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Chapter 1 

INTRODUCTION 

 

DNA repair, genome integrity and cancer 

 

 
Genome instability and cancer 

 The integrity of our genome is constantly being challenged by various 

endogenous sources, such as reactive oxygen species, and exogenous sources, such 

as gamma-irradiation (IR).95,170  If not properly repaired, these alterations to the DNA 

can result in genome instability.20,58,118,152  Genome instability, also commonly referred 

to as chromosome instability, is an established hallmark of cancer and postulated to 

contribute to the development and progression of malignancies.57,118  Genome instability 

can manifest as structural and/or numerical chromosome aberrations, such as 

chromosome and chromatid breaks, insertions, deletions, translocations, amplifications, 

aneuploidy, and polyploidy.48,66  Chromosome aberrations are linked to tumorigenesis, 

as translocations resulting in the activation of oncogenes, such as Myc,32 or the 

deletion/mutation and subsequent loss of function of tumor suppressors, such as p53 or 

Rb,103,140 lead to cancer development.  Cells acquiring the necessary genomic 

alterations permitting uncontrolled proliferation and evasion of apoptosis are 

predisposed to becoming transformed into a cancer cell.57,140,153  Therefore, elucidating 

the cellular processes contributing to genome instability is essential for understanding 

tumorigenesis.   
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The DNA damage response  

 Although the causes of genome instability are incompletely understood, data 

show DNA damage and the inability to properly repair this damage contribute to 

genome instability, with double-strand DNA breaks being the most detrimental.1,9,153 

Double-strand DNA breaks can occur from endogenous sources, such as a collapsed 

replication fork, or exogenous sources, such as ionizing radiation.65,80  Since these 

lesions are extremely detrimental to the integrity of the genome, cells have evolved 

sophisticated DNA damage signaling and repair pathways to repair these lesions and 

maintain genome integrity.  Following DNA damage, DNA damage response (DDR) 

proteins must detect the DNA lesion, signal to other proteins that damage has occurred, 

and coordinate repair of the damaged DNA to maintain genome integrity.179    

 

MRN complex and ATM  

 DNA double-strand breaks are sensed by the Mre11-Rad50-Nbs1 (MRN) DNA 

repair complex (Figure 1).153  The Nbs1 subunit of the MRN complex is involved in the 

activation of the central DNA damage-induced kinase ATM through a direct 

interaction.89,128   ATM then phosphorylates hundreds of proteins involved in the DNA 

damage response, including Nbs1, Mdm2, Mdmx, p53, histone H2AX, and others 

(Figure 1).107  The function of these specific phosphorylation events is not entirely clear, 

but phosphorylation can alter protein stability, protein:protein interactions, and 

localization, which could allow ATM to be a master regulator of the DNA damage 

response.  This is supported by the finding that ATM has hundreds of potential 

substrates, many of which have been implicated in DNA repair.107  For example,  
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phosphorylation of histone H2AX by ATM acts as a docking site for DNA repair proteins, 

including many modified by ATM,  to localize to and repair the DNA lesion.19
 

 Nbs1 is important in the regulation of the MRN complex activity because it 

anchors Mre11/Rad50 to the site of damage through phospho-dependent interaction 

with Mdc1, which is bound to H2AX.96  Rad50 is thought to hold together broken DNA 

ends by its hook and coiled-coil domains (Figure 2).59,153  The ATPase activity of Rad50 

promotes the 3’-5’ exonuclease activity of Mre11 which serves to prepare the DNA for 

repair.82  The importance of Nbs1 is highlighted when the Mre11-binding domain in 

Nbs1 is absent, because Mre11 and Rad50 are no longer able to associate with sites of 

DNA damage.87,127  These proteins are important for the DNA repair process as 

deletions or inactivating mutations in Nbs1, Mre11, Rad50, or ATM result in suboptimal 

DNA repair that translates into patients having increased radiosensitivity and increased 

cancer incidence.20,143,152  Therefore, identifying proteins that modulate or inhibit the 

function of these DNA repair proteins is important for understanding the DNA repair 

process and the implications in tumorigenesis.  From my thesis work that is described in 

Chapter 3, Mdmx is likely one such protein.   

 

Altered DNA repair and genome instability        

 Alterations in DNA damage signaling or in the timing or fidelity of DNA repair can 

result in mild to severe chromosome abnormalities.134,171,172  For example, DNA breaks 

can serve as substrates for translocations and fusions, which occur when breaks are 

not repaired correctly.  Cells with irreparable DNA damage or chromosome aberrations 

incompatible with life undergo apoptosis, which can be mediated by the p53 tumor  
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Figure 2.   The Mre11-Rad50-Nbs1 complex at the site ofDNA damage.     
Mre11 interacts with the site of DNA damage.  Rad50 is a large flexible protein 
with a hook domain at one end.  This domain in Rad50 is predicted to allow 
Rad50 to hold broken DNA ends or chromosomes together.   Nbs1 binds to 
Mre11 directly and has various domains available to interact with other DNA 
repair proteins. (Modified from Stracker and Petrini 2011)153   
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suppressor.91,119,178   

  If a cell acquires the ability to bypass the DNA damage cell cycle checkpoints 

and apoptosis, such as by inactivating the p53 pathway, then this can lead to 

transformation and tumorigenesis.  This is evident in patients with mutations in various 

DNA repair proteins (Table 1).  Specifically, individuals born with mutations in p53 or 

other genes in the DNA damage response have increased genome instability and 

incidence of cancer.  For example, humans born with mutations in p53 develop Li-

Fraumeni syndrome and have a greatly increased rate of cancer development.11,91,100  

Moreover, people with mutations in any of the three components of the Mre11-Rad50-

Nbs1 DNA repair complex or the DNA damage-induced kinase ATM have impaired 

DNA damage response signaling and DNA repair, which leads to increases in 

chromosomal abnormalities, genome instability, radiation sensitivity, and cancer 

incidence.20,143,152  Therefore, proteins capable of inhibiting p53 and other proteins in the 

DNA damage response would result in loss of DNA damage-induced cell cycle 

checkpoints and apoptosis, and increased genome instability.  Identifying such proteins 

is important, as these effects would provide a significant advantage to cells during 

tumorigenesis.  In this dissertation, I describe  the identification of a previously 

uncharacterized function of Mdmx which increases genome instability independent of 

p53.  Therefore, overexpression of Mdmx would provide multiple advantages during 

tumorigenesis, as it both promotes genome instability and inhibits the p53 tumor 

suppressor.   
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   Table 1.  DNA repair proteins and disease.   
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The p53 pathway, genome instability and cancer 

 

The p53 pathway  

 In addition to the DDR, the p53 pathway is a major mechanism used by the cell 

to prevent genome instability.  p53 is a transcription factor activated following various 

cellular stressors including DNA damage from a variety of sources.74,91,101  Upon 

activation, p53 can control the transcription of genes involved in cell cycle arrest, such 

as p21, and apoptosis, such as PUMA.40,43  This quality allows p53 to play a crucial role 

in protecting genome stability and has earned p53 the designation of “guardian of the 

genome”.83 Because p53 prevents genome instability, it is not surprising that p53 is 

mutated or deleted in half of all cancers.  Furthermore, in virtually all human cancers, 

p53 is indirectly inactivated.91,104,166  Inactivation can occur through overexpression of 

the two major negative regulators of p53: Mdm2 and Mdmx.   

 

Mdm2 and Mdmx in cancer   

   Mdm2 and Mdmx are overexpressed in many malignancies, but it is unclear 

whether increased levels of Mdm2 and Mdmx affect the same proteins in the same 

manner as normal levels.42,104,165  While many human cancers may select for Mdm2 

and/or Mdmx overexpression as a mechanism of p53 inhibition, instances of tumors 

with mutated or deleted p53 and elevated levels of Mdm2 and/or Mdmx have been 

reported.22,42     

 It is likely that the frequency of increased levels of Mdm2 in human malignancies 

is grossly underestimated due to technical issues with Mdm2 specific antibodies and a 

lack of scoring 2-4 fold increased protein as elevated.  Because of the identification of a 
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single nucleotide polymorphism(SNP309 T/G) in the promoter of MDM2 that results in 

an increase in MDM2 mRNA and protein, it is now appreciated that 2-4 fold increased 

levels of Mdm2 enhances cancer susceptibility in specific patient populations,14 and  a 

mouse model of this polymorphism supports this finding.133  Prior to the SNP309 

discovery, 4-fold elevated expression of Mdm2 in Mdm2 transgenic mice was shown to 

increase tumor formation.  As for Mdmx, two individual Mdmx transgenic mouse lines 

where Mdmx expression was driven by the chicken -actin promoter spontaneously 

developed malignancies,174 whereas another mouse model using an artificial promoter 

in the Rosa26 locus to express a tagged version of Mdmx did not.34  The differences in 

cancer susceptibility among the Mdmx transgenic lines are potentially due to differences 

in the levels of Mdmx expression, but this has not been confirmed.  The in vivo data 

could also suggest that the role of Mdmx in tumorigenesis is more complicated than 

what is known for Mdm2.  These and other results indicate Mdm2 and Mdmx 

overexpression contribute to tumor development and there is likely a p53-independent 

component.  Since the occurrence of Mdm2 or Mdmx overexpression in tumors with 

mutated or deleted p53 is not as common as with wild-type p53, the p53-independent 

functions for Mdm2 and Mdmx have not been extensively investigated.  Thus for my 

dissertation, I investigated a novel p53 independent function of Mdmx, and these results 

are described in Chapter 3.   

 

Regulation of p53 by Mdm2 

Mdm2 was discovered as a gene amplified more than 50-fold on double-minute 

chromosomes in a tumorigenic mouse cell line.44  Mdm2 is an E3-ubiquitin ligase that 
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negatively regulates p53 by ubiquitinating it and targeting it for proteosomal 

degradation, binding to it and preventing its transactivation, or shuttling it out of the 

nucleus (Figure 3).  The importance of this regulation of p53 by Mdm2 was discovered 

using mouse models.  Mdm2-null mice are not viable as loss of Mdm2 is embryonic 

lethal, but this phenotype is rescued when p53 is also deleted.  71,115,126  In combination 

with a number of studies focusing on the Mdm2:p53 interaction, these studies have 

resulted in the regulation of p53 being assigned as the major role of Mdm2.  However, 

additional functions of Mdm2 have been described, by the Eischen lab and others, as 

described in detail below. 

 

Mdm2 and proliferation 

 In the absence of p53,  transgenic mice overexpressing Mdm2 developed an 

altered tumor spectrum compared to p53-null mice, suggesting p53-independent effects 

of Mdm2.70  Given that Mdm2 inhibits p53, it would be reasonable to assume that cells 

with wild-type p53 should have a growth/survival advantage when Mdm2 is 

overexpressed.  However, investigators have repeatedly attempted to generate stable 

cell lines overexpressing Mdm2 in the presence of wild-type p53, but they have been 

unsuccessful.18,23,79  These findings were supported by the inability of cells to tolerate 

high levels of Mdm2 in vivo.34,70  However, cell lines with mutated or deleted p53 can 

survive prolonged Mdm2 overexpression.  Although there are data to suggest that 

Mdm2 overexpression induces a p53-independent cell cycle arrest that blocks 

proliferation,36 others have shown Mdm2 can target for degradation Rb,144,158 the cell 

cycle inhibitor p21,67,176 and Foxo3a,47,175 a transcriptional regulator of cell cycle  
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Figure 3.   Mdm2 and Mdmx inhibit p53.  The heterodimers Mdm2 and 
Mdmx bind p53 and promote its inactivity and/or degradation.   This can be 
accomplished by Mdm2 and Mdmx preventing p53 transactivation activity.   
Mdm2 can ubiquitinate p53 to induce proteosomal degradation.   Mdm2 can 
shuttle p53 out of the nucleus to prevent its activity, and this may also lead to 
proteosomal degradation in the cytoplasm.   
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inhibitors, for proteosomal degradation, which would increase proliferation.   

 

Mdm2 and genome instability 

 Importantly for tumorigenesis, Mdm2 overexpression is reported to also induce 

genome instability.  Specifically, Mdm2 overexpression (2-4 fold) in cultured fibroblasts  

retaining wild-type p53 results in centrosome hyperamplification and chromosome 

instability.23  Cells with elevated Mdm2 levels have increased chromosome and 

chromatid breaks.  In addition, the Eischen lab has shown Mdm2 transgenic mice with 

~4-fold chromosome fusions, aneuploidy, and polyploidy in vivo prior to the 

development of cancer with the incidence of these chromosomal alterations increasing 

with age.98,169  In contrast, when levels of Mdm2 are decreased, as in Mdm2 

heterozygous primary murine fibroblasts containing wild-type p53, there are decreased 

chromosome aberrations and increased genome stability.168  Although these studies did 

not evaluate whether the genome instability observed resulted from the regulation of 

p53 by Mdm2 versus a p53-independent function of Mdm2, altering Mdm2 levels 

appears to have significant consequences on chromosome stability.   

 

Mdm2 and genome instability independent of p53  

There is evidence Mdm2 impacts genome stability independent of its interactions 

with p53.  Increased polyploidy was observed in vivo in mammary epithelial cells with 

elevated Mdm2 levels, and this was also evident in Mdm2-overexpressing mammary 

epithelial cells lacking p53.23  Notably, as a result of a non-biased screen, the Eischen 

lab discovered the Mre11-Rad50-Nbs1 (MRN) DNA repair complex as novel proteins 
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interacting with Mdm2 (Figure 1).  Mdm2 overexpression was shown to inhibit DNA 

double-strand break repair, and this was mediated through a novel, direct interaction 

between Mdm2 and Nbs1 that was independent of p53.3,16  Regardless of p53 status, 

increased levels of Mdm2, but not Mdm2 lacking its Nbs1-binding domain, caused 

delays in DNA break repair and induced chromosomal abnormalities and genome 

instability.16  These data demonstrated Mdm2-induced genome instability can be 

mediated through Mdm2:Nbs1 interactions and is independent from its association with 

p53.   

 

Regulation of p53 by Mdmx 

Mdmx was discovered as a protein that could interact with p53.148  Mdm2 and 

Mdmx are homologous proteins with the highest homology being in the N-terminal p53 

binding domain and the C-terminal RING domain (Figure 4).148  Like Mdm2, loss of 

Mdmx is embryonic lethal, and this can be rescued with deletion of p53.126  Similar to 

Mdm2, Mdmx is important in the regulation of p53 during embryogenesis, but it appears 

to be in a non-redundant manner.  While loss of Mdm2 causes lethality by  increasing 

apoptosis, loss of Mdmx results in a decrease in cellular proliferation.112,126  Although 

Mdmx and Mdm2 are family members and both regulate p53, there is evidence from 

conditional knockouts of each that Mdmx and Mdm2 also have tissue-specific functions 

in a variety of cell types, including cardiac, neuronal progenitor, mouse embryonic 

fibroblasts (MEFs), smooth muscle, and hematopoietic.45,126 13,46,55,99,106 

 Further characterization of the function of Mdmx has provided some insight into 

possible explanations for the differences between Mdm2 and Mdmx.  Despite having a 
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RING domain, Mdmx has not demonstrated any ubiquitin ligase activity in vivo.64,150  

Instead, Mdmx negatively regulates p53 by preventing its transactivation function rather 

than affecting its stability.150  Although Mdmx can bind to and regulate p53 independent 

of Mdm2, the heterodimerization of Mdm2 and Mdmx through their RING domains 

cooperates to effectively block p53 transcriptional activity (Figure 

3).56,61,94,122,147,150,151,156  Collectively, these findings suggest p53-independent functions  

of Mdmx, which may or may not require Mdm2.  Little is known about Mdmx, especially 

functions not requiring Mdm2 or centering on its regulation of p53.  My thesis work has 

focused on identifying and describing a novel function of Mdmx independent of both p53 

and Mdm2.   

 

p53-independent functions of Mdmx 

 Due to the negative regulation of p53, overexpression of Mdmx is expected to 

alter genome integrity, at least somewhat.  However, p53-independent effects of Mdmx 

on genome stability were recently revealed.  In contrast to Mdm2, loss of Mdmx is 

associated with genome instability.  Specifically, in Mdmx/p53-double null mice, the 

development of spontaneous tumors occurred earlier than in p53-null mice.106  Murine 

embryonic fibroblasts (MEFs) from Mdmx/p53-double null mice exhibited multipolar 

mitosis and subsequent loss of chromosomes.  These genomic alterations were not 

observed in Mdm2/p53-double null MEFs, indicating the loss of Mdmx promotes 

genome instability in a non-redundant manner from Mdm2.106  Interestingly, high levels 

of Mdmx were shown to be lethal in developing embryos, and although genome 

instability was not investigated, this could not be rescued with loss of p53.34  These data  
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Figure 4.   Mdm2 and Mdmx domains.   Schematic representation of Mdm2 and 

Mdmx highlighting the conserved regions between the two.  The highest percentage 

of conservation is found in the p53 binding domain and the RING domain.   The p53 

binding, and acidic, Zinc (Zn), and RING domains and NLS and NES are shown.     
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suggest that the levels of Mdmx are important for maintaining genome stability.  

Combined with the fact that Mdm2 and Mdmx are homologous proteins, these findings 

led to my hypothesis that Mdmx overexpression promotes genome instability.  With 

relatively little known about Mdmx, it was important to determine the function of Mdmx in 

genome instability, as this could contribute to tumorigenesis.  In the studies highlighted 

in Chapter 3 of this dissertation, I identify and characterize a novel function of Mdmx 

that is independent of both p53 and Mdm2 and negatively impacts genome instability.22  

  

Mdm2 and Mdmx and the DNA damage response 

Mdm2 and Mdmx interact with a number of DNA repair proteins, but the 

consequences of these interactions are not well characterized, which led me to 

investigate the influence of Mdmx in the DNA damage response (Figure 1).  DNA 

damage induces complex signaling cascades including many proteins, the identity of 

which depends on the type and extent of the DNA damage.  For example, following 

double-strand DNA breaks, phosphorylation of Mdm2, Mdmx, and p53 induces 

Mdm2:Mdmx interaction, inhibits Mdm2:p53 association, and may inhibit or promote 

Mdmx:p53 binding.25,27,28,37,110,132  DNA damage also leads to an increase in the E3 

ubiquitin ligase activity of Mdm2 that appears to be regulated by phosphorylation and is 

reported to result in the degradation of both itself and Mdmx.27,28,121  However, due to 

commonly used antibodies that do not recognize phosphorylated Mdm2, the 

destabilization of Mdm2 following DNA damage is controversial.26,41  Mdmx can, 

paradoxically, facilitate Mdm2-mediated p53 ubiquitination, while it is also reported to 

stabilize p53.25,37,121,124  This difference in p53 regulation between Mdm2 and Mdmx is 
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postulated to be due to the relative levels of Mdmx and Mdm2 in the cell.37    

Mdm2 has been associated with the DNA repair process through its regulation of 

p53.  Ultimately, post-translational modifications of Mdm2, Mdmx, and p53 are thought 

to allow p53 activation following DNA damage.  There is evidence the DNA damage-

induced kinase ATM phosphorylates Mdm2, Mdmx and p53.7,27,35,49,76,108,110,116,131,132,142  

While the effect of these phosphorylation events on Mdm2 and Mdmx remains to be 

determined, ATM phosphorylation of p53 is important for its function following DNA 

damage.108  It is thought that phosphorylation of Mdm2, Mdmx, and p53 by ATM 

prevents their interaction following DNA damage thus allowing for the activation of p53 

and subsequent induction of cell cycle arrest or apoptosis.27,49,110        

In addition to affecting the interaction between Mdm2 and Mdmx, DNA damage-

induced phosphorylation events and other post-translational modifications also likely 

promote alterations in protein interactions between Mdm2, Mdmx and other proteins 

involved in the DNA damage response.  For example, Mdm2 has been reported to 

associate with, as well as alter the function or stability of, proteins other than p53 in the 

DNA damage response, such as ATM and Nbs1 (Figure 1).3,35  Specifically, Mdm2 was 

shown to co-immunoprecipitate with ATM, but it is unresolved as to whether this 

interaction is direct or mediated through another protein both bind, such as Nbs1.35  

Mdm2 is also reported to bind to the ATM substrate Chk2 and facilitate its ubiquitination 

and degradation independent of the ubiquitin ligase activity of Mdm2 (Figure 1).  

Phosphorylation of Chk2 by ATM following DNA damage decreases its ability to bind 

Mdm2 which presumably prevents Chk2 from being targeted by Mdm2 for degradation, 

and thus, allows Chk2 to function in the DNA damage response.73  Indirectly through 
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ATM, Chk2 also phosphorylates Mdmx, which is thought to promote the degradation of 

Mdmx following DNA damage; however, through my thesis work, I have described in 

Chapter 3 that at least a fraction of Mdmx protein is actually associating with chromatin 

following DNA damage, rather than being degraded.25,86,131,132  

There are a number of studies linking Mdm2 to the DNA damage response 

independent from its role as a regulator of p53.  Activation of ATM is catalyzed by the 

Mre11-Rad50-Nbs1 complex.88,89  The Eischen lab has shown Mdm2 directly binds 

Nbs1 of the Mre11-Rad50-Nbs1 complex and inhibits DNA double-strand break repair 

independent of p53 (Figure 5).3,16  Unexpectedly, this function of Mdm2 did not require 

its E3 ubiquitin ligase activity or its RING domain.3,16  Only the region of Mdm2 binding 

to Nbs1 was necessary and sufficient to delay double-strand DNA break repair.  

Moreover, the Mdm2 binding domain of Nbs1 was required for Mdm2 to inhibit DNA 

repair.  Mdm2 overexpression results in a delay in phosphorylation of ATM targets.  The 

histone H2AX is a phosphorylation target, which provides an anchor for many DNA 

damage response proteins, including the MRN DNA repair complex, yet Mdm2 

overexpression results in a delay in phosphorylation of H2AX (H2AX).16  Therefore, the 

mechanism for this novel function of Mdm2 appears to be inhibition of the early DNA 

damage response signal mediated by ATM.   Data also show a delay in the appearance 

of phosphorylated ATM/ATM target protein foci at sites of DNA damage, and this 

required the Nbs1 binding domain of Mdm2.16  Therefore, Mdm2 inhibition of DNA break 

repair is independent of its E3 ubiquitin ligase activity, but dependent on its interaction 

with Nbs1 and affects ATM signaling.   
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Figure 5.    Mdm2 inhibits DNA repair through Nbs1.  Mdm2 binds to Nbs1 

of the MRN DNA repair complex.   Nbs1 is involved in the activation of ATM 

promoting the phosphorylation of ATM.  Through interacting with and inhibiting 

Nbs1, Mdm2 inhibits DNA repair and genome instability to promote 

transformation. (Reproduced from Bouska and Eischen 2009)15 
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In addition to altering protein interactions, DNA damage changes the cellular 

localization of both Mdm2 and Mdmx.  While under homeostatic conditions Mdm2 is 

primarily a nuclear protein, appearing diffusely nuclear by immunofluorescence, but  

following gamma irradiation (IR), shows a punctate staining pattern partially co-

localizing with sites of DNA damage and the Mre11-Rad50-Nbs1 complex.3  Mdm2 has 

also been reported to associate with and be stabilized by Mdc1, a scaffold protein 

mediating the interaction between Nbs1 and phosphorylated H2AX to retain Nbs1 at 

sites of DNA damage (Figure 1).62,96  Moreover, recent biochemical data from the 

Eischen lab show increased levels of Mdm2 at chromatin and bound to Nbs1 after IR 

(unpublished data).   

As for Mdmx, it primarily resides in the cytoplasm and moves into the nucleus 

after DNA damage.  Phosphorylation of Mdmx promotes its nuclear localization, and this 

is thought to result in its degradation mediated by ubiquitination from Mdm2.86,92,121 

Although it has been shown to participate, Mdm2 is not required for the nuclear 

localization of Mdmx, as it can move to the nucleus in cells lacking Mdm2.86,92  The 

consequences of Mdmx nuclear localization remain unresolved, but my findings 

described in Chapter 3 would implicate Mdmx has a role at chromatin following DNA 

damage, providing a partial explanation as to why Mdmx may be localized to the 

nucleus.  Additionally, Mdmx was recently shown to bind p53 and facilitate its binding to 

the Mdm2 promoter following DNA damage.12  While Mdmx may function with or without 

Mdm2 to regulate p53, it is also likely able to regulate other proteins independent of p53 

and Mdm2 in the nucleus, such as the MRN complex, which is further described in this 

dissertation (Chapter 3).  Therefore, elucidating the function of Mdm2 and Mdmx 
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localization after DNA damage, and the proteins with which they associate, will provide 

important insight into their genomic functions and reveal further links to the processes 

involved in maintaining genome stability.  While the Eischen lab had started to reveal 

the role of Mdm2 in the DNA damage response, little was known about the function(s) of 

Mdmx at the start of my thesis work.  Due the ability of Mdmx to enhance other 

functions of Mdm2, I hypothesized Mdmx could affect the DNA damage response 

through influencing Mdm2.  Therefore, I investigated the possible contribution of Mdmx 

to the DNA damage response and genome instability (described in Chapter 3).   

 

Targeting Mdm2 and Mdmx in cancer  

 Because Mdm2 and/or Mdmx are overexpressed in cancer, the development of 

pharmacological approaches to prevent Mdm2 and Mdmx from binding to p53, and 

subsequently activating p53 to induce tumor cell apoptosis or cell cycle arrest, has been 

a recent focus in cancer therapeutics.29,146   Nutlin is a small molecule inhibitor which 

specifically binds to Mdm2 and prevents binding of Mdm2 to p53 (Figure 6).162  As 

anticipated, reactivation of wild-type p53 in cancer cells by Nutlin treatment resulted in 

apoptosis.  MI-63 is another small molecule inhibitor of Mdm2 that has yielded similar 

results as Nutlin.39  While proof of principle of the therapeutic promise of these inhibitors 

has been achieved in vitro and in mouse models, it has not yet translated into clinical 

success.  Although these inhibitors hold promise for treating cancers with wild-type p53, 

half of human cancers lack functional p53 at the time of diagnosis.91  An additional 

result of Nutlin is an increase in Mdm2 protein levels that does not depend on p53. 

Because the Eischen lab had previously shown that increased Mdm2 inhibited double- 
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Figure 6. Nutlin prevents the interaction between Mdm2 and p53.   In the 

p53 binding domain of Mdm2, p53 binds in a specific hydrophobic pocket.   

The small molecule inhibitor Nutlin was designed to mimic p53 and bind to this 

same hydrophobic pocket to prevent Mdm2 from binding to p53. (Reproduced 

from Nalepa et al 2006)117  
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strand DNA break repair, this led us to hypothesize that increasing Mdm2 levels with a 

small-molecule (e.g., Nutlin and MI-63) and combining this with genotoxic 

chemotherapeutics may be an effective therapy in cancers with inactivated p53.  

Studies have demonstrated promise in therapies designed to capitalize on the p53-

independent functions of Mdm2 in genome instability.  For example, IR of sarcoma 

cells with inactive p53 overexpressing Mdm2 showed a decrease in colony formation.27     

There are numerous studies highlighting the cooperative effect of Nutlin and genotoxic 

agents in cancer cells with wild-type p53.5,8,30,52,113,120,139,167  A few studies have also  

demonstrated the cooperation of Nutlin and genotoxic agents in cells with inactivated 

p53.4,31,120,155,167  For example, Nutlin radiosensitized p53 mutant or null prostate cancer 

cells, but the mechanism behind this effect of Nutlin is not entirely understood.155   

In pancreatic cancer, Nutlin has also been shown to cooperate with 

topoisomerase II inhibitors, which cause double-strand DNA breaks.31  Nutlin also 

increased cell death in sarcoma and cutaneous T cell lymphoma cells with or without 

functional p53 in the presence of the DNA-damaging agents Doxorubicin or 

Cisplatin.102,120  Recently, it was shown Gemcitabine, which causes DNA replication 

stress and subsequent DNA breaks, cooperated with MI-63 and increased tumor cell 

death.68  These and other data suggest a therapeutic benefit of combining DNA 

damaging agents with small molecules/compounds that increase the levels of Mdm2 to 

kill cancer cells expressing or lacking functional p53, and a similar approach could be 

taken with Mdmx.  While evidence supports the benefit of this cooperation, the 

mechanism behind the effect of Nutlin in the absence of p53 is not clearly established.  

Being able to elucidate this mechanism provides valuable knowledge for the 
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development of future therapeutic regimens.  In Chapter 4, I describe my data 

demonstrating a novel p53-independent mechanism of Nutlin that contributes to 

cooperativity with genotoxic agents.   

It is well established that Mdm2 and Mdmx are oncogenes that negatively 

regulate p53, but the p53-independent functions of these proteins remains to be 

completely understood.  Studies from our lab and others, the p53-independent functions 

of Mdm2 and Mdmx likely affect genome instability, and targeting proteins that 

negatively affect genome stability are potential chemotherapeutic targets.  While some 

p53-independent functions of Mdm2 have been determined, very little is known about 

Mdmx.  It has been observed that Mdmx can enhance the p53-regulatory function of 

Mdm2.    Therefore, my hypothesis was that Mdmx inhibits double-strand DNA break 

repair and promotes genome instability independent of p53, and this genome instability 

can cooperate with genotoxic agents to promote cell death in cancers with inactivated 

p53.  In Chapter 2 of this dissertation, I will explain the materials and methods used for 

my studies.  Chapter 3 describes my data characterizing a novel role for Mdmx in 

genome instability through inhibition of double-strand DNA break repair.  The potential 

for this family of proteins being a therapeutic target in cancer is described in Chapter 4, 

with a focus on Mdm2, specifically.  Finally, in Chapter 5, I summarize my findings and 

suggest future directions for these studies.  Overall, the work described in this 

dissertation provides significant knowledge for understanding tumorigenesis and 

developing new cancer therapeutics.     
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

Cell culture 

 293T cells, p53-/-, p53-/-Mdm2-/-, and ΔB/ΔB murine embryonic fibroblasts (MEFs) 

were cultured as previously described.22  SKOV3, OVCAR5 and OVCAR8 ovarian 

cancer cell lines were cultured as described previously.78  p53-/-, Arf-/- and p53-/-Mdm2-/- 

murine embryonic fibroblasts (MEFs) were isolated and cultured as previously 

described.180  Atm-/-Arf-/- were provided by Dr.  Michael Kastan (Duke University), and 

the p53-/-Mdmx-/- MEFs were provided by Dr.  Stephen Jones (University of 

Massachusetts).  293T cells were cultured as described by the American Type Culture 

Collection (Manassas, VA).  Human retinal epithelial cells were provided by Dr.  David 

Cortez (Vanderbilt University) and were cultured in Dulbecco's modified Eagle's 

medium/F12 medium supplemented with 0.258% sodium bicarbonate and 10% fetal 

bovine serum.   

 

Chemotherapeutic agents and antibodies 

 Nutlin (Sigma) was resuspended in DMSO at a concentration of 17.2 mM.  Nutlin 

described refer to the entire mixture, but only half of the total concentration used 

represents the active enatomer A.  Cisplatin (Sigma) was resuspended in 0.9% NaCl at 

a concentration of 5 mM.  Etoposide (Sigma) was resuspended in DMSO (Sigma) at a 

concentration of 50 mM.  The following antibodies were used for Western blot analysis:  
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cleaved Caspase 3 (Cell Signaling), and -actin.  Mdm2 antibodies previously 

described.3,16  Mdmx antibody was from Sigma-Alderich (St Louis, MO).  For 

immunofluorescence, pSer139 H2AX (Millipore) or pSer1981 ATM (Rockland) were 

used for primary detection and Alexa Fluor 594 (Invitrogen) was used for secondary 

detection.   

 

Comet assay 

 Cells were treated with the specified drug, where indicated, 24 hours prior to -IR 

(137Cs source).  Neutral comet assays were performed as described previously.16  MEFs 

and human retinal epithelial cells infected with a bicistronic retrovirus encoding YFP 

alone, YFP and Mdmx or Mx∆RING, or GFP and Mdm2 were exposed to 5 Gy IR 

(137Cs source).  Neutral comet assays were performed at intervals as previously 

described to detect double-strand DNA breaks.3,16  A minimum of two independent 

experiments were performed for all analyses.  Statistical significance was determined by 

the student’s t-test. 

 

Immunofluorescence 

 Cells were seeded onto coverslips and, where indicated, treated for 24 hours 

with the specified drug.  Following -IR, cells were fixed and H2AX and pS/T-Q foci 

were detected and analyzed as previously described.22  H2AX or pS-T/Q foci were 

detected by immunofluorescence and analyzed as previously described.16  The number 

of H2AX and pS-T/Q foci per cell for at least 40 cells per individual condition was 

quantified.  A minimum of three independent experiments were performed for all 
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analyses.  Statistical significance was determined using a confidence interval of 95%.   

 

Proliferation and apoptosis assays 

 For MTT assays, cells (5x103-1x104) were plated in a 96-well plate 24 hours 

before treatment with chemotherapeutic agents (Nutlin, Etoposide, Cisplatin or a 

combination) for 72 hours.  MTT reagent was added to the wells at intervals and 

processed as previously described.54  To assess apoptosis, cells were treated with 

chemotherapeutic agents for 72 hours.  Cells were collected and protein lysates were 

processed as previously described.22  Cleaved Caspase 3 was subsequently evaluated 

by Western blot analysis.   

 

Plasmids, viral vector construction, and infection 

 Wild-type full-length N-terminal FLAG-tagged murine Mdmx in the pBabe 

retroviral construct was generously provided by Dr.  Jean-Christophe Marine (VIB, 

Belgium).  Using PCR and restriction enzyme digests of wild-type full-length Mdmx, 

deletion mutants of Mdmx containing amino acids 1-345 (MxΔRING) or 346-489 (Mx 

346-489) were generated and cloned into the pcDNA3 vector.  Wild-type full-length 

Mdmx and both Mdmx mutants were also subcloned into the MSCV-IRES-YFP retroviral 

vector.  The MSCV-Mdm2-IRES-GFP retroviral vector was previously reported.3,16  

Retroviruses were generated, and MEFs were infected as previously reported.180  YFP 

and GFP fluorescence was evaluated by flow cytometry.  HA-tagged Mdmx was 

generated by restriction digest, cloning it into the pJ3H vector and then subcloning the 

HA-tagged cDNA into the pcDNA3 vector.  Vectors encoding FLAG-tagged wild type 
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and deletion mutants of Nbs1 were generated previously.16   

 

Metaphase preparation and analysis 

 p53-/- and p53-/-Mdm2-/- MEFs, which were between passage 8-28 and thus, had 

a relatively stable tetraploid genome, were infected with retroviral vectors encoding 

YFP, YFP and full-length Mdmx, or YFP and Mx∆RING.  Metaphases were prepared 

approximately 48 hours later and analyzed as previously described.16,169  A minimum of 

two independent experiments were performed and the results pooled.  Statistical 

significance was determined using a Fisher’s exact test with a p value of <0.05 

considered significant.   

 

Transfections and protein analyses 

 HA-tagged full-length Mdmx or Mdmx deletion mutants or FLAG-tagged full-

length Nbs1 or Nbs1 deletion mutant constructs were transiently transfected into 293T 

cells.  Whole cell protein lysates were generated and proteins were immunoprecipitated 

as previously described.3,16  For protein analysis of H2AX, MEFs were exposed to 5 Gy 

of IR, and at the indicated intervals, cells were harvested and lysates generated as 

previously described.16  For chromatin fractionation, at indicated intervals following 

exposure to 5 Gy of IR, the chromatin fraction was isolated from MEFs as previously 

described.17  For all lysates, following separation of proteins by SDS-PAGE and transfer 

to nitrocelluose, proteins were subjected to western blot analysis as previously 

described.3,16  
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In vitro transformation assays 

p53-/- and p53-/-Mdm2-/- MEFs infected with bicistronic retroviral vectors encoding YFP, 

YFP and full-length Mdmx, or YFP and Mx∆RING were resuspended in 0.6% 

agarose/media and placed in 6 well plates in triplicate on 0.8% agarose/media.  

Approximately 2 weeks later, colonies were counted.  At least two independent 

experiments consisting of three replicates each were performed.  A student’s t-test 

determined statistical significance.   

 

The Cancer Genome Atlas (TCGA) data analysis 

Gene copy number variation, mutations, and mRNA expression in cancer data sets 

were accessed using cBioPortal (www.cbioportal.org) October 2013.  As described on 

the cBioPortal website, gene copy number variation was determined by TCGA based on 

the GISTIC 2.0 or RAE algorithm, and mutations were determined by whole exome 

sequencing.  MDMX mRNA levels were evaluated from microarray or RNA sequencing 

by RNASeqV2, and Z-scores of 2, which represent 2 standard deviations from the 

mRNA levels in a reference tissue (normal or blood), were considered significantly 

increased.   
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Chapter 3 
 
 

MDMX PROMOTES GENOMIC INSTABILITY 
 INDEPENDENT OF p53 AND MDM2 

 
 
Carrillo AM, Bouska A, Arrate MP, Eischen CM. Mdmx promotes genomic instability 
independent of p53 and Mdm2. Oncogene 2014. 
 
 
Introduction 
 

The E3 ubiquitin ligase Mdm2, a negative regulator of the p53 tumor suppressor, 

is frequently overexpressed in many human malignancies.114,137,165  While it is 

established Mdm2 inhibits p53, studies have identified other functions of Mdm2 

impacting genome stability that are independent of p53 and contribute to 

tumorigenesis.3,16,70,97  We, specifically, discovered a novel p53-independent 

association between Mdm2 and Nbs1 of the Mre11-Rad50-Nbs1 (MRN) DNA repair 

complex.3,16,109  The MRN complex is important in sensing and processing double-

strand DNA breaks, as well as activating downstream DNA damage response proteins 

that mediate or signal for DNA repair, such as the DNA damage-induced kinase 

ATM.10,38,88,153,159  Through binding Nbs1, elevated levels of Mdm2 delay double-strand 

DNA break repair independent of its E3 ubiquitin ligase activity and p53 status.  

Ultimately, Mdm2 overexpression results in increased genome instability occurring 

independent of its regulation of p53.16,109 

Genome instability is a hallmark of cancer and is a known contributor to 

tumorigenesis.57,118 While the exact causes of genomic instability continue to be 

elucidated, altered DNA repair has been implicated as a significant contributing 

factor.153  DNA breaks must be repaired efficiently and accurately or structural 
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abnormalities, such as chromosome breaks or fusions, can result.  This is evident in 

patients with congenital mutations in DNA repair proteins, such as NBS1 and ATM.  

Cells from these patients have increased chromosomal fragility, and the patients 

themselves have an increased incidence of tumor formation.20,153,161   

MDMX, also known as MDM4, is overexpressed or amplified in at least 15% of 

human cancers.33,90,135,165  Most studies evaluated mRNA, which likely underestimates 

the frequency of Mdmx protein overexpression.  Elevated levels of levels of MDMX 

mRNA are detected in 65% of retinoblastomas and the same percentage of cutaneous 

melanomas overexpress MDMX protein.51,85  Mdmx was initially described as an Mdm2 

homologue with high conservation in the N-terminal p53 binding domain and the C-

terminal RING domain;148 however, Mdmx appears to differ functionally from Mdm2.  

While Mdmx negatively regulates p53, it does so through inhibiting p53 transcriptional 

activity rather than promoting p53 degradation through ubiquitination, as is the case for 

Mdm2.104,150  Additionally, it has been shown through their RING domains, Mdmx binds 

Mdm2 and enhances the ability of Mdm2 to regulate p53.129,147,148,150,156  Although 

Mdmx inhibits p53 function, homozygous Myc-tagged Mdmx transgene expression was 

embryonic lethal, and this could not be rescued with deletion of p53,34 suggesting a 

p53-independent function of Mdmx in development.  Moreover, human tumors with 

MDMX overexpression may also have inactivated p53,53,81,135,165 which indicates a 

potential oncogenic benefit to the cancer cells from Mdmx overexpression in addition to 

its inhibition of p53.   

Recent studies established Mdmx influences genome stability independent of 

p53.105,106  However, its function in genome instability remained unclear.  In this study, 
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we identified a novel p53-independent function of Mdmx leading to genome instability.  

We determined Mdmx associates with Nbs1 of the MRN DNA repair complex, and its 

overexpression delayed DNA damage response signals and double-strand DNA break 

repair.  Elevated Mdmx levels increased chromosome and chromatid breaks as well as 

promoted transformation in vitro.  These effects of Mdmx did not require either p53 or 

Mdm2 and revealed a novel p53- and Mdm2-independent function of Mdmx that would 

contribute to tumorigenesis.   

 

Results 

 

A subset of human cancers both overexpress MDMX and inactivate p53.   

 Elevated MDMX levels through amplification or overexpression have been 

reported for numerous human malignancies.33,51,85,90,135,165  Studies have also shown 

MDMX is overexpressed in cancers with mutated p53, indicating they are not mutually 

exclusive events during tumorigenesis.53,81,135,165  Analysis of the data in The Cancer 

Genome Atlas (TCGA) provides further evidence that a certain fraction of multiple 

cancers have overexpressed MDMX (amplification or mRNA) concurrently with 

inactivated (mutated or deleted) p53 (Table 2).24,50  Specific cancers, such as ovarian 

serous cystadenocarcinoma and lung squamous cell carcinoma show a high frequency 

(77-90%) of tumors that overexpress MDMX also have inactivated p53.  For breast 

cancer, 27% that overexpress MDMX showed concurrent p53 inactivation (Table 2), 

and 30% (12 of 40 cell lines) of an aggressive form of breast cancer have increased 

Mdmx protein together with mutated p53.81   
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Table 2.   Increased MDMX co-occurs with mutant/deleted p53 in multiple 

cancer typesa   

 

Cancer Type Samples

MDMX

increasedb

mut/delc p53 in 

MDMX

increasedb

Breast, Invasive Carcinoma 825 144/825 (18%) 39/144 (27%)

Colon and Rectum 

Adenocarcinoma 195 11/195 (6%) 2/11 (18%)

Glioma, Lower Grade 213 15/213 (7%) 6/15 (40%)

Glioblastoma Multiforme 135 18/135 (13%) 7/18 (39%)

Head and Neck Squamous Cell 

Carcinoma 295 18/295 (6%) 10/18 (56%)

Hepatocellular Carcinoma 110 35/110 (32%) 2/35 (6%)d

Lung Adenocarcinoma 129 20/129 (16%) 4/20 (20%)

Lung Squamous Cell Carcinoma 177 13/177 (7%) 10/13 (77%)

Ovarian Serous 

Cystadenocarcinoma 316 40/316 (13%) 36/40 (90%)

Sarcoma (soft tissue) 149 26/149 (18%) 2/26 (8%)

Skin, cutaneous melanoma 225 34/225 (15%) 3/34 (9%)

Stomach Adenocarcinoma 197 12/197 (6%) 7/12 (58%)

Uterine Corpous Endometroid 

Carcinoma 233 39/233 (17%) 11/39 (28%)

a TCGA data was obtained October 2013 through the cBioPortal for Cancer   
  Genomics  
b Gene amplification or mRNA levels two standard deviations (Z score ≥2) above  
  control  
c Mutations include nonsense, missense, insertions, and small deletions;   
  deletions determined by copy number alterations  
d p53 deletion only, mutation data not available for these samples  
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In the tumors with increased levels of MDMX, 10 of the 13 cancer types evaluated also 

had alterations in p53 in at least 10% of them (Table 2).  These data, together with 

previous studies, suggest certain tumor types or subsets of specific tumor types may 

select for co-alteration of Mdmx and p53. 

 

Elevated Mdmx increases genome instability independent of p53.   

 Genome instability is observed in many malignancies and is considered a 

hallmark of cancer.57  Mdmx has been shown to enhance functions of Mdm2 (e.g.  

negative regulation of p53;129,147,148,150,156); therefore, we postulated elevated Mdmx 

levels would enhance the ability of Mdm2 to promote genome instability.  Since Mdmx 

could potentially influence genome stability through its regulation of p53, we utilized 

p53-/- murine embryonic fibroblasts (MEFs) for these studies.  To mimic the cancer 

situation, we overexpressed Mdmx in p53-/- MEFs with a bicistronic retrovirus encoding 

HA-tagged Mdmx and YFP or as a control, YFP alone.   

 Metaphases were then evaluated for chromosome aberrations.  Mdmx 

overexpression alone significantly increased the prevalence of cells with breaks 

(chromatid or chromosome; Figure 7).  There was a 4.9-fold increase in chromatid 

breaks and a 2.8-fold increase in chromosome breaks in p53-/- MEFs with elevated 

Mdmx compared to control p53-/- MEFs (Figure 7).  These results indicate elevated 

levels of Mdmx were capable of inducing genome instability, and this was independent 

of p53. 

 

 



  35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Elevated Mdmx levels promote genome instability independent 

of p53.   p53-/- MEFs were infected with a bicistronic retrovirus encoding YFP 

alone (Vector; n=96), YFP and HA-Mdmx (n=98), or YFP and HA-Mdmx1-345 

(Mx∆RING; n=119).  a) Metaphases were evaluated for chromosome 

aberrations, and the percentage of cells with the indicated aberration is 

graphed.  Statistical significance was determined using the Fisher’s exact test.  

b) Representative pictures of a chromatid (left) and a chromosome (right) 

break in p53-/- MEFs overexpressing Mdmx.  Inset is an expanded view of the 

aberration marked by the arrow.   
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Mdmx inhibits double-strand DNA break repair independent of p53 and Mdm2.  

 Alterations in DNA repair have been linked to genome instability.153  Previously, 

we reported Mdm2 overexpression inhibits double-strand DNA break repair independent 

of its regulation of p53.3,16  To determine if Mdmx was modulating genome instability 

through its interactions with Mdm2, we first needed to determine the effects of elevated 

Mdmx levels on double-strand DNA break repair.  p53-/- MEFs were infected with a 

bicistronic retrovirus encoding either YFP alone, FLAG-tagged Mdmx and YFP, or 

Mdm2 and GFP.  Following the induction of double-strand DNA breaks using gamma 

irradiation (IR), DNA repair was then assessed using neutral comet assays.  While 

79% of the control p53-/- MEFs were able to repair double-strand DNA breaks within 90 

minutes post IR, only 42% of the p53-/- MEFs overexpressing Mdmx repaired their DNA 

breaks (Figure 8).  The percentage of cells overexpressing Mdmx that repaired their 

DNA damage was similar to that of cells overexpressing Mdm2 (Figure 8).  Therefore, 

Mdmx inhibited DNA double-strand break repair independent of p53.  To determine if 

Mdmx was acting through Mdm2, we generated a deletion mutant of Mdmx (1-345 

amino acids) that lacked its RING domain (Mx∆RING), and thus, was unable to 

heterodimerize with Mdm2.147,156  We assessed the ability of this mutant to increase 

genome instability and inhibit DNA repair.  Surprisingly, the Mdmx mutant was also able 

to promote chromatid and chromosome breaks and inhibit double-strand DNA break 

repair analogous to full-length Mdmx (Figures 7 and 8).  Although it has been well 

established that Mdm2 and Mdmx bind through their RING domains,104,147,156 it was 

recently postulated that Mdm2 and Mdmx may associate indirectly through the Mdm2-

binding protein, Arf.93  
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Figure 8.   Mdmx overexpression inhibits double-strand DNA break 

repair independent of p53. p53-/- (a,b) MEFs were infected with a bicistronic 

retrovirus encoding YFP alone (Vector), GFP and HA-Mdm2, YFP and FLAG-

Mdmx, YFP and HA-Mdmx, or YFP and HA-MxΔRING.  Western blots of the 

indicated proteins were performed.  Following 5 Gy of IR, neutral comet 

assays were performed at intervals.  All data are a mean of a minimum of 

three independent experiments.  Each symbol in b is the mean of an individual 

experiment and the line is the mean of all experiments.  Error bars represent 

SEM.  *p ≤ 0.01 in A; each compared to vector control; student’s t-test  
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To determine whether Arf could influence the ability of Mdmx to inhibit DNA repair, we 

evaluated Arf-/- MEFs, which contain p53.  Both wild-type Mdmx and Mx∆RING 

effectively delayed double-strand DNA break repair in cells lacking Arf (Figure 9).   

To definitively address the requirement of Mdm2 for this effect of Mdmx on DNA 

repair, we utilized MEFs lacking Mdm2.  In p53-/-Mdm2-/- MEFs, Mdmx overexpression 

resulted in a similar inhibition of DNA break repair as in the p53-/- MEFs (Figure 10).  

Furthermore, full-length Mdmx and the mutant form of Mdmx (Mx∆RING) similarly 

inhibited DNA break repair in p53-/-Mdm2-/- MEFs (Figure 10).  Also, MxΔRING 

overexpression in human retinal epithelial cells that have Arf and p53 also resulted in a 

delay in DNA break repair (Figure 11).  Therefore, Mdmx inhibits double-strand DNA 

break repair in different cell types, and this can occur independent of p53, Arf, and 

Mdm2.  The data also illustrate the functional domain of Mdmx responsible for the 

inhibition in DNA repair is within amino acids 1-345.   

 

Mdmx delays the DNA damage response and alters the early DNA damage 

response signaling.   

 Following double-strand DNA break repair, the histone variant H2AX is rapidly 

phosphorylated (H2AX).  The presence of this phosphorylation site indicates activation 

of the DNA damage response pathway and is a marker of DNA double-strand break 

sites.10,141  Therefore, we evaluated H2AX foci and protein levels immediately following 

and at later times after induction of DNA breaks to assess initiation of the DNA damage 

response and subsequent resolution of the DNA damage.  Similar to Mdm2 

overexpression, p53-/- MEFs with elevated Mdmx or the MxΔRING mutant were  
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Figure 9.   Mdmx overexpression inhibits double-strand DNA break 

repair independent of ARF.  ARF-/- MEFs were infected with a bicistronic 

retrovirus encoding YFP alone (Vector), GFP and HA-Mdm2, YFP and HA-

Mdmx, or YFP and HA-MxΔRING.  Western blots of the indicated proteins 

were performed.  Following 5 Gy of IR, neutral comet assays were performed 

at intervals.  Data are a mean of a minimum of three independent 

experiments.  Each symbol is the mean of an individual experiment and the 

line is the mean of all experiments.  Error bars represent SEM.   *student’s t-

test  
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Figure 10.   Mdmx overexpression inhibits double-strand DNA break 

repair independent of p53 and Mdm2.  p53-/-Mdm2-/- (a,b) MEFs were 

infected with a bicistronic retrovirus encoding YFP alone (Vector), GFP and 

HA-Mdm2, YFP and FLAG-Mdmx, YFP and HA-Mdmx, or YFP and HA-

MxΔRING.  Western blots of the indicated proteins were performed.  Following 

5 Gy of IR, neutral comet assays were performed at intervals.  All data are a 

mean of a minimum of three independent experiments.  Each symbol in b is 

the mean of an individual experiment and the line is the mean of all 

experiments.  Error bars represent SEM.  *p < 0.05 in A; each compared to 

vector control; student’s t-test 

a 

b 
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Figure 11.  Mdmx overexpression inhibits double-strand DNA break 

repair in human retinal epithelial cells.   Human retinal epithelial cells 

(HREC) were infected with a bicistronic retrovirus encoding YFP alone 

(vector) or YFP and HA-MxΔRING.   Western blots of the indicated proteins 

were performed.   Following 5 Gy of IR, neutral comet assays were 

performed at the indicated intervals.   Data are the mean of at least two 

independent experiments.   Error bars are the SEM.   *p=0.048, **p=0.007 

student’s t-test.    
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inhibited in their ability to form H2AX foci immediately following IR, as they showed a 

decreased mean number of foci compared to control 10 minutes post IR (Figures 12-

17).  In addition, the resolution of H2AX foci was also delayed by Mdmx expression.  

Cells overexpressing Mdmx or MxΔRING had an increased mean number of foci 150 

minutes after IR compared to the vector control cells (Figure 12, Figure 13, Figure 16).  

Similar results were obtained in MEFs lacking Mdm2 and in human retinal epithelial 

cells that express ARF and p53 (Figure 12, Figure 14-16).   

 Ranking of H2AX foci in individual cells from a representative experiment of  

p53-/- and p53-/-Mdm2-/- MEFs revealed that there was an overall reduction in foci at 5 

minutes and an overall increase in foci at 150 minutes following IR in the Mdmx and 

the MxΔRING expressing MEFs (Figure 16).  These data further establish the inhibitory 

effects of Mdmx on the DNA damage signaling response and illustrate that the mean 

values of the H2AX foci in Figure 12 were not due to extremes at either end.  

Moreover, evaluation of H2AX protein showed that levels were reduced in cells 

overexpressing either Mdmx or MxΔRING early (10 and 30 min) after IR compared to 

control (Figure 17). Later (75 min) after IR, H2AX protein levels were elevated 

compared to controls in both p53-/- and p53-/-Mdm2-/- MEFs (Figure 17).  Taken 

together, these data indicate increased levels of Mdmx inhibit an early DNA damage 

signaling response, leading to an extension of this response and a delay in the 

resolution of the DNA breaks.   
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Figure 12.     Elevated Mdmx impairs the early DNA damage response 

signal.   p53-/- (a) or p53-/-Mdm2-/- (b) MEFs were infected with a bicistronic 

retrovirus encoding YFP alone (vector), YFP and full-length HA-Mdmx (Mx) or 

YFP and HA-MxΔRING.   Following exposure to 5 Gy of IR, MEFs were fixed 

at the indicated intervals and immunofluorescence for H2AX was performed.  

The number of foci per cell was quantified.   The mean of at least three 

independent experiments is graphed.  Error bars represent SEM, and 

significance determined using a confidence interval of 95%.    

b 

a 
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Figure 13.   Elevated Mdmx inhibits H2AX foci formation and resolution 

independent of p53.   p53-/-  MEFs were infected with a bicistronic retrovirus 

encoding YFP alone (vector, V), GFP and full-length Mdm2, YFP and full-

length HA-Mdmx (Mx) or YFP and HA-MxΔRING (MxΔR).  Following exposure 

to 5 Gy of IR, MEFs were fixed at the indicated intervals and 

immunofluorescence for H2AX was performed.  Representative pictures of 

H2AX (red) and DAPI (blue).     
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Figure 14.   Elevated Mdmx inhibits H2AX foci formation and resolution 

independent of p53 and Mdm2.   p53-/-Mdm2-/-  MEFs were infected with a 

bicistronic retrovirus encoding YFP alone (vector, YFP and full-length HA-

Mdmx (Mx) or YFP and HA-MxΔRING (MxΔR).   Following exposure to 5 Gy 

of IR, MEFs were fixed at the indicated intervals and immunofluorescence for 

H2AX was performed.  Representative pictures of H2AX (red) and DAPI 

(blue).     
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Figure 15.  Increased levels of Mdmx impair the early DNA damage       
response signal in cells with and without p53.   p53-/- MEFs, p53-/-Mdm2-/- 
MEFs, or HRECs were infected with a bicistronic retrovirus encoding YFP 
alone (vector, V) or YFP and HA-MxΔRING (MxΔR).  Following exposure to 5 

Gy of IR, MEFs were fixed at the indicated intervals and immunofluorescence 

for H2AX  was performed.  The number of foci per cell was quantified.   The 
mean of at least three independent experiments is graphed.  Error bars 
represent SEM, and significance determined using a confidence interval of 
95%.    
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Figure 16.   Elevated Mdmx impairs the early DNA damage response 

signal in the overall cell population.   p53-/-(a) or p53-/-Mdm2-/-(b)  MEFs 

were infected with a bicistronic retrovirus encoding YFP alone (vector), YFP 

and full-length HA-Mdmx (Mx) or YFP and HA-MxΔRING.  Following exposure 

to 5 Gy of IR, MEFs were fixed at the indicated intervals and 

immunofluorescence for H2AX was performed.  The number of foci per cell 

was quantified.   The ranking of foci in individual cells was graphed for a 

representative experiment in both MEF genotypes.   

a 

b 
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Figure 17.  Increased levels of Mdmx alter H2AX protein levels following 

IR.    p53-/- or p53-/-Mdm2-/- MEFs were infected with a bicistronic retrovirus 

encoding YFP alone (vector, V), YFP and full-length HA-Mdmx (Mx) or YFP 

and HA-MxΔRING (MxΔR).  Following exposure to 5 Gy of IR, cells were 

harvested, and Western blot analysis of whole cell lysates for the proteins 

indicated to the left of the panels at the indicated intervals was performed.    
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ATM is a DNA damage response kinase that phosphorylates H2AX and 

hundreds of other proteins upon double-strand DNA breaks.107  The phosphorylation 

site ATM prefers is a serine or threonine followed by a glutamine (S/T-Q).77,107  To 

further investigate the effects of Mdmx on the early DNA damage signaling response, 

we carefully evaluated ATM-induced phosphorylation events over time by quantifying 

phosphorylated S/T-Q (pS/T-Q) sites on a per cell basis using immunofluorescence.  

Following IR of p53-/- MEFs, the number of pS/T-Q foci peak within 20 minutes in 

vector control cells and decrease over the course of 240 minutes as the DNA is repaired 

(Figure 18, Figure 20).  In contrast, Mdmx overexpression inhibits the formation of pS/T-

Q foci with an approximate 35% reduction in the number of foci as compared to vector 

control cells within the initial 20 minutes following DNA damage (Figure 18, Figure 19-

20).  Moreover, over the 240 minutes analyzed, Mdmx overexpressing cells fail to 

increase the number of pS/T-Q foci to the peak levels observed with vector control 

MEFs (Figure 18), indicating DNA damage response signaling is significantly impaired 

by increased levels of Mdmx.  In addition, as DNA repair occurs and the number of 

pS/T-Q foci decreases in control cells, the number of foci in Mdmx overexpressing cells 

stays elevated (Figure 18).  Notably, Mdm2 was not required for Mdmx to exert this 

effect, as MxΔRING in p53-/- MEFs and human retinal epithelial cells and wild-type  

Mdmx in p53-/-Mdm2-/- MEFs produced similar results (Figure 18-20).  There were 

a similar number of foci in all cells without IR.  Ranking of pS/T-Q foci in individual cells 

from a representative experiment for each cell type revealed that there was an overall 

reduction in foci at 10 minutes, a slightly lower or similar number of foci at 60 minutes, 

and an overall increase in foci at 240 minutes following IR in the Mdmx and the  
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Figure 18.  Elevated Mdmx impairs pS/TQ sites.   p53-/- (a) or  p53-/-Mdm2-/- 

(b) MEFs were infected with a bicistronic retrovirus encoding YFP alone 

(vector, V), YFP and full-length HA-Mdmx (Mx) or YFP and HA-MxΔRING 

(MxΔR).  Following exposure to 5 Gy of IR, MEFs were fixed at the indicated 

intervals and immunofluorescence for pS/T-Q was performed.  The number of 

foci per cell was quantified.  The mean of at least three independent 

experiments is graphed.  Error bars represent SEM, and significance 

determined using a confidence interval of 95%. 

b 
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Figure 19.     Elevated Mdmx impairs pST/Q foci formation in cells with 

and without p53.   p53-/- MEFs, p53-/-Mdm2-/- MEFs, or HRECs were infected 

with a bicistronic retrovirus encoding YFP alone (vector, V) or YFP and HA-

MxΔRING (MxΔR).   Following exposure to 5 Gy of IR, MEFs were fixed at 

the indicated intervals and immunofluorescence for pST/Q was performed.  

The number of foci per cell was quantified.   The mean of at least three 

independent experiments is graphed.  Error bars represent SEM, and 

significance determined using a confidence interval of 95%.    
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MxΔRING expressing MEFs (Figure 20).  These data illustrate that elevated levels of 

Mdmx severely blunt the early DNA damage response signal mediated by ATM causing 

the response to be prolonged, resulting in the delay in DNA break repair observed 

(Figure 8-11).   

To specifically test the contribution of ATM to the effects of Mdmx in DNA break 

repair, we utilized MEFs that lacked Atm.  The MEFs also were Arf-null to prevent 

senescence that rapidly occurs in cells lacking ATM.72  Overexpression of Mdmx in  

Atm-/-Arf-/- MEFs, which have an impaired DNA damage response, did not further delay 

DNA break repair.  A similar number of cells with elevated levels of Mdmx had damaged 

DNA as compared to the vector control cells at each interval evaluated (Figure 21).  

These results suggest ATM is necessary for Mdmx to inhibit DNA break repair. 

 

Mdmx associates with Nbs1 of the MRN complex.   

 The Mre11-Rad50-Nbs1 (MRN) complex is necessary for efficient and accurate 

repair of double-strand DNA breaks.153 Additionally, Nbs1 of this complex is critical for 

activating ATM following double-strand DNA breaks.10,38,88,159 Since we observed Mdmx 

overexpression resulted in an altered kinetics of ATM-mediated phosphorylation events  

and Mdm2 is known to bind Nbs1,3,16 we evaluated whether Mdmx associates with the 

MRN complex.Following transient expression of HA-tagged Mdmx in 293Tcells, 

endogenous Nbs1, Mre11, and Rad50 co-immunoprecipitated with Mdmx (Figure 22).  

This association also occurred with endogenous Mdmx and was not mediated by 

Mdm2.  Specifically, endogenous Nbs1 co-immunoprecipitated with endogenous Mdmx 

in both p53-/- and p53-/-Mdm2-/- MEFs, whereas Nbs1 was not detected in 
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Figure 21.   Mdmx cannot inhibit DNA repair in the absence of Atm.   Arf-/- 

or Atm-/-Arf-/- MEFs were infected with a bicistronic retrovirus encoding YFP 

alone (vector) or YFP and HA-Mdmx.   Western blots of the indicated proteins 

were performed.  Neutral comet assays were performed at the indicated 

intervals following exposure to 5 Gy of IR.   Only Atm-/-Arf-/- MEFs were 

evaluated at 240 min post IR.   Each bar represents a mean of a minimum of 

2 independent experiments.   Error bars are SEM.    
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immunoprecipitations from control MEFs lacking Mdmx (Figure 22).  To narrow the 

region in Mdmx necessary for its interaction with the MRN complex, we generated and 

then evaluated deletion mutants of Mdmx (Figure 23).  In 293T cells, we transiently 

expressed either HA-tagged full-length Mdmx, a deletion mutant of Mdmx lacking the 

RING domain (MxΔRING; aa 1-345) or a mutant of Mdmx consisting of only amino 

acids 346-489 and containing the RING domain.  Full-length Mdmx and MxΔRING (aa 

1-345), but not Mdmx 346-489, co-immunoprecipitated the endogenous MRN complex 

(Figure 23).  Thus, the region of Mdmx that associates with the MRN complex lies within 

amino acids 1-345, the same region that induced genome instability, inhibited DNA 

break repair and the DNA damage response (Figures 7-20). 

 Mre11 of the MRN complex binds to both Nbs1 and Rad50, but Nbs1 does not 

bind Rad50.153  To determine with which proteins of the MRN complex Mdmx 

specifically interacts, we utilized Nbs1 deletion mutants we previously generated that 

contain (aa 513-754) or lack (aa 1-592) the Mre11-binding domain (Figure 24a;3,16).  We 

co-expressed HA-Mdmx and FLAG-tagged full-length Nbs1, Nbs1 1-592, or Nbs1 513-

754 in 293T cells.  Both full-length Nbs1 and Nbs1 1-592 co-immunoprecipitated with 

Mdmx, but Nbs1 513-754 did not (Figure 24b).  These data indicate Mdmx interacts with  

Nbs1 and not Mre11 or Rad50.  To further narrow the region in Nbs1 responsible for 

mediating the association with Mdmx, we utilized additional Nbs1 deletion mutants 

(Figure 24c). 

In addition, to eliminate the possibility of Mdm2 mediating the interaction between 

Mdmx and Nbs1, we utilized Mdmx lacking its RING domain (Mdmx 1-345; MxΔRING).   
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Figure 22.   Mdmx associates with Nbs1 independent of Mdm2.   a)  

Whole-cell lysates from HA-Mdmx expressing 293T ells were 

immunoprecipitated with anti-HA or isotype control antibody and western 

blotted.   b) Whole-cell lysates from p53-/-, p53-/-Mdm2-/- or p53-/-Mdmx-/- MEFs 

were immunoprecipitated with anti-Mdmx or isotype control antibody and 

western blotted for the indicated proteins.   
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Figure 23.   The RING domain of Mdmx is not required to mediate the 

interaction with Nbs1.   a)  Schematic representation of full length Mdmx.   

Binding domains for p53, Mdm2, and the acidic, Zinc (Zn), and RING domains 

are shown.   b)  293T cells transfected with empty vector or vectors encoding 

protein tagged full-length or deletion mutants of Mdmx.   Whole-cell lysates 

(left panel) and anti-HA immunoprecipitations (right panel) were western 

blotted for the indicated proteins.    
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Figure 24.   The region mediating the interaction between Mdmx and 

Nbs1 is within amino acids 396-512.    a)  Schematic representation of full 

length Nbs1 and deletion mutants.   Binding domains for FHA, BRCT1/2, 

Mdm2, and Mre11, and NLS domains are shown.   b,c)  293T cells transfected 

with empty vector or vectors encoding protein tagged full-length Mdmx and 

either protein-tagged full length Nbs1 or deletion mutants of Nbs1.   Whole-cell 

lysates (left panel) and anti-HA immunoprecipitations (right panel) were 

western blotted for the indicated proteins.  * denotes immunoglobulin heavy 

chain and non-specific band in B and C respectively.     
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HA-MxΔRING was co-expressed with FLAG tagged Nbs1 179-542, Nbs1 179-395, or 

full-length Nbs1 in 293T cells.  Nbs1 179-542, but not Nbs1 179-395, co-

immunoprecipitated with MxΔRING (Figure 24c).  Similar results were obtained when 

full-length Mdmx was overexpressed (data not shown).  The data indicate the region of 

Nbs1 mediating the interaction with Mdmx is within amino acids 396-512.  We 

compared the 31 amino acid Nbs1-binding domain we previously identified in Mdm2 to 

the entire length of Mdmx and determined that this sequence was not conserved in 

Mdmx.  Collectively, the data show the RING domain of Mdmx is dispensable for its 

interaction with Nbs1 of the MRN complex, and a specific region of Nbs1 is required for 

this association.  Additionally, the Mdmx:Nbs1 association was independent of the 

interaction of either with Mdm2.   

 

Interaction of Mdmx and Nbs1 at chromatin following DNA damage.   

 The MRN complex serves as a sensor of double-strand DNA breaks and 

mediator of the repair process.153 Mre11 and Rad50 bind directly to DNA, and Nbs1 

binds indirectly through Mdc1-mediated association with H2AX at sites of DNA 

damage.10,96,153,154 Since Mdmx interacts with Nbs1 of the MRN complex (Figure 24) 

and alters DNA repair, we evaluated whether Mdmx was recruited to chromatin after 

DNA damage.  To address this, we isolated chromatin-bound proteins with cellular 

fractionation following IR and evaluated the levels of Mdmx.  Rapidly after DNA 

damage, there were increased levels of Mdmx in the chromatin-bound protein fraction of 

cells, with the levels of Mdmx associating with chromatin appearing to decrease with 

time as DNA was repaired (Figure 25a).  We next tested whether Mdmx and Nbs1 
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interacted at chromatin after DNA damage.  Following IR of p53-/-Mdm2-/- MEFs, 

immunoprecipitation of Mdmx from the chromatin-bound protein fraction showed 

increased levels of Nbs1 co-immunoprecipitating with Mdmx (Figure 25b).  Specifically, 

there was increased association between Mdmx and Nbs1 within 5 minutes after DNA 

damage that stayed elevated over the 60 minutes of analysis.  Therefore, DNA double-

strand breaks cause an increase in Mdmx:Nbs1 interaction at chromatin.   

 Because Mdmx interacted with Nbs1 and this interaction increased at chromatin 

following DNA damage, we evaluated if Nbs1 was required for Mdmx to inhibit DNA 

repair.  To analyze this, we used ΔB/ΔB MEFs, which have a point mutation resulting in 

a truncated form of Nbs1 that is unstable and quickly degraded, or MEFs retaining wild-

type Nbs1.173  We infected these cells with bicistronic retrovirus encoding YFP or HA-

Mdmx and YFP, and YFP positivity was confirmed by flow cytometry.  Following IR, we 

used neutral comet assays to assess DNA damage.   We observed in the cells with 

wild-type Nbs1, only 37.1% (+/-4.11%) of Mdmx overexpressing cells repaired their 

DNA compared to 55.9% (+/-1.72%) of the vector control cells up to 120 minutes 

following IR (Figure 26).  In contrast, when cells were lacking Nbs1 (ΔB/ΔB), vector 

control and Mdmx overexpressing cells had a similar percent of cells repair DNA 

damage within 180 minutes after IR (34.2% (+/-5.2%) and 32.4% (+/-4.6%), 

respectively) (Figure 26).  These results suggest Nbs1 is required for Mdmx to mediate 

its inhibition of double-strand DNA break repair.     

 

Mdmx increases genome instability independent of Mdm2.   

 Although Mdmx inhibited DNA repair and DNA damage signaling independent of 
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Figure 25.   Nbs1 associates with Mdmx at chromatin.  a) At intervals 

(minutes) after 5 Gy of IR, Western blots were performed on the chromatin-

bound protein fraction of p53-/- MEFs.  b) Following 5 Gy of IR for the 

indicated intervals (minutes), the chromatin-bound protein fraction of           

p53-/-Mdm2-/- MEFs was immunoprecipitated with anti-Mdmx and Western 

blots were performed.     
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Figure 26.   Mdmx cannot inhibit DNA repair in the absence of Nbs1.    

Wild-type or ΔB/ΔB MEFs were infected with a bicistronic retrovirus encoding 

either YFP alone or HA-Mdmx and YFP.   Following IR, neutral comet assays 

were performed.  Each bar represents a minimum of 2 independent 

experiments evaluating at least 50 cells per experiment per sample.   *p value 

<0.05; student’s t test.    
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both p53 and Mdm2, it was unclear whether the genome instability detected (Figure 7) 

was dependent on the presence of Mdm2.  To address this, we analyzed metaphases 

from p53-/-Mdm2-/- MEFs expressing either empty vector or HA-tagged Mdmx.  Mdmx 

overexpression resulted in a significant increase in the frequency of cells containing 

breaks (chromatid and chromosome) (Figure 27).  Specifically, there was a 3-fold 

increase of cells with either chromatid or chromosome breaks.  Chromosome fusions, 

which result from chromosome breaks, showed a 5-fold increase in Mdmx 

overexpressing p53-/-Mdm2-/- MEFs compared to controls (Figure 27).  Although rare, 

we also detected other structural abnormalities, such as radials, in the Mdmx 

overexpressing MEFs that were not present in the controls (Figure 28).  Moreover, only 

the Mdmx overexpressing p53-/-Mdm2-/- MEFs had more than one chromosomal 

aberration in individual cells (Figure 28).  These results demonstrate that elevated levels 

of Mdmx increase genome instability independent of Mdm2.   

 

Increased transformation potential with elevated levels of Mdmx.   

 We have determined that Mdmx promotes genome instability independent of 

p53, and genome instability is linked to tumorigenesis.57 Moreover, it has been reported 

that elevated Mdmx levels are observed in many tumors.33,51,85,90,135,165 Therefore, we 

tested whether elevated Mdmx levels would promote transformation independent of its 

regulation of p53, using in vitro soft agar colony formation assays.  Overexpression of 

either Mdmx or MxΔRING in p53-/- MEFs resulted in a significant increase in the number 

of colonies compared to vector control (Figure 29).  To determine whether Mdmx 

promoted transformation independent of its association with Mdm2, we evaluated  
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Figure 27.   Mdmx promotes chromosome instability independent of 

Mdm2.  Metaphases from vector control (n=176) or Mdmx overexpressing 

(n=246)  p53-/-Mdm2-/- MEFs were evaluated for chromosome aberrations.  a) 

The percentage of cells with one or more breaks of either kind (chromatid or 

chromosome) or that have the specified break is graphed.  Representative 

pictures of a chromatid (left) and a chromosome (right) break in p53-/-Mdm2-/- 

MEFs overexpressing Mdmx are shown.  b) The percentage of cells with one 

or more chromosome fusions is graphed.  Representative pictures of a 

centromere-centromere (left) and a telomere-telomere (right) fusion in p53-/-

Mdm2-/- MEFs overexpressing Mdmx are shown.  Expanded views of each 

aberration marked by an arrow.  Statistical significance was determined using 

the Fisher’s exact test.   
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Figure 28.  Mdmx promotes structural aberrations and increases the 

frequency of more than one aberration per cell independent of Mdm2.  

Metaphases from vector control (n=176) or Mdmx overexpressing (n=246) 

p53-/-Mdm2-/- MEFs were evaluated for chromosome aberrations.  a) 

Representative pictures of structural aberrations.  b) The percentage of cells 

with more than one chromosomal aberration is graphed.  Representative 

pictures of metaphases with multiple aberrations are shown.  Insets are 

expanded views of each aberration marked by an arrow.  Statistical 

significance was determined using the Fisher’s exact test.   
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Figure 29.  Increased levels of Mdmx promote transformation 

independent of p53 or Mdm2.   Soft agar assays of p53-/- (a) or p53-/-Mdm2-/- 

(b) MEFs infected with bicistronic retrovirus expressing YFP alone, HA-tagged 

full-length Mdmx and YFP, or HA-tagged Mx∆RING and YFP were performed.  

Each graph represents the average colonies per well from at least 2 

independent experiments with each experiment consisting of three replicates.  

*p<0.0001 student’s t-test.     
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colony formation in p53-/-Mdm2-/- MEFs.  We observed that Mdmx overexpression 

resulted in a significant increase in colony formation compared to vector control (Figure 

29).  Therefore, Mdmx overexpression promoted transformation, and this was 

independent of its regulation of p53 and did not require Mdm2.   

 

Discussion  

 While it is clear Mdmx regulates p53,104,166 the identification of Mdmx 

overexpression in tumors with mutated or deleted p53 and effects of Mdmx on genome 

instability in cells lacking p53 indicate p53-independent functions of 

Mdmx.53,81,105,106,135,165  Yet, identification of the p53-independent functions of Mdmx 

remained elusive.  Here, we describe a novel protein interaction and function of Mdmx 

that neither required p53 nor surprisingly, Mdm2.  We determined Mdmx interacts with 

the MRN complex and delays the early DNA damage signaling response, resulting in 

reduced DNA repair and increased genome instability and cellular transformation.  Our 

results provide new and unexpected insight into Mdmx function and its oncogenic 

contributions to tumorigenesis.   

Our data show Mdmx overexpression delayed the early DNA damage response 

that is mediated by the DNA damage-induced kinase ATM.  Phosphorylation of H2AX 

and S/T-Q sites, both of which are targets of ATM, occurs rapidly after DNA 

breaks.10,107,141  Full activation of ATM following DNA double-strand breaks requires 

Nbs1 of the MRN complex.10,38,88,159  We detected Mdmx and Nbs1 interaction that 

increased following DNA double-strand breaks.  While an overall reduction in Mdmx 

protein following genotoxic stress has been reported,25,75,124,132 we observed increased 
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levels of Mdmx protein localizing to chromatin and associating with Nbs1 following DNA 

damage.  Our measurements of the effects of elevated levels of Mdmx on the early 

DNA damage response through phosphorylation of S/T-Q sites and H2AX revealed 

three important findings.  Firstly, Mdmx slowed the initial kinetics of S/T-Q and H2AX 

phosphorylation.  Secondly, Mdmx decreased the amplitude of the initial DNA damage 

response, as the peak of S/T-Q phosphorylation in Mdmx overexpressing MEFs never 

reached the peak detected in control MEFs.  Finally, Mdmx delayed the resolution of 

pS/T-Q and H2AX foci leading to a higher number of foci at later times after DNA 

damage, prolonging the DNA damage response.  These data indicate Mdmx blunts the 

initial DNA damage response allowing DNA damage to persist, and this should result in 

a delay in DNA repair, which is what we detected.  Consistent with our data, transient 

inhibition of ATM for one hour led to increased chromosome aberrations following 

IR.171,172 Our results indicate Mdmx inhibits phosphorylation of ATM targets resulting in 

a delay in DNA repair and an increase in chromosome and chromatid breaks.  

Moreover, the inhibition of DNA repair signals by Mdmx, which results in severe 

consequences for the ability of cells to repair damaged DNA, ultimately promotes 

transformation. 

The RING domain of Mdmx is required to bind to Mdm2 through its RING 

domain.147,156 Mice engineered to express Mdmx lacking its RING domain or containing 

a mutant RING domain die in utero, and this phenotype was rescued with deletion of 

p53.61,125  These results indicate Mdmx:Mdm2 interactions are critical to control p53 

during development, but since DNA repair was not investigated, it may also indicate that 

simultaneously the more stable mutant Mdmx was also inhibiting DNA break repair, 
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which contributed to the death of the embryo.  We show that Mdmx lacking its RING 

domain was as capable as wild-type Mdmx of interacting with Nbs1, inhibiting the DNA 

damage signal, delaying DNA repair, and inducing genome instability and 

transformation.  Furthermore, this mutant form of Mdmx effectively inhibited DNA break 

repair in human retinal epithelial cells, which retain p53 and Arf and frequently 

overexpress MDMX when transformed, as in retinoblastoma.85   Full-length Mdmx had 

similar effects in MEFs lacking Mdm2.  We were initially surprised that Mdmx could 

have negative effects on DNA damage signaling and repair independent of its 

interaction with Mdm2, but it is known that Mdmx can regulate p53 independent of 

Mdm2.104,166  Our data also reveal the regulation of the DNA break repair response by 

Mdmx and Mdm2 is a conserved function of this family of proteins, akin to their 

regulation of p53, and is present in multiple cell types.   

Genome instability can be a precursor to tumor formation, is a hallmark of 

malignant cells, and is connected with impairments in the DNA damage response.57,153 

When Mdmx levels were elevated, which occurs during tumorigenesis, we observed a 

significant increase in genome instability and transformation that are attributed to an 

inhibition in the DNA damage response.  These effects of Mdmx were independent of 

both p53 and Mdm2.  Mdmx overexpression led to an increase in both chromatid and 

chromosome breaks, fusions (an indicator of chromosome breaks), and the appearance 

of other structural abnormalities.  Loss of Mdmx also led to genome instability in MEFs 

lacking p53.  Specifically, p53-/-Mdmx-/- MEFs had multipolar spindle formation and 

altered chromosome number.105,106  Thus, the data indicate that either gain or loss of 

Mdmx negatively impacts genome integrity, highlighting the critical role Mdmx levels 
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have in contributing to genome instability.   

Recently, it was reported that transgenic mice overexpressing Mdmx had an 

increased incidence of malignancies.174   Although the p53-independent contribution of 

Mdmx to tumorigenesis was not evaluated in this study, our results provide new insight 

into the oncogenic effects of Mdmx.  Our data demonstrate Mdmx overexpression was 

sufficient to induce transformation of p53-null cells.  These findings indicate a role for 

Mdmx in tumorigenesis independent of p53 that is supported with data from patient 

samples.  Specifically, in a subset of human tumors that have overexpressed or 

amplified Mdmx, p53 is inactivated (deleted or mutated), suggesting that there is an 

advantage for some cancer cells to both overexpress Mdmx and inactivate p53.  In 

addition, Mdmx promoted transformation independent of Mdm2, indicating that although 

they bind, Mdmx can function as an oncogene without Mdm2.  Taken together, these 

data further establish the oncogenic nature of Mdmx and provide insight into a new 

function of Mdmx in the DNA damage response that contributes to cellular 

transformation.  Additionally, since Mdmx is capable of oncogenic activity independent 

of p53 or Mdm2, this emphasizes the importance of future studies focused on targeting 

Mdmx in tumors that lack functional p53.   
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CHAPTER 4 
 
 

DRUG-MEDIATED MDM2 ELEVATION INHIBITS DNA REPAIR AND COOPERATES 
WITH GENOTOXIC AGENTS INDEPENDENT OF p53 

 
 

Introduction 

 The transcription factor p53 is an important tumor suppressor that can regulate 

cell cycle progression and apoptosis following cellular stress, such as oncogene-driven 

proliferation or DNA damage.91,163  Because of these functions, p53 is mutated or 

deleted in approximately 50% of all of human cancers.  Some cancers have even higher 

p53 mutation rates, such as ovarian cancer, where >90% of the samples have p53 

mutated.2,91,123,149  In addition to mutations in p53 itself, the p53 pathway can be altered 

to ultimately render p53 inactive.91  Mdm2 is an E3 ubiquitin ligase that targets p53 for 

proteosomal degradation.  Mdm2 is often overexpressed in tumors with functional p53 

as a way to inhibit p53 activity, which contributes to cancer progression.42  However, 

Mdm2 is also overexpressed in tumors with inactivated p53, suggesting p53-

independent functions of Mdm2 contribute to tumorigenesis.42  Due to its contribution to 

tumorigenesis in potentially various p53-dependent and -independent mechanisms, 

understanding the function of Mdm2 in these processes is crucial.     

 Because p53 is inactivated in many human cancers through alterations in 

upstream proteins which alter p53 activity, it has been a major focus of 

chemotherapeutic efforts to promote activation of wild-type p53 in order to induce cell 

cycle arrest or apoptosis in cancer cells.29  In recent years, the drug Nutlin-3 (Nutlin) 

was developed to prevent the interaction between Mdm2 and p53.162  Nutlin prevented 
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the negative regulation of p53 by Mdm2, thus reactivating p53.162  In cancer cells with 

wild-type p53, Nutlin effectively induced p53-mediated apoptosis.162 While this approach 

shows promise for tumors retaining wild-type p53, this mechanism of action is not useful 

for the 50% of cancers with mutated or deleted p53.  Therefore, understanding and 

establishing therapeutics that can act independent of p53 are needed for treating these 

cancers.   

 Nutlin has been used in combination with genotoxic agents to induce apoptosis 

of cancer cells retaining functional p53.  In these cases, it is clear Nutlin prevents Mdm2 

from inhibiting p53 and allows p53 to be activated by the DNA damage elicited by the 

genotoxic agents.  This cooperation between Nutlin and genotoxic agents has primarily 

been evaluated in tumors with functional p53; however, some studies have also 

observed this cooperative effect in cells with inactivated p53.  Functions of Nutlin 

independent of p53 are not well understood.  Even though the original Nutlin is not 

clinically viable, it can be used as a tool to investigate future treatment options that are 

independent of p53.  Elucidating the p53 independent functions by which Nutlin is 

effective would reveal novel potential therapeutic avenues for the many cancers with 

inactivated p53.   

 It has been reported that an additional effect of Nutlin treatment is elevated 

Mdm2 protein levels, and this occurs both in cells with and without p53.157  While it is 

clear Mdm2 negatively regulates p53, Mdm2 also has p53-independent functions, 

including those influencing genome instability.3,16  We have previously shown elevated 

Mdm2 acts through Nbs1 of the Mre11/Rad50/Nbs1 DNA repair complex to inhibit 

double-strand DNA break repair, impair proper DNA damage response signaling, 
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promote genome instability and confer transformation potential independent of p53 

(Figure 1).3,16  Therefore, we postulated the increased levels of Mdm2 caused by Nutlin 

in the absence of p53 are inhibiting the early DNA damage response signal leading to 

an overall inhibition in DNA repair (Figure 30).  Since this function of Nutlin would act 

independent of p53, this highlights an alternative mechanism of action by which Nutlin 

can affect tumor cells.    

 In this study, we show Nutlin inhibits double-strand DNA break repair and DNA 

damage response signaling independent of p53, and this is mediated by Mdm2.   

Furthermore, when ovarian cancer cells with inactive p53 received combined treatments 

of Nutlin and genotoxic agents inducing double-strand breaks, there was a cooperative 

effect resulting in apoptosis (Figure 30).  This study is still ongoing, but the results 

already reveal a novel mechanism by which Nutlin acts independent of p53.  This allows 

Nutlin to cooperate with genotoxic agents to provide therapeutic potential in cancers 

with inactivated p53.  These studies signify the potential therapeutic benefit of 

increasing Mdm2 pharmacologically.         

 

Results 

 

Nutlin inhibits double-strand DNA break repair and the DNA damage response 

through Mdm2 and independent of p53.   

 Previous studies from the Eischen lab have shown increased levels of Mdm2 

inhibit double-strand DNA break repair independent of p53.3,16  Therefore, we 

hypothesized the increase in Mdm2 levels by Nutlin would result in an inhibition in  
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Figure 30.  Synthetic induction of Mdm2 cooperates with genotoxic 

agents in cancers with inactivated p53.  Genotoxic agents, such as 

Etoposide, cause DNA damage.   Damaged DNA activates the DNA damage 

response to initiate the repair process.   Improper DNA repair can contribute to 

genome instability which has the potential to contribute to tumorigenesis.   

Therefore, it is important that DNA repair occur accurately and efficiently.   

Nutlin increases levels of Mdm2, which subsequently inhibits DNA repair.   

The combination of increased Mdm2 and a genotoxic agent results in 

excessive DNA damage with an inhibited ability to repair that damage.   This 

combination proved to have a cooperative effect and induced apoptosis in 

cells with inactivated p53.    

 

 

DNA Repair

Genotoxic Agent 

(ex: etoposide)

DNA 

Damage

Apoptosis 

Genome 

Instability

Nutlin-3

MI-63

RG7112

DNA Repair

Genotoxic Agent 

(ex: etoposide)

DNA 

Damage

Apoptosis 

Genome 

Instability

Nutlin-3

MI-63

RG7112



  75 

double-strand DNA break repair.  First, we tested this in 293T cells because they have 

inactivated p53.  We observed 58.96% (+/-1.56%) of the cells pre-treated with Nutlin for 

24 hours had DNA damage remaining compared to only 31.74% (+/-3.01%) of DMSO 

treated cells (Figure 31a).  The inhibition of DNA repair observed with Nutlin treatment 

was comparable to that seen with Mdm2 overexpression (49.2% +/-5.2%).  To truly 

assess if this effect of Nutlin is independent of p53, we next evaluated DNA repair in 

p53-/- murine embryonic fibroblasts (MEFs) treated with Nutlin or DMSO, or infected with 

a bicistronic retrovirus encoding Mdm2, as a positive control.  Following treatment with 

Nutlin or DMSO, cells were exposed to 5 Gy of IR and DNA repair was evaluated using 

the neutral comet assay.  Nutlin alone inhibited the repair of double-strand DNA breaks 

(57.7% +/-4.88%) compared to DMSO control (31.27% +/-3.17%) to an extent 

comparable to retrovirally overexpressed Mdm2 (60.25% +/-6.12%), and this was 

independent of p53 (Figure 31b).  To assess the requirement of Mdm2 for this effect of 

Nutlin, we treated p53-/-Mdm2-/- MEFs with DMSO or Nutlin and overexpressed Mdm2 

as a control.  We then evaluated DNA repair using comet assays.  We observed within 

90 minutes following IR, Nutlin treated cells repaired their DNA to a similar extent as 

DMSO control (22.16% +/- 2.34% vs 20.18% +/- 1.49%, respectively)  and no longer 

had the ability to inhibit double-strand DNA break repair in the absence of Mdm2 (Figure 

31c).  These results demonstrate that Nutlin alters double-strand DNA break repair in an 

p53-independent manner that is mediated by Mdm2. 

 Previously, the Eischen lab determined Mdm2 overexpression inhibited the 

formation of H2AX foci immediately following IR.16  Because we hypothesize that  

Nutlin affects DNA repair due to its ability to increase Mdm2 protein levels, we



  76 





































 

 

 

 

Figure 31.   Nutlin requires Mdm2 to inhibit DNA break repair 

independent of p53.   293T cells (a), p53-/- MEFs (b), or p53-/-Mdm2-/- MEFs 

(c) were treated with DMSO, Nutlin (10M), or overexpressed Mdm2.   

Following IR, comet assays were used to evaluate the percent of cells with a 

tail moment ≥4 (damaged DNA).   All graphs representative of a minimum of 

three independent experiments.  The circles (b,c) indicate one experimental 

sample consisting of a minimum of 40 cells analyzed.   *p value <0.05  
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evaluatedH2AX foci formation.   Following treatment with DMSO or Nutlin for 24 hours,

p53-/- MEFs were exposed to IR, and after 10 minutes, H2AX foci were quantified 

using immunofluorescence.  Nutlin treated cells formed 22.5% +/- 6.6% fewer foci than 

DMSO treated cells (Figure 32A).  This effect was comparable to the 30.77% +/- 2.3% 

reduction in foci caused by Mdm2 overexpression, which has been published to inhibit 

H2AX foci formation.16  To determine the role of Mdm2 in the inhibition caused by 

Nutlin, we used p53-/-Mdm2-/- MEFs.  When Mdm2 was absent, Nutlin no longer 

inhibited the formation of H2AX foci per cell compared to DMSO treated cells (33.26% 

+/-0.85% vs 33.93% +/-1.2%, respectively; Figure 32B).  These results indicate Nutlin 

treatment has a comparable inhibitory effect on H2AX foci formation as Mdm2 

overexpression, and this effect is independent of p53 but requires Mdm2.        

 

Nutlin inhibits DNA repair in ovarian cancer cells with inactive p53.   

  Ovarian cancer is one of the most deadly cancers among women.63  Due to 

typically being diagnosed in late stages, it can be very challenging to treat.  This is 

compounded by the >90% of ovarian cancers that have mutated or deleted p53.2,63  

Current chemotherapy involves the use of various genotoxic agents, such as Cisplatin 

or Carboplatin.63  Typically, platinum resistance occurs, requiring the further 

combinatorial use of other genotoxic agents, such as Etoposide.   We postulated the 

inhibition of double-strand break DNA repair resulting from Nutlin-induced elevation of 

Mdm2 levels could cooperate with genotoxic agents, like Cisplatin or Etoposide, to 

promote severe genome instability which would result in apoptosis.   

 Various doses of Nutlin have been reported to increase Mdm2 levels.  To  
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Figure 32.   Nutlin requires Mdm2 to inhibit H2AX foci formation.  (a) 

p53-/- MEFs and (b) p53-/-Mdm2-/- MEFs were treated with DMSO, Nutlin 

(10M), or infected with a bicistronic retrovirus encoding Mdm2.   Following 

exposure to 5 Gy of R, MEFs were fixed after 10 minutes and 

immunofluorescence for H2AX was performed.  The number of foci per cell 

was quantified.  The mean of at least two independent experiments is 

graphed.  Error bars represent SEM, and significance determined using a 

confidence interval of 95%.   
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determine which dose was sufficient to increase Mdm2 levels in these ovarian cancer  

cells, we exposed cells to either 10M or 20M of Nutlin (5m and 10M of the active 

enantiomer) and evaluated Mdm2 protein levels using Western blot analysis.  Mdm2 

protein was increased by both doses of Nutlin to a similar extent (Figure 33); therefore, 

we used 10M (5M of the active enantiomer Nutlin-a) for our studies.  To assess the 

p53-independent effect of Nutlin, OVCAR8 ovarian cancer cells, with mutated p53, were 

used.   Following treatment with Nutlin, Mdm2 levels were indeed elevated in the 

OVCAR8 cells (Figure 34).  We then assessed the effect of Nutlin on the cells’ ability to 

repair damaged DNA.  OVCAR8 cells were pre-treated with Nutlin or vehicle control 

(DMSO), and comet assays were used to evaluate the repair of double-strand breaks 

following IR. While only 26.43% +/-3.92% of the DMSO treated cells had detectable 

DNA damage, 42.33% +/- 4.48% of the Nutlin treated cells had DNA damage remaining 

(Figure 34).  Next we evaluated if this effect could be observed in the complete absence 

of p53 by using SKOV3 cells which have p53 deleted.  Only 25.46% +/- 5.27% of the 

cells treated with Nutlin were able to repair the DNA damage within 90 minutes, 

compared to 42.38%+ 1.22% of cells treated with DMSO (Figure 35).  These results 

indicate Nutlin treatment increases Mdm2 and results in an inhibition of double-strand 

DNA break repair in ovarian cancer cells with inactive p53.      

 To further assess the p53-independent effects of Nutlin on efficient double-strand 

DNA break repair, we evaluated H2AX foci formation and resolution.  SKOV3 cells 

were treated with DMSO or Nutlin for 24 hours, and then exposed to 5 Gy of IR.  

Immediately following IR, Nutlin treated SKOV3 cells had 28% +/- 4% fewer H2AX foci 

formed and at later times, they had 46% +/- 5 more foci remaining than DMSO 
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Figure 33.   Different doses of Nutlin have similar effects on Mdm2 

levels.   SKOV3 cells were treated with the indicated doses of Nutlin for 24 

hours.   Mdm2 levels were subsequently evaluated by Western blot analysis.     
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Figure 34.   Nutlin inhibits DNA break repair in ovarian cancer cells with 

mutated p53.    OVCAR8 cells with mutated p53 were treated with either 

DMSO or Nutlin (10M).   Following IR, comet assays were used to evaluate 

DNA damage.   Each bar represents the average of at least two independent 

experiments with a minimum of 40 cells analyzed for each sample.                

*p value ≤ 0.05; student’s t test.   

 



  82 

treated cells (Figure 35b).  These results indicate Nutlin treatment inhibits DNA repair  

and DNA damage response signals in ovarian cancer cells with inactivated p53, andthis 

was similar to what we observed in MEFs (Figure 31). 

 

Cooperation between Nutlin and genotoxic agents in ovarian cancer cells with 

inactive p53     

   Cisplatin is a genotoxic agent that results in DNA double-strand breaks and is 

used in first-line therapy for ovarian cancer.  To determine if inhibition in DNA repair 

caused by Nutlin could cooperate with genotoxic chemotherapeutic agents, we 

evaluated the combinationatorial effect of Nutlin and Cisplatin.   We treated SKOV3 

cells with DMSO alone, Nutlin alone, Cisplatin alone, and Nutlin and Cisplatin in 

combination, and MTT assays were used to evaluate expansion of the cells over time.  

SKOV3 cells treated with both Nutlin and 1M Cisplatin resulted in a 26.91% +/- 0.62% 

reduction in cell growth compared to DMSO treated cells, whereas either drug alone 

only resulted in a maximum of 12.27% +/- 0.86% reduction (Figure 36).  This 

cooperative effect was also observed with Nutlin and 5M Cisplatin, which inhibited 

growth by 51.48% +/- 0.49% together, while 5m Cisplatin alone only inhibited 34.55% 

+/- 1.08%.  Nutlin enhanced the effect of 5M Cisplatin to more than 10m Cisplatin 

alone (51.4% +/-0.49% and 46.28% +/-1.19% respectively). Collectively, these studies 

indicate pharmacologically increasing Mdm2, such as with Nutlin, enhanced the lethality 

of Cisplatin in ovarian cancer cells with inactivated p53.        

 Etoposide also results in double-strand DNA breaks and is often used to treat 

relapsed ovarian cancer, following platinum-resistance. To evaluate the combination  
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Figure 35.   Nutlin inhibits DNA break repair in ovarian cancer cells with 

deleted p53.  SKOV3 (ovarian) cells with deleted p53 were treated with either 

DMSO or Nutlin (10M).  Following IR, a) comet assays were used to 

evaluate DNA repair and b) H2AX foci were quantified at the indicated times.   

a,b) Each bar represents the average of at least two independent experiments 

with a minimum of 40 cells analyzed for each sample.  a) *p value ≤ 0.05; 

student’s t test.   b) * CI>95%    
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Figure 36.   Nutlin cooperates with Cisplatin to reduce cell growth in 

ovarian cancer cells with p53 deleted.   SKOV3 cells were treated with 

DMSO, Nutlin (10m), Cisplatin (1-20M), or a combination of Nutlin (10M) 

and Cisplatin (1m or 5m).   MTT was used to measure cell growth at 48 and 

72 hours.   Representative graph of 2 independent experiments.  Error bars 

are SEM.   
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effect of Nutlin with Etoposide, two ovarian cancer cell lines (OVCAR5 and OVCAR8) 

with mutant p53 were used.   Cells were treated with DMSO, Nutlin, Etoposide, or Nutlin 

and Etoposide in combination, and growth of the cells was determined by an MTT 

assay.  OVCAR5 cells treated with either Nutlin or 1m Etoposide had a very slight 

reduction on the expansion of the cells (8.04% +/- 1.7% and 10.81 +/-0.58%, 

respectively), but when combined, cells were inhibited by 44.08% +/- 1.29% (Figure 37).  

Similarly, when treated with 5 M Etoposide and Nutlin, cells were inhibited by 75.31% 

+/- 0.79% compared to only 52.91% +/-1.14% when 5 M Etoposide alone was used 

(Figure 37).  A similar effect was observed in the OVCAR8 cells (Figure 37).  In SKOV3 

cells that have p53 deleted, we observed a similar effect. Nutlin alone and 1m 

Etoposide had a very slight effect on the growth of the cells (-8.63% +/-1.34% and -

7.01%+/2.08%-, respectively), but when combined, cells were inhibited by 34.80% +/-

0.74 (Figure 38).  Similarly, when treated with 5M Etoposide alone, cells were inhibited 

47.42%  +/-1.29%, but when combined with Nutlin, cells were inhibited by 61.74% +/-

0.63%. which is similar to treating the cells with 4 times the amount of Etoposide 

(64.70% +/-0.89%) (Figure 38).  These results indicate when ovarian cells were treated 

with both Nutlin and Etoposide, they were significantly impaired in their ability to 

expand, and this was more than the effect of either drug alone, reflecting cooperation. 

 To determine if apoptosis caused the observed  reduction in cell growth, the cells 

were visually evaluated.  We observed there were fewer cells in addition to an increase 

in dead and dying cells when exposed to both Nutlin and Etoposide (Figure 39a).  To 

truly assess if more apoptosis was occurring upon combination treatment, we evaluated  
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Figure 38.   Nutlin cooperates with Etoposide to reduce cell growth in 

ovarian cancer cells with deleted p53.   SKOV3 cells were treated with 

DMSO, Nutlin (10m), Etoposide (1-20M), or a combination of Nutlin (10M) 

and Etoposide (1/M or 5M).   MTT was used to measure cell growth at 48 

and 72 hours.   Representative graph from 3 independent experiments.  Error 

bars are SEM. *Indicate combination treatments   
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little or no cleaved Caspase 3 was detected in DMSO or Nutlin treated cells; however, 

levels of cleaved Caspase 3 by western blot analysis.  Similar to the MTT assay, very  

there was an increased amount observed in cells treated with Nutlin and Etoposide 5M 

together (Figure 39b).  This was similar to the amount of apoptosis from Etoposide 

10M alone.  Comparable results were observed in OVCAR8 cells, which contain 

mutant p53 (Figure 39b).  These results further corroborate the MTT data suggesting 

Nutlin has a cooperative effect with Etoposide, which results in apoptosis.     

 

Discussion  

It is important to understand the mechanism of action of potential 

chemotherapeutic drugs, as this knowledge can provide understanding for the cellular 

pathways affected by the drug and also influence the development of new drugs that 

have similar but improved properties.  Since the development of Nutlin was reported a 

decade ago, researchers have been using Nutlin as a research tool for elucidating the 

involvement of the p53 pathway in various settings and for revealing the 

chemotherapeutic potential for reactivating p53 to treat cancer.146,162  Studies have 

clearly demonstrated the p53-dependent properties of Nutlin,162 yet little is known about 

the p53-independent effects of Nutlin.  The potential benefit of combining Nutlin with 

genotoxic agents for the treatment of cancers with inactivated p53 had been reported 

previously, but the mechanism behind the p53-independent effect of Nutlin was 

unknown. 

One observed p53-independent effect of Nutlin is the increase in Mdm2 protein 

levels. We have previously shown Mdm2 overexpression inhibits DNA break repair and  
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Figure 39.   Nutlin and Etoposide cooperate to induce apoptosis in 

ovarian cancer cells with p53 inactivated.   SKOV3 (p53del) and OVCAR8  

(p53mut) cells were treated with DMSO, Nutlin (10M), Etoposide 5M, Nutlin 

and Etoposide 5M, and Etoposide 10M, as indicated.   After 48 hours, A) 

representative pictures were taken and B) protein lysates were evaluated by 

Western blot analysis for cleaved Caspase 3 and -actin.   
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promotes genome instability independent of p53.3,15   Therefore, we predicted that the 

induction of Mdm2 by Nutlin was resulting in an inhibition in DNA repair that could be 

combined with genotoxic insults to cause genome instability.  This instability could 

induce apoptosis in cancer cells independent of p53 status.  Here we demonstrate the 

increase in Mdm2 caused by Nutlin inhibited DNA break repair and impaired DNA 

damage response signals independent of p53.  These results provide insight into a 

novel p53-independent mechanism for Nutlin, which had not been thoroughly explored.  

Importantly, our findings illustrate the therapeutic benefit of pharmacologically 

increasing Mdm2 in conjunction with genotoxic agents as a means of inducing synthetic 

lethality in cancers with inactivated p53, such as ovarian cancer.   

  Numerous studies have described a cooperative effect between Nutlin and 

genotoxic agents, but most are in the context of wild-type p53.   A few studies explore 

this effect in cells with mutated or deleted p53, but the mechanism for this observed 

cooperation between Nutlin and genotoxic agents has been poorly understood.   For 

example, Conradt et al 2012 described a cooperative effect between Nutlin and 

topoisomerase II inhibitors in pancreatic cells with inactivated p53.31  While they 

demonstrated Nutlin results in an increase in DNA damage response signals in 

response to genotoxic insults, the mechanism responsible for this observation still 

remained unclear.  Consistent with Conradt et al, we observed an increase in DNA 

damage response signals 4 hours after -IR, and this is likely due to the increased 

Mdm2 levels caused by Nutlin.  This would cause an inhibition in early DNA damage 

response signaling leading to an impaired ability to repair DNA breaks overtime, 

manifesting as increased DNA damage response signals.   Our studies reveal this is 
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likely due to the DNA breaks remaining as a result of the inhibition of the early DNA 

damage response signals and DNA repair through elevated Mdm2 levels caused by 

Nutlin.     

 Another proposed p53-independent mechanism of Nutlin cooperation with 

genotoxic agents is through activating p73 and E2F1 to induce apoptosis.4,84,130,136  Both 

p73 and E2F1 can be activated following DNA damage.  Because our studies here 

demonstrate Nutlin inhibits DNA repair through Mdm2, it could be that excessive DNA 

damage and an inhibited ability to repair it  results in subsequent activation of p73 and 

E2F1, rather than Nutlin directly affecting these proteins.  As this was not excluded or 

explored in these studies, this is a possibility that should be considered.         

     While reactivating p53 in cancer is an ongoing effort for chemotherapy, 

selection for p53 inactivation often occurs.6,11  Therefore, novel chemotherapeutic 

options are imperative for cancers with inactivated p53, such as ovarian cancer. The 

data described here provide evidence that increasing Mdm2 pharmacologically and 

combining this with genotoxic agents has therapeutic potential for cancers with 

inactivated p53.  Current standard chemotherapy treatment involves the platinum-based 

genotoxic agents Cisplatin or Carboplatin.63  Our results indicate Nutlin used in 

combination with Cisplatin can increase the efficacy of Cisplatin in ovarian cancer cells 

with inactivated p53.  Relapse in ovarian cancer often results from platinum-resistance 

and requires the need to use combination therapy with other genotoxic agents, such as 

Etoposide.  Our results demonstrate that Nutlin also cooperates with Etoposide to 

increase its efficacy.  Our findings have significant therapeutic implications, as they 

provide insight into the benefit of drugs which increase levels of Mdm2, such as Nutlin, 
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in combination therapy with genotoxic agents in cancers with inactivated p53.  Although 

Nutlin is not clinically viable due to poor bioavailability, second generation Nutlins are 

currently being tested in clinical trials.21,145  The data described in this study provides 

important information that can be used in establishing additional trials to evaluate the 

benefit of Nutlins, and other small molecules causing increased Mdm2 levels, in cancers 

with inactivated p53.  This study emphasizes the importance of further assessing drugs 

that can increase Mdm2 levels as a novel chemotherapeutic method.    
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Chapter 5 
 

 
SUMMARY AND FUTURE DIRECTIONS 

 
 

 The oncogenes Mdm2 and Mdmx are overexpressed in a variety of human 

cancers.  The major function of Mdm2 and Mdmx has been primarily associated with 

negative regulation of the tumor suppressor p53; however, evidence has suggested 

they have p53-independent functions as well.  In particular, we and others have 

observed that elevated Mdm2 and/or Mdmx levels can occur in tumors with inactivated 

p53.22  Despite this evidence, little was known about the p53-independent functions of 

Mdm2 and Mdmx and the therapeutic implications of these functions.   

 Dr. Eischen’s lab had previously identified and described a novel p53-

independent function of Mdm2, whereby elevated levels inhibited double-strand DNA 

break repair.  The p53-independent functions of Mdmx were still very poorly understood.  

Mdmx and Mdm2 are homologous proteins. Because, Mdmx had been shown to 

enhance functions of Mdm2, I investigated the potential of a p53-independent function 

of Mdmx to inhibit DNA repair.  Here, I have identified and characterized a novel 

function of Mdmx where its overexpression alters DNA damage response signaling, 

inhibits double-strand DNA break repair, and promotes genome instability.  This function 

was independent of  p53 and, surprisingly, of Mdm2.  This ability to inhibit DNA repair 

appears to be a previously unknown conserved function of this family of proteins that 

confers transformation potential independent of p53.  

   These findings demonstrate a benefit for pharmacologically increasing Mdm2 

and Mdmx levels to inhibit DNA repair in the presence of genotoxic agents as a 
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potential means of inducing synthetic lethality in cancer cells, irrespective of p53 status.  

Although small molecules that increase Mdmx levels have yet to become commercially 

available, Nutlin and other small molecules are available that result in elevated Mdm2 

levels. While a handful of studies had demonstrated cooperation between Nutlin and 

genotoxic agents independent of p53, the mechanism behind this cooperation was not 

understood. Here, I describe how Nutlin inhibits double-strand DNA break repair 

through Mdm2 and independent of p53.  In cooperation with genotoxic agents, Nutlin 

caused an increase in apoptosis in ovarian cancer cells with mutated or deleted p53.  

These results demonstrate the importance of pharmacologically inducing the elevation 

of Mdm2 and Mdmx protein levels as a novel therapeutic avenue for cancers with 

inactivated p53.   

   

Pharmacological-induction of Mdm2 inhibits DNA repair and cooperates with 

genotoxic agents to induce apoptosis independent of p53 

 I determined Nutlin alone could inhibit DNA break repair and delay DNA damage 

response foci formation and resolution independent of p53.  This phenotype mimics 

what is observed with ectopic overexpression of Mdm2.3,16  Furthermore, the negative 

effects of Nutlin on DNA repair were abrogated in cells lacking Mdm2 (Chapter 4).  

Therefore, these results suggest the increased levels of Mdm2 caused by Nutlin are 

mediating its negative effects on DNA repair.  This provides a novel mechanism of 

action by which Nutlin can affect cancer cells independent of p53.     

 Although it has been reported numerous times Nutlin treatment results in an 

increase in Mdm2 levels, the importance of this has been an underappreciated  and 
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poorly understood effect of Nutlin.  The Eischen lab has previously shown Mdm2 

overexpression inhibits double-strand DNA break repair.3,16  In Chapter 4, I describe 

how the increase in Mdm2 levels caused by Nutlin resulted in an inhibition of DNA break 

repair, which was independent of p53.  Furthermore, H2AX foci formation and 

resolution were inhibited.  Because H2AX is at the site of damage, it is often used to 

signify the DNA break itself; however, it also serves as a beacon for a number of 

important DNA repair proteins.  Alterations in H2AX signal can be used to reflect the 

entire DNA damage response signaling cascade.  The Eischen lab had previously 

described Mdm2 mediated its effects on DNA repair through specifically interacting with 

Nbs1 of the Mre11-Rad50-Nbs1 DNA repair complex.16  The observed inhibition in DNA 

repair and H2AX foci formation and resolution mimics the previously characterized 

phenotype of Mdm2 overexpression.  Because Nutlin increases Mdm2 levels, it is likely 

Nutlin inhibits DNA repair in an Nbs1-mediated process.     

 Even though little was known about the p53-independent effects of Nutlin when I 

began investigating it, two additional studies have reported an observed effect of Nutlin 

on the DNA damage response independent of p53.  In both studies, an increase in the 

activation of DNA damage response signals, such as H2AX and phosphorylation of 

ATM, was observed when Nutlin was combined with genotoxic agents.31,160  Although 

both studies noted this increase in DNA damage response signals, neither study was 

able to explain the mechanism of action as to how exactly Nutlin was causing this 

alteration in the DNA damage response.  The suggested mechanism by Conradt et al 

included Nutlin inducing DNA breaks; however, this mechanism was based on their 

evaluation of DNA damage response signals three or more hours after genotoxic insult.  
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Their findings are likely reflective of the same increase in H2AX foci I observed at 2.5 

hours post -IR, which is due to an early inhibition in the DNA repair signaling process 

rather than an induction of DNA breaks.  This result also correlates with previous 

published results by the Eischen lab demonstrating elevated levels of Mdm2 increase 

DNA damage response signals at later times following DNA damage, which likely 

results from an earlier inhibition in the formation of DNA repair foci.3,16  Consistent with 

this interpretation, Nutlin inhibits early DNA response signals through increasing levels 

of Mdm2 (Chapter 4).  

 The studies described in Chapter 4 provide new insight into a novel p53-

independent mechanism of Nutlin that can negatively affect DNA repair.  The inhibition 

of DNA repair by Nutlin has potential implications for use as a research tool.  Nutlin is 

also commonly used in the laboratory as a positive control for the activation of the p53 

pathway.  The results from my studies reveal Nutlin has alternative functions that may 

need to be considered when interpreting results using Nutlin.  Furthermore, the 

inhibition of DNA repair is a promising tool to use in combination therapy in oncology, 

because often the combination of genotoxic agents with molecules that inhibit the ability 

of a cell to properly repair the excessive DNA damage results in synthetic lethality.  

Since we have shown increased Mdm2 levels promote genome instability and confer 

transformation potential, there may be some concern of the effects of Nutlins on normal 

cells.  There has been evidence that Nutlins only affect tumor tissue and not normal 

tissue, and therefore, it would not be expected that Nutlin would promote tumor 

formation in the normal surrounding tissue.138,162  Even though Nutlin has poor clinical 

bioavailability, my findings have important implications in the development of future 
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chemotherapeutics, such as 2nd generation Nutlins or other Mdm2 inhibitors, and can 

inform novel combination therapies to treat cancers with inactivated p53.    

 

Pharmacological-induction of Mdm2 provides a novel potential therapeutic option 

independent of p53 

 In Chapter 4, I described how Nutlin cooperated with genotoxic agents to induce 

synthetic lethality in ovarian cancer cells with inactivated p53.  This can be beneficial as 

it allows for the opportunity to decrease the dose of any one drug, avoiding potential 

side effects, without losing efficacy.  An area of focus in the development of new 

chemotherapeutics and chemotherapeutic regimens is the use of genotoxic agents in 

combination therapy to induce excessive genome instability, ultimately resulting in 

apoptosis of cancer cells.60  My studies provide new information that can direct the 

development of new therapeutic combinations to include molecules that increase Mdm2 

levels.   

 Because it is often diagnosed at the later stages, ovarian cancer is challenging to 

treat.63  A high frequency (>90%) of inactivated p53 through mutations or deletions is 

very characteristic of ovarian cancer.2  Of note, when I evaluated Mdm2 expression 

levels through TCGA analysis, the majority of these samples (270/300) do not have 

MDM2 overexpressed.  Since these cells have likely not developed compensatory 

mechanisms to deal with inhibited DNA repair caused by increased levels of Mdm2, 

these cancers are prime candidates for the combination therapy using molecules to 

increase Mdm2 and cause genotoxic insults.  To this end, I evaluated the combination 

effect of Nutlin and Etoposide or Cisplatin, because these two clinically relevant 
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genotoxic agents induce double-strand DNA breaks, of which Mdm2 has been shown to 

inhibit the repair.  I observed a cooperative effect resulting in increased apoptosis 

independent of p53.  In addition to Cisplatin and Etoposide, other DNA damaging drugs 

are used to treat ovarian cancer, and my data suggest Nutlin will cooperate with these 

drugs as well.  Knowledge of which drugs have a cooperative effect will allow for more 

flexibility with combination therapies given to an individual patient and those developed 

in the future.   To validate that Nutlin is cooperating with the genotoxic agents through 

Mdm2 and not an off-target effect, the requirement of Mdm2 for Nutlin to cause a 

cooperative increase in apoptosis needs to be assessed.  One approach could be the 

use of shRNA to knockdown Mdm2, and subsequently treat with Nutlin to evaluate if the 

cooperative effect is no longer observed between Nutlin and genotoxic agents.  A 

potential issue with this approach is that shRNA will not result in a 100% knockdown of 

Mdm2, and therefore, Nutlin will cause an increase in Mdm2 protein levels and continue 

to cooperate with genotoxic agents.  A better approach would be to treat cancer cells 

with and without Mdm2, and assess cooperation in the absence of Mdm2.  To reduce 

cancer and patient variability, a conditional Mdm2 knockout system would be ideal.  

Because I determined in MEFs that Nutlin mediates its effects on DNA repair through 

Mdm2, I predict that Nutlin will no longer have a cooperative effect in the cancer cells 

without Mdm2.          

 The ability to induce apoptosis independent of functional p53 has important 

implications in oncology treatment, as half of all cancers have inactivated p53.  This is 

particularly pertinent for ovarian cancer, since it has a very high frequency of p53 

mutations.  Novel chemotherapeutic approaches are needed for ovarian cancer 
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because 70-90% of patients diagnosed in stages III/IV will relapse and need more 

aggressive therapy.63  My studies reveal the importance of utilizing or developing 

chemotherapeutics that increase Mdm2 levels, as these could be used to promote 

excessive genome instability to induce apoptosis in ovarian cancer, and other cancers 

with inactivated p53.  

  The combination of genotoxic agents and Nutlin has been demonstrated 

numerous times in a variety of cancer types retaining wild-type p53.8,30,52,113,120,138,167  

While these combination effects have been less studied in cancers with inactivated p53, 

some studies have shown a cooperative effect between Nutlin and genotoxic agents 

independent of p53, including pancreatic, colon, neuroblastoma, hepatocellular, 

sarcoma, and retinal cancers.4,31,120,167,177 Ovarian cancer has a high frequency of p53 

mutations,2 yet the p53-independent effects of Nutlin on this cancer had not yet been 

investigated.  Therefore, I focused my research on this tumor type.  I observed that 

Nutlin cooperated with various genotoxic agents to induce apoptosis of patient-derived 

ovarian cancer cell lines.  These results suggest that Nutlin would be able to cooperate 

with genotoxic agents in vivo as a means of chemotherapy.  Animal models, such as 

patient-derived xenografts, would provide a means of evaluating the overall effect of 

Nutlin and genotoxic agents on tumor growth in vivo. With the knowledge that Nutlin can 

cooperate with genotoxic agents to promote cancer cell death independent of p53 in 

vitro, it would be expected that inducing Mdm2 pharmacologically in vivo would have a 

cooperative effect with a genotoxic agent, resulting in a reduction in tumor size.  This 

would signify the benefit of developing and using drugs that can increase Mdm2 levels 

for use in combination chemotherapeutics in a p53-independent setting.   
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 Even though Nutlin has poor bioavailability, derivatives of Nutlin and other small 

molecules that target Mdm2 are being developed that may be more viable in the clinic.  

RG7112 and MI-63 both have the ability to cause an increase in Mdm2 protein levels, 

and therefore, could be used to induce the same synthetic lethal effects as Nutlin on 

cancer cells with inactivated p53 (Figure 30).  RG7112 and another compound 

generated by Roche are both derivatives of Nutlin currently in clinical trials.164  Having 

better bioavailability than Nutlin allows these drugs to be used in the clinic in 

combination therapy with genotoxic agents as treatment options for cancers with 

inactivated p53.  Furthermore, a noted consequence of using Mdm2 inhibitors is the 

acquisition of p53 mutations to evade the reactivation of p53 by the drug6,69,111; 

however, my studies suggest Nutlin, or similar acting molecules, would still be useful as 

a chemotherapeutic agent in the presence of p53 mutations when used in conjunction 

with a genotoxic agent.  In future studies, it would be interesting to evaluate the effects 

of different Mdm2 inhibitors on the DNA repair process.  Because increasing Mdm2 will 

cause an inhibition in double-strand DNA break repair, other Mdm2 inhibitors causing 

increases in Mdm2 are predicated to be just as useful as Nutlin.  Additionally, small 

molecules resulting in an increase in Mdmx would be anticipated to have the same 

outcome, since Mdmx overexpression inhibits DNA repair as well.  Keeping this in mind 

as inhibitors of Mdmx are generated can be useful for developing new therapeutic 

options.   

 

Mdmx inhibits DNA break repair independent of p53 and Mdm2 

 Mdmx is overexpressed in many cancers, some with inactivated p53, therefore 
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elucidating other functions of Mdmx aside from its regulation of p53 is critical.  Because 

p53-independent functions of Mdmx were not clearly understood, I focused a majority of 

my thesis work identifying and characterizing a novel function of Mdmx that is 

independent of p53.   In this dissertation, I describe a p53- and Mdm2-independent 

function of Mdmx by which its overexpression inhibits double-strand DNA break repair.  

Furthermore, I established that Mdmx associates with Nbs1 of the MRN DNA repair 

complex, and there was an alteration in early and late DNA damage response signaling 

events (H2AX and pS/T-Q) occurring after IR (Figure 40).22  This novel function of 

Mdmx has important implications in understanding its poorly elucidated physiologic role 

in the cell, and how this may be advantageously altered to promote genome instability, 

which contributes to tumorigenesis. 

Little is known about the functions of Mdmx outside of its regulation of p53 and its 

association with Mdm2; therefore, the ability of Mdmx to inhibit double-strand DNA 

break repair independent of both p53 and Mdm2 is significant and important for 

understanding the function of Mdmx.   Mdmx acts similarly to Mdm2 in this function of 

inhibiting DNA repair, yet it can do so in the absence of Mdm2.  This begs the question 

of whether Mdmx is mediating its effects on the DNA damage response through Nbs1, 

like Mdm2 does, or if Mdmx has a different mechanism to achieve the same end point 

as Mdm2.  This would not be far-fetched considering both Mdm2 and Mdmx inhibit p53, 

but each negatively regulates p53 in a different manner.  To begin evaluating this, 

determining if Mdmx directly interacts with Nbs1 needs to be assessed.  Furthermore, 

mutations in the regions within Mdmx and Nbs1 mediating their association will provide 

a means of evaluating the requirement for Nbs1 in order for Mdmx to inhibit DNA repair.    
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Because Mdmx inhibits DNA repair and associates with Nbs1, it is likely Mdmx is able to 

affect the DNA damage response process through Nbs1, but further evaluation will 

reveal the mechanism Mdmx uses to affect DNA repair.         

 Upon overexpression of Mdmx, there was a reduction in the formation of H2AX 

foci immediately after -IR.  While H2AX is often used to mark double-strand DNA 

break sites, it is also a target of the kinase ATM, which serves as a docking site for 

many key DNA repair proteins (Figure 40).  Both H2AX and ATM are critical for 

efficient DNA repair, which correlates with my observed inhibition in overall DNA repair.  

H2AX phosphorylation is decreased when Mdmx is overexpressed, and this result also 

indicates Mdmx could potentially be inhibiting ATM signaling.  Indeed, Mdmx 

overexpression dampens the overall ATM signaling response following the induction of 

double-strand DNA breaks.  I observed there was a reduction in pST/Q foci formation 

immediately following DNA damage  As this is reflective of ATM activity, these findings 

suggest Mdmx is affecting ATM either indirectly or directly.  One possibility is Mdmx 

inhibits the activation of ATM by Nbs1.  This would result in a delay in DNA damage 

response signals, similar to what I observed in Chapter 3.  Another possibility is that 

Mdmx is affecting ATM’s kinase activity following activation to cause an overall 

decrease in phosphorylated ATM targets, which would result in an overall decrease in 

pS/TQ foci, as I observed.  To further elucidate the specific effect Mdmx is having on 

ATM, analysis of the kinase activity of ATM in the presence of elevated Mdmx levels 

would be interesting.  Although the specific effect of Mdmx on ATM is not clear, my 

results demonstrate that ATM signaling in the DNA damage response is being impaired 

by elevated Mdmx, and this is likely resulting in the inhibition in DNA repair.          
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 An additional possible mechanism by which Mdmx is inhibiting DNA repair is 

through Nbs1.  Mdmx could be localized to sites of DNA damage by Nbs1 where it 

could impair the function of Nbs1 in the repair process and subsequently alter the DNA 

damage response and overall DNA repair.  Since I have shown that Mdmx associates 

with Nbs1 at chromatin (Figure 25), it is likely that Mdmx is brought to sites of DNA 

damage by this interaction; however, the possibility remains that Mdmx is brought to 

sites of DNA damage by other proteins.  To ascertain the involvement of Nbs1, it would 

be important to evaluate the ability of Mdmx to associate with chromatin in cells lacking 

Nbs1.  Further analyses will determine whether Nbs1 is mediating the localization of 

Mdmx to the sites of breaks.   

   Nbs1 is involved in the activation of ATM following double-strand breaks (Figure 

40).  By interacting with Nbs1, Mdmx could be mislocalizing Nbs1 or preventing the 

interaction between Nbs1 and ATM (Figure 40).  We observed that Mdmx associates 

with Nbs1 at chromatin following DNA damage, and the association between Mdmx and 

Nbs1 at chromatin was elevated after DNA damage.  This demonstrates Mdmx  could 

be associating with Nbs1 following DNA damage and preventing Nbs1 from localizing to 

sites of damage or altering the ability of Nbs1 to be retained at the breaks sites.  As 

Nbs1 is very important in the repair of double-strand breaks, inhibiting its proper 

localization to the site of DNA damage would likely result in a delay in DNA repair, 

which is what we observed using the comet assay.  In addition, when I analyzed the 

DNA damage response signaling after DNA damage, I observed a decrease in the 

H2AX and pS/T-Q signals.  Another interesting observation was that with time, Mdmx 

appeared to associate less with chromatin yet retain its association with Nbs1.  One 
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interpretation of this result is that the interaction between Mdmx and Nbs1 increases 

over time following DNA damage, even as Mdmx appears to decrease its association 

with chromatin.  From these results, it is unclear if Mdmx is decreasing its association 

with chromatin or if this reflects a technical caveat in this experiment.  If the antibody 

isotope is masked, such as through post-translational modifications or protein:protein 

interactions, then the antibody would be impaired in its ability to recognize Mdmx.  

Careful biochemical analyses need to be performed to determine if this is the case.  In 

addition to interacting with Nbs1, Mdmx associating with chromatin after DNA damage 

allows for the possibility that Mdmx could be affecting other DNA repair proteins at 

break sites.  To assess this, the localization, activation, and activity of other key DNA 

repair proteins in the presence of increased Mdmx would need to be evaluated.  

Because I observed an alteration in ATM signaling, key ATM substrates would be ideal 

initial targets. Determining if other proteins are affected by Mdmx will provide insight into 

the effects of Mdmx on the global DNA damage response.  This may provide further 

explanation as to the mechanism by which Mdmx is inhibiting DNA repair.   

 Whereas most studies have focused on the modulation of Mdmx by ATM, the 

decrease in pST/-Q foci I observed was the first to suggest Mdmx may modulate ATM 

signaling (Figure 40).  Mdmx is phosphorylated by ATM following double-strand DNA 

breaks.  Although it is not entirely clear why ATM phosphorylates Mdmx, one proposed 

reason is this phosphorylation of Mdmx prevents the interaction with p53.  Mdmx is 

thought to be subsequently degraded to free up p53; however, my thesis work has 

shown a portion of Mdmx is actually localizing to chromatin following DNA damage.  

Indeed, others have observed Mdmx localizes to the nucleus from the cytoplasm 
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following DNA damage.  While it has been proposed this translocation serves to allow 

Mdmx to be degraded, this does not make sense for Mdmx to be first shuttled to the 

nucleus to be degraded when it could have been degraded in the cytoplasm.  Based on 

my findings described in Chapter 3, Mdmx, or at least a sub-population, is actually going 

to chromatin following DNA damage and associating with Nbs1.   Considering Nbs1 has 

been shown to localize Mre11/Rad50 to sites of DNA damage, it is possible Mdmx 

associates with Nbs1 and is being localized to sites of breaks through this association.  

Overall, my studies shed light onto effects Mdmx has on DNA repair and early DNA 

damage response signaling.     

   

The interaction between Mdmx, Mdm2, and Nbs1 

 As described in Chapter 3, I determined endogenous Mdmx and Nbs1 associate 

in the absence of p53, and Mdmx specifically associates with Nbs1 of the Mre11-

Rad50-Nbs1 complex.  Since the Eischen lab had previously characterized the specific 

amino acids required for Mdm2 to interact with Nbs1, I first investigated if the region 

identified in Mdm2 responsible for interacting with Nbs1 was conserved in Mdmx.  The 

corresponding amino acids in Mdmx have little homology within the same region in 

Mdm2.  The Nbs1-association region could be localized to another area of the Mdmx 

protein, therefore I aligned the Nbs1-binding sequence of Mdm2 with the entire Mdmx 

protein sequence, but there was no indication of a conserved region to bind to Nbs1 

elsewhere in the protein.  This was an analysis of the primary structure, and Mdm2 and 

Mdmx only share about 40% homology.  This does not eliminate the possibility Mdmx 

directly binds to Nbs1.  It remains a possibility that the Nbs1-association region may 
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reveal itself in the tertiary structure.   

 Using deletion mutants, the region of Mdmx mediating the interaction with Nbs1 

can be identified.  Furthermore, determining if Mdmx directly interacts with Nbs1 will 

reveal a possible mechanism by which Mdmx is mediating its effects on DNA repair.  

Using deletion mutants of Mdmx, I determined the C-terminal portion of Mdmx 

containing amino acids 346-489 is not required for association with Nbs1.  This 

correlates with our data showing these amino acids were not required to exert the effect 

on DNA repair, genome instability, or transformation observed by full-length Mdmx.  

Once the region mediating this function of Mdmx has been defined, individual amino 

acids can be mutated to identify the specific amino acids facilitating the interaction with 

Nbs1.  The full structures of Mdm2 and Mdmx are not available, but this knowledge 

would be insightful to determine binding pockets and surface residues potentially 

involved in the association between Nbs1 and Mdmx.      

 In terms of the interaction of Nbs1 with Mdmx, we were able to narrow the region 

to amino acids 396-512 within Nbs1.  It is intriguing that the Mdm2-binding region (a.a.  

474-512) of Nbs1 is contained within this region, yet Mdmx associates with Nbs1 in the 

presence or absence of Mdm2.  Although it is yet to be determined if Mdm2 and Mdmx 

associate with Nbs1 in the same region, the possibility is certainly there.  The ability of 

Mdm2 and Mdmx to associate with Nbs1 in the exact same domain is an interesting 

scenario.  Although Mdmx interacts with Nbs1 independent of Mdm2, Mdm2 and Mdmx 

may possibly compete for this binding site; however, they have the same functional 

effect so there is little evidence to suggest Nbs1 associating with Mdm2 or Mdmx would 

be more beneficial.  Mdm2 and Mdmx could have a conserved function where they are 
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each able to associate with Nbs1 independently as a form of compensation in case 

either Mdm2 or Mdmx are not able to interact with Nbs1.  Because both Mdm2 and 

Mdmx associate with Nbs1 endogenously, this family of proteins likely has a 

physiological function involving the subtle regulation of Nbs1 during the DNA damage 

response allowing proper DNA repair to occur.  Future analyses to fully assess the role 

of Mdm2 and Mdmx in the efficiency and success of the DNA repair process will be 

important.  In cells lacking both Mdm2 and Mdmx, expressing mutants of Mdm2 or 

Mdmx that cannot bind to Nbs1 and evaluating the DNA repair abilities of these cells 

could be quite revealing.  Mdm2 and Mdmx may have different affinities for Nbs1.  In a 

cancer setting where either or both Mdm2 and Mdmx can be overexpressed, they may 

have a cooperative effect on the inhibition of DNA repair.  This could contribute to 

genome instability and thus promote tumorigenesis.  Therefore, elucidating the 

associations between Mdm2, Mdmx and Nbs1 is very important for both understanding 

normal DNA repair mechanisms and how potential alterations in these protein 

interactions may contribution to cancer formation.   

 

Mdmx promotes genome instability and confers tumorigenic potential 

independent of p53 and Mdm2 

 Mdmx overexpression increased chromosomal aberrations, including 

chromosome breaks, which are reflective of genome instability.  Chromosome and 

chromatid breaks can be caused by unrepaired or poorly repaired DNA breaks.  

Therefore, our data that Mdmx inhibits DNA repair aligns with our observation of Mdmx 

promoting genome instability.  Genome instability can manifest as breaks and fusions, 
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such as the ones observed when Mdmx is overexpressed and have the potential to 

contribute to tumorigenesis.   

 Since I observed Mdmx inhibits DNA repair and promotes genome instability 

independent of both p53 and Mdm2, it was likely Mdmx influences cellular 

transformation.  Indeed, I observed Mdmx overexpression alone was sufficient to 

promote colony formation in vitro in untransformed cells, which is an indication of 

transformation potential.  This is the first hint Mdmx can promote tumorigenesis 

independent of its regulation of p53 and its association with Mdm2.  While this does not 

conclusively say Mdmx will be able to promote tumorigenesis independent of p53, it is 

certainly suggestive of that.  Although the role of p53 was not assessed, Mdmx 

transgenic mice do develop spontaneous tumors indicating Mdmx is indeed an 

oncogene.174  To truly evaluate if Mdmx is able to transform cells independent of both 

p53 and Mdm2, mouse models using subsequent analysis of tumor onset and spectrum 

will be telling.  In previously analyzed Mdm2 transgenic mice with p53 deleted, the 

formation of tumors occurred at a similar rate, but the tumor spectrum was different.  

Therefore, I would expect, in the Mdmx transgenic mice lacking p53, DNA damage 

would have to be induced to see an alteration in tumor onset.  To tease out what impact  

inhibiting DNA repair by Mdmx has on tumorigenesis,  it would be interesting to 

generate mice overexpressing Mdmx that no longer retains the ability to inhibit DNA 

repair and evaluate if the effects on tumorigenesis caused by Mdmx overexpression are 

altered.  This would allow for subsequent analysis of tumor growth focusing on the 

function of Mdmx in DNA repair.   

   In the TCGA analysis, I observed Mdmx is overexpressed in many human 
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cancers, and co-occurs with inactivated p53, supporting my in vitro findings that Mdmx 

has tumorigenic benefits aside from negative regulation of the p53 tumor suppressor.  

Prior to this analysis, it has been widely accepted Mdmx overexpression primarily 

occurs in tumors with wild-type p53, which lends to the concept that Mdmx only 

regulates p53.  Although the TCGA information was very informative, Mdmx is likely 

overexpressed at the protein level in a higher percentage of cancers with inactivated 

p53 than what was indicated on TCGA which only reports mRNA expression changes 

and gene amplification.  In fact, some studies have shown Mdmx and p53 levels in 

panels of multiple cancer cell lines revealing Mdmx is overexpressed along with 

mutated p53 more often than previously imagined.51,81  Therefore, doing this on a more 

global scale will allow us to fully understand the frequency at which Mdmx 

overexpression co-occurs with inactivated p53.  The knowledge that Mdmx 

overexpression occurs with inactivated p53 in patient samples has extremely important 

implications in understanding the role of Mdmx as an oncogene, ways it may contribute 

to tumorigenesis, and informing the development of targeted therapies.     

 The research embodied by this dissertation identified and described a novel p53-

independent mechanism of Mdmx independent of Mdm2.  These studies provide 

valuable insight into understanding the role of Mdmx in tumorigenesis independent of its 

regulation of p53, which was poorly understood.   Additionally, my research elucidated a 

novel mechanism of action for the Mdm2 small molecule inhibitor Nutlin.  Even though I 

evaluated the effects of Nutlin-induced Mdm2 and overexpression of Mdmx on DNA 

repair, the entire body of work presented here ultimately contributes to the 

understanding of the DNA repair process, tumorigenesis, and the development of 
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chemotherapeutics, which can target these pathways to induce synthetic lethality in 

cancers with inactivated p53.     
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