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CHAPTER I 

 

INTRODUCTION 

 

 Chromosomal translocations disrupt master regulatory genes that control cellular 

proliferation, apoptosis, and the lineage decisions of progenitor cells [1, 2].  Indeed, a 

critical component in the development of acute leukemia is the shunting of stem cells or 

multipotent progenitor cells towards a specific lineage, which also must acquire the 

ability to self-renew, to give rise to a specific form of acute myeloid leukemia.  The 

Myeloid Translocation Gene on chromosome 16 (MTG16, also known as ETO-2 or 

CBFA2T3) and Myeloid Translocation Gene on chromosome 8 (MTG8, also known as 

Eight-Twenty-one or ETO) are disrupted by the t(16;21) and t(8;21), respectively.  In 

addition to mutations in acute leukemia, MTG8 and MTG16 have also been identified as 

candidate cancer genes in other tissues [3-5].  Although a great deal of information has 

been gathered about the molecular interactions of the MTG family members through the 

analysis of the leukemia-related fusion proteins, less is known about the physiological 

functions of this gene family.  Thus, the analysis of the normal functions of the MTG 

family is critical to our understanding of the development of acute leukemia, and how 

mutations of MTG family members contribute to tumorigenesis in other organ systems. 
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Acute Myeloid Leukemia (AML) 

 

Description of the disease 

 Acute myeloid leukemia (AML) is a heterogeneous disease of the blood-forming 

cells in the bone marrow (BM) and is the most common type of leukemia in adults.  The 

age-adjusted incidence rate for 2010 was 3.5 per 100,000 men and women per year, and 

the associated death rate was 2.8 per 100,000 men and women per year.  Upon onset of 

disease, immature leukemic cells rapidly accumulate in the myeloid lineage, usually with 

a block in their maturation, and prevent the normal blood cells from performing their 

regular functions.  Due to this replacement of normal BM cells with the leukemic cells, 

the signs of AML consist of a decrease in red blood cells, platelets, and normal white 

blood cells, which results in symptoms such as fever, weakness and fatigue, loss of 

weight and appetite, aches and pains in the bones or joints, and easy bruising and 

bleeding [6].  As an acute leukemia, the disease progresses quickly and can be fatal 

within weeks or months if it is not treated.  However, depending on the genetic 

abnormality that is present in the leukemic cells, a potential cure is attainable with 

continued research into future therapies.   

 Approximately 55% of adult patients with de novo AML typically contain non-

random chromosome translocations and/or gene rearrangements [7].   Several of these 

known gene rearrangements involve the juxtaposition of a transcriptional activator that 

retains its DNA binding motif with a protein that is capable of recruiting a corepressor 

complex [8]. Thus, a commonly accepted model for disease formation is that the fusion 

protein aberrantly recruits corepressor complexes to the DNA binding regions of the 
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coactivators.  This in turn alters expression of target genes necessary for myeloid 

development and thereby lays the foundation for leukemic transformation.  A total of 749 

recurrent translocations have been identified to date; however, the four most common 

recurrent fusion proteins are PML-RARα, AML1-ETO, CBFβ-MYH11, and MLL-

fusions, which together account for approximately 30% of AML cases [8].  It is 

commonly believed that the translocation fusion proteins target key hematopoietic 

regulators and thereby disrupt the normal differentiation program.  Although these 

translocations are very common and therefore important for disease formation, they are in 

fact weak oncogenes and are insufficient to cause leukemia by themselves.  This has led 

to the idea of a ‘two-hit’ hypothesis for leukemogenesis [7].  In general, the chromosomal 

translocations are often accompanied by mutations that affect receptor tyrosine kinases 

(RTKs), such as FLT3 and c-KIT, or N-RAS or K-RAS, which are downstream of the 

kinases [7].   

 

Core binding factor leukemias 

 Two of the most common translocations in AML disrupt the core binding factor 

(CBF) transcription factor, which is comprised of two subunits (Figure 1).  The CBFα 

subunit, AML1 (also known as RUNX1) is part of the RUNT family of TFs that 

possesses the RUNT DNA binding domain in its N-terminus [9].  The CBFβ subunit is a 

smaller protein that interacts with RUNX1 to enhance its binding to DNA.  The two most 

common translocations that disrupt these CBF proteins are the t(8;21) and inv(16), which 

produce the AML1-ETO and CBFβ-MYH11 fusion proteins, respectively [7].   
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AML1-ETO, t(8;21) 

 The fusion protein AML1-ETO is formed by the t(8;21) translocation, accounts 

for 10-12% of de novo AML [10-16], and is generally associated with a favorable 

prognosis [8]. This fusion protein links the N-terminal DNA binding domain of AML1 

(also known as RUNX1) to almost all of the Myeloid Translocation Gene on 

chromosome 8, MTG8 (also known as ETO or RUNX1T1) protein [13].  The t(8;21) 

translocation is found in approximately 40% of the French-American-British (FAB) 

subtype M2 AML, but it is not restricted to this subtype [6].  The FAB subtype M2 

classifies it as an AML with maturation.  As with other translocations in AML, AML1-

ETO requires cooperating mutations to promote leukemia.  Two of the most common 

genetic abnormalities that are associated with AML1-ETO are mutations in c-Kit and Flt3 

signaling molecules [7].  It is worth noting that a similar, yet rare, translocation exists 

between RUNX1 and a related family member of MTG8.  The t(16;21) translocation 

links RUNX1 with Myeloid Translocation Gene on chromosome 16, MTG16 (also 

known as ETO2 or CBFA2T3), and is associated with therapy-related AML [17].  

 RUNX1 is a transcription factor that activates transcription by recruiting 

coactivators to enhancer core motifs (TGT/cGGT), which are present in a number of 

genes involved in myeloid and lymphoid development [9].  It has been confirmed to be a 

master regulator of hematopoiesis, as RUNX1-/- embryos die due to hemorrhage and a 

complete lack of definitive hematopoiesis [18, 19]. To bypass the embryonic lethality, 

conditional deletions of RUNX1 have also been generated to determine the effects of 

RUNX1 on adult hematopoiesis.  Loss of RUNX1 in the adult mouse resulted in marked 

reductions in common lymphoid progenitors and mature B cells and maturation defects in 
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T cells and platelet production [20, 21].  Conversely, RUNX1-deficient mice contained an 

increase in myeloid progenitors and peripheral blood neutrophils, which resulted in a 

mild myeloproliferative phenotype.  Therefore, in addition to its requirement for 

definitive hematopoiesis, RUNX1 is important for hematopoietic differentiation of 

multiple lineages in adult hematopoiesis. 

 The MTG family interacts with repressor proteins such as histone deacetylases 

(HDACs) and nuclear receptor corepressor (N-CoR) to act as transcriptional 

corepressors. The AML1-ETO fusion protein contains the RUNX1 DNA binding domain 

such that it retains the ability to bind to RUNX1 target genes; however, the corepressor 

activity of the MTG moiety results in a dominant repression of RUNX1-regulated genes 

[22, 23].  This has been confirmed in various reporter assays that show how AML1-ETO 

functions as a dominant repressor of wild-type RUNX1 transcriptional activation, which 

in turn leads to the repression of tumor suppressor genes and genes that are required for 

hematopoietic differentiation such as p14ARF, Neurofibromatosis-1, PU.1, and C/EBPα 

[24‐27]. 

  Due to the importance of AML1-ETO in the pathogenesis of human AML, 

numerous attempts have been made to design a mouse model to study the biological 

effects of this fusion protein and learn how it could lead to AML.  The first attempts tried 

to create a chimeric murine/human hybrid of AML1-ETO by mimicking the t(8;21) in the 

mouse germline [28, 29].  Similar to AML1-/- mice, the knock-in mice that were 

heterozygous for the AML1-ETO allele died from lethal hemorrhage in the embryos.  To 

bypass the embryonic lethality from the AML1-ETO fusion protein, transgenic mice with 

conditional expression of the fusion protein in BM cells were created, but yielded only 
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modest phenotypes [30].  In addition, bone marrow (BM) or hematopoietic stem and 

progenitor cells (HSPCs) that had been retrovirally transduced to express the AML1-ETO 

fusion protein were used to reconstitute lethally irradiated mice to create a tissue-specific 

transgenic allele [31].  Though these approaches led to high expression of the fusion 

protein in the BM cells, this was not sufficient for the mice to develop spontaneous AML.   

 Taking into account the fact that the translocation fusion proteins in AML usually 

require cooperating mutations to cause disease, a number of labs began testing this theory 

in their murine models.  At first, AML1-ETO-positive mice were treated with N-ethyl-N-

nitrosurea (ENU), which efficiently induces single base mutations [31, 32].  These 

studies supported the notion that more than one mutation is required for development of 

leukemia, because in contrast to untreated AML1-ETO mice, 30-55% of those mice that 

received ENU treatment developed AML with many features mimicking that of human 

t(8;21) AML.  However, since ENU is a non-specific DNA damaging agent, a small 

percentage of the mice came down with T-cell leukemias in both the wild-type and 

AML1-ETO expressing animals.  This implies that while AML1-ETO is not solely 

sufficient to cause disease, it was required for the development of myeloid disease in this 

model. 

 Numerous labs have built upon the ENU studies by combining AML1-ETO 

expression with specific additional mutations, such as activating mutations in the receptor 

kinases TEL-PDGFRβ [33], c-Kit [34], or FLT3  [35], overexpression of Wilms’ tumor 

gene [36], or deficiencies of ICSBP (interferon consensus sequence-binding protein) [37] 

or p21/waf1 [38].  All of these mutations facilitated leukemia formation in the recipients, 
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which further corroborates the two-hit hypothesis for leukemogenesis, and provide 

excellent backgrounds to study the development of AML by the t(8;21) translocation.   

 Most recently, a truncated form of AML1-ETO that does not require additional 

mutations to form leukemia has been discovered [39, 40]. More importantly, alternately 

spliced isoforms of t(8;21) in AML were also found to exist in human patient samples.  

This truncation lacks amino acids 576-752 in MTG8, which deletes a domain for N-

CoR/SMRT interaction, and resulted in a rapid onset of leukemia in transplant recipients.  

This truncated form of AML1-ETO was termed AML1-ETO9a [39].  Later experiments 

showed that co-expression of the truncated form with full-length AML1-ETO resulted in 

an even earlier onset of leukemia with a block in myeloid differentiation at a more 

immature stage [39].  In addition, these authors also found that the oligimerization 

domain was crucial for AML1-ETO9a leukemogenesis [41]. This requirement of the 

NHR2 domain for leukemogenesis insinuates that the normal function of MTG family 

members could be important for the development of leukemia, as binding to the fusion 

protein would diminish their ability to bind to their normal transcription factors.  Hence, 

the study of the normal functions of MTG proteins would garner key information about 

how the AML1-ETO fusion protein leads to the formation of leukemia.                         

    

Myeloid Translocation Gene (MTG) Family 

 

Identification and functions 

 As previously mentioned, this family was first recognized by the discovery of the 

t(8;21) translocation, which resulted in the AML1-ETO fusion protein [13]. Although 
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MTG8 was a novel protein at the time this translocation was discovered, it is the 

founding member of a family of proteins that include MTG16 and Myeloid Translocation 

Gene-Related Protein 1 (MTGR1, also known as CBFA2T2). The ability of the t(8;21) 

fusion protein to repress transcription suggested that the MTG family members act as 

transcriptional corepressors.  Since this family does not directly bind to DNA, they 

function by linking DNA-binding transcription factors to class I HDACs and other 

corepressors, such as mSin3 and N-CoR/SMRT (Figure 2). As expected for 

transcriptional corepressors, MTG family members are recruited by many site-specific 

DNA binding proteins, including Gfi1, Gfi1B, TAL1/SCL, the “E proteins” E2A and 

HEB, BTB-POZ domain factors BCL6 and PLZF, and mediators of Wnt and Notch 

signaling (TCF4 and CSL) [42-50].  Thus, MTG family members play a pivotal function 

during hematopoiesis to link DNA binding transcription factors to chromatin modifying 

enzymes and other corepressors to influence gene expression. 

 The MTG family shares four evolutionarily conserved domains with the 

Drosophila protein, Nervy, which are called Nervy Homology Regions (NHR) 1-4 (See 

Figure 3A).  NHR1 has homology to human TBP-associated factor 130 (hTAF130), 

hTAF105, and Drosophila TAF 110, and is therefore sometimes called the TAF110 

domain.  This region is most well characterized as the region that binds to various 

transcription factors with which the MTG family interacts.  NHR2 contains a 

hydrophobic heptad repeat and is the oligimerization domain that can form homo- or 

heterodimers between family members as well as bind other proteins.  The function of 

NHR3 is currently undefined, but may mediate protein interactions.  Finally, NHR4 is in 

the MYND class of zinc finger proteins that are involved in protein interactions.   All  
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four of these conserved domains are present in the full-length version of the AML1-ETO 

fusion protein (Figure 3B).  The binding locations of a few of the corepressors, HDACs, 

and transcription factors that bind MTG8 are shown in Figure 3A [51-53].  Given their 

high sequence identity, it is not surprising that each family member binds to many of the 

same proteins and in similar locations.  However, unlike MTG8, MTG16 does not bind 

mSin3a, and MTG16 binds to more HDAC family members than MTG8 [54].  This 

suggests that these proteins may perform similar yet distinct functions, and that it is 

important to determine which protein interactions are unique to each MTG family 

member.  

 

Roles in stem cells 

 In addition to being linked to hematopoiesis, MTG family members may 

contribute to the function of stem cells in multiple organs.  Gene targeting studies of 

Mtg8 indicated that it is required for the development of the gut, as many of the pups died 

due to deletion of the mid-gut [55].  Even in mice that retained the mid-gut, there was a 

dramatic loss of architecture, which could be due to defective stem cells.  Similarly, mice 

with a deletion of Mtgr1 failed to maintain the secretory lineage cells in the small 

intestine [56].  Furthermore, after treatment with the ulcerative agent dextran sodium 

sulfate (DSS), the Mtgr1-null colonic epithelium failed to correctly regenerate, also 

suggesting altered stem cell functions [57]. In addition, Mtg16 has been detected in 

proteomic screens of key regulatory DNA binding transcription factors that regulate 

hematopoiesis and stem cell functions (e.g., Heb, Gfi1, TAL1/SCL, TCF4) [46, 47].  

Collectively, these data suggest MTG family members play key roles in multiple tissue-
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specific stem cells.  Thus, deregulation of these proteins could alter stem cell functions 

and lead to cancer in the corresponding tissue.  

 

Roles in cancer 

 Although MTGR1 has not been identified in a direct chromosomal translocation 

as already described for MTG8 and MTG16, it does map to chromosome 20q11, which is 

frequently deleted in myelodysplastic syndromes (MDS) and in 3-10% of AML [58]. 

Thus, the cumulative data suggest that the MTG/ETO family members function as 

transcriptional corepressors whose activities are co-opted by chromosomal translocations 

or deletions to induce leukemia.  The involvement of these proteins in chromosomal 

translocations highlights the important role this family must play in key cellular 

functions, since many translocations target master regulatory genes.    

 In addition to their involvement in chromosomal translocations and leukemia, 

deletion of MTG family members have been observed in other types of cancers as well. 

MTG16 is deleted in approximately 40% of the most common form of breast cancer and, 

MTG8 was marked as a candidate colon cancer gene through a recent screen of human 

tumor samples [3].  Interestingly, although the authors did not highlight MTG16 in their 

mutational analysis, it is important to note that mutations in MTG16 were also found in 

the initial screen of colorectal carcinoma samples.  Thus, 5 of the original 11 samples had 

mutations in MTG family members.  Furthermore, sequencing of 1507 genes in 441 lung, 

ovarian, breast, and prostate tumors identified MTG8 was mutated in 6 lung cancers and 2 

breast cancer samples, whereas MTG16 was mutated in an ovarian cancer sample (Figure 

4) [5].  MTG family members also have the ability to form  
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oligomers, and the fusion proteins associated with leukemia bind to the wild type MTGs 

that remain.  This suggests an intriguing hypothesis that loss of function of wild-type 

MTG proteins could contribute to leukemogenesis, yet the mechanism by which this 

might occur remains obscure.  Taken together, these findings suggest that MTG family 

members may act as tumor suppressors.  Conversely, loss of Mtgr1 has recently been 

described to have had an anti-tumorigenic effect in the murine azoxymethane 

(AOM)/DSS colitis-associated carcinoma model [59].  In this model, Mtgr1-/- mice were 

protected from tumorigenesis when subjected to AOM/DSS treatment, which was in part 

due to an increase in apoptosis of the tumor cells and an increase in the amount of tumor 

infiltrating immune cells.  Nonetheless, MTG family members are plausible important 

regulators for tumor formation, but whether they are activators or repressors of 

carcinogenesis may turn out to be cell type dependent.     

 

Myeloid Translocation Gene on Chromosome 16 

 Of the MTG family members, MTG16 is the most highly expressed member in 

bone marrow cells [60, 61], particularly in the hematopoietic stem cells (HSCs) and early 

progenitors [61].  In accordance with this, microarray profiling of normal and leukemic 

stem cells suggests that Mtg16 is expressed in these cells [60, 62].  Taken together, this 

would imply that MTG16 would be important for the regulation of hematopoietic 

development and cell fate decisions.  Given that MTG16 does not bind DNA itself, its 

regulation of hematopoiesis would be imparted by the transcription factors it binds.  

Although this list is not conclusive, some of the major hematopoietic regulators that 

interact with MTG16 are Gfi1, Gfi1b, Tal1/SCL, and E proteins (E2A and HEB) [43, 46, 
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47].  Their roles in hematopoiesis will be discussed, as this knowledge will help delineate 

how MTG16 could act as such a vital regulator of hematopoiesis by orchestrating the 

transcriptional events of each of these transcription factors.       

 

Effects on hematopoietic lineages based on specific transcription factor interactions 

Gfi1/Gfi1b 

 Growth factor independent 1 and growth factor independent 1b (Gfi1 and Gfi1b, 

respectively) encode two nuclear zinc finger proteins that act as transcriptional 

repressors, in part through their interaction with MTG family members.  Gfi1 knockout 

studies indicated that Gfi1 is important for neutrophil differentiation and more 

importantly for HSC functions [63-65].  Gfi1-/- mice had increased numbers of HSCs that 

were hyperproliferative, compared to WT HSCs.  Although Gfi1-/- HSCs were able to 

reconstitute all lineages in a straight bone marrow transplant (BMT), they were defective 

in both serial transplants and in a competitive repopulation assay (CRA), with only partial 

reconstitution of peripheral blood cells even at high cell doses.  Given these results, it can 

be concluded that Gfi1-/- HSCs are not completely impaired, but are deficient when 

compared to WT HSCs.  In contrast, Gfi1b inactivation revealed only a minor role in 

regulating HSC dormancy and pool size, but this is likely explained by compensation by 

Gfi1 [66].  However, Gfi1b is necessary for the development and differentiation of the 

erythroid and megakaryocytic lineages through its cooperation with GATA1 [67].    
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SCL/Tal1 

 The stem cell leukemia (SCL) gene, also known as T-cell acute lymphoblastic 

leukemia 1 (Tal1), is a basic helix-loop-helix transcription factor that regulates erythroid 

and megakaryocytic development.  In addition, SCL/Tal1 inactivation resulted in 

embryonic lethality due to a complete failure of hematopoiesis [68-71].  Despite its clear 

importance for the development of hematopoiesis, there is controversy in the field about 

its role in HSCs.  Originally, conditional deletion of SCL/Tal1 in the adult hematopoietic 

compartment showed that it was dispensable for the long-term repopulating activity and 

multipotency of the HSC, but that it was essential for proper differentiation of erythroid 

and megakaryocytic precursors [72].  However, SCL/Tal1 is highly expressed in long 

term (LT)-HSCs and heterozygous deletion of SCL/Tal1 resulted in increased cycling of 

the HSCs [73].  Therefore, SCL/Tal1 seems to be required to maintain the quiescence and 

long-term repopulating ability of HSCs.  In addition to its roles in erythropoiesis and 

HSCs, it has also been linked to monocyte differentiation [74].  When SCL/Tal1 was 

deleted in myeloid precursors, the cells displayed decreased entry and progression 

through the G1 and S phases of the cell cycle, which resulted in impaired proliferation.      

 

E-proteins (E2A and HEB) 

 MTG16 interacts with members of the E protein family (E2A and HEB).  A major 

function of E protein signaling is to direct T-cell development, which suggested that 

Mtg16 plays a pivotal role in lymphopoiesis.  E2A-/- mice display decreased numbers of 

thymocytes and various T-cell progenitors, and were further impaired in their ability to 

produce T-cells in an in vitro assay that drives T-cell development from a strong Notch 
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signal [75].  Indeed, deletion of Mtg16 in mice phenocopied the defects seen in the E2A-

null mice.  Loss of Mtg16 impaired the development of thymocyte T-cells with almost a 

complete loss of T-cells after competitive bone marrow transplantation [61].  This defect 

was recapitulated in vitro where Mtg16-/- cells (LSK stem and progenitor cells or Double 

Negative 1 thymocyte progenitors) were unable to make CD4+/CD8+ T-cells in response 

to a Notch signal.  The in vitro assay permitted the re-expression of Mtg16 to 

complement the loss of T-cell development, which made it possible to test deletion 

constructs to determine which regions of Mtg16 were responsible for proper T-cell 

development.  This analysis showed that the ability for Mtg16 to bind to E-proteins was 

required for the establishment of T-cell fate specification.  In addition to their roles in T-

cell development, E-proteins also play a role in HSCs in that deletion of E2A leads to 

decreased numbers of LT-HSCs, multipotent progenitors, and erythroid progenitors.  Not 

only are the HSC numbers decreased, but the HSCs are also hyperproliferative [76], 

which causes diminished functional capacity in competitive repopulation assays. 

 

Hematopoiesis 

 Given the number of hematopoietic defects that are seen when any of the proteins 

that interact with Mtg16 are deleted, it would be assumed that the loss of Mtg16 would 

also impair hematopoiesis.  In order to study the role of Mtg16 in hematopoiesis, one 

must first understand this process.  Hematopoiesis is a term that describes the formation 

of all of the blood cells in the body, which are all derived from the hematopoietic stem 

cell.   
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Definition of a stem cell 

 Stem cells are set apart from other cell types based on two main features: (1) their 

ability to self-replicate and continue to make copies of themselves (self-renewal), and (2) 

their ability to differentiate and generate all of the progeny of their given system 

(multipotency) [77].  Their ability to do this is through a process called asymmetric cell 

division, in which they produce one differentiated daughter cell (progenitor) and another 

daughter that still retains the stem cell properties.  Due to these unique properties, stem 

cells have been a subject of intense research over the last 40 years due to their potential 

use in medical therapies.     

 Although the first ‘hematopoietic stem cell’ concept was proposed in 1961 [78], 

the field has greatly expanded since then and now covers stem cells that give rise to many 

organ/tissue types (tissue-specific stem cells) or embryonic stem (ES) cells that give rise 

to all of the cells of the growing embryo [77].  Recent work has also discovered that adult 

cells can be genetically reprogrammed to an embryonic-like stem cell state by the forced 

expression of specific genes and factors that are crucial for those phenotypes.  Given all 

of these different stem cell types and definitions, a standard nomenclature has evolved to 

define what type of differentiation potential each type of stem cell population possesses 

(Table 1) [77].   

 

Hematopoietic stem cells 

 Given that the idea of a stem cell in the bone marrow compartment was first 

discovered over 40 years ago, the HSC has become the most well-characterized adult 

stem cell population, both in terms of cell surface markers used for purification and  
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assays to test for functional capacity.  The study of the HSC began when limited numbers 

of BM cells were injected into irradiated recipient mice and cellular colonies were 

observed that formed in the spleens of recipient mice [78].  After detailed analysis of 

these colonies, they concluded that a small subpopulation of the donor BM cells had the 

ability to produce multiple types of myeloerythroid cells and the ability to self-replicate.  

These findings were the initial defining criteria for ‘stem cells’.   

 In accordance with the stem cell properties, HSCs are the only cells in the bone 

marrow that are able to differentiate into more than 10 distinct functional mature blood 

cells, while still retaining the ability to self-renew and give rise to identical HSCs [79].  A 

schematic of hematopoiesis is depicted in Figure 5, where the long-term (LT-) HSC 

maintains self-renewal, and also yields a short-term (ST-) HSC and other lineage-

restricted progenitor cells that rapidly differentiate into all of the mature lineages that are 

found in the peripheral blood.  While the frequency of HSCs is only about 0.01% of the 

total nucleated cells in the bone marrow, they are able to persist for the lifespan of the 

animal to continually replenish the hematopoietic system at a rate of more than one 

million cells per second in the adult human [80].   

 

Hematopoietic stem and progenitor cell isolation and purification schemes 

 In 1988, a major advancement in HSC biology was attained when mouse 

multipotent progenitor cells were isolated by using flow cytometry to define the Thy-1lo 

Sca-1+ Lineage- population [81].  This new Sca-1 (stem cell antigen-1) marker is a 

member of the Ly6 family and is also known as the Ly6A/E antigen.  It was discovered 

that on average, 1 out of every 20 Thy-1lo Sca-1+ Lineage- cells intravenously injected  
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gave rise to multipotent progenitor activity.  This initial discovery paved the way for 

researchers in the hematopoietic field to build upon this concept of immunophenotyping 

HSC populations.  Through the years, improvements on monoclonal antibody production 

to cell surface markers, as well as advancements in multi-color fluorescence activated 

cell sorting (FACS), have led to the continual refinement of the identification and 

purification of HSCs based on the unique cell surface expression found on these cells 

compared to the rest of the BM cells.  Although multiple laboratories have defined 

numerous labeling schemes, the ultimate goal of each of them is to identify the most 

purified population of LT-HSC (Table 2).   

 Most of the HSC purification schemes are based off the Lineage- (typically 

negative for Gr-1, Mac-1, B220, CD3, and Ter-119) Sca-1+, c-Kit+ (LSK) cell surface 

phenotype [82-84].  However, this population contains a mixture of hematopoietic stem 

and progenitor cells (HSPC), with only 10% of this population functionally active as 

bona fide LT-HSCs [80].  Therefore, the LSK compartment should only be considered 

enriched for HSCs.  Aside from the LSK population, detailed phenotypes have also 

delineated a number of different progenitor cell types, such as lymphoid and myeloid 

progenitors as well as the sequential progenitors for each of these populations (Table 2). 

The myeloid progenitors are defined as the Sca-1- portion of the LSK population, and can 

be further subdivided into common myeloid progenitors (CMP, CD34+FcγR-), 

granulo/monocytic progenitors (GMP, CD34+FcγR+) and megakaryocyte/erythroid 

progenitors (MEP, CD34-FcγR-) (Table 2). Replacing the traditional multipotent 

progenitor (MPP) model, a more recent lineage analysis has defined the LSK/Flt3hi  
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population as a lymphoid-primed multipotent progenitor (LMPP), which tends to make 

more lymphoid cells, but is still capable of going down the myeloid path. 

 In the last few years, other cell surface markers have been identified that enrich 

for HSCs either in conjunction with the LSK scheme, or on their own [80].  Though there 

are many immunophenotyping schemes in use, the most widely accepted and validated 

are those that include analyzing the expression of CD34, Flk2 (Flt3), or the signaling 

lymphocytic activation molecule (SLAM) family of receptor molecules, CD48 and 

CD150 [85-87].  By using the differential expression of CD34 and Flt3, it is possible to 

separate out LT-HSC (LSK/Flt3-/CD34-) from the ST-HSC (LSK/Flt3-/CD34+) and 

multipotent progenitor (MPP) cells (LSK/Flt3+/CD34+) (Table 2).  Moreover, 50% of 

LSK CD48-CD150+ cells were functionally active as LT-HSCs in bone marrow transplant 

(BMT) assays.  More recently, a combination of all of these antibodies marked the most 

pure LT-HSC (LSK Flt3-CD34-CD48-CD150+).  Another approach that has been used to 

identify and purify HSCs is based on the fact that HSCs express high levels of membrane 

transport pumps, compared to other BM cells.  Thus, they are able to efflux particular 

dyes such as Hoechst 33342 or Rhodamine 123.  This ability results in a small proportion 

of cells that contain low fluorescence staining from these dyes, which is referred to as the 

‘side population’ (SP), and is highly enriched for HSCs [80].  As can be expected, the 

combination of the immunophenotyping markers for HSCs in conjunction with the SP 

has been used as another way to highly purify functional LT-HSCs.  It should be noted 

that cell surface marker expression could change after deletion of a gene in the mouse, so 

special care is taken when analyzing a new knockout mouse model that the 

immunophenotyped population is still functional.  
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Hematopoietic HSPC functional assays 

 Although immunophenotyping has been extremely useful in the identification and 

purification of HSPC populations, the only way to truly test for effective HSCs is through 

functional assays.  Numerous assays have been developed over the years to test for 

functional HSPCs, which has helped make the hematopoietic compartment one of the 

pioneering systems in the study of adult stem cell biology.   

 Although in vitro assays cannot replicate LT-HSC functions, in vitro and short-

term in vivo assays have been developed to test progenitor cell function.  These 

progenitor assays include the colony-forming cell (CFC) assay, cobblestone area-forming 

cells (CAFC)/long-term culture-initiating cell (LTC-IC) assays, and the colony-forming 

unit-spleen (CFU-S) assays [83, 84].  The CFC assays use low numbers of bone marrow 

cells plated in a semi-solid agar, usually methylcellulose-based culture media, in the 

presence of a particular cocktail of cytokines to determine the number and type of 

colonies that are formed.  Based on the identification of colonies that are formed, 

information can be gleaned about the progenitor cell content of the starting population.  

In this regard, the CAFC and LTC-IC assays are co-culture systems that can be used to 

predict the frequency of HSCs.  Although the reliability of these assays is controversial 

due to variable culture conditions and the use of different feeder layers, they are useful in 

limiting dilution format to quantify HSC numbers when homing ability or other functions 

required for in vivo engraftment may compromise the reliability of transplant assays.  The 

CFU-S assay measures cells that home to the spleen, rapidly proliferate and form 

macroscopic colonies that provide short-term (1-3 weeks) in vivo reconstitution after 

injection into an irradiated recipient mouse.  Once cells could be sorted and purified 
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based on their immunophenotype, specific populations could be injected into the 

recipients to determine what day after injection each population forms the macroscopic 

colonies.  By doing this, it was discovered that the megakaryocyte erythroid progenitors 

(MEPs) formed the colonies on day 8 after injection (CFU-S8), and that a combination of 

MEPs and ST-HSCs/MPPs formed the colonies on day 12 after injection (CFU-S12) [88].  

The CAFC, LTC-IC, and CFU-S assays all reflect progenitors more primitive than the 

CFCs, but more mature than HSCs. 

 Since the HSC is required for blood formation throughout the life of an animal, it 

must remain in a dormant state of the cell cycle, or quiescent, to protect itself over time.  

Given the importance of HSC quiescence for the maintenance of stem cell function, 

particularly stem cell self-renewal, analysis of the cell cycle status in stem cells is a key 

property to test for when assessing HSC functions [80, 83, 84].  Most HSCs are 

predominantly in the G0 or G1 phase of the cell cycle, with approximately 75% of LT-

HSCs resting in G0.  Common methods for detecting cell cycle status are Ki-67 staining, 

Hoechst 33342 DNA staining (HO), Pyronin Y RNA stain (PY), or bromodeoxyuridine 

(BrdU) labeling.  Ki-67 is a marker used to determine the growth fraction of a cell 

population as it is only expressed in the active phases of the cell cycle (G1, S, G2/M) and 

not in resting cells (G0).  HO labels the DNA so the DNA content of the cell can be 

determined, while PY can distinguish between G0 and G1 based on the amount of RNA in 

the cell.  G0 cells have little to no RNA because they are quiescent, and G1 cells contain a 

lot of RNA as they are preparing to enter the S phase.  All three of these methods provide 

a snap-shot of the cell cycle status of a given cell population.  BrdU is used to measure 

the proliferative history of a cell population, as it can be administered to the cells for a 
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given amount of time, after which it is incorporated into newly synthesized DNA during 

the S phase of the cell cycle.  Therefore, BrdU can reveal what proportions of HSCs have 

entered or completed S phase over the time of the labeling period.   

 The gold standard that has been accepted for testing true LT-HSC function is the 

competitive repopulation assay (CRA) [80, 83, 84].  This assay assesses the ability of a 

test cell population (for example, knockout cells) to sustain long-term BM engraftment in 

the presence of a congenic control population of cells, which can be distinguished from 

each other by cell surface markers (test cells, typically CD45.2+; control cells, typically 

CD45.1+).  It has been determined that the bone marrow cells should be able to 

reconstitute multiple lineages for at least 16 weeks post-transplant for this to be 

considered true long-term reconstitution.  This assay can be further utilized to assess the 

number of HSCs by performing limiting dilution transplants and back-calculating the 

number of LT-HSCs using Poisson statistics.  Moreover, serial transplantation can be 

used to determine the self-renewal capacity of the LT-HSC. 

 

Lineage cell fate decisions 

 The intricately designed hierarchy of the hematopoietic system requires carefully 

orchestrated cellular pathways that direct lineage cell fate decisions.  Lineage 

commitment is the step-wise process by which a multipotent HSPC becomes increasingly 

restricted in its cell fate choices until it is eventually a committed progenitor of one 

specific lineage.  Due to the short half life of most blood cells, millions of mature BM 

cells in multiple lineages are replenished every second in humans [77], which demands 

high fidelity of the lineage allocation decisions. 
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 Generally, lineage specification is governed by the expression of lineage-affiliated 

cytokines (Figure 6) and transcription factors (Figure 7) [89].  For example, two 

important lineage-specific cytokines are interleukin-7 (IL-7) and erythropoietin (EPO), 

which direct lymphoid and erythroid development, respectively.  Two examples of 

lineage-affiliated transcription factors are GATA-1 and C/EBPα.  GATA-1 is considered 

an ‘erythroid factor’ as it is highly expressed in MEPs, and C/EBPα is considered a 

‘myeloid factor’ as it is present in GMPs.  However, this simple concept that the 

expression of one transcription factor will produce a specific lineage is challenged by the 

fact that HSCs and earlier progenitors express ‘lineage-restricting’ transcription factors, 

albeit at generally low levels.  This phenomenon is termed lineage priming, and suggests 

a process in which these early HSPCs are equipped for various lineages, and this 

selection is made when alternative possibilities are extinguished [89].  Thus, key lineage-

specific factors must promote their own lineage differentiation, while simultaneously 

shutting off factors that favor other lineages.  Accordingly, many examples corroborate 

this model of lineage cell fate specification.   One example is the GATA-1 and PU.1 

transcription factors that promote erythroid/megakaryocytic/ eosinophil and myeloid 

differentiation, respectively.  These proteins interact and physically antagonize each 

other’s actions.  Morpholino knockdown of GATA-1 shifted progenitors to a myeloid 

fate in zebrafish, whereas the knockdown of PU.1 had the opposite effect and favored the 

erythroid lineage [89-91].  Therefore, valuable information can be gained by the selective 

deletion of one of the factors that are involved in lineage allocation choices to determine 

which lineages require that factor for their survival.      
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When alterations are made in the lineage allocation of HSPCs, this can result in the 

development of impaired hematopoiesis or even lead to a disease state.  Therefore, 

identification of the cellular pathways that are involved in the process of lineage cell fates 

should enhance our understanding of how disease mutations may subvert this normal 

process to impact the development of the disease, and how targeting of such mutations 

can lead to better therapies. 

 

Leukemia stem cells 

 Given the important roles of the HSC in self-renewal and multipotency, it is not 

surprising that deregulation of these processes have been associated with the 

development of hematopoietic malignancies.  In fact, recurrent leukemia-associated 

genetic abnormalities have been detected in the HSCs of patients with acute myeloid 

leukemia (AML).  There is ample evidence that a small subpopulation of slow-cycling 

leukemic cells is resistant to standard chemotherapeutic agents and lead to recurrence of 

the disease after treatment.  In addition, leukemia cell populations contain a lot of 

heterogeneity, similar to that of normal hematopoiesis that stems from an HSC [82, 92].  

Though these properties are reminiscent of HSCs, this was not proven until the early 

nineties when Dick and colleagues began studies to determine what cell type was 

propagating the disease [93].  To test this, they took human patient leukemic blasts and 

used FACS to sort them between immature fractions (CD34+CD38-) and more mature 

fractions (CD34+CD38+).  Each fraction was then injected into immunocompromised 

non-obese diabetic-severe combined immunodeficiency (NOD-SCID) mice to perform 

xenotransplantation. Only the immature (CD34+CD38-) fraction was able to transfer the 
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leukemia to the mice, which suggested that the normal HSC was the likely target cell for 

transformation to form the leukemia.  This led to the hypothesis of the leukemia-initiating 

cell (LIC), which are functionally defined by their ability to serially propagate the disease 

in transplanted mice, and gave way to the more commonly used term of the leukemia 

stem cell (LSC). Though the LSC possesses stem cell phenotypes, a number of studies 

have shown that not only can the LSC originate from an HSC, but it can also originate 

from a progenitor cell that has acquired mutations that allow it to self-renew and 

therefore propagate the disease (Figure 8 [94]) [82].     

 While current treatments for leukemia can eliminate the bulk of the tumor, there is 

increasing evidence that suggests the persistence of the LSC, due to its insensitivity to 

current therapies, can be responsible for recurrence of the disease after treatment is 

stopped.  For example, in vitro assays have shown that chronic myeloid leukemia cells 

that express breakpoint cluster region-abelson (BCR-ABL) transcripts are extremely 

sensitive to the tyrosine kinase inhibitor, imatinib [95].  However, there was a small 

subset of quiescent leukemic cells, which resembled normal HSCs that exhibited 

resistance to imatinib-induced death.  Moreover, patients who show a complete cytogenic 

response to imatinib treatment still harbor CFC and LTC-IC cells with the BCR-ABL 

transcript, and there is evidence that patients who initially achieved excellent response to 

imatinib treatment can later show recurrence of the disease.  Therefore, it has become 

increasingly clear that more research is required to understand the molecular pathways 

that are involved in the transformation of LSCs so that therapies that specifically target 

the LSC can be designed to improve treatment outcomes in leukemia patients.  Given that 

Mtg16 interacts with numerous transcription factors that are vitally  
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important for proper blood development, this suggests that Mtg16 is a likely candidate for 

a master regulator of hematopoiesis.  Therefore, knowledge about the normal role of 

Mtg16 in hematopoietic stem and progenitor cells can lead to insight into novel 

therapeutic targets for the treatment of acute myeloid leukemia. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Plasmids 

The murine Eto2/Mtg16 cDNA was obtained from Dr. Shari Meyers (LSUHSC, 

Shreveport, LA). The pPNT vector used for making the targeting construct was provided 

by the Vanderbilt-Ingram Cancer Center Transgenic Mouse/ ES Cell Shared Resource 

[96]. MSCV-c-Myc and MSCV-Bcl2 were obtained from Dr. James DeGregori, Univ. of 

Colorado [97]). The Gfi1 cDNA was a gift from Dr. Tarik Moroy (Institut de recherches 

cliniques de Montréal) and the plasmids encoding PLZF and BCL6 were provided by Dr. 

Ari Melnick (Albert Einstein School of Medicine). 

 

Mtg16-deficient mice 

We obtained the genomic sequence of the Mtg16 allele using the Celera 

Discovery System and NIH databases and found the genomic organization of this locus 

was similar to that of Mtg8 and Mtgr1. We amplified 3 homology regions from TL1 

genomic DNA. Homology region 1 (HR1) was generated with the following primers: 5’-

CTCGAGTATGAGGGTTGCATGGTGTTTTGGTTGG-3’ and 5’-GGCGCGCCTTA 

ATTAAATAACTTCGTATAGCATACATTATACGAAGTTATCAGTTTCCCAACCCTGC

CTAGTTC-3’. Homology region 2 (HR2) was generated with the following primers: 5’-

GACGCGTATAACTTCGTATAATGTATGCTATACGAAGTTATCCACGGAGAATGAA

CCATCCTGGATTA-3’ and 5’-ACGCGTCAATTGACAAAGATGTCCTACATCAC 
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TGGGGCT-3’. Homology region 3 (HR3) was generated with the following primers: 5’-

CAATTGATAACTTCGTATAATGTATGCTATACGAAGTTATCACCCCTACCATGCAT

CCAAAGAAGAT-3’ and 5’ CTGGTTGATGACAGTCAGGGCATCCTC-3’. The 

restriction enzyme sites are shown in bold and the loxP sites are in italics. The HR2, 

which contains the genomic sequence of Mtg16 exon 8 flanked by LoxP sites, was ligated 

to HR3, which includes 2 kb of Mtg16 genomic sequence. The HR2-HR3 combination 

was ligated to HR1, which contains 6kb of Mtg16 genomic sequence. A neomycin-

resistance cassette was PCR amplified from the pPNT vector with the following primers: 

5’-TTAATTAACTAGAGTCGGCTTCTG-3’ and 5’-TTAATTAACTTTTCCCAAGG 

CAGTCTG-3’. The PAC1 restriction sites were used to add the neomycin cassette in 

between HR1 and HR2. A BamHI – HindIII fragment containing a thymidine Kinase 

cassette was isolated from the pPNT vector and ligated into the KS bluescript vector (TK-

KSBS). The complete HR1-LoxP1-Neomycin Cassette-LoxP2-HR2-LoxP3-HR3 fragment 

was ligated into the TK-KSBP vector. The completed targeting construct was 

electorporated into TL1 embryonic stem cells. DNA isolated from the resulting single 

cell clones were digested with Xmn I and analyzed by Southern Blot for homologous 

recombination. A clone containing the correctly targeted Mtg16 locus was identified and 

injected into C57Bl/6 blastocytes. Male chimeric mice were mated with C57Bl/6 females 

and agouti pups were tested for the targeted allele. The following primers were used to 

detect the floxed Exon 8: 5’-CTGGGTCTCGACAAGAAGAAGTG-3’ and 5’-

GTCCATGATGCAGTTCAGAAG-3’. Thus, the wild-type allele yielded a 704 bp 

product and the floxed allele a 647 bp product.  

Mice containing a single copy of the targeted Mtg16 allele were mated with mice 
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transgenic for the Cre recombinase driven off the EIIA promoter. The resulting offspring 

were analyzed for recombination between LoxP1 and LoxP3. The recombination event 

was detected using the following primers: 5’- ATGCAAGAACTAGGCAGGGTT-3’ and 

5’- GTCCATGATGCAGTTCAGAAG-3’. The expected product sizes are 1,405 bp for 

the wild-type allele and 282 bp for the recombined allele. These mice were backcrossed 

to C57Bl/6J and subsequently analyzed to determine effect of loss of Mtg16 expression. 

The data in Chapter III was generated using mice from N3 to N4 backcrossed into the 

C57Bl/6J strain, and the data in Chapter IV was generated using mice from N10. 

 

Cell Culture and protein analysis 

Embryonic stem cells were grown on irradiated murine embryonic fibroblast 

(MEFs) feeder layers in DMEM containing 15% fetal calf serum, 0.1mM non-essential 

amino acids, 2mM L-glutamine, 50µg/ml gentamicin, 103 U/ml LIF,  and 55µM  ß‐

mercaptoethanol (Gibco/Invitrogen). Bone marrow cells were co-cultured with MSCV 

producing BOSC23 cells in DMEM containing 10% fetal bovine serum supplemented 

with IL-6 (PeproTech), SCF (PeproTech), and LIF (Chemicon). Cos7 cells were cultured 

in DMEM supplemented with 10% fetal calf serum, 0.1mM non-essential amino acids, 

2mM L-glutamine (Gibco/Invitrogen). Transfection and co-immunoprecipitations for 

protein association studies were performed as described [54]. Immunoblot analysis was 

performed using anti-Eto2 G-20 (Santa Cruz, Inc.) or monoclonal antibodies to the 

indicated epitope tags. Nuclear extracts were prepared from 5 X 106 splenocytes that were 

washed with PBS and the cells were then resuspended in buffer A (10mM HEPES (pH 

7.9), 10mM KCl, 1.5mM MgCl2, 0.34M sucrose, 10% glycerol, 1mM DTT and protease 
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inhibitors). Triton-X-100 (final concentration of 0.1%) was then added to the cells and 

incubated on ice for 8 min.  The nuclei were collected by centrifugation and the nuclear 

pellet was resuspended in RIPA buffer containing protease inhibitors and subjected to 

10% SDS-PAGE. 

 

Histology and peripheral blood analysis 

Peripheral blood smears or sections of spleen or bone marrow were fixed in 

buffered formalin overnight at room temperature prior to embedding in paraffin and 

sectioning. Sections were lightly counterstained with Mayer’s Hematoxylin and Eosin 

(H&E) according to standard procedures. For the identification of reticulocytes, 

peripheral blood was isolated in heparinized tubes and mixed with Reticuloctye staining 

solution (Sigma). The cells were counterstained on slides and the reticulocytes were 

counted per 100 cells in a field. Further assessment of complete blood counts was 

performed on the HEMAVET HV950FS blood analyzer (Drew Scientific, Inc). 

 

Flow Cytometry Analysis 

Single cell suspensions were obtained by either flushing the tibia and femur, or 

mincing the spleen or the thymus. Following lysis of the red blood cells using the 

Erythrocyte lysis buffer, 1 X 106 to 4 X 106 cells were aliquoted into individual tubes. 

The cells were stained with antibodies against: CD3, CD4, CD8, IL-7Ra, Ter119, Gr-1, 

Mac-1, B220, CD41, ScaI, c-Kit, Flt3, CD34, FcgR, CD45.1, CD45.2, Flt3, CD150, or 

CD48.  For the BrdU incorporation assays, mice were sacrificed two hours after 

intraperitoneal injection of 1 mg of BrdU. Cells were then harvested as previously 
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described and analyzed using the BrdU Flow Kit (BD Pharmingen). To assess the cell 

cycle status of the LSK cells, bone marrow cells were resuspended in RPMI with 10% 

FBS and incubated with 10 µg/mL of Hoechst 33342 (Invitrogen) for 45 minutes at 37oC, 

washed and incubated with the indicated antibodies. Finally, the cells were fixed 

overnight at 4oC in 5% paraformaldehyde in PBS and incubated with 0.5 µM Pyronin Y 

(Polysciences, Inc.) for 30 minutes on ice prior to analysis.  

 

Microarray and real-time quantitative PCR 

Bone marrow cells were harvested as described and the lineage negative fraction 

was separated using the Lineage Cell Depletion Kit and MACS columns (Miltenyi 

Biotec). Total RNA was extracted using the Versagene Total RNA Purification Kit 

(Gentra Systems) and microarray analysis was performed with the Applied Biosystem 

Inc. expression system. RNA was pooled from 5 mice and biological triplicates used to 

further avoid mouse-to-mouse variability.  For the MEP and CD34hi/FcγRlow populations, 

cells were sorted by FACS, pooled from 10 mice, and analyzed as described above.  For 

the quantitative PCR, 1 mg of total RNA was transcribed with the iScript cDNA 

Synthesis kit (Bio-Rad) and 1/10th of the reaction was used for PCR using the iQ SYBER 

Green Supermix (Bio-Rad) on an iCycler (Bio-Rad) or using TaqMan on an automated 

ABI platform. PCR reactions were performed in triplicate.  The expression of the gene of 

interest was calculated relative to the levels of b-actin, Gapdh, or GusB. Primers 

sequences were selected from the PrimerBank Database [98] [PrimerBank IDs: 

6671756a2, 6753310a2, 31077096a3 and 16975506a2]. The networks were generated 

through the use of Ingenuity Pathways Analysis (Ingenuity® Systems, 
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www.ingenuity.com).  The network Score is based on the hypergeometric distribution 

and is calculated with the right-tailed Fisher’s Exact Test. The score is the negative log of 

this p-value. 

 

Stem Cell and Progenitor Cell Assays 

CFU-S 

 For evaluation of spleen colony-forming unit (CFU-S) abilities, 5 X 104 bone 

marrow cells derived from either Mtg16+/+ or Mtg16-null mice were transplanted into 

lethally irradiated (900 rads) C57Bl/6 wild-type mice. For retroviral infection, the 

recombinant retroviruses were produced after transient transfection of BOSC23 cells and 

the bone marrow cells infected by co-culture for 48 hr in DMEM supplemented with 10% 

fetal bovine serum (FBS), IL-6, SCF, and LIF. This protocol yields 25-30% infection 

such that 200,000 cells were injected into the tail veins of recipient mice to match 50,000 

wild type cells.  However, to ensure that low infection rates were not an issue, as many as 

1,000,000 cells were injected.  The spleens were isolated 8 or 12 days post-transplant and 

fixed in Tellsniczky’s fixative. 

 

Methylcellulose CFC 

Single cell suspensions were obtained either by flushing cells from the tibia and 

femur or mincing the spleen of mice. The red blood cells of the spleens were lysed with 

Erythrocyte lysis buffer (Sigma). The cells were mixed with methylcellulose media 

containing rmSCF, rmIL-3, rhIL-6, rhEpo (Stem Cell Technologies Methocult® GF 

M3434), methylcellulose containing rmSCF, rmIL-3, rhIL-6 (Stem Cell Technologies 
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Methocult® GF M3534), or a BFU-E-specific methylcellulose (Stem Cell Technologies 

Methocult® SF M3436), which contains a proprietary combination of cytokines including 

rhEpo, and plated on 35mm dishes in duplicate. Colonies were grown at 37C, 5% CO2 for 

8-14 days and colonies were counted.  The numbers of cells plated for each condition 

tested is stated in the figure legend.  For the analysis of megakaryocytes, 1 x 105 cells 

were mixed with Megacult®-C media (Stem Cell Technologies), collagen (1.1 mg/ml), 

and rmIL-3 (10 ng/ml), rhIL-6 (20ng/ml), rhIL-11 (50ng/ml), and rhThrombopoietin 

(TPO, 50ng/ml) and plated in 35mm plates in duplicate. Cultures were grown at 37o C, 

5% CO2 for 6 days and were then transferred to a slide (Stem Cell Technologies, Catalog 

# 04863).  The colonies were fixed and stained for acetylcholinesterase activity, and the 

number of colonies scored by manual counting  (as described in the manual for 

Megacult®-C).   

 

Methylcellulose Replating 

To perform the methylcellulose serial replating assays, we harvested bone marrow 

and plated 2x104
 
total bone marrow cells in methylcellulose media (Methocult GF 

M3434, StemCell Technologies). Every 7 days for 4 weeks, the numbers of colonies were 

counted, the plates were harvested, and 2x104
 
cells were replated in methylcellulose 

media. 

 

Phenylhydrazine Treatment 

 For Phenylhydrazine (PHZ) treatment, stock solutions of PHZ (10mg/ml; Acros 

Organics, CAS: 59-88-1, EC: 200-444-7) were prepared fresh in PBS and filter sterilized 
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on the day of injections (the solution changed color over time, which is why fresh stocks 

were always made for each injection).  40mg/kg were subcutaneously injected on days 0, 

1, and 3, and peripheral blood (PB) was drawn at days 0, 3, and 5 for complete blood 

counts (CBC) counts to follow how the mice were responding to the PHZ.  Since all of 

the Mtg16-null mice were dying by day 5, the experiment was terminated at day 5.  In 

addition to collecting PB for CBC counts at the time point, the spleen and bone marrow 

were also harvest for H & E sections and to plate in methylcellulose (M3434 and M3436) 

to determine progenitor cell activity in response to PHZ.   

 

5-Fluorouracil Treatment 

 For the 5-Fluorouracil (5-FU; Sigma, F6627-5G) treatment, a batch of stock 

solutions of 10mg/ml in PBS were prepared and frozen after sterile filterization (need to 

make a batch large enough for the entire experiment to ensure consistent treatment).  On 

the days of injections, an aliquot would be thawed at 55oC to dissolve the 5-FU and the 

solution was brought back to room temperature before being injected into the mice.  

100mg/kg of 5-FU was injected I.P. every 7 days and the mice were monitored for 

survival. 

 

LTC-IC 

For the long-term culture initiating-cell (LTC-IC) assay, 3x103
 
lineage-negative 

cells were cultured on OP9 stromal cells and weekly semi-replenishment of media was 

performed (using the StemCell Technologies procedure). At one-week intervals, a set of 

wells was harvested and the cells were plated in methylcellulose media (Methocult GF 
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M3434, StemCell Technologies) and cultured for 10 days to determine the percentage of 

positive wells.  

 

Bone Marrow Transplantation 

For bone marrow transplantation, a single cell suspension of bone marrow cells 

was obtained from the tibia and femur, and the red blood cells were lysed with 

erythrocyte lysis buffer (Buffer EL, Qiagen).  Bone marrow cells were injected via the 

tail vein into lethally irradiated (900 rads) recipient wild-type C57Bl/6 mice.  

 

Competitive Repopulaition Assay 

For competitive reconstitution assays, lethally irradiated C57Bl/6 CD45.1 

congenic mice were used as recipients. The Mtg16+/+
 
or Mtg16-null donor cells were 

mixed with C57Bl/6 CD45.1 bone marrow cells at a ratio of 9:1, respectively. 

Reconstitution potential of the donor (CD45.2) cells was monitored by flow cytometry of 

the peripheral blood.  For the secondary competitive repopulation transplants, the bone 

marrow was harvested as described 12 weeks after the primary competitive transplant, 

and 2 x 106 total bone marrow cells were injected into the tail vein of lethally irradiated 

recipients. 

 

Homing 

To assess total bone marrow cell homing, we used the vital dye 

carboxyfluorescein succinimidyl ester (CFSE; Molecular Probes, Inc.).  Wild type or 

Mtg16-null bone marrow cells were allowed to take up CFSE ex vivo, injected into the 
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tail vein of irradiated recipient mice, and the bone marrow and spleens of recipient mice 

were analyzed by flow cytometry 6 hr later to determine the percentage of cells 

containing CFSE-dependent fluorescence. Analysis was performed on a Becton 

Dickinson FACSCalibur, LSRII, or FACSAria flow cytometer. To assess progenitor cell 

homing, donor bone marrow (Wild-type or Mtg16-null) was harvested and prepared as 

described for the bone marrow transplants. 1 x 107
 
cells were injected via the tail vein 

into lethally irradiated recipient wild-type C57Bl/6 mice and an aliquot was also plated in 

methylcellulose culture to quantify the input number of committed progenitor cells. 

Sixteen hours later, the recipient mice were euthanized and the cells from the femur and 

tibia were harvested. Single-cell suspensions of the marrow cells were cultured in 

triplicate to assess the donor output colony-forming units in the recipient animals. For 

estimating total bone marrow (BM) recovery, the femur/tibia content was assumed to 

represent 9% of total BM [99].  

 

Chromatin Immunoprecipitation (ChIP) Assays 

Chromatin Immunoprecipitation (ChIP) assays were performed using Murine 

Erythroleukmia (MEL) cells.  1 x 107 cells per condition were crosslinked with 1% 

Formaledhyde (Sigma) for 20 minutes and the crosslinking reaction was quenched by the 

addition of glycine to a final concentration of 125mM for 5 minutes.  Cells were 

collected, washed, and resuspended in a low salt ChIP buffer (50mM HEPES KOH, 

ph7.5, 140mM NaCl, 1mM EDTA pH8.0, 1% Triton X-100, and 0.1% sodium 

deoxycholate).  Samples were sonicated and cleared by centrifugation, then precleared 

with the addition of Protein G Sepharose 4B (Sigma).  Samples were incubated over-
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night with goat IgG (Santa Cruz), anti-Eto2 G20 (Santa Cruz), anti-E47 SC-763x (Santa 

Cruz), or Rabbit IgG control (Millipore).  Immune complexes were collected by 

incubation with Protein G Sepharose 4B (Sigma) then washed with a low salt ChIP 

buffer, a high salt ChIP buffer (50mM HEPES KOH pH7.5, 500mM NaCL, 1mM EDTA 

pH8.0, 1% Triton X-100, and 0.1% sodium deoxycholate) and lithium chloride/NP40 

buffer (10mM TrisCl, pH8.0, 250mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate).  

DNA-antibody complexes were eluted with elution buffer (1% SDS and 100mM sodium 

bicarbonate) and the crosslink was reversed with 200 µM NaCl at 65o.  DNA was 

precipitated with the addition of 100% EtOH, RNase treated, Proteinase K (Sigma) 

treated, and isolated using the Qiagen PCR Purification kit.  RT-PCR was performed with 

2 µl of each sample in duplicate using SybrGreen (BioRad) and the BioRad ICycler and 

normalized to input.  Primer sequences are as follows:  

E2F2 Intron 1:  F- 5’-GGACTCTGGAGGGCTAATGTTG-3’  

                          R-5’-GCAATGTCTTCACTCGGCTCGG-3’;  

E2F2 Intron 2:  F-5’TCAGACAGATGAGCGGGGAGGTG-3’  

                          R-5’-GCCTCTGCCAGCCGCTTGAAA-3’;  

E2F2 3’ UTR:  F-5’-TGGTTTCCCCTCCCTGTGAGGC-3’  

                         R-5’-AGACCTGTAGCCACCACGGTCC-3’;  

CCND1 TCF:   F-5’-CTGCCCGGCTTTGATCTCT-3’  

                        R-5’-AGGACTTTGCAACTTCAACAAAACT-3’;  

CCND1 EBox/CSL:  F-5’-CTGGTCTGGCATCTTCGG-3’  

                                  R-5’-GAGAATGGGTGCGTTTCCG-3’;  

N-Myc:   F-5’-CCCGAATGCCTACATAATTCT-3’  
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              R-5’CCTTGGAAGGGTGGCTCA-3’;  

Mtg16:    F-5’-AATATTCACAGGGCCTGACCAA-3’  

               R-5’-AAATGCCTGCAAGCGGATTA-3’ 

 

Immunofluorescence staining 

 Bone marrow collected from both femurs was separated into lineage marker 

positive (CD5, CD45R (B220), CD11b, Anti-Gr-1 (Ly6G/C), 7-4, and Ter-119) and 

negative fractions using the MACS Magnetic Lineage Cell Depletion system (Miltenyi 

Biotech), or FACS purified for the LSK/Flt3-, LSK/Flt3+, and MP sorted populations.  

The cells were allowed to adhere to poly-L-Lysine coated coverslips, fixed in 2% 

paraformaldehyde for 15 minutes at room temperature, and permeabilized in 0.5% Triton 

X-100. DNA double-stranded breaks were detected using a 1:2000 dilution of anti-

phosphoH2AX (γH2AX, Millipore) or 1:1000 anti-53BP1 and 1:2000 dilution of goat 

anti-mouse Cy3 (Jackson Laboratories) and the nuclei were counterstained with 4,6-

diamidino-2-phenylindole (DAPI).  Stained coverslips were mounted on glass slides and 

0.5 µM optical slices were digitally captured using an Olympus FluoView1000 scanning 

confocal microscope.  The number of foci per DAPI-positive nucleus was counted in 

>80-100 cells per lineage fraction per mouse.  Statistical analysis was performed using a 

Student’s t-test. 
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CHAPTER III 

 

DELETION OF MTG16, A TARGET OF THE t(16;21), ALTERS 

HEMATOPOIETIC PROGENITOR CELL PROLIFERATION AND LINEAGE 

ALLOCATION 

 

Background and Significance 

Non-random, somatically acquired, chromosomal translocations are commonly 

associated with the development of acute leukemia and affect genes that control cell 

proliferation, differentiation, survival, and lineage decisions that affect stem cell self-

renewal and progenitor cell differentiation [1].  While translocations can cause the over-

expression of dominantly acting oncogenes such as BCL2 or c-MYC [100, 101], the 

majority of the fusion proteins that are created in the myeloid lineage create weak 

oncogenes that do not have a single dominant phenotype.  As such, the genes that are 

disrupted by these translocations have been extensively studied in order to understand the 

function of the translocation fusion proteins.  

The Myeloid Translocation Gene on chromosome 16 (MTG16, also known as 

ETO-2 or CBFA2T3) and Myeloid Translocation Gene on chromosome 8 (MTG8, also 

known as Eight-Twenty-one or ETO) are disrupted by the t(16;21) and t(8;21), 

respectively.  Both of these translocations create fusion proteins containing the DNA 

binding domain of RUNX1 (formerly called AML1) fused to nearly full-length of MTG8 

or MTG16 [13, 15-17].  Gene disruption strategies have been valuable to dissect the 

regulatory pathways and identify the critical factors that mediate the decision of a stem 
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cell to self-renew and quiesce or to enter the rapidly expanding progenitor cell pool to 

populate the various hematopoietic cell lineages.  Many of these key regulators are DNA 

binding transcription factors, which control gene expression programs to influence 

proliferation and differentiation. By contrast, only a limited number of the transcriptional 

regulators and chromatin remodeling factors that are recruited by DNA binding factors 

have been pinpointed as contributors to stem cell functions.  This is especially true for 

transcriptional corepressors and gene silencing factors.  Although a great deal of 

information has been gathered about the molecular interactions of the MTG family 

members through the analysis of the leukemia-related fusion proteins [102], less is 

known about the physiological functions of this gene family. Gene targeting studies of 

Mtg8/Eto and Mtgr1 have indicated a role in intestinal development, but have yet to 

identify any defects in hematopoiesis [56, 103].  We have created mice lacking Mtg16 to 

better understand the physiological action of this key regulator. 

 

Results 

 

Mtg16-null mice are viable with signs of mild anemia 

To examine the role of Mtg16/Eto2 in hematopoiesis, we deleted exon 8 of the 

gene, because splicing from exon 7 to exon 9 introduces a stop codon in the mRNA, 

thereby triggering nonsense mediated mRNA decay. Homologous recombination was 

used to insert LoxP sequences flanking exon 8 and the G418 resistance gene (Neo) 

containing a 5’ LoxP site was inserted directly upstream of exon 8 (Fig. 9A).  Embryonic  

stem (ES) cells with a correctly targeted allele were identified and injected into  
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blastocysts.  Examination of the progeny by genomic PCR or Southern blot analysis 

confirmed germline transmission of the “floxed” allele. The mice carrying the targeted 

allele were crossed with transgenic E2A-Cre-recombinase mice and offspring lacking 

exon 8 and Neo were identified. Genomic PCR (Fig. 9B), Southern blot analysis (data not 

shown), and Western blot analysis of splenocytes (Fig. 9C) confirmed that Mtg16/Eto2 

was inactivated.  

On a mixed 129SvEv x C57BL/6 genetic background, mice lacking Mtg16 were 

obtained at the expected frequency, were fertile, and appeared anatomically normal. 

Although one allele of Mtg16 is deleted in up to 40% of ductal breast carcinoma [4], 

there was no overt defect in breast development observed by whole mount preparation 

and H&E sectioning (data not shown). Given the targeting of Mtg16 by the t(16;21) in 

AML, we examined the peripheral blood for any defects. Complete blood counts revealed 

a mild anemia in some mice and a compensatory reticulocytosis at 4 weeks of age.  Both 

Wright staining and reticulin staining of peripheral blood smears from 4 week old mice 

indicated that Mtg16-null mice have on average twice as many circulating reticulocytes 

(Fig. 9D and 9E, and data not shown). Consistent with this finding, we observed an 

increased number of Howell-Jolly bodies, which are nuclear remnants found in 

circulating, young red blood cells in response to anemia or splenic dysfunction (Fig. 9D, 

arrows).  

 

Mtg16-null mice display disruptions in allocation to bone marrow progenitor cells 

The peripheral blood phenotypes prompted us to examine the bone marrow, 

spleen and thymus of Mtg16-null mice. Upon gross examination of the spleens of 4-week 
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old Mtg16-null mice, we noted splenomegaly with an average spleen weight 2-fold 

greater than the littermate controls.  Histological examination of the spleens of these mice 

indicated that there was a disruption in the architecture (Fig. 10A) with the red pulp of 

the Mtg16-null spleens containing excess lymphoid, myeloid, erythroid, and 

megakaryocytic elements consistent with extramedullary hematopoiesis.  The presence of 

excess myeloid progenitor cells was confirmed using methylcellulose colony formation 

assays (Fig. 10B). However, this was a transient effect as the spleens were of similar size 

as the littermate controls at 8 and 12 weeks, which is coincident with the mice reaching 

full size.  Therefore, the extramedullary hematopoiesis in the spleen correlates with the 

need for more red cells during rapid neonatal growth. 

Flow cytometry using lineage specific antibodies confirmed that all of the 

hematopoietic lineages were present in the bone marrow of these mice, but that there 

were disruptions in lineage allocation (Fig. 11A).  There were somewhat fewer total 

B220 positive B-cells, as well as B220hi cells.  In addition, it appeared that there were 

fewer maturing erythroid progenitor cells, as fewer cells were Ter119+.  There were also 

fewer CD41+ cells, suggesting reduced numbers of megakaryocytes (Fig. 12A).  

Conversely, more cells were Gr1+/Mac1+, suggesting that the inactivation of Mtg16 

allowed more cells to enter the granulocyte/macrophage pathway.  As for erythropoiesis, 

while fewer cells were Ter119 positive, once committed to this lineage, the cells 

continued to differentiate, as the subpopulations distinguished by staining with anti-CD71 

and anti-Ter119 were all present and in similar proportion to the control mice (Fig. 11B). 

Methylcellulose colony formation assays confirmed these flow cytometry results, as there  
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were consistently more CFU-G colonies formed from both the bone marrow and the 

spleen (Fig. 11C, 11D).  This increase in the granulocytic lineage appeared to be at the 

expense of the erythroid lineage, as there were only a few BFU-E formed (Fig. 11C, 

11E). Although megakaryocytes and erythroid cells share a common progenitor cell 

(MEP), colonies containing mature megakaryocytes were produced in vitro (Fig. 12B).  

Thus, while there were no complete blocks in hematopoietic differentiation in the 

absence of Mtg16, there was altered production of cells within lineages and a dramatic 

reduction in BFU-E activity in vitro. 

 

Loss of Mtg16 sensitizes mice to the effects of phenylhydrazine 

The reduction in the number of Ter119+ cells, the impairment in BFU-E, and the 

association of Mtg16 with TAL1/Scl and Gfi1b in hematopoietic cell lines [46, 47] led us 

to test the response of Mtg16-null mice to erythropoietic stress.  Phenylhydrazine is a 

hemolytic agent used in the past to treat patients with polycythemia vera and is used 

experimentally in provoking stress erythropoiesis [104].  Cohorts of control and Mtg16-

null mice were injected with 40 mg/kg phenylhydrazine, which is a regimen that this well 

tolerated in wild type mice (Fig. 13A).  However, the Mtg16-null mice quickly became 

moribund and the experiment was terminated at day 5 (Fig. 13A).  Erythropoietic stress 

stimulates a dramatic proliferative response in the bone marrow and spleen.  In the 

spleen, myeloid progenitor cells rapidly expand to regenerate the erythropoietic system.  

At the gross level, spleens of control mice increased in size by over 4-fold to meet the 

phenylhydrazine challenge (Fig. 13B) and the total red blood cell counts and hematocrits 

were reduced by only about 50%, as expected.  By contrast, the spleens  
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of Mtg16-null mice did not increase in size and the red cell count plummeted along with 

the hematocrit (Fig. 13B).  Histological analysis of the spleens of these mice indicated 

that the control mice were able to expand their progenitor populations to meet the 

hematopoietic challenge, but the Mtg16-null progenitor population failed to expand 5 

days after the first injection of phenylhydrazine (Fig. 13C).  Methylcellulose colony 

formation assays confirmed these results, as there was either a dramatic reduction or no 

BFU-E colonies formed using either a combination of Epo, IL-6, IL-3, and SCF (Fig. 

13D) or Epo alone (Fig. 13E), but with a concomitant increase in CFU-M, CFU-G, and 

CFU-GM colonies from the spleens of the Mtg16-null phenylhydrazine-treated mice (Fig. 

13D). 

 

Inactivation of Mtg16 disrupts progenitor cell gene expression networks 

Mtg16 is the most highly expressed MTG family member in the early progenitor 

and stem cell populations [60].  Thus, loss of Mtg16 is expected to alter transcriptional 

networks to affect erythroid progenitor cell proliferation. To begin to define the changes 

in gene expression underlying these phenotypes, we performed cDNA microarray 

analysis of immature bone marrow progenitor cells to further define the mechanistic basis 

of these defects. The bone marrow from young adult, sex matched, wild type and Mtg16-

null mice was pooled and lineage positive cells were removed using the lineage panel of 

antibodies coupled to magnetic beads. Total RNA from the lineage negative cells was 

prepared and used for cDNA microarray analysis (Fig. 14A). The mis-regulation of 

numerous genes associated with stem cell and progenitor cell function was observed, 

including Socs2, Gfi1, HoxB2, PU.1, and members of the C/EBP family (Fig. 14A).  The 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changes in expression of selected target genes were confirmed by quantitative RT-PCR 

(Fig. 14B, and data not shown).  In addition, quantitative RT-PCR was used to examine 

the expression of numerous cell cycle regulators whose induction could contribute to the 

observed phenotypes including the retinoblastoma family members and cyclin dependent 

kinase inhibitors.  However, we did not detect statistically significant changes in the 

expression of these genes either by microarray or by quantitative RT-PCR (data not 

shown). 

When the mRNAs that showed a greater than 2-fold change were analyzed using 

Ingenuity Pathway Analysis software, two networks of transcription factors and their 

regulated genes were found to be altered (Fig. 14C, 14D; red is up, green is down, 

network score 47 for each shown).  Within these networks we noted that several genes 

that are regulated by Gfi1, which recruits MTG8, were de-repressed. These included Gfi1 

itself, Neutrophil Elastase (Ela2) and C/EBPε (Fig. 14C) [105, 106]. We then performed 

a visual inspection of the array data to examine the expression of genes that are regulated 

by these and other DNA binding factors that recruit MTG family members.  By 

expanding the expression array criteria to as low as 1.7 fold, we noted that 2 additional 

Gfi1-regulated genes, the IL6 receptor and C/EBPα, were induced as was Socs3, which is 

regulated by Gfi1b [105, 107].  In addition, we found that the BCL6-regulated genes 

Stat1, Id2, CD69, Cyclin D2, and Cxcr4 were up-regulated in the null mice [108] and that 

PLCγ, Gadd45β, and Hes1, which are regulated by “E-proteins” (e.g., HEB and E47 [45, 

109]) were similarly activated. These results prompted us to extend this analysis to 

demonstrate that these factors can also associate with Mtg16.  Immunoprecipitation 
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followed by Western blot analysis indicated that Mtg16 bound to both Gfi1 and PLZF, 

and modestly associated with the PLZF-related factor BCL6 (Fig. 15). 

 The gene expression analysis identified transcriptional networks that are disrupted 

when Mtg16 is inactivated and also identified multiple genes whose activation might alter 

cell cycle progression, including Socs2 and Socs3, which dampen cytokine receptor 

signals [110, 111] and the C/EBP family members that can bind to and impair the action 

of E2Fs [112-114]. In addition, we found that the levels of mRNA encoding the cyclin 

dependent kinase inhibitor p27 was induced an average of 1.7-fold in the Mtg16-null 

cells, but that the levels of p21 were not significantly altered either in the microarray 

analysis or in quantitative RT-PCR assays (data not shown). Cumulatively, these small 

changes in gene expression may have a significant impact on progenitor cell 

proliferation. In contrast, few genes associated with the induction of apoptosis were 

identified. Finally, we noted that Cd34, which is expressed in common myeloid 

progenitor and granulocyte/macrophage progenitor cells, was up-regulated in the Mtg16-

null mice.  

 

Inactivation of Mtg16 yields a c-Kit+/Cd34hi/FcgRlow myeloid progenitor population 

The stimulation of Cd34 and genes that control myelopoiesis (e.g., C/EBP family 

members) could be due to altered transcription of these genes in the absence of Mtg16, or 

it could be due to a skewing of lineage allocation toward myeloid progenitor cells.  

Therefore, we examined the early progenitor bone marrow compartment using flow 

cytometry to define the ratios of early progenitor cells in the bone marrow of Mtg16-null 

mice.  For this analysis, we first depleted maturing cells (lineage positive) and then  
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identified cells expressing combinations of c-Kit, but not Sca1, and used the FcγR and 

Cd34 to distinguish myeloid progenitor populations by flow cytometry [115, 116]. As 

compared to wild type control mice, the Mtg16-deficient mice contained slightly fewer 

lineage-/c-Kit+/Sca1+ cells (LSK, Fig. 16A). Within the myeloid progenitor cells (lineage-

/c-Kit+/Sca1-), there were fewer megakaryocyte-erythroid progenitor cells (MEPs, Fig. 

16A, p < 0.05), but more common myeloid progenitor cells (CMPs, Fig. 16A and 16B) 

and more granulocyte/macrophage progenitor cells (GMPs, Fig. 16A and 16B) [88, 115].  

In addition, the Mtg16-null mice contained a cell population that highly expressed Cd34, 

but poorly reacted with anti-FcγR (Fig. 16A, 16B). 

To determine what lineage of cells the Cd34hi/FcγRlow cells represented, we used 

FACS to isolate these cells along with CMPs, GMPs, and MEPs from wild type and null 

mice and cultured these cells in methylcellulose supporting myeloid progenitor cell 

growth.  Consistent with the FACS data that indicates that deleting Mtg16 in the bone 

marrow creates more granulocytic-lineage precursors, in both CMP and GMP 

populations, there were consistently more CFU-G colonies formed with a dramatic loss 

of BFU-E (Fig. 16C, 16D; see Fig. 17 for photographic examples of the colonies formed).  

The Mtg16-null Cd34hi/FcγRlow cells formed similar numbers of CFU-M, CFU-G, and 

CFU-GM colonies under these conditions as wild type CMP cells, but had little or no 

potential to yield BFU-E (Fig. 16C, 16D, 16E). 

Next, we sorted the Cd34hi/FcγRlow cells from the null mice and compared gene 

expression in these cells to MEPs from wild type or null bone marrow to further test 

whether these are MEPs that had de-regulated Cd34 expression.  Comparison of the 

Cd34hi/FcγRlow cells to MEPs from the null mice indicated that this was a distinct cell  
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population, rather than an aberrant MEP population, as there were dramatic changes in 

gene expression profiles (Fig. 18A).  These included the expression of granulocytic-

specific genes such as Myeloperoxidase, Neutrophil Elastase 2, CD52, Cathespsin G, as 

well as transcriptional regulators such as Gfi1, C/EBPα, C/EBPδ and C/EBPε, which 

contribute to granulocyte differentiation [63, 112, 113, 117-120].  In addition, the 

Erythropoietin Receptor (EpoR) was dramatically under-represented in the 

Cd34hi/FcγRlow population.  Overall, the gene expression profiles and growth 

characteristics of this population (Fig. 16) were most consistent with an abnormal 

granulocytic/macrophage progenitor that fails to express the FcγR, but maintained 

expression of c-Kit and Cd34. 

This analysis also allowed us to directly compare wild type and null MEP gene 

expression (Fig. 18B).  Even in these committed progenitor cells, there were dramatic 

differences in gene expression.  Some of the key genes that were up-regulated include the 

regulators of differentiation Id1, Id2, Fli1, Pu.1, Hes5, and regulators of cytokine 

signaling and cell proliferation such as Socs2, Cdc25b, p18ink4, and p21 (Fig. 18C).  

Whereas the microarrays did not detect changes in Gata3, Q-RT-PCR found that it was 

up-regulated relative to Gata1 (Fig. 18C).  Conversely, genes that were under expressed 

included the transcription factors Mef2c, Klf5, and Pax2.  Ingenuity Pathway analysis 

uncovered 4 highly significant networks that were dis-regulated in Mtg16-null MEPs 

versus wild type MEPs (Fig. 19).  One of these networks (Fig. 19C, Cancer and Cellular 

Growth) contains many key regulators of the cell cycle, proliferation, and cellular 

differentiation including p21, cyclin D, Id1, Id2, Notch1, Hes5, and Fli1.  
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Mtg16 is required for short-term stem cell, multi-potent progenitor, and MEP 

proliferation 

 Short-term stem cell and progenitor cell functions can be further examined using a 

spleen colony-forming assay.  MEPs form colonies on the spleen 8 days after bone 

marrow transplantation (CFU-S8), and short-term stem cells and multi-potent progenitor 

cells and MEPs form splenic colonies in roughly equal numbers 12 days after 

transplantation (CFU-S12) [88, 115]. As expected, wild type bone marrow from littermate 

control mice yielded copious numbers of colonies at both 8 and 12 days post 

transplantation (Fig. 20A). In contrast, Mtg16-null bone marrow failed to form colonies 

and only produced “white patches” of cells at either 8 or 12 days after transplantation 

(Fig. 20A).  The presence of the patches of cells in the spleens transplanted with null 

marrow, suggested that the Mtg16-null progenitor cells found their way to the spleen, but 

failed to expand to form colonies.  When bone marrow cells were labeled ex-vivo with the 

tracking dye CFSE, they homed to the spleen in similar numbers as the wild type donor 

control cells (Fig. 20B). Thus, while the bone marrow of Mtg16-deficient mice sustains 

the mice in the naïve animal, these cells are completely defective in the CFU-spleen 

assay (Fig. 20A) and fail to undergo the rapid expansion necessary after challenge with 

phenylhydazine (Fig. 13). The defect in CFU-S could be due to either a failure of the 

cells to rapidly expand and form large colonies or could be due to increased cell death. 

Given that the endogenous splenocytes had received a lethal dose of radiation and would 

not synthesize DNA, we were able to use BrdU incorporation to measure the cycling 

status among the injected cells in the spleens 8 days after bone marrow transplantation. In 

mice transplanted with wild type bone marrow, roughly 40% of the cells were cycling. In  
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contrast, the Mtg16-null bone marrow produced half the number of BrdU positive cells in 

the spleen 8 days post transplant (Fig. 20C). While the irradiation of the recipient mice 

did not allow a determination of the level of apoptosis, the BrdU incorporation data 

suggests that the mechanistic basis of the Mtg16-null progenitor cells is a defect in 

proliferation. 

 

The Mtg16 defect in CFU-S can be overcome by expression of c-Myc 

To further define the mechanism underlying the Mtg16-null defect, we attempted 

to genetically complement the proliferation defect.  Our gene expression studies 

identified a host of genes that are de-regulated upon inactivation of Mtg16, making 

siRNA or cross breeding with mice lacking these genes impractical.  Therefore, we asked 

whether expression of genes that can block apoptosis or stimulate proliferation might 

bypass the Mtg16-null proliferation defect.  Bcl2 expression was used to impair apoptosis 

and c-Myc was expressed to promote proliferation, due to its ability to bypass cyclin-

dependent kinase inhibitors such as p27 and p21 [121, 122], which were up-regulated in 

the mull mice.  Expression of c-Myc also leads to the activation of E2F family members 

and cell cycle progression [123], which might overcome the action of C/EBP family 

members and bypass any impaired signaling caused by expression of Socs family 

members (Fig. 14).  Our culture conditions for MSCV infection favored the expansion 

and transduction of stem cells and multi-potent progenitor cells, which required us to 

focus on CFU-S12.  The in vitro selection for rapidly growing cells led to the formation of 

somewhat larger micro-colonies on the spleens in the vector control, but no fully formed 

colonies were observed (MSCV, Fig. 21A, 21B).  This further confirms that these cells  
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correctly home to the spleen, but fail to expand into colonies. Re-expression of Mtg16 

complemented the proliferation defect leading to the formation of robust colonies, which 

confirms that these defects are specific to Mtg16 (Fig. 21A). While expression of Bcl2 

had no effect on colony formation, expression of c-Myc complemented the Mtg16-null 

defect in vivo.  Expression of c-Myc in wild type bone marrow did not affect CFU-S 

number (Fig. 21C).  Thus, inactivation of Mtg16 causes a profound defect in progenitor 

cell expansion. 

 

Discussion 

The chromosomal translocations that are associated with acute leukemia target 

master regulators of cell fate decisions, apoptosis, and cellular proliferation [124]. Gene 

targeting of Mtg16 demonstrates that this gene is largely dispensable for normal 

development and viability in an unstressed environment and that the neonatal 

extrameduallary hematopoiesis in the spleen occurs in response to the rapid growth 

during early development.  However, there were fewer MEPs, and the formation of an 

abnormal Cd34hi/FcγRlow progenitor cell population that had the growth properties and 

gene expression pattern characteristic of a myeloid progenitor cell.  Hematopoietic stress 

disrupted the homeostasis that is achieved in the bone marrow of these mice and 

magnified the role of Mtg16 progenitor cell proliferation (Fig. 13).  The Mtg16-null mice 

succumbed to acutely induced anemia, which appeared to be due to a failure to expand 

erythropoiesis in the spleen.  Spleen colony formation assays emphasized the 

proliferation defect.  This assay also assesses the function of multi-potent progenitor cells 

and short-term stem cells [88, 115], and the total lack of colonies at day 12 after bone 
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marrow transplantation indicates that these immature cells are also functionally defective 

in the Mtg16-null bone marrow.  

The disruption in the allocation of cells to the different myeloid progenitor 

populations in the Mtg16-null mice is reminiscent of the defects in the small intestine of 

Mtgr1-deficient mice [56]. Mtgr1-null mice also survive into adulthood, but these mice 

fail to maintain the secretory lineage cells in the small intestine [56].  This phenotype is 

somewhat similar to deletion of Gfi1 in the gut [125] and Gfi1 can recruit Mtgr1 [43, 56].  

In addition to the small intestinal phenotype, the colons of the Mtgr1-null mice were 

hypersensitive to the ulcerative agent dextran sodium sulfate (DSS).  After treatment with 

DSS, the Mtgr1-null colonic epithelium failed to correctly regenerate, suggesting altered 

stem cell functions [57]. Targeted gene disruption of Mtg8 indicated that it is required for 

development of the gut [103], but without defects in lineage contributions. While there 

are no obvious phenotypes in the intestines of Mtg16-null mice (data not shown), the gut 

phenotypes observed in the Mtg8- and Mtgr1-deficient mice coupled with the 

identification of mutations in MTG8 in colorectal carcinoma and MTG16 in breast cancer, 

suggests that further analysis of these mice, perhaps after cellular stress, is warranted. 

Mechanistically, the altered progenitor cell functions can be traced to changes in 

gene expression patterns that can be linked to impaired repression by the DNA binding 

factors that recruit Mtg16.  These include PLZF, BCL6, TAL1/SCL, Gfi1, Gfi1b, and 

Heb [42‐47]. Gene expression profiling identified the de‐repression of genes that are 

regulated  by  many  of  these  factors,  which  not  only  confirms  the  veracity  of  the 

arrays, but also provides a molecular mechanism for how loss of Mtg16 affects cell 

lineage  decisions.    For  example,  Gfi1  auto‐regulates  its  own  expression  and 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represses  both  C/EBPε,  and  Neutrophil  Elastase,  while  PLZF  regulates  HoxB2. 

Indeed,  the  entire  gene  network  that  includes  Gfi1,  C/EBPε,  and  PU.1  was  dis‐

regulated  in  the  Mtg16‐null  bone  marrow  (Fig.  14C).  Within  this  network  it  is 

possible  that  the  removal  of Mtg16  impaired Gfi1‐mediated  repression  of C/EBPε, 

which in turn affects the expression of PU.1 (Spi1) and C/EBPβ to alter the cell fate 

decisions  in  favor  of  granulocytes  and monocytes. However,  it  is  also  noteworthy 

that C/EBPβ can associate with MTG8, and that PU.1 associates with RUNX1‐MTG8 

[26, 126]. Thus,  this network analysis points  toward a more direct  involvement of 

Mtg16 with multiple key regulators of hematopoiesis.   

It is also notable that two of the DNA binding factors that recruit MTG family 

members, Gfi1b and TAL1/Scl, contribute to erythropoiesis [72,  127,  128].   While 

TAL1/Scl can both activate and repress transcription, Gfi1b is commonly viewed as a 

dedicated repressor such that loss of a corepressor could partially impair Gfi1b actions 

[67, 129].  Mice lacking Gfi1b died during embryogenesis, apparently due to defective 

erythropoiesis, such that its contribution to adult hematopoiesis has yet to be defined 

[67].  Nevertheless, removal of one of the corepressors that is recruited by Gfi1b is likely 

to contribute to the defective proliferation, especially given that Gfi1b can control 

cellular proliferation via repression of the p21 cyclin-dependent kinase inhibitor.  Indeed, 

p21 was up-regulated in Mtg16-null MEPs, but other CDK inhibitors were also turned on 

as were drivers of the cell cycle such as N-Myc. Like Gfi1b, TAL1/Scl is also required for 

embryonic hematopoiesis, but when deleted in adult mice, these mice were mildly 

anemic.  While the bone marrow was defective in CFU-S assays, these mice had 

increased numbers of MEPs and normal percentages of CMPs and GMPs [72, 127, 128, 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130], whereas the Mtg16-null mice have fewer MEPs and an abnormal Cd34hi/FcγRlow 

myeloid progenitor cell population (Fig. 16 and 18).  Therefore, it is difficult to pinpoint 

single genes or pathways that would mediate the Mtg16-null phenotypes observed.   

Loss of function of Mtg16 may be associated with the formation of acute 

leukemia, as the t(8;21) fusion protein can associate with Mtg16 and impair its function 

in granulopoiesis  [131].  The t(8;21) is associated with an increase in early myeloid 

progenitor cells and deletion of Mtg16 function caused an accumulation of these 

populations (Fig. 16).  Moreover, when expressed during embryogenesis, the t(8;21) 

fusion protein also impaired erythropoiesis [28,  132].  Though counterintuitive, the 

fusion protein impaired proliferation in vitro, and in vitro inactivation of Mtg16/ETO2 

impaired the proliferation of erythroid cells [47,  54,  133,  134].  Our in vivo study of 

CFU-S12 indicated that this proliferation defect is also found in multipotent progenitor 

cells and short-term stem cells (Fig. 20).  Thus, loss of Mtg16 functions could contribute 

to some of the phenotypes associated with the t(8;21), perhaps by favoring lineage 

allocation towards the CMP/GMP populations and away from erythropoiesis.  

 



  83 

Chapter IV 

 

MTG16/ETO2 IS REQUIRED FOR MAINTENANCE OF HEMATOPOIETIC 

STEM CELL QUIESCENCE 

 

Background and Significance 

 The balance between hematopoietic stem cell (HSC) differentiation and self-

renewal must be maintained to ensure homeostasis, long-term stem cell viability, and 

suppress cancer formation [135]. Thus, the discovery of factors that control these 

processes in HSCs is important in terms of tumorigenesis and for their use in clinical 

applications such as hematopoietic cell transplantation.  In addition, understanding the 

role of regulatory factors in hematopoietic stem cell function can be applied to other 

organ systems [136].  

 Interestingly, the engineered inactivation of many transcription factors that recruit 

MTG family members identified them as key regulators of stem cell functions and 

lineage allocation in mice. In several instances, these phenotypes were related to 

inappropriate cycling of the lineage negative, Sca1+, c-Kit+
 
(LSK) stem/progenitor cells 

(e.g., Gfi1, E2A), which caused depletion of stem cell pools or noncompetitive long-term 

stem cells [64, 65, 76]. In addition, Mtg16 is the dominant MTG family member 

expressed in hematopoietic stem and early progenitor cells and microarray profiling of 

normal and leukemic stem cells suggests that Mtg16 is expressed in these cells [60, 62]. 

These data suggest that MTG family members might contribute to stem cell functions.   
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Results 

 

Defects in Mtg16-null hematopoietic stem cells 

Mtg16-/- mice show only modest hematopoietic defects, but when challenged they 

lacked the ability to respond to erythropoietic stress [137].  These results, along with the 

linkage of MTG family members to Wnt and Notch signaling, prompted us to carefully 

examine the hematopoietic stem and progenitor cell compartments in Mtg16-/- mice.  We 

used flow cytometry to identify lineage negative, Sca1+, c-Kit+
 
(LSK) cells, which 

represents stem and early progenitor cells. These cells were reduced by roughly 2-fold in 

Mtg16-/- mice and when these cells were further divided based on Flt3 expression to focus 

in on the stem cell population, the LSK/Flt3- cells were also reduced by nearly 2-fold 

(Fig. 22A, B, C). To confirm the reduction in the stem cell population, we further 

fractionated the LSK/Flt3- cells with the signaling lymphocyte attractant molecule 

(SLAM) markers CD150 and CD48, which greatly enriches for long-term repopulating 

hematopoietic stem cells (LT-HSC) [85].  The LSK/Flt3-/CD150+/CD48- fraction of cells 

(LT-HSC) was also reduced by slightly more than 2-fold in the Mtg16-/- mice (Fig. 22D). 

Next, we used bone marrow transplantation assays to assess stem cell functions.  

While injection of only 200,000 wild type cells were sufficient to provide radioprotection 

and yielded 100% survival, injection of 200,000 Mtg16-deficient cells failed to 

reconstitute the marrow with all mice succumbing within 30 days.  Injection of one 

million cells only extended the survival to a maximum of 52 days, suggesting that the 

stem cells were defective in repopulating the marrow (Fig. 23A).  To bypass the lethality 

in the bone marrow transplant, we performed competitive bone marrow transplants using  
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10% wild-type (CD45.1+) cells to provide radioprotection along with 90% Mtg16-/-

(CD45.2+) bone marrow cells.  Within 7 weeks of transplant there were already 

substantial reductions in the number of Mtg16-/- cells in the peripheral blood, with only 

25-30% CD45.2+ cells present (Fig. 23B).  By 13 weeks post-transplant, when the 

peripheral blood cells are derived from the long-term stem cells, the percentage of 

CD45.2+ cells had dropped to below 20%.  These percentages continued to erode over 

time, falling to nearly 10% after 1 year while control CD45.2+ cells maintained a level of 

at least 90%  (Fig. 23B).   

 Although the analysis of peripheral blood suggested dramatic defects in Mtg16-/- 

stem cells, excluding erythrocytes, the peripheral blood is mostly composed of B and T 

cells.  Given that Mtg16-/- mice have decreased numbers of B cells under homeostasis 

[137] and Mtg16 is required for the differentiation of T cells [61], we used flow 

cytometry analysis to examine the bone marrow 12 weeks after competitive 

transplantation. We found a 2- to 3-fold reduction in CD45.2+ cells in the total bone 

marrow (Fig. 23C, 23D), whereas only half this number of cells (about 20%) made it into 

the peripheral blood (Fig. 23B).  A further breakdown of the contribution of CD45.2+ 

cells in the bone marrow showed an exaggerated skewing of the Mtg16-/- cells towards 

the myeloid lineage with nearly 90% of the Mtg16-/- cells being Gr1+ and/or Mac1+ (Fig. 

24), which is an exaggeration of the phenotype observed at homeostasis [137]. 

 We also examined the LSK and LSK/Flt3- cells in the bone marrow to determine 

the number of CD45.2+ cells that remained at 12 weeks post-transplant (Fig. 23D and 

25).  There was a 2.8-fold reduction in CD45.2+ LSK cells, and a 3-fold reduction in 

CD45.2+ LSK/Flt3- stem cells that derived from the Mtg16-/- mice (Fig. 23, and Fig. 25  
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for FACS plots).  Although the Mtg16-/- bone marrow contains roughly half the normal 

number of LSK cells, these results suggested that the Mtg16-/- stem cells displayed a 

further defect after transplantation.  Therefore, we performed a secondary transplant to 

further examine Mtg16-/- stem cell functions.  Six weeks after transplanting irradiated 

recipient mice with bone marrow that contained from 25% to 45% CD45.2+ bone marrow 

(Mtg16-/-), there was a dramatic loss of Mtg16-/- cells in the peripheral blood and flow 

cytometry analysis of the bone marrow of these mice indicated a near complete loss of 

Mtg16-/- LSK and LSK/Flt3- cells (Fig. 26, see Fig. 27 for FACS plots for B).  By 

contrast, control mice contained 80-90% CD45.2+ cells in the bone marrow (Fig. 26).  

Thus, Mtg16 is required to maintain stem cells, even when normal progenitor cells are 

present, suggesting a stem cell-intrinsic defect. 

 

Mtg16-/- cells home to the bone marrow 

To ensure that this defect was not simply due to a failure of the stem cells to home 

to the marrow, we labeled bone marrow cells ex vivo with the vital dye 

carboxyfluorescein succinimidyl ester (CFSE) before injecting these cells into the tail 

vein of mice.  Sixteen hours later, the bone marrow of these mice was analyzed by flow 

cytometry and the number of cells positive for CFSE was quantified (Fig. 28A).  A 

similar number of null cells as compared to wild type controls were found in the bone 

marrow.  Given that the CFSE experiment assessed whole bone marrow, we further 

examined the homing of stem and progenitor cells by performing methylcellulose colony 

formation assays 16 hours after bone marrow transplantation and calculating the 

percentage of stem/progenitor cells that correctly homed to the bone marrow (Fig. 28B).   
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The small changes observed were within the statistical error, indicating that immature 

Mtg16-/- cells homed correctly to the marrow. 

 
Mtg16 deficiency affects stem cell self renewal 
 
 The hematopoietic defects found in the LSK/Flt3- and LSK/CD48-/CD150+ stem 

cell compartments (Fig. 22) and identified in bone marrow transplantation assays, 

suggested that Mtg16 was required for stem cell self-renewal (Fig. 26).  To further define 

the defect, we used in vitro analyses of stem cell functions. First, we serially cultured 

bone marrow cells in methylcellulose. Stem cells from control mice were able to form 

colonies through 3 consecutive rounds of culture in methylcellulose containing IL6, SCF, 

erythropoietin, and IL3, but yielded only about 15% of the number of colonies after the 

4th 
 
culture (Fig. 29A).  By contrast, Mtg16-null cells displayed a 4-fold reduction in 

replating ability after the second round of culture (Fig. 29A) and were essentially 

exhausted by the 4th culture. We extended these results by testing the function of Mtg16-

null stem cells in a long-term culture-initiating cell (LTC-IC) assay, which tests long-

term stem cell function in a controlled in vitro environment [138]. The initial cultures of 

3,000 Mtg16-null lineage negative cells contained the same number of CFC-producing 

cells as 3,000 wild-type lineage negative cells. The same was true after one week in 

culture (Fig. 29B). However, by the second week of culture, the number of CFC-

producing cells present in the Mtg16-null cultures was drastically reduced compared to 

the wild-type cultures, and almost completely absent after just three weeks in culture 

(Fig. 29B), indicating a loss of self-renewal.  
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The inactivation of Mtg16 alters the expression of cell cycle control genes 

 Given that Mtg16 appears to act as a transcriptional corepressor, we compared 

gene expression in control and Mtg16-null lineage negative, Sca1+, c-Kit+ cells using 

cDNA microarray analysis.  Because these cells are rare, LSK cells were sorted and 

pooled from 10 wild type and 10 Mtg16-null mice and the experiment was performed 

using biological triplicates.  The genes showing changes were categorized based on 

biological pathways or biological processes using the Panther classification system 

(representative cell cycle control genes are shown in Fig. 30A, see GEO for the full gene 

expression profiles) [139]. We consistently observed changes in genes that function in 

hematopoietic differentiation, including 4-6 fold higher levels of Id1 and Id2, whose 

over-expression caused skewing of lineage allocation towards myelopoiesis and away 

from lymphopoiesis [140]. In addition, we noted that several genes that are associated 

with cell cycle control, or the transition out of quiescence, were up-regulated including 

Fos, E2F2, Raf, Cyclin D1, Cdk2, and N-Myc.  The microarray data were confirmed 

using selected genes whose expression was altered in the arrays, including Id1, Id2, and 

E2F2 that were up-regulated and the Erythropoietin receptor (EpoR), which was 

dramatically down-regulated (Fig. 30B). The low level of EpoR is important given the 

defects previously observed in “stress” erythropoiesis in the absence of Mtg16 [137].   

 The levels of several key cell cycle control genes were consistently 2-4 fold 

higher than in control cells in either microarray data or by QRT-PCR (Fig. 30A, B).  

Therefore, we used chromatin immunoprecipitation (ChIP) assays to determine whether 

any of these genes are direct targets for regulation by Mtg16/Eto2.  We focused the ChIP 

assays towards regions of these genes that are bound by factors that recruit MTG family  
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members including TCF4, E proteins, and CSL.  While we were unable to detect Mtg16 

at the TCF4, E protein, or CSL binding sites in the Cyclin D1 or N-Myc promoters in 

murine erythroleukemia cells that express high levels of Mtg16 (Fig. 31B), we detected 

Mtg16 near an E2A binding motif in the first intron of E2F2 [141], which we confirmed 

using anti-E47 (Fig. 31A). Mtg16/Eto2 localized to this site in E2F2 using two different 

sets of primers to the first intron of E2F2 (Fig. 31A; set 1 and set 2) and 2 additional anti-

Mtg16/ETO2 antibodies (Hunt, Engel and Hiebert, unpublished data). While negative 

data with ChIP does not rule out the possibility that Mtg16 is required to suppress Cyclin 

D1 or N-Myc or other regulators of the cell cycle, Mtg16 associates with E2F2, whose 

over expression is sufficient to drive quiescent cells into the S phase [142].   To determine 

if this interaction with E2F2 through E proteins contributes to the loss of stem cell self-

renewal in the absence of Mtg16, we utilized a point mutation in Mtg16 that is 

homologous to a mutation in MTG8 that abrogated the binding of the MTG8 NHR1 

domain to HEB AD1, which was sufficient to disrupt repression of E-protein mediated 

transcriptional activation [143, 144]. The Mtg16-F210A mutant mimics the MTG8-

F154A mutant to eliminate E-protein AD1 binding, whereas a control Mtg16-R220A 

mutant mimics the MTG8-R164A mutant that retained the ability to bind to HEB AD1 

[143]. The Mtg16-F210A and Mtg16-R220A mutants were reintroduced into Mtg16-null 

lineage-negative cells using MSCV-IRES-GFP, and both Mtg16 and the Mtg16-R220A 

mutant were capable of rescuing the loss of stem cell self-renewal in the LTC-IC assay 

(Fig. 31C). However, the F210A point mutant failed to rescue this loss of self-renewal 

(Fig. 31C). Therefore, appropriate regulation of E-protein activity is a necessary function 

of Mtg16 in the maintenance of stem cell self-renewal through repressing cell cycle 
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genes, such as E2F2. 

 
Mtg16 is required for maintaining stem cell quiescence 

 The up-regulation of cell cycle control genes suggested that the exhaustion of 

stem cells after serial competitive transplant of Mtg16-/- bone marrow was due to 

inappropriate entry of the stem cell population into the cell cycle.  To test this hypothesis, 

BrdU was injected into control and Mtg16-/- mice to assess the number of LSK cells in the 

S phase of the cell cycle.  Two hours after injecting BrdU, flow cytometric analysis 

revealed that a higher portion of LSK cells from Mtg16-/- mice incorporated BrdU, as 

compared with wild-type cells, indicating that more Mtg16-null stem and early progenitor 

cells had entered the cell cycle (Fig. 32A, see Fig. 33A for further quantification).  

Further analysis of the cell cycle was performed by flow cytometry analysis of the 

incorporation of the DNA dye Hoechst 33342 (HO) and RNA dye Pyronin Y (PY), which 

identifies quiescent cells based on their lower output of RNA.  The lower percentage of 

Mtg16-/- LSK cells that were Hoechst and Pyronin low (G0 cells) compared with wild-

type mice indicated a loss of quiescent cells (Fig. 32B, see Fig. 33B for further 

quantification).  Finally, we examined the LSK/Flt3- long-term hematopoietic cell 

compartment and found that in the absence of Mtg16, nearly two thirds more LSK/Flt3- 

cells were in the cell cycle (Fig. 32C, see Fig. 33C for FACS plots). These data suggest 

that loss of Mtg16 allowed stem cell entry into the cell cycle.  

Both the methylcellulose serial-replating and LTC-IC assays indicate that the 

Mtg16-null stem/progenitor cells have decreased self-renewal potential and, together with 

the competitive bone marrow transplants, suggest that Mtg16 may have intrinsic 

functions in the HSC.  Therefore, we performed BrdU incorporation analysis on mice  
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after competitive bone marrow transplantation using 90% null cells and 10% wild type.  

Because the yield of Mtg16-/- cells is low after transplant (Fig. 23), we were only able to 

examine LSK cells (rather than LSK/Flt3-).  Nevertheless, even in the presence of wild 

type progenitor cells that negate any Mtg16-/- progenitor cell defects, the Mtg16-/- LSK 

population showed an increase in the percentage of cycling cells, as compared to the 

control mice containing wild type CD45.2 LSK cells (Fig. 32D). These results suggest 

that the increased cycling observed in the LSK compartment was not due to downstream 

defects in progenitor cells, but that Mtg16/Eto2 is required to suppress stem cell entry 

into the cell cycle.  

 

Discussion 

In this study, we examined the role of Mtg16, a transcriptional corepressor, in 

hematopoietic stem cell functions.  Inactivation of Mtg16 reduced hematopoietic stem 

cell numbers, and more importantly, resulted in a loss of self-renewal both in vivo and in 

vitro.  This loss of self-renewal and eventual stem cell exhaustion appeared to be due to 

inappropriate entry of stem cells into the cell cycle.  One function of Mtg16 is to link 

DNA binding transcription factors that control hematopoiesis to chromatin modifying 

enzymes such as histone deacetylases. We found that E2F2, a transcription factor that 

when over-expressed was sufficient to drive quiescent cells into the cell cycle, was up-

regulated in Mtg16-/- LSK cells.  In addition, Mtg16 robustly associated with an 

enhancer-like sequence in the first intron of E2F2, suggesting that E2F2 is a direct target 

for Mtg16-mediated repression.  However, this does not preclude Mtg16-dependent 

regulation of other key regulators of the cell cycle.  Notably, N-Myc is consistently over- 



  104 

expressed in gene expression analysis of Mtg16-/- cells [137]. Thus, Mtg16/Eto2 is likely 

required to maintain control of a cell cycle regulatory circuit that when mis-regulated can 

drive quiescent stem cells into DNA synthesis or prevent cycling stem cells from entering 

G0 [142].  

The site in the E2F2 gene that was selected for ChIP was based on ChIP-seq data 

linking E2A to this region [141] and we confirmed that E2A does associate with this 

sequence (Fig. 31), suggesting that E2A or other E-proteins recruit Mtg16 to E2F2 to 

control entry of cells into the cell cycle.  The E-proteins (e.g., E2A, E2-2, and HEB) 

belong to a family of helix-loop-helix transcription factors that activate transcription by 

binding to the “E-box”.  These factors contain two activation domains, and the most N-

terminal activation domain is also a key contact point for MTG/ETO family members 

[143-145]. The ability of E-proteins to activate transcription is modulated by the Id 

proteins as well as TAL1/SCL and related proteins.  In proteomic analyses, MTG/ETO 

family members have been found in complexes containing E-proteins, TAL1/SCL, 

Lmo2, Gfi1, GATA factors, other transcriptional corepressors, and Tif1γ, which is 

required for transcriptional elongation [43, 46, 146-149].  While it is still unclear whether 

these proteomic studies are detecting one large complex or several smaller complexes, 

our results are consistent with Mtg16 acting as a corepressor, perhaps by binding to E2A, 

such that the inactivation of Mtg16 caused increased expression of E2F2, as well as other 

cell cycle control factors.  It is notable that the phenotypes that arise in mice engineered 

to delete E2A [76] are similar to those seen in the absence of Mtg16 in regards to loss of 

HSC numbers and functions.  

 The defects we observed in Mtg16-null mice also closely resembled the 
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phenotype associated with the deletion of Lyl1, a basic helix-loop-helix (bHLH) 

transcription factor that is closely related to TAL1/SCL and that may also associate with 

MTG/ETO family members [149, 150].  Although the Lyl1-/- mice displayed normal 

blood cell counts with only a slight reduction in the number of B cells, they too contain 

decreased numbers of LSK cells and LT-HSC frequencies, which resulted in decreased 

function in CFU-S12 and LTC-IC assays.  In accordance, Lyl-1-null bone marrow was 

severely impaired in its competitive repopulation abilities, especially in the ability to 

reconstitute the B and T cell lineages [150].  However, the Lyl1-null bone marrow did not 

recapitulate the increased propensity toward myeloid development that we observed in 

the absence of Mtg16.  Given that Mtg16 is a corepressor that interacts with multiple 

transcription factors and proteins, it is not surprising that its deletion would lead to more 

pleiotropic effects than the deletion of a single transcription factor. Taken together, these 

results highlight the importance of Mtg16 as a master regulator of hematopoiesis as it 

orchestrates the action of multiple transcription factors that are important for HSC 

functions in long-term self-renewal and in lineage cell fate decisions.  

 In addition to the involvement of Mtg16 in hematopoietic stem/progenitor cells, 

MTG family members may contribute to the function of other types of stem and 

progenitor cells.  Mice with a deletion of Mtgr1 failed to maintain secretory lineage cells 

in the small intestine [56]. After treatment with the ulcerative agent dextran sodium 

sulfate, which denudes the colonic epithelium, the Mtgr1-null colons displayed bifid 

glands and loss of glands, suggesting a defect in stem cell functions. These phenotypes 

were also associated with inappropriate cycling of the stem/progenitor cells in the crypts 

of the small intestine [57]. Gene targeting studies of Mtg8 indicated that it is required for 
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the development of the murine gut, as some pups died due to deletion of the mid-gut 

[103]. In mice that retained the mid-gut, there was a dramatic loss of architecture, which 

could be due to defective stem cells.  Thus, it is possible that all three MTG/ETO family 

members function in adult stem cells, perhaps to prevent entry into the cell cycle. 

Our work may also hint of a role for MTG/ETO factors in leukemogenesis.  

Although little has been done with the t(16;21), the t(8;21) is viewed as a relatively weak 

oncogene, as patients can carry this translocation for several years before developing 

AML and patients with this translocation are considered to be in a good-risk category  

[151].  However, in mouse models of t(8;21) AML, the oligomerization domain, which 

also binds to endogenous Mtg16/Eto2 and Mtgr1, is essential to the transforming ability 

of the fusion protein [40, 41]. Therefore, it is possible that binding of the t(8;21) fusion 

protein to Mtg16 impairs the action of Mtg16 and causes the HSC to enter the cell cycle.  

In addition, the fusion protein can directly repress the expression of tumor suppressors 

such as p14ARF, Neurofibromatosis-1, PU.1 and C/EBPa [24-26, 152]. These data suggest 

that the t(8;21) could promote immortalization of hematopoietic stem and progenitor cells 

by repressing tumor suppressor genes, while triggering proliferation by activating genes 

such as E2F2.   
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CHAPTER V 

 

MTG16 SUPPRESSES DNA DAMAGE IN HEMATOPOIETIC PROGENITOR 

CELLS  

 

Background and Significance 

Gene disruption of Mtg16 in mice demonstrated that Mtg16 is not essential for 

viability or fertility, but it is required for hematopoietic progenitor cell proliferation 

[137]. In addition, like many of the transcription factors that recruit Mtg16, inactivation 

of Mtg16 caused a reduction in stem cell pools and inappropriate cycling of stem and 

progenitor cells, which led to a loss of stem cell self-renewal.  Thus, Mtg16 is an 

important regulator of HSC self-renewal and multipotency, however; the mechanism by 

which this occurs needs to be further defined in order to better understand how Mtg16 

regulates HSC functions. Strikingly, mutations in DNA repair factors or other proteins 

that regulate genomic stability display similar phenotypes, which lead to premature 

hematopoietic failure [153, 154].  Therefore, it is important to determine if an increase in 

genomic instability also contributes to the hematopoietic defects found in the absence of 

Mtg16.   
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Results 

 

Defects in Mtg16-null hematopoietic stem and progenitor cell proliferation 

 In many engineered mouse models, a reduction in hematopoietic stem cell (HSC) 

numbers is due to impaired progenitor cell function, which alters homeostasis between 

the HSC and hematopoietic progenitor cell (HPC) pools causing more stem cells to enter 

the cell cycle and differentiate rather than self-renew [153, 155, 156]. Because these 

phenotypes are difficult to separate in vivo where homeostasis is maintained, we assessed 

the proliferation of stem and progenitor cells in vitro. LSK/Flt3- cells were purified by 

FACS and cultured in the presence of IL6, SCF, and LIF on OP9 stromal cells to support 

stem/early progenitor cell growth. Under these conditions, the 2,500 LSK/Flt3- cells 

initially plated proliferated for 6-8 days and then gradually lost their proliferative 

capacity over the next 10-12 days in culture.  In several experiments, Mtg16-null 

stem/hematopoietic progenitor cells showed less of an initial proliferative burst during 

the first 6-7 days in culture, but in other cultures this was less apparent (data not shown).   

However, when 400,000 cells were re-plated on days 7 and 14 and the total number of 

cells was determined, the Mtg16-/- cells showed a consistent and dramatic loss of 

proliferative capacity throughout the remaining time course (Fig. 34A).  In addition, there 

was a substantial increase in the numbers of lineage marker positive cells with a 

concomitant loss in the numbers of lineage-negative cells in the absence of Mtg16, even 

after only 7 days in culture (Fig. 34B), with the vast majority of these cells becoming Gr1 

and/or Mac1 positive (Fig. 35).  This loss of lineage-negative  
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cells from the Mtg16-null cells continued throughout the course of the culture as seen 

after 14 days in culture (Fig. 34C and Fig 35).   

 The precocious differentiation of LSK/Flt3- cells into myeloid progenitor cells 

provides a possible mechanism to explain the reduction of stem cell numbers in Mtg16-/- 

mice (Figure 22), as the progenitor cell population must be continually replenished. 

These data suggest that the increased differentiation (Fig. 34B, C) of stem/progenitor 

cells from Mtg16-/- mice caused greater numbers of stem cells to enter the cell cycle or 

more early progenitor cells to continue to cycle to maintain homeostasis.   

 

Mtg16 is required to suppress DNA damage in cycling cells  

 In addition to the changes observed in transcriptional regulators and cytokine 

receptors that control hematopoiesis, or modulators of the cell cycle (Fig. 30), we also 

noted that a large number of genes that function in DNA metabolism were mis-regulated.  

Therefore, we tested whether the loss of Mtg16 caused genotoxic stress, which is closely 

associated with hematopoietic failure syndromes [154, 157].  Immunofluorescence using 

anti-γH2AX, which is found at the sites of DNA double strand breaks and forms nuclear 

“foci” at the sites of the break, was used to assess DNA damage [158].  Preliminary 

assays suggested that there were numerous γH2AX foci in Mtg16-null blast-like cells, but 

not in mature bone marrow cells (data not shown).  Therefore, we lineage-selected bone 

marrow from control and Mtg16-null mice using antibodies linked to magnetic beads 

prior to immunofluorescence.  The mature, lineage positive cells from either genotype 

contained few γH2AX foci (Fig. 36A and B) with over 97% of the cells containing fewer 

than 5 foci. However, in lineage negative  



  112 



  113 

cells 5-7% of the control cells contained signs of DNA damage, which is common in cells 

undergoing DNA replication.  In contrast, nearly 30% of the Mtg16-null progenitor cells 

contained six or more γH2AX foci, with many containing a level of genotoxic stress that 

is sufficient to trigger cell cycle checkpoints [159, 160]. Similar results were obtained 

using a second marker of DNA double strand breaks, anti-53BP1 (data not shown).  

These data are consistent with the defects observed in Mtg16-null progenitor cell 

proliferation (Fig. 23A, 34A).   

 Given that Mtg16-null stem/progenitor cells displayed increased genotoxic stress 

in young mice (Fig. 36A, B), cohorts of wild type and Mtg16-null mice were aged to 

determine if DNA damage accumulated in older mice (Fig. 36C, D). We again segregated 

mature cells from the immature progenitor cells using lineage antibodies and enumerated 

γH2AX-containing foci.  As expected, there was a small increase in the amount of DNA 

damage detected in wild type stem and progenitor cells from older mice, with 2-4% of the 

lineage negative cells containing more than 10 foci (Fig. 36C, D) [154, 157].  In the 

Mtg16-null cohort, there was an even more dramatic accumulation of anti-γH2AX foci in 

aged mice, with nearly a quarter of the stem/progenitor cells containing 11 or more foci 

(Fig. 36C, D). 

 

Altered gene expression contributes to DNA damage 

 Genome wide siRNA and cDNA over expression screens have identified genes 

whose mis-regulation can trigger DNA double strand breaks [161, 162]. By comparing 

our gene expression changes to these databases, we identified 2 genes that were up 

regulated in the absence of Mtg16 and that when over  
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expressed caused DNA damage (Hes1 and Maff, Fig. 37A) [161].  In addition, siRNA 

knockdown of 5 genes that were significantly under expressed in the Mtg16-null LSK 

cells caused DNA double strand breaks (Fig. 37A).  Thus, changes in gene expression 

patterns are likely to contribute to the observed DNA damage found upon inactivation of 

Mtg16. 

 Although mis-expression of any one of these 7 genes was sufficient to cause DNA 

double strand breaks [161, 162], the coordinate mis-regulation of this group of genes 

likely contributes to the dramatic levels of DNA damage that we observed (Fig. 36).  

Nevertheless, we were particularly intrigued by Hes1, which was highly up regulated in 

the absence of Mtg16 (Fig. 37A), because as a key target of Notch signaling it likely 

plays an important role in hematopoietic stem and progenitor cell maturation.  In 

addition, MTG8 and Mtg16 can associate with CSL, a mediator of Notch signaling, as 

well as the Notch intracellular domain to regulate the expression of Hes1 [48, 50].  We 

found that expression of Hes1, but not GFP or Hes5, caused an increase in 53BP1-

containing foci, indicative of DNA double strand breaks (Fig. 37B, C).  This experiment 

used retroviral expression of Hes1 in HeLa cells, but to use a more physiological system, 

we co-cultured wild type FACS purified LSK cells with control OP9-GFP stromal cells 

or OP9-DL1 stromal cells that express the Delta-like 1 Notch ligand.   The OP9-DL1 

system transmits a constitutive Notch signal yielding a level of Hes1 expression similar 

to that observed in the absence of Mtg16 (6-8 fold) as measured by quantitative RT-PCR 

(data not shown).   LSK cells cultured on OP9-DL1 stroma for 6 to 7 days displayed an 

increase in γH2AX foci as compared to LSK cells grown on control stroma (Fig. 37D).  
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Thus, mis-regulation of Hes1 likely contributes to the DNA damage observed in the 

absence of Mtg16, but the mis-regulation of multiple genes is likely additive. 

 

DNA damage triggers premature differentiation of stem/progenitor cells 

  Engineered mutations in mice or naturally occurring human mutations in DNA 

repair pathways cause genotoxic stress that results in impaired progenitor function and 

ultimately stem cell failure [153, 154, 157, 163, 164].  Our initial analysis found DNA 

damage in the lineage negative fraction of bone marrow cells (Fig. 36) that are mostly 

rapidly proliferating progenitor cells with less damage in maturing cells that are losing 

proliferative potential.  Therefore, we FACS purified LSK/Flt3-, LSK/Flt3+, and Lineage 

negative/c-Kit+/Sca1- myeloid progenitor (MP) cells to assess DNA damage in stem/early 

progenitor cells versus more highly proliferating myeloid progenitor cells.  Neither of the 

LSK populations showed high levels of γH2AX foci, but the Mtg16-null myeloid 

progenitor cells displayed higher levels of DNA damage (Fig. 38A-D).  Combined with 

our earlier analysis of more heterogeneous populations (Fig. 36), these data suggest that 

DNA damage may underlie the proliferative defects observed in Mtg16-deficient 

progenitor cells and suggest that cell cycle progression is required for this DNA damage. 

 Next, because the observed DNA damage was so closely linked with cell cycle 

progression, we reasoned that the rare entry of an HSC into the cell cycle to self-renew or 

produce progeny that will repopulate progenitor pools may cause DNA damage that 

would impair stem cell function over an extended period of time and lead to a reduction 

in stem cell number (Fig. 22).  Moreover, because few LSK cells are cycling, this lower  
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level of DNA damage may not be detected under homeostatic conditions.  Therefore, we 

FACS purified LSK/Flt3- cells and cultured them in IL6, SCF, and LIF (to suppress 

differentiation) for 7 days prior to assessing DNA damage.  When these early progenitor 

cells were stimulated to cycle, they too accumulated DNA damage with Mtg16-null cells 

acquiring much more damage than control cells (Fig. 38E, F). 

The levels of DNA double strand breaks found in the absence of Mtg16 may 

trigger cell cycle checkpoints that cause cells to exit the cell cycle [165].  In the case of 

hematopoietic cells, exit from the cell cycle may cause loss of self-renewal potential and 

trigger differentiation. Both the methylcellulose serial replating and LTC-IC assays 

indicate that the Mtg16-null stem/progenitor cells have decreased self-renewal potential 

(Figure 29). 

 Given our identification of DNA damage in Mtg16-null progenitor cells and their 

premature differentiation/loss of self-renewal capacity (Fig. 29, 34, 36, and 38), we tested 

the effects of DNA damage on the self-renewal capacity of wild type stem cells using the 

LTC-IC assay (Fig. 39A).  Irradiation of wild type bone marrow cells with 1 Gy of IR 

was sufficient to trigger a 3-4 fold loss of self-renewal  (80% compared to only 25%) two 

weeks after IR treatment and by week 3 there were few CFU-C present (Fig. 39A and 

data not shown).  This was similar to the effect of inactivating Mtg16 (Fig. 29 and 39A).  

Thus, the relatively low levels of DNA damage observed in Mtg16-null cells are 

sufficient to impair self-renewal and may contribute to both the defect in progenitor cell 

proliferation and the loss of HSCs. 

 An in vivo test of stem cell self-renewal is the ability of the hematopoietic 

compartment to respond to repeated stress over an extended time frame.  We treated  
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cohorts of mice with 5-fluorouracil (5-FU), which causes S phase-specific DNA damage. 

Control and Mtg16-null mice were serially injected with 100 mg/kg 5-FU (a moderate 

dose) once a week.  Both sets of mice tolerated the first injection well, but within 5 days 

of the second dose of 5-FU the Mtg16-null mice began to show signs of distress and only 

half of the Mtg16-null cohort were healthy enough to receive the third injection (Fig. 

39B).   By 28 days after the first injection, the entire cohort of mice lacking Mtg16 had to 

be humanely euthanized (Fig. 39B).  By contrast, the majority of the control mice 

tolerated the 5-FU treatments well with only a single subject not surviving past 20 days 

(Fig. 39B). Thus, inactivation of Mtg16 sensitized the mice to genotoxic stress due to the 

requirement of Mtg16 to suppress DNA damage in actively cycling progenitors to prevent 

differentiation and loss of HSC self-renewal (Fig. 34, 36, and 39). 

 

DNA damage triggers myeloid differentiation.  

  The levels of DNA double strand breaks found in the absence of Mtg16 is often 

associated with cell death, but DNA damage can also trigger cell cycle checkpoints that 

cause cells to exit the cell cycle, and in the case of hematopoietic stem/progenitor cells, 

may cause them to differentiate [165]. Given that Mtg16-null progenitor cells displayed 

premature differentiation (Fig. 34-35), we tested whether a sub-lethal dose of irradiation 

might also trigger the differentiation of wild type progenitor cells.  Wild type or Mtg16-

null lineage negative cells were cultured in the presence of IL6, SCF, and LIF on OP9 

stromal cells, and exposed to increasing amounts of ionizing radiation (IR).  Consistent 

with our prior results (Fig. 34), even in the absence of IR the Mtg16-null cells showed 

reduced proliferation (Figure 40A).  After IR, proliferation was further decreased  
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relative to the control cells and by 12 days after IR most of the Mtg16-null progenitor 

cells receiving 2 Gy IR were eliminated (Fig. 40A).  In fact, wild type cells receiving 1-3 

Gy of IR, displayed similar growth profiles as Mtg16-null cells without treatment (Fig. 

40A and data not shown).   

 The loss of proliferation of wild type hematopoietic stem/progenitor cells upon 

DNA damage (Fig. 40A) coincided with a reduction in the numbers of immature, 

Gr1/Mac1 double negative cells in these cultures (Fig. 40B, lower left quadrants; 8.8% 

vs. 4.7%). Flow cytometric analysis also indicated that in the absence of IR, Mtg16-null 

cells showed a propensity to differentiate into both Gr1/Mac1 double positive and Mac1 

single positive cells (Fig. 40B).  This loss of the double negative population and increase 

of Mac1+ cells was phenocopied by wild type cells 6 days after exposure to 3 Gy of IR 

(Fig. 40B).  To test whether the DNA damage checkpoint was required for the loss of the 

immature progenitor cells and the acquisition of myeloid cell markers, we treated p53-

null stem and progenitor cells with 3 Gy of IR (Fig. 40C).  In the absence of p53, 

irradiation did not trigger a loss of the Gr1/Mac1 double negative population or an 

accumulation of Mac1 single positive cells (Fig. 40C). We conclude that genotoxic stress 

caused by loss of Mtg16 contributes to the loss of HSC self-renewal by triggering cell 

cycle exit and myeloid differentiation. 

 

Discussion 

Inactivation of Mtg16 caused a reduction in stem cell numbers that was likely due 

to over active cycling in response to deficits in progenitor cell proliferation (Chapter IV 

and Figure 34).  These defects could be caused by DNA damage that was found in 
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populations undergoing rapid expansion, but not in quiescent or post-mitotic cells and 

this damage accumulated with age (Fig. 36 and 38).  Mechanistically, inactivation of 

Mtg16 caused the de-regulation of multiple genes linked to genomic stability, including 

Hes1.  The defects found are reminiscent of mutations in DNA repair factors or other 

proteins that regulate genomic stability that lead to premature hematopoietic failure [153, 

154].  Moreover, the emergence of DNA damage coincided with enhanced or accelerated 

differentiation, which may be a common feature in genetic hematopoietic failure 

syndromes [154, 157, 163, 164]. Low doses of ionizing radiation also caused a loss of 

stem cell self-renewal and phenocopied Mtg16-inactivation (Fig. 39-40).   Thus, Mtg16 

plays a central role in maintaining the potency of stem and progenitor cells, at least partly 

through its recruitment to the promoters of genes whose dys-regulation triggers genotoxic 

stress.  

Although several genome maintenance genes were dys-regulated in Mtg16-null 

LSK cells (Fig. 37), Hes1 is a particularly interesting target.  MTG8 is recruited to Hes1 

through interactions with Sharp, a corepressor that contacts CSL, to repress Hes1.  

However, in the presence of a Notch signal, CSL activates Hes1 through association with 

the Notch intracellular domain.  Mtg16 associates with both the Notch intracellular 

domain and CSL, making it a key regulatory factor in this transcriptional switch [48, 50].  

In terms of genome maintenance, Hes1 was identified in a genomic screen of factors that 

cause DNA double strand breaks [161], and in a screen for genes that trigger p53 

accumulation [166].  Given that Hes1 is one of the best characterized targets of canonical 

Notch signaling and our findings that Notch signals are sufficient to induce hallmarks of 

DNA damage, one can speculate that this DNA damage or replication stress plays a 
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physiological role during hematopoiesis. Given that canonical Notch signaling is not 

required for hematopoietic stem cell self-renewal, but plays a role in differentiation and 

cell fate choices [167], it is possible that Notch signaling triggers cell cycle checkpoints 

to promote differentiation.  In this model, the DNA damage found would be an extreme 

example of replication stress that could be very detrimental when Notch receptors are 

activated by mutation in T cell acute lymphocytic leukemia [168]. 

In general, the t(8;21) is viewed as a relatively weak oncogene as various human 

studies have suggested that patients can carry this translocation for several years before 

developing AML [151]. While the fusion protein can directly repress the expression of 

tumor suppressors, it also induces a DNA damage gene signature [24-26, 152, 169, 170].   

In addition, expression of the fusion protein in vitro increased DNA damage and 

sensitized the cells to DNA damaging agents [169, 170]. These data suggest that the 

t(8;21) promotes immortalization of hematopoietic stem and progenitor cells by 

repressing tumor suppressor genes, while triggering a low level of DNA damage that 

increases the mutation rate to promote leukemia. It is possible that binding of the t(8;21) 

fusion protein to Mtg16 impairs the action of Mtg16 in genomic stability as in various 

mouse models the oligomerization domain is essential to the transforming ability of the 

fusion protein [39-41]. 

In support of our current results, we found that Mtg8-null murine embryonic 

fibroblasts also display genotoxic stress (DeBusk et al., in prep.), which suggests that 

MTG family members contribute to genomic stability in a variety of cell types. This is 

intriguing given the fact that two MTG family members are targeted by chromosomal 

translocations in acute myeloid leukemia and mutations of MTG family members have 
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been found in other types of cancers as well.  Thus, a role in suppressing DNA damage or 

in maintaining genomic stability could explain why MTGs are so frequently targeted in 

cancer, as inactivation would cause more frequent DNA damage/repair cycles leading to 

an accumulation of additional mutations. 
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CHAPTER VI 

 

HDAC3, AN MTG16 INTERACTING PROTEIN, IS ESSENTIAL FOR 

HEMATOPOIETIC STEM CELL FUNCTION 

 

Background and Significance 

We have shown that Mtg16 is an important regulator of hematopoietic stem and 

progenitor cell functions, however; Mtg16 is a scaffolding protein that links DNA 

binding transcription factors to various corepressor proteins [10, 11, 54].  Thus, the action 

of Mtg16 on the transcription factors it binds is imparted by the corepressors that Mtg16 

links to them.  Therefore, information about the function of the corepressors that bind to 

Mtg16 would help delineate which interactions are required for various functions of 

Mtg16.  One of these main interacting proteins is histone deacetylase 3 (Hdac3), which is 

part of the NCoR/SMRT repression complex and contributes to both transcriptional 

repression and genomic stability [54, 171]. To delete Hdac3 in hematopoietic stem cells 

we used the Vav-Cre transgenic allele to trigger recombination since deletion in the 

germline leads to embryonic lethality (Summers et al, in prep.).  These mice were viable 

but showed a dramatic loss of lymphoid cells (both B and T cells), hypocellular bone 

marrow with myelosuppression and anemia. FACS analysis of the hematopoietic 

stem/early progenitor compartment suggested that Hdac3 was required for the formation 

of the earliest lymphoid progenitor cells (Lin-/Sca1+/c-Kit+/Flt3hi), but not myeloid 

progenitor cells.  Although Hdac3-/- bone marrow contained roughly half the normal 

complement of hematopoietic cells, they contained 4-5 times more stem/early progenitor 
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cells.  However, the initial results of the impairment in lymphopoiesis implied that the 

HSCs that were present were defective.  Thus, we set out to carefully examine the 

functions of hematopoietic stem cells in the absence of Hdac3.  This information will be 

valuable further understanding of how loss of Mtg16 leads to defects in HSCs.  In 

addition, commonly used histone deacetylase inhibitors target Hdac3, and therefore this 

information could help provide a mechanism on how these drugs work. 

 

Results 

 

Hdac3 is required for the proliferation of hematopoietic progenitor cells. 

 To begin studying the stem cell functions, we assessed hematopoietic progenitor 

pool size in the Vav-Hdac3-/- mice using methylcellulose colony formation assays.  When 

methylcellulose containing IL-6, IL-3, SCF, and Epo was used to examine myeloid 

progenitors, the number of colonies that formed from Vav-Hdac3-/- bone marrow was 

similar to that derived from control bone marrow, but the colonies were distinctly smaller 

suggesting a general proliferation defect (Fig. 41A).  Nevertheless, we were able to 

identify the types of colonies and there were shifts within the most differentiated CFU-G 

populations with an absence of colonies that contained erythroid cells, including BFU-E 

and CFU-GEMM (Fig. 41B), which is consistent with the anemia observed in these mice.  

The lack of BFU-E was confirmed using methylcellulose containing only Epo (data not 

shown).  Additionally, we examined B-cell formation using methylcellulose containing 

IL-7 and confirmed that Hdac3 is required for the formation of B-cells, as no colonies 

were present (Figure 41C). 
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Hdac3 is required for long-term stem cell function 

Given that inactivation of Hdac3 caused genomic instability and apoptosis in 

murine embryonic fibroblasts (MEFs) [171] and that hematopoietic progenitor cells 

displayed a growth defect, we functionally tested the HSC and progenitor cell 

populations.  Bone marrow transplantation assays and competitive repopulation studies 

were used to assess the ability of stem cells to repopulate lethally irradiated mice.  

Remarkably, irradiated mice injected with a million Hdac3-null bone marrow cells had 

survival curves that matched that of the lethally irradiated control mice, whereas mice 

injected with control bone marrow cells were rescued by the transplant (Fig. 41D).  

Therefore, we performed spleen colony forming assays to quantitatively measure the 

response to hematopoietic stress after bone marrow transplantation.  The Hdac3-null 

bone marrow yielded essentially no colonies at either 8 days post transplantation, which 

measures megakaryocyte and erythroid progenitor cells (MEPs), or at 12 days post 

injection when the colonies formed represent both MEPs and short term stem cells and 

multi-potent progenitor cells (Fig. 41E).  

Given the dramatic growth defects of progenitor cells, we used competitive bone 

marrow transplantation (cBMT) assays to provide the null stem cells with wild type 

progenitor cells to measure the ability of the null long-term stem cells to compete with 

wild type stem cells. We injected a mixture of 90% Vav:Hdac3-/- bone marrow cells that 

express CD45.2 and 10% wild type CD45.1 cells into lethally irradiated mice. Only 3-

weeks after transplantation into the CD45.1 recipient mice, we observed a prominent 

decline in the numbers of CD45.2+ Hdac3-null bone marrow cells in the peripheral blood 

(Figure 42A).  FACS analysis of the bone marrow 3 weeks after transplant showed that  
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only about 10% of the cells were generated from Hdac3-null bone marrow cells (Figure 

42B).  Interestingly, when we looked at the number of LSK/Flt3- LT-HSCs that were 

CD45.2+, the percentage was three times higher than the percentage in the total bone 

marrow (about 30% compared to 10%; Figure 42C). This data corresponds with the fact 

that the Vav:Hdac3-/- mice have an increased number of LSK/Flt3- cells but deficits in 

more mature cells.  However, by 12 weeks after transplant, essentially all of the Hdac3-/- 

cells were out-competed by the 10% of wild type marrow (Fig. 42B).  Thus, Hdac3 is 

required for the function of stem and progenitor cells and is essential for the formation of 

lymphoid-primed progenitor cells that give rise to B and T cells.   

 

Hdac3 is required for stem cell self-renewal. 

Inactivation of Hdac3 caused an accumulation of LSK/Flt3- stem cells (Summers 

et al, in prep.), yet these cells were dramatically ineffective at reconstituting 

hematopoiesis after bone marrow transplantation (Fig. 41D). Therefore, we injected 

Vav:Hdac3-/- and control mice with BrdU to assess the number of LSK/Flt3- stem cells 

that were in S phase.  Remarkably, nearly twice as many stem cells were cycling in 

Vav:Hdac3-/- mice as in wild type control mice (Fig. 43A), suggesting that this population 

was actively cycling, rather than entering a quiescent state.  This inappropriate cycling 

could be due to defects in progenitor cell proliferation (Fig. 41A), or it could be due to 

impaired stem cell self-renewal.  However, because the Vav:Hdac3-/- stem cells were 

defective after transplant, we were unable to use this system to address this issue.  

Therefore, we used in vitro long-term culture of initiating cell (LTC-IC) assays to 

measure stem cell activity.  Cultures of cells lacking Hdac3 rapidly lost self-renewal  
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capacity, whereas control cells retained multi-lineage potential for multiple weeks (Fig. 

43B).  This defect in null stem cell function was similar to the effect of a 48 hr pre-

treatment of control cultures with the histone deacetylase inhibitors SAHA (Vorinostat) 

or Depsipeptide, (Fig. 43C), suggesting that the defect could be related to precocious 

differentiation, impaired cell cycle progression, or both.   

To further define the effect of Hdac3 inactivation in stem cell functions, we 

cultured LSK/Flt3- cells from Vav:Hdac3-/- mice on OP9 stromal cells with media 

containing IL6, SCF, and LIF.  We noted a profound defect in the expansion of this 

population in culture, as compared to wild type control cells (Fig. 44A), which is 

consistent with the overall hypocellular bone marrow defect in vivo (Summers et al, in 

prep.).  Likewise, the majority of these cells remained negative for lineage markers, 

suggesting a major defect in proliferation rather than precocious differentiation (Figure 

44B).  These data also suggest that the expansion of LSK cells in vivo (Summers et al, in 

prep.) is not a response to the lack of erythropoiesis, but that inactivation of Hdac3 may 

impair stem cell differentiation.  However, the cells that did differentiate in these cultures 

were primarily Gr1+/Mac1+ or Mac1+ with a loss of the Gr1+ cells (Fig. 44B).  This is 

similar to the effects observed when wild type LSK cells were treated with SAHA, which 

caused a skewing towards Mac1+ cells and few Gr1+ cells (Fig. 44C).   Intriguingly, 

Depsipeptide, which is somewhat more selective for Hdac1 and Hdac2 over Hdac3, 

impaired proliferation, but did not cause the same type of skewing toward Mac1+ cells.  

Thus, Hdac3 may be a key target for the action of SAHA in hematopoietic malignancies 

by affecting stem cell action, proliferation, and myeloid differentiation. 
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Discussion 

In order for stem cells to repopulate the bone marrow they must yield progeny that can 

undergo massive proliferation and at the same time self renew to maintain the stem cell 

pool. In bone marrow transplantation assays, in CFU-S assays, and in vitro, Hdac3 was 

essential for the proliferation of stem and multi-potential progenitor cells and the 

production of mature erythroid cells that are needed for mice to thrive (Figures 41, 42 and 

43). Remarkably, these mice survived even though nearly 40% of their LSK/Flt3- stem 

cells were in S phase (Figure 43).  This failure of the stem cells to self-renew and quiesce 

and to continue to cycle is a harbinger of major stem cell defects, which were observed in 

bone marrow transplantation assays and LTC-IC assays (Figure 42 and 43).  Importantly, 

competitive bone marrow reconstitution assays demonstrated a dramatic loss of Hdac3-

null stem cell functions in the presence of complementing wild type progenitor cells 

(Figure 42).  The combination of these data suggests that Hdac3 is required for cell 

intrinsic stem cell functions, which might be attributed to cell cycle defects when the 

HSC enters the cell cycle.  

Given how similar the defects are between the loss of Mtg16 and Hdac3, this 

suggests that Hdac3 is likely one of the main interacting proteins that drives Mtg16 

functions in HSCs.  However, the fact that the phenotypes are much more severe in the 

absence of Hdac3 implies that other factors must be able to partially compensate for the 

loss of Mtg16.  Our data also hint at how inhibiting Hdac3 may be beneficial for the 

treatment of hematopoietic malignancies.  By inhibiting the earliest lymphoid progenitor 

cell it would be expected that inhibition of Hdac3 would impair any stem-like tumor 

initiating cells within lymphoma, and cutaneous T cell lymphoma is responsive to SAHA 
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[172]. Moreover, by affecting stem cell self-renewal, inhibition of Hdac3 might represent 

a targeted therapy towards myeloid leukemia, especially those that show characteristics 

of immature myeloid progenitor cells (e.g., M0, M1, and M2).  Finally, for those cells 

that escaped the proliferation defects and matured into myeloid progenitor cells, these 

cells preferentially differentiated into Mac1+ cells.  Thus, Hdac3 selective inhibitors may 

be useful in myeloid leukemia as both anti-proliferative agents and as differentiation 

agents. 
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CHAPTER VII 

 

SUMMARY AND FUTURE DIRECTIONS 

 The myeloid translocation gene proteins have been defined as transcriptional 

corepressors, particularly through interactions with NCoR/SMRT, mSin3A/3B, and 

histone deacetylases.  As expected for transcriptional corepressors, MTG family members 

are recruited by many site-specific DNA binding proteins, including Gfi1, Gfi1B, 

TAL1/SCL, the “E proteins” E2A and HEB, BTB-POZ domain factors BCL6 and PLZF, 

and mediators of Wnt and Notch signaling (TCF4 and CSL) [42‐50]. Given the breadth 

of cellular functions these transcription factors are known to regulate, it is not surprising 

that MTG family members have been linked to stem cell functions and the development 

of cancers in various tissues [3-5].  However, the cellular consequences of their 

corepressor functions must be defined to further delineate how disruption of the MTG 

proteins leads to cancer.  Since two MTG family members, MTG8 and MTG16, are 

targeted by chromosomal translocations in AML, the t(8;21) and t(16;21) respectively, 

and many of the transcription factors the MTG family bind regulate hematopoietic stem 

and progenitor cell function, it is assumed that this family must play an important role in 

hematopoiesis.  Knockout mouse models of Mtg8 and Mtgr1 show defects in the gut, 

where both genes are highly expressed; however, they have yet to show any defects in the 

hematopoietic compartment [56, 103].  Since MTG16 is the most highly expressed family 

member in the hematopoietic compartment, Mtg16-deficient mice were generated to 

determine if this family member was an important regulator of hematopoiesis (Figure 9).  
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 Since Mtg16 binds transcription factors that are involved in almost every stage of 

hematopoiesis [44-48, 50, 147], a comprehensive look at all lineages was performed, and 

we initially any overt defects caused by deletion of Mtg16, as discussed in Chapter 3.  

Upon gross examination of the mice, they appeared normal without a complete block in 

the development of any mature hematopoietic lineage; however, there were significant 

changes in various compartments, such as reductions in lymphoid and erythroid cells and 

increases in myeloid cells (Figure 11), which stemmed from each of their corresponding 

progenitor populations. Strikingly, these skewed lineage allocations were even more 

pronounced after the bone marrow system was stressed.  In addition to skewed lineage 

allocation, Mtg16-null progenitor cells were also impaired in their ability to rapidly 

proliferate in response to stress, as shown by the absence of colonies in the CFU-S assay, 

which could be rescued by the over expression of c-myc (Figure 21).    

 Given that two of the DNA binding factors that recruit MTG family members, 

Gfi1b and TAL1/Scl, are required for erythropoiesis, as shown by the fact that deletion of 

either of these transcription factors results in embryonic lethality due to defective 

erythropoiesis [72, 127, 128], we set out to characterize the effects loss of Mtg16 had on 

erythropoiesis as well. Although there was only a slight reduction in red blood cells under 

homeostasis, the erythroid progenitors were defective in responding to any kind of 

stimulus that required them to rapidly make more erythroid cells, as shown in erythroid-

specific methylcellulose assays (in response to EPO alone), PHZ treatment (a hemolytic 

agent), or CFU-S assays (Figures 11, 13, and 20).  The PHZ treatment resulted in death of 

the Mtg16-null mice due to acute anemia, which appeared to be caused by a failure of 

erythropoietic expansion in the spleen. This proliferation defect of the MEPs was further 
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emphasized in the methylcellulose and CFU-S assays, in that the Mtg16-null bone 

marrow cells were completely unable to generate any colonies in either of those assays.  

Although some of these erythroid defects must stem from aberrant transcriptional activity 

of Scl or Gfi1b in the absence of Mtg16, another explanation for the lack of erythroid 

expansion is the drastic reduction of expression in the erythropoietin receptor (EpoR) in 

the LSK population (>6-10 fold reduction, Figure 30).  It is well documented that 

erythropoietin (EPO) is an important cytokine for basal and stress erythropoiesis, and that 

its level increases up to 1000-fold during stress situations [173].  Therefore, stress 

erythropoiesis requires considerably higher expression of EpoR than is necessary to 

maintain basal erythropoiesis.  This is further exemplified by the fact that mice that 

express only one EpoR have a normal basal hematocrit, but are deficient in their response 

to stress.  In light of this, Mtg16-null mice express sufficient EpoR to generate red blood 

cells under homeostasis, albeit at reduced amounts; however, the decreased level of 

expression of EpoR is not enough to mount the proper response during stress 

erythropoiesis.  

   In addition to the exacerbated defects in erythropoiesis in response to stress, the 

skewing from lymphoid lineages toward granulocyte/monocyte lineages was amplified in 

stress conditions as well.  Other work from our lab has shown that T-cell development is 

greatly impaired in the absence of Mtg16 in the context of an OP9-delta-like1 (DL1) 

assay, which is a stromal cell line that overexpresses the DL1 ligand of the Notch 

signaling cascade.  In this assay, sorted BM cells are grown in IL7 and Flt3L with the 

constitutive Notch signal, which drives T-cell development in vitro within 3 weeks of 

culture.  However, Mtg16-null cells are incapable of making T-cells in this assay, but 
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showed an increase in production of Gr-1+/Mac-1+ cells, even in the presence of the 

lymphoid signals [61].  This skewing toward myelopoiesis and away from lymphopoiesis 

was especially evident after competitive bone marrow transplantation.  After a 

competitive transplant, there was drastic reduction in total reconstitution from the Mtg16-

null cells.  However, the cells that did manage to survive were mostly comprised of 

granulocytes and monocytes, while T and B cells were almost non-existent after 

transplantation (Figures 23-24; Hunt et al., unpublished data; [61]).  Mechanistically, this 

altered lineage allocation when Mtg16 is deleted is best explained by changes in gene 

expression patterns due to the loss of repressive transcription on the hematopoietic 

regulators that normally interact with MTGs.  Indeed, the T-cell defect could be 

reconstituted in the OP9-DL1 assay by retroviral expression of Mtg16; however, two 

mutants that disrupted Notch or E-protein (E2A, HEB) interactions with Mtg16 abrogated 

this reconstitution [61].  Overall, both during homeostasis, and more dramatically after 

stress, the loss of Mtg16 shows a similar phenotype, namely enhanced myelopoiesis, as 

compared to that caused by the expression of AML1-ETO.      

 In addition to the lack of response to cytokine signaling and altered lineage 

skewing caused by gene expression changes, Mtg16-null cells also display cell 

proliferation problems, which appear to be cell type dependent.  It is important to note 

that almost all of the progenitor cell populations have impaired proliferation.  For 

example, the MEPs and ST-HSCs/MPPs could not proliferate in the CFU-S assay and 

required the expression of c-Myc to form colonies.  Similarly, when B cell progenitors are 

grown in methylcellulose with IL7, they are able to form colonies, but they are fewer in 

number and much smaller in size, also suggesting a proliferation defect (Hunt et al. in 
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prep.).  In addition, MTG8-null MEFs grow much more slowly than WT MEFs in vitro 

(DeBusk et al. in prep.).  This is especially interesting because the AML1-ETO fusion 

protein also impairs proliferation. In contrast to the impaired proliferation in progenitor 

populations, our analysis of the stem cells in Chapter 4, showed that LT-HSCs were 

actually hyperproliferative, as shown by increased BrdU incorporation.  This increased 

cycling of the stem cells caused a loss of self-renewal, which ultimately led to stem cell 

exhaustion, as shown by their inability to perform in a secondary transplant. We found 

that E2F2, a transcription factor that regulates the cell cycle, was up regulated in Mtg16-/- 

LSK cells.  In addition, Mtg16 robustly associated with an enhancer-like sequence in the 

first intron of E2F2, suggesting that E2F2 is a direct target for Mtg16-mediated 

repression.  The increased cycling in the HSCs was similar to the inappropriate cycling of 

the stem/progenitor cells in the crypts of the small intestine in Mtgr1-/- mice  after 

treatment with DSS [57].  Thus, the effect on proliferation changes that are evident in 

the absence of Mtg16 appears to be different between stem and progenitor cell 

populations.  However, it must be noted that the increase in BrdU in the HSCs does not 

necessarily mean they do not have problems going through the cell cycle, it simply shows 

that more cells have entered into S phase.  This might be more evident in the HSC 

population simply because the stem cells are normally quiescent and not cycling, 

therefore any increase in cycling would be more noticeable as compared to the context of 

the progenitors that are required to rapidly proliferate to keep up with the high demand 

for new blood cells.  In fact, impaired progression through the cell cycle could also 

explain the loss of HSC self-renewal in the LTC-IC and CRAs.  Thus, more work must 
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be done to delineate exactly how the proliferation defects affect the Mtg16-null HSC loss 

of self-renewal. 

 Given that genotoxic stress is closely associated with hematopoietic failure 

syndromes, we tested whether the loss of Mtg16 caused genotoxic stress [154, 157].  

Indeed, we observed a slight increase in DNA double-strand breaks (as indicated by 

γH2AX foci) in lineage-negative cells, and this DNA damage increased with age (Figure 

36).  Further analysis with FACS purified stem and progenitor cells showed very low 

levels of γH2AX foci in the HSCs, but the Mtg16-null myeloid progenitor cells displayed 

higher levels of DNA damage (Figure 38). More importantly, we also showed that when 

wild type lineage negative cells are exposed to low doses of IR in vitro, they have similar 

proliferation kinetics to Mtg16-null cells and also display premature differentiation 

(Figure 40), which led to a loss of HSC self-renewal (Figure 39).  These data suggest that 

DNA damage may underlie the proliferative defects observed in Mtg16-deficient 

progenitor cells and suggest that cell cycle progression is required for this DNA damage.  

Similarly, MTG8-null MEFs also display increased DNA damage when compared to WT 

MEFs (DeBusk et al. in prep.), which suggests that MTG family members contribute to 

genomic stability in a variety of cell types.  If these proteins have a fundamental role in 

the maintenance of genome stability, this could explain why the MTG family members 

are frequently mutated in various types of cancer.  However, much more work is needed 

to determine the mechanism by which loss of Mtg16 causes genomic instability.  One 

such mechanism to test would be to determine if Mtg16-null HSCs contain higher levels 

of reactive oxygen species (ROS), as ROS have been linked to genomic instability and a 
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knockout mouse model of FoxO1/3a/4-/- has elevated ROS and displays a very similar 

phenotype as the Mtg16-null mouse [156].   

 Another possible mechanism to be explored is whether Mtg16 involves DNA 

damage pathway proteins for its regulation of genomic stability.  Given that the effect of 

a low dose of IR on the wild type cells in vitro required p53 (Figure 40C), this protein 

and p21, one of its major effector proteins, would be likely candidates of action for 

Mtg16 function.  These proteins are also both involved in cell cycle regulation and have 

been shown to be required for HSC functions [153, 174].  To test if these proteins had an 

impact on Mtg16 hematopoietic stem and progenitor cell functions, we crossed our 

Mtg16-null mice with p21-null or p53-null mice and determined the effect that deletion 

of either of those genes had on the hematopoietic compartment of Mtg16-null mice.  In 

context of the deletion of p21, there did not appear to be any changes in myeloid 

progenitor cell numbers as assessed by methylcellulose containing IL6, IL3, SCF, and 

EPO assays or by FACS analysis (Figure 45A and data not shown).  Similarly, the loss of 

p21 did not restore erythroid progenitor cell functions as shown by the absence of BFU-E 

colonies from the Mtg16-null/p21-null cells in methylcellulose assays containing EPO or 

by the CFU-S12 assay (Figure 45B, C).  This was a bit surprising considering the Mtg16-

null MEP microarray showed an up-regulation of p21, but this might highlight the 

importance that loss of EPOR has on the erythroid cell functions.  Finally, we tested the 

function of the long-term stem cells in a competitive repopulation assay and again no 

difference between the Mtg16-null bone marrow and the Mtg16-null/p21-null bone 

marrow was observed (Figure 45D).  Taken together, these data show that the loss of p21  



  144 



  145 

does not have an effect, either positively or negatively, on the defects that are seen in the 

absence of Mtg16. 

 Though the loss of p21 in the context of the Mtg16-null did not appear to have an 

effect on hematopoiesis, it is still important to determine the effects of the loss of p53 

since p53 has so many different functions independent of p21.  Though these results are 

very preliminary, it does not appear that the loss of p53 has any major effect on myeloid 

progenitor cell functions by flow cytometry, methylcellulose assays, or CFU-S assays 

(data not shown).  However, in contrast to the loss of p21, the Mtg16-null/p53-null cells 

appear to have restored B cell progenitor function. As previously mentioned, Mtg16-null 

B cell progenitors are defective in their ability to grow in methylcellulose with IL7, as 

shown by fewer numbers of colonies that are much smaller in size (Hunt et al. in prep.; 

and Figure 47A, B).  The defect in B cell progenitors is even more pronounced after bone 

marrow transplantation, where in contrast to increased Gr1+/Mac1+ cell production after 

transplant, the Mtg16-null B cell progenitors are almost incapable of producing mature 

B220+ cells after transplant (Figure 46), showing that Mtg16 is definitively required for B 

cell progenitor function.  Thus, we looked at the ability of Mtg16-null B cell progenitors 

to form B cell colonies in in vitro methylcellulose assays containing IL7.  Strikingly, the 

loss of p53 was able to restore both total B cell colony numbers and the size of the 

colonies as shown by the increase in total cell number (Figure 47A, B).  The loss of 

colony number and size in Mtg16-null cells is in part due to an increase in apoptosis as 

shown by an increase in Annexin V+ cells; however, the loss of p53 decreased the amount 

of apoptosis, which is likely contributing to the restoration of colony number and size in 

the Mtg16-null/p53-null cells (Figure 47C, D).  Preliminary results have shown that the  
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Mtg16-null BFU-E cells have an increased amount of γH2AX DNA damage foci, which 

could be triggering the apoptotic pathway through p53.  This would explain why 

apoptosis is not activated in the absence of p53.  However, experiments assessing the 

number of γH2AX DNA damage foci need to be performed before any conclusion can be 

made about how p53 is regulating Mtg16 function.  In addition, experiments need to be 

performed to determine if the loss of p53 will inhibit Mtg16-null premature 

differentiation in the in vitro cultures, and thereby possibly restore HSC self-renewal in 

the LTC-IC assay.  Though it is exciting to think the loss of p53 may be able to restore 

some of the Mtg16-null defects, much more work needs to be done to ensure the deletion 

of p53 does not have an effect on other cell functions, and that the complementation seen 

in the BFU-E cells is not simply due to a generalized effect of inhibiting apoptosis.  Also, 

the Mtg16/p53 mice provide a useful model system to test whether the loss of Mtg16 

might contribute to tumor formation.  Since the p53-null mice succumb to various tumors 

(most commonly T cell lymphomas) [175], we can assess if the p53-null or p53-het mice 

get tumors at a different rate or different types of tumors when Mtg16 is deleted.   

Altogether, the analysis of the effect of the loss of p53 on Mtg16 functions will give us 

valuable insight on the mechanism by which Mtg16 is functioning in various cells. 

 Aside from DNA damage, another mechanism of action to be explored is the role 

of Mtg16 in transcriptional elongation.  MTG16 was recently found in a proteomic screen 

to be in a complex with Tif1γ, which is required for transcriptional elongation, so it is 

plausible that Mtg16 is also involved in this process [149]. This concept is intriguing 

because Mixed Lineage Leukemia (MLL), one of the other four most common genes 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involved  in  chromosomal  translocations  in  AML  [8],  is  also  required  for 

transcriptional elongation.    In  fact, we have data  in our  lab that shows that Mtg16 

and  MLL  interact  (DeBusk  et  al.  in  prep.).    Linkage  of  both  of  these  proteins  to 

transcriptional elongation is important because it suggests that despite the variation 

in gene expression of  the AML‐associated  fusion proteins,  they might all  converge 

on similar pathways  to  transform myeloid cells. Although this has yet to be proven, 

this is an attractive hypothesis with respect to therapeutic treatment of AMLs.       

Overall, deletion of Mtg16 in a murine model resulted in numerous hematopoietic 

defects, such as altered lineage cell fate decisions, proliferation defects of various 

hematopoietic cells, and ultimately, loss of functional integrity of the HSCs.  It is clear 

from the data that the requirement for Mtg16 is different between homeostasis and stress 

conditions.  For example, under homeostasis, there is a reduction in HSCs, but they are 

capable of forming all lineages of the blood (Figure 48A).  Though all lineages are 

formed, there are consistent reductions in lymphopoiesis (both B and T cells), and 

erythroid cells, with a generalized skewing towards the granulocyte/monocyte lineages.  

Even with these alterations in lineage allocation, the mice appear normal with no 

apparent complications during aging.  Though these results imply a modest role for 

Mtg16 in hematopoiesis, the severe hematopoietic defects and failure that occur during 

stress conditions highlights the important roles Mtg16 plays in maintaining 

hematopoiesis.  In contrast to homeostatic conditions, Mtg16-null cells almost completely 

fail to make T, B, or erythroid cells during stress hematopoiesis (Figure 48B).  

Interestingly, the Mtg16-null cells retain the ability to make granulocyte/monocyte cells 

even under stress conditions.  However, the loss of Mtg16 in the stem cells greatly  
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impairs their self-renewal capacity through exhaustive replication of the HSC 

compartment, which ultimately leads to bone marrow failure of all lineages in a 

secondary transplant (Figure 48B). Also, the fact that the HSC, lymphoid, and erythroid 

compartments are the compartments most affected by the loss of Mtg16 implies that 

Scl/Tal1, E proteins, Gfi1, GATA1, and Notch interaction with Mtg16 is critically 

required for their function in controlling these lineage decisions.  One hypothesis to 

explain the differences between homeostasis and acute conditions is that the homologous 

family member, MtgR1, can compensate some of the function of Mtg16.  Though MtgR1 

is expressed at lower levels than Mtg16 in the bone marrow, the amount may be 

sufficient to help some of the cells get through their proliferation defects under 

homeostasis where there is not a great demand.  However, this level of MtgR1 expression 

might not be enough to compensate for the loss of Mtg16 under stress conditions when 

there is a much higher demand for hematopoietic production.  In concordance with 

possible complementation by MtgR1, Mtg16/MtgR1 double knockout mice display 

embryonic lethality at approximately day e14, however the cause of this embryonic 

lethality needs to be further defined to determine if this is due to impaired hematopoiesis.  

To circumvent the embryonic lethality, a conditional deletion of Mtg16 could be 

generated so that when crossed with an MtgR1-null mouse, Mtg16 could be specifically 

deleted after adult hematopoiesis is established.  This model could then be used to 

determine if the combined loss of Mtg16 and MtgR1 displays defects that are similar to 

normal Mtg16-null mice or if they are much more severe, which would imply there is 

compensation between family members. In addition, the striking similarities between the 

deletion of Mtg16 and Hdac3 (Chapter 6), or of the various transcription factors that bind 
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Mtg16, imply the requirement of each of these complex proteins for proper hematopoietic 

regulation. Taken together, these phenotypes seen during homeostasis and stress 

conditions suggest that Mtg16 is indeed a master regulator of hematopoiesis (Figure 48).   

Our work may also provide a mechanism for the role of MTG/ETO factors in 

leukemogenesis.  In general, the t(8;21) is viewed as a relatively weak oncogene, as 

various human studies have suggested that patients can carry this translocation for several 

years before developing AML [151]. However, the fact that the oligomerization domain, 

which also binds to endogenous Mtg16/Eto2 and Mtgr1, is essential to the transforming 

ability of the t(8;21) fusion protein in mouse models supports the importance of the 

endogenous functions of these proteins for the formation of leukemia [39-41].  Therefore, 

it is possible that binding of the AML1-ETO fusion protein to Mtg16 impairs the action 

of Mtg16 and causes the HSC to enter the cell cycle.  While the fusion protein can 

directly repress the expression of tumor suppressors, it also induces a DNA damage gene 

signature [24-26, 152, 169, 170].   Additionally, expression of the fusion protein in vitro 

increased DNA damage and sensitized the cells to DNA damaging agents [169, 170]. 

These data suggest that the t(8;21) could promote immortalization of hematopoietic stem 

and progenitor cells by repressing tumor suppressor genes, while triggering proliferation 

by activating genes such as E2F2 and promoting a modest level of DNA damage that 

increases the mutation rate resulting in the development of leukemia after the 

accumulation of a ‘2nd hit’(Figure 49). 

  Ultimately, the work presented in this dissertation has provided valuable insight 

into the normal function of Mtg16 in hematopoiesis, and described potential mechanisms 

in which disruption of this gene could lead to development of leukemia by the AML1-
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ETO fusion protein.  Moreover, the MTG family members are highly homologous and 

interact with similar binding partners.  Thus, this knowledge can be used to help decipher 

a common mechanism for MTG disruption to cause cancer in various tissue types.
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