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CHAPTER I 

 

INTRODUCTION 

 

1.1  MOTIVATION 

 

In semiconductor devices, high atomic number materials occur in the gate metallization 

[1]. They can also occur in the device packaging. In the case of MOSFET, the 

performance of the FET is affected by the deposited dose in the gate dielectric region of 

the chip. Due to the chip thickness being large, the chip is not affected by total dose 

effects at the back side of the chip. There are two primary regions of a chip where high 

atomic number materials can be present which may cause significant enhancement in 

deposited energy and dose: the metallization of the gate and the device package lid. 

 

Among the various forms of chip metallization, the three of significance are: 

 

a) Gate metallization 

b) Schottky metallization  

c) Au metallization 

 

Materials like - Al2O3, BeO etc. are used as material in device metal lids. Also materials 

like Cr, Ni plates, Fe-Ni alloys are used in lid metallization. Au is also used as lids. 
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In Au – lidded devices, enhancement is uniform over the entire area of the chip. In 

contrast, in Al2O3 and BeO based packages, more enhancements are found to occur 

adjacent to the high atomic number metal present.  

 

The ever shrinking geometries of CMOS technology and the very high transistor density 

of modern ICs have resulted in the number of metal layers used as well as the thickness 

of these interconnect metal layers to increase in modern technologies. The presence of 

these layers is important to be studied. It is also important to characterize the effects of 

replacing Al with Cu as the interconnect material. 

 

Dose Enhancement Factor (DEF) is an important metric that is used to characterize the 

effects of dose enhancement in electron devices. We obtain the average dose being 

received by the sensitive volume by multiplying the dose deposited in the same material 

under equilibrium conditions with the enhancement factor. The Dose Enhancement 

Factor (DEF) is thus defined as the ratio of the net dose in the sensitive volume of interest 

of the device to the dose in equilibrium.  

 

Total ionizing dose (TID) damage and photo-current generation are the two main ways 

by which MOS devices are affected by dose enhancement. The most vulnerable or 

sensitive region is the gate insulator layer (SiO2/ HfO2) located near the active region of 

the device as far as TID damage is concerned. In case of the transient effects, the photo-

current collection occurs over a sensitive volume and is the most critical part of the 
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device. The regions sensitive to total dose damage affecting device response are shown 

below in Figure 1.1 [1]. 

                 

 

Figure 1.1: Sensitive regions for total dose damage in MOS devices [1]. 

 

The primary effect of TID in MOS devices is to cause a shift in threshold voltage (VT) 

and increased leakage due to radiation induced-charge buildup (both oxide trapped 

charge and interface traps) in the gate oxides and the overlying field oxide regions. 

Higher leakage currents are observed due to the silicon underlying the field oxide getting 

inverted and also due to the higher recombinational velocity at depleted surfaces with p-

doped Si. The total number of electron-hole pairs generated is a function of the total 

deposited dose in the oxide. The interface traps are caused by a charge transport 

mechanism of holes in the dielectric and hence is also a strong function to TID.  
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In the case of BJTs, the total dose affects the current gain, hFE, the emitter base leakage 

current, IBE and the collector base leakage current, ICB. This can be attributed to interface 

traps which increase the recombination velocity. The average dose in the oxide affects the 

charge build-up in these devices. The dose enhancement factor can be calculated by a 

weighting method based on the details of transistor used. 

 

Gate oxide scaling has made CMOS very hardened with respect to TID induced 

degradation of device. In modern CMOS technologies, the edge-related issues are very 

important [3] to be considered. Shallow-Trench Isolation (STI) is used in modern CMOS 

geometries in order to accomplish device isolation in order to increase both the packing 

density and speed. The active area pitch is also improved [3]. Oxide charge trapping in 

the STI results in the parasitic lateral transistors to turn on. Hence it can cause leakage 

problems. The small-width MOSFETs are affected by this. The STI is thus quite 

vulnerable due to TID damage.  

 

 

1.2 DEVICE RESPONSE IN MOS CAPACITORS: 

 

Fleetwood et al. [4] studied the device effects of MOS capacitors to 10 keV and medium-

energy bremsstrahlung x-rays for different gate metallization, gate dielectric thickness, 

and electric field on the device. The detailed schematic diagrams and structures of these 

MOS capacitor devices are discussed in the next chapter in this work. The SiO2 thickness 

was varied from 35 nm to 1.06 m which is typical of field oxides. The devices were 
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fabricated using a steam environment. The 35 and 98 nm oxides were grown at 850 
o
C, 

and the 356 and 1060 nm oxides at 1100 °C respectively. All oxides were subjected to an 

annealing in N2 at 1100 °C. The gate metal layers were deposited using a radio-frequency 

(RF) source. In the case of the TaSi-Down structures, 0.2-m of Aluminum is evaporated 

on the SiO2. This protects sputtering-induced damage. The tantalum silicide layer was 

formed at room temperature using a DC-sputtering machine. The tantalum silicide layer 

has a density of 8 g/cm
3

 .  Photolithography was used for patterning. 

 

Relative enhanced response has been defined as a metric to measure the device behavior 

to low energy x-rays and a comparison was made to the radiation using Co-60 gamma 

rays. The quantity Vot was measured and reported because it depends on dose directly. 

Also, it is significant to device electrical degradation. It was also observed that interface-

trap production was very low in these MOS devices.  

 

Figure 1.2 below shows Vot versus dose for 10-keV x-ray and Co-60 gamma rays of 

TaSi-Down MOS capacitors. The gate oxide thickness is 98 nm, and the electric field is 1 

MV/cm. 

 

Fleetwood et al. [5] further studied dose enhancement effects in CMOS transistors using 

a sub threshold current-voltage technique to separate the contributions of oxide trapped 

charge and interface trap build-up to the net threshold voltage shifts in these transistors. 

Their results of annealing of holes trapped in the oxide and recombination of electrons 
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and holes, were used to study and hence compare the effects on transistors that were 

irradiated with low energy x-rays and gamma rays. 

 

 

Figure 1.2: Vot as a function of dose for 10-keV x-ray and Co-60 irradiations of 

TaSi-Down and Al gate MOS capacitors [4]. 

 

 
 

It was observed that in the x-ray irradiation case [4],[6], lower total dose in (rad SiO2) 

results in the same value of Vot than with Co-60 gamma rays. The researchers reported 

a value for relative enhanced response to be approximately ~ 1.75. Further experimental 

and simulation results on these devices will be discussed both qualitatively and 

quantitatively in a later chapter. 
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1.3 CHARGE PARTICLE TRANSPORT AND DEPOSITED DOSE 

 

An excellent review of various aspects of radiation dosimetry including dosimetry at 

various facilities can be found in [7]. We know that the concept of charge transport in 

materials is an important concept for understanding energy and dose deposition in 

complex materials. In order to understand dosimeters and to design simulators for 

simulating radiation effects, an understanding of the physics of electron and photon 

transport is required. A lot of researchers have developed models based on theory and 

cross-checked their results with actual experiments. This knowledge can be applied to 

electron devices and other applications.  

 

1.3.1 Transport of Photons and Electrons in Solids 

 

It is critical to study the physical interactions, the slowing down of electrons as they 

travel through matter by using transport related simulations and experiments [7]. The 

transport of charged particles like electrons and photons may be treated as different 

problems. However, with increase in energy of incident radiation, electrons are produced 

by photons and photons are in turn produced by electrons more frequently. As a result, 

the problem becomes that of transport of coupled photons and electrons which must now 

be taken into consideration. 
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1.3.2 Interactions of electrons with materials 

 

 Photons and electrons traveling through materials are absorbed. Some of them are 

scattered along different directions. Energy is lost as a result of all these processes. The 

probability of scattering is a function of the cross section for a particular process in the 

given material. Elastic and inelastic scattering by electrons may occur. The parameters 

for these various interactions have been theoretically computed. They can then serve as 

input to discrete ordinates and Monte Carlo codes. Studies have been done to calculate 

mean free path of electrons [8]–[13], their range [14], and other process probabilities 

[15]. Straggling [16]–[18] and scattering [19] of electrons have also been studied by 

researchers working in this field. 

 

A review has been done [20] on the experimental and theoretical advances about the 

physics of electrons as they slow down while traveling through materials. Electrons were 

bombarded into materials of interest and the energy distribution of electrons emitted by 

the materials was measured. These experiments demonstrated that the energy spectrum of 

the electrons as they travel through these materials is crucial. Integrating the relevant 

cross sections and multiplying them with the flux of electrons gives us useful information 

about each of these events [21], [22]. 
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1.4 SIMULATION PROGRAMS FOR TRANSPORT 

 

Transport was studied using a finite-difference solution of the Spencer–Lewis transport 

equation [21],[22]. A discrete ordinates solution of this equation in two dimensions was 

also proposed [23]. The Boltzmann transport equation was solved at very low electron 

energies using eigen-values [24], [25]. Researchers developed an analytic model to the 

transport equation [26]–[28]. A polynomial expansion method was also used [29], [30] to 

compute x-ray photon emission angular distribution functions [31]. A lot of studies have 

focused on developing computer codes for calculating phenomena such as deposition of 

charge, bremsstrahlung spectrum, etc. Monte Carlo codes such as TIGER [33], [34], and 

the Integrated Tiger Series (ITS) [35] and discrete ordinate codes CEPXS/ONETRAN 

[36], [37] and CEPXS/ONELD [38] were built for simulation purposes by several 

research groups [39], [40]. We will discuss some of these simulators in greater details in 

Chapter III. 

 

It is very important to validate simulations with experiments and hence make 

comparisons between computed values and experimental results. The Monte Carlo based 

simulator SANDYL [41] was used to calculate the energy deposition spectra due to 

gamma-rays in silicon [42]. Monte-Carlo codes have also been used to validate the 

bremsstrahlung spectrum generated from various sources [43]–[50]. Dose enhancement 

effects are different for different gamma sources and the differences in dose profiles can 

be understood by comparing the experimental results with the code generated numbers 
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that can be computed for these various sources. Similar work has been reported [51], 

[52]. 

 

The spectrum of photons using test cells is evaluated using discrete ordinate 

CEPXS/ONELD transport simulations [53]–[55]. It was used to compute photon 

transport through different materials of interest [56], [57]. Electron beams of different 

energies cause different dose profiles. This has been studied in details by researchers 

[58]–[61].  

 

Experiments [62]–[64] were also designed in order to cross-check dose profiles 

calculated by the ITS codes. Measurements were made to study transmission of electron 

beams [65], [66] and the response of germanium dosimeters to incident x-rays [67] were 

reported.  

 

 

1.5 DOSE ENHANCEMENT PROBLEM 

 

An important concept in dose enhancement problem is the concept of charged-particle 

equilibrium. Charged particle equilibrium (CPE) occurs when the energy carried by 

electrons out of a given sensitive volume are replenished by an equal number of electrons 

[68] of equivalent energy entering into the same sensitive volume. This is shown in 

Figure 1.3(a) below. The elemental volume located near the frontal region of the slab has 
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more electrons scattered out of it than are scattered into the volume. As a result, there is a 

net loss of energy carried by electrons and CPE is not maintained under this condition.  

   

However for sensitive volumes located deeper down into the material slab, at a certain 

distance, charge particle equilibrium is achieved. The minimum thickness of material 

when charge particle equilibrium is attained is called the ―equilibrium thickness‖. This is 

shown in Figure 1.3(b) below.  

 

                           

  

Figure 1.3: (a) Charge particle equilibrium and (b) the concept of equilibrium 

thickness [68]. 
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The equilibrium thickness depends on the nature of the material. Further, it depends on 

the energy spectrum of the incident radiation. When equilibrium thickness is reached, the 

dose can be calculated as the product of the photon flux times the photon mass-energy 

absorption coefficient. Charged particle equilibrium does not hold at the interface of high 

atomic number and low atomic number material. The theoretical dose values in Au and Si 

are shown by solid lines in Figure 1.4 (top). The actual dose in Si and Au near the Au and 

Si interface after taking into account dose enhancement is shown and the below in Figure 

1.4 (bottom). 

 

 

 

                    

 

Figure 1.4: Relative deposited dose at silicon-gold interface: (top) neglecting dose 

enhancement and (bottom) taking dose enhancement effects into account [68]. 



 13 

 

 

1.5.1 Review of literature:  

 

Researchers have reported [69] that a thick block of a high-atomic number material is 

placed near a thick block of a low-atomic number material when subjected to Co-60 

irradiation, the dose deposited at the interface is twice the equilibrium dose. The actual 

dose deposition profile near the high atomic number material and low atomic number 

material interface is a strong function of the direction of the incident gamma rays. This 

dose deposition for gamma rays approaching from high-Z side is shown in Figure 1.5 

below. 

 

                 

 

Figure 1.5. Dose profiles at silicon-gold interfaces with x-rays traveling from gold 

(high-Z side) to silicon (low-Z) side [1]. 
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Experiments were conducted by other groups [70],[71] with chambers for secondary 

electron production. They also found nearly twice dose enhancement. Researchers also 

studied charge deposition at the interface of high-Z and low-Z materials [71]. 

Measurements show the current due to electron flow to diverge. This can be interpreted , 

using the continuity equation as a divergence of cumulative energy or charge deposition 

in the regions near high-Z and low-Z interface. Some research groups [72] demonstrated 

the interesting observation that adding a low atomic number material in the beam line 

leads to an even higher enhancement with gamma-rays due to increase in low energy 

photons.  

 

1.5.2 Modeling and Simulation 

 

Monte Carlo simulators [73] like the POEM [74] codes were performed for silicon and 

gold interface. The dose profiles in the low atomic number materials were computed for a 

wide energy range - low to very high (0.01 - 2 MeV) for direction of gamma rays coming 

from both high-Z and low-Z sides. Good analytic representations of the dose were 

obtained by fitting the curves to the actual current profiles. Another model [75] was 

developed using exponential functions for the dose deposition profiles. The functional 

constants were calculated in terms of the absorption coefficients, the range and 

backscatter coefficients for the electrons. Good agreement was observed with the fit 

coefficients [76]. The exponential nature of the model [77], however, could not generate 

the actual shape of the dose profiles farther away from the high-Z/low-Z interface [78]. 

The model was extended [79] to the case at higher energies using exponential solutions.  
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Another 1-D model was proposed [80], [81] which have been used to calculate 

enhancement, in irregular geometries composed of many layers of materials.  

 

1.6 INTERACTION OF PHOTONS WITH MATTER 

 

Ionizing radiation creates electron-hole pairs in semiconductor materials. The 

performance of MOSFETs gets affected due to charge build-up as a result of electron 

hole pairs generated in the gate and field oxides. We discuss the physical phenomena that 

lead to charge generation in the gate dielectrics. The atomic number, density of the target 

material, incident energy, and the mass of the projectile play a crucial role in determining 

the charge yield [83]. 

 

For dose enhancement studies, we focus on interactions of photons with matter. Photons 

interact with matter in three different ways depending on the initial photon energies; 

these include the photoelectric effect, the Compton effect, and pair production [84]. 

During photoelectric effect, the incident photon is absorbed and loses its energy by 

knocking off the electron from the inner shell of the atom. This ejected photoelectron has 

energy equal to the energy of the incoming photon minus the binding energy of the 

electron to the atom. The photoelectron travels through the material of interest (gate 

oxide in our case) to create more electron and hole pairs. For medium and high energy 

photons, Compton scattering occurs where both the photon and the atom get scattered and 

more electrons and holes are created by the scattered photon. Pair production occurs at 
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very high energies (~1.02 MeV). The incoming photon creates an electron and a positron 

pair and the annihilation of photon occurs. Figure 1.6 shows the probability of each of 

these three processes to occur as a function of the photon energy and the atomic number 

of the target atom [85].  

 

Electrons hole pairs created by ionizing radiation in the gate and field oxides are lost due 

to recombination or are trapped in defect sites present in the oxides. The number of 

electron hole pairs that escape recombination is a function of the applied electric field 

[84]-[86]. Charge trapping in the oxide affects the electrical performance of the device. 

This trapping is a strong function of the conditions [87] that the device goes through 

during CMOS process flow.  

 

 

               
 

Figure 1.6. Probability of the photoelectric effect, Compton scattering and pair 

production occurring for different Z of the target material and the incoming photon 

energy [83]. 
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Single event effects (SEE) is another radiation effect and reliability concern for CMOS 

technologies. Current transients are generated along the path of incoming ion. They are 

classified as soft errors and hard errors. Single event upsets (SEU) occur when bit flip 

occurs in the circuit [88]. Hard errors cause permanent damage due to significant amount 

of energy deposited in a small volume of the gate oxide. This is known as single event 

gate rupture (SEGR). High currents arising from massive projectiles and heavy ions may 

also lead to single event latch-ups (SEL). These effects, while important, will not be 

discussed further in this thesis. 

 

1.7 TOTAL IONIZING DOSE 

 

MOS transistors are at the heart of circuits used in spacecraft that are exposed to high 

ionizing radiation environments in space. Radiation affects the current-voltage 

characteristics of the MOS transistors. Figure 1.7 [89],[90] shows a schematic energy 

band diagram of a MOS structure, where positive bias is applied to the gate, so that 

electrons accumulate at the silicon/silicon dioxide interface under the gate, forming an 

inversion layer, and the region of the substrate near the interface is depleted of holes. 

There are four major physical processes that contribute to the total-ionizing-dose 

radiation response of a MOS device [90]: 

 

(1) Electron/hole pairs generated by ionizing radiation. 

(2) Hopping transport of holes through localized states in the SiO2 bulk. 

(3) Deep hole trapping near the Si/SiO2 interface. 
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(4) Formation of radiation-induced interface traps within the Si band gap. 

 

The most sensitive parts of a system to the long-term effects of ionizing radiation are the 

oxide insulators. When radiation (e.g., 10 keV x-rays from an ARACOR source) passes 

through a gate oxide, electron/hole pairs are created by the deposited energy. In SiO2, the 

electrons are much more mobile than the holes, and swept out of the oxide typically in 

picoseconds for large positive biases at room temperature. Some fraction of the electrons 

and holes will recombine depending on the energy and type of the incident particle [90]. 

  

Figure 1.7. Schematic energy band diagram for a MOS structure, indicating major 

physical processes underlying radiation response [90]. 

 

 

The second process in Figure 1.7 is the transport of the holes to the Si/SiO2 interface. 

This process is dispersive, meaning that it takes place over many decades in time [90]. 

The third process in Figure 1.7 is that, when the holes reach the Si interface, some fall 
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into relatively deep trap states with long characteristic emission times [90]. The fourth 

major component of MOS radiation response is the buildup of interface traps at the 

Si/SiO2 interface [90]. These traps are localized states with energy levels in the Si band 

gap.  

Oxide Traps (Not): 

A primary oxide defect in SiO2, which leads to hole trapping, is known as an E’ center, 

which is associated with an oxygen vacancy. It is identified as a trivalent silicon atom 

with an unpaired electron, back-bonded to three other oxygen atoms [91],[92]. These 

positively charged defects cause the threshold voltage to shift negatively. This causes 

nMOS devices to be turned on at lower voltages, while increasing the magnitude of 

voltage necessary to turn on pMOS devices.  

 

Interface Traps (Nit): 

Interface trap formation was described as a two-stage process by McLean. He proposed 

that during the first stage, the radiation-generated holes free hydrogen ions in the SiO2 

bulk. In the second stage, these protons undergo dispersive hopping transport to the 

interface. When they reach the interface, they react, and break the SiH bonds already 

there, forming H2 and a trivalent Si defect. In most MOS devices, interface traps above 

the midgap energy of Si are acceptor-like, while those in the lower half of the band gap 

are donor-like. Including both the donor-like and acceptor-like traps, the interface traps 

are charge neutral when the surface potential is at midgap [93]. 
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Border Traps: 

The term ―border traps‖ was first introduced by D. M. Fleetwood in 1992 [94]. They are 

described as near-interfacial oxide traps that are able to exchange charge with the 

underlying silicon on the time scale of the measurements [95]. The location of these traps 

is very close to the interface and their response to the electrical sweep can make them 

look like slow interface traps [96]. 
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CHAPTER II 

 

HIGH-K GATE OXIDES IN MODERN CMOS DEVICES 

 

In high- based devices, SiO2 gate insulators are being replaced by films that have a 

higher absolute permittivity  compared to SiO2. A lot of research is being done in order 

to study the material properties and the reliability of these new material films. Factors 

such as stability of the as-grown high- films on silicon, nature of the interface etc. are 

being actively researched in order to ensure the proper functionality and reliability of the 

CMOS device involving these high- films. It is also very important to characterize the 

energy and dose deposited in such high- films in order to understand the radiation 

response of devices containing such high- films that are employed in space missions.  

Many high- films that are being actively researched like hafnium oxide; tantalum oxides 

also have a high atomic number, and hence x-rays may lead to dose enhancement effects 

in such films. We will discuss these results in details in later chapters but here in this 

chapter, we consider the various advantages, issues and material properties of high- 

films like HfO2.  
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2.1 HAFNIUM OXIDE (HFO2) – THE MATERIAL FOR MODERN 

DEEP SUBMICRON CMOS TECHNOLOGIES 

 

Technology scaling according to Moore’s law has resulted in rapid progress in CMOS 

integrated circuit (IC) technology. The key features are speed, low static off-state power, 

and a range of output voltages. This has been possible by scaling the dimensions of the 

field effect transistor MOSFET [1]–[3]. This has led to a tremendous progress in the area 

of microprocessors as well as wireless devices [4]. The scaling of the Si-based MOSFET 

is based on the material and electrical properties of the gate oxide which is silicon 

dioxide in Si-based MOS devices. Thermally grown SiO2 has thermodynamical and 

electrical stability, high-quality interface and very good electrical isolation. In modern 

CMOS based devices, defect densities are ~ 10
10

/cm
2
, mid-gap interface state densities of 

~ 10
10

/(cm
2
.eV) have been reported [5], [7]. These remarkable electrical properties make 

SiO2 an ideal material and very hard to replace by alternate gate dielectric materials in 

modern high- technologies. 

 

The density of transistors on a wafer has increased owing to the large demands on chip’s 

performance [4]. This fast shrinking of the transistor feature size has led to reduced 

channel lengths and thinner oxides.  

 

The drive current in the non-saturation region can be written as 
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where W is the width of the transistor channel, L is the channel length,  is the channel 

carrier mobility assumed constant here, Cox is the capacitance per unit area of the gate 

dielectric, VG and VD are the gate and drain voltages, and VT  is the threshold voltage.  

 

In order to increase the gate capacitance, let us consider a capacitor  
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where  is the dielectric constant, A is the area of the capacitor, and t is the gate oxide 

thickness. Thus, C of a capacitor can be expressed in terms of teq - equivalent oxide 

thickness and for  ~3.9, dielectric constant of SiO2.  

 

For technology nodes beyond 90 nm, a number of issues have to be addressed to continue 

to support scaling. Direct tunneling of electrons through the oxide increases the off-state 

leakage current in these MOS devices [6], [7]. 

 

The physical thickness of an alternative dielectric employed to achieve the equivalent 

capacitance density of teq can be obtained from the expression [8], [9]. 
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2.2 ALTERNATE GATE DIELECTRICS MATERIAL FOR MODERN 

CMOS TECHNOLOGIES: 

 

The material properties that the gate dielectrics must meet in order to be successfully 

integrated as a gate dielectric material in CMOS technology are as listed below: 

 

Permittivity and barrier height: 

The gate dielectric material must have a higher permittivity than that of SiO2. In addition 

to permittivity, the barrier height for the tunneling process must be considered. In case of 

electrons traveling from the silicon towards the gate electrode, the conduction band 

offset, Ec = q[ – (M – B)] must be considered. Again, for electrons traveling from 

the gate electrode to the silicon, B must be considered. Leakage current increases 

exponentially with decreasing barrier height and thickness of films for direct tunneling of 

electrons [11],[12].  

 

Researchers [13] have reported that Ta2O5 and SrTiO3 have Ec ~ 0.5 eV on silicon. 

They further reported that Ec ~ 2.3 eV for Al2O3, and Ec ~1.5 eV for ZrO2 and ZrSiO4. 

These results shed light and are very crucial in getting an estimate of the barrier height 

for several alternate dielectric materials. HfO2 and ZrO2 stand out as the best possible 

alternatives for SiO2 in the MOS configuration. Other binary oxides such as Al2O3, Y2O3, 

Ta2O5 are also materials that have been or are being considered. 
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Thermal stability of films: 

 

Good thermal stability in contact with Si is an important aspect of thin films. It plays an 

important role in determining the electrical performance of the device. There are many 

high- metal oxide systems that form unstable films with Si. These films react with the 

silicon substrate under growth conditions to form an unwanted interfacial layer. The 

thermodynamics of these systems is critical in determining the overall device 

performance. Hence the interface engineering with Si is an important aspect to control the 

stable growth of these films. 

 

Quality of the interface: 

The promising potential alternate high-k gate oxide must be able to form an interface of 

supreme quality with the silicon. The interface quality must be as good as to that of SiO2 

interface with silicon. The interface must have a low density of intrinsic defects at the 

interface of Si with the gate oxide and also in the bulk of the material. The charge carriers 

must have a high mobility in the channel and also a high gate dielectric lifetime. SiO2 

forms the best interface with silicon. SiO2 gate dielectrics have a mid-gap interface trap 

density Dit ~10
10

 traps/cm
2
. High-k materials have Dit ~10

11
–10

12
 traps/cm

2
. 

 

Film quality: 

The potential advanced gate dielectrics studied are polycrystalline or single crystalline 

films. The material should remain in an amorphous state throughout the CMOS process 

flow steps. The grain boundaries in the polycrystalline gate dielectrics serve as high-
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leakage paths. Thus an amorphous interfacial layer is required to decrease leakage 

current.  

 

Compatibility with process flow: 

The method of dielectric deposition during the CMOS process flow step is important in 

determining the film quality and its material properties. The growth process must be 

compatible with CMOS process flow steps. It must also be economical to manufacture. 

Also, as all the growth techniques typically occur under non-equilibrium conditions, one 

might observe material properties different from film growth under equilibrium 

conditions. 

 

 

2.3 CHOICE OF GATE ELECTRODE 

 

In order to integrate alternate gate dielectric into CMOS process flow, compatibility with 

Si-based gates is essential. This is because it is possible to get the desired threshold 

voltage VT for both nMOS and pMOS devices using dopant implantation. The recipes for 

poly-silicon gate integration are very well formulated in industry. However, the alternate 

gate dielectric based devices require metal gates. 

 

In a dual-work-function gate, in order to effectively control VT , ~4.9 eV for PMOS and 

~4.4 eV for NMOS is required. In a CMOS process flow step, the metal gate is formed 

before the source and drain formation and annealing treatments. Thermal stability during 
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the 1000 
o
C, 10 sec anneal is used as an important parameter.  Only few metal gates are 

able to satisfy these criteria. TaN and TaSiN [16] are being explored for integration in 

NMOS [17], [18]. Noble metals (Pt) are good candidates in PMOS devices [19]. TiN is a 

good candidate for a metal gate. The work function is strongly dependent on the 

composition of the film, deposition process itself and the history of the thin film. 

 

 

 

 
 

Figure 2.1. Energy diagrams of threshold voltages for nMOS and pMOS devices 

using (a) TiN (midgap) metal gates and (b) Pt (dual) metal gates [7]. 

 

 

 

 

2.4 RELIABILITY & CHARGE TRAPPING ISSUES IN HIGH- MOS 

DEVICES 

 

Large magnitudes of leakage currents with decreasing SiO2 gate oxide thickness are the 

main drivers for high- gate materials research. However, the flatband and threshold 

voltages shift occur during operation for high- devices. The hysteresis in Vth is due to 

charge trapping in the pre-existing traps. Charge trapping can be characterized by DC 
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measurements on MOS devices. This is shown in the Id-Vg and C-Vg curves below in 

Figure 2.2(a) and 2.2(b) [20].  

 

 

 
                 Figure 2.1 (a) Id –Vg characteristic of 4.5 nm HfO2 NFET [20].  

 

 

 

             
  

                   Figure 2.2 (b) C–Vg characteristic of 4.5 nm HfO2 NFET [20]. 
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In order to characterize fast transient component of the charge trapping observed in HfO2, 

fast measurement techniques, single-pulsed [21] and the multiple pulsed [22] techniques, 

can also be used. Also, charge-pumping technique can be used to assess the interface trap 

density (Dit) of high- MOS devices from the substrate current. The charge pumping 

technique is novel in that the base level of the pulse is fixed and a variable amplitude 

signal is applied to the gate [20].  

 

At positive bias, electron trapping in the high- layer is the primary mechanism for 

charge trapping. Depending on the interfacial layer thickness and the theory of oxide 

traps, two types of trapping mechanisms are considered: a capture and subsequent 

trapping of HfO2 conduction band electrons or an electron direct tunneling from silicon 

substrate to defect. A simple model was proposed with a defect energy level in HfO2 thin 

film situated between the silicon and hafnia conduction band energies [20]. However, 

based on mobility degradation in high- MOS devices, it is also proposed [20] that the 

defects are located in the HfSiO and SiO2 interface. Applying a negative gate voltages, 

trapped charge can be fully recovered [21]. However, at positive voltages, it has been 

observed that a partial recovery of charge occurs. The partial detrapping can be explained 

on the basis of back-tunneling of electron from traps to the silicon, and secondly, from a 

Poole-Frenkel mechanism of conduction of electrons from traps to the gate.  

 

The nature of the electron traps in the HfO2 is to be determined and research is ongoing. 

The presence of lattice defects affects the functionality of high-k gate dielectrics. Oxygen 

vacancies play a crucial role in the Vth instability. These defects can trap electrons from 
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not only the hafnia conduction band but also from silicon substrate. These results show 

consistency with electron spin resonance (ESR) measurements. These experiments 

predict the presence of O2
-
 species, a negatively charged defect which can be attributed to 

the trapping of electrons in HfO2 film [23]. 
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CHAPTER III 

 

 SIMULATION CODES 

 

 

3.1 INTRODUCTION 

 

In this chapter, we will briefly discuss the various simulators and codes that have been 

used to study the dose enhancement effects on MOS devices. We will compare the results 

from these various simulators in the subsequent chapters. We have made comparisons 

with the dose enhancements factors (DEFs) as predicted by these simulators wherever 

data from these simulators were available. These simulators include the Monte Carlo 

simulator TIGERP [1] and discrete ordinate codes CEPXS/ONETRAN [2], [3]. We have 

found generally good agreement between the numbers predicted by these simulators and 

our work using MRED 9.0.0 simulator [4], [5], [6]. 

 

3.2 CEPXS/ONETRAN: 

 

The CEPXS/ONETRAN is a discrete ordinate simulator [7] that is used for solving one 

dimensional coupled electron-photon transport problems at various energies. It has been 

used in the past for solving problems involving ionizing radiation such as SGEMP, the 

problem of dose enhancement, space shielding calculations, the response of cables to x-

rays etc. It has also been used to evaluate the dose and charge deposition at the interface 
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of complex high-Z/low-Z materials. The discrete ordinates codes are intended to provide 

the same degree of accuracy as the Monte Carlo codes but are faster than the Monte Carlo 

simulators. 

 

Discrete ordinate simulators use a finite differences method in order to solve the transport 

problem. This method has been used both for studying neutral particle transport [8] and 

as well as electron transport [9],[10],[11]. 

 

The CEPXS/ONETRAN package contains four codes [2]; CEPXS is a cross-section 

code. PRE1D is a pre processor code. ONETRAN/ONELD is transport code. POST1D is 

a post processor code. PRE1D generates the input and POST1D integrates the output for 

the code based on the user demands.   

 

The primary advantage of a discrete ordinate simulator like CEPXS/ONETRAN over 

Monte-Carlo codes is that it is possible to get accurate solutions using much less CPU 

time. In the latest version of the code (Version 2.0), the code automatically selects the 

finite difference methods depending on the problem and hence a user not knowledgeable 

on discrete ordinates techniques can also use the program.  

 

The CEPXS/ONETRAN codes can predict energy and dose deposited in the sensitive 

structures with a high degree of accuracy. The factors which determine accuracy will 

depend on the assumptions used in the finite difference methods. The accurate solution of 

the transport equation is achieved by the improving upon the spatial, energy and angular 
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variable descriptions. The spatial domain is divided by meshing whereas the energy 

domain is divided into sub-groups. The angular domain is characterized by choosing a 

few discrete direction cosines depending on the problem at hand.  

 

Higher number of mesh points, more energy groups and more discrete directions are used 

to get convergent solution to the problem. However, increasing the number of mesh 

points, energy groups and discrete directions increases the CPU time. This is similar to 

the effect of increasing the number of histories of particles in the Monte Carlo codes. 

However, the optimal solution can be obtained depending on the requirements of the 

problem. 

 

Monte Carlo codes and discrete ordinate simulators have very different requirements for 

computation. The Monte Carlo codes require more processing time to execute than 

CEPXS/ONETRAN. On the other hand, CEPXS/ONETRAN needs much more computer 

memory.  

 

The CEPXS/ONETRAN code can calculate both the kerma and the dose profiles. Figure 

3.1 below shows the dose and kerma profiles calculated by the CEPXS/ONETRAN 

simulator for a particular case. The fluence is 1 photon/cm
2
. In order to calculate kerma, 

the assumption made is that the secondary electrons deposit the energy locally. The 

energy lost during the radiative interactions fully escapes the sensitive volume. 

 



 44 

                    
                    

Figure 3.1. Dose and kerma profiles calculated by the CEPXS/ONETRAN simulator 

for the LiF/Pb case. The fluence is 1 photon/cm
2
 [2]. 

 

 

 

 

3.3 INTEGRATED TIGER SERIES OF ELECTRON/PHOTON 

TRANSPORT CODES (TIGERP):  

 

The ITS package helps in getting the Monte-Carlo solution of coupled electron-photon 

transport problems. The codes provide a time-independent and multi-dimensional 

solution to the problem. These codes used contain transport as a result of collisions as 

well as transport under the influence of electric and magnetic fields. The energy ranges 

from 1 keV ~1 GeV [1]. In version 3.0 of the ITS series, the new process that is taken 
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into consideration is the coherent scattering of photons. This is in addition to the already 

existing processes of Compton effect with the production of scattered electrons, pair 

production, photoelectric absorption and the generation of photoelectrons, Auger and 

fluorescence photons. Among the different member codes, TIGER is a 1-D code, 

CYLTRAN is a 2-D code whereas ACCEPT is a 3-D code. The P codes (TIGERP, 

CYLTRANP etc.) include a very sophisticated model for ionization and processes. The 

latest version 3.0 has improved models. Also, efforts have been made in order to make 

the Monte Carlo simulations more efficient. The I/O capability has been improved and 

also the package has been made more accessible to users. 

 

3.3.1 Modeling based on Physics 

 

There were two primary improvements in as far as the physical model associated with 

electron energy loss. The Landau straggling distribution was made consistent with the 

stopping power. Landau’s universal function has been extended to higher value of the 

variable. The cut-off value of this variable is chosen such that the mean energy loss is in 

accordance with the stopping power. Also, in order improve the simulation of electron 

transport at low energies and in high-Z materials, the Blunck-Leisegang modification 

[13] has been added to the Landau distribution. 

 

The Bethe-Heitler-Born approximations of the bremsstrahlung cross sections were 

replaced [12] by more updated models. These are computed using numerical phase-shift 

calculations for the screened Coulomb potential below an energy of 2.0 MeV [13] ,[14].  
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The physical models for photon transport have also been updated. The phenomena of 

coherent scattering and binding effects have been added in the latest version. Binding 

effects have also been taken into account for incoherent scattering of photons. This gives 

a modified energy-angle distribution for the scattered photons.  

 

3.3.2 Variance Reduction Techniques 

 

In order to improve the Monte-Carlo simulations run time, electron histories have been 

properly and quickly terminated in the TIGERP codes. These modifications have been 

made based on experience. This has helped to mitigate the problem of over-biasing and 

also up to 40 % reduction in simulation times have been achieved. Since electron 

transport is much more efficient than photon transport, there is also an option to fully 

ignore electron transport for problems where the radiation effects due to electrons are 

known to be negligible. 

 

Figure 3.2 below shows the pulse height spectrum with a Ge detector. Results show an 

improvement and better match with experiments for the improved ITS version 3.0 codes 

over the previous ITS version 2.1 as a result of the improvement in physical models as 

described in this section. 
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Figure 3.2. Pulse height spectrum with a germanium detector. Results show an 

improvement and better match with experiments for the improved ITS version 3.0 

codes over the previous ITS version 2.1 [1]. 

 

 

 

3.3.3 I/O improvement: 

 

Improvements have been made to the codes in order to catch an error as soon as possible 

and hence terminate its propagation thus saving time involving debugging that takes 

prolonged times. Not only that, a note is made also of the history and batch number of an 

erroneous Monte-Carlo run. This helps in debugging as only the erroneous history can be 

re-run instead of the full run to be repeated.  
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3.4 MRED SIMULATION TOOL 

  

In this section, we describe briefly the physics and engineering concepts behind the 

simulator used in this work: Monte-Carlo Radiative Energy Deposition tool (MRED) [4-

6]. We will also describe the architecture and various components of this simulator and 

the various Geant4 based physics models that can be used in order to study energy and 

charge deposition in critical device regions. An extensive discussion of this MRED 

simulator and its applicability to solving a wide range of science and engineering 

problems has been reported by Weller et al., in [4], [5], [6]. 

 

MRED has been primarily used in the past to study Single Event Effects (SEE) in 

electronic circuits. In the MRED simulator, it is possible to describe the radiation 

environment one is interested in studying – photons, heavy ions, neutron spectrum etc. 

The energy spectrum of the incident ions, their flux and angular distribution can also be 

described. The various physics models aid in simulating the transport of charge carriers 

through sensitive device regions such as electronics packaging, chip metallization. We 

can then study the energy and dose deposition in sensitive volumes of interest in the 

device. It is also possible to study the collected charge at sensitive nodes by the 

impinging ions which can cause single event upset (SEU) and hence bit flip in transistor 

circuits. 
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3.4.1 Physics Models: 

 

Due to the probabilistic nature of charge particle transport in semiconductor device 

regions, Monte Carlo based simulations form the basis of the MRED simulator. 

Depending on the physics of the problem one is concerned with, MRED provides access 

through its physics lists to physics models from the Geant4 C++ class libraries [15], [16]. 

It includes models to study a wide range of physics problems – from nuclear effects in 

ICs due to impinging heavy ions and their fragments to low energy electromagnetic 

processes such as due to low and medium energy photons. In this work, we have studied 

the physics of low energy electromagnetic processes due to low energy and medium 

energy x-ray photons. We have primarily used the physics models – the LowEnergyEM 

Livermore model from the Geant4 C++ library [15] in this work. MRED 9.0.0 also 

provides access to the Fortran PENELOPE2008 code [17]. This code is not a part of the 

Geant4 toolkit. PENELOPE2008 is the current ―gold standard‖ for studying such low 

energy electromagnetic processes in solids and it tracks secondary electrons down to ~ 50 

eV. This is a significant improvement over the earlier simulators we have described 

before like the ITS TIGERP code [1] and the discrete ordinate CEPXS/ONETRAN codes 

[2] we have described earlier which gave energy resolution down to ~ 1 keV.   
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3.5  MRED ARCHITECTURE: 

 

MRED provides a platform for studying single event and other radiation effects in 

semiconductors. The interaction of radiation with matter and charge particle transport is a 

built in Monte-Carlo code. This is based on the Geant4 core. The physics models are the 

same as the Geant4 C++ physics libraries [15], [16]. The incident particles can be 

launched using a Geant4 ParticleGun class. The particle tracking is done up to a point 

where the particle is annihilated by reacting with other entities like atoms, ions etc. or 

until they leave the world. Python is the computer language used in MRED for these 

interactions. 

 

MRED also provides access to some high-level programs for its functionality such as the 

tools required to generate histograms and for the data analysis. These are based on AIDA 

[18]. Also, there is a 2-D plotter XMGRACE [19] and a viewer OPENDX [20]. It is 

possible to invoke the TCAD device simulator SYNOPSYS [21] and the circuit simulator 

SPICE in order to study the device response and other circuit effects due to the energy 

deposition and charge transport at critical nodes. 
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CHAPTER IV 

 

ENHANCEMENT IN DEPOSITED ENERGY/DOSE IN SiO2 BASED 

MOS AND REDUCTION IN HIGH-K MOS DEVICES 

 

 

4.1 INTRODUCTION 

 

In modern MOS technologies, high- materials are increasingly used in gate dielectric 

layers and chip metallization. High- materials in metallization [1] and packaging [2] can 

lead to significant dose enhancement in low and medium-energy x-ray environments. 

Enhancement factors of up to 10 or more associated with high-Z materials have been 

observed in medium-energy x-ray environments [1]-[8]. However, the effects of high-Z 

materials in the gate dielectric (e.g., Hf) have not been evaluated quantitatively. 

Comparative experimental studies of MOS devices with high- and SiO2 dielectrics are 

limited in applicability because defect densities are typically much different in HfO2 and 

SiO2 [9],[10]. So it is not known whether differences in reported device responses in 

previous studies are due primarily to differences in dose, differences in defect densities, 

differences in effective electron-hole recombination rates, etc. 

 

In this chapter, we compute x-ray doses in SiO2 and HfO2 dielectrics using the Monte-

Carlo Radiative Energy Deposition (MRED) simulator at Vanderbilt University [11],[12]. 
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In past studies, MRED has been used primarily in studies of single event effects (SEE) 

[11],[13]-[16] and displacement damage [12],[17]. Particle interactions with high-Z 

materials can be quite significant in determining error rates in space, especially for 

radiation-hardened technologies [11],[13],[14],[16]. Here we first compare MRED 

calculations of total ionizing dose (TID) for 10-keV x-ray irradiation, and then for a 400-

keV endpoint-energy bremsstrahlung x-ray spectrum. We calculate the dose enhancement 

in SiO2 that is caused by high-Z materials that are nearby the gate dielectric layer, and on 

the reduction in dose that can occur when a high-Z dielectric layer is surrounded by 

lower-Z materials. We compare these calculations to previous results in the literature 

obtained with other Monte Carlo and discrete ordinates codes and previous experiments 

[1],[3], and find generally good agreement. These results provide insight into 

comparisons of the radiation response of MOS devices with SiO2 and HfO2 gate 

dielectrics, and demonstrate the capability of MRED to assist in the evaluation of dose in 

complex microelectronic materials and devices.  

 

4.2 MRED SIMULATION DETAILS 

 

Structures: 

Schematic diagrams of MOS capacitors having three different geometries are shown in 

Fig. 4.1. These include capacitors with (1) a pure Al gate, (2) an Al gate with a TaSi2 

layer that is 200 nm from the gate oxide, and (3) an Al gate with a TaSi2 layer that is 670 

nm from the gate oxide. The physical thickness of the gate oxide used in our calculations 

varies from very thick (1000 nm) to ultra-thin (~1 nm), and comparisons are made to 

physical capacitor structures with oxide thicknesses ranging from 1000 nm to 35 nm [3]. 
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The thicker oxides are useful for estimating equilibrium doses in the dielectric layers. The 

ultra-thin gate dielectrics are more relevant for comparison to results for present and 

future generations of MOS technologies. These devices have been used in previous work 

using 10-keV x-rays in [3], and a medium-energy x-ray spectrum in [16]. 

 

 
 

 

Figure 4.1. Device geometries for Al-gate, TaSi2-down, and TaSi2-up MOS 

capacitors (after [1]). Secondary electrons emitted from the TaSi2-up layer are 

attenuated more by the thicker Al layer than are the electrons emitted from the 

TaSi2-down layer, which is 470 nm closer to the gate oxide. For the HfO2 

calculations performed, the SiO2 layer (dark grey) was simply replaced by HfO2 

[18].  

 

4.2.1 Simulations 

 

Each structure in Figure 4.1 was simulated in MRED to study numerically the total dose 

(energy per unit mass) deposited by 10-keV x-rays and/or a 400-keV energy (105 keV 
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average energy) bremsstrahlung x-ray spectrum in the gate oxide of the MOS capacitor. 

In this work we used MRED version 9.0.0 based on Geant4 9.3. The current 

implementation of low energy electromagnetic processes in the Geant4 toolkit [17],[19] 

is valid for energies down to 250 eV and can be used up to approximately 100 GeV. In 

addition to performing these calculations for the SiO2-based structures depicted in Figure 

4.1, we performed similar calculations for the three metal gate stacks with HfO2 as the 

gate dielectric layer. 

 

As part of this study, we compared the current standard version of MRED with the 

Geant4 low energy electromagnetic physics models for electron transport with a new 

version that incorporates the electron transport code PENELOPE 2008 (PENetration and 

Energy LOss of Positrons and Electrons) [20]. This PENELOPE module is not part of the 

Geant4 toolkit [17],[19], but is expected to provide reliable results for electron energies 

down to ~ 50 eV, and can be used up to ~1 GeV [20]. We found similar results 

(differences in calculations that typically are less than device-to-device response 

variations observed in experimental work using the devices of Figure 13 [1],[16]) using 

each of these separate approaches to electron transport. Hence, either module can provide 

reliable descriptions of the dose that is deposited in these kinds of structures, which are 

typical of gate dielectrics in MOS devices and ICs. In the remaining calculations, we 

show the averages of the values obtained from the Geant4 low energy electromagnetic 

physics models and the PENELOPE code. 
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4.3 SIO2 MOS CAPACITORS: 10-KEV X-RAYS 
 

In Figure 4.2, the energy deposition profile in the SiO2 gate oxide for the three MOS 

capacitor geometries of Figure 4.1, for a 98 nm SiO2 gate oxide is shown. The total 

energy deposited in the gate oxide is obtained by integrating these curves. In all cases, the 

energy deposited in the SiO2 gate oxide in the capacitor structures of Figure 13 is higher 

than that deposited in the pure SiO2. This is due to dose enhancement caused by the 

surrounding higher-Z materials, with the largest enhancement occurring in the TaSi2-

down geometry [3].  

 

 
 

Figure 4.2. Simulated 10-keV x-ray energy deposition profile for 98 nm SiO2 Al-

gate, TaSi2-down, and TaSi2-up MOS capacitors. The energy deposition profile is 

shown for comparison for a pure SiO2 layer of the same physical thickness as the 

multilayer capacitor structures [18].  
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Figure 4.3 shows the dose in the SiO2 gate oxide for the MOS capacitors of Figure 4.1, 

relative to the equilibrium dose in SiO2, as a function of gate oxide thickness. This ratio is 

an effective measure of the dose enhancement factor (DEF). The doses increase 

monotonically with decreasing gate oxide thickness for all three geometries and converge 

for the thickest (~1060 nm) oxide. 

 

 

 
 

Figure 4.3. Enhanced dose due to 10-keV x-rays for the MOS capacitor structures of 

Figure 4.1 as a function of SiO2 dielectric layer thickness [18].  

 

 

Figure 4.4 compares the dose enhancement factors computed using MRED for Al-gate 

MOS capacitors with SiO2 gate dielectrics for four different gate oxide thicknesses, 

compared with results obtained previously with other radiation transport codes [3]. These 
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include the Monte Carlo simulator TIGERP [3],[21],[22] and discrete ordinates codes 

CEPXS/ONETRAN and TEP [23],[24]. TIGERP results tend to be higher than those of 

the other transport codes for thin oxides, and lower than the other codes for the thickest 

oxides. Otherwise, the predicted DEFs are similar for all of the transport codes. 

 

 
 

Figure 4.4. Comparison of MRED calculations with TIGERP, TEP, 

CEPXS/ONETRAN simulators (results from [3]) for the Al-gate SiO2 MOS 

capacitors of Fig. 4.1. The DEFs were computed for 10-keV x-rays [18]. 

 

 

Figure 4.5 compares the dose enhancement factors computed using MRED for TaSi-Up-

gate MOS capacitors with SiO2 gate dielectrics for four different gate oxide thicknesses. 

As discussed, the TaSi-Up gate is characterized by the presence of high-Z TaSi layer in 

the gate metallization separated by 670 nm of Al in-between. Here we observe that the 
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Monte-Carlo code TIGERP DEF values are much closer to the values calculated by 

MRED 9.0.0. This is in contrast to the Al-gate geometry case where the TIGERP DEF 

values were higher than MRED 9.0.0 DEF values for thin oxides which are to 

technological interest. The discrete ordinate codes TEP and CEPXS/ONETRAN predict 

consistently higher dose enhancement factor values for all the different TaSi-Up 

geometries of varying oxide thickness. 

 

 
 

Figure 4.5. Comparison of MRED calculations with TIGERP, TEP, 

CEPXS/ONETRAN simulators (results from [3]) for the TaSi-Up gate SiO2 MOS 

capacitors of Figure 4.1. The DEFs were computed for 10-keV x-rays. 

 

 

Figure 4.6 compares the dose enhancement factors computed using MRED for TaSi-

Down gate MOS capacitors with SiO2 gate dielectrics for four different gate oxide 

thicknesses, compared with results obtained previously with other radiation transport 
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codes [3]. As discussed, the TaSi-Down gate is characterized by the presence of high-Z 

TaSi layer in the gate metallization separated by 200 nm of Al in-between. Here we 

observe that the Monte-Carlo MRED 9.0.0 code predicts higher DEF values for thin 

oxides compared to the TIGERP, TEP and CEPXS/ONETRAN. TIGERP predicts the 

least DEF values.  

 

 

 
 

Figure 4.6. Comparison of MRED calculations with TIGERP, TEP, 

CEPXS/ONETRAN simulators (results from [3]) for the TaSi-Down gate SiO2 MOS 

capacitors of Figure 4.1. The DEFs were computed for 10-keV x-rays. 

 

 

Table 4.1 shows MRED calculations for the structures of Figure 13, as well as thinner 

simulated oxide layers. The MRED calculation of the DEF for the very thin oxides (1-3 

nm) is similar to the TIGERP calculation for 35-98 nm oxides. Figure 4.7 graphically 
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shows MRED calculations of the ratio between the calculated DEFs for capacitors with 

35 nm oxides and the DEFs for capacitors with 1060 nm oxides. These are compared 

with the experimentally measured ratios of hole trapping reported in [1] for capacitors 

with oxides of these two thicknesses. This ratio is a convenient figure of merit that 

eliminates factors such as electron-hole recombination [1], or x-ray to Co-60 correlation 

[25], from the comparison of interest. 

 

For Al-gate structures, Table 4.1 shows that MRED provides a better match to the 

experimental results than TIGERP or CEPXS/ONETRAN. For the TaSi2-up structures, 

the CEPXS/ONETRAN simulator is closest to the experimental ratio, closely followed by 

MRED and TEP. For the TaSi2-down structures, MRED provides an excellent match to 

the experimental ratios. In all cases, the calculations of MRED are consistent with the 

experimental results, to within the device to device variations of ~ ± 15%. The 

differences among the simulation results are primarily a result of the enhanced 

computational capabilities and updated physical models that are available now, as 

compared to 1988. Moreover, MRED includes a more comprehensive suite of scattering 

processes and updated cross sections, as compared to TIGERP, TEP, and 

CEPXS/ONETRAN. 
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Table 4.1. Calculated DEFs using MRED 9.0.0 (green)[32], TEP, 

TIGERP, and CEPXS/ONETRAN [1]. The experimental ratios 

compare the predicted and experimentally observed ratios between the 

DEFs and relative device responses observed in [1]. 

 

 
 

 
 

 

 

 

 

 



 64 

 
Figure 4.7. MRED calculations of the ratios of the DEFs due to 10-keV x-rays for 

capacitors with 35 nm oxides to the DEFs of capacitors with 1060 nm oxides. These 

are compared with the experimentally measured ratios of hole trapping reported in 

[3] for capacitors with oxides of these two thicknesses [18]. 

 

 

4.4 HFO2 MOS CAPACITORS: 10-KEV X-RAYS 

 
 

Since MRED has been shown to reliably predict energy, dose, and charge deposition in 

SiO2 based MOS devices, we used MRED to evaluate the effects of replacing the SiO2 

gate dielectric in Figure 4.1 with a high-k dielectric, HfO2, which is of intense interest for 

present and future generations of MOS devices [26],[27]. Figure 4.8 compares the 

deposited energy for HfO2 and SiO2 MOS capacitors with Al gates as a function of the 

physical thickness of the gate oxide. Again, each result is the average of the (quite 
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similar) results from the low energy electromagnetic physics model contained in the 

Geant4 toolkit [17],[19] and the PENELOPE code [20]. Because of its higher effective Z, 

the energy deposited in the HfO2 gate-dielectric MOS capacitors is significantly higher 

than that deposited in the SiO2 capacitors, with a larger difference in energy for thicker 

oxides than for thinner oxides. 

 
Figure 4.8. Deposited energy due to 10-keV x-rays in the gate dielectric for MOS 

capacitors with HfO2 and SiO2 gate insulators as a function of physical gate oxide 

thickness, for the Al gate structures of Fig. 4.1 [18]. 

 

 

Figure 4.9 shows the calculated doses in the SiO2 and HfO2 dielectric layers for the 

structures of Figure 4.1. For thicker oxides, the higher-Z of the HfO2 layer leads to a 

much larger equilibrium dose than that deposited in the SiO2. For thinner dielectric 

layers, the dose is enhanced in the SiO2 layers because Si and Al are higher Z materials 
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than SiO2, and the dose is reduced in the HfO2, because these surrounding layers are now 

comparatively the lower-Z materials. The dose reduction in HfO2 [26] is essentially the 

inverse of the dose enhancement effect in SiO2 that is observed when it is surrounded by 

higher-Z materials [3],[28]-[30].  

 

 

Figure 4.9. Dose (in krad(HfO2) and krad(SiO2)) due to 10-keV x-rays in the gate 

oxides of MOS capacitors with HfO2 and SiO2 gate insulators as a function of 

physical gate oxide thickness, for the Al gate structures of Fig. 4.1 [18]. 

 

 

Figure 4.10 shows the ratio of the calculated dose in HfO2 to the equilibrium dose in a 

thick SiO2 gate dielectric, for the capacitor structures of Figure 4.1. We choose this layer 

structure and comparison because equilibrium dose in SiO2 is frequently used to report x-

ray dose in studies of the radiation response of high-k gate dielectrics [26],[27]. The 
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decrease in ―excess dose‖ in the HfO2 for thinner dielectric layers occurs because much 

of the energy initially deposited in this higher-Z layer transports (via secondary electrons) 

to surrounding lower-Z materials. For HfO2 layer thicknesses of technological interest (2 

to 4 nm), these calculations suggest that the dose in the gate dielectric after electron 

transport is ~ 2-3 times higher than the equilibrium dose in SiO2 reported in the literature 

[26],[27]. The higher values occur when higher-Z materials are present in the gate stack, 

which is of significance to advanced MOS technologies that increasingly incorporate 

high-κ dielectrics and metal gates [31],[32]. 

 

 
 

Figure 4.10. Excess dose deposited in HfO2 MOS capacitor structures compared to 

the equilibrium deposited dose in a pure SiO2 structure due to 10-keV x-rays. The 

dose reduction in the gate dielectric observed for thin HfO2 layers is significantly 

greater when the dielectric is surrounded by lower-Z materials than when 

surrounded by higher-Z materials [18]. 
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To check the calculations in Figure 4.10, we have compared the computations of the 

equilibrium doses in HfO2 and SiO2 to analytical values obtained from the literature. The 

effective Z, Zeff, can be obtained for SiO2 and HfO2 using the empirical relation [18]: 

 

 

  

Z
eff
 f

i
(Z

i
)2.94

i

2.94  ,     (1) 

 

where fi is the fraction of the total number of electrons associated with each element, and 

Zi is the atomic number of an element in a compound. From Eq. (1), the value of Zeff for 

SiO2 is ~11 (Na) and Zeff for HfO2 is ~67 (Ho). The equilibrium dose deposited in a 

material varies as (en/). From NIST reference data for Na and Ho [28], as shown in Fig. 

4.11, the ratio (en/) ~ 4 for HfO2, relative to SiO2. There should be no absorption edges 

for SiO2 and HfO2 as has been erroneously shown in Fig. 9 of [18]. This error has been 

corrected in Fig. 4.11 below. After adjusting this ratio for the relative densities of HfO2, 

SiO2, Ho, and Na (Eq. (2)), the calculated ratio is ~ 8, consistent with that shown for the 

thicker oxides in Figure 4.10, and affirming the MRED calculations. 
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Figure 4.11. Ratios of (en/) values for HfO2 (Zeff ~ 67 ) and SiO2 (Zeff ~11) as a 

function of photon energy. For 10-keV x-rays, the ratio is ~ 4. 

 

 

 

4.5 MEDIUM-ENERGY X-RAYS 

 
 

We next consider how the structures in Figure 4.1 respond to medium energy x-rays [16]. 

For the MRED calculations, we simulated the photon spectrum generated by the Sandia 

Pelletron, a variable energy electron accelerator, with an x-ray converter attached to it. 

The x-ray converter used consisted of 89 µm Ta followed by 4.8 mm C [16]. An electron 

beam energy of 400 keV was used to produce a bremsstrahlung x-ray spectrum with an 

average energy of 105 keV, as illustrated in Figure 4.12. For optimal calibration, the 

background corresponding to the Ge detector output for white light was subtracted to 
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obtain the simulated spectrum. The resulting computed spectrum is quite similar to that 

shown and validated for capacitors with SiO2 dielectrics in [16]. Below ~80 keV, the 

spectrum exhibits sharp peaks corresponding to the characteristic lines of the Ta used in 

the x-ray converter. There is a broad continuum above 80 keV. 

 

Fig. 4.13 shows the MRED calculations of the deposited energy for the medium-energy 

x-ray spectrum of Figure 24 for HfO2 and SiO2 MOS capacitors with Al gates, as a 

function of gate oxide thickness. The energy deposited in the HfO2 for these capacitors is 

significantly higher than that in the SiO2 capacitors, due to the higher-Z of the HfO2 

layer. Importantly, one does not see a significant reduction in the ratios of the deposited 

energy in the HfO2 layers with decreasing thickness like that shown in Figures 4.9 and 

4.10. 

 

Figure 4.14 shows the dose in the SiO2 and HfO2 dielectric layers for the medium-energy 

x-ray spectrum of Figure 4.12 for all three capacitor structures of Figure 4.1. Much 

higher doses are deposited in the HfO2 MOS capacitors as compared to the SiO2 MOS 

capacitors for the entire range of oxide thicknesses. The dose deposited in the thickest 

HfO2 capacitor is ~10 times that for the thickest SiO2 layer capacitor. This increase in 

dose is maintained for thinner oxides, showing that advanced MOS devices with high-κ 

gate dielectrics will exhibit much higher doses (and potentially higher photocurrents as 

well) in their gate oxides in medium-energy x-ray environments than will devices with 

SiO2 gate dielectrics. This will need to be factored into hardness assurance test plans for 

such devices, if used in medium energy x-ray environments [16],[30]. 
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Figure 4.12. 400-keV endpoint-energy bremsstrahlung x-ray spectrum (average 

energy 105 keV) from the Sandia Pelletron, as simulated by MRED, for the 

conditions of [16], [18]. 
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Figure 4.13. Deposited energy in the gate dielectric for HfO2 and SiO2 Al-gate MOS 

capacitors as a function of gate oxide physical thickness for the 400-keV endpoint-

energy bremsstrahlung x-ray spectrum of Figure 4.12 [18]. 

 

 

Again to compare with previous work, where possible, we note that the doses in the 

TaSi2-down capacitors with SiO2 dielectric layers in Figure 4.14 are ~1.9-2.3 times 

higher than the doses in the Al-gate capacitors. The measured ratios for the comparable 

experimental device responses in [16] are ~1.9-2.1. These experiments were done on 

similar Al-gate and TaSi2-gate geometry capacitors at 300 K, using the Sandia Pelletron 

source to generate a 400-keV endpoint-energy bremsstrahlung x-ray spectrum [16]. The 

MRED calculations for SiO2 also match well the DEFs of ~2.0-2.3 as predicted by the 

ITS coupled electron/photon transport codes in [16]. 
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Figure 4.14. Dose (in rad(SiO2) and rad(HfO2)) as a function of physical oxide 

thickness for HfO2 and SiO2 gate dielectric layers for the MOS capacitor structures 

of Figure 13, for the 400-keV endpoint-energy bremsstrahlung x-ray spectrum of 

Figure 4.12 [18]. 

 

 

The results strongly suggest that MRED computations of dose can be used to help predict 

the radiation response of dielectric layers that are located in proximity to higher-Z or 

lower-Z materials. For these kinds of structures, experimental data are frequently difficult 

or even impossible to obtain, owing to differences in defect densities, electron-hole 

recombination effects, etc. For example, in previous work by Felix, et al. [32] using 10 

keV x-rays, an enhancement in radiation response of a factor of ~ 23 was reported for 

capacitors with Hf silicate gate dielectrics, as compared to SiO2 of comparable physical 

thickness. This difference was attributed entirely to differences in defect densities in the 
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two materials. Dixit et al. revised this estimate significantly downward by a factor of 2 to 

2.5 times [26], through a series of assumptions about the interface dose enhancement, 

relative values of electron-hole pair creation energy, etc. The results in Figs. 4.9-4.10 

above suggest that the dose in these materials likely was ~ 2-3 times higher than the dose 

in comparable SiO2 structures, so the comparative defect densities in the Hf silicate 

dielectric layers were correspondingly reduced, relative to those in SiO2. Hence, the 

computational results of Figs. 4.8-4.10 are in general agreement with the analysis of Dixit 

et al. in [26]. 

 

In medium-energy x-ray environments, the doses in HfO2 layers are enhanced further 

still, relative to SiO2 [16]. An even greater enhancement of the dose is observed in the 

thicker high-Z dielectric layers than for the thinner dielectric layers, when these are 

surrounded by lower-Z materials. For example, a 10-fold enhancement, relative to SiO2, 

is observed for HfO2 layers of thickness 1000 nm. Moreover, the dose and photocurrent 

in layers adjacent to high-Z materials (e.g., W, Ta, Hf) will be greatly enhanced in 

medium and low-energy x-ray environments [3],[16]. The results presented here strongly 

suggest that MRED can be used to assist in the evaluation of the dose enhancement in 

these kinds of materials, which are increasingly employed in modern microelectronic 

materials and devices. 
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4.6 SUMMARY  
 

We have evaluated the effects of 10-keV x-rays and 400-keV endpoint-energy 

bremsstrahlung x-rays on MOS capacitors with SiO2 and HfO2 gate dielectrics, for Al and 

TaSi gate metallization. The resulting dose enhancement in SiO2 due to nearby high-Z 

materials and reduction in HfO2 due to nearby lower-Z materials have been studied for 

10-keV x-rays using the Monte Carlo simulator, MRED. We find excellent agreement 

between these calculations and previous experimental results in the literature. Moreover, 

the MRED calculations generally match well results for SiO2 gate dielectric structures 

obtained with other Monte Carlo and discrete ordinates codes. The observed dose 

reduction in thin HfO2 dielectric layers does not occur in a medium-energy x-ray 

environment; in that case, the dose in a HfO2 gate dielectric can be ~10 times higher than 

the dose in a SiO2 dielectric, for the same incident x-ray fluence. These results 

demonstrate that MOS devices with high-κ gate dielectrics will exhibit much higher 

doses in their gate oxides in medium-energy x-ray environments than will devices with 

SiO2 gate dielectrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 76 

REFERENCES: 

 

[1]    D. M. Fleetwood, D. E. Beutler, L. J. Lorence, Jr., D. B. Brown, B. L. Draper, L. C. 

Riewe, H. B. Rosenstock, and D. P. Knott, ―Comparison of enhanced device 

response and predicted x-ray dose enhancement effects in MOS oxides,‖ IEEE 

Trans. Nucl. Sci., vol. 35, no. 6, pp. 1265–1271, Dec. 1988. 

  

[2]     J. Mekki, L. Dusseau, M. Glaser, S. Guatelli, M. Moll, M. G. Pia, and F. Ravotti, 

―Packaging effects on RadFET sensors for high energy physics experiments,‖ IEEE 

Trans. Nucl. Sci., vol. 56, no. 4, pp. 2061-2069, Aug. 2009. 

 

[3]    D. E. Beutler, D. M. Fleetwood, W. Beezhold, D. Knott, L. J. Lorence, Jr., and B. 

L. Draper, ―Variations in semiconductor device response in a medium-energy x-ray 

dose-enhancing environment,‖ IEEE Trans. Nucl. Sci., vol. 34, no. 6, pp. 1544-

1550, Dec. 1987. 

 

[4]    D. M. Fleetwood, P. S. Winokur, L. J. Lorence Jr., W. Beezhold, P. V. 

Dressendorfer and J. R. Schwank, ―The response of MOS devices to dose-enhanced 

low-energy radiation,‖ IEEE Trans. Nucl. Sci., vol. 33, no. 6, pp. 1245–1251, Dec. 

1986. 

 

[5]    D. M. Fleetwood, P. S. Winokur, R. W. Beegle, P. V. Dressendorfer, and B. L. 

Draper, ―Accounting for dose-enhancement effects with CMOS transistors,‖ IEEE 

Trans. Nucl. Sci., vol. 32, no. 6, pp. 4369–4375, Dec. 1985. 

 

[6]     T. W. L. Sanford and J. A. Halbleib, ―Radiation output and dose predictions for 

flash x-ray sources,‖ IEEE Trans. Nucl. Sci., vol. 31, no. 6, pp. 1095-1100, Dec. 

1984. 

 

[7]     C. M. Dozier and D. B. Brown, ―Effect of photon energy on the response of MOS 

devices,‖ IEEE Trans. Nucl. Sci., vol. 28, no. 6, pp. 4137-4141, Dec. 1981. 

 

[8]     D. B. Brown, ―Photoelectron effects on the dose deposited in MOS devices by low 

energy x-ray sources,‖ IEEE Trans. Nucl. Sci., vol. 27, no. 6, pp. 1465-1468, Dec. 

1980. 

 

[9]     S. K. Dixit, X. J. Zhou, R. D. Schrimpf, D. M. Fleetwood, S. T. Pantelides, R. 

Choi, G. Bersuker, and L. C. Feldman, ―Radiation induced charge trapping in 

ultrathin HfO2-based MOSFETs,‖ IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 1883-

1890, Dec. 2007. 

 

[10] J. A. Felix, J. R. Schwank, D. M. Fleetwood, M. R. Shaneyfelt, and E. P. Gusev, 

―Effects of radiation and charge trapping on the reliability of high-κ gate 

dielectrics,‖ Microelectron. Reliab., vol. 44, no. 4, pp. 563-575, Apr. 2004. 

 



 77 

 

[11] R. A. Weller, R. A. Reed, K. M. Warren, M. H. Mendenhall, B. D. Sierawski, R. D. 

Schrimpf, and L. W. Massengill, ―General framework for single event effects rate 

prediction in microelectronics,‖ IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3098-

3108, Dec. 2009. 

 

[12] R. A. Weller, A. L. Sternberg, L. W. Massengill, R. D. Schrimpf, and D. M. 

Fleetwood, ―Evaluating average and atypical response in radiation effects 

simulations,‖ IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 2265-2271, Dec. 2003. 

 

[13] K. M. Warren, R. A. Weller, M. H. Mendenhall, R. A. Reed, D. R. Ball, C. L. 

Howe, B. D. Olson, M. L. Alles, L. W. Massengill, R. D. Schrimpf, N. F. Haddad, 

S. E. Doyle, D. McMorrow, J. S. Melinger, and W. T. Lotshaw, ―The contribution 

of nuclear reactions to heavy ion single event upset cross-section measurements in 

a high-density SEU hardened SRAM,‖ IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 

2125-2131, Dec. 2005. 

 

[14] C. L. Howe, R. A. Weller, R. A. Reed, M. H. Mendenhall, R. D. Schrimpf, K. M. 

Warren, D. R. Ball, L. W. Massengill, K. A. LaBel, J. W. Howard, and N. F. 

Haddad, ―Role of heavy-ion nuclear reactions in determining on-orbit single event 

error rates,‖IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2182-2188, Dec. 2005. 

 

[15] A. D. Tipton, J. A. Pellish, R. A. Reed, R. D. Schrimpf, R. A. Weller, M. H. 

Mendenhall, B. Sierawski, A. K. Sutton, R. M. Diestelhorst, G. Espinel, J. D. 

Cressler, P. W. Marshall, and G. Vizkelethy, ―Multiple-bit upset in 130 nm CMOS 

technology,‖ IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 3259-3264, Dec. 2006. 

 

[16] R. A. Reed, R. A. Weller, R. D. Schrimpf, M. H. Mendenhall, K. M. Warren, and 

L. W. Massengill, ―Implications of nuclear reactions for single-event effects test 

methods and analysis,‖ IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3356-3362, Dec. 

2006. 

 

[17] R. A. Weller, M. H. Mendenhall, and D. M. Fleetwood, ―A screened Coulomb 

scattering module for displacement damage computations in Geant4,‖ IEEE Trans. 

Nucl. Sci., vol. 51, no. 6, pp. 3669-3678, Dec. 2004. 

 

[18] A. Dasgupta, D. M. Fleetwood, R. A. Reed, R. A. Weller, M.H. Mendenhall, and 

B. Sierawski, ―Dose enhancement and reduction in SiO2 and high- MOS 

insulators,‖ IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3463-3469, Dec. 2010. 

 

[19] S. Agnostelli, et al., ―Geant4-a simulation toolkit,‖ Nucl. Instrum. Methods A, vol. 

506, pp. 250-303, 2003. 

 

[20] J. Allison, et al., ―Geant4 developments and applications,‖ IEEE Trans. Nucl. Sci., 

vol. 53, no. 1, pp. 270-278, 2006. 

 

http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Pellish%20JA&ut=000243174400028&pos=2
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Reed%20RA&ut=000243174400028&pos=3
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Schrimpf%20RD&ut=000243174400028&pos=4
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Weller%20RA&ut=000243174400028&pos=5
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Mendenhall%20MH&ut=000243174400028&pos=6
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Sierawski%20B&ut=000243174400028&pos=7
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Sutton%20AK&ut=000243174400028&pos=8
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Diestelhorst%20RM&ut=000243174400028&pos=9
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Espinel%20G&ut=000243174400028&pos=10
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Marshall%20PW&ut=000243174400028&pos=12
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Mendenhall%20MH&ut=000243174400042&pos=4
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Warren%20KM&ut=000243174400042&pos=5
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1CPDmEG3@JHMAnp6PKg&name=Massengill%20LW&ut=000243174400042&pos=6


 78 

[21] A. F. Bielajew and F. Salvat, ―Improved electron transport mechanics in the 

PENELOPE Monte-Carlo model,‖ Nucl. Instrum. Meth. Phys. Res. B, vol. 173, no. 

3, pp. 332-343, Jan. 2001. 

 

[22] J. A. Halbleib, R. P. Kensek, and G. D. Valdez, ―ITS – the integrated TIGER series 

of electron-photon transport codes – version 3.0,‖ IEEE Trans. Nucl. Sci., vol. 39, 

no. 3, pp. 1025-1030, Aug. 1992. 

 

[23] L. J. Lorence, Jr., ―CEPXS/ONELD version 2.0: A discrete ordinates code package 

for general one-dimensional coupled electron-photon transport,‖ IEEE Trans. Nucl. 

Sci., vol. 39, no. 3, pp. 1031-1034, Aug. 1992. 

 

[24] L. J. Lorence, Jr. and D. E. Beutler, ―Radiation transport phenomena and 

modeling,‖ 1997 IEEE NSREC Short Course, Snowmass, CO. 

 

[25] H. S. P. Wong, ―Beyond the conventional transistor,‖ IBM J. Res. Development, 

vol. 46, no. 2/3, pp. 133-168, Mar.-May 2002. 

 

[26] E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-

Schmidt, and C. D’Emic, ―Ultrathin high-K metal oxides on Si: Processing, 

characterization, and integration issues,‖ Microelectron. Engrg., vol. 59, no. 1-4, 

pp. 341-349, Nov. 2001. 

 

[27] R. C. Murty, "Effective atomic numbers of heterogeneous materials", Nature, vol. 

207, pp. 398-399, Jul. 1965. 

 

[28] Data are from www.nist.gov. 

 

[29] J. R. Schwank, F. W. Sexton, D. M. Fleetwood, M. R. Shaneyfelt, K. L. Hughes, 

and M. S. Rodgers, ―Strategies for lot acceptance testing using CMOS transistors 

and ICs,‖ IEEE Trans. Nucl. Sci., vol. 36, no. 6, pp. 1971-1980, Dec. 1989. 

 

[30] D. E. Beutler, W. Beezhold, J. S. Browning, D. M. Fleetwood, N. E. Counts, D. P. 

Knott, C. L. Freshman, and M. P. Connors, ―Comparison of photocurrent 

enhancement and upset enhancement in CMOS devices in a medium-energy x-ray 

environment,‖ IEEE Trans. Nucl. Sci., vol. 37, No. 4, pp. 1541-1547, Dec. 1990. 

 

[31] D. M. Fleetwood and H. A. Eisen, ―Total-dose radiation hardness assurance,‖ IEEE 

Trans. Nucl. Sci., vol. 50, no. 6, pp. 552-564, Jun. 2003. 

 

[32] J. A. Felix, D. M. Fleetwood, R. D. Schrimpf, J. G. Hong, G. Lucovsky, J. R. 

Schwank, and M. R. Shaneyfelt, ―Total dose radiation response of hafnium silicate 

capacitors,‖ IEEE Trans. Nucl. Sci., vol. 49, no. 6, pp. 3191-3196 (2002). 

 

 

 

http://www.nature.com/nature/journal/v207/n4995/abs/207398a0.html
http://www.nature.com/nature/journal/v207/n4995/abs/207398a0.html
http://en.wikipedia.org/wiki/Nature_(journal)
http://www.nist.gov/


 79 

CHAPTER V 

 

EFFECTS OF METAL GATES AND BACK-END-OF-LINE 

MATERIALS ON X-RAY DOSE IN HfO2 GATE OXIDES 

 

5.1  INTRODUCTION 

 

High-Z materials occur in integrated circuit metallization [1],[2] and in device packaging 

[3] in CMOS technologies. To facilitate continued MOS gate oxide scaling, Hf [4] and 

Zr-based [5] insulators are increasingly employed in CMOS devices. Metal gates 

typically provide more appropriate work functions for high-κ gate stacks than do poly-

silicon gates [6]-[8]. The presence of high-Z materials in advanced gate stacks and in the 

back end of line (BEOL) metallization (W vias and Cu interconnects) can lead to 

interfacial dose enhancement [9]-[11] in critical device insulators in x-ray environments. 

Dose enhancement factors of ~2 or higher can occur in thin HfO2 oxides exposed to 10-

keV x-rays, and as high as ~10 occur due to medium energy x-rays [10],[11]. 

Experimental studies of MOS devices with high- and SiO2 dielectrics are limited in 

applicability because defect densities are typically much different in HfO2 and SiO2 

[12],[13]. 
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There are problems in replacing polysilicon gate/SiO2 dielectric stack with the 

polysilicon gate/HfO2 dielectric stack for high-k CMOS capacitors and FETs. Hf-based 

gate dielectrics and polysilicon are incompatible due to defect formation at the 

polysilcon/high-  dielectric interface leading to Fermi level pinning and hence high 

threshold voltages in these MOS devices [6]. Also, poly-silicon/high- MOS devices 

exhibit mobility degradation due to coupling of phonons with channel charge carriers 

present under inversion. The mobility vs. Eeff curves for a HfO2 based MOS device with a 

Poly-silicon gated device is shown below in Figure 5.1. 

 

 

                 
Figure 5.1. Mobility as a function of effective electric field Eeff for a HfO2 based 

MOS device with a Poly-silicon gate [6].  

 

 

PMOS will require a somewhat higher work-function metal gate that matches Si valence 

band level, 5.2 eV, and NMOS will need conduction band matching, 4.1 eV. Hence metal 
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gates with correct work-functions like TiN [7] and some of the noble metals (Pt) are 

being investigated for integration with PMOS high- devices. TaSiN [8], TaN [7] are 

being considered for integration with NMOS high- Hf based technologies. TiN has also 

been reported to be an attractive candidate for mid-gap applications in NMOS. The 

mobility vs. Eeff curves for a HfO2 based MOS device with a TiN gated device is shown 

below in Figure 5.2. Comparing Figure 5.2 with Figure 5.1 indicates the mobility 

degradation associated with integrating HfO2 based high- device with Poly-silicon gate 

compared to the high-  MOS device with TiN gate. 

 

 

 

                    
  

Figure 5.2. Mobility as a function of effective electric field Eeff for a HfO2 based 

MOS device with a TiN metal gate [6]. Note the higher mobility that has been 

observed with the TiN gated MOS device. 

 

 

 



 82 

In this chapter, we have performed a detailed evaluation of dose enhancement effects due 

to 10-keV and medium energy x-rays in HfO2 gate dielectrics that are incorporated in 

realistic metal gate stacks implemented in sub-45 nm CMOS electronics [6],[14]. We 

used the Monte-Carlo Radiative Energy Deposition (MRED) code at Vanderbilt in this 

work [15]. In past studies, MRED has been used primarily in studies of single event 

effects (SEE) [16]-[18] and displacement damage [19]; we have found that it also 

provides accurate estimates of dose enhancement effects in MOS structures [11]. we also 

evaluate the significant effects of high-Z materials (e.g., W vias and Cu metallization) 

present in BEOL material layers on the dose enhancement in advanced gate stacks in both 

low and medium energy x-ray environments. We find a broad range of dose enhancement 

and reduction effects that would be difficult to deconvolve without the use of MRED.  

 

 

5.2 MRED SIMULATION DETAILS 

 

Structures: 

A schematic diagram is shown in Fig. 5.3 for MOS capacitors with a variety of gate 

metallization. The thickness of the metal gates is 150 nm, which is typical of realistic 

metal gate stacks implemented in sub-45 nm CMOS electronics. The physical thickness 

of the gate oxide varies from very thick (1000 nm) to ultra-thin (~1 nm). Thicker oxides 

are useful for estimating equilibrium doses in dielectric layers. The ultra-thin gate 

dielectrics are more relevant for comparison to results for present and future generations 

of deep submicron CMOS technologies.  
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Schematic diagrams of MOS capacitor having different geometries are shown in Figure 

5.3. These include high-k HfO2 based capacitors with (1) a TiN gate, (2) a TaN gate (3) a 

TaSiN gate (4) an aluminum gate and (4) a polysilicon gate.  

 

                                 
   

 

Figure 5.3. Simulated device geometries for high- metal gate MOS capacitors with 

HfO2 gate dielectrics. The gate oxide thickness is varied from 1000 nm (equilibrium 

dose) to ultra-thin films (1 nm) [20]. 

 

 

 

5.3 MRED SIMULATIONS 

 

Each of the structures in Fig. 5.3 were simulated in MRED to study numerically the total 

dose (energy per unit mass) deposited by 10-keV x-rays or 400-keV endpoint-energy 

bremsstrahlung x-rays in the gate oxide of the MOS capacitor. For these calculations, we 
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used MRED version 9.0.0 based on Geant4 9.3, which is the most recent version of 

MRED [15]. MRED uses a Monte-Carlo technique in order to track various secondary 

particle histories that are generated by impinging photons and determines the energy 

deposited by these secondary particles in the sensitive volumes of interest in MOS 

devices. For this work, we incorporate the electron transport code PENELOPE 2008 

(PENetration and Energy LOss of Positrons and Electrons) [21]. This PENELOPE 

module is not part of the Geant4 toolkit [22],[23] but is expected to provide reliable 

results for electron energies down to ~ 50 eV, and can be used up to ~1 GeV [21]. Thus, 

PENELOPE 2008 has enhanced the low energy range of electromagnetic processes down 

to approximately 50 eV as compared to 250 eV for the Geant4 based ―LowEnergyEM‖ 

and the ―Livermore Physics‖ models. It also tracks electrons with higher spatial 

resolution. These factors give higher fidelity of deposited energies in sensitive volumes 

of interest as estimated using PENELOPE 2008 model compared to the ―LowEnergyEM‖ 

and the ―Livermore Physics‖ models.This computational methodology for evaluating 

dose enhancement was verified via comparison to experimental results and analytic 

calculation in [11]. 

 

5.4 HIGH-K METAL GATE MOS CAPACITORS: 10-KEV X-RAYS 

 
 

Figure 5.4 shows the deposited energy for the MOS capacitors of Fig. 5.3. This energy 

decreases monotonically as gate oxide is scaled down for all high-κ/metal gate and 

SiO2/poly-silicon devices.  
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Figure 5.4. Energy deposited by 10-keV x-rays in the gate dielectric of HfO2, metal 

gate, and SiO2/polysilicon-gate MOS capacitors as a function of gate oxide physical 

thickness [20].   

.   
 

 

Fig. 5.5 shows the corresponding dose for the same structures and calculations. For the 

thickest oxides, the HfO2 dose is nearly independent of the gate metallization. As the gate 

oxide thickness decreases, the dose decreases for the high- metal gated devices. Among 

the gates considered, TaN shows the highest dose, and TiN shows the lowest dose for the 

ultra-thin oxide thicknesses (~1-4 nm) of most technological interest. TaSiN shows an 

intermediate value. The dose is much lower for poly-silicon and Al-gated high- MOS 

structures, approaching the doses observed in Al and poly-silicon gated devices with SiO2 

gate oxides. This is because the oxides are now so thin that the oxide dose is determined 

almost completely by the surrounding gate and Si [2],[11].  
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Figure 5.5. Deposited dose (in krad(HfO2) and krad(SiO2)) in the gate dielectric of 

MOS capacitors with HfO2 with metal gates and SiO2 with poly-silicon gates as a 

function of physical gate oxide thickness, for the gate structures and computations 

of Figs. 5.3 and 5.4 [20]. 

 

 

 

 

Figure 5.6 shows the ratio of the calculated dose in HfO2 gate oxides to the equilibrium 

dose in a thick SiO2 gate dielectric, for the high-κ gate devices with different metal gates. 

The higher the effective Z of the metal gate, the greater is the dose enhancement, relative 

to SiO2 [1],[2],[10],[11]. We choose this layer structure and comparison because 

equilibrium dose in SiO2 is frequently used to report x-ray dose in studies [24], [25] of 

the radiation response of high- gate dielectrics. The decrease in ―excess dose‖ in the 
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HfO2 for thinner dielectric layers occurs because much of the energy initially deposited in 

this higher-Z layer transports (via secondary electrons) to surrounding lower-Z materials. 

This dose reduction in HfO2 [11] is the inverse of the dose enhancement effect in SiO2 

when surrounded by higher-Z materials [1],[2],[10],[11]. For ultrathin HfO2 layer 

thicknesses (2 to 4 nm), these calculations suggest that the dose in the high-κ, metal-gate 

dielectrics after electron transport is ~ 3-7 times higher than the equilibrium dose in SiO2, 

depending on the particular type of metal gate used. However, in all cases, the deposited 

dose is much lower in Al-gate and the polysilicon gated geometries than for the metal 

gate high-κ device geometries (Fig. 5.5, for example). 

               
 

Fig. 5.6. Excess 10-keV x-ray dose deposited in HfO2/metal gate MOS capacitors 

compared to the equilibrium deposited dose in pure SiO2, for the structures and 

computations of Figs. 5.4 and 5.5 [20]. 

In the earlier work [11], we had computed and compared the equilibrium dose in SiO2 

and HfO2 gate dielectrics. We extend our results to calculations of Zeff to the high-k metal 

gates TiN, TaN and TaSiN using the empirical relation: 
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 f
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2.94
                           (1) , 

 

where fi is the fraction of the total number of electrons associated with each element, and 

Zi is the atomic number of an element in a compound. From Eq. (1), the value of Zeff for 

TiN is ~ 20 (Ca), Zeff for TaN is ~ 70 (Yb) and Zeff for TaSiN is ~ 67 (Ho). Our MRED 

simulations show that for the high-k metal gate devices with the thickest oxides, the dose 

enhancement factor (DEF) with respect to SiO2 equilibrium dose for the TaN gated 

device is ~8.38, for the TaSiN gated device, it is ~8.22 and it is ~8.08 for the TiN gated 

high-k device, for devices having the thickest HfO2 layers. This is consistent with the 

ratio of ~8 for equilibrium dose in HfO2 to equilibrium dose in SiO2 which we had 

reported in previous work [11]. We thus see that for the metal gated high-k devices, the 

dose enhancement factors are quite similar to the dose enhancement factor values for a 

pure HfO2 layer. This can be explained by the fact that in these geometries, the HfO2 gate 

oxides are very thick (~ 1m), greater than the secondary electron equilibrium thickness, 

whereas the gate metallization is very thin (~150 nm), so the DEFs for the metal-gated 

high-k devices are close to ratio of equilibrium dose in HfO2 to equilibrium dose in SiO2. 

For modern 45 nm CMOS technologies, both the gate metallization (~150 nm) and the 

high-k layers (~ 2-4 nm) are very thin.  We see from Figure 32 that Zeff of the metal gates 

play a critical role in that the higher the Zeff of the metal gates, lower is the roll-off of 

deposited dose and DEFs with gate oxide thickness scaling. Thus, the TaN-gated high-k 

device has the highest dose enhancement factor whereas the TiN gated device has the 
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lowest dose enhancement factor among the various high-k metal gated devices that were 

considered in this work.  

 

5.5 EFFECTS OF BACK-END-OF-LINE LAYERS 

 
 

We have also studied the effects of back-end of line (BEOL) materials that typically 

overlie the active gate area of a high- MOS device on x-ray dose enhancement. First we 

show calculations for simplified model structure (Fig. 5.7) that is similar to one that has 

been employed in previous studies of the effects of high-Z materials on single-event 

effects [26],[27], and for a more realistic BEOL process. 

 

 

                              
 

Figure 5.7. Device geometry with a single layer of back-end-of-line (BEOL) 
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materials. Secondary electrons are emitted from the W vias (0.5 m cubes) which 

are separated by the BPSG passivation. Some photons are absorbed by the single 

layer of Cu metal interconnect layer of 300 nm thickness present [20]. 

 

 

Figure 5.8 shows the computed dose enhancement factors (DEFs) for the model BEOL 

structure of Fig. 5.7. Fig. 5.9 shows the deposited dose in these high- dielectric layers. 

The DEFs increase for all metal gate geometries with BEOL layers, compared to no 

BEOL layers, and more so for the lower-Z gates (TiN and poly-silicon) than for the high-

Z gate (TaN). This is because the 10-keV photons generate more secondary electrons 

when they interact with high-Z materials, e.g., W in the metal vias and Cu metallization, 

which are then transported into the HfO2 gate dielectric layers. This adds back some of 

the dose lost when electrons from the HfO2 spill out from the dielectric layer into the 

surrounding gate and Si layers. The effects of the BEOL layers are quite significant for 

the lower-Z gates. For example, the TiN gated device with a 1 nm oxide and no BEOL 

layers (yellow triangles) shows a DEF of 2, but the TiN gated device with a 1 nm oxide 

and the BEOL layers of Fig. 5.7 (orange circles) shows a DEF of 3.5. This corresponds to 

a 75% higher dose, associated with the presence of BEOL layers including W and Cu. In 

the case of the high- devices with TaN gates, the deposited dose does not change 

significantly due to the presence of the BEOL material layers. This is because the high-Z 

TaN layer can block the transport of secondary electrons from the upper BEOL layers 

more effectively than can lower-Z gate materials, while at the same time direct x-ray 

interactions within the TaN layer flood the gate dielectric with secondary electrons from 

the gate material itself. 
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Figure 5.8. Excess 10-keV x-ray dose deposited in HfO2/metal gate MOS capacitor 

structures compared to the equilibrium deposited dose in a pure SiO2 for the BEOL 

layers of Fig. 5.7 [20]. 
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Figure 5.9. Deposited dose versus HfO2 oxide thickness for TiN, TaN and Polysilicon 

gated high-k MOS capacitor structure with 1 layer of Cu metallization and other 

BEOL layers as shown in Fig. 5.8 [20]. 

 

 

We further extended our studies from the simplistic gate stack structure. Figure 5.10 

shows more complex BEOL structures that were employed for more realistic calculations 

of dose enhancement and reduction effects in typical MOS devices with high-κ dielectrics 

and metal gates. Fig 5.10(a) is essentially the BEOL structure of Fig. 5.7, but now with 

four stacked layers of BPSG with W vias and Cu metallization. Fig. 5.10(b) has six 

stacked levels of Cu metallization, BPSG and SiO2 as passivation layers, W vias, SiO2 

passivation, and a Si3N4 capping layer. The deposited dose in the high- gate oxide layer 

and the resulting dose enhancement factors (DEFs) were computed using MRED. 
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Figure 5.10. Device geometries with more realistic BEOL materials: (a) High-

/metal gated device with 4 layers of Cu interconnects (300 nm) and W vias (0.5 m 

cube) and BPSG passivation layers. (b) High-/metal gated device with 6 layers of 

Cu interconnects (300 nm), BPSG with W vias, additional Cu interconnect 

structures, and SiO2 and Si3N4 passivation layers [20].  
 

 

Figure 5.11 shows the computed DEFs for the high- MOS devices with TiN metal gates 

for the BEOL structures of Figure 5.10. The results for TiN-gated high- devices without 

BEOL layers are shown for comparison. The minimum DEF is observed for the TiN gate 

and no BEOL layers (Fig. 5.3); the maximum DEF is found for one layer (Fig. 5.7), and 

intermediate values of the DEF are found for the more complex layered structures of Fig. 

5.10. The reduction in DEF for the thicker BEOL layer structures is due to the absorption 

of photons and/or secondary electrons in the gate overlayers, as confirmed by the 
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reduction in DEF for the 6-layer BEOL structure, as compared with the 4-layer BEOL 

structure. 

                  
 

Figure 5.11. Excess 10-keV x-ray dose deposited in HfO2/TiN gate MOS capacitor 

structures compared to the equilibrium deposited dose in a pure SiO2 structure for 

the model geometries of Figs. 5.3, 5.7, and 5.10 [20]. 

 

Figure 5.12 shows the actual deposited dose corresponding to Figure 5.11 for the high-k 

MOS devices with TiN metal gates and advanced gate stacks having different number of 

back-end-of line (BEOL) layers of Cu interconnect metallization, W vias. 
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Figure 5.12. Deposited dose versus HfO2 oxide thickness for TiN gated high-k MOS 

capacitor structure with 1, 4 and 6 layers of Cu metallization and other BEOL 

layers. Device with no BEOL overlayers (black) is also shown [20]. 
 

Figure 5.13 shows the corresponding DEFs for the high- MOS devices with TaN metal 

gates, with and without similar overlayer structures. For the TaN gated high- device, the 

DEF is ~4.5-5 times the equilibrium dose in SiO2, when the BEOL layers are not present. 

The DEF increases slightly with the addition of a single BEOL layer (Fig. 5.7), but then 

decreases significantly when additional layers are added (Fig. 5.10). For a TaN gate 

device with a 1 nm HfO2 dielectric layer and 6 BEOL overlayers, the dose is only 

enhanced by about 50% over that observed in a TiN gated device with an otherwise 

identical structure. This contrasts with the 133% increase in the dose deposited in the 1 

nm HfO2 gate dielectric layer of a TaN gated device without BEOL overlayers. Hence, 

the dominant effect of adding typical BEOL overlayers to metal gate MOS devices 
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exposed to 10-keV x-ray irradiation is to reduce the amount of dose enhancement that is 

observed. 

 

                                      
 

 

Figure 5.13. Excess 10-keV x-ray dose deposited in HfO2/TaN gate MOS capacitor 

structures compared to the “equilibrium” deposited dose in a pure SiO2 structure 

for the model geometries of Figs. 5.3, 5.7, and 5.10 [20].  
 

Figure 5.14 shows the actual deposited dose for the high-k MOS devices with TaN metal 

gates and advanced gate stacks having 4-6 back-end-of line (BEOL) layers of Cu 

interconnect metallization, W vias, similar to the previous TiN gated structure. We have 

also shown the results for the TaN gated high-k device without any BEOL layers, for 

comparison.  
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Figure 5.14. Deposited dose versus HfO2 oxide thickness for TaN gated high-k MOS 

capacitor structure with 1, 4 and 6 layers of Cu metallization and other BEOL 

materials. Device with no BEOL overlayers (black) is also shown [20]. 

 
 

5.6 HIGH-K MOS CAPACITORS WITH METAL GATES: MEDIUM 

ENERGY X-RAYS 

 
 

We have also evaluated the HfO2 energy and dose for the device structures of Figs. 5.3, 

5.7, and 5.10 irradiated with medium-energy x-rays when these high-k MOS devices with 

metal gates are irradiated with 400 keV endpoint energy bremsstrahlung x-ray spectrum 

(average energy 105 keV) (as shown in Figure 4.12) from the Sandia Pelletron. The 

details of the 400-keV endpoint-energy bremsstrahlung x-ray spectrum employed for this 

calculation are provided in [10],[11].  
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Fig. 5.15 shows the MRED calculations of the deposited energy for the medium-energy 

x-ray spectrum of Fig. 4.12 for HfO2 MOS capacitors with TiN, TaN and poly-silicon 

gates, as a function of gate oxide thickness. The energy deposited in the HfO2 capacitors 

with TaN gates is higher than that in the HfO2 capacitors with TiN and poly-silicon gates 

for very thin oxides that occur in modern high- devices with metal gates.  

 

            
 

Figure 5.15. Deposited energy in the gate dielectric for HfO2 MOS capacitors with 

TiN, TaN and poly-silicon gates as a function of gate oxide physical thickness for the 

medium-energy x-ray spectrum of Fig. 4.12. 
 

 

 

Figure 5.16 shows the dose in the HfO2 dielectric layers for the medium-energy x-ray 

spectrum of Fig. 4.12 for TiN, TaN and poly-silicon gates, with no overlayers (Fig. 5.3). 
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Again, the highest dose is observed for the TaN (highest Z) gates, with more than a 

threefold increase in HfO2 dose relative to the poly-silicon gated devices.  This increase 

is reduced somewhat for thicker HfO2 dielectric layers. 

 

 

                         
 

Figure 5.16. Dose (in rad(HfO2)) as a function of physical oxide thickness for HfO2 

gate dielectric layers for the MOS capacitor structures with TiN, TaN mid-gap 

metal gates and poly-silicon gates of Fig. 5.3 in the medium-energy x-ray 

environment of Fig. 4.12 [20]. 

 

 

The effects of BEOL materials on the medium-energy x-ray dose in HfO2 are shown in 

Figures 5.17 and 5.18, for TiN and TaN gated devices, respectively. Again, all results are 

normalized via comparison to equilibrium doses in SiO2. The minimum DEF (~2) is 

observed for thin HfO2 oxides with TiN gates in Figure 5.17 with no BEOL layers (Fig. 
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5.3); the maximum DEF (~7) is found for the structures having multiple layers of BEOL 

metallization (Fig. 5.10), and intermediate values of the DEF are found for the single 

layer of Fig. 5.7. There is a general trend toward dose reduction in the thinner oxides, but 

we do not see the significant absorption effects that were observed in Figure 5.11 for 10-

keV x-ray irradiation. Instead, the high-Z materials in the BEOL overlayers lead to a 

significant increase in DEF for all TiN gated devices.  

 

                
 

 

Figure. 5.17. Excess dose deposited due to medium energy x-rays in HfO2/TiN gate 

MOS capacitor structures, compared to the equilibrium deposited dose in a pure 

SiO2 structure for the MOS geometries of Figs. 5.3, 5.7, and 5.10 [20]. 

 

For the TaN gated device with a thin HfO2 gate dielectric, the minimum DEF is now 
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much higher (~6) than for the TiN gated device, and the maximum DEF increases to ~ 9 

with the inclusion of the BEOL overlayers as shown in Figure 5.18. In all cases, much 

more dose enhancement is observed for medium energy x-rays than for 10-keV x-rays. 

 

                        
 

 

Figure 5.18. Excess dose deposited due to medium energy x-rays  in HfO2/TaN gate 

MOS capacitor structures compared to the equilibrium deposited dose in a pure 

SiO2 structure for the MOS geometries of Figs. 5.3, 5.7 and 5.10 [20]. 

 

Figure 5.19 shows the DEFs due to the medium energy x-rays for the high- MOS 

devices with poly-silicon gates, with and without similar overlayer structures. For the 

poly-silicon gated high- device, the DEF is ~1.5-2 times the equilibrium dose in SiO2, 

when the BEOL layers are not present. The DEF increases to ~4 times with the addition 
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of a single BEOL layer (Fig. 5.7), but then increases to ~6.5 time the equilibrium dose in 

SiO2 when additional layers are added (Fig. 5.10). 

 

              

Figure 5.19. Excess dose deposited due to medium energy x-rays  in HfO2/poly-

silicon gate MOS capacitor structures compared to the equilibrium deposited dose 

in a pure SiO2 structure for the model geometries of Figs. 5.3, 5.7, and 5.10 [20]. 

 

 

5.7 EFFECT OF GATE METAL LAYER THICKNESS 

 
 

As a result of technology scaling, not only the gate oxide, but the gate metal electrode 

layer is scaled down as well in modern MOS technologies. In order to study the effect of 

scaling of the gate metallization layer on energy deposition in the high-k oxide, we have 

studied the energy and dose deposition in high-k MOS devices with scaling of gate metal.  
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Figure 5.20 shows the dose enhancement factor for 10 keV x-rays on the high-k HfO2 

based MOS devices with metal gates and Poly-Si gates as a function of thickness of the 

gates. We see that dose enhancement factor increases monotonically in the Poly-silicon 

gated MOS device. For the metal gated devices, like the TiN, TaN –gated device, the 

dose enhancement factor does not increase monotonically as in the Poly-Si gate device, 

and even decrease with gate scaling.  

 

 
 

Figure 5.20. Dose enhancement factor for 10 keV x-rays in the high-k HfO2 gate 

oxide for different gate metals like TiN, TaN and Poly-silicon as a function of gate 

metal thickness  
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5.8 SUMMARY  
 

We have found that, without including the effects of BEOL overlayers, 3-7 times higher 

doses are deposited as a result of 10-keV x-ray irradiation of the high- insulating layers 

of MOS gate stacks incorporating metal gates typical of those implemented in sub-45 nm 

technologies than is deposited in SiO2 insulators with poly-Si gates. For thick gate 

oxides, the DEFs are independent of the metal gate present. However, as gate oxide is 

scaled down, there is a reduction of deposited dose as a result of secondary electron 

transport from the high-κ dielectric into the surrounding gate and Si. The addition of a 

few BEOL overlayers containing high-Z materials (e.g., W, Cu) can dramatically 

increase the 10-keV x-ray dose for devices with lower-Z metallization, but additional 

layers lead to a decrease in the dose deposited in the dielectric layer, owing to absorption 

effects. For higher-Z gate metallization irradiated with 10-keV x-rays, dose attenuation 

effects tend to predominate for the structures we evaluated, depending on the thickness 

and composition of the gate-stack overlayers. These results illustrate the complex 

interplay among secondary electron generation, transport, and absorption that can occur 

within the range and thickness of materials that overlie gate dielectrics in sub-45 nm 

CMOS technologies. It is simply not possible to understand and quantify these effects on 

the doses ultimately deposited in device insulators without the assistance of simulations 

similar to those presented here. For medium-energy x-rays, dose enhancement effects are 

observed for all metal gate devices that we considered, and these were increased to values 

as high as ~ 10 (relative to equilibrium dose in SiO2) for structures with HfO2 gate 

oxides, TaN gates, and thick BEOL overlayers including Cu and W. These results show 

the significant impact of BEOL materials on x-ray dose enhancement and reduction in 
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MOS devices with metal gates and high-κ gate dielectrics. The MRED code is ideally 

suited to accomplish this task. 
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CHAPTER VI 

 

CONCLUSIONS 

 

 

The effects of 10-keV x-rays and 400-keV endpoint-energy bremsstrahlung x-rays on 

MOS capacitors with SiO2 or HfO2 gate dielectrics and Al and TaSi gate metallization 

have been studied using the Monte Carlo simulator, MRED. We compare these 

calculations with previous results in the literature obtained with other Monte Carlo and 

discrete ordinates codes, and with experiments on devices with SiO2 gate dielectrics, and 

find generally good agreement. There is a significant dose reduction in thin HfO2 layers 

exposed to 10-keV x-rays, when the HfO2 is surrounded by lower-Z materials (e.g., Si, 

Al). We find excellent agreement between these calculations and previous experimental 

results in the literature. Moreover, the MRED calculations generally match well results 

for SiO2 gate dielectric structures obtained with other Monte Carlo and discrete ordinates 

codes. The observed dose reduction in thin HfO2 dielectric layers does not occur in a 

medium-energy x-ray environment; in that case, the dose in a HfO2 gate dielectric can be 

~10 times higher than the dose in a SiO2 dielectric, for the same incident x-ray fluence. 

These results demonstrate that MOS devices with high-κ gate dielectrics will exhibit 

much higher doses in their gate oxides in medium-energy x-ray environments than will 

devices with SiO2 gate dielectrics. These results have significant implications for the 

potential use of advanced MOS integrated circuit technologies in medium-energy x-ray 

radiation environments. 



 110 

We extended our study of x-rays on MOS capacitors to HfO2 gate dielectrics and 

midgap metal gates like TiN and TaN. These high-k/metal gate structures are especially 

relevant for sub modern CMOS devices which are considering these new metals for 

integration with their high-k sub 45 nm technologies. We have found that, without 

including the effects of BEOL overlayers, 3-7 times higher doses are deposited as a result 

of 10-keV x-ray irradiation of the high- insulating layers of MOS gate stacks 

incorporating metal gates typical of those implemented in sub-45 nm technologies than is 

deposited in SiO2 insulators with poly-Si gates. For thick gate oxides, the DEFs are 

independent of the metal gate present. However, as gate oxide is scaled down, there is a 

reduction of deposited dose as a result of secondary electron transport from the high-κ 

dielectric into the surrounding gate and Si. The addition of a few BEOL overlayers 

containing high-Z materials (e.g., W, Cu) can dramatically increase the 10-keV x-ray 

dose for devices with lower-Z metallization, but additional layers lead to a decrease in the 

dose deposited in the dielectric layer, owing to absorption effects. For higher-Z gate 

metallization irradiated with 10-keV x-rays, dose attenuation effects tend to predominate 

for the structures we evaluated, depending on the thickness and composition of the gate-

stack overlayers. These results illustrate the complex interplay among secondary electron 

generation, transport, and absorption that can occur within the range and thickness of 

materials that overlie gate dielectrics in sub-45 nm CMOS technologies. It is simply not 

possible to understand and quantify these effects on the doses ultimately deposited in 

device insulators without the assistance of simulations similar to those presented here. 

For medium-energy x-rays, dose enhancement effects are observed for all metal gate 

devices that we considered, and these were increased to values as high as ~ 10 (relative to 
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equilibrium dose in SiO2) for structures with HfO2 gate oxides, TaN gates, and thick 

BEOL overlayers including Cu and W. These results show the significant impact of 

BEOL materials on x-ray dose enhancement and reduction in MOS devices with metal 

gates and high-κ gate dielectrics. 

 

 

 

 


