (3.20)

which leads to the following proposition:

Proposition 1. [2] The closed loop system is a PHS of the form ẋ = [J(x)−R(x)]∂Hd
∂x (x),

with Hd given in (3.20) and a stable equilibrium point x∗, if there exists a function β (x)

and a vector function K(x) = ∂Ha
∂x (x) satisfying [J(x)−R(x)]K(x) = G(x)β (x) such that the

following three conditions are true:

1. ∂K
∂x = ∂K

∂Tx

2. K(x∗) =−∂H
∂x (x∗)

3. ∂K
∂x (x∗)>−

∂ 2H
∂x2 (x∗)

Unfortunately, energy-balancing control is hampered the dissipation obstacle [2]. One

of the requirements for Proposition 1 is that the natural dissipation of the PHS must satisfies

R(x)K(x) = 0, and since R(x) is commonly expressed as a diagonal matrix the proposition

requires that there be no dissipation in the system [123]. In order to overcome this dissipa-

tion obstacle the control by interconnection method was developed [124].

CPSs are typically controlled by large-scale networked control systems, in which the

overall behavior of the system depends on the interactions between the control software,

communication network, and the physical dynamics [125]. When integrating the layers

of CPS, implementation effects such as network delay and packet losses prohibits the use

of traditional component-based design methods [126] [127]. Passivity-based control tech-

niques can design CPS that are robust to these network uncertainties [128] [129].

In control by interconnection, control systems are designed as PHS, which interconnect

to the plant PHS at designated control ports. This method treats the plant PHS as a black

box in which the controller only has information regarding the effort and flow variables of

the control port [130]. Given a plant PHS represented as:
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P :

 ẋ = [J(x)−R(x)]∂H
∂ x +G(x)u

y = GT(x)∂H
∂x

and a controller PHS represented as:

C :

 ẇ = [JC(w)−RC(w)]
∂HC
∂ w +GC(w)uC

yC = GT
C(w)

∂HC
∂w

A standard feedback interconnection between the plant and controller is shown in (3.21)

where e and eC are the external signals:

 u =−yC + e

uc = y+ eC

(3.21)

The closed loop system involving the plant and the controller PHS models, is also a

PHS and has the following form:

 ẋ

ẇ

 =


 J(x) −G(x)GT

C(w)

GC(w)GT(x) JC(w)

−
R(x) 0

0 RC(w)



 ∂H

∂x

∂HC
∂w


+

G(x) 0

0 GC(w)


 e

eC

 y

yC

 =

GT(x) 0

0 GT
Cw


 ∂H

∂x

∂HC
∂w


(3.22)

The energy of the closed-loop system satisfies Hcl(x) = H(x)+HC(x). From a PHS

point of view, there are three characterization of the behavior of systems based on energy-

balance of (3.18): interconnection structure, dissipation, and energy storage (energy shap-

ing) [131]. This results in passivity-based control manipulating these three degrees of free-

dom to influence the behavior of the closed-loop system. Additionally, port-based control
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methods can also be applied to PHS descriptions of hybrid systems [132].

The canonical coordinate transform method is used extensively in classical mechanics

for analyzing the dynamical equations of physical systems [133]. These transformations

preserve the Hamiltonian structure of the system and preserves important system properties

such as losslessness and passivity. Consider a generic PHS written in the form of (3.5). We

then consider a time-invariant coordinate transformation defined by the expression x=Φ(x)

and apply it to (3.5). The dynamical equations transform into the following form

ẋ = ∂Φ
∂x

T
ẋ

= ∂Φ
∂x

T
[J(x)−R(x)]∂H

∂x + ∂ Φ
∂x

T
G(x)u

= ∂Φ
∂x

T
[J(x)−R(x)]∂Φ

∂x
∂H(Φ−1(x))

∂x + ∂Φ
∂x

T
G(x)u

and the output equation transforms into the following form

y = GT(x)
∂Φ
∂x

∂H(Φ−1(x))
∂x

.

The new Hamiltonian function becomes H(Φ−1(x)). The matrices ∂Φ
∂ x

T
J(x)∂Φ

∂x and

∂Φ
∂x

T
R(x)∂Φ

∂ x are skew-symmetric and positive symmetric, respectively, which means that

the coordinate transformed system is also a PHS [134]. Generally, the coordinate transform

is used whenever two PHS are composed [135].

Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) is a

control design technique which regulates the behavior of the closed loop system by as-

signing a desired PHS; through solving a matching equation involving interconnection as-

signment, damping assignment, and energy shaping, IDA-PBC achieves the desired control

objective while maintaining passivity of the overall system [136]. The IDA-PBC method

can be expressed in the Dirac structure framework. Consider a PHS with Hamiltonian H

(corresponding to storage port S), resistive port R, and control port C, its kernel represen-

tation can be expressed as:
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D : {FS fS +ESeS +FR fR +EReR +FC fC +ECeC}. (3.23)

The power balancing equation can then be derived from (3.23):

−FSẋ(t)+ES
∂H
∂x

+FR fR(t)+EReR(t)+FC fC(t)+ECeC(t). (3.24)

Given a control input u= β (x), the control objective is such that the desired closed-loop

system’s implicit PHS form is given by:

−FSẋ(t)+ESd

∂Hd

∂x
+FRd fRd(t)+ERd eRd(t). (3.25)

Combining (3.24) and (3.25), eliminating the ẋ(t) term, and simplifying the result yields

the following matching equation:

ES
∂H
∂x

(x(t))−FR fR = ESd

∂Hd

∂x
(x(t))−FRd fRd .

The three degrees of freedom are indicated by ES→ ESd (interconnection assignment),

FR fR → FRd fRd (damping assignment), and ∂H
∂x →

∂ Hd
∂x (energy shaping). There are three

methods of solving the matching equation through the three degrees of freedom: Non-

Parameterized IDA, Algebraic IDA, and Interlaced Algebraic-Parameterized IDA [2].

3.3 Barrier Certificates for Safety Analysis of CPS

Definition 27. [68] Given a system ẋ= f (x) with states x taking values from the set X ⊂R,

a set of initial states X0 ⊂ X and a set of unsafe states Xu ⊂ X. The system is safe if there

exists a continuously differentiable function B such that:

1. B(x)≤ 0,∀x ∈ X0,

2. B(x)> 0,∀x ∈ Xu,
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3. ∂B
∂x (x) f (x)≤ 0,∀x ∈ X .

There is no trajectory x(t) of the system such that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0,

and x(t) ∈ X [137]. The function B(x) in Definition 27 is called a barrier certificate. Given

that f (x) is polynomial and the sets X , X0, and Xu are semi-algebraic, the barrier certificate

can be computed using a technique called sum of squares programming [138] [139].

Definition 28. [138] A barrier certificate is a sum of squares if there exist polynomials

B1(x), B2(x), . . ., Bm(x) such that B(x) = ∑m
i=1 f 2

i (x). Using semidefinite programming, the

sum of squares decomposition for B(x) can be calculated.

Extending from Definition 27, safety of hybrid systems can be formulated with barrier

certificates as follows:

Definition 29. [137] Given a hybrid system H = (X ,L,X0, I,F,D) and an unsafe set Xu.

Suppose there exists a collection of barrier certificates Bl(x) for l ∈ L, each of which is

differentiable with respect to its argument and satisfies:

1. Bl(x)≤ 0,∀x ∈ initial l,

2. Bl(x)> 0,∀x ∈ unsafe l,

3. ∂Bl
∂x (x) fl(x)≤ 0,∀x ∈ I(l),

4. Bl(x)≤ 0,∀x ∈ Guard(s,s′).

The safety of the hybrid system H is guaranteed as long as Definition 29 is valid [140].

These structure of these definitions is used in the safety analysis method presented in Chap-

ter 6.
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Chapter 4

Component-Based Modeling and Simulation Using Port-Hamiltonian Systems

The use of models as an initial step in the development of complex systems is prevalent

in all fields of science and engineering. A model is an abstraction of occurrences in the

physical world, and represents it through a set of concepts. In engineering, models pro-

vide a way of representing systems using a specific set of mathematical constructs. The

difference in abstraction between physical dynamics and computational elements poses a

significant challenge for the modeling of CPS [85]. The abstractions regarding computa-

tional and networking elements will need to be redefined in a way that merge the layers

of CPS [19]. The main contribution of this chapter is a domain-specific modeling lan-

guage (DSML) called Port-Hamiltonian Systems Modeling Language (PHSML); it is based

on port-Hamiltonian systems (PHS) and uses the principles of Model-Integrated Comput-

ing [141]. Both acausal and causal simulation using Modelica and Simulink, respectively,

is also discussed. This work has been presented in [142] and [143].

4.1 Port-Hamiltonian System Modeling Language

In order to accurately model the interactions of different components in the systems,

interfaces need to be well formulated [18]. The concept of a port is a result of interaction

between different elements and sub-models within a model. Port-based modeling has gar-

nered attention over the years since it captures the underlying physics of the system. For

physical systems, this interaction is depicted as an exchange of energy through the power

bond. A power bond represents a bilateral relationship between the power ports of two

interacting elements or sub-models. Each bond contains two power-conjugate variables

(called effort and flow) which relate to power by a product relationship shown in Defini-

tion 1.
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Port-based modeling of lump-parameter complex physical systems leads to a frame-

work of generalized bond graphs, which are different from traditional bond graphs in two

ways: use of symplectic gyrators and absence of causality. Conventional physical domains

usually have two types of storage elements associated with two types of energy (for ex-

ample, capacitors store electrical energy, while inductors store magnetic energy) [19]. In

generalized bond graphs, symplectic gyrators are attached to I-storage elements, which in-

verts the roles of effort and flow and allow I-storage elements to be treated like C-storage

elements [22]. The purpose of symplectic gyrators is to decompose the two types of energy

of physical domains to a unified type of energy. The lack of causality within generalized

bond graphs allow the preservation of the underlying physics of the model. In a general-

ized bond graph, storage, resistive, and source ports connect through a generalized junction

structure, which includes junctions, transformers, and gyrators [27].

A generalized bond graph can be summarized by it energy storing elements, resistive

elements, and power-conserving elements connected by bonds. Collectively, the power-

conserving elements form the Dirac structure, and connects all other non-power-conserving

elements in the model. This extends to the formulation of PHS, represented by figure 2.3,

where a set of ports (control, interaction, resistive, and storage) are interconnected through

a Dirac structure [2]. A PHS with a Hamiltonian function H, energy storage ports S, resis-

tive ports R, control ports C, interconnection ports I, and a Dirac structure D can be written

in a formal model in (3.3),

Energy-storage and resistive elements make up the internal ports of a PHS; control and

interaction elements make up the external ports. The internal ports and the interaction ports

make up the physical portion of CPS where the physical dynamics are captured through

(3.4); the control ports make up the cyber portion of CPS and describe the interaction

between a PHS and a controller; control software is developed to affect one of the control

port’s power conjugate variables in order to perform an action. The interaction through

control ports forms the fundamental concept of compositionality; a PHS controller connects

55



with a PHS plant, resulting in another PHS. The Hamiltonian function of the composed

system is the sum of the Hamiltonian functions of its components; the Dirac structure of

the composed system is determined by the Dirac structure of its components as well.

4.1.1 Syntax and Semantics

The PHSML is developed using Generic Modeling Environment (GME), based on the

model integrated computing tool suite developed at Institute for Software and Integrated

Systems at Vanderbilt University [144]. GME provides a meta-modeling environment to

create DSMLs, and allows for the construction of domain models through a collection of

objects and connectors defined for a specific domain. GME ensures that the domain specific

instance models comply with the specified meta-model. Within the meta-model there are

different concepts to represent an object. An object can either be an atom, which is the basic

indivisible object that cannot contain other objects; a connection, which can connect two

objects; or a model, which can contain other objects such as atoms, connections or models.

Hierarchical composition is supported through model elements. Within model elements

objects can be connected to each other based on the rules defined in the meta-model. Each

connection has a source object (denoted by src) and a destination object (denoted by dst).

PHSML encodes all modeling and connection rules specific for PHS. The model is

developed in GME as a PHSML model; a model translator, i.e. interpreter, processes the

structural information of the PHSML model and creates a PHS model characterized by

Dirac structures and constituent equations of ports. The top level hierarchy of PHSML is

called component assembly that consists of components, which serve as the objects, and

bonds, which serve as the connections. A component is defined as an object consisting

of a Dirac structure, a set of internal ports, and a set of external ports. PHSML defines

two types of bonds (i.e. connections): internal bonds connect different sub-objects within

a component, while external bonds connect external ports of different components. The

PHSML model provides a set of structural data for each object, which are enumerated as
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follows:

1. ID: The unique tag generated for each object in the PHSML model.

2. Name: The name of the object as given in the PHSML model.

3. Type: The type of the object.

4. Equation: The constituent equation of the object, defined by the user in the PHSML

model.

5. Ratio: The constant ratio value of the object.

6. Bond: Lists the unique ID’s of all bonds which are attached to the component.

4.1.2 Bonds and Components

The meta-model of PHSML is summarized in Figure 4.2. Bonds form the connection

semantics of the PHSML. Each bond in PHSML, shown in Figure 4.1, contains a pair of

power-conjugate variables, effort and flow, whose inner product yields power. Bonds are

used to connect components and objects together. Each component is instantiated as a

model, and contains a series of sub-components given by DiracStructure, InternalPort, and

ExternalPort.

4.1.2.1 Dirac Structure

The most important modeling element to each component is the Dirac structure, which

describes the power-conserving interconnection structure of each component. The Dirac

structure is a collection of four different types of modeling elements: Gyrator, Transformer,

Zero Junction, or One Junction. Gyrators and Transformers contain a Ratio attribute which

denotes the transformer or gyrator ratio. Zero Junctions and One Junctions denote either a

parallel or series interconnection between other elements.
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Figure 4.1: Meta-model of the connections in PHSML

4.1.2.2 Internal Ports

The two internal ports (which are also denoted as atoms) both have dynamics which re-

lates their power-conjugate variables through constituent equations. The equation attribute

allows the user to specify the constituent equations of the port with respect to the power

conjugate variables, effort and flow. A linear resistive port atom relates the power conju-

gate variables through an equation in the form of e = R f , where R is a constant; a linear

storage port atom relates the power conjugate variables through an equation in the form of

der(e) = S f , where S is a constant. Nonlinear resistive and storage ports do not contain a

formulaic expression, but still relate the effort and flow variables through a function.

4.1.2.3 External Ports

The two types of external ports are fundamentally similar. Control ports also contain the

equation attribute, because we classify PHS elements such as sources and sinks in control

ports. Through the Equation attribute, the constituent equations of sources and sinks can

be specified. Interaction ports allow for different components to connect to each other and
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Figure 4.2: The meta-model of PHSML

contain no additional attributes.

4.1.3 Constraints

The most important goal of PHSML is to ensure that models are valid PHS. Constraints

are implemented in the PHSML meta-model to ensure that certain interconnections be-

tween PHSML modeling elements, which will violate the underlying property of PHS, are

not allowed. There are two types of constraints: (a) directional connections and connec-

tions between modeling types are implemented as UML diagram shown in Figure 4.1 and

(b) a model transformation software component defines a set of rules, which require a spe-

cific number of connections for each object. A detailed listing of allowable connections

between elements is detailed as follows:

1. Junctions (includes both one and zero junctions): There are no constraints to the

number of bonds which connect to these objects. However, at least one bond must

have this junction object as destination and at least one bond must have this junction

object as source. Because of power conservation property of junctions, power has to

come into the junction and also has to leave.
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2. Transformers and Gyrators: There must be exactly two bonds connecting to this

object. One bond must have this object as destination and the other bond must have

this object as source.

3. Internal Ports (includes both resistive and storage ports): There must be exactly one

bond connection to this object. The bond can have this object as source or destination.

Power is generally dissipated or stored, which results in power generally flowing

into a resistive or storage port. However, cases can arise in which the storage port

or resistive port can deliver power. A discharging capacitor is a good example of a

storage port providing power; an effort source that is dependent on flow is an example

of a resistive port providing power. An Internal Port cannot be connected to another

Internal Port (Figure 4.1).

4. External Ports (includes both control and interaction ports): There must be one bond

connection to this object. The bond can have this object as either destination or

source. These ports denote boundary conditions either between components or with

the environment. External Ports can be connected to Internal Ports, but Internal Ports

cannot be connected to External Ports directly (Figure 4.1).

4.1.4 Interpreter

The interpreter of PHSML uses MATLAB functions to transform a PHS to an acausal

computational model by deriving the kernel representation of the Dirac structure. The GME

model provides a set of structural data for each object, which are enumerated as follows:

1. ID: The unique tag generated for each object in the model.

2. Name: The name of the object as given inside GME.

3. Type: The type of the object.

4. Equation: The constituent equation of the object, defined by the user inside GME.
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5. Ratio: Only applicable for either transformers or gyrators.

6. Bond: Lists the unique ID’s of all bonds which are attached to the component.

Derivation of the Dirac structure focuses on the power conserving elements in the PHS,

which consists of objects with “Type” of Zero, One, Transformer, or Gyrator. The inter-

preter sequentially combines all power-conserving elements to generate its kernel repre-

sentation equations. The main idea in the method is recognizing that there is a pattern to

the Dirac structure of every power conserving element. A transformer or a gyrator has only

one possible kernel representation due to its one bond in and one bond out nature.

−1 r

0 0


ei

eo

+

 0 0

−1 1
r


 fi

fo

= 0, (4.1)

−1 0

0 1
k


ei

eo

+

 0 k

−1 0


 fi

fo

= 0. (4.2)

The kernel representations of a transformer and a gyrator is described by (4.1) and (4.2),

respectively, where r is the transformer turning ratio and k is the gyrator ratio (the value

which depends on the structural data “Ratio”). A zero or one junction, on the other hand,

can have an infinite number of kernel representations due to its MIMO nature (multiple

bonds in, multiple bonds out). However, there is a pattern to the matrices; for a zero and

one junction with n bonds, their kernel representations are shown in (4.3) and (4.4):



1 1 0 · · · · · · 0

1 0 1 0 · · · 0

1 0 0 . . . · · · 0
...

...
... · · · . . . ...

1 0 0 · · · 0 1

0 0 0 · · · 0 0





e1

e2

e3

...

en−1

en


+
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f1

f2

f3

...

fn−1
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
= 0, (4.3)
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= 0. (4.4)

The algorithm of the interpreter constructs the kernel representation of every power-

conserving element inside the component using (4.1) − (4.4). Then it combines all indi-

vidual kernel representations together using equation substitution methods. A summary of

the algorithm is listed in Algorithm 1.

Algorithm 1 GBG2DS
-for all Components
- for all Power-conserving elements
- Find E and F based on pattern;

- while Interconnections left
- Substitute Dirac structure equations to form combined Dirac structure;

For all non-power-conserving elements in the PHS, constituent equations are denoted

by “Equation”. Compiling these equations with the Dirac structure derived by Algorithm 1

provides an acausal computational model of the PHS.

4.1.5 Challenges

The PHSML framework addresses four important challenges: heterogeneous domains,

composition, hybrid dynamics, and nonlinearities.

Heterogeneous Domains: The most important characteristic of PHS is that they are

domain neutral, with different domains interacting with each other through gyrators. A

symplectic gyrator is a special kind of gyrator whose gyrator ratio is fixed at 1; it is used to

invert the roles of the effort and the flow variables. In the PHS framework, symplectic gy-
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Figure 4.3: Interaction between two Dirac structures

rators are used to unify C and I storage elements into a single type of storage element [27].

The constituent equations of a gyrator indicates that it is power-conserving, and in the mod-

eling process we include gyrators in the Dirac structure. Using PHS, we can model both

the computational and physical domains. The two domains will interact through interac-

tion ports, where the effort and flow variables act as sensors and actuators. The interfacing

between the computational and physical domains allows for the modeling of complex CPS.

Composition: Composition of PHS is derived from the composition of Dirac struc-

tures, where it has been proven that the composition of two or more Dirac structures yield

another Dirac structure (see Section 2.1.2). Components are composed together through

a mutual interaction port; in each interaction four effort and flow variables are involved.

From Figure 4.3 the two Dirac structures, D1 and D2, interact through the interaction ports

PI1 and PI2. The four effort and flow variables interact through the following two equations

e1 = e2 and f1 = f2.

Hybrid Dynamics: The modeling of hybrid dynamics is influenced by hybrid bond

graphs, which are an extension of bond graphs but with an emphasis on switching be-

havior [47]. Hybrid Dynamics are implemented using switches and model switching and

discontinuous behavior. A switch is defined as a control port with two modes, and each

mode either forces the switch to act as a zero source of effort or a zero source of flow.

Using these switches do not violate the PHS formulation because switches are power neu-

tral; at least one of the power conjugate variables has to be zero at all times, which results

in zero power. Switches are implemented through junctions; which yields two types of
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Figure 4.4: Zero junction switch

Figure 4.5: One junction switch

switches, zero junction switch (Figure 4.4) and one junction switch (Figure 4.5). For a zero

junction switch, a zero effort indicates that the switch is off, as all efforts attached to the

zero junction become zero. For a one junction switch, a zero flow indicates that the switch

is off, as all flows attached to the one junction become zero.

Even though these switches do not affect the energy of the system, care must be exer-

cised when implementing them. A switch is an alternating source, which means that the

causality of that bond will change since it imposes either a zero flow or a zero effort onto

the system. When designing hybrid systems using these switches careful placement is re-

quired to avoid negatively affecting the causality of the system, which will create problems

in simulation by generating implicit equations.

Nonlinearities: PHSML is designed to handle nonlinear behavior. Nonlinearities oc-

cur in three forms: dissipative elements with nonlinear behavior, storage elements with

nonlinear behavior, and transformation elements with nonlinear behavior. Nonlinear dis-

sipative elements are treated similarly as linear ones, except that the constituent equations

are no longer invertible. In the nonlinear ports the relationship between effort and flow is

constrained as a function, which results in a fixed causality. Causality affects storage ports

to a lesser degree because they already have preferred causality.
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1. Generalized nonlinear resistor:

e = ΦR( f ).

2. Generalized nonlinear storage, where q is the generalized displacement:

e = ΦC(q),

q =
∫ t

t0 f dτ.

3. Generalized transformer, where k is a nonlinear function:

e1 = ke2,

f2 = k f1.

4. Generalized gyrator, where l is a nonlinear function:

e1 = l f2,

e2 = l f1.

4.2 Case Study: Engine Dynamometer Model

In this section we present an example which illustrates PHSML through a case study

of an engine-dynamometer (dyno) model. The engine-dynamometer (dyno) model is in-

spired by PHS models of physical systems presented in [145]. The model consists of

three interconnected components shown in Figure 4.6: engine, starter, and dynamometer.

The engine-dynamometer model is a physical system described by three interacting PHS

components. Control ports on each component describe the cyber portions which allow

controllers to interface with the model.

The engine component is modeled by a one junction and a transformer connecting a

throttle control port, interaction ports to the starter and dyno components, and a storage

port which is the inertia of the engine. The engine either delivers a positive amount of

65



Figure 4.6: Engine-dynamometer high level model

Figure 4.7: PHS model of the engine

calculated torque to the inertia load (when throttle is engaged), or it delivers a negative

amount of calculated torque (negative throttle indicates braking). The throttle controlled

torque map is described as a nonlinear transformer which links the throttle control port with

the one junction. A PHS model of the engine built using PHSML is presented in Figure 4.7;

variable names are labeled for bonds in order to describe the constituent equations. er and

fr are the power conjugate variables of the throttle control port; es and fs are the power

conjugate variables of the interaction port to the starter motor; e j and f j are the power

conjugate variables of the engine inertia; ed and fd are the power conjugate variables of the

interaction port to the dynamometer.

The nonlinearity of the engine component is caused by the nonlinear transformer which

models the throttle control port. The variables er, fr, er2, and fr2 are related by an inter-

polation mapping; the interpolation function uses a series of if-then-else statements, based

off of real torque map data from a Cummins Inc. engine [146]. The transformer ratio, T , is
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Figure 4.8: Torque map of the nonlinear transformer

a function of the engine speed; the mapping of fr2 (engine speed) to T is illustrated by the

torque map in Figure 4.8:

er2 = Ter

fr = T fr2

The inertia from the engine has the following constituent equation:

d
dt

e j =
f j

J

where J is the moment of inertia value.

Hybrid dynamics is central to the operation of the starter motor. Hybrid dynamics are

implemented as switch networks. Given that one of the constituent variables of a switch is

always equal to zero, a switch will never contribute any power to the system. A PHS model

of the starter motor is presented in figure 4.9. The amount of torque that the starter motor

provides is governed by a Boolean signal s. If s = 1 is true, the switch SW2 becomes active

and the switch SW1 becomes inactive; if s = 0 is true, the switch SW1 becomes active and

the switch SW2 becomes inactive. The two torque values are modeled as constant sources
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Figure 4.9: PHS model of the starter motor

of efforts e1 and e2. Their flow outputs are f1 and f2, respectively.

The hybrid constituent equation of SW1 is:

esw1 = 0 if s = 1

fsw1 = 0 if s = 0.

The hybrid constituent equation of SW2 is:

esw2 = 0 if s = 0

fsw2 = 0 if s = 1.

The dynamometer simulates road load to the engine and is a system without hybrid

dynamics or nonlinearities. It is modeled as a proportional-integral system which takes the

angular velocity of the engine as a measured signal and a step source as the set point signal.

The error signal is then calculated by subtracting the set point signal and measured signal.

The output of the PI controller is a simulated torque which goes back to the engine as a

load. A PHS model of the dynamometer is presented in Figure 4.10. eu and fu are the

power conjugate variables of the set point control port; eR and fR are the power conjugate

variables of the proportional controller; eI and fI are the power conjugate variables of the

integral controller.

The proportional component has the following constituent equation:
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Figure 4.10: PHS model of the dynamometer

eR = KR fR,

where KR is the proportional gain value. The integral component has the following con-

stituent equation:

eI = KI

t∫
t0

fIdτ,

where KI is the integrator gain value.

4.3 Component-Based Simulation using Port-Hamiltonian Systems

Component-based simulation uses either acausal computational models or causal com-

putational models. Acausal computational models are described by a set of differential

algebraic equations (DAE) which requires a differential algebraic system solver (DASSL);

the proposed work of the previous chapter intends to generate acausal computational mod-

els which simulates using a Modelica simulation environment. Causal computational mod-

els are described by a set of ordinary differential equations (ODE) which can be solved

using an ODE solver. In this chapter we discuss the generation of causal computational

models through a method called Compositional Causality Analysis (CCA), which are then

simulated using Simulink.

The model interpreter generates the Dirac structure equations and the constituent equa-

tions of the power ports from a PHSML model. In particular, the Dirac structure is gener-

ated as a kernel representation, defined by the E and F matrices. The kernel representation
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is an acausal model, and one of the advantages of acausal models is independent analysis;

the kernel representation of each component can be derived without knowledge of its neigh-

boring components or the global model. Equations defined inside the Modelica language

have no inherent causality, and can model the kernel representation of Dirac structures. The

transition from PHS to Modelica is intuitive because both frameworks define interactions

in terms of power ports.

4.3.1 Acausal Simulation of Port-Hamiltonian Systems

Derivation of the Dirac structure focuses on the power conserving elements in the PHS,

which consists of objects with Type of Zero, One, Transformer, or Gyrator. The method

sequentially combines all power-conserving elements to generate its kernel representation

equations by recognizing that there is a pattern to the Dirac structure of every power con-

serving element. A transformer or a gyrator has only one possible kernel representation

due to its SISO (one bond in, one bond out) nature.

The kernel representations of a transformer and a gyrator is described by (4.1) and (4.2),

respectively, where r is the transformer turning ratio and k is the gyrator ratio. A zero or

one junction, on the other hand, can have an infinite number of kernel representations due

to its MIMO nature (multiple bonds in, multiple bonds out). However, there is a pattern

to the matrices; for a zero and one junction with n bonds, their kernel representations are

shown in (4.3) and (4.4):

4.3.1.1 Implementation of Acausal Simulation in Modelica

The model interpreter reads structural data from a PHSML model. A model transfor-

mation method is then applied to the data which transforms a PHS into an acausal compu-

tational model (in the form of a MATLAB m-script). We developed an Modelica algorithm

based on Algorithm 1 which constructs the kernel representation of every power-conserving

element inside the component using (4.1) − (4.4). The algorithm then combines all indi-
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vidual kernel representations together using equation substitution methods.

For all non-power-conserving elements in the PHS, constituent equations are denoted

by the “Equation” parameter of the data structure. Compiling these equations with the

Dirac structure derived by Algorithm 1 provides an acausal computational model. The

hierarchy section of the Modelica code contains system parameters and power conjugate

variables. The equation section of the Modelica code contains the Dirac structure, written

as a matrix equation, and the set of constituent equations for each power port. The process

of writing the Modelica code is detailed by Algorithm 2.

Algorithm 2 Generalized Bond Graphs to Modelica
- Model Hierarchy Section;
- Write Dirac structure matrices;
-for all Power ports on the Dirac structure
- Write indexed effort and flow variables;
- Model Equation Section;
-for all Power ports on the Dirac structure
- Write Equation attribute;
- end model;

4.3.1.2 Acausal Simulation of the Engine-Dynamometer

Applying Algorithm 1 to the engine-dynamometer example, we obtain the kernel rep-

resentation of the Dirac structure of the engine (4.5), starter motor (4.6), and dynamometer

(4.7):


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= 0, (4.5)
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Figure 4.11: Modelica simulation results
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The .mo file that is generated from Algorithm 2 can be used to simulate the PHS using

a Modelica simulation environment. We simulate the engine-dyno model with parameters

of J = 20, KR = 200, KI = 100. Using control inputs of fu = 20, e1 = 600, e2 = 0, and er (8

for the first second and 2 for the rest), the simulation results of a system output fr plotted

with 3 seconds is shown in Figure 4.11.
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4.3.2 Causal Simulation of Port-Hamiltonian Systems

Simulation of causal models necessitates the assignment of causality to the acausal

models. Causality assignment on the PHS requires causal strokes to be assigned to every

bond in the model. A PHS with no causality conflicts can be transformed into state space

equations and block diagrams for simulation [20]. We developed a method which exploits

the Dirac structure of the PHS to generate component block diagram subsystems, which

can connect together to form the full system. Using the kernel representation of the Dirac

structure, a second model transformation method called Compositional Causality Analysis

derives its respective hybrid-input-output representations.

We have seen that acausal simulation is generated from the kernel representations of

each component, which are derived independently of each other. Causal simulation of a

component, on the other hand, requires knowledge of its interacting neighbor components

in order to determine the causality of each interaction port. This difference makes causal

computational models of components more difficult to generate as compared to acausal

computational models. However, the causal method does have one significant advantage

over the acausal method: identification of causality conflicts. Any conflicts in causality

will result in an under-ranked F(x) matrix, which will result in the inability to derive the

hybrid-input-output representation. The acausal method, on the other hand, has no way of

identifying causal conflicts; kernel representations of the Dirac structure do not give any

indication of causality conflicts.

In the method presented in this section, we simulate systems and components using the

hybrid-input-output representation of the Dirac structure; one of the key properties of that

representation is that the J(x) matrix is skew symmetric [27], which means that the entire

diagonal line is zeros. We also constrained the modeling to only allow integral causality

for storage elements. For these reasons this simulation technique does not generate any

algebraic loops.

Even though the case study applied the methods to a linear system, the methods can also
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be applied to nonlinear systems. In a physical systems sometime there can be nonlinear ele-

ments for which an inversion of its constitutive equations is difficult or even impossible. In

order to address this problem of nonlinearity is to define various types of resistive elements

(linear vs. nonlinear) and setting causality constraints, or lack of causality constraints,

appropriately.

4.3.2.1 Compositional Causality Analysis

Compositional Causality Analysis was motivated by the idea of hierarchy: a (global)

PHS decomposed into interacting components, where each component is also a PHS.

Causality assignment on the PHS requires causal strokes to be assigned to every bond

in the model. A PHS with no causal conflicts can be transformed into state space equations

and block diagrams for simulation [20]. The causality of interaction bonds can be easily

determined when looking at the global model; looking at a local model or component, there

is no way of determining the causality of an interaction bond; without explicit knowledge

of neighboring components, its causality is indifferent.

A system can be described by its components and their interactions with each other. We

exploit the Dirac structure of the PHS, in which components generate component block di-

agram subsystems, which can connect together to form the full system. Due to the compo-

sitional nature of the Dirac structure, composition of components can also be characterized

by a Dirac structure. The PHSML interpreter provides the constituent equations and the

kernel representation of the Dirac structure, which Compositional Causality Analysis uses

to derive its respective hybrid-input-output representations.

The hybrid-input-output representation of a PHS, which is a causal computational model,

arises from causality assignment of the kernel representation. In causal analysis, there can

be no causal conflict, and the causality of every bond must be determined. We developed

a method based on elementary column operations of E(x) and F(x) in order obtain the

hybrid-input-output representation. We illustrate the elementary column operations with a
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Figure 4.12: Flow chart of the simulation methodology

simple example. Consider the following kernel representation of a system with only two

power ports:

[
E1 E2

]e1

e2

+

[
F1 F2

] f1

f2

= 0. (4.8)

Mathematically, it is equivalent to the following representation:

[
E1 F2

]e1

f2

+

[
F1 E2

] f1

e2

= 0. (4.9)

The difference between (4.8) and (4.9) lies in the fact that the positions of E2 and F2

are interchanged. This elementary column operation interchanges a column in E(x) with

a corresponding column in F(x). From bond graph theory we know that source elements

have fixed causality; sources of effort have effort-out-flow-in causality, while sources of

flow have flow-out-effort-in causality. As a result, the Dirac structure must solve the flow

of a source of effort given its effort (backwards for sources of flow). In order to do so we

need to apply the elementary column operation to all source of flow power ports.

Although storage elements have preferred causality, we still want to fix their causality to

integral causality, due to the issues that arise with implementing differentiators. As a result

of this constraint, we do not need to apply the elementary column operation to storage

power ports. The difficult part of this process lies in determining column swap for linear
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resistive and interaction power ports. Linear resistive power ports can be either effort-out-

flow-in or effort-in-flow-out; there is no a priori way of determining how each resistor will

behave. Similarly, there are two possible causality configurations for interaction power

ports. In order to determine the causality of an interaction power port on a component, we

must examine the component along with all neighboring components.

Consider the two Dirac structures in Figure 4.3, D1 and D2, connected through an

interaction. From a structural perspective, if the interaction power port of D1 is effort-

out-flow-in, the interaction power port of D2 has to be flow-out-effort-in, and vice versa.

Therefore, we can declare that for two Dirac structures that share the same interaction, the

causality of their interaction ports must be opposite.

Similar to resistive power ports, there are two possible causality configurations for in-

teraction power ports. In order to determine the causality of an interaction power port on

a component, we must examine the component along with all neighboring components.

In this section we propose an interaction port propagation assignment (IPPA) algorithm

which iterates through each component sequentially and determines the causality of every

interaction power port.

4.3.2.2 Implementation of Causal Simulation

The implementation of causal simulation takes advantage of the indifferent causality

nature of linear resistors. Because of its indifferent causality, a linear resistor can never be

the source of a causal conflict, which allows for the analysis of each component with its

resistive columns intentionally left out. With linear resistive power ports ignored for the

time being, the only power ports with questionable causality are interaction power ports.

We propose an IPPA algorithm which iterates through each component sequentially and

determines the causality of every interaction power port. Our algorithm takes advantage

of the indifferent causality nature of linear resistors. Because of its indifferent causality,

a resistor can never be the source of a causal conflict, which allows for the analysis of
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each component with its resistive columns intentionally left out. With resistive power ports

ignored for the time being, the only power ports with questionable causality are interaction

power ports.

Similar to assigning causal strokes to a PHS model, we select a component with the

least number of interaction ports and most number of constraint ports (source and storage)

with which to begin propagation of interaction port assignments. We analyze the ranks

of the F(x) matrix of the starting component and perform combinations of elementary

column operations until it has full rank; additionally, do the same thing for the neighboring

components. The process gets repeated until every interaction port is assigned. A summary

of the algorithm is listed in Algorithm 3:

Algorithm 3 IPPA
-for all Components
- Swap all source of flow columns;
- Remove all resistive columns;

- while There are still unassigned interactions
- Find component with greatest interaction to constraint ratio;
- Propagate interaction assignment;

- Put back all resistive columns;

Now that all interaction ports are assigned, we must determine the causality of every

linear resistive power port. In order to do so we analyze the rank of F(x) of individual

components; we then apply the elementary column operation to the appropriate resistive

power ports. Note that for components with multiple resistors, there can be more than one

unique solution of column swapped resistive ports, but any of the solutions will work in

simulation. A summary is listed in Algorithm 4:

Algorithm 4 Kernel2Hybrid
-for all Components
- Determine which resistive columns to interchange;
- Swap said resistive columns to obtain full ranked F ;
- J←−F−1E;
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In Simulink, every block has a clearly defined input-output relationship. With each

component’s hybrid-input-output representation, we can derive their corresponding block

diagrams and simulate them inside Simulink. The interpreter uses Simulink to create the

block diagrams, where each component is modeled with the subsystem block. Inside each

component subsystem, there is another subsystem (the Dirac structure of the component)

along with its attached ports; the Dirac structure subsystem consists of a series of sums and

gains, depicting the dynamics of the Dirac structure equations. Power ports are modeled as

follows:

1. Source of effort: effort modeled as a step input (i.e. a constant voltage source); flow

sunk to a scope.

2. Source of flow: flow modeled as a step input (i.e. a constant current source); effort

sunk to a scope.

3. Storage port: flow goes into an integrator and a gain (inverse of the storage value) to

obtain effort.

4. Resistive port: effort and flow have a linear relationship, which can be represented

by a gain, whose value depends on the orientation of the resistive element.

5. Interaction port: effort and flow modeled as Inport and Outport.

Algorithm 5 creates block diagrams using the hybrid-input-output representation of the

Dirac structure and the constituent equations of power ports.

4.3.2.3 Causal Simulation of Engine-Dynamometer

Applying Algorithm 4 to the engine-dynamometer example, we obtain the hybrid input-

output representation of the Dirac structure of the engine (4.10):
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Algorithm 5 DS2BD
-for all Components
- for all Power ports
- if Non-interaction port
- Model according to rules;
- if Interaction port
- Model as Simulink inports/outports;

-Connect all components;



fr

fs

f j

fd


=



0 0 −T 0

0 0 −1 0

T 1 0 1

0 0 −1 0





er

es

e j

ed


, (4.10)

Integrating the switch signal s into the Dirac structure results in the following hybrid

input-output representation of the starter motor. The J(x) matrix in (4.11) is modulated by

the Boolean signal s, which shows the hybrid dynamics of the starter motor system.


es

f1

f2

=


0 s 1− s

−s 0 0

s−1 0 0




fs

e1

e2

 . (4.11)

Finally, the hybrid input-output representation for the dynamometer is shown in (4.12):



eu

ed

fR

fI


=



0 0 1 1

0 0 1 1

−1 −1 0 0

−1 −1 0 0





fu

fd

eR

eI


. (4.12)

Simulating the Simulink model of the engine-dyno with the same control inputs and

parameters, we can view the results of the system output fr plotted with 3 seconds shown
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Figure 4.13: Simulink simulation results

in Figure 4.13.

4.4 Summary

Using concepts in Model Integrated Computing, we developed PHSML, a domain spe-

cific modeling language for compositional modeling using PHS. By defining constraints

within GME, we are able to enforce interconnection rules which satisfies the theory of

PHS, thus guaranteeing that the resulting models retain certain properties such as passivity.

We have implemented an interpreter which exports the structural data of the model into a

MATLAB script. The MATLAB functions that we designed read these scripts and generate

the Dirac structure, constituent equations, and Hamiltonian function of each component.

We present a case study of an engine-dynamometer model, which is built using PHSML.

The model contains nonlinearities in the engine component and hybrid dynamics in the

starter motor component. We developed a component-based method of simulating systems

built using PHSML by deriving acausal models of computation, in which the constituent

equations of the acausal kernel representation is derived from the model; Modelica code

is generated from the equations and simulated using Dymola’s differential algebraic equa-

tions solver. We extended the component-based method of simulating systems by deriving

causal models of computation, in which the acausal kernel representation is converted into
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the causal hybrid input-output representation, then instantiated as block diagrams and sim-

ulated using Simulink’s ordinary differential equations solver.
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Chapter 5

Compositional Model-Based Control Design Using Port-Hamiltonian Systems

Heterogeneous domains create challenges for the composition and integration of con-

trollers with the physical system. Many methods of integration are based on the ad hoc idea

of “making it work” and though these methods have worked well in the past, complexities

of modern automotive systems have made these methods implausible. Problems from the

integration of components are often discovered late in the development cycle, leading to

costly ramifications of the designs. As modern CPS expand in complexity, a modeling

framework is needed to effectively generate reliable models which are compositional and

have the ability to handle complex interactions. An autonomous vehicle is an example

of a complex cyber-physical system (CPS) containing physical dynamics and controllers

controlling the speed and steering of the vehicle [3]. A speed system controls the speed

of the vehicle and is a hybrid system operating in two modes, throttle control mode where

the throttle angle is determined and brake control mode where the brake pressure is deter-

mined. A steering system controls the angle of the steering wheel in order to maintain a

desired position on the road.

The main contribution of this chapter is a passive control design method for the model-

based design of CPS which shows that by designing controllers as port-Hamiltonian sys-

tems (PHS), the interactions between the computational and physical domains occur through

power ports, allowing conditions for passivity to be formalized. Through PHS, we unify

the formulation of the computational and physical domain by emphasizing the idea of pow-

er/energy flow. The methodology begins with the physical system which is modeled as a

PHS. Passivity-based control methods are used to design the controllers which are also

modeled as PHS [147]. We present a case study where the model-based design methodol-

ogy is applied to an automotive control system. The physical dynamics of a vehicle system

82



is decomposed into its longitudinal and lateral dynamics interacting through a Dirac struc-

ture. We then design a speed and steering control system that interact with each other to

achieve autonomous driving. This work has been presented in [148] and [149].

5.1 Model-Based Design Process

Model-based design of CPS is an active research area where a large amount of work is

being done to address the various challenges caused by the heterogeneity of the different

layers of CPS [3]. We created a tool-chain to integrate the components of control design

from MATLAB/Simulink with the aspects of software deployment such as scheduling, dis-

cretization, and quantization with a primary application to automotive control systems [8].

The tool-chain is designed using an embedded software design environment called Embed-

ded Systems Modeling Language (ESMoL) [150] which enables a software development

process unifying the control design stage of development with code generation and de-

ployment. The tool-chain is evaluated over a hardware-in-the-loop experimental platform

over a time-triggered communication network which guarantees that the whole process is

reliable, predictable, and robust to disturbances [151].

The first step of the model-based design tool-chain is designing and modeling the con-

troller for a particular function in MATLAB/Simulink and using simulations to test and

verify the correctness of the system. The methodology we developed in this paper focuses

on this step of the model-based design process by modeling both the controller and plant

as PHS, and using passivity-based design methods to ensure correct behavior of the overall

system. PHS provide an effective way of characterizing the interactions presented in the

CPS and is also able to model nonlinearities and hybrid dynamics. The resulting control

design model from this approach can then be imported into ESMoL and used for subse-

quent phases of the model-based design process. The remaining design steps consist of

importing the control designs into ESMoL, specifying the logical software architecture,

defining the hardware platform, deploying the model, specifying the timing behavior of the
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Figure 5.1: Diagram of the processes and artifacts

system, flattening the model for analysis, scheduling the tasks, and implementing on the

platform for testing [8].

Figure 5.1 shows a diagram of the flow of processes of the model-based design process

and the corresponding flow of models/artifacts. The left branch of each diagram focuses on

design using models, while the right branch of each diagram focuses on the implementation

on a HIL simulation platform. There are several dependencies between the left and right

branches of the processes and models/artifacts. For example, schedulability analysis may

impose constraints on the sampling rate that affect the discretization of the controller and

its stability analysis. Additionally, the model and software artifact generated from each

step of the process must be analyzed in order to validate their correctness. The rest of the
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Figure 5.2: Free-body diagram of the vehicle dynamics

chapter is organized based on the flow of Figure 5.1.

5.2 Physical System Modeling

The objective of physical system modeling is to represent the free-body diagram of a

physical system as a PHS model implemented in Simulink. The Simulink model is then

used for control design. This necessitates the use of PHSML (developed in Chapter 4)

which contains the rules and constraints of PHS. In this chapter we demonstrate the model-

based design methodology using an automotive system as an example. Figure 5.2 shows

a free-body diagram of the vehicle dynamics. The vehicle is front-wheel drive, resulting

in the input forces from throttle and brake being applied to the front wheels shown in the

diagram.

The longitudinal input force from the throttle, Ta = Caθa, is a function of the throttle

valve angle θa and the experimental throttle constant Ca. The longitudinal input force from

the brakes, Tb =CbPb, is a function of the braking pressure Pb and the experimental braking

constant Cb. The lateral input force from the steering, Tl = 2C f δ , is a function of the steer-

ing angle δ and the cornering stiffness of the front wheels C f . The longitudinal velocity,

lateral velocity, and yaw rate, are represented by Vx, Vy, and r, respectively. Interactions

between the longitudinal and lateral dynamics can be derived by analysis of the free-body

diagram [79].

A PHS representation of the longitudinal dynamics, the lateral dynamics, and their
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Figure 5.3: PHS representation of the vehicle dynamics
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interactions is shown in Figure 5.3. The vehicle dynamics model is decomposed into a lon-

gitudinal dynamics component, a lateral dynamics component, and an interaction structure.

The longitudinal dynamics contain two control ports (Ta,y1) and (Tb,y2) and an interaction

port (dx,zx). The state variables are the longitudinal momentum px and the longitudinal

displacement qx. The outputs of the control ports y1 and y2 are Vx and −Vx, respectively.

The x-component of the lateral force affecting longitudinal motion is represented by dx and

its power-conjugate is represented by zx. The lateral dynamics contain a control port (Tl,yl)

and an interaction port (dl,zl). The state variables are ql =

[
qy qr

]T
and pl =

[
py pr

]T
,

where py is the lateral momentum, pr is the angular momentum, qy is the lateral displace-

ment, and qr is the angular displacement. The output of the control port yl is Vy + l f r. The

y-component of the longitudinal force applied to the center of mass is represented by dl

and its power-conjugate is represented by zl .

5.2.1 Vehicle Longitudinal Dynamics

The longitudinal dynamics is a nonlinear system where the vehicle longitudinal veloc-

ity, Vx, is affected by the acceleration and deceleration force Ta and Tb. The longitudinal

dynamics has the following Hamiltonian function:

Hx(qx, px) =
1

2m
p2

x +Ux(qx),

where m represents the mass of the vehicle and Ux(qx) represents the potential energy. The

longitudinal dynamics is modeled in the form of (3.5):



q̇x

ṗx

 =

 0 1

−1 −Rx


∂Hx

∂ qx

∂Hx
∂ px

+

 0

Gx

ux +

0

1

dx

yx =

[
0 GT

x

][
∂Hx
∂qx

∂Hx
∂ px

]T
zx =

[
0 1

][
∂ Hx
∂qx

∂ Hx
∂ px

]T
,

(5.1)
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where ux =

[
Ta Tb

]T
, Gx =

[
1 −1

]
, Rx = am+bpx +

cm2

px
, a represents the tire rolling

friction constant, b represents the air resistance constant, and c represents the static friction

force.

5.2.2 Vehicle Lateral Dynamics

The lateral dynamics is a nonlinear system where the sum of the vehicle lateral velocity

and modified vehicle yaw rate, Vy + l f r, is affected by the lateral force Tl . The lateral

dynamics has the following Hamiltonian function:

Hl(qy,qr, py, pr) =
1

2m
p2

y +
1
2I

p2
r +Ul(qy,qr),

where I represents the moment of inertia of the vehicle and Ul(qy,qr) represents the poten-

tial energy. The lateral dynamics is modeled in the form of (3.5):



q̇l

ṗl

 =

 0 E

−E −Rl


∂Hl

∂ql

∂Hl
∂ pl

+

 0

Gl

Tl +

 0

Kl

dl

yl =

[
0 GT

l

][
∂Hl
∂ql

∂Hl
∂ pl

]T
zl =

[
0 KT

l

][
∂Hl
∂ql

∂Hl
∂ pl

]T
,

(5.2)

Rl =

W1
Vx

W2
Vx

W2
Vx

W3
Vx

 ,

where E is the identity matrix, Gl =

[
1 l f

]T
and Kl =

[
1 0

]T
. The parameter constants

of Rl are W1 = 2C f + 2Cr, W2 = 2C f l f − 2Crlr, and W3 = 2C f l2
f + 2Crl2

r , where Cr is the

cornering stiffness of the rear wheels.
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5.2.3 Vehicle Interaction Dynamics

Composition of the longitudinal and lateral dynamics through the interaction structure

results in a nonlinear Dirac structure for the composed dynamics. The interaction between

the longitudinal and lateral dynamics is a mapping of velocity to force, which indicates

a gyrator relationship. The gyrator ratio must have units of kg/s which is represented by

multiplying the mass of the vehicle with the yaw rate. The interaction structure is modeled

as a Dirac structure modulated by the angular momentum pr:

dx

dl

=

 0 −mpr
I

−mpr
I 0


zx

zl

 . (5.3)

The Hamiltonian function of the composed longitudinal and lateral dynamics is H(q, p)=

Hx +Hl . Composition of (5.1) and (5.2) through (5.3) results in the following nonlinear

PHS:


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(5.4)

R =


Rx

mpr
I 0

mpr
I

mW1
px

mW2
px

0 mW2
px

mW3
px

 ,G =

Gx 0

0 Gl

 ,

where q =

[
qx ql

]T
, p =

[
px pl

]T
, u =

[
ux Tl

]T
, and y =

[
yx yl

]T
. Interactions

between the longitudinal and lateral dynamics are captured in R.
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5.2.4 Model Validation

Validation of the analytical vehicle dynamics model is important for subsequent steps

of the model-based design methodology. We use the CarSim S-function of a mid-size sedan

for the HIL platform as the actual model [42]. Passivity indexes allow a way to characterize

a system by determining its excess or shortage of passivity [112]. By selecting parameters

so that the passivity indexes of the analytical models are similar to that of the CarSim

model, we can conclude that the analytical models are reasonable approximations of the

actual vehicle dynamics. The CarSim model has inherent bounds on its inputs [42]. The

throttle angle valve (θ f ) has a lower bound of 0 and an upper bound of 1.5. The brake

pressure (Pb) has a lower bound of 0 and upper bound of 10. The steering angle (δ ) has a

lower bound of −480 and an upper bound of 480 [42]. Using these CarSim variable bound

values we mathematically determine that Ta has a lower bound of 0 N and an upper bound

of 3104 N, Tb has a lower bound of 0 N and an upper bound of 3715 N, and Tl has a lower

bound of −1200 N and an upper bound of 1200 N.

Table 5.1: Table of vehicle parameter values

a b c Cr lr C f l f
0.1 0.006 10 200 1.4 300 1.4

We experimentally selected values for the vehicle model (Table 5.1) so that the pas-

sivity indexes of the analytical model closely match that of the CarSim model by running

both models through twenty scenarios and optimizing the passivity index values using the

method in [152]. The CarSim model gives the mass (m = 1650) and the inertia (I = 3234).

Using the techniques demonstrated in [153], we determine that the passivity indexes of the

CarSim model (νc, ρc) are (181, 0.6). We determined that the passivity indexes of the an-

alytical model (νa, ρa) are (177, 0.6), indicating that the analytical model is a reasonable

approximation of the CarSim model.
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5.3 Continuous-Time Control Design

A control system is designed to regulate the behavior of other systems. Given the model

of a physical system implemented as a PHS, we can design controllers which enable the

closed-loop system to behave correctly. Our objective is to design controllers modeled

as PHS which interface with the physical system through designated power ports, thereby

regulating the behavior of the closed-loop system. Continuous-time control design is mid-

way between physical system modeling and discretization within the overall model-based

design process. We use passivity analysis in order to ensure that the closed-loop system re-

mains stable, minimum-phased, and have a low relative degree [154]. The Simulink model

generated from the controller PHS is used as the initial control design for the HIL platform.

A high level system model of the vehicle dynamics interacting with the controllers

(consisting of a speed control and steering control) is shown in Figure 5.4. The controllers

are implemented as PHS, and they interact with the vehicle dynamics through the power

ports of Ta, Tb, and Tl , which were previously defined in the beginning of Section 5.2.

Transformation of PHS into Simulink is a relatively simple procedure because the PHS

equations are written in a format similar to state-space representation. State variables and

subsequent computations are linked together through integrators and adders.

The objective of the controllers is to maintain a desired speed Vd and lateral displace-

ment qd . The controller model consists of a speed control component, a steering control

component, and an interaction structure. The speed control shares the two control ports

with the longitudinal dynamics and contains two interaction ports (da1,za1) and (da2,za2).

Its state variables xa =

[
xat xab

]T
are derived using the desired speed, where xat =

∫ t
t0(Vx−

Vd)dτ and xab =
∫ t

t0(Vd −Vx)dτ . The steering control shares the control port with the lat-

eral dynamics and contains two interaction ports (db1,zb1) and (db2,zb2). Its state variable

xb = qy−qd is derived using the desired lateral displacement.
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Figure 5.4: PHS representation of the controllers interacting with vehicle dynamics

5.3.1 Speed Control

The control objective of the speed control system is to prevent the host car from col-

liding into the lead car by maintaining a safe distance between the vehicles and a desired

speed. For simplicity we consider the case shown in Figure 5.5 in which the vehicles are

driving on a straight road, which allows us to disregard the lateral dynamics. We design the

speed control to have the following Hamiltonian function:

Ha(xa) =
1
2
(stktix2

at + sbkbix2
ab),
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Figure 5.5: Lead vehicle and host vehicle on a straight road

where kti and kbi are the gains of the Hamiltonian. The discrete variables s = (st ,sb) ∈

{0,1} are used to model the hybrid dynamics of throttling and braking. st is the switch

associated with the throttle control and similarly, sb is the switch associated with the brake

control. The switching dynamics are defined in (5.5), where h+ and h− are hysteresis

constants introduced to prevent the system from rapidly alternating between accelerating

and decelerating, and Xr and Xd are the relative distance between the two vehicles and the

desired distance, respectively:

 (st ,sb) = (1,0) for Vd− y1 ≥ 0,Xr ≥ h+Xd,

(st ,sb) = (0,1) for Vd− y1 < 0,Xr < h−Xd.
(5.5)

We design the speed control as an input-state-output PHS with direct-feed-through [89]:



ẋ = [J(x)−R(x)]∂H
∂x +G(x)u+K1(x)d1

y = GT(x)∂H
∂x +[M(x)+S(x)]u+K2(x)d2

z =

K1(x)T 0

0 K2(x)T


∂H

∂x

u

 ,

(5.6)

where M(x) ∈ Rm×m is a skew symmetric interconnection matrix and S(x) ∈ Rm×m is a

symmetric positive-semi-definite damping matrix. We design the speed control in the form

of (5.6) because the feed-through term helps to ensure zero steady-state error [2]:
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

ẋa =−Ra
∂Ha
∂xa

+Gayx +Ka1da1

ux = GT
a

∂Ha
∂ xa

+Sayx +Ka2da2za1

za2

 =

KT
a1 0

0 KT
a2


∂Ha

∂xa

yx

 ,

(5.7)

where Ka1 =

[
1 0

]T
and Ka2 =

[
1 0

]T
. The parameter matrices are denoted as:

Ra =

stkt 0

0 sbkb

 ,Ga =

stP 0

0 sb

 ,

Sa =

stktd 0

0 sbkbd

 ,
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Figure 5.6: Nonlinear function P

where kt and ktd are throttle control gains. kb and kbd are brake control gains. P is derived

from the inverse engine map for the vehicle and is a mapping of the ratio of the acceleration

force to Vx (Figure 5.6) [8].
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Figure 5.7: Diagram of lead vehicle and host vehicle on a curved road

5.3.2 Steering Control

In this section we consider the control objectives of a vehicle with both speed and

steering control. In addition to maintaining a safe distance between it and the lead vehicle,

the host car must also maintain a reasonable lateral acceleration as to not spin off the

road (see Figure 5.7). This is a result of interactions between the lateral and longitudinal

dynamics, characterized in (5.3). We consider the case shown in Figure 5.7 in which the

lead vehicle and host vehicle are driving on a curved road. We design the steering control

to have the following Hamiltonian function:

Hb(xb) =
1
2

ksix2
b,

where ksi is the gain of the Hamiltonian. We design the steering control in the form of (5.6):



ẋb = yl +db1

Tl = ∂Hb
∂xb

+ ksdyl +db2zb1

zb2

 =

1 0

0 1


∂Hb

∂xb

yl

 ,

(5.8)
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where ksd is the steering control gain.

5.3.3 Integrated Speed and Steering Control

It can be seen from (5.4) that the inputs to the longitudinal dynamics (Ta and Tb) affect

the lateral dynamics. Similarly, the input to the lateral dynamics (Tl) affects the longitudinal

dynamics. This can create problems such that at high speeds, actions by the speed control

may interfere with the objective of the steering control. In order to alleviate this problem,

we introduce an interaction structure so that the state variables and outputs of the speed

control are affected by the state variable of the steering control, and vice versa. Similar to

(5.3), the interaction structure of the control system is represented with the following Dirac

structure:



da1

da2

db1

db2


=



0 0 Jc 0

0 0 0 Mc

−JTc 0 0 0

0 −MT
c 0 0





za1

za2

zb1

zb2


. (5.9)

The parameters Jc and Mc define how the speed control and the steering control interact.

The Hamiltonian function of the composed control system is denoted as Hc = Ha +Hb.

Composition of (5.7) and (5.8) through (5.9) results in the following PHS representation:



ẋ =

−Ra Js

−JTs 0

 ∂Hc
∂x +

Ga 0

0 1

y

u =

GT
a 0

0 1

 ∂ Hc
∂x +

 Sa Ms

−MT
s ksd

y,

(5.10)

where Js =

[
Jc 0

]T
, Ms =

[
Mc 0

]T
, and x =

[
xat xab xb

]T
. The desired velocity Vd

and the desired displacement qd are included in the state variables x. Inclusion of Jc and Mc
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in (5.10) is a result of the interaction between the lateral and longitudinal dynamics in the

vehicle model. Figure 5.8 shows the implementation of the continuous-time control design

in Simulink.

Figure 5.8: Simulink block diagram of the continuous-time control design

5.4 Passivity Analysis

Passivity is commonly defined in the state-space approach, where the energy stored in

the system is related to the external energy coming into the system [154]. Passivity pro-

vides a sufficient condition for the stability of a system; a passive system, when unforced,

is Lyapunov stable. In the case that the Hamiltonian function used is positive semi-definite,

additional conditions on zero-state detectability is needed to ensure that the passive system

remains stable. In addition to stability, passive systems also contain phase properties; pas-

sive systems have minimum-phase and possess a low relative degree [53]. Regardless of

the representation, Dirac structures establish the power balancing equation which is funda-

mental to PHS.

H in (3.1) denotes the Hamiltonian function of the PHS. The Hamiltonian function

represents the energy stored in the system. The flows of the energy storage are given by

the rate x′ of the energy state variables x; the efforts are given by the co-energy variables

∂H
∂x [86]. eR and fR denote the effort and flow variables associated with internal energy
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dissipation, where the relationship between the power conjugate variables obey a static re-

sistive relationship of the form of R( fR,eR) = 0. eC and fC denote effort and flow variables

associated with external control. These control port variables are accessible to controller

action, where one variable acts as the actuator and the conjugate variable acts as the sen-

sor. The final terms in (3.1), eI and fI , denote effort and flow variables associated with

interactions of the PHS with the environment. In PHSML, the Hamiltonian function of a

component is associated with its storage elements, described by H(x) =
n
∑

i=1

1
2ki

x2
i , where n

is the total number of storage elements in the component, ki is the parameter constant of

the ith storage element, and xi is the state variable of the ith storage element. Passivity of

the system can be stated as:

t∫
t0

eTI fIdτ +
t∫

t0

eTC fCdτ = H(x)−
t∫

t0

eTR fRdτ, (5.11)

(5.11) implies that the component is passive with respect to a supply energy of
∫ t

t0 eTI fIdτ +∫ t
t0 eTC fCdτ and dissipated energy of

∫ t
t0 eTR fRdτ as long as the Hamiltonian function is

positive-definite.

Theorem 4. The closed-loop system (5.10) is passive with respect to inputs y, outputs u,

and Hamiltonian function Hc = Ha+Hb if kti, kbi, kt , ktd , kb, kbd , ksi, ksd ≥ 0. Additionally,

(5.10) will asymptotically stabilize the velocity Vx and the lateral position qy to the desired

velocity Vd and lateral position qd , respectively.

Proof. Passivity of the composed control system is proven using the energy-balancing

equation:

dHc
dt = ∂ Hc

∂x
T

−Ra Jc

−JTc Jl

 ∂Hc
∂x + ∂Hc

∂x
T

Ga 0

0 Gl

y

≤ uTy− yT

Sa 0

0T Sl

y.
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Passivity of the system is shown by the inequality dHc
dt ≤ uTy. Asymptotic stability of

the closed-loop system is shown by combining (5.4) with (5.10). The PHS representation

of the closed-loop system:




q̇

ṗ

ẋ

=


−M̃ M̃ 0

−M̃T J̃ K̃

0 −K̃T −Q̃




∂ H̃
∂q

∂ H̃
∂ p

∂ H̃
∂x

 ,

where M̃, J̃, K̃, and Q̃ are defined as:

M̃ = diag
(

1
m
,

1
m
,
1
I

)
, J̃ =


0 Mc

m 0

−Mc
m

T
0 0

0 0 0

 ,

K̃ =


stktiP 0 0

0 sbkbi 0

0 0 ksi
l f

 , Q̃ =


stkt −Jc

m 0

Jc
m
T

sbkb 0

0 0 0

 ,

with a coordinate-transformed Hamiltonian function, H̃(q, p,z):

H̃ = stktd
2m (mVd− px)

2 + sbkbd
2m (px−mVd)

2

+ 1
2m p2

y +
1
2I p2

r +
ksd
2 (qy−qd)

2

+ stkti
2 x2

at +
sbkbi

2 x2
ab +

ksi
2 x2

b,

which we can use to verify that ˙̃H is always less than or equal to zero and that px = mVd

and qy = qd at the boundary.
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5.5 Simulation Results

In this section, we present simulation results which test and verify the closed-loop sys-

tem. We validate the control design using simulations to show that the vehicle behaves

correctly given changes in lead vehicle speed, road curvature, and slope of the road. Sim-

ulation of the closed-loop system consists of two minutes of running time in which the

host vehicle follows a lead vehicle on a road with a trajectory shown in Figure 5.9. This

trajectory is comprehensive because it contains many curves and straight segments which

will test the effectiveness of the control design. The lead vehicle starts at a speed of 60

km/hr and runs for forty seconds, before speeding up linearly to 85 km/hr for twenty sec-

onds; the lead vehicle maintains 85 km/hr for ten seconds, before linearly slowing down

to 50 km/hr. Table 5.2 shows the gain values of the controllers, which are computed using

power-shaping stabilization [155].

Figure 5.9: Course trajectory for vehicle

We present simulation results for two control systems; in the first control system there

are no interactions between the speed control and steering control, Jc,Mc = 0; in the second

control system, the interaction gains are Jc = 0.2 and Mc = −0.5. Figure 5.10 shows the
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velocity of the lead vehicle and the host vehicle on the top subplot and the relative distance

between the two vehicles on the bottom subplot; Figure 5.11 shows the lateral displacement

on the top subplot and the lateral acceleration on the bottom subplot. Table 5.3 shows the

various scenarios that appear during the simulation.

Table 5.2: Table of controller gains

kti kbi kt ktd kb kbd ksi ksd
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Figure 5.10: Vehicle velocities and relative distances

The simulation results indicate that the control system is able to keep to the objectives

of speed control and steering control despite changes in the lead vehicle speed, slopes, and

turns encountered by the host vehicle. For the results shown in Figure 5.10, the lack of

interactions between the speed and steering control results in relatively large changes in

speed; the addition of interactions results in a smoother velocity profile. Figure 5.11 also

indicate better results for the case with interactions. Based on the simulation results, we

determine that the maximum lateral acceleration Am≈ 1.2 m/s2; marking cyan dashed lines

for Am and −Am on the second subplots of Figure 5.11, we show that the vehicle operates
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Figure 5.11: Vehicle lateral accelerations and displacements

Table 5.3: Table of simulation scenarios

Scenario Time (s) Vl (km/hr) Slope (o) turns
1 0−40 65 0 3
2 40−52 65−77 0 1
3 52−60 77−85 −15 0
4 60−70 85 −15 1
5 70−90 85−50 −15 1
6 90−94 50 −15 0
7 94−103 50 0 1
8 103−120 50 15 1

within a safe lateral acceleration range. Figures 5.12 and 5.13 show the stability of the

vehicle velocity and lateral displacements.

5.6 Summary

We developed a compositional control design framework based on PHS which allows

for the integration of multiple controllers. The key to this framework is the use of inter-

action structures which follow the rules of PHS which allows the closed-loop system to

preserve passivity. We presented simulation results which demonstrate the effectiveness
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Figure 5.12: Stability of vehicle velocity

of the framework, which inspired us to use the framework as the beginning stage of our

model-based design methodology.
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Figure 5.13: Stability of lateral displacements
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Chapter 6

Safety Analysis of Automotive Control Systems Using Port-Hamiltonian Systems

Safe operation is an important requirement for a vehicle equipped with an adaptive

cruise control (ACC) and lane keeping control (LKC) system. The design of the ACC and

LKC systems must ensure that the host vehicle can safely navigate roads. The appearance

of a lead vehicle provides an additional constraint for the ACC in that the host vehicle

maintains a desired speed depending on the behavior of the lead vehicle. A lead vehicle

which suddenly decelerates creates a safety problem for the host vehicle. The ACC design

on the host vehicle must guarantee that the distance between the lead and host vehicle stay

above a minimum threshold. Turns and curves provide constraints for the LKC in that

the host vehicle must maintain its position in the center of the road. Large road curvatures

create skidding problems for the host vehicle. The ACC and LKC design on the host vehicle

must guarantee that the lateral acceleration does not exceed a maximum threshold. The

challenge considered in this chapter is to prove the safety of an automotive control system

consisting of ACC and LKC despite the nonlinearities, hybrid dynamics, and disturbances

present in the system.

The main contribution of this chapter is an approach for the safety analysis of cyber-

physical systems (CPS) such as automotive control systems. The dynamics of the vehicle

and the control systems are described using port-Hamiltonian systems (PHS) which gives

the approach the benefit of compositionality. Hybrid behavior is characterized using multi-

modal PHS. The approach represents the safe states of the system using a bounded from

above energy level of the Hamiltonian function. Similarly, the unsafe states of the system

are represented using a bounded from below energy level of the Hamiltonian function.

Passivity is used to prove that as long as the safe and unsafe energy regions do not overlap,

trajectories that begin within a lower energy level (safe states) cannot terminate within a
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higher energy level (unsafe states). The approach can be applied to any system described

as a multi-modal PHS.

We evaluate the approach by analyzing the safety conditions for two systems. First,

we assume a straight road and consider the longitudinal dynamics and the ACC. We derive

safety conditions for the ACC which ensure that the host vehicle does not collide with a

lead vehicle. Second, we assume a curved road and consider the interactions between the

longitudinal dynamics, lateral dynamics, ACC, and LKC. We derive safety conditions for

the ACC and LKC which ensure that the host vehicle does not collide with a lead vehicle

or skid off of the road. We use the vehicle parameters, disturbances, and safety conditions

to select control parameters so that the closed-loop system is safe. In order to validate

the approach, we present simulation results by implementing the closed-loop system using

Simulink and CarSim [42]. This work has been presented in [156].

6.1 Safety Analysis Approach

The idea of the approach is to use the energy of the system as conditions and constraints

in order to show the safety property of the system. We consider the plant and controller

dynamics described by multi-modal PHS. We use the dynamic equations and Hamiltonian

functions to derive the dynamic equations and Hamiltonian function of the closed-loop

system. We characterize the initial and unsafe regions using the energy of the Hamiltonian

function and show that the system trajectory cannot enter the unsafe region.

6.1.1 Generic Safety Problem Statement

Given a hybrid system represented as (3.6) with Hamiltonian function H(x) and bounded

disturbances, the safety problem is to show that there are no trajectories of the closed-loop

system that reach an unsafe region of the state space.

Definition 30. Given a multi-modal PHS (3.6) and H(x) with continuous states X = Xp×
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Figure 6.1: The Hamiltonian function prevents the trajectory from reaching the unsafe set
Xu.

Xc ⊆ Rnp+nc , discrete states S = Sp× Sc, initial states Xp0×Xc0× Sp0× Sc0 ⊆ X × S, un-

safe states Xpu×Xcu× Spu× Scu ⊆ X × S, and disturbances ∆ ⊂ Ro, a system trajectory

Γ(x(t),s(t)) : [0,T ]→ X × S is unsafe if there exists a positive time instant T and a fi-

nite sequence of discrete transition times 0 ≤ t1 ≤ ·· · ≤ tN ≤ T such that Γ(x(0),s(0)) ∈

Xp0×Xc0×Sp0×Sc0 and Γ(x(T ),s(T )) ∈ Xpu×Xcu×Spu×Scu. The system is safe if there

are no unsafe state trajectories.

6.1.2 Safety Analysis of Generic Multi-Modal Port-Hamiltonian System

We consider the following definitions for initial states, unsafe states, and guard con-

ditions that specify discrete mode transitions. For each discrete state s ∈ S, the initial

continuous states are defined as Init(s) = {x ∈ X : (x,s) ∈ Xp0×Xc0× Sp0× Sc0} and the

unsafe continuous states are defined as Unsafe(s) = {x∈ X : (x,s)∈ Xpu×Xcu×Spu×Scu}.

Each transition of discrete states from s ∈ S to s′ ∈ S is associated with the guard condition

Guard(s,s′) = {x,x′ ∈ X : {x,s}→ {x′,s′} ∈ T}.

Similar to safety analysis using barrier certificates, the method in this paper shows that

trajectories beginning from the safe region cannot reach the unsafe region. However, the

barrier certificate typically separates the initial and unsafe states using its zero level set,
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while the Hamiltonian function characterizes the initial and unsafe states using two energy

levels. A canonical coordinate transform Φ is needed to convert the dynamic equations

and Hamiltonian function of the system into a form which shows the actual minimum

energy. Technical details regarding canonical coordinate transformation of PHS can be

found in [133]. The passivity condition prevents trajectories starting in the safe region

from reaching the unsafe region. Figure 6.1 provides a visual illustration of the method.

Theorem 5. A multi-modal PHS described by (3.6) and H(x), with continuous states x∈X,

discrete states s ∈ S, initial states Init(s), unsafe states Unsafe(s), and bounded distur-

bances δ ∈ ∆ is safe if the canonical coordinate transformation x = Φ(x) and transformed

Hamiltonian function H(Φ−1(x)) satisfy the following four conditions with α ≤ β

1. H(Φ−1(x))≤ α ,∀x ∈ Init(s)

2. H(Φ−1(x))> β ,∀x ∈ Unsafe(s)

3. ζTδ ≤ ∂ H(Φ−1(x))
∂x

T
R(x,s)∂H(Φ−1(x))

∂x ,∀{x,δ} ∈ X×∆

4. H(Φ−1(x))≤ α ,∀x ∈ Guard(s,s′)

Proof. Assuming that the Hamiltonian function H(x) satisfy the four conditions in Theo-

rem 5, yet there exists a time T ≥ 0, an input δ , and initial states Init(s), and a trajectory

Γ(x(t),s(t)) such that Γ(x(T ),s(T )) ∈ Unsafe(s). We show that the Hamiltonian function

cannot simultaneously satisfy the four condition and reach the unsafe region, thus proving

safety by contradiction. The time derivative of the Hamiltonian functions dH
dt can be written

as:
∂H(x)

∂x

T
ẋ = ∂H(x)

∂x

T
[J(x,s)−R(x,s)]∂H(x)

∂x

+∂H(x)
∂x

T
L(x,s)δ

= ∂H(Φ−1(x))
∂x

T
[J(x,s)−R(x,s)]∂H(Φ−1(x))

∂x

+∂H(Φ−1(x))
∂x

T
L(x,s)δ

= −∂H(Φ−1(x))
∂x

T
R(x,s)∂H(Φ−1(x))

∂x +ζδ
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J(x,s) =
∂Φ
∂x

J(x,s)
∂Φ
∂x

T
∣∣∣∣∣
x=Φ−1(x)

R(x,s) =
∂Φ
∂x

R(x,s)
∂Φ
∂x

T
∣∣∣∣∣
x=Φ−1(x)

L(x,s) =
∂Φ
∂x

L(x,s)
∣∣∣∣
x=Φ−1(x)

Condition (3) shows that the system trajectory on the time interval of [0,T ] is non-

increasing, which indicates that H(x(T )) ≤ H(x(0)). Additionally, condition (4) asserts

that during a discrete transition, the Hamiltonian function will not jump to an increasing

value. These statements, however, contradict the original assumption that the system states

start at Init(s) and end at Unsafe(s). As a result, we can conclude that the system is safe.

6.2 Collision Avoidance

In this section, we consider the safety analysis of a vehicle with ACC following a lead

car and maintaining a safe distance between the vehicles. The goal for the ACC is to

prevent the host car from colliding into the lead car in the event of rapid deceleration. For

simplicity, we consider the case shown in Figure 5.5 in which the vehicles are driving on a

straight road, which allows us to omit the lateral dynamics. The longitudinal dynamics (5.1)

contain the continuous states {qx, px} ∈Xk⊆R2, initial states Xk0⊆Xk, inputs {Ta,Tb}, and

disturbances {δg,δwx}. The ACC (5.7) is connected to the longitudinal vehicle dynamics

through the control ports and allows for autonomous driving by controlling Ta and Tb. The

ACC system has continuous states xa ∈ Xa ⊆ R2, discrete states {st ,sb} ∈ Sa, initial states

Xa0×Sa0 ⊆ Xa×Sa, and discrete transitions Ta ⊆ (Xa×Sa)→ (Xa×Sa).

The closed-loop system has a Hamiltonian function Hk = Ha(xa,s)+Hx(qx, px), initial

states X0 =Xk0×Xa0×Sa0, discrete transitions Tk ⊆ (X×Sa)→ (X×Sa), and disturbances

{δg,δwx} ∈ ∆g×∆wx. Its input-state-output PHS is described by:
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



q̇x

ṗx

ẋat

ẋab


= [J̃x− R̃x]



∂ H̃x
∂qx

∂ H̃x
∂ p̂x

∂ H̃x
∂ xat

∂ H̃x
∂xab


+



0 0

1 1

0 0

0 0



 δg

δwx


 ζg

ζwx

=

0 1 0 0

0 1 0 0

[
∂ H̃x
∂ qx

∂ H̃x
∂ p̂x

∂ H̃x
∂xat

∂ H̃x
∂xab

]T
(6.1)

J̃x =



0 1 0 0

−1 0 −stP sb

0 stP 0 0

0 −sb 0 0


,

R̃x =



0 0 0 0

0 Rx + stktd + sbkbd 0 0

0 0 stkt 0

0 0 0 sbkb


.

6.2.1 Collision Avoidance Safety Problem Statement

The control gains can be selected to stabilize the host vehicle velocity to Vl +γ (Xr−Xd)Vl
Xd

.

However, stability does not imply safety. We do not consider the scenario in which a lead

vehicle appears in front of the host vehicle driving faster than or equal to the host vehicle

set speed because the safety property is trivial since the controller stabilizes the host vehicle

velocity to the set speed indicating that the relative distance between the two vehicles will

not be less than the initial relative distance. We consider the scenario in which a lead

vehicle appears in front of the host vehicle driving slower than the host vehicle set speed.

In this scenario, the safety property needs to be validated because if the ACC does not react
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accordingly and slow the host vehicle to a reasonable speed, a collision may occur. The

safety condition for the longitudinal dynamics asserts that the relative distance between the

two vehicles will never reach a minimum distance qm. We can represent the unsafe host

vehicle displacement as the set of:

Xku =

qx ∈ R : qx ≥
t∫

0

Vldτ +ql(0)+qm

 , (6.2)

where ql(0) is the initial displacement value of the lead vehicle. Given (6.1), the safety

condition for the longitudinal vehicle dynamics and ACC system states that that all possible

trajectories cannot reach the unsafe region described by (6.2).

6.2.2 Safety Analysis of Collision Avoidance

In order to show safety, we make some assumptions regarding the parameters of the

lead and host vehicle. The first assumption is that the initial velocity of the lead vehicle is

greater than a minimum velocity which depends on the deceleration of the lead vehicle (al)

and the relative distance between the vehicles. The second assumption is that the initial

relative distance between the vehicles is greater than a minimum distance which depends

on the deceleration and velocity of the lead vehicle. If the initial velocity of the vehicle

is high compared to the host vehicle velocity, then the initial relative displacement can be

low because the host vehicle does not need a large distance to react to the lead vehicle

velocity. However, if the initial velocity of the vehicle is low compared to the host vehicle

velocity, then the initial relative displacement must be high because the host vehicle needs

a larger distance to react to the low lead vehicle velocity. The relationship between the

initial relative distance and the initial vehicle velocities is described in (6.3).

Xr(0) =
V 2

l (0)
2al

− V 2
x (0)
2V̇x

. (6.3)

We need the following definitions for initial states, unsafe states, and guard sets. For
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each discrete state sa ∈ Sa, the initial continuous states are defined as Init(sa) = { (qx, px,xa)

∈ X : (qx, px,xa,sa) ∈ X0 } and the unsafe continuous states are defined as Unsafe(sa)

= { (qx, px,xa) ∈ X : qx ∈ Xku }. Each transition of discrete states from sa ∈ Sa to s′a

∈ Sa is defined using the guard condition Guard (sa,s′a) = { (qx, px,xa), (qx, px,xa)
′ ∈

X : (qx, px,xa,sa) → (q′x, p′x,x
′
a,s
′
a) }. Safety analysis of the longitudinal dynamics uses

px = Φ(px) = px − m(1+ γ Xr−Xd
Xd

)Vl as the canonical coordinate transformation on the

longitudinal momentum.

We apply Theorem 5 to the composed longitudinal dynamics and ACC system. Given

initial conditions Init(sa), we derive the energy bound α as a function of the initial host

vehicle velocity Vx(0), initial relative distance Xr(0), and initial lead vehicle velocity Vl(0).

The initial relative distance must be greater than or equal to V 2
l (0)
2al
− V 2

x (0)
2al

where al is the

bounded lead vehicle deceleration. Consequently, we restate the first condition of Theo-

rem 5 as Hk(Φ−1(px))≤ α ,∀x ∈ Init(sa), where

α = m
ktd + kbd

2
(Vx(0)− (1+ γ

Xr(0)−hVl(0)−S0

hVl(0)+S0
)Vl(0))2.

Given the unsafe states Unsafe(sa), we derive the energy bound β as a function of host

vehicle velocity Vx and lead vehicle velocity Vl . The energy of the transformed Hamiltonian

function has a maximum value which indicates that the minimum relative distance has been

reached. Consequently, we restate the second condition of Theorem 5 as Hk(Φ−1(px)) >

β ,∀x ∈ Unsafe(sa), where

β = m
ktd + kbd

2
(Vx− (1− γ)Vl)

2.

Given an initial relative distance greater than qm, α is less than β , which validates the

first two conditions. Given the disturbances {δg,δwx} ∈ ∆, we must guarantee that the

system trajectory will never begin in Init(sa) and end in Unsafe(sa). Consequently, we

restate the third condition of Theorem 5 as
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ζgδg +ζwxδwx ≤

∂Hk(Φ−1(px))

∂ px

T ∂Φ
∂ px

Rx(Φ−1(px))
∂Φ
∂ px

T∂Hk(Φ−1(px))

∂ px

∀(qx, px,xa,δg,δwx) ∈ X×∆.

Discrete transitions between the throttle and brake control mode must also be taken into

account in order to guarantee that the system will not transition into Unsafe(sa). We restate

the fourth condition of Theorem 5 as Hk(Φ−1(px)) ≤ α , ∀(qx, px,xa) ∈ Guard(st ,sb). In

Section 5.3, the ACC is designed by selecting control parameters that satisfy these safety

conditions.

6.3 Skidding Avoidance

In this section, we consider the safety problem of a vehicle with both ACC and LKC

following a lead car around a curved road (Figure 5.7). In addition to maintaining a safe

distance between the vehicles, the host car must also maintain a lateral acceleration as to not

skid off the road. Interactions between the lateral and longitudinal dynamics, which can be

characterized as an interaction structure, contribute to the lateral acceleration. The lateral

dynamics (5.2) contain the continuous states {ql, pl} ∈ Xl ⊆ R4, initial states Xl0 ⊆ Xl ,

input Tl , and disturbance δwy. The LKC system (5.8) has continuous states xb ∈ Xb ⊆ R

and initial states Xb0.

In order to derive the closed-loop system, we define the variables q =

[
qx ql

]T
,

p =

[
px pl

]T
, x =

[
xat xab xb

]T
, δ =

[
δg δwx δl

]T
, and ζ =

[
ζg ζwx ζl

]T
. The

closed-loop system has a Hamiltonian function H̃(q, p,z) = Hx + Hl + Ha + Hb, con-

tinuous states {q, p,x} ∈ X̃ , initial states X̃0 = X̃p0 × X̃c0 × Sa, discrete transitions T̃ ⊆
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(X̃×Sa)→ (X̃×Sa), and disturbances δ = {δg,δwx,δwy} ∈ ∆g×∆wx×∆wy.




q̇

ṗ

ẋ

 =


0 I 0

−I J̃− R̃ K̃

0 −K̃T −Q̃




∂ H̃
∂ q

∂ H̃
∂ p

∂ H̃
∂x

+


0

L̃

0

δ

ζ =

[
0 L̃ 0

][
∂ H̃
∂q

∂ H̃
∂ p

∂ H̃
∂x

]T
(6.4)

where J̃, L̃, R̃, K̃, and Q̃ are defined as:

J̃ =


0 mpr

I −Mc −l f Mc

−mpr
I +Mc 0 0

l f Mc 0 0

 , L̃ =


1 1 0

0 0 1

0 0 0

 ,

R̃ =


Rx + stktd + sbkbd 0 0

0 mW1
px

+ ksd
mW2

px
+ l f ksd

0 mW2
px

+ l f ksd
mW3

px
+ l2

f ksd

 ,

K̃ =


stP sb 0

0 0 −1

0 0 −l f

 , Q̃ =


stkt 0 −Jc

0 sbkb 0

Jc 0 0

 .

6.3.1 Skidding Avoidance Safety Problem Statement

The control gains can be selected to stabilize the host vehicle velocity to Vl +γ (Xr−Xd)Vl
Xd

and the lateral displacement to qd . However, stability does not imply safety. The unsafe

states for the lateral momentum are related to that of the longitudinal momentum because

of the interactions between the longitudinal and lateral dynamics. The inputs to the longi-

tudinal dynamics (Ta and Tb) affect the lateral dynamics. Similarly, the input to the lateral
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dynamics (Tl) affects the longitudinal dynamics. This introduces an additional safety con-

straint on the system. In order for the vehicle to operate safely on the road, its lateral

acceleration must not exceed a maximum value Am. If the lateral acceleration exceeds Am,

the vehicle will skid. This lateral acceleration value of the vehicle is affected by the yaw

rate and longitudinal velocity of the vehicle. This interaction between lateral and longitu-

dinal motion results in an unsafe region characterized by a set defined as:

Xlu = {px ∈ R, pr ∈ R : px pr ≥ m2IAm}. (6.5)

This safety condition indicates that longitudinal and lateral motion are bounded by a

hyperbolic relationship. A large longitudinal momentum results in a lower bound for the

lateral and yaw momentum, and a large lateral and yaw momentum results in a lower bound

for the longitudinal momentum. Using this safety constraint we must verify that the product

of longitudinal momentum and yaw rate does not exceed a maximum threshold. Given

(6.4) and H̃(q, p,z), the safety condition for the vehicle dynamics, ACC system, and LKC

system states that that all possible trajectories cannot reach the unsafe region described by

(6.2) and (6.5).

6.3.2 Safety Analysis of Skidding Avoidance

A road can be divided into segments consisting of four types of road profiles: straight

road, decreasing curvature, constant curvature, and increasing curvature. Of the four cases

the lateral acceleration safety problem is trivial for the straight road and decreasing curva-

ture cases. A straight road nullifies the unsafe state set Xlu and a decreasing road curvature

relaxes the safety condition. In order to safely navigate a curved section of the road, the

vehicle must avoid the unsafe regions of Xku and Xlu. Given a road curvature of ρ , the

yaw momentum required is calculated as pr =
I px
m ρ , which shows the direct relationship

between the yaw momentum and the longitudinal momentum. Additionally, the road cur-
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vature is related to the vehicle slip angle ω and steering angle θs:

ρ =
cos(ω) tan(θs)

l f + lr
,

ω = arctan(
lr

l f + lr
tan(θs)).

The lateral momentum depends on the longitudinal momentum, the yaw momentum,

and the vehicle slip angle:

py = px sin(
pr

I
+ω).

Given that ω and pr are directly proportional to ρ , we can represent the state vari-

able py as a function directly proportional to px and ρ . We need the following definitions

for initial states, unsafe states, and guard sets. For each discrete state sa ∈ Sa, the initial

continuous states are defined as Init(sa) = {(q, p,x) ∈ X̃ : (q, p,x,sa) ∈ X̃0} and the un-

safe continuous states are defined as Unsafe(sa) = {(q, p,x) ∈ X̃ : (qx, px, pr) ∈ Xku×Xlu.

Each transition of discrete states from sa ∈ Sa to s′a ∈ Sa is associated with the guard set

Guard(sa,s′a) = {(q, p,x),(q, p,x)′ ∈ X̃ : (q, p,x,sa)→ (q′, p′,x′,s′a)}. Safety analysis of

the vehicle dynamics uses Φ̃ as the canonical coordinate transformation for the momentum

variables. 
px

py

pr

=


Φ̃x(px)

Φ̃y(py)

Φ̃r(pr)

=


px−m(1+ γ Xr−Xd

Xd
)Vl−Mcxb

py + ksi(qy−qd)+Mc(xat + xab)

pr + ksi(qr− qd
l f
)+Mc

xat+xab
l f

 .

We apply Theorem 5 to the composed longitudinal dynamics, lateral dynamics, ACC,

and LKC system. Given initial conditions Init(sa), we derive the energy bound α̃ as a

function of the initial host vehicle velocity Vx(0), initial relative distance Xr(0), initial lead

vehicle velocity Vl(0), and initial road curvature ρ(0). Consequently, we restate the first

condition of Theorem 5 as H̃(Φ̃−1(p))≤ α̃ ,∀(q, p,x) ∈ Init(sa), where
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α̃ = m ktd+kbd
2 (Vx(0)− (1+ γ Xr(0)−hVl(0)−S0

hVl(0)+S0
)Vl(0))2

+m
2 V 2

x (0)sin2(ρ(0)Vx(0)+ω(0))+ I
2ρ2(0)V 2

x (0).

Given the unsafe states Unsafe(sa), we derive the energy bound β̃ as a function of host

vehicle velocity Vx, relative distance Xr, lead vehicle velocity Vl , and road curvature ρ . The

energy of the transformed Hamiltonian function has a maximum value which indicates that

the maximum lateral acceleration has been reached. Consequently, we restate the second

condition of Theorem 5 as H̃(Φ̃−1(p))> β̃ ,∀(q, p,x) ∈ Unsafe(sa), where

β̃ = m ktd+kbd
2 (Vx− (1− γ)Vl− Mc

m (qy−qd))
2

+m
2 (Vx sin(ρVx +ω)+ ksi(qy−qd))

2

+ I
2(ρVx + ksi(qy− qd

l f
))2.

Given the disturbances {δg,δwx,δwy} ∈ ∆, we must guarantee that the system trajectory

will never begin in Init(sa) and end in Unsafe(sa). Consequently, we restate the third

condition of Theorem 5 as

ζgδg +ζwxδwx +ζwyδwy ≤

∂ H̃(Φ̃−1(p))
∂ (q, p)

T∂Φ̃
∂ p

R̃(Φ̃−1(p))
∂Φ̃
∂ p

T∂ H̃(Φ̃−1(p))
∂ (q, p)

,

∀(q, p,x,δg,δwx,δwy) ∈ X̃× ∆̃.

Discrete transitions between throttle and brake control mode must also be taken into

account in order to guarantee that the system will not transition into Unsafe(sa). Con-

sequently, we restate the fourth condition of Theorem 5 as H̃(Φ̃−1(p)) ≤ α̃,∀(q, p,x) ∈

Guard(st ,sb)∪Guard(sb,st). In Section 5.3, the ACC and LKC are designed by selecting

control parameters that satisfy these safety conditions.
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Figure 6.2: Safety of relative distances

6.4 Simulation Results

In this section, we present simulation results to illustrate the approach. We use the

same validated PHS model of a standard E-class sedan model as in Section 5. Passivity-

based control is used to select the control parameters of the ACC and LKC by considering

the total energy of the closed-loop system, specifically considering the dissipation of the

system being the difference between the stored energy and the incoming energy [130].

After selecting the control parameter values, we verify that those values obey the safety

conditions listed in Section 6.3. Using the experimental passivity index methods and the

experimental data of the controllers, we compute the passivity indexes and finite L2 gain of

the controllers as µ = 0.8, ρ = 5.6, and γ = 2. The safety conditions derived in Sections 6.2

and 6.3 are valid for vehicle velocities given a maximum road decline angle of 15 degrees

which corresponds to δg = 4200 N and a maximum lead vehicle deceleration of 5 m/s2

which corresponds to a braking distance of 50 m from 80 km/hr to 0 km/hr.
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Figure 6.3: Safety of lateral accelerations

Simulation of the closed-loop system consists of two minutes of running time in which

the host vehicle follows a lead vehicle on the road featured in Figure 5.9. Figures 6.2

and 6.3 show the full two minutes, where we can see that they are both safe. Figure 6.4

shows the time range of 0 to 5 s, which is a straight segment of the road with a zero degree

decline. The simulation results show that the system is safe since the relative distance is

greater than qm = 24 m. The curve radius is large because the road is relatively straight, so

the lateral acceleration is near zero. Figure 6.5 shows the time range of 46.5 to 51.5 s, which

is a curved segment of the road with a zero degree decline. The curve radius during this

time period decreases, which corresponds to a non-zero lateral acceleration value. Safety

is ensured because the lateral acceleration is bounded by Am = 1.2 m/s2.

Figure 6.6 shows the time range of 54 to 58 s, which is a straight segment of the road

with a fifteen degree decline. The control parameters of the ACC system are designed to

compensate for disturbances such as road decline, and the system is safe since the relative
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Figure 6.4: Zero degree decline and straight road for continuous-time case

distance is greater than qm. Similar to the time range of 0 to 5 s, the curve radius is large

because the road is relatively straight, so the lateral acceleration is near zero. Figure 6.7

shows the time range of 70 to 75 s, which is a curved segment of the road with a fifteen

degree decline. The simulation results show that safety conditions are satisfied.

6.5 Summary

We developed a safety analysis method based on multi-modal PHS which utilizes the

Hamiltonian function as a barrier certificate and shows safety by proving that trajectories

cannot begin within safe regions and end in unsafe regions. By using the energy levels

of the Hamiltonian functions, we can derive conditions on model and control parameters

which lead to the system’s safe operation. This method is useful and comprehensive be-

cause it is able to address the safety problem of PHS given complex interactions, nonlinear-

ities, disturbances, and hybrid dynamics. We presented two case studies using automotive
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Figure 6.5: Zero degree decline and curved road for continuous-time case

control systems and demonstrate safety conditions which leads to the prevention of unsafe

behavior such as collision and skidding. We recorded simulation results which show the

effectiveness of the safety analysis approach.
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Figure 6.6: Fifteen degree decline and straight road for continuous-time case

Figure 6.7: Fifteen degree decline and curved road for continuous-time case
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Chapter 7

Discrete-Time Safety Analysis of Automotive Control Systems

In Chapter 6 we described a method that verifies the safety of a port-Hamiltonian sys-

tem (PHS) by using its Hamiltonian function as a barrier. However, an important dis-

advantage of the safety analysis method is that it is only applicable to PHS described in

continuous-time. A well known fact in passivity-based control is that when a passive sys-

tem is discretized, its passivity is no longer guaranteed. As a result, we need to manually

verify that the PHS remains passive in spite of implementation effects such as discretization

and quantization in order to guarantee its safety property. The challenge considered in this

chapter is to prove the safety of an automotive control system consisting of adaptive cruise

control (ACC) and lane keeping control (LKC) despite discretization effects.

The main contribution of this chapter is a alternate approach to the method presented

in Chapter 6 which utilizes conservative time-discretization for PHS. The dynamics of the

vehicle and the control systems are described using discrete-time PHS models [157]. Con-

servative time-discretization enables the system to retain passivity even when the system is

subjected to discretization. By retaining passivity, the system can be proven that as long

as the safe and unsafe energy regions do not overlap, trajectories that begin within a lower

energy level (safe states) cannot terminate within a higher energy level (unsafe states). We

evaluate the approach by analyzing the safety conditions for a vehicle equipped with an

ACC and LKC. We derive discrete-time safety conditions for the ACC and LKC which

ensure that the host vehicle does not collide with a lead vehicle or skid off of the road.

7.1 Discrete-Time Safety Analysis Approach

In the event of discretization, certain essential properties of PHS such as Hamilto-

nian structure and conservation are inevitably lost. Therefore, an appropriate discrete-time
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model is required for the discretization of (3.6). We denote the discrete samples of the

continuous state variables as xk ≡ x(kts) where k is a non-negative integer and ts is the sam-

pling period. For space consideration, we introduce the notation of x̂k =
xk+1+xk

2 to denote

the sampled mid-point of the k-th sample. We use the method described in [157] called

conservative time-discretization to discretize (3.6):


xk+1−xk

ts
= [J(x̂k,s)−R(x̂k,s)]∂H

∂x (x̂k)− J(x̂k,s)Hg(k)xk+1−xk
Q(k) +

L(x̂k,s)

0

δ (k)

ζ (k) =

[
LT(x̂k,sp) 0

]
∂H
∂x (x̂k)

(7.1)

Hg(k) = H(xk+1)−H(xk)+ ⟨
∂H
∂x

(x̂k),Jg(k)⟩

Jg(k) = J+(x̂k,s)J(x̂k,s)(xk+1− xk)

Q(k) = (xk+1− xk)
TJg(k)

where J+ is the Moore-Penrose pseudo-inverse matrix of J and (δ (k),ζ (k)) are the input-

output sampled pairs corresponding to the disturbance port. The advantage of the discrete-

time representation of (7.1) is that the Hamiltonian structure of the system is preserved and

the Dirac structure matrix J can be non-invertible.

7.1.1 Discrete-Time Safety Problem Statement

Figure 7.1 shows a visual representation of the parameter space for the control system

being progressively restricted as the system has continuous-time passivity then discrete-

time passivity imposed on itself as constraints. The restriction of parameter space implies

that there are similar restrictions on the safety property. Given a hybrid system represented

as (7.1) with Hamiltonian function H and bounded disturbances, the safety problem is to

show that there are no trajectories of the closed-loop system that reach an unsafe region of
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Figure 7.1: Constraints on the control parameter space

the state space.

Definition 31. Given a discrete-time multi-modal PHS (3.6) and H(xk) with sampled states

xk ∈ X, initial states x0 ∈ X0 ⊆ X, unsafe state space Xu ⊆ X, and sampled disturbances

∆(k), a system trajectory, where k is an integer, Γ(x(kts),s(kts)) : [0,Nts]→ X is unsafe

if there exists a positive sample N and a finite sequence of discrete transition samples

0 ≤ k1ts ≤ ·· · ≤ kN−1ts ≤ Nts such that Γ(x0) ∈ X0 and Γ(xk) ∈ Xu. The system is safe if

there are no unsafe state trajectories.

A canonical coordinate transform Φ is needed to convert the continuous dynamic equa-

tions and Hamiltonian function of the system into a form which shows the actual mini-

mum energy [133]. The traditional canonical coordinate transform method is defined for

continuous-time PHS and is used for analyzing the dynamics of physical systems. How-

ever, canonical coordinate transform is not defined for discrete-time systems, which neces-

sitates the application of coordinate transform to discrete-time PHS. We consider a coordi-

nate transformation x = Φ(x) for a continuous-time PHS described by (3.6). The dynamic

equations of the system is described in the new coordinate system x:
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ẋ = ∂Φ
∂ x

dx
dt

= ∂Φ
∂ x

T{[J(x,s)−R(x,s)]∂H(x)
∂x +T L(x,s)δ}

= {∂Φ
∂x

T
[J(x,s)−R(x,s)]∂Φ

∂x }
∂H(Φ−1(x))

∂x + ∂ Φ
∂x

T
L(x,s)δ

(7.2)

Defining J(x,s) = ∂Φ
∂x

T
J(x,s)∂Φ

∂x , R(x,s)∂Φ
∂x

T
R(x,s)∂Φ

∂x , and L(x,s) = ∂Φ
∂x

T
L(x,s), we

discretize the results of (7.2):


xk+1−xk

ts
= [J(x̂k,s))−R(x̂k,s)]

∂H(Φ−1(xk))
∂xk

(x̂k)− J(x̂k,s))H
g
(k)xk+1−xk

Q(k)
+

L(x̂k,s)

0

δ (k)

ζ (k) =

[
LT

(x̂k,s) 0

]
∂H(Φ−1(xk))

∂xk
(x̂k)

(7.3)

Hg
(k) = H(Φ−1(xk+1))−H(Φ−1(xk))+ ⟨

∂H(Φ−1(xk))

∂xk
(x̂k),J

g
(k)⟩

Jg
(k) = J+(xk,s)J(xk,s)(xk+1− xk)

Q(k) = (xk+1− xk)
TJg

(k)

7.1.2 Safety Analysis of Discrete-Time Multi-Modal Port-Hamiltonian System

We consider the following definitions for initial states, unsafe states, and guard condi-

tions that specify discrete mode transitions. For each discrete mode s ∈ S, the initial states

are defined as Init(s) = {xk ∈ X : (xk,s) ∈ X0× S0} and the unsafe states are defined as

Unsafe(s) = {xk ∈ X : (xk,s) ∈ Xu× Su}. Each transition of discrete modes from s ∈ S to

s′ ∈ S is associated with the guard condition Guard(s,s′) = {xk,x′k ∈ X : {x,s}→ {x′,s′} ∈

T}. Similar to the safety analysis using continuous-time Hamiltonian functions in Sec-

tion 6.1, the method in this paper shows that trajectories beginning from the safe region

cannot reach the unsafe region.

Theorem 6. A multi-modal PHS described by (7.3) and H(Φ−1(xk)), with states xk ∈ X,
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initial states Init(s), unsafe states Unsafe(s), and bounded disturbances δ (k)∈ ∆(k) is safe

if the transformed Hamiltonian function H(Φ−1(xk)) satisfy the following four conditions

with α ≤ β

1. H(Φ−1(xk))≤ α ,∀x ∈ Init(s)

2. H(Φ−1(xk))> β ,∀x ∈ Unsafe(s)

3. ζ (k)Tδ (k)≤ ∂H(Φ−1(xk))
∂xk

T
R(xk,s)

∂H(Φ−1(xk))
∂xk

,∀{xk,δ} ∈ X×∆

4. H(Φ−1(xk))≤ α ,∀xk ∈ Guard(s,s′)

Proof. Assuming that the Hamiltonian function H(Φ−1(xk)) satisfy the four conditions

in Theorem 5, yet there exists a time T ≥ 0, an input δ , and initial states Init(s), and a

trajectory Γ(x0)) such that Γ(xT ) ∈ Unsafe(s). We show that the Hamiltonian function

cannot simultaneously satisfy the four condition and reach the unsafe region, thus proving

safety by contradiction. The time difference of the Hamiltonian functions can be written

as:

∂H(Φ−1(xk))
∂xk

(x̂k)
T xk+1−xk

ts
= ∂H(Φ−1(xk))

∂xk
(x̂k)

T[J(x̂k,s)−R(x̂k,s)]
∂H(Φ−1(xk))

∂xk
(x̂k)

−∂ H(Φ−1(xk))
∂xk

(x̂k)
TJ(x̂k,s)H

g
(k)xk+1−xk

Q(k)

+∂ H(Φ−1(xk))
∂xk

(x̂k)
T

L(x̂k,s)

0

δ (k)

The important part of the proof is showing that the interaction structure J and the con-

servative Hamiltonian structure J(x̂k,s))H
g
(k)xk+1−xk

Q(k)
contribute zero energy. As a result of

the skew symmetric nature of J and the third term of the conservative Hamiltonian struc-

ture, we can conclude that:

∂H(Φ−1(xk))

∂xk
(x̂k)

TJ(x̂k,s)
∂H(Φ−1(xk))

∂xk
(x̂k) = 0
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∂H(Φ−1(xk))

∂xk
(x̂k)

TJ(x̂k,s)⟨
∂H(Φ−1(xk))

∂xk
(x̂k),J

g
(k)⟩xk+1− xk

Q(k)
= 0

The sum of the remaining two terms of the conservative Hamiltonian structure can be

simplified to

H(Φ−1(xk+1))−H(Φ−1(xk))

ts

T

J+(x̂k,s)
H(Φ−1(xk+1))−H(Φ−1(xk))

ts

Given that the matrix J+ is skew-symmetric, we can conclude that this term is also equal

to zero. Condition (3) shows that the system trajectory on the interval of [0,T ] is non-

increasing, which indicates that H(xT ) ≤ H(x0). Additionally, condition (4) asserts that

during a discrete transition, the Hamiltonian function will not jump to an increasing value.

These statements, however, contradict the original assumption that the system states start

at Init(s) and end at Unsafe(s). As a result, we can conclude that the system is safe.

7.2 Discrete-Time Collision and Skidding Avoidance

According to Theorem 6, the discrete-time safety problem is the same as the continuous-

time safety problem if the system’s interconnection matrix, J(x), is zero. In both control

system that we designed, we included zero interconnection matrices, so the safety prob-

lem when applied to the discrete-time version of the system should be the same as the

continuous-time case, which we described in detail in Chapter 6. This problem thus be-

comes trivial when we only account for safety problems when each system is by itself.

On the other hand, we included a non-zero interconnection matrix in the composed system

design, so the difference in safety problem applies in that case. In order to showcase the

updated discrete-time design, we consider the safety problem of a vehicle with both an

ACC and a LKC system following a lead car. The longitudinal dynamics has the following

Hamiltonian function:
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Hx(qx,k, px,k) =
1

2m
p2

x,k +Ux(qx,k),

where qx,k represents the sampled longitudinal displacement, px,k represents the sampled

longitudinal momentum, and Ux(qx,k) represents the sampled longitudinal potential energy.

The longitudinal dynamics is modeled in the form of (7.3):



 qx,k+1−qx,k
ts

px,k+1−px,k
ts

 =

 0 1

−1 −Rx


 ∂Hx

∂qx,k

∂Hx
∂ px,k

+Qx(px,k)+

 0

Gx

ux +

0

1

dx

yx =

[
0 GT

x

][
∂Hx
∂qx,k

∂Hx
∂ px,k

]T
zx =

[
0 1

][
∂Hx
∂qx,k

∂Hx
∂ px,k

]T
(7.4)

Qx(px,k) =

 0 1
2m p2

x,k+1−
1

2m p2
x,k

1
2m p2

x,k−
1

2m p2
x,k+1 0


where ux =

[
Ta Tb

]T
, Gx =

[
1 −1

]
, and Rx = am+bpx,k +

cm2

px,k
.

The lateral dynamics has the following Hamiltonian function:

Hl(qy,k,qr,k, py,k, pr,k) =
1

2m
p2

y,k +
1
2I

p2
r,k +Ul(qy,k,qr,k),

where qy,k represents the sampled lateral displacement, py,k represents the sampled lateral

momentum, qr,k represents the sampled yaw displacement, pr,k represents the sampled yaw

momentum, and Ul(qy,k,qr,k) represents the sampled lateral potential energy. The lateral

dynamics is modeled in the form of (7.3):
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

 ql,k+1−ql,k
ts

pl,k+1−pl,k
ts

 =

 0 E

−E −Rl


 ∂Hl

∂ql,k

∂Hl
∂ pl,k

+Ql(pl,k)+

 0

Gl

Tl +

 0

Kl

dl

yl =

[
0 GT

l

][
∂Hl
∂ql,k

∂Hl
∂ pl,k

]T
zl =

[
0 KT

l

][
∂Hl
∂ql,k

∂Hl
∂ pl,k

]T
,

(7.5)

Rl =

W1
Vx

W2
Vx

W2
Vx

W3
Vx

 ,

Ql(pl,k) =



0 0 1
2m p2

y,k+1−
1

2m p2
y,k 0

0 0 0 1
2I p2

r,k+1−
1
2I p2

r,k

1
2m p2

y,k−
1

2m p2
y,k+1 0 0 0

0 1
2I p2

r,k−
1
2I p2

r,k+1 0 0



where E is the identity matrix, Gl =

[
1 l f

]T
and Kl =

[
1 0

]T
. The parameter con-

stants of Rl are W1 = 2C f +2Cr, W2 = 2C f l f −2Crlr, and W3 = 2C f l2
f +2Crl2

r , where Cr is

the cornering stiffness of the rear wheels. Composition of the longitudinal and lateral dy-

namics occurs through the interaction structure of (7.6) modulated by the sampled angular

momentum pr,k:

dx

dl

=

 0 −mpr,k
I

−mpr,k
I 0


zx

zl

 . (7.6)

The Hamiltonian function of the composed longitudinal and lateral dynamics is H(qk, pk)=

Hx(qx,k, px,k)+Hl(qy,k,qr,k, py,k, pr,k). Composition of (7.4) and (7.5) through (7.6) results

in the following nonlinear PHS:
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

 qk+1−qk
ts

pk+1−pk
ts

 =

 0 E

−E −R


 ∂H

∂qk

∂H
∂ pk

+

Qx(px,k) 0

0 Ql(pl,k)

+

0

G

u

y =

[
0 GT

] ∂H
∂ qk

∂H
∂ pk

 ,

(7.7)

R =


Rx

mpr,k
I 0

mpr,k
I

mW1
pxk

mW2
pxk

0 mW2
pxk

mW3
pxk

 ,G =

Gx 0

0 Gl

 ,

where qk =

[
qx,k ql,k

]T
, pk =

[
px,k pl,k

]T
, u =

[
ux Tl

]T
, and y =

[
yx yl

]T
. The

speed control system has the following Hamiltonian function:

Ha(xa,k) =
1
2
(stktix2

at,k + sbkbix2
ab,k),

with the following discrete PHS representation:



xa,k+1−xa,k
ts

=−Ra
∂ Ha
∂xa,k

+Gayx +Ka1da1

ux = GT
a

∂ Ha
∂xa,k

+Sayx +Ka2da2za1

za2

 =

KT
a1 0

0 KT
a2


 ∂Ha

∂xa,k

yx

 .

(7.8)

The parameter matrices are the same as the ones for (5.7). The steering control system

has the following Hamiltonian function:

Hb(xb,k) =
1
2

ksix2
b,k,

with the following discrete PHS representation:
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

xb,k+1−xb,k
ts

= yl +db1

Tl = ∂Hb
∂xb,k

+ ksdyl +db2zb1

zb2

 =

1 0

0 1


 ∂Hb

∂xb,k

yl

 .

(7.9)

Composition of the controllers via (5.9) introduces an interaction structure, which will

also introduce an additional term in the equations for the composed control systems. The

Hamiltonian function of the composed control system is denoted as Hc =Ha(xa,k)+Hb(xb,k).

Composition of (7.8) and (7.9) through (5.9) results in the following PHS representation:



xk+1−xk
ts

=

−Ra Js

−JTs 0

 ∂Hc
∂ xk

+Qc(xat,k,xab,k,xb,k)+

Ga 0

0 1

y

u =

GT
a 0

0 1

 ∂Hc
∂xk

+

 Sa Ms

−MT
s ksd

y,

(7.10)

where Js =

[
Jc 0

]T
, Ms =

[
Mc 0

]T
, and x =

[
xat,k xab,k xb,k

]T
. The closed-loop

system has a Hamiltonian function H̃(qk, pk,zk) = Hx + Hl + Ha + Hb, sampled continuous

states {qk, pk,xk}∈ X̃ , initial states X̃0 = X̃p0×X̃c0×Sa, discrete transitions T̃⊆ (X̃×Sa)→

(X̃×Sa), and disturbances δ = {δg,δwx,δwy} ∈ ∆g×∆wx×∆wy.




qk+1−qk

ts
pk+1−pk

ts
xk+1−xk

ts

 =


0 I 0

−I J̃− R̃ K̃

0 −K̃T −Q̃




∂ H̃
∂qk

∂ H̃
∂ pk

∂ H̃
∂xk

+


0

L̃

0

δ

ζ =

[
0 L̃ 0

][
∂ H̃
∂qk

∂ H̃
∂ pk

∂ H̃
∂xk

]T
(7.11)

132



where J̃, L̃, R̃, K̃, and Q̃ are defined as:

J̃ =


0 mpr

I −Mc −l f Mc

−mpr
I +Mc 0 0

l f Mc 0 0

 , L̃ =


1 1 0

0 0 1

0 0 0

 ,

R̃ =


Rx + stktd + sbkbd 0 0

0 mW1
px

+ ksd
mW2

px
+ l f ksd

0 mW2
px

+ l f ksd
mW3

px
+ l2

f ksd

 ,

K̃ =


stP sb 0

0 0 −1

0 0 −l f

 , Q̃ =


stkt 0 −Jc

0 sbkb 0

Jc 0 0

 .

Unsafe regions of state space are described by (7.12) and (7.13)

Xku =

{
qx,k ∈ R : qx,k ≥

k

∑
i=0

tsVl,i +ql(0)+qm

}
, (7.12)

Xlu = {pxk ∈ R, prk ∈ R : px pr ≥ m2IAm}. (7.13)

Using the boundary conditions derived for the continuous time case and the assump-

tions, as shown in Chapter 6, we can prove that the discrete-time representation of (7.11) is

guaranteed to be safe, using the following coordinate transform:


px,k

py,k

pr,k

=


Φ̃x,k(px,k)

Φ̃y,k(py,k)

Φ̃r,k(pr,k)

=


px,k−m(1+ γ Xr−Xd

Xd
)Vl−Mcxb,k

py,k + ksi(qy,k−qd)+Mc(xat,k + xab,k)

pr,k + ksi(qr,k− qd
l f
)+Mc

xat,k+xab,k
l f

 .

With the coordinate transform defined, we can rewrite condition 3 as:
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ζgδg +ζwxδwx +ζwyδwy ≤
∂ H̃(Φ̃−1

k (pk))

∂ (qk, pk)

T
∂Φ̃k

∂ pk
R̃(Φ̃−1

k (pk))
∂Φ̃k

∂ pk

T∂ H̃(Φ̃−1
k (pk))

∂ (qk, pk)
.

7.3 Summary

The motivating issue is that passivity degrades during discretization, which invalidates

the safety analysis method from continuous-time when discretization is needed. As a result,

we developed a safety analysis method based on conservative time-discretized multi-modal

PHS which utilizes the Hamiltonian function as a barrier certificate; the work in this chapter

is a direct extension to the work in Chapter 6. This method is useful because it allows the

analysis method from Chapter 6 to be used because passivity does not degrade in conser-

vative time-discretization. We presented a case study in which the discrete-time safety of

an automotive control systems shows that unsafe behaviors such as collision and skidding

are avoided.
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Chapter 8

Evaluation and Validation Using Hardware-in-the-Loop Platform

The main contribution of this chapter is the generation of simulation results for the

validation and evaluation of the continuous-time and discrete-time port-Hamiltonian sys-

tems (PHS) designed in Chapters 5 and 7. In order to implement the controllers on the

HIL platform, implementation effects such as discretization and quantization are analyzed

to ensure that passivity is retained. Code is generated from the discretized and quantized

PHS models, analyzed for timing and scheduling, and deployed on the hardware platform.

The HIL simulation platform consisting of the vehicle dynamics using a CarSim deploy-

ment on a Real Time(RT)-Target PC, the time-triggered communication network using a

TTTech PCIe-XMC card, and the controllers using IBX-530W box with an Intel Atom

processor running a RT-Linux operating system. This work has been partially presented

in [149].

8.1 Hardware-in-the-Loop Platform

Figure 8.1 shows a high level diagram of the HIL simulation platform used [8]. The

physical dynamics modeled in CarSim is deployed as a RT-Target so that it acts as a real

vehicle. The RT-target is also integrated with a TTTech PCIe-XMC card which enables

the seamless integration and communication with the ECUs on a time-triggered network.

The HIL simulator has three ECUs which are connected to an 8-port 100Mbps TTEthernet

development switch from TTTech [158]. Each ECU is an IBX-530W box with an Intel

Atom processor running a RT-Linux operating system and is integrated with a TTEther-

net Linux driver, which is a software-based implementation of the TTEthernet protocol in

order to enable communication with the other systems in a TTEthernet network. The au-

tomotive control software is distributed over the ECUs and the tasks execute in the kernel
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Figure 8.1: HIL simulator architecture [8]

space of RT-Linux which can utilize the synchronized time base off of the TTEthernet com-

munication. The controllers are deployed on ECU1 and communicate with the RT-Target

via the TTEthernet network which provides a synchronized time base for computation and

communication.

8.2 Implementation Effects

After verifying the correctness of the control design and vehicle dynamics, we dis-

cretize, quantize, and account for other implementation effects while preserving passiv-

ity in preparation for deployment [8]. Although the continuous-time control systems are

useful for early stages of design and validation, it is not feasible for the HIL simulation

platform [159]. Given a continuous-time controller PHS, processes such as discretization

and quantization are required to generate the C code for deployment on the ECUs in the

platform. The objective of discretization is to convert the controllers from continuous-time

PHS to discrete-time PHS [160]. The objective of quantization is to convert the floating-

point discrete-time PHS into fixed-point discrete-time PHS.
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8.2.1 Discretization

Prior to discretization, the continuous-time PHS is represented using block diagrams in

a continuous-time Simulink model. Transformation of a continuous-time Simulink model

into a discrete-time Simulink model is a procedure involving bi-linear transformations,

up-samplers, and down-samplers. State variables and subsequent computations inside the

controllers are linked together through delays and adders [161] [162]. We discretize the

PHS controllers using sampling periods of 10 ms, 30 ms, and 50 ms. We employ discrete-

time passivity in order to ensure that the closed-loop system will remain passive.

Discretization does not affect the high level system model of the vehicle dynamics in-

teracting with the controllers [163]. However, passivity is a property that degrades under

discretization [94] [164]. Intuitively, the larger the sampling period, the greater the degrada-

tion. The standard discretization relates the discrete-time input ud(k) to the continuous time

input u(t) using zero-order holds in that the continuous time t is bounded by kts and (k+1)ts

where k is a non-negative integer and ts is the sampling period [165] [166]. The discrete-

time output yd(k) relates to the continuous time output y(t) by a sampler yd(k) = y(kts)

A crucial information here is that even if the original continuous time system is a passive

PHS, its discretization is not necessarily passive [167] [168]. To circumvent this problem,

[169] developed a different discretization approach in which the discrete-time output is

modified as

yd(k) =
1
ts

(k+1)ts∫
kts

y(t)dt.

This different discretization approach is interesting because it guarantees that the result-

ing discrete-time system is passive and thus able to be subjected to passivity-based control

methods [170]. However, the approach has a shortcoming in that it requires a future output

value of y(t) at (k+1)ts which may not be possible to obtain if the system is highly nonlin-

ear. Given this fact, we discretize (5.10) using the standard method and choose a sampling
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period so that the system satisfies the discrete-time passivity inequality:

ts
N

∑
k=0

ud(k)Tyd(k)≥ µdts
N

∑
k=0

∥∥∥∥ud(k)

∥∥∥∥2

+ρdts
N

∑
k=0

∥∥∥∥yd(k)

∥∥∥∥2

(8.1)

where N is a positive integer, µd is a real number, and ρd is a real number. In order

to guarantee that the inequality in (8.1) is satisfied, we have to ensure that the sampling

period is chosen so that the discrete-time passivity indexes are larger than zero given µd =

µ − tsγ − tsγ
∣∣∣∣ρ∣∣∣∣− t2

s γ2
∣∣∣∣ρ∣∣∣∣ and ρd = ρ − tsγ

∣∣∣∣ρ∣∣∣∣ [169]. Using the experimental passivity

index methods and the experimental data of the controllers from Section 5.2.4, we compute

the passivity indexes and finite L2 gain of the controllers as µ = 0.8, ρ = 5.6, and γ = 2.

We find that the discretized system will be passive given a sampling period smaller than

ts ≈ 55 ms.

8.2.2 Quantization

Quantization is the mathematical process in which a large set of input values is rounded

and truncated down to a smaller set, and is needed as a result of hardware limitations on the

ECUs, leading to the fact that floating-point data cannot be processed [171]. This procedure

involves using the MATLAB data command fixedt() and data conversion blocks between

the CarSim S-functions and controllers. State variables and other variables are rounded

and truncated into fixed-point data values. The ECUs that we use to implement the control

system require either 16 or 32-bit fixed point data types in its operation and computation,

which necessitates a concern for passive quantization.

In Simulink the quantization process is done using MATLAB’s Fixed-Point Toolbox,

in which the word lengths for all data are set as fixdt(1, 16, 8) and fixdt(1, 32, 16) for

16 and 32-bit data types, respectively [41]. Simulink’s quantizer is a uniform mid-tread

quantizer and is considered to be a passive quantizer, which is a concept introduced in

[172] where the input v and output u mappings are bounded by two lines of slopes a and b,
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av2 ≤ uv≤ bv2. However, even though the quantizer is passive does not necessarily mean

that the quantized system is passive [173]. In order to ensure passivity for the quantized

system we implemented the transformation block M from [172] using the values of m11 = 2,

m12 =−0.36, m21 = 0, and m22 = 1, which are computed using the passivity indexes of the

controllers.

8.3 Deployment

The deployment stage consists of several steps: code generation, compilation, timing

analysis, scheduling, and testing of the HIL simulation. The objective of the code gen-

eration is to convert the discretized and quantized Simulink models into C code that will

be executed in the HIL platform. This procedure involves the Simulink Coder (previously

called Real-Time Workshop) which automatically generates the necessary C code using the

the available bits in a word and the value ranges (Q format) [174]. The Simulink Coder

generates code with proper computation according to the chosen fixdt. The code generated

from the Simulink models is in C, which needs to be compiled in order for deployment on

the platform. In this procedure, we use gcc-4.2.4 together with the TTEthernet configu-

ration file generated by the TTTech tool-chain to compile the generated C code, which is

linked with the provided TTEthernet driver to become a kernel module. This kernel module

does the computation and drives the Ethernet port of the ECU in a time-triggered fashion,

namely that there is a static schedule table specifying when to compute and communicate

based on a synchronized global time.

The objective of timing analysis is to compute the worst-case execution time (WCET) of

the control tasks. In our case, the procedure involves empirically measuring the execution

times of the designed control task (i.e. recording the time difference between each start and

end of the execution of the task) through multiple runs under multiple circumstances. In

our experiment, there are 12,000 measurements recorded, and we can plot them to observe

the distribution, as shown in Fig. 8.2 (in order to show the frequencies of the execution
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Figure 8.2: Histogram of worst-case execution times

times clearly, we use log10(number of times+1) on the y-axis).

Scheduling is the method by which processes are allocated to resources that complete

the processes. The underlying execution model of our testbed platform is a time-triggered

architecture (TTA) which maintains a synchronized global time base and requires a static

schedule table for both computation and communication. The objective of scheduling is to

generate a feasible static schedule for the control tasks and messages. In general, there are

many scheduling approaches for TTA combining computation and communication [175].

In our case, we have one control task whose WCET is almost negligible thus needing only

two time-triggered messages (one is for sensing and the other is for actuation). The mea-

sured WCET reveals that the computation is almost negligible (only about 30 µs) compared

to the sampling period (which is on the millisecond level), therefore the schedulability

problem becomes trivial in our experiments.
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8.4 Evaluation of Continuous-Time Design

The objective of the testing is to verify the correctness of the design and to record

simulation results that demonstrate its effectiveness. Our HIL simulation of the closed-

loop system consists of the same two minutes of running time as the continuous-time case.

We find that the discretized system will be passive given a sampling period smaller than

ts ≈ 65 ms by using the methods described in Section 7.1. We are able to guarantee that

the system will remain safe given the control parameters and the implementation effects.

The gain values of the controllers from Table 5.2 are verified to retain passivity given

sampling periods of 10 ms, 30 ms, and 50 ms. Information from the trajectory is encoded

into the vehicle model provided by CarSim, which is then given to the controllers via

the communication network. This procedure involves the implementation of the control

systems on the HIL architecture.

Using the constraints provided by passivity, discretization, and quantization, we select

control parameters so that the overall system remains passive. The gain values of the con-

trollers from Table 5.2 are verified to retain passivity given sampling periods of 10 ms, 30

ms, and 50 ms. Additionally, by implementing a transformation matrix M we are able to

guarantee that the control system retains passivity given quantization effects. After gener-

ating the C code from the six controllers, we computed the WCET to being 12 µs. The

safety conditions derived in Sections 6.2 and 6.3 are valid for vehicle velocities given a

maximum road decline angle of 15 degrees which corresponds to δg = 4200 N and a maxi-

mum lead vehicle deceleration of 5 m/s2 which corresponds to a braking distance of 50 m

from 80 km/hr to 0 km/hr.

Figure 8.3 shows the relative distance between the two vehicles under various sampling

periods on the top left subplot and the lateral acceleration of the host vehicle under various

sampling periods on the bottom left subplot. The figure also contains a legend on the

bottom right and the trajectory with approximate location circled using a purple circle on

the top right. The simulation results show that despite keeping to the objectives of speed
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Figure 8.3: Relative distances and lateral accelerations for BLT cases

and steering control, there is a noticeable difference between the different sampling periods.

As the sampling period increases the controller reacts more slowly to the behavior of the

lead vehicle. Passivity also degrades with greater sampling periods. We experimentally

computed the passivity indexes for the 10 ms case as (0.7,5.6), the 30 ms case as (0.4,5.4),

and the 50 ms case as (0.1,5.4).

8.5 Evaluation of Discrete-Time Design

In this section, we present the simulation results to illustrate the discrete-time safety

analysis approach and to show that the system remains safe. Simulation of the closed-loop

system consists of also two minutes of running time in which the host vehicle follows a lead

vehicle on the road. In all of the simulation results, the red curves pertain to the vehicle

in continuous-time, the blue curves pertain to the host vehicle under 10 ms conservative

time-discretization (CTD), the green curves pertain to the host vehicle under 10 ms bi-

linear transformation (BLT), the teal curves pertain to the host vehicle under 30 ms bi-

linear transformation, the yellow curves pertain to the host vehicle under 50 ms bi-linear
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transformation, and the magenta lines pertain to safety bounds.

Figure 8.4: Relative distance for all cases

Figure 8.4 shows the relative distance between the two vehicles for the continuous-time

case, CTD case, and the three BLT cases. Figure 8.5 shows the lateral acceleration of the

host vehicles for the continuous-time case, CTD case, and the three BLT cases. Ideally, we

want the results of the discretized cases to match that of the continuous-time case as much

as possible. The results indicate that although all of the systems behave in a safe manner,

only the CTD case is reasonably close to that of the continuous-time case. For the BLT

cases, the performance of the controller gets progressively worse as the sampling period is

increased.

Figure 8.6 contains a zoomed time-frame showing the relative distance between the

two vehicles in the CTD case on the top left subplot and the lateral acceleration of the host

vehicle under various sampling periods on the bottom left subplot. The figure also contains

a legend on the bottom right and the trajectory with approximate location circled using a

purple circle on the top right. The simulation results show that the results of the CTD case

matches more closely to the continuous-time case, especially when compared to the results
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Figure 8.5: Lateral acceleration for all cases

of Figure 8.3. We also include some results from other time frames to show the difference

between CTD and BLT schemes (Figures 8.7 and 8.8).

8.6 Summary

This chapter focuses on the HIL simulation platform, which provides a realistic envi-

ronment for the testing of automotive control systems. We analyzed the impact of imple-

mentation effects of discretization/quantization and how they affect the passive PHS frame-

work. We evaluated the continuous-time control design framework where the controllers

are discretized using bi-linear transformation and implemented on the ECUs with varying

levels of discretization and quantization. We also evaluated the discrete-time control design

framework where the controllers are discretized using conservative time-discretization and

implemented on the ECUs with varying levels of discretization and quantization.
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Figure 8.6: Relative distances and lateral accelerations for CTD case

Figure 8.7: Relative distances and lateral accelerations between 46.5 - 51.5 s
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Figure 8.8: Relative distances and lateral accelerations between 54 - 59 s
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Chapter 9

Conclusions

The increased growth and advancements in the area of cyber-physical systems (CPS)

has resulted in many research topics in the modeling, simulation, and control design of

CPS in order to ensure properties such as safety and stability. The goal of this dissertation

is to address the various challenges facing the development of CPS. Research in CPS will

continue to grow and expand as new techniques and methods are introduced.

9.1 Summary of Contributions

The pervasive theme of the work presented in this dissertation is the use of port-

Hamiltonian systems (PHS) as a tool/framework for the modeling, designing, and ana-

lyzing of CPS. The main advantage of PHS is that they are compositional and hierarchical;

its passivity property enables the use of passivity-based control design methods. Addition-

ally, we can analyze the safety property of the system by using the Hamiltonian function as

a barrier. We summarize our contributions as follows:

• Component-Based Modeling and Simulation using Port-Hamiltonian Systems: We

developed a domain specific modeling language called PHSML for the composi-

tional modeling of CPS. PHSML is integrated with constraint definitions which en-

force connection rules and interpreters which exports structural data of the model

into MATLAB scripts. The MATLAB functions generate the Dirac structure, con-

stituent equations, and Hamiltonian functions of each PHSML component. A case

study of an engine-dynamometer model is presented. We developed a component-

based method of simulating systems built using PHSML by deriving acausal models

of computation and implementing Modelica code. We also derived causal models of

computation and implemented them in Simulink.
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• Compositional Model-Based Control Design Using Port-Hamiltonian Systems: We

developed a compositional control design framework based on PHS. The main idea

of this control design framework is the use of the Dirac structures of PHS which al-

lows the closed-loop system to preserve passivity. We presented simulation results of

an automotive control system integrating speed control and steering control, which

inspired us to use the framework as the initial stage of a model-based design method-

ology. We recorded simulation results which show the effectiveness of the design

framework.

• Safety Analysis of Automotive Control Systems Using Port-Hamiltonian Systems: We

developed a safety analysis method based on multi-modal PHS which utilizes the

Hamiltonian function as a barrier certificate. Safety of the system is proven by iso-

lating the safe and unsafe regions of state space and showing that trajectories cannot

connect them. Consequently, we derive conditions on the model and control param-

eters which lead to safe behavior. We presented two case studies using automotive

control systems and demonstrated both collision avoidance and skidding avoidance.

We recorded simulation results which show the effectiveness of the safety analysis

approach.

• Discrete-Time Safety Analysis of Automotive Control Systems: Motivated from the

fact that passivity degrades during discretization, which may invalidate the continuous-

time safety analysis method when implementing the system on a hardware-in-the-

loop platform. As a result, we alter the discretization scheme using conservative

time-discretization on multi-modal PHS which is able to preserve passivity in the

event of discretization. We presented a case study in which the discrete-time safety

of an automotive control systems shows that unsafe behaviors such as collision and

skidding are also avoided.

• Evaluation and Validation Using Hardware-in-the-Loop Platform: We implement
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the control design on a hardware-in-the-loop simulation platform. We analyzed the

impact of implementation effects such as discretization and quantization. We evalu-

ate the model-based design process where the controllers are implemented on ECUs

with varying levels of discretization and quantization. These controllers are con-

nected through a time-triggered communication network with the physical model of

a vehicle provided by CarSim. We recorded results from the continuous-time imple-

mentation and the discrete-time implementation which show the effectiveness of the

platform.

9.2 Future Work

The work presented in this dissertation can lead to many opportunities for future work.

Passivity index is a concept commonly utilized to demonstrate the degree of passivity of a

system and a lot of research has been done to use passivity index to design compensators

dealing with delays. Given how PHS is useful for trajectory control (specifically using

canonical coordinate transformations), and the relationship between PHS and passivity in-

dexes, we believe that there may be some potential for research to bridge the concepts,

allowing passivity indexes to be effectively used for trajectory control.

We also consider some future work for extending the safety analysis method from Chap-

ters 6 and 7 further. The main motivation for extension results from obstacle avoidance,

specifically obstacles which move either predictably or randomly. Currently the methods

are implemented so that the energy bounds for safe and unsafe states do not change, which

leads us to believe that the methods cannot be applied to moving obstacles. Given energy

bounds which change with respect to time, we can assume that as long as these bounds do

not overlap and the system retains passivity, the safety property should also hold. A rea-

sonable amount of alteration may be required to prove the safety property when the bounds

change.
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