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CHAPTER I 

 

IS HEAVY TRADING GOOD OR BAD FOR PRICE DISCOVERY? EVIDENCE FROM 
OPTIONS 

 

1.  Introduction 

A certain ‘normal’ level of trading volume occurs in financial markets due to investors’ 

changing liquidity or portfolio needs.  However, the system is frequently perturbed by abnormal 

trading shocks; and how these shocks affect price discovery depends on the source of such 

trading.  If investors trade due to changes in their private information sets, trading will lead to 

more efficient prices.  On the other hand, if the shocks are triggered by cognitive biases, as 

suggested by studies in behavioral finance, trading will push prices away from their true 

equilibrium value.      

In this paper, I use options to examine whether market prices on average are more or less 

informative on high volume days , that is, whether shocks in option volume are caused by 

informed investors or psychological factors.  Because the spot and option markets are tightly 

related, I study the effect of cross-volume shocks as well, where cross-volume shocks are defined 

as abnormal trading volume in the spot market.  In addition, under the information arrival 

hypothesis, I examine whether the data are consistent with option trading on volatility related 

information.   

Many prior studies provide arguments on whether volume helps or hurts prices.1  On the 

one hand, in Easley, Keifer, and O’Hara (1997a,b), unusually high volume indicates the presence 

of informed traders and leads to more informative prices as new information is disseminated 

through the trades.  Similarly, trading activity can reflect differences of opinion among market 

participants.  Heavy trading aids in price discovery through the aggregation of investors’ 

                                                 
1A related empirical study is Barclay and Hendershott (2003), who find that prices in after-hour trading, 
when trading volume is low, appear to be less accurate than transaction prices during the trading day. 
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heterogeneous valuation models and/or interpretation of the common information set (Brandt and 

Kavajecz (2003)).  Cao and Ou-Yang (2003) provide a theoretical model in which option volume 

increases in both information arrival and the dispersion of its interpretation.  Moreover, Admati 

and Pfleiderer (1988) argue that heavy liquidity trading can further price discovery as well, in the 

sense that periods of concentrated liquidity trades attract informed investors to the markets.  In 

equilibrium, with endogenous information acquisition, prices are more efficient when trading is 

intense.  More generally, volume may proxy for the rate of information flow (Copeland (1976)), 

which in turn implies a monotonic positive relation between volume and the efficiency of the 

price.  This interpretation is commonly adopted in empirical studies (for instance, Clark (1973), 

Epps and Epps (1976), Tauchen and Pitts (1983), Lamoureux and Lastrapes (1990), and Andersen 

(1996) for the Mixture of Distribution Hypothesis).   

On the other hand, heavy trading may hurt price discovery.  In economies with irrational 

investors, volume shocks may result from cognitive biases.  That abnormal volume can reflect 

behavioral sources is readily illustrated by the case of Massmutual Corporate Investors (MCI) and 

MCI Communications (MCIC), two unrelated companies with similar ticker symbols.  Rashes 

(2001) documents MCI’s abnormal volume reactions to MCIC news announcements, along with 

other commonly known cases of ticker symbol confusion.  More generally, Huddart et al. (2005) 

find that ‘psychological factors are pervasive and strong enough to be an important determinant 

of equity volume,’ and that spikes in trading volume reflect the psychological effect on investors’ 

trading decisions of previous price levels, such as 52-week highs and lows.  Also, many academic 

studies argue that investors are overconfident.  Overconfident investors tend to trade too much 

and, in a time-series context, volume reflects variations in investor sentiment (Odean (1998, 

1999), Barber and Odean (2000, 2001, 2002), and Benos (1998)).  Even sophisticated traders can 

display behavioral biases.  Dow and Gorton (1997) propose a model in which one of the reasons 

why managers’ trade  is to show their employers that they are working hard.  Coval and Shumway 

(2005) examine the trading behavior of Chicago Board of Trade proprietary traders and document 
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important irrationalities driven by loss-aversion.  Moreover, some studies suggest that rational 

investors may find it prof itable in the short run to trade on the same side of the market irrational 

traders do, if convergence is expected to be slow (Brunnermeier and Nagel (2004)). 2     

That there are irrational episodes in every market is hardly disputed in the literature.  

What is disputed is whether individual irrationalities can aggregate into market wide anomalies.3  

Critics argue that these episodes are random and are eventually priced out of the market, so that 

their effect on price behavior is negligible  (Ross (2005) and Fama (2005)).     

In this paper, I contribute to this debate by examining abnormal volume, and its relation 

to market efficiency.  To perform a test of market efficiency, I focus on the option market, where 

both implied and ex post realized volatilities are available; therefore, a natural measure arises for 

the market’s pricing error.  While the relation between implied and realized volatility has been 

widely studied, the model-free implied volatility utilized in this paper directly allows for a pricing 

error interpretation.  The model-free implied volatility is calculated without specif ic assumptions 

on the market’s true option pricing model (Demeterfi et al. (1999) and Britten-Jones and 

Neuberger (2000)).  Therefore, it provides a direct test of market efficiency since it is free from 

the joint hypothesis problem (Jiang and Tian (2005)).  In contrast, previous studies are unable to 

use the relation to gauge market efficiency using traditional parametric implied volatility 

measures.  While I concentrate on the model-free implied volatility, I also use Black-Scholes 

(1973) implied volatilities calculated from at-the-money options, where model biases are 

minimized.       

To detect periods of intense trading, I adjust the volume series for time-series 

characteristics and calendar day variation, and orthogonalize spot and option volume.  I define 

abnormal trading as residual volume arising from the adjustment procedure (Marsh and Wagner 

                                                 
2Although traditionally many argued that irrational investors will not survive in the market, recent papers 
believe that survival is possible (De Long, Shleifer, Summers, and Waldmann (1991)).  In addition, Kogan, 
Ross, Wang, and Westerfield (2005) find that irrational traders can affect prices significantly even if 
trading decreases their wealth over time. 
3Through social contagion, such as groupthink or herding. 



 4 

(2004)) and use it to assign each day in the sample period to a high or a low volume state.  I also 

consider well-documented econometric biases associated with implied volatility tests, such as 

telescoping maturity and errors-in-variables, and employ several methods to calculate realized 

volatility including range-based measures that are shown to perform better than other estimators, 

for instance, the absolute return (Alizadeh, Brandt, and Diebold (2000)). 

The results indicate that the option market is more efficient on days when option volume 

is abnormally high.  A similar, but weaker, result is found for spot volume.  That the pricing error 

is smaller in high option volume states is consistent with the notion that on average, abnormal 

trading is not indicative of shocks to irrational investors’ demands but rather, more likely to be 

due to changes in investors’ information set or in their interpretation of it.  While occasional 

behavioral trading shocks are likely to take place in any market, the results suggest that, on 

average, they do not play an important role .  As a robustness check, I find that the results are 

invariant to two alternative weighting schemes for option volume.  The rationale behind the 

weighting schemes is to place more weight on the option contracts that informed traders are likely 

to prefer.  In particular, I use (inverse) option bid/ask spread-weighted and vega-weighted option 

volume.  The la ter weighting scheme investigates volatility related information trading in the 

option markets. 

As suggested by Jiang and Tian (2005), interpreting the results I take account of the non-

zero volatility risk premium and use a constant adjustment.  I allow the constant adjustment to 

differ across the volume states and find significant differences.  This implies that the volatility 

risk premium depends on trading volume as well.  However, since the volatility risk premium is 

not observable, the constant adjustment or the proxies suggested by Chernov (2002) provide an 

inferior modeling framework.  To further eliminate potential econometric biases, I adopt the 

Kalman filter to estimate the system.  As a side result, the Kalman filter provides an estimated 

time-series of the volatility risk premium.     
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Also, I disaggregate option volume into two components: the change in open interest and 

a net component, or the difference between total volume and the change in open interest.  This is 

based on Day and Lewis (2004) who use the decomposition to approximate the speculative and 

hedging components of derivative volume.  I examine whether abnormal shocks to speculative 

and/or hedging demands help or hurt price discovery in the option markets.  Since the 

decomposition into speculative and hedging components is based on open interest, the results will 

be suggestive of the types of trades that affect the number of contracts outstanding.  When option 

trading is decomposed into speculative and hedging activities, the findings indicate that the 

presence of speculators enhances price discovery while for hedging demand, no significant 

relation is found.  In addition, put related hedging demands are harmful for price discovery, 

which is consistent with Bollen and Whaley (2004), who argue that portfolio insurance demands 

cause temporary price pressures when no natural counterparties arise for the trade. 

The current study is related to two papers in the literature.  First, Mayhew and Stivers 

(2003) examine the time-series forecasting performance of Black-Scholes (B-S) implied 

volatility.  In their cross section of stocks, they observe that only for stocks with the very largest 

option trading volume does implied volatility show significant forecasting ability.  This result is 

important, and is consistent with the notion that securities that receive more investor attention 

have more information efficiency in pricing.  In the cross-section, this constitutes a friction-based 

argument.  In contrast, I investigate a second role for volume; in particular, whether periodic 

abnormal trading activity reflects information arrival as suggested by previous studies.  Second, 

Donaldson and Kamstra (2004) show that the B-S implied volatility outperforms the volatility 

forecasts produced by ARCH models when NYSE volume is high.  This latter result may 

naturally arise since the Black-Scholes model has friction biases.  For instance, Longstaff (1995) 

finds that the discrepancy between the B-S implied volatility and realized volatility decreases 

when market conditions are closer to the assumptions underlying the B-S model; that is, when 

transaction costs are lower and liquidity (measured by trading activity and other proxies) is 
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higher.  Though the Donaldson and Kamstra result is also consistent with the conjecture that spot 

trading enhances option market efficiency, they are unable to draw conclusions about market 

efficiency due to the joint hypothesis problem.  In contrast, my paper focuses on market 

efficiency.  Also, while examining the role of spot volume for option prices is very interesting, 

option volume has a more important role  for answering the questions raised in my paper.  This is 

because spot volume only has an indirect influence on option prices (through its effect on the spot 

price), while option volume has a direct effect.   

Interestingly, this would not be true, if options were truly redundant.  This is because 

with redundancy, the spot-volume-effect is the only effect one could expect, as options could be 

priced even if no trades occurred in the option market.  Therefore, the results of my paper have 

implications not only for the role of volume for market efficiency, but also, for the redundancy 

argument.   

The paper is organized as follows.  Section 2 provides an analytic framework for 

examining the relation between volatility forecasts and volume.  Section 3 discusses the data 

sources and volume adjustments.  Section 4 provides the estimation results and discusses the 

robustness analyses.  Section 5 concludes. 

 

2.  Analytic Framework 

In this section, I introduce a framework for examining the efficiency of price discovery.  

The section explains the difficulties of measuring pricing errors and provides a link between the 

current approach and prior literature on implied and realized volatility.  It also discusses how 

volume states are incorporated in the tests. 

 

2.1. Tests for the Rationality of the Market’s Forecast 

Price discovery is commonly defined as the process by which information is impounded 

in the market prices, or, alternatively, the process by which observed market prices approach the 
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true underlying value. Therefore, efficiency is usually interpreted in terms of pricing errors, i.e., 

by how close market prices are to the underlying true asset price.  The underlying true price is 

generally not observable, however.  For instance, since stocks do not expire, the only 

measurement on the underlying latent price process is the market price; hence, it is not clear how 

to capture the pricing error.  For options, there are two price measures (expressed in units of 

volatility).  First, volatility forecasts are implied in the option’s price.  Second, an ex post 

measure is also available: after expiry, realized volatility can be estimated for the relevant time 

period.  Hence, the pricing efficiency can be assessed by comparing the implied and realized 

volatilities.4  With two signals on the true underlying process, options provide a unique 

opportunity to assess market efficiency.  When the market price is observable and an unbiased or 

consistent estimate of realized volatility is employed, the pricing error representation is analogous 

to the argument underlying the non-parametric testing problem of comparing model implied 

moments to the empirical densities (for instance, Ait-Sahalia (1996)).  In that case, since the 

nonparametric/empirical measure is always consistent, the bias in the assumed model can be 

determined by the distance between the empirical and the model implied densities.   

A more rigorous discussion of this idea is related to Canina and Figlewki (1993).  In 

particular, when the econometrician knows the market’s true pricing model, by inverting the 

pricing model, the market’s expected future volatility is directly observable (no uncertainty): 

 

    IVt = EM,t(σt+1),    (1) 

 

where IVt is the volatility embedded in current option prices maturing at t+1, σt+1 is the true 

volatility from t to t+1.  The right-hand-side denotes the market’s expectation of next period’s 

                                                 
4This assumes that the volatility risk premium is zero.  When the volatility risk premium is not zero, all 
expectations must be taken with respect to the risk neutral probability measure, thus the implied volatility 
will be larger than the realized volatility by the volatility risk premium (see, for instance, Chernov (2002)).  
This case will also be considered in this paper. 
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volatility.  IVt, the inverse price, represents the market price in units of implied volatility.  Based 

on the observation that, by definition the underlying volatility can be decomposed into its 

expected value at time t and a random component orthogonal to the time t information set,   

 

σt+1= Et(σt+1|Φ) + ηt+1 with Et(ηt+1|Φ)=0,  (2) 

 

the rationality of the market’s forecast can be examined in the following linear regression 

framework: 

 

    σt+1 = α + β⋅IVt(Φ) + ε t+1      (3) 

 

 

where Φ indicates the set of all currently available information and ε t+1 is the regression residual.  

In equation (3) σt+1, the true underlying volatility, is replaced by an estimate of realized volatility, 

which when unbiased/consistent, does not change the validity of the test.  The market’s 

expectation is rational if α =0 and β=1. 

 

2.2.   Black-Scholes Implied Volatility 

The framework above assumes that the econometrician knows the option pricing model.  

Therefore, equation (3) provides a direct test of market efficiency.  In reality, the option pricing 

model is not known; hence in prior studies equation (3) is described as a joint hypothesis test, 

rather than a test of market efficiency.   

Many studies employ the Black and Scholes (B-S) (1973) implied volatility (IVB-S) as the 

embedded option price volatility.  However, if the market’s pricing model is not the  B-S, 

inverting the option prices via the B-S model will not provide the market’s true expectation (i.e., 



 9 

(1) will not hold).  Indeed, many argue that it is inconsistent to derive volatility expectations from 

a constant volatility model (Britten-Jones and Neuberger (2000)).  When we know that the B-S 

implied volatility is not the market’s true volatility expectation, it is not straightforward to expect 

that the B-S implied volatility and the true volatility (or realized volatility)  are linearly related.  

Therefore, one must question whether equation (3) provides a suitable framework for testing in 

this case.   

 Interestingly, Bandi and Perron (2003) show that an approximate linear relation holds 

regardless of the validity of the B-S option pricing model.  For instance, when volatility is 

stochastic but the volatility risk premium and the correlation between price and volatility are zero, 

Hull and White (1987) show that the option price equals the expected value of the Black-Scholes 

(1987) price evaluated at the average integrated volatility.  That is,   

 

OHW,t-1( tt V=σ  ) ≈ Et-1[OB-S,t-1( τσ ,tt V= )]   (4) 

 

where σ, τ, and V are the standard deviation, time to maturity, and underlying volatility, 

respectively and   

 

dsVV
t

t
st ∫

+

=
τ

τ τ
1

, .      (5) 

 

Moreover, the Black-Scholes formula is shown to be nearly linear in volatility for at-the-money 

options (Feinstein (1988)).  Therefore, 

 
Et-1(Oatm

B-S,t-1( τσ ,tt V= )) ≈ Oatm
B-S,t-1(σt = Et-1 τ,( tV  ))  (6) 

That is,   
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Et-1[ τ,tV ] ≈ σ atm
B-S,τ.      (7) 

 

where σ atm
B-S,τ  is the at-the-money Black-Scholes volatility and the expectation is taken with 

respect to the risk-neutral probability measure.  This implies that when the price dynamics can be 

described by Hull and White (1987)-type stochastic volatility models, the Black-Scholes implied 

volatility of at-the-money options is approximately the average volatility over the life of the 

option.  Hence, the relation between realized and implied volatility is approximately linear and 

equation (3) is still valid but, as it was mentioned above, has to be interpreted in the joint 

hypothesis framework.  As Poteshman (2000) points it out, this approximation hinges on B-S 

being linear in volatility for at-the-money options.  Therefore, squaring volatility or taking a 

logarithmic transformation invalidates the approach due to Jensen’s inequality.  In addition to 

Hull and White (1987)-type stochastic volatility models, Jones (2001) argues that the 

approximate linear relation between realized volatility and the Black-Scholes implied volatility 

remains valid when the correlation between price and volatility is non-zero (i.e., there is a 

leverage effect).   

Many studies estimate the forecasting power of implied volatility for subsequent realized 

volatility.  These studies rely on the linearity results above.  For example, Day and Lewis (1992), 

Lamoureux and Lastrapes (1993), Canina and Figlewski (1993), Figlewski (1997), Christensen 

and Prabhala (1998), Blair et al. (2001), and Chernov (2002) study the information content of 

implied volatility and compare it to other forecasts of future volatility, such as the ones obtained 

from Autoregressive Conditional Heteroskedasticity (ARCH) -type models.  Evidence provided 

by these studies is mixed, for instance, Canina and Figlewski (1993) question the success of 

implied volatility to improve forecasts based on historical price information.  However, 

Christensen and Prabhala (1998) attribute this finding to econometric problems.  Day and Lewis 
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(1993) find that implied volatilities are informative but biased.  Blair et al. (2001) report that 

implied volatility provides the majority of relevant information on future realized volatility in-

sample.  Out-of-sample, the implied volatility forecast is the most accurate forecast available. 

Overall, a recent survey by Poon and Granger (2003) concludes that implied volatility provides a 

superior forecast of future volatility. 

Two main analyses are applied in the literature to examine the information content and 

performance of implied volatility.  Both of these rely on the linearity results discussed above.  

First, studies augment the ARCH-type systems with implied volatility in the variance equation.  

In this framework, the coefficient of the implied volatility term is interpreted as the incremental 

information content of option prices that is not included in the historical price process (for 

instance, Day and Lewis (1992). A likelihood ratio test is then performed to compare the original 

model based solely on past information with the augmented specification.  Second, the following, 

so called encompassing regressions are estimated: 

 

 σrealized,t = β0 + β1σimplied,t-1 +β2σhistorical,t + ε t.   (8) 

 

where σ denotes volatility (for instance, Chernov (2002) and Poteshman (2000)).  Equation (8) is 

based on equation (3).  First, implied volatility is efficient, if β2 = 0.  Moreover, as in equation 

(3), unbiasedness requires (β0 , β1)=(0,1).  Most studies mentioned above generally find that 

estimates of the β0 coefficient are significantly different from zero, while the estimates of β1 are 

less than one.  Thus, they conclude that implied volatility provides a biased forecast.  Evidence on 

β2 is mixed.   
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2.3.   Volatility Risk Premium 

Chernov (2002) and Bandi and Perron (2003) illustrate that the approximate linear 

relation between realized and B-S implied volatility is preserved even when the volatility risk 

premium is not zero and/or the underlying asset price has jumps, for instance.  However, in these 

settings, the additional risk premiums must be incorporated in the analyses.  For instance, when 

the volatility risk premium is priced, the expectation in equation (7) is taken with respect to the 

risk neutral probability measure, Q, (when this risk is not priced, the risk-neutral and the objective 

probability measures coincide): 

 

 EQ t-1[ τ,tV ] ≈ σ atm
B-S,τ.      (9) 

 

Bandi and Perron (2003) show that eqation (9) implies the following: 

 

E t-1[ τ,tV ] + RPt  ≈ σ atm
B-S,τ.    (10) 

 

where the expectation on the left-hand-side is taken with respect to the objective probability 

measure and RP represents the volatility risk premium.   

The important implication of this result is that, although the linear relation remains valid, 

equation (3) no longer provides valid inference.  This is because omitting the volatility risk 

premium (or the jump risk premium) causes β to be downward biased due to the omitted variable 

problem, while α  will capture the expected price of volatility risk and thus, will not be zero even 

when implied volatility is unbiased.  The valid test in this case is described by the following 

regression model with the null hypothesis that H0: (α,β) = (0,1): 
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σt+1 = α + β⋅IVt(Φ) + γRPt +  ε t+1        (11) 

 

Chernov (2002) and Poteshman (2000) find that the forecasting bias is largely eliminated when 

they account for non-zero volatility risk premium.  On the other hand, Neely (2003) finds that 

permitting a non-zero price for volatility risk does not influence the forecasting performance of 

implied volatility.  However, these results have to be interpreted with caution since RP is not 

observable, and using an arbitrary specification/proxy may introduce additional biases (Bandi and 

Perron (2003)).           

The results discussed in this subsection provide a motivation for modeling realized 

volatility as a linear function of the Black-Scholes implied volatility.  These results indicate that 

at-the-money B-S implied volatility remains approximately unbiased under fairly general 

conditions when the B-S assumptions are not satisfied.  Therefore, I use B-S implied volatilities 

calculated from at-the-money options in this study, however, as in most previous studies, the joint 

hypothesis concern cannot be completely eliminated.  In contrast, I also use model-free implied 

volatility, which is free from the joint hypothesis problem.  In a recent paper, Jiang and Tian 

(2005) suggest a direct test for the information efficiency of S&P 500 index options by utilizing a 

model-free implied volatility measure.  The next subsections introduce the model-free measure 

and describe the tests employed in this study. 

 

2.4.   Model-free Implied Volatility 

The model-free implied volatility presents an alternative way of measuring volatility 

embedded in the price of options and provides the expected sum of squared returns under the risk-

neutral measure.  However, unlike traditional option-implied volatilities that are derived from 

specific assumptions on the market’s true pricing model (for instance, Black and Scholes (1973) 

and Heston (1993)), the model-free implied volatility is calculated from option prices directly, 
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without any particular assumption on the underlying price process (Carr and Madan (1998), 

Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000)).    The model-free measure of 

implied volatility (IVMF ), which provides the risk-neutral expectation of the integrated volatility is 

given by the following: 
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where St is the underlying asset, rt is the risk-free rate, C(t, K) denotes the European call price 

maturing at time t with strike price K.  Due to risk-neutrality, the presence of a non-zero volatility 

risk premium discussed in the previous subsections becomes an important issue for model-free 

implied volatilities as well.  The result stated in equation (12) is derived by Britten-Jones and 

Neuberger (2000) under the assumption that a continuum of strike prices and maturities is 

available in the market, and that the price process has no jumps.  However, Jiang and Tian (2005) 

extend the result and show that (12) can be accurately approximated using a finite, empirically 

realistic number of options and suggest that it remains valid for stochastic processes with jumps 

(see also Bollerslev et al. (2005)).5    

 The model-free implied volatility is becoming increasingly popular for both academics 

and practitioners.  For instance, the Chicago Board of Option Exchange (CBOE) has recently 

adopted the model-free implied volatility approach to calculate its implied volatility index (VIX).  

The new approach is based on a discrete approximation to equation (12).   

 

                                                 
5It is important to re-emphasize the difference between the B-S and the model-free measures.  The model-
free measure is an empirical measure; therefore, it is always consistent.  In contrast, the B-S implied 
volatility is the market’s expected volatility filtered through the B-S model.  If the B-S model is not the true 
pricing model, the filtering distorts the true expectations; hence the joint hypothesis problem.   
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2.5.   Realized Volatility Measures 

To assess the impact of trading volume on option price discovery, an ex post proxy of the 

underlying volatility process, i.e., the estimated realized volatility, is required.  Furthermore, the 

estimated realized volatility must provide a good approximation to the true underlying price.  

This imposes the requirement that the chosen estimator satisfy given statistical properties, such as 

consistency or unbiasedness.   

There are various proposed methods for calculating realized volatility.  The traditional 

method is based on close-to-close squared returns ( 2
tr ).  The annualized value of the n-day 

volatility is given by the following6: 

 

 ∑
=

=
n

t
trealized r

n 1

2252
σ         (13) 

 

Since the mean is assumed to be well-approximated by 0 at the daily frequency, the divisor is n 

rather than n-1 since no degrees of freedom are lost to estimate the mean.   

Parkinson (1980) proposes a measure based on the daily high and low values: 
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where Ht and Lt are high and low values respectively.  Andersen (2000) argues that high 

frequency (intra-day) data are better able to approximate the underlying continuous process.  

Surprisingly, Andersen and Bollerslev (1998) show that the daily range provides similar 

                                                 
6It is important to note that, since taking the square-root is a concave transformation, based on Jensen’s 
inequality, the realized volatility estimators are upward biased for the true volatility. 
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information content to intra-day returns sampled at the four-hour frequency.  Brandt and Jones 

(2002) and Chernov (2002) motivate the performance of the range by assuming that returns are 

described by a constant volatility Brownian motion: volatility is constant during the day but is 

allowed to change daily.  Though the range suffers from the discretization bias, Brandt and Jones 

(2002) argue that for the S&P 500 index this bias affects the daily range negligibly due to the 

liquidity of the index.  As a robustness check, this paper employs both measures of realized 

volatility in the empirical tests. 

 

2.6.  Estimation Method 

This paper uses both the model-free and the B-S implied volatilities and builds on the 

predictive regression framework described in equation (3).  In addition, I address the issue of a 

non-zero volatility risk premium described in equation (11).  The models are modified however, 

to accommodate the idea of volume states.  That is, the bias in implied volatility as measured by 

the joint behavior of α  and β in the equations is allowed to vary based on whether the market 

price (i.e., implied volatility) is formed on high or low option/stock volume days.  The type of 

asymmetry will be suggestive of the cause: implied volatility is expected to be less biased in high, 

than in low, volume states when abnormal trading shocks are triggered by information arrival.  

On the other hand, if trading shocks on average are due to changes in investors’ sentiment, 

implied volatility will be more biased in high volume states.   

Volume states are defined by abnormal trading in the option and stock markets, 

respectively.  Since the stock and option markets are intimately related, spot volume may play an 

important role in price discovery in the option market.  This is because heightened spot volume 

will affect the spot discovery process, which in turn affects the option’s price.  Section 3 below 

expla ins how the volume series are adjusted to represent surprise/abnormal values.  This is 

generally required in the literature in order to improve the statistical properties of these series and 

remove the deterministic variation caused, for instance, by calendar day effects.  In addition, 
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surprise volume provides an intuitive way to pinpoint high/low volume periods.  For instance, 

Marsh and Wagner (2004) use surprise volume as a proxy for information flow and incorporate 

asymmetric volume regimes in the condit ional volatility equation in their GARCH model.  

Donaldson and Kamstra (2004) also incorporate switching volume states.   

To account for the regime structure implied by the own- and cross-volume effects, I 

estimate predictive regressions of the following form: 
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where Vt represents adjusted (abnormal) volume (spot and/or option).  IV>α is an indicator variable 

that takes the value of 1 when volume is larger than a predetermined threshold level α, and 0 

otherwise.  Since the adjusted volume series reflect surprise or abnormal volume, α is usually set 

to zero in the empirical implementation of the tests.  However, I also examine various tail 

percentiles defined on abnormal volume.  More specifically, using the abnormal volume series, 

for each day I create an indicator variable that equals 1 if the current abnormal volume exceeds a 

pre-specified percentile of abnormal volume in the previous 60 days.  Under this setting, α 

changes over time.    In equation (15), both the intercept and the slope coefficients are allowed to 

change between high volume and low volume states.  Therefore, this framework is equivalent to a 

Seemingly Unrelated Regression (SUR) structure.  The specification allows for an asymmetric 

constant adjustment when the volatility risk premium is not zero. 

 Since model-free implied volatility provides the risk-neutral expected sum of squared 

returns, if volatility risk is priced, equation (15) has to be adjusted in the spirit of equation (11).  

In addition, subsection E questions whether a constant adjustment provides an econometrically 

sound way to interpret the volatility risk premium in equation (11).   As before, difficulties arise 
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since the volatility risk premium is not observable.  Therefore, I employ the Kalman filter to 

estimate the following system: 
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where, as in equation (11), RP represents the volatility risk premium, X represents the vector of 

independent variables that drive the risk premium, r  indicates the realized volume state, and Ir is 

an indicator variable that takes the value of 1 when volume state r occurs and 0 otherwise.  The 

Markov structure is suggested by Bollerslev et al. (2005), who also find that the X vector contains 

macro-finance variables, such as market volatility, the price earnings ratio of the market, credit 

spread, industrial production, the producer price index, and non-farm employment.   

The t subscript of realized volatility stands for the t-th time interval for which the realized 

volatility is estimated.  I examine daily data as well as a sample based on 30 calendar day non-

overlapping windows.  The window length represents a trade-off between the sample size used in 

the estimation and the biases imposed by using sampling windows that are shorter than the 

forecast window.  For instance, the 30 calendar day interval matches the horizon embedded in the 

implied volatility estimates employed in this study, however, it significantly reduces the available 

sample size.  The shorter windows cause an overlap in the error term, which can be reasonably 

corrected by Hansen’s (1982) GMM method (Canina and Figlewski (1993), Poteshman (2000)).  

A more serious problem is that even under the assumption of mean reversion, the volatility 

process may have substantial temporary deviations from its mean.  The use of  time periods that 

are short relative to the forecast window of implied volatility increases the likelihood of 

observing some of these deviations; hence, estimates of realized volatility based on these 
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observations will not provide an accurate measure of average volatility until expiry.  For the 

shorter horizon, the square-root-of-time rule is used to bring the realized and implied volatility to 

a common time unit.   

Equations (15) and (16) separate  implied volatilities based on whether they are obtained 

in high volume or low volume regimes.  I also estimate similar models based on weighted option 

volume as well as on the speculative and hedging components of derivative trades.   

 

3.  Data Description and Volume adjustments  

  

3.1. Data and Descriptive Statistics 

Data used in this paper contain trading volume, open, close, high, and low values of the 

S&P 500 (SPX) index; option data for the corresponding SPX options, and the corresponding 

VIX implied volatility index of the CBOE.  Data on the S&P 500 are obtained from Yahoo! 

Finance.  Data on SPX option trading activity are obtained from two sources: the CBOE and 

OptionMetrics, and contain daily observations on volume, open interest, as well as volume and 

open interest for Long-term Equity Anticipation Securities (LEAPS) puts and calls (i.e., long-

dated put and call options) for the time period of January 2, 1996-June 30, 2004.  Also, data on 

option vegas, B-S implied volatilities, and bid/ask spreads are from OptionMetrics.  The sample 

period contains 2139 daily observations.  Additional data are obtained to account for the effect of 

macroeconomic news announcements and changes in the composition of the index.7     

For the implied volatility measures I use two sources.  The B-S implied volatility is  

calculated from the implied volatilities reported in OptionMetrics.  I follow the method suggested 

by Ni, Pan, and Poteshman (2005) and calculate the B-S based market price of equity volatility by 

                                                 
7Information on announcement dates for the consumer price index, producer price index, the employment 
situation, and productivity is obtained from the website of the Bureau of Labor Statistics.  Federal Open 
Market Committee meeting dates are available from the website of the Federal Reserve Bank.  Index 
additions and deletions are listed by Bloomberg Data Services.   
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averaging the implied volatilities of an at-the-money put and an at-the-money call to form a 

straddle.  I choose these options by requiring that they have the same expiration date and strike 

price, restricting time to expiration between 5 and 50 days and the strike to closing index price 

between 0.8 and 1.20, and choosing the pair that is most at-the-money.  If there is more than one 

pair that satisfies these criteria, I choose the one with the shortest time to expiration.   

Following Bollerslev et al. (2005), I use the CBOE’s VIX index to measure model-free 

implied volatility.  The VIX (‘new VIX’) implied volatility index of the CBOE is calculated using 

SPX option prices and expresses the market’s expectation of 30 calendar day volatility.8  The new 

VIX is calculated using the model-free implied volatility formula based on the theoretical results 

of Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000).  Under the new methodology, 

the VIX calculations utilize a wide range of strike prices, rather than only at-the-money options; 

hence the resultant implied volatility uses information contained in option prices across the 

volatility skew.  The correlation between the B-S implied volatility calculated from the straddle’s 

price and the VIX for the sample period is 0.89.   

Figure 1.1 graphs the closing values of the VIX and the S&P 500 indices.  For the full 

sample, the correlation between the implied volatility index and the S&P 500 is 0.13.  However, 

in sub-samples significant differences arise.  In the first part of the sample  period, the VIX and 

SPX series are strongly positively correlated (for instance, for the period January, 1996 to 

December, 1997, the correlation coefficient is 0.75), while in more recent years the correlation is 

significantly negative (for instance, for the sample period of January, 1999 to December, 2001, 

the correlation coefficient is -0.60).  Consistent with the leverage effect, the correlation between 

the change in VIX and change in the S&P 500 index return is significantly negative (-0.77).   

                                                 
8 The CBOE adopted a new methodology for calculating implied volatilities on September 22, 2003.  Prior 
to the change in methodology, VIX represented the implied volatility index of S&P 100 index (OEX) 
options.  Since September 22, 2003, VIX refers to the implied volatility index of SPX options and the old 
VIX has been renamed to VXO.  The CBOE provides a full price history for the new VIX from 1986 and 
continues reporting the old VIX implied volatility as VXO.  The CBOE adopted the new VIX calculations 
in order to better conform to industry practices: to employ a pricing method that is more likely to be the 
actual pricing method the market uses to value SPX derivatives.   
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Figure 1.1.  Closing Values for the VIX implied volatility and the S&P 500 indices 
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The figure depicts daily closing values for the CBOE’s VIX implied volatility index and the S&P 500 index 
on a dual crossing scale in which the vertical axis on the left side provides the values of the VIX and the 
right vertical axis provides values of the S&P 500 index.  The time period is January, 1996 to June, 2004.  
  

 

Table 1.1 reports summary statistics for the S&P 500 index and for the CBOE’s VIX implied 

volatility index.  Panel A describes the distribution of the high, low, and closing values of both 

indices as well as the total trading volume of the S&P 500 (SPX) index, as expressed in units of  

number of shares traded, and the total trading volume of SPX options, given by the number of 

option contracts (including put and call volume in both SPX and SPX LEAPS options).   

Panel B provides a breakdown of the total SPX option volume into call, put, LEAPS call, 

and LEAPS put options.  In addition, a similar breakdown is reported for open interest.  The table 

confirms that put volume for S&P 500 index options is significantly higher than call volume for 

both the short-term and the long-term options categories: average daily call volume excluding 

LEAPS is 41,685.04 contracts, while  the average daily put volume equals 61,199.80 contracts.  

For LEAPS, the average daily put and call volumes are 977.88 and 2,754.38 contracts, 

respectively.  Similarly, the average daily put open interest is 1,158,575.00 for short-term options 

and 479,543.10 for LEAPS, in contrast, the average call open interest is 868,359.70 for short-
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term, and 286,146.8 for long-term options.  S&P 500 index puts are used by institutional 

investors to provide portfolio insurance, which explains the high volume of puts in the sample.   

 

Table 1.1 Descriptive Statistics for the S&P 500 and VIX indices 
 

The table reports summary statistics for the S&P 500 index and for the CBOE’s VIX implied volatility 
index.  Panel A describes the distribution of the high, low, and closing values of both indices as well as the 
total trading volume of the S&P 500 (SPX) index as expressed in the number of shares traded and the total 
trading volume of SPX options given by the number of option contracts (including put and call volume in 
both SPX and SPX LEAPS options).  Panel B provides a breakdown of total SPX option volume into call, 
put, LEAPS call, and LEAPS put options.  In addition, a similar breakdown is reported for open interest.  
The time period is January 2, 1996 to June 30, 2004. 
   

Panel A 

  Index Values Volume 

  SPX Close SPX High SPX Low VIX Close VIX High VIX Low SPX  SPX Option  

Mean 1,069.99 1,077.83 1,061.09 22.98 23.77 22.42 9,665,774 106,624 

Median 1,089.45 1,096.95 1,079.98 21.83 22.58 21.32 9,386,000 98,866 

Maximum  1,527.46 1,552.87 1,518.46 45.74 49.53 45.58 27,755,600 375,840 

Minimum 598.48 602.71 597.29 12.00 12.29 11.11 149,900 7,656 

Std.Dev. 235.88 238.05 233.83 5.82 6.13 5.64 4,197,066 47,871 

Skewness -0.09 -0.10 -0.09 0.99 1.06 0.96 0.37 1.11 

Kurtosis 2.16 2.17 2.16 4.04 4.29 3.94 2.49 4.86 

         

Jarque-Bera 65.25 64.20 66.08 445.90 548.74 406.88 71.19 751.96 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 2,139 2,139 2,139 2,137 2,137 2,137 2,139 2,136 
 

Panel B 

 Volume Open Interest  

  SPX Call SPX Put  
SPX Leap 

Call 
SPX Leap 

Put  SPX Call SPX Put  
SPX Leap 

Call 
SPX Leap 

Put  

Mean 41,685 61,199 978 2,754 868,360 1,158,575 286,147 479,543 

Median 37,181 56,059 59 1,586.5 841,081 1,097,825 206,894.5 511,261.5 

Maximum  167,199 219,324 39,841 77,231 1,602,823 2,823,283 797,954 708,225 

Minimum 2,837 4,587 0 5 21,917 32,336 7,775 4,627 

Std.Dev. 22,252.76 28,985 2,770.58 4,394.06 222,968.40 339,173 241,324.50 141,212.00 

Skewness 1.39 1.25 5.51 7.60 0.47 1.24 0.54 -0.76 

Kurtosis 5.97 5.42 45.20 95.48 2.96 5.14 1.85 3.14 

         

Jarque-Bera 1,474.84 1,077.72 169,258.40 781,791.30 78.54 949.97 220.26 205.41 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 2,138 2,138 2,136 2,136 2,129 2,130 2,128 2,128 
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Panel A, B, and C of Figure 1.2 display daily volume for the S&P 500 index, the 

corresponding daily total index option volume, and the put/call ratio for options on the index, 

respectively.   

 

Figure 1.2. Daily Volume and Put/Call Ratio 
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Panel A, B, and C of the figure display daily volume for the S&P 500 index, daily total S&P 500 index 
option volume, and the put/call ratio for the index options, respectively.  Spot volume is expressed in the 
number of shares, while option volume is represented by the number of contracts.  The time period depicted 
in the figure is January, 1996 to June, 2004.  
 
 

Spot volume is expressed in number of shares, while option volume is represented by the number 

of contracts.  The correlation between the S&P 500 index volume and the total SPX option 

volume is 0.36.  The figure indicates that spot volume is non-stationary.  This issue will be 

revisited below.  In addition, option volume displays time-series dependence.  The first and 

second order autocorrelation coefficients are 0.56 and 0.44, respectively, for total option volume 

on the SPX, and 0.91 and 0.87, respectively for SPX spot volume.  
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  Table 1.2 describes the distributional characteristics of the daily hedging and speculative 

components of total, put, and call volume of the S&P 500 options.  The hedging and speculative 

components are defined based on the intuition that day-to-day changes in open interest are likely 

driven by hedging-related trades (Day and Lewis (2004)).  Therefore, volume generated by 

hedgers is proxied by the absolute change in the relevant open interest series (total, put, or call 

open interest) and the speculative component is expressed as the difference between the volume 

series and the corresponding hedging volume estimate.  

 

Table 1.2.  The Speculative and Hedging Components of Option Volume  
 

The table describes the distributional characteristics of the daily hedging and speculative components of 
total, put, and call volume of the S&P 500 options.  Volume generated by hedgers is proxied by the 
absolute change in the relevant open interest series (total, put, or call open interest) and the speculative 
component is expressed as the difference between the relevant volume series and the corresponding 
hedging volume estimate.  For some days in the sample, the change in open interest is larger than total 
trading volume.  These observations are coded as missing and are not included in the calculations in this 
table.  The time-period for which the daily summary statistics are calculated is January, 1996 to June, 2004. 
 
 

  total Puts Calls 

  Speculative Hedging Speculative Hedging Speculative Hedging 

Mean 75,202 29,887 45,178 17,255 30,862 12,508 

Median 67,506 26,589.5 40,259 14,999 26,753 10,474 

Maximum  347,531 139,916 194,817 88,669 157,524 139,741 

Minimum 806 0 67 0 27 0 

Std.Dev. 42,950.25 17,816.79 26,860.48 11,156.09 20,465.01 9,263.55 

Skewness 1.17 1.31 1.27 1.46 1.44 2.65 

Kurtosis 5.31 5.99 5.79 6.86 6.27 24.25 

       

Jarque-Bera 877.21 1,286.39 1,153.32 1,898.17 1,508.06 37,990.96 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 

N 1,946 1,946 1,941 1,941 1,901 1,901 
 
    

These proxies have obvious weaknesses and are likely to misclassify some traders.  

Therefore, they will bias the tests against finding any significant relation.  However, important 

groups, such as portfolio insurance demands, will be unambiguously classified in the appropriate 

category.  Portfolio insurance trades are associated with net buying pressure (Bollen and Whaley 
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(2004)) since the market maker is required to absorb these trades.  As a result, changes in these 

demands will always lead to changes in open interest.   

For some days in the sample  (not only days surrounding expiration days), the change in 

open interest is larger than total trading volume.  These observations are coded as missing and are 

not included in the calculations in this table.  The average daily estimated speculative component 

is larger than the hedging component for both calls and puts.  The difference in means is 

statistically significant at the 1 percent level in all cases.  One interesting question is whether calls 

or puts have a larger portion of speculative trading based on the proxy employed here.  To answer 

this question, I calculate the proportion of total put (call) volume provided by the estimated 

speculative put (call) volume for each day in the sample.  Due to the missing observations 

generated above, the sample for which both call and put speculative trading estimates are 

available contains 1,875 days.  The average share of the speculative trading proxy is 0.70 and 

0.69 for put and call volume respectively.  On 982 (893) days, the share of speculative trading is 

larger for put (call) volume than call (put) volume.      

 

3.2. Volume Adjustments 

As mentioned above, spot volume is not stationary, while option volume displays a 

significant amount of time-series dependence.  Figure 2 implies that option volume may have a 

quadratic trend.  Also, deterministic variation in volume due to calendar day effects has been 

extensively documented in previous studies.  Calendar day effects include days-of-the-week, 

holiday, and expiration date effects.  These characteristics induce biases in empirical work, and 

are especially problematic in this study.  For instance, without the adjustment, the trading days 

surrounding exchange holidays may fall in the low volume state.  The volume series are 

commonly adjusted in the literature (see, Gallant et al. (1992), Campbell et al. (1993), Marsh and 

Wagner (2004) for examples of adjustment techniques).  In addit ion, macroeconomic news 
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announcement days and days when a change occurs in the index composition may affect trading 

volume in both the stock and the option markets.   

The adjustments employed in this paper are based on Marsh and Wagner (2004).  In 

addition to addressing the econometric problems above, adjusting the volume series also provides 

an intuitive way to define periods of heightened trading activity, which is a crucial point in this 

paper.  This is because the adjustments detailed below create residual series, which can be 

interpreted as abnormal volume: the difference between realized trading activity and forecast 

trading volume, where the forecast is based on time-series dynamics and calendar characteristics.   

First, consistent with the volume literature, a logarithmic transformation is applied to 

both the option and the spot volume series to improve the distributional properties (for instance, 

to reduce the problem of skewness).  The transformation also improves the stationarity of spot 

volume.  Following Marsh and Wagner, in order to eliminate the stochastic trend in spot volume, 

the Hodrick and Prescott (1997) filter9 (HP filter) is applied to logarithmic  spot volume.  Thus, 

the two sets of variables to be adjusted for time-series dependence and calendar day effects are 1) 

the difference between the HP filtered and the actual logarithmic spot volume series and 2) the 

logarithm of the option volume series.  The adjustment models are determined via the standard 

Box/Jenkins approach and estimated via  ordinary least squares (OLS).  The sample size is 

relatively large; hence, OLS is expected to perform well for  the autoregressions.  For both the 

logarithm of option volume and the de-trended spot volume, autoregressive terms of orders 1 and 

2 are selected based on the Akaike and Schwarz information criteria.  The adjusting regressions 

include day-of-the-week, holiday, macroeconomic announcement, expiration indicator variables, 

and contemporaneous and lagged cross-volume terms in addition to the autoregressive terms.  

The holiday indicator takes the value of 1 on trading days immediately preceding as well as 

following an exchange holiday.  The logarithmic option volume is also adjusted for a quadratic 

                                                 
9 Several values are tested for the smoothing parameter between 5 ⋅106 and 107.   The results are not driven 
by the choice of the smoothing values.   
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trend, which proves to be an important determinant in the regression results.  The adjusted R2 of 

the regression for log SPX option volume is 0.56 with a Durbin-Watson statistic of 2.15.  For the 

de-trended SPX spot volume series, the corresponding R2 is 0.53 with Durbin-Watson equaling 

1.90.  For both series, the calendar day effects (day-of-the-week, holiday, expiration days), as 

well as the macroeconomic announcement days, are significant determinants of the deterministic 

variation.   

The speculative and hedging volume components are adjusted in a similar manner.  I use 

contemporaneous and lagged option volume in the adjusting regressions to capture relative rather 

than absolute measures of these components.  One interesting result emerges from these 

adjustment regressions: macroeconomic announcement day indicators do not affect relative 

hedging volume, but significantly positively affect the speculative component (this is also true in 

levels (absolute) terms).  This observation lends additional support to using the speculative and 

hedging proxies and is also consistent with the argument that directional informed trading10 in 

index products may manifest itself in the speed with which certain traders react to public 

information, rather than trading on private signals (Schlag and Stoll (2004)).        

  

4.  Does Volume Improve Volatility Prediction?  

In this section, I estimate the state-dependent predictive regressions described in Section 

2.  Subsections 4.1 and 4.2 focus on model-free implied volatility, while subsection 4.3 uses B-S 

implied volatility. 

 I estimate equations (15) and (16) using daily and monthly non-overlapping windows.  

Using non-overlapping intervals avoids the spurious correlation in realized volatility since 

successive realized volatility observations do not share returns used in calculating the previous 

period’s value.  However, at the daily frequency, a telescoping maturity problem remains since 

the overlap is not eliminated from the implied volatility measure.  To see this, implied volatilities 
                                                 
10 Un-directional, or volatility related trading will be discussed later in this paper. 
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on two consecutive dates are likely to be highly correlated since they represent the volatility 

expectation for two 30 calendar day windows that share 28 of the relevant calendar days.  

Poteshman (2000) argues that the telescoping maturity problem can be mitigated by using the 

method of Hansen (1982).   On the other hand, telescoping maturity is fully addressed in the 

monthly sample.  To calculate the 30 calendar day (i.e., monthly) realized volatility, I determine 

the actual calendar days that bracket a 30 day window and calculate the average squared return 

based on all transaction day values that fall in the given calendar day interval. 11  I start with 

January 2, 1996, the first date in my sample (day 0).  I match up the implied volatility on day 0 

with the following 30 calendar day realized volatility; then I proceed by matching up the implied 

volatility on day 30 with the following 30 calendar day volatility.       

 

4.1. Model-free Implied Volatility and Abnormal Option Volume 

Panel A of Table 1.3 reports the estimation results for the traditional (symmetric) 

predictive regression model (i.e., equation (3)) in which the only explanatory variable is the 

model-free implied volatility of SPX options using daily and monthly samples.  While the 

number of observations utilized in the daily sample is 2,136, the sample size drops significantly 

in the monthly series, to 104 data points.  The probability reported in parentheses under the 

coefficient estimates corresponds to the Wald (χ2)-test for the null hypotheses that α = 0, β=1, 

respectively.  Theχ2 probability corresponding to the null hypothesis that (α,β) = (0,1), is 

reported in column three.  Probability values less than 0.1 reflect that the null hypothesis can be 

rejected at a statistically significant level, while probability values exceeding 0.1 reflect that the 

null hypothesis cannot be rejected.  The Wald-test is based on standard errors calculated from 

robust procedures12.  The coefficient and significance estimates are in line with results reported in 

the literature.  Poteshman (2000) provides a summary of the results from volatility forecasting 

                                                 
11 A similar procedure is used for the other volatility measures. 
12 The method of Hansen (1982) is adopted. 
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regressions for a number of previous studies.  Jiang and Tian (2005) estimate similar regressions 

using model-free implied volatility.  The adjusted R2 increases when I use the monthly sample , 

from 0.148 for daily to 0.351 for 30 calendar day observations.   

 

Table 1.3.  Results from the Predicting Regressions without Volume Censoring 
 

Predicting regressions of the following form are estimated for the time period January, 1996-June, 2004: 
 

   ttimpliedtrealized εβσασ ++= −1,
2

,
2  

 
This model provides a regression of realized volatility on implied volatility and an intercept term and was 
discussed in equation (3). Probabilities corresponding to the Wald(χ2)-test that the intercepts are zero and 
the slope is one, respectively, are reported in parentheses.  A high probability value indicates inability to 
reject the relevant hypothesis.  Panel B estimates the regression model using the instrumental variable 
approach.  Reported are results when the instrumental variable is the lagged implied volatility as suggested 
by Fleming (1998).  A high χ2 probability value indicates that the relevant null hypothesis (i.e., α=0, β=1, 
or (α,β)=(0,1)) cannot be rejected (I also use * to highlight these cases). 
     

Panel A 
α 

(α=0)  
β 

(β=1)  (α, β)=(0,1)   

       
Daily sample -0.342  0.863  >0.001  
N=2136 (0.003)  (0.054)    
Adj. R2=0.15       
       
Monthly sample -0.029*  0.818*  >0.001  
N=104 (0.849)  (0.129)    
 

PANEL B       
       
Daily sample -0.331  0.855  >0.001  
N=2133 (0.000)  (0.038)    
       
Monthly sample -0.037*  0.822*  >0.001  
N=103 (0.821)  (0.149)    
       
              

 

 

For both the daily and the monthly frequencies, the null hypothesis that (α,β) = (0,1) is rejected 

at high levels of significance.  In the past, many studies interpreted this result as evidence that 

implied volatility is a biased estimator of expected volatility.  However, since implied volatility is 
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on average greater than subsequent realized volatility, the finding is consistent with the idea that 

volatility risk is priced.  Therefore, implied volatility may exceed future realized volatility due to 

investors’ risk aversion (Chernov (2002), Bandi and Perron (2003)) and the estimation results 

should be interpreted in the spirit of equation (8) with the intercept representing the expected 

volatility risk premium.  The slope coefficient (β) is not significantly different from one for the 

monthly sample .  Hence, with a constant adjustment related to the intercept, as suggested by Jiang 

and Tian (2005), the model-free implied volatility may be considered an unbiased estimator.   

Panel B of Table 1.3 repeats the same analyses employing an instrumental variable (IV) 

approach.  The IV approach is proposed by Christensen and Prabhala (1998) to address the error-

in-variable problem that arises when the implied volatility is estimated with measurement errors.  

As in Christensen and Prabhala (1998) , I employ two-stage least squares regressions with lagged 

implied volatilities and lagged realized volatilities as instruments (Chernov (2002)).  The results 

do not change significantly in the IV procedure.  This is consistent with Jiang and Tian (2005) 

who find essentia lly no measurement error in model-free implied volatility.  In contrast, they also 

estimate standard OLS and IV regressions for Black-Scholes implied volatilities and document 

significant improvements in the performance once the error-in-variable problem is corrected.  

This suggests that when the model-free implied volatility is employed, accurate statistical 

inferences obtain without the instrumental variable estimation framework. 

Panel A of Table 1.4 reports the results of the asymmetric regressions of the form of 

equation (15).  First, I use the abnormal option volume series defined in Section 3 to determine 

high volume states.  More specifically, Panel A provides estimated coefficients for the case when 

the indicator variable for the high volume state takes the value of one on days when abnormal 

option volume is positive and zero otherwise.  The time subscript on abnormal volume and 

implied volatility are the same: abnormal volume and implied volatility are measured 

contemporaneously.   
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Table 1.4.  Results from the Predicting Regressions with Option Volume Censoring Using 
Model-free Implied Volatility 

 
Predicting regressions of the following form are estimated for the time period January, 1996-June, 2004: 
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This model provides a regression of realized volatility on implied volatility and an intercept term.  
However, both the intercept and the slope coefficients are allowed to vary across high and low volume 
regimes.  This is expressed by the multiplicative indicator term, }{ 1 AVt

I ∈−
, which takes the value of 1 in 

Panel A, when abnormal option volume is positive and 0 otherwise.  In Panel B, volume characteristics are 
grouped in three distinct events.  The first event contains observations for which previous day’s abnormal 
option volume was non-positive.  The second event occurs when previous day’s abnormal option volume 
was greater than zero but less than the 70th percentile of the past 60 days.  Event three indicates previous 
day abnormal option volume greater than the 70th percentile of the past 60 days.  The abnormal volume 
series is based on the residual series adopted from volume filtering models which account for time -series 
characteristics, calendar day variation, macroeconomic announcement days, and expiration days in volume.  
Probabilities associated with the Wald (χ2) coefficient tests that the intercepts are zero and the slope is one, 
respectively, are reported in parentheses.  A high χ2 probability value indicates that the relevant null 
hypothesis (i.e., α=0, β=1, or (α,β)=(0,1)) cannot be rejected (I also use * to highlight these cases). 
   

Panel A 
α1 

(α1=0) 
β1 

(β1=1) (α1, β1)=(0,1) 

α2 

(α2=0) 
β2 

(β2=1) (α1, β1)=(0,1) 

       
Daily sample -0.377 0.886* <0.001 -0.295 0.832 <0.001 

N=2136 (0.002) (0.201)  (0.015) (0.063)  

Adj R2=0.147       

       

Monthly sample -0.270* 0.985* <0.001 0.402* 0.533 <0.001 

N=104 (0.138) (0.914)  (0.115) (0.015)  

Adj R2=0.363 

 

Panel B 
α1 

(α1=0) 
β1 

(β1=1) 
α2 

(α2=0) 
β2 

(β2=1) 
α3 

(α3=0) 
β3 

(β3=1) 
       
Daily sample -0.323 0.849* -0.375 0.854* -0.454 0.952* 

N=2067 (0.011) (0.106) (0.028) (0.246) (0.005) (0.691) 

Adj R2=0.148       

       

Monthly sample 0.410* 0.528 -0.308* 0.989* -0.237* 0.974* 

N=99 (0.158) (0.026) (0.203) (0.950) (0.399) (0.906) 

Adj R2=0.341       

       
 

 

The table reports that for both the daily and monthly samples, implied volatility performs better 

when abnormal option volume is high.  The estimated slope coefficients are 0.886 and 0.832 for 



 32 

the high and low volume regimes, respectively, in the daily sample .  In the monthly sample, the 

contrast between the high volume and the low volume slope coefficients is especially large, on 

option volume days when abnormal volume is positive, the estimated slope coefficient is 0.985, 

while on negative abnormal volume days the estimated slope coefficient is only 0.533.  The Wald 

coefficient test indicates that the slope coefficients are insignificantly different from 1 in both 

cases on heavy option volume days and are less than 1 otherwise.    The joint hypothesis that (αi , 

βi ) = (0,1) is strongly rejected in all cases.  In addition, the intercepts vary significantly 

depending on the volume regime, which (loosely interpreted) indicates that the expected volatility 

risk premium differs across the volume states.  In particular, the coefficients are more negative in 

high volume states, which indicates that a higher risk premium is demanded during these periods.   

Panel B of Table 1.4 refines the definition of high volume states.  Instead of basing the 

indicator variable on whether abnormal option volume on the day when implied volatility is 

determined is positive or negative, I create an indicator based on given percentiles of abnormal 

option volume in the past 60 days.  Panel B disaggregates abnormal option volume into low, 

moderately high, and very high states.  In particular, the low, moderately high, and very high 

states correspond to the events that abnormal option volume is less than 0, more than zero but less 

than the 70th percentile of the past 60 day abnormal volume, and more than the 70th percentile of 

the past 60 day abnormal volume, respectively.  The aim is similar to that of Panel A, however, 

Panel B provides an improvement in that the right tail is not compared to the rest of the 

distribution, which aggregates very high and very low volume levels.  The general conc lusions 

that arise from the two panels support the idea that on average, high volume states are likely to 

indicate trading due to changes in the information environment rather than changes to investor 

biases.  The result remains robust to the definition of heavy trading.  In addition, the results from 

the decomposition of high volume states into moderately high and very high, as well as the 

analysis of the left tail provide further support to the information argument.     
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In additional analyses not reported in the paper, I use classification schemes in which the 

indicator variable takes the value of 1 when abnormal option volume is larger than the 90th 

percentile of the past 60 day abnormal option volume, and zero otherwise.  In some ways, this 

measure may be better able to capture irrationalities or fads in the market and provides a 

robustness check for Panel A.  For symmetry, I also consider abnormally low volume by looking 

at whether abnormal volume is less than the 10th percentile of the previous 60 days (in this case, 

the indicator variable takes the value of 1, and 0 otherwise).  For instance, under the information 

arrival hypothesis, when information acquisition is endogenous and volume is abnormally low, 

informed trades may have fewer incentives to engage in information collection or to trade on their 

information.  On the other hand, the irrationality argument has weak positive or no implications 

for the left tail of abnormal volume.  For the monthly sample, the 10- and 90-percentile rules 

create very small sub-samples for which the indicator variable is 1; hence any statistical inference 

is likely to be invalid.  For daily observations, the slope coefficient corresponding to abnormal 

option volume days, which are higher than the 90th percentile of the previous 60 days are not 

significantly different from 1, while the low volume day slope is significantly less than 1.  When 

the indicator variable is based on the 10th percentile, the null hypotheses that each of the slopes 

are 1 cannot be rejected, and the coefficient estimates are 0.788 and 0.891 for the observations 

less than and greater than the 10th percentile, respectively. 

 

4.2. Model-free Implied Volatility and Spot Volume 

Table 1.5 reports a similar exercise using spot volume.  In Panel A, the results are weaker 

than those reported in Table 4.  While for daily observations, the slope coefficient on abnormally 

high volume days is significantly higher than on low volume days (0.978 and 0.719, 

respectively), for the monthly sample, the coefficients are nearly identical and the hypotheses that 

each of these slope coeffic ients equals 1 cannot be rejected.  For Panel D, the abnormally high 

volume categories are associated with slope coefficients that are statistically indistinguishable 
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from 1 and are significantly different from the low volume slope coefficients at the daily 

frequency.  At the monthly frequency, the results are more ambiguous, which may result from the 

low number of 1’s in the samples.          

 

Table 1.5.  Results from the Predicting Regressions with Spot Volume Censoring Using 
Model-free Implied Volatility 

 
Predicting regressions of the following form are estimated for the time period January, 1996-June, 2004: 
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This model provides a regression of realized volatility on implied volatility and an intercept term.  Both the 
intercept and the slope coefficients are allowed to vary across high and low volume regimes.  This is 

expressed by the multiplicative indicator term, }{ 1 AVt
I ∈−

, which takes the value of 1 in Panel A, when 

abnormal spot volume is positive and 0 otherwise.  In Panel B, volume characteristics are grouped in three 
distinct events.  The first event contains observations for which previous day’s abnormal spot volume was 
non-positive.  The second event occurs when previous day’s abnormal spot volume was greater than zero 
but less than the 70th percentile of the past 60 days.  Event three indicates previous day abnormal spot 
volume greater than the 70th percentile of the past 60 days.  The abnormal volume series is based on the 
residual series adopted from volume filtering models which account for time-series characteristics, calendar 
day variation, macroeconomic announcement days, and expiration days in volume.  Probabilities associated 
with the Wald (χ2) coefficient tests that the intercepts are zero and the slope is one, respectively, are 
reported in parentheses.  A high χ2 probability value indicates that the relevant null hypothesis (i.e., α=0, 
β=1, or (α,β)=(0,1)) cannot be rejected (I also use * to highlight these cases). 
      

Panel A 
α1 

(α1=0) 
β1 

(β1=1) (α1, β1)=(0,1) 

α2 

(α2=0) 
β2 

(β2=1) (α1, β1)=(0,1) 

       
Daily sample -0.495 0.978* <0.001 -0.153* 0.719 <0.001 

N=2132 (0.000) (0.826)  (0.131) (0.000)  

Adj R2=1.151       

       

Monthly sample -0.023* 0.817* <0.001 -0.051* 0.830* <0.001 

N=100 (0.926) (0.327)  (0.798) (0.279)  
Adj R2=0.336 

 

Panel B 
α1 

(α1=0) 
β1 

(β1=1) 
α2 

(α2=0) 
β2 

(β2=1) 
α3 

(α3=0) 
β3 

(β3=1) 
       

Daily sample -0.173 0.730 -0.472 0.937* -0.578 1.036* 

N=2068 (0.099) (0.000) (0.016) (0.668) (0.001) (0.773) 

Adj R2=0.150       

       

Monthly sample -0.027* 0.816* -0.374* 0.970* 0.082* 0.796* 

N=100 (0.895) (0.248) (0.128) (0.865) (0.879) (0.619) 

Adj R2=0.334       
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4.3. Black-Scholes Implied Volatility and Abnormal Option Volume 

Up to this point, the analyses rely on the model-free implied volatility measure in order to 

directly test the impact of volume on price discovery and to avoid the joint hypothesis problem.  

In this sub-section, I report the results using the Black-Scholes (B-S) measure.  Mayhew and 

Stivers (2003) study the time-series forecasting performance of Black-Scholes implied volatility.  

In their cross section of stocks, they observe that only for stocks with the very largest option 

trading volume does implied volatility show significant forecasting ability.  Similarly, Donaldson 

and Kamstra (2004) show that the B-S implied volatility outperforms the volatility forecasts 

produced by ARCH models when NYSE volume is high.  These results naturally arise since the 

Black-Scholes model has strong friction biases.  For instance, Longstaff (1995) finds that the 

discrepancy between the B-S implied volatility and realized volatility decreases when market 

conditions are closer to the assumptions underlying the B-S model; that is, when transaction costs 

are lower and liquid ity (measured by trading activity and other proxies) is higher.  The current 

study extends these results by showing that model-free implied volatility improves with option 

and, to a lesser extent, spot volume; therefore, beyond the friction biases, the improvement 

documented in the B-S model can be due to changes in the efficiency of the price as well.   

I adopt the methods proposed by Ni, Pan, and Poteshman (2005) and use the B-S implied 

volatility of at-the-money straddles using implied volatility information from OptionMetrics.  

Table 1.6 reports the asymmetric regression model employed in Panel A of Tables 4 and 5.  Panel 

A shows that implied volatility performs better when option volume is high in both the daily and 

in the monthly samples, while the slope coefficient is significantly different from 1 during low 

volume regimes.  The difference in the slopes is especially large in the monthly sample, in high 

volume states the slope is 0.95, while the corresponding slope in low volume states is 0.65.  As in 

the case of model-free implied volatility, the results are less pronounced when the conditioning 

variable is abnormal spot volume.  In particular, at the daily frequency, the high volume day slope 

coefficient is statistically indifferent from one, while the hypothesis that the low volume day 
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slope coefficient is 1 is rejected.  However, at the monthly frequency no significant differences 

occur across high and low volume slopes. 

 

Table 1.6.  Results from the Predicting Regressions with Option and Spot Volume 
Censoring Using Black-Scholes Implied Volatility 

 
Predicting regressions of the following form are estimated for the time period January, 1996-June, 2004: 
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This model provides a regression of realized volatility on B-S implied volatility and an intercept term.  
However, both the intercept and the slope coefficients are allowed to vary across high and low volume 

regimes.  This is expressed by the multiplicative indicator term, }{ 1 AVt
I ∈−

, which takes the value of 1 in 

Panel A, when abnormal option volume is positive and 0 otherwise.  In Panel B, the indicator variable takes 
the value of 1 when abnormal spot volume is positive, and 0 otherwise.  The abnormal volume series is 
based on the residual series adopted from volume filtering models which account for time-series 
characteristics, calendar day variation, macroeconomic announcement days, and expiration days in volume.  
Probabilities associated with the Wald (χ2) coefficient tests that the intercepts are zero and the slope is one, 
respectively, are reported in parentheses.  A high χ2 probability value indicates that the relevant null 
hypothesis (i.e., α=0, β=1, or (α,β)=(0,1)) cannot be rejected (I also use * to highlight these cases). 
 

Panel A 
α1 

(α1=0) 
β1 

(β1=1) (α1, β1)=(0,1) 

α2 

(α2=0) 
β2 

(β2=1) (α1, β1)=(0,1) 

       
Daily sample -0.409 0.868* <0.001 -0.246 0.783 <0.001 
N=2130 (0.000) (0.112)  (0.000) (0.029)  
Adj R2=0.160       
       
Monthly sample -0.264* 0.951* <0.001 0.179* 0.653 <0.001 
N=101 (0.129) (0.653)  (0.371) (0.025)  
Adj R2=0.369 
 
Panel B       
Daily sample -0.437 0.902* <0.001 -0.159* 0.705 <0.001 
N=2127 (0.000) (0.215)  (0.190) (0.001)  
Adj R2=0.161       
       
Monthly sample -0.010* 0.790* <0.001 -0.043* 0.793* <0.001 
N=101 (0.961) (0.152)  (0.819) (0.120)  
Adj R2=0.358 
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5. Robustness Analyses 

 

5.1. Serial Correlation in Volume and Volatility 

The results reported above are consistent with the information hypothesis.  However, it is 

important to address the concern that introducing volume states in the analysis may result in 

spurious findings.  Previous studies have found that on average, implied volatility is higher than 

subsequent realized volatility.  This has been documented for both the B-S as well as model-free 

measures.  Therefore, based on the well-established positive contemporaneous correlation 

between volume and volatility, a possible spurious relation may arise.  In particular, high volume 

today (either spot or option) implies high volatility today, and if volatility is persistent, it also 

implies high volatility tomorrow.  If realized volatility is indeed higher tomorrow following a 

high volume day, the discrepancy between implied and realized volatility may shrink based on 

this mean effect.13  To eliminate this concern, I split the sample into high and low option (and 

spot) volume days and investigate the distributions of realized and implied volatilities in the 

subsamples.  Tests of the equality of the means and the medians is used to check whether realized 

(and implied) volatility increases following high volume days.  The tests indicate that the mean 

(median) realized volatility following a high option volume day is 0.90 (0.70) and the mean 

realized volatility following a low option volume day is 0.92 (0.66) and the null hypothesis of 

equal means (medians) cannot be rejected.  Model-free implied volatility is marginally 

significantly higher (10% level) on high option volume days with a t-test p-value of 0.094.  Thus 

the narrowing of the implied volatility – realized volatility spread is not likely to be driving the 

results. 

For spot volume, the robustness check is less conclusive about a potentially spurious 

relation.  The mean realized volatility is significantly higher (the null hypothesis of equality is 

                                                 
13 Although it may be misleading to simply look at the difference between implied and realized volatility since 
volatility risk may be priced.  
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rejected at the 5% level) following high volume days: 0.87 and 0.95 for low and high spot 

volume, respectively.  Similarly, the mean implied volatility is significantly higher on high spot 

volume days: 1.42 and 1.47 for low and high spot volume days, respectively.  However, medians 

across the subsamples do not reflect significant differences for realized volatility and the 

conclusions of the median tests for implied volatility differ across the various median tests 

applied.      

 

5.2. Weighted Option Volume 

That the pricing error is smaller in high option volume states is consistent with the notion 

that on average, abnormal trading is not indicative of shocks to irrational investors’ demands but 

rather, more likely to be due to changes in investors’ information set or in their interpretation of 

it.  As an additional robustness check, in this sub-section I examine whether the results are 

invariant to two alternative weighting schemes14 for option volume.  In particular, I use (inverse) 

bid/ask spread-weighted and vega-weighted option volume.  The rationale behind spread-

weighting is that options with different strike prices and time-to-maturity have different liquidity 

characteristics, which are an important decision variable for the informed trader.  Moreover, 

different option classes have different sensitivities to volatility; hence, informed traders with 

volatility signals will be more likely to trade contracts with a high vega.  While spread weighting 

is consistent with both directional and volatility related information trading, vega-weighting 

focuses solely on the role of volatility related information trading in the option markets. 

OptionMetrics reports the vega and the closing best bid and ask prices across all 

exchanges for each contract.  Each day, I weight each option contract’s volume by its vega and 

the inverse spread, respectively, then aggregate the weighted contract volumes to arrive at an 

                                                 
14 I also check whether abnormal volume derived from daily aggregated option volume multiplied by the 
volatility of implied volatility exhibits similar results.  Volatility is an alternative proxy for information 
arrival.  Therefore the contemporaneous volatility of implied volatility, similarly to volume, reveals the 
level of informed trading.  Results are robust to this alternative “weighting”-scheme. 
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aggregate option volume measure.  As before, I adjust the newly created volume series and define 

volume regimes based on the residual series arising from the adjustment procedure.  Table 1.7 

reveals that the results remain robust to both weighting schemes described in this sub-section.   

 

Table 1.7.  Results from the Predicting Regressions with Weighted Option Volume 
Censoring Using Model-free Implied Volatility 

 
Predicting regressions of the following form are estimated for the time period January, 1996-June, 2004: 
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This model provides a regression of realized volatility on implied volatility and an intercept term.  
However, both the intercept and the slope coefficients are allowed to vary across high and low volume 
regimes.  This is expressed by the multiplicative indicator term, }{ 1 AVt

I ∈−
, which takes the value of 1 in 

Panel A when the abnormal inverse spread-weighted option volume is positive and 0 otherwise.  Panel B 
reports similar results for vega-weighted option volume.  In Panel C and D, abnormal spread- and vega-
weighted volume regimes are defined, respectively, based on whether appropriate abnormal volume is less 
than the 0, between 0 and the 70th, and more than the 70th percentile of the last 60 days’ abnormal spread-
weighted and vega-weighted volume, respectively.  The abnormal volume series is based on the residual 
series adopted from volume filtering models which account for time -series characteristics, calendar day 
variation, macroeconomic announcement days, and expiration days in volume.  Probabilities associated 
with the Wald (χ2) coefficient tests that the intercepts are zero and the slope is one, respectively, are 
reported in parentheses.  A high χ2 probability value indicates that the relevant null hypothesis (i.e., α=0, 
β=1, or (α,β)=(0,1)) cannot be rejected (I also use * to highlight these cases). 
      

Panel A       
       
Daily samp le -0.519 1.002* <0.001 -0.131* 0.694 <0.001 
N=2131 (0.000) (0.987)  (0.235) (0.000)  
Adj R2=0.153       
       
Monthly sample -0.072* 0.865* <0.001 -0.016* 0.788* <0.001 
N=103 (0.766) (0.484)  (0.940) (0.186)  
Adj R2=0.340       

 

Panel B       

       

Daily sample -0.460 0.956* <0.001 -0.223* 0.767 <0.001 

N=2131 (0.000) (0.574)  (0.106) (0.025)  

Adj R2=0.149       

       

Monthly sample -0.111* 0.891* <0.001 0.072* 0.729* <0.001 

N=103 (0.550) (0.453)  (0.787) (0.181)  

Adj R2=0.342       
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Table 1.7, continued 
 

Panel C 
α1 

(α1=0) 
β1 

(β1=1) 
α2 

(α2=0) 
β2 

(β2=1) 
α3 

(α3=0) 
β3 

(β3=1) 
       
Daily sample -0.143* 0.702 -0.335* 0.835* -0.753 1.177* 
N=2074 (0.214) (0.001) (0.132) (0.285) (0.000) (0.167) 
Adj R2=0.156       
       
Monthly sample -0.036* 0.799* -0.100 0.782* -0.385* 1.164* 
N=100 (0.783) (0.223) (0.000) (0.358) (0.305) (0.592) 
Adj R2=0.393       

 

Panel D 
α1 

(α1=0) 
β1 

(β1=1) 
α2 

(α2=0) 
β2 

(β2=1) 
α3 

(α3=0) 
β3 

(β3=1) 
       

Daily sample -0.245 0.783 -0.314 0.866* -0.621 1.050* 

N=2074 (0.096) (0.048) (0.080) (0.310) (0.000) (0.620) 

Adj R2=0.150       

       

Monthly sample 0.030* 0.756* -0.194* 0.967* -0.030* 0.818* 

N=101 (0.921) (0.274) (0.447) (0.868) (0.911) (0.386) 

Adj R2=0.376       

       

 

 

In Panel A, the high and low spread-weigted volume betas are 1.002 and 0.694, respectively at 

the daily frequency.  The hypothesis that the low volume beta is 1 is rejected by the Wald-test.  

At the monthly frequency, the corresponding betas are 0.865 and 0.788, respectively, although the 

Wald-test cannot reject that they are different from 1.  For vega-weighting, the daily (monthly) 

betas are 0.956 (0.891) and 0.767 (0.729), respectively.  

The time-series of states based on the vega-weighted and inverse spread-weighted rules, 

respectively, are not identical (although vega is highest for at-the-money contracts, which are 

often the most liquid as well).  A four regime test (not reported) indicates that irregardless of 

whether the vega-weighted volume is abnormally high or not, the difference between low and 

high spread-weighted days is always statistically large.  On the other hand, holding spread-

weighting constant, vega-weighting improves between high and low regimes, however, when 
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spread-weighting is high, the improvement is insignificant.  This is consistent with the contention 

that liquidity is more important for the informed trader than the volatility sensitivity of the 

contract. 

 

5.3.  Speculative and Hedging Components 

I disaggregate option volume into two components: the change in open interest and a net 

component, or the difference between total volume and the change in open interest.  This is based 

on Day and Lewis (2004) who use the decomposition to approximate the speculative and hedging 

components of derivative volume.  Day and Lewis argue that the speculative component of option 

volume is likely to capture information motivated trades; hence, it provides a more direct 

indicator of periods of heightened informed trading.  Also, a high speculative component can be 

interpreted in terms of large differences in opinions in the market.  In this case, trading will 

improve efficiency by aggregating the heterogeneous valuation models and beliefs (Brandt and 

Kavajecz (2003)).  Under the information and differences of opinion interpretations, the accuracy 

of the option price is more strongly related to days when the speculative trading component is 

high.  On the other hand, speculative demand may reflect irrational trading activity caused by 

overconfident investors’ guesses or sudden fads in trading caused by a shock to investor 

sentiment.  This would imply that price discovery is inversely related to speculative trading 

demands.   

The hedging motivated component is not likely to indicate information motivated trades 

(Day and Lewis (2004)).  In addition, based on Bollen and Whaley (2004), it may capture 

portfolio insurance demands, which cause temporary price pressures when no natural 

counterparties arise for the trade.  Therefore, when the demand of hedgers is high, price discovery 

may actually be adversely affected.  This can be especially true for puts as the market maker is 

the only party providing liquidity in some of the moneyness categories of these contracts.   
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When option volume is decomposed into speculative and hedging components based on 

day-to-day changes in open interest, the indicator variables are based on whether the relative 

components expressed are abnormally high.  I examine several scenarios.  The results for the case 

when abnormal total trading volume is interacted with the abnormal hedging and speculative 

ratios reveal that the pricing error is the smallest when both option volume and the speculative 

component are high: the estimated slope coefficient is 1.04.  When trading volume is high and it 

is accompanied by an unusually high hedging ratio, the slope is estimated to decrease by -0.196, 

although the estimate is not statistically significant.  Put related hedging demand significantly 

reduces the slope coefficient.   

 

5.4. Model Errors when Volume is Low 

One important concern in the test of the own- and cross-volume effects is that a specific 

pricing model may have biases, which can also depend on market liquidity. For instance, the 

Black and Scholes (1973) model is likely to perform better when transaction costs are small 

(Longstaff (1995)).  Therefore, if trading activity proxies for liquidity, an improvement in the 

informativeness of implied volatility in high volume states (i.e., the own- and cross-volume 

effects) may be due to a decrease in the bias of the assumed pricing model (since the model 

assumptions are closer to the true market conditions) rather than to enhanced price discovery.  It 

is also important to consider how model-free implied volatility may be affected by the 

discretization or truncation biases and whether these biases are more pronounced in low volume 

states.   

To address the concern that I am merely capturing time variation in the B-S pricing 

model’s bias due to time variation in frictions, I examine various measures of spot and option 

market liquidity on high and low option and spot market days.  In addition, to address the 

behavior of model-free implied volatility, I examine the number of non-trading contracts across 

high and low volume regimes in both puts and calls.  In addition, I look at the range determined 
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by the highest and the lowest exercise price traded in all contracts, in puts and calls separately, 

and in the two nearest contracts.  Jiang and Tian (2005) derive the sensitivity of model-free 

volatility to discretization and truncation and find that the available strike prices and the number 

of actual trading contracts in the market provide a model-free implied volatility measure that is 

very close to the theoretical value derived under the assumption of a continuum of strikes.  

 

6. Conclusion 

This paper examines whether the accuracy of the option’s price is affected by the 

intensity of trading in the spot and option markets.  In particular, I examine market efficiency on 

abnormally high volume days.  The research question is motivated by numerous theoretical 

studies, which suggest that the effect of abnormal volume depends on why investors trade.  For 

instance, if transactions occur due to information arrival, trading will improve market prices.  On 

the other hand, if abnormal trading reflects shocks to irrational traders’ demands, prices will be 

adversely affected.  I empirically test the role of trading volume in the index option market by 

examining the relation between implied and realized volatilities across the different volume 

regimes.   

This study provides several contributions to the existing literature.  First, the tests 

implemented in the paper are based on two implied volatility measures.  The Black-Scholes 

implied volatility is used since it is approximately unbiased under quite general conditions, 

however, the joint hypothesis problem cannot be completely eliminated.  On the other hand, 

model-free implied volatility provides a direct test of market efficiency since it is derived without 

any assumptions on the underlying option pricing model or equivalently, on the underlying price 

process.  Hence, unlike previous parametric implied volatilities, such as the Black-Scholes 

implied volatility, it avoids the joint hypothesis problem.  Second, I improve the estimation 

methods by directly incorporating the latent feature of the volatility risk premium via the Kalman 

filter.  Third, I provide evidence on the role of volatility related information trading in the option 
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market.  Fourth, I further disaggregate option volume into hedging and speculative trades and 

examine how abnormal speculative or hedging demands affect price discovery.  The latter test 

provides implications on what types of trades result in changes in open interest.    

The findings suggest that option prices are more efficient on high option volume days.  

This implies that on average, abnormal trading is  not indicative of shocks to irrational investors’ 

demands but rather, more likely to be due to changes in investors’ information set or in their 

interpretation of it.  However, evidence on the cross-volume effect (i.e., the role of spot volume) 

is somewhat ambiguous.  While in some specifications spot volume appears to enhance option 

price discovery, the results are not robust: the role of spot volume becomes insignificant in 

alternative tests.  This result is not surprising for the model-free measure since it may be driven 

by the fact that model-free implied volatility indicates volatility exposure that is neutralized to the 

stock price by construction.  Thus any improvement in stock price efficiency will only be 

reflected in the realized volatility measure.  However, a similarly inconclusive relation is found 

for B-S implied volatility.  Together these results may indicate that directional informed trading 

in the index markets is not likely since private information on market-wide movements are 

difficult to obtain.  Instead, information may pertain to changes in market volatility; hence option 

trading has a stronger informational role than spot trading for indices.  

The information hypothesis is further supported by two alternative weighting schemes.  

Vega-weighting is especially interesting since it provides evidence consistent with volatility 

related informed demand in the option markets.  Moreover, when trading volume is decomposed 

into speculative and hedging components, a high option volume associated with unusually large 

amounts of speculative trading enhances the option’s price discovery.  For hedging, no such 

relation is found.  In addition, the speculative component of puts affects price discovery in a 

negative manner.  This is consistent with portfolio insurance demands providing a net buying 

pressure, for which inventory premium is required.     
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CHAPTER II 

 

OPTION VOLUME AND THE PRICE DYNAMICS OF INDIVIDUAL STOCKS: A LINK 
TO THE INFORMATION SHARE OF OPTIONS 

 

1. Introduction 

It is well-established in the literature that contemporaneous stock volatility and (surprise) 

stock volume are significantly positively related.  The Mixture of Distribution Hypothesis (MDH) 

suggests that the correlation arises from informed trading in the stock market, as information 

arrival is reflected in both stock volume and volatility.  15  In this paper, I extend the volume-

volatility literature and document that stock volatility is positively related to surprise option 

volume as well.  I also provide suggestive, though not conclusive, evidence that this cross-market 

relation is also driven by the mixture of distribution argument.  The relevance of the MDH for 

options comes from a number of recent studies. 16  These studies find that the option market is an 

alternative channel through which information is incorporated into the underlying stock’s price.   

To establish the relation between option volume and spot volatility, I estimate individual 

time-series models for the 1,280 stocks in my sample using daily data between 1996 and 2004.  

The regressions include stock volume, along with option volume, to control for the traditional 

volume-volatility results.  The time-series findings reveal that the cross-market volume-volatility 

correlation is not only positive, but for the majority of the stocks in my sample, it is significantly 

so.  Unlike for surprise stock volume however, the statistical significance fails to be uniform. 

                                                 
15 See, for instance Copeland (1976), Ross (1989), Admati and Pfleiderer (1988), Clark (1973), Epps and 
Epps (1976), Tauchen and Pitts (1983), Lamoureux and Lastrapes (1990), and Andersen (1996). 
16 While early empirical evidence on where informed traders initiate their trades is largely inconclusive 
(see, for instance, Anthony (1988), Stephan and Whaley (1990), Chan, Chung, and Johnson (1993), and 
Vijh (1990)), more recently, Chan, Chung, and Fong (2002) find that in the option market, information is 
included in quote revisions. Amin and Lee (1997) and Cao, Chen, and Griffin (2002) report evidence on 
information related option trading preceding earning announcements and takeover announcements, 
respectively.  Pan and Poteshman (2004) show that option trading volume contains information for future 
stock prices. On the other hand, Stoll and Schlag (2004) conclude that price discovery in the German DAX 
is induced by futures trading rather than option trading.  Chakravarty, Gulen, and Mayhew (2004) refer to 
SEC litigation cases of illegal insider option trading as direct evidence on the informational role of options.  
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I present the following two pieces of suggestive evidence in favor of an MDH-type 

explanation of the cross-market ties.  First, if the positive correlation is indeed driven by 

information arrival in the option market, the strength of the correlation between option volume 

and stock volatility should vary from stock to stock in my sample .  In particular, it should vary 

with firm and market characteristics that describe 1) the degree of asymmetric information 

surrounding the security and 2) whether the corresponding option market is attractive for the 

informed trader.  The latter issue is important because adverse market characteristics, such as 

illiquidity can reduce the benefit of down-side protection, lower costs, and the inherent leverage 

(Black (1976)) in options.  For instance, when the market for the underlying security is more 

liquid than those for the corresponding derivatives, informed traders are likely to choose the stock 

market itself (Easley, O’Hara, and Srinivas (1998)).  Consistent with the tradeoff, Chakravarty et 

al. (2004) find evidence that informed trading in options varies across stocks.   

To test this heterogeneity argument, I perform a cross-sectional analysis of the estimated 

volume-volatility correlations from the individual time-series.  I use various measures to proxy 

for the degree of asymmetric information surrounding a given security (an extensive list is 

provided in Kelly (2005)), such as analyst coverage and institutional holdings.  Similarly, I use 

relative spreads in the option market, the relative size of the option market, relative spread 

volatility, and the estimated informational share of options from Chakravarty et al. (2004) to 

proxy for how attractive the option market is for the informed trader.  The results show that the 

estimated impact of suprise option volume is positively related to the relative size of the option 

market, and negatively related to the ratio of option to stock spreads and the number of analysts 

following the firm.  Moreover, when the cross-sectional model includes a proxy for the 

information share of options, the model adjusted R-squared is very high (about 48%, though the 

R-squared is not comparable across the different models due to differences in the subsamples).  

The cross-sectional relations are robust for both the NYSE/AMEX and the Nasdaq subsamples.  
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The second piece of suggestive evidence relates to the stock’s spread.  If informed traders 

migrate between the stock and option markets, when informed traders choose the option market, 

the spot market makers’ adverse selection costs decrease.  Therefore, I examine the role of 

abnormal option volume for stock spreads using the individual time-series in my sample .  I find 

that on average, spreads are negatively related to surprise option trading, which is consistent with 

the decreasing adverse selection costs argument.     

Finally, in addition to the volume-volatility literature, this paper is also relevant for the 

debate on whether option trading influences the price process of the underlying stock.  While 

previous studies in this area use an indirect test, 17 and concentrate on option listing using the pre- 

and post-listing periods in an event study, this paper provides a direct test by focusing on the 

effect of option volume on the volatility of individual stocks over time.18  Moreover, the cross-

sectional analyses in this paper could also be motivated by Grossman (1988), the central 

theoretical argument underlying the listing studies.  Grossman suggests that the effect of option 

trading on the volatility of the underlying stock will depend on whether the option market can 

attract informed traders.  

The plan of the paper is as follows. A brief analytical framework is presented in Section 

2. Section 3 discusses the data sources and examines the characteristics of individual option and 

spot volume.  Section 4 investigates the contemporaneous relation between option volume and 

return volatility using the individual time-series. The section also tests which firm, stock, and 

                                                 
17 Evidence from the previous studies is also inconclusive.  While some of the studies find that the volatility 
of the average stock declines after its option is introduced (see, for instance, Nathan Associates (1974), 
CBOE (1975), Nabar and Park (1988), Conrad (1989), Detemple and Jorion (1990), and Rao, Tripathy, 
Dukes (1991) using US data), others argue that volatility does not change in the post listing period or that 
parallel volatility changes occur in a non-optioned matching sample, thus the volatility effect is spurious 
and reflects a market-wide phenomenon. See, for instance Lamoureux and Panikkath (1994), Long, 
Schinski, and Officer (1994), Niendorf and Peterson (1997), Bollen (1998), and St. Pierre (1998) using US 
data.  One paper, Wei, Poon, and Zee (1997), even reports a destabilizing result for OTC stocks. Detemple 
and Jorion (1990) suggest that the market-wide volatility change need not imply that the listing has no 
effect, since the introduction of a given option may help complete the market for all securities.  However, 
the observation that the volatility effect flips signs across time (Bollen (1998)) challenges the strength of 
this argument or of an overall conclusion to the empirical results. 
18 Bessembinder and Seguin (1992) adopt this approach in a study of the effect of index futures listing on 
return volatility. 
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option market characteristics help explain the cross-sectional variation in the estimated dynamic 

coefficients. Section 5 discusses the robustness analyses. Section 6 concludes. 

 

2.  Analytic Framework and Empirical Methods  

Following the traditional volume-volatility literature, I concentrate on surprise, rather 

than total volume.  There are several reasons for this.  For instance, from an empirical standpoint, 

surprise volume has more desirable statistical properties.  Moreover, surprise volume is a more 

intuitive measure of informed trading/information arrival than total volume (Bessembinder and 

Seguin (1992) and Marsh and Wagner (2005)).  

Hence, I first decompose option volume into an expected and an unexpected component.  

Then I examine how unexpected/surprise option volume affects spot return volatility for each 

individual stock (while also controlling for surprise stock volume), and how and why these 

effects vary in the cross-section of stocks in my sample.  The decomposition of the individual 

daily option volume series is as follows.   

 

ovt+1= Et(ovt+1|Φ U svt+1 ) + ηt+1 with 

(1) 

Et(ηt+1|Φ U svt+1)=0 and {cdt, svt, svt-1,…,ovt, ovt-1,…}∈ Φ    

 

where ov and sv are option and spot volume, respectively, and Φ denotes the time t information 

set, which includes past option and spot volume observations, and calendar day effects (cd).19 

                                                 
19 Alternatively, by definition, one could decompose the option and spot volume series based on the time t 
information set and a random component, which is orthogonal to the information set. 
 svt+1= Et(svt+1|Φ ) + νt+1 

ovt+1= Et(ovt+1|Φ) + ξt+1 

with Et(νt+1|Φ)=0,  Et(ξt+1|Φ)=0,  and {svt, svt-1,…,ovt, ovt-1,…}∈ Φ, 
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Examples of calendar day effects include day of the week, holiday, and expiration day indicators.  

Φ is augmented by contemporaneous spot volume to accommodate the argument that options are 

derivative instruments.  As a robustness analysis, I also include measures of total stock and option 

market volume in the decomposition based on Lo and Wang (2000) and Tkac (1999), who 

suggest that an adjustment for market-wide trading is required when partitioning volume into 

normal and abnormal trading.  The subscript of the expectation operator indicates that the 

expectation is taken with respect to the information set available at time t.  To resolve the time 

conflict, svt+1 can be thought of as expected spot volume, which will be replaced by the realized 

volume measure in the empirical analyses.   The unique component of option volume in this setup 

is ηt+1, which cannot be predicted based on information on past volume behavior or current spot 

trading activity.  I use a vector autoregression framework with spot and option volume equations 

to estimate the expected and unexpected volume components.  

To estimate the dynamic relation between surprise option volume and return volatility, I 

employ two methods.  First, I use the GARCH framework.  The results reported in this paper are 

based on a modified GARCH(1,1) specification, which has generally been preferred in the 

literature due to its parsimony and ability to adequately fit daily return series.  Other 

specifications, such as the EGARCH and GARCH-M models, are also considered as robustness 

checks.  The volume augmented GARCH(1,1) model is given by following standard system of 

equations: 
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then examine the co-movements in ν and ξ.  The unique component of option volume is the component of 
ξ independent of ν.   In addition to obtaining the unique component, both methods provide information on 
volume betas, or the contemporaneous relation between option and spot volume. 
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where rt
i
 represents the return on stock i, while µt

i and Ωt-1 are the (possibly time-varying) mean 

of the return and the conditioning information set respectively.  ut
i represents the conditionally 

normally distributed but heteroskedastic error term with ht
i denoting its time-varying variance, 

and the TAi
k,t’s are measures of trading activity.  I first estimate (2) with unexpected spot volume 

as the only trading activity variable, then I add option volume as an additional explanatory 

variable.  This nested setup allows for measuring the incremental contribution contained in the 

surprise option volume series.   

Several previous studies have employed models of the form of (2) with spot volume as 

the trading activity variable in the literature using the Mixture of Distributions Hypothesis.  See, 

for instance, Marsh and Wagner (2004) for a recent application.  Under the MDH explanation of 

the volume-volatility relation, volume is weakly exogenous in the sense of Engle, Hendry, and 

Richard (1983) in the GARCH setup.   

The mean of the return series, µt
i, is often described by a constant in the GARCH(1,1) 

estimations.  However, in the cross-sectional analyses presented below one concern is that the 

error terms of the mean equation may not be independent across the stocks.  As a result, cross-

sectional estimates utilizing the coefficients from the time-series models may have biased 

standard errors and thus, these results are difficult to interpret.  To address this possibility, I 

estimate the individual GARCH models by including a market proxy in the return equations.  The 

market proxy is represented by the value-weighted CRSP index and is aimed at capturing missing 

common factors, which are a likely cause of cross-sectional dependence in the error terms (see, 

for instance, Jorion (1990)).  In addition, to be consistent with the second methodology described 

below, I also include calendar day variables and lagged terms in the mean equation.     

The second method follows Bessembinder and Seguin (1992) and estimates the following 

system of return and volatility equations in sequential/recursive estimation steps.     
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where  

rt
i  spot return at time t 

rm,t  return on the market proxy at time t 

Djt (j=1,..4) day of the week dummies, Wednesday is excluded 

OCDt  other calendar day variables, such as holiday and expiration day indicators 

σt
i  standard deviation of spot returns (estimated) 

TAi
k,t  spot and option trading activity variables 

 

Model (2) is based on Schwert (1990) and provides an unbiased estimate of return volatility.  I 

add the market proxy to the return equation to account for possible cross-sectional dependence in 

the error term.  I estimate two models here as well.  First, I estimate the system with only spot 

volume as the trading activity variable included in the variance equation.  Next I add option 

volume. 

3.  Data and Volume Adjustments  

 Data on option volume for individual stocks are obtained from OptionMetrics.  I use 

daily observations for the period January 2, 1996 – December 31, 2004.  The OptionMetrics 

database contains detailed information on each option contract of a given stock.  I use information 

on volume, daily best closing bid and best closing ask prices, and open interest.   
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Daily option volume and open interest are calculated by summing information across the 

individual option contracts.  In particular, for each stock, option volume is obtained by summing 

across the dollar volume of the contracts written on the stock and traded on a given day.  Since 

there is only one spot ‘contract’ for each stock, while there are multiple corresponding option 

contracts trading at different prices, I use dollar volume to make the spot and option volumes 

comparable.  Moreover, dollar contract volume for derivatives is similar to an absolute delta 

weighted volume measure due to the close association between an option’s delta and its premium.  

This addresses nonlinear relations between the spot and derivatives markets due to hedging.   

I calculate option spread for the cross-sectional analyses by taking the trade weighted 

average of the various contracts’ relative spread given by the ratio of the difference between the 

best ask and the best bid prices and their respective midpoints.  I also calculate other option 

market liquidity measures based on the daily number of listed contracts and the ratio of non-zero 

volume contracts to the total number of available contracts.  These are represented as the time-

series means of the available series of daily contracts and daily proportion of non-zero contracts, 

respectively, in the cross-sectional analyses.  I also use the daily time-series of total open interest 

and option volume to calculate measures of the option market’s size and trading intensity, 

respectively, for the cross-sectional analyses.  Daily changes in open interest provide a measure 

for the hedging demand component of derivative trades as in Day and Lewis (2004).        

The source of individual stock information is the Center for Research in Security Prices 

(CRSP).  I use stock cusip numbers to match CRSP and OptionMetrics.  Although Nasdaq 

volume data are biased by the problem of double counting, not all tests employed in the paper are 

affected by this issue.  Therefore, Nasdaq stocks are examined as well.  The impact of double 

counting is discussed below.  As with options, I calculate the daily dollar volume for each 

security.  When a stock switches between Nasdaq and the NYSE (or AMEX) during the sample 

period, the sub-periods are analyzed separately as if they represented two distinct securities.  To 

control for abnormal trading activity surrounding distribution events, such as stock splits and 
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stock dividends, I eliminate all distribution days from the sample.  For the cross-sectional 

analyses, I use information on the time-series of spot volume, shares outstanding, and return to 

calculate trading intensity, market capitalization, and return volatility, respectively.     

In order to maintain reasonable statistical power and assure that the option market for a 

given stock is active, I require that a stock has at least 15 trading days with option volume of at 

least 50 contracts in a given month.  I simultaneously require non-zero or non-missing spot 

volume, and non-missing stock return as well.  Though these later requirements are generally 

satisfied when the former holds, this screen does find days when CRSP has no information on the 

stock.  Once I eliminate all option months that do not satisfy these criteria, I further require at 

least 10 adjacent months of daily data for each security.  This requirement is important since I 

will estimate autoregressive models via OLS, which are generally biased, but the bias becomes 

negligible when the time-series are sufficiently long.  Since the sample period allows for daily 

observations for a maximum of 108 months for each stock, as a result of my data filter, some 

stocks disappear from the sample and then reappear.  I also require at least 10 months of adjacent 

data for stocks that switch between Nasdaq and NYSE or AMEX in each subperiod determined 

by their listing location.  The filter results in a final sample of 1,280 stocks with 1,623 daily time-

series of at least 10 months length.  I estimate each of the 1,623 time-series separately and then 

calculate the length-weighted average of the coefficient for stocks for which multiple time 

periods are available but no exchange switch occurs.   

Measures of spot market liquidity for both the time-series and the cross-sectional 

analyses are extracted from the Market Microstructure database (MMD) of Vanderbilt University.  

The last day for which observations are available is August 31, 2004.  Matching between the 

CRSP and the Market Microstructure Database is based on cusip information.  The MMD utilizes 

the Lee-Ready (1991) algorithm and aggregates transaction level information from the TAQ 

dataset into daily averages.  The aggregation employs standard data restrictions to insure the 
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validity of the recorded trades and quotes.  The source of analyst coverage is I/B/E/S, while 

information on institutional holdings is obtained from Thomson Financial’s CDA/Spectrum. 

I use several sources to collect information on single stock futures.  First, OneChicago 

provides detailed current and historic information on single stock futures listed on ONE.  Also, 

Option Clearing Corporation reports daily open interest data for all trading single stock futures 

from March 17, 2003 and volume information for a sliding window of the last two years.  

Information on single stock futures from NQLX is from FutureSource20.  

After matching option volume information with other variables utilized in the analyses, 

1,623 individual time-series remain.  The average number of observations contained in a time-

series is 685.  The maximum length is 2,265, while the minimum is 188 daily observations.  The 

average stock has 868 available data points.  Figure 2.1 graphs the number of stocks represented 

in the sample, the average equity option, and the corresponding stock volume series for each day 

in the sample period.  Option volume is multiplied by 100 to reflect the number of shares of stock 

underlying an option contract.  Both option and spot volume are expressed in millions of dollars.  

Summary statistics pertaining to the cross-section of the average daily values of the individual 

series are presented in Table 2.1.  The distribution of the mean spot and option volume series is 

highly skewed.  The average (standard deviation of) mean dollar option volume is $8,169.93 

(24,240.98), while the largest mean option volume equals $471,304.14 (Yahoo Inc. with 1,840 

data points) and the smallest is $250.46 (Cytogen Corp. with 291 data points).   

                                                 
20 I thank Yingmei Cheng for providing information on the listing dates of NQLX futures. 
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Figure 2.1.  Sample Characteristics  
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Figure 2.1, continued 
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Panel A of Figure 1 reports the daily number of securities included in the final sample.  The final sample 
consists of 1,280 individual stocks that have at least 15 days of at least 50 option contracts traded in a given 
month with at least 10 adjacent months satisfying this criterion.  Panel B and C illustrate the behavior of 
aggregated option and spot volume, respectively, the unit of measurement for spot volume is dollar 
millions.  Option volume is multiplied by 100 to reflect the number of shares corresponding to an option 
contract, and it is also expressed in dollar millions. 
 
 
 
For spot volume, the average (standard deviation of) mean daily dollar volume is $66.46 million 

(119.62 million).  The largest mean dollar volume is $1,867.00 million (Microsoft Corp. with 

2,265 observations) and the smallest is $1.15 million (Immtech International Inc. with 228 time-

series observations).  The summary statistics are also described by three market capitalization 

groups, small, medium, and large.   
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Table 2.1.  Summary Statistics  
  
The sample includes 1,280 stocks traded on the NYSE, AMEX, or NASDAQ between January, 1996 and 
December, 2004.  The descriptive statistics summarize the cross-sectional distribution of the 1,280 mean 
daily volume and return observations by market capitalization groups, where the means are calculated for 
each individual stock from the available time -series.  The option and spot volume series are represented by 
dollar volume.  Spot volume is in dollar millions. 
 

  Option Volume Spot Volume Spot Return 
Entire Sample 
Mean 8,169.93 66.45 0.0005 
Median 2,644.52 33.28 0.0007 
Standard Deviation 24,240.98 119.62 0.0023 
Kurtosis  147.06 84.7 5.62 
Skewness 10.35 7.6 -1.23 
Minimum 250.46 1.15 -0.0137 
Maximum 471,304.14 1,867.00 0.0101 
Observations 1,280 1,280 1,280 

Market Capitalization: Small (mean market capitalization = $606.92 m)  
Mean 2,495.57 16.62 0.0001 
Median 1,421.80 12.93 0.0003 
Std. Dev. 7,844.82 23.33 0.0027 
Kurtosis  365.24 268.28 1.47 
Skewness 18.46 14.77 -0.49 
Minimum 250.46 1.15 -0.0108 
Maximum 158,055.98 445.20 0.0072 
Observations 427 427 427 
Market Capitalization: Medium (mean market capitalization= $2,462.47 m) 
Mean 4,753.73 43.81 0.0004 
Median 2,745.29 33.25 0.0009 
Std. Dev. 5,812.85 32.40 0.0027 
Kurtosis  17.24 8.64 5.46 
Skewness 3.55 2.47 -1.55 
Minimum 440.59 4.92 -0.0137 
Maximum 51,057.04 246.11 0.0101 
Observations 426 426 426 
Market Capitalization: Large (mean market capitalization = $22,963.71 m) 
Mean 17,252.48 138.89 0.0008 
Median 6,264.49 86.73 0.0008 
Std. Dev. 39,273.05 181.96 0.0011 
Kurtosis  56.09 37.17 16.50 
Skewness 6.49 5.22 0.58 
Minimum 459.88 9.83 -0.0059 
Maximum 471,304.14 1867.00 0.0096 
Observations 427 427 427 
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3.1 Properties of Volume: Expected and Unexpected components 

This section partitions option volume into an expected and an unexpected component, 

and, simultaneously, investigates the joint dynamics of option and spot volume.  The first 

subsection explores the univariate time-series properties of the volume series.  The rest of the 

section uses a vector autoregressive framework for the joint dynamics.   

 

3.1.1. Univariate Analyses of Volume 

To gain some insight into the dynamic behavior of the volume series, I estimate 

univariate models that control for lagged values of the dependent variable and calendar day 

regularities. The use of calendar day indicators is motivated in Table 2.2, which reports 

descriptive statistics for the daily sum (i.e., aggregate volume) of the 1,623 option, spot, dollar 

option, and dollar spot volume series conditional on calendar day characteristics.   

 

Table 2.2.  Calendar Day Effects in Option Volume  
 
The table reports univariate results for the calendar day effects in the aggregate option and spot volume 
series.  The following calendar days are considered: 1) days of the week, 2) holidays, and 3) expiration 
days.  The holiday indicator variable takes the value of 1 on the last trading day prior to a holiday as well as 
on the first trading day following it.  The triple witching subsample contains trading volume on the third 
Friday of each quarter, while the ‘3rd Friday’ subsample contains trading volume on the third Friday of each 
month.  In Panel A, spot volume is in millions of shares.  Panel B reports summary statistics on option 
volume in millions of contracts.  Panel C and D report similar results for option and spot dollar volume, 
respectively. 
 
Panel A.  Aggregate Option Volume 

 Total Mon Tue Wed Thu Fri 
Mean 1.63 1.49  1.64 1.68 1.67 1.69 
Minimum 0.17 0.17 0.26 0.30 0.32 0.21 
Maximum 5.77 3.23 4.08 4.66 4.10 5.77 
N 2,265 431 465 463 454 452 

  Holiday 
Non- 

Holiday 
Triple 

Witching 
Non-Triple 
Witching 3rd Friday Not a 3rd Fri 

Mean 1.41 1.65 2.28 1.62 2.39 1.60 
Minimum 0.21 0.17 0.74 0.17 0.69 0.17 
Maximum 5.11 5.77 3.89 5.77 5.11 5.77 
N 156 2,109 36 2,229 108 2,157 
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Table 2.2, continued 
 

Panel B.  Aggregate Spot Volume 
  Total Mon Tue Wed Thu Fri 
Mean 1,388.84 1,277.03 1,388.89 1,459.35 1,445.11 1,366.65 
Minimum 87.41 87.41 153.08 261.30 240.84 136.61 
Maximum 3,775.12 3,360.79 3,446.42 3,775.12 3,455.04 3,568.78 
N 2,265 431 465 463 454 452 

  Holiday 
Non-

Holiday 
Triple 

Witching 
Non-Triple 
Witching 3rd Friday Not a 3rd Fri 

Mean 1,159.61 1,405.80 1,686.32 1,384.04 1,495.45 1,383.50 
Minimum 136.61 87.41 409.36 87.41 288.11 87.41 
Maximum 3,106.21 3,775.12 3,568.78 3,775.12 3,568.78 3,775.12 
N 156 2,109 36 2,229 108 2,157 

 
Panel C.  Aggregate Dollar Option Volume 

 Total Mon Tue Wed Thu Fri 
Mean 6.51 5.60 7.67 6.61 6.30 6.30 
Minimum 0.59 0.59 0.88 0.78 0.96 0.62 
Maximum 51.77 33.78 51.77 26.79 28.50 31.22 
N 2,265 431 465 463 454 452 

  Holiday 
Non- 

Holiday 
Triple 

Witching 
Non-Triple 
Witching 3rd Friday Not a 3rd Fri 

Mean 6.60 6.51 8.20 6.49 8.66 6.41 
Minimum 0.62 0.59 1.93 0.59 1.93 0.59 
Maximum 48.14 51.77 28.38 51.77 31.22 51.77 
N 156 2,109 36 2,229 108 2,157 

 
Panel D.  Aggregate Dollar Spot Volume 
  Total Mon Tue Wed Thu Fri 
Mean 50,115.10 46,063.19 50,197.50 52,612.35 52,142.53 49,299.59 
Minimum 3,823.04 3,823.04 6,568.54 11,195.75 10,820.13 5,874.53 
Maximum 1.92E+05 1.40E+05 1.92E+05 1.56E+05 1.51E+05 1.38E+05 
N 2,265 431 465 463 454 452 

  Holiday 
Non-

Holiday 
Triple 

Witching 
Non-Triple 
Witching 3rd Friday Not a 3rd Fri 

Mean 41,766.66 50,732.63 60,481.22 49,947.68 54,211.55 49,910.00 
Minimum 5,874.53 3,823.04 18,171.06 3,823.04 12,227.57 3,823.04 
Maximum 1.09E+05 1.92E+05 1.38E+05 1.92E+05 1.38E+05 1.92E+05 
N 156 2,109 36 2,229 108 2,157 

 

 
The estimated means reveal the well-documented inverted U-shape pattern for spot volume 

during the week, with the highest trading activity occurring on Wednesday.  For option volume, 

Monday displays the lowest activity, while the other days of the week show similar activity levels 

(for contract volume, Tuesday appears to be the highest).  The results for Thursday and Friday 
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may be inflated by the expiration day effects due to the univariate nature of these tests.  A holiday 

effect is also captured in the table.  The holiday sub-sample includes option and spot volume 

observations on the last trading day prior to a holiday as well as on the first trading day following 

it.  As stock volume, option volume appears to be slower on trading days immediately 

surrounding exchange holidays.  Tests of the equality of the means and medians confirm the 

significance of these results.  In addition, average trading volume is significantly higher on triple 

witching days and on the third Friday of each month.  This is consistent with Stoll and Whaley 

(1986, 1987, 1990), who analyze the price and volume effects during the expiration hour.  Table 

2.3 reports the average, minimum, and maximum autocorrelation coefficients up to order 6 and 

the correlation coefficients between the contemporaneous and lagged dollar option and spot 

volume series.   

 

Table 2.3. Correlation and Autocorrelation Coefficients  
 
Table 3 describes the average, minimum, and maximum of the 1,623 correlation and autocorrelation 
coefficients calculated for each of the available time series.   
 

  Dollar option volume  Dollar spot volume 
    Average Minimum Maximum Average Minimum Maximum 

lag 0 1 1 1  0.517 -0.030 0.986 
lag 1 0.325 -0.033 0.829  0.325 -0.038 0.855 
lag 2 0.227 -0.056 0.744  0.232 -0.106 0.739 
lag 3 0.193 -0.107 0.711  0.198 -0.102 0.729 
lag 4 0.170 -0.098 0.645  0.179 -0.111 0.701 
lag 5 0.159 -0.079 0.754  0.166 -0.133 0.729 

D
ol

la
r o

pt
io

n 
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lu
m

e 

lag 6 0.144 -0.118 0.654  0.154 -0.198 0.745  

        
lag 1 0.300 -0.091 0.836  0.531 0.101 0.894 
lag 2 0.219 -0.092 0.722  0.380 0.001 0.853 
lag 3 0.187 -0.090 0.735  0.326 -0.055 0.843 
lag 4 0.166 -0.106 0.682  0.297 -0.050 0.838 
lag 5 0.156 -0.136 0.674  0.278 -0.062 0.829 

D
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r s
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lag 6 0.146 -0.135 0.689   0.259 -0.071 0.818 
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Consistent with the volume literature, I take the logarithm of dollar option and spot volume to 

improve the distributional properties of these series (for instance, to reduce the problem of 

skewness).  I add an arbitrary small number, 0.0001, before I take the logarithm in order to avoid 

generating missing values when volume is zero.  The logarithmic transformation reduces the 

average skewness of the time-series of dollar option (spot) volume from 6.83 (4.59) to -0.0002 (-

0.88).  In the univariate analyses, I follow the standard approach in the literature and I estimate a 

fifth21 order autoregressive model via  OLS which also includes day of the week, holiday, and 

expiration day indicator variables for the logarithmic dollar spot and option volume series 

separately using each of the 1,623 available time-series.  These regressions also adjust for 

potential trends 22 in the individual series.  Summary statistics of the coefficient estimates from the 

univariate time-series model are given in Panel A and Panel B in Table 2.4 for the spot and option 

volume regressions, respectively.  The table reports the average coefficient estimates for the 

1,623 time-series, the proportion of these coefficients that are significantly different from zero at 

least at the 10% two-tailed level, and the standard error weighted average coefficients.  t-statistics 

are based on simple OLS standard errors.  The univariate models reveal that both volume series 

are persistent: the first (second) order autoregressive term is significant in 99.75% (49.97%) and 

96.73% (69.50%) of the individual series for spot and option volume, respectively.  The holiday 

indicator is significant in 61.43% of the spot equations, and in only 29.08% of the option 

equations.  The expiration day variable is a significant determinant of spot volume in 16.7% of 

the cases, while it is a significant determinant of option volume in 51.39% of the time-series.  The 

mean of the cross-sectional distribution of the adjusted R2’s is 51.58% and 32.45% for the spot 

and option equations, respectively, which indicates that the models provide more explanatory 

power for spot volume. 

                                                 
21 Also estimate autoregressive models of order 2, 10, and 22.  The results are robust to these alternatives. 
22 Lo and Wang (2000) find that volume time -series are very sensitive to the choice of the detrending 
method.  I will also examine percentage changes in volume (in addition to (log) volume levels) in this 
section.   
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Table  2.4.  Results from the time -series models that estimate the expected and unexpected 
components of the volume series 

 
Panel A and B report summary statistics on the coefficient estimates from time-series models that model 
the dynamics of spot and option volume, respectively.  These models are estimated separately.  The 
dependent variable is the logarithm of dollar spot volume in Panel A, and the logarithm of dollar option 
volume in Panel B.  The explanatory variables include autoregressive terms up to order five, day of the 
week indicators, a holiday indicator that takes a value of one immediately preceding and following an 
exchange holiday, indicator variables for the third Friday of each quarter and for the third Friday of each 
month, and the ‘Daytill’ variable that measures the number of trading days to expiration day.  Column two 
in the table reports the average coefficient estimates across the 1,623 estimated time -series, column three 
reports the proportion of the estimated coefficients that are significantly different from zero at least at the 
10% two-tailed level.  Column four reports the standard error weighted average coefficient estimates.  
Panel C reports the results from the VAR system that estimates the spot and option volume equations 
simultaneously and includes cross-volume terms in the option equation.   
 

Panel A.  Spot Volume  
 Coefficients 
  Average % Significant SE weighted avg 
Intercept 0.1006 56.25% 0.0473 
Mon -0.1060 39.49% -0.1092 
Tue 0.0221 13.80% 0.0156 
Thu -0.0287 14.91% -0.0299 
Fri -0.1370 43.25% -0.1275 
Holiday -0.2550 61.43% -0.2076 
Third Fri 0.0688 16.70% 0.0701 
Triple Witching 0.1455 22.61% 0.1645 
Trend -0.0004 67.16% 0.00004 
lag 1 0.4764 99.75% 0.4824 
lag 2 0.0759 49.97% 0.0871 
lag 3 0.0669 42.76% 0.0731 
lag 4 0.0375 28.34% 0.0481 
lag 5 0.0507 39.80% 0.0664 
Panel B.  Option Volume 
 Coefficients 
  Average % Significant SE weighted avg 
Intercept 0.1322 48.12% 0.0982 
Mon -0.0256 16.02% -0.0388 
Tue 0.0073 10.60% 0.0153 
Thu -0.0082 9.00% -0.0162 
Fri -0.0977 26.49% -0.0993 
Holiday -0.1377 29.08% -0.1213 
Third Fri 0.3909 51.39% 0.3405 
Triple Witching -0.0463 9.06% -0.0416 
Daytill -0.0067 37.95% -0.0078 
Trend -0.0004 62.11% 0.00004 
lag 1 0.2878 96.73% 0.3078 
lag 2 0.1116 69.50% 0.1243 
lag 3 0.0749 51.88% 0.0848 
lag 4 0.0566 41.16% 0.0680 
lag 5 0.0557 43.07% 0.0727 
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Table 2.4, continued 
 

 
Panel C. Option volume equation from VAR 
  Coefficients 
    Average % Significant SE weighted avg 

 Intercept 0.0633 16.51% 0.0548 
lag 1 0.2255 77.57% 0.2097 
lag 2 0.0990 52.37% 0.1053 
lag 3 0.0687 39.56% 0.0771 
lag 4 0.0532 31.48% 0.0613 

O
pt
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n 

vo
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m
e 

lag 5 0.0505 31.42% 0.0606 
lag 0 0.0864 44.05% 0.4610 
lag 1 0.1306 33.83% -0.0290 
lag 2 -0.0083 21.44% -0.0362 
lag 3 -0.0026 18.18% 0.0279 
lag 4 -0.0041 16.21% -0.0226 S

po
t v

ol
um

e 
 

lag 5 0.0132 16.08% -0.0164 
Mon -0.0020 16.82% 0.0248 
Tue 0.0094 10.91% 0.0207 
Thu -0.0118 9.18% -0.0062 
Fri -0.1202 17.68% -0.0500 
Holiday -0.1005 17.87% -0.0099 
3rd Fri 0.4494 44.73% 0.3635 
Quarter End -0.0719 12.75% -0.1098 

C
al

en
da

r d
ay

 V
ar

ia
bl

es
 

Daytill -0.0054 31.98% -0.0067 
 
 

3.1.2. Multivariate Analyses of Volume: Unique Component  

Table 2.3 reports an average contemporaneous correlation of 0.51 between spot and 

option volume.  Furthermore, R2’s indicate that a considerably high portion of the variation in the 

option equations is not explained by time-series characteristics and calendar day effects. The 

univariate approach ignores the connection between the option and spot series, which may 

contribute to the magnitude of the adjusted R2’s reported above.  This subsection presents a 

bivariate analysis of the volume series.  As in the univariate case, I use logarithmic dollar spot 

and option volume.  The bivariate system is specified as a structural VAR in which spot volume 

is affected by its own lagged values and calendar day effects, while option volume is driven by 
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contemporaneous spot volume, lagged option and spot volume, and calendar day variables.23  I 

estimate the structural VAR via three stage least squares.  Three stage least squares is equivalent 

to a seemingly unrelated regression (SUR) for simultaneous systems; and thus, it allows the spot 

and option volume error terms to be contemporaneously correlated.  I standardize the log dollar 

spot and option volume series prior to estimating the VAR system.  This is important for the 

cross-sectional analyses below.   

Panel C of Table 2.4 above show summary statistics of the coefficient estimates from the 

VAR model for the option volume equations.  The table reports the average coefficient estimates 

for the 1,623 time-series, the proportion of these coefficients that are significantly different from 

zero at least at the 10% two-tailed level, and the standard error weighted average coefficients.  

The univariate analysis above finds a mean (median) adjusted R2 of 32.45% (29.10%) for option 

volume.  In comparison, the mean (median) adjusted R2 is 44.77% (43.64%) once 

contemporaneous and lagged spot volume enter the option equation, and the mean adjusted R2 

reported above is 51.58% for the spot volume equation.  Though the R2’s increase, a significant 

portion of option volume remains unexplained.  This points toward a significant unique 

component in option volume.   

Panel A and B of Table 2.5 report the average and the maximum autocorrelations for lags 

1, 2, and 3 for the standardized unexpected volume series based on the univariate and the VAR 

estimations, respectively.  Both panels indicate that the standardized surprise option and spot 

volume series are no longer persistent.  In Panel A, the univariate models retain a high correlation 

between option and spot volume. 

                                                 
23 In addition to the asymmetric structural model described above, I also consider using a symmetric 
structural VAR in which both equations include a contemporaneous cross-market volume term and own- 
and cross-market lagged values (i.e., I allow contemporaneous and lagged option volume to enter the spot 
volume equation).  Among the estimated parameters, the coefficients corresponding to the 
contemporaneous spot volume terms in the option equations are especially sensitive to the structural 
specification.  The resulting estimates are somewhat troubling: in only 17% of the cases do they indicate a 
significant relation between option and spot volume, part of which is significantly negative. Because of this 
instability, I do not adopt the symmetric VAR.   
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Table 2.5.  Correlation and autocorrelation coefficients for surprise option and spot volume  
 
The table provides the correlation and autocorrelation coefficients for the surprise option and spot volume 
series.  In Panel A, the surprise volume series are obtained from univariate time-series regressions that 
include lagged values of the dependent variables (log dollar spot and option volume, respectively) and 
calendar day indicator variables.  In Panel B, the surprise volume series are obtained from a VAR model 
that jointly estimates the spot and option volume equations and includes contemporaneous and lagged 
cross-volume terms for options. 
 
Panel A. Standardized residuals from the univariate time -series models  
                

  
Spot 

volume 
Option 
volume 

Spot vol 
(-1) 

Option vol 
(-1) 

Spot vol 
(-2) 

Option 
vol (-2) 

Spot vol 
(-3) 

Spot volume 1       
Option volume 0.4103 1      
Spot vol (-1) 0.0008 0.0949 1     
Option vol (-1) 0.0460 -0.0069 0.4109 1    
Spot vol (-2) -0.0069 0.0277 0.0006 0.0950 1   
Option vol (-2) 0.0053 -0.0110 0.0460 -0.0070 0.4113 1  
Spot vol (-3) -0.0188 0.0061 -0.0070 0.0276 0.0003 0.0949 1 
Option vol (-3) -0.0054 -0.0179 0.0054 -0.0109 0.0459 -0.0068 0.4118 
        
Panel B. Residuals from the VAR model of standardized log dollar spot and option volume  
                

  
Spot 

volume 
Option 
volume 

Spot vol 
(-1) 

Option vol 
(-1) 

Spot vol 
(-2) 

Option 
vol (-2) 

Spot vol 
(-3) 

Spot volume 1       
Option volume -1.1E-15 1      
Spot vol (-1) -0.0009 0.0025 1     
Option vol (-1) 0.0049 -0.0061 0.0013 1    
Spot vol (-2) -0.0069 0.0002 -0.0012 0.0025 1   
Option vol (-2) 0.0019 -0.0087 0.0051 -0.0063 0.0021 1  
Spot vol (-3) -0.0170 -0.0033 -0.0070 4.8E-05 -0.0015 0.0023 1 
Option vol (-3) -0.0009 -0.0133 0.0019 -0.0086 0.0052 -0.0062 0.0031 
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That spot and option trading must be related is a straightforward observation.  Yet, what 

this relation is and how it varies from stock to stock have not been discussed in the literature.  To 

summarize the results of this section, though stock trading is an important determinant of option 

volume, on average, a large portion of option volume remains unexplained after accounting for 

hedging effects and time-series characteristics.  On average, option volume has a significant 

unique component, rather than mostly representing derived demand.  In the cross-section of the 

stocks in the sample, the spot-option relations as well as the explanatory power of the models 

display considerable variation. 

 

4.  Does Option Volume Affect Spot Volatility? 

This section describes the empirical result for the option volume-spot volatility relation.  

Models (2) and (3) are estimated for each of the 1,623 time-series in the sample.  The significance 

of the coefficients for the GARCH framework is based on heteroskedasticity consistent quasi-

maximum likelihood (QML) covariances and standard errors using the methods proposed by 

Bollerslev and Wooldridge (1992).  Standard errors for the system described in (3) are based on 

simple OLS estimates.  The second subsection reports the results of the cross-sectional analyses.   

 

4.1 Estimation Results 

Table 2.6 aggregates the individual coefficient and standard error estimates for the 

augmented GARCH(1,1) with unexpected spot volume included in the variance equation.  The  

surprise spot volume is obtained from the VAR model above.  The table details the average and 

median parameter values and standard errors.  The average parameters are based on equal-

weighting as well as standard error weighting.  For standard error weighting, the weights are 

given by one over the standard error of the estimated coefficient.   
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Table 2.6.  Maximum Likelihood Estimate of the GARCH(1,1) Model with Spot Volume  
 
The table presents the mean and the median parameter estimates and their associated p-values based on the 
maximum likelihood estimate of the 1,623 individual GARCH(1,1) models of the following form: 
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where UVS,t

i is unexpected spot volume, estimated via the VAR system.   The significance of the 
coefficients is based on Bollerslev-Wooldridge (1992) heteroskedasticity consistent standard errors.  For 
the standard error weighted estimates, weights are given by one divided by the estimated standard error.  
The bottom section of the panels reports the percent of positive coefficients as well as the percent of 
significant values among the positive and the negative estimates. 
 
 

  β1 β2  β3  
  Estimates z-stat Estimates z-stat Estimates z-stat 

Equal weighted 
mean -0.0203 -0.5837 0.0812 2.3234 0.0259 11.6486 
median -0.0165 -0.4961 0.0841 1.8838 0.0210 10.8312 
 
Standard error weighted 
 Estimates  Estimates  Estimates  
mean -0.0194  0.0923  0.0166  
median -0.0154  0.0974  0.0124  
         
% + 36.11  84.04  99.69  
% + and sig. 5.42  53.91  99.57  
% - and sig. 20.27  0.99  0.25  

 

 

This weighting scheme assigns a more important role to the coefficients that are more accurate 

and attenuates the insignificant coefficients to zero.  Also reported are the proportion of the 

sample of 1,623 coefficient estimates that are positive, the proportion of the coefficients that are 

positive and significant, and the corresponding value for the negative and significant coefficient 

estimates. 

The table is consistent with existing evidence that the average magnitude and significance 

of the ARCH and GARCH coefficients decreases substantially when contemporaneous spot 

volume is included in the variance equation.  In addition, as reported in previous studies, for the 
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majority of the stocks, surprise spot volume is positively related to spot volatility.  99.69% of 

stocks display positive unexpected spot volume coefficient estimates, 99.57% are positive and 

significant at least on the 10% level.24   

Table 2.7 reports similar results for the unexpected spot and option volume augmented 

GARCH(1,1) model.  The table uncovers surprisingly strong results.  In particular, the coefficient 

estimates corresponding to unexpected option volume is positive for 95.19% of the sample.  In 

addition, 60.69% are significantly positive, while only 0.12% of the coefficients are negative and 

significant at least at the two-tailed 10% level.  This closely compares to, but is weaker than the 

results obtained for spot volume.  More specifically, when both volume series are included in the 

variance equation, 99.63% of the surprise stock volume coefficients are positive.  98.77% are 

significantly positive and 0.25% are significantly negative.25     

The significance of the estimated surprise option volume coefficients for the majority of 

the stocks implies that option volume has incremental information for spot volatility.  The 

contribution is examined via the likelihood ratio (LR) test in more detail.  Table 2.8 reports the 

results. When the spot volume augmented model (restricted model) is compared to the spot and 

option volume augmented model (unrestricted model), the likelihood ratio test rejects the null 

hypothesis that components of option volume do not contain additional information 83.40% of 

the time (at least, at the 0.1 level).  The average likelihood ratio test statistic is 6.14, which 

provides significance at the 0.025 level based on the χ2(1) critical value.  The results of the LR 

test confirm that for the majority of the stocks, option volume adds value to the estimation of 

return volatility. 

                                                 
24 In additional analyses not reported here, I also include the expected volume component along with surprise volume 
and find that for the majority of the stocks, expected spot volume has a positive, albeit insignificant effect.  
Furthermore, surprise volume is much more important for volatility than expected volume.  The estimated coefficients 
on unexpected spot volume are approximately ten times higher than those on expected volume.  These results are 
consistent with previously reported results in the literature (see, for instance, Bessembinder and Sequin (1992)). 
25 When both expected option volume and expected spot volume are included in the analyses, I find that they have no 
significant effect on the volatility of the average stock.  The coefficients on the corresponding unexpected components 
are approximately ten times of those on the expected components.  Unlike for spot volume, the average effect of 
expected option volume is negative, however, the average effect is not significant. 
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Table 2.7.  Maximum Likelihood Estimate of the GARCH(1,1) Model with Spot and Option 
Volume 

 
The table presents the mean and the median parameter estimates and their associated p-values based on the 
maximum likelihood estimate of the 1,623 individual GARCH(1,1) models of the following form: 
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The significance is based on Bollerslev-Wooldridge (1992) heteroskedasticity consistent standard errors.  
UVj,t

i
 represents the unexpected volume series, with j=O(S) option (spot) volume, obtained from the VAR 

system.  For the significance weighted estimates, weights are given by one minus the associated z-value.  
The bottom section of the table reports the proportion of positive coefficients as well as the proportion of 
significant positive values and the significant negative estimates. 
 
 
 

  β3  β4  
  Estimate z-stat Estimate z-stat 
Equal weighted 
 
mean 0.0260 7.6982 0.0045 2.2439 
median 0.0200 6.9965 0.0034 2.0120 
 
Significance weighted 
  Estimate   Estimate   
mean 0.0156  0.0030  
median 0.0116  0.0022  
      
% +  99.63  95.19  
% + and sig. 98.77  60.69  
%  - and sig. 0.25  0.12  
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Table 2.8. Likelihood Ratio Test Results  
 
Models 1-2 are based on model (2).  Model 1 is represented by the spot volume augmented standard 
GARCH(1,1) specification and its variance equation is given by the following: 
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Model 2 augments the variance equation with both spot and option volume: 
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The mean test statistic represents the cross-sectional average of the 1,6230 likelihood ratio tests performed 
for the individual stocks.  The table also reports the distribution of the test statistic, the critical values, and 
the portion of the values that are significant at least at the 10% level. 
 
 

  

Mean 
Test 

Statistic 
Critical 

Value at 0.1 
Critical Value 

at 0.05 
 
  

Unrestricted Model 2 
Restricted Model 1 

Distribution of Test Stat. χ2(1) 

% exceeding critical value at 0.1 83.41 

6.142 2.71 3.84 

 
   

Table 2.9 reports summary statistics for the estimation results for model (3).  The table 

only reports results for the case when both the spot and option volume series are included as 

trading variables in the variance equation.  Panel A uses the unexpected components estimated 

from the univariate time-series models.  In Panel B, unexpected volume components in the 

variance equation are based on the VAR estimates. 

Under the null hypothesis of no relation between option volume and spot volatility, 5 

percent of the stocks are expected to display significant positive, and 5 percent are expected to 

exhibit significant negative coefficients, at the 10 percent two-tailed level.  Therefore, the 

hypothesis that option trading has no effect on return volatility can be rejected for surprise option 

volume.  The results indicate significant heterogeneity across the stocks; therefore, conclusions 

based on the average security are misleading.  The next section provides a cross-sectional 
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characterization of how and why the time-series results vary from stock to stock in the sample.  It 

is important to note that the magnitude of the estimated coefficients can be meaningfully 

compared in the cross-section because all volume variables are standardized in the individual 

time-series analyses. 

 

Table 2.9.  Results from Model (3) 
 
The table reports summary statistics for the 1,623 coefficient estimates for the trading activity variables in 
the variance equation of Model (3).  Model (3) is given by the following set of equations that are estimated 
sequentially.  
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where  

rt  spot return at time t  
rm,t  return on the market proxy at time t  
Djt (j=1,..4) day of the week dummies, Wednesday is excluded 
OCDt   other calendar day variables, such as holiday and expiration day indicators 
σt  standard deviation of spot returns (estimated) 
TAl,t  spot and option trading activity variables, in particular, surprise spot and option volume. 

Panel A reports estimates based on unexpected volume obtained from univariate regression models on 
volume on its own lagged values and calendar day variables.  In Panel B, the unexpected volume 
components are obtained from a VAR model, which estimates the option and spot volume equations 
simultaneously and includes a contemporaneous cross and lagged cross terms in the option volume 
equation. 
 
Panel A.  Based on expected and unexpected volume from the univariate model.   

  Avg Coefficient 
% 
positive % positive and significant Avg t-stat 

Unexpected option vol 0.0043 96.80% 69.56% 2.7500 
Unexpected spot vol 0.0145 99.45% 99.14% 8.9956 
     
Panel B.  Based on expected and unexpected volume from the VAR model.   

  Avg Coefficient 
% 
positive % positive and significant Avg t-stat 

Unexpected option vol 0.0034 95.26% 61.68% 2.2911 
Unexpected spot vol 0.0141 99.57% 99.32% 9.4972 
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4.2 Cross-Sectional Analyses of the Option Volume – Spot Vola tility Relation  

The results in Section 4.1 reveal a generally positive association between option volume 

and stock volatility.  This represents an extension to the volume-volatility literature.  In the rest of 

this paper, I examine whether this cross-market correlation is also consistent with the MDH (i.e., 

information arrival in the option market).  In this section, I investigate whether the cross-sectional 

variation is related to the degree of asymmetric information surrounding the security and the 

probability of informed trading in the option market, by studying how different proxies for these 

conditions are related to the cross-section of the time-series estimates.  In Section 4.3, I look at 

the effect of surprise volume on stock spreads.   

 

4.2.1. Explanatory variables 

I use several measures to depict the relevant firm and market characteristics.  For 

instance, a commonly used proxy of information asymmetry is analyst coverage.  Analyst 

coverage indicates attention surrounding the firm.  When more analysts follow a firm, the prices 

are likely to be more information efficient.  Therefore, the opportunity for informed trading is 

reduced in both markets.  The attention measure is also expected to alter the relative role of the 

markets for the informed trader based on the theoretical results in Easley, O’Hara, and Srinivas 

(1998).  Easley et al. show that the existence of a separating equilibrium, or in other words, 

informed trading in both markets, depends on the proportion of investors who are informed.  The 

greater the proportion, the more likely it is that a separating equilibrium obtains.  My second 

proxy for the degree of information asymmetry or attention is institutional holdings. 

To measure how attractive the option market is for informed traders (i.e., the probability 

of informed trading), I use a number of relative liquidity measures.  For instance, I follow 

Chakravarty et al. (2004) and use the ratio of option spread to spot spread to measure relative 

relations.  This is based on the argument that the spread is an explicit cost, which also proxies for 

liquidity in the market, or the ability of an informed trader to hide so that prices do not 
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immediately reflect her order flow.  Fleming et al. (1996) find that low trading costs foster price 

discovery. 

Similarly, I also use the ratio of the size of the option market to the size of the stock 

market.  This is also related to informed traders’ ability to hide in the market.  Though smaller 

firms may provide more opportunities for new information acquisition, these opportunities may 

not translate into profitable trades when trading is thin.  Ho and Michaely (1988) argue that in 

equilibrium traders may rationally choose to learn less about small firms. 

It is important to note however, that previous literature points towards a dual role for both 

size and spread.  First, larger firms/markets typically receive more investor attention and are more 

likely to be held by institutional investors who, through economies of scale in information 

collection, are assumed to be better informed.  This implies that large firms have greater 

information efficiency in pricing and thus, provide fewer opportunities for informed trades.     

Similarly, a higher spread indicates higher adverse selection costs as the market maker 

fears the presence of informed traders (Llorente et al. (2002) and Lee, Mucklow, and Ready 

(1993)); while this in turn implies that these stocks must be more suitable for information 

acquisition.  Chakravarty et al. (2004) report that the option’s information share is negatively 

related to the ratio of option to spot effective spreads, which suggests that the importance of 

trading costs dominates the market maker’s response to asymmetric information.  In addition, 

with multiple contracts and market makers in the option market, the adverse selection cost may be 

less visible in an aggregate (across contracts and markets) option spread measure.   

Furthermore, I use relative volume in the option market.  Since private information is 

incorporated into prices via the trading process, Chakravarty et al. (2004) argue that the 

information share of the option market is also related to the ratio of volumes.  I also consider the 

estimated informational share of options in Chakravarty et al. for the relevant sub-sample of 

stocks, the relative volatility of option spread, and the volatility of analyst coverage as 

explanatory variables in the cross-section.  All measures are represented by their time-series 
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means (and standard deviations for the volatility measures) calculated for the sample period of 

each individual stock.   The explanatory variables are summarized in Appendix 2.1.  

 

4.2.2. Results 

I estimate the cross-sectional regressions separately for the Nasdaq and NYSE/AMEX 

subsamples.  The results are provided in Table 2.10.   

Panel A of Table 2.10 uses the sample of NYSE/AMEX stocks and estimates 6 cross-

sectional specifications.  Because not all regressors are available for each stock, the sample size 

differs across the specifications.  This also means that the goodness of fit statistic is not 

comparable across the columns.  To compensate for this discrepancy, I reestimate model 2 in 

column 1 using only observations which are also available in the column 4 estimation.  Similarly, 

I use the model in column 4 and reestimate it (in column 7), in order to match the sample in 

column 8.  Panel B reports similar results for the Nasdaq sample, with the exception of Model 8, 

which cannot be estimated for this sample.  This is because the CGM information share variable 

is only available for 60 stocks, none of which trades on Nasdaq.  The results are estimated 

separately for the different exhanges because volume on Nasdaq suffers from the problem of 

double counting.  Because of the difference in volume measures, the estimated coefficients from 

the time-series analyses may have different characteristics across the Nasdaq and non-Nasdaq 

firms.  Moreover, microstructure differences may also bias cross-sectional results when the two 

subsamples are pooled together.    

The results in Panel A show that the most significant determinants of how surprise option 

volume affects return volatility are the relative size and illiquidity of the option market, and 

analyst coverage.  As predicted, relative size is positively, while relative liquidity and analyst 

coverage are negatively related to the impact of options.  These variables describe the relative 

information environment of options , including the degree of information asymmetry surrounding 

the stock and the relative ease with which informed traders could hide in the option market.   
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Table 2.10.  Cross-sectional Analysis of the Option Volume -Spot Volatility Coefficients 
 
The table reports results on the cross-sectional analyses of the estimated option volume-spot volatility 
coefficients.  Panel A uses NYSE/AMEX stocks, while in Panel B, the corresponding results for Nasdaq 
are reported.  Relative size is the size of the option market relative to firm size.  Relative spread is the ratio 
of option to stock spread.  Analyst coverage indicates the average number of analysts following the 
security.  CGM information share is the information share of the option market as reported in Chakravarty, 
Gulen, and Mayhew (2004).  The CGM information share variable is only available for 60 stocks in the 
sample.  Volatility of analyst coverage is the volatility of the number of analysts following the firm.  
Institutional holding is the percentage share of institutional ownership.  T-statistics are reported in 
parentheses. 
     
   Panel A 

 Cross-sectional model - NYSE/AMEX 
  1 2 3 4 5 6 7 8 
Intercept 0.564 0.836 0.783 0.756 0.821 0.904 1.281 1.863 
 (11.221) (13.667) (13.057) (12.586) (10.676) (10.931) (4.999) (4.768) 
Relative 
size 0.052 0.067 0.059 0.056 0.032 0.052 0.082 0.077 
 (5.500) (7.034) (6.487) (6.144) (2.632) (4.377) (3.950) (3.832) 
Relative 
spread  -0.110 -0.110 -0.110 -0.103 -0.101 -0.086 -0.098 
  (-7.677) (-7.919) (-8.181) (-6.704) (-5.919) (-2.644) (-3.053) 
Analyst 
coverage    -0.005 -0.075 -0.076 -0.183 -0.174 
    (-3.203) (-3.225) (-3.263) (-2.101) (-2.055) 
Vol. of 
analyst c.     0.015    
     (1.464)    
Institutional 
holding      0.041   
      (1.062)   
CGM info 
share        0.349 
             (2.028) 
Adj R2 0.038 0.111 0.125 0.138 0.165 0.169 0.360 0.400 
 N 739 707 585 585 346 315 45 45 
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Table 2.10, continued 
 

   Panel B 
Cross-sectional model - Nasdaq 

  1 2 3 5 6 7 
Intercept 0.361 0.872 0.683 0.670 0.532 0.670 
 (4.661) (9.046) (6.406) (6.249) (4.440) (4.755) 
Relative size 0.048 0.016 0.002 0.005 -0.028 0.010 
 (2.767) (2.868) (2.089) (2.245) (-1.127) (0.427) 
Relative spread  -0.180 -0.142 -0.143 -0.138 -0.139 
  (-8.628) (-6.606) (-6.643) (-5.852) (-5.766) 
Analyst coverage    -0.005 -0.073 -0.006 
    (-1.327) (-2.407) (-1.405) 
Volatility of 
analyst coverage     0.071  
     (4.384)  
Institutional 
holding      -0.031 
      (-0.749) 
CGM info share - -  - - - 
        
       
N 884 802 532 532 422  
Adj. R-squared 0.007 0.089 0.085 0.086 0.134  

 
 

Also, there is a surprisingly strong association between the information share of options, as 

estimated by Chakravarty et al. (2004), and the option volume-spot volatility coefficient.  In 

particular, the adjusted R-squared of the regression is 40% once the information share is included 

in the analyses.  Unfortunately, the information share variable is only available for a very small 

subsample of 60 stocks, and not available for Nasdaq firms.  With additional missing values for 

explanatory variables, the sample size drops to 45 in this regression.  The volatility of analyst 

coverage only has a marginally significant positive effect, while institutional holdings are not 

significantly related to the impact of options on spot volatility.  Panel B reports similar results. 

 

4.3  Option Volume and Stock Spreads 

The previous section offered some evidence that the cross-market volume-volatility 

relation is driven by the mixture of distribution argument.  This section provides further support.  
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However, as it was mentioned in the Introduction, these sections should be viewed as suggestive, 

rather than conclusive.   

An implication of informed trading in the option market (and that of the resulting MDH) 

is that the unexpected component of option volume is contemporaneously negatively related to 

stock spreads.  This is because the informed trader’s choice to trade in the option market, rather 

than in the stock market, reduces the adverse selection costs of the spot market maker.   

 To test this argument, I estimate individual time-series regressions with the relative 

effective stock spread26 as the dependent variable .  I take the individual time series of surprise 

option volume obtained from the VAR, and match them to daily information on stock spreads.  

Because data restrictions and the resulting time-series above are based on volume and return 

information only, I re-run my data filters with requiring non-missing values for the spread with 10 

consecutive months of available data, as before.  I then adopt a multivariate regression framework 

for each individual stock.   

For the majority of the stocks, the daily time-series of the relative effective spread is 

persistent, and in about 10% of the cases, the augmented Dickey-Fuller test cannot reject the 

existence of a unit root.  Where the unit root test is not rejected, I difference the spread series.  I 

also check to see whether the behavior of the time-series is related to the length of the individual 

samples, but find no evidence.27   

I rely on two sources to build a model of the spread over time.  First, Chordia et al. 

(2005) find that spread at the daily frequency displays day-of-the-week and holiday effects, and is 

affected by stock volatility, stock volume , returns, and tick size changes.28  Second, I also 

consider established models of the spread from cross-sectional analyses.  In particular, I modify 

the Chordia et al. model to more carefully proxy for daily changes in inventory control and 

                                                 
26 The effective spread is given by the daily average trade weighted effective spread. 
27 This is important because non-stationarity cannot be resolved by shortening the sample window. 
28 The first tick size change is June 24, 1997 to sixteenth.  Decimalization was implemented between August, 
2000 and January, 2001. 
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adverse selection costs for a given security.  Hence, I use stock volatility multiplied by the 

average holding horizon for the given stock (estimated by the total trading time for the day 

divided by the number of transactions).  This resembles the measure proposed by Stoll (1978).  

For order processing costs, I use inverse trading volume.  Finally, in this specification, surprise 

option volume enters as a multiplicative term, since it is incorporated in the time varying 

coefficients of the inventory cost/adverse selection variable.  This is a more direct test of whether 

the adverse selection component of the spread decreases when surprise option volume is high.  

The results are reported in Table 2.11.   

 The impact of surprise option volume is non-positive for the majority of the sample.  In 

terms of statistical significance, approximately 37% of the option volume coefficients are 

significantly negative; the majority however is indistinguishable from 0.  The model has obvious 

weaknesses, but overall, the results suggest that option trading can have an important impact on 

the stock’s spread.  Moreover, the estimated option volume – spot volatility coefficients from 

Section 4.1 above are strongly negatively related to the estimated impact of surprise option 

volume on stock spreads, with the correlation coefficient equaling -0.68.  The average R-squared 

of these regressions is 0.35, while the median is 0.34.      

 

5.  Robustness Results  

 

5.1 Changes in Volume Decomposition 

I use alternative methods to arrive at the expected and unexpected components of option 

volume.  These methods are described below.  When I use these alternative definitions, the cross-

sectional distribution of the time-series coefficients is qualitatively unchanged.  
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Table 2.11.  Stock Spreads and Option Volume 

The table summarizes the results from the individual time -series regressions in which the dependent 
variable is the relative effective spread (at the daily frequency).  The model is described by the following 
equation: 

 
Effectivespreadt =  b0+(b1+b2⋅optionvolume t)⋅adverseselectiont+b3⋅orderprocessing t +∑ibidays-of-the-weekt 
+b8⋅holidayt +b9⋅sixteentht +b10⋅decimalst + time-series adjustments + et 

 
Option volume is represented by the unexpected component of option volume from the VAR above.  For 
adverse selection costs, I use stock volatility multiplied by the average holding horizon for the given stock 
(estimated by the total trading time for the day divided by the number of transactions).  This resembles the 
measure proposed by Stoll (1978).  For order processing costs, I use inverse trading volume.   For each 
explanatory variable, the table indicates the percent of coefficient estimates that are positive (in the first 
column) and negative (second column).  In parentheses, the first column contains the percent of estimates 
that are positive and significant, while the second column shows the percent of negative and significant 
values. 

 

 + - 
  (+ and sig.) (- and sig.) 
Adverse Selection (A.S.) 94.77% 5.23% 
 (73.59%) (0.24%) 

A.S.xSurprise OV 22.95% 77.05% 
 (7.81%) (37.46%) 

Order processing 28.99% 71.01% 
 (7.97%) (41.87%) 

Mon 46.14% 53.86% 
 (5.72%) (9.66%) 

Tue 46.86% 53.14% 
 (8.29%) (11.03) 

Thu 51.77% 48.23% 
 (7.41%) (6.44%) 

Fri 49.44% 50.56% 
 (4.35%) (7.57%) 

Holiday 40.18% 59.82% 
 (3.70%) (3.54%) 

Tick1 19.32% 80.68% 
 (9.58%) (71.58%) 

Tick2 6.28% 93.72% 
  (1.85%) (86.39%) 
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5.1.1. Percentage Change in Volume 

Since volume time-series are very sensitive to the choice of the detrending method (Lo 

and Wang (2000)), I also estimate the joint dynamics of percentage changes in spot and option 

volume.  Measuring volume in percentage changes avoids the problem of volume growth over 

time.  

 When spot and option volume are measured in percentage changes, the explanatory 

power of the univariate models drop significantly.  The average adjusted R2 in the spot equation 

is 5.68%, while the 99th (75th) percentile is 17.51% (8.20%).  For the univariate option equation, 

the mean adjusted R2 is 1.02%, while the 99th (75th) percentile is 17.41% (1.99%).  When 

contemporaneous and lagged percent change in spot volume is included in the option equation, 

the average adjusted R2 increases to 8.87%, with a 99th (75th) percentile of 62.01% (12.45%).  

This indicates that while spot volume is an important determinant of option trading, variation in 

option trading intensity remains largely unexplained. 

 

5.1.2.  The Role of Market-Wide Trading 

Tkac (1999) and Lo and Wang (2000) uncover a factor structure in spot volume and 

argue that an adjustment to market volume is required when filtering the individual volume 

series.  I use relative market capitalization weighted total volume for the stocks and options in my 

sample to proxy for market-wide trading activity.  As before, I use an asymmetric model and only 

include the stock market volume variable in the individual spot equations, while I include both 

the option and the spot market proxies in the option volume equations.   

 The mean (median) adjusted R2 in the spot equation increases to 53.71% (53.07%) once 

market-wide volume is added as an explanatory variable.  In 83.49% of the sample, market 

volume is a significant (positive) determinant of individual stock volume at least at the 10% level.  

Interestingly, for the option equations, market-wide trading activity does not play an important 

role.  Stock market volume has a significant impact on option trading only in 18.24% of the 
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sample.  The corresponding proportion for market-wide option volume is 0.00%.  This lack of 

importance is also reflected in the adjusted R2’s, which decrease slightly when the market volume 

variables are included in the analyses.  The mean (median) adjusted R2 in this case is 44.03% 

(42.99%). 

 

5.2 Changes in Model Specifications 

For robustness, first, I estimate several time-series models to determine the expected and 

unexpected volume components.  These include the symmetric and asymmetric VAR models 

discussed above.  Second, I re-estimate the system with a contemporaneous and lagged equity 

returns in both equations for the following reasons.  Firstly, option volume may reflect 

adjustments to hedge positions due to changes in the underlying stock price.  This would imply 

that stock price changes (i.e., volatility) are naturally accompanied by option trading.  By 

including return information in the option volume equations, I address the concern that surprise 

volume captures this hedging response.  Secondly, stock volume may also reflect program trading 

induced by recent performance.  Feedback traders increase spot volume in response to changes in 

the stock price.  Just as in the case of hedgers in the option market, larger price changes may trip 

more trade indicators and are associated with more spot trading.  The inclusion of return 

information does not alter the results. 

 Third, to address the issue that traders hedge more in volatile periods, that is, the hedging 

induced relation between option and spot volume is time-varying, I re-estimate the VAR models 

with time-varying parameters for the spot volume terms in the option equation.  I allow these 

parameters to be functions of lagged return volatility.  Alternatively, I use the model proposed in 

Bessembinder and Seguin (1993), which sequentially estimates the dynamics of return, trading 

activity, and volatility.  In the sequential estimation steps, trading activity is regressed on past 

volatility, time-series terms, and calendar day variables.  The residual trading activity from this 

regression is then used in the volatility equation.   
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Fourth, I extend Model 1 to include a GARCH-M specification, which is similar in spirit 

to Model 2, and an EGARCH structure, which allows for an asymmetric response in volatility. 

Fifth, in the cross-sectional analyses, I include an explanatory variable that measures how 

heavily the coefficient estimates are based on the stock market boom period.  This is because 

cross-market ties may differ across the tech boom period and during the early years of 2000.  

Also, as robustness check, I re-estimate the cross sectional tests on a restricted sample which only 

includes stocks with the most liquid option markets. 

Finally, it is important to note that non-synchronicity in market closings is not likely to be 

a problem in the analyses.  This issue was a serious concern in earlier studies, however, 

exchanges adopted changes in their hours of operation and during most of the sample period 

considered here, stock exchanges close at 4:00 p.m. E.T. while equity option trading ends at 4:02 

p.m. E.T.  For instance, the CBOE changed its closing time from 4:10 p.m. to 4:02 p.m. on June 

26, 1997.  Index options remain open until 4:15 p.m. but those are not included in the analyses.  

Though market closings are nearly simultaneous, non-synchronicity arises when one of the 

markets is stale, for instance, when trading stops early in the day, while the other market remains 

active until the closings.  Llorente et al. (2002) use the last quote’s midpoint of the day to address 

this issue based on the argument that market makers posting the quotes are likely to incorporate 

all available information to avoid offering the market a free option.  I also use a sub-sample of the 

most liquid stock and option markets to address this concern. 

 

6.  Conclusion 

This paper extends the volume-volatility literature by documenting a positive correlation 

between surprise option volume and stock volatility.  I also find that the relation is statistically 

significant for the majority of the stocks.   

 In the stock market, the commonly accepted explanation for the volume-volatility relation 

is the Mixture of Distribution Hypothesis (MDH).  The MDH suggests that both surprise stock 
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volume and stock volatility are driven by the underlying directing process of information arrival; 

hence, they are contemporaneously correlated.  Since many recent papers find evidence of 

informed trading in the option market, it is reasonable to conjecture that the option volume-stock 

volatility relation may also be driven by information arrival.  The paper provides two pieces of 

suggestive, though not conclusive, evidence that this may indeed be the case.   

 First, in cross-sectional tests, I find that the volume-volatility relations are closely related 

to the information environment surrounding the individual securities, as well as to the relative 

liquidity of the option market.  In other words , the latter indicates that the time-series results are 

strongest for stocks for which conditions in the option market allow informed traders to hide so 

that their order flow does not immediately reveal their private information.  

Second, the analysis of stock spreads finds that they are non-positively related to surprise 

option volume, and in many cases the association is significantly negative.  This result is 

consistent with the hypothesis that, when informed traders choose the option market, rather than 

the stock market (as reflected in the surprise component of option volume), the stock market 

maker’s adverse selection costs decrease. 
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Appendix 2.1 

Table 2.12.  Variable  Description 

Variables Explanation 

Analyst coverage 
A proxy for attention/asymmetric information.  Obtained from 
IBES 

Institutional Holdings 
A proxy for attention/asymmetric information.  Obtained from 
Thomson Financial 

Volatility of analyst 
coverage 

A proxy for uncertainty/asymmetric information.  Obtained from 
IBES 

Relative spread 

A proxy for relative liquidity/how attractive the option market is 
for informed trading.  Represented by the ratio of the spread in the 
option market (trade weighted across the contracts) and the spread 
in the stock market (trade weighted, based on TAQ).  Obtained 
from Optionmetrics and the Market Microstructure Database 

Relative spread volatilities 

A proxy for changes in relative liquidity/uncertainty.  Represented 
by the ratio of the standard deviation of the spread in the option 
market (trade weighted across the contracts) and the spread in the 
stock market (trade weighted, based on TAQ).  Obtained from 
Optionmetrics and the Market Microstructure Database 

CGM information share 

A proxy for the amount of informed trading in the option market.  
Represented by the lower bound of the information share estimate 
from Chakravarty et al. (2004) for the relevant subsample of 
stocks. 

Relative size of the option 
market 

A proxy for the suitability of the option market for informed 
trade/relative liquidity/attention.  Represented by the dollar open 
interest divided by the market capitalization of the stock.  
Obtained from the Market Microstructure Database and CRSP 

  

For both the relative size and the relative spread measure, alternative definitions were also tested 
(such as the ratio of total volumes and the ratio of option spread to effective stock spread, 
respectively).  Also the CGM information share was alternatively defined as the upper bound, as 
well as the average of the upper and lower bounds.  These alternative definitions do not affect the 
results reported in Table 2.10 above. 
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Appendix 2.2 

Single stock futures resumed trading on November 11, 2002.  Since the equity futures 

market provides a new venue for traders of the underlying stock, the listing of single stock futures 

may (should) alter the dynamic relation between the spot and the option market.  To estimate the 

effect of single stock listings, I collect information on stocks with single stock futures that are 

listed prior to March, 2004.  This allows for a post listing sample length of at least ten months.  

When a stock is listed on both ONE and NQLX, I use the earlier listing day.  I eliminate stocks 

for which not enough pre- and post-listing data points are available using the ten month criteria 

above for both sub-periods.  The remaining sample contains 99 stocks.  The inquiry is closely 

related to Bessembinder and Seguin (1992), who study the introduction of index futures on the 

dynamic relation between index volatilities and trading volume.  I follow Bessembinder and 

Seguin when estimating the effect of single stock futures on the option volume – stock volatility 

relation and allow the option and spot volume slope coefficients to differ across the pre- and post-

listing periods in the variance equation.  Table 2.11 reports the results.  The table indicates weak 

evidence that the listing of single stock futures decreases the association between spot volume 

and volatility as well as option volume and volatility.  The effect is least ambiguous for the spot 

volume coefficients, which are significantly lower for 46.46% of the stocks after the introduction 

of the corresponding single stock futures.  However, in 13.13% of the cases, the spot volume 

coefficient increases in the post-listing period.  The corresponding results are 29.29% and 7.07% 

for option volume, respectively.    The weak effect is surprising since equity futures provide new 

opportunities for both informed traders and hedgers. This may imply that during the first two 

years of its launch, the equity futures market was not fully integrated into the joint market 

environment and the observed futures transactions mostly reflect the support activities of the 

futures market makers.  However, it is also consistent with the view that the single stock futures 

market has not been a success for the exchanges in general.  In addition, the listing date may 
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coincide with other events, which cause an unrelated regime switch for the securities so that tests 

of this nature have to be interpreted with caution.  

 

Table 2.13.  The Effect of Single Stock Futures Listings 
 
The table reports the estimation results from a modified Model (3), which incorporates the listing dates of 
individual single stock futures for a sample 99 stocks.  In particular, I follow Bessembinder and Seguin 
(1992) and allow the option and spot volume slope coefficients to differ across the pre- and post-listing 
periods in the variance equation. 
 

        
 Mean %Significant 
    + - 
Unexpected Option Volume 0.007 96.97%  
Unexpected Option Volume*ISSF listed -0.002 7.07% 29.29% 
    
Unexpected Spot Volume 0.008 100%  
Unexpected Spot Volume*ISSF listed -0.001 13.13% 46.46% 
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CHAPTER III 

 

LIQUIDITY AND THE RISK-RETURN TRADEOFF 

 

1. Introduction 

   The aim of this paper is to reexamine the intertemporal relation between risk and return.  

An ongoing debate in asset pricing focuses on this empirical tradeoff (see, most recently, Pastor 

et al. (2006)).  Traditional theoretical pricing models imply that the market risk premium and the 

conditional market variance are positively correlated; however, empirical studies fail to establish 

the hypothesized results.  Since the market portfolio occupies a central role in finance theory, 

with this lack of empirical support, the puzzle remains an important research question.  

Early empirical findings suggest positive and negative risk-return relations with equal 

frequency.29  More recently, many studies argue that the empirical inconsistency may arise from 

the mismeasurement of the conditional mean (Pastor et al. (2006) and Brandt and Kang (2004)), 

or the conditional variance (Harvey (2001), Brandt and Kang (2004), Bali and Peng (2004), and 

Ghysels, Santa-Clara, and Valkanov (2005)).  Yet others believe that single -factor tests are 

misspecified, and use two-factor models to account for investors’ hedging demands due to 

changes in the investment opportunity set.  Hence; they include an additional, ‘omitted’ variable 

in the specification along with the market’s variance.  The additional variable represents the 

covariance of the state variable with the market return (see, for instance, Scruggs (1998) and Guo 

and Whitelaw (2005)).   

The contribution of this paper is to consider the role of liquidity.  If investors’ true 

pricing model incorporates liquidity risk, tests of the risk–return tradeoff must also account for it.  

                                                 
29 For instance, see Campbell and Hentschel (1992) and French, Schwert, and Stambaugh (1987) for 
evidence on a positive,  Pagan and Hong (1991), Breen, Glosten, and Jagannathan (1989), Glosten, 
Jagannathan, and Runkle (1993), and Nelson (1991) for negative, and Chan, Karolyi, and Stulz (1992) and 
Baillie and DeGennaro (1990) for an insignificant risk-return tradeoff. 
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The proposed empirical tests are not a mere change of the state variable in the ICAPM sense.  

Hence; they differ from empirical models derived from two-factor models, such as Scruggs 

(1998).  This is because liquidity risk in my tests originates from the liquidity adjusted CAPM of 

Acharya and Pedersen (2005).  The liquidity adjusted CAPM divides systematic risk into market 

risk (conditional variance) and liquidity risk components.  Interestingly, in the liquidity risk 

component, the volatility of liquidity matters as well, not just its covariance with the market 

return.  This is different from Merton’s (1973) ICAPM equilibrium equation, where the sole 

influence of the state variable is through its covariance with the market return.  Furthermore, the 

choice of the underlying theoretical model (and the subsequent empirical specification) is not 

arbitrary.  Due to the strong, overlapping relation between liquidity and transaction costs, the 

traditional solution to the ICAPM does not exist with liquidity as a state variable, and thus, it 

cannot be utilized as the underlying model of the empirical tests.30  Although my tests are solely 

driven by this consideration, an additional advantage when compared to the ICAPM-based two 

factor risk-return approach is that the two factor models have frequently been criticized for the ad 

hoc choice of the state variables.   

The study of liquidity in asset pricing is relatively new.   Results on commonality in 

liquidity (Chordia et al. (2001), Huberman and Halka (2001), and Hasbrouck and Seppi (2001)) 

or the existence of a systematic liquidity factor (Pastor and Stambaugh (2003) and Sadka (2003)) 

provide support for the role of liquidity in pricing.  Moreover, Acharya and Pedersen (2005)’s 

liquidity adjusted CAPM implies a role for liquidity in the risk-return tradeoff.  Unlike in the 

empirical part of Acharya and Pedersen, but as in other studies of the behavior of risk and return, 

the aim here is to explore the time-series connection between expected returns and market, as 

well as liquidity risk.  Thus, the paper is silent on whether the risk is priced cross-sectionally, 

although undoubtedly the issues are closely related.   

Two main specifications are employed in the study.  First, I examine the relation between 
                                                 
30 I’d like to thank Anthony Lynch for an insightful discussion on the issue. 
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daily net-of-illiquidity-costs excess market returns and the total systematic risk, approximated by 

the variance of net-of-illiquidity-costs excess returns.  Based on arguments identical to those that 

apply to the traditional CAPM, the liquidity adjusted CAPM implies a positive relation between 

expected net returns and conditional net return variance in the time-series context.  I use the 

generalized autoregressive conditional heteroskedasticity (GARCH) framework with daily 

observations between January 2, 1973 and August 31, 2004 in the empirical tests, and confirm the 

positive relation.   

The second specification explores the individual components of systematic risk.  I 

decompose total systematic risk (or net-of-illiquidity-costs return variance) into the variance of 

gross returns, the covariance between gross returns and illiquidity costs, and the variance of 

illiquidity costs.  I use univariate, as well as multivariate GARCH models to estimate this later 

specification.  Since the univariate model specifies the dynamics of excess return (but not that of 

liquidity), it only allows for estimating the conditional return variance within the system, but not 

the liquidity risk components.  Therefore, I estimate the liquidity risk components (i.e., the 

volatility of liquidity and the covariance between return and liquidity) prior to running the 

GARCH filters.  I use daily data and calculate these quantities at the monthly frequency.  As a 

result, the univariate GARCH tests are based on monthly data from January, 1973 to August, 

2004.  Since conditional asset pricing results pertain to ex ante  variances and covariances, I use 

lagged liquidity variance and covariance measures, as has been suggested in the literature.   

In the multivariate system, I model the dynamics of excess return and liquidity jointly, 

and as a result, ex ante values of their variances and the covariance are estimated within the 

system, and are passed through as latent.  Since I do not have to calculate the variances and the 

covariance prior to estimating the GARCH model, multivariate tests are based on daily data.  In 

both the univariate and multivariate tests, results confirm ties between liquidity risk and expected 

returns in the intertemporal setting.  Excess market return is positively related to conditional 

liquidity volatility, and negatively related to the covariance between returns and liquidity.  
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Furthermore, in all cases, the positive relation between conditional return variance and excess 

return is restored once liquidity is included in the tests.    

To confirm the main results of the paper, I employ the following robustness checks.  

First, I examine the sensitivity of the tests to changes in the calculation of liquidity, outliers in 

return, and adjustments for the investors’ investment horizon.  In addition, I use two different 

methods for calculating the monthly liquidity risk components for the univariate GARCH tests.  I 

also examine whether the results differ across the different tick size regimes.  

Finally, I investigate the possibility that liquidity risk proxies for idiosyncratic risk.  

Idiosyncratic volatility has been in the center of research recently with emphases on explaining 

observed time-series patterns (Campbell et al. (2001)) and determining whether idiosyncratic 

volatility matters for asset prices.  The questions whether and to what extent idiosyncratic 

volatility and liquidity interact with each other have also been raised in recent studies.  For 

instance, a new finding suggests that idiosyncratic volatility may dominate liquidity risk in cross-

sectional tests (Spiegel and Wang (2005)).  A theoretical link between liquidity and idiosyncratic 

volatility, through the market maker’s inventory, has been suggested in Ho and Stoll (1980).  

Another possible connection results if illiquidity causes sub-optimal portfolio diversification, 

leaving the investors exposed to idiosyncratic risk.  I use residuals from the Fama-French model 

with momentum to calculate the average idiosyncratic risk in the market.             

The plan of the paper is as follows.  Section 2 reviews the relevant literature.  Section 3 

describes the modeling framework.  Section 4 introduces the data and calls attention to some of 

the empirical difficulties and restrictions.  Section 5 and Section 6 provide the main results of the 

risk-return tests and the robustness analyses, respectively.  Section 7 concludes.    
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2. Review of the literature  

 

2.1  Risk-return tradeoff 

Relevant theoretical models begin with Sharpe (1964) and Litner (1965).  These papers 

directly relate the change in the price of the asset to its own variance or to the covariance between 

its return and the return on the market portfolio.  Hence; for the market portfolio, they imply a 

simple positive linear relation between expected excess returns and the conditional variance.  

Merton’s (1973)  ICAPM implies a partial positive relation, since in this model, in addition to its 

conditional variance, the conditional excess return is also a linear function of its covariance with 

the investment opportunity set.  Merton (1980) argues that under certain conditions, the 

covariance term (the hedge component) is negligible. 

Harvey (1989) tests a version of the CAPM that allows for time-varying expected returns 

and time-varying conditional variances, and finds a positive contemporaneous relation between 

risk and return.  A positive tradeoff is also supported in Campbell and Hentschel (1992) and 

French, Schwert, and Stambaugh (1987).  Baillie and DeGennaro (1990) estimate a GARCH-M 

model and find that the risk-return relation is not significant.   

Glosten, Jagannathan, and Runkle (1993) use a GARCH-M model that allows for 

seasonal patterns in volatility, differences in the impact of positive and negative innovations to 

returns, and allows nominal interest rates to predict the conditional variance.  The paper reports a 

negative relation, but argues that the result does not invalidate the static theoretical models.  This 

is because the cross-sectional prediction that risk adjusted return is equalized across securities 

does not necessarily imply an intertemporal relation.  The risk-return tradeoff may not be positive 

if, for instance, the compensation investors require for risk is different in different time periods,31 

                                                 
31  The GJR argument is that the risk adjusted returns can be equal across assets in each period, yet the 
market variance in period 1 is larger than in period 2 while the required return is smaller in period 1 than in 
period 2.  Thus, investors require less compensation in period 1 to bare market risk.  However, one problem 
with this argument is that this implies that ‘everything stays the same’ does not hold.  That is, it must be 
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or if investors save more when the future is more uncertain.  Pagan and Hong (1991), Breen, 

Glosten, and Jagannathan (1989), and Nelson (1991) also arrive at a negative coefficient. 

Scruggs (1998) believes that empirical tests based on the conditional single -factor model 

may suffer from the omitted variable bias, if the covariance term in the ICAPM is not negligible.  

He suggests that the omitted variable bias could explain why empirical studies provide 

inconsistent results for the intertemporal relation.  Scruggs uses long-term government bond 

returns as the second factor (or state variable) to proxy for the investment opportunity set.  The 

inclusion of this second factor restores the positive (and significant) relation between the 

conditional market variance and the market risk premium.  Guo (2003) argues however, that long-

term government bond returns is an ad hoc state variable.  In addition, Scruggs and Glabadanidis 

(2000) find that the original results are sensitive to the specification.   

Goyal and Santa-Clara (2003) revisit the risk-return tradeoff by examining the role of 

idiosyncratic risk.  This is implied by, for instance, Levy (1978), Malkiel and Xu (2001), and 

Huberman (2001), who suggest that investors may hold undiversified portfolios.  Goyal and 

Santa-Clara find that idiosyncratic, rather than systematic risk matters, and uncover a positive, 

significant relation between the market’s excess return and average stock variance.  However, 

Wei and Zhang (2005) argue that the results are driven by the market’s behavior in the 1990s.  

Many studies argue that the inconsistency in this literature arises from the latent feature 

of the expected return and the market variance. Pastor et al. (2006) suggest using implied cost of 

capital for the conditional expected return.  Harvey (2001) and Ghysels, Santa-Clara, and 

Valkanov (2005) concentrate on measuring the conditional variance.  Bali and Peng (2004) use 

intraday data for estimating daily variances.  Brandt and Kang (2004) propose a latent VAR, in 

which both the return and the variance series are left unobserved.  

                                                                                                                                                 
that the state of the world between the two periods is different.  Therefore a simple test of the relation 
between the market risk premium and the market variance is not correct due to an omitted variable problem 
since the other risk sources or state variables are not accounted for under this setting. 
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 This paper reexamines the intertemporal relation between risk and return by 

incorporating the idea of liquidity risk.  It provides a connection to single factor models, since the 

only ‘state variable’ is the net-of-illiquidity-cost return variance.  Although the multifactor 

structure is not adopted, Scruggs’s (1998) argument on the omitted variable bias remains relevant 

in tests where the total systematic risk is decomposed into market risk and liquidity risk.  In these 

instances, the relation between gross excess return and the conditional return variance is a partial 

relation.  I also address the latent feature of the conditional variance and covariance measures. 

 

2.2   Liquidity premium and liquidity risk premium  

When the cost of transacting is different across securities, the expected returns are 

different as well.  This is a simple consequence of the discounted present value argument.32  

Therefore, a liquidity premium exists for illiquid assets even if liquidity has no impact on the risk 

of holding the assets (i.e., has no liquidity risk premium).  Constantinides (1986) shows that 

transaction costs have a second order effect on investor utility.  The result reflects the intuition 

that investors will trade less frequently if transaction costs are introduced.  Other studies, such as 

Heaton and Lucas (1996), Aiyagari and Gertler (1991), Vayanos (1998) and Vayanos and Vila 

(1999) also conclude that investors should reduce their trading in the illiquid assets and require a 

small liquidity premium. 33   

While the transaction cost argument predicts that investors only require a small liquidity 

premium, empirical studies find significant differences in expected return across portfolios with 

                                                 
32 Illiquid assets generate higher pre-transaction cost expected returns because the price of the illiquid asset 
is equivalent to the price of the liquid asset adjusted for the present discounted value of the transaction 
costs.   
33 Another possible attack on the importance of liquidity in asset pricing may come from the argument that 
investors holding liquid and illiquid assets simultaneously could avoid liquidating illiquid securities during 
a wealth shock.  The issue is closely related to the frequency of trading in the illiquid asset mentioned 
above.  However, this strategy seems viable only with small and short-lived wealth shocks.  In addition, 
changes in the relative prices of the assets in the investor's portfolio may call for a specific portfolio 
rebalancing scheme that is different from the liquid-first illiquid-last method.  Similarly, liquidating illiquid 
securities earlier to maintain a buffer of cash or liquid assets may not result in an optimal rebalancing rule.  
In addition, Duffie and Ziegler (2001) argue that while the strategy appears to be effective, it will fail when 
asset returns and bid-ask spreads are fat-tailed. 



 103 

differing liquidity.  For instance, Brennan and Subrahmanyam (1996) report a 6.6% annual spread 

in excess returns across the low-lambda (low price impact) and the high-lambda portfolios.  In an 

early study connecting asset pricing and market microstructure, Amihud and Mendelson (1986) 

find that required returns are positively and concavely related to relative spreads.  In addition, 

they identify a clientele effect which states that in equilibrium assets with larger spreads are held 

by investors with longer investment horizons.  Chordia, Roll, and Subrahmanyam (2001), 

Huberman and Halka (2001) and Hasbrouck and Seppi (2001) find commonalities in liquidity.  

The presence of commonalities offers a natural connection to asset pricing.  Pastor and 

Stambaugh (2003) explore whether market-wide liquidity is a state variable in pricing financial 

assets, and report that stocks whose return sensitivity to signed volume is higher have 

significantly higher expected returns.   

To eliminate the inconsistency between theory and empirical findings, Lynch and Tan 

(2005) investigate the role of immediacy costs under assumptions of return predictability, wealth 

shocks, and stochastic transaction costs.  Simulations show that these modeling assumptions can 

generate a liquidity risk premium which is significantly higher than the liquidity premium implied 

by the transaction cost literature.  Huang (2003) assumes that investors face surprise liquidity 

shocks and they are constrained from borrowing against future income.  As a result, the required 

liquidity risk premium is dependent on the expected length of the investment horizon as well as 

on the random nature of the horizon (uncertainty).   

Stochastic liquidity is not necessary nor is it sufficient for liquidity risk premium to exist.  

For instance, liquidity risk premium can arise even when illiquidity costs are constant.  Vayanos 

(2003)  proposes an equilibrium model with stochastic volatility, assets with differing liquidity, 

and constant transaction costs.  The model generates a flight to liquidity phenomenon and, 

consequently, the liquidity risk premium varies over time.  Under turbulent market conditions, 

since investors prefer liquid securities, the price of liquid assets is bid up while the required return 

on illiquid assets that would induce fund managers to hold the security increases significantly.  
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Market microstructure studies weigh in on the role of liquidity in asset pricing as well.  

Stoll (2000) mentions that the order processing and inventory components of immediacy costs 

must be priced as they represent real economic costs: real resources are used to provide the 

market making services.  However, the question whether the adverse selection component 

influences an asset's price is less clear since this only represents a wealth redistribution, thus no 

real costs are incurred.   Similarly, O'Hara (2003) acknowledges that liquidity should affect asset 

prices since it is a tax-like cost borne by investors.  However, whether liquidity can affect the risk 

of holding an asset is not obvious.  O'Hara argues that for liquidity to affect the risk of holding an 

asset, that is, to induce a liquidity risk premium it would "have to be time varying, or at least be 

systematic in some sense (p. 1339)."  O’Hara believes that the price discovery process may affect 

the risk of holding an asset.  The question becomes whether the uninformed can diversify away 

the risk of losing against an informed trader. 

In order to formally incorporate liquidity in asset pricing models, Jacoby et al. (2000) and 

Acharya and Pedersen (2005) derive liquidity adjusted CAPM’s.  The liquidity adjusted CAPM 

implies a testing framework for the risk-return tradeoff with liquidity risk.  In this paper, I rely on 

the Acharya and Pedersen model to design the empirical tests.  The Acharya and Pedersen model 

is described in more detail in the next section.     

 

3.  Modeling framework 

The paper explores the role of liquidity risk in the intertemporal risk-return context, 

motivated by the Acharya and Pedersen (2005) model.  In this section, I describe the Acharya and 

Pedersen model in detail and highlight the main results.  The empirical design in this paper is 

based on these main results and is discussed in Section 2.3. 

   

3.1 Theoretical predictions  

Acharya and Pedersen (AP) (2005) use the assumptions of the single period CAPM to 
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derive the liquidity based pricing model.  Liquidity risk in their paper is generated by uncertainty 

about the illiquidity cost.  Under this framework, illiquidity cost ( i
tC ), defined as the per share 

cost of selling the security, is an exogenous stochastic process, described by a first order 

autoregressive model.  i
tP  is the price process of the ith security and i

tc   represents the relative 

illiquidity cost: 
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The AP model derives the following CAPM result for the net-of-illiquidity-cost returns: 
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tc ) are the return and relative illiquidity cost of asset i (the market 

portfolio) at time t respectively, fr  represents the risk-free rate, and 1−tλ  describes the market 

price of risk: 
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In addition to the standard CAPM prediction for net (of illiquidity costs) returns, the AP model is 

represented by the following equation in terms of gross excess returns:   
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This is the conditional liquidity adjusted CAPM.  Three important results arise from (4), which 

could be viewed as forms of liquidity risk.  First, investors demand higher returns on assets that 

are illiquid when market liquidity is low.  Second, investors are willing to pay more (accept lower 

returns) on assets that are liquid when the market is down.  Third, investors’ demand is greater for 

securities that have higher returns when the market is illiquid.  The study also finds support for 

persistence in illiquidity.  Thus, unexpected shocks to illiquidity raise the expected future 

illiquidity and thus, raise expected returns by lowering contemporaneous prices (and returns).   

For the market portfolio, liqudity risk collapses into the variance of market illiquidity and 

the covariance of illiquidity and returns.  The model maintains the CAPM framework in that 

investors’ marginal utility is only dependent on wealth, but here, wealth is determined by the net 

of transaction cost returns on the wealth portfolio, that is, net market returns play the role of the 

single state variable.  Thus, the crucial argument of the paper is that true systematic risk comes 

from net returns rather than from gross returns.   

Similarly to the traditional CAPM, the liquidity adjusted model implies a positive 

relationship between net expected returns and the variance of net returns intertemporally.  When 

the net return variance is decomposed into a traditional market risk component and liquidity risk, 

as in the four beta representation above, the intertemporal relation between the conditional excess 

return and the individual components is a partial relation.  Empirical tests of the resulting risk-

return tradeoff are discussed in Section 2.3 below.   

 

3.2 ICAPM and the role of liquidity in asset pricing 

One might think of the two-factor model of Merton (1973) as an alternative theoretical 

framework for incorporating liquidity in asset pricing tests.  In the CAPM, investment 

opportunities can change over time but the investors’ utility is fully determined by wealth and the 

derived utility of wealth is state independent.  The two-factor model introduces state dependence 
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in the marginal utility of wealth.  Many studies adopt the ICAPM equilibrium condition34 with 

numerous alternative candidates for the state variable.  Recent papers often label liquidity as a 

state variable (for instance, Pastor and Stambaugh (2003)). 

One difficulty in using liquidity as a state variable in the ICAPM is that the derivation of 

the ICAPM does not account for the possibility of trading costs.  Nor does it incorporate 

information on the investor’s trading horizon or which assets in the portfolio are traded in order to 

meet consumption needs and, at the same time, optimize between liquidation strategies by 

considering the liquidity characteristics of the alternative assets at a given point in time.  In other 

words, the ICAPM applies for arbitrary state variables with the assumption of no frictions.  

Unfortunately, when liquidity is chosen as a state variable, it explicitly introduces friction in the 

modeling framework since the notion of illiquidity is inconsistent with a frictionless world.  As a 

result, the equilibrium equation cannot be considered valid in this setting.  Because of this 

conceptual difficulty and the lack of theoretical support in the form of multi-period liquidity 

adjusted asset pricing, the ICAPM framework is not adopted in this study. 

 In comparison, Acharya and Pedersen (2005) explicitly model the effect of stochastic 

trading costs on asset prices.  The next subsection introduces the empirical models based on the 

AP framework.  

 

3.3  Empirical specifications  

In this paper, the empirical tests of the risk-return tradeoff with liquidity rely on 

equations (2) and (4) above.  Since a large literature argues that the conditional second moment of 
                                                 
34The equilibrium equation of the conditional Intertemporal Capital Asset Pricing Model (ICAPM) is given 
by the following:  
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, tMσ ) as well as the conditional covariance between the returns and the state variable that drives 

changes in the investment opportunity set (
tMX ,σ ).     
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asset returns follows a GARCH-type process,35 I estimate the empirical counterparts of (2) and 

(4) as GARCH models.  Along with a univariate model, which specifies the dynamics of return 

volatility, I also use a multivariate model.  The multivariate model allows me to specify the 

dynamics of each conditional second moment, that is, the dynamics of liquidity volatility and the 

covariance between return and liquidity as well.  This is motivated by Watanabe (2006), who 

argues that liquidity also follows a GARCH-type process.   

For simplicity, in this section, the empirical models are specified as GARCH(1,1).  In the 

empirical analyses, lag-length is determined by the Akaike information criterion, and the tests 

also accommodate asymmetries in volatility response to positive and negative shocks.  These are 

discussed in Section 4 below. 

 

3.3.1 Univariate GARCH models 

Applying equation (2) above to the market portfolio, I use the following univariate 

system for net-of-illiquidity-cost market returns. 
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where N
tMr ,  is net market return (i.e., the market return minus the risk free rate and the illiquidity 

cost) and N
th  represents its conditional variance.   

For gross returns, as in equation (4) above, the conditional net second moment is 

disaggregated into three components: 

  

                                                 
35 Bollerslev, Chou, and Kroner (1992) provide a survey of the role of ARCH/GARCH-type models in 
finance. 
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where tMr ,  is the excess return on the market, 
th  represents the conditional market variance, 2

,tLσ  

is the conditional market liquidity variance, tML ,σ  is the conditional covariance between market 

return and liquidity, and cM,t is the expected liquidity cost (this was subtracted from the returns in 

(5)).   

The risk-return tradeoff refers to the relation between expected returns and ex ante 

measures of risk (such as ex ante variance).  In (5), the GARCH framework provides an ex ante 

measure of the net market return variance.  In (6), market volatility is the only risk measure that 

passes through the GARCH framework as latent.  The condit ional variance of liquidity and the 

covariance between liquidity and return have to be estimated from the sample prior to running the 

GARCH model.  To estimate these quantities, I use daily observations to arrive at the monthly 

frequency.  Monthly frequency is chosen in order to increase the signal to noise ratio.  First, I 

estimate the realized values of these risk measures based on the following formula first proposed 

by French et al. (1987) and shown for the return series: 
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where tMr ,  represents the market return on day t in month T.  I use non-overlapping daily values 

to calculate the monthly quantities.  Equation (7) captures the autocorrelation induced by non-

syncronous trading through the second term in the equation.  The variance of liquidity and the 

covariance term are calculated similarly, except the formula is adjusted for the non-zero mean.  
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As a robustness check, I also calculate these variance and covariance values using the built-in 

variance and covariance functions in SAS.    Realized variances and covariances include both an 

ex ante and unexpected components.  To proxy for the ex ante values, I follow Goyal and Santa-

Clara (2003), and use lagged values.   

 

3.3.2 The multivariate GARCH model 

The multivariate GARCH framework provides an alternative method for estimating ex 

ante risk measures.  It circumvents the initial estimation stage by passing all variance and 

covariance terms through as latent.  The multivariate model is specified as follows.   
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where tMr ,  is the excess return on the market, tMc ,  is a given measure of market liquidity, 2
,tMσ  

and 2
,tcσ  represent the conditional market return variance and liquidity variance respectively, and 

tMc ,σ   stands for the conditional market return and liquidity covariance.  The conditioning 

information set at time t-1 is denoted by 
1−Ω t
.  The model is estimated based on the restricted 
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BEKK36 of Engle and Kroner (1995), with diagonal coefficient matrices B and D, and a lower 

triangular C coefficient matrix.  The first equation of (8) describes the mean equation, that is, the 

joint dynamics of return and liquidity.  The second equation characterizes the distribution of the 

errors.  Finally, the third equation represents the intertemporal behavior of the variance-

covariance matrix (vech representation).  By construction, the positivity of Ht is automatically 

guaranteed if H0 ≥ 0 in the restricted BEKK model. 

Unlike (5) and (6), (8) captures the dynamics of liquidity as well.  Acharya and Pedersen 

(2005) advocate the idea of persistence in liquidity: illiquidity costs in their model follow an 

AR(1) process.  Thus, 1x  can be set to 1, −tMc .  Watanabe (2006) proposes a theoretical model cast 

in a multi-security trading framework in a Kyle (1985)-type centralized market with time-varying 

and conditionally heteroskedastic liquidity.  Watanabe conjectures that liquidity follows a 

GARCH-type process based on the empirical characteristics he observes.  Time-variation in the 

second moment of liquidity is also supported by the descriptive section of the paper discussed 

below.  In addition, the literature offers some insight into the relationship between volatility and 

liquidity.   

 

4.  Measures of liquidity and data sources 

 

4.1  Liquidity measures 

I use Amihud’s (2002) ILLIQ as the measure of liquidity in this paper, as in Acharya and 

Pedersen (2005).  ILLIQ is often used in asset pricing tests because it requires only return and 

volume data, therefore; it allows for a large sample size.  ILLIQ is first calculated for each 

individual security in the market portfolio, and is given by the following: 

                                                 
36 An early version of Engle and Kroner (1995) was written by Baba, Engle, Kraft and Kroner.  This 
explains the model’s acronym (BEKK). 
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where the superscript i indexes the ith security, t represents month t, d is day of the month, i
tdr  

and 
i

tdV  are the return and the dollar volume (in millions) of security i on day d in month t, 

respectively.  For tests based on daily observations, I simply calculate the ratio of absolute return 

and dollar volume for each security.  To arrive at the value- and equal-weighted market liquidity 

figures, I take value- and equal-weighted averages of the individual stock measures, respectively.  

I report results for both value- and equal-weighting for the market portfolio.  However, it is often 

argued that equal-weighting is more meaningful for liquidity studies.  This is because in a pure 

stock-based market portfolio proxy, some of the most illiquid assets of the true market portfolio, 

such as private equity, real estate, etc., are ignored.  Equal-weighting provides some 

compensation for this (see, for instance, Chordia et al. (2000) and Acharya and Pedersen (2005)).    

As discussed in AP, ILLIQ classifies a given security as illiquid, if its price moves 

significantly in response to small volume.  Moreover, ILLIQ is shown to be positively related to 

microstructure data based liquidity measures such as various spread measures or Kyle’s (1985) 

lambda (see, for instance, Amihud (2002)).  Since ILLIQ is not in the desired units of 

measurement, as it is expressed in “percent per dollar spent” (theoretical results in Acharya and 

Pedersen are based on “dollar cost per dollar spent”), AP suggest normalizing ILLIQ to address 

inflation (scaling by the ratio of the market capitalization of the market portfolio at the end of 

month t-1 and at the end of the first month of the sample period), and to transform the scaled 

ILLIQ so that its mean and standard deviation is approximately the same as those of the effective 

half spread reported in Chalmers and Kadlec (1998).  AP also caps the illiquidity measure at 30%.  

I follow their suggested normalization.  In addition, I also calculate simple winsorized values of 
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ILLIQ from (9) above.  In the tables below, the AP adjusted and the winsorized liquidity 

measures are represented by ‘ILLIQ(AP)’ and ‘ILLIQ(w),’ respectively.  Unfortunately, the 

liquidity adjusted CAPM is not general enough to accommodate the various other dimensions of 

liquidity (such as depth).37   

  

4.2  Data sources 

One important shortcoming in studying liquidity in an asset pricing context is the tradeoff 

between using a good proxy for the market portfolio and recognizing that the microstructure of 

the NYSE and Nasdaq are significantly different.  In this paper, I limit my sample to NYSE 

stocks.  This eliminates all concerns about microstructure differences, but increases the likelihood 

that my market proxy is not close to the true market portfolio. 38  This approach is commonly 

adopted in the literature however.  For instance, Glosten, Jagannathan, and Runkle (1993) also 

work with NYSE stocks to test the risk-return tradeoff for the market. 

To construct ILLIQ, I use daily data on all NYSE stocks from the Center for Research in 

Security Prices (CRSP) from January 1, 1973 to August 31, 2004.  The sample period provides 

7995 daily and 380 monthly observations.  I eliminate ADR’s, units, etc.: only observations with 

share codes 10 and 11 are retained.  I further require that the stock price is below $999 and that it 

is higher than $3.  Finally, only stocks for which at least 15 observations are available in a given 

month are included in the market portfolio in that month.  Figure 3.1 graphs the number of stocks 

in the market portfolio over time.  To calculate access returns, I use the risk-free interest rate 

reported with the Fama-French factors in Wharton Research and Data Services (WRDS).  This is 
                                                 
37 Though market liquidity is not directly observable, measurements along its various dimensions are 
readily available.  Liquidity is generally viewed as the ability to trade large numbers of shares in a short 
period of time with minimal price impact.  Kyle (1985) identifies the following characteristics of liquidity: 
1) tightness (reflected in the bid-ask spread); 2) depth; and 3) resiliency (the speed of return to 
equilibrium).  In the literature, several proxies are constructed based on the price, time, and size/quantity 
dimensions.   
 
38 Return on the NYSE portfolio in my sample is highly correlated with the CRSP market return 
(NYSE/AMEX/Nasdaq).  The correlation is 0.932 for the equally weighted, and 0.979 for the value 
weighted portfolios for 1973-2004 at the daily frequency. 
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the one month Treasury Bill rate. 

 

Figure 3.1.  Number of firms in the market portfolio 
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The figure shows the daily number of sample firms used in calculating the returns of the market portfolio 
from January 1, 1973 to August 31, 2004.  The sample is restricted to NYSE stocks with share codes of 10 
or 11, and requires at least 15 daily observations for a firm to be included in a given month.  Stocks with a 
share price of less than $3 and $1000 or above are also excluded. 
 

Two major reductions in the minimum tick size occurred recently in the markets.  As a 

first step towards decimalization, NYSE switched to quoting stock prices in sixteenths of a dollar 

on June 24, 1997.  The full decimalization was implemented in various steps on the NYSE 

between August 28, 2000 and January 29, 2001.  Several studies have discussed the effect of tick 

size reductions on liquidity measures and other microstructure variables.  For instance, Goldstein 

and Kavajecz (1998) find that spreads and depths decrease as a result of smaller tick sizes.  

Depths decrease as well since smaller tick sizes may discourage market makers and investors 

from providing liquidity.  For instance, limit orders become easier to be “picked up” by informed 

traders.  Furfine (2003) reports a similar finding after the decimalization.  In addition, he argues 
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that the price impact of trades has declined.  Smaller spreads along with smaller depths indicate 

an ambiguous change in liquidity as a result of decimalization.  Changes in the minimum 

requirements may introduce regimes in the time series of the liquidity variables utilized in this 

paper.  

 

4.3  Investment horizon 

A crucial issue in this study is the relation between the arbitrarily chosen holding period 

and investors’ true holding horizon.  For instance, net returns, the source of systematic risk in the 

liquidity adjusted CAPM, depend on this relation.  When a monthly buy-and-hold strategy is 

assumed, it is straightforward to calculate the gross returns from the daily return series.  However, 

most investors will not incur daily illiquidity costs, in fact, they may not trade in the given month 

at all.  As a result, the liquidity adjustment must depend on the frequency at which they trade, 

thus their true holding horizon.   

Acharya and Pedersen (2005) arrive at net returns by subtracting the product of illiquidity 

costs and turnover in the chosen holding period from the gross returns (for a sell transaction).  To 

illustrate, if daily data are available for returns and illiquidity cost, and the assumed holding 

period is a month, gross returns are the product of daily returns (based on simple returns) within 

the month, turnover is the total volume in the month divided by the average total number of 

shares outstanding, and the illiquidity cost is calculated as a daily average (not aggregated for the 

month).  The adjustment is based on the idea of the amortized spread proposed by Chalmers and 

Kadlec (1998).  The amortized spread measures the cost of the spread over the investors’ holding 

horizon, and takes the following form: 
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where 
tP  and 

tM  are the transaction price and the price midpoint at time t respectively, 
tV  

represents the volume, and TSO  measures the number of shares outstanding.   

 Unfortunately, the turnover adjusted ILLIQ only accounts for the average realized 

holding horizon of all investors.  Thus it may not provide an accurate representation of the 

marginal investor.  Nor does it capture some of the important implications of the stochastic 

horizon characterizing real-world portfolio holdings.  However, despite the weaknesses, it 

represents the most sensible way of adjusting for the holding horizon in the analyses.    

 

5.  Results  

 5.1  Descriptive results 

I calculate daily and monthly value- and equal-weighted return and liquidity series for the 

sample. Market return is expressed as a percentage, and is scaled by a 100.  Descriptive statistics 

of the equal- (EWRET) and value-weighted return (VWRET) series are reported in Table 3.1.  

For comparison, the table also provides information on the CRSP value- and equal-weighted 

market indices (NYSE/AMEX/Nasdaq) for the sample period.  In Panel B of the table, correlation 

coefficients based on daily observations reveal that the equal- and value-weighted return series 

from the NYSE sample used in this study are highly correlated with the corresponding CRSP 

market returns.  The table reports descriptive statistics for four subperiods based on decades.  For 

the entire sample period (1973-2004), the value-weighted returns display a correlation coefficient 

of 0.979, while the correlation equals 0.932 for the equal-weighted observations.  This illustrates 

that my sample may be as good a proxy for the market portfolio as the corresponding CRSP 

indices.  The table also provides information on total trading volume and shares outstanding.  
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Table 3.1.  Descriptive statistics of the equal- and value-weighted return series 
 
EWRET and VWRET denote the equal- and value-weighted market returns respectively.  For comparison, 
the table also provides information on the CRSP equal- and value-weighted return series (CRSP-EW and 
CRSP-VW) for the sample period.  Panel B describes correlation coefficients between the equal- and value-
weighted return indices and the market return of CRSP. 
 

Panel A Mean Std.Dev Minimum Maximum 
1970's (1973-1979)     
EWRET 0.0610 0.0221 -4.4330 5.2584 

VWRET 0.0442 0.0214 -3.5441 4.5965 

CRSP-EW 0.0686 0.0167 -3.9940 3.7960 

CRSP-VW 0.0198 0.0206 -3.4980 4.2640 

Total Vol 22802944  229115 6973000 86454800  

Total MktCap (in thousands) 22182715  66433  18150839  27968784  

     

1980's (1980-1989)     

EWRET 0.0846 0.0174 -14.5039  9.4717 

VWRET 0.0970 0.0198 -17.4886  9.0501 

CRSP-EW 0.0674 0.0140 -10.3910  6.9310 

CRSP-VW 0.0646 0.0190 -17.1350  8.6620 

Total Vol 129980377 1350700 18001400  661990637 

Total MktCap (in thousands) 49096594  275319 28010505  72837856  

     

1990's (1990-1999)     

EWRET 0.0710 0.0135 -5.4972 3.2796 

VWRET 0.0938 0.0162 -6.3988 4.8918 

CRSP-EW 0.1275 0.0119 -5.4320 2.8000 

CRSP-VW 0.0671 0.0163 -6.5950 4.8330 

Total Vol 421534009 4653288 68579979  1433590115 

Total MktCap (in thousands) 130152329 907696 72361338  233141633 

     

after 2000 (2000-2004)     

EWRET 0.0665 0.0314 -5.0795 5.1046 

VWRET 0.0556 0.0340 -5.2365 5.6876 

CRSP-EW 0.0820 0.0297 -6.3530 4.8380 

CRSP-VW -0.0069 0.0385 -6.6280 5.3160 

Total Vol 1316879209 8081317 360189702 2734195348 

Total MktCap (in thousands) 268155388 402286 232725478 290857583 
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Table 3.1, continued 
 

Panel B Correlation 
1970's (1973-1979)  

EWRET/CRSP-EW 0.9669 

VWRET/CRSP-VW 0.9982 

1980's (1980-1989)  

EWRET/CRSP-EW 0.9564 

VWRET/CRSP-VW 0.9964 

1990's (1990-1999)  

EWRET/CRSP-EW 0.9370 

VWRET/CRSP-VW 0.9886 

after 2000 (2000-2004)  

EWRET/CRSP-EW 0.8839 

VWRET/CRSP-VW 0.9427 

 
 

Table 3.2 shows descriptive statistics for market ILLIQ.  As mentioned above, I make 

two adjustments to ILLIQ in equation (9).  First, I use the normalization suggested by Acharya 

and Pedersen (2005).  This adjusted variable is ILLIQ(AP) in the tables.  Second, I winsorize the 

measure, as suggested in Amihud (2002), by setting all values smaller than the 1st percentile or 

larger then the 99th percentile of the ILLIQ distribution to the 1st percentile and the 99th percentile, 

respectively.  I use ILLIQ(w) to refer to the winsorized measure.  In the time series analyses 

below, the liquidity variables are adjusted by turnover so that, similarly to the amortized spread of 

Chalmers and Kadlec (1998), they represent appropriate illiquidity costs for the chosen 

investment horizon.  Panel A of Table 3.2 provides descriptive statistics for the full sample, 

subperiods used in Table 3.1, and subperiods defined by the tick size regimes.  I also investigate 

whether ILLIQ has decreased as a result of tick size changes.  The ‘z-score’ column indicates the 

outcomes of tests for the equality of means.  The table shows that both ILLIQ measures 

experienced a significant decrease (at the 1% level) in their means when compared to the 

previous tick size period, with the exception of the equal-weighted ILLIQ(AP) between the first 

and the second tick size regimes.   
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Table 3.2.  Descriptive statis tics for the liquidity measures 
 
Panel A reports descriptive statistics for the scaled (ILLIQ(AP)) and winsorized (ILLIQ(w)) ILLIQ 
measures for the full sample (January 2, 1973-August 31, 2004), subsamples by decade, and subsamples by 
tick size regimes.  The tick size regimes correspond to the following time periods: 01/01/73-06/04/97,  
06/05/97-01/29/01 (sixteens), and 01/30/01-08/31/04 (decimals).  Panel B shows the correlation coefficient 
between the following liquidity measures for the market portfolio: 1) ILLIQ (winsorized (ILLIQ(w)) and 
scaled (ILLIQ(AP)); 2) quoted relative spread (QRSPR); 3) relative effective spread (ERSPR); and 4) 
Roll’s measure.  Since the later three require intraday observations, this table is based on the sample period 
January 1, 1993 to August 31, 2004.  In Panel B, all liquidity measures are based on value-weighting of the 
individual stock measures.   
 

   Panel A 
 Mean Std.Dev Minimum Maximum 

Full sample (1973-2004)     
ILLIQ(AP) – equal-weighted 0.4615 0.0009 0.2996 0.9427 

ILLIQ(w) – equal-weighted 0.3111 0.0046 0.0138 3.8145 

ILLIQ(AP) – value-weighted 0.2633 0.0007 0.2522 0.3089 

ILLIQ(w) – value-weighted 0.0277 0.0004 0.0006 0.3391 

1970’s (1973-1979)     

ILLIQ(AP) – equal-weighted 0.4860 0.0025 0.3140 0.9427 

ILLIQ(w) – equal-weighted 0.8743 0.0132 0.1785 3.8145 

ILLIQ(AP) – value-weighted 0.2702 0.0001 0.2574 0.3089 

ILLIQ(w) – value-weighted 0.0820 0.0012 0.0226 0.3391 

1980’s (1980-1989)     

ILLIQ(AP) – equal-weighted 0.4120 0.0012 0.2969 0.6504 

ILLIQ(w) – equal-weighted 0.2253 0.0020 0.0744 0.7231 

ILLIQ(AP) – value-weighted 0.2624 0.0006 0.2552 0.2787 

ILLIQ(w) – value-weighted 0.0217 0.0002 0.0060 0.0761 

1990’s  (1990-1999)     

ILLIQ(AP) – equal-weighted 0.4913 0.0013 0.3502 0.7769 

ILLIQ(w) – equal-weighted 0.1253 0.0016 0.0277 0.5483 

ILLIQ(AP) – value-weighted 0.2626 0.0007 0.2558 0.2878 

ILLIQ(w) – value-weighted 0.0078 0.0009 0.0015 0.0324 

After 2000 (2000-2004)     

ILLIQ(AP) – equal-weighted 0.4668 0.0026 0.3201 0.8190 

ILLIQ(w) – equal-weighted 0.0472 0.0006 0.0138 0.1271 

ILLIQ(AP) – value-weighted 0.2564 0.0006 0.2522 0.2681 

ILLIQ(w) – value-weighted 0.0017 0.0001 0.0006 0.0047 
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Table 3.2, continued 
 

 Mean 
z-
test Std.Dev Minimum Maximum 

01/02/73-06/04/97      

ILLIQ(AP) – equal-weighted 0.4593 
 

0.0011 0.2996 0.9427 

ILLIQ(w) – equal-weighted 0.3885 
 

0.0055 0.0380 3.8145 

ILLIQ(AP) – value-weighted 0.2650 
 

0.0007 0.2552 0.3089 

ILLIQ(w) – value-weighted 0.0353 
 

0.0005 0.0028 0.3391 

06/05/97-01/29/01  
 

   

ILLIQ(AP) – equal-weighted 0.5066  0.0026 0.3502 0.8190 

ILLIQ(w) – equal-weighted 0.0570 *** 0.0005 0.0277 0.1271 

ILLIQ(AP) – value-weighted 0.2593 *** 0.0006 0.2555 0.2878 

ILLIQ(w) – value-weighted 0.0025 *** 0.0002 0.0014 0.0068 

01/30/01-08/31/04  
 

   

ILLIQ(AP) – equal-weighted 0.4308 *** 0.0021 0.3201 0.6622 

ILLIQ(w) – equal-weighted 0.0402 *** 0.0005 0.0138 0.0996 

ILLIQ(AP) – value-weighted 0.2556 *** 0.0006 0.2522 0.2654 

ILLIQ(w) – value-weighted 0.0015 *** 0.0001 0.0006 0.0045 

 
 

           Panel B 
 ILLIQ(w) ILLIQ(AP) QRSPR ERSPR ROLL 
ILLIQ(w) 1     

ILLIQ(AP) 0.6395 1    

QRSPR 0.6226 0.2857 1   

ERSPR 0.4734 0.2247 0.7986 1  

ROLL -0.0278 -0.0576 -0.0042 0.1256 1 

 

 

Panel B provides correlation coefficients between the ILLIQ measures and three intraday data 

based market liquidity measures.  These three measures are 1) relative spread, 2) relative effective 

spread, and 3) Roll’s measure.  They are calculated using the Market Microstructure Database of 

Vanderbilt University, which aggregates intraday values from TAQ into daily quantities.  Since 

the TAQ-based liquidity measures are only available from 1993, the correlation coefficients are 

calculated based on daily observations for 1993-2004.  All liquidity measures in this panel 

represent equal-weighted averages of the corresponding liquidity measures of individual stocks.  

The correla tion table indicates that the winsorized ILLIQ is more closely related to the spread 

measures than normalized ILLIQ.  For instance, the correlation coefficient between ILLIQ(w) 
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and the quoted relative spread is 0.62, while the corresponding correlation for ILLIQ(AP) is only 

0.28.  The panel illustrates that transforming liquidity measures in empirical analyses can have a 

significant impact on their behavior.       

Finally, although this paper studies the aggregate market portfolio, Figure 3.2 offers 

cross-sectional information on the relation between return and liquidity.  The figure graphs the 

correlation coefficients between each individual security’s return and market return (horizontal 

axis) against their liquidity correlation with measures of aggregate market liquidity (vertical axis).  

For each stock in each panel of the figure, I calculate one return and one liquidity correlation 

coefficient using the entire sample.  The number of observations used in calculating a given 

correlation coefficient varies by security, since the number of observations differs across the 

individual firms.  For instance, Panel A of Figure 2 graphs the relation between a stock’s return 

correlation with the return on the equal-weighted market portfolio (horizontal axis) and the 

stock’s liquidity correlation (using ILLIQ(AP)) with the equal-weighted market ILLIQ(AP) 

measure (vertical axis) for all stocks in the sample.  Panel B provides corresponding results using 

ILLIQ(w).  Panels C and D use value-weighted market return and liquidity indices.     

The figure is consistent with the finding that the majority of the individual stocks are 

positively correlated with the market’s return.  However, this is not entirely true for liquidity.  

While the largest portion of the scatter plot is in the first quadrant in all four panels, a significant 

number of data points fall in the fourth quadrant indicating individual stocks that are positively 

correlated with the market return but whose liquidity is negatively related to market liquidity.  A 

priori, the graphs provide ambiguous insights in the role of liquidity risk.  Stocks in the first 

quadrant appear especially vulnerable.  If a market shock is combined with a market liquidity 

shock, these stocks and any of their portfolios are significantly affected.  On the other hand, 

presence of fourth quadrant observations may imply that systematic liquidity risk is smaller, or 

easier to diversify.   
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Figure 3.2.  Cross-sectional correlation coefficients  
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For each stock in the sample, I calculate correlation coefficients between its 1) return and the return on the 
market’s return, 2) its liquidity and the market liquidity proxy.  The figure shows the return correlation 
against the liquidity correlation.  Market variables are equally weighted averages. 
 

Graphs analyzing the cross-sectional distribution of the correlations for each tick size regime 

separately display a similar pattern (not reported in the paper).  Since these figures do not reveal 

significant differences across regimes, they do not foreshadow crucial shifts in the potential role 

of liquidity risk across the sub-periods.   
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5.2  Model analyses 

5.2.1 Univariate GARCH for the net-of-illiquidity -cost return series 

To mitigate the impact of October, 1987, I winsorize the market return series at the 1st 

and 99th percentiles.  In order to estimate (5), I create a daily net return series by subtracting the 

risk free rate and the estimated illiquidity costs from the daily return.  The estimated illiquidity 

cost is given by ILLIQ (results for both ILLIQ(AP) and ILLIQ(w) are reported in the tables) 

adjusted to the investors’ holding horizon.  Panel A of Table 3.3 shows the quasi-maximum 

likelihood estimates of the univariate symmetric GARCH-M model for the net return series 

(Model (5) above).  By construction, the GARCH framework uses an ex ante  measure of the 

variance.  For comparison to the previous literature, I also estimate the model without the 

liquidity adjustment (i.e., for gross excess returns, j=G in the table).  This is comparable to 

models estimated in previous risk-return analyses (see, for instance, French et al. (1987)).  The 

estimates utilize the Bollerslev and Wooldrige (1992) robust standard errors and covariance.  The 

Akaike information criterion is used to determine the optimal lag length for past variance and 

squared residuals in the variance equation.   

Interestingly, the results indicate significant positive GARCH effects in the mean 

equation for both the liquidity adjusted, and the unadjusted models; that is, in both cases 

confirming the hypothesized positive risk-return relation.  This seems to suggest that there is a 

risk-return tradeoff for the market portfolio even without the liquidity adjustment.  Moreover, the 

simple linear relation between the excess return and the conditional market variance is a 

proportional relation, as the intercepts are not significantly different from zero.  In both cases, 

volatility is very persistent, with the lagged volatility coefficient, β2, around 0.93. 
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Table 3.3.  Univariate generalized autoregressive conditional heteroskedasticity-in-mean 
(GARCH-M) results for net and gross returns  

 
The table reports results for univariate GARCH-M models for daily net-of-illiquidity cost excess returns 
and for gross excess returns, based on the sample period of January 2, 1973 to August 31, 2004.  Net-of-
illiquidity cost excess return (rt

N) is given by rM,t-rft-cM,t, where rM,t is the return on the market portfolio on 
day t, rft is the risk free rate, given by the one-month Treasury rate, and cM,t  is the expected liquidity cost, 
given by ILLIQt-1 multiplied by turnovert-1 (to adjust for investors’ holding horizon).  Gross excess return 
(rt

G) is given by rM,t-rft.  Thus, models using the gross return do not adjust for liquidity, as in previous 
studies.  Two models are estimated.  For both, optimal lag length is selected based on the Akaike 
information criterion.  The symmetric GARCH-M model is given by the following: 
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The asymmetric component GARCH-M differs in its variance equation, in which mean reversion is 
allowed to a varying level mt.  dt=1 indicates a negative shock. 
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In parentheses are Bollerslev and Wooldridge (1992) standard errors. 
 

  b0 88 b1 88 α1  88 β1  88 β2  88 β3  898 β4  88 

j=N -0.0571  0.0301  0.0043  0.1741  1.2652  -0.1377  -0.3082  
AP/Equal-w (0.0117)  (0.0216)  (0.0013)  (0.0193)  (0.1151)  (0.0184)  (0.1058)  
               
j=N -0.0388  0.0635  0.0074  0.0535  0.9373      

AP/Value-w (0.0164)  (0.0239)  (0.0015)  (0.0055)  (0.0062)      
               
j=N 0.0179  0.0430  0.0004  0.1396  1.7098  -0.1346  -0.7156  
w/Equal-w (0.0120)  (0.0220)  (0.0002)  (0.0145)  (0.0381)  (0.0138)  (0.0367)  

               
j=N 0.0142  0.0763  0.0075  0.0539  0.9367      
w/Value-w (0.0164)  (0.0240)  (0.0015)  (0.0055)  (0.0062)      
               

j=G 0.0576  0.0476  0.0003  0.1325  1.7291  -0.1289  -0.7332  
Equal-w (0.0123)  (0.0228)  (0.0001)  (0.0140)  (0.0331)  (0.0136)  (0.0322)  
               

j=G 0.0186  0.0752  0.0071  0.0528  0.9383      

Value-w (0.0164)  (0.0240)  (0.0015)  (0.0054)  (0.0061)       
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Table 3.3, continued 
 

Panel B - Asymmetric component GARCH-M 

 b0 88 b1 88 θ1 88 θ2 88 θ3 88 ω 88 ρ  φ   
j=N -0.0717  0.0471  0.0600  0.0568  0.7536  0.5446  0.9948  0.0290  
AP/Equal-w   (0.0122)  (0.0232)  (0.0183)  (0.0222)  (0.0369)  (0.0785)  (0.0018)  (0.0057)  

                 
j=N -0.0348  0.0570  -0.0143  0.0802  0.9145  0.6366  0.9949  0.0268  
AP/Value-w (0.0005)  (0.0125)  (0.0120)  (0.0145)  (0.0184)  (0.0825)  (0.0016)  (0.0053)  
                 

j=N 0.0137  0.0418  0.0465  0.0780  0.5972  0.5712  0.9900  0.0498  
w/Equal-w (0.0120)  (0.0226)  (0.0223)  (0.0285)  (0.0792)  (0.0719)  (0.0026)  (0.0069)  
                 
j=N 0.0132  0.0778  -0.0247  0.0849  0.9181  0.6714  0.9935  0.0327  

w/Value-w (0.0148)  (0.0148)  (0.0127)  (0.0150)  (0.0195)  (0.0783)  (0.0019)  (0.0060)  
                 
j=G 0.0768  0.0124  0.0651  0.0574  0.7245  0.5297  0.9940  0.0300  

Equal-w (0.0123)  (0.0235)  (0.0196)  (0.0234)  (0.0436)  (0.0710)  (0.0019)  (0.0057)  
                 
j=G 0.0752  -0.0200  -0.0227  0.0827  0.9144  0.6570  0.9937  0.0324  

Value-w (0.0242)  (0.0160)  (0.0127)  (0.0153)  (0.0208)  (0.0809)  (0.0019)  (0.0060)  

  
    

 One problem with the above specification is that it does not allow for an asymmetric 

volatility response to positive and negative return innovations.  Extensive empirical evidence 

points to the presence of an asymmetric response, which implies that the symmetric GARCH 

models may be misspecified.  A popular model for accommodating the asymmetries is EGARCH 

(see Nelson (1991)).  Ghysels et al. (2005) argue however, that the EGARCH model is not an 

appropriate model in the risk-return context because it constrains the persistence of the positive 

and negative shocks to be the same.  Using a mixed data sampling approach (MIDAS), Ghysels et 

al. find that the asymmetry in the persistence of the impact on volatility is more important than 

the asymmetry in the impact itself.  While negative shocks have a larger initial effect than 

positive shocks, their effect is temporary.  In contrast, the effect of positive shocks is very 

persistent.  Therefore, I use the two-component GARCH model of Engle and Lee (1999) to 

accommodate the asymmetries in both the volatility response, and its persistence to negative and 
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positive return shocks, as suggested by Ghysels et al.  The two-component GARCH is shown to 

behave similarly to their MIDAS estimator.    

Panel B of Table  3.3 reports the asymmetric GARCH results for the net return series.  

Interestingly, the liquidity adjusted model remains robust to the new specification; however, the 

unadjusted model no longer shows a positive risk-return relation (b1 coefficient in the table).  For 

the equal- and value-weighted samples, the risk-return tradeoff is positive-insignificant and 

negative-insignificant, respectively.  This is consistent with the traditional risk-return studies that 

find that the simple relation between excess return and the conditional market variance is very 

sensitive to the specification.  For the liquidity adjusted models, the risk-return relation is positive 

and significant.  The intercepts (b0) are only indistinguishable from zero for the winsorized 

illiquidity measure (ILLIQ(w)), however.  θ2 is significant and positive in all cases.  This is the 

parameter that guides both the asymmetric response and its persistence.  The positive coefficient 

indicates that the volatility response to negative return innovations is both larger and mean-

reverts faster, as suggested by Ghysels et al. (2005).  Overall, the results are consistent with the 

theoretical predictions in Acharya and Pedersen (2005) for the net-of-illiquidity-cost return series.      

 

5.2.2 Univariate GARCH for the gross return series       

 The tests reported in Table 3.3 explore the relation between net market returns and total 

systematic risk, approximated by the variance of net returns.  In this subsection, the net-of-

illiquidity-costs return variance is decomposed into the variance of gross returns, the covariance 

between the gross return and the illiquidity cost, and the variance of the illiquidity cost.  The 

decomposition follows equation (4) above, and allows for studying the individual role of each 

component.  For instance, based on this decomposition, the relation between expected returns and 

the conditional variance of the market’s return is a partial relation.  This illustrates that when (4) 

is the true model, tests modeling the risk-return relation as a simple relation between excess 

return and conditional volatility are biased due to the omitted variable problem.  As before, I use 
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the GARCH framework to estimate the risk-return relation as in (6), and also use the asymmetric 

model discussed above.    

 Before estimating the GARCH models, I calculate sample equivalents for realized 

liquidity variance and return-liquidity covariance.  Therefore, tests in this section are based on 

monthly observations.  The estimated liquidity variance series are highly skewed in all cases.  

Therefore, I use a logarithmic transformation.  Moreover, the turnover adjusted ILLIQ(AP) 

measure (or ILLIQ(w)), a regressor in (6), is not stationary.  Therefore, in the analyses, I use its 

first difference.  

 Table 3.4 summarizes the results.  All standard errors are based on the Bollerslev-

Wooldridge (1992) adjustment.  In all cases, the partial relation between excess return and the 

variance of the excess return is positive and significant.  Moreover, the variance of liquidity is 

positively, while the return-liquidity covariance is negatively related to excess returns.  The role 

of the liquidity variance appears to be especially strong.  Expected illiquidity costs however, are 

not significantly related to the excess return.  The relation is difficult to interpret as the theoretical 

model requires the level of liquidity, while the empirical implementation contains change in 

liquidity.  The intercepts are significantly different from zero in the mean equation, which may 

reflect that they are capturing some of the liquidity-cost effects.  As before, θ2 is consistent with a 

significantly asymmetric response to return shocks in the variance equation.  

 One shortcoming of model (6) is that liquidity variance and the return-liquidity 

covariance have to be estimated from the sample.  Since asset pricing provides predictions for 

conditional values, the realized values estimated from the sample cannot be directly used in the 

analyses.  In Table 3.4, I use lagged values of the estimated realized liquidity variance and 

covariance to proxy for ex ante measures.  Alternatively, French et al. (1987) disaggregate the 

estimated market variance into ex ante and unexpected components based on ARIMA models.  

Unfortunately, this method is less successful for the return-liquidity covariance, since the ARIMA 
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model provides a poor forecast.  Therefore, I do not adopt the French et al. method.39  

Furthermore, previous studies suggest that estimates of second moments are sensitive to the data 

frequency used in the estimation.  In the next section, I circumvent these problems by using a 

multivariate framework.  The multivariate model provides a convenient framework for estimating 

ex ante risk measures within the system.  Hence, in the multivariate model, not only the variance 

of the market return, but also the variance of liquidity and the covariance between return and 

liquidity are passed through as latent.   

 

Table 3.4.  Univariate generalized autoregressive conditional heteroskedasticity-in-mean 
(GARCH-M) results for gross returns with liquidity risk 

 
This table follows model (6) and estimates a univariate GARCH-M model for the excess return on the 
market portfolio, based on the sample period of January 2, 1973 to August 31, 2004.  The excess return (rt) 
is given by rM,t-rft, where rM,t is the return on the market portfolio on day t, rft is the risk free rate, given by 
the one-month Treasury rate.  As in (6), systematic risk is decomposed into market variance (which is 
passed through as a latent variable), and liquidity risk.  Liquidity risk includes the variance of liquidity and 
the covariance between market illiquidity and returns.  The liquidity risk components are sample estimates 
based on return volatility estimates in French et al. (1987), and are calculated prior to the estimation of the 
GARCH-M model.  Two models are estimated.  For both, optimal lag length is selected based on the 
Akaike information criterion.  The symmetric GARCH-M model is given by the following: 
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The asymmetric component GARCH-M differs in its variance equation, in which mean reversion is 
allowed to a varying level mt.  dt=1 indicates a negative shock. 
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In parentheses are Bollerslev and Wooldridge (1992) standard errors. 
 
 
 
 
 

                                                 
39 The results are sensitive to using lagged values vs. French et al. (1987). 
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Table 3.4, continued 
 

Panel A - Symmetric GARCH-M 

  b0   b1   b3   b4   b5   α1    β1    β2    

AP 1.9132  0.0417 ** 0.4526 * -0.3719 * 32.3621   1.8637 * 0.0773 ** 0.8488 *** 

Equal-w (1.4141)  (0.0161)  (0.2627)  (0.1762)  (39.7862)  (1.0727)  (0.0347)  (0.0640)  

                 

AP -0.4540  0.1887 * 0.1852  -13.7368  ** 34.3629   2.4624 * 0.0549 * 0.8114 *** 

Value-w (2.8621)  (0.1107)  (0.1948)  (4.3932)  (84.8575)  (1.4881)  (0.0317)  (0.0965)  

                 

w 5.0886 *** 0.0800 ** 0.4530 *** -0.1967  48.826  0.1881  -0.0209 *** 1.0106 *** 

Equal-w (1.1808)  (0.0320)  (0.1472)  (0.2934)  (97.6021)  (0.1305)  (0.0008)  (0.0051)  

                 

w 0.6510  0.1337 * 0.1905  12.4013   43.8366   2.0792 * 0.0643 * 0.8144 *** 

Value-w (2.4249)  (0.0748)  (0.1918)  (11.4698)  (84.2894)  (1.2472)  (0.0329)  (0.0889)  

                  

Panel B - Asymmetric component GARCH-M 

  b0   b1   b3   b4   b5   θ1   θ2   θ3   

AP 2.7442 *** 0.0162 *** 0.5359 ** -0.6281  5.3557  -0.2793 *** 0.1346 ** 0.9396 *** 

Equal-w (0.9665)  (0.0033)  (0.2532)  (0.6395)  (35.9234)  (0.0587)  (0.0558)  (0.1341)  

                 

AP 0.8192 *** 0.0739 *** 0.1035 ** -0.4007  41.9349   -0.3686 *** 0.2054 *** 0.9626 *** 

Value-w (0.1288)  (0.0197)  (0.0344)  (4.9771)  (58.0885)  (0.0668)  (0.0406)  (0.1150)  

                 

w 3.3152 *** 0.0478 *** 0.2076 ** -0.4884 * -26.1560   0.0750 * -0.0790  -0.9757 *** 

Equal-w (0.4529)  (0.0106)  (0.0975)  (0.2915)  (87.1835)  (0.0398)  (0.0508)  (0.0221)  

                 

w -1.7119 *** 0.1170 *** 0.0638 ** -1.5682  -729.193   -0.4888 ** 0.1822 *** 1.1196 *** 

Value-w (0.1424)  (0.0047)  (0.0298)  (2.0027)  (1216.2990)  (0.1950)  (0.0417)  (0.2246)  
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5.2.3  Multivariate GARCH model 

In this section, I estimate a multivariate GARCH-M model to test the risk-return tradeoff.  

As it was mentioned before, this is motivated by Watanabe (2003), who argues that liquidity 

follows GARCH-type dynamics as well.  Table 3.5 reports results for (8) with the restrictions that 

B and D are diagonal coefficient matrices, and C is a lower triangular coefficient matrix (BEKK).  

These restrictions mean that both the variance of return and liquidity follow a univariate-type 

process, where each is driven by its own lagged value and lagged innovations from the 

corresponding mean equation.  The covariance is driven by the lagged cross-product of return and 

liquidity volatility, and the lagged cross-product of the corresponding innovations from the mean 

equations.  

 

Table 3.5.  Multivariate generalized autoregressive conditional heteroskedasticity-in-mean 
(GARCH-M) results 

 
This table follows model (8) and estimates a multivariate GARCH-M model for the excess return and the 
liquidity of the market portfolio, based on the sample period of January 2, 1973 to August 31, 2004.  The 
excess return (rt) is given by rM,t-rft, where rM,t is the return on the market portfolio on day t, rft is the risk 
free rate, given by the one-month Treasury rate.  With the appropriate parameter restrictions on (8),  
multivariate GARCH-M model takes the following form: 
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where tMr ,  is the excess return on the market, tMc ,  is a given measure of market liquidity, 2
,tMσ  and 2

,tcσ  

represent the conditional market return variance and liquidity variance respectively , and tcM ,σ   stands for 

the conditional market return and liquidity covariance.  The model is estimated based on the restricted 
BEKK of Engle and Kroner (1995), with diagonal coefficient matrices B and D, and a lower triangular C 
coefficient matrix in (8). 
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Table 3.5, continued 
 

 AP/EW  W/EW  AP/VW  W/VW  

a0 
0.0100 

(0.0069) 
 

 
0.0305 

(0.0000) 
*** 0.0145 

(0.0059) 
** 0.0231 

(0.0172) 
 

a11 
0.0680 

(0.0226) 
*** 

 
0.0867 

(0.0130) 
*** 0.0828 

(0.0169) 
*** 0.0855 

(0.0277) 
*** 

a12 
14.8073  
(3.9472) 

*** 
 

0.7600 
(0.3865) 

** 5.9716 
(0.0495) 

*** -20.5438  
(48.4077) 

 

a13 
-0.5006 
(0.2066) 

** 
 

-1.6819 
(0.4260) 

*** 27.9420  
(17.0261) 

 -22.8900  
(6.1173) 

*** 

φ1 
31.4504  

(10.2170) 
*** 

 
43.5066  

(69.7086) 
 -6.1177 

(39.4502) 
 8.0286 

(871.3938) 
 

a1 
-0.0006 
(0.0006) 

 
 

0.0006 
(0.0003) 

* 0.0002 
(0.0000) 

*** 0.00004  
(0.00002) 

** 

a21 

 
0.0023 

(0.0008) 
*** -0.0004 

(0.0003) 
 -0.00004 

(0.00004) 
 -0.00003  

(0.00002) 
* 

φ 2 
 

-20.8259  
(1.7693) 

*** -91.2015  
(2.8358) 

*** 0.6299 
(0.1510) 

*** -99.3459  
(2.6011) 

*** 

c1 

 
0.1137 

(0.0051) 
*** 0.1011 

(0.0048) 
*** 0.0654 

(0.0049) 
*** 0.0669 

(0.0050) 
*** 

d1 

 
0.9527 

(0.0026) 
*** 0.9594 

(0.0021) 
*** 0.9814 

(0.0013) 
*** 0.9812 

(0.0012) 
*** 

b1 

 
0.2690 

(0.0076) 
*** 0.2538 

(0.0065) 
*** 0.1777 

(0.0061) 
*** 0.1780 

(0.0057) 
*** 

c2 
 

0.0031 
(0.0003) 

*** 0.0008 
(0.0000) 

*** 0.0011 
(0.0000) 

*** 0.00004  
(0.00000) 

*** 

c3 
 

-0.0003 
(0.0002) 

* 
-0.0001 
(0.0000) 

 
-0.0009 
(0.0001) 

*** 
-0.00009  
(0.00005) 

** 

d2 

 
0.9680 

(0.0013) 
*** 0.9590 

(0.0009) 
*** 0.7011 

(0.0085) 
*** 0.9589 

(0.0006) 
*** 

b2 

 
0.2524 

(0.0054) 
*** 0.3045 

(0.0040) 
*** 0.5820 

(0.0103) 
*** 0.3127 

(0.0031) 
*** 

  

 

In Table 3.5, I allow all second moments to enter the return equation (as in (4)).  In 

addition, I also include the first difference of the turnover adjusted illiquidity costs.  This is the 

same as in the previous section, with the exception that all second-moment regressors are 

estimated within the system.  The only second moment that enters the liquidity equation is return 

volatility (I model the first difference of illiquidity costs due to non-stationarity).   

The table indicates that excess return is significantly positively related to its conditional 

variance (a11) and to the variance of liquidity (a12), and significantly negatively related to the 
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covariance between return and liquidity (a13).  As in the previous sections, the results are 

somewhat weaker for the value-weighted portfolio.  This is consistent with the idea value-

weighting overweights liquid assets, and as a result, any role liquidity may play for asset prices is 

harder to detect (see, for instance, Chordia et al. (2000) and Acharya and Pedersen (2005)).  

Return variance does not appear to be a significant driver of liquidity (a21).  It is positive and 

significant for the equally-weighted portfolio using ILLIQ(AP); however, it is not significant 

using ILLIQ(w).  Figure 3.3 shows the estimated variances for return and liquidity, and the 

return-liquidity covariance.   

 

Figure 3.3. Variance and covariance estimates from the multivariate GARCH-M model 
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The figure shows the (scaled) estimated variances and the covariance from the multivariate GARCH model 
in the first column of Table 5.  The graph in blue is the return variance series.  The red line denotes the 
liquidity variance series (x100).  The green line shows the covariance between return and liquidity (x10).  
 
 

Each of the three series appears to be conditionally heteroskedastic, indicating that the GARCH 

framework is appropriate for modeling liquidity as well.  The results in this section (as in the 

previous sections) utilize winsorized market returns to address the problems with extreme events, 

such as that of October, 1987.  Figure 3.4 shows the estimated variances and the covariance series 

using the original (not winsorized) return series.       
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Figure 3.4.  Variance and covariance estimates from the multivariate GARCH-M model 
(the return series are not winsorized) 
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This figure shows the estimated variances and the return-liquidity covariance for a model that corresponds 
to the first column of Table 5, except it utilizes excess returns that are not winsorized (unlike in Figure 3).  
  

 

6. Robustness Analyses 

 

6.1 Idiosyncratic volatility and liquidity 

In this section, I investigate the possibility that liquidity risk proxies for idiosyncratic 

risk.  Spiegel and Wang (2005) find that idiosyncratic volatility dominates liquidity risk in cross-

sectional tests.  A theoretical link between liquidity and idiosyncratic volatility, through the 

market maker’s inventory, has been suggested in Ho and Stoll (1980).  Another possible 

connection results if illiquidity causes sub-optimal portfolio diversification, leaving the investors 
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exposed to idiosyncratic risk.   

Many studies investigate whether idiosyncratic volatility matters for asset prices.  For 

instance, Goyal and Santa-Clara (2003) use the following simple time-series regression to test the 

role of idiosyncratic volatility.   

 

  tttM Xr εβα ++= '
,  

 

where tMr ,  is the excess return on the market and the tX  vector includes a proxy for the 

conditional variance of the market portfolio and a measure of average stock variance.  I combine 

their model with the model estimated in section 4.2.2 to examine the relation between 

idiosyncratic volatility and liquidity risk.  I use several methods to estimate idiosyncratic risk.  

For instance, I use the average stock variance, as suggested by Goyal and Santa-Clara, and also, 

use the residuals from the Fama-French 3 factor model with momentum.  Table 3.6 shows the 

results. 

 While including idiosyncratic volatility weakens the previous results, both the conditional 

return variance and the variance of liquidity remain positive and significant.  The results become 

very sensitive to changes in the liquidity measure: idiosyncratic volatility (b5) changes sign and 

significance across the four models reported in Table 3.6.  The results are consistent with the 

finding that liquidity risk does not proxy for idiosyncratic volatility, and more specifically, 

idiosyncratic volatility does not matter in the risk-return trade-off. 
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Table 3.6.  Liquidity risk and idiosyncratic volatility 
 

I augment the model estimated in Table 4 with idiosyncratic volatility.  Idiosyncratic volatility is estimated 
monthly from the residuals from the Fama-French model with momentum.  The sample contains monthly 
observations from January, 1973 to August, 2004.  Results are reported for the asymmetric GARCH-M 
with the following form:   
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 AP/EW  W/EW  AP/VW  W/VW  

b0 

 
-0.4261 
(0.7953) 

 1.4224 
(0.4327) 

*** 1.3278 
(1.8490) 

 -1.9426 
(1.27449) 

 

b1 

 
0.0214 

(0.0003) 
*** 0.0056 

(0.0059) 
 0.0730 

(0.0298) 
** 0.1234 

(0.0384) 
*** 

b2 

 
-1.2034 
(0.0768) 

*** -15.0429  
(20.2045) 

 -3.5809 
(7.5317) 

 -1.2067 
(2.1107) 

 

b3 

 
21.4221  
(7.3254) 

*** 0.1628 
(0.0413) 

*** 0.1474 
(0.0804) 

* -0.0866 
(0.0688) 

 

b4 

 
15.1857  

(27.1423) 
 111.3812 

(94.8170) 
 1.4306 

(0.8057) 
* 0.0801 

(0.0838) 
 

b5 

 
-14.6069  
(66.0569) 

 1.1698 
(0.7317) 

** 0.1618 
(0.3665) 

 -0.3175 
(0.5563) 

 

θ1 

 
-0.2471 
(0.0724) 

*** -0.3204 
(0.0937) 

*** -0.3442 
(0.0394) 

*** -0.3917 
(0.2001) 

* 

θ2 
 

0.1079 
(0.0908) 

 0.1300 
(0.0523) 

** 0.2054 
(0.0547) 

*** 0.1795 
(0.0471) 

*** 

θ3 

 
0.8815 

(0.1569) 
*** 1.0011 

(0.1731) 
*** 0.9388 

(0.0967) 
*** 1.0102 

(0.2435) 
*** 

ω 

 
28.1429  

(10.4724) 
*** 30.2122  

(12.1378) 
** 17.3788  

(2.6418) 
*** 17.3240  

(2.7881) 
*** 

ρ  

 
0.9254 

(0.0477) 
*** 0.9355 

(0.0499) 
*** 0.8954 

(0.0467) 
*** 0.8278 

(0.0647) 
*** 

φ 
 

0.1718 
(0.0682) 

** 0.2053 
(0.1053) 

* 0.2043 
(0.0606) 

*** 0.3175 
(0.2088) 

 

 
 

6.2  Shortcomings of the liquidity measure 

 In this paper, I use ILLIQ, a measure first developed by Amihud (2002) , as the measure 

of illiquidity.  One advantage of ILLIQ for asset pricing is that it can be calculated for long time 

horizons, as it only requires return and volume information.  The Acharya and Pedersen (2005) 

model also uses ILLIQ, which motivates the use of the measure in this paper.  There are many 

caveats concerning ILLIQ however.  For instance, it is based on total volume, as opposed to 
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signed volume.  More importantly, it may be dominated by its denominator, daily share volume.  

This is especially problematic because volume has many undesirable statistical properties over 

long horizons. 

 To investigate this issue, I calculate equal- and value-weighted market inverse volume 

measures for the entire sample, as well as for subsamples presented in Table 3.1 and 3.2.  I find 

that the concern is valid, for the entire sample, the correlation coefficient between ILLIQ(w) and 

inverse volume is approximately 95.64% for the equal-weighted measures, and varies between 

76.83% and 97.54% across the subsamples. 

  

7.  Conclusion 

The study of liquidity in asset pricing is relatively new.  Recent theoretical papers attempt 

to formalize the impact of liquidity on security prices by solving traditional asset pricing models 

under the assumption that trading costs are stochastic.  This framework is somewhat limited in 

that only the price dimension of liquidity can enter pricing relations.  To the extent that the price 

dimension represents other aspects of liquidity (for instance, time dimension as in Demsetz 

(1968)), this limitation may not be serious.   

The new liquidity adjusted models also suggest a new direction for the risk-return tradeoff 

literature.  If investors care about liquidity risk, the traditional risk-return tests are misspecified.  

The paper looks at this possibility by studying the intertemporal relation between the market risk 

premium and liquidity risk.  In particular, I investigate the liquidity adjusted CAPM in which the 

source of systematic risk is given by the variation in net-of-illiquidity cost returns.  For the 

market portfolio, the systematic risk is divided into the traditional market risk and a liquidity risk 

component.  Ex ante measures of liquidity risk appear to be significant drivers of the market risk 

premium and obey the directional predictions of the theoretical models.  In addition, the partial 

relation between expected returns and the conditional market variance is restored once the model 

adjusts for liquidity.  These results have two important implications.  First, they are consistent 
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with the idea that investors consider liquidity risk to be important in addition to market risk in the 

risk-return tradeoff.   Second, they extend the implications of the static liquidity adjusted CAPM 

in the dynamic context.   
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