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CHAPTER I

INTRODUCTION

Emerging trends. The technology requirements of various domains are increasing,

such as distributed platforms are commonly in use, the quality of service requirements

of embedded systems are increasing as the hardware underneath grows powerful, cus-

tomers ask for platform independent software and interoperability, etc. Application

developers mostly rely on third party middleware, tools and libraries (i.e., web servers,

distributed middleware such as CORBA, etc.) to respond the emerging trends of their

target domain. However, the variability in the application domains and their require-

ments on the Quality of Service issues enforce middleware to be a one size fits all

solution. The answer of the middleware developers to this trend is to provide flexible,

highly customizable and open source middleware to the application developers.

Challanges of customization. The flexibility and the customization of the mid-

dleware reflects to the application developers as options to configure for their specific

domain and applications and a highly customizable middleware present a huge con-

figuration space for application developers to learn and modify. For example CIAO

(Component Integrated ACE ORB), which is an open source CCM (Corba Compo-

nent Model) implementation, provides hundreds of options at compilation stage and

for setting up the run-time behavior of the ORB (Object Request Broker). Obviously,

the configuration of such a huge set of parameters require a great deal of knowledge

and produce various challenges which we can classify as follows:

1. Lack of synchronized documentation. The application developers may not

have in depth information about the techniques used in the middleware and
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certainly it can not be expected them to know the infrastructure and the imple-

mentation details of the middleware. Ideally, the middleware is shipped with all

the required information for application developers to configure and customize

the middleware. However, the configuration options and the assumptions about

them may not be synchronized with the documentation, may be outdated and

even the documentation may not exist for some cases.

2. Accidental complexities of configuration. Providing documentation about

the middleware configuration does not reduce the accidental complexity of con-

figuring middleware. The specific way of configuring various parts of middleware

provides potential misuse and it may cause run-time failures or performance de-

crease. If the middleware used is open source software the configuration process

may require writing source files before the compilation process, for example users

of CIAO may require to edit various macro and C++ header files manually for

customazing the middleware for certain behaviors or platforms.

3. High load to the middleware developers. Writing detailed documenta-

tion and updating it with the evolving implementation put a high load to the

middleware developers. This process requires extensive work and research, and

therefore may be omitted by the middleware developers. Furthermore, the MW

developer may not have enough information or visualization about the platforms

where the system works.

The problems described above are shared among DRE applications, and a way to

resolve these challenges is to provide tools to simplify and automate the configuration

and customization process. For this purpose we have focused on model-driven develop-

ment (MDD) methodology and developed Option Configuration Modeling Language

(OCML) for the use of both middleware developers and application developers. In
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this thesis OCML with its various aspects and features and how is it applied to resolve

the described challenges is explained.

Thesis organization. In Chapter II we analyze the MDD approach to the middle-

ware configuration and describe the modeling aspects of OCML. In Chapter III we

describe how do we resolve the accidental complexities of middleware configuration

with the OCML Configurator user interface and demonstrate the constraint enforcing

mechanism. In Chapter IV we define the Configuration and Customization patterns

and how we minimize the load to the middleware developers. In Chapter V we de-

scribe the generative aspects of OCML. In Chapter VI we demonstrate the use of

OCML with examples and present result analysis.
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CHAPTER II

MODELING THE CONFIGURATION SPACE

The documentation about the configuration options and the assumptions about

them are not synchronized with the software and even the documentation may not

exist for most of the cases. Understanding and setting up the huge configuration

space of third party tools and libraries used by system developers like distributed

middleware is practically impossible without clear and structured documentation. To

eliminate this problem we have developed a systematic approach for keeping the track

of configuration options and the constraints, which confirms to the assumptions the

developer made.

In this section we demonstrate how the model driven development methodology

is used in the solutions of the challenge 1 and 2 explained in the Chapter I. Our

primary focus is on the CIAO component middleware which is used mostly on DRE

applications with critical QoS requirements. Firstly, we explain the configuration

model of the CIAO middleware. Then we explain the general principles about the

modeling of option configurations and finally show how we use OCML to model a

middleware configuration.

A highly customizable middleware: CIAO (Component Integrated ACE

Middleware.) In this section we are focused on the configuration of ACE (Adap-

tive Communication Environment) middleware. ACE [8] is a highly customizable

host infrastructure middleware providing uniform APIs for common operating sys-

tem functionality. Most of the operating systems provide similar functionality (i.e.,

inter process communication, concurrent execution and synchronization, signal han-

dling, file I/O, etc.) in various fashions (like, posix, win32, etc.) ACE aims to unify
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the access to this functionality in a C++ programming language environment [15].

An important property of ACE is it is used in TAO [7] (The ACE ORB) and CIAO [6]

(Component Integrated ACE ORB) distributed middlewares to access the OS func-

tionality in a unified way. ACE is an open source library which is freely distributed

together with TAO and CIAO. Although ACE can be used in any application de-

signed with platform independence in the mind, it is specifically designed to be used

in applications with high performance and real time communication requirements.

One may configure ACE according to the application needs and also may compile to

decrease the footprint and latency by omitting the functionality not required by the

specific application.

The increase in the portability, effiency and predictability results in a huge con-

figuration space. As an example the compile time configuration of ACE middleware

is composed of (1) a C++ header file containing platform specific macros and def-

initions, (2) a Unix style makefile containing platform specific macros and compile

flags, (3) a features file containing various flags representing the system capabilities

and available libraries and their respective values stating whether they are available

or not, (4) various environment variables pointing the location of the source tree and

various libraries required by the compilation process. ACE source code comes with

templates for each of these configuration files. The configuration files (1) and (2)

are generally consistent for a specific operating system and a compiler combination,

however when system requirements are out of the general assumptions made at the

time of writing the template files (i.e., using a new compiler or an operating system

for which there is no template file, or a different standard library other then the ones

which come with the compiler) the application developer should change the configu-

rations manually. The configurations (3) and (4) should most of the time be edited

by the application developer because it contains flags for the availability of specific
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libraries (i.e., ssl, zlib, various GUI toolkits) and information about those libraries

(location on the file system and versions.)

Structured configuration. The configuration options for various middleware and

applications share a common structure. An option can have a value of basic data type

such as an integer and a real number, a string, or a logic value. The configuration

options can be grouped into hierarchical structures. In the ACE example, we can

group the configuration options as given in the previous paragraph (C++ configura-

tion, unix makefile configuration, features, and environment variables.) In addition

to the basic types some configuration options may have a complex data structure like

C++ struct types, an example for these kind of options is the Property Value defined

by the OMG’s Property Service [14] (defined as IDL any type) and Component Prop-

erty fields of OMG’s (http://www.omg.org) DnC standard. We can also include the

description of these options into the structure, i.e. we can have documentation about

the options and their possible values in the data type definition.

W3C (World Wide Web Consortium) (http://www.w3.org defines a standard way

to orginize structured data. XML Schema [20, 1] is a data type definition language

in XML format. While the most of the common basic data types are defined in

the XML Schema, there are methods to define complex data types like sequences

composed of same types and structures composed of heteregenous data types. XML

Schema Definition language specifies a standard way to include structured information

about the data types in the documentation with ”annotation” and ”documentation”

elements. In XML Schema definition language someone can define basic constraints

about the types via restriction mechanism.

OCML Workflow. This section describes the novel dual use feature of OCML.

OCML has two phases, which are used by both the DRE system developer and the
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middleware developer. Figure II.1 depicts the OCML workflow diagram showcasing

the dual use of the OCML tool that can be used both by QoS-enabled middleware

developers and DRE system developers. The rest of the section describes the dual

use feature of the OCML generative programming tool.

Figure II.1: OCML Workflow

Figure II.1 represents the dual use of the OCML tool. The steps are explained

below;

• Step 1: Middleware developer uses OCML to model the options, categorize

them in a hierarchical order and define the rules governing their dependencies.

At this stage the OCML tool is used as a modeling language to create the model

specific for a middleware platform.

• Step 2: When the middleware specific OCML model is interpreted through the

OCML interpreter, HTML documentation and CFG application source code is

produced. The middleware configuration layer which consists the steps 1 and
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2 in Figure II.1 is hidden in the DRE System Developer, she only uses the

generated files.

• Step 3: The DRE System Developer uses the generated CFG application to

set up the configuration of a specific application. In this step the generated

HTML documentation can be used as a reference sheet for the middleware con-

figuration. The design made by the DRE System Developer is checked against

the constraints defined in the OCML rule paradigm on-line, which minimizes

the risk of choosing wrong set of options.

• Step 4: The selected options are exported into files used by the middleware to

configure the system.
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CHAPTER III

ENFORCING CONSTRAINTS AND

CONFIGURATOR GUI

Even though a model for the configuration space and the related constraints are

defined, the configuration process still has potential for accidental complexities. An

application developer or system operator may implement the configuration process

wrong and define invalid or not-intended configurations for the application. Providing

an environment for configuring applications is useful to resolve this challenge. We have

developed an Option Configurator user interface for application developers and system

operators to use while configuring their applications and systems. The constraints

defined in the configuration model are strictly enforced by this user interface.

The Configurator user interface allows the application developer to enter values

for a specific configuration space defined in an XML schema file and corresponding

constraint definitions. The values entered by the application developer are kept in an

in-memory representation of the schema values. The stored values are then exported

into an XML formatted string confirming to the given XML schema file. OCML

Configurator is implemented as a library so that an external application can invoke

the user interface, feed the interface with some default values and get the updated

value, if necessary transform it to a different format via an XSLT [3] process or via

code.

The XSD (XML Schema Definition) provides a way to define basic constraints

on the data types like specifying minimum and maximum values for numeric types,

patterns and length constraints for textual types, however there is no way of defining

complex constraints involving more than one type and capturing dependencies on

each other. OMG defines an Object Constraint Language [13] (OCL) for complex
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constraint definition. OCL is tightly coupled with UML [12] to define the constraints

of the objects defined in a UML model. OCL provides detailed control over the

constraints on UML Objects and therefore the dependencies between different data

types can be handled by OCL however OCL is tightly coupled with the UML and

UML is a language specific for objects while the XSD is used to define data only (i.e.

there are no ways for specifying objects with methods in XSD.)

In OCML we are using a simplified OCL like constraint definition language for

handling the inter type dependencies. The defined constraints are executed by a con-

straint engine. There are two main roles of the constraint engine (1) validates the

data given by the user against the predefined constraints (2) if there is a constraint

violation tries to validate the constraint by modifying the data. In the execution pro-

cess the defined constraints are compiled into a first order logic expressions together

with the every data entry by the user. The generated expressions are in the format

of prolog expressions, and are fed into a prolog interpreter. Finally the changed val-

ues in the constraint validation process are queried by the engine and the memory

representation of the values are updated accordingly.

As shown in the Figure III.1 there are two actors interacting in a configuration

scenario Configurator User Interface and the Constraint Engine. We can demonstrate

the interaction process in six steps, which are labeled with numbers in the figure.

1. The XML Schema file representing the structure of the configuration space is

parsed by the Configurator. The user interface is created dynamically on the

fly according to the XML Schema file. Each element of the data structure is

mapped to an appropriate visual data entry element (i.e. numbers to number

entry boxes.)

2. The Constraint Engine parses the file containing the constraints and creates the

logic structures which are used to validate the data.
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Figure III.1: OCML Internal Interaction

3. The XML data, which confirms to the XML scema, is loaded into the memory.

This data contains the previously stored values of a specific configuration.

4. After the parsing and the initiation of the OCML, the user entry is expected.

Each action taken by the user, by changing the values in the user interface

triggers the Constraint Engine.

5. Whenever triggered the Constraint Engine checks for the newly entered or mod-

ified data and checks for any constraint mismatch. If the data entered by the

user does not confirm to the constraints, the engine first tries to find a possible

solution by changing the effecting values, if finds a solution applies. If there is

no such solution the change is rolled back and the user gets a warning stating

that the value change request cannot be done by giving detailed information

about the constraint.

6. Finally, the changed values are stored back into the XML file.
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The OCML constraint engine is integrated with the OCML configurator user

interface. The user interaction is filtered through the constraint engine, such as every

entry of the user triggers the constraint engine and the engine checks for the given

value if it satisfies the direct or indirect dependencies. The in memory representation

of the value space is always correct in terms of the given constraints therefore the

exported values are correct by construction.

OCML Configurator is a dialog window generated on fly according to the given

XML Schema file. The basic XSD types integer, string, and boolean values are

represented with basic GUI value entry widgets numeric and text entry fields and

check boxes. The enumerated fields are represented with radio boxes. The XSD

complex sequence fields are displayed in a tree-like format to reflect the structural

relationship between the elements of the same complex type.
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CHAPTER IV

DEFINING HIGH LEVEL CONFIGURATION

MODELS

Configuring the dependent tools and libraries of an application require an ex-

tensive knowledge about the way that specific library or tool works and the way it

should be configured, however the system operator or an application developer may

not have such a detailed knowledge about the dependent systems and configurations.

To eliminate this challenge we provide a functionality to define high level configura-

tion options in the configuration space, the higher level configuration maps to the low

level configuration options and provide an intuitive way for configuring applications.

The constraint definitions are used to define this mapping.

In this chapter we explain the Configuration Patterns and how they are related

with the software design patterns. Then we briefly explain the Aspect Oriented Do-

main Specific Modeling Languages (AODSMLs) and how we have used Aspect Ori-

ented Programming methodologies to apply configuration patterns.

Configuration patterns. Software design patterns assist developers to document

and reuse the solutions for the generic development problems. The software facto-

ries [4] concept is highly influenced with the software design patterns which intends

to industrialize the software development process and bring an approach like product

line architectures.

The different QoS requirements of applications in different domains have com-

mon configuration patterns. It is necessary to define recurring configuration pat-

terns for defining a high level set of configuration for a specific application domain.

Furthermore the libraries and middleware for a specific domain share a certain set
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of terminology. The people using the provided software is expected to master this

terminology therefore the configuration parameters of an application should be rep-

resentable according to this terminology. A high level configuration set defined in a

familiar terminology to the application developer and the systems operator, which

also represents the system requirements can be accepted as an intuitive way of con-

figuration.

Aspect Oriented Domain Specific Modeling Languages (AODSMLs) AODSMLs

are modeling languages based on aspect oriented programming methodology. They

extend the conventional domain specific models by specifying pointcuts in the model-

ing level, instead of the programming level which is done by conventional aspect ori-

ented programming languages, like AspectJ [19]. We use aspect oriented programming

methodology to define and document the DRE system concerns, (i.e. predictability,

interoperability, scalability, etc.)

In a middleware configuration parameter space, in which a DRE system config-

uration parameters are defined as vectors of specific coordinates, DRE systems with

similar QoS requirements can be grouped together. In these kind of systems the

configuration parameters are generally shared and they show only small differences

(i.e., very few varying configuration parameters.) The groups defined by the relative

small distance of the configuration parameters can be mapped onto the DRE system

concerns. By defining such a mapping between the configuration parameter space

and the DRE system concerns we can provide an intuitive higher level configuration

methodology for DRE middleware configuration process. The weaving of the con-

cerns results with configuration files required by a specific middleware (such as XML

configuration files for a CORBA Component application.)
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CHAPTER V

CODE GENERATION

Generating the code and configuration by using the configuration space is a good

idea, to eliminate the accidental complexities and minimizing the development time.

The code generation add-ons are integrated with the Configurator GUI and automat-

ically generate the configuration settings in the form which the tools and libraries are

expecting.

OCML Configurator as explained in the section III is a graphical user interface

in which the middleware configuration is done by the application developer. The

user may save the current configuration in a file for further use, however one of

the main advantages of using the OCML Configurator user interface comes from its

expandability. While the Configurator user interface is a generic data entry form, the

middleware developers can extend it to generate the configuration data in the form

which the specific middleware expects. For example, the CIAO middleware expects

a service configuration file which is loaded by the ORB at the initialization time to

configure itself. The service configuration file can be in two different forms, one is a

text file and the other is a XML file.

Figure V.1: Extending Configurator with add-ons

As shown in the Figure V.1 there are two ways to extend the OCML Configurator.
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(1) Writing an XSLT script which accepts an XML file, which confirms to the XML

Schema presented to the OCML configurator (which is used to generate the user

interface) and generates a XML or textual output in the form which is expected by

the middleware. (2) Writing a C++ code, which traverses the given XML file and

generates an output similar to the XSLT script described above.

Configuration of CIAO component middleware. CIAO (Component Inte-

grated ACE ORB) is an open source distributed and highly flexible middleware. To

provide flexibility for the application developers CIAO provides various methods for

configuration which can be grouped in two categories (1) compile time configuration

and (2) run-time configuration. The CIAO source code can be freely downloaded from

the internet http://deuce.doc.wustl.edu/Download.html. Although the precom-

piled binaries for various target platforms are available, downloading the source code

and compiling it has various advantages, like decreasing the foot-print by eliminat-

ing the parts not required by the application from the build step, optimizing for a

specific host and operating system platform, etc. CIAO is generally used in the em-

bedded systems, therefore footprint and performance are crucial for the application

developers.

It is also possible to configure CIAO at run-time, the service configuration frame-

work [16] provided by the ACE host infrastructure middleware (the very basic layer

on which the CIAO is built.) The run-time configuration settings are written in

a specifically formatted file, the CIAO ORB parses this file at initialization time.

Through various hooks in the middleware, the initialization process selects various

strategies and sets various parameters according to the given configuration file.
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Demonstrating Weaving Capabilities of OCML in CIAO

In this section we show the generated code from the OCML model interpreters.

The code snippet illustrated corresponds the following configuration parameters for

the ACE+TAO open-source C++ based CORBA middleware. Table V.1 illustrates

the input configuration settings to the OCML paradigm. Below we illustrate the

Notation Option Name Option Settings
o1 ORBProfileLock {null}
o2 ORBClientConnectionHandler {RW }
o3 ORBTransportMuxStrategy {EXCLUSIVE }
o4 ORBConnectionCacheLock {null }
o5 ORBPOALock {null }
o6 ORBAllowReactivtionofSystemids {0 }
o7 ORBReactorMaskSignals {0 }
o8 ORBInputCDRAllocator {null }
o9 ORBConnectionCacheLock {null }

Table V.1: A Sample Configuration Space for ACE+TAO

XML configuration file generated for the input configuration options

<?xml version=’1.0’?>

<ACE_Svc_Conf>

<static id="Advanced_Resource_Factory"

params="-ORBReactorMaskSignals 0

-ORBInputCDRAllocator null

-ORBReactorType select_st

-ORBConnectionCacheLock null

"/>

<static id="Server_Strategy_Factory"

params="-ORBPOALock null

-ORBAllowReactivationOfSystemids 0

"/>
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<static id="Client_Strategy_Factory"

params="-ORBTransportMuxStrategy EXCLUSIVE

-ORBProfileLock null

-ORBClientConnectionHandler RW

"/>

</ACE_Svc_Conf>

The generated configuration files is organized hierarchically into three different fac-

tories for configuring the middleware at the server (Server Strategy Factory) client

(Client Strategy Factory) and client and server (Advanced Resource Factory).

The options themselves are set using the Service Configurator [9] pattern.
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CHAPTER VI

APPLICATION SCENARIOS TO SHOWCASE

C&C PATTERNS

This section describes how our work on C&C patterns can be applied across

diverse domains, including the distributed real-time and embedded systems domain

and enterprise warehouse management domain. We first provide an overview of the

two representative applications in these domains. We then illustrate the configuration

challenges of components in these applications . Finally, we show how C&C patterns

can be used to address the configuration challenges of components present in these

domains.

Boeing Avionics Scenario

In Boeing’s Basic SP scenario [17], a GPS device sends out periodic position up-

dates to a GUI display that displays these updates to a Pilot. The desired data

request and the display frequencies are fixed at 40 Hz. The BoldStroke architec-

ture uses a push event/pull data publisher/subscriber communication paradigm. The

component interaction for the navigation display example is depicted in Figure VI.1.

The scenario shown in Figure VI.1 begins with the GPS being invoked by the TAO

Figure VI.1: Navigation Display Collaboration Example

Real-time Event Service [5] (shown as a Timer component). On receiving a pulse

event from the Timer, the GPS generates its data and issues a data available event.
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The Airframe component retrieves the data from the GPS component, updates its

state and issues a data available event. Finally, the Nav Display component in turn

retrieves the data from the Airframe and updates its state and displays it.

QoS requirements for Avionics Components Given this scenario, we would

like to minimize the latency between the Airframe and Nav Display components.

To achieve, this goal, it is necessary to examine the Qos attributes/concerns of the

two components and map them to corresponding configurations. We assume the

application is configured appropriately. We see that the display receives updates

only from the Airframe component and does not send messages back to the Airframe

component. It thus plays only the role of a client. Similarly, the Airframe component

communicates with both the the GPS and the Display playing the role of a peer.

However, this component does not concurrently process requests as the events are

sequential.

Robot Assembly Scenario

In this manufacturing assembly line based scenario, a pallet (controlled by the

Palette Manager component) containing digital watches moves to a robot station

(controlled by the Robot Manager component) where its time is set using the current

time provided by a periodic clock (controlled by a Watch Manager. The management

for the watch setting facility located at a remote site, can send production work orders

and receive response to orders, ongoing work status, inventory, and other messages.

These instructions are sent to the WM component using Management Work Instructions

(MWI) component. The WM component interacts with a human operator who using

the Human Machine Interface component (HMI) accepts/rejects the watch. When

the watch is accepted, the WM component uses the RobotManager to set the time.
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However, when a watch is rejected, the RobotManager removes the watch from the

assembly line. Figure VI.2 illustrates this assembly of components.

Figure VI.2: Robot Assembly scenario

QoS requirements for Robot Assembly components As with the avionics

scenario, in this case, the round-trip latency between the Watch Manager and the

Human Operator needs to be minimized to improve the efficiency of the product line.

To achieve this goal, the application developers need to configure the underlying mid-

dleware and the individual components to minimize latency. Similar to the Display

component, the HMI component only plays the role of a client as its only source is

the Watch Manager component. The Watch Manager however, is at the heart of the

scenario interacting with all other entities. However, it (like the Airframe component)

does not process requests concurrently, because the decision to accept/reject a watch

is made by the Human Operator sequentially. Hence its characteristics are similar to

that of the Airframe component.

Hypotheses

In this study, we explore the following high level hypotheses:
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• The modeling tools enable capturing the QoS requirement, i.e., end-to-end la-

tency and the configuration space for the scenarios.

• The Nav Display and Human Machine Interface components having similar

QoS requirements/concerns, should have the underlying middleware configured

the same way to satisfy the QoS requirements. The same for the Airframe and

Watch Manager components.

CCV Patterns Identification Process

We applied the following step-wise process to document CCV patterns.

Choosing Subject Application We used ACE v5.4.2 + TAO v1.4.2 + CIAO

v0.4.2 for this study. CIAO is a QoS-enabled implementation of CCM being de-

veloped at Washington University, St. Louis and Vanderbilt University to extend

TAO [11] to support components, which simplifies the development of DRE applica-

tions by enabling developers to declaratively provision QoS policies end-to-end when

assembling a system.

Modeling Component Interactions Use CoSMIC modeling environment to build

the application scenario. To conduct the QA task, this phase involved modeling the

artifacts, i.e., elements involved in the scenario. Figure VI.3 illustrates how the Robot

Assembly component interactions were modeled in CoSMIC. The models were then

checked for constraint violations and XML meta-data needed for deployment was

generated from the models.

Determining configuration space Select a set of middleware C&C options using

the OCML tool that are expected to provide these QoS guarantees. The CIAO mid-

dleware provide over 500 configuration options, however not all of these correspond
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Figure VI.3: Depicting component interaction

to the QoS requirements for the components in our study. For example, the Navi-

gation Display and HMI components do not need to consider server side options as

they only act as clients. Thus the first step involved narrowing down the configura-

tion space via examination. Table VI.1 shows the relevant configuration options for

the aforementioned components. Further examination of this reduced configuration

Notation Option Name Option Settings
A ORBReactorMaskSignals {0, 1}
B ORBInputCDRAllocator { null, thread}
C ORBReactorType { select st, mt}
D ORBProfileLock {thread, null}
E ORBObjectLock {thread, null}
F ORBConnectionCacheLock {null, thread}
G ORBClientConnectionHandler {RW, ST}
H ORBTransportMuxStrategy {EXCLUSIVE, MUXED}
I ORBConnectionPurging {LF, reactive}

Strategy
J ORBConnectStrategy {LF, reactive}

Table VI.1: Configuration Space for Display based Components

space, reveals that some of the configurations settings can be a priori i.e. without

experimentation. For example, both components interact with only one source and

do not need synchronization or locking. These option settings (options o1 - o5) can be

directly determined (shown in bold) as shown in Table VI.1. For the remaining config-

urations, where both options are suitable, the suitable configurations are determined

experimentally. For the Watch Manager and Airframe components the configuration

space was determined in a similar manner. Table VI.2 illustrates the configuration

space. Note that apart from the (K-L) options shown in the table, options (A-E)
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Notation Option Name Option Settings
K ORBReactivationOfSystemIds {0, 1}
L ORBPOALockType {thread, null }

Table VI.2: Configuration Space for WatchManager and Airframe Components

shown in Table VI.1 are also relevant to these components. After determining the

relevant configurations, we use our OCML tool to generate the configuration files for

all four components.

Navigating Configuration Space For the configuration space chosen, run the

generated benchmarking tests to evaluate QoS. The Skoll framework is leveraged to

schedule the individual experiments and navigate the configuration space. Figure VI.4

shows how Skoll builds a configuration model to schedule experiments on host ma-

chines. For each such constrained C&C set in step 4, run the generated benchmarking

tests to evaluate the QoS.

Figure VI.4: Integrating MDD tools with Skoll
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Identify Reusable CCV artifacts Repeat the above process for both the sce-

narios and analyze results from the configuration space to identify clusters of con-

figurations that influence QoS the most. If these patterns are also shown on other

platforms/domains then the configuration can be factored out as a reusable artifact.

Use representative Deployment Scenario To empirical evaluate the configura-

tion and identify the recurring settings, we used the testbed as shown in Table VI.3.

The individual computers themselves then were connected via Local Area Network

(LAN). This configuration simulates a deployment scenario where these components

will be deployed on different nodes or embedded within processor boards.

DOC ACE Tango
CPU AMD AMD Intel
Type Athlon Athlon Xeon
CPU Speed (GHz) 2 2 1.9
Memory (GB) 1 1 2
Cache (KB) 512 512 2048
Compiler (gcc) 3.2.2 3.3 3.3.2
OS (Linux) Red Hat 9 Red Hat 8 Debian
Kernel 2.4.20 2.4.20 2.4.23
Avionics Trigger Airframe GPS

Nav Display
RobotAssmbly Watch Manager Palette Manager HMI

Robot Manager
MWI

Table VI.3: Testbed and Deployment Summary

Result Analysis

In this section we analyze the results obtained from our experimentation process

and showcase reusable CCV artifacts that apply to the components in both domains.

The experimental process described earlier showed how our tools help in capturing
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HMI Component
Setting Latency

(µsecs)
(G1, H1, I2, J2) 64.70
(G1, H1, I1, J2) 65.10
(G1, H1, I2, J1) 65.40
(G1, H1, I1, J1) 65.60
(G1, H2, I2, J2) 65.80
(G1, H2, I1, J1) 66.50
(G1, H2, I1, J2) 68.11
(G1, H2, I2, J1) 68.19
(G2, H1, I1, J2) 68.30
(.............................................)

Scenario 1

Nav Display Component
Setting Latency

(µsecs)
(G1, H1, I2, J2) 504
(G1, H1, I2, J1) 528
(G1, H1, I1, J2) 529
(G1, H1, I1, J1) 532
(G1, H2, I1, J1) 536
(G1, H2, I2, J1) 548
(G1, H2, I1, J2) 552
(G1, H2, I2, J1) 562
(G2, H1, I2, J2) 568
(.............................................)

Scenario 2
Table VI.4: Latency QoS distribution for the HMI, Nav Display Components

Airframe Component
Setting Latency

(µsecs)
(K0, L0) 452
(K1, L0) 459
(K0, L1) 462
(K1, L1) 467

Scenario 3

Watch Manager Component
Setting Latency

(µsecs)
(K0, L0) 55.5
(K1, L0) 56.8
(K0, L1) 59.6
(K1, L1) 60.2

Scenario 4
Table VI.5: Latency QoS distribution for Airframe Watch Manager Components
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the QoS and configuration concerns present in both the Avionics and RobotAssem-

bly domains thus addressing first hypothesis. Table VI.4 tabulates the latency dis-

tributions for the client-side display based components. We use the notation A1,

B2, etc. to identify the individual options within each category. For example, the

ORBConnectStrategy value of LF is denoted as J1. The top 8 configurations (out of a

possible 16) are shown in increasing order of latency values. A closer look at the val-

ues reveals a clear pattern of configuration options and its effect on QoS (end-to-end)

latency. For example, the options G1 has the greatest effect on performance, i.e.,

changing its value to G2 increases latency by ∼ 4µsecs for the RobotAssembly and

by ∼ 50µsecs in the second case. After G, the option H influences latency the most,

i.e., changing its value from H1 to H2 worsens latency by ∼2µsecs in the first case

and by ∼30µsecs in the second case. Table VI.5 shows the results for the Airframe

and Watch Manager components. We see that the settings for L have the greatest

influence on latency, i.e., changing its value along increases latency by ∼8µsecs in the

Avionics case and by ∼4µsecs in the RobotAssembly case.

The categorization of the latency values, enables us to use clustering analysis to

create distinct sets of tuple spaces, i.e., (xi, val(xi)...xn, val(xn), where xi denotes

a configuration and val(xi) its settings. All the elements in the set being closely

related. The sets themselves can be visualized as being separated by hamming dis-

tances. Where moving from a configuration in one set to another results in an im-

provement/degradation in the QoS measures. As shown in the Table VI.4, the top 4

configurations for both the components are put in a set and the next four configura-

tions form another cluster. Analyzing the the cluster also reveals a pattern, we see

that the topmost configuration produces the best end-to-end latency values for both

cases. This configuration identified and codified empirically can be reused (along with
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the configurations chosen by examination) to directly generate the most appropriate

middleware configuration.

The codification of the configurations, also enables them to be reused as a CCV

pattern. A design pattern presents a solution to a common software problem within

a particular context [2]. A CCV pattern is similar to a design pattern in that it

represents a recurring solution to a configuration and customization problem aris-

ing within a particular context, e.g., for similar concerns across multiple domains.

Our results showed that (1) same configuration satisfies the QoS requirement for two

components having similar operational context across multiple domains, and (2) The

configurations were the same independent of the underlying platform (hardware, OS

and compiler)1. CCV patterns help in modularizing the cross-cutting configuration

concerns aiding their reuse across several application domains, thereby minimizing

unnecessary effort expended in rediscovering these patterns for each application do-

main. These configurations can also be fed-back into the modeling tools to directly

generate the most suitable configuration given the Qos requirement/concern. For ex-

ample, the OCML tool can be used to generate the most appropriate configuration

given set of requirements.

1The Nav Display and HMI components were placed on DOC Tango Machines in our experiment,
each an entirely different platform as shown in Table VI.3.
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CHAPTER VII

RELATED WORK

Techniques for middleware configuration. A number of ORBs (such as VisiBroker,

ORBacus, omniORB, and CIAO) provide mechanisms for configuring and customizing

the middleware. For example, CIAO uses the ACE Service Configurator framework,

which can be used to statically and dynamically configure components into middle-

ware and applications. Likewise, Java provides an API for configuring applications

based on XML property files. Key/value pairs for specific options are stored in an

XML-formatted files and read by applications using XML parsers or a provided API.

The Microsoft .Net platform provides a similar approach to the Java XML prop-

erty files named .Net configuration files. The System.Configuration API can be used

to read the configuration. Using this API, .Net provides access to three different infor-

mation: (1) machine configuration files, which control machine-wide assembly binding

and remoting channels, (2) application configuration files, which control application-

specific configurations, such as assembly binding policies and remoting objects, and

(3) security configuration files, which contain security information for applications.

Editing text configuration files formatted with XML is common for .Net, Java, and

various CORBA and CCM implementations. OCML enhances the configuration of

various middleware platforms by providing an MDM methodology. From these OCML

models, documentation about the configuration of the middleware and a GUI inter-

face for middleware configuration can be generated automatically.
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CHAPTER VIII

CONCLUDING REMARKS

The OCML MDD tool provides a metaprogrammable interface to capture the

configuration concerns of QoS-enabled middleware. The OCML metamodel provides

extensible, platform-independent building blocks for representing configuration op-

tions of diverse middleware implementations. The generative capabilities of OCML

enable both syntactically and semantically correct configurations. OCML also gen-

erates documentation for the option space for QoS-enabled middleware, similar to

Javadoc [18] and Doxygen via annotations within the models. OCML can be applied

to both compile- and run-time options, whereas other approaches (such as Java’s

code-level meta-data annotations [10]) are only applicable to compile-time options.

OCML also enables separation of concerns, where middleware developers model the

middleware options and their constraints and application developers use the Config-

urator GUI produced from the OCML models to generate configurations suitable for

their domain. Application of Configuration and Customization Patterns is a novel

approach to middleware configuration domain. The main advantage of this approach

is to bring easy of use to the application developers.

OCML provides a framework for modeling the option configurations, in this work

we have mainly focused on the configuration model of CIAO middleware. For every

other tool or middleware the middleware developers need to design a model specific for

thaat middleware configuration and develop XSLT scripts or code to make appropriate

transformation from the OCML generated XML format to the configuration format

expected by the application.
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OCML is a tool to make easy the configuration process, it does not guarantee end-

to-end QoS. However, using OCML with the benchmarking tools is the recommended

way for ensuring QoS requirements.
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