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Chapter 1

Introduction

Supervisory human-machine teams incorporate humans commanding and monitoring

robots’ actions in order to complete a task and have been used in various environments,

including extreme environments, such as space exploration and search and rescue. High

task performance is imperative under such extreme conditions, as a mistake may cause

significant monetary loss, mission failure, or loss of life. The importance of high task

performance and costly mistakes place considerable stress and workload on the human

supervisors, which can reduce task performance. A research goal of this dissertation is

to demonstrate an adaptive human-robot teaming system capable of adapting, based on a

complete estimate of the human’s workload state in order to ensure high task performance.

Adaptive human-robot systems need to increase task performance by adapting to the

human’s workload level, since task performance decreases when workload is too high (i.e.,

overload) or too low (i.e., underload). Only a few adaptive workload systems exist, where

the systems only adapt to high workload conditions, even though low workload conditions

also can be as detrimental to task performance. Another limitation of current systems is

that the system adaptation is based on one dimension of workload (i.e., cognitive or phys-

ical), even though tasks usually encompass multiple workload dimensions (e.g., a space

exploration task may contain cognitive, auditory, speech, and visual).

The basis of the adaptive workload system is a real-time workload assessment algorithm

that relies on objective metrics, such as physiological signals, to predict human workload

levels. Typical workload assessment algorithms use machine learning to classify workload

states (i.e., high or normal workload). Although, a discrete representation of the individ-

ual’s workload state is important, adaptive workload systems need a continuous representa-

tion of the workload state to determine how much adaptation is needed in order to positively
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impact human performance. This dissertation uses an estimation based workload assess-

ment algorithm to provide a multi-factored workload value, which can be used to determine

if and how much adaptation is required in order to ensure team task performance.

The focus of this dissertation is to improve supervisory human-machine teams by devel-

oping an adaptive human-robot teaming system. The developed system relies on a real-time

workload assessment algorithm and a performance prediction model. The results show that

the workload assessment algorithm is capable of distinguishing between different work-

load levels across multiple workload components for two user evaluations. The developed

algorithm was used in real-time for a proof-of-concept adaptive system that intelligently

targeted interactions and improved task performance. This dissertation addresses the prob-

lems of workload estimation, individual differences, performance prediction, and intelli-

gent interaction adaptation in human-robot teams.

Chapter II provides background information on workload theories, objective workload

metrics, subjective workload metrics, and surveys the existing workload assessment al-

gorithms and adaptive system architectures. Chapter III presents a diagnostic workload

assessment algorithm and the associated post-hoc results from two user evaluations. Chap-

ter IV examines the algorithm’s real-time capabilities in a non-stationary supervisory-

based environment, while Chapter V presents a proof-of-concept validation of the adaptive

human-robot teaming architecture. Chapter VI presents conclusions and future directions.
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Chapter 2

Related Work

Workload can be defined as the ratio of resources required to achieve tasks to the re-

sources the human has available to dedicate to the task [126]. A high value of workload,

or overload, occurs when a large amount of resources are required to complete assigned

tasks, but only a small amount of resources are available [126]. The overload condition

occurs when task demand increases, but the human has insufficient resources available to

dedicate to the tasks, which causes task performance to decrease [133]. A typical task man-

agement strategy during the overload condition is to focus on tasks with higher importance

or priority, while simultaneously shedding those tasks with lower importance [126].

A low workload value, or underload, occurs when a small amount of resources are

required to achieve the assigned tasks, but a large amount of resources are available to

dedicate to the tasks [126]. Underload can be very difficult to detect [41, 42], since as

task demand increases, task performance can remain the same [133, 134]. Underload is

frequently not a research focus, but can be as determinantal to task performance as overload

[136]. The underload condition leads to reduced alertness, and vigilance as well as lowered

attention [126].

McCraken and Aldrich [80] decomposed overall workload into four components or re-

source channels using the Visual, Auditory, Cognitive, and Psychomotor method. Mitchell

[82] expanded upon this method to incorporate a speech workload component and split psy-

chomotor into gross motor, fine motor, and tactile; thus, overall workload can be decom-

posed into seven components: cognitive, gross motor, fine motor, tactile, visual, speech,

and auditory. This dissertation recombines gross motor, fine motor, and tactile into a phys-

ical workload component, as tactile and fine motor components are difficult to measure

using objective metrics. Cognitive workload represents the difference of the total amount
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of mental processing resources available, relative to the amount the task requires [47].

Physical workload is defined as the amount of physical demands placed on a human when

performing a task [47], while visual workload represents the demand when using the eyes

to identify or separate objects [4]. Speech workload arises when a person uses their voice,

while auditory workload represents demands to recognize words, tones, mood, and emotion

through sound [15]. Each component varies its contribution to overall workload depending

on the task requirements.

Understanding the overall workload state requires analyzing the workload components

in order to target the system adaptations to the workload components that are contributing

the most to the current workload state. For example, if the system is dependent on the

overall workload value alone, it may reallocate a task that is not a primary contributor to the

human’s current workload state. If the human operator has a high physical task demand and

a low cognitive demand, then adapting the system to reduce cognitive workload will have

little impact on the physical demands and resolving the overall overload state. However, an

adaptation that adjusts the physical workload demands can lower the overall overload state.

Chapters 2.1 and 2.2 reviews common workload metrics and the state-of-the-art work-

load assessment algorithms [50]. Chapter 2.3 presents the current theory surrounding adap-

tive system architectures and the state-of-the art systems.

2.1 Workload Metrics

2.1.1 Common Objective Metrics

The objective workload metrics focus on identifying workload levels and are viable op-

tions when developing workload assessment algorithms. The objective metrics are catego-

rized as a physiological response or task demand, and both categories correlate to overall

workload. Three established criteria are used to evaluate the metrics: sensitivity, diag-

nosticity, and selectivity [89]. Sensitivity refers to the metric’s ability to reliably detect
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workload levels. Diagnosticity, in the context of the visual, auditory, cognitive, and psy-

chomotor workload theory, refers to the metric’s ability to “discriminate between different

types of workload (e.g., visual versus cognitive workload)” [82]. Lastly, selectivity refers

to the metric’s ability to reject unrelated demands (i.e., emotional stress). Each metric is

categorized as being conforming, non-conforming, or requiring additional evidence with

the stated criteria, where conforming is defined as complying to the criterion. A metric

conforms with a criterion if at least three citations indicate that the metric fits the criterion

(i.e., three citations indicate that heart-rate is sensitive to workload). Likewise, a metric

is non-conforming if at least three citations indicate that the metric does not fit the crite-

rion (i.e., respiration rate has low sensitivity to workload). It is important to note that if

a metric is classified as non-conforming for a criterion, the metric may still supply useful

information to a workload assessment algorithm. If a metric does not have at least three

citations for a particular criterion, then additional evidence is required. Table 2.1 lists the

objective workload metrics and their associated response under high workload conditions

for overall workload and the workload components along with the sensitivity, diagnosticity,

and selectivity classifications. The category column determines if a metric is a response to

a change in workload (response) (i.e., heart-rate variability), or a direct measurement of

the task demand (demand) (i.e., posture sway). Metrics categorized as demand require

evidence based on the response metrics in order to determine how well the demand metric

meets the criteria.

Directly comparing workload metrics in Table 2.1 is challenging, as the metrics are

evaluated in different task environments that may contain different workload levels. Ideally,

the metrics are directly compared in multiple task environments with various workload

compositions in the presence of unrelated demands; however, such an analysis is extremely

challenging and infeasible. Thus, the classifications are provisional, but the classifications

for highly studied metrics, such as heart-rate variability, are unlikely to change.

The Electroencephalogram (EEG) collects neurophysiological signals from different
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Table 2.1: Workload Metrics Overview

Metric Category Correlation Workload Component(s) Sensitivity Diagnosticity Selectivity
EEG: Power Spectral Density Response Both Cognitive Conf Conf Conf
EEG: Event Related Potentials Response Increases Cognitive Conf Conf Conf
fNIRS Response Increases Cognitive Conf Conf Conf
Heart Rate Variability Response Decreases Cognitive Conf Conf Conf
Heart Rate Response Increases Cognitive, Physical Conf Conf Conf
Respiration Rate Response Decreases Speech, Physical Non-Conf Non-Conf Non-Conf
Galvanic Skin Response Response Decreases Cognitive, Physical Conf Non-Conf Non-Conf
Skin Temperature Response Decreases Cognitive, Physical Conf Non-Conf Non-Conf
Blink Frequency Response Both Cognitive, Visual Conf Non-Conf Non-Conf
Pupil Dilation Response Increases Cognitive Conf Conf Conf
Fixation Duration Both Increases Cognitive, Visual Conf Conf Conf
Blink Duration Response Decreases Cognitive, Visual Non-Conf Non-Conf Non-Conf
Blink Latency Response Increases Cognitive, Visual Conf Non-Conf Conf
Noise Level Demand Increases Cognitive, Auditory Conf Conf Conf
Speech Response Time Response Increases Cognitive, Auditory, Speech Conf Conf Conf
Speech Rate Response Increases Cognitive, Speech Conf Conf Conf
Number of Fragments Response Increases Cognitive, Speech Req Evid Req Evid Req Evid
Number of False Starts Response Increases Cognitive, Speech Req Evid Req Evid Req Evid
Number of Syntax Errors Response Increases Cognitive, Speech Req Evid Req Evid Req Evid
Filler Utterances Response Increases Cognitive, Speech Req Evid Req Evid Req Evid
Utterance Repetitions Response Increases Cognitive, Speech Req Evid Req Evid Req Evid
Utterance Length Response Decreases Cognitive, Speech Req Evid Req Evid Req Evid
Variance in Posture Demand Increases Physical Req Evid Req Evid Req Evid
Postural Load Demand Increases Physical Req Evid Req Evid Req Evid
Vector Magnitude Demand Increases Physical Req Evid Req Evid Req Evid
Task Density Demand Increases Task Dependent Req Evid Req Evid Req Evid
Task Switches and Interruptions Demand Increases Task Dependent Req Evid Req Evid Req Evid
Secondary Task Failure Rate Demand Increases Task Dependent Conf Conf Conf
Note: Conf = Conforming, Non-Conf = Non-Conforming and Req Evid = Requires Additional Evidence

brain regions. The power spectral density, specifically the alpha (8 - 13 Hz) and theta (4 - 8

Hz) frequency bands, and the event-related potentials are sensitive to a range of cognitive

workload levels, when at least thirty seconds of data are processed (e.g., [18, 92, 113]).

Event related potentials suffer from low signal-to-noise ratios and require a known stim-

ulus. EEG signals are selective to cognitive workload, since they are affected by fatigue,

anxiety, and emotional stress. EEG signals are also sensitive to muscle artifacts and may

not accurately reflect cognitive workload when a participant is physically active. Recent

research showed improved EEG signal accuracy during physical activity, but did not mea-

sure workload during movement [40]. Incorrect sensor placement can create inaccuracies.

The EEG conforms with all criteria: sensitivity, diagnosticity, and selectivity.

Functional Near-Infrared Spectroscopy (fNIRS) measures blood oxygen levels in
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the brain and increases with cognitive workload (e.g., [53, 54, 105]). fNIRS is resistant

to movement artifacts, unlike the EEG [105]. The metric is sensitive, diagnostic, and se-

lective, (depending on the specific sensor equipment used and the human’s activity [130]);

thus, fNIRS conforms with all of the specified criteria.

Heart rate variability (HRV) measures the variation in the heart rate’s beat-to-beat

interval and is sensitive to large cognitive workload variations, but requires thirty seconds

to two minutes of data (e.g., [1, 65, 121]). Sensitivity decreases when using less than thirty

seconds or more than two minutes of data [22]. HRV is sensitive, diagnostic and selective,

if an individual’s skills, training, fatigue, and distractions remain constant.

Heart rate (HR) refers to the number of heart beats per minute and increases with

physical and cognitive workload, but is only sensitive to large changes (e.g., [22, 43, 66]).

Heart rate is diagnostic if a task contains only cognitive or physical workload and requires

thirty seconds to two minutes of data. Heart rate is selective if an individual’s skills, train-

ing, and fatigue remain constant [22]; however, sensor movement can impact the metric’s

accuracy. HR conforms with all criteria.

Respiration rate (RR) represents the number of breaths taken per minute. Respiration

Rate decreases as speech and physical workload increases, but is not a good predictor of

workload when used independently (e.g., [68, 99]). Respiration rate may be sensitive to the

number of tasks performed [85], but is not diagnostic nor selective, as physical movement

can decrease the metric’s accuracy [22]. Respiration rate does not conform with the criteria.

Galvanic Skin Response is the conductivity of the skin [88, 120], which decreases as

cognitive and physical workload increases (e.g., [88, 110, 120]). Galvanic skin response

is not diagnostic or selective, since the metric is impacted by sweating and changes in

the sympathetic nervous system (i.e., emotional and physical behavior). Galvanic skin

response conforms with sensitivity.

Skin Temperature decreases as physical or cognitive workload increases (e.g., [81, 83,

84]). Skin temperature is sensitive to workload variations, but is not diagnostic or selective,
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as fatigue and changes in the sympathetic nervous system impact skin temperature [91].

Skin temperature conforms with sensitivity, but not with diagnosticity and selectivity.

Blink frequency or blink rate, captures the number of blinks per minute. An eye-

tracker or electrooculogram can measure blink frequency, which has been shown to in-

crease with higher cognitive workload and decrease with higher visual workload (e.g.,

[20, 78]). Blink frequency is sensitive to medium to large changes in workload, but is

not diagnostic. There are considerable individual differences in blink frequency, which is

not selective, as the metric is highly correlated with fatigue. Blink frequency is conforming

with sensitivity, but is non-conforming with diagnosticity and selectivity. Blink frequency

may be unreliable for longer duration tasks [20, 22].

Pupil dilation, or pupillometry, is the change in pupil diameter, which increases as

cognitive load increases (e.g., [3, 20, 71]). Pupil dilation is highly sensitive to small work-

load variations. Pupil dilation is also diagnostic and selective, if the amount of light in the

environment is remains constant. Lighting changes can greatly impact the metric’s sensi-

tivity to workload. Pupil dilation conforms with all criteria. Cheaper eye-tracking devices

may not be precise enough to measure pupil dilation for cognitive workload assessment, as

pupil dilation requires precise measurements, on the order of tenths of a millimeter [20].

Fixation Duration represents the number of eye fixations during a defined period (e.g.,

[6, 78]). A fixation occurs when a human stares at an object longer than a predetermined

time. A larger number of fixations correlates to higher cognitive workload, but this metric

is limited to high density visual display environments containing multiple objects. Fixation

duration is sensitive and diagnostic. Fixation duration is selective on an individual basis,

since the metric is dependent on scanning strategies and the visual display environment.

The metric conforms with all criteria.

Blink Duration is measured as the length of a blink and decreases as cognitive and

visual workload increase (e.g., [20, 22, 78]). Blink duration is not sensitive or diagnostic.

This metric is selective, if fatigue levels remain constant; thus, blink duration is not suitable
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for long duration tasks. Blink duration is non-conforming with all criteria.

Blink Latency represents the time between consecutive blinks, which increases as cog-

nitive and visual workload increases (e.g, [20, 22, 78]). Blink latency is sensitive, but is

not diagnostic. Fatigue does not impact blink latency; thus, the metric is selective. Blink

frequency conforms with selectivity and selectivity, but not diagnosticity.

Noise Level correlates to an increase in auditory and cognitive workload (e.g., [17,

46, 86, 114]). The metric’s sensitivity is dependent on the amplitude, variability, duration,

and intermittency of the task environment’s noise level [26]. Noise level is diagnostic and

selective, since the metric is a measurable task demand. Noise level conforms to all criteria.

Speech Response Time is the amount of time required to respond to an auditory stimu-

lus [8]. A longer response time represents a higher level of cognitive, auditory, and speech

workload. Speech response time is sensitive to workload variations, diagnostic, and selec-

tive (e.g., [8, 24, 87]). Thus, speech response time is conforming with all criteria. Accurate

measurement requires known times for each stimuli, which can be difficult to obtain if the

stimulus is not computer generated.

Speech Rate captures the articulation and pause rate of verbal communication, which

affects the listener’s speech and cognitive workloads (e.g., [7, 8, 63]). Speech rate is sen-

sitive, diagnostic, and selective; thus, speech rate conforms with all criteria. Individual

differences are vast; thus, speech rate is difficult to standardize across a population.

Number of Fragments, False Starts and Syntax Errors each increase as cognitive

and speech workload increases. Fragments represent a sentence that does not complete a

thought, while false starts are incomplete sentences. The metrics are sensitive to workload

variations, diagnostic, and selective. Although, the speech context can effect the metric’s

sensitivity (e.g., [8, 63]); however, additional evidence is required. Recognizing the number

of fragments, false starts, and syntax errors is not trivial [8]. Speech recognition software,

such as Dragon® Naturally Speaking, require low noise environments and/or training, but

recent advances in microphones (e.g., bone microphones) [93] and speech recognition soft-
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ware can overcome this limitation [5].

Filler or Delay Utterances are words, such as “um” or “you know”, that are mean-

ingless in the context of a sentence. Filler utterances increase as cognitive and speech

workload increase and are sensitive to workload variations (e.g., [8]). Filler utterances are

diagnostic and selective; however, additional evidence is needed. Automatic detection of

filler utterances is non-trivial and requires tracking recently spoken words.

Utterance repetitions increase as cognitive and speech workloads increase and are sen-

sitive, diagnostic, and selective (e.g., [8]). Additional evidence is required to substantiate

claims. Speech recognition software can be used to detect repetitions [70].

Utterance Length is the length of time between long pauses and can be measured via

speech recognition software or speech-envelope detection. Utterance length decreases as

speech and cognitive workload increases and is sensitive, diagnostic, and selective (e.g.,

[8, 74]). However, additional evidence is required.

Posture sway, or the Variance in Posture captures the change in the human’s center of

gravity and is calculated by determining the mean squared deviation from the mean postural

position, which increases as physical workload increases [72]. Posture sway is sensitive to

workload variations, diagnostic, and selective; but only if the task requires posture changes.

Additional evidence is required to substantiate claims. A task with physical workload, such

as walking, may result in low variance in posture.

Postural load represents the time during which a participant’s trunk is flexed more than

45◦ and requires a known time period for framing the postural load value [94]. Increasing

postural load increases physical workload; thus, the metric’s sensitivity, diagnosticity, and

selectivity depends on the task. Additional evidence is required to determine if the metric

is sensitive to task’s that requires flexing of the trunk.

Vector Magnitude represents physical movement [112] and refers to the magnitude,

or mathematical size, of the walking vector. High vector magnitude levels indicate high

levels of walking, a factor in physical workload. Vector magnitude is only relevant to tasks
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incorporating walking; thus, the metric’s sensitivity, diagnosticity, and selectivity are task

dependent. Additional research is required to substantiate claims.

Task Density calculates the number of tasks initiated during a specific time period

[124] and increases overall workload. This metric is sensitive, diagnostic, and selective,

if the task’s workload composition is known. Task density requires maintaining consistent

and comparable measurements throughout the task, which can be difficult. Task density

needs additional evidence to determine if the metric conforms with the criteria.

The Number of Task Switches or Interruptions in a specified time period increases

overall workload (e.g., [77, 103]. The timing of the task switch or interruption impacts

overall workload as well. The number of task switches and interruptions are sensitive and

selective, but not diagnostic. This metric requires additional evidence to determine if the

metric conforms with the established criteria.

Secondary Task Failure Rate refers to the incorrect completion of a secondary task

and is used to measure spare workload capacity. Secondary tasks include constant moni-

toring tasks (e.g., verbal recital of a word) or discrete prompted tasks, such as card sort-

ing, memory recall, or mental math problems [37]. Secondary task failure rate increases

as overall workload increases and is sensitive, diagnostic, and selective, depending on the

secondary task’s workload composition (e.g., [20, 22, 37]). This metric conforms with each

criterion. The metric’s sensitivity also depends on the individual’s workload management

strategies and learning effects, if the secondary task is usually not performed [22].

2.1.2 Common Subjective Workload Metrics

Subjective workload metrics provide insight into the human’s perceived workload [37]

and are typically inexpensive and easily administered [21]. Subjective metrics are infeasi-

ble for real-time workload assessment, since they do not output a continuous value. Further,

subjective metrics encounter difficulty distinguishing between task difficulty and workload

and cannot assess the unconscious processing of information that humans cannot rate [89].
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The NASA Task Load Index (NASA-TLX) defines workload as a weighted mean of

subjective ratings along six demand channels: mental, physical, temporal, own perfor-

mance, effort, and frustration (e.g., [20, 37, 47]). The overall value is a score between 0 -

100, with 100 representing exceptionally high workload. A limitation is the time to admin-

ister the survey; however, auditory adaptations can be investigated. Additional limitations

include a lack of continuous measurement throughout the trial and subjectivity. Participants

may be unable to recall workload experienced during a task when providing responses after

task completion. NASA-TLX conforms with sensitivity, selectivity, and diagnosticity.

The Cooper-Harper Scale evaluates air-craft handling using a decision tree based on

the task, aircraft characteristics and workload demand [28] and has been shown to correlate

with task performance and workload [37]. The primary limitation is that the tool is specific

to the aircraft-handling domain, which was overcome by the Modified Cooper-Harper

Scale that allows for the assessment of cognitive workload [127]. The modified tool rates

mental workload instead of controllability and emphasizes the task difficulty [37]. The

Modified Cooper-Harper scale is sensitive and selective, but not diagnostic (e.g., [22, 37,

127]). The modified tool conforms with sensitivity and selectivity, but not diagnosticity.

The less variable Subjective Workload Assessment Technique [97] measures cogni-

tive workload using three different scales: time, cognitive effort, and psychological stress

(e.g., [97]). The time component measures the amount of spare time available to dedicate

to a task, while the cognitive effort component measures how much conscious mental effort

is needed to complete the task. The psychological stress component measures the amount

of risk, confusion, frustration, and anxiety associated with the task [37]. SWAT conforms

with sensitivity, diagnosticity, and selectivity (e.g., [22, 37, 89]).

The Multiple Resource Questionnaire rates seventeen workload dimensions that en-

compass auditory, facial, memory, manual, spatial, tactile, visual, and vocal process on a

rating scale ranging from 0 - 4 (e.g., [14, 20, 37]). The MRQ conforms with sensitivity,

diagnosticity, and selectivity.
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Verbal In-Situ Ratings assess six percieved workload components: auditory, visual,

cognitive, speech, tactile and motor [45]. Each component ranges from 1 (little or no

demand) to 5 (extreme demand). The limitations of verbal in-situ ratings include the lack of

a continuous measure and the dependency on choice in administration time. Verbal in-situ

ratings are sensitive, diagnostic, and selective; however, additional evidence is required.

2.2 Workload Aggregation Algorithms Approaches

Thirty-one workload aggregation algorithms across eleven task environments were iden-

tified and reviewed. An overview of the algorithms by task environment is provided in Ta-

ble 2.2. The algorithms are classified using the following criteria: sensitivity, diagnosticity,

suitability, and generalizability. Some of the algorithms in Table 2.2 are not described in

this dissertation, but are described in Heard et al. [50]. Selectivity was not considered in

the evaluation criteria, as none of the reviewed manuscripts analyzed the effect of unrelated

demands (i.e., emotional stress or fatigue). The suitability and generalizability criteria were

added in order to further assess an algorithm’s viability for inclusion in an adaptive work-

load system. Each criterion is classified as conforming or non-conforming. An algorithm is

classified as conforming if an algorithm meets all of the requirements specified for each cri-

terion below, while a non-conforming classification is given otherwise. The requirements

were chosen based on logical thought that is grounded in the literature [12, 82], as there

exists no established criteria for comparing and critiquing workload assessment algorithms.

Sensitivity refers to an algorithm’s ability to reliably detect workload levels, which

depends on the algorithm’s accuracy and levels of workload classified. An algorithm is

classified as conforming if the algorithm detects at least three workload levels with ≥80%

accuracy or ≤5 root mean squared error (RMSE). Detecting at least three workload levels

was chosen as the threshold, as it is highly desirable that an algorithm detects both overload

and underload conditions. Such a classification is not feasible with a binary representation;

thus, an acceptable number of detected workload levels is three. Multiple factors deter-
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Table 2.2: Summary of Workload Assessment Algorithms

Task Environment Paper Sensitivity Diagnosticity Suitability Generalizability
Multi-Attribute Task Battery Wilson and Russell[129] * Conf Conf Conf Non-Conf

Christensen et al.[25] * Req Evid Non-Conf Conf Non-Conf
Durkee et al. [31] Non-Conf Non-Conf Conf Non-Conf

Automated-Enhanced Cabin
Air Management System

Wang et al. [123] * Non-Conf Non-Conf Non-Conf Non-Conf

Ting et al. [118, 119] Req Evid Conf Non-Conf Non-Conf
Zhang et al. [140] * Conf Non-Conf Non-Conf Non-Conf
Zhang et al. [139] Conf Non-Conf Conf Non-Conf
Yin and Zhang [135] Conf Non-Conf Conf Non-Conf
Zhang and Wang [138] Non-Conf Conf Non-Conf Non-Conf

Flight or Driving Simulator Hoogendoorn and van Arem [57] Conf Non-Conf Non-Conf Non-Conf
Putze et al. [96] Non-Conf Non-Conf Non-Conf Non-Conf
Oh et al. [90] Req Evid Non-Conf Non-Conf Non-Conf
Besson et al. [9, 10] * Conf Non-Conf Non-Conf Non-Conf
Wilson and Fisher [128] * Conf Non-Conf Conf Non-Conf
Fan et al.[34] and Zhang et al. [141] * Non-Conf Non-Conf Conf Non-Conf
Manawadu et al. [76] Non-Conf Non-Conf Conf Non-Conf

Remotely Piloted Vehicle Rusnock et al. [101] * Conf Non-Conf Conf Non-Conf
Borghetti et al. [16] Conf Non-Conf Non-Conf Non-Conf
Durkee et al. [32] Conf Req Evid Non-Conf Non-Conf
Durkee et al. [33] Conf Non-Conf Conf Non-Conf

Cognitive-Based Zhang et al. [137] Conf Conf Non-Conf Non-Conf
Hogervorst et al. [56] * Non-Conf Conf Non-Conf Non-Conf
Massari et al. [79] Non-Conf Non-Conf Non-Conf Non-Conf
Zhang et al. [142] Non-Conf Non-Conf Conf Non-Conf

Augmented Reality Schultze-Kraft et al. [106] * Non-Conf Non-Conf Non-Conf Non-Conf
Normal Day Ghosh et al.[38] Non-Conf Non-Conf Conf Non-Conf
Air-Traffic Control Abbass et al. [2] Req Evid Conf Non-Conf Non-Conf
Misc. Tasks Popovic et al. [95] Non-Conf Conf Conf Conf
Robot Surveillance Teo et al. [115]* Req Evid Non-Conf Conf Non-Conf
Anomaly Detection Zhao et al. [143] Conf Non-Conf Conf Non-Conf
Note: Conf = Conforming, Non-Conf = Non-Conforming and Req Evid = Requires Additional Evidence
* indicates a participant-specific algorithm

mine an algorithm’s accuracy (i.e., validation method, human workload levels, difference

between workload levels, overfitting), which make setting threshold values difficult. Thus,

the classification accuracy thresholds were chosen based on the reviewed algorithms’ accu-

racy distribution. The metrics incorporated in the algorithm and epoch size also impacts an

algorithm’s sensitivity; however, it is difficult to objectively analyze their impact on a re-

viewed algorithm’s sensitivity without direct access to the algorithm. Further, an algorithm

may use an insufficient epoch size for a metric or low sensitivity metrics, but the algorithm

may still achieve a ≥80% accuracy. Thus, if an algorithm uses an insufficient epoch size

or low sensitivity metrics, it will be noted in the algorithm analysis. An algorithm may
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require additional evidence for the sensitivity criterion, if there is insufficient information

to classify the algorithm or the algorithm was not developed in a practical setting. For ex-

ample, training an algorithm using randomly chosen folds or data segments may increase

classification accuracy, due to the high correlations that exist between samples in time.

Diagnosticity refers to an algorithm’s ability to “discriminate between different types

of workload (e.g., visual vs. cognitive) [82],” but the majority of algorithms are designed

to assess a single workload component. Another workload component’s presence may

confound the algorithm’s workload assessment (i.e., presence of physical workload may

confound the algorithm’s cognitive workload assessment). It is difficult to objectively state

how much the confounding component affects the workload assessment; however, diag-

nosticity is reliant on the workload metrics used. For example, if heart-rate is used for

cognitive workload assessment, the presence of physical workload may greatly confound

the cognitive workload assessment. An algorithm conforms with diagnosticity, if ≤20% of

the metrics correlate to multiple workload components.

An algorithm’s Suitability determines if the algorithm is capable of assessing the com-

plete overall workload state imposed by the task environment in which it was deployed

in. For example, a driving task imposes cognitive and visual workload; thus, the com-

plete overall workload state is composed of said workload components. If an algorithm

only assesses cognitive workload, then the algorithm only assesses a subset of the driving

task’s overall workload state. An algorithm can assess a workload component if the al-

gorithm contains workload metrics sensitive to said workload component. An algorithm

is conforming, if the algorithm assesses the complete overall workload state for the task

and non-conforming otherwise. An algorithm is capable of assessing the complete over-

all workload state, if the algorithm contains metrics that correlate to the task’s workload

components.

Generalizability represents the algorithm’s ability to generalize across tasks and pop-

ulations. An algorithm generalizes across tasks, if the algorithm assesses the complete
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overall workload state (i.e., each workload component). An algorithm generalizes across

populations if the algorithm is not participant-specific and achieves ≥80% accuracy, or ≤5

RMSE. An algorithm is classified as conforming if the algorithm generalizes across tasks

and populations. There is a difficulty in classifying algorithms that are participant-specific,

as there is no good measure to determine the population generalizability of such algorithms.

However, the accuracy of participant-specific algorithms trained on a population will de-

crease, due to individual differences [144]. Thus, participant-specific algorithms can only

receive a non-conforming rating, but will be denoted by an asterisk in Table 2.2.

It is worth noting that the criteria were developed to evaluate an algorithm’s viability

for use in an adaptive workload system, which may not have been the original authors’

intended use of an algorithm. The algorithms were also evaluated based on their ability

to assess the complete overall workload state, although the original authors only focus on

a single workload component assessment (i.e., only cognitive). It is also difficult to com-

pare directly the algorithms’ performance, as the algorithms are not evaluated in standard

environments. The ratings are still valuable, as the algorithms are compared in task envi-

ronments with similar workload component compositions.

2.2.1 Overview of Machine Learning Classifiers

Workload assessment algorithms typically use machine learning to classify workload.

Common machine learning classifiers include artificial neural networks, linear regression,

linear discriminant analysis, fuzzy logic, support vector machines, model based, and en-

semble.

Artificial neural networks mimic computation within the human brain and consist of

at least three layers: input, processing, and output [12]. The input layer contains a node

for each feature to be classified (i.e., heart-rate, respiration rate), while the output layer

contains a node for each class (i.e., overload, medium workload). The processing layer

contains a set of adaptive weights that are tuned by a learning algorithm and are used to
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determine the contribution of each metric for a class, based on the input and output data.

A linear regression classifier seeks to find a line, plane, or hyperplane that divides the

input features into corresponding classes [12]. A simple two class, one feature equation

takes the linear form Y = B0 +B1 ∗X , where B0 and B1 are weights and X is the input

feature. The class of X is 0 if Y is below the line, or 1 if Y is above the line.

Linear discriminant analysis attempts to project the input features onto a smaller feature

space that minimizes the in-class distance and maximizes the between-class distance [132].

Fuzzy Logic is a set of rules that formalizes human-reasoning [131]. Each feature is

described as a membership function (i.e., temperature is high/low) in the range of [0, 1],

where the number represents the degree of membership. The fuzzy rules use membership

functions to determine the data’s class. For example, determining if a person has a fever

may use the rule: IF (temperature is high), THEN (the person has a fever).

Support vector machines map features to a feature space and identify the boundary

between them. This boundary can be linear or non-linear, depending on the function used.

The radial-basis function is a common non-linear function that creates circular boundaries.

A model-based algorithm creates a model tailored to the application domain that may

or may not use machine learning algorithms [13].

An ensemble of classifiers aggregates machine-learning algorithms in order to reduce

an individual classifier’s variance and bias [29]. The classifiers can be the same or different.

2.2.2 Multi-Attribute Task Battery

The Multi-Attribute Task Battery (MATB) is an simulated aircraft monitoring system

that contains optional subtasks (i.e., responding to communication requests) [27]. The

supervisory-based task environment incorporates the cognitive, visual, auditory, and phys-

ical workload components.

Wilson and Russell [129] sought to assess workload in real-time using an artificial

neural network. Seven participants completed tasks with two levels of difficulty. which
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was manipulated by varying the number of tasks to be completed within five minutes.

The baseline condition required the participants to stare at a screen. The experiment in-

cluded a single low workload condition task and a single high workload condition task.

Six EEG electrodes, two electrooculography electrodes, and electrocardiogram physiolog-

ical data were collected for each task. The power spectral density was calculated for five

frequency bands pertaining to the EEG and electrooculography data, while heart rate vari-

ability, respiration rate, and blink frequency were calculated using the electrocardiogram

and electrooculography data. A total of 43 features were used for classification. 75% of

the physiological data was randomly segmented into ten second epochs, with 50% overlap

and fed into an artificial neural network. The remaining physiological data served as test

data for classifying the human’s cognitive workload level as baseline, low workload, or

high workload. The algorithm only assessed cognitive workload, although the task has a

visual workload component. A participant-specific classifier was trained and evaluated in

order to remove individual differences. The mean artificial neural network’s accuracy was

84.3% across all participants; however, the algorithm’s accuracy for individual participants

ranged from 69% - 97%. Accuracy may increase if a larger epoch size is used, as heart-rate

and heart-rate variability require at least thirty seconds of data to be sensitive to workload.

An adapted aiding scenario removed subtasks when the neural network classified a high

workload condition, which resulted in a 44% reduction in cognitive workload and a 33%

reduction in task error. The reduction in workload and task error is expected, given that

the adaptive aiding decreased the task density. The algorithm’s sensitivity, diagnostic-

ity, and suitability are classified as conforming, as the algorithm assesses three workload

levels with 84.3% accuracy, <25% of the metrics correlate to multiple workload compo-

nents, and the algorithm assesses each task workload component (i.e., cognitive and visual,

respectively). The algorithm is classified as non-conforming for generalizability, as the

algorithm is unable to assess each individual workload component.
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Christensen et al. [25] expanded on Wilson and Russell’s [129] results by focusing on

the day-to-day variability of cognitive workload. The MATB was used with three task

difficulty levels with eight participants working for five days, distributed over a month.

Each day consisted of three five-minute tasks with random difficulty, resulting in a total

of twenty-five tasks per participant. The physiological data recorded each day included 19

EEG channels, electroculography, heart rate, blink rate, and blink duration. The metrics

were segmented into 40 second epochs, with a 35 second overlap. The artificial neural

network was trained using individual participants’ physiological data from the low and

high workload tasks; thus, creating a participant-specific classifier. A neural network, linear

discriminant analysis classifier, and support vector machine were evaluated using the same-

day and inter-day tasks. The neural network had an accuracy of 99% when classifying low

and high workload conditions for the same-day tasks and 83% for the inter-day tasks, while

the linear discriminant analysis classifier and support vector machine achieved a day-to-day

accuracy of 65% and 68%, respectively. When the classifiers were trained on a sub-set of

days ranging from two to five days, the additional days increased the classifiers’ accuracy

and day-to-day generalizability. The classification accuracy across days also improved

when the classifiers were trained on the first day’s data and 2.5 minutes of data at the start

of each day, although the increase was not significant. Even though the algorithm achieved

high same-day accuracy with the neural network, the decrease in inter-day accuracy and the

large number of features (i.e., 198), suggest that overfitting of the data occurred. Thus, the

algorithm’s sensitivity is classified as “needs additional evidence”, as the algorithm may

not perform well in a practical setting. Diagnosticity and generalizability are classified

as non-conforming, since visual workload impacts 60% of the metrics. The algorithm

conforms to suitability, as the algorithm assesses the task’s workload components.

The Airforce Research Laboratory and Aptima, Inc designed a model-based classifier

for cognitive workload with a range of 0 to 100, synonymous with the NASA-TLX score

[31]. Seven participants completed fifteen five-minute MATB tasks each containing three
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task difficulty levels spanning from low to high workload, for a total of fifteen task difficulty

levels. EEG, electrocardiogram, pupil diameter, blink rate, and fixation duration workload

metrics were collected with an epoch of 5 seconds. A continuous workload model used

for training and validation was developed by injecting noise into the NASA-TLX scores,

where the amount of noise was dependent on the task context (i.e., task difficulty and num-

ber of tasks). The authors justify the noise, because the NASA-TLX is a static measure, but

operator states are non-static. Thus, the need for injecting noise. The continuous workload

model changed over time by dynamically updating the model weights using physiological,

situational, behavioral, and human input. An unspecified machine-learning algorithm was

trained on the workload model and classified cognitive workload in the range of 0 - 100,

which produced a mean absolute difference of 35%. The high error is attributed to individ-

ual differences. The authors also examined the algorithm’s ability to classify low and high

cognitive workload, which produced an accuracy of 76%. The following indexes are based

on the binary classifier, rather than the continuous classifier. The algorithm’s sensitivity

and diagnositicity are non-conforming, due to the <80% classification and the metrics

used correlate to cognitive and visual workload. The algorithm’s suitability is conforming.

Generalizability is classified as non-conforming, since the algorithm does not assess each

workload component.

Christensen et al.’s [25] algorithm is the most suitable for assessing workload in the

MATB task environment and achieves the highest classification accuracy. However, the

algorithm may not be practical in real-world situations, due to the presence of overfitting.

2.2.3 Automated-Enhanced Cabin Air Management System

The Automated-Enhanced Cabin Air Management System is a supervisory based task

incorporating cognitive and visual workload [75]. The task environment requires partici-

pants to monitor oxygen level, while keeping different subsystems within range.
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Wang et al. [123] utilized a neural network with ant colony foraging to classify cognitive

workload. Eleven participants completed tasks. The number of subsystems monitored (1

- 5) was used to manipulate task difficulty and task performance was determined by the

time in range value, or the percentage of time the system was in range for two seconds.

Participants subjectively assessed workload (ranging from 0 to 100) after each task via an

onscreen questionnaire. The subjective workload results were used for classifier training,

while validation combined the time in range and subjective values using the formula

OFS = 0.7xT IR+0.3x(100− e f f ort),

where OFS represents the workload level in the range of 0 - 100, TIR is the time in range

as a percentage, and effort is the subjective assessment value. The formula weights were

determined by maximizing the linear correlation between the OFS value and the EEG in-

dex of workload. Thirty-two EEG channels, heart rate, and heart rate variability data were

collected, using an epoch of two seconds for each metric. The task load and engagement

indexes were calculated from the EEG data and used as additional algorithm metrics. The

workload metrics were used as features for a feed forward neural network trained by us-

ing the ant colony-based adaptive differential evolution algorithm, which uses foraging

techniques to find the optimal weights. The trained neural network estimated the oper-

ator functional state and was cross validated using the leave-one-out method. The aver-

age RMSE of the algorithm’s estimated vs. the modeled operator functional state ranged

from 9.1 to 16.4 for all participants. The algorithm’s sensitivity and diagnosticity are

non-conforming, given the >5 RMSE and that the presence of physical workload may con-

found the workload assessment. The algorithm’s suitability and generalizability are also

non-conforming, as the participant-specific algorithm is unable to assess all of the task’s

workload components. The algorithm may achieve better results if a longer epoch time is

used, as a two second epoch is insufficient for heart rate and heart-rate variability.
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Cognitive workload was classified using fuzzy logic [118, 119]. Nine participants con-

trolled up to five sub-systems during a four-hour session that included four tasks. The

first task was an Automated-Enhanced Cabin Air Management System baseline adjustment

period, which collected baseline physiological data used to normalize each participant’s

values. The second and fourth tasks incorporated fuzzy logic adaptive control, while the

third task triggered adaptation based on system errors (i.e., a simulated oxygen level out-

side the defined operating range). The fuzzy modeling logic depended on the EEG task

load index and heart rate variability metrics, with an epoch of one-hundred and twenty-

eight seconds. The model’s output was a time in range percentage predictor for the oxygen

level ranging from low, a small time, to very high, a large time. A low output equated to

higher workload, which caused the system to assume more autonomy. The fuzzy modeling

controller improved operator performance and reduced the reported anxiety, fatigue, and

effort levels. The algorithm’s accuracy was not analyzed, only the performance outcome

on the time in range value; thus, the algorithm’s sensitivity requires additional evidence.

The diagnosticity is conforming, since EEG and heart-rate variability only correlate to

cognitive workload. The algorithm’s suitability and generalizability are classified as non-

conforming, as the algorithm is unable to assess visual workload.

Zhang et al. [140] developed a fuzzy clustering algorithm. Eleven participants com-

pleted two task sessions, consisting of nine task load conditions, each lasting 15 minutes.

The task load was determined by the number of subsystems to be controlled. Two sec-

ondary tasks incorporated tank leveling and alarm response. Thirty-two EEG channels,

heart rate, and heart rate variability metrics were recorded with an epoch of 1 minute. All

metrics were normalized to the range of [0, 1] and the EEG task load index was computed.

The metrics were fed into a fuzzy c-means clustering classifier, with a preset c of three,

corresponding to good (low workload), average (medium workload), and poor/risky (high

workload) operator performance. The fuzzy c-means classifier was participant-specific and

had a mean accuracy of 85.7%. The algorithm conforms to sensitivity, due to the high
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accuracy and detecting three workload levels. The diagnositicity is non-conforming, as

the presence of physical workload may confound the algorithm’s cognitive workload as-

sessment. The algorithm’s suitability and generalizability are also non-conforming, as

the algorithm is unable to assess visual workload and is unable to generalize across tasks.

This prior work [140] was extended by using a bias [135] and a bounded support vector

machine [139]. The bias support vector machine used the thirty-two EEG channels, heart

rate, heart rate variability, and electrooculography metrics, with non-overlapping epochs

of 30 seconds. An adaptive exponential smoothing function and a local preservation tech-

nique was applied to improve the support vector machine’s accuracy and reduce the fea-

ture space’s dimensionality. Adaptive exponential smoothing uses the standard exponential

smoothing formula, but adaptively chooses the value of λ based on if there is a large or

small shift in the data. After adaptive exponential smoothing and feature reduction, the

new feature matrix, a0,a1, ...,ai−1, was used to train and verify the bias support vector ma-

chine’s accuracy, which classified cognitive workload as baseline, normal, and high. The

bias support vector machine achieved a 95% accuracy with adaptive exponential smooth-

ing and feature reduction for individual participants, as compared to an accuracy of 88%

without adaptive exponential smoothing and feature reduction. The bias support vector ma-

chine was generalized across all participants and achieved a 92% accuracy, with ten-fold

cross validation. The adaptive exponential smoothing may explain the high accuracy of the

generalized algorithm and is worth investigating for real-time domains. The algorithm’s

sensitivity is conforming, given the high accuracy and detecting three workload levels.

The diagnosticity is non-conforming, since the presence of physical workload may con-

found the cognitive workload assessment. The algorithm’s suitability is conforming, as the

algorithm is capable of assessing all of the task’s workload components. The algorithm’s

generalizability is non-conforming, given that the algorithm is capable of assessing two

workload components: cognitive and visual.

Zhang et al.’s [137] bias support vector machine is the most suitable for workload
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classification in the Automated-Enhanced Cabin Air Management System task environ-

ment and has the highest classification accuracy. The algorithm has acceptable population

generalizability, which may be attributed to the feature smoothing. Further research is

needed to determine if adaptive exponential smoothing can improve generalizability for

other machine-learning based algorithms.

2.2.4 Flight or Driving Simulator

Flight or driving simulators are operator-based environments that incorporate the cogni-

tive, physical, and visual workload components. If the task requires the participant to listen

and respond to a stimulus, speech and auditory workload components may be incorporated.

A support vector machine was used to classify cognitive workload in a driving simula-

tor [96]. Eighteen participants completed a primary task and two variable secondary tasks,

where the primary task was lane changing on a three lane highway without any traffic. The

secondary tasks vary, with difficulty corresponding to low, medium, and high workload and

are strongly correlated with the NASA-TLX scores, although the NASA-TLX scores are

unreported. The first secondary task was a visual search task, which required identifying

distractors with a different line thickness from the others. The difficulty of the visual search

task varied based on how evident the distractor was different from the others. The other

secondary task, a mathematical cognitive task, presented a list of numbers and required

determining if the last number was divisible by a divisor. Task difficulty varied by chang-

ing the divisor from 2 (low difficulty) to 7 (high difficulty). EEG, skin conductance, heart

rate, and respiration rate metrics were collected during the first minute of each task, with

an unknown epoch size. The physiological data was pre-processed and used as features

for a radial basis function support vector machine, which was cross-validated for all par-

ticipants for each secondary task and was subject-independent. The algorithm classified

high, medium, and low workload with an accuracy of 70% for the visual task and 43%

for the mathematical task. When only the low and high workload classes were considered,
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the classifier accuracy improved to 95% for the visual task and 73% for the mathemati-

cal task. The low classifier accuracy for the mathematical task may be explained by the

low task difficulty variability [96]. The results highlight the importance of verifying the

workload level. The algorithm’s sensitivity is classified as non-conforming, given the clas-

sification accuracy and detecting two workload levels. The algorithm is non-conforming

to diagnositicity, given that a change in physical workload impacts the algorithm’s cogni-

tive workload assessment. The suitability and generalizability are non-conforming, as the

algorithm is unable to assess visual workload.

Oh et al. [90] investigated an ensemble classifier for assessing cognitive workload.

Thirty-nine participants used a flight training simulator to complete three tasks, that cor-

responded to low, medium, and high workload. Audible beeps occurred at random times

throughout each task. The low workload task required maintaining straight and level flight,

while the medium and high workload tasks required descending/ascending and vice-versa

during turning. Four EEG channels, electrocardiogram, and operator performance data

were collected throughout each task. The event related potential was calculated from the

EEG data, with a one second epoch time-locked to each audible beep and the average heart

rate was calculated from the electrocardiogram data every five minutes. Operator perfor-

mance metrics were calculated once a minute and consisted of deviations from the target

altitude, speed, descent/ascent angles, and heading. The NASA-TLX was completed after

each task and served as a classifier feature. Four ensemble learning approaches were ex-

amined: bagging, boosting, stacking, and voting. Each ensemble classifier was optimized

by taking the minimum balance error to reduce large biases and was evaluated using a con-

fusion matrix and the receiver-operator curve. The bagging, boosting, stacking, and voting

ensemble algorithms achieved a generalized accuracy of 88%, 96%, 94%, and 97%, respec-

tively. The algorithm’s sensitivity to workload is classified as needs additional evidence,

even though the algorithm had a >80% accuracy and detected three workload levels. The

inclusion of the NASA-TLX scores attributes to the high classification accuracy, but are
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impractical for real-world domains. The diagnosticity is non-conforming, as the presence

of physical workload may confound the algorithm’s cognitive workload assessment. The

algorithm’s suitability and generalizability are also non-conforming, as the algorithm is

unable to assess visual workload.

Various algorithms were analyzed by Fan et al.[34] and Zhang et al. [141] in a driving

simulator tailored to children with autism spectrum disorder. Twenty participants com-

pleted eighteen driving scenarios with various task difficulty levels across six different

days. Participants restarted a scenario if a certain number of errors were made. Experts

continuously rated each scenario from 1 to 9 across several dimensions: engagement, en-

joyment, boredom, frustration, and difficulty. Scenarios with a difficulty rating ≥5 were

determined to be high cognitive load, while those below the threshold were determined to

be low cognitive load. EEG, galvanic skin response, electromyography, respiration-rate,

skin-temperature, and performance data were fed into five algorithms (i.e., support-vector

machine, k-nearest neighbor, decision tree, discriminant analysis, and a neural network)

that classified a scenario as low or high cognitive load; thus, data from the entire scenario

(approximately five minutes) was used. The multi-modal data were fused at the feature

level, decision level, and hybrid level to determine the optimal fusion level performance.

Fusing the data at the feature level and using a k-nearest neighbor classifier achieved the

highest accuracy (84.43%) when classifying the two cognitive load levels. The algorithm’s

sensitivity and diagnosticity are classified as non-conforming, due to only classifying two

cognitive load levels. The algorithm is suitable (conforming) for classifying overall work-

load in a driving simulator based on the incorporated workload metrics, but does not con-

form with generalizability due to being participant-specific and not assessing the complete

workload state.

Deep learning techniques were used to classify driver perceived workload [76]. Four-

teen participants completed nine traffic trials, which manipulated traffic and pedestrian

density in order to elicit varying workload levels. After each trial, participants rated their
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workload level on a Likert scale from 1 to 5. These ratings served as the “true” labels for the

workload classification algorithm, which relied on driver behavioral measures (i.e., steering

control smoothness), subjective metrics (i.e., driving style questionnaire, and workload sen-

sitivity questionnaire), traffic information, EEG, electrocardiogram, skin conductance, and

eye-tracking data as features with an unknown epoch size. The deep-learning algorithm ar-

chitecture consisted of an input layer, a drop-out layer, two long short-term memory layers

with 100 neurons, a fully-connected layer with 100 neurons, and an output layer. Five-fold

cross-validation demonstrated that the algorithm achieved 74.5% classification accuracy;

thus, the algorithm is non-conforming with the sensitivity criterion. It is assumed that the

algorithm only classifies overall workload given that the workload ratings are the class la-

bels, which means that the algorithm does not conform with the diagnosticity criterion.

The algorithm is suitable (conforming) to classify workload in a driving simulator, but is

not generalizable across tasks or populations (non-conforming).

Oh et al.’s [90] algorithm achieves the highest classification indexes of the driving

simulator-based algorithms. The algorithm also achieves the highest accuracy among the

algorithms validated using flight simulators.

2.2.5 Remotely Piloted Vehicle Simulators

Remotely piloted vehicle simulators are operator-based task environments that contain

cognitive and visual workload components. These environments may contain speech and

auditory workload, if the participant must verbally respond to audible stimuli.

A multi-layer perceptron, linear regression classifier, and a model tree classifier as-

sessed overall workload in the range of 0 - 56 [101]. Twelve participants completed surveil-

lance and tracking tasks. The surveillance task required searching a desert market place for

a high valued target and tracking the target until the target left the marketplace. Task diffi-

culty was determined by the number of non-target people (12 or 48), and the video quality

(low or high). The tracking task required tracking a person on a motorcycle and task diffi-
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culty was determined by the number of people to track (1 or 2), and terrain (rural or urban).

Seven EEG channels, pupil dilation, blink rate, fixation duration, heart rate, heart rate vari-

ability, and respiration rate metric were recorded. Each workload metric was pre-processed

and re-sampled to 1 Hz before being used as a feature. The classifiers had an unknown

epoch size and were trained on and validated against an Improved Performance Research

Integration Tool (IMPRINT) model of workload for each task [4]. The workload models

ranged from 0 (low workload) to 56 (high workload). Each classifier was trained using

75% of the data and validated with the remaining 25%, with performance determined by

the RMSE value between the classifier output and the workload model. The model tree

classifier had a RMSE of 2, while the perceptron and linear regression classifiers had a

RMSEs of 3 and 5, respectively. The algorithm’s sensitivity is classified as conforming,

due to the <5 RMSE value and the algorithm’s ability to estimate multiple workload levels.

The algorithm’s diagnosticity is non-conforming, since the algorithm only assessed overall

workload (i.e., the algorithm is incapable of determining if an increase in overall workload

is due to cognitive, visual, or physical workload). The suitability is conforming, given

that the algorithm can assess all of the task’s workload components, due to the metrics

used. The algorithm’s generalizability is non-conforming, as the algorithm is participant-

specific. The approach needs to be extended for tasks that incorporate the auditory and

speech components by including additional workload metrics.

This prior work [101] was extended by using a random forest algorithm to estimate

overall workload [16] using the same experimental design. Six participant’s EEG data

from seven electrodes were used to evaluate the algorithm’s ability to generalize across a

population. The EEG data was sampled at 480 Hz and filtered using a 0.2 Hz low pass

and a 40 Hz high pass third-order Butterworth filters. This filtered data was subjected

to a 10-second Hanning window with a 1-second stride for workload estimation. Leave-

one-participant-out cross-validation evaluated the algorithm’s population generalizability

when trained on an overall IMPRINT Pro workload model. The random forest algorithm
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achieved an RMSE value of 0.158 on a range from 11 - 27.8. However, the algorithm

did not correlate significantly with the IMPRINT Pro workload model. The algorithm’s

sensitivity is classified as conforming due to the low RMSE value and detecting multiple

workload levels, but the algorithm’s diagnosticity is non-conforming due to only detecting

overall workload. The algorithm is unable to assess all of the task’s workload components,

due to solely relying on EEG data. This approach is classified as non-conforming for

generalizability due to not generalizing across tasks, but the approach was evaluated across

a population.

Durkee et al.’s [31] work was extended by investigating how to improve cross-subject

accuracy in a model based classifier [32], called the Functional State Estimation Engine,

which classified cognitive workload as a value from 0 - 100 for use in a vigilant spirit

control system paired with multi-modal communication. The primary task tracked a high

value target by keeping the target centered in the unmanned aerial vehicle’s crosshairs.

Two secondary tasks consisted of monitoring screen gauges and verbally responding to

communication requests. Task difficulty was dependent on the target’s speed and motion

path, and the number of gauge events and communications requests. Twenty-five partic-

ipants completed fifteen five minute trials, with task difficulty varying from easy to hard.

Three functional state estimation engine models were evaluated: standard, reduced, and

expanded. The standard model had six EEG channels and electrocardiogram data, while

the reduced model had three EEG channels and electrocardiogram data. The expanded

model used the standard model metrics, along with pupil dilation. Each algorithm model

was evaluated for second-by-second accuracy and aggregated workload classifier accuracy

(accuracy averaged over five minutes). The second-by-second classifier accuracy was de-

termined by the relative classification state of each task (desired output) and the model,

which was generated by the NASA-TLX scores and additive noise. The workload classes

were low, medium-low, medium-high, and high, with boundaries determined by the NASA-

TLX scores. The mean classification accuracy was highest with the standard model at 81%.
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The aggregated workload classifier accuracy was evaluated using absolute mean difference

between the model output and NASA-TLX scores. The lowest mean difference was the

standard model at 10.6. Performance may increase if a larger epoch size is used, due to the

incorporation of the electrocardiogram-based metrics. Overall, the algorithm’s sensitivity

is conforming, due to the high classifier accuracy and number of workload levels detected.

The diagnosticity is classified as needs additional evidence, since the exact electrocardio-

gram metrics are unknown. If the metrics only include heart-rate variability, then the diag-

nosticity is conforming. Likewise, if the electrocardiogram metrics only include heart-rate,

then the diagnosticity is non-conforming. The algorithm’s suitability is non-conforming,

as the algorithm is unable to assess visual or speech workload. The algorithm’s gener-

alizability is non-conforming, since the algorithm may only be capable of assessing one

workload component.

A multi-model approach was evaluated to improve cross-participant accuracy for the

same vigilant spirit control system [33]. The multi-model classifier trained an individual

classifier for each NASA-TLX sub-scale and combined the six classifiers’ output into a

composite score. The multi-model classifier outputted a value, 0 - 100 every second and

used EEG, electrocardiogram, and pupil diameter metrics as physiological inputs and be-

havior and situational data as contextual inputs. The multi-model classifier was trained

using nineteen participants’ data and validated using the other six. The evaluation metrics

were the Pearson’s correlation coefficient and absolute difference between the classifier’s

output and the NASA-TLX score. Noise injection was used for the continuous workload

model, but the injected noise was different for each NASA-TLX sub-scale and dependent

on different physiological data (i.e., mental demand noise was based on EEG data and

physical demand noise was based on electrocardiogram data). The multi-model classifier

outperformed the single-model classifier with a Pearson’s coefficient of 0.94 and a mean

difference of 5.0. The sensitivity is conforming, given the low mean difference and num-

ber of workload levels detected. The algorithm’s diagnosticity is non-conforming, since
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each individual classifier was trained on all the physiological data. Thus, the classifier

for physical demand is impacted by an increase in cognitive workload. The suitability is

conforming, given that the metrics correlate to either cognitive, visual, or physical work-

load. The algorithm’s generalizability is non-conforming, due to the algorithm’s inability

to assess speech or auditory workload.

The multi-model algorithm outperforms the other algorithms, which is attributed to ag-

gregating classifiers trained on each NASA-TLX subscale. However, the algorithm has low

diagnosticity. A better approach may be aggregating the workload component classifiers.

2.2.6 Cognitive-Based Tasks

A cognitive-based task environment typically includes tasks that are used as secondary

tasks (i.e., n-back test). This task does not fit any human-machine teaming paradigm and

may contain a visual workload component (i.e., a reading text).

Zhang et al. [137] addressed inter-subject variability when assessing cognitive work-

load by using common spatial patterns to filter EEG signals and a large margin unbiased

regression machine to classify cognitive workload. Sixteen participants completed six cog-

nitive tasks from cognitivefun.net: go/no-go visual reaction test, visual forward digit span

test, stroop test, fast counting test, speed run test, and the n-back test. The experiment

had three stages, where the participants rested during the first and third stages, while the

second stage contained the six tasks. The large unbiased regression machine classifier was

trained on fifteen EEG channels, heart rate, and galvanic skin response data with an un-

known epoch size. The EEG data was filtered using a joint spatial-spectral filter, which

produces eight features to generate one column for the feature vector g. The bias coeffi-

cient was removed from the linear regression classifier by solving the zero-bias learning

problem, which generates the end result of the classifier z = uT d(g). z represents the data’s

class as the change in workload, u is the zero-bias matrix, and d(g) is the recursive feature

algorithm. The algorithm outputs the change in workload (i.e., low to high workload or
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high to low workload). Three unbiased regression machines, each dependent on a differ-

ent workload metric, were validated using a leave-one-subject out approach. The common

spatial patterns based unbiased regression machine classifier achieved the highest accuracy,

87.5%, while the galavanic skin response and heart rate variability classifiers achieved an

accuracy of 75% and 62.5%, respectively. The approach of joint spatial-spectral filtering

of the EEG data and removing the bias of the regression machine attributed to the algo-

rithm’s generalizabilty. The classification indexes are based on the EEG-based regression

machine classifier. The algorithm’s sensitivity to cognitive workload is classified as con-

forming, due to the high accuracy and detecting three workload levels. The diagnosticity

is conforming as well, since the EEG metrics only correlate to cognitive workload. The al-

gorithm’s suitability is non-conforming, as the visual reaction task contains an unassessed

visual workload component. The generalizability was classified as non-conforming, given

that the algorithm can only assess cognitive workload. Additional metrics need to be added

in order to classify other workload components.

A linear discriminant analysis and a support vector machine were used to classify three

tasks corresponding to different cognitive workload levels [79]. Five participants com-

pleted tasks with the “eXperience Induction Machine”, a mixed-reality task environment.

Each participant completed three tasks corresponding to either high or low cognitive work-

load: spatial navigation, reading, and calculation. The spatial navigation task required ex-

ploring a square spiral maze until the center was reached. A red sphere at each corner of the

maze told participants to take part in a reading or calculation task. EEG data was collected

during the entire experiment and visually inspected to exclude data containing muscle or

eye artifacts. The power spectral density of each frequency band was computed with a five

second window and a four percent overlap. The participant-independent classifiers were

trained on the EEG data and validated using the leave-one-out cross validation method and

the Matthews correlation coefficient. Two classification schemes were investigated: each of

the three tasks and high/low cognitive workload. The linear discriminant analysis classifier
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achieved an 83% accuracy, with a correlation coefficient of 0.72 for the task classification

scheme and an 88.5% accuracy with a correlation coefficient of 0.74 for the workload clas-

sification scheme. The support vector machine achieved an accuracy of 66% with a 0.45

correlation coefficient for the task classification scheme and an 87% accuracy with a 0.63

correlation coefficient for the workload classification scheme. The algorithm’s sensitivity

is non-conforming, due to only detecting two levels of workload. The diagnosticity is con-

forming, as only EEG metrics were used. The algorithm’s suitability and generalizability

are non-conforming, due to being incapable of assessing visual workload

A recurrent three-dimensional convolutional neural network was used to classify two

cognitive workload levels across cognitive-based tasks [142]. Twenty participants com-

pleted the n-back task (with n = 1 and 3) and an arithmetic task, which showed two num-

bers (1 - 9) for 0.5 seconds and had two task difficulty levels. The first level required

determining if the two numbers summed to 10 or not, while the second level displayed

two numbers and then another two numbers 2.5 seconds later for which participants deter-

mined if the sum of all four numbers was equal to 20 or not. 16-channel EEG data were

recorded during each task and were filtered using a band-pass filter and artifact removal.

This filtered EEG data was transformed into three-dimensions using Morlet wavelet trans-

formation to calculate the power spectral density of each 1 Hz band from 1 - 40 Hz, creating

a 16 (number of EEG channels) by 40 (power spectral density) matrix. Each row is used

to create an EEG topographic map resulting in 40 maps, which are interpolated together

using cubic spline interpolation to generate a 20x20x40 matrix. A sequence of 20 cubes

(representing 1 second of data) was fed into the workload classification algorithm, which

consisted of a 3-D convolutional layer, two stacked bidirectional long short-term memory

layers, and a fully-connected layer. The algorithm was validated by being trained on data

from one task and tested on the other task, which achieved a 89% classification accuracy.

The algorithm’s sensitivity is non-conforming, due to the binary workload classification.

The algorithm’s diagnosticity is also non-conforming, but the algorithm is suitable (con-

33



forming) for classifying the task’s workload components. The algorithm was shown to

generalize across two cognitive-based tasks, but is unable to classify workload in other

task domains with different workload component demands; thus, the algorithm’s general-

izability is non-conforming.

The recurrent convolutional neural network workload classification algorithm outper-

forms the other cognitive-based algorithms, given the high classification accuracy. The

algorithm was shown to generalize across two tasks; however, the algorithm has limited vi-

ability for an adaptive workload teaming system, due to relying solely on EEG data, which

is insufficient to classify physical workload. It is unclear how the algorithm performs on

real-world tasks that have varying workload compositions, given the limited real-world

nature of the n-back task.

2.2.7 Uncategorized Algorithms

The following algorithms are uncategorized; thus, no common theme is presented.

Schultze-Kraft et al. [106] investigated the use of spatial filters with a linear regression

algorithm and linear discriminant analysis to classify cognitive workload. Ten participants

captured triplets of colored screws in a bucket in a simulated environment, which contains

cognitive and visual workload components. An error occurred if a screw hit the bottom

of the screen or was caught in the wrong colored bucket. Task difficulty was manipu-

lated by changing the occurrence rate of screws, until an error rate of 10% and 25% was

achieved for the low and high workload conditions, respectively. Each session lasted 24

minutes with 4 blocks of alternating high and low workload conditions. The workload

metrics included 64 EEG channels, heart rate, respiration rate, and galvanic skin response,

each with an epoch of ninety seconds. The number of EEG-based features was reduced

using the spatio-spectral decomposition algorithm and a source power co-modulation spa-

tial filter was applied to the EEG features in order to improve the classifier’s accuracy.

The participant-specific classifiers predicted low and high cognitive workload. The linear
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regression classifier achieved a 91.9% mean accuracy, while the linear discriminant analy-

sis achieved a 94% mean accuracy. The algorithm’s sensitivity is non-conforming, due to

detecting only two workload levels. The diagnosticity is non-conforming, as an increase

in physical workload may confound the cognitive workload assessment. The algorithm’s

suitability is non-conforming, since the algorithm does not assess visual workload. The

generalizability is non-conforming, since the algorithm is participant-specific.

An aircraft traffic control system adapted to a human’s workload level, as determined

from EEG data and task complexity [2]. Air traffic control task environments are supervisory-

based and incorporate cognitive, visual, auditory, and speech workload components. Four

participants with approximentaly twenty years of experience as air traffic control officers

completed the experiment over five days. Each day consisted of seventy-five minutes with

one of four scenarios: adaptation was not used, adaptation activated by task complexity,

adaption activated by EEG, and adaptation activated by task complexity and EEG. Task

complexity was determined by the algorithm developed by Sridhar et al. [111], which was

dependent on traffic intensity, the speed, altitude, and aircraft heading, and the distance

between aircraft. The adaptation activated by the 19 EEG channels was dependent on the

ratio of the theta to beta power spectral densities. Adaptation was triggered when the task

complexity and/or the EEG ratio was above a threshold and the level of adaptation was de-

termined by the computational red teaming algorithm. The adaptive system was evaluated

based on the task complexity scores determined by Sridhar et al’s algorithm and responses

to the NASA-TLX. The task complexity score was the lowest when adaptation was trig-

gered by EEG alone, while the task complexity score was the highest when triggered by

only task-complexity. The NASA-TLX scores show that adaptation incurred higher subjec-

tive frustration, mental, physical, and temporal demand, but the participant’s rated perfor-

mance was higher. The subjective scores differ from the same results with prior workload

adaptive systems [119, 129], which show lower frustration and workload levels. The traf-

fic control officers’ experience and the need to audibly communicate the commands may
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have contributed to the higher subjective workload levels. The classification accuracy and

epoch size are not known. Thus, the algorithm’s sensitivity needs additional evidence. The

algorithm’s diagnositicity is conforming, as EEG correlates to only cognitive workload.

The suitability is non-conforming, since no metric assesses the visual, auditory, or speech

workload components of the task. The algorithm’s generalizabilty is also non-conforming,

since the algorithm is only capable of assessing cognitive workload.

Popovic et al. [95] developed PHYSIOPRINT based on IMPRINT’s model of work-

load, to classify different tasks within each workload component using proprietary algo-

rithms. Twenty-five participants completed computer based tasks for the auditory, speech,

visual, and cognitive workload components. Treadmill and weight lifting based tasks were

used for the physical workload component assessment. The physiological data consisted of

EEG, electrocardiogram, electromyography, respiration, and head movement metrics with

1 second epochs. An individual proprietary classifier was created for each workload com-

ponent within IMPRINT and classified events that corresponded to workload levels within

each task. The classifiers were validated using the leave-one-subject-out cross validation

schema. The speech component classifier used respiration rate and a speech envelope detec-

tor as features to classify breath holding, normal breathing, short speech, and long speech

events, with an 88.7% accuracy. The fine motor component classifier used normalized

electromyography levels and body/limb motion features to classify no physical activity,

key press, keyboard typing, contour tracking, and driving events, with an 86.6% accuracy.

The gross motor component classifier used X-, Y-, and Z-axis to classify sitting, walking,

running, and push-up events, with an 89.3% accuracy. It is unclear what features were used

in the audio component classifier. The audio component classified no activity, a beep, a bi-

lateral beep, interpret speech, and interpret sound (e.g., a car honking) events, with a 75.8%

accuracy. The visual component classifier achieved an 76.7% accuracy when classifying no

activity, registering an image, detecting a difference between two images, reading a sym-

bol, and scanning/searching events. The cognitive component classifier used EEG power
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spectral density to classify no activity, responding to a command (e.g., command to blink),

memory recall, and calculation events, with a 72.5% accuracy. Although, the algorithm

contains different classifiers for each workload component, the classification indexes are

given based on the aggregated results. The algorithm’s sensitivity is non-conforming, due

to the classification accuracies and multiple workload levels assessed. However, classifica-

tion accuracy may increase if a larger epoch size is used. The diagnosticity is conforming,

as there is a separate classifier for each workload component. The algorithm’s suitability

is conforming, since the metrics used for each classifier correlates to the workload compo-

nent assessed. The generalizability is rated as conforming, due to assessing each workload

component.

A workload-index algorithmic approach was used to classify two cognitive workload

levels in the Mixed Initiative eXperimental Test-bed [115]. The test-bed simulates an

autonomous unmanned ground robot and two tasks: change detection and threat detec-

tion. The change detection task required participants to monitor and identify intelligence

changes (target appeared, disappeared or moved) on an aerial map. Participants monitored

the ground vehicle’s video feed and marked targets (threats) in the threat detection task.

Fifty-five participants experienced three workload levels in four scenarios: change detec-

tion task only, threat detection task only, both tasks with the change detection task’s demand

held constant, and both tasks with the threat detection task’s demand held constant. EEG,

HRV, fNIRS, and eye-tracking metrics were collected for use in a workload index-based

binary classification algorithm. A workload index was computed by taking the ratio of the

number of physiological markers observed in the both benchmark (baseline) and test scores

over the number observed in the benchmark score. Essentially, the benchmark score con-

sists of metrics that differed by more than 0.5 standard deviations between a low and high

workload condition (training data), while the test score consists of metrics that differed

between the low workload condition and current data set (testing data). If the computed

workload index was lower than a threshold level (0.62), the 2-minutes of physiological data
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was classified as low workload; else, the data was classified as high workload. The algo-

rithm achieved a classification accuracy of 81%; however, it appears that the algorithm was

trained and tested on the same dataset, which inflates performance. Thus, the algorithm’s

sensitivity is classified as requires additional evidence, as the algorithmic performance was

not sufficiently assessed. The algorithm does not conform to the diagnosticity criterion,

but does conform to the suitability criterion. The participant-specific algorithm does not

conform to the generalizabilty criterion.

Zhao et al. [143] used a support vector machine to classify cognitive workload in an

anomaly detection task. Forty participants completed two task types: anomalous image

detection and anomaly activity detection. The first task required identifying anomalous

images from a set of distracting images (e.g., identify that a snow covered tree picture was

different from the snow covered mountain pictures) across eight task difficulty levels. Data

from the first task was used to train an support vector machine classifier, which classified

cognitive workload in real-time for task 2. The second task required monitoring multiple

videos of bidirectional pedestrian traffic and identifying abnormal objects (e.g, bikers or

skaters) in three task difficulty levels. A few seconds of electrocardiogram, electrooculog-

raphy, respiration-rate, galvanic skin-response, and performance (i.e., reaction time, miss

rate, and false alarm rate) metric data were normalized prior to feature extraction, which

extracted time-based and frequency features, while linear discriminant analysis was used

for feature reduction. The reduced feature set was used by a support vector machine with a

radial basis function to classify cognitive workload for each task, where classification ac-

curacy was determined by leave-one-subject-out cross-validation. The algorithm achieved

95% accuracy when classifying workload for task one. However, performance substantially

decreased (52% accuracy) when the algorithm was trained on task one data and tested in

real-time for task two. Only the algorithmic performance for the first task is used to classify

each evaluation criterion, due to the relatively poor performance for the second task data.

The algorithm conforms with the Sensitivity criterion given the high classification accu-
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racy for eight workload levels, but an insufficient epoch size was used. The algorithm does

not conform to the diagnosticity criterion, due to classifying cognitive workload solely.

The algorithm is suitable for the task environment (conforming), but is not generalizable

across tasks (non-conforming). The authors did attempt to generalize across tasks in real-

time, but achieved low performance.

Popovic et al.’s [95] algorithm achieves the highest ratings amongst the uncategorized

algorithms. However, the algorithm is incapable of assessing overall workload, due to

individual classifiers for each workload component.

2.3 Workload Assessment Algorithm Discussion

This dissertation developed a workload assessment algorithm that is intended to be

included in a system that adapts its behaviors based on the human supervisor’s workload

levels (i.e., underload, normal load, and overload). None of the reviewed algorithms meet

all the criteria necessary to achieve the goal of assessing all the workload components in

real-time, due to assessing a limited set of the workload components and the algorithms’

limitations in relation to the evaluation criteria: selectivity, diagnosticity, suitability, and

generalizability.

All of the algorithms assess a limited set of the workload components, typically only

cognitive. A comprehensive adaptive human-robot teaming system needs to assess each

individual workload component and generalize across supervisory domains, in order to

identify the primary contributors to the supervisor’s workload state and to correctly adapt

interactions and allocate tasks. Rusnock et al.’s [101] algorithm comes the closest to assess-

ing overall workload; however, it is unable to separately assess the workload components.

The existing algorithm also does not assess auditory and visual workload; although, it ap-

pears feasible to extend the algorithm to include the auditory and visual workload metrics.

Eleven algorithms conform with sensitivity, while nine algorithms do not conform. The

primary limitations related to sensitivity were classification accuracy and detecting <3
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workload levels. Four algorithm’s do not achieve an 80% classification accuracy; although,

the algorithms’ accuracy may increase with longer epoch times. Epoch times impact an

algorithm’s sensitivity, as heart-rate and heart-rate variability require at least thirty seconds

of data in order to be sensitive to workload. Five algorithms detect two workload levels,

which is deemed insufficient for an adaptive workload system, while ten algorithms de-

tect three workload levels, which is sufficient. Although, detecting ≥4 workload levels or

outputting a continuous workload value is optimal in order for a system to determine the

adaptation’s magnitude and to (re)allocate tasks during overload and underload conditions.

Two algorithms detect ≥4 workload levels, while seven output a continuous value. None

of the algorithms detect the underload condition, which can be detrimental to performance.

Sixteen algorithms do not conform to diagnosticity, due to the algorithms not account-

ing for metrics’ responses to unassessed workload components. An obvious solution is to

choose metrics with high diagnosticity. Seven algorithms conform to diagnosticity; how-

ever, the algorithms are not viable for a robust adaptive workload system, as they are unable

to identify the distinct workload component attributing to the human’s workload level. The

ability to identify the distinct contributors to the workload state is needed in order for the

system to adapt the task allocations in a manner that adjusts the workload requirements

appropriately. Popovic et al.’s [95] algorithm is capable of identifying all five distinct

workload components via the five workload component-specific classifiers, but it does not

aggregate the workload component classifiers into an overall workload value.

The majority of the algorithms do not assess the complete overall workload state de-

manded by a task. Thus, said algorithms are not completely suitable for assessing workload

in the task environment. An adaptive workload system needs the complete overall work-

load state in order to adequately normalize an underloaded or overloaded state. If a system

does not have the complete workload state, then the system’s adaptation to normalize a

workload state may be insufficient.

The ratings for the generalizability criterion tended to be lower than the other criteria.
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These lower ratings exemplify the reviewed algorithms’ primary limitations: individual dif-

ferences and task generalizabilty. Eleven algorithms developed participant-specific classi-

fiers in order to eliminate individual differences; however, a workload assessment algorithm

for an adaptive system may need to generalize across the population. Participant-specific

algorithms add a level of complexity to the system, since the system needs to maintain

tracking of each human and their corresponding trained algorithm. Three algorithms in-

corporated feature smoothing or filtering techniques to account for individual differences,

which attributed to a high generalized classification accuracy. Such techniques are worth-

while in an adaptive workload system.

Twenty-three of the algorithms were rated poorly for task generalizability, as the av-

erage number of workload components assessed was two, typically cognitive and visual.

Real-world supervisory environments require assessment of at least the cognitive, visual,

speech, and auditory workload components; although, more active domains require all five

workload components (i.e., nuclear power plants). Popovic et al.’s [95] algorithm is the

only algorithm capable of generalizing to tasks incorporating all five workload compo-

nents; however, the algorithm does not assess the overall workload state.

Assessing workload algorithmically is also susceptible to an individual’s day-to-day

variances. Christensen et al.’s [25] approach is the only approach that attempts to address

this issue. A small segment of physiological data collected at the beginning of each day is

used to incrementally retrain a classifier. This approach had marginal success. Additional

research is required to account for day-to-day variability.

The ratings indicate the need for a new workload assessment algorithm, as no algorithm

conforms with every criterion. The ratings do not account for additional components to an

adaptive workload system that may augment an algorithm’s weaknesses. For example, an

adaptive workload system may be able to use an activity recognition algorithm to determine

the current task focus and choose a workload assessment algorithm tailored to the task,

which reduces the need for task generalizability and increases the system’s complexity.
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Also, online or incremental learning may be deployed in order to tailor an algorithm to

a specific participant. Such additional components have not been fully realized for an

adaptive workload system, but represent a future research direction.

2.4 Adaptive System Architectures

Developing an adaptive human-robot teaming system requires not only a facet of the

human’s state to adapt to, such as workload, but also architectures to facilitate when and

how an adaption takes place. These adaptive system architectures can be categorize as:

adaptive, adaptable, or mixed-initiative [35]. Adaptive systems rely solely on an attribute

of the human’s state to change the systems or robot’s interactions, while adaptable systems

allow the human to determine what automation or adaption level the system uses. Mixed-

initiative systems seek to combine adaptive and adaptable systems by allowing the human

or system to determine the desired interaction methodology or degree of human control.

The adaptive system architectures prescribe to the “perceive, select, act” cycle [125], where

the system perceives some state variable, selects an action to perform based on the state

variable, and then acts by implementing the chosen action.

The system must “perceive” some mechanism in order to invoke or disengage adap-

tions. These mechanisms can pertain to system, world, task, spatio-temporal, or human

states [35]. The system state encompasses known system knowledge, such as current or

predicted operation modes. The world state uses environmental measures, such as ambient

light, to gain understanding of the surrounding environment. The task state corresponds to

the current allocated task set, but can also be abstracted to mission variables (e.g., mission

plan or human intent). Spatio-temporal states incorporate location information and time

information, while human states may be determined by workload or engagement.

The “select” state may choose the adaptation types, which can be categorized as func-

tion allocation, task scheduling, interaction, and content [35]. Function allocation deter-

mines what tasks are allocated to which agents (human or system), while task scheduling
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can change when tasks are performed or the tasks’ priority levels. A system may dynami-

cally change its interactions by changing the interaction modality (e.g., auditory or visual)

of a stimulus. The system can also vary the amount of content available to the human, such

as reducing visual clutter in a high workload condition. Finally, the system “acts” or adapts

once it selects an adaptation type(s), either by changing the system automation level or the

system’s interactions with the human.

The remainder of this section investigates research in relation to adaptive system archi-

tecture types and adaption strategies.

2.4.1 Imposed Aid

Adaptive systems seek to “close the loop” between the human and system by changing

system components in order to achieve a desired performance level based on human input

(e.g., human states or direct input). However, the loop may not need to be closed if optimal

performance can be achieved by allowing the system to impose aid without direct human

inputs. For example, the Society for Automation Engineers defines six levels of automation

that range from 0 (full human control) to 5 (full system control) [62]. Ideally, autonomous

vehicles will operate at level 5, while achieving optimal performance without human in-

tervention. However, level 5 autonomous vehicles have yet to be realized and may not be

realized in the near future. Thus, current autonomous vehicles must operate at lower auton-

omy levels with some human control, while maintaining human vigilance levels (keeping

the human in the loop). This lower autonomy level operation is also needed for adaptive

systems that do not achieve 100% performance with full autonomy.

Imposing aid is not limited to the autonomous vehicle domain. Teo et al. [116] exam-

ined the effectiveness of adaptive aid and imposed aid in a human-robot teaming paradigm.

The same task environment, as described in Chapter 2.2.7 [115] was used, where the human

monitored an unmanned ground vehicle and responded to changes in events and threats.

The robotic aid was used solely in the event change task, where participants monitored an
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aerial map and had to push a button when an icon changed, moved, or disappeared. The

robotic aid automatically detected a change and indicated this change using an auditory

beep, where the human had to respond accordingly. Aid was triggered using the workload-

index based algorithm described previously [115] when workload was determined to be

high for at least 1.5 minutes (3 consecutive workload assessments) or was imposed. The

adaptive aid achieved higher performance than the imposed aid during high workload con-

ditions, but not during low workload conditions. This result may be due to the adaptive aid

not triggering during the low workload condition, but the human had enough resources to

allocate to the task in order to achieve high performance; thus, the imposed aid may not of

been as beneficial in the low workload condition. Although the adaptive aid was beneficial,

the study has several limitations. First, the workload model that the adaptive aid relied

on only predicted cognitive workload, which limits the model’s viability in other task do-

mains. Additionally, the adaptive aid was only triggered after the human was determined

to be overloaded for 1.5 minutes, which may be too long of a time-frame to appropriately

adapt system interactions before severe performance decrements. Third, the system adapta-

tions may not be realistic, due to the robot being able to perfectly detect system changes to

which the human must respond. Human supervisors may heavily rely on this autonomous

capability and suffer from reduced situational awareness. Further, if the robot can perfectly

perform a task, then the human has limited utility performing the task. This study does

have utility to adaptive system researchers due to demonstrating that an adaptive aid can

outperform imposed aid in high workload conditions.

2.4.2 Adaptable Systems

Adaptable systems prescribe to the “perceive, select, act” cycle, but are limited to the

human selecting an interaction strategy. This reliance on human selection subjects the sys-

tem to psychological individual differences, where different humans want varying amounts

of system control based on the human’s perceived states (e.g., perceived workload). Thropp
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et al. [117] investigated how adaptable automation can be calibrated to an individual’s at-

tentional control. The task consisted of differentiating audio and visual stimuli with various

levels of autonomy, where the system identified the stimuli with 90% accuracy at full auton-

omy. The participants were able to choose the level of autonomy for detecting the stimuli,

where the preferred autonomy level offloaded some demand to the system while allowing

the participant to remain engaged with the task. However, task performance was higher

when the system had a fixed level of autonomy and the participant was unable to change

the level; thus, allowing humans to choose a system’s level of autonomy may not achieve

optimal performance. This result was expected, as there is additional task demand associ-

ated with manually choosing the system’s interaction strategy, humans not recognizing that

an interaction strategy change is needed, or the human not having time to change strategies,

despite the need to.

There is a dissociation between the human’s perceived needed control level and control

level needed to achieve optimal performance. Chavaillaz et al. [23] found that changing an

autonomous system’s reliability (60%, 80%, 100%) impacted negatively a human’s trust

in the system’s capabilities (i.e., lower reliability levels resulted in lower trust), but the

humans tended to keep the system on the same autonomy level. This result demonstrates

that humans’ may rely heavily on automation or adaptive systems despite system perfor-

mance. The adaptation type may influence task performance and human trust. Ruff et al.

[100] found that adaptable and mixed-initiative systems achieved higher performance than

an adaptive system when using three levels of autonomy: manual control, shared-control,

and full autonomy. The results did not properly support such a conclusion, as comparisons

between the adaptable and adaptive conditions were either not provided or were not signif-

icant (p ≤ 0.05). The paper did demonstrate that participants preferred the shared-control

level of autonomy, but this preference may be an influence of the autonomy type and how

an adaptation was determined to be needed, rather than actual system performance. The

collaborative-decision making-based task required the participant and system to work to-
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gether in order to decide the best possible option among a list of options in a supervisory-

based task environment. The system suggested an option in the shared-control mode, while

the system implemented the suggested option in the full autonomy mode. Participants were

able to veto options the system chose in the full autonomy mode.

2.4.3 Adaptive Systems

Adaptive systems have mainly focused on adapting autonomy levels or adaptive au-

tomation. Adaptive automation frameworks typically rely on the human’s workload state

to allocate control to the system or human [19, 67, 109]. Higher levels of automation may

elicit the underload state [73], while lower levels of automation may elicit the overload

state. Thus, adaptive automation may use human workload estimates to prevent under-

load and overload states from occurring or mitigating them when they do occur. There are

questions concerning how often to switch levels of autonomy, as switching frequently may

create an “yo-yo effect”, where the constant system change causes increased workload [2].

Switching infrequently may not improve task performance effectively. This question has

yet to be investigated properly.

There is a question of when to revoke automation, once invoked. Rusnock and Geiger

[102] investigated two revoking strategies: workload threshold and minimum duration in a

simulation developed in IMPRINT Pro. The workload threshold strategy revoked automa-

tion as soon as the human’s modeled workload level was less than a threshold: 5, 10, 15,

20, 22, 24. The minimum duration strategy used the workload threshold strategy, but only

revoked automation once a minimum duration was met: 1, 2, 5, 10, 15, 20, 25, and 30

seconds. The 5-second minimum duration strategy produced the best results, which may

indicate that human workload needs to be sampled at least every 5 seconds. The results also

found that workload and situational awareness decrease together; thus, a workload thresh-

old level needs to be set based on desired task performance and situational awareness.

Adaptive systems are not limited to adaptive automation frameworks. Task difficulty
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may be varied, rather than system autonomy, based on a human state. Bian et al. [11] varied

the difficulty of a driving task based on human engagement and measured performance.

Participants were more engaged when the task adapted to their engagement level, than

when no adaptation occurred, illustrating that a desired engagement level may be obtained

by varying task difficulty. Similarly, Walter et al. [122] manipulated task difficulty based

on EEG-based workload measurements in a learning environment. Participants with the

adaptive task difficulty had significant learning effects, demonstrating that manipulating

task difficulty based on workload measurements is feasible.

Most adaptive systems have focused on a single human state construct to determine

adaptations, but a multi-dimensional adaption scheme has been theorized [36, 107]. The

“Real-Time Assessment of Multidimensional User State” system sought to assess work-

load, fatigue, and attentional focus in order to adapt a system’s interactions intelligently,

but is limited to high workload or high fatigue recognition. This multi-dimensional hu-

man state assessment was fed into an adaptation decision framework in order to determine

how an adaptation occurs. The proof-of-concept system adapted by automating tasks (high

workload), using a visual modality to show high priority tasks (incorrect attentional focus),

or using an auditory modality (operator fatigue). Although the system seems promising, no

performance data was presented; thus, the adaptations are not known to increase task per-

formance. Further, it is unclear if the three participants actually experienced high fatigue

levels during the 45-minute task or if the system can adapt to the underload workload state.

2.4.4 Mixed-Initiative Systems

Mixed-initiative systems seek to combine adaptive and adaptable systems in order allow

for human-state based adaptations with the flexibility of incorporating human preferences.

Hussein and Abbass [59] theorized a framework for human-swarm interaction that relied on

human preferences, trust, situational awareness, and workload. These state variables may

facilitate the system’s interactions and level of autonomy, along with determining when the
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system is adaptable (when the human can directly change the system’s adaptation strategy).

Another theorized mixed-initiative system is task balancing between multiple humans [30].

The system displayed cognitive workload to two human pilots, where the pilots were able

to allocate tasks to themselves or to the other pilot. The experiment used a confederate

for one of the pilots and a workload model for the displayed cognitive workload; thus, no

feedback loop was actually used. The results indicate that allowing human-driven task bal-

ancing can improve task performance, but the impact of system-driven task balancing on

task performance is still unknown. The only known implemented mixed-initiative system

was developed by Ruff et al. [100], as described in Chapter 2.4.1. The implemented sys-

tem achieved similar performance to an adaptable and adaptive system; thus, the utility of

mixed-initiative systems has yet to be validated.

2.5 Adaptive System Architectures Discussion

The objective is to develop an adaptive human-robot teaming system architecture that

will use human state assessments to determine a system’s or robot’s interactions, but there

is a question of what type of adaptive system architecture to deploy: imposed aid, adapt-

able, adaptive, or mixed-initiative. Simply imposing aid without human input will not allow

a system to understand an interaction’s impact effectively, due to the open-loop nature of

imposing aid. The human may be able to determine the interaction strategy in adaptable

systems, but humans may not use an optimal interaction strategy or have the resources

available to change interaction strategies during high workload conditions. These limita-

tions illustrate that there needs to be a non-invasive feedback loop to an adaptive human-

robot teaming system architecture; thus, an adaptive or mixed-initiative adaptive system

architecture is appropriate.

Adaptive system architectures seek to target adaptations intelligently to a state variable

in order optimize performance. These state variables are classified as system, world, task,

spatio-temporal, or human variables. However, the literature typically focuses on perceiv-
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ing human state variables, either functional state (e.g., workload or engagement) or affec-

tive state (e.g., emotions). Knowing the other state variables may be beneficial for human-

robot teaming systems. The robot teammate will already know system state variables,

such as the current operation mode (level of autonomy), visual content being displayed, or

current velocity. The world state contains environmental measures that may provide con-

fidence information for a physiological metric. For example, knowing if the ambient light

levels are changing may allow a system to infer that a change in pupil dilation is due to

the environment, rather than workload. Activity recognition may be used to perceive the

human’s current task state. Additionally, knowing the mission plan or abstracted task state

may allow a robot to predict the next task and when the task occurs correctly, such that the

robot can provide aid to minimize task switching times. Finally, spatio-temporal informa-

tion (e.g., the human’s location or time completing the current task) will provide a robot

with the necessary information to infer the current task in a non-stationary supervisory-

based environment or how long an interaction needs to be postponed, if the current task

is non-interruptable. The interactions between the state variables may be used to improve

human-state recognition accuracy, such as using activity recognition to extract contextual

information to improve human workload assessment accuracy. Developing methodologies

that allow robots to perceive not only the human’s state, but each state variable may al-

low for a more robust and generalizable adaptive human-robot teaming architecture, due to

providing the system with richer data for more informative adaptations. The current state-

of-the-art adaptive system architectures generally focus on a single state variable to adapt

to, which may limit the system’s viability in real-world scenarios.

Selecting and implementing an adaptation based on the state variables has generally

been limited to function allocation (i.e., adaptive automation). Other adaptation types (i.e.,

task scheduling, interaction, and content) may prove beneficial in adaptive human-robot

teaming architectures. Adaptive task scheduling may help manage human workload and

ensure that tasks have minimal resource conflicts (i.e., tasks are not competing for the hu-

49



man’s visual resources). There will be cases that task scheduling will be unable to mitigate

resource conflicts. Adapting the tasks’ interaction modality (e.g., one task uses a auditory

modality while another task uses a visual modality) to further minimize resource conflicts

may be appropriate in such cases. Some human-robot teaming domains may have scenar-

ios where the human’s attention is focused on a lower priority task. Adapting the content

available to the human by using visual or auditory cues may redirect the human’s attention

to a higher priority task.

Adaptive systems have been theorized or implemented in a wide range of human-

machine systems, but no system is capable of changing the system’s or robot’s interactions

based on diagnostic human workload measurements. The adaptive system developed by

Fuchs and Schwarz [36] is the closest to being able to adapt an interaction modality (audi-

tory or visual) appropriately, but such an adaptation was not implemented for the same task

(e.g, an alarm) and the system’s performance was not validated. Further, the system relied

on a non-diagnostic workload measure (did not assess the complete workload state), which

is needed to determine how an interaction modality may impact a human.

2.6 Summary

The first part of this chapter examined how objective and subjective metrics vary in

regards to changes in overall workload and its contributing components (i.e., cognitive,

physical, auditory, visual, and speech) and how these metrics can be aggregated using

machine-learning techniques to classify workload components. However, there were sev-

eral limitations to the current workload aggregation algorithms. The algorithms do not

assess overall workload and each workload component, do not detect the underload and

overload workload conditions, are limited or evaluated in a single task domain, or do not

generalize across a population. Chapter III introduces a workload assessment algorithm

designed with these limitations in mind and the associated results to demonstrate how the

algorithm overcomes these limitations [48, 51]. The remaining portion of this chapter re-
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viewed state-of-the-art adaptive system architectures and the associated theoretical under-

pinnings. Currently available systems tend to be narrowly focused on adapting a system’s

level of autonomy using an incomplete human state assessment, such as only using cog-

nitive workload. No work has examined how interactions may be adaptively scheduled or

how the interaction modality can be changed based on a complete human workload state

assessment. Chapter V presents a proof-of-concept adaptive human-robot teaming sys-

tem that intelligently adapts a supervisory-based system’s interactions using the developed

diagnostic workload assessment algorithm.
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Chapter 3

Diagnostic Workload Assessment Algorithm

An adaptive human-robot teaming system needs an algorithm to assess the human’s

complete workload state in order to adapt interactions and autonomy levels intelligently.

The state-of-the-art workload assessment algorithms are not viable for an adaptive system,

as they typically only assess a subset of the human’s workload state; thus, the algorithms

are unable to provide the adaptive system with the necessary workload information. This

chapter introduces a diagnostic workload assessment algorithm capable of estimating each

workload component and the overall workload state. The algorithm was validated using

data from two human-subject evaluations.

The diagnostic workload assessment algorithm is designed to estimate overall workload

and each workload component every thirty seconds using knowledge of the task being

completed. This time threshold or window size is due to heart-rate and heart-rate variability

requiring at least thirty seconds of data in order to be highly sensitive to workload variations

[20, 22]. The desired estimates are based on IMPRINT Pro workload models [4], where

the algorithm was supervisory trained with the workload models as the “true” values.

Prior work [49] developed a similar algorithm, which relied on physiological metrics to

estimate cognitive and physical workload and subjective surveys for estimating the remain-

ing workload components. Overall workload was calculated using a weighted aggregation

of the workload components, where the weights were determined by IMPRINT Pro work-

load models. The previous algorithm is incapable of estimating workload in real-time,

due to the reliance on subjective surveys. The current algorithm incorporates more sophis-

ticated filtering techniques, does not rely on subjective metrics, and uses IMPRINT Pro

workload models [4, 45] as the desired workload component estimates.

IMPRINT Pro creates models of complex task networks that designate start and stop
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times for each task and anchors each task to workload component values (i.e., a conver-

sation is anchored to a speech workload component value of 4.0). The task networks and

workload component values are used to derive continuous models across seven workload

components: auditory, cognitive, visual, speech, gross motor, fine motor, and tactile. The

presented models combine the gross motor, fine motor, and tactile components into the

physical workload model. An overall workload model is generated by uniformly aggregat-

ing the workload component models.

Although IMPRINT Pro generates workload models, the workload models represent

predicted workload outcomes, are static, and do not adjust in real-time to the current situa-

tion. Additionally, there is uncertainty between the IMPRINT Pro models and the human’s

actual task, which creates a mismatch between the IMPRINT Pro workload values and the

human’s actual workload. Using physiological metrics as the foundation of the workload

assessment algorithm reduces the uncertainty and provides a more objective workload es-

timate. The IMPRINT Pro cognitive, physical, auditory, and speech workload models are

simply used to train and validate the algorithm. The IMPRINT Pro visual workload model

is used to estimate visual workload, due to a lack of objective data.

The developed algorithm was validated using data from two human-robot teaming eval-

uations: supervisory and peer. The peer-based evaluation was conducted by a prior PhD

student (Caroline Harriott). This evaluation’s design is presented in this dissertation for

completion.

3.1 Algorithm Structure

The developed algorithm relies on the heart-rate (HR), heart-rate variability (HRV),

respiration-rate (RR), posture-magnitude (PM), speech-rate (SR), voice pitch (VP), voice

intensity (VI), and noise-level (NLVL) workload metrics to provide information regarding

the human’s workload state. HR, HRV, and NLVL are used to estimate cognitive workload,

while HR, RR, and PM are used to estimate physical workload. Auditory workload is
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estimated using NLVL and speech workload is estimated using SR, VI, and VP.

The desired workload component estimates are based on IMPRINT Pro workload mod-

els. IMPRINT Pro models workload across seven components: auditory, cognitive, visual,

speech, gross motor, fine motor, and tactile. The gross motor, fine motor, and tactile com-

ponents are combined into the physical workload component model, as each of the three

components are physical in nature. An overall workload value is generated by aggregating

each workload component model.

The physiological metrics (HR, HRV, RR, and PM) are collected and calculated us-

ing the BioPac Bioharness™, while NLVL is captured using a Reed R8080 decibel meter.

The speech-based metrics (SR, VP, and VI) are calculated from a 44100 Khz dual-channel

audio signal captured by a Shure PGX1 microphone, where the captured signal is trans-

formed into a mono-channel signal prior to metric calculation. Speech-rate is calculated by

detecting syllables within the audio signal [60, 64]. This approach identifies voice intensity

peaks that are preceded and followed by dips in intensity; however, some of the identified

peaks are due to noise, rather than human speech. The audio signal’s zero-crossing rate is

used to determine if voice output or noise caused an intensity peak. A low zero-crossing

rate represents voiced speech, while a high rate indicates noise. Peaks are discarded if the

corresponding zero-crossing rate is higher than a threshold value (1,800 KHz), as used in

SpeakRite [60]. The remaining peaks represent the number of syllables in the audio signal,

which is divided by the signal’s duration in order to calculate speech-rate. Pitch is the au-

dio signal’s dominant frequency over a time period. The signal is divided into one-second

windows in order to determine how pitch varies across a time frame. Each window is trans-

formed into the frequency domain using the fast Fourier transform, where the maximum

power spectral density value’s corresponding frequency represents the window’s pitch.

A window is applied to each workload metric, where the window size and overlap

between the windows are dependent on the user’s application. Each windowed metric is

filtered using Yin and Zhang’s (2014) adaptive exponential smoothing technique in order
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to remove or reduce unwanted artifacts in a signal, such as noise. The smoothing function

incorporates a tuning parameter, λ , which is adaptively chosen based on the data shifts,

sk = (1−λ )s0 +λ

k−1

∑
i=0

(1−λ )ixk−i, (3.1)

where sk represents the new value for the respective workload metric at time k, and xk−i

represents the workload metric’s time-series. λ is determined by:

λ =


λ1, i f |xk− sk−1| ≥ aσ

and |xk+1− sk−1| ≥ aσ

λ2, otherwise.

A large λ value (≥ 0.6) is chosen when there is a step-shift in the data represented by a

constant (a) multiplied by the standard deviation (σ ). Otherwise, a small λ value is chosen

(≤ 0.3). The constant a is set to 1 based on the standard deviation of the data segment.

Four time-based features are extracted from the filtered metrics: mean, standard devia-

tion, average gradient, and the slope of the signal. Means and standard deviations capture

the metrics’ response to workload variations, but do not capture a metric’s directional shift,

(i.e., the metric is increasing over the time window). The average gradient and slope fea-

tures are extracted to capture this directional change. Slope is the linear change over the

window, while the gradient is the average change between each second in the window.

Relying solely on workload metric-based features may be sufficient in well-known

and highly constrained environments, when a single workload component impacts overall

workload; however, dynamic environments contain time-varying contributions from multi-

ple workload components. Contextual features capture these time-varying workload con-

tributions. Currently, there are three contextual features: cognitive task composition, phys-

ical task composition, and auditory task composition, where task composition represents

how much the respective workload component contributes to the human’s overall work-
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load. Each task composition is calculated using the corresponding IMPRINT Pro workload

component value at time t and dividing the value by the overall workload value at time

t, (i.e., CognitiveTaskComposition = CognitiveModel(t)/OverallModel(t)). Speech task

composition is not included as a contextual feature, due to using voice activity detection to

determine if the human is speaking or not.

The cognitive (WC), physical (WP), speech (WS), and auditory (WA) workload compo-

nents are estimated using neural networks, where each network uses corresponding work-

load component features. For example, the cognitive workload component uses HR, HRV,

NLVL, and cognitive task composition. Each network contains five layers, where the input

layer’s number of neurons equals the number of features and the output layer has one neu-

ron. The three hidden layers have 128 neurons, where the number of hidden neurons was

chosen by incrementing the hidden neuron number by powers of two until satisfactory per-

formance was achieved. Rectified linear units were used as the activation functions for each

input and hidden layer, while the output layer used regression. Each network was trained

using the ADAM optimizer [69] and a mean-squared error loss function. Five percent of

the training data was used as a validation set, which determined when training stopped in

order to prevent overfitting. Overfitting occurs when the algorithm is unable to generalize

(perform well) for scenarios on which it was not trained. Visual workload, WV , is estimated

using the respective IMPRINT Pro model, as none of the incorporated workload metrics

correlate with visual workload. Speech workload (WS) is determined to be zero if no syl-

lables are detected within the thirty second window. If a syllable is detected, then a neural

network is used to estimate speech workload.

The uniformed aggregation of the individual workload components results in the overall

workload, WO estimate, as IMPRINT Pro aggregates the individual component models into

an overall model. The overall workload estimate is mapped to one of n workload states,

based on thresholds. Each threshold is tailored to a specific task environment and deter-

mined by the corresponding IMPRINT Pro workload models used to train the algorithm.
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For example, if three IMPRINT Pro workload models representing the underload, normal

load, and overload workload states are used to train the algorithm, then the potential overall

workload thresholds may be 20 and 60. Any value less than 20 represents the underload

state, any value greater than 60 represents the overload state, and any other value is the

normal load state. Different scenarios will require a different number of workload states

(i.e., only low and high workload states).

The metric filtering, feature extraction, and workload estimation are combined into Al-

gorithm 1. The algorithm cycles through the while loop (lines 3 - 14) until no workload

estimate is required. A workload estimate is generated by filtering the metrics, using the

FilterMetrics function (lines 16 - 20), which applies a 30 second window and the adaptive

exponential smoothing formula. The corresponding features are extracted, ExtractFea-

tures, from each filtered metric. The speech-based metrics are calculated from an audio

signal using the VoiceActivityDetection function. If the voice activity detection function

finds at least one spoken syllable in the audio signal, then speech workload is estimated

from the corresponding neural network, otherwise, speech workload is determined to be

0. The remaining workload components are calculated using neural networks (cognitive,

auditory, and physical) or an IMPRINT Pro workload model (visual). An overall workload

value is the uniform aggregate of the workload component estimates. Generating an overall

workload value allows for understanding the human’s complete workload state (i.e., under-

loaded), while the workload components provide information about why the human is in

the current workload state.
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ALGORITHM 1: Workload Assessment Algorithm
Output: WorkloadValues = [WC,WP,WA,WS,WV ,WO]

1 WorkloadMetrics = [HRV,HR,ST,NLV L,RR,PM,SR,V P,V I]
2 TaskCompositions = [TaskCognitive,TaskPhysical,TaskAuditory]
3 while Task != Complete do
4 if WorkloadEstimateRequired then
5 FilteredMetrics = FilterMetrics(WorkloadMetrics)
6 WC = CognitiveNNET.Predict(ExtractFeatures([HRV,HR,NLV L,TaskCognitive]))
7 WA = AuditoryNNET.Predict(ExtractFeatures([NLV L,TaskAuditory]))
8 WP = PhysicalNNET.Predict(ExtractFeatures([HR,ST,RL,PM,TaskPhysical]))
9 if VoiceActivityDetection(Audio) then

10 WS = SpeechNNET.Predict(ExtractFeatures([SR,V I,V P]))

11 else
12 WS = 0

13 WV =VisualWorkloadModel
14 WO =WC +WA +WP +WV +WS

15 End Algorithm
16 Function FilterMetrics(WorkloadMetrics)
17 for each Metric in WorkloadMetrics do
18 WindowMetric = Metric(time - WindowSize: time)
19 FilteredMetric = (1−λ )s0 +λ ∑

k−1
i=0 (1−λ )iWindowMetric(k− i)

20 return FilteredMetrics

21 Function ExtractFeatures(FilteredMetrics)
22 for each Metric in FilteredMetrics do
23 Mean = CalculateAverage(Metric)
24 Variance = CalculateVariance(Metric)
25 Slope = CalculateSlope(Metric)
26 Gradient = CalculateGradient(Metric)

27 return Features

28 Function VoiceActivityDetection(Audio)
29 Audio = CalculateAverage(Audio[0], Audio[1])
30 VoiceIntensity = AbsoluteValue(Audio)
31 PowerSpecturm = FastFourierTransform(Audio)
32 Pitch = ArgMax(PowerSpectrum)
33 Energy = RootMeanSquareEnergy(Audio)
34 EnergyPeaks = FindPeaks(Energy)
35 ZCR = FindZeroCrossingRate(Audio)
36 for Peak in EnergyPeaks do
37 if ZCR[Peak] ¡ ZCRThreshold then
38 NumberOfSyllables++

39 return True if NumberOfSyllables ≥ 1
40 return False
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3.2 Hypotheses

The remainder of this chapter analyzes the metric data from each day of the supervisory-

based evaluation and validates the developed workload assessment algorithm’s ability to

estimate workload correctly for the supervisory-based and peer-based evaluations. The

evaluations are detailed in Chapters 3.4 and 3.7, respectively. The analyses are broken into

four sections: Supervisory Day 1, Supervisory Day 2, Human-Robot Teaming Generaliz-

ability, and Peer-Based Task Generalizability. Several hypotheses were formed for these

analyses. An overview of the hypotheses is presented in Table 3.1 and they are explained

in more detail throughout the remainder of this chapter.

Each hypothesis was formed after the evaluations were completed, but before analyzing

the workload assessment algorithm’s performance. The classification accuracy threshold

of 80% was chosen to reflect the sensitivity criterion’s threshold from Chapter 2.2. The

70% classification accuracy threshold was chosen for the hypotheses that tested task or

human-robot teaming generalizability, as classification accuracy was expected to decrease.

3.3 Experimental Design Overview for the Supervisory and Peer Evaluations

Physiological data from two human-machine teaming evaluations were used to ana-

lyze the workload assessment algorithm post-hoc. Chapter IV discusses the real-time al-

gorithm analysis. Both evaluations manipulated workload and the independent variables

were modeled using IMPRINT Pro. Each workload condition was verified post-hoc using

performance and subjective metrics.

A five-minute break occurred between each evaluation’s tasks and trials. Five minutes

is a common time period used with physiological measures [98], since within 5 minutes

of the highest workload task, heart rate drops significantly to within 0.6 beats per minute

of baseline values. Demographic data, such as age, gender, caffeine consumption, educa-

tion level, and subjective stress levels, were collected at the start of each evaluation and no
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Table 3.1: Chapter 3 Hypotheses

Analysis Hypothesis
Supervisory Day 1 HWL

1 The algorithm’s estimates will be within a
standard deviation of the corresponding IM-
PRINT Pro workload model values.

HWL
2 The algorithm will classify correctly overall

workload and each workload component at
least 80% of the time.

HWL
3 The algorithm’s estimates will positively and

significantly correlate with the correspond-
ing IMPRINT Pro workload models.

Supervisory Day 2 HWL
4 The algorithm’s classification accuracy for

the supervisory evaluation’s second day will
be within 5% of the corresponding classifica-
tion accuracies for the evaluation’s first day.

Human-Robot Team-
ing Generalizability

HWL
5 The algorithm will generalize across popula-

tions by classifying workload at least 80% of
the time for an unseen participant.

HWL
6 The algorithm will generalize across human-

robot teaming paradigms by classifying
workload correctly at least 70% of the time,
when not trained on the teaming relationship
specific data.

HWL
7 The algorithm’s estimates will positively and

significantly correlate with the correspond-
ing IMPRINT Pro workload models for an
unseen human-robot teaming paradigm.

Peer-Based Task Gen-
eralizability

HWL
8 The algorithm will classify workload cor-

rectly at least 70% of the time for peer-based
tasks of which the algorithm was not trained
on.

HWL
9 The algorithm’s estimates will significantly

and positively correlate with the correspond-
ing IMPRINT Pro workload models for each
peer-based task.

relevant interactions were identified. A power analysis determined the number of required

participants. There is a difference in sample sizes between the evaluations, but the differ-

ence is accounted for in the algorithmic analysis, as the same number of data points per

evaluation were use for testing and evaluating the algorithm.
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The experimental design for the supervisory-based evaluation is presented in Chapter

3.4, followed by the associated results and discussion. The peer-based evaluation’s exper-

imental design is provided in Chapter 3.7, which is followed by the associated results and

discussion.

3.4 Supervisory-Based Evaluation Experimental Design

The NASA MATB-II was developed to study human performance in multi-tasking

workload scenarios and has been used to evaluate workload assessment algorithms (e.g.,

[31, 129]. The NASA MATB-II simulated a supervisory-based human-machine team,

where the human was supervising a remotely-piloted aircraft.

The within-subjects evaluation with workload level (i.e., underload, normal load, and

overload) as the independent variable spanned two days for each participant, where the

average time between experiment days was 3.48 days (Std. Dev. = 2.13). Each day

manipulated workload (the independent variable) and collected objective workload, per-

formance, and subjective workload metrics as the dependent variables. The first evaluation

day required each participant to complete a consent form, a demographic questionnaire, and

10-minutes of training using the NASA MATB-II [27] prior to completing three 15-minute

trials. The participants completed four simultaneous tasks during each trial: tracking, sys-

tem management, resource management, and communication monitoring. These tasks are

described further in Chapter 3.4.3.

Each first day 15-minute trial corresponded to either the underload, normal load, or

overload condition, with trials counterbalanced to negate ordering effects. A 5-minute

break occurred after the training session and between each first day trial in order to allow

the participant’s physiological signals to return to their resting state levels. The second

day emulated real-world conditions in which workload transitioned between levels (e.g.,

underload (UL) to overload (OL) to normal load (NL)). Each participant completed one

35-minute trial, which contained seven consecutive 5-minute workload conditions. There
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were three condition orderings:

• UL-NL-OL-UL-OL-NL-UL

• NL-OL-UL-OL-NL-UL-NL

• OL-UL-OL-NL-UL-NL-OL

The orderings were chosen, such that each workload condition transition occurred once.

The workload conditions were not randomized, as the second day focused on workload

transitions, rather than the conditions themselves. Additionally, the 5-minute time-frame

per condition was chosen to reflect the time that physiological signals need to identify a

workload transition. Longer time-frames may be chosen, but it was desired that the total

trial time was less than 45 minutes. Future research will randomly order and choose time-

frames for each condition in order to better simulate a real-world environment.

3.4.1 Environment

The evaluation occurred in a faculty office on Vanderbilt University’s campus. The

participants sat in front of a single computer monitor, using a mouse and a joystik to interact

with the NASA MATB-II. The experimenter sat behind and to the side of the participant.

3.4.2 Apparatus

The NASA MATB-II ran on a laptop connected to a computer monitor. The participants

in front of the monitor were free to ask questions during the training session, but were not

allowed to ask questions during each evaluation trial.

3.4.3 Procedure

The participants completed a consent form and a demographic questionnaire upon ar-

rival on the first day. The participants were fitted with the BioPac Bioharness and a mi-
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Figure 3.1: The NASA MATB-II Task Environment

crophone, before reading a script to stage the scenario. A 10-minute training session oc-

curred before starting the first trial. The second day consisted of the same equipment set-up

protocol as the first day, before participants completed one 35-minute trial on the NASA

MATB-II. The four concurrent tasks are incorporated into the NASA MATB-II: tracking,

system monitoring, resource management, and communication monitoring.

The tracking task, depicted in the top, center of Figure 3.1, required participants to

keep the circle with a blue dot in the middle of the cross-hairs using a joystick. Workload

was manipulated by setting the tracking mode: automatic (low) and manual (high). The

underload condition used the automatic mode, with no input, for the entire trial, while

the overload condition required the manual mode, or full control, for the entire trial. The

normal workload condition switched between manual and automatic modes approximately

every 2.5 minutes, which was determined using IMPRINT Pro. The text in the lower right

corner of the tracking task area indicated task mode.

The system monitoring task required monitoring two colored buttons and four gauges,
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shown in the upper left of Figure 3.1. If the green button turned grey (off) or the other

button turned red (on), the value was out of range and required resetting by selecting the

button. The four gauges had a randomly moving indicator, up and down, that typically

remained in the middle. Participants clicked on a gauge if it was out of range (i.e., the

indicator was too high or too low). The underload condition had one out of range instance

per minute, overload had twenty instances per minute, and normal load had five instances

per minute.

The resource management task included six fuel tanks (A-F) and eight fuel pumps (1-8),

shown in the bottom center of Figure 3.1. The arrow by the fuel pump’s number indicated

the direction fuel was pumped. Participants were to maintain the fuel levels of Tanks A

and B by turning the fuel pumps on or off. Fuel Tanks C and D had finite fuel levels,

while Tanks E and F had an infinite fuel supply. A pump turned red when it failed. Zero

pumps failed during the underload condition, while two or more pumps failed during the

overload condition. The normal load condition switched from zero pumps failing to one or

two pumps failing every minute.

The communications task required listening to air-traffic control requests for radio

changes. A communication request may be “NASA 504, please change your COM 1 ra-

dio to frequency 127.550.” The original MATB communications task required no speech,

but a required verbal response was added. A response may be “This is NASA 504 tuning

my COM 1 radio to frequency 127.550.” Participants were to change the specified radio

to the specified frequency by selecting the desired radio and using arrows to change the

radio’s frequency, as depicted in the lower left of Figure 3.1. Communications not directed

to the participants’ aircraft, as indicated by the call sign, were to be ignored. The under-

load condition contained ≤ two requests, the overload contained ≥ eight, and normal load

contained two to eight requests per minute.
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3.4.4 Workload Models

IMPRINT Pro was used to develop continuous workload models for each trial, prior

to conducting the evaluation. Each workload component model was built by designating

start/stop times for each task and linking each task to workload component values. IM-

PRINT Pro provides anchors to help choose the correct workload component value (i.e.,

a conversation is anchored to a speech workload component value of 4.0). The workload

component values for each NASA MATB-II task were chosen based on IMPRINT Pro’s

anchors. The chosen values are shown in Table 3.2. The communication task was split into

two separate tasks, communication and communication response, in order to model the

communication itself and the participant’s verbal response, if needed. A visual search task

was added to model the constant monitoring of each NASA MATB-II task. The values rep-

resent each task instance (i.e., whenever the task was active). The system monitoring and

communication tasks were active for ten seconds once a task event occurs (i.e., a commu-

nication request was instantiated). The resource management task was active for the entire

trial, while the tracking task was only active when the tracking mode was set to manual.

Table 3.2: Workload Component Values for each NASA MATB Task Instance

Task Auditory Cognitive Physical Speech Visual Overall
Tracking 0.0 1.0 4.6 0.0 4.4 10.0
System Monitoring 0.0 1.0 4.2 0.0 1.0 6.2
Resource Management 0.0 3.0 0.0 0.0 6.0 9.0
Communication 6.0 1.0 0.0 0.0 0.0 7.0
Communication Re-
sponse

0.0 3.0 2.6 4.0 0.0 9.6

Visual Search 0.0 1.0 0.0 0.0 3.00 4.0

The last item needed to build the workload models was the timing of each NASA

MATB-II task. Task timings were chosen such that the correct workload condition was

elicited, based on the task descriptions in Chapter 3.2.1.2. For example, the timings for

the system monitoring tasks were chosen for the overload condition, such that there are ap-

proximately twenty instances per minute, where either a light or gauge goes out of range.
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The number of tasks per minute by each NASA MATB-II task for each workload condition

are shown in Tables 3.3 to 3.5. The resource management task is not shown, as the task is

continuous, lasting the entire trial time for each workload condition.

Table 3.3: Number of Tasks Per Minute for the Underload Condition. Note: Vertical Bold
Line Designates when an In-Situ Workload Rating was assessed (4:30, 9:00, 13:00 minutes)
and TRCK = tracking, SYSM = system management, COM = communication, and RESP
= response to the communication

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
TRCK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SYSM 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
COM 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
RESP 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
Total 0 0 0 1 0 2 0 2 0 0 0 0 1 0 1

Table 3.4: Tasks Per Minute for the Normal Load Condition

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
TRCK 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1
SYSM 4 4 3 1 4 3 3 2 1 4 4 3 3 2 2
COM 2 2 1 2 0 0 1 1 1 1 1 1 1 1 1
RESP 1 2 0 1 0 0 1 1 1 1 1 0 1 1 0
Total 8 9 4 5 4 4 6 4 3 7 7 5 5 4 4

Table 3.5: Tasks Per Minute for the Overload Condition

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
TRCK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SYSM 19 18 15 15 21 17 18 20 21 23 18 19 22 20 12
COM 3 4 5 4 3 4 4 3 5 5 4 5 3 4 3
RESP 2 2 4 3 2 3 3 2 4 3 3 2 3 2 1
Total 25 25 25 23 27 25 26 26 31 32 26 27 29 27 17

The IMPRINT Pro workload models for the supervisory evaluation’s second day were

built in a similar manner to the first day’s models. However, each workload condition

within the second day’s 35-minute trial lasted 5-minutes. The number of tasks per minute

for each 5-minute workload condition were the same as the first 5-minutes of the corre-

sponding workload condition for the evaluation’s 15-minute first day trial. The IMPRINT
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Pro workload modeling results are presented with the algorithm estimates in Chapter 3.5.

3.4.5 Participants

The thirty participants (18 female and 12 male) had a mean age of 25.70 (Standard

Deviation (St. Dev.) = 8.65), with an age range from 18 to 62. Video game experience

may impact participants’ performance when using the NASA MATB-II, due to the multi-

tasking nature of the task environment. Twenty-five participants played video games for

three or less hours per week. Participants indicated that they exercise a mean of 3.86 (St.

Dev. = 1.59) times per week. Seventeen participants did not drink any caffeine the day of

the experiment, while six drank ≤ 16 oz. and seven drank ≥ 16 oz.

The participants slept an average of 6.58 (St. Dev. = 1.57) hours the night before the

first day of the experiment and an average of 6.78 (St. Dev. = 1.85) hours two nights prior.

The participants’ stress levels rated on a Likert scale (1-little to 9-extreme) and were rated

on an average of 2.90 (St. Dev. = 1.76), while fatigue levels were rated on average of 2.83

(St. Dev. = 1.32) on the same scale. A Kruskall-Wallis test found no significant effect of

sleep, fatigue, or stress on workload. Demographic information was not collected on the

evaluation’s second day.

3.4.6 Metrics

Objective and subjective workload measures were collected throughout the evaluation.

An overview of all of the collected metrics is provided in Table 3.6. The BioPac BioHar-

ness 3 portable measurement device was attached to a flexible strap that fastens around the

participants’ ribs against the skin, much like an athletic heart rate monitor. This device

captured the heart rate, heart-rate variability, respiration rate, skin temperature, body activ-

ity, and posture objective workload metrics. The other objective workload metrics, such as

noise level and speech-rate, were collected using a REED R8080 decibel meter and a Shure

PGX1 microphone head-set, respectively.
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Table 3.6: The Objective and Subjective Metrics for the Supervisory Evaluation.

Metric Type Metric

Algorithm Metrics

Heart-Rate
Heart-Rate Variability
Respiration-Rate
Posture
Noise Level
Speech-Rate
Pitch
Voice Intensity

Other Objective

Body Activity
Skin Temperature
Tracking Task: Tracking Error
System Monitoring Task: Reaction Time
System Monitoring Task: Failure Rate
Resource Management Task: Time-in-Range
Communications Task: Failure Rate

Subjective
In-Situ Workload Ratings
NASA-TLX

The NASA MATB-II automatically collected the tasks’ performance metrics. The

tracking task’s performance was measured by the error in pixels between the center of

the cross-hairs and the center of the object, which was collected every fifteen seconds. The

system monitoring task’s performance was determined by using response time and failure

rate. Response time was the number of seconds a participant took to click on a light or

gauge once the respective light or gauge went out of range, while the failure rate repre-

sented the number of out of range lights and gauges that were not corrected within fifteen

seconds, which is the default threshold for the NASA MATB-II. The resource management

task’s performance was determined by the amount of time the fuel Tanks A and B were

out of range (i.e., the fuel levels were not between 2,000 and 3,000 units). The fuel levels

of each tank were collected every thirty-seconds. The number of failed communication

requests (i.e., the participant failed to respond or the number of times the radio was tuned

to the wrong frequency) determined the communications task performance.

The subjective workload measures consisted of verbal in-situ workload ratings and the
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NASA-TLX. The verbal ratings were administered three times during each task, which

equates to one rating every four and a half minutes. The NASA-TLX was completed after

each task. The in-situ workload ratings required the participant to verbally rate six demand

channels, (auditory, visual, speech, motor, tactile, cognitive) from 1 (little to no demand)

to 5 (extreme demand) [45]. The NASA-TLX is a standard subjective measure of overall

workload [47], where the participant rated six demand channels, (mental, physical, tem-

poral, performance, effort, and frustration), and completed fifteen pairwise comparisons

between the channels in order to determine the weights for each channel.

3.5 Supervisory Evaluation’s Day 1 Results

Several analyses were conducted for supervisory evaluation’s first day: Objective Met-

rics, Subjective Metrics, and Algorithm Analysis. The objective metrics analysis focused

on determining if significant differences existed between the three workload conditions for

the physiological and performance metrics described in Chapter 3.2.1.5. Likewise, the sub-

jective metrics analysis focused on if significant differences existed for the three workload

conditions for the NASA-TLX and In-Situ workload ratings. The last analysis focused on

determining how accurate the workload assessment algorithm’s estimates were for the first

day of the Supervisory Evaluation.

3.5.1 Objective Metrics

The objective measures pertaining to physiological signals will differ from person to

person (i.e., resting heart-rates are different). A baseline measurement is subtracted from

each physiological metric in order to capture the change in the metric, rather than the

raw values. The baseline values are participant-specific, which allows for comparisons.

For example, if heart-rate is measured as 80 and 85 for participants 1 and 2, respectively

and the respective baseline measurements are 60 and 80. Participant 1 experienced the

higher workload than participant 2, as participant 1’s heart-rate increased more. However,
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a comparison of the raw values indicates that participant 2 experienced more workload,

which is incorrect.

Means and standard deviations pertaining for each condition were calculated for each

objective metric (see Table 3.6). The best value for each group is bolded for each table,

where the best value may indicate the highest value for particular metrics (e.g., heart-rate,

noise-level) or the lowest value for other metrics (e.g., heart-rate variability, respiration

rate). A two-way MANOVA was used to determine if significant differences existed be-

tween the three workload conditions, between the participant groups, and if there was a

significant interaction between the conditions and groups. The corresponding orderings for

each participant group are provided in Table 3.7.

Table 3.7: Task Ordering for Each Group

Group Task 1 Task 2 Task 3
1 Underload Normal Load Overload
2 Underload Overload Normal Load
3 Normal Load Underload Overload
4 Normal Load Overload Underload
5 Overload Underload Normal Load
6 Overload Normal Load Underload

Heart-Rate

Heart-rate increases with cognitive and physical workload. The associated descriptive

statistics are provided in Table 3.8. The overload condition’s heart-rates are higher than the

other workload conditions for each group, other than Group 4. The heart-rates for normal

load were lower than the underload condition for Groups 1, 2, and 5, which is unexpected,

as heart-rate increases with workload. The errors with Group 4 and Groups 1, 2, and 5

are attributed to ordering effects, as Group 4 completed the normal load condition first and

Groups 1 and 2 completed the underload condition first. A two-way MANOVA determined

that there is a significant effect of workload (F(2,23) = 14.29, p < 0.01), but there is no

significant effect by group. There is a significant interaction between group and workload

condition (F(10,48) = 3.06, p < 0.01).
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Table 3.8: Heart-Rate Descriptive Statistics. Note: Mean (Std. Dev)

Group Underload Normal Load Overload
1 8.83 (2.30) 7.30 (1.86) 9.13 (3.69)
2 11.19 (2.29) 6.70 (1.85) 12.03 (3.04)
3 7.59 (2.55) 8.11 (2.15) 8.77 (2.35)
4 8.95 (3.67) 13.13 (8.33) 13.04 (6.94)
5 10.02 (3.73) 8.42 (2.90) 14.05 (4.26)
6 9.50 (3.71) 12.73 (6.07) 14.31 (5.77)

Overall 9.35 (3.01) 9.39 (4.88) 9.61 (4.81)

Respiration Rate

The means and standard deviations for respiration rate by group and workload condition

are provided in Table 3.9. The underload condition had the lowest values for Groups 3 -

6, which is unexpected, as respiration rate decreases with workload. The low values for

the underload conditions may be attributed to respiration rate not significantly differing for

workload, group, or interaction between workload and group.

Table 3.9: Respiration Rate Descriptive Statistics.

Group Underload Normal Load Overload
1 11.38 (5.09) 11.08 (4.91) 8.24 (1.37)
2 10.12 (4.77) 10.04 (5.02) 11.52 (4.21)
3 10.04 (1.58) 10.98 (2.44) 10.17 (1.51)
4 9.34 (2.96) 11.44 (3.58) 10.74 (4.02)
5 8.79 (1.59) 9.19 (2.24) 10.58 (2.74)
6 8.93 (2.42) 10.33 (2.28) 10.25 (3.57)

Overall 9.76 (3.20) 10.51 (3.38) 10.25 (3.02)

Skin Temperature

There was no clear pattern in the skin temperature’s descriptive statistics across work-

load conditions, as shown in Table 3.10. The condition the participant completed first had

the lowest skin-temperature for the group, which indicates a task ordering effect. A two-

way MANOVA determined that there is no significant effect of workload or group. There

is a significant interaction between workload condition and group (F(10,48) = 6.47, p <

0.01).
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Table 3.10: Skin Temperature Descriptive Statistics Note: Bold represents the lowest value
in each group

Group Underload Normal Load Overload
1 0.57 (0.32) 0.91 (0.36) 1.12 (0.57)
2 0.20 (0.05) 0.68 (0.30) 0.63 (0.26)
3 0.54 (0.21) 0.27 (0.09) 0.49 (0.23)
4 0.57 (0.51) 0.29 (0.07) 0.64 (0.31)
5 0.60 (0.26) 0.62 (0.28) 0.43 (0.12)
6 0.49 (0.22) 0.37 (0.14) 0.25 (0.08)

Overall 0.50 (0.30) 0.52 (0.32) 0.59 (0.39)

Posture Magnitude

There were no clear patterns in the posture magnitude means and standard deviations,

as seen in Table 3.11. This result was to be expected, as the participants are sitting during

the entire experiment. There was no significant effect of workload condition, group, or

interaction between workload and group.

Table 3.11: Posture Magnitude Descriptive Statistics

Group Underload Normal Load Overload
1 -8.71 (10.52) -7.31 (9.04) -8.90 (10.59)
2 -12.24 (7.99) -3.17 (23.23) -12.98 (7.55)
3 -10.61 (9.59) -8.22 (11.52) -1.38 (3.48)
4 -18.84 (8.44) -14.72 (15.18) -12.02 (3.48)
5 -11.65 (5.32) -9.70 (6.29) -6.49 (6.21)
6 -12.99 (8.09) -8.48 (4.70) -8.66 (7.09)

Overall -12.51 (8.35) -8.60 (12.51) -8.41 (10.38)

Noise Level

The noise level’s descriptive statistics are presented in Table 3.12. The noise level for

the overload condition was higher than normal load, which was higher than underload. This

result was expected, as the higher the workload level, the higher number of communication

requests that occurred. A two-way MANOVA determined the there was a significant effect

for workload condition (F(2,23) = 1009, p < 0.01). There was no significant effect for

group or interaction between group and workload condition.

Heart-Rate Variability
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Table 3.12: Noise Level Descriptive Statistics

Group Underload Normal Load Overload
1 2.77 (0.52) 6.89 (0.80) 18.94 (1.85)
2 3.00 (0.56) 6.41 (0.37) 17.47 (1.33)
3 3.19 (1.15) 7.25 (1.11) 19.67 (2.27)
4 3.24 (0.68) 7.43 (0.88) 19.08 (2.22)
5 2.59 (0.50) 6.35 (1.04) 18.49 (2.57)
6 2.60 (0.68) 6.55 (1.45) 17.71 (2.07)

Overall 2.90 (0.71) 6.81 (1.00) 18.56 (2.05)

The descriptive statistics for heart-rate variability are presented in Table 3.13. The

overload condition elicited lower heart-rate variability values than the underload and nor-

mal load conditions, which is expected as heart-rate variability decreases with workload.

However, Groups 1, 2, and 5 had higher heart-rate variability for the normal load condition

than underload. The same groups had a similar pattern with heart-rate, which indicates

a training effect due to the task ordering. A two-way MANOVA determined that there is

a significant effect for workload condition (F(2,23) = 16.61, p < 0.01), while there is no

significant effect for group. The interaction between group and workload condition is sig-

nificant (F(10,48) = 3.71, p < 0.01), which may indicate individual differences between

the groups.

Table 3.13: Heart-Rate Variability Descriptive Statistics Note: Bold represents the lowest
value in each group

Group Underload Normal Load Overload
1 0.36 (0.15) 0.37 (0.17) 0.35 (0.15)
2 0.37 (0.15) 0.41 (0.15) 0.35 (0.15)
3 0.51 (0.15) 0.50 (0.16) 0.49 (0.15)
4 0.42 (0.26) 0.37 (0.21) 0.36 (0.21)
5 0.53 (0.09) 0.54 (0.08) 0.47 (0.07)
6 0.47 (0.17) 0.44 (0.16) 0.42 (0.14)

Overall 0.44 (0.17) 0.44 (0.16) 0.41 (0.15)

Speech-Rate

The participants were expected to speak faster as workload increased. The descriptive

statistics for speech-rate are provided in Table 3.14. The results correspond to only when
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the participant was speaking. The participants tended to speak the fastest during the over-

load condition, while there was a significant main effect on workload (F(2,23) = 700.05, p

< 0.01) and group (F(5,23) = 141.14, p < 0.01). There was also a significant interaction

between workload condition and group (F(10,48) = 16.59, p < 0.01), which was attributed

to individual differences in speaking rate.

Table 3.14: Speech-Rate Descriptive Statistics Note: Bold represents the highest value in
each group

Group Underload Normal Load Overload
1 0.77 (0.72) 1.16 (1.0) 1.32 (1.01)
2 0.59 (0.69) 0.96 (0.95) 1.49 (1.12)
3 0.76 (0.67) 1.26 (1.08) 1.48 (1.12)
4 0.48 (0.44) 0.87 (0.82) 1.05 (0.84)
5 0.88 (0.8) 1.61 (1.27) 1.57 (1.15)
6 0.58 (0.54) 0.93 (0.92) 1.34 (1.08)

Overall 0.7 (0.68) 1.17 (1.07) 1.38 (1.07)

Voice Intensity

Voice intensity was expected to increase as workload increases. The average voice

intensities by workload condition and group are provided in Table 3.15. The highest inten-

sities typically occurred during the overload condition, except for groups 5 and 6. These

groups had the highest voice intensities overall as well. A two-way MANOVA found a

significant main effect on workload (F(2,23) = 103.82, p < 0.01) and group (F(5,23) =

271.37, p < 0.01). Additionally, there was a significant interaction between the groups and

workload (F(10, 48) = 42.33, p < 0.01), which may be attributed to individual differenes

or microphone placement.

Pitch Lastly, pitch increases with an increase in workload. The resulting descriptive statis-

tics are provided in Table 3.16. Pitch was the highest in the overload condition for each

group. Similar to the previous speech-based metrics, there were significant differences for

workload condition (F(2,23) = 265.64, p < 0.01) and group (F(5,23) = 259.52, p < 0.01),

along with a significant interaction between the two (F(10,48) = 14.75, p < 0.01).
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Table 3.15: Voice Intensity Descriptive Statistics Note: Bold represents the highest value
in each group

Group Underload Normal Load Overload
1 82.26 (124.55) 168.74 (204.07) 180.44 (196.09)
2 79.69 (121.74) 111.64 (131.89) 253.78 (256.64)
3 147.31 (175.26) 125.9 (134.1) 312.12 (350.41)
4 156.98 (343.87) 155.01 (274.82) 202.79 (246.11)
5 361.64 (602.76) 502.15 (948.99) 322.09 (627.45)
6 221.85 (262.8) 566.1 (959.36) 430.68 (450.99)

Overall 178.24 (317.35) 317.06 (675.34) 289.06 (403.39)

Table 3.16: Pitch Descriptive Statistics Note: Bold represents the highest value in each
group

Group Underload Normal Load Overload
1 162.88 (64.07) 176.69 (97.96) 223.61 (132.62)
2 138.5 (116.22) 139.54 (51.54) 174.53 (119.98)
3 137.04 (78.54) 183.17 (89.35) 211.02 (171.93)
4 139.76 (63.39) 145.81 (39.75) 162.67 (103.71)
5 149.09 (103.17) 226.65 (220.57) 256.37 (281.23)
6 126.16 (49.69) 127.42 (55.92) 145.01 (99.55)

Overall 140.82 (81.53) 170.96 (127.81) 198.41 (172.07)

3.5.1.1 Performance Measures

It was expected that the participants will perform higher during the normal load con-

dition than the other conditions, as underload and overload can impact task performance.

Thus, the best performance value was bolded for each table.

Tracking Task Performance

Task performance for the tracking task was determined using the average RMSE be-

tween the center of the cross-hairs and center of the object to be tracked. The resulting

descriptive statistics are presented in Table 3.17. The underload statistics are not provided,

as that condition does not require the participant to track the object. The normal load

RMSEs across the groups are lower than the overload RMSEs, which was to be expected.

There was a significant main effect of workload condition (F(2,23) = 347.07, p < 0.01),

while there was no significant effect of group. A two-way MANOVA also determined that
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there is no significant interaction between workload condition and group.

Table 3.17: Tracking Task Performance Descriptive Statistics for Average Root-Mean
Squared Error. Note: Lower is Better.

Group Normal Load Overload
1 42.78 (2.04) 61.92 (5.04)
2 37.68 (8.33) 71.39 (33.98)
3 44.13 (7.05) 81.05 (25.39)
4 36.86 (10.53) 53.00 (15.02)
5 38.17 (8.24) 53.56 (13.00)
6 39.51 (10.72) 63.41 (21.81)

Overall 39.85 (8.06) 64.05 (21.71)

Resource Management Task Performance

The time in seconds that the fuel tanks were out of range determined task performance

for the resource management task, where the higher the value represents poorer perfor-

mance. The descriptive statistics are presented in Table 3.18. Every group’s performance,

other than group 1 decreased with increased workload. Group 1 performed better on the

normal load task, than the underload task. A two-way MANOVA determined that there is

a significant main effect of workload condition (F(2,23) = 107.27, p < 0.01), but there was

no significant effect of group or interaction between group and workload condition.

Table 3.18: Resource Management Task Performance (%) Descriptive Statistics for Time
out of Range in Seconds. Note: Lower is Better.

Group Underload Normal Load Overload
1 168.0 (326.31) 78.0 (86.42) 696.0 (172.85)
2 60.0 (76.48) 150.0 (186.14) 798.0 (130.07)
3 246.0 (363.97) 528.0 (270.49) 690.0 (176.2)
4 36.0 (65.03) 198.0 (345.72) 636.0 (115.02)
5 48.0 (62.21) 48.0 (75.29) 606.0 (152.08)
6 198.0 (337.81) 330.0 (406.93) 768.0 (126.57)

Overall 126.0 (239.79) 222.0 (289.75) 699.0 (150.54)

System Monitoring Task Performance

The system monitoring task contained two task performance metrics: mean reaction

time and failure rate. The descriptive statistics for mean reaction time are presented in
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Table 4.22. There was no significant effect between workload conditions or groups. There

was also no significant interaction between condition and group.

Table 3.19: System Monitoring Task Performance Descriptive Statistics for Mean Reaction
Time in Seconds. Note: Lower is Better.

Group Underload Normal Load Overload
1 3.45 (1.47) 3.81 (0.73) 4.11 (0.81)
2 4.37 (2.22) 4.22 (1.14) 4.35 (0.57)
3 4.11 (2.30) 4.42 (1.17) 4.46 (0.78)
4 3.40 (0.81) 3.93 (1.03) 3.92 (0.56)
5 2.92 (1.38) 3.59 (0.33) 4.25 (0.68)
6 4.40 (2.13) 3.47 (0.91) 4.09 (0.55)

Overall 3.77 (1.72) 3.91 (0.91) 4.20 (0.63)

The failure rate was lower in the underload condition than normal load condition for

Groups 1 and 3 (as shown in Table 3.20). Groups 1, 3, and 6 had four participants fail

to click < 1 out of the four out of range lights/gauges for the underload condition, which

accounts for the groups’ lower failure rates. There was a significant effect of workload

condition (F(2,23) = 5.19, p < 0.01). No significant effect was found by groups or the

interaction between workload conditions and groups.

Table 3.20: System Monitoring Task Performance Descriptive Statistics for Failure Rate
(%). Note: Lower is Better.

Group Underload Normal Load Overload
1 15.00 (22.36) 22.10 (24.30) 19.11 (13.23)
2 25.00 (25.00) 21,67 (32.83) 32.83 (22.79)
3 25.00 (17.67) 26.36 (6.14) 36.75 (15.07)
4 25.00 (25.00) 22.08 (15.01) 21.83 (12.51)
5 35.00 (28.50) 21.36 (19.05) 32.75 (23.91)
6 20.00 (20.91) 16.36 (20.66) 32.38 (26.70)

Overall 24.16 (22.24) 21.42 (17.33) 29.28 (19.21)

Communications Task Performance

The communication task performance was determined by failure rate, specifically the

number of failed communication requests divided by the total number of communication

requests. The descriptive statistics by workload condition and group are provided in Table
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3.21. The groups performed exceptionally well during the underload conditions, which was

due to there being only two communication requests. The failure rate for group 3’s under-

load condition is not as high of a failure rate as it seems, as there were two communication

requests and five people per group. Thus, failing one communication request was a failure

rate of 50%. There was a significant effect by workload condition (F(2,23)=9.90, p<0.01),

while no significant effect was found for group or the interaction between workload condi-

tions and groups.

Table 3.21: Communication Task Performance Descriptive Statistics for Failure Rate (%).
Note: Lower is Better.

Group Underload Normal Load Overload
1 10.00 (22.36) 32.95 (24.65) 43.54 (17.92)
2 0.00 (0.00) 23.60 (15.45) 27.71 (18.23)
3 30.00 (27.38) 22.42 (10.37) 37.74 (23.22)
4 0.00 (0.00) 16.61 (10.33) 21.29 (8.86)
5 20.00 (27.38) 30.58 (22.13) 39.67 (20.86)
6 30.00 (44.72) 30.36 (22.37) 41.93 (20.11)

Overall 15.00 (26.79) 26.09 (17.79) 35.32 (18.93)

3.5.2 Subjective Measures

The highest value for each table is bolded, as the value represents the highest perceived

workload level.

In-Situ Workload Ratings

The in-situ workload ratings subjectively assessed workload across six dimensions: au-

ditory, visual, speech, motor, tactile, and cognitive. Each rating ranges from 1 (little to no

demand) to 5 (extreme demand).

The auditory workload rating’s descriptive statistics are provided in Table 3.22. A two-

way MANOVA determined that there were significant differences for workload condition

(F(2,23) = 264.75, p < 0.01), but there were no significant differences for group or the

interaction between condition and group.
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Table 3.22: Descriptive Statistics for In-Situ Auditory Workload Ratings.

Group Underload Normal Load Overload
1 1.07 (0.15) 2.13 (0.73) 4.53 (0.38)
2 1.33 (0.00) 2.73 (0.64) 4.40 (0.36)
3 1.13 (0.18) 2.80 (1.04) 4.66 (0.33)
4 1.06 (0.15) 3.06 (1.25) 4.20 (1.07)
5 1.00 (0.15) 1.66 (1.25) 4.27 (0.27)
6 1.66 (1.31) 2.26 (1.36) 3.80 (0.51)

Overall 1.21 (0.55) 2.44 (1.00) 4.31 (0.58)

The means and standard deviations by group and condition for the visual workload

ratings are presented in Table 3.23. There was a significant effect for workload condition

(F(2,23) = 61.17, p < 0.01). There was no significant effect for group or for the interaction

between workload condition and group.

Table 3.23: Descriptive Statistics for In-Situ Visual Workload Ratings.

Group Underload Normal Load Overload
1 1.93 (1.58) 3.13 (1.42) 4.60 (0.36)
2 2.20 (0.84) 3.33 (0.24) 4.40 (0.72)
3 2.40 (0.60) 4.07 (0.89) 4.46 (0.50)
4 1.40 (0.43) 3.80 (3.13) 4.46 (0.44)
5 1.80 (1.12) 2.33 (2.13) 3.67 (1.13)
6 2.13 (1.55) 2.93 (1.25) 4.07 (1.09)

Overall 1.97 (1.06) 3.26 (1.08) 4.27 (0.77)

The speech workload ratings by group and condition are presented in Table 3.24. A

two-way MANOVA determined that there was a significant effect of workload condition

(F(2,23) = 170.60, p < 0.01) and no significant effect for the group or the interaction

between workload condition and group.

The motor in-situ rating is a subcomponent of physical workload, where the descriptive

statistics are provided in Table 3.25. There was a significant difference between workload

conditions (F(2,23) = 41.47, p <0.01), but no significant difference between the groups or

the interaction between the workload condition and group.

Tactile workload is a subcomponent of physical workload, while the means and stan-
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Table 3.24: Descriptive Statistics for In-Situ speech workload ratings.

Group Underload Normal Load Overload
1 1.13 (0.30) 1.80 (077) 3.87 (0.61)
2 1.27 (0.15) 2.60 (0.86) 4.07 (0.43)
3 1.13 (0.30) 2.60 (0.72) 4.47 (0.30)
4 1.00 (0.00) 2.53 (0.86) 4.27 (0.50)
5 1.00 (0.00) 1.26 (0.28) 3.13 (1.04)
6 1.66 (1.31) 2.27 (1.36) 3.66 (0.78)

Overall 1.20 (0.56) 2.17 (0.93) 3.91 (0.74)

Table 3.25: Descriptive Statistics for In-Situ motor workload ratings.

Group Underload Normal Load Overload
1 1.86 (1.09) 2.50 (1.41) 3.87 (0.73)
2 1.93 (0.89) 3.00 (0.53) 4.00 (0.52)
3 1.93 (0.72) 3.47 (0.90) 4.27 (0.79)
4 1.00 (0.00) 3.13 (1.53) 3.53 (1.26)
5 1.26 (0.59) 2.13 (0.76) 3.33 (1.11)
6 2.06 (1.47) 2.73 (1.25) 4.00 (0.75)

Overall 1.67 (0.92) 2.82 (1.12) 3.83 (0.87)

dard deviations for the tactile ratings are presented in Table 3.26. A two-way MANOVA

found a significant difference for workload condition (F(2,23) = 14.35, p < 0.01) and no

significant differences for group or the interaction between group and workload condition.

Table 3.26: Descriptive Statistics for In-Situ Tactile workload ratings.

Group Underload Normal Load Overload
1 1.73 (1.16) 2.06 (1.46) 2.53 (1.76)
2 1.46 (0.51) 2.33 (0.66) 3.00 (0.78)
3 1.93 (0.86) 2.47 (0.98) 3.33 (1.33)
4 1.00 (0.00) 1.60 (0.81) 2.00 (1.24)
5 1.20 (0.45) 1.33 (2.07) 1.46 (0.65)
6 1.73 (1.30) 2.33 (0.88) 3.20 (0.77)

Overall 1.51 (0.83) 2.02 (0.98) 2.58 (1.25)

The last in-situ rating is cognitive workload, where the descriptive statics by workload

condition and group are provided in Table 4.32. There was a significant effect for workload

condition (F(2,23) = 48.55, p < 0.01). There was no significant effect of group or the

interaction between workload condition and group.
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Table 3.27: Descriptive Statistics for In-Situ Cognitive workload ratings.

Group Underload Normal Load Overload
1 2.13 (1.50) 2.93 (0.79) 4.33 (0.62)
2 2.40 (1.14) 3.53 (0.50) 4.53 (0.45)
3 2.47 (0.87) 3.73 (0.92) 4.80 (0.18)
4 1.13 (0.30) 3.40 (1.10) 4.33 (0.62)
5 1.53 (1.02) 2.07 (0.98) 3.40 (1.06)
6 2.13 (1.43) 2.73 (0.92) 4.13 (0.93)

Overall 1.96 (1.12) 3.06 (0.99) 4.25 (0.75)

The overall in-situ workload rating is the aggregate of the individual ratings and the

descriptive statistics are provided in Table 3.28. Group 5 tended to rate workload generally

lower across all conditions than the other groups, while Group 6 had the largest standard

deviations. A two-way MANOVA determined that there is a significant difference between

workload conditions (F(2,23) = 111.28, p < 0.01). No significant effect was found for

group or the interaction between group and workload condition.

Table 3.28: Descriptive Statistics for In-Situ workload ratings.

Group Underload Normal Load Overload
1 9.86 (5.68) 14.53 (5.79) 23.73 (2.91)
2 10.60 (2.80) 17.53 (2.35) 24.40 (0.72)
3 11.00 (3.01) 19.13 (3.47) 25.73 (1.87)
4 6.60 (0.43) 17.75 (4.42) 22.80 (3.48)
5 7.80 (3.11) 10.80 (3.92) 19.46 (3.91)
6 11.40 (7.95) 15.13 (6.44) 23.46 (2.75)

Overall 9.54 (4.48) 15.77 (5.02) 23.2 (3.24)

NASA-TLX Scores

The NASA-TLX uses a weighted aggregation of six channels: mental, physical, tem-

poral, performance, effort, and frustration. The presentation of the individual NASA-TLX

channels represents the unweighted score, while the overall NASA-TLX results represents

the weighted aggregate.

The mental demand ratings’ means and standard deviations by group and workload

condition are provided in 3.29. There was a significant difference by workload condition
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(F(2,23) = 65.9, p < 0.01) and group (F(5,24) = 2.64, p = 0.04). There was no significant

interaction between workload condition and group.

Table 3.29: Descriptive Statistics for the NASA-TLX Mental Demand Scores.

Group Underload Normal Load Overload
1 31 (31.89) 50 (28.50) 89 (11.40)
2 53 (16.04) 74 (9.62) 92 (6.51)
3 38 (28.85) 75 (17.67) 94 (6.57)
4 12 (8.36) 58 (13.12) 80 (11.72)
5 24 (34.35) 34 (27.70) 74 (14.74)
6 26 (24.34) 47 (23.81) 85 (13.69)

Overall 30.66 (26.67) 56.46 (25.47) 85.66 (12.44)

The descriptive statistics for the physical demand scores are presented in Table 3.30. A

two-way MANOVA determined that there were significant differences between workload

condition (F(2,23) = 46.83, p < 0.01), but not by group or the interaction between group

and workload condition.

Table 3.30: Descriptive Statistics for the NASA-TLX Physical Demand Scores.

Group Underload Normal Load Overload
1 18 (14.41) 27 (28.42) 82 (26.80)
2 28 (20.79) 58 (16.81) 70 (11.18)
3 26 (26.55) 30 (22.08) 73 (35.98)
4 11 (5.47) 56 (20.31) 88 (10.36)
5 10 (11.18) 29 (24.59) 43 (29.07)
6 23 (20.49) 42 (29.71) 75 (12.74)

Overall 19 (17.92) 36.83 (24.44) 66.5 (24.32)

The temporal demand corresponds to the time pressure the participant felt and the de-

scriptive statistics by group and condition are provided in Table 3.31. There was a signifi-

cant difference between workload conditions (F(2,23) = 85.7, p < 0.01), but no significant

effect was found for group or the interaction between workload conditions and group.

The performance scores rate how well the participant felt they performed the task. The

means and standard deviations are presented in Table 3.32. A two-way MANOVA deter-

mined that there were significant differences between workload conditions (F(2,23) = 35.6,
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Table 3.31: Descriptive Statistics for the NASA-TLX Temporal Demand Scores.

Group Underload Normal Load Overload
1 27 (41.02) 46 (24.84) 93 (8.36)
2 29 (22.19) 60 (20.00) 89 (7.42)
3 23 (21.67) 53 (12.04) 78 (38.34)
4 11 (8.94) 56 (23.82) 88 (10.37)
5 9 (8.94) 18 (21.10) 73 (10.37)
6 18 (13.50) 42 (25.15) 78 (24.90)

Overall 19.5 (21.71) 45.83 (24.17) 83.16 (19.71)

p < 0.01) and groups (F(5,24) = 8.51, p < 0.01). There was no significant interaction

between the workload conditions and groups.

Table 3.32: Descriptive Statistics for the NASA-TLX Performance Scores.

Group Underload Normal Load Overload
1 16 (8.94) 36 (19.17) 67 (23.34)
2 69 (10.24) 57 (23.87) 88 (9.08)
3 27 (30.94) 48 (23.87) 78 (14.40)
4 13 (10.36) 48 (19.23) 58 (24.64)
5 9 (8.94) 12 (10.95) 44 (25.34)
6 19 (16.35) 39 (32.86) 52 (17.88)

Overall 25.50 (25.37) 40.00 (25.18) 64.50 (23.79)

The descriptive statistics for the effort scores by group and workload condition are

provided in Table 3.33. There was a significant effect for workload condition (F(2,23) =

79.47, p < 0.01) and group (F(5,24) = 4.29, p < 0.01). The interaction between group and

workload condition was found to be not significant.

Table 3.33: Descriptive Statistics for the NASA-TLX Effort Scores.

Group Underload Normal Load Overload
1 24 (24.08) 43 (16.81) 89 (9.62)
2 52 (15.25) 70 (16.58) 91 (8.21)
3 25 (28.28) 72 (10.37) 95 (5.00)
4 9 (6.52) 52 (26.36) 78 (9.75)
5 18 (29.07) 26 (30.08) 79 (14.32)
6 17 (13.96) 48 (24.14) 77 (22.52)

Overall 24.16 (23.67) 51.83 (25.51) 64.50 (23.79)
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The frustration scores’ means and standard deviations are presented in Table 3.34. A

two-way MANOVA found a significant effect for workload condition (F(2,23) = 120.68,

p < 0.01) and group (F(5,24) = 2.99, p = 0.03). There was no significant effect for the

interaction between group and workload condition.

Table 3.34: Descriptive Statistics for the NASA-TLX Frustration Scores.

Group Underload Normal Load Overload
1 14 (10.84) 36 (25.35) 82 (17.53)
2 35 (20.00) 46 (22.75) 80 (18.71)
3 18 (18.57) 44 (17.10) 90 (7.91)
4 11 (6.52) 39 (29.03) 73 (13.51)
5 6 (2.24) 9 (6.52) 69 (25.84)
6 13 (7.58) 34 (31.30) 68 (10.36)

Overall 16.16 (14.83) 51.83 (25.51) 77.00 (17.15)

The NASA-TLX overall weighted scores’ descriptive statistics by group and condition

are presented in Table 3.35. Group 2 rated the underload condition much higher than the

other groups (51.46, while 26.26 is the second highest). These ratings may be attributed

to Group 2 undergoing the underload condition first, as Group 1 completed the underload

condition first and had the second highest ratings for underload. A two-way MANOVA

determined that the NASA-TLX scores significantly differ between workload conditions

(F(2,23) = 101.87, p < 0.01). The NASA-TLX scores also significantly differ between

groups (F(5,24) = 3.97, p = 0.01). The interaction between workload condition and group

was found to be not significant.

Table 3.35: Descriptive Statistics for the Overall Weighted NASA-TLX Scores.

Group Underload Normal Load Overload
1 26.26 (26.40) 44.93 (23.16) 83.39 (11.19)
2 51.46 (10.41) 65.57 (14.97) 89.85 (6.40)
3 26.06 (23.10) 59.39 (8.38) 90.86 (5.77)
4 11.99 (8.17) 49.65 (19.04) 77.05 (7.49)
5 16.33 (23.14) 24.79 (23.42) 72.33 (9.56)
6 20.12 (17.05) 42.65 (25.72) 73.73 (12.19)

Overall 25.38 (21.80) 47.83 (22.52) 81.21 (11.15)

Overall, each subjective measure significantly differed between workload conditions.
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The subjective measures also significantly differed between groups, which was unexpected.

Heart-rate, heart-rate variability, and noise-level significantly differed between workload

conditions; thus, the developed workload assessment algorithm may be able to distinguish

the workload conditions.

3.5.3 Algorithm Analysis

The algorithm analysis evaluates the algorithm’s ability to classify workload by us-

ing two-fold cross-validation on data from the supervisory evaluation’s first day. Cross-

validation is a common machine learning technique and produces a more accurate rep-

resentation of how the algorithm will perform in unseen scenarios. The first training fold

contains the first ten consecutive minutes of each workload condition, while the testing fold

contains the remaining five minutes of each workload condition. The second training-fold

contains the last ten consecutive minutes of each workload condition, while the testing fold

contains the first five minutes. Using sixty-six percent of the data for training and the re-

maining for testing creates a variance in the testing set approximately equal to the variance

in the training set. There is no set standard for the percentage split between the testing and

training sets, as the split depends highly on the entire data set’s size. What is important is

that the testing and training sets have similar characteristics. No participant’s data was left

out of this analysis in order to limit the affect of individual differences.

The algorithm was trained in a supervised fashion, where the inputs were the workload

metric data (see Chapter 3.1) from time (t − 30) to time (t) and the expected output was

the corresponding IMPRINT Pro workload model value. No subjective ratings were used

in the algorithm’s training and validation. The algorithms’ estimates were compared to the

corresponding IMPRINT Pro model workload values using descriptive statistics, while the

Kruskal-Wallis test determined if the algorithms’ estimates differed between workload con-

ditions. Classification accuracy determines if the algorithm can accurately detect workload

states and was calculated by dividing the number of correctly classified data points by the
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total number of data points. Pearson’s correlation analysis analyzed the algorithms’ ability

to track workload changes within and across workload conditions.

Thresholds for classifying the workload states were extrapolated from the IMPRINT

Pro workload models and differ by evaluation. The supervisory evaluation thresholds

were the mid-points between the maximum and minimum values for the condition pairs,

underload-normal load and normal load-overload, respectively. The thresholds are pro-

vided in Table 3.37. Thresholds for classifying speech workload are not provided, due to

the trinary nature of the speech workload models (i.e., speech workload is either 0, 2, or 4).

These values are insufficient for determining if a human is underloaded, overloaded, or at

a normal level.

Table 3.36: Model Ranges and Thresholds by Workload Condition and Component, Eval-
uation, and Overall Workload. Note: UL = Underload, NL = Normal Load, OL = Overload.

Evaluation Condition Cognitive Physical Auditory Overall

Supervisory
UL 1.00 - 2.03 0.00 - 0.70 0.00 - 6.00 4.00 - 9.27
NL 4.93 - 11.63 4.04 - 6.86 0.00 - 6.00 13.80 - 39.19
OL 21.20 - 22.76 11.20 - 12.50 0.00 - 6.00 59.20 - 66.81

Threshold UL-NL 3.48 2.37 1.5 11.53
NL-UL 16.42 9.03 2.9 49.20

Three hypotheses were formed to determine if the algorithm generalizes across similar

workload conditions. It was expected that the algorithm will accurately estimate workload;

thus, Hypothesis HWL
1 predicted that the algorithm’s estimates will be within a standard de-

viation of the corresponding IMPRINT Pro workload models. Classification accuracy was

used to analyze the algorithm’s ability to discriminate between workload conditions. Hy-

pothesis HWL
2 predicted that overall workload and each workload component will be clas-

sified correctly at least 80% of the time. An adaptive workload teaming system may use the

workload trend to determine if and how an adaptation is to occur. The algorithm’s ability

to track workload trends within and across workload conditions is analyzed using Pear-

son’s Correlation Coefficient. Hypothesis HWL
3 predicted that the algorithm’s estimates
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will correlate positively and significantly with the corresponding IMPRINT Pro models.

The developed algorithm estimates the cognitive, auditory, speech, physical, and overall

workload components every 5 seconds. The algorithm’s average estimates and IMPRINT

Pro model values are plotted in Figure 3.2 by workload condition. The visual workload

component is not included, as the the IMPRINT Pro models are used to estimate visual

workload. The IMPRINT Pro’s modeled workload values and the algorithm’s estimates

by workload component and condition are provided in Table 3.37. The algorithm tends to

overestimate cognitive workload for the underload condition, while the auditory, physical,

speech, and overall workload estimates were within a standard deviation of the IMPRINT

Pro model values. The Kruskal-Wallis test determined that the IMPRINT Pro model’s

values and the algorithm’s estimates differed significantly between workload conditions.

Table 3.37: Workload Generalizability: Algorithm Estimated and IMPRINT Pro Modeled
Workload Descriptive Statistics and Kruskal-Wallis Significance by Workload Component
and Condition.

Workload Algorithm UL NL OL χ2

Auditory Model 1.32 (2.18) 2.12 (1.62) 3.31 (1.13) 63.0*
Algorithm 2.12 (2.12) 2.4 (1.61) 3.2 (1.21) 32.7*

Cognitive Model 1.43 (0.72) 8.19 (2.52) 21.93 (0.79) 80.7*
Algorithm 1.19 (1.85) 8.02 (3.57) 21.28 (2.16) 80.4*

Physical Model 0.11 (0.24) 4.3 (2.13) 11.73 (0.57) 80.4*
Algorithm 0.53 (1.08) 4.3 (2.57) 11.3 (0.82) 79.2*

Speech Model 0.41 (0.72) 0.61 (0.61) 0.95 (0.59) 63.0*
Algorithm 0.12 (0.61) 0.39 (1.06) 0.85 (1.44) 63.0*

Overall Model 5.76 (2.58) 26.67 (7.73) 62.85 (2.74) 79.9*
Algorithm 6.44 (2.88) 26.56 (8.47) 61.57 (3.09) 79.1*

It is important that the algorithm estimate workload accurately in order to discern the

human’s current workload state for unseen similar workload instances. The algorithm’s

classification accuracies for each workload component and condition are presented in Ta-

ble 3.38. Each workload state was correctly classified at least 85% of the time for overall

workload and each workload component. The lowest accuracy occurred when classifying

physical workload in the normal load condition. There is no corresponding classification
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(a) Day 1 Underload. Note: Y axis values range from 0 to 10.

(b) Day 1 Normal Load. Note: Y axis values range from 0 to 50.

(c) Day 1 Overload. Note: Y axis values range from 0 to 70.

Figure 3.2: Workload Generalizability: Algorithm Estimates vs IMPRINT Pro Workload
Models.

accuracy for the speech workload component, due to the speech model’s values not reflect-

ing the underload, normal load, and overload conditions accurately.

Pearson’s Correlation Coefficients were used to analyze the algorithm’s ability to track

workload variations within and across the three workload conditions. A significant pos-

itive correlation coefficient signifies that the algorithm’s workload estimates changed in

a similar manner to the corresponding IMPRINT Pro workload model. The correlation

coefficients between the algorithm’s estimates and workload models, within and across
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Table 3.38: Workload Generalizability: Algorithm’s Classification Accuracy (%) by Work-
load Component and Condition. Note: Speech workload classification accuracies are not
provided due to the trinary nature of the IMPRINT Pro speech workload model

Workload UL NL OL
Auditory 91.57 90.02 92.01
Cognitive 100 99.28 100
Physical 99.56 86.67 100
Overall 100 99.83 100

Table 3.39: Workload Generalizability: Pearson’s Correlation Coefficients for Within and
Across Workload Conditions. Note: * Indicates p < 0.05.

Workload Within AcrossUL NL OL
Auditory 0.85* 0.63* 0.68* 0.77*
Cognitive 0.09* 0.65* 0.12* 0.96*
Physical 0.20* 0.78* 0.09* 0.96*
Speech 0.08* 0.11* 0.03* 0.15*
Overall 0.35* 0.86* 0.41* 0.99*

workload conditions, are provided in Table 3.39. The within column’s results indicate that

the algorithm was able to track workload variations for auditory and overall workload for

each workload condition, but had trouble tracking underload and overload variations for

cognitive, physical, and speech workload. Additionally, the algorithm’s speech workload

estimates were marginally correlated with the speech workload model values, which is due

to the trinary speech workload model values and the potential mismatch between when the

model believes the participant is speaking and when the participant actually speaks. The

Across column demonstrates that the algorithm had excellent tracking of workload varia-

tions across workload conditions for each component, besides speech workload, given the

strong positive and significant correlations.

3.5.3.1 Discussion

There will be instances in which an adaptive teaming system is deployed in similar

workload conditions to the conditions to which the workload assessment algorithm was
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trained. The algorithm needs to be able to achieve high performance in such cases; thus,

Hypothesis HWL
1 evaluated the algorithm’s ability to estimate workload in unforeseen, but

similar workload conditions by stating that the algorithm’s estimates will be within a stan-

dard deviation of the corresponding workload model values. The hypothesis was fully

supported for overall workload and each workload component.

The algorithm needs to discriminate between workload conditions. Hypothesis HWL
2

stated that the algorithm will correctly classify workload at least 80% of the time and was

fully supported. This supported hypothesis demonstrates that the algorithm generalizes

across similar workload conditions.

The ability to track workload trends will allow a system to trigger an adaptation to

prevent or mitigate the occurrence of an overload or underload state. The third hypoth-

esis (HWL
3 ) evaluated the algorithm’s ability to track workload trends and stated that the

algorithm’s estimates will correlate significantly and positively with the corresponding IM-

PRINT Pro workload models. The hypothesis was supported for auditory and overall work-

load, but was only partially supported for cognitive, speech, and physical workload. Poor

correlations were produced for the underload and overload conditions, which was due to

the corresponding IMPRINT Pro models having low variance. This low variance was dif-

ficult to replicate in the algorithm’s estimates, as it relies on physiological signals that do

not remain stationary and create inherent variance in the algorithm’s estimates. Additional

filtering techniques may reduce this variance, but may also reduce the algorithm’s perfor-

mance inadvertently in the normal load condition.

Overall, the algorithm estimated and classified workload accurately in unseen similar

workload conditions, as long as the algorithm was trained on prior data from the human.

3.6 Supervisory Evaluation’s Day 2 Results

The supervisory evaluation’s second day consisted of one 35-minute trial, where work-

load transitioned between levels: underload, normal load, and overload. Participants com-
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pleted the supervisory evaluation’s second day in one of three workload condition orders.

These orders are provided in Table 3.40.

Table 3.40: Supervisory Evaluation’s Second Day Workload Condition Orderings.

Group Order
1 UL-NL-OL-UL-OL-NL-UL
2 NL-OL-UL-OL-NL-UL-NL
3 OL-UL-OL-NL-UL-NL-OL

The evaluation’s second day was analyzed from three perspectives: objective metrics,

subjective metrics, and algorithm analysis. The objective and subjective metrics were ana-

lyzed in a similar manner to the Supervisory Day 1 analyses.

3.6.1 Objective Metrics

Heart-Rate

The associated descriptive statistics for heart-rate are provided in Table 3.41. Heart-rate

was expected to increase with an increase in workload, but the highest average heart-rate

did not occur in the overload condition for orders 1 and 3. This result is attributed to the

transitions between workload conditions. A two-way MANOVA determined that there is a

significant effect of workload (F(2,26) = 3.54, p < 0.01), but there was no significant effect

by order. There is a significant interaction between order and workload condition (F(10,48)

= 9.74 p < 0.01).

Table 3.41: Heart-Rate Descriptive Statistics. The highest values for each order are in
Bold.

Order Underload Normal Load Overload
1 17.58 (24.51) 16.47 (21.71) 17.14 (21.53)
2 20.83 (26.28) 21.07 (28.18) 21.51 (26.51)
3 11.65 (6.79) 12.72 (6.08) 12.29 (7.94)

Overall 16.74 (21.69) 17.93 (23.51) 16.14 (19.0)

Heart-Rate Variability
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It was expected that the lowest average heart-rate variability will occur in the overload

workload condition, as the metric decreases with an increase in workload. The descriptive

statistics for heart-rate variability by order and workload condition are presented in Table

3.42. Each workload condition produced similar descriptive values for heart-rate variabil-

ity. A two-way MANOVA (F(2,26)= 7.94, p < 0.01) determined that the overall values

differed significantly between the three workload conditions. The was no significant ef-

fect on the workload orderings, but there was a significant interaction between order and

workload condition (F(10,48) = 16.30, p < 0.01).

Table 3.42: Heart-Rate Variability Descriptive Statistics. The lowest values for each order
are in Bold.

Order Underload Normal Load Overload
1 0.46 (0.35) 0.45 (0.27) 0.45 (0.23)
2 0.33 (0.15) 0.34 (0.34) 0.32 (0.15)
3 0.37 (0.23) 0.37 (0.23) 0.37 (0.24)

Overall 0.39 (0.27) 0.38 (0.30) 0.38 (0.22)

Respiration-Rate

Respiration-rate decreases as workload increases. The descriptive statistics for this

metric are provided in Table 3.43. The lowest average respiration-rate values typically

occurred during the underload and overload conditions; however, the overall values differed

significantly (F(2,26)= 19.58, p < 0.01) between the three workload conditions. There

was no significant effect on the trial orderings or on the interaction between the workload

conditions and orderings.

Table 3.43: Respiration-Rate Descriptive Statistics. The lowest values for each order are
in Bold.

Order Underload Normal Load Overload
1 9.92 (5.08) 9.95 (3.94) 9.63 (3.93)
2 10.82 (3.88) 11.58 (4.55) 11.35 (4.31)
3 10.03 (4.01) 9.48 (3.32) 10.00 (4.03)

Overall 10.23 (4.44) 10.62 (4.24) 10.31 (4.15)

Skin-Temperature
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An increase in workload typically elicits a decrease in skin-temperature. These associ-

ated responses are provided in Table 3.44. The lowest skin-temperatures occurred during

the normal load condition for orders 2 and 3, while the lowest value occurred during the

underload condition for order 1. A two-way MANOVA determined that skin-temperature

differed significantly between workload conditions (F(2,26)= 49.7, p < 0.01). There was

also a significant effect on the workload condition orderings (F(2,26)= 20.7, p < 0.01) and

the interaction between the orderings and conditions (F(10, 48)= 202.8, p < 0.01).

Table 3.44: Skin-Temperature Descriptive Statistics. The lowest values for each order are
in Bold.

Order Underload Normal Load Overload
1 2.43 (1.14) 2.63 (1.08) 2.67 (1.05)
2 2.66 (0.93) 2.43 (1.08) 2.48 (0.98)
3 2.56 (1.22) 2.45 (1.03) 2.60 (1.34)

Overall 2.54 (1.11) 2.50 (1.08) 2.58 (1.18)

Posture Magnitude

The largest posture magnitudes occurred during the normal load and overload condi-

tions, as seen in Table 3.45. This metric differed significantly between the workload con-

ditions (F(2,26)= 51.81, p < 0.01), but not by the condition ordering. Additionally, there

was a significant interaction (F(10, 48)= 19.05, p < 0.01) between the workload conditions

and orderings.

Table 3.45: Posture Descriptive Statistics. The highest values for each order are in Bold.

Order Underload Normal Load Overload
1 -26.91 (13.8) -24.93 (13.88) -26.22 (14.3)
2 -33.34 (18.94) -33.11 (17.1) -32.63 (18.09)
3 -19.76 (18.42) -17.91 (21.07) -19.42 (18.69)

Overall -26.66 (17.77) -27.46 (17.85) -24.91 (18.47)

Noise-Level

Noise-level was expected to increase as workload increases. The descriptive statics for

noise-level are provided in Table 3.46 by workload condition and ordering. The largest
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noise-levels occurred during the overload condition for each ordering. Additionally, noise-

level differed significantly between workload conditions (F(2,26)= 2146, p < 0.01) and

orders (F(2,26)= 34.67, p < 0.01). There was also a significant interaction (F(10, 48)=

44.07, p < 0.01) between the workload conditions and orderings.

Table 3.46: Noise-Level Descriptive Statistics. The highest values for each order are in
Bold.

Order Underload Normal Load Overload
1 8.42 (9.72) 11.22 (10.79) 12.22 (11.11)
2 8.83 (10.26) 10.1 (10.86) 12.67 (11.4)
3 7.79 (8.93) 9.53 (9.53) 12.47 (10.19)

Overall 8.35 (9.67) 10.34 (10.58) 12.47 (10.77)

Speech-Rate

The participants were expected to speak faster as workload increased. The descriptive

statistics for speech-rate are provided in Table 3.47. Speech-rate was the highest during

the overload condition, while there was a significant main effect on workload (F(2,26) =

196.66, p < 0.01) and order (F(2,26) = 40.55, p < 0.01). There was also a significant

interaction between workload condition and group (F(10,48) = 7.81, p < 0.01).

Table 3.47: Speech-Rate Descriptive Statistics Note: Bold represents the highest value in
each group

Order Underload Normal Load Overload
1 1.02 (0.99) 1.32 (1.02) 1.42 (1.08)
2 0.84 (0.82) 1.06 (0.94) 1.36 (1.02)
3 1.0 (0.96) 1.35 (1.09) 1.42 (1.09)

Overall 0.98 (0.95) 1.22 (1.01) 1.40 (1.07)

Voice intensity increases as workload increases. The average voice intensities by work-

load condition and group are provided in Table 3.48. The highest intensities typically

occurred during the overload condition for each ordering. A two-way MANOVA found a

significant main effect on workload (F(2,26) = 106.86, p < 0.01) and ordering (F(2,26) =

61.71, p < 0.01). Additionally, there was a significant interaction between the orders and

workload conditions (F(10, 48) = 9.56, p < 0.01).
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Table 3.48: Voice Intensity Descriptive Statistics Note: Bold represents the highest value
in each group

Order Underload Normal Load Overload
1 163.71 (241.44) 153.72 (147.57) 202.53 (192.73)
2 113.68 (166.66) 144.97 (201.08) 200.71 (224.48)
3 144.16 (188.08) 211.02 (300.3) 247.07 (320.37)

Overall 147.56 (215.7) 164.57 (217.6) 223.67 (270.31)

Lastly, pitch increases with an increase in workload. The resulting descriptive statistics

are provided in Table 3.49. Pitch was the highest in the overload condition for each order,

except order 3. Similar to the previous speech-based metrics, there were significant differ-

ences for workload condition (F(2,26) = 36.73, p < 0.01) and group (F(2,26) = 10.25, p <

0.01), along with a significant interaction between the two (F(10,48) = 8.41, p < 0.01).

Table 3.49: Pitch Descriptive Statistics Note: Bold represents the highest value in each
group

Order Underload Normal Load Overload
1 172.81 (92.81) 182.15 (121.83) 206.83 (204.6)
2 158.81 (84.98) 164.55 (103.83) 199.73 (227.87)
3 183.35 (198.71) 202.89 (207.58) 197.65 (179.19)

Overall 171.66 (121.82) 180.18 (143.24) 200.44 (199.67)

Workload Metrics by Workload Transition

The supervisory-based evaluation’s second day emulated real-world conditions by hav-

ing workload transitions between states (i.e., from underload to normal load). It was ex-

pected that the objective workload metrics will be sensitive to these workload transitions,

where the metric’s sensitivity is analyzed using the Spearman correlation coefficient be-

tween the metric values and the overall IMPRINT Pro workload model. These correlations

are provided in Table 3.50. The Spearman coefficient analysis was chosen, due to the differ-

ing ranges between the overall workload model and each metric.The workload transitions

contained 120 seconds of data from each participant, meaning that a transition from Un-

derload to Overload contained the last 60 seconds of data from the underload condition and

the first 60 seconds from the overload condition. 60 seconds for each condition was chosen
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to ensure that the workload metrics had enough time to transition between workload states.

Table 3.50: The Spearman Correlation Coefficients between Each Workload Metric and
the IMPRINT Pro Overall Workload Model by Workload Transition. Note: * indicates p
< 0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Heart-Rate 0.15* -0.13* 0.04 -0.09 0.16* 0.51*
Heart-Rate Variability 0.00* -0.15* -0.01 -0.03 -0.12* -0.54*
Noise Level 0.44* 0.74* 0.55* 0.53* 0.76* 0.29*
Posture Magnitude 0.06 -0.24* 0.03 -0.07 0.12* 0.16*
Respiration-Rate 0.78* -0.62* -0.27* -0.04 -0.22* 0.36*
Speech-Rate 0.04 0.21* 0.24* -0.02 0.35* 0.21*
Pitch 0.13* -0.18* -0.39* 0.00 -0.44* -0.28*
Voice Intensity 0.04 0.11* 0.27* -0.09 0.32* 0.19*

Significant correlations occurred between each workload metric and the overall work-

load model for the UL-OL and OL-UL workload transitions. These correlations also indi-

cated that the metrics changed as expected. For example, heart-rate variability decreases

as workload increases; thus, negative correlations will occur between the metric and the

overall workload model. This result indicates that the metrics trended as expected when

there were large changes in workload.

The majority of correlations that were not significant occurred when workload transi-

tioned between the normal load to the overload conditions; however, significant correla-

tions occurred when workload transitions from overload to normal load. This result may

be attributed to a physiological “red line” [39], meaning that an increase in workload does

not elicit a response from a workload metric, as the participant had no more resources to

allocate to the tasks’ demands.

Noise Level and respiration-rate tended to produce the largest correlations for each

workload transitions, which is attributed to noise level being a direct task demand mea-

sure. The correlations associated with respiration-rate is attributed to respiration rate being

sensitive to multi-tasking scenarios.

The metrics and corresponding correlations for the workload transitions varied in their

significance, which may mean that the developed workload assessment algorithm may have
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difficulty capturing these workload transitions. However, the algorithm relies on the combi-

nation of the workload metrics, rather than a single metric; thus, the algorithm may depend

on specific metrics more than others based on the metric’s sensitivity to the workload tran-

sitions.

The collected workload metrics are sensitive to overall workload and specific workload

components, which permits analysing the metric’s correlation to these components. This

correlation analysis focused on the workload components that the algorithm estimates via

neural networks and the metrics used in this estimation. The Spearman correlation coef-

ficients between noise-level and the IMPRINT Pro auditory workload model are provided

in Table 3.51. Noise-level significantly and positively correlated with the workload model

when workload transitioned from the normal load state to the underload or overload states.

However, noise level was inversely correlated during the underload to normal load transi-

tion, which was unexpected. This inverse correlation and the not significant correlations

may be attributed to inaccuracies within the auditory workload model.

Table 3.51: The Spearman Correlation Coefficients between Each Workload Metric and the
IMPRINT Pro Auditory Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Noise Level -0.29* 0.02 0.49* 0.12* 0.09 0.03

The developed workload assessment algorithm relied on the heart-rate, heart-rate vari-

ability, and noise-level metrics to estimate cognitive workload. The Spearman’s correlation

coefficients between these metrics and the IMPRINT Pro cognitive workload model are

presented in Table 3.52. Each cognitive workload metric significantly correlated with the

workload model for the OL-UL and OL-NL workload transitions, while noise-level pro-

duced significant correlations for each transition. Heart-rate and heart-rate variability did

not significantly correlate with the cognitive workload model for the UL-OL and NL-OL

transitions.

The resulting Spearman’s correlation coefficients between the physical workload met-
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Table 3.52: The Spearman Correlation Coefficients between Each Workload Metric and the
IMPRINT Pro Cognitive Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Heart-Rate -0.14* 0.02 0.09 -0.07 0.22* 0.33*
Heart-Rate Variability 0.03 -0.07 -0.03 -0.0 -0.18* -0.39*
Noise Level 0.2* 0.7* 0.62* 0.54* 0.48* 0.21*

rics and IMPRINT Pro physical workload model are presented in Table 3.53. Significant

correlations occurred for each workload metric when workload transitioned from the over-

load to the normal load conditions, but no significant correlations occurred for the normal

load to the underload transition. Posture magnitude had larger correlations than heart-rate

did, which was unexpected, as participants were seated throughout the evaluation. This re-

sult may be attributed to cognitive workload confounding heart-rate’s sensitivity to physical

workload.

Table 3.53: The Spearman Correlation Coefficients between Each Workload Metric and the
IMPRINT Pro Physical Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Heart-Rate -0.17* 0.0 0.08 -0.06 0.09 0.29*
Posture Magnitude 0.07 -0.17* 0.01 -0.12* 0.23* -0.25*
Respiration-Rate -0.03 0.65* 0.02 -0.01 -0.1 0.3*

It was expected that the speech-based metrics will correlate with the speech workload

model, where the resulting correlations are provided in Table 3.54. Significant correlations

occurred for the UL-NL, NL-UL, and OL-UL transitions for each speech workload metric.

Speech-rate tended to produce the largest correlations, which was attributed to speech-rate

being sensitive to human speech. If the participant was not speaking, then participant’s

speech-rate was zero. The pitch and voice intensity are not as sensitive as speech-rate, as

the metrics are sensitive to non-verbal artifacts (i.e., the air-traffic control messages).

The workload metrics were sensitive to each workload component, although the major-

ity of the correlations were weak. The developed workload assessment algorithm may still
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Table 3.54: The Spearman Correlation Coefficients between Each Workload Metric and
the IMPRINT Pro Speech Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Speech-Rate 0.25* 0.11* 0.63* 0.10 0.14* 0.19*
Pitch -0.15* -0.02 0.18* 0.00 0.11* 0.02
Voice Intensity 0.13* 0.08 0.59* 0.04 0.17* 0.2*

produce accurate workload component metrics, as the algorithm relies on a combination

of the metrics. Additionally, features were extracted from the raw metric data, which may

increase the algorithm’s accuracy.

3.6.2 Performance Measures

Task performance decreases when workload is too low (underload) or too high (over-

load); thus, it was expected that task performance will be the highest during the normal

load condition. The best performance value was bolded for each of the following tables.

Tracking Task Performance

Task performance for the tracking task was determined using the average root-mean

squared error between the center of the cross-hairs and the center of the object to be tracked.

These average errors are presented in Table 3.55 by ordering and workload condition. There

are no corresponding results for the underload condition, as the tracking task was never

active during the condition. The highest performance was achieved during the normal load

condition for each ordering. There was a significant main effect of workload (F(2,23) =

17.89, p < 0.01) and a significant effect on the ordering (F(2,23) = 8.67, p < 0.01). There

was no significant interaction between the workload condition and ordering.

Resource Management Task Performance

The average amount of time the resource management task was in range by workload

condition and ordering are provided in Table 3.56. The participants typically performed

the best during the underload condition, except for order 2, where the highest performance
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Table 3.55: Tracking Task Performance Descriptive Statistics for the Average Root-Mean
Squared Error.

Order Normal Load Overload
1 53.82 (30.75) 63.16 (39.36)
2 49.03 (22.8) 56.0 (30.64)
3 43.93 (17.61) 56.61 (32.31)

Overall 49.06 (24.49) 58.38 (34.22)

was during the normal load condition. This result was attributed to the order 2 having more

instances of the normal load condition than the other orderings, as the performance was

similar to order 2’s underload condition. A two-way MANOVA determined that there was

a significant main effect on workload (F(2,23) = 49.52, p < 0.01) and ordering (F(2,23)

= 2071, p < 0.01). There was also a significant interaction between the condition and

ordering (F(10, 48) = 10.23, p < 0.01).

Table 3.56: Resource Management Task’s Time in Range (%) Descriptive Statistics for the
Average Root-Mean Squared Error.

Order Underload Normal Load Overload
1 0.73 (0.44) 0.66 (0.47) 0.67 (0.47)
2 0.73 (0.44) 0.75 (0.43) 0.59 (0.49)
3 0.81 (0.39) 0.79 (0.40) 0.64 (0.48)

Overall 0.75 (0.43) 0.73 (0.44) 0.63 (0.48)

System Monitoring Task Performance

There were two task performance metrics for the system monitoring task: reaction time

and failure rate. The descriptive statistics for reaction time are provided in Table 3.57.

The lowest average reaction times occurred during the normal load condition, except for

order 2, where the underload condition produced the lowest reaction times. There was a

significant main effect on workload (F(2,23) = 3.28, p = 0.04), but no significant effects

for the workload condition ordering or the interaction between the workload conditions and

orderings.

The system monitoring task’s failure rates by workload condition and ordering are pro-

vided in Table 3.58. The participants were the most successful during the underload con-
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Table 3.57: System Monitoring Task’s Reaction Time’s Descriptive Statistics.

Order Underload Normal Load Overload
1 3.80 (3.03) 3.63 (2.49) 3.82 (2.6)
2 3.39 (2.34) 3.68 (2.53) 4.01 (2.66)
3 4.11 (2.74) 3.65 (2.35) 3.84 (2.55)

Overall 3.76 (2.75) 3.66 (2.47) 3.88 (2.6)

dition for each workload condition ordering. A two-way MANOVA determined that there

were significant differences between the workload conditions (F(2,23) = 47.87, p < 0.01)

and orderings (F(2,23) = 2.05, p < 0.01). There was no significant interaction between the

workload conditions and orderings.

Table 3.58: System Monitoring Task’s Failure Rate (%) Descriptive Statistics.

Order Underload Normal Load Overload
1 14 (35) 20 (04) 22 (39)
2 03 (18) 17 (37) 25 (41)
3 11 (32) 24 (42) 24 (41)

Overall 07 (25) 19 (39) 24 (41)

The participants monitored and responded to air-traffic control requests. A failure oc-

curred when the participant failed to respond or responded incorrectly. The descriptive

statistics for these failures are provided in Table 3.59. The lowest failure rates occurred

during the normal load condition for each ordering, while there was also a significant main

effect of workload (F(2,23) = 112.71, p < 0.01) and the workload ordering (F(2,23) =

9.18, p < 0.01). Additionally, there was a significant interaction between the workload

conditions and orderings (F(10, 48) = 1.22, p = 0.03).

Table 3.59: Communications Task’s Failure Rate (%) Descriptive Statistics.

Order Underload Normal Load Overload
1 17 (29) 01 (06) 19 (24)
2 12 (25) 05 (14) 19 (24)
3 28 (26) 08 (19) 22 (25)

Overall 22 (26) 05 (15) 20 (25)
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3.6.3 Subjective Ratings

The highest value for each table is bolded, as the value represents the highest perceived

workload level.

In-Situ Workload Ratings

The In-Situ workload ratings were administered every 4.5 minutes during the supervi-

sory evaluation’s second day’s trial. The auditory rating’s descriptive statistics are provided

in Table 3.60. The highest ratings occurred during the overload condition for each work-

load condition ordering, while there was a significant main effect on workload (F(2,23)

= 151.99, p < 0.01), but not on the condition orderings or the interaction between the

orderings and conditions.

Table 3.60: Descriptive Statistics for In-Situ Auditory Workload Ratings.

Order Underload Normal Load Overload
1 1.23 (0.43) 2.30 (0.57) 3.90 (0.64)
2 1.35 (0.93) 2.23 (1.01) 3.05 (0.89)
3 1.20 (0.52) 2.40 (0.88) 3.63 (0.81)

Overall 1.26 (0.63) 2.30 (0.86) 3.54 (0.85)

The means and standard deviations for the visual workload ratings are provided in Table

3.61. Similar to the auditory ratings, the highest visual ratings occurred during the overload

condition of each ordering. A two-way MANOVA determined that there was a significant

effect on workload conditions (F(2,23) = 48.54, p < 0.01) and the workload condition

orderings (F(2,23) = 14.86, p < 0.01). There was no significant interaction between the

workload conditions and orderings.

Table 3.61: Descriptive Statistics for In-Situ Visual Workload Ratings.

Order Underload Normal Load Overload
1 1.80 (0.81) 2.45 (0.76) 3.50 (0.61)
2 1.75 (1.02) 2.30 (1.06) 2.85 (1.09)
3 2.25 (0.91) 3.20 (0.62) 3.87 (0.86)

Overall 1.91 (0.91) 2.60 (0.94) 3.47 (0.96)

The participants were required to verbally respond to communication requests. The as-
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sociated speech ratings for these responses are provided in Table 3.62. Again, the highest

ratings occurred during the overload condition and there was a significant effect between

workload conditions (F(2,23) = 119.60, p < 0.01). A significant effect also occurred be-

tween the workload condition orderings (F(2,23) = 2.51, p < 0.01) and the interaction

between the orderings and workload conditions (F(2,23) = 4.02, p < 0.01).

Table 3.62: Descriptive Statistics for In-Situ Speech Workload Ratings.

Order Underload Normal Load Overload
1 1.07 (0.25) 2.20 (0.70) 3.65 (0.88)
2 1.35 (0.93) 1.90 (1.03) 2.65 (0.75)
3 1.2 (0.52) 1.90 (0.55) 3.20 (0.89)

Overall 1.19 (0.60) 1.99 (0.83) 3.17 (0.92)

A sub-component of physical workload is the motor component, where the descriptive

statistics for the motor ratings are presented in Table 3.63. The overload workload con-

dition elicited the largest motor ratings for each workload condition ordering. A two-way

MANOVA determined a significant main effect on workload (F(2,23) = 74.77, p < 0.01),

but not for the orderings and the interaction between the orderings and workload conditions.

Table 3.63: Descriptive Statistics for In-Situ Motor Workload Ratings.

Order Underload Normal Load Overload
1 1.57 (0.68) 2.15 (0.75) 3.65 (0.67)
2 1.50 (0.95) 2.30 (1.02) 2.75 (1.02)
3 1.45 (0.60) 2.35 (0.81) 3.37 (0.93)

Overall 1.51 (0.74) 2.27 (0.88) 3.27 (0.95)

Another sub-component of physical workload is the tactile component. The means

and standard deviations by order and workload condition are provided in Table 3.64. The

largest tactile ratings occurred during the overload condition for each ordering, while there

was a significant difference between the workload conditions (F(2,23) = 16.81, p < 0.01).

A two-way MANOVA found no significant difference between the workload orderings and

for the interaction between the orderings and workload conditions.

The last In-Situ workload rating is the cognitive ratings. The associated descriptive
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Table 3.64: Descriptive Statistics for In-Situ Tactile Workload Ratings.

Order Underload Normal Load Overload
1 1.2 (0.41) 1.45 (0.69) 2.35 (1.31)
2 1.55 (1.00) 1.77 (1.07) 1.85 (1.09)
3 1.2 (0.41) 1.85 (0.75) 2.37 (1.00)

Overall 1.3 (0.64) 1.70 (0.89) 2.21 (1.13)

statistics are provided in Table 3.65. The participants tended to rate cognitive workload

the highest during the overload condition. A two-way MANOVA found a significant main

effect on the workload conditions (F(2,23) = 79.79, p < 0.01) and orderings (F(2,23) =

2.37, p = 0.01). There was no significant interaction between the workload conditions and

orderings.

Table 3.65: Descriptive Statistics for In-Situ Cognitive Workload Ratings.

Order Underload Normal Load Overload
1 1.67 (0.8) 2.45 (0.76) 3.80 (0.83)
2 1.60 (0.99) 2.47 (0.94) 3.05 (0.83)
3 1.80 (0.7) 2.65 (0.81) 3.60 (0.81)

Overall 1.69 (0.83) 2.51 (0.85) 3.50 (0.86)

The uniform aggregate of each in-situ workload rating resulted in an overall rating.

The mean and standard deviations for the overall ratings are presented in Table 3.66. The

participants’ overall workload ratings were the highest during the overload condition, while

a significant effect (F(2,23) = 126.49, p < 0.01) between the conditions occurred. There

was also a significant effect between the condition orderings (F(2,23) = 3.71, p = 0.03) and

the interaction between the orderings and conditions (F(2,23) = 3.18, p = 0.01).

Table 3.66: Descriptive Statistics for In-Situ Overall Workload Ratings.

Order Underload Normal Load Overload
1 8.53 (2.57) 13.00 (3.24) 20.85 (2.87)
2 9.10 (5.43) 12.97 (5.35) 16.20 (4.27)
3 9.10 (2.29) 14.35 (3.05) 20.03 (3.24)

Overall 8.86 (3.52) 13.37 (4.23) 19.17 (3.93)

NASA-TLX Scores
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The presentation of each NASA-TLX score represents the unweighted score, while

the overall NASA-TLX results represent the weighted aggregate. The NASA-TLX was

administered after the single trial; thus, the results cannot be broken down by workload

condition. The descriptive statistics for each NASA-TLX scale and the associated ANOVA

result are provided in Table 5.11. The participants in Order 3 tended to rate each scale

higher than the other participants, which was attributed to Order 3 having the most instances

of the overload condition.
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Table 3.67: NASA-TLX Workload Ratings by Workload Condition Ordering.

Order Effort Frustration Mental Performance Physical Temporal Overall
1 45.62 (22.43) 35.0 (18.71) 53.12 (22.03) 40.0 (22.04) 41.88 (19.07) 48.75 (19.78) 48.5 (14.55)
2 51.0 (25.47) 18.0 (13.78) 52.0 (19.89) 33.5 (31.18) 41.88 (19.07) 44.0 (22.83) 47.37 (18.1)
3 69.0 (13.5) 42.0 (19.03) 75.5 (6.85) 57.0 (23.59) 54.0 (24.36) 74.0 (7.75) 68.8 (7.84)

ANOVA F(2, 25) 3.18, n.s. 5.09, p = 0.01 5.77, p < 0.01 2.12, n.s. 1.42, n.s. 8.00, p < 0.01 7.07, p < 0.01
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3.6.4 Algorithm Analysis

This analysis evaluated the algorithm’s ability to classify workload in emulated real-

world conditions by training the algorithm on all of the supervisory evaluation’s first day’s

data and testing it using all of the second day’s data. The evaluation’s second day mimicked

real-workload conditions, as there were transitions between the workload conditions. It

was expected that the algorithm’s performance on the second day data will be similar to the

previous algorithmic performance, as the workload conditions were similar. Hypothesis

HWL
4 predicted that the algorithm’s classification accuracy for the second day data will be

within 5% of the workload generalizability accuracies in Table 3.38.

(a)

(b)

Figure 3.3: Emulated Real-World Conditions: Algorithm Estimates and IMPRINT Pro
Model Values for the First Order. Top Graph is from Time = 0 to 1050 and Bottom Graph
is from Time = 1050 to 2100.

The evaluation’s second day emulated real-world conditions by incorporating workload

transitions. There were three potential workload condition orderings for the second day task
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and a Kruskal-Wallis test determined that there were no significant differences across the

orderings; thus, the results are presented as an aggregate of the three workload condition

orders. The algorithm’s estimates and IMPRINT Pro workload model values are plotted

against time for only the first-order (UL-NL-OL-UL-OL-NL-UL) in Figure 3.3. The de-

scriptive statistics for the algorithm’s estimates and the IMPRINT Pro workload model

values are presented in Table 3.68. The algorithm’s estimates were within a standard devi-

ation of the workload model values for overall workload and each workload component. A

Kruskal-Wallis test determined that the algorithm’s estimates differed significantly between

the workload conditions for overall workload and each workload component.

Table 3.68: Emulated Real-World Conditions: Algorithm Estimated and Modeled Work-
load Descriptive Statistics.

Workload Algorithm UL NL OL χ2

Auditory Model 1.16 (2.05) 2.14 (1.4) 4.02 (1.14) 67.5*
Algorithm 1.89 (2.1) 2.26 (1.4) 3.58 (1.14) 30.7*

Cognitive Model 1.40 (0.72) 8.29 (3.01) 22.03 (0.89) 81.2*
Algorithm 2.05 (1.64) 8.70 (3.76) 21.16 (2.14) 79.0*

Physical Model 0.14 (0.28) 4.29 (2.39) 11.73 (0.55) 78.6*
Algorithm 0.76 (0.88) 4.61 (2.97) 11.49 (1.30) 77.3*

Speech Model 0.32 (0.69) 0.75 (0.72) 0.96 (0.55) 33.0*
Algorithm 0.07 (0.49) 0.29 (0.93) 0.79 (1.4) 33.0*

Overall Model 5.61 (2.37) 26.74 (9.2) 63.69 (3.13) 79.7*
Algorithm 7.38 (2.67) 27.14 (9.7) 61.97 (4.0) 79.1*

The distinct differences between each workload condition, as seen in Table 3.68, indi-

cate that the algorithm may discriminate the conditions. The algorithm’s classification ac-

curacies by workload component and condition are provided in Table 3.69. The algorithm

classified cognitive, auditory, and overall workload for each workload condition correctly

at least 80% of the time. Physical workload was classified correctly at least 90% of the

time for the underload and overload conditions, but was only classified correctly 75% of

the time in the normal load condition. The underload classification accuracies for each

workload component besides cognitive workload were within 5% of the corresponding

workload generalizability classification accuracies (see Table 3.38). The normal cognitive,
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auditory, and physical workload accuracies were not within 5% of the workload general-

izability accuracies, but were within 10% and were above 80%. The overload accuracies

were within 5% of the workload generalizability accuracies for each workload component.

Table 3.69: Emulated Real-World Conditions: Algorithm’s Classification Accuracy (%) by
Workload Component and Condition. Delta (∆) from Workload Generalizability Results.
Note: Speech workload classification accuracies are not provided due to the trinary nature
of the IMPRINT Pro speech workload model

Workload UL NL OL ∆ UL ∆ NL ∆ OL
Cognitive 91.86 92.17 97.65 8.14 7.11 2.35
Auditory 90.80 84.10 88.4 0.77 5.92 3.61
Physical 96.21 76.00 96.43 3.35 10.67 3.57
Overall 95.29 93.11 99.89 4.71 6.72 0.11

Table 3.70: Emulated Real-World Conditions: Pearson’s Correlation Coefficients for
Within and Across Workload Conditions. Note: * Indicates p < 0.05.

Workload Within AcrossUL NL OL
Auditory 0.90* 0.60* 0.67* 0.81*
Cognitive 0.43* 0.71* 0.14* 0.96*
Physical 0.38* 0.77* 0.10* 0.95*
Speech 0.10* 0.09* 0.08* 0.16*
Overall 0.58* 0.86* 0.48* 0.99*

Analysis of the Pearson’s Correlation Coefficients between the algorithm’s estimates

and the corresponding IMPRINT Pro workload models determined the algorithm’s ability

to track workload variations within and across workload conditions, the correlation coeffi-

cients are presented in Table 3.70. Each correlation was positive and significant for each

workload component and condition. The speech workload estimates were weakly corre-

lated with the IMPRINT Pro workload models, which is again attributed to the trinary

nature of the workload models. Smaller correlation coefficients tended to be produced in

the overload condition in respect to the correlations for the same workload component.
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3.6.5 Discussion

Humans transition between workload states in real-world domains, which requires the

algorithm to accurately capture such transitions. Hypothesis HWL
4 focused on the algo-

rithm’s ability to classify workload under emulated real-world conditions and stated that

the algorithm’s classification accuracy for each workload component will be within 5% of

the workload generalizability classification accuracies. The hypothesis was supported for

all workload components, except cognitive for the underload condition, and for all com-

ponents for the overload condition. The hypothesis was not supported for the normal load

condition.

There is a delay between when a workload transition begins and when the algorithm’s

estimates reflect that particular transition. The delay appears to be approximately fifteen

seconds when workload changes from a higher state to a lower state (e.g., overload to

underload). However, the delay is less than ten seconds when the change transitions from a

lower workload state to a higher state. These delays are due to the moving window size and

the physiological response time. A thirty second window size was used based on relevant

literature, but performance may increase if a different window size is used (see Appendix

B.).

3.7 Peer-Based Evaluation Experimental Design

The peer-based evaluation analyzed differences in workload and task performance in

human-robot peer-based teams [44, 49], where the evaluation was conducted by a prior

PhD student: Caroline Harriott. The experimental design is repeated here for complete-

ness, prior to presenting the algorithmic analysis. The peer-based evaluation results were

suitable for analysis of the workload assessment algorithm. The peer-based evaluation sce-

nario required training the participants as a civil support team member, and focused on

identifying suspicious items, searching for hazardous materials, and collecting samples of
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both liquid and solid hazardous materials. The tasks were ordered in the general order of

response steps to a disaster event and partnered a robot with a human [58].

The repeated measures design used the responder partner (human and robot) and the

tasks as within-subjects elements. The participants completed four tasks with both a human

partner (H-H) and a robot partner (H-R). Two sessions were completed, one with each

partner, in which, all four tasks were completed.

3.7.1 Environment

All tasks were located close to one another on the same floor of an academic building

at Vanderbilt University. Training took place in a small office with minimal distractions, in

which the photo search task also occurred. The item search task occurred in the hallway

where random people were able to walk through the environment. Sound traveled into the

area from nearby offices, classrooms, and laboratories. The solid contaminant sampling

task occurred in an engineering laboratory, isolated from foot traffic, and contained engi-

neering equipment, lab benches, tables and tools. The liquid contaminant sampling task

occurred in a virtual reality laboratory with two tables on which the task area was focused.

3.7.2 Apparatus

During the H-H condition, a second experimenter acted as the human teammate. A

script dictated the verbal interactions between the participant and experimenter. The same

male experimenter, who wore a reflective vest, was partnered with all participants.

Participants were instructed that the robot moved and spoke autonomously. The Pioneer

3-DX robot partner’s navigation was controlled by an experimenter using line of sight tele-

operation and a web-cam streaming video to the experimenter’s laptop, unbeknownst to the

participants. The robot spoke using a digital voice through on-board speakers. Participants

donned a wireless microphone headset to amplify their voices when communicating with

the robot. The same experimenter that controlled the robot, heard participant questions and
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responses, and used this knowledge to advance the robot’s pre-programmed speech script.

The robot’s speech script was identical to the H-H condition’s verbal script. When partic-

ipants asked questions, the experimenter chose from a set of pre-programmed responses,

repeated the robot’s last statement, or wrote in a custom response.

3.7.3 Procedure

Participants completed the evaluation sessions (H-H and H-R) on different days. The

mean days between participant sessions was 13.25 (St. Dev. = 10.77), where some second

sessions were delayed due to cancellations and scheduling restrictions.

Upon arrival for the first session, participants completed a consent form and demo-

graphic questionnaire. The participants received an evaluation task briefing and were

shown a 3 minute 40 second training video. Participants donned the Bioharness heart rate

monitor, a Looxcie wearable video camera, the Shure microphone headset, a walkie talkie

with ear piece, the Fitbit activity monitor, the Scosche Rhythm+ heart rate monitor, and

a reflective vest. Participants were introduced to the responder partner, either human or

robot, and began the first task, the photo search task.

The photo search task required identifying suspicious items in photographs of an area

taken by a surveillance team. The participant was told that a team of robots previously

entered the building to photograph rooms and areas that may contain victims, hazardous

chemicals, suspicious items, or nothing to investigate. The participant used an Google

Nexus 7 tablet computer running the Android mobile operating system to view, search,

and edit the photographs. The incident commander, a remotely located experimenter, was

responsible for sending photograph folders to the participant’s tablet and notes from the

investigation team to the responder.

The small office space included two adjacent tables and two chairs. During the H-H

teaming condition, the human partner sat at the table on the right, while the participant sat

at the table to the left. During the H-R teaming condition, the robot drove to a spot near the
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Figure 3.4: Post-edited Photograph

table on the right. Participants held the tablet during the task without constraint. No stand

was used to prop the tablet on the table. The participant was able to swivel the chair to face

the partner, but no movement outside of controlling the tablet was required.

The participant’s tablet computer received the transmitted folders of photographs via

a document sharing service, Box. Periodically, new folders containing three photographs

each, appeared to be investigated. Once the participant reviewed the photograph and iden-

tified something suspicious, it was their job to edit the photograph in the photo-editing

application, Aviary, by circling the item or adding a note to describe why the item must be

investigated by a follow-up team. An instruction sheet provided information regarding how

to use Box and perform the Aviary photo-editing steps.

Participants performed a training session using test photographs prior to starting the

fifteen minute task and used the instruction sheet to learn how to use the tablet, Box appli-

cation, and photo-editing system without time pressure. The participant took as long as he

or she desired to train on three test photos and to ask questions during the training.

Once the fifteen minute task began, two sets of three photographs were searched during
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the low workload condition and four sets of three photographs were searched during the

high workload condition. The photographs in each folder showed different angled perspec-

tives of rooms, that included areas of the building in which the evaluation took place, such

as study areas, classrooms, and a computer laboratory. The folders were presented in the

same order for all participants within a workload condition, but different and comparable

sets of photographs were used for the H-H and H-R sessions. An example photograph with

post-participant annotations is provided in Figure 3.4.

A remotely located evaluator uploaded the photographs to the participant’s folder at

predefined times. During both workload conditions, the first photo set was uploaded im-

mediately before the task began. During the low workload condition, the second set of

photographs was uploaded seven minutes and thirty seconds into the task, while in the high

workload condition, the four folders arrived every three minutes and forty-five seconds.

Some participants took longer to finish examining the folders. If a participant was not

finished with Folder 1 by the time Folder 2 arrived, they simply opened Folder 2 when

they finished Folder 1. If the team finished evaluating Folder 1 before Folder 2 arrived, the

responder explained that the incident commander uploads folders as soon as photographs

become available. An audible beep tone was used (the same tone in all tasks) to indicate

when a new folder arrived. Teams viewed the photographs individually; thus, the beeps

indicated time pressure for teams that were completing the task slowly. The teams who

finished before the next folder arrived were able to know precisely when the new folder

arrived and start the investigation immediately.

Figure 3.5: Participant performing the item
search task.

The second task, the item search task,

required conducting an exhaustive search

of an environment for potentially haz-

ardous items, while gathering environmen-

tal context and air samples. The goal was to

identify all hazardous items, while search-
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ing as much of the assigned area within the time limit. The participant’s role was to locate

and photograph the items. The participants wore equipment to simulate personal protective

equipment, including safety gloves, goggles, a dust mask, and a 10-pound backpack. The

dust mask and backpack represented a civil support team’s re-breather. The participant in

Figure 3.5 is wearing the backpack, dust mask, goggles, and gloves.

This higher physical activity task involved walking around a hallway. The participants

searched areas above the robot’s sensors’ field of view, while the human or robot partner

scanned for hazards near the ground, collected air samples, and alerted the participant if any

hazards or high air samples were detected. The team collaborated by discussing whether

the detected items were suspicious.

Four items were investigated in the low workload condition, while eight items were

investigated in the high workload condition. Each item investigated in the first session

was identical, regardless of the participant’s partner. A similar item set, placed in different

locations in the same environment, was used for all participants during the second session,

independent of the assigned partner. The first session items are depicted in Figure 3.6,

where the starred items were only used in high workload tasks. The second session’s items

are depicted in Figure 3.7 with the same denotation for the additional high workload items.

Figure 3.6: The first session item search task items. Starred items (*) were only used in
the high workload condition. From top left, clockwise: a pipe bomb, cryptic note, bag with
gloves and dust mask, hazardous liquid, suspiciously marked map of Vanderbilt campus,
papers regarding C4 explosive use, box of advertisements (not suspicious), and a cardboard
box filled with wires and suspicious material.
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Figure 3.7: The search task’s second session items. Starred items (*) represent the high
workload condition. From top left, clockwise: suspiciously marked map of Nashville,
suspicious liquid in spray bottle, cryptic note, bag filled with batteries and nails, papers
instructing the fabrication of pipe bombs, pipe bomb, box with gloves suspicious envelope
with white powder, and bubble wrap (not suspicious).

Either teammate determined whether the team needed to stop to investigate an item,

though the responder teammate only did so when the participant missed an item that re-

quired investigation.

During the task, the responder paused the search in order to send current information

to incident command and waited for a response indicating approval to continue the search.

Incident command’s messages were indicated with an audible beep at pre-defined times

(i.e., 3:45, 7:30, 11:15, and 15:00). Teams completed the investigation in varying time

lengths; thus, the beep created time pressure for the slower teams. The teams who finished

before the next message arrived were able to know when the new notification was received.

The solid contaminant sampling task, the third task, required collecting samples from

potentially hazardous solids in a room. The participant donned safety gloves and goggles.

This task had a lower physical activity level, because the items were in close proximity and

the participant did not wear the weighted backpack. The participants collected samples of

the solids stored in various containers using a sterile collection kit by following guidelines

audibly provided by the responder partner. These guidelines included detailed procedures

that required strict compliance for maintaining safe and sterile sampling procedures. These

evaluation steps were based on published government standards for the bulk sample collec-
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tion of visible powders and suspected biological agents [61]. The partner indicated which

solid to sample based on a message from the incident commander.

Figure 3.8: An H-R team sampling solid con-
taminants.

The partner provided hazard collec-

tion instructions and requested information

from the participant regarding each poten-

tial hazard. Figure 3.8 depicts a participant

completing this task.

The team entered the room with hazards

visible on a table. The hazards were con-

tainers (e.g., clear plastic storage container,

glass jar, and a film canister) filled with unknown, colored solids (colored sand and baby

powder). The participants used sampling kits, transported in a large gardening wagon, to

collect small samples from subset of the hazards in the order requested by the incident com-

mander. Each kit contained two sandwich-sized zip-lock plastic bags, one 4-ounce glass

sample jar, one stainless steel scoopula, and one alcohol wipe, all placed in a gallon-sized

storage bag and wrapped in a diaper to maintain sterility and protection from breakage.

The wagon contained mailing labels to seal the bags and one permanent marker for writing

the time on the seal. The participants were free to move the wagon, which was stationed at

the room’s entrance in the same place for each session.

Two samples were assigned in the low workload condition, and four samples were

assigned in the high workload condition. The collection steps are presented in Figure 3.9.

The messages regarding additional samples were marked by an audible beep., which added

time pressure for slower teams.

The liquid contaminant sampling task required following hazardous material sample

collection procedures that dictate conducting the collection from the least hazardous mate-

rials to the most hazardous materials [61]. The participants sampled liquids, while wearing

safety gloves, goggles, a dust mask, and the 10-pound weighted backpack, simulating the
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Figure 3.9: The steps completed for each contaminant sample collected in the solid con-
taminant sampling task.

cumbersome personal protective gear (see Figure 3.5). This task had higher physical ac-

tivity, as it required walking around a larger laboratory space between the samples, and

wearing the backpack. The gloves and mask added extra physical workload by increasing

the task difficulty, such as opening plastic bags.

The sampling steps were similar to the solid contaminant sampling task. The highly

structured protocol, based on government requirements, ensured sterile and safe collection

of the “toxic liquid hazards”. The partner provided these structured guidelines and gathered

information from the participant.

The participants entered the room with two tables, each with containers (e.g., sports

water bottle, glass jar, Pepsi bottle) containing liquids (water dyed with various hues of

food coloring). Nine containers were set out for all tasks in the same configuration for each

evaluation during both sessions. The first session assigned a different subset of the nine

containers than the second session.

The collection kits contained two sandwich-sized zip-lock plastic bags, one four-ounce

glass sample jar, one plastic pipette, one drop cloth cut from plastic sheeting (approximately

2 feet by 1 foot), and one alcohol wipe. The drop cloth was placed under the sampling area

to catch potential spillage. The kits were stored in a gallon-sized plastic bag and wrapped

in a diaper to maintain sterility and protection from breakage. The kits were stored in the
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gardening wagon stationed near the room’s entrance. The wagon also held the mailing

labels for sealing the sample and a marker for labeling it. The participants were able to

move the wagon at their discretion.

Figure 3.10: The steps completed for each liquid contaminant sample.

The liquid contaminant collection steps are presented in Figure 3.10. The participant

and responder roles were similar to that in the solid contaminant sampling task. Two sam-

ples were assigned in the low workload condition, while four samples were assigned in the

high workload condition. Beeps indicated when a new sample request arrived and added

time pressure to slower teams.

After all four tasks, the participants returned for the second session, completing a ques-

tionnaire regarding their prior night’s sleep, donning the equipment, and completing the

evaluation in the identical task order as the first session, independent of responder partner.

3.7.4 Workload Modeling

The IMPRINT Pro workload models for the peer-based evaluation were developed by

the prior PhD Student [44, 45] in a similar manner to the approach described in Chapter

3.4.4.
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3.7.5 Participants

The eighteen participants completed the evaluation. Four male and five female partic-

ipants worked with the human partner first (human partner first group) and five male and

four female participants were paired with the robot first (robot partner first group).

The mean age of the human partner first group was 22.63 (St. Dev. = 6.16), with a

range from 18 to 39, and the robot first group mean age was 21.89 (St. Dev. = 5.04), with a

range from 18 to 34. The human partner first group rated their search and rescue experience

on a Likert scale from 1 (little or no experience) to 9 (very experienced) as a median of 1,

with a range from 1 to 9, while the robot partner first group rated their experience with a

median of 4.5 with a range from 1 to 7. The human partner first group rated their robotics

experience on the same scale as a median of 1, with a range from 1 to 9, while the robot

partner first group rated their experience as a median of 3 with a range from 1 to 8. No

significant difference existed between the two groups.

The human partner first group slept a median of 6.5 hours (range: 3 to 8) the night

before their first session, while the robot partner first group slept 8 hours (range: 7 to 10)

and slept significantly more hours, (Wilcox test, U = 8.5, p = 0.012). The human partner

first group was awake for a median of 7.13 hours (range: 1 to 12.5) before the first session,

while the robot partner first group was awake for 7.63 hours (range: 0.25 to 12.45). No

significant differences existed.

The human partner first group slept a median of 6 hours (range: 3 to 9) the night before

their second session, while the robot partner first group slept 7.5 hours (range: 3 to 9). The

human partner first group was awake for a median of 8 hours (range: 5 to 13) before the

second session, while the robot partner first group was awake for 8 hours (range: 2 to 10).

No significant difference existed.
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3.7.6 Metrics

The objective metrics included physiological responses (i.e., heart rate, respiration rate,

heart rate variability, vector magnitude, steps taken), performance measures (i.e., subtask

time, primary task response time, primary task reaction time, primary task failure rate,

secondary task failure rate, a memory recall task), and the calculation of task density. The

NASA-TLX and In-Situ workload ratings were collected for each task. An overview of the

metrics collected during the peer-based evaluation is provided in Table 3.71. These metrics

are not analyzed in this dissertation, as they have been validated previously [44].

Table 3.71: The Objective and Subjective Metrics for the Peer-Based Evaluation.

Metric Type Metric

Algorithm

Heart-Rate
Heart-Rate Variability
Respiration-Rate
Posture
Noise Level
Speech-Rate
Pitch
Voice Intensity

Other Objective

Skin Temperature
Body Activity
Steps Taken
Vector Magnitude
Task Density
Subtask time
Primary Task Response Time
Primary Task Failure Rate
Secondary Task Failure Rate
Memory Recall Task

Subjective
In-Situ Workload Ratings
NASA-TLX

The participants were assigned a secondary task to monitor a walkie-talkie for incom-

ing messages from the Incident Commander for their team, Team 10. An example of a

message was, “Incident Command to Team 10: there is a suspicious person running south

on Anderson Road.” The participant was responsible for recognizing that the message was
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directed at Team 10, and repeating it to his or her partner when the communication arrived.

The failure rate counted each time the participant did not report the message to his or her

partner, and a partial failure was identified when the participant was able to respond to the

Team 10 message, but relayed the message content incorrectly. During low workload tasks,

there were eight total messages; two messages were for Team 10. During high workload

tasks, six of the twenty-four messages were directed to Team 10.

3.8 Human-Robot Teaming Generalizability Analysis

Three different data sets were used to train separately the algorithm for the human-

robot teaming generalizability analysis, resulting in three trained algorithm variants: the

peer-based evaluation’s data (PEER), the supervisory-based evaluation’s data (SUP), and

a combination of both evaluations’ data (BOTH). The PEER data set consisted of twelve

participants from only the human-robot teaming condition, (70% of the peer-based human-

robot data), and the SUP data-set consists of fourteen participants, (50% of the supervisory-

based data from day 1). The participants for each set were chosen at random. The number

of participants differed due to equating the total number of data points used to train the

algorithm variants, as more training data potentially increases performance and creates an

unbalanced comparison. The BOTH data set aggregated the PEER and SUP data sets,

which allowed for determining if a single trained algorithm may be used in both teaming

paradigms.

Each trained algorithm was evaluated using the respective test data set, which included

four peer evaluation participants, (30% of the peer-based data), and six supervisory evalua-

tion participants, (16% of the supervisory-based data). The workload assessment algorithm

was also trained on twenty supervisory-based participants and tested on the other ten par-

ticipants, creating a 70/30 split for training and testing datasets.

Classification accuracy determines how well the workload assessment algorithm dis-

criminates between workload conditions and generalizes across populations. The thresh-
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olds to determine the pariticipant’s workload state are provided in Table 3.72. Hypothesis

HWL
5 predicted that the algorithm will correctly classify workload states for each workload

component and overall workload at least 80% of the time. This hypothesis tested the al-

gorithm’s population generalizability, as the testing set contains data from participants that

are not in the training set. Classification accuracy is used to examine the algorithm’s ability

to generalize across human-robot teaming paradigms; however, it is expected that accuracy

will decrease when the algorithm is not trained on the teaming relationship specific data.

Thus, hypothesis HWL
6 predicted that the algorithm will correctly classify workload states

for each workload component and overall workload at least 70% of the time, when not

trained on the human-robot teaming relationship’s specific data. The algorithm’s ability to

track workload shifts is an important factor for workload prediction and estimation, partic-

ularly for a system intended to adapt to the human’s current and projected workload state.

Hypothesis HWL
7 predicted that the algorithm’s estimates will positively and significantly

correlate with the IMPRINT Pro workload models, as a positive significant correlation in-

dicates tracking of a workload shift.

Table 3.72: Model Ranges and Thresholds by Workload Condition and Component, Eval-
uation, and Overall Workload. Note: UL = Underload, NL = Normal Load, OL = Overload.

Evaluation Condition Cognitive Physical Auditory Overall

Peer
Low (L) 0.00 - 9.35 0.00 - 11.71 - 0.00 - 32.25
High (H) 0.46 - 8.78 0.93 - 11.77 - 10.97 - 30.35

Threshold L-H 4.39 5.88 - 16.12

Supervisory
UL 1.00 - 2.03 0.00 - 0.70 0.00 - 6.00 4.00 - 9.27
NL 4.93 - 11.63 4.04 - 6.86 0.00 - 6.00 13.80 - 39.19
OL 21.20 - 22.76 11.20 - 12.50 0.00 - 6.00 59.20 - 66.81

Threshold UL-NL 3.48 2.37 1.5 11.53
NL-UL 16.42 9.03 2.9 49.20

The results for the three algorithm variants (SUP, PEER, BOTH) are presented by

teaming evaluation. Only cognitive, physical, speech, and overall workload estimates were

analyzed, as the peer-based evaluation did not capture workload metrics sensitive to audi-
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tory workload.

3.8.1 Peer-Based Evaluation Results

The peer-based evaluation contains low and high workload conditions. The IMPRINT

Pro’s modeled workload values and the algorithms’ estimates for each workload condi-

tion are presented in Table 3.73. The PEER and BOTH trained algorithms’ estimates are

within a standard deviation of the IMPRINT Pro workload model values for each workload

component. The SUP algorithm generally overestimated workload, due to the supervisory

workload model values having a wider range, from minimum to maximum. The Kruskal-

Wallis test determined that each trained algorithm’s workload estimates significantly dif-

fered between workload conditions, except for the SUP algorithm’s physical workload es-

timates.

Table 3.73: Workload Modeled and Algorithm Estimated Value’s Descriptive and
Kruskall-Wallis Statistics for the Peer Evaluation. Note: * Indicates P < 0.001.

Workload Training Workload Condition
Low High χ2

Cognitive

Model 3.58 (2.84) 6.14 (1.59) 61.75*
SUP 9.27 (7.76) 14.38 (7.85) 49.12*

PEER 3.77 (2.82) 5.95 (1.40) 35.92*
BOTH 4.33 (3.22) 7.74 (3.62) 59.75*

Physical

Model 4.17 (2.63) 5.56 (2.14) 17.85*
SUP 7.07 (4.93) 8.55 (3.34) 2.44

PEER 4.28 (2.50) 5.35 (1.89) 10.94*
BOTH 4.36 (2.54) 5.95 (2.02) 22.58*

Speech

Model 1.09 (0.91) 0.98 (0.67) 17.85*
SUP 0.78 (1.4) 1.05 (1.5)) 10.94*

PEER 0.77 (1.4) 0.95 (1.5) 10.94*
BOTH 0.72 (1.3) 1.19 (1.6) 10.94*

Overall

Model 14.33 (7.83) 21.31 (3.36) 56.26*
SUP 25.24 (16.56) 32.86 (8.99) 45.24*

PEER 14.64 (7.62) 21.31 (3.24) 45.60*
BOTH 15.27 (7.61) 20.35 (2.92) 76.86*

A workload assessment algorithm must be able to detect various workload states in or-
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der to be viable for adaptive teaming systems. The algorithms’ classification accuracy for

low and high workload conditions is presented in Table 3.74. The PEER trained algorithm

achieves > 90% classification accuracy for each workload component. The BOTH and

SUP algorithms classify cognitive and overall workload correctly at least 80% of the time,

but both algorithms achieve lower physical workload accuracy. The SUP algorithm’s phys-

ical workload accuracy is < 70%, due to the algorithm receiving no prior training on the

peer-based data. There is a negligible difference between the PEER and BOTH trained

algorithms when classifying overall workload. It is interesting that the PEER algorithm

achieves the lowest cognitive workload accuracy for the high workload condition, which

is due to the PEER algorithm underestimating high cognitive workload. Underestimat-

ing high workload conditions means that the algorithm’s estimates will be closer to the

threshold between low and high workload, which decreases the classification accuracy.

Table 3.74: Classification Accuracy (%) for the Peer Evaluation.

Workload Training Workload Condition
Low High

Cognitive
SUP 80.58 95.79

PEER 97.05 94.52
BOTH 92.12 98.31

Physical
SUP 67.90 58.88

PEER 90.50 90.35
BOTH 83.78 79.00

Overall
SUP 84.27 96.60

PEER 94.78 96.55
BOTH 93.84 97.04

Bold represents highest accuracy per column
Note: Speech workload accuracy is not shown

The peer evaluation workload conditions can be decomposed by task (T 1− T 4) and

workload condition (L or H). The classification accuracy by peer evaluation task and work-

load condition is provided in Table 3.75. The PEER algorithm achieves the highest physi-

cal workload classification accuracy for each task-workload condition pair, while achieving

the highest classification accuracy for six of the cognitive workload task-workload condi-
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tion pairs and seven of the overall workload task-workload condition pairs. The BOTH

algorithm achieves the second highest classification accuracy for each workload compo-

nent, which is expected. The PEER and BOTH trained algorithms achieve > 80% accu-

racy when classifying cognitive or overall workload, with a negligible difference between

the algorithms’ overall workload classification accuracy for five tasks. The SUP algorithm

achieves > 80% accuracy for six of the cognitive and all overall task-workload condition

pairs. The SUP algorithm has poor physical workload classification.

Table 3.75: Classification Accuracy (%) by Peer-based Task.

Workload Training Peer Evaluation Task
T 1L T 1H T 2L T 2H T 3L T 3H T 4L T 4H

Cognitive
SUP 93 89 84 96 71 96 72 100
PEER 100 93 95 94 96 100 96 89
BOTH 98 93 92 100 86 100 90 100

Physical
SUP 78 60 61 38 65 61 64 70
PEER 96 78 93 89 88 100 82 93
BOTH 96 68 88 71 78 83 71 91

Overall
SUP 94 89 89 96 77 100 75 100
PEER 98 93 92 92 88 100 100 100
BOTH 98 93 92 98 84 96 100 100

Note: Speech workload accuracy is not shown

Table 3.76: Peer Evaluation Correlation Coefficients for Within and Across Workload
Conditions.

Workload Training Within Across
Low High

Cognitive
SUP 0.73* 0.58* 0.73*

PEER 0.95* 0.85* 0.94*
BOTH 0.79* 0.55* 0.74*

Physical
SUP 0.80* 0.63* 0.74*

PEER 0.91* 0.92* 0.92*
BOTH 0.87* 0.64* 0.79*

Speech
SUP 0.01 0.02 0.00

PEER 0.09* 0.10* 0.09*
BOTH -0.15* 0.12 -0.07

Overall
SUP 0.84* 0.54* 0.82*

PEER 0.97* 0.91* 0.97*
BOTH 0.93* 0.44* 0.83*
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The algorithms’ tracking of workload shifts is analyzed using the Pearson’s Correlation

Coefficient. The correlation coefficients between the algorithms’ estimates and workload

models within and across the workload conditions for the entire evaluation are presented

in Table 3.76. The Across column shows that each trained algorithm produced signifi-

cant correlations across workload conditions, meaning that each algorithm can track large

workload shifts (e.g., a shift from low to high workload). The significant correlations in

the Within columns indicate that each algorithm can also track small workload shifts (i.e.,

a change in workload within the low workload condition). The PEER trained algorithm

produced the highest correlations, followed by the BOTH algorithm.

It is not surprising that the PEER trained algorithm produced the best results. The

BOTH algorithm also achieved high performance, even when incorporating the supervi-

sory training data. The SUP algorithm performance is acceptable for the cognitive and

overall workload assessments, but is unable to accurately assess physical workload.

3.8.2 Supervisory-Based Evaluation Results

The IMPRINT Pro modeled workload values and the algorithms’ estimates for each

supervisory condition (underload (UL), normal load (NL), and overload (OL)) are pre-

sented in Table 3.77. The SUP and BOTH trained algorithms’ estimates are within one

standard deviation of each IMPRINT Pro workload model for each workload component.

The PEER trained algorithm overestimates the underload condition and underestimates the

normal load and overload conditions for each workload component. The Kruskal-Wallis

test determined that the algorithms’ estimates significantly differed between conditions for

each workload component.

The workload assessment algorithm was designed to classify various workload levels.

The algorithms’ supervisory classification accuracies are presented in Table 3.78. Each

trained algorithm achieves a 100% classification accuracy for the underload condition and

has≥ 85% accuracy for the normal load condition for each workload component. The SUP
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Table 3.77: Workload Modeled and Algorithm Estimated Descriptive Statistics and
Kruskal-Wallis for the Supervisory Evaluation.

Workload Training Workload Condition
UL NL OL χ2

Cognitive

Model 1.43 (0.72) 8.19 (2.52) 21.93 (0.79) 80.7*
SUP 1.19 (1.85) 8.02 (3.57) 21.28 (2.16) 80.4*

PEER 2.35 (0.11) 5.52 (1.09) 6.95 (0.03) 76.57*
BOTH 0.46 (0.43) 7.68 (2.52) 20.22 (1.68) 78.91*

Physical

Model 0.11 (0.24) 4.30 (2.13) 11.73 (0.57) 80.4*
SUP 0.53 (1.08) 4.30 (2.57) 11.30 (0.82) 79.2*

PEER 0.18 (0.45) 3.38 (1.22) 3.91 (0.07) 58.75*
BOTH 0.25 (0.59) 4.53 (2.15) 11.18 (0.68) 77.23*

Speech

Model 0.41 (0.72) 0.61 (0.61) 0.95 (0.59) 63.0*
SUP 0.12 (0.61) 0.39 (1.06) 0.85 (1.44) 80.46*

PEER 0.10 (0.44) 0.28 (0.74) 0.58 (0.96) 58.75*
BOTH 0.11 (0.69) 0.31 (1.11) 0.69 (1.59) 77.23*

Overall

Model 4.53 (1.97) 27.21 (9.36) 63.19 (4.73) 80.00*
SUP 4.04 (0.91) 27.66 (6.08) 63.25 (1.39) 79.12*

PEER 5.87 (0.85) 23.19 (4.56) 40.01 (1.15) 79.12*
BOTH 4.05 (1.30) 26.51 (5.64) 60.66 (2.58) 79.12*

and BOTH algorithms achieve ≥ 90% classification accuracy for the overload condition,

while the PEER algorithm is unable to classify the condition due to the PEER training

data’s maximum value being lower than the threshold (49.20, Table 3.36) between the nor-

mal load-overload task condition pair. The supervisory evaluation cannot be easily decom-

posed into separate tasks that permits analysis of the individual tasks for the classification

accuracy; thus, such results are not presented.

The algorithms’ ability to track workload shifts is analyzed using the Pearson’s corre-

lation coefficient analysis. The correlations for within and across workload conditions are

presented in Table 3.79. The significant correlations in the Across column indicate that the

algorithms can track large workload shifts; however, each trained algorithm has difficulty

tracking small workload shifts in the underload and overload conditions for the cognitive

workload component. The negative cognitive workload correlations are due to the static

nature of the IMPRINT Pro workload models. A human’s physiological signals typically
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Table 3.78: Classification Accuracy (%) for the Supervisory Eval.

Workload Training Workload Condition
UL NL OL

Cognitive
SUP 100 93.74 100

PEER 100 89.37 0
BOTH 100 94.96 98.33

Physical
SUP 100 95.53 100

PEER 100 96.64 0
BOTH 100 93.85 100

Overall
SUP 100 100 100

PEER 100 100 0
BOTH 100 100 100

oscillate, resulting in oscillating workload estimates; thus, the estimates oscillate around

the static workload model values, resulting in negative correlations.

Table 3.79: Supervisory Evaluation’s Correlations for Within and Across Workload Con-
ditions.

Workload Training Within Across
UL NL OL

Cognitive
SUP -0.07 0.45* -0.04 0.99*

PEER -0.59* -0.02 -0.44 0.86*
BOTH 0.16 0.17 0.67* 0.97*

Physical
SUP 0.92* 0.85* 0.19 0.98*

PEER 0.91* 0.86* 0.65* 0.83*
BOTH 0.91* 0.84* 0.02 0.98*

Speech
SUP 0.10* 0.09* 0.08* 0.16*

PEER 0.06* 0.08* 0.03 0.11*
BOTH 0.10* 0.12* 0.02 0.15*

Overall
SUP 0.96* 0.89* 0.53* 0.99*

PEER 0.95* 0.93* 0.96* 0.98*
BOTH 0.83* 0.84* 0.79* 0.99*

The SUP algorithm achieved the highest performance, followed by the BOTH algo-

rithm for the supervisory-based relationship. The PEER algorithm performs well, except

when classifying the overload state.
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3.8.3 Human-Robot Teaming Generalizability Discussion

Real-world dynamic domains, such as first response, contain multiple tasks with vary-

ing workload compositions. It is essential that a workload assessment algorithm classify

workload for each task within the domain in order to be viable in real-world dynamic

domains, which requires assessing overall workload and each workload component. The

state-of-the-art algorithms typically only assess cognitive workload [50]; thus, limiting the

algorithms to cognitively focused tasks. The presented workload assessment algorithm

overcomes this limitation by estimating overall workload and each workload component.

HWL
5 evaluates the algorithms’ ability to classify cognitive, physical, and overall work-

load by stating that each algorithm will correctly classify workload states ≥ 80% of the

time when trained and tested on data from the same evaluation. The hypothesis was upheld

for the SUP and PEER algorithms, when the algorithms are classifying data from their

corresponding evaluation (i.e., the PEER algorithm classifying the peer evaluation’s data).

The hypothesis was not upheld for the BOTH algorithm for the peer evaluation’s physi-

cal workload component, which indicates that the supervisory data negatively impacts the

classification accuracy. However, the BOTH algorithm achieves a 79% physical workload

classification accuracy, which is slightly below the threshold.

The long term objective is to develop an adaptive workload system that generalizes

across human-robotic interaction paradigms; thus, HWL
6 evaluates the algorithms’ classi-

fication accuracy across interaction paradigms. The hypothesis was partially supported.

The peer evaluation’s SUP algorithm achieves >80% classification accuracy when classi-

fying cognitive and overall workload, but achieves poor classification for physical work-

load. Likewise, the supervisory evaluation’s PEER algorithm achieves high classification

accuracy for the underload and normal load conditions for overall workload and each work-

load component, but cannot classify the overload condition due to the peer training data’s

maximum value being below the threshold value separating the normal load and overload

conditions. A limitation is that the algorithm must be trained on a similar set of workload
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conditions in order to generalize across human-robotic interaction paradigms.

HWL
7 evaluated the ability to track workload shifts and was supported for all algorithms

when using the peer evaluation data set. The supervisory data set analysis only provided

partial support, as large workload shifts were tracked, but not small shifts in the under-

load and overload conditions. The underload and overload models are typically static (low

variance), due to limits on the models (e.g., the underload model cannot go below zero).

However, a human’s physiological signals can oscillate; thus, the algorithms’ estimates

fluctuate around the static models, resulting in low correlations.

The developed workload assessment algorithm typically achieves the highest accuracy

when using data from the same interaction paradigm. However, the BOTH algorithm that

incorporates an equal number of data points from both data sets does achieve the highest

accuracy in some cases, demonstrating the benefit of training using both datasets. The

BOTH algorithm’s high accuracy indicates the potential for using a single algorithm for

both types of tasks and interaction paradigms. However, it is uncertain how the algorithm

will perform in other human-robot interaction paradigms, beyond the evaluated paradigms.

3.9 Peer-Based Task Generalizability Analysis

It is important that a workload assessment algorithm generalizes across tasks within

a human-robot teaming paradigm, as it is infeasible to train an adaptive teaming system

on every task a human may complete within the teaming paradigm. Only data from the

peer-based evaluation was used to assess the algorithm’s task generalizability, as the super-

visory evaluation’s tasks are concurrent and not easily separated. The workload assessment

algorithm was cross-validated using a leave-one-task-out approach [12], which creates four

trained algorithms. Each algorithm was trained on three peer-based tasks using data from

all eighteen peer-based participants. The testing set was the data from all eighteen partic-

ipants for the peer-based task that was not used for training. Individual differences may

not affect the results, as data from each participant was used to train each algorithm. The
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thresholds for classifying the workload conditions are the same as Table 3.36.

It is expected that classification accuracy will decrease when the algorithm is not trained

on a specific peer-based task; thus, hypothesis HWL
8 predicts that the algorithm will cor-

rectly classify workload states for each workload component and overall workload at least

70% of the time when trained on three peer-based tasks and tested on the remaining task.

Although classification accuracy will decrease, it is expected that each trained algorithm

will track workload shifts for an unforeseen task. Hypothesis HWL
9 predicts that each

trained algorithm’s estimates will significantly and positively correlate with the IMPRINT

Pro workload models for each peer-based task.

3.9.1 Task Generalizability Results

Only the results for the algorithms’ performance on each testing set are presented. For

example, a result for T 1L represents task one as the testing set, where the algorithm was

trained on tasks two, three, and four. The algorithms’ estimates and model’s mean and

standard deviation’s are presented in Table 3.81. The algorithm underestimated cognitive

workload for the high workload tasks and overestimated physical workload for the low

workload tasks. The algorithm’s overall workload estimates were close to the model’s

values.

Correctly classifying workload for unforeseen tasks is essential to an adaptive teaming

system, as it is infeasible to collect data for all tasks. The algorithms’ classification accura-

cies by task and workload component are provided in Table 3.80. The algorithms correctly

classify workload ≥ 70%, except for T 4L, due to the PEER algorithm having low physical

workload classification accuracy.
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Table 3.80: Generalized Task Classification Accuracy (%) by Peer Task and Workload
Component.

Workload Peer Evaluation Task
T 1L T 1H T 2L T 2H T 3L T 3H T 4L T 4H

Cognitive 78.32 74.79 93.22 100.00 88.83 96.04 88.82 89.29
Physical 89.51 73.08 73.45 90.78 85.11 100.00 62.94 70.83
Overall 96.50 93.16 90.40 88.83 81.91 100.00 99.41 100.00
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Table 3.81: Generalized Task Estimates and Model Values by Peer Task, Cognitive, and Physical Workload.

Workload Training Peer Task
T 1L T 1H T 2L T 2H T 3L T 3H T 4L T 4H

Cognitive Model 3.61 (2.48) 5.79 (1.08) 1.78 (2.29) 5.26 (2.67) 3.85 (3.02) 6.49 (0.96) 3.67 (3.05) 6.49 (0.97)
Algorithm 3.03 (1.53) 4.36 (.54) 1.77 (2.16) 4.06 (2.12) 3.75 (1.52) 4.95 (0.34) 3.05 (2.09) 4.92 (0.55)

Physical Model 3.61 (2.48) 5.79 (1.08) 1.78 (2.29) 5.26 (2.67) 3.85 (3.02) 6.49 (0.96) 3.67 (3.05) 6.49 (0.97)
Algorithm 5.27 (3.59) 6.77 (1.74) 4.07 (2.82) 5.23 (0.87) 3.31 (2.74) 4.08 (1.96) 4.68 (2.4) 6.16 (1.35)

Speech Model 1.18 (0.70) 1.03 (0.64) 1.58 (0.67) 1.43 (0.77) 0.44 (0.55) 0.78 (0.55) 0.44 (0.55) 0.78 (0.55)
Algorithm 0.98 (1.51) 1.18 (1.54) 1.20 (1.59) 1.31 (1.61) 0.59 (1.27) 0.98 (1.50) 0.58 (1.25) 0.78 (1.40)

Overall Model 14.92 (7.12) 20.62 (3.07) 11.78 (2.29) 19.35 (3.47) 12.28 (9.5) 20.53 (2.83) 15.17 (9.61) 24.00 (2.94)
Algorithm 15.17 (6.11) 19.72 (1.80) 11.82 (5.57) 18.85 (2.07) 13.11 (7.31) 19.06 (1.81) 13.49 (8.41) 21.11 (1.36)
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The algorithm’s ability to track workload shifts for each task is analyzed using the

Pearson’s correlation coefficient, which are presented in Table 3.82. Each algorithms’ esti-

mates correlated significantly with each corresponding model, which demonstrates that the

algorithms’ estimates correctly reflects workload shifts for unforeseen tasks.

Table 3.82: Generalized Task Pearson’s Correlation Coefficients by Peer Task and Work-
load Component.

Workload Peer Evaluation Task
T 1L T 1H T 2L T 2H T 3L T 3H T 4L T 4H

Cognitive 0.95* 0.70* 0.97* 0.95* 0.82* 0.48* 0.82* 0.48*
Physical 0.98* 0.85* 0.41* 0.63* 0.80* 0.96* 0.64* 0.88*
Speech -0.11* 0.02 -0.19* 0.01 0.10* 0.09* 0.14* 0.01
Overall 0.98* 0.88* 0.89* 0.95* 0.96* 0.92* 0.96* 0.89*

3.9.2 Task Generalizability Discussion

A workload assessment algorithm’s ability to generalize across tasks within the same

human-robot teaming paradigm is essential for an adaptive teaming system, as it is difficult

to collect training data for each task within a paradigm. Hypothesis HWL
8 focused on eval-

uating the algorithm’s task generalizability and is supported for the cognitive and overall

workload classification. The hypothesis is only partially supported for physical workload

classification, as the algorithm fails to correctly classify physical workload for T 4L at least

70% of the time. This result is due to task T 4L substantially differing from the other peer-

based tasks. Partially supporting Hypothesis HWL
8 for physical workload classification is

not detrimental to the algorithm’s task generalizability, as the average physical workload

accuracy is above 70%. Further, none of the state-of-the-art workload assessment algo-

rithms generalize across tasks; thus, showing that the algorithm generalizes across tasks

for cognitive and overall workload, is a significant contribution.

The workload assessment algorithm’s estimates must accurately reflect a shift in work-

load regardless of the task, which represents hypothesis HWL
9 . This hypothesis is upheld,

as the algorithm’s estimates significantly correlate to the workload model values for each
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task. Having high confidence that a shift in the algorithm’s estimates correctly represents

a shift in workload allows an adaptive teaming system to better gauge the affect an adapta-

tion has on the human’s workload state. For example, if the human is overloaded and the

workload estimates show the workload level is decreasing appropriately, then the adaptive

system can be confident that there is no need for adaptation.

The task generalizability analysis demonstrates the workload assessment algorithm’s

ability to generalize across similar tasks for the PEER dataset. It is unclear if the algorithm

can generalize across tasks for other human-robot teaming domains or what happens if an

unforeseen task differs substantially from the tasks on which the algorithm was trained.

3.10 Summary

A workload assessment algorithm capable of estimating overall workload and its con-

tributing components (i.e., cognitive, physical, visual, auditory, and speech) was developed.

The algorithm used machine-learning techniques to estimate cognitive, physical, auditory,

and speech workload, while IMPRINT Pro workload models were used to estimate the vi-

sual workload component. Data from two human-robot teaming evaluations (supervisory-

based and peer-based) were used to train and validate the algorithm. Objective and sub-

jective data were analyzed from the supervisory-based evaluation in order to validate the

workload conditions experienced by the participants. The developed algorithm’s ability

to estimate workload for the supervisory-based and peer-based evaluations was analyzed,

while its ability to generalize across human-robot teaming paradigms and peer-based tasks

was also analyzed.

The results highlight that the algorithm achieves high classification accuracy when

trained and tested on data from the same human-robot teaming paradigm. Further, the

algorithm generalized across the participant populations within each human-robot teaming

evaluation. The algorithm’s task generalizability was analyzed using tasks from the peer-

based evaluation, which showed that the algorithm generalized across peer-based tasks
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for cognitive and overall workload estimation. The impact of training the algorithm on

multiple data sets was also analyzed by training the algorithm on two human-robot team-

ing data sets, where the results demonstrated that there is minimal negative impact on the

algorithm’s performance. Finally, the algorithm performed well in emulated real-world

conditions, where workload transitions rapidly between workload levels.

An adaptive teaming system designed to improve human-robot team performance may

use the developed algorithm to understand the human’s workload state and the associated

contributing factors. The system can have high confidence (≥ 80%) in the algorithm’s

workload state classifications, even with unknown users. This confidence in the workload

component classifications will allow the system to understand how an adaptation may affect

the human. Other state-of-the-art workload assessment algorithms do not provide workload

component information; thus, limiting their viability for an adaptive teaming system. The

developed algorithm is the first algorithm that provides information about each workload

component and the overall workload state.

The algorithm provided overall workload estimates, rather than just classifications,

which can be used by a system to trigger an adaptation that may prevent an underload or

overload workload state from occurring. These estimates correlated strongly with the cor-

responding IMPRINT Pro overall workload models, giving an adaptive system confidence

that a trend in the overall workload estimates reflects the human’s overall workload trend

accurately. There is less confidence in the workload component estimate trends in the un-

derload or overload conditions. This lower confidence is not detrimental to the algorithm’s

inclusion into an adaptive system, as the system can account for the lower confidence.

The algorithm had some difficulty estimating physical workload in general, relative to

the other workload components. This difficulty is due to posture magnitude and respiration-

rate being only somewhat sensitive to physical workload [50], while heart-rate is con-

founded by cognitive workload. The physical workload metrics may not be sensitive

enough to the fine-motor and tactile demands, which comprise the majority of the supervi-
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sory evaluation’s physical workload task components. There is little research related to the

incorporated workload metrics and their sensitivity to fine-motor and tactile demands, as

most research has focused on gross-motor demands [20, 22]. Additional workload metrics,

such as electromyography captured by a wearable device (i.e. the Myo device) may be

needed in order to capture the fine-motor and tactile task demands [95].

Another common theme was that the algorithm’s speech workload estimates did not

significantly correlate with the IMPRINT Pro workload models, which is attributed to the

workload model’s composition. The supervisory-based evaluation consisted primarily of

complex speech (as determined by IMPRINT Pro), as the response to air traffic control mes-

sages contained more than three words. Simple speech (1 to 2 words) occurred during the

in-situ workload ratings. Better algorithmic performance can be achieved by producing the

IMPRINT Pro complex speech workload value (4.0) when the participant is speaking and

zero in the absence of speech, but this approach limits the algorithm to scenarios that only

contain complex speech. Further, IMPRINT Pro’s three speech workload model values

may be insufficient for properly capturing the actual workload experienced by the partic-

ipant. Speech-rate and pitch varied across workload conditions [64], which demonstrated

that participants experienced multiple speech workload levels. Thus, a more sophisticated

speech workload model, rather than using IMPRINT Pro built-in model, may be neces-

sary to accurately reflect the participant’s expected workload. Developing such a model is

outside the scope of this dissertation.

The current workload assessment algorithm uses IMPRINT Pro workload models to es-

timate the visual workload component. Visual workload is difficult to estimate in dynamic

domains (e.g., first response), as eye-tracking metrics require known focus regions. Thus,

for real-world, dynamic domains, a visual workload model will continue to be used, at least

until appropriate technology is available.

Decomposing overall workload into its corresponding components may allow for better

adaptations, but the resulting components are not completely separable (e.g., an increase in
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auditory workload will result in an increase in cognitive workload). Additionally, relying

on physiological measures sensitive to multiple workload components may hinder algo-

rithm performance (e.g., is an increase in heart-rate due to cognitive or physical workload).

Thus, contextual features are needed to achieve high workload assessment algorithm per-

formance, as the features provide valuable insight into the task’s composition. If heart-rate

increases and contextual features show that the current task is mainly cognitive, then the

heart-rate increase is most likely due to cognitive workload, rather than physical workload.

The reliance on contextual features requires an activity recognition algorithm to be

used in conjunction with the developed workload assessment algorithm; thus, limiting the

algorithm to domains for which activity recognition is applicable. Additional workload

training data from multiple task domains may decrease the algorithm’s reliance on activity

recognition; however, it is expected that the workload algorithm will always need an ac-

tivity recognition algorithm, due to the nature of dynamic task domains. Future work as

discussed in Chapter VI, will investigate incorporating additional workload training data.

Diagnostically assessing workload is imperative for the adaptive teaming system, as

assessing overall workload and each workload component determines what distinct com-

ponents are contributing to the overall workload state, or simply why the human is in the

current workload state. Identifying the distinct contributing components permits targeted

adaptions to the components in order to normalize the workload state. An adaptation based

solely on the overall workload state cannot target a specific workload component; thus, the

adaptation may be ineffective (i.e., reallocating a task that is not a primary contributor to

the workload state). A diagnostic workload assessment permits projection of future interac-

tions or task allocations onto the human’s current workload state to determine and account

for the potential impact.
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Chapter 4

Real-Time Workload Assessment

The analysis in Chapter III demonstrated the developed workload assessment algo-

rithm’s ability to estimate workload in a post-hoc fashion. An adaptive teaming system

requires real-time workload estimates in order to adapt its interactions intelligently. Further,

the previous analysis focused on a stationary supervisory-based human-robot team; how-

ever, there are supervisory-based environments that require physical movement throughout

the task environment (e.g., a nuclear power-plant control room). This chapter details a

non-stationary evaluation, where human workload was assessed in real-time.

4.1 Real-Time Workload Assessment

The workload assessment algorithm described in Chapter 3.1 was used in real-time

to estimate overall workload and each workload component every five seconds. The IM-

PRINT Pro workload models were used to estimate the visual and speech components. The

real-time speech workload assessment was implemented for the adaptive teaming system

only (Chapter 5.2). Estimating workload every five seconds permits balancing the feature

extraction computational time and the minimum update rate required to determine how an

interaction occurs. Estimating workload too quickly increases computational time, while

estimating it too slowly may lead to a system adapting its interactions based on outdated

information.

4.1.1 Experimental Design

The within-subjects real-time workload assessment evaluation manipulated workload

(i.e., underload, normal load, and overload) as the independent variable. The dependent
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variables included physiological, performance, and subjective metrics. Participants com-

pleted one 52.5 minute trial using an adapted version of the NASA MATB-II, where the

trial consisted of seven consecutive 7.5 minute workload conditions. Three workload con-

dition orderings were used:

• UL-NL-OL-UL-OL-NL-UL

• NL-OL-UL-OL-NL-UL-NL

• OL-UL-OL-NL-UL-NL-OL

These orderings were chosen to ensure that each workload state transition (i.e., UL-NL,

OL-UL) occurred and the orderings mimic the orderings from the supervisory-based eval-

uation (Chapter 3.4). IMPRINT Pro was used to model each condition ordering prior to

conducting the evaluation.

4.1.2 Environment

The original NASA MATB-II required participants to remain stationary, but there are

supervisory-based environments that require movement throughout the environment (e..g,

a nuclear power-plant). Thus, the NASA MATB-II was adapted to require movement

throughout the task environment by physically separating each NASA MATB-II task. This

physical layout is depicted in Figures 4.1 and 4.2. Each NASA MATB-II task had a com-

puter monitor dedicated to a particular task, where the computer monitors were stationed

such that the participant was unable to visually see more than two tasks simultaneously.

This visual hindrance ensured that participants walked around the task environment, in-

stead of staying in one place. The required equipment (e.g., joystik or a keyboard) to

complete each task was placed in front of the respective computer monitor. The table sur-

faces were approximately 4 ft. from the floor. Each monitor was connected to a single

computer, which had a NVIDIA 1080 TI graphics card. Participants were free to tilt the

computer monitors up or down in order to accommodate height differences.
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Figure 4.1: Physical Layout of the Adapted NASA MATB-II

Figure 4.2: Real-Time Evaluation Task Environment.

The physically expanded version of the NASA MATB-II was coded using Python and

PyGame in order to have more control over the task environment. The same task parameters

(e.g., tank fuel rates) from the original NASA MATB-II were reimplemented. Information

regarding the fuel pumps’ rates and task scheduling was omitted in order to reduce the

142



visual screen clutter. Each computer monitor screen is depicted in Figure 4.3. The tasks

are explained in Chapter 3.4. The objects in each figure were drawn in PowerPoint in order

to improve object quality (e.g., thicker lines), rather than using pictures from the original

NASA MATB-II.

(a) Tracking (b) System Monitoring

(c) Resource Management (d) Communications

Figure 4.3: The NASA MATB-II Tasks

The evaluation occurred in an empty classroom on Oregon State University’s campus.

4.1.3 Workload Models

The workload models were developed in a similar manner to the process described in

Chapter 3.4.4. However, a few changes were required. First, there was inherent uncer-

tainty related to which tasks the participant will complete and when, as participants moved

around the task environment and can only complete two tasks simultaneously, given the

tasks’ physical proximities to one another. IMPRINT Pro provides tools for modeling this

uncertainty, which were used. Second, the participant’s gross motor (walking around the

task environment) was added to the IMRPRINT Pro models, where the walking was an-

chored to a gross motor value of 1.0. Lastly, instances of the communication task (Table
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3.3) were removed from the underload condition, as the communication requests may keep

participants vigilant, which was undesired.

The number of task instances per minute for each workload condition are provided in

Tables 4.1 - 4.3, which were the similar to the first 7.5 minutes of Tables 3.2 - 3.4.

Table 4.1: Number of Tasks Per Minute for the Underload Condition. Note: Vertical Bold
Line Designates when an In-Situ Workload Rating was assessed (7:00 minutes) and TRCK
= tracking, SYS = system management, COMM = communication, and RESP = response
to the communication

Task 0 1 2 3 4 5 6 7
TRCK 0 0 0 0 0 0 0 0
SYS 0 0 0 1 0 0 0 1
COM 0 0 0 0 0 0 0 0
RESP 0 0 0 0 0 0 0 0
Total 0 0 0 1 0 0 0 1

Table 4.2: Tasks Per Minute for the Normal Load Condition

Task 0 1 2 3 4 5 6 7
TRCK 1 1 0 1 0 1 1 0
SYSM 4 4 3 1 4 3 3 2
COM 2 2 1 2 0 0 1 1
RESP 1 2 0 1 0 0 1 1
Total 8 9 4 5 4 4 6 4

Table 4.3: Tasks Per Minute for the Overload Condition

Task 0 1 2 3 4 5 6 7
TRCK 1 1 1 1 1 1 1 1
SYSM 19 18 15 15 21 17 18 20
COM 3 4 5 4 3 4 4 3
RESP 2 2 4 3 2 3 3 2
Total 25 25 25 23 27 25 26 26

The developed workload assessment algorithm required contextual information (Chap-

ter 3.1) regarding the participant’s current task focus. This information was derived from

the IMPRINT Pro workload models, which were assumed to be correct.
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4.1.4 Procedure

The participants completed a consent form and a demographic questionnaire upon ar-

rival, after which participants were fitted with a BioPac Bioharness BT, a Schure Micro-

phone, and two Myo devices. This BioPac Bioharness BT was a newer version than the

ones described in Chapters 3.2.1.6 and 3.2.2.6. However, the device was unable to collect

skin-temperature data. The Myo devices were fitted on the participant’s forearms and col-

lected acceleration and electromyography data. This Myo data is intended to help develop

an activity recognition algorithm, as described in Chapter 6.2.

A 15-minute training session occurred before the 52.5-minute trial. Participants com-

pleted the NASA-TLX and a post-session questionnaire after finishing the trial. In-situ

workload ratings were verbally administered at 7 minutes into the trial and every 7.5 min-

utes after the initial rating.

4.1.5 Participants

The thirty-one participants (14 females and 17 males) had a mean age of 27.61 (St. Dev.

= 9.06), with an age range from 18 to 64 years. Fourteen participants held a high school

degree, nine participants held an undergraduate degree, seven participants held a master’s

degree, and two participants held a doctorate degree. The majority of participants (twenty-

one) indicated that they played video games for three or fewer hours per week. Participants

also rated their video game skill level on a Likert scale (1-little to 9-expert) on average as

4.38 (St. Dev. = 2.29). Fifteen participants had 0 oz. of caffeine the day of the experiment,

while thirteen participants drank at most 16 oz. Participants exercised on average 4.94 (St.

Dev. = 4.02) hours a week.

The participants slept an average of 6.95 (Std. Dev. = 1.23) hours the night before

the experiment and an average of 7.13 (Std. Dev. = 1.35) hours two nights prior. The

participants’ average stress and fatigue levels rated on a Likert scale (1-little to 9-extreme)
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was 2.77 (Std. Dev. = 1.50) and 3.19 (Std. Dev. = 1.82), respectively.

4.1.6 Metrics

The objective and subjective metrics were collected throughout the evaluation, where an

overview is provided in Table 4.4. The objective metrics consisted of physiological signals

(e.g., heart-rate and respiration-rate) and performance metrics. The physiological metrics

were captured by the BioHarness BT, which was different from the BioHarness in the

supervisory and peer evaluations. The BioHarness BT does not capture skin-temperature,

but it does capture the other metrics (i.e., heart-rate, heart-rate variability, respiration-rate,

and posture magnitude). The noise-level and speech-based metrics were captured by the

same equipment in supervisory evaluation (Chapter 3.2.1).

The physically separated NASA MATB-II collected performance metrics in a similar

manner to the original NASA MATB-II. The tracking task’s performance was measured as

the error in pixels between the center of the cross-hairs and the center of the object (Figure

4.3 a), which was collected every second. The system monitoring task’s performance was

determined by response time and failure rate. Response time was the number of seconds

a participant took to click on a light or gauge, once the respective light or gauge went out

of range. Failure rate represented the number of out of range lights and gauges that were

not corrected within fifteen seconds, which is the default threshold for the NASA MATB-II.

The resource management task’s performance was determined by the time fuel Tanks A and

B were out of range (i.e., the fuel levels were not between 2,000 and 3,000 units), where the

fuel levels of each tank were collected every second. The number of failed communication

requests (i.e., the participant failed to respond or the number of times the radio was tuned

to the wrong frequency) determined the communications task performance.

The in-situ workload ratings and NASA-TLX subjective metrics were collected.
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Table 4.4: The Objective and Subjective Metrics for the Real-Time Evaluation.

Metric Type Metric

Algorithm

Heart-Rate
Heart-Rate Variability
Respiration-Rate
Posture
Noise Level
Speech-Rate
Pitch
Voice Intensity

Other Objective

Body Activity
Arm Acceleration
Forearm Electromyography
Tracking Task: Tracking Error
System Monitoring Task: Reaction Time
System Monitoring Task: Failure Rate
Resource Management Task: Time-in-Range
Communications Task: Reaction Time

Subjective
In-Situ Workload Ratings
NASA-TLX

4.2 Hypotheses

The remainder of this chapter analyzes the performance and subjective metric data and

validates the developed workload assessment algorithm’s ability to estimate workload in

real-time correctly. The analyses are broken into three sections: Performance Metrics,

Subjective Metrics, and Algorithm Analysis. The algorithm analysis section contains three

trained algorithm variants: SUP, RT, and POST-HOC. The SUP and RT variants were

used in real-time and correspond to the algorithm being trained solely on the supervisory-

based evaluation’s data and a combination of the supervisory-based evaluation’s and a por-

tion of the real-time evaluation’s data, respectively. The POST-HOC variant was trained

on the real-time evaluation’s data, but was not used in real-time.

Several hypotheses were formed for these analyses, where an overview of the hypothe-

ses is presented in Table 4.5. The hypotheses are explained in more detail in the following

sections.
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Table 4.5: Chapter 4 Hypotheses

Analysis Hypothesis
Metric Comparison HRT

1 The objective metrics and the In-Situ work-
load ratings will trend in a similar manner
across conditions for the Real-Time Evalu-
ation and the Supervisory Evaluation’s Day
2.

Real-Time HRT
2 The SUP and RT algorithm’s estimates will

be within a standard deviation of the cor-
responding IMPRINT Pro workload model
values.

HRT
3 The SUP and RT algorithms will classify

each workload state at least 80% of the time.
HRT

4 The SUP and RT algorithm’s estimates will
significantly and positively correlate with
the corresponding IMPRINT Pro workload
models.

Post-Hoc HRT
5 The POST-HOC algorithm’s estimates will

be within a standard deviation of the cor-
responding IMPRINT Pro workload model
values.

HRT
6 The POST-HOC algorithms will classify

each workload state at least 80% of the time.
HRT

7 The POST-HOC algorithm’s estimates will
significantly and positively correlate with
the corresponding IMPRINT Pro workload
models.

HRT
8 The POST-HOC algorithm will be more ac-

curate than the RT algorithm.

4.3 Real-Time Evaluation Results

Five analyses were conducted for the real-time evaluation: workload metrics, perfor-

mance metrics, subjective metrics, real-time analysis and post-hoc analysis. The workload,

performance, and subjective metric analyses were performed in a similar manner to the cor-

responding supervisory-based evaluation analyses (Chapters 3.4 and 3.5). The algorithm

analysis focused on the developed workload assessment algorithm’s real-time capabilities.

The algorithm requires contextual information about the participant’s current task, which
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was assumed to be known correctly.

4.3.1 Workload Metrics Analysis

It was expected that the value representing the highest workload for each metric will

occur during the overload condition (e.g, the lowest heart-rate variability value will occur

during the overload condition). Additionally, the metrics were expected to trend across

the workload conditions in a similar manner to how the metrics trended in the Supervisory

Evaluation’s Day 2 (Chapter 3.5.1), as predicted by hypothesis HRT
1 . This hypothesis tests

if the workload conditions for each evaluation (Supervisory and Real-Time) are similar and

that the metrics reflect the conditions. Significance testing was not performed for testing

the hypothesis, as the metrics will differ significantly between the two evaluations, due to

the physical nature of the real-time evaluation.

Heart-Rate

The associated descriptive statistics for heart-rate are provided in Table 4.6. The highest

values tended to occur during the overload condition. A two-way MANOVA determined

that there was a significant effect on workload (F(2,26) = 179.29, p < 0.01) and on order

(F(2,26) = 3764.00, p < 0.01). There was also a significant interaction between order and

workload condition (F(10,48) = 23.16, p < 0.01).

Table 4.6: Heart-Rate Descriptive Statistics. The highest values for each order are in Bold.

Order Underload Normal Load Overload
1 92.28 (14.34) 93.13 (14.24) 93.95 (14.47)
2 81.63 (11.89) 82.38 (12.02) 83.41 (12.57)
3 85.54 (15.28) 87.12 (16.57) 90.02 (17.54)

Overall 87.25 (14.58) 86.61 (14.52) 88.91 (15.54)

Heart-Rate Variability

Heart-rate variability decreases as workload increases. The means and standard devi-

ations by workload condition and ordering are provided in Table 4.7. The lowest values

occurred during the overload condition and the values differed significantly between the
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workload conditions (F(2,26) = 67.91, p < 0.01). There was a significant effect on the

workload orderings (F(2,26) = 2101.40, p < 0.01) and a significant interaction between the

orderings and conditions F(10,48) = 7.42, p < 0.01).

Table 4.7: Heart-Rate Variability Descriptive Statistics. The lowest values for each order
are in Bold.

Order Underload Normal Load Overload
1 0.67 (0.12) 0.67 (0.14) 0.66 (0.13)
2 0.75 (0.14) 0.75 (0.18) 0.74 (0.18)
3 0.73 (0.15) 0.73 (0.19) 0.71 (0.19)

Overall 0.71 (0.14) 0.72 (0.17) 0.70 (0.18)

Respiration Rate

An increase in workload may be reflected by a decrease in respiration rate. The asso-

ciated descriptive statistics by workload condition and ordering are provided in Table 4.8.

The lowest respiration-rates occurred during the overload condition for each order. Res-

piration rate differed significantly between the workload conditions (F(2,26) = 2155.04,

p < 0.01) and between the orders (F(2,26) = 128.98, p < 0.01). There was a significant

interaction between the orders and the workload conditions (F(10, 48) = 100.87, p < 0.01).

Table 4.8: Respiration-Rate Descriptive Statistics. The lowest values for each order are in
Bold.

Order Underload Normal Load Overload
1 18.60 (3.76) 18.45 (4.04) 15.49 (5.03)
2 18.90 (4.65) 17.87 (4.43) 16.02 (4.91)
3 18.21 (4.68) 16.50 (5.23) 15.78 (5.87)

Overall 18.62 (4.28) 17.76 (4.55) 15.77 (5.28)

Posture Magnitude

Posture magnitude is associated with an increase in workload. The means and standard

deviations by workload condition and ordering are provided in Table 4.9. The largest values

occurred either during the underload or normal load conditions, which was unexpected.

A two-way MANOVA determined that there was a significant main effect on workload

(F(2,26) = 101.01, p < 0.01) and on the ordering (F(2,26) = 2691.46, p < 0.01). There
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existed a significant interaction between the workload conditions and orderings (F(10, 48)

= 2.90, p = 0.02).

Table 4.9: Posture Magnitude Descriptive Statistics. The highest values for each order are
in Bold.

Order Underload Normal Load Overload
1 -13.82 (57.36) -15.1 (56.46) -17.37 (55.98)
2 7.61 (7.36) 6.18 (7.63) 2.40 (9.81)
3 4.55 (9.83) 4.97 (10.07) 0.37 (12.39)

Overall -2.70 (40.29) -0.49 (33.21) -4.62 (34.23)

Noise-Level

An increase in auditory workload may be represented by an increase in noise-level. The

associated descriptive statistics are presented in Table 4.10. The highest values occurred

during the overload condition and there was a significant effect by workload condition

(F(2,26) = 19.22, p < 0.01). No significant effect was found for the orderings or for the

interaction between the orderings and workload conditions.

Table 4.10: Noise-Level Descriptive Statistics. The highest values for each order are in
Bold.

Order Underload Normal Load Overload
1 61.33 (202.28) 66.94 (198.62) 68.79 (155.79)
2 59.43 (187.02) 65.84 (199.79) 68.57 (153.86)
3 53.44 (130.74) 66.61 (197.85) 70.66 (163.51)

Overall 58.93 (183.3) 66.32 (199.03) 69.34 (157.76)

Speech-Rate

It was expected that participants will speak faster as workload increased. The means

and standard deviations by workload condition and ordering are provided in Table 4.11.

There was no general trend for speech-rate across the workload conditions, but there may

be an order effect. A two-way MANOVA determined that speech-rate differed significantly

across the workload conditions (F(2,26) = 14.78, p < 0.01) and orderings (F(2,26) = 6620,

p < 0.01), while a significant interaction occurred between the two (F(10, 48) = 83.70, p <

0.01).
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Table 4.11: Speech-Rate Descriptive Statistics. The highest values for each order are in
Bold.

Order Underload Normal Load Overload
1 3.31 (1.11) 3.21 (1.16) 3.16 (1.18)
2 2.48 (1.72) 2.55 (1.61) 2.57 (1.43)
3 1.00 (0.81) 1.25 (0.98) 1.57 (1.08)

Overall 2.76 (1.52) 2.60 (1.52) 2.48 (1.40)

Voice Intensity

The participant’s voice intensity was expected to increase as workload increased, as

seen in 4.12. The highest voice intensity tended to occur during the overload condition.

Voice intensity differed significantly across the conditions (F(2,26) = 181.99, p < 0.01)

and orders (F(2,26) = 87.15, p < 0.01). There was also a significant interaction between

the workload conditions and orders (F(10, 48) = 7.25, p < 0.01).

Table 4.12: Voice Intensity Descriptive Statistics. The highest values for each order are in
Bold.

Order Underload Normal Load Overload
1 125.68 (114.35) 162.2 (134.9) 179.31 (148.98)
2 147.41 (96.92) 177.88 (128.35) 203.89 (139.68)
3 138.49 (132.61) 138.55 (132.05) 170.31 (133.26)

Overall 142.14 (109.6) 167.81 (130.79) 187.09 (138.98)

A human’s dominant speaking frequency or pitch is expected to increase with an in-

crease workload. The associated descriptive statistics are provided in Table 4.13. The

highest pitches tended to occur in the overload condition for each order. The participants’

pitches differed significantly across the workload conditions (F(2,26) = 272.06, p < 0.01)

and between the orders (F(2,26) = 1969.46, p < 0.01). There was also a significant inter-

action between the workload conditions and orders (F(10,48) = 25.97, p < 0.01).

Comparison to the Supervisory Evaluation

An overview of the metric trends for an increase in workload for each evaluation (Real-

Time and Supervisory) is provided in Table 4.14. A no trend rating was given if the metric

did not increase or decrease across the three workload conditions. The expected column
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Table 4.13: Pitch Descriptive Statistics. The highest values for each order are in Bold.

Order Underload Normal Load Overload
1 248.63 (113.56) 281.55 (107.47) 300.81 (100.4)
2 307.13 (85.04) 320.88 (86.96) 328.39 (86.26)
3 175.41 (72.79) 198.3 (84.6) 232.87 (94.79)

Overall 259.55 (107.21) 288.34 (103.03) 291.19 (101.5)

details the metric’s corresponding theoretical trend, as shown in Table 2.1. Four of the eight

metrics trend across the workload conditions the same way for the two evaluations. Two

of the metrics (i.e., heart-rate and respiration-rate) had no trend for the supervisory evalua-

tion’s second day, but had a discernible trend for the real-time evaluation. These trends for

the real-time evaluation reflected the metric’s predicted response to workload (i.e., heart-

rate increases as workload increases). Posture magnitude had no trend for the real-time

evaluation, but increased as workload increased for the supervisory evaluation. This result

was attributed the participants walking during the real-time evaluation and sitting during

the supervisory evaluation. Speech-rate decreased as workload increased for the real-time

evaluation, but the metric increased for the supervisory evaluation. This result may be

attributed to individual differences that exists between the participants.

Table 4.14: The Workload Metric Trends for the Real-Time Evaluation and the Supervisory
Evaluation’s Second Day.

Metric Expected Real-Time Supervisory Day 2
Heart-Rate Increases Increases No Trend
Heart-Rate Variability Decreases Decreases Decreases
Respiration-Rate Decreases Decreases No Trend
Posture Magnitude Increases No Trend Increases
Noise-Level Increases Increases Increases
Speech-Rate Increases Decreases Increases
Voice-Intensity Increases Increases Increases
Pitch Increases Increases Increases

Workload Metrics by Workload Transition

The real-time evaluation contained workload transitions in order to emulate real-world

conditions. It is necessary for the objective workload metrics to be sensitive to these transi-
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tions in order for the workload assessment algorithm to estimate the transitions accurately.

The Spearman correlation coefficients between each workload metric and the IMPRINT

Pro overall workload model by workload transition are provided in Table 4.15. The same

window size (60 seconds) for each workload transition was chosen as in Chapter 3.6.1.

Table 4.15: The Spearman Correlation Coefficients between Each Workload Metric and
the IMPRINT Pro Overall Workload Model by Workload Transition. Note: * indicates p
< 0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Heart-Rate 0.12* 0.23* 0.14* -0.04 0.21* 0.09
Heart-Rate Variability 0.01 -0.16* -0.08 0.04 -0.16* -0.05
Noise Level 0.44* 0.74* 0.55* 0.53* 0.76* 0.29*
Posture Magnitude -0.06 -0.28* -0.05 -0.22* -0.24* -0.15*
Respiration-Rate -0.33* -0.36* -0.55* 0.06 -0.63* -0.57*
Speech-Rate 0.04 0.21* 0.24* -0.02 0.35* 0.21*
Pitch 0.13* -0.18* -0.39* 0.00 -0.44* -0.28*
Voice Intensity 0.04 0.11* 0.27* -0.09 0.32* 0.19*

Overall, there were significant correlations between the workload metrics and overall

workload model when workload transitioned between the underload and overload condi-

tions and vice-versa. These correlations also reflected the expected trend for each metric,

(i.e, the corresponding correlations for heart-rate were positive). However, the majority of

the correlations are considered to be small (r < 0.30), which was to be expected. The over-

all workload model ranges from 4 - 65, while the workload metrics have much narrower

ranges (i.e., heart-rate variability ranges from 0.55 to 1.10).

The smallest correlations occurred when workload transitioned between the normal

load and overload conditions and vice-versa. The speech-based metrics and cardiovascular

metrics did not significantly correlate with the overall workload models during these tran-

sitions. This result is attributed to the intrinsic nature of these specific workload transitions

(i.e., normal load to overload and overload to normal load). The participants were already

experiencing significant workload in the normal load condition; thus, participants did not

have sufficient resources to allocate to the tasks when workload transitioned to the overload

condition. Thus, these metrics may have hit a “red line”, where an increase in workload is
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no longer associated with a response in the workload metrics.

Respiration-rate and noise level typically produced the highest correlations across the

workload transitions. Respiration-rate is sensitive to multi-task environments, which may

have attributed to its correlations with the IMPRINT Pro overall workload model. The

correlations between noise level and overall workload is likely due to noise level being a

task demand measure (Table 2.1), not a physiological response. Additionally, noise-level

is not sensitive to individual differences between participants.

The correlation analysis focused on each individual metric’s response to changes in

overall workload, but the correlations were typically not strong (r > 0.5). This result is not

concerning, as the workload assessment algorithm relies on all of the objective workload

metrics. The neural networks within the algorithm can learn the interdependicies between

the metrics in order to better estimate workload.

Each workload metric was sensitive to one or more workload components, which per-

mitted analyzing each metric’s correlation to the corresponding IMPRINT Pro workload

component model for the workload transitions. This correlation analysis was limited to

metrics that the developed workload assessment algorithm used. Noise level was the only

metric used to estimate auditory workload, where the corresponding Spearman correlation

coefficients are provided in Table 4.16. Significant and positive correlations occurred for

four workload transitions (i.e, UL-OL, NL-UL, OL-UL, OL-NL), where the largest cor-

relation coefficients happened when workload transitioned vastly (i.e., from underload to

overload). Noise level did not significantly correlate with the auditory workload model

when workload transitioned from the underload state to the normal load state and from the

normal load state to the overload state.

Table 4.16: The Spearman Correlation Coefficients between Each Workload Metric and the
IMPRINT Pro Auditory Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Noise Level 0.1 0.38* 0.15* 0.05 0.53* 0.25*
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The heart-rate, heart-rate variability, and noise level metrics were used to estimate cog-

nitive workload. The Spearman correlation coefficients between these metrics and the IM-

PRINT Pro cognitive workload model are provided in Table 4.17. Noise level had the

largest correlations out of the three workload metrics, where the correlations were positive

and significant for each workload transition. Heart-rate and heart-rate variability signifi-

cantly correlated with cognitive workload for the UL-OL, OL-UL, and OL-NL workload

transitions. These significant correlations were the expected sign (positive or negative),

which demonstrates that the heart-rate and heart-rate variability metrics where sensitive to

the workload transitions. However, these two metrics did not significantly correlate when

workload transition from underload to normal load, normal load to underload, or from

normal load to overload.

Table 4.17: The Spearman Correlation Coefficients between Each Workload Metric and the
IMPRINT Pro Cognitive Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Heart-Rate 0.09 0.17* 0.1 -0.02 0.15* 0.11*
Heart-Rate Variability -0.08 -0.16* -0.1 0.0 -0.14* -0.15*
Noise Level 0.4* 0.74* 0.51* 0.4* 0.76* 0.25*

The workload assessment algorithm relied on three workload metrics (heart-rate, pos-

ture magnitude, and respiration-rate) for the physical workload estimations. The correlation

coefficients between each metric and the IMPRINT Pro physical workload model are pro-

vided in 4.18. Respiration-rate was the most sensitive to physical workload, as the metric

had the largest coefficients. However, respiration-rate did not significantly correlate with

the workload model during the normal load to overload transition. Significant correlations

occurred between heart-rate and the workload model for two of the six workload transi-

tions. This result may be attributed to the participants experiencing cognitive workload

and physical workload, as heart-rate is sensitive to both components. Posture magnitude

produced similar correlation coefficients to heart-rate, which may demonstrate that these

two workload metrics were not sensitive to physical workload.
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Table 4.18: The Spearman Correlation Coefficients between Each Workload Metric and the
IMPRINT Pro Physical Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Heart-Rate 0.04 0.16* -0.02 -0.02 0.11* -0.07
Posture Magnitude 0.01 -0.17* -0.03 -0.13* -0.09 -0.09
Respiration-Rate -0.21* -0.35* -0.39* 0.1 -0.35* -0.11*

Speech-rate, pitch, and voice intensity were expected to correlate to speech workload,

where the corresponding Spearman correlation coefficients are presented in Table 4.19.

The pitch and voice intensity workload metrics significantly correlated with the speech

workload model for each workload transition, where pitch had the largest correlation coef-

ficients. Speech-rate did not significantly correlate with the workload model for the normal

load to overload workload transitions, but did produce significant correlations for the re-

maining workload transitions.

Table 4.19: The Spearman Correlation Coefficients between Each Workload Metric and
the IMPRINT Pro Speech Workload Model by Workload Transition. Note: * indicates p <
0.05.

Metric UL-NL UL-OL NL-UL NL-OL OL-UL OL-NL
Speech-Rate 0.17* 0.18* 0.14* 0.09 0.3* 0.21*
Pitch -0.24* -0.36* -0.37* -0.23* -0.45* -0.37*
Voice Intensity 0.16* 0.17* 0.17* 0.12* 0.3* 0.16*

Overall, at least one workload metric significantly correlated with the IMPRINT Pro

workload component model for each workload component and transition. However, the

lowest correlations tended to occur when workload transitions from the normal load to the

overload condition. This result may be attributed to the physiological metrics no longer

responding to an increase in workload, as the participants did not have any remaining re-

sources to allocate to the workload increase. Additionally, the smallest correlations oc-

curred for the physical and speech workload components. This result indicates that addi-

tional metrics or improved workload models are needed for these workload components.
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4.3.2 Performance Metrics Analysis

It was expected that the participants will perform better during the normal load con-

dition than the other conditions, as underload and overload can negatively impact task

performance. The best performance value was bolded for each table.

Tracking Task Performance

Task performance for the tracking task is determined using the average RMSE between

the center of the cross-hairs and center of the object to be tracked. The resulting descriptive

statistics are presented in Table 4.20. The underload statistics are not provided, as that

condition does not require the participant to track the object. The participants achieved the

highest performance during the normal load condition. A two-way MANOVA determined

that there was a significant main effect on the workload condition (F(1,24) = 1372.63, p

< 0.01) and ordering (F(2,23) = 21.39, p < 0.01). There was also a significant interaction

(F(2,23) = 17.16, p < 0.01) between the workload conditions and orderings.

Table 4.20: Tracking Task Performance Descriptive Statistics for Average Root-Mean
Squared Error. Note: Lower is Better.

Order Normal Load Overload
1 160.28 (108.35) 199.49 (112.67)
2 157.58 (104.48) 207.86 (118.41)
3 140.59 (93.83) 200.28 (111.60)

Overall 154.23 (10.344) 202.52 (114.22)

Resource Management Task Performance

The time in seconds that the fuel tanks were out of range determined task performance

for the resource management task, where the higher the value represents poorer perfor-

mance. The descriptive statistics are presented in Table 4.21. The participants maintained

the fuel levels better during the underload condition for Order 1, the normal load condition

for Order 2, and the underload and normal load conditions for Order 3. There was a signifi-

cant main effect on workload condition (F(2,23) = 914.83, p < 0.01) and ordering (F(2,23)

= 798.01, p < 0.01). Additionally, there was a significant interaction (F(2,23) = 29.11, p <
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0.01) between conditions and orderings.

Table 4.21: Resource Management Task Performance Descriptive Statistics for Time in
Range (%). Note: Higher is Better.

Order Underload Normal Load Overload
1 0.95 (0.21) 0.90 (0.29) 0.78 (0.41)
2 0.74 (0.44) 0.78 (0.41) 0.61 (0.48)
3 0.87 (0.33) 0.87 (0.33) 0.75 (0.43)

Overall 0.86 (0.33) 0.85 (0.36) 0.72 (0.44)

System Monitoring Task Performance

The system monitoring task contained two task performance metrics: mean reaction

time and failure rate. The descriptive statistics for mean reaction time are presented in

Table 4.22. The lowest reaction times typically occurred during the underload condition.

A two-way MANOVA determined that reaction time significantly differed by workload

condition (F(2,23) = 18.28, p < 0.01), but not by the condition ordering. There was no

significant interaction between the workload conditions and orderings.

Table 4.22: System Monitoring Task Performance Descriptive Statistics for Mean Reaction
Time in Seconds. Note: Lower is Better.

Order Underload Normal Load Overload
1 4.22 (3.87) 5.77 (6.01) 6.01 (4.27)
2 5.97 (4.73) 5.49 (3.75) 6.28 (4.24)
3 4.32 (4.16) 5.37 (3.52) 6.25 (4.29)

Overall 4.79 (4.27) 5.53 (3.78) 6.19 (4.27)

The average success rates for the system monitoring task by workload condition and

order are provided in Table 4.23. The highest success rates typically occurred during the

underload condition for each order, except for order 3, which had the highest success rates

during the normal load condition. There was a significant main effect on workload condi-

tion (F(2,23) = 7.09, p < 0.01). There was no significant effect for order or the interaction

between the orders and workload conditions.

Communications Task Performance
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Table 4.23: System Monitoring Task Performance Descriptive Statistics for Success Rate
(%). Note: Higher is Better.

Order Underload Normal Load Overload
1 70.00 (23.45) 68.33 (22.90) 50.57 (21.80)
2 68.18 (33.71) 65.98 (26.49) 41.79 (22.45)
3 68.51 (25.61) 79.40 (7.32) 60.02 (12.95)

Overall 68.88 (27.27) 70.79 (21.27) 50.18 (20.60)

The descriptive statistics for the communications task’s reaction times by condition and

ordering are provided in Table 4.24. No results are presented for the underload condition, as

no communications request occurred. The lowest reaction times occurred during the over-

load condition, which may be attributed to participants focusing on the communications

task more during the overload condition. A two-way MANOVA determined that there was

a significant main effect on workload (F(1,24) = 21.80, p < 0.01) condition and condition

ordering (F(1,24) = 3.45, p = 0.03). There was also a significant interaction (F(1,24) =

4.80, p = 0.01) between workload condition and ordering.

Table 4.24: Communication Task Performance Descriptive Statistics for Reaction Time.
Note: Lower is Better.

Order Normal Load Overload
1 11.56 (2.07) 9.34 (4.41)
2 9.97 (2.27) 9.28 (4.04)
3 10.41 (1.78) 9.83 (4.36)

Overall 10.49 (2.18) 9.52 (4.27)

A failure occurred during the communications task when participants did not react

within 15 seconds or incorrectly tuned the radio. The descriptive statistics for the partici-

pants’ success rate by workload condition and ordering are provided in Table 4.25. Overall,

there was no significant difference between the two workload conditions. However, there

was a significant difference between the orders (F(1,24) = 5.58, p < 0.01). This difference

was due to Order 3 having higher success rates during the normal load condition, while the

other two orders had the highest success rates during the overload condition. There was no

significant interaction between the workload conditions and orderings.
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Table 4.25: Communication Task Performance Descriptive Statistics for Success Rate (%).
Note: Higher is Better.

Order Normal Load Overload
1 70.71 (25.96) 73.57 (13.69)
2 77.59 (25.50) 84.12 (13.00)
3 96.82 (5.18) 85.71 (8.58)

Overall 81.07 (23.67) 81.11 (12.89)

Comparison to the Supervisory Evaluation

An overview of the performance metric trends for an increase in workload for each

evaluation (Real-Time and Supervisory) is provided in Table 4.26. The communication

task reaction-time performance metric is not included in the table, as the original NASA

MATB-II did not collect this metric. Four out of the five performance metrics trended in a

similar manner for each evaluation. The system monitoring task’s reaction time increased

as workload increased for the real-time evaluation, but had no trend for the supervisory

evaluation’s second day.

Table 4.26: The Performance Metric Trends for the Real-Time Evaluation and the Super-
visory Evaluation’s Second Day.

Metric Expected Real-Time Supervisory Day 2
TRCK: RMSE Decreases Decreases Decreases
RES: Time in Range Decreases Decreases Decreases
SYS: Reaction Time Increases Increases No Trend
SYS: Success Rate Decreases Decreases Decreases
COMM: Success Rate Decreases No Trend No Trend

4.3.3 Subjective Metric Analysis

The highest value for each table is bolded, as the value represents the highest perceived

workload level.

In-Situ Workload Ratings

The in-situ workload ratings subjectively assessed workload across six dimensions: au-

ditory, visual, speech, motor, tactile, and cognitive. Each rating ranges from 1 (little to no
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demand) to 5 (extreme demand).

The auditory workload rating’s descriptive statistics are provided in Table 4.27. The

highest auditory ratings occurred during the overload conditions for each workload condi-

tion ordering. A two-way MANOVA determined that there were significant differences for

workload condition (F(2,23) = 112.11, p < 0.01) and for the orderings (F(2,23) = 11.45, p

< 0.01). There was a significant interaction between the conditions and orderings (F(4,23)

= 3.27, p = 0.01).

Table 4.27: Descriptive Statistics for In-Situ Auditory Workload Ratings.

Order Underload Normal Load Overload
1 1.23 (0.68) 2.95 (1.39) 4.0 (1.03)
2 1.36 (0.73) 2.61 (0.79) 3.27 (1.08)
3 1.2 (0.41) 1.9 (0.64) 2.9 (0.76)

Overall 1.26 (0.63) 2.51 (1.03) 3.32 (1.03)

The means and standard deviations by group and condition for the visual workload

ratings are presented in Table 4.28. The participant rated their visual workload the high-

est during the overload condition. There was a significant effect for workload condition

(F(2,23) = 39.85, p < 0.01). There was no significant effect for the workload condition

ordering or for the interaction between workload condition and ordering.

Table 4.28: Descriptive Statistics for In-Situ Visual Workload Ratings.

Order Underload Normal Load Overload
1 2.23 (1.3) 3.50 (1.05) 4.00 (1.03)
2 2.59 (1.22) 3.30 (0.92) 3.59 (0.73)
3 1.80 (0.83) 2.85 (1.04) 3.57 (1.04)

Overall 2.22 (1.19) 3.23 (1.01) 3.69 (0.96)

The speech workload ratings by group and condition are presented in Table 4.29. Simi-

lar to the previous ratings, the largest speech workload ratings occurred during the overload

condition. A two-way MANOVA determined that there was a significant effect of work-

load condition (F(2,23) = 74.78, p < 0.01) and no significant effect for the ordering or the

interaction between workload condition and ordering.
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Table 4.29: Descriptive Statistics for In-Situ speech workload ratings.

Order Underload Normal Load Overload
1 1.13 (0.51) 2.45 (1.23) 3.45 (1.39)
2 1.36 (0.79) 2.24 (0.87) 3.05 (1.05)
3 1.20 (0.41) 2.10 (0.79) 2.80 (0.92)

Overall 1.22 (0.59) 2.26 (0.96) 3.06 (1.12)

The motor in-situ rating is a subcomponent of physical workload, where the descriptive

statistics are provided in Table 4.30. The participants rated their motor demands the highest

during the overload condition. There was a significant difference between workload condi-

tions (F(2,23) = 49.43, p <0.01) and between condition orders (F(2,23) = 5.99, p <0.01).

There was no significant interaction between the workload conditions and orderings.

Table 4.30: Descriptive Statistics for In-Situ motor workload ratings.

Order Underload Normal Load Overload
1 2.13 (1.22) 3.00 (1.12) 3.75 (0.97)
2 1.82 (0.96) 3.06 (0.93) 3.27 (0.98)
3 1.45 (0.51) 2.65 (0.88) 3.10 (0.84)

Overall 1.85 (1.02) 2.93 (0.98) 3.33 (0.95)

Tactile workload is another subcomponent of physical workload, while the means and

standard deviations for the tactile ratings are presented in Table 4.31. The ratings were the

largest during the overload condition for each workload condition ordering. A two-way

MANOVA found a significant difference for workload condition (F(2,23) = 39.92, p <

0.01). There was a significant main effect on ordering (F(2,23) = 19.81, p < 0.01), but no

significant interaction between the orderings and workload conditions.

Table 4.31: Descriptive Statistics for In-Situ Tactile workload ratings.

Group Underload Normal Load Overload
1 1.9 (1.16) 2.80 (1.15) 3.45 (0.94)
2 2.05 (1.13) 3.15 (0.76) 3.41 (1.22)
3 1.30 (0.47) 1.85 (0.59) 2.63 (0.89)

Overall 1.78 (1.04) 2.70 (1.0) 3.10 (1.08)

The last in-situ rating is cognitive workload, where the descriptive statics by workload
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condition and order are provided in Table 4.32. A significant main effect for workload con-

dition (F(2,23) = 108.16, p < 0.01) and condition ordering (F(2,23) = 3.72, p = 0.02) was

found, along with a significant interaction between the workload condition and orderings

(F(2,23) = 2.69, p = 0.03).

Table 4.32: Descriptive Statistics for In-Situ Cognitive workload ratings.

Group Underload Normal Load Overload
1 1.67 (0.99) 3.45 (0.83) 4.25 (0.72)
2 2.18 (0.85) 3.15 (0.71) 3.73 (0.88)
3 1.65 (0.67) 2.75 (1.02) 3.70 (0.92)

Overall 1.82 (0.89) 3.12 (0.87) 3.86 (0.88)

The overall in-situ workload rating is the aggregate of the individual ratings and the

descriptive statistics are provided in Table 4.33. It was expected that the highest overall

ratings occurred during the overload condition for each order. A two-way MANOVA de-

termined that the workload conditions (F(2,23) = 112.91, p < 0.01) and orderings (F(2,23)

= 10.95, p < 0.01) differed significantly, but there was no significant interaction between

the two.

Table 4.33: Descriptive Statistics for the Overall In-Situ workload ratings.

Order Underload Normal Load Overload
1 10.30 (5.17) 18.15 (5.93) 22.90 (4.67)
2 11.36 (4.54) 17.52 (3.51) 20.32 (4.00)
3 8.60 (2.54) 14.10 (3.68) 18.70 (3.53)

Overall 10.15 (4.46) 16.75 (4.59) 20.36 (4.32)

Comparison to the Supervisory Evaluation

A comparison for the In-Situ workload ratings trends between the evaluations (Real-

Time and Supervisory) is presented in Table 4.34. The NASA-TLX ratings are not in-

cluded, as the ratings cannot be parsed by workload condition. Each in-situ workload rating

trended in a similar manner for each evaluation, which demonstrates that the participants’

perceived workload was similar between the evaluations.

NASA-TLX Ratings
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Table 4.34: The In-Situ Workload Rating Trends for the Real-Time Evaluation and the
Supervisory Evaluation’s Second Day.

Rating Real-Time Evaluation Supervisory Evaluation’s Day 2
Auditory Increases Increases
Visual Increases Increases
Speech Increases Increases
Motor Increases Increases
Tactile Increases Increases
Cognitive Increases Increases
Overall Increases Increases

The presentation of each NASA-TLX score represents the unweighted score, while

the overall NASA-TLX results represent the weighted aggregate. The NASA-TLX was

administered after the single trial; thus, the results cannot be broken down by workload

condition. The descriptive statistics for each NASA-TLX scale and the associated ANOVA

result are provided in Table 4.35. An ANOVA determined that none of the NASA-TLX

scales differed significantly between the three orders.
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Table 4.35: NASA-TLX Workload Ratings by Workload Condition Ordering.

Order Effort Frustration Mental Performance Physical Temporal Overall
1 60.00 (25.93) 49.00 (32.73) 71.0 (22.95) 44.50 (23.51) 43.50 (25.72) 63.00 (26.58) 61.07 (21.62)
2 74.55 (14.91) 37.27 (26.11) 68.64 (22.03) 35.91 (21.89) 45.00 (20.00) 71.82 (13.28) 64.15 (11.02)
3 75.50 (14.62) 38.00 (22.51) 66.0 (16.8) 37.00 (22.14) 49.50 (25.22) 61.00 (22.83) 60.00 (12.25)

ANOVA F(2, 28) 2.09, n.s. 0.58, n.s. 0.14, n.s. 0.44, n.s. 0.17, n.s. 0.76, n.s. 0.20, n.s.
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4.3.4 Real-Time Analysis

Two trained algorithms were used to analyze the developed workload assessment al-

gorithm’s real-time capabilities. The inputs for each algorithm were the workload metrics

listed in Table 4.4. The speech and visual workload components results are not presented

in the real-time analysis, due to IMPRINT Pro workload models being used to estimate the

components. The SUP algorithm was trained on all of the data from the supervisory-based

evaluation detailed in Chapter 3.4 and estimated workload in real-time for each participant.

The SUP algorithm was not trained on any data from the real-time evaluation; thus, a sec-

ond algorithm (RT) was trained on all of the supervisory-based evaluation (Chapter 3.4)

data and data from the first six participants from the real-time evaluation.

Estimating workload in real-time provides an adaptive teaming system with the nec-

essary insight to adapt interactions and system autonomy in order to maintain or improve

the performance of the human-machine team. These workload estimates must be accurate;

thus, hypothesis HRT
2 predicted that the SUP and RT algorithms’ estimates will be within

a standard deviation of the IMPRINT Pro model values for each workload component.

Accurate workload estimates improve the likelihood that the algorithm’s workload classi-

fications will also be accurate. Hypothesis HRT
3 predicted that each trained algorithm will

accurately classify each workload state at least 80% of the time. The algorithm’s workload

estimates will correlate positively and significantly with the corresponding IMPRINT Pro

models, as predicted by hypothesis HRT
4 .

The descriptive statistics are used to determine how close the algorithms’ estimates

are to the IMPRINT Pro model values. These descriptive statistics are provided in Table

4.36 by algorithm, workload condition, and workload component. The SUP algorithm’s

estimates were within a standard deviation of the IMPRINT Pro model values for each

workload component in the normal load condition, but tended to underestimate workload

in the overload condition and overestimate workload in the normal load condition. The

RT algorithm performed similar to, or better than the SUP algorithm in all cases, but also
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tended to underestimate workload in the overload condition. The RT workload estimates

for the third workload condition ordering are shown in Figure 4.4.

Table 4.36: IMPRINT Pro Modeled and Algorithm Estimated Workload by Workload
Condition.

Workload Algorithm Underload Normal Load Overload

Auditory
Model 0.18 (0.65) 2.06 (1.38) 3.58 (0.88)
SUP 0.80 (1.17) 1.83 (1.25) 2.20 (1.21)
RT 0.71 (1.33) 2.23 (1.28) 3.16 (0.97)

Cognitive
Model 2.14 (1.37) 9.46 (1.68) 18.44 (1.86)
SUP 6.71 (4.65) 10.33 (5.01) 13.31 (5.29)
RT 3.08 (3.11) 9.86 (3.62) 15.46 (3.78)

Physical
Model 1.31 (0.74) 5.57 (2.78) 10.27 (2.20)
SUP 3.97 (2.68) 5.84 (3.00) 7.38 (2.97)
RT 2.45 (2.72) 5.99 (3.29) 7.66 (3.03)

Overall
Model 7.81 (3.33) 29.51 (6.17) 55.79 (5.88)
SUP 15.52 (7.59) 30.27 (9.14) 46.47 (9.52)
RT 10.41 (6.3) 30.29 (5.87) 49.70 (6.57)

The workload assessment algorithm classified workload by using thresholds to cate-

gorize its estimates into a workload state. The classification accuracies are presented in

Table 4.37. The RT algorithm classifies workload better than the SUP algorithm in almost

all cases, the exception being classifying physical workload for the normal load condition.

Both algorithms had difficulty classifying physical workload during the real-time evalua-

tion, which may be attributed to inaccuracies in the IMPRINT Pro workload models.

Table 4.37: Classification Accuracy (%) for the Real-Time Evaluation

Workload Algorithm Underload Normal Load Overload

Auditory
SUP 77 47 48
RT 80 82 82

Cognitive
SUP 42 61 56
RT 88 82 77

Physical
SUP 40 53 52
RT 75 51 60

Overall
SUP 73 76 71
RT 83 93 90

The ability to track workload trends accurately may allow for more intelligent system
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Figure 4.4: The RT Workload Estimates for the third condition ordering: OL-UL-OL-NL-
UL-NL-OL.

adaptations. The algorithm’s ability to track these trends was analyzed using Pearson’s cor-

relations between the algorithms’ estimates and the corresponding IMPRINT Pro workload

models, which are provided in Table 4.38. Almost all correlations are positive and signifi-

cant, the exception being the SUP algorithm’s cognitive workload estimates for the normal

load condition. The RT algorithm’s estimates were more positively correlated with the

corresponding IMPRINT Pro workload models than the SUP algorithm’s estimates. The

lowest correlations were produced for cognitive workload in the normal load condition.

4.3.5 Post-Hoc Analysis

The SUP and RT algorithms had limited information about the real-time evaluation’s

physical aspects, but were able to extract features from the workload metrics in order to

produce real-time workload estimates. The incorporation of more task environment spe-

cific training data may allow for higher algorithmic performance; thus, the algorithm was

trained using data from twenty-seven participants and tested on the remaining participants

(n=4) in order to provide POST-HOC performance. Additionally, the workload assessment
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Table 4.38: Real-Time Evaluation Correlation Coefficients for Within and Across Work-
load Conditions.

Workload Algorithm Within Across
Underload Normal Load Overload

Auditory
SUP 0.31* 0.41* 0.28* 0.53*
RT 0.52* 0.80* 0.69* 0.82*

Cognitive
SUP 0.12* 0.02 0.14* 0.48*
RT 0.78* 0.19* 0.29* 0.84*

Physical
SUP 0.16* 0.27* 0.15* 0.47*
RT 0.69* 0.65* 0.42* 0.71*

Overall
SUP 0.27* 0.38* 0.41* 0.85*
RT 0.84* 0.63* 0.67* 0.96*

algorithm’s speech workload estimation accuracy was analyzed. Similar to the previous

hypotheses, four hypotheses focused on algorithmic performance. Hypothesis HRT
5 pre-

dicted that the POST-HOC workload estimates will be within a standard deviation of the

corresponding IMPRINT Pro workload models, while hypothesis HRT
6 predicted that the

algorithm will correctly classify overall workload and each workload component at least

80% of the time. The algorithm’s estimates will positively and significantly correlate with

the corresponding IMPRINT Pro workload models, as predicted by hypothesis HRT
7 . The

last hypothesis (HRT
8 ) predicted that the POST-HOC algorithm will perform better than

the RT algorithm.

The POST-HOC algorithm estimated workload for four real-time evaluation partici-

pants. The algorithm’s average estimates and IMPRINT Pro model values are provided in

Table 4.39. The algorithm’s estimates were within a standard deviation of the correspond-

ing IMPRINT Pro workload values for each workload component and condition, except

for speech workload. The algorithm tended to underestimate the speech workload models,

which is attributed to the model inaccuracies; for example, the participants may not have

spoken when the IMPRINT Pro model indicated that they were speaking and vice versa.

The POST-HOC algorithm achieved similar or higher classification accuracies than the

RT algorithm, as indicated in Table 4.40. The classification accuracies were approximately
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Table 4.39: IMPRINT Pro Modeled and POST-HOC Algorithm Estimated Workload by
Workload Condition

Workload Algorithm UL NL OL

Auditory
Model 0.17 (0.62) 2.06 (1.39) 3.53 (0.91)

POST-HOC 0.65 (1.13) 2.25 (1.24) 3.08 (0.94)

Cognitive
Model 2.13 (1.36) 9.3 (1.56) 18.20 (2.13)

POST-HOC 3.21 (3.07) 10.15 (3.04) 16.57 (3.25)

Physical
Model 1.31 (0.73) 5.46 (2.74) 10.20 (2.22)

POST-HOC 2.48 (2.86) 6.91 (3.13) 9.39 (2.31)

Speech
Model 0.05 (0.21) 0.76 (0.65) 2.01 (0.88)

POST-HOC 0.08 (0.5) 0.17 (0.73) 0.36 (1.03)

Overall
Model 7.78 (3.27) 29.01 (5.93) 55.37 (6.47)

POST-HOC 10.51 (6.64) 31.50 (6.04) 52.48 (6.64)

80% or higher for most workload components and conditions. The algorithm had difficulty

classifying physical workload for the normal load condition.

Table 4.40: Post-Hoc Classification Accuracy (%).

Workload Underload Normal Load Overload
Auditory 79 88 81
Cognitive 92 85 85
Physical 75 57 89
Overall 81 92 93

Tracking workload trends within and across workload conditions is important for adap-

tive teaming systems. The Pearson’s correlation coefficients between the POST-HOC al-

gorithm estimates and corresponding IMPRINT Pro workload models are provided in Table

4.41. The algorithm’s estimates correlated positively and significantly with the IMPRINT

Pro workload models for each workload condition and component. The lowest correlations

resulted when estimating speech workload. Each correlation is larger than the correspond-

ing correlations in Table 4.38, which demonstrated that the POST-HOC algorithm’s esti-

mates represent workload trends more accurately, than the other trained algorithm (RT and

SUP) variations’ estimates.
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Table 4.41: POST-HOC Correlation Coefficients for Within and Across Workload Condi-
tions.

Workload Within Across
Underload Normal Load Overload

Auditory 0.65* 0.82* 0.78* 0.86*
Cognitive 0.80* 0.24* 0.45* 0.90*
Physical 0.79* 0.76* 0.57* 0.83*
Speech 0.12* 0.10* 0.09* 0.17*
Overall 0.86* 0.71* 0.79* 0.97*

4.4 Discussion

The real-time evaluation focused on estimating workload in real-time for a non-stationary

supervisory-based environment. The objective and subjective workload metrics analysis

demonstrated that there were differences between the workload conditions that each par-

ticipant experienced. Additionally, the majority of the metrics responded to an increase

in workload in a similar manner to the corresponding metrics for the supervisory evalua-

tion’s second day (Chapters 3.5.1 - 3.5.3), which supports hypothesis HRT
1 . Supporting the

hypothesis demonstrates that the metrics behaved as expected for the real-time evaluation.

The real-time workload assessment is the foundation of the adaptive human-robot team-

ing system, as the estimates provide information regarding the human’s overall workload

state and each workload component state. Hypothesis HRT
2 stated that the SUP and RT al-

gorithm estimates will be with a standard deviation of the IMPRINT Pro workload models.

This hypothesis was upheld when estimating workload during the normal load condition for

both algorithms, but was only partially upheld for the underload and overload conditions.

The underload and overload outcomes are attributed to the uncertainty in the IMPRINT Pro

workload models, as the participants were not always completing the task that the work-

load model indicated (e.g., completing the communications task when the model indicated

that the tracking task was being completed). These outcomes may also be attributed to the

multi-tasking nature of the task environment.
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Although there were inaccuracies in the IMPRINT Pro models, the models still repre-

sented the human’s overall workload state accurately. Hypothesis HRT
3 predicted that each

workload condition will be classified correctly at least 80% of the time, which was upheld

for the RT algorithm’s auditory and overall workload classifications. The RT algorithm’s

cognitive classifications partially uphold the hypothesis, while the physical workload clas-

sifications did not uphold the hypothesis. The low physical workload classifications were

interesting, as the RT algorithm’s physical workload estimates were similar to the IM-

PRINT Pro model’s statistics. The hypothesis is not supported for the SUP algorithm.

Tracking the workload trend may allow an adaptive teaming system to trigger an adap-

tation in order to preclude a performance decrement. Therefore, the developed workload

assessment algorithm’s estimates need to correlate positively and significantly with the

corresponding IMPRINT Pro workload models in order to capture the workload trends ac-

curately, as stated by hypothesis HRT
4 . This hypothesis is fully supported for the RT trained

algorithm and partially supported for the SUP algorithm. Fully supporting this hypothesis

demonstrates that the algorithm captures workload trends correctly; thus, enabling more in-

telligent adaptations that are tailored to the particular workload components. Additionally,

the correlation coefficients were larger when tracking workload across workload condi-

tions than within conditions, illustrating that the algorithm better captures large workload

variations better than small workload variations, as expected.

Overall, the RT algorithm’s estimates were more accurate than the SUP algorithms,

which demonstrates that having prior training data on the task environment improves per-

formance, which was expected. Both trained algorithm variants were used in real-time with

limited information concerning the task environment; however, a more accurate trained al-

gorithm may be produced with more training data. Using the workload metric data col-

lected in real-time, another trained algorithm variant (POST-HOC) was analyzed. Hy-

potheses HRT
5 through HRT

7 were the same as HRT
2 through HRT

4 respectively, but tailored

to the POST-HOC trained algorithm. Each hypothesis was fully supported for almost all
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workload components and conditions, besides speech workload. Additionally, the POST-

HOC algorithm outperformed the RT algorithm, which supports hypothesis HRT
8 . Fully

supporting these hypotheses demonstrates that the real-time workload assessment algo-

rithm’s accuracy is limited to the trained algorithm variant, rather than collecting the re-

quired workload metric data.

There are hardware limitations to collecting the workload metric data. For example, the

BioPac harness used to collect the physiological metrics has a one second update rate for

the real-time heart-rate calculations, which restricts the workload assessment algorithm’s

workload estimation to at most every second. Limitations also exist in the feature extrac-

tion process, since extracting speech-based features tended to be relatively computational

expensive, due to using the Fast Fourier Transform. This feature extraction process is

sensitive to the window size, as processing larger window sizes requires more computa-

tional time. Future work will investigate the window size’s impact on the speech-based

feature extraction process run-time in order to determine the minimal update rate for the

developed workload assessment algorithm. The POST-HOC trained algorithm estimated

speech workload, while the other trained algorithm variants did not. The speech workload

estimates were much lower than the IMPRINT Pro workload model values, which was

not anticipated. These lower estimates are again attributed to the IMPRINT Pro workload

models having only three possible values (i.e., 0, 2, or 4), as discussed in Chapter 3.4.

4.5 Summary

The developed workload assessment algorithm’s real-time capabilities were evaluated.

The task environment encompassed an adapted version of the NASA MATB-II, in which

each task was physically separated from each other. The algorithm was shown to accurately

estimate workload during the evaluation; however, more accurate workload estimates oc-

curred when the algorithm was trained on the majority of the real-time evaluation’s data set.

Additionally, the algorithm was shown to accurately estimate speech workload. The real-
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time workload assessment algorithm is a necessary component of an adaptive human-robot

teaming system, as the system relies on information about the human’s overall workload

state and the state of each workload component in order to adapt either interactions between

the human and machine or the autonomy levels of the system’s tasks.
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Chapter 5

Adaptive Human-Robot Teaming System

An adaptive human-robot teaming system and a performance prediction model was

developed, where a pilot study (Chapter 5.2) demonstrated the system’s ability to adapt

interactions and autonomy levels. These adaptations were based on the real-time workload

assessment algorithm (Chapter 4.1) and a performance prediction model (Chapter 5.1),

which was validated. The adaptive system was shown to improve task performance over

having no adaptations, which was attributed to the interaction adaptations.

5.1 Performance Prediction

Estimating workload accurately is essential to an adaptive teaming system, but only

provides current and previous performance information. The ability to predict accurately

if performance is likely to decrease in the future may allow an adaptive teaming system to

trigger an adaptation in order to prevent the performance decrements from occurring. A

performance prediction model was developed in order to predict performance accurately

for future timesteps.

The developed prediction model relied on a long short-term memory neural network ar-

chitecture [55]. Long short-term memory networks use the previous time-step information

in order to predict future time-steps of a sequential data series. The developed model uses

the last three workload estimates (i.e., overall workload and each workload component)

as inputs. The performance model consisted of three long short-term memory layers each

with 256 neurons. Each neuron in the long short-term memory layers had an 80% chance to

dropout during training, which means the neuron may be excluded from training activation

and weight updates [55]. There was a 256 neuron fully connected layer with a rectified
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linear unit activation function after the three long short-term memory layers. The model’s

output regression layer predicted overall task performance for thirty seconds in the future.

The ADAM optimizer [69] with a mean-squared error loss function was used to train the

performance prediction model.

5.1.1 NASA MATB-II Overall Task Performance

The performance prediction model predicts overall task performance. Each NASA

MATB-II task has its own performance measure, but there is no current method to com-

bine these task performance measures into an overall performance measure. Each NASA

MATB-II task performance measure was mapped to a value from 0 to 1 in order to per-

mit combining the measures, where 1 represents optimal performance. The tracking task

performance measure (i.e., RMSE between the center of the crosshairs and the object)

was normalized based on participant data. Performance for the system monitoring task and

communications task were measured using two metrics: reaction time and success rate. Re-

action time represents the time a participant took to correct an out-of-range light or gauge,

while success rate represents the number of out-of-range instances corrected divided by the

total number of instances. Reaction time was normalized, while success rate was already

within range (0 - 1). A value of 1 was given if the resource management task’s fuel levels

were within 2,000 and 3,000 units, while the tank levels were normalized outside of that

range. The overall performance measure was the uniform average of all active tasks’ per-

formance measures, which assumes that the tasks trade offs will be equivalent in terms of

performance. For example, if the resource management and system monitoring tasks were

the only active tasks, then the overall task performance was the average of those tasks’

performance measures.

Relying on normalizing the performance metrics and using an uniform average calcula-

tion may not be the optimal solution to generating an overall performance score. Normaliz-

ing performance data does not penalize time dependent performance measures. For exam-
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ple, the fuel tank levels can only rise so quickly; thus, fuel levels much smaller than 2,000

units need to be penalized more than fuel levels close to 2,000 units. However, developing

appropriate time penalizations is not trivial and tangential to the developed performance

model’s ability to predict performance. Additionally, using an uniform average to calculate

overall task performance does not account for task priority levels. The participants were

not given any task priortiziations; thus, the use of an uniform average.

5.1.2 Performance Prediction Results

The performance prediction model was trained using data from the Supervisory Evalu-

ation’s (i.e., data from the first day (Chapter 3.4) and tested on the supervisory evaluation’s

second day data (Chapter 3.5). There were two trained prediction model variants: Current

and Predicted. The Current model variant was used to predict a participant’s current task

performance, while the Predicted variant predicted task performance for 1-minute into the

future. It was expected that each model variant’s predicted performance values will be

within a standard deviation of the participants’ actual performance, as stated by hypothe-

sis HP
1 . These descriptive statistics are provided in Table 5.1. Each models’ performance

values for the underload and normal load conditions were within a standard deviation of

the participants’ actual performance. The predicted performance values for the overload

condition were lower than the actual performance values.

Table 5.1: Descriptive Statistics for the Current and Predicted Task Performance and Actual
Participant Performance.

Performance Model Underload Normal Load Overload
Actual 0.89 (0.15) 0.84 (0.16) 0.78 (0.13)
Current 0.89 (0.12) 0.84 (0.11) 0.74 (0.03)

Predicted 0.91 (0.13) 0.83 (0.12) 0.74 (0.05)

Using descriptive statistics to compare actual vs. predicted performance is useful, but

does not provide any time information (i.e., does the predicted performance trend the same

way as the actual performance). Each performance model variants’ values and the actual
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performance values are plotted in Figure 5.1 by workload condition ordering. The Pre-

dicted performance model’s values were set to zero for the first 60 seconds in order to

match the predicted values and the actual values. There was approximately a 10 second

delay between a large increase in the actual performance and the Current model’s per-

formance values. A larger delay occurred between the actual performance and Predicted

performance values.

(a) Order 1 (UL-NL-OL-UL-OL-NL-UL)

(b) Order 2 (NL-OL-UL-OL-NL-UL-NL)

(c) Order 3 (OL-UL-OL-NL-UL-NL-OL)

Figure 5.1: Performance Prediction Results by Workload Condition Ordering
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5.1.3 Performance Prediction Discussion

Predicting future task performance accurately is a difficult and complex problem, but

the developed performance prediction model is a necessary step to being able to predict

task performance. It was expected that the developed model’s overall task performance

values will be within a standard deviation of the actual performance values, as predicted

by hypothesis HP
1 . The hypothesis was supported for the underload and normal load con-

ditions, but not for the overload condition. Not fully supporting the hypothesis is attributed

to the training data set, as the data set had clearly separated workload conditions; however,

the testing data set incorporated workload transitions. The performance prediction model

needs to be trained on these workload transitions in order to achieve better predictive power.

However, it is expected that there is a limit to the model’s predictive capabilities. For ex-

ample, predicting task performance for an hour in the future will likely be inaccurate.

The performance prediction model relied on the last three workload estimates to predict

task performance for 1-minute into the future. More accurate predicted performance may

be achieved by using additional workload estimates or predicting task performance nearer

to the current timestep (i.e., fifteen seconds into the future). There may be a trade-off with

using additional workload estimates, as incorporating outdated information may actually

decrease performance. Future work will vary the number of past workload estimates and

the time in the future that task performance is predicted in order to further analyze the

developed performance prediction model’s capabilities.

Predicting overall task performance for the NASA MATB-II was a necessary step for

developing an adaptive system architecture, but the model’s predictive capabilities in other

task environments is unknown. There are likely limitations to the types of task environ-

ments the prediction model can be deployed in. There needs to be an overall task perfor-

mance measure for the task environment. Developing such a measure may be non-trivial

for some task environments or it may be better to predict performance for certain tasks. For

example, predicting a human’s reaction time to a certain event may be useful information
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for an adaptive teaming system, as the system may use this predicted reaction time in a

task scheduling paradigm. The developed prediction model may be extended to predict in-

dividual task performance by incorporating additional neurons in the model’s output layer,

where each neuron represents an individual task’s performance.

5.2 Adaptive Teaming System

The adaptive teaming system combines the developed workload assessment algorithm

(Chapter 3.1) and performance prediction model in order to adapt system interactions and

automate tasks intelligently. An overview of the architecture, provided in Figure 5.2, is spit

into three stages: Perceive, Select, and Act.

Figure 5.2: Adaptive Teaming System Architecture

The workload metrics are used as inputs into the Perceive stage, such that the developed

workload assessment algorithm can estimate overall workload and each workload compo-

nent. The algorithm’s workload estimates are used by the performance prediction model

and the Select architecture stage. Contextual features calculated from the IMPRINT Pro

workload models are required for accurate workload estimates, which requires knowing

the participant’s current task; however, knowing this task in dynamic domains may not be

trivial. This dissertation used a supervisory-based interface (NASA MATB-II); thus, the
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participant’s current active task was always known. The interface tracked the participant’s

last input (e.g., moving the joystik or a keystroke), which was determined to correspond to

the participant’s current task. Participants often completed more than one task simultane-

ously; thus, the closest task to the participant’s last input was included in the current task

set. For example, if the participant moved the joystik, then the current task set consisted

of the tracking and system monitoring tasks. Likewise, if a participant tuned a radio, then

the task set consisted of the resource management and communication tasks. The Select

stage identified if a task needed to be automated or how an interaction occurred using the

knowledge of the human’s current task set, the workload estimates, and predicted perfor-

mance. If the human’s predicted performance fell below a threshold value (0.70), or when

the last three overall workload estimates were in the overload state, then all inactive tasks

(as determined by the interface) were transitioned to automation mode. Three was chosen

for the number of workload estimates to ensure that the system did not thrash cyclically,

where automation is turned off and on each workload estimate. If the last three overall

estimates were considered in the underload state, or the human’s predicted performance

was above a threshold level (0.85), then all tasks transitioned out of automation mode.

The threshold levels were chosen based on the overall performance values for the super-

visory evaluation (Chapter 3.2.1). The adaptive teaming system architecture determined

how a system interaction occurred, once an interaction was expected to occur. The NASA

MATB-II interactions occurred when the tracking task switched modes (e.g., manual to

automation), when a light or gauge went out of range in the system monitoring task, or

when the resource management task’s fuel levels went out of range. The adaptive system

selected a communication modality (i.e., visual or auditory) based on potential conflicts

in the workload channels. A visual modality was used if the participant’s visual workload

channel was not overloaded, meaning that the participant had sufficient resources to parse

the interaction’s visual information. An auditory modality was used if the human’s speech

and auditory workload channels were not loaded, as an auditory stimulus may distract the
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participant if they were speaking, or if there was substantial environmental noise. The in-

teraction’s auditory stimulus was postponed for 5 seconds, if the participant’s auditory or

speech channels were loaded. If after 5 seconds the participant’s workload channels were

still loaded, then the interaction used no auditory stimuli.

Interactions pertain to how the system conveyed information to the participant and how

the participant interacted with the system (e.g., clicking a mouse). The Select stage changed

the communication task’s interaction modality, depending on the participant’s available

resources. Participants were able to speak into the microphone in order to change the

communications task’s radios, instead of using a physical modality (i.e., using the mouse).

Participants were told that the system used speech recognition to determine what radio and

frequency they were saying, but the system detected that the participant was speaking and

assumed that they said the correct radio/frequency.

Icons, provided in Figure 5.3, were used to communicate each task state (e.g., the task

was being automated) to the participant. An icon was green if the task was in automation

mode, red if the task was out of range (e.g., a light went out of range), or grey if the

participant was to manually determine if a task was out of range. The icons appeared on

the left side of each computer screen and were greyed out if the participant’s visual channel

was determined to be overloaded and the corresponding task was not being automated in

order to reduce visual workload. There was an interaction icon (Figure 5.4) that appeared

on the right side of each computer screen, where the icon represented that the participant

was able to interact with the communications task via a speech modality.

5.3 Experimental Design

The adaptive teaming system architecture was implemented in the task environment

described in Chapter 4.1.1.1. and was evaluated via a pilot-study using a within-subjects

experimental design, with workload and adaptation condition as the independent variables.

There were three adaptation conditions that participants completed: Autonomy, Interac-

183



(a) Tracking (b) System Monitoring

(c) Resource Management (d) Communications

Figure 5.3: The NASA MATB-II Task State Icons.

Figure 5.4: The COMM Interaction Icon.

tion, and Both. The adaptive system automated tasks in the Autonomy condition, but did

not adapt interactions. Likewise, the system adapted interactions in the Interaction condi-

tion, but did not automate tasks. The Both condition automated tasks and adapted interac-

tion modalities. The dependent variables consisted of the workload algorithm’s estimates,

performance, and subjective metrics. The participants completed a 52.5 minute trial con-

sisting of seven consecutive 7.5 minute workload conditions: OL-UL-OL-NL-UL-NL-OL.

The 52.5 minute trial’s first half was completed in one adaptation condition, while the sec-

ond half was completed in a different condition. Each participant completed two adaptation

conditions: Both and either Autonomy or Interaction, where the adaptation conditions were
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counter-balanced across the participants.

Two participants from the prior real-time evaluation (Chapter 4.1) completed the adap-

tive system evaluation in order to identify potential between subject effects. The main trial’s

workload condition orderings were dependent on what orderings the participants previously

completed. One participant completed the evaluation in the Both-Autonomy adaptive condi-

tion ordering and the other participant completed the Both-Interaction condition ordering.

5.3.1 Environment

The evaluation occurred in an empty conference room. The environmental set-up was

the same as described in Chapter 4.1.1.1 and provided in Figure 4.3.

5.3.2 Workload Models

The workload models were the same as the IMPRINT Pro models developed in Chapter

4.1.3.

5.3.3 Procedure

The participants completed a consent form and a demographic questionnaire upon ar-

rival, after which participants were fitted with a BioPac Bioharness, a Schure Microphone,

and two Myo devices. The Myos were fitted on the participant’s forearm and collected elec-

tromyography and acceleration data. A 15-minute training session occurred prior to com-

mencing the 52.5-minute trial. Participants completed the NASA-TLX and a post-session

questionnaire upon trial completion. In-situ workload ratings were given at 7 minutes into

the trial and every 7.5 minutes after the initial collection.
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5.3.4 Participants

The ten participants (5 female and 5 male) including the participants whom completed

the real-time evaluation had a mean age of 24.9 (St. Dev. = 1.72), seven of which were

graduate students in the Robotics program at Oregon State University. Five participants

held an undergraduate degree and five participants held a Master’s degree. Participants

rated their video game skill level on a Likert Scale (1-little to 9-expert) with an average of

4.90 (St. Dev. = 2.42). Seven participants played video games at most 3 hours a week.

Seven participants drank no caffeine the day of the experiment, while three participants

drank 16 oz or less.

The participants slept on average 6.75 (St. Dev. = 1.51) hours the night before the

experiment and on average 7.80 (St. Dev. = 1.03) hours two nights prior. The participants

rated their stress and fatigue levels on a Likert scale (1-little to 9-extreme) with an average

stress level of 2.7 (St. Dev. = 1.06) and average fatigue level of 3.3 (St. Dev. = 1.80).

No participant was determined to be an outlier based on their performance and subjec-

tive data. Thus, the participant demographics did not impact or marginally impacted the

results.

5.3.5 Metrics

The metrics collected for this evaluation are the same as in the real-time evaluation

(Chapter 4.1.2).

5.4 Hypotheses

The remainder of this chapter analyzes the workload assessment algorithm’s estimates

and performance data for the real-time evaluation (Chapter 4.1) and the adaptive system

study. The analysis is split into four sections: Between Evaluation, Adaptive Autonomy,

Interaction Modality, and Within-Subjects. The between evaluation analysis focused on ex-
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amining the workload assessment algorithm’s estimates and the task performance metrics

between the real-time evaluation and the adaptive system study. The adaptive autonomy

and interaction modality analyses determined the effectiveness of adapting autonomy and

interactions, respectively. The within-subjects analysis focused on data from two partic-

ipants, who completed the real-time evaluation and the adaptive system study. Several

hypothesis were formed for these analyses, where an overview is provided in Table 5.2.

Table 5.2: Chapter 5 Hypotheses

Analysis Hypothesis
Between Evaluation HA

1 The workload algorithm’s estimates and the
subjective ratings will differ between the
real-time evaluation and the adaptive system
study.

HA
2 Higher task performance will be achieved in

the adaptive system study than the real-time
evaluation.

Adaptive Autonomy HA
3 Lower workload and higher task perfor-

mance will be achieved in the Both condi-
tion, when at least one task is automated.

Interaction Modality HA
4 The interaction modality adaptations will

have a beneficial impact on task performance
and workload.

Within-Subjects HA
5 The workload assessment algorithm’s esti-

mates and the subjective workload ratings
will be lower during the overload condition
and higher during the underload condition
when the participants used the adaptive sys-
tem.

HA
6 The participants will achieve higher task per-

formance during the adaptive system study
for all workload conditions.

5.5 Adaptive System Results

The adaptive teaming system was analyzed from four perspectives: between evalua-

tion, adaptive autonomy, interaction selection, and within-subjects. The between evalua-

tion analysis compares workload estimates, performance, and subjective workload ratings
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between ten participants of the real-time evaluation (No Adaptation) and eight participants

from the adaptive system evaluation (Adaptation). The adaptive autonomy and interaction

selection analyses investigate the impact of adapting system autonomy and interactions,

respectively. The within-subjects analysis compares the same metrics as the between eval-

uation analysis for two participants, whom completed both the real-time and adaptive eval-

uations. Statistical analysis was not conducted on the data due to insufficient power to find

meaningful differences across the participants.

5.5.1 Between Evaluation

Three hypotheses were formulated in order to determine if the adaptive system is effec-

tive in augmenting task performance. First, it was expected that the adaptive system will

have a significant effect on human workload. Specifically, the adaptive system can serve to

neutralize workload by lowering workload in the overload condition and increasing work-

load in the underload condition. Hypothesis HA
1 predicted that the workload assessment

algorithm’s estimates and the subjective ratings will differ between the two evaluations,

with lower workload experienced in the overload condition and higher workload experi-

enced in the underload condition for the adaptive evaluation. Neutralizing workload may

affect task performance; thus, Hypothesis HA
2 predicted that higher performance will be

achieved when using the adaptive system for each NASA MATB-II task. The task perfor-

mance measures were the same as the previous evaluations described in Chapters 3.2.1.4

and 5.1.

The trained workload assessment algorithm used to estimate workload for the real-

time evaluation (Chapter 4.3.5) was also used for the adaptive system evaluation. The

algorithm’s estimates by workload condition and evaluation type are provided in Table 5.3.

The workload estimates for overall workload and each workload component, other than

physical workload, were lower during the adaptive evaluation, than the real-time evaluation

for the overload condition. Similar physical workload estimates results occurred in the
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overload condition, which is attributed to the participants primarily remaining stationary

during both evaluations. The participants experienced higher overall workload during the

underload condition, due to the adaptive system allocating the tracking task to underloaded

participants. Auditory workload was also higher using the adaptive system, as an auditory

stimulus was used to alert participants of the out of range tasks. Participants experienced

similar workload levels when using the adaptive system vs. not using the system during the

normal load condition.

Table 5.3: Algorithm Estimated Workload by Workload Condition and Evaluation System
Type: Real-Time vs Adaptation.

Workload Evaluation UL NL OL

Auditory
Real-Time 0.71 (1.41) 2.33 (1.37) 3.09 (1.02)
Adaptation 1.02 (2.07) 2.18 (1.81) 2.41 (1.25)

Cognitive
Real-Time 3.34 (3.25) 10.53 (3.85) 15.56 (3.66)
Adaptation 3.31 (3.37) 9.55 (3.74) 12.77 (4.47)

Physical
Real-Time 1.50 (1.82) 3.31 (3.87) 1.70 (2.05)
Adaptation 1.59 (2.05) 3.01 (3.69) 2.12 (2.90)

Speech
Real-Time 0.06 (0.24) 0.79 (0.68) 2.03 (0.88)
Adaptation 0.51 (1.18) 0.65 (1.3) 0.83 (1.41)

Overall
Real-Time 9.77 (5.17) 28.65 (6.03) 44.04 (5.07)
Adaptation 10.55 (5.69) 27.05 (6.42) 39.76 (6.65)

The NASA MATB-II tracking task performance was calculated using the RMSE in

pixels between the center of the object and the center of the cross hairs (Figure 3.1). The

resulting tracking error’s descriptive statistics are provided in Table 5.4. The tracking task

was in automation mode during the underload condition for the real-time evaluation and the

Interaction adaptation type; thus, no corresponding results are presented. The Real-Time

evaluation produced the lowest performance for the tracking task. The highest performance

was achieved using the Both adaptation type for the underload and normal load conditions,

while the Interaction adaptation type achieved the highest performance for the overload

condition. This result for the overload condition is attributed to the tracking task being

automated in the Both and Autonomy conditions. The higher tracking errors occurred when

the participants were completing the communications task prior to the system identifying
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an overloaded workload state and automating the tracking task. Participants were able to

complete the tracking task and the communications task simulataneously in the Interaction

condition, due to being able to verbally interact with the communication task.

Table 5.4: Tracking Task: Root-Mean Squared Error Performance Means (Std. Dev.) by
Evaluation Type. Note: Lower is Better.

Adaptation Type Underload Normal Load Overload
Real-Time Evaluation - 140.59 (93.83) 200.28 (111.6)
Both 84.87 (55.83) 87.50 (52.44) 126.14 (86.37)
Autonomy 100.82 (67.09) 119.62 (74.47) 115.84 (75.45)
Interaction - 89.57 (59.10) 112.98 (70.83)

The participants were required to maintain the resource management task’s primary fuel

tanks’ levels within the range of 2000 to 3000 units (Chapter 3.4). The overall percentage of

time the tanks were in range by adaptation type are provided in Table 5.5. The participants

maintained the fuel levels the best when the system adapted Interactions for each workload

condition. The real-time evaluation achieved the lowest performance for the underload and

normal load conditions, while the Both adaptation type performed the worst during the

overload condition.

Table 5.5: Resource Management Task: Time in Range (%) by Evaluation Type. Note:
Higher is Better.

Adaptation Type Underload Normal Load Overload
Real-Time Evaluation 79 79 68
Both 84 76 61
Autonomy 91 85 93
Interaction 92 91 99

The system monitoring task consisted of resetting lights and gauges, if they went out of

range. The participants’ descriptive statistics for reaction time to the out of range lights or

gauges by adaptation type and workload condition are provided in Table 5.6. The partici-

pants achieved the best performance in the underload and overload conditions when tasks

were automated and the best performance in the normal load condition when interactions

were adapted. The lowest performance was achieved when no adaptations occurred.
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Table 5.6: System Monitoring Reaction Time Means (Std. Dev.) by Evaluation Type.
Note: Lower is Better.

Adaptation Type Underload Normal Load Overload
Real-Time Evaluation 4.32 (4.16) 5.38 (3.52) 6.25 (4.30)
Both 3.14 (2.19) 4.53 (2.55) 5.68 (3.67)
Autonomy 2.86 (1.15) 5.63 (3.45) 4.52 (3.18)
Interaction 5.68 (3.67) 4.13 (2.60) 5.83 (3.77)

A failure occurred if participants did not correct a light or gauge within fifteen seconds

of when the light or gauge went out of range. The system monitoring success rate by

adaptation type is provided in Table 5.7. The participants were less successful when no

adaptation occurred. The Both and Autonomy adaptation types achieved roughly the same

performance in the underload and normal load conditions, but the Autonomy type achieved

better performance in the overload condition.

Table 5.7: System Monitoring Success Rate (%) by Adaptation Type and Workload Con-
dition. Note: Higher is Better.

Adaptation Type Underload Normal Load Overload
Real-Time Evaluation 69 79 60
Both 100 95 75
Autonomy 100 94 85
Interaction 92 99 76

The participants monitored and responded to simulated air-traffic control messages dur-

ing the communication task. The average (Std. Dev.) time it took for participants to re-

spond to air-traffic control messages by adaptation condition is provided in Table 5.8. The

participants responded to messages quicker when Both adaptation types occurred and were

the slowest when no adaptation occurred in the real-time evaluation. Similar reaction times

were expected when no adaptation occurred and during the interaction adaptation type for

the normal load condition, as the speech interaction adaptation did not occur during the

normal load condition.

Overall performance was calculated using the methodology in Chapter 5.1.1. The re-

sulting calculations are provided in Table 5.9. Directly comparing the calculated overall
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Table 5.8: Communications Reaction Time Means (Std. Dev.) by Evaluation Type. Note:
Lower is Better.

Adaptation Type Normal Load Overload
Real-Time Evaluation 10.41 (1.79) 9.83 (4.36)
Both 8.68 (4.57) 3.46 (4.07)
Autonomy 9.17 (4.9) 5.12 (5.49)
Interaction 10.35 (3.36) 4.36 (5.05)

task performance values between the adaptive conditions is confounded by what tasks were

active during the conditions, as the overall task performance value was based on the active

task set. For example, the tracking task was inactive during the underload condition for

the Interaction adaptation type, but was active for the Both and Autonomy types. Thus,

the tracking task performance may deflate the overall performance value artificially. Some

general trends can be extrapolated. Adapting interaction modalities (Interaction) for each

workload condition resulted in higher task performance, than the non-adaptive modalities

(real-time evaluation). This comparison is not confounded, as both adaptation types had

the same active task set.

Table 5.9: Calculated Overall Performance Descriptive Statistics by Adaptation Type and
Workload Condition. Note: Higher is Better.

Adaptation Type Underload Normal Load Overload
Real-Time Evaluation 0.85 (0.12) 0.72 (0.20) 0.56 (0.16)
Both 0.81 (0.12) 0.83 (0.13) 0.66 (0.27)
Autonomy 0.82 (0.06) 0.81 (0.14) 0.77 (0.16)
Interaction 0.98 (0.04) 0.83 (0.12) 0.72 (0.09)

5.5.1.1 Between Evaluations: Subjective Ratings

The in-situ workload ratings were assessed approximately every seven minutes during

the adaptive system adaptation. An overview of the ratings’ descriptive statistics is pro-

vided in Table 5.10. Overall workload was rated lower in the overload condition during the

adaptive system evaluation and was similar across the two evaluations for the underload

and normal conditions. The lower overall ratings for the overload condition are attributed
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to the cognitive, tactile, and visual workload components. The NASA-TLX was admin-

istered at the end of each evaluation and the average ratings for each NASA-TLX scale

are provided in Table 5.11. There was no significant difference in the overall NASA-TLX

ratings between the two evaluations. The participants were more frustated using the adap-

tive system, which may be attributed to the training session. The training session for the

real-time evaluation and the pilot study did not use the adaptive system; thus, participants

needed to get use to using the adaptive system.
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Table 5.10: In-Situ Workload Ratings by Evaluation Condition and Type: No Adaptation vs Adaptation

Condition Evaluation Auditory Cognitive Motor Speech Tactile Visual Overall

Underload
Real-Time 1.2 (0.41) 1.65 (0.67) 1.45 (0.51) 1.2 (0.41) 1.3 (0.47) 1.8 (0.83) 8.6 (2.54)
Adaptation 1.12 (0.5) 1.5 (0.73) 1.75 (0.93) 1.12 (0.34) 1.62 (0.96) 2.0 (0.82) 9.12 (3.07)

Normal Load
Real-Time 1.9 (0.64) 2.75 (1.02) 2.65 (0.88) 2.1 (0.79) 1.85 (0.59) 2.85 (1.04) 14.1 (3.68)
Adaptation 2.25 (0.77) 2.69 (0.7) 2.12 (0.81) 2.12 (0.96) 2.0 (1.03) 2.88 (1.09) 14.06 (2.74)

Overload
Real-Time 2.9 (0.76) 3.7 (0.92) 3.1 (0.84) 2.8 (0.92) 2.63 (0.89) 3.57 (1.04) 18.7 (3.53)
Adaptation 3.04 (1.37) 2.83 (1.17) 1.83 (0.82) 2.92 (1.28) 1.88 (1.19) 2.67 (1.09) 15.17 (4.06)

Table 5.11: NASA-TLX Workload Ratings by Evaluation Type: No Adaptation vs Adaptation

Evaluation Effort Frustration Mental Performance Physical Temporal Overall
Real-Time 75.5 (14.62) 38.0 (22.51) 66.0 (16.8) 37.0 (22.14) 49.5 (25.22) 61.0 (22.83) 60.0 (12.25)
Adaptation 70.62 (16.13) 54.38 (18.41) 59.38 (25.28) 51.25 (24.6) 35.62 (21.62) 55.0 (20.35) 60.17 (13.97)
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5.5.1.2 Between Evaluations Discussion

The developed adaptive system targets adaptations to specific workload channels in

order to augment task performance. Hypothesis HA
1 predicted that participants will expe-

rience lower workload in the overload condition and higher workload for the underload

condition on a between evaluation analysis. The hypothesis was supported for the overload

condition, but not for the underload condition. Failing to support the hypothesis for the

underload condition was attributed to the adaptive system’s sub-optimal approach of tran-

sitioning the tracking task out of automatic mode. An adaptive system may allocate other

tasks to the participant, but such an approach is not feasible with the NASA MATB-II task

environment. The adaptive system cannot recreate communication requests for the partic-

ipant to respond to or make the system monitoring task’s alarms go out of range, as the

alarms represented system states.

Targeting adaptations to the overall workload and its contributing components was ex-

pected to increase task performance. Hypothesis HA
2 predicted that higher task performance

will be achieved using the adaptive system. This hypothesis was fully supported for the be-

tween evaluations analysis, as the highest task performance for each NASA MATB-II task

occurred in one of the adaptive conditions (i.e., Both, Autonomy, or Interaction). Fully sup-

porting this hypothesis does not provide insight into which adaptations were most effective

for each NASA MATB-II task; thus, additional analysis were conducted to investigate the

effectiveness of automating tasks and adapting interactions.

5.5.2 Adaptive Autonomy Results

Analyzing the impact of system’s adaptations required parsing task performance data

by autonomy and interaction modality. The first set of results parsed data by what tasks

were being automated. Hypothesis HA
3 predicted that lower workload and higher task per-

formance will be achieved in the Both condition when at least one task was automated.
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Tasks were taken out of automation mode approximately twenty seconds into the underload

condition. The resource management task was the only active task during these twenty sec-

onds, as no communications requests or system monitoring alarms was scheduled to occur.

Thus, the underload condition was not included in the adaptive autonomy analysis.

The system automated neglected tasks when it determined that a participant was over-

loaded or that their predicted performance was too low. Overall, at least one task was

automated 40% of the time during the normal load condition and 75% of the time during

the overload condition for the Both and Autonomy adaptive conditions. No tasks were au-

tomated during the underload condition. The system automatically responded to an out of

range light or gauge 20% of the time in the normal load condition and 32% of the time in

the overload condition, while the system automatically tuned a communications radio 20%

and 32% of the time in the normal load and overload conditions, respectively. The tracking

task was automated 16% of the time in the normal load condition and 42% of the time dur-

ing the overload condition, while the resource management task was automated 48% and

33% of the time during the normal load and overload conditions, respectively. The work-

load estimates by autonomy and automated tasks are presented in Tables 5.12 and 5.13,

respecively. The Task Region column represents where the participants were physically lo-

cated (TRCK/SYS: Tracking and System Monitoring, COMM/RES: Communications and

Resource Management). Automating tasks did not appear to impact the participants’ over-

all workload, as similar overall workload estimates occurred for each adaptive condition

and autonomy level (on or off).

Automating inactive tasks was expected to increase task performance. The descriptive

statistics for the tracking task performance by adaptive condition and autonomy type are

provided in Table 5.14, where the autonomy column indicates which tasks were being auto-

mated or if no tasks were being automates (i.e., None). For example, the COMM/RESvalue

indicates that the communications and resource management tasks were being automated.

The presented results pertain to when the participant was actively completing the tracking

196



Table 5.12: Algorithm Estimated Workload Means (Std. Dev.) by Autonomy Level for the
Both Adaptive Condition. Note: TRCK/SYS represents the tracking and system monitoring
tasks, while COMM/RES represents the communication and resource management tasks.

Workload Autonomy Task Region Normal Load Overload

Auditory
Off

TRCK/SYS 1.91 (1.39) 2.29 (1.37)
COMM/RES 2.00 (1.15) 2.47 (1.30)

On
TRCK/SYS 1.99 (2.09) 2.35 (1.42)
COMM/RES 1.85 (1.21) 2.55 (1.19)

Cognitive
Off

TRCK/SYS 9.94 (3.71) 12.22 (4.35)
COMM/RES 10.39 (3.43) 12.33 (3.64)

On
TRCK/SYS 9.05 (4.00) 12.55 (4.12)
COMM/RES 9.03 (3.70) 13.14 (3.63)

Physical
Off

TRCK/SYS 2.91 (3.43) 0.96 (1.21)
COMM/RES 1.25 (2.26) 2.11 (2.44)

On
TRCK/SYS 4.59 (4.01) 1.28 (2.55)
COMM/RES 4.17 (4.42) 2.04 (2.33)

Speech
Off

TRCK/SYS 0.90 (1.46) 0.89 (1.44)
COMM/RES 0.26 (0.89) 0.36 (0.98)

On
TRCK/SYS 0.67 (1.32) 1.12 (1.52)
COMM/RES 0.27 (0.87) 0.41 (1.06)

Overall
Off

TRCK/SYS 27.16 (6.15) 35.93 (7.05)
COMM/RES 23.91 (5.74) 38.47 (5.46)

On
TRCK/SYS 28.53 (6.77) 38.27 (6.85)
COMM/RES 27.05 (7.33) 40.03 (5.31)

task or system monitoring task, as incorporating performance results when the participant

was not physically located near these tasks does not provide the necessary insight into how

adapting autonomy impacts the corresponding performance. Automating the communica-

tions and resource management task in the normal load condition produced similar tracking

task performance as not automating the tasks for the Both and Autonomy conditions. A

beneficial impact to performance was seen in the overload condition when the communica-

tions and resource management tasks were being automated within the Both and Autonomy

conditions. Automation did not occur during the Interaction adaptive condition, but high

performance was achieved in the condition.

The participants generally completed the tracking task at the same time as the system

monitoring task; thus, a similar trend as the tracking task performance was expected for
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Table 5.13: Algorithm Estimated Workload Means (Std. Dev.) by Autonomy and Task
Region for the Autonomy Adaptive Condition.

Workload Autonomy Task Region Normal Load Overload

Auditory
Off

TRCK/SYS 2.00 (1.84) 2.77 (1.36)
COMM/RES 2.03 (1.29) 2.83 (1.12)

On
TRCK/SYS 1.21 (1.03) 2.14 (1.11)
COMM/RES 1.71 (1.47) 2.69 (1.20)

Cognitive
Off

TRCK/SYS 9.83 (3.99) 14.38 (4.89)
COMM/RES 8.72 (3.44) 13.71 (3.58)

On
TRCK/SYS 9.97 (3.44) 11.13 (4.65)
COMM/RES 9.81 (3.46) 12.18 (4.30)

Physical
Off

TRCK/SYS 3.78 (3.83) 2.44 (3.44)
COMM/RES 3.43 (3.81) 1.41 (1.44)

On
TRCK/SYS 5.74 (3.29) 1.02 (1.63)
COMM/RES 4.28 (4.19) 2.07 (2.99)

Speech
Off

TRCK/SYS 0.16 (0.70) 0.46 (1.10)
COMM/RES 0.21 (0.82) 0.05 (0.41)

On
TRCK/SYS 0.08 (1.40) 0.56 (1.21)
COMM/RES 0.0 (0.0) 0.39 (1.05)

Overall
Off

TRCK/SYS 27.36 (7.87) 40.40 (8.84)
COMM/RES 25.29 (7.09) 39.65 (5.39)

On
TRCK/SYS 31.36 (5.13) 36.27 (6.30)
COMM/RES 27.56 (7.30) 39.09 (6.76)

Table 5.14: Tracking Error Means (Std. Dev.) by Adaptive Condition and Autonomy Level.
Note: Lower is Better

Adaptive Condition Autonomy Normal Load Overload

Both
None 82.87 (45.18) 133.05 (82.38)

COMM/RES 80.61 (50.95) 116.37 (82.02)

Autonomy
None 105.16 (62.55) 145.16 (96.36)

COMM/RES 111.81 (66.48) 114.53 (73.74)
Interaction None 87.18 (54.65) 99.33 (58.03)

the system monitoring task performance. The reaction times and success rates for when

the participants were actively completing the system monitoring task are provided in Ta-

bles 5.15 and 5.16, respectively, by adaptive condition and task autonomy. Automating the

communications and resource management tasks did not impact the reaction times for the

Both and Autonomy adaptive conditions, but participants had higher success rates when the

tasks were being automated in the overload condition. This trend illustrates that participants
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were more likely to notice that a light or gauge was out of range when the communications

and resource management tasks were automated. Autonomy negatively impacted task per-

formance in the normal load condition for the Autonomy adaptive condition, resulting in

higher reaction times and lower success rates. The Interaction condition resulted in similar

or better performance than the other adaptive conditions for both workload conditions.

Table 5.15: System Monitoring Reaction Time Means (Std. Dev.) by Adaptive Condition
and Autonomy Level. Note: Lower is Better

Adaptive Condition Autonomy Normal Load Overload

Both
None 4.32 (2.03) 5.67 (3.62)

COMM/RES 4.12 (2.16) 5.53 (3.43)

Autonomy
None 4.92 (2.42) 3.84 (3.26)

COMM/RES 6.25 (3.26) 4.14 (2.78)
Interaction None 4.42 (2.73) 4.87 (3.36)

Table 5.16: System Monitoring Success Rate by Adaptive Condition and Autonomy Level.
Note: Higher is Better

Adaptive Condition Autonomy Normal Load Overload

Both
None 98 20

COMM/RES 97 64

Autonomy
None 98 55

COMM/RES 87 75
Interaction None 93 87

Automating the system monitoring and tracking tasks allowed participants to focus on

the resource management and communications tasks. This focused attention may improve

the resource management’s task performance; the results for which are provided by adap-

tive condition and autonomy type in Table 5.17. The results for the TRCK/SYS rows

correspond to the tracking and system monitoring tasks being automated. Similar to the

tracking task’s and system monitoring task’s performance, autonomy positively impacted

the resource management’s task performance during the overload condition, but not for the

normal load condition. Additionally, better performance was achieved during the Interac-

tion adaptive condition, where no tasks were automated.
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Table 5.17: Resource Management Time in Range (%) by Adaptive Condition and Auton-
omy Level. Note: Higher is Better

Adaptive Condition Autonomy Normal Load Overload

Both
None 83 23

TRCK/SYS 99 71

Autonomy
None 89 97

TRCK/SYS 91 100
Interaction None 100 100

Being able to focus on the communications task due to automating the tracking and

system monitoring tasks was expected to improve participants’ reaction times to a commu-

nications request. These reaction times are provided in Table 5.18. Automation did not

seem to impact the communications task performance, as participants responded to com-

munications requests in approximately the same amount of time to when tasks were not

automated. This result is attributed to participants primarily prioritizing the communica-

tions tasks over the other tasks.

Table 5.18: Communications Reaction Time by Adaptive Condition and Autonomy Level.
Note: Lower is Better

Adaptive Condition Autonomy Normal Load Overload

Both
None 8.50 (4.34) 3.67 (4.40)

TRCK/SYS 10.21 (3.55) 3.86 (4.37)

Autonomy
None 11.15 (0.99) 9.90 (3.45)

TRCK/SYS 12.23 (2.03) 9.17 (4.59)
Interaction None 10.35 (3.36) 4.36 (5.05)

Overall task performance was calculated for when tasks were automated or not, where

the resulting performance by workload condition is provided in Table 5.19. The autonomy

column represents which tasks were being automated. The participants achieved similar

or lower overall task performance during the normal load condition when tasks were being

automated, but achieved better performance during the overload condition with automated

tasks. The Interaction condition achieved similar task performance to the Both and Auton-

omy adaptive conditions.
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Table 5.19: Overall Task Performance by Adaptive Condition and Autonomy Level. Note:
Higher is Better

Adaptive Condition Autonomy Normal Load Overload

Both
None 0.82 (0.15) 0.44 (0.33)

TRCK/SYS 0.79 (0.16) 0.75 (0.30)
COMM/RES 0.82 (0.07) 0.66 (0.18)

Autonomy
None 0.82 (0.13) 0.44 (0.33)

TRCK/SYS 0.80 (0.18) 0.77 (0.17)
COMM/RES 0.74 (0.15) 0.74 (0.14)

Interaction None 0.83 (0.12) 0.72 (0.09)

5.5.2.1 Adaptive Autonomy Discussion

Hypothesis HA
3 predicted that automating tasks will result in lower workload and higher

task performance. The first portion of this hypothesis was not supported, as there was no

discernible difference in workload, when tasks were being automated. This result is at-

tributed to the system automating tasks that were not the participant’s active task. For ex-

ample, automating the tracking and system monitoring tasks when participants were com-

pleting the communications and resource management tasks did not impact the primary

contributors (e.g, the communications and resource management tasks) to the participant’s

workload state. Thus, the adaptive system needs to automate neglected tasks and choose

an appropriate level of autonomy for the active tasks in order to reduce workload appro-

priately. Choosing a level of autonomy for the active tasks is not trivial, as the unexpected

automation may inadvertently increase workload.

Automating inactive tasks did not reduce workload, but may allow participants to per-

form better on the current tasks and increase overall sustained performance on all tasks,

as the participants did not need to monitor the automated tasks and focused solely on the

current tasks. Hence, the second portion of hypothesis HA
3 predicting that higher task per-

formance will occur when tasks were being automated was partially supported, as higher

performance was achieved when tasks were automated during the overload workload con-

ditions. It may not appear that higher performance was achieved when tasks were being
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automated in the system monitoring task, but participants were more likely to respond to

and properly repair an out of range light or gauge with a similar reaction time to no auton-

omy. Participants performed similar or worse when tasks were being automated to when

tasks were not automated in the normal load condition. This trend may indicate a need to

automate more tasks during the normal load condition, as more automation can decrease

the amount of times participants walk between tasks.

The Interaction condition tended to have similar or higher task performance metrics to

the other two conditions, despite no tasks being automated. This trend may be attributed to

participants being able to verbally interact with the communications task, while completing

the tracking and system monitoring tasks. The adaptive system prioritized automating the

communication’s task over allowing participants to verbally interact with the task during

the Both condition, resulting in participants using the speech interaction modality less fre-

quently during the normal load and overload conditions. Flipping the priority of automating

tasks to rely on a speech interaction modality more may result in higher performance in the

Both condition. Additionally, the resource management task can be neglected for long dura-

tions without considerable performance decrements (i.e., the participants can leave pumps

on and intermentally check on the fuel levels). Thus; automating the resource management

task has minimal impact on overall performance.

5.5.3 Interaction Modality Results

A primary contribution of the adaptive system was that interaction modalities were

adapted based on the workload component estimates, not just the overall workload state.

System interactions occurred in the form of alarms (e.g., a light or gauge goes out of range),

where an auditory modality was used for the alarm, if the participant’s speech and auditory

workload channels were not loaded. Hypothesis HA
4 predicted that adapting the interac-

tion modality appropriately will have a beneficial impact on the system monitoring task’s

performance and on the communications task’s workload. Analyzing the communication
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task’s performance, with respect to interaction modality adaptations was not completed, as

reaction time corresponded to when the participant physically tunes a radio (i.e., pushes

enter after tuning the radio). The radio automatically updated as soon as the participant

started speaking, when the participant interacted via a speech modality. Thus, the reaction

times between the two modalities do not represent the same performance. The tracking

and resource management tasks were removed from the interaction modality analysis, as

interactions were rarely adapted for these tasks.

The IMPRINT Pro workload models predicted that a conflict may occur with the par-

ticipant’s speech or auditory channels, if an auditory modality was used 33% (underload),

32% (normal load), and 85% (overload) of the time. The adaptive system identified a

potential conflict 15% (underload), 65% (normal load), and 90% (overload) of the time,

demonstrating that the system adapted interactions less frequently than expected for the

underload condition and more frequently than expected for the normal load condition. A

visual modality was selected for the underload condition, primarily due to the participants

speaking. This result was expected, as no auditory conflicts (i.e., from the communica-

tions task) were to occur in the underload condition. The adaptive system selected a visual

modality in the normal load and overload conditions, due to the participants speaking, or

an auditory conflict from the communications task.

Changing an alarm’s interaction modality intelligently was expected to have a beneficial

effect on the system monitoring task performance. It was expected that using an auditory

modality, when the participants were underloaded will lower reaction times and improve

success rates over a visual modality. Likewise, using a visual modality, when the partici-

pants were overloaded will lower reaction times and improve success rates over an auditory

modality. The performance metrics (reaction time and success rate) by interaction modality

and task region are provided in Tables 5.20 and 5.21, respectively, where the task region

represents the participants’ physical location when a light or gauge went out of range.

Overall, longer reaction times and lower success rates occurred when the participants were
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located by the communications or resource management tasks for both interaction modali-

ties, which was expected. Using a visual modality typically elicited shorter reaction times,

but lower success rates when the participants were located by the communications or re-

source management task. Similar reaction times and success rates were achieved across

the two interaction modalities when the participants were completing the tracking or sys-

tem monitoring task during the normal load or overload workload conditions. A complete

comparison between the two interaction modalities cannot be conducted for the underload

condition, as the participants were never in a specific task region when an alarm went off

(e.g., participants were never near the communications/resource management tasks when a

visual modality was selected during the Both condition).

Table 5.20: System Monitoring Reaction Times by Task Region, Adaptive Condition and
Selected Interaction Modality.

Condition Selected Modality Task Region UL NL OL

Both
Auditory

TRCK/SYS 3.34 (1.19) 4.55 (2.38) 5.31 (3.26)
COMM/RES 11.76 (0.00) 6.08 (2.86) 10.21 (1.73)

Visual
TRCK/SYS 2.15 (0.53) 4.25 (2.47) 5.47 (3.58)
COMM/RES - 5.44 (3.65) 9.21 (3.33)

Interaction
Auditory

TRCK/SYS - 4.51 (3.33) 5.11 (3.30)
COMM/RES 4.01 (1.39) 4.79 (3.59) 13.74 (0.00)

Visual
TRCK/SYS 2.08 (0.10) 4.02 (2.04) 5.93 (3.83)
COMM/RES 3.15 (1.83) 4.07 (2.60) 9.08 (2.68)

Autonomy Visual
TRCK/SYS 2.76 (1.21) 4.49 (2.80) 3.77 (2.67)
COMM/RES 2.46 (0.29) 4.72 (3.31) 8.34 (3.37)

Adapting interaction modalities pertains to changing how the human may interact with

the system, as well as changing how the system interacts with the human. The participants

were able to interact with the communications task via a physical or speech modality, based

on their available workload resources. The participants interacted with the communications

task via a speech modality 10% of the time in the normal load condition and 37% of the

time in the overload condition. No communication requests occurred during the underload

condition. The corresponding physical and speech workload estimates when an interaction

occurred for the communications task are provided in Table 5.22. Speech workload was
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Table 5.21: System Monitoring Success Rates by Task Region, Adaptive Condition and
Selected Interaction Modality.

Condition Selected Modality Task Region UL NL OL

Both
Auditory

TRCK/SYS 100 94 76
COMM/RES 100 89 57

Visual
TRCK/SYS 100 97 85
COMM/RES - 90 22

Interaction
Auditory

TRCK/SYS - 100 83
COMM/RES 100 100 50

Visual
TRCK/SYS 100 100 82
COMM/RES 75 92 42

Autonomy Visual
TRCK/SYS 100 96 70
COMM/RES 100 44 7

estimated to be higher when participants interacted using a speech modality, than when a

physical interaction occurred for both adaptation conditions (Both and Interaction) during

the normal load workload condition. A similar pattern occurred for the Both adaptive con-

dition during the overload workload condition, but higher speech workload was estimated

during the Interaction condition when participant used a physical interaction modality. The

participants experienced higher physical workload when physically interacting with the

communications task, as demonstrated by the workload estimates.

Table 5.22: Descriptive Statistics for the Speech and Physical Workload Component Esti-
mates for the Communications Task by Adaptive Condition and Selected Modality.

Condition Selected Modality Normal Load Overload
Speech Physical Speech Physical

Both
Speech 1.98 (1.71) 3.77 (5.35) 0.85 (1.38) 1.88 (1.98)
Physical 0.15 (0.70) 6.25 (4.92) 0.18 (0.76) 2.13 (2.02)

Interaction
Speech 2.20 (1.91) 0.88 (1.20) 1.65 (1.67) 1.47 (1.63)
Physical 1.65 (2.34) 4.25 (5.65) 2.41 (1.50) 3.82 (4.00)

The participants were able to interact with the communications task via a speech modal-

ity approximately the same amount of time during the Both and Interaction conditions.

However, the participants were typically not in the same location during the two condi-

tions. 90% of the time participants were completing the tracking and system monitoring
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tasks, while verbally interacting with the communications task during the Interaction con-

dition and 27% of the time they were doing the same during the Both condition. This

physical location difference was due to the system monitoring and tracking tasks being

automated during the Both condition.

5.5.3.1 Interaction Modality Discussion

The first portion of hypothesis HA
4 predicted that higher system monitoring task perfor-

mance will be achieved when adapting interactions (i.e., an alarm used an auditory modality

when appropriate). The hypothesis was not supported, as similar or lower reaction times

occurred in the underload condition when a visual modality was selected. Similar reac-

tion times occurred between the auditory and visual modalities for the overload condition

as well. Not supporting the hypothesis may be attributed to the adaptive system’s exper-

imental design. The similar reaction times and success rates between the two interaction

modalities may be attributed to the system selecting the appropriate modality. No data was

collected corresponding to when an audible alarm conflicts with the communications task

or the participant speaking. Additional results are required in order to determine if adapting

an alarm’s interaction modality is beneficial.

The second portion of hypothesis HA
4 was supported, as the expected workload impact

of adapting how participants may interact with the communications task occurred. The

participants experienced higher speech workload when using a speech modality vs. a phys-

ical modality, as expected. Additionally, the speech modality was primarily used when

participants were located by the tracking and system monitoring tasks, when the system

adapted interactions only. This result allowed the participants to complete three tasks at

a time, rather than being limited to only two tasks simultaneously during the Both condi-

tion. Thus, the adaptive system allowed for more work to be completed in the Interaction

condition, by selecting a speech modality for the communications task.
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5.5.4 Within-Subjects Results

The within-subjects analysis focused specifically on the results from the two partici-

pants who completed both evaluations. Each participant completed the real-time evaluation

(Chapter 4.1) approximately four months prior to completing the adaptive system evalua-

tion and were acquaintances of the experimenter, who specifically ask these participants to

complete the adaptive system evaluation. Participant P1 completed the adaptive evaluation

in the Both-Autonomy ordering, while P2 completed the evaluation in the Both-Interaction

ordering. The intent was for the Both condition to occur in the same order for both partic-

ipants, which was randomly chosen to be first. Participant P1 was randomly assigned the

Both-Autonomy ordering, which meant participant P2 received the Both-Interaction order-

ing.

It was expected that the two participants will experience lower workload and achieve

higher performance during the adaptive evaluation, due to the system adaptations and prior

experience. Hypothesis HA
5 predicted that the participants’ objective and subjective work-

load ratings will be lower using the adaptive system in the overload condition and higher

in the underload condition. Task performance was expected to be better using the adaptive

system for all workload conditions, as predicted by hypothesis HA
6 . The results were ana-

lyzed by evaluation type instead of by adaptive condition (i.e., Both) in order to determine

the overall impact of the adaptive system.

Overall, adapting system autonomy and interactions was expected to impact the work-

load assessment algorithm’s estimates. These estimates are provided in Table 5.23 by par-

ticipant, evaluation type, and workload condition. Each participant experienced higher

overall workload during the underload and normal load conditions, while lower overall

workload was experienced during the overload condition when completing the adaptive

evaluation. These differences in overall workload were attributed to the cognitive and au-

ditory workload components, for which similar trends are seen in Table 5.23.

Automating all inactive tasks, based on participant workload, may allow participants
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Table 5.23: Within Subjects Algorithm Estimated Workload by Workload Condition and
Evaluation Type: Real-Time Evaluation vs Adaptation

Workload Participant Evaluation Underload Normal Load Overload

Auditory
P1

Real-Time 0.54 (1.12) 2.39 (1.39) 3.38 (0.87)
Adaptation 1.82 (2.91) 2.16 (1.78) 2.42 (1.20)

P2
Real-Time 0.53 (1.07) 2.31 (1.39) 3.22 (0.88)
Adaptation 1.1 (2.12) 2.04 (1.87) 2.13 (1.34)

Cognitive
P1

Real-Time 3.07 (2.71) 9.58 (3.42) 15.92 (3.05)
Adaptation 3.34 (3.21) 8.92 (3.51) 11.29 (3.99)

P2
Real-Time 2.68 (2.75) 9.70 (3.20) 14.98 (3.56)
Adaptation 3.46 (3.45) 8.08 (3.18) 9.99 (3.74)

Physical
P1

Real-Time 1.56 (1.72) 4.12 (4.45) 2.57 (2.62)
Adaptation 1.97 (2.25) 3.31 (3.85) 2.30 (2.90)

P2
Real-Time 2.08 (2.99) 3.62 (4.62) 2.89 (1.72)
Adaptation 2.70 (2.44) 2.93 (3.38) 2.27 (2.88)

Speech
P1

Real-Time 0.07 (0.25) 0.79 (0.68) 2.03 (0.88)
Adaptation 0.29 (0.9) 0.54 (1.21) 1.23 (1.57)

P2
Real-Time 0.05 (0.22) 0.75 (0.63) 2.09 (0.84)
Adaptation 0.29 (0.91) 0.79 (1.35) 0.71 (1.31)

Overall
P1

Real-Time 9.37 (4.61) 28.57 (5.95) 45.55 (5.1)
Adaptation 11.55 (6.05) 26.6 (6.37) 38.91 (6.16)

P2
Real-Time 9.34 (5.7) 28.06 (6.18) 42.62 (4.89)
Adaptation 11.56 (5.99) 25.34 (6.01) 36.40 (5.56)

to focus on the current task set and improve performance. The tracking task performance

when the task was not automated is provided in Table 5.24 by participant and evaluation

type. No results are provided for the Real-Time Evaluation evaluation during the underload

condition, as the tracking task was always being automated. Overall, both participants

achieved better performance for this task when using the adaptive system. Similar task

performance was achieved for the overload condition when no adaptation occurred for both

participants, while participant P1 achieved higher performance than participant P2 using

the adaptive system. This higher performance is attributed to the autonomy adaptations P1

experienced.

It was expected that participants will maintain the proper level ranges for the resource

management’s fuel tanks more of the time when using the adaptive system. The percentage
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Table 5.24: Within Subjects RMSE Tracking Error Means (Std. Dev.) by Evaluation Type.
Note: Lower is Better.

Participant Evaluation Underload Normal Load Overload

P1
Real-Time - 128.94 (75.27) 200.19 (104.09)
Adaptation 89.72 (49.81) 114.92 (82.29) 119.02 (67.85)

P2
Real-Time - 147.22 (102.21) 200.75 (110.57)
Adaptation 91.52 (70.7) 108.36 (75.93) 132.09 (90.39)

of time the tanks were in range for each participant and evaluation type are provided in Ta-

ble 5.25. P1 better maintained the fuel levels in the underload and overload conditions using

the adaptive system, but performed worse during the normal load condition. P2 achieved

similar performance (within 5%) for both evaluations.

Table 5.25: Within Subjects Resource Management Time in Range (%) by Evaluation
Type. Note: Higher is Better.

Participant Evaluation Underload Normal Load Overload

P1
Real-Time 71 97 67
Adaptation 100 86 100

P2
Real-Time 97 84 73
Adaptation 100 89 73

The participants were expected to have faster reaction times to an out of range light or

gauge for the system monitoring task. The descriptive statistics for these reaction times

are provided in Table 5.26 by participant and evaluation type. The adaptive system did

not appear to impact the reaction times. P1 had quicker reaction times in the underload

condition using the adaptive system.

Table 5.26: Within Subjects System Monitoring Reaction Time Means (Std. Dev.) by
Evaluation Type. Note: Lower is Better.

Participant Evaluation Underload Normal Load Overload

P1
Real-Time 5.35 (4.06) 4.85 (2.68) 6.56 (4.36)
Adaptation 3.02 (1.35) 4.46 (1.98) 6.35 (4.33)

P2
Real-Time 3.93 (3.19) 5.98 (4.27) 5.95 (4.42)
Adaptation 3.87 (1.52) 5.29 (2.99) 5.35 (3.84)

The similar reaction times across the two evaluation types may not reveal the impact
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of the adaptations, as participants may fail to respond to an out of range light or gauge

within the fifteen second time limit. The participants’ success rates by evaluation type are

provided in Table 5.27. P2 had higher success rates using the adaptive system, while P1

had higher success rates during the normal load condition and the same success rate for the

underload and overload conditions.

Table 5.27: Within Subjects System Monitoring Success Rate (%) by Evaluation Type.
Note: Higher is Better.

Participant Evaluation Underload Normal Load Overload

P1
Real-Time 100 85 58
Adaptation 100 97 58

P2
Real-Time 89 66 50
Adaptation 100 92 77

The participants were to respond to simulated air traffic control communications. The

average response times to these to theses communications are provided in Table 5.28.

Lower reaction times occurred when the adaptive system was used for all workload con-

ditions. The two participants achieved similar reaction times for the adaptive evaluation

during the normal load condition, but P2 had lower reaction times than P1 in the overload

condition.

An anticipated effect was found for the participants’ subjective ratings. The in-situ

workload ratings are provided in Table 5.29. The workload ratings demonstrated lower

workload during the normal load and overload conditions when using the adaptive sys-

tem for both participants. P2 rated their overall workload higher for the underload condi-

tion during the adaptive evaluation, while P1 had similar workload ratings. The respective

Table 5.28: Within Subjects Communications Reaction Time Means (Std. Dev.) by Eval-
uation Type. Note: Lower is Better.

Participant Evaluation Underload Normal Load Overload

P1
Real-Time - 9.24 (1.67) 10.51 (3.34)
Adaptation - 6.92 (4.64) 3.32 (5.33)

P2
Real-Time - 13.51 (1.35) 9.00 (4.91)
Adaptation - 6.01 (5.59) 1.59 (2.69)
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NASA-TLX results are provided in Table 5.30. P1 had lower NASA-TLX ratings when

using the adaptive system, while participant P2 had similar ratings for the evaluations.
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Table 5.29: Within-Subjects In-Situ Workload Ratings by Evaluation Type: Real-Time Evaluation vs Adaptation

Condition Participant Evaluation Auditory Cognitive Motor Speech Tactile Visual Overall

Underload
P1

Real-Time 1.0 (0.0) 1.5 (0.71) 1.5 (0.71) 1.0 (0.0) 1.5 (0.71) 1.5 (0.71) 8.0 (2.83)
Adaptation 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 2.5 (2.12) 1.0 (0.0) 7.5 (2.12)

P2
Real-Time 1.0 (0.0) 1.0 (0.0) 2.67 (1.15) 1.0 (0.0) 2.33 (1.53) 2.0 (1.0) 10.0 (3.61)
Adaptation 3.5 (2.12) 3.5 (2.12) 2.5 (0.71) 3.0 (2.83) 3.0 (1.41) 4.0 (0.0) 19.5 (9.19)

Normal Load
P1

Real-Time 2.5 (0.71) 3.0 (0.0) 2.5 (0.71) 2.5 (0.71) 2.0 (0.0) 3.0 (0.0) 15.5 (2.12)
Adaptation 1.5 (0.71) 1.5 (0.71) 2.0 (1.41) 1.5 (0.71) 2.5 (0.71) 2.5 (0.71) 11.5 (4.95)

P2
Real-Time 5.0 (0.0) 4.0 (0.0) 4.0 (0.0) 4.0 (1.41) 4.0 (0.0) 3.0 (0.0) 24.0 (1.41)
Adaptation 2.5 (2.12) 2.5 (0.71) 2.5 (0.71) 2.5 (2.12) 3.5 (0.71) 4.5 (0.71) 18.0 (5.66)

Overload
P1

Real-Time 4.0 (1.0) 4.0 (1.0) 3.33 (1.15) 4.0 (1.0) 3.33 (1.15) 4.0 (1.0) 22.67 (5.86)
Adaptation 3.0 (1.0) 1.0 (0.0) 1.0 (0.0) 3.0 (1.0) 1.0 (0.0) 1.0 (0.0) 10.0 (2.0)

P2
Real-Time 5.0 (0.0) 3.0 (0.0) 4.0 (0.0) 5.0 (0.0) 4.0 (0.0) 3.5 (0.71) 24.5 (0.71)
Adaptation 2.0 (1.73) 1.67 (1.15) 1.0 (0.0) 2.0 (1.73) 1.33 (0.58) 1.67 (1.15) 9.67 (5.51)212



Table 5.30: Within Subjects NASA-TLX Workload Ratings by Evaluation Type: Real-Time Evaluation vs Adaptation

Participant Evaluation Effort Frustration Mental Performance Physical Temporal Overall

P1
Real-Time 50.0 30.0 55.0 35.0 20.0 55.0 45.67
Adaptation 10.0 10.0 20.0 50.0 10.0 10.0 22.67

P2
Real-Time 15.0 5.0 25.0 45.0 5.0 15.0 22.33
Adaptation 15.0 5.0 20.0 25.0 20.0 45.0 23.67
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5.5.4.1 Within-Subjects Discussion

Two participants completed both the real-time and the adaptive system evaluation,

which facilitates analyzing potential effects from a within-subjects perspective, at least on

a very limited basis. Hypothesis HA
5 predicted that both participants will experience lower

workload in the overload condition using the adaptive system and higher workload in the

underload condition. The overall workload estimates fully support this hypothesis, but the

in-situ subjective ratings only partially support the hypothesis. The subjective ratings as-

sess perceived workload and not the actual workload experienced; thus, this result was not

surprising.

The difference in task performance for the two evaluations was evaluated for hypoth-

esis HA
6 , which predicted that using the adaptive system will lead to higher task perfor-

mance. The participants achieved similar or better task performance when using the adap-

tive system, which supports hypothesis HA
6 . Similar system monitoring reaction times were

achieved during both evaluations; however, higher success rates occurred with the adaptive

system. This trend highlights that participants addressed correctly more out of range lights

and gauges using the adaptive system; thus, more work was completed.

5.6 Summary

The adaptive human-robot teaming system relied on workload component estimates

and a performance prediction model, which predicted task performance for 1-minute into

the future. These future performance predictions provided valuable insight into if perfor-

mance decrements were going to occur; thus, allowing the system to identify adaptations.

However, the performance prediction model was only analyzed for the NASA MATB-II

and for its ability to predict current and future (1-minute) task performance. Further inves-

tigation is required to determine the model’s predictive capabilities for differing time-steps

(e.g., 30-seconds) and in different task environments.

214



The state-of-the-art adaptive systems adapt the system’s autonomy based on cognitive

workload or the overall workload state in order to augment performance. However, target-

ing adaptations to specific workload channels can permit more intelligent adaptations and

further task performance. An adaptive system was developed in order to investigate how

targeting adaptations impacts task performance, where the system’s desired functionality

and effectiveness was demonstrated in a pilot study. The participants who used the adap-

tive teaming system achieved higher task performance, than participants who did not use

the adaptive system, which based on the pilot study, illustrated the system’s effectiveness.

The developed adaptive teaming system is the first system capable of adapting autonomy

levels and interaction modalities.

The system adaptions (autonomy levels and interactions) were analyzed by examining

their impact on workload and task performance. Automating tasks did not have the ex-

pected impact on workload, but did allow the participants to focus on the non-automated

tasks and generally achieve higher performance. However, similar performance was achieved

when adapting either the interactions or the autonomy. This result was attributed to partic-

ipants being able to complete the tracking, system monitoring, and communications task

simultaneously when a speech interaction modality was active for the communications task.

This result demonstrates that the adaptive system was able to balance workload across the

workload channels. Specifically, the physical workload requirement of walking between

the tasks was allocated to the participant’s speech workload channel.

Workload was used to determine the adaptive system’s adaptations in order to augment

task performance, as workload is an indirect measure of task performance. Directly mea-

suring task performance may appear as a more accurate and informative measure on which

to base system adaptations, but there are several limitations to such an approach. First, task

performance may be difficult to measure directly in dynamic task environments (i.e., first

response domains); thus, relying solely on task performance limits the range of environ-

ments in which the adaptive system can be deployed. Second, an overall task performance
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measure does not provide meaningful information about how a specific interaction will af-

fect the human (e.g., will an auditory modality decrease task performance due to resource

conflicts). These limitations demonstrate that relying on workload as a surrogate for task

performance provides for more robust system adaptations and allows for the adaptive sys-

tem to be deployed in multiple task environments.

The current adaptive system considers the workload component information as inde-

pendent estimates, but these estimates are likely correlated. A task analysis may be used

to identify the common means to complete the subtasks, which will identify what spe-

cific workload channels will be used. Additionally, a correlation or principle component

analysis between the component estimates may help determine what the interdependicies

are between the components. This information may allow for a more representative over-

all workload estimate that weights each workload component accordingly. Having a more

representative overall estimate will allow the adaptive system to better reason how an adap-

tation will impact the human. For example, using a visual modality (i.e., text) for an alarm

will have a cognitive component associated with the alarm. If the human is nearing an

overloaded state, the system may reason that the visual modality will overload the human’s

cognitive workload and choose not to use that specific modality, as an auditory modality

may be more appropriate.

The adaptive system was reliant on continuous workload estimates, which permits treat-

ing the system as a multi-variate control system. The workload estimates act as sensors with

the same update rates (5-seconds), while the system adaptations can be considered to be

system corrections. The update rate of the system corrections can impact the stability and

controllability of the control system. If these corrections are updated too frequently, then

the system will oscillate, resulting in unstable system states. For example, continuously

invoking and revoking automation may increase the human’s workload level, as the human

has to reassess the task states constantly in order to have appropriate system awareness.

Adapting too slowly will result in the system never reaching the desired steady-state (i.e.,
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the human is performing optimally). For example, if autonomy decisions are considered

once every 5-minutes, then the human may be in an overloaded state for at most 5-minutes

and be making multiple errors during that time frame. Additionally, relying on data from

5-minutes prior is insufficient for determining system interactions, such as choosing an au-

ditory alarm for the NASA MATB-II’s system monitoring task. Choosing an appropriate

adaptation update rate is non-trivial and likely domain and task specific. Adaptive sys-

tem designers likely need real-world data from the specific domain and tasks in order to

determine proper adaptation update rates and their corresponding impact on the adaptive

system’s stability.

Other aspects of control theory may be applicable to the adaptive system as well. A pro-

portional integral derivative controller may be applied to the system in order to maintain

the human’s performance at a desired level. The controller can provide information regard-

ing how much to adapt. If the human is overloaded, then the controller can determine how

much autonomy is needed in order to normalize the human’s workload level. However,

the adaptive system needs to have the necessary level of controllability in order to invoke

the needed amount of automation. For example, the current adaptive system has two au-

tonomy levels (on/off) for each NASA MATB-II task and automating neglected tasks did

not impact the human’s workload level effectively. The controller may automate each task,

which may reduce vigiliance. Thus, the current system’s controllability may be considered

to be low. Implementing more than two levels of autonomy for each task will increase the

system’s controllability and will allow for a proportional integral derivative controller to be

more effective.

The evaluation, as a pilot study, had a limited number of participants, but there was a

general increase in task performance when compared to the real-time evaluation partici-

pants’ performance. Task performance was sampled frequently throughout the evaluation,

which decreases the number of participants required to indentify an effect. However, this

frequent sampling will not factor out individual differences between participants. A full
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human-subjects evaluation is necessary in order to better understand the impacts of indi-

vidual differences on the system’s ability to perceive, predict and adapt the human’s and

system’s performance. This future evaluation needs to manipulate the adaptive conditions

as the within-subjects variables, while also including a no adaptation condition. Thus, the

individual participant performance between the adaptation and no adaptation conditions

can be analyzed. Additionally, the no adaptation trial needs to use an auditory modality for

all alarms in order to determine if the auditory alarm conflicts with the communication task

and reduces performance.

The adaptive system was tailored to the NASA MATB-II, but the system architecture

was designed to be generalizable. The Perceive state incorporated activity recognition, the

workload assessment algorithm, and performance prediction, which can be used in other

task domains, assuming that the algorithms are trained sufficiently. The Select stage needs

to be tailored to the task domain, which is to be expected. Adaptive system designers need

to provide information regarding what tasks can be automated and what interactions can

occur. For example, applying the adaptive system architecture to a peer-based human-robot

team requires the system designers to provide all potential robot interactions.

The adaptive human-robot teaming architecture may be applied to the peer-based eval-

uation, similar to that described in Chapter 3.3, where the participants completed a search-

and-rescue scenario with a robot teammate. The participants were required to speak through-

out the scenario, while the robot communicated messages from incident command or pro-

vided containment sampling instructions. Workload channel conflicts may occur if the

robot communicated a message audibly, when the participant was speaking. Thus, the

robot must use a different modality or wait until the participant’s speech workload channel

is no longer loaded. The adaptive system can identify these potential conflicts, using the

interaction decision node in Figure 5.2, postpone the communication until the participant is

no longer speaking or use another interaction modality. For example, the robot may send a

text message (tactile and visual modality), instead of audibly communicating the message.
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Automating tasks for the peer-based evaluation when the participant is overloaded may be

difficult, as the robot may be either completing its own task or communicating instructions

to the participant. However, the participant is required to communicate current task infor-

mation to incident command. Thus, the robot may communicate the task information to

incident command, if the participant is overloaded, so that the participant can better focus

on the current task. Essentially, the robot re-allocates a task from the participant to itself,

which can be considered a form of autonomy.

Task domains other than the NASA MATB-II contain aspects that may impact the adap-

tive system’s scalability. Representive task domains may team multiple humans and robots

to work together. These domains will require ntegrating methods, such as collation for-

mation, into the adaptive system architecture, where tasks can be allocated to different

humans and robots based on task schedules and the humans’ workload levels. Collation

formation may also be useful for when there is significant distance or communication la-

tency between tasks or agents, as collation formation may incorporate temporal and task

scheduling information. However, the adaptive system will have difficulty scaling to incor-

porate heterogenous, uncoupled, or unstructured tasks. For example, the system may have

to incorporate task priorities and be able to probabilistically predict a task’s workload com-

position in order to scale to heterogenous and unstructured tasks. These adaptive system

extensions are outside the scope of this dissertation.

Overall, the adaptive system was demonstrated to improve task performance over a

version of the system without adaptations. This task performance increase was primarily

attributed to the system being able to select the appropriate interaction modality for the

system monitoring and communications task. Automating inactive tasks was also bene-

ficial, as the automation allowed participants to focus their attention on the active tasks

and increase overall task performance. Further analyses and human subject evaluations

are needed to better understand how to adapt system autonomy levels and interactions ap-

propriately, but the developed system is a necessary step towards effective human-robot
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teaming architectures.
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Chapter 6

Conclusion

The ability to augment task performance in high intensity domains (i.e., a NASA Con-

trol Room) by adapting to human workload states has gained considerable research interest,

as multiple adaptive systems have been developed or theorized. These systems have pri-

marily focused on adaptive automation, where tasks are automated based on the human’s

overall workload state. However, the overall workload state does not promote understand-

ing why the human is in the current state, which is needed in order to enable more intelli-

gent adaptations. Additionally, the overall workload state does not provide any information

about workload channel conflicts, which is needed to adapt interaction modalities. This

dissertation developed a diagnostic workload assessment algorithm to provide an adaptive

system with information about the overall workload state and its contributing components:

auditory, cognitive, physical, speech, and visual. The algorithm was validated using data

from two supervisory-based evaluations and a peer-based evaluation, where the peer-based

evaluation was conducted by a prior PhD student. A performance prediction model used the

workload assessment algorithm’s estimates to predict current and future task performance

in order to provide additional information to the adaptive teaming system. The developed

system was designed to be applied across task domains and teaming roles. A pilot study

was conducted to demonstrate the adaptive system’s effectiveness in augmenting task per-

formance.

6.1 Contributions

The dissertation resulted in a number of contributions to the field, each of which are

summarized below:
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1. The primary contribution was a workload assessment algorithm capable of providing

a complete assessment of overall workload, by assessing each individual workload

component. The workload component estimates ensure that the algorithm is gen-

eralizable across tasks and human-robot teaming paradigms, as different tasks and

paradigms may encompass different workload components. Knowledge of the un-

derloaded and overloaded workload components provided by the algorithm enables

the adaptive system to understand the complete workload state of an individual and

intelligently target adaptations based on this knowledge.

The developed algorithm is the first algorithm capable of estimating each workload

component and overall workload in real-time. These real-time workload estimates

are needed in order for an adaptive system to understand how an adaptation may

impact the human’s workload level. Additionally, a system may reason over multiple

of these adaptations and their corresponding impact to human workload in order to

determine the most effective adaptation to implement.

Multiple task environments were used to validate the developed workload assessment

algorithm’s ability to estimate workload. These environments had varying workload

contributions, demonstrating that the algorithm is not constrained to a single task

environment with specific workload contributions. No other workload assessment

algorithm has been validated to develop similar estimates for such a range of task

environments.

2. A second contribution was an adaptive human-robot teaming system that improved

task performance by automating tasks or selecting appropriate interaction modalities.

The system targeted these adaptations based on specific workload components and

the overall workload state, where current adaptive systems only consider the overall

or cognitive workload state. A pilot study demonstrated that targeting adaptations in-

telligently can improve task performance in a supervisory-based human-robot team-
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ing paradigm.

The existing adaptive system literature results only focus on adapting the level of

autonomy with a perfect system (i.e., optimal task performance is achieved with

full autonomy). The existing results ignore imperfect systems and other types of

adaptation, such as changing interaction modalities. The developed adaptive system

is the first system capable of adapting task autonomy and interactions in order to

improve performance.

3. The third contribution was a performance model that relies on the workload assess-

ment algorithm. The performance model predicted if performance will decrease,

increase, or remain stagnant for future time-steps. Current systems that predict per-

formance use small segments of data (i.e., 5-seconds) to determine if performance

will decrease for the current or immediately following time-step. However, the state-

of-the-art systems fail to predict when performance may decrease, increase, or re-

main the same for future time-steps, which is needed to determine what adaptations

occurs when and how.

Elaborate

6.2 Future Work

There are multiple future directions, which are summarized in Table 6.1 and discussed

in the following paragraphs.

Workload Component Interdependicies

The developed workload assessment algorithm considers the workload components as

independent measures, as the components are uniformly aggregated into an overall work-

load estimate. However, correlations exists between the workload components. Future

work will quantify the interdependicies between the workload components using task, cor-
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Table 6.1: An Overview of the Future Research Directions.

Future Research Questions
Workload Component Interdependicies
Performance prediction model
Better emulate real-world workload conditions
Window size impact on the speech-based feature extraction process
Control system analysis
System adaptation impact on situational awareness
Coalition formation extension
Activity recognition
Fine motor, gross motor, and tactile workload component estimation
Visual workload estimation
Finer-grained speech workload model development

relations, and principle component analyses. The analyses will determine what weights are

needed for each workload component for the overall workload aggregation. These weights

are likely task environment specific; thus, data from the peer-based, supervisory-based, and

real-time evaluations will be used to determine the workload component interdependicies.

Performance Prediction Model

The developed adaptive system was demonstrated to improve task performance by target-

ing adaptations to specific workload channels; however, a full human-subjects evaluation is

required in order to fully comprehend the system’s impact. First, the system needs incorpo-

rate additional, rather than two, levels of autonomy, which will allow the adaptive system

to better assist overloaded or underloaded humans. Second, the adaptations’ and interac-

tions’ expected impact on workload needs to be used by the performance prediction model

in order to determine how the adaptation or interaction needs to occur. If the adaptation’s

expected impact on workload shows a decrease in the performance prediction value, then

another adaptation needs to occur,

Better Emulate Real-World Workload Conditions

The algorithm was shown to estimate workload accurately in emulated workload condi-

tions, where each workload condition’s duration was uniform (5-minutes). Real-world
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environments may not contain such task and workload level uniformity; thus, future work

will randomly order and choose each workload condition and time-frame in order to deter-

mine the corresponding impact on accuracy. The minimum workload condition duration

needs to be 30-seconds for the workload metrics to be able to sense the workload change.

Window Size Impact on the Speech-Based Feature Extraction Process

The real-time workload assessment algorithm was the foundation of the adaptive system,

where the algorithm estimated speech-workload. However, extracting speech-based fea-

tures for the speech workload estimation was relatively computationally expensive, due to

using the Fast Fourier Transform. This feature extraction process will impact the work-

load assessment algorithm’s real-time capabilities, if other window sizes are used for the

speech-based data. For example, using a 1-minute window may not allow the algorithm to

estimate workload every five seconds, due to the feature extraction computation time. It is

expected that at least a 2-second window size is needed in order to have accurate speech

workload estimates. Future work will investigate methods for reducing the feature extrac-

tion computation time and determine how quickly the algorithm can estimate workload

when larger window sizes are used.

Control System Analysis

The adaptive system may be treated as a multi-variate control system, as described in Chap-

ter 5.6. Future work will investigate control theory and how it may be applied to the adap-

tive system. This investigation will determine what optimal adaptation rate is necassary us-

ing the data from the real-time evaluation and the adaptive system pilot study. Additionally,

a methodology for applying various controllers (i.e., a proportional integral derivative con-

troller) to determine how much adaptation is needed (i.e., how much autonomy is needed

for each task) will be developed and validated in a future evaluation.

System Adaptation Impact on Situational Awareness

An important aspect of human-robot teaming is situational awareness, which was not as-

sessed during the pilot study. The full human-subjects evaluation needs to incorporate the
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situational awareness probes [44] in order to properly measure the participant’s situational

awareness. This information will permit analyzing how the autonomy impacts a partici-

pant’s ability to understand the current system’s global state and accurately predict future

states.

Coalition Formation Extension

The current adaptive system was evaluated in a one-to-one supervisory-based task environ-

ment, but other task domains may incoporate multiple human and/or system team members.

Allocating tasks amongst the multiple team members may allow for workload balancing.

Currently, the adaptive system has no mechanism to balance workload for multiple hu-

mans, but can be extended to do so using coalition formation [104]. Coalition formation

algorithms seek to form teams of agents or individuals to accomplish a task set, while

optimizing an objective function. Such algorithms are viable for workload balancing, but

choosing the appropriate algorithm for a task environment is difficult. The intelligent Coali-

tion Formation for Humans and Robots decision support system [108] can be incorporated

into the Determine Adaptations stage in order to select the appropriate coalition formation

algorithm and apply that algorithm to (re-)allocating tasks. The decision support system

will be extended to reason over various mission features affecting task performance (i.e.,

human workload, task preemption, number of task switches, and task priority levels) in

order to allocate task effectively.

Activity Recognition

Accurate workload estimates were required to intelligently target adaptations, but the de-

veloped workload assessment algorithm requires contextual features in order to accurately

determine the human’s current tasks and provide more accurate adaptations. The pilot

study used system information to determine the participant’s current task focus in order

to calculate these contextual features, but knowing the task focus is not trivial in dynamic

domains. Thus, a more sophisticated activity recognition approach needs to be integrated

into the adaptive human-robot system architecture. Related work has investigated activity
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recognition in a clinical domain using data from the Myo wearable sensor device [52]. The

activity recognition algorithm decomposed tasks using hierarchical task decomposition and

used video data to generate contextual information, which was shown to improve recog-

nition accuracy. This work demonstrated the potential of recognizing the human’s current

task in a dynamic and complex domain. The real-time evaluation and the adaptive sys-

tem study collected Myo data; thus, future work will investigate using the collected Myo

data in an activity recognition algorithm for the NASA MATB-II. This activity recognition

algorithm will be incorporated into the developed adaptive system.

Fine Motor, Gross Motor, and Tactile Workload Component Estimation

The workload assessment algorithm had the most difficulty estimating physical work-

load, which may be attributed to combining the gross motor, fine motor, and tactile work-

load components into a physical workload component. This combination was due to the

supervisory-based and peer-based evaluations not collecting any workload metric data sen-

sitive to the fine motor and tactile workload components. The real-time evaluation and

adaptive system study collected electromyography and arm movement data via the Myo

armband, where the data may be sensitive to the fine motor and tactile workload compo-

nents. The developed workload assessment algorithm will be extended to estimate these

components using the collected data from the Myo armband.

Visual Workload Estimation

Dynamic domains will likely require more accurate visual workload information. The

current workload assessment algorithm uses the IMPRINT Pro visual workload model to

assess visual workload, but these models may become inaccurate in dynamic domains.

The workload assessment algorithm may estimate visual workload by relying on visual

workload metrics (e.g., pupil dilation or blink rate). These metrics are typically captured via

eye-trackers, but these devices are currently not viable for non-stationary task environments

or outdoor domains.

Finer-Grained Speech Workload Model Development
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Speech workload was difficult to estimate, due to the trinary nature of the speech IMPRINT

Pro workload model. A finer-grained workload model is needed in order to for the workload

assessment algorithm to estimate speech workload accurately. Future work will extend the

IMPRINT Pro speech workload model to be more sensitive to workload by developing

finer-grained task anchors, on which IMPRINT Pro relies. The speech in-situ workload

ratings and speech-based workload metrics collected during the supervisory and real-time

evaluations may be used to develop more task anchors for IMPRINT Pro.

228



BIBLIOGRAPHY

[1] Aasman, J., Mulder, G., and Mulder, L. (1987). Operator effort and the measurement

of heart-rate variability. Human Factors, 29(2):161 – 170.

[2] Abbass, H. A., Tang, J., Amin, R., Ellejmi, M., and Kirby, S. (2014). Augmented

cognition using real-time EEG-based adaptive strategies for air traffic control. In Human

Factors and Ergonomics Society Annual Meeting, volume 58, pages 230–234. SAGE

Publications.

[3] Ahlstrom, U. and Friedman-Berg, F. J. (2006). Using eye movement activity as a corre-

late of cognitive workload. International Journal of Industrial Ergonomics, 36(7):623–

636.

[4] Archer, S., Gosakan, M., Shorter, P., and Lockett, J. (2005). New capabilities of the

Armys maintenance manpower modeling tool. Journal of the International Test and

Evaluation Association, 26(1):19 – 26.

[5] Assefi, M., Wittie, M., and Knight, A. (2015). Impact of network performance on

cloud speech recognition. In International Conference on Computer Communication

and Networks, pages 1–6.

[6] Backs, R. W. and Walrath, L. C. (1992). Eye movement and pupillary response indices

of mental workload during visual search of symbolic displays. Applied Ergonomics,

23(4):243–254.

[7] Baldwin, C. L. (2012). Auditory Cognition and Human Performance. CRC Press New

York.

[8] Berthold, A. and Jameson, A. (1999). Interpreting symptoms of cognitive load in

speech input. Conference on User Modeling, pages 235–244.

229



[9] Besson, P., Dousset, E., Bourdin, C., Bringoux, L., Marqueste, T., Mestre, D. R., and

Vercher, J. L. (2012a). Bayesian network classifiers inferring workload from physiolog-

ical features: Compared performance. In IEEE Intelligent Vehicles Symposium, pages

282–287.

[10] Besson, P., Maiano, C., Bringoux, L., Marqueste, T., Mestre, D. R., Bourdin, C.,

Dousset, E., Durand, M., and Vercher, J.-L. (2012b). Cognitive workload and affective

state: A computational study using bayesian networks. In IEEE International Confer-

ence on Intelligent Systems, pages 140–145.

[11] Bian, D., Wade, J., Swanson, A., Weitlauf, A., Warren, Z., and Sarkar, N. (2019).

Design of a physiology-based adaptive virtual reality driving platform for individuals

with asd. ACM Transactions on Accessible Computing (TACCESS), 12(1):2.

[12] Bishop, C. M. (2006). Pattern recognition, volume 128. Springer-Verlog New York.

[13] Bishop, C. M. (2012). Model-based machine learning. Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

371(1984):2012– 2222.

[14] Boles, D. B. and Adair, L. P. (2001). The multiple resources questionnaire (MRQ).

Human Factors and Ergonomics Society Annual Meeting, 45(25):1790–1794.

[15] Boles, D. B., Bursk, J. H., Phillips, J. B., and Perdelwitz, J. R. (2007). Predicting dual-

task performance with the multiple resources questionnaire (MRQ). Human Factors,

49(1):32–45.

[16] Borghetti, B. J., Giametta, J. J., and Rusnock, C. F. (2017). Assessing continuous op-

erator workload with a hybrid scaffolded neuroergonomic modeling approach. Human

factors, 59(1):134–146.

230



[17] Brenner, M., Doherty, E., and Shipp, T. (1994). Speech measures indicating workload

demand. Aviation, Space, and Environmental Medicine, 65(1):21–26.

[18] Brouwer, A.-M., Hogervorst, M. A., van Erp, J., Heffelaar, T., Zimmerman, P. H., and

Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the

n-back task. Journal of Neural Engineering, 9(4):45–48.

[19] Byrne, E. A. and Parasuraman, R. (1996). Psychophysiology and adaptive automa-

tion. Biological psychology, 42(3):249–268.

[20] Cain, B. (2007). A review of mental workoad literature. techreport RTO-TR-HFM-

121-Part-II, Defence Research and Development Toronto.

[21] Casali, J. and Wierwille, W. (1983). A comparison of rating scale, secondary-task,

physiological, and primary-task workload estimation techniques in a simulated flight

task emphasizing communications load. Human Factors, pages 623–642.

[22] Castor, M. (2003). GARTEUR Handbook of Mental Workload Measurement. GAR-

TEUR technical publications. Group for Aeronautical Research and Technology in Eu-

rope.

[23] Chavaillaz, A., Wastell, D., and Sauer, J. (2016). System reliability, performance and

trust in adaptable automation. Applied Ergonomics, 52:333–342.

[24] Chen, F. (2013). Effects of cognitive load on trust. Technical Report AOARD-124076,

National ICT Australia Limited.

[25] Christensen, J. C., Estepp, J. R., Wilson, G. F., and Russell, C. A. (2012). The effects

of day-to-day variability of physiological data on operator functional state classification.

NeuroImage, 59(1):57–63.

[26] Clark, J. B. and Allen, C. S. (2008). Acoustics issues. In Principles of Clinical

Medicine for Space Flight, pages 521–533. Springer Nature.

231



[27] Comstock, J. R. and Arnegard, R. J. (1992). The multi-attribute task battery for op-

erator workload and strategic behavior research. Technical Report NASA Tech. Memo-

randum 104174, NASA Langley Research Center.

[28] Cooper, G. and Harper, R. (1969). The use of pilot rating in the evaluation of aircraft

handling qualities. Technical report, AGARD Report 567.

[29] Dietterich, T. G. (2002). Ensemble learning, volume 2. MIT Press: Cambridge, MA.

[30] Dorneich, M. C., Passinger, B., Hamblin, C., Keinrath, C., Vašek, J., Whitlow, S. D.,
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Appendix A

Cross-Interaction Paradigm Analysis

The peer-based evaluation included human-robot and human-human teaming scenarios,

which allows for analyzing the impact that training with additional workload data from

the human-human teaming interaction paradigm has. The IMPRINT Pro model results

indicate that the human-human teaming tended to have lower workload then the human-

robot scenario, but a Kruskal-Wallis test found no significant differences. This analysis

focuses solely on the peer-based relationship, as the supervisory-based evaluation did not

include human-human teams. Three algorithms were trained: only human-human data

(HH), both the human-human and human-robot data (HH-HR), and only the human-robot

data (PEER), the same dataset as in Section 3.8. Each algorithm was trained using data from

twelve peer-evaluation participants, while data from six peer-evaluation H-R participants

were used for testing. The workload classification thresholds are provided in Table 3.36.

It is expected the the human-human teaming data will minimally impact the algorithm’s

classification accuracy for human-robot teams; thus, hypothesis H6 predicts that the HH-

HR algorithm’s classification accuracy will be within 5% of the PEER algorithm’s accu-

racy. The hypothesis also predicts that the HH algorithm’s classification accuracy will be

within 5% of the PEER algorithm’s accuracy, as there is no significant difference between

the IMPRINT Pro models for each teaming scenario. Further, it is expected that the HH-HR

and HH algorithms will be able to track workload shifts. Hypothesis H7 predicts that both

algorithm’s workload estimates will significantly and positively correlate with the workload

models for each peer-based task.
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A.1 Cross-Interaction Paradigm Results

The workload assessment algorithm’s cross-interaction paradigm performance is ex-

amined by comparing the algorithms’ estimates to the IMPRINT Pro modeled workload

values for the peer-based human-robot teaming tasks. The algorithms’ estimates are pro-

vided in Table A.1. The HH-HR algorithm’s estimates are within a standard deviation of the

IMPRINT Pro workload model values for each workload component. The HH algorithm’s

physical and overall workload estimates are within a standard deviation of the IMPRINT

Pro values, but the algorithm’s workload estimates for high cognitive workload are not. The

HH and HH-HR algorithms tend to overestimate high physical workload and underestimate

low workload, but do so minimally. The Kruskal-Wallis test found that each algorithms’ es-

timates significantly differed between workload conditions. All three algorithm’s estimates

are within 10% of each other, illustrating that the respective trained algorithm produces

accurate workload estimates.

Table A.1: Descriptive and Kruskall-Wallis Statistics for the IMPRINT Pro Workload
Model Values and the HH, HH-HR, and PEER Algorithms’ Workload Estimates for the
Peer-Based Evaluation.

Workload Training Workload Condition
Low High χ2

Cognitive Model 3.58 (2.84) 6.14 (1.59) 61.75*
HH 3.49 (2.48) 8.68 (1.22) 44.02*

HH-HR 3.45 (2.42) 5.50 (1.14) 59.15*
PEER 3.77 (2.82) 5.95 (1.40) 35.92*

Physical Model 4.17 (2.63) 5.56 (2.14) 17.85*
HH 4.00 (2.42) 6.02 (1.88) 17.51*

HH-HR 4.07 (6.02) 6.02 (1.82) 15.00*
PEER 4.28 (2.50) 5.35 (1.89) 10.94*

Overall Model 14.33 (7.83) 21.31 (3.36) 56.26*
HH 13.63 (7.51) 20.97 (2.41) 72.25*

HH-HR 13.65 (7.51) 20.78 (2.51) 62.34*
PEER 14.64 (7.62) 20.91 (2.25) 45.60*

Each algorithm must accurately classify workload for the peer-based evaluation’s H-R

teaming scenario. The algorithms’ classification accuracies are presented in Table A.2. The
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HH-HR algorithm achieves high classification accuracy for overall workload and its com-

ponents. However, the HH-HR and the HH algorithms’ physical workload classification

accuracy is approximately four percent lower than the PEER algorithm’s accuracy, which

demonstrates that the H-H teaming data negatively impacts the HH-HR algorithm’s clas-

sification accuracy. The HH-HR algorithm’s cognitive and overall classification accuracy

are within two percent of the PEER algorithm’s accuracy.

Table A.2: HH, HH-HR, and PEER Trained Algorithms’ Classification Accuracy.

Workload Training Workload Condition
Low High

Cognitive HH 94.92 94.63
HH-HR 97.14 96.23
PEER 97.05 94.52

Physical HH 88.25 86.55
HH-HR 87.30 86.02
PEER 90.50 90.35

Overall HH 92.69 96.77
HH-HR 92.40 95.70
PEER 94.78 96.55

Bold represents highest accuracy per column

The Pearson’s correlation coefficients between the algorithms’ estimates and IMPRINT

Pro models are used to analyze the algorithms’ ability to track workload shifts within

and across workload conditions. The correlation coefficients are presented in Table A.3.

The algorithm’s estimates significantly correlate with the IMPRINT Pro workload mod-

els, demonstrating that each algorithm tracks workload shifts across and within workload

conditions. The correlation coefficients for each algorithm are similar to each other; thus,

illustrating that the H-H teaming data does not negatively impact the algorithm’s ability to

track workload shifts.

A.2 Cross-Interaction Paradigm Discussion

Incorporating human-human teaming data can increase the amount of available train-

ing data, but it must have a minimal impact on an adaptive teaming system’s ability to
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Table A.3: HH, HH-HR, and PEER Algorithms’ Correlation Coefficients for Within and
Across Workload Conditions.

Workload Training Within Across
Low High

Cognitive HH 0.93* 0.81* 0.93*
HH-HR 0.95* 0.83* 0.90*
PEER 0.95* 0.85* 0.94*

Physical HH 0.87* 0.91* 0.91*
HH-HR 0.87* 0.90* 0.94*
PEER 0.91* 0.92* 0.92*

Overall HH 0.97* 0.91* 0.97*
HH-HR 0.97* 0.91* 0.98*
PEER 0.97* 0.91* 0.97*

classify workload for human-robot teaming scenarios. Hypothesis H6 focuses on such im-

pacts to the algorithm’s classification accuracy, by stating that the HH-HR and HH trained

algorithms’ accuracy will be within 5% of the PEER trained algorithm’s accuracy. The

hypothesis is fully supported, which demonstrates that the human-human teaming data

does not significantly impact the algorithm’s classification accuracy for human-robot team-

ing paradigms. Further, the algorithm trained only on human-human teaming data still

achieved high performance for human-robot teaming scenarios, as the two scenarios have

similar workload levels.

The HH-HR trained algorithm also needs to track workload shifts within and across

workload conditions. Hypothesis H7 states that the HH and HH-HR trained algorithms’

estimates will significantly correlate with the IMPRINT Pro workload models. The hy-

pothesis is supported, which illustrates that incorporating human-human teaming data did

not impact the algorithm’s ability to track workload shifts within and across workload

conditions. Similarly, an algorithm trained solely on human-human teaming data tracked

workload shifts for a human-robot teaming scenario. Overall, the workload assessment al-

gorithm trained on human-robot and human-human teaming data sets did not substantially

decrease performance. Further, an algorithm trained on a human-human teaming scenario

achieved high performance in a similar human-robot scenario.
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Appendix B

Window Size Impact

The window size impact analysis investigated the affect window size has on algorithm

performance. A 30 second window was used for all results presented in the previous

sections; however, workload assessment algorithms use a variety of window sizes, (e.g.,

[2, 25, 32]). 1, 5, 15, and 60 second window sizes were analyzed, as they are the most

common in the literature. It was expected that performance will increase as window size

increases, but there will also be a point of diminishing returns. Algorithm performance was

determined using classification accuracy across the three prior analyses: workload gen-

eralizability, population generalizability, and emulated real-world conditions. The same

methods from the previous sections were used to divide the training and testing sets. Hy-

pothesis H6 predicted that the 30 second window size will achieve the highest classification

accuracy for each workload component and condition.

Classification accuracy was used to analyze the impact of window size on algorithm

performance. The classification accuracies for workload generalizability by workload

component, condition, and window size are provided in Table B.1, where bolded values

represent the highest accuracy. Multiple values are bolded if the values were within two

percent of one another. The 30 second window achieved the highest accuracy for cognitive,

physical, and overall workload for each condition, while the 60 second window achieved

similar performance for cognitive and overall workload. There was a general increase in

classification accuracy as window size increased for cognitive workload. The 5 second win-

dow achieved the highest auditory workload classification accuracy. Smaller window sizes

tended to achieve higher auditory workload classification accuracy. The overall workload

classification accuracies were similar to each other. The highest physical workload ac-

curacies occurred when the window size was 30 seconds and the 1 second window size
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Table B.1: Window Size Impact: Algorithm’s Classification Accuracy (%) by Workload
Component and Condition for Workload Generalizability.

W
or

kloa
d

W
indow

Size

Underl
oa

d

Nor
mal

Loa
d

Ove
rlo

ad

Cognitive

1 84.32 76.91 85.95
5 93.90 84.64 89.43
15 98.78 49.20 80.65
30 100 99.28 100
60 100 100 83.06

Auditory

1 98.11 94.51 91.57
5 99.39 97.40 93.22
15 98.33 95.01 95.94
30 91.57 90.02 92.01
60 76.44 77.56 99.98

Physical

1 98.54 82.25 95.19
5 97.51 73.87 47.47
15 99.23 87.08 55.01
30 99.56 86.67 100
60 100 75.55 96.29

Overall

1 85.70 99.25 97.45
5 93.47 97.60 91.53
15 98.81 99.25 97.53
30 100 99.83 100
60 100 100 97.19

Note: Bold represents highest accuracy per
workload component.

achieved higher physical workload accuracy than the 5 and 15 second window sizes. There

was a large decrease in physical workload accuracy from the 1 to 5 second window size

algorithms in the overload condition.

Population generalizability is important, given that it is impractical to train an algo-

rithm on each human team member. The workload assessment algorithm’s classification

accuracies for population generalizability by workload component, condition, and window

size are provided in Table B.2. The 30 second window achieved the highest cognitive

and overall workload classification accuracy for each workload condition, while the 60
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second window achieved similar results. The 30 and 60 second windows achieved the

highest physical workload classification accuracies, while the 1 second window achieved

similar physical workload accuracies for the underload condition. The 1 and 5 second

windows achieved the highest auditory workload classification for the underload and nor-

mal load conditions, while the 60 second window achieved the highest accuracy for the

overload condition. There was an increase in cognitive workload accuracy as the window

size increased, while there was a decrease in auditory workload accuracy as window sized

increased. There was no discernible trend between window size and physical workload

accuracy. Each window size achieved similar overall workload classification accuracies;

although, there was an increase in classification accuracy for the underload condition.

Lastly, it is important to analyze the affect window size has under emulated real-world

conditions. The classification accuracies by workload component, condition, and window

size for emulated real-world conditions are provided in Table B.3. The 30 second win-

dow achieved the highest classification accuracy for cognitive and overall workload for the

underload and normal load conditions, while the 60 second window achieved the highest

accuracy for the overload condition. The highest physical workload classification accu-

racies were achieved with the 30 second window. Smaller window sizes achieved higher

auditory workload classification accuracies. There was an increase in cognitive and overall

workload classification accuracy for the underload condition, as the window size increased,

while auditory workload classification accuracy decreased.

B.1 Window Size Impact Discussion

Examining the affect window size on algorithm performance allows adaptive workload

system designers to determine how much workload metric data is needed to obtain a desired

performance level. Hypothesis H5 stated that a 30 second window size will produce the

highest classification accuracies for workload generalizability, population generalizability,

and the emulated real-world conditions. The hypothesis was supported for cognitive and
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Table B.2: Window Size Impact: Algorithm’s Classification Accuracy (%) by Workload
Component and Condition for Population Generalizability.

W
or

kloa
d

W
indow

Size

Underl
oa

d

Nor
mal

Loa
d

Ove
rlo

ad

Cognitive

1 88.93 80.08 88.88
5 94.42 81.86 91.84

15 98.26 76.48 88.18
30 99.42 97.74 99.53
60 99.73 97.48 90.02

Auditory

1 99.53 98.50 97.59
5 99.86 98.56 95.60

15 98.61 95.39 96.19
30 93.94 91.50 92.01
60 87.94 75.26 99.99

Physical

1 99.00 82.64 96.46
5 97.73 81.31 81.69

15 95.56 81.85 86.04
30 98.83 81.20 100
60 99.27 87.05 86.01

Overall

1 89.25 98.48 98.31
5 93.72 98.44 97.11

15 97.56 97.63 97.97
30 99.79 99.92 99.73
60 99.73 99.83 97.55

Note: Bold represents highest accuracy per
workload component.

overall workload classification for each algorithm analysis and was partially supported for

physical workload, as the 30 second window size did not achieve the highest physical

workload classification for the population generalizability analysis. However, the physical

workload accuracy was above 80%. The hypothesis is not supported for auditory workload

across each analysis, as smaller window sizes tended to achieve higher accuracy, which is

due to relying solely on noise-level for the auditory workload estimation. A task’s auditory

demands can change rapidly, which produces immediate changes in noise-level. Larger

window sizes did not capture these rapid changes.
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Table B.3: Window Size Impact: Algorithm’s Classification Accuracy (%) by Workload
Component and Condition for Emulated Real-World Conditions.

W
or

kloa
d

W
indow

Size

Underl
oa

d

Nor
mal

Loa
d

Ove
rlo

ad

Cognitive

1 88.65 76.24 97.93
5 88.82 55.76 98.76

15 98.24 86.42 57.35
30 98.57 91.95 88.80
60 98.05 83.27 99.40

Auditory

1 97.33 96.19 98.84
5 98.33 98.53 95.34

15 98.57 94.43 84.93
30 90.76 84.14 88.37
60 81.10 63.22 78.43

Physical

1 97.59 72.53 98.05
5 95.27 77.38 75.83

15 89.93 71.18 92.37
30 99.08 79.94 99.60
60 98.04 59.95 96.42

Overall

1 87.28 96.85 99.28
5 88.18 96.09 99.65

15 95.54 96.93 76.92
30 98.52 96.66 97.58
60 96.71 91.22 99.80

Note: Bold represents highest accuracy per
workload component.
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