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CHAPTER I

INTRODUCTION

My primary research interest lies in applying micro-economic theory and structural modeling

techniques to the fields of industrial organization and marketing. More specifically, I am interested

in the interaction of product characteristics and consumer heterogeneity, and the role of information

about products and individuals in the decision-making processes of consumers and firms. To this

end, the chapters in this dissertation apply a wide range of techniques to investigate models in which

product characteristics strike different consumers in different ways, analyzing how information is

used or could be used by the consumers and firms in such markets. Chapter 2 employs methods

from the theoretical literature on quality and price signaling to investigate a model wherein a firm

has private information about its product that consumers can incur a cost to learn before making a

purchase decision. Chapter 3 uses a structural model to empirically investigate the importance of

a specific type of consumer information, and Chapter 4 provides a Bayesian technique for inves-

tigating household-level heterogeneity in purchase decisions. This dissertation investigates related

questions from very different angles, demonstrating some of the vast array of tools at the disposal of

economists and marketers, and applying these methods to advance knowledge about the interaction

of product characteristics, consumer heterogeneity, and information.

The second chapter of the dissertation seeks to analyze the role of price signaling and con-

sumer audit in a model where consumers have heterogeneous tastes over a monopolist’s product.

In this model, consumers are not only heterogeneous in their base taste levels for the product itself,

they are also heterogeneous in the way that the product’s single characteristic affects their utility;

some consumers desire a higher level of the characteristic, while others desire a lower level of the

characteristic. One example of such a characteristic could be the proportion of foreign-produced

inputs of a product, wherein some consumers prefer domestically-produced inputs while others do

not. Another example could be the fat content of a product, for which some consumers prefer the

improved taste of a high fat content while others prefer low-fat, healthier products. Such differ-

ences in a product’s characteristics may also lead to substantial differences in production costs, a
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consideration which is included in the construction of the model. In short, this chapter develops

an asymmetric information model of a monopolistic firm wherein consumers have heterogeneous

preferences over the firm’s product. The firm has ability to signal via price, but also faces the possi-

bility of consumers choosing to incur an audit cost to acquire this information before purchase. As

a result, the firm must choose whether to signal via price or to leave the decision (and burden) of

becoming informed to the consumer. This model is valuable to the field of industrial organization

since a novel product, about which consumers have limited information, will often have attributes

that strike different consumers in very different ways. Given the vast amount of available product

information via published product specifications, online product reviews, and other sources, these

consumers also face a choice of whether or not to incur a cost (monetary or in effort) to become fully

informed about a product before they make a purchasing decision. Therefore, firms must account for

both consumer heterogeneity and information acquisition when choosing price, and understanding

this dynamic is important for both economists and policymakers.

The resulting equilibria of the model are analyzed with and without the possibility of con-

sumer verification. As a result of the structure of the model, expected aggregate demand will either

be increasing or decreasing in the level of the characteristic, depending on the relative proportion

of consumer types and the weight that the respective types put upon the level of the characteris-

tic. Therefore, expected aggregate demand can be used to determine which of the firm’s types is

“strong” and which type is “weak.” When expected aggregate demand is increasing in the level

of the characteristic, the high type is strong (preferred on average), and when expected aggregate

demand is decreasing in the level of the characteristic, the low type is strong. In the case where

consumer verification is not possible, it is found that there exists a unique Perfect Bayesian equilib-

rium satisfying the Intuitive Criterion of Cho and Kreps (1987) in which the level of the product’s

characteristic is revealed through price signaling. When the low type is strong, the level of the

characteristic is signaled with an upward-distortion in the low-type’s equilibrium price, and when

the high type is strong, the level of the characteristic is signaled with a downward-distortion in the

high-type’s equilibrium price.

When the possibility of consumer verification is added to the model, so that after learning the

product’s price a consumer can choose to incur an audit cost in order to learn the value of the prod-

uct’s characteristic, there exist conditions on the parameters of the model such that there will exist a
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second equilibrium in addition to the aforementioned separating equilibrium. In this second equilib-

rium type, the monopolistic firm charges the same price regardless of the level of the characteristic,

and all consumers choose to verify the level of the characteristic. That is, the firm does not reveal

the level of the characteristic through signaling, but shifts the burden of becoming informed onto

consumers.

As it is possible for two equilibria to survive refinement in the case when consumers are able to

audit, I conduct a welfare analysis of the two equilibria, and show that either equilibrium may be

more efficient, depending on the values of the parameters. I concluded that in order to maximize

social welfare any efforts by a policymaker to make product information more accessible to con-

sumers should be selective in the products they target, as lowering the cost of consumer audit can

actually result in a less efficient equilibrium in some cases.

Chapter 3 is a paper co-authored by P.J. Glandon, wherein we analyze the value of information

regarding how much a consumer cares about their health (consumer health conscientiousness) in

the estimation of demand for products wherein a brand’s “healthiness” may be of concern. As

disentangling the effects heterogeneity in healthy vs unhealthy eating habits could be valuable in

determining a firm’s optimal strategy across markets in which consumer preferences over “healthy”

vs “unhealthy” products differ, this investigation is important to both economists and marketers.

Given the active policy debate over nutrition and health, the results of our analysis are also valuable

to policymakers.

As a consumer’s determination of a product’s “healthiness” is a matter of perception, which

could be argued to be a function of any number of observable and unobservable product characteris-

tics together with the consumer’s level of health conscientiousness, one could attempt to perform an

analysis that controls for heterogeneity in the perception of a product’s “healthiness.” However, as

our goal is to analyze the value of information regarding consumer health conscientiousness in the

estimation of demand, such an analysis is unnecessary (and would almost necessarily be confined to

an experimental setting). Therefore, this chapter investigates the significance of the coefficients on

the interactions of a variable measuring health conscientiousness with observable product character-

istics in the determination of demand across a category wherein a brand’s “healthiness” is important

to some consumers.

The ideal dataset for our study would be a panel of individual (household) purchases, complete
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with demographic information including a variable serving as a measure of health conscientious-

ness. However, to our knowledge no such panel currently exists. Therefore, we apply the discrete

choice model presented in Nevo (2001) to a simulated population of households by combining data

from both the Current Population Survey (henceforth CPS) and the Behavioral Risk Factor Surveil-

lance System (henceforth BRFSS) in order to associate each household with a dummy variable

for smoking. Given the well known and very serious health implications of smoking, the result is

a simulated panel of households for each city that includes a proxy variable for consumer health

conscientiousness. This dataset is then used to investigate whether or not the coefficients on the

interaction of the smoking dummy and health-related product characteristics are statistically signif-

icant in the estimation of demand in the ready-to-eat cereal category. A category chosen for the

substantial variation in the characteristics associated with healthy eating, such as sugar, fat, and

fiber content, and for the clear presence of the targeting of health conscious consumers with specific

brands.

The estimation proceeds by using the aforementioned simulated population of households to

predict the shares of each cereal in a given city, conditional on the value of the model parameters

including the values of the coefficients on the interaction of the smoking dummy variable and the

amount of sugar, fat, and fiber in each cereal. Estimation is completed by finding the vector of

parameters that minimizes the distance between the observed shares and the resulting simulated

shares. Our results suggest that the interaction of the smoking behavior and the sugar content of a

cereal may be important in the estimation of demand within the ready-to-eat cereal category, and

may therefore be a worthwhile addition to the commonly collected demographic information in

household panel datasets.

Chapter 4, the final chapter of this dissertation, presents a marketing model for handling a

commonly overlooked problem in the estimation of household-level preferences: within-household

heterogeneity. A significant challenge in marketing analysis is to construct models that handle con-

sumer heterogeneity in such a way as to draw inference about “average” consumer preferences while

still allowing for the recovery of actionable information about how these preferences differ across

the consumer base. This goal is complicated when the “individual” in a dataset is a household, a

fairly common situation given the prevalence of household-level panel datasets in marketing anal-

ysis. It is widely accepted that the decisions of a household are affected by the interactions of the
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individuals within the household, and that a single set of preferences is insufficient to control for the

amalgamation of the several sets of preferences that could underly observed purchasing behavior.

Though there are many methods for handling heterogeneity across households, there are few models

designed to handle heterogeneity within households. As a result, most models in the extant literature

on the estimation of consumer preferences either treat the household as having a single set of pref-

erences, or ignore the household structure altogether and assume that individuals act independently.

These approaches are somewhat defensible in much of the econometrics literature, as the param-

eters describing individual consumer preferences are typically considered nuisance parameters in

the estimation of the aggregate-level parameters used in market analysis and/or policy; however,

given the aforementioned goals, such models are inadequate for the purposes of marketing. The

few marketing models that do attempt to include within-household heterogeneity are limited in the

datasets to which the model can be applied and/or yield little to no actionable information about

how households differ in their preferences over products and product characteristics.

By comparison, the model presented in chapter 4 uses Bayesian techniques to fit a finite mixture

model. In a typical finite mixture model, the preferences of an individual household are assumed

to be described by one of finitely many “mixing distributions” or segments. I adapt the method of

Allenby, Arora, and Ginter (1998) to allow each purchase of a household to be the result of a mix-

ture of such segments, using the assumption that the choices of demographically similar households

will tend to have similar probabilities of belonging to a given segment. This allows my model to

handle within-household heterogeneity as well as the multiple discreteness/variety seeking present

in complex markets such as ready-to-eat cereal and soft drinks. Moreover, within-household hetero-

geneity is modeled in such a way as to estimate the distribution of preferences within each segment

while providing useful information about the how the choices of specific household demographic

types are distributed across the segments. As a result, the model provides both aggregate level in-

formation about preferences and the more granular information about individual households that is

valuable in modern marketing. My model accomplishes this while being both logically and com-

putationally suitable for larger household panel datasets, and therefore has substantial value in the

field of marketing.

To demonstrate the ability of the model to retrieve the underlying parameters of the components

of household preferences, the model is applied to two simulated household-level panel datasets.
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The simulated purchases of each household in these datasets arise from a mixture of multiple sets

of preferences, as described above, wherein the true values of the parameters of these preferences

are known. The results of these simulations are presented, and in both cases the posterior draws of

the model do well in navigating to the true underlying parameters used to generate the data. The

chapter is then concluded by discussing how a practitioner could apply the model, and the common

methods for handling potential challenges in the estimation process.

Taken as a whole, this dissertation presents a clear in-depth analysis of the interaction of product

characteristics, consumer heterogeneity, and information. Three important questions/problems in

industrial organization and marketing, related via my stated research interests, are analyzed using

three different techniques. The results of each chapter contribute to the corresponding literature,

and demonstrate the value in being able to approach a problem using a wide array of techniques.
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CHAPTER II

QUALITY SIGNALING WITH COSTLY VERIFICATION BY HETEROGENEOUS

CONSUMERS

II.1 Introduction

The goal of this paper is to analyze the role of price signaling and consumer verification in a

model where consumers have heterogeneous tastes over a monopolist’s product; that is, to investi-

gate the signaling behavior of a monopolist when information about the product is available to the

consumer at a cost (an audit cost). Such a model is interesting as consumers naturally differ in the

way they perceive a specific characteristic of a good, thereby affecting each consumer’s incentive

to become informed, as well as the firm’s incentive to signal the value of this characteristic. For

example, consider a good that is produced using both foreign and domestic inputs (parts and labor).

One consumer may consider a high proportion of foreign inputs to be a negative characteristic,1

while another consumer may have no preference whatsoever, or may even prefer a high proportion

of foreign inputs. Another example is the recycled content of a product, about which some con-

sumers care greatly while others are indifferent. Even the fat content of a food product serves as an

example, as some consumers may enjoy the additional flavor provided by a high-fat content, while

other consumers would prefer a low-fat content despite a decrease in flavor. If the value of the char-

acteristic in question (proportion of foreign inputs, recycled content, fat content) is the firm’s private

information, it is plausible that a consumer would not have to rely on the actions of the firm to be-

come informed. To illustrate this, consider the example of a new product with foreign and domestic

inputs. If this is a novel product, it is reasonable to assume that there are no close substitutes and

that consumers will not know the proportion of the product’s inputs that are foreign. While the firm

may signal this information to the consumer via price, a consumer who cares about the proportion

of foreign inputs may be able to access this information via the internet (or elsewhere) by incurring

1Effects of the consumer’s purchase on his or her own income are assumed to be negligible; that is, the consumer’s
reasons for preferring domestically produced goods are not based on monetary benefits received due to the purchase. In
this particular example, the consumer may just have a “made in the USA” preference.
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some cost of effort. Therefore, the model is one of asymmetric information in that the level of

the characteristic in question is the private information of the monopolistic firm that produces the

product; however, this information may be available to consumers that are willing to incur an audit

cost.

As consumers in this model are assumed to respond differently to the product characteristic in

question, some consumers’ demand curves will be increasing in the level of this characteristic, while

the demand curves of others may be constant or even decreasing in the level of the characteristic.

If, however, consumers’ demand curves are aggregated, the resulting aggregate demand curve will

be either increasing or decreasing in the level of the characteristic, and aggregate demand can then

be used to vertically differentiate products that differ only in the value of this characteristic. To

illustrate this using a more classic language as a convention, assume that X denotes the value of the

characteristic in question. If aggregate demand is increasing in X , then the firm is “stronger” when

it produces a product with a greater X , and if aggregate demand is decreasing in X , then the firm is

“weaker” when it produces a product with a greater X . One could use a similar convention in com-

paring the model to the existing quality literature: a greater X results in a “higher-quality” product

when the aggregate demand is increasing in X , and a greater X results in a “lower-quality” product

when the aggregate demand curve is decreasing in X . Therefore “quality” could be increasing or

decreasing in the level of the product’s characteristic, depending on the preferences of different con-

sumer types and the relative proportion of these consumer types within the population (consumer

demographics). Consider again the example of a product with some proportion of foreign inputs.

Naturally, as the proportion of these inputs increases, the production cost (in most cases) would be

expected to decrease. Similarly, the production cost in this model is assumed to be decreasing in

the level of the characteristic;2 however, the aforementioned notion of quality in this model allows

a higher-quality product to be more expensive or less expensive to produce than a lower-quality

product, depending on consumer demographics. The model assumes that while the firm is unable

to identify the preferences of individual consumers, the firm does know the relevant demographics

of the consumer base.

In short, the paper develops a model of a monopolistic firm with private information about a

2While production costs are assumed to be decreasing in the level of the characteristic for convenience, the model can
be reformulated with production costs that are increasing in the characteristic with similar results.
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characteristic of its product (over which anonymous consumers have heterogeneous preferences)

that has ability to signal via price and faces the possibility of consumers choosing to incur an audit

cost to acquire this information before purchase. In addition, the firm will face production costs that

are decreasing in the level of the product’s characteristic. As a result of the structure, the firm must

choose whether to signal via price, or to leave the decision (and burden) of becoming informed to

the consumer.

The resulting equilibria of the model are analyzed with and without the possibility of consumer

verification. When consumer verification is not possible, it is found that there exists a unique Perfect

Bayesian equilibrium satisfying the Intuitive Criterion Cho and Kreps (1987) in which the level of

the product’s characteristic is revealed through price signaling. As previously discussed, production

cost is decreasing in the value of the characteristic, and a higher value of the characteristic may result

in a higher-quality or lower-quality product depending upon consumer demographics. When lower

levels of the characteristic (and thus higher production costs) result in a higher-quality product, the

value of the characteristic is signaled with an upward-distortion in price. When higher levels of the

characteristic (and thus lower production costs) result in a higher-quality product, the value of the

characteristic is signaled with an downward-distortion in price.

When the possibility of consumer verification is added to the model, so that after learning the

product’s price a consumer can choose to incur an audit cost in order to learn the value of the prod-

uct’s characteristic, there exist conditions on the parameters of the model such that there will exist a

second equilibrium (in addition to the separating equilibrium above) wherein the monopolistic firm

charges the same price regardless of the value of the characteristic, and all consumers choose to

verify the value of the characteristic. That is, the firm does not reveal the value of the characteristic

through signaling, but shifts the burden of becoming informed onto consumers. Welfare analysis of

the two equilibria show that either equilibrium may be more efficient, depending on the values of the

parameters. It is concluded that in order to maximize social welfare, any efforts by a social planner

to make product information more accessible to consumers should be selective in the products they

target, as lowering the cost of consumer audit can actually result in a less efficient equilibrium in

some cases.
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II.1.1 Outline

Section 2 of this paper constructs a full information model of a monopolistic firm and heteroge-

neous consumers as described above. Section 3 analyzes the model under asymmetric information

where price signaling can occur, and Section 4 adds the possibility of consumer audit to the model

with asymmetric information. Section 5 discusses policy implications of the model, and Section 6

concludes the paper.

II.1.2 Related Literature

There is a substantial literature devoted to analyzing the ability of a firm to signal quality via

price.3 Bagwell and Riordan (1991) construct a two-type model in which production costs are

greater for the higher quality type, and find that the higher quality type will distort price upward

in order to separate in equilibrium. The model presented here is similar as there are two types for

the firm, however, these types are not differentiated by quality, but rather by the level of a specific

characteristic of the product. Additionally, there are two types of consumer in the model of this

paper, and the varying preferences and proportions of each consumer type are what determines the

firm type that is viewed as the “high-quality” or “strong” type. Furthermore, though production

costs in the model presented here are decreasing in the level of the product’s characteristic, these

costs may be greater or less for the high-quality type (as previously discussed). Since it is the high-

quality firm type that chooses to distort its price to separate, the price distortion by this type may be

upward or downward, depending upon consumer demographics.

A more similar model (in terms of production cost/quality relationship and the direction of the

equilibrium price distortion) is that of Daughety and Reinganum (1995), wherein a monopolistic

firm that is one of a continuum of types faces full unit costs that are the sum of pure production

costs and liability costs. Though the cost of production is assumed to be increasing in quality4

similar to Bagwell and Riordan’s model, the liability costs depend on the quality of the product,

3In addition to the papers discussed here, see Bagwell (1992), Daughety and Reinganum (1997, 2005), and Ellingsen
(1997) for monopoly models of price signaling; see Daughety and Reinganum (2007, 2008b), and Jansen and Roy (2010)
for oligopoly models of price signaling.

4Daughety and Reinganum interpret quality as safety, with the measure of safety being the probability of product
failure that may or may not injure the consumer.
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as well as the liability system, therefore allowing the full unit cost to be increasing or decreasing

in quality depending on the firm’s expected liability for injuries caused by its product. Daughety

and Reinganum find that a higher quality firm distorts price in order to separate, and that the dis-

tortion is upward when the full unit cost is increasing in quality and downward when full unit cost

is decreasing in quality. While these results are similar to those found in the analogous cases of

this paper (those without consumer audit), there are significant differences in the models that will

be discussed shortly. The model that is closest in structure to that presented here is Daughety and

Reinganum (2008a), wherein a monopolistic firm that is one of two types, with a cost structure

similar to Daughety and Reinganum (1995), may signal its type via price or may incur some cost to

credibly disclose its type to consumers. The model presented here is similar to Daughety and Rein-

ganum (1995 and 2008a) in the quality/production cost structure and in using quadratic consumer

utility; however, there are important differences. Daughety and Reinganum do not allow for con-

sumers to be heterogeneous in how they view quality, and in addition, Daughety and Reinganum’s

model does not consider the possibility of consumers paying an audit cost to become fully informed

about the product.

A recent subset of the literature analyzes the interaction between price signaling and direct

disclosure to the consumer, assuming the firm has the ability to do either (or both).5 For example,

Fishman and Hagerty (2003) and Daughety and Reinganum (2008b) construct models in which

a firm can use signaling or disclosure (or both) to inform consumers about product quality. The

possibility of disclosure is analyzed in the model presented here; however, in the interest of brevity

these results are reported very simply at the end of Section 3 in order to maintain the focus on

consumer audit.

Other recent papers, such as Bar-Isaac, Caruana, and Cuñat (2011, 2010) construct models

with the possibility of consumer audit, but like the aforementioned signaling models, there are

important differences between these recent audit models and the model presented here. In Bar-

Isaac, Caruana, and Cuñat (2011), the authors analyze a model in which a monopolist sells a product

with two characteristics at an exogenously determined price; one of these characteristics is fixed at

5For early models of costless disclosure and subsequent “unraveling,” see Grossman (1981) and Milgrom (1981).
For an early model of costly disclosure see Jovanovic (1982). Though there is a substantial literature on disclosure of
information, the main focus of this model is price signaling and thus a thorough review of this literature is omitted for
brevity. For a recent review of both the theoretical and empirical literature on disclosure see Dranove and Jin (2010).
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high quality, while the other has quality that is stochastically affected by the firm’s chosen level of

investment in quality. Though consumers in Bar-Isaac et al. (2011) are heterogeneous in which of

the two characteristics they view as being more important, all consumers agree on what constitutes

high quality, and are able to incur a cost (if they so choose) to evaluate the quality of one of the

two characteristics. In Bar-Isaac, Caruana, and Cuñat (2010), the authors analyze a model in which

the value of a monopolist’s product to individual consumers is stochastically affected by her level

investment in the product; this investment increases the probability of a “good” match over a “bad”

match for each consumer. Consumers are also heterogeneous in their base taste for the product,

and can incur a cost (if they so choose) to evaluate whether the product is good or bad match for

them individually. The firm chooses the aforementioned investment, the price of the product, and

a “marketing strategy” that determines the cost to the consumer of evaluating the product’s quality.

Though the model of this paper has a similar structure to the above papers in that a monopolist is

selling a product for which she has asymmetric information, and consumers can incur a cost to learn

that information, there are important differences. First, consumers in the model presented here are

not only heterogeneous in their base taste for the product, consumers also have opposing views on

what represents high quality (some prefer a high level of the characteristic, while others prefer a

low value of the characteristic). This is clearly different from Bar-Isaac et al. (2011), but is also

fundamentally different from Bar-Isaac et al. (2010). To see this, note that while the product in

Bar-Isaac et al. (2010) may be a “bad” match for some consumers and a “good” match for others, it

is also the case that an increase in the level of investment makes the product more likely to be a good

match for all consumers. In the model of this paper, the characteristic in question affects consumer

types in opposing ways, thus any change in the characteristic makes the product less attractive to

one type of consumer (the product cannot be a “good match” for both consumer types). Another

important difference is that the production costs in both Bar-Isaac et al. (2010) and Bar-Isaac et al.

(2011) are assumed to be the same across firm types, while production costs in the model of this

paper are decreasing in the value of the characteristic. Most importantly, neither paper by Bar-Isaac,

Caruana, and Cuñat consider price signaling as a means for the firm to convey its type to consumers.

To my knowledge, there is only one other model, Bester and Ritzberger (2001), that combines

price signaling with the possibility of consumer audit. In this paper Bester and Ritzberger analyze a

market in which a monopolist sells a product that is either high or low quality. Bester and Ritzberger
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assume that consumers are homogeneous in their preferences for the good (that is, all consumers

agree on the type that represents higher quality), but are heterogeneous in their outside options. The

differences in consumers’ outside options yields downward-sloping demand for the monopolist’s

product, depending upon consumers’ beliefs about the product’s quality. Bester and Ritzberger

also assume that production costs are the same for both the high- and low-quality product, and as

production costs are assumed to be type-independent, the firm’s profits depend solely on consumer

beliefs about quality and not directly on the firm’s type. Therefore, in the base model without

consumer verification the usual equilibria exist (separating, pure-pooling, partial-pooling), but the

Intuitive Criterion does not refine the set of equilibria (as any price deviation is equally attractive to

both of the firm’s types). These same features hold in the model with consumer verification, and so

Bester and Ritzberger propose a “modified” version of the Intuitive Criterion that eliminates the pure

pooling equilibrium (wherein both firm types charge the same price and some fraction of consumers

engage in audit), and depending on the cost of consumer verification, sometimes eliminates the

separating equilibrium. The result is that for a sufficiently small cost of consumer verification, the

refinement selects an equilibrium that involves partial pooling in prices and a fraction of consumers

choosing to engage in audit.

By contrast, my base model is more similar to the standard models of price signaling discussed

earlier in this literature review, wherein production costs differ across firm types, firm profits de-

pend directly on the firm’s type as well as on consumer beliefs, and wherein refinement by the

Intuitive Criterion selects a (unique) separating equilibrium. The model presented here also dif-

fers from that of Bester and Ritzberger in that consumer heterogeneity results from disagreement

about which product type is preferable; some consumers prefer one type, while other consumers

prefer the other type. The possibility of consumer audit is then added to the base model, and it is

shown that a separating equilibrium (analogous to that of the base model) survives refinement by

the Intuitive Criterion; however, a new equilibrium also survives refinement, wherein both of the

firm’s types charge the same price and consumers engage in audit to verify the firm’s type. Though

this second “single-price” equilibrium6 survives refinement by the Intuitive Criterion, all hybrid

(partial-pooling) equilibria are eliminated via refinement by the Intuitive Criterion. As there are

6 The term “single-price” equilibrium is used over the typical “pooling” equilibrium terminology for reasons discussed
in Section 4.
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cases in which both the single-price equilibrium and the separating equilibrium exist (after refine-

ment), the welfare properties of these two equilibria are compared and the results used to assess the

social benefit of decreasing the cost of consumer audit.

II.2 The Model

II.2.1 The Firm

Consider a monopolistic risk-neutral firm which has developed a new product. The firm is

assumed to be one of two types, denoted by τ ∈ {H,L} (high or low). These types differ only in the

value of a specific characteristic of the firm’s product, denoted by Xτ ∈ {XH ,XL}. For simplicity,

the value of XL is assumed to be zero, with XH > 0. The marginal cost of production for the firm’s

high type is assumed to be zero, while the marginal cost of production for the low type is c > 0;

a simple and intuitive application of such a structure is the aforementioned example of a product

with some proportion of foreign produced inputs. If this proportion is the characteristic in question,

it is reasonable to assume (in most cases) that a firm must pay more to produce a product with a

lower proportion of foreign inputs. It is assumed that nature determines the firm’s type,7 with the

probability of the firm being the high type denoted by λ (λ = Pr(τ = H)) where λ ∈ (0,1). The

firm sets a price to maximize profits, and produces to fill demand.

II.2.2 Consumers

All consumers are risk-neutral and may purchase multiple units of the good. Consumers have

heterogeneous preferences in two ways. First, each consumer has some level of “taste” for the

product, given by θ . The value of θ is uniformly distributed over [θ ,θ +1], and thus θ represents

the minimum value for a consumer’s taste. This continuum of consumers is assumed to have a mass

equal to one. In addition to this, consumers are of two types in the way they perceive the level of

X . Some consumers are “X-seekers” (type S) while others are “X-avoiders” (type A). A consumer’s

7Though the probability of each type is assumed to be exogenous for simplicity, the model could be extended to
include a preliminary stage in which the firm engages in some activity to affect the probability of each type, as in
Daughety and Reinganum (1995).
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type, denoted by T ∈ {S,A}, is determined by nature and is independent of the consumer’s taste.

The probability of a consumer being type A is given by α (α = Pr(T = A)) where α ∈ (0,1). Each

consumer is therefore characterized by the pair (θ ,T ), and this pair is assumed to be the consumer’s

private information. The consumer’s type determines how the level of Xτ affects his or her utility.

That is, a greater Xτ decreases the utility of X-avoider consumers by some amount, but increases

(or has no effect on) the utility of X-seeker consumers. To model this, the scalar γT is used to

convert units of X into positive (or negative) utils, with γS ≥ 0, and γA < 0. The structure can again

be demonstrated using the example of a product with some proportion of foreign inputs. While

all consumers have different levels of taste for the product, θ , they also differ in the effect that

the proportion of foreign inputs has on their utility. Some consumers (X-seekers) may not care

about where the content of the product is produced (γS = 0), or may prefer the product’s content be

produced elsewhere (γS > 0), while others (X-avoiders) dislike products with a higher proportion

of foreign inputs (γA < 0) and will therefore, ceteris paribus, purchase less of a product if the

proportion of foreign inputs is larger.

All of the above characteristics can now be captured by the following utility function of a type

T consumer with a taste for the good given by θ , purchasing q units of a type τ product at price p:

U(q, p,τ,θ ,T ) = (θ + γT Xτ)q− .5q2− pq. (II.1)

Note what equation (II.1) implies about the effects of the level of X on consumer utility.8 A product

with Xτ = XL will result in both types of consumers receiving similar utility for the same quantity

since XL = 0. If, however, Xτ =XH , then X-seekers may have much higher utility than X-avoiders for

consuming the same quantity of the product. Naturally, this will induce X-seekers and X-avoiders

to demand different quantities of the same product (in general).

In order to simplify the analysis it is assumed that every consumer (except possibly those on

the margin with the lowest possible level of taste, θ ) will choose to purchase a positive amount of

the firm’s product at equilibrium prices. Under full information, this is achieved by the following

assumption:

8This representation of utility is the reduced form of a quasilinear consumer utility function where a composite of all
other goods is the numeraire and the price of the numeraire is normalized to be 1. Income is omitted from the equation
for notational convenience, as it has no effect on the results.
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A.1 θ ≥max[.5−2γAXH +(αγA +(1−α)γS)XH , .5+ c].

The consumer is assumed to be fully informed in this section of the paper. As a result, the

consumer bases the purchasing decision directly on the firm’s type. Maximizing equation (II.1)

over q yields the following first order condition:

(θ + γT Xτ)−q− p = 0.

Therefore, given the firm type τ and price p, the demand of a type T consumer with taste level θ

will be:9

q(p,τ,θ ,T ) = θ + γT Xτ − p.

Since α is the probability of a consumer being type A, and α is independent of the consumer’s taste,

the expected demand of a consumer with taste θ is:

q(p,τ,θ , ·)≡ α(θ + γAXτ − p)+(1−α)(θ + γSXτ − p)

= θ +(αγA +(1−α)γS)Xτ − p.

Note the constant (αγA + (1−α)γS) in this equation (as well as in assumption A.1). This is a

weighted average of the γ’s that converts Xτ into utils, and in essence reflects the average consumer’s

preference over the characteristic X . If this value is positive, the proportion of X-seekers and X-

avoiders, weighted by the corresponding γ’s, yields higher expected demand for products with a

higher level of X . For notational simplicity, henceforth we will use ω to represent this value, that is:

ω = (αγA +(1−α)γS).

Finally, by integrating over all possible taste levels, and thus aggregating over all possible tastes, the

9 Though demand is actually given by q(p,τ,θ ,T ) = max[θ + γT Xτ − p,0], the maximization is omitted given as-
sumption A.1.
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aggregate expected demand for a type τ product at price p is given by:

Q(p,τ)≡
∫

θ+1

θ

(θ +ωXτ − p)dθ

= .5+θ +ωXτ − p.

The model uses a single-period market, where interaction occurs over three stages: Nature

chooses the firm’s type and each consumer’s type, the firm observes its type and sets a price p, and

each consumer then decides the quantity of the product he or she will purchase. As noted above,

the firm produces to meet demand, and profits are realized at the end of the last stage.

II.2.3 Full-Information Equilibria

Given the expected demand for each of the firm’s types, the full-information expected profit

functions are defined as follows:

Π(p,H) = pQ(p,H) = p(.5+θ +ωXH − p).

Π(p,L) = (p− c)Q(p,L) = (p− c)(.5+θ − p).

Maximizing these expressions yields the following full information prices:

P f ull
H =

.5+θ +ωXH

2
,

P f ull
L =

.5+θ + c
2

.

Full-information expected profits are then given by:

Π(p f ull
H ,H) = Π

f ull
H =

[
.5+θ +ωXH

2

]2

,

Π(p f ull
L ,L) = Π

f ull
L =

[
.5+θ − c

2

]2

.

Recall that c denotes the production cost for the low-type firm, and that ωXH denotes the average

increase (or decrease) in consumer utility due to a high level of X . As these quantities capture the
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Figure II.1: Comparison of low-type and high-type profit curves

effects of the differences between the firm types, the ordinal relationship between c and ωXH will

determine which firm type will have the greater full-information profits and full-information price;

there are three possibilities, illustrated by Figure 1. First, when ωXH > c, the full information

price will be higher for the firm’s high type (p f ull
H > p f ull

L ), and profits for the firm’s high type will

also be higher (Π f ull
H > Π

f ull
L ). The top left diagram illustrates this case. The second possibility is

that −c < ωXH < c, in which case (p f ull
H < p f ull

L ) and (Π f ull
H > Π

f ull
L ), illustrated by the top right

diagram. Finally, if ωXH < −c, then (p f ull
H < p f ull

L ) and (Π f ull
H < Π

f ull
L ), illustrated in the lower

diagram above. Note that it is impossible for (p f ull
H > p f ull

L ) and (Π f ull
H < Π

f ull
L ).

II.3 Asymmetric Information

Assume that the game (the payoffs, extensive form, and priors) is common knowledge, but the

firm’s type (τ) and each consumer’s taste/type pair (θ ,T ) is private information. Also assume that

the firm cannot credibly disclose its type. Therefore, the only information available to the consumer
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about the firm’s type is that which can be inferred from the product’s price.

As a result, consumers will base their purchasing decisions on their beliefs about the product’s

type given the product’s price, b(p), where b represents the consumer’s perceived probability that

the firm is the high type (b(p) ≡ Pr{τ = H|p}), and firms will rely on the aggregate demographic

information about consumers given by α . Note that b will sometimes be used in place of b(p) for

notational convenience, and is intended to denote b(p) unless stated otherwise.

Given that price signaling by the firm can result in upward (or downward) distortions in price,

the following adjustment is made to assumption A.1 for cases when ω < 0 in order to guarantee that

every consumer (except possibly those with the lowest possible taste level) will choose to purchase

a positive amount of the product at equilibrium prices.

A.1′ θ ≥


max[.5−2γAXH +ωXH , .5+ c, .5+ z1] if ω < 0,

max[.5−2γAXH +ωXH , .5+ c] if ω ≥ 0,

where z1≡
√
−2ωXH(.5+θ)− (ωXH)2. Note that z1 is real when ω < 0 by the original assumption

A.1 (It will be shown in the following analysis that z1 characterizes the upward distortion of the

firm’s low type when it is optimal for the low type to distort its price to separate).

II.3.1 Demand and Firm Profits

Given consumer beliefs, b(p), together with the two possible firm types H and L, the expected

utility of a type T consumer with taste for the good given by θ , purchasing q units of uncertain

product type at price p will be:10

E[U(q, p,τ,θ ,T )|b(p)] = b(p)[(θ + γT XH)q− .5q2− pq]+

(1−b(p))[(θ + γT XL)q− .5q2− pq]

= (θ + γT b(p)XH)q− .5q2− pq.

Where the latter expression employs the normalization that XL = 0. Maximizing this expected utility

10 Note that income has again been omitted from the expression for convenience.
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over q yields the following first order condition:

(θ + γT b(p)XH)−q− p = 0.

Note that the firm’s true type is not found in the above expression, as consumers base their purchas-

ing decision on their beliefs about the firm’s type given the product’s price. As a result, the notation

for quantity in the asymmetric-information case will be changed from that of the full-information

case by replacing the argument τ (the firm’s type) with b(p) (consumer beliefs about the firm’s

type). Therefore, given beliefs b(p) and price p, the demand of a type T consumer with taste level

θ will be:

q(p,b(p),θ ,T ) = (θ + γT b(p)XH − p).

By taking the expectation of demand over consumer types and integrating (aggregating) this over

all possible consumer taste levels, the aggregate expected demand for a product of price p under

consumer beliefs b(p) is given by:

Q(p,b(p))≡
∫

θ+1

θ

(α(θ + γAb(p)XH − p)+(1−α)(θ + γSb(p)XH − p))dθ

= .5+θ +ωb(p)XH − p.

(II.2)

Note that for an arbitrary value of b, ∂q/∂b=ωXH , that is, the effect of beliefs on aggregate demand

will hinge on the sign of ω .

Unlike quantity and aggregate quantity derived above, the profits for each firm type will depend

on both consumer beliefs (b(p)) and the firm’s type (τ). Therefore, the notation for the profit

functions in the asymmetric-information case will be changed from that of the full-information case

by adding beliefs as an argument. As a result, the profit functions in the asymmetric-information

case are defined as follows:

Π(p,H,b(p))≡ pQ(p,b(p)) = p(.5+θ +ωb(p)XH − p).

Π(p,L,b(p))≡ (p− c)Q(p,b(p)) = (p− c)(.5+θ +ωb(p)XH − p).
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II.3.2 Separating Equilibria

To begin, consider the following characterization of a separating equilibrium in the context of

this model.

Defn. A price pair (psep
H , psep

L ), together with consumer beliefs b(p), constitutes a separating equi-

librium if psep
H 6= psep

L and the following incentive compatibility constraints are met:

Π(psep
H ,H,1)≥max

p≥0
Π(p,H,b(p)) (II.3)

Π(psep
L ,L,0)≥max

p≥c
Π(p,L,b(p)) (II.4)

b(psep
H ) = 1 (II.5)

b(psep
L ) = 0. (II.6)

That is, each of the firm’s types must choose its price to maximize profits given beliefs, and beliefs

must be correct at the equilibrium prices. It will be useful to define the following type- and belief-

specific profits, as these functions provide bounds for the true profit functions that use arbitrary

consumer beliefs:

Π(p,H,1) = p(.5+θ +ωXH − p) (II.7)

Π(p,H,0) = p(.5+θ − p) (II.8)

Π(p,L,0) = (p− c)(.5+θ − p) (II.9)

Π(p,L,1) = (p− c)(.5+θ +ωXH − p). (II.10)

Function (II.7) above is simply the “full information” profit function for the high type; that is, the

profit function for the firm when consumers correctly identify it as the high type. This will be

called the high type’s full information profit function. Function (II.8) above will be called the high

type’s “mimicking profit function;” that is, this function provides the profits for the high type firm,

at price p, when the firm is incorrectly believed to be the low type. Similarly, function (II.9) is

the low type’s full-information profit function, while function (II.10) is the low type’s mimicking

profit function. Figure 2 shows the full-information and mimicking profit curves for both types for
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Figure II.2: Profit functions with −c < ωXH < c

a particular parameter vector wherein −c < ωXH < c.

The following lemma is immediate from the inspection of equation (II.2) and will be useful in

working through the subsequent cases.

Lemma 1. If all other parameter values are held constant, the values of Π(p,H,b) and Π(p,L,b)

are strictly increasing in b if ω > 0, constant in b if ω = 0, and are strictly decreasing in b if ω < 0,

at any given price p. Thus, (i) if ω < 0 the firm’s high type will be tempted to mimic the low type,

while the low type will wish to be identified, (ii) if ω = 0 then beliefs have no effect on profits and

neither of the firm’s types will be tempted to mimic the other, and (iii) if ω > 0, the firm’s low type

will be tempted to mimic the high type, while the high type will wish to be identified.

In other words, the type that will be the high-quality or strong type depends on ω; if ω < 0 then the

low type is strong while if ω > 0 then the high type is strong.

II.3.2.1 Case 1: The Low Type is Strong (ω < 0)

Recall that ω < 0 implies that a higher value of X , on average, has a negative effect on consumer

demand. By Lemma 1, if p′ yields positive profits for the firm’s low type and 0 < b(p′) ≤ 1, then

the low type’s profits will be less than if the low type is identified (b = 0) at p′; that is, Π(p′,L,0)>

Π(p′,L,b(p′)) for all b(p′) ∈ (0,1]. Conversely, if p′ yields positive profits for the firm’s high type

and 0≤ b(p′)< 1, the high type’s profits will be greater than if the high type is identified (b = 1) at
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p′ ; that is, Π(p′,H,1)> Π(p′,H,b(p′)) for all b(p′) ∈ [0,1). As a separating equilibrium requires

b(psep
H ) = 1, and p f ull

H maximizes the strictly concave function Π(p,H,1), Lemma 1 implies that

psep
H = p f ull

H in any such equilibrium, otherwise the high type would have incentive to deviate to

p f ull
H regardless of the value of b(p f ull

H ), yielding the following Lemma.

Lemma 2. If ω < 0, then in any separating equilibrium it must be the case that psep
H = p f ull

H .

An implication of this lemma is that when ω < 0, supporting beliefs for a separating equilibrium

must be constructed in such a way that b(p f ull
H ) = 1 and Π(p f ull

H ,H,1)≥Π(p,H,b(p)) for all p≥ 0.

What remains to be shown is that there exists a set of beliefs, b(p), and a price for the firm’s low

type, pL, that satisfy this requirement as well as conditions (II.4) and (II.6). Furthermore, these

beliefs must survive refinement by the Intuitive Criterion. The following proposition is proved in

the appendix:

Proposition 1. Let z1 ≡
√
−2ωXH(.5+θ)− (ωXH)2. For ω < 0, the unique (refined) separating

equilibrium is psep
H = p f ull

H , and

i) psep
L = p f ull

L if z1 ≤ c;

ii) psep
L = p f ull

L +
( z1−c

2

)
if z1 > c.

Supporting beliefs for both cases are given by b(p) = 1 when p < psep
L and b(p) = 0 otherwise.

Figure 3 illustrates both types of separating equilibria described in Proposition 1. The figure on

the left has parameters such that both firm types are induced to charge the full-information price in

equilibrium (as in Proposition 1, part (i)), while the figure on the right illustrates a case in which

the low type must distort upward from the full-information price in order to prevent mimicry by the

high type (as in Proposition 1, part (ii)). Note that in any case for which the low type must distort

its price, it will be an upward distortion.

II.3.2.2 Case 2: The Trivial Case (ω = 0)

If ω = 0, then the full-information profit function is identical to the mimic profit function for both

types of firm. Therefore, there is no incentive for either firm to mimic and this case reduces to the

full-information case.
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Figure II.3: Separating equilibia when the low type is strong.

Proposition 2. For ω = 0 there exists a unique separating equilibrium in which psep
H = p f ull

H and

psep
L = p f ull

L .

II.3.2.3 Case 3: The High Type is Strong (ω > 0)

Assuming ω > 0, the firm’s high type prefers to be identified, while the firm’s low type is tempted

to mimic the firm’s high type. The following Lemma results from an argument analogous to that

preceding Lemma 2.

Lemma 3. If ω > 0, then in any separating equilibrium it must be the case that psep
L = p f ull

L .

By Lemma 3, any supporting beliefs for a separating equilibrium must be constructed in such a way

that b(p f ull
L ) = 0 and Π(p f ull

L ,L,1)≥Π(p,L,b(p)) for all p≥ 0. What remains is to show that there

exists a set of beliefs, b(p), and a price for the firm’s high type, pH , that satisfy this requirement as

well as conditions (II.3) and (II.5). The proof of the following proposition is analogous to that of

Proposition 1:

Proposition 3. Let z2≡
√

2ω XH(.5+θ − c)+(ωXH)2. For ω > 0, the unique (refined) separating

equilibrium is psep
L = p f ull

L , and

i) psep
H = p f ull

H if z2 ≤ c;

ii) psep
H = p f ull

H −
( z2−c

2

)
if z2 > c.
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Figure II.4: Separating equilibia when the high type is strong.

Supporting beliefs for both cases are given by b(p) = 1 when p≤ psep
H and b(p) = 0 otherwise.11

Figure 4 illustrates both types of separating equilibria described in Proposition 3. The figure on

the left has parameters such that both firm types are induced to charge the full-information price in

equilibrium (as in Proposition 3, part (i)), while the figure on the right illustrates a case in which the

high type must distort downward from the full-information price in order to prevent mimicry by the

low type (as in Proposition 3, part (ii)). Note that in any case for which the high type must distort

its price, it will be a downward distortion.

II.3.3 Pooling and Partial-Pooling Equilibria

In a pooling equilibrium each type chooses the same price; that is, ppool
H = ppool

L . In a partial-

pooling equilibrium at least one of the firm’s types plays a mixed pricing strategy wherein some

(but not all) information about the firm’s type is passed to consumers via equilibrium prices. For

example, one possibility would be the strong type charging price pS in equilibrium, while the weak

type mixes between charging pS and another price pW 6= pS in equilibrium. In this case, consumers

would be certain the firm is the weak type if pW is the observed price, but would be uncertain of

11 Note that while it is possible that p f ull
H ≥ p f ull

L , these beliefs will still support the separating equilibrium as psep
H is

distorted downward below p f ull
L whenever p f ull

H ≥ p f ull
L .
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the firm’s type if pS is observed.12 While there are many other ways a partial-pooling equilibrium

could occur, the characteristic of importance to the proposition below is that in any partial-pooling

equilibrium at least one equilibrium price is a pooling price, and thus there is still ambiguity about

the firm’s type at any such price. As is often the case, the Intuitive Criterion eliminates all pooling

equilibria and partial-pooling equilibria in the asymmetric-information model of this section; this is

proved in the appendix.

Proposition 4. There exist no pooling or partial-pooling equilibria satisfying the Intuitive Criterion

in the asymmetric-information case.

II.3.4 Disclosure

As mentioned in the literature review of this paper, there are recent models that combine price

signaling with costly disclosure as two methods by which a firm can communicate its quality to

consumers, for example, Daughety and Reinganum (2008a, 2008c). Although the focus of this

paper is costly consumer audit, the base model of this section can easily be extended to allow

disclosure; however, since the subsequent results are in line with the aforementioned papers, a

rigorous treatment of disclosure is foregone for the sake of brevity. With that said, the basic structure

and results are presented below.

If a firm is allowed to disclose its type directly to consumers at cost k, the advantage of disclosure

is that it allows the firm to charge its full-information price and earn full-information profits. As

some separating equilibria of the model result in full-information prices being charged by both

firms, it is easy to see that neither firm has incentive to incur k to disclose in such cases; the strong

type could not gain more profit through disclosure (and thus would not incur k), and the only way

for the weak type to increase profits would be through mimicry (convincing consumers it is the

strong type) which cannot be facilitated by disclosure (and thus the weak type would not incur k).

In other cases of the model, the strong type must distort its price in order to separate, and in these

cases the strong type will only have incentive to incur k and disclose if the loss in profits due to

distortion (from those of full information) is greater than k. Thus if k is large enough, neither type

12Note that the true probability of a given type conditional on pS being observed would depend upon λ and the mixing
strategy of the weak type.
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has incentive to disclose, but for small enough k the strong type will choose to incur k and charge

its full information price. To see that the weak type will not have incentive to mimic the strong

type in such a case, note that as the strong type has incentive to disclose consumers would interpret

the lack of disclosure as proof that the firm is the weak type, and so the weak type will fail in any

attempt to mimic the strong type; that is, the weak type will have no incentive to deviate from its

full information price.

In summary, for large k the equilibria of the model with disclosure are the same as those sep-

arating equilibria of the model without disclosure; while for small enough k, the strong type will

incur k to disclose and charge its full-information price and the weak type will still charge its full

information price.

II.4 Consumer Audit

In this section, it is assumed that consumers have access to information about the firm’s type;

however, there is a one-time audit cost incurred by the consumer to learn this information, denoted

by a. Additionally, assume that the firm cannot credibly disclose this information directly to the

consumer. As a result, after learning the price of the product, the consumer may choose to pay the

audit cost and access the information before making a purchase, or may choose not to access the

information and use his or her posterior beliefs about the product’s type based only upon its price.

In the aforementioned example of a product with some proportion of foreign inputs, this could be

analogous to product information available on the internet, where the audit cost a is the cost to a

consumer of seeking out, reading, and verifying this information. Other examples of costly sources

of information include consumer publications that require a purchase (e.g. Consumer Reports), and

other information available online in the form of expert reviews, that require some cost of effort.

Even information made available by the firm could be considered in the consumer audit framework

of this section, as a (possibly mandated) disclosure by the firm could be in a format that requires

a significant cost of effort on the part of the consumer in order to understand the disclosure (e.g.,

a booklet containing large amounts of technical product information). Since consumers may still

glean information from the price of the good, price signaling by the firm is still possible. The same

cost structure as in Section 3 is used in this model for simplicity; that is, the cost of production for
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the high type is assumed to be zero while the cost of production for the low type is assumed to be

c > 0.

II.4.1 The Consumer’s Decision

The only change from the model of Section 3 without disclosure is the cost faced by consumers,

a > 0, incurred only if the consumer chooses to verify the product’s type. As this may result in some

consumers incurring a while others do not, this raises the possibility of free-riding. To avoid this,

it is assumed that consumers cannot use the observed purchasing decisions of others to deduce the

firm’s type without incurring a cost that is greater than the audit cost a; that is, it would cost more

(in effort) to deduce firm type by observing others than to simply incur a and verify it directly.

Another important issue is how consumers use beliefs in this model. In addition to being used

in the calculation of the optimal purchasing decision, consumer beliefs are now used in making the

decision as to whether or not to incur the audit cost a. The firm sets the price first, and the consumer

observes this price before making the decision to audit. At any observed price, the consumer will

only choose to incur the audit cost if beliefs indicate a positive probability for both firm types. If

beliefs are 1 or 0 at the observed price, then no consumer will choose to incur a as all consumers are

already “sure” of the firm’s type at that price. This decision is captured by the function δ T (p,b(p)),

where δ T (p,b(p)) = 1 if a type T consumer chooses to audit at price p, and δ T (p,b(p)) = 0

otherwise.13 Now consider the determinants of the consumer’s audit decision. A type T consumer

with taste θ that chooses not to audit will base their purchasing decision upon beliefs, thus the utility

maximizing quantity will be q(p,b(p),θ ,T ) = (θ + γT b(p)XH− p), as in Section 3.1. Therefore, if

Uδ T
(q, p,τ,θ ,T ) is used to denote consumer utility when audit is possible, the expected utility for

a consumer who chooses not to audit is given by:14

E[U0(q, p,τ,θ ,T )|b(p)]≡ (θ + γT b(p)XH − p)2

2
.

13It will be shown that the consumer’s taste level does not affect the auditing decision, and therefore θ is not an
argument of the function δ T .

14Note that assumptions A.1 and A.1′ are again sufficient allow the omission of max[θ + γT b(p)XH − p,0] in the
derivation of consumer demand in this section; that is, these assumptions guarantee that θ + γT b(p)XH − p ≥ 0 for all
consumers types and all b(p) ∈ [0,1].
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The same consumer who incurs a to know the firm’s type will choose q(p,1,θ ,T ) = θ + γT XH − p

when the firm is the high type and q(p,0,θ ,T )) = θ − p when the firm is the low type. Thus the

expected utility for this consumer is:

E[U1(q, p,τ,θ ,T )|b(p)]≡ b(p)(
(θ + γT XH − p)2

2
−a)+(1−b(p))(

(θ − p)2

2
−a)

=
(θ + γT b(p)XH − p)2

2
+

(1−b(p))b(p)(XH)
2

γ2
T

2
−a

= E[U0(q, p,τ,θ ,T )|b(p)]+
(1−b(p))b(p)(XH)

2
γ2

T

2
−a.

Therefore, since the consumer makes the audit decision by comparing these two expected utilities,

the following Lemma results.

Lemma 4. At any price p, a consumer of type T with beliefs b(p) will choose to incur the cost a in

order to know the firm’s type if and only if:

a <
b(p)(1−b(p))(XH)

2 (γT )
2

2
.

Note that the audit decision does not depend on the consumer’s base level of taste, θ , as the con-

tribution to utility from non-X-related taste does not depend upon the firm’s type. In addition, the

benefit for auditing depends upon the beliefs at the given price, but not the price itself. If the beliefs

are close to 0 or 1 (the consumer is fairly sure the firm is a particular type), there is less benefit from

auditing (or, alternatively, a lower cost of basing the purchasing decision on beliefs), and therefore

the consumer will choose not to audit. This leads to the following characterization15 of δ T (p,b(p)):

δ
T (p,b(p)) =


1 if b(p) ∈ (0,1) and a < b(p)(1−b(p))(XH)

2(γT )
2

0 otherwise.

15 For simplicity, it is assumed that consumers in the model play pure strategies, and that every consumer of a given
type will make the same audit decision. It can be shown that the equilibria of the model with pure auditing strategies are
also equilibria of the model with the possibility of consumers playing mixed auditing strategies, and moreover, additional
equilibria are only possible if λ (1−λ ) is exactly equal to 2a

(XH )
2(γT )

2 .
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II.4.2 Separating Equilibria

As in the model of Section 3 (without consumer audit), a separating equilibrium consists of

equilibrium prices for both of the firm’s types, psep
L and psep

H , together with consumer beliefs, b(p),

such that psep
L 6= psep

H , and no party wishes to deviate from the equilibrium. As the consumer knows

the price before making the audit decision, and the supporting beliefs for the separating equilibria

of Section 3.2 take values of only 0 or 1 (including out-of-equilibrium beliefs), there will be no

consumer audit and these same beliefs support the same separating equilibria in the current model.

Therefore, the unique (refined) separating equilibrium for each case in Section 3.2 is also a separat-

ing equilibrium for the corresponding case when the consumer has the option to audit. In addition

to this, note that Lemma 2 and Lemma 3 will still hold, as consumers will never choose to audit in

a separating equilibrium; thus the weak firm type will be fully identified and will have incentive to

deviate from any price other than the full-information price. Furthermore, there exists no separating

equilibrium in which the strong firm type chooses a less-distorted price, as consumers do not audit

in a separating equilibrium and the weak firm type would then have incentive to deviate. Finally,

all separating equilibria in which the strong firm type chooses a more distorted price will not satisfy

the Intuitive Criterion; this due to the fact that the Intuitive Criterion compares profits where beliefs

equal 1 or 0, and is thereby unaffected by consumer audit. Therefore, the only separating equilib-

rium that is possible when consumers have the choice of auditing occurs at the same prices as the

unique (for each case) separating equilibrium from Section 3.2, yielding the following result.

Proposition 5. The unique (refined) separating equilibrium for each case of the model without

consumer audit is also the unique (refined) separating equilibrium for the corresponding case of the

model with consumer audit.

II.4.3 Single Price Equilibria

Although the unique separating equilibrium from the base model without consumer audit is

still an equilibrium of the model with the possibility of consumer audit, there is different type of

equilibrium, analogous to the pooling equilibria discussed in Section 3, that must be considered.
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Defn. A “single-price” equilibrium consists of an equilibrium price pair, (pSP
L , pSP

H ), together with

consumer beliefs, b(p), and the audit decision function for each consumer type, δ A(p,b(p)) and

δ S(p,b(p)), such that pSP
L = pSP = pSP

H , b(pSP) = λ , and both expected profits and expected utility

are maximized.

While this definition may seem identical to that of the classical pooling equilibrium because both

firm types charge the same price, there is an important difference in the consumer’s information at

the time of purchase. In a classic pooling equilibrium, the consumer would use prior beliefs (the

same beliefs as before price was observed) about the firm’s type in order to make a purchasing

decision. In this model, however, some or all of the consumers may choose to become fully informed

via audit before the purchase is made, and therefore the resulting equilibrium is distinct from the

classic pooling equilibrium. While all of the included single-price equilibria are pooling equilibria in

the sub-game up to the consumer’s audit decision (where all consumers are still using prior beliefs),

those consumers that choose to audit learn the firm’s type and revise their beliefs accordingly, and

thus the only equilibria that are identical to classic pooling equilibria are those in which no consumer

chooses to audit; in that case, the consumer’s posterior beliefs, b(p), will be identical to prior beliefs

as no information about the firm s type is learned via price or audit.

Since a single-price equilibrium with price pSP necessarily requires b(pSP) = λ (the true pro-

portion of high type firms), Lemma 4 results in four possible cases (using λ̂ = .5λ (1− λ )X2
H).

First, if a > λ̂ γ2
S and a > λ̂ γ2

A, then δ A(pSP,λ ) = 0 = δ S(pSP,λ ); that is, no consumers will choose

to verify the firm’s type by auditing at the single price. Second, if a ≤ λ̂ γ2
S and a ≤ λ̂ γ2

A, then

δ A(pSP,λ ) = 1 = δ S(pSP,λ ); that is, all consumers will choose to verify the firm’s type by auditing

at the single price. If λ̂ γ2
A < a≤ λ̂ γ2

S , then δ A(pSP,λ ) = 0 and δ S(pSP,λ ) = 1; that is, only X-seeker

consumers will choose to verify the firm’s type at the shared price. Finally, if λ̂ γ2
S < a≤ λ̂ γ2

A, then

δ A(pSP,λ ) = 1 and δ S(pSP,λ ) = 0; that is, only X-avoider consumers will choose to verify the

firm’s type at the shared price. The intuition behind this result is fairly straightforward. Refer again

to the example of a product with foreign inputs, and suppose that γA is very large (and negative),

implying that the proportion of foreign inputs has a substantial effect on the utility of X-avoider

consumers (less foreign inputs yield higher utility). The loss due to purchasing too much of a high-

foreign-input product is therefore very high, and thus X-avoiders would choose to incur a. Similarly,
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if γS is very large, X-seekers would choose to incur a rather than facing the possibility of purchasing

the incorrect amount of the product. Intermediate values of γS and γA result in lower losses from

basing the purchasing decision on beliefs alone, and thus in these cases consumers choose not to

incur a.

While b(p) = λ must be true at the single price in equilibrium, it is important to note that this

is not the case for out-of-equilibrium beliefs. Out-of-equilibrium beliefs may not only differ from

λ , but may also result in a different combination of consumers (if any) choosing to audit at a given

out-of-equilibrium price.16

Clearly, consumer demand and subsequent firm profits will depend upon which consumers (if

any) choose to audit. Furthermore, when at least one type of consumer chooses to audit at a given

price, consumer demand at that price will depend upon the product’s type, τ . As a result, individual

consumer demand will now be denoted by qδ T
(p,τ,b(p),θ ,T ), where δ T (p,b(p)) denotes the audit

decision for type T consumers at price p given beliefs b(p). Following the derivations of demand

in Sections 2.2 and 3.1, a type T consumer with base taste level θ will make the audit decision

δ T (p,b(p) at price p, and if the consumer’s taste level is given by θ , the consumer’s demand for a

type τ product will be denoted by:

qδ T
(p,τ,b(p),θ ,T ) =


θ + γT b(p)XH − p if δ T = 0,

θ + γT Xτ − p if δ T = 1,

By taking the expectation of demand over consumer types and integrating (aggregating) this over all

possible consumer taste levels, the aggregate expected demand for a type τ product of price p under

posterior consumer beliefs b(p), with audit decisions δ A(p,b(p)) and δ S(p,b(p)) is given by:

16 Note that Lemma 4 implies that out-of-equilibrium beliefs can cannot “switch” from having only one type of con-
sumer auditing to having only the other type of consumer auditing; for example, if only X-seekers audit in the equilibrium,
then out-of-equilibrium beliefs cannot induce only X-avoiders to audit at out-of-equilibrium prices, as the former requires
γA < γS while the latter implies γA > γS.
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QδAδS(p,τ,b(p)) =



.5+θ +ωb(p)XH − p if δ A = 0 = δ S,

α(.5+θ + γAb(p)XH − p)

+(1−α)(.5+θ + γSXτ − p) if δ A = 0 and δ S = 1,

α(.5+θ + γAXτ − p)

+(1−α)(.5+θ + γSb(p)XH − p) if δ A = 1 and δ S = 0,

.5+θ +ωXτ − p if δ A = 1 = δ S.

Given this, the expected profits for each type at price p given ex-ante consumer beliefs b(p) and the

consumer audit decisions δ A(p,b(p)) and δ S(p,b(p)) are denoted by:

Π
δ Aδ S

(p,H,b(p)) = pQδAδS(p,H,b(p)) (II.11)

Π
δ Aδ S

(p,L,b(p)) = (p− c)QδAδS(p,L,b(p)). (II.12)

II.4.3.1 Case 1: No Consumers Audit

This section analyzes the single price equilibria in which both types of consumer will choose not to

incur the cost a to determine the firm’s type at the single price. This case arises when:

a > λ̂ γ
2
S and a > λ̂ γ

2
A.

As mentioned previously, this results in the single-price equilibria of this subsection being identical

to classic pooling equilibria, and therefore these equilibria are called full pooling equilibria. Since

no consumers choose to audit in a full pooling equilibrium, all consumers base their purchasing

decisions on their beliefs at the full pooling price ppool (where these beliefs are equal to λ ). As

no additional information is learned by consumers, any full pooling price would be identical to

the pooling prices in the model of asymmetric information without audit and without disclosure

discussed in Section 3.3. Since employing the Intuitive Criterion involves comparing profits when

beliefs are equal to 0 or 1 (beliefs for which consumers never choose to audit), adding the possibility

of audit does not affect whether a pooling equilibrium will satisfy the Intuitive Criterion. Therefore,
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these equilibria will fail refinement as in Section 3.3. This results in the following proposition.

Proposition 6. There exists no full pooling equilibrium (a single-price equilibrium in which no

consumers choose to audit) that satisfies the Intuitive Criterion.

Intuitively, this proposition results from audit being too costly from the perspective of the consumer.

As a result, the firm is unable to shift the cost of informing consumers onto the consumers them-

selves. Therefore, the firm type that wishes to be identified must use price signaling in order to

reveal its type, and only the separating equilibrium survives refinement.

II.4.3.2 Case 2: All Consumers Audit

This section analyzes the single price equilibria in which both types of consumer will choose to

incur the audit cost a to determine the firm’s type at the single price. This case arises when:

a≤ λ̂ γ
2
S and a≤ λ̂ γ

2
A.

As a result, all consumers choose to audit and the firm faces fully-informed consumers at any single-

price equilibrium. To distinguish from other single-price equilibria, these equilibria will be called

single-price-full-audit (SPFA) equilibria. Suppose ω < 0; then the firm’s low type is strong and

always prefers to be thought of as a low type at any given price. Furthermore, since the high type

is identified through audit by all consumers in an SPFA equilibrium, pSPFA = p f ull
H maximizes the

profits for the high type over all SPFA equilibria. Given this, suppose (in addition to ω < 0) that

there exists an SPFA equilibrium such that pSPFA 6= p f ull
H . In this case it can easily be shown that

there will always exist a price, p′, between pSPFA and p f ull
H (an ε deviation) such that if b(p′) = 1,

then the high type would wish to deviate to p′ while the low type would not. Thus refinement by

the Intuitive Criterion implies b(p′) = 1, and no such SPFA equilibrium exists; therefore, it must

be that if ω < 0, then pSPFA = p f ull
H in any SPFA equilibrium. If ω > 0 (the low type is the weak

type), a similar argument requires pSPFA = p f ull
L . Therefore, the weak type, depending on the sign

of ω , must make full-information profits in order for an SPFA equilibrium to exist; this leads to the

following lemma.17

17When ω = 0 there is no incentive for either type to mimic, and therefore no single-price equilibria will exist because
one firm would always have incentive to deviate to its full-information price
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Lemma 5. Suppose there exists an SPFA equilibrium price in which both consumer types choose

to audit. If ω < 0, then any p 6= p f ull
H cannot be an SPFA equilibrium price. If ω > 0, then any

p 6= p f ull
L cannot be a SPFA equilibrium price.

As a result of the above, there can be at most a single SPFA equilibrium. The following proposi-

tion provides conditions under which a unique SPFA equilibrium will exist, and is proved in the

appendix.

Proposition 7. Suppose that a≤ λ̂ γ2
S and a≤ λ̂ γ2

A. For ω < 0, if 2c−ωXH < z1, then there exists a

unique single-price-full-audit equilibrium that satisfies the Intuitive Criterion wherein pSPFA = p f ull
H

with supporting beliefs given by b(p) = λ if p = p f ull
H and b(p) = 1 otherwise. For ω > 0, if

max{c,2(c−ωXH)} < z2, there exists a unique SPFA equilibrium under the Intuitive Criterion in

which pSPFA = p f ull
L with supporting beliefs given by b(p) = λ if p = p f ull

L and b(p) = 0 otherwise.

Note that the conditions for existence in each case of Proposition 9 result in non-empty sets. To

see this, first consider the conditions involving the auditing decision (a ≤ λ̂ γ2
S ,a ≤ λ̂ γ2

A). Both of

these constraints allow ω to take on any value as there are no other restrictions on α (the proportion

of X-avoiders) and a other than a > 0 and α ∈ (0,1). As a result, there are few constraints on the

values of the parameters in the condition

2c−ωXH < z1 =
√
−2ωXH(.5+θ)− (ωXH)2. (II.13)

To see that the set of parameters meeting these conditions is nonempty, note that c > 0 allows c to

be sufficiently small to satisfy condition (II.13) since z1 is independent of c, and is greater than ωXH

when ω < 0 (by A.1′). Thus for any set of values for the other parameters (meeting the assumptions

of the model) there will exist a range of values for c, albeit possibly very close to zero, for which

this condition will be met and such an equilibrium exists. Note also that a c close to zero is not

necessary for the SPFA equilibrium to exist, only sufficient to guarantee existence (a large value for

θ can achieve the same effect). For the condition

max{c,2(c−ωXH)}< z2 =
√

2ωXH(.5+θ − c)+(ωXH)2, (II.14)

it is again clear that for any set of parameter values meeting the assumptions of the model, with
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ω > 0, there will exist a value for c > 0 small enough to meet condition (II.14). Note again that

this is not necessary, but sufficient for the condition to be met (a large value for θ can achieve the

same effect). Intuitively, both of these conditions ((II.13) and (II.14)) require the distortion in the

separating equilibrium to be “large” relative to the difference between the profits for the firm’s two

types when they are fully identified (a function of c and ωXH), thereby guaranteeing the loss in

profits due to the price distortion in the separating equilibrium will be larger than the loss in profits

due to the strong firm type charging the full-information price of the weak firm type. Therefore,

these conditions eliminate the incentive to deviate from the SPFA equilibrium and allow beliefs to

satisfy the Intuitive Criterion.

II.4.3.3 Case 3: Only X-Avoiders Audit

This case analyzes the single price equilibria in which only the X-avoider consumers choose to

incur the cost a to determine the firm’s type at the single price. These equilibria will be called

single-price-avoider-audit (SPAA) equilibria, and may arise when:

a > λ̂ γ
2
S and a≤ λ̂ γ

2
A.

Therefore, X-avoiders will maximize their utility based on the true firm type, while X-seekers will

base their purchasing decision upon beliefs. The following proposition results from refinement by

the Intuitive Criterion, and is proved in the technical appendix for this paper.

Proposition 8. There exists no single-price avoider-audit equilibrium (an equilibrium in which

both of the firm’s types charge the same price and only X-avoiders choose to audit) that satisfies the

Intuitive Criterion.

While this result may appear counterintuitive at first glance, the key to understanding why these

equilibria fail refinement lies in the relative costs/benefits of avoider-only audit to each of the firm’s

types. In this case the cost of audit is small enough for X-avoiders to bear the burden of becoming

informed; however, it is not small enough for X-seekers to become informed. When the firm passes

the burden of becoming informed on to consumers, only X-avoiders choose to audit, and a single-

price equilibrium benefits the low type and hurts the high type. The X-avoiders fully identify the

firm’s type, and will therefore purchase the same quantities that would be purchased under full
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information (at a given price). X-seekers, however, are unsure of the firm’s type at a single-price

equilibrium and must therefore base their purchasing decision on posterior beliefs (b(p)) about

the firm’s type. This causes X-seekers to purchase a larger quantity of the low-type product and

a smaller quantity of the high-type product than would be purchased under full information (at

a given price). As a result, the high type, regardless of the proportion of X-avoiders versus X-

seekers (given by α) and their relative preferences over X (given by γA and γS), would prefer to

be identified. The Intuitive Criterion simply assumes that X-seekers understand that their lack of

information negatively affects the high type (X-seeker’s “preferred” type) and positively affects the

low type, so that beliefs must reflect a greater willingness for the high type to deviate than for the

low type to deviate. Although this does not change the fact that for any price p in which b(p) = λ ,

X-avoiders have incentive to audit while X-seekers do not, it does result in the high type having

incentive to deviate from the SPAA equilibrium price given any beliefs that satisfy the Intuitive

Criterion. Therefore all possible beliefs that support SPAA equilibria fail refinement, and the firm

is forced to bear the burden of informing the consumer through price separation.

II.4.3.4 Case 4: Only X-Seekers Incur a

This case analyzes the single price equilibria in which only X-seeker consumers choose to incur the

cost a to determine the firm’s type at the single price. These equilibria will be called single-price-

seeker-audit (SPSA) equilibria, and may arise when:

a≤ λ̂ γ
2
S and a > λ̂ γ

2
A.

Therefore, X-seekers will maximize their utility based on the true firm type, while X-avoiders will

base their purchasing decision upon beliefs. The following proposition results from refinement by

the Intuitive Criterion, and has a proof analogous to that of Proposition 10.

Proposition 9. There exists no single-price seeker-audit equilibrium (an equilibrium in which both

of the firm’s types charge the same price and only X-seekers choose to audit) that satisfies the

Intuitive Criterion.

As in the previous case, the above result reflects the disparity between the benefits to each of the

firm’s types from a single-price equilibrium. Here the cost of audit is small enough for X-seekers
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to bear the burden of becoming informed; however, it is not small enough for X-avoiders to become

informed. The firm is unable to pass the burden of becoming informed on to consumers, as the

low type is adversely affected and will have sufficient incentive to deviate from the single-price

equilibrium given reasonable beliefs (via the Intuitive Criterion). Therefore, the firm bears the cost

of informing consumers through price separation.

II.4.3.5 Hybrid Equilibria

Similar to the definition of the partial-pooling equilibria in the asymmetric information case without

consumer audit, hybrid equilibria in this case are a broad class of equilibria in which at least one of

the firm’s types plays a mixed pricing strategy, some information about the firm’s type is conveyed

to consumers, and at least one of the equilibrium prices has a positive probability of being charged

by both types. As any equilibrium requires that both of the firm’s types maximize profits given

consumers’ beliefs and audit decision functions, mixed strategies require that profits at all prices

over which a firm type mixes must be equal. Given this, together with the analogous nature between

hybrid equilibrium prices charged by both firm types and the single-price equilibria of this section,

all hybrid equilibria18 fail refinement by the Intuitive Criterion; this is proved in the appendix.

Proposition 10. There exists no hybrid equilibrium that satisfies the Intuitive Criterion.

II.4.4 Welfare and Policy Implications

The main result of Section 4.3 is that the possibility of consumer audit does not affect the

existence of the unique separating equilibria of the model without audit; however, a single-price

equilibrium could possibly arise if both consumer types are willing to incur the audit cost to become

fully informed. This leads to the natural question of which equilibrium is best from a welfare

standpoint when both equilibria are possible, and what, if anything, can be done by a central planner

to arrive at the better of the two equilibria. As the value of ω determines which of the firm’s types

is the strong (high-quality) type, this analysis will be broken into two cases.

18There is a degenerate case in which the strong type can mix over its (distorted) separating price and the weak type’s
full-information price, however, this requires a specific (deterministic) relationship between the parameters (e.g. if ω < 0
it must be that c =−ωXH (.5+θ+ωXH )

z1−ωXH
), and is therefore not considered a general result of the model.
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II.4.4.1 Case 1: The Low Type is Strong (ω < 0)

When ω < 0, the price charged by the high type is p f ull
H in both the unique separating equilibrium

and in the unique SPFA equilibrium. As a result, the difference in welfare outcomes when the firm

is the high type is only the loss in consumer surplus due to the full mass of consumers (equal to 1)

incurring the audit cost a. Thus, if CSsep
H , CSSPFA

H , PSsep
H , PSSPFA

H , T Ssep
H , and T SSPFA

H , represent the

consumer surplus, producer surplus, and total surplus for both types of equilibria when the firm is

the high type, the following is true.

CSSep
H −CSSPFA

H = a;

PSSep
H −PSSPFA

H = 0;

T SSep
H −T SSPFA

H = a.

Now consider the low type. If the low type firm does not need to distort in the separating equilib-

rium, a SPFA equilibrium will not exist, therefore the welfare results that follow assume that the

low type charges a distorted (upward) price in the separating equilibrium. The difference in each

surplus is as follows:

CSSep
L −CSSPFA

L = .5(.5+θ − (p f ull
L +

z1− c
2

))2− (.5(.5+θ − p f ull
H )2−a);

PSSep
L −PSSPFA

L = ((p f ull
L +

z1− c
2

)− c)(.5+θ − (p f ull
L +

z1− c
2

))

− (p f ull
H − c)(.5+θ − p f ull

H ).

Plugging in the values for p f ull
H and p f ull

L and simplifying yields:

CSSep
L −CSSPFA

L = a− .25(z1−ωXH)(.5+θ − z1 +ωXH

2
);

PSSep
L −PSSPFA

L = .5(z1−ωXH)(c−
z1 +ωXH

2
);

T SSep
L −T SSPFA

L = a− .25(z1−ωXH)(.5+θ −2c+
z1 +ωXH

2
).

It can easily be shown that 2(.5+ θ)−ωXH > z1, and thus the difference in consumer surplus is

negative whenever the audit cost a is small. The difference in producer surplus is always negative
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as profits for the low type are required to be greater in the SPFA equilibrium than in the separating

equilibrium in order for the SPFA equilibrium to exist (and condition (II.13) guarantees this). As a

result, when the firm is the low type and ω < 0, the total surplus for the SPFA equilibrium may be

higher or lower than that of the separating equilibrium, depending on the value of a relative to the

gain in surplus due to decreasing the price to the SPFA equilibrium price. This makes sense since

the firm is a monopoly and the SPFA equilibrium has a lower price (but still above marginal cost)

than the separating equilibrium, resulting in higher total surplus if the audit cost is ignored.

II.4.4.2 The High Type is Strong (ω > 0)

When ω < 0, the price charged by the low type is p f ull
L in both the unique separating equilibrium

and in the unique SPFA equilibrium. As a result, the difference in welfare outcomes when the firm

is the low type is only the loss in consumer surplus due to the full mass of consumers (equal to 1)

incurring the audit cost a. Therefore:

CSSep
L −CSSPFA

L = a;

PSSep
L −PSSPFA

L = 0;

T SSep
L −T SSPFA

L = a.

The difference in surplus for when the firm is the high type can be calculated in the same way as for

the low type when ω < 0, and simplifies to:

CSSep
H −CSSPFA

H = a+ .25(z2−ωXH)(.5+θ − c+ .5z2 +1.5ωXH);

PSSep
H −PSSPFA

H = .5(z2−ωXH)(c−
z2 +ωXH

2
);

T SSep
H −T SSPFA

H = a+ .25(z2)(.5+θ + c− .5z2 +ωXH).

Note that by condition (II.14), existence of the SPFA equilibrium requires−.5z2 < ωXH , and thus it

is not possible for the SPFA equilibrium to be more socially efficient than the separating equilibrium.

This makes intuitive sense as the SPFA equilibrium will have a higher price, and thus the total

surplus with a monopolistic firm having marginal costs of zero (the high type) must be lower under

the higher price, despite the greater profits for the high type (required for the existence of the SPFA
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equilibrium).

II.4.4.3 Results and Policy Implications

If the above differences in welfare (where the firm type is known) are defined as the ex-post welfare

comparisons, the ex-ante expected welfare comparisons can be calculated using λ (the probability

of the firm being the high type) and (1−λ ). This results in the following proposition:

Proposition 11. If both the unique separating equilibrium and the unique SPFA equilibrium exist:

i) Ex-post welfare will be at least as high at the unique SPFA equilibrium as the unique separat-

ing equilibrium if and only if consumers prefer the low type product on average (ω < 0), the

firm is the low type, and a ≤ .25(z1−ωXH)(.5+θ −2c+ z1+ωXH
2 ), otherwise welfare will be

higher at the unique separating equilibrium.

ii) The ex ante expected welfare will be at least as high at the unique SPFA equilibrium as the

unique separating equilibrium if and only if consumers prefer the low type product on average

(ω < 0) and a< (1−λ ).25(z1−ωXH)(.5+θ−2c+ z1+ωXH
2 ), otherwise welfare will be higher

at the unique separating equilibrium.

Intuitively, this is because when ω < 0, consumers (on average) prefer the product that costs

more to produce, and thus separation via price requires upward distortion. As the SPFA equilibrium

has a lower price than that of the separating equilibrium, the SPFA equilibrium will be socially pre-

ferred if the gain in surplus is greater than the loss due to the audit cost. When ω > 0, consumers

prefer the product that is cheaper to produce, and thus separation via price is achieved through a

downward distortion. The SPFA equilibrium price will be above the price in the separating equilib-

rium, and although the firm may have higher profits in the SPFA equilibrium, consumers are worse

off and the total surplus is decreased due to the decreased quantity sold in the SPFA equilibrium.

Now consider possible action by a central planner. If for some reason the central planner knows

the firm to be the low type, and ω is known to be negative, there are conditions such that the

central planner would prefer the SPFA equilibrium.19 If the central planner does not yet know the

firm’s type, but does know that ω is negative, there are still conditions such that the central planner

19A central planner may have access to information about a firm’s product via mandatory product registration, exoge-
nous government audit, etc.
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would prefer the SPFA equilibrium to the unique separating equilibrium (ex-ante). When ω > 0, the

separating equilibrium is always preferred, regardless of the central planners information about the

firm’s type. Though a central planner is able to determine which equilibrium is socially preferred,

the question remains as to how a central planner could lead the market to result in the preferred

equilibrium. Suppose the SPFA equilibrium is both possible and socially preferable. As shown

above, it must be that ω < 0, and the SPFA equilibrium can only exist at p f ull
H . The problem for the

central planner is that even if the audit cost a is “small enough,” the existence of the SPFA depends

upon consumer beliefs; if consumers believe that both firm types will charge p f ull
H , then the SPFA

will result, otherwise the separating equilibrium will result. A seemingly simple solution would be

for the central planner to fix the price of the good at p f ull
H . Provided that consumers are aware of

the fixed price, and can adjust their beliefs accordingly (so that b(p f ull
H ) = λ ), fixing the price at

p f ull
H would lead to the same total surplus and profits as the SPFA equilibrium. The case in which

the SPFA equilibrium is possible but not preferable is not as simple. If the central planner wishes to

guarantee the separating equilibrium is reached, he or she must somehow convince consumers that

the strong type will never charge the same price as the weak type. The difficulty of this endeavor

is compounded by the fact that the strong type could charge more or less than the weak type in

order to separate (depending on the sign of ω). If the central authority knows the firm’s type, it may

be possible to fix the price at what would have been the separating equilibrium price for the type,

however, this could entail fixing a price higher than the SPFA equilibrium price that could have

resulted.

Though the central planner may not be willing (or able) to guarantee a separating equilibrium

by fixing the price, another possible action would be to adjust the audit cost a. When the separating

equilibrium is preferable, an increase in a could eliminate the possibility of the SPFA equilibrium

altogether, as the incentive for consumers to audit can be eliminated. Though one might believe that

the government is both willing and able to obfuscate information (and possibly adept at doing so),

reducing the availability of product information (increasing a) is a difficult policy recommendation

to make. What can be said, however, is that when central authorities enact laws and/or programs

that seek to provide more information to consumers about products they purchase, social welfare

may benefit from such programs being selective in the products they target as per the above. To

see this, note that if the audit cost a can be affected by the central planner, when ω < 0 and z1 >
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2c−ωXH or when ω > 0 and z2 > max{c,2(c−ωXH)}, an SPFA equilibrium can be made possible

where it was not possible without intervention. As a result, if a central planner determines that a

separating equilibrium is best for a given product (e.g. when the good would be priced lower in

a separating equilibrium than in a SPFA equilibrium), the planner could actually harm welfare by

making information about the product more easily accessible. Furthermore, if the SPFA equilibrium

could exist under lower audit costs, the central planner could increase welfare by lowering a and

inducing a SPFA equilibrium. Therefore, this model predicts that if the central planner is selective

in the products about which it seeks to make information more accessible, social welfare could be

increased.

II.5 Conclusion

The model presented here, wherein a monopolistic firm of two possible types faces a hetero-

geneous consumer base, is primarily designed to analyze the interaction between price signaling

and consumer verification. The price signaling model is first analyzed without the possibility of

verification, and is then analyzed with the possibility of disclosure for the sake of completeness.

Although the model is constructed differently, the price signaling results are similar to previous re-

sults by Daughety and Reinganum (2008a), wherein a unique Perfect Bayesian equilibrium exists

in which the higher-quality firm distorts its price to separate, and if the firm with higher produc-

tion costs produces the high quality product the distortion is upward, while if the lower cost firm

produces the high quality product the distortion is downward. The possibility of consumer audit is

then added to the model, and this also results in a unique separating equilibrium; however, under

certain conditions it is possible that a unique single-price equilibrium will also satisfy the Intuitive

Criterion, wherein all consumers choose to pay the audit cost, and both firm types charge the full

information price of the weak firm type. As these equilibria exist simultaneously, social welfare

at these equilibria are compared, and it is shown that if the strong (high-quality) type is the firm

type with higher production costs, and the audit cost is small enough, the single-price equilibrium

could result in higher social welfare via higher firm profits and increased consumer surplus. Conse-

quently, implications for a central planner facing the possibility of two equilibria are discussed, and

as the results depend upon the availability of product information, it is suggested that in order to
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maximize social welfare, efforts to make product information more accessible to consumers should

be selective in the products they target.

Though the results of the paper are designed to be as complete as possible, there are extensions

that could be made to the model. An intuitive extension would be to add the possibility of disclosure

to the model of signaling and consumer verification. Although the timing of the events in the model

is reasonable (the consumer knows the price before making the audit decision), alternative timing

arrangements could also be considered. Finally, as this model is designed around the effects of

a single product characteristic produced by a monopolist, it may also be interesting to contrast

the results of a similar model with multiple (possibly interdependent) characteristics or multiple

competing firms.

II.6 Appendix

II.6.1 Proof of Proposition 1

By Lemma 2, psep
H = pfull

H . Then in order for the high type to have no incentive to deviate to

the low type’s price (psep
L ), it must be that Π(p f ull

H ,H,1)≥Π(psep
L ,H,0). Solving this inequality for

psep
L yields the following condition:

psep
L ≤ .5+θ − z1

2
or

.5+θ + z1

2
≤ psep

L . (II.15)

Where z1 =
√
−2ωXH(.5+θ)− (ωXH)2. As −ωXH > 0, the z1 term will be real by assumption

A.1′, and since c > 0, it must be the case that .5+θ−z1
2 < .5+θ+c

2 = p f ull
L . This leaves two cases to

analyze. First, suppose that .5+θ+z1
2 ≤ pfull

L , or equivalently, z1 ≤ c. In this case, psep
L = p f ull

L will

meet condition (II.15), and since Π(psep
L ,H,0)> Π(p,H,0) for all p > psep

L , if beliefs are given by

b(p) = 1 if p < psep
L and b(p) = 0 otherwise, the full information prices will satisfy the incentive

compatibility constraint (II.3). Since p f ull
L maximizes the low type’s profits over all beliefs and all

prices when b(p f ull
L ) = 0, the incentive compatibility constraint (II.4) is also met; moreover, since

the high type has no incentive to deviate to p f ull
L when b(p f ull

L ) = 0, refinement by the Intuitive

Criterion eliminates all alternative equilibria in which psep
L 6= p f ull

L . Therefore, if z1 ≤ c, the unique
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separating equilibrium satisfying the Intuitive Criterion will be psep
H = p f ull

H and psep
L = p f ull

L , with

supporting beliefs given by b(p) = 1 if p < psep
L and b(p) = 0 otherwise.

For the second case, suppose z1 > c. Then .5+θ−z1
2 < p f ull

L < .5+θ+z1
2 , and the low type must

distort from its full information price to separate. Comparing the profits at the cutoffs for psep
L

given by condition (II.15) it can be easily shown that 0 < Π

(
.5+θ−z1

2 ,L,0
)
< Π

(
.5+θ+z1

2 ,L,0
)

.

Thus by the strict concavity of the profit function for a fixed b, the price p f ull
L + z1−c

2 = .5+θ+z1
2

maximizes Π(p,L,0) over all p satisfying condition (II.15). As psep
L must satisfy condition (II.15),

and since the high type will have no incentive to deviate to p′ > psep
L when b(p′) = 0, any beliefs

that support an equilibrium price psep
L 6= p f ull

L + z1−c
2 will fail to satisfy the Intuitive Criterion (as

this will require b(p f ull
L + z1−c

2 ) = 0 ). Again consider the beliefs given by b(p) = 1 if p < psep
L

and b(p) = 0 otherwise. These beliefs, together with psep
L = p f ull

L + z1−c
2 and psep

H = p f ull
H will meet

the incentive compatibility constraint (II.3), since Π(p,H,0) < Π(psep
L ,H,0) for all p > psep

L . To

show that these beliefs and equilibrium prices will meet the incentive compatibility constraint (II.4),

note that it is sufficient to show Π

(
p f ull

L + z1−c
2 ,L,0

)
≥ (maxp≥c Π(p,L,1)), which can be shown

to be the case, and a proof is provided in the technical appendix. Therefore, if c < z1, the unique

separating equilibrium satisfying the Intuitive Criterion will be psep
H = p f ull

H and psep
L = p f ull

L + z1−c
2 ,

with supporting beliefs given by b(p) = 1 if p < psep
L and b(p) = 0 otherwise.

II.6.2 Proof of Proposition 4

Suppose that ppool is the price in a pooling equilibrium. As consumer beliefs must be correct

at the pooling price, it must be that b(ppool) = λ , and profits will be given by Π(ppool,H,λ ) =

ppool(1
2 +θ +λωXH − ppool) and Π(ppool,L,λ ) = (ppool − c)(1

2 +θ +λωXH − ppool). There are

now two cases to analyze; the ω < 0 case is shown here, with the ω > 0 being analogous. 20

Given that ω < 0, it must be that the high type is earning profits at least as large as full information

profits, otherwise the high type would deviate to its full information price regardless of beliefs.21.

Therefore, it must be that c < ppool < 1
2 +θ +λωXh. Solving for the larger of the two prices such

20When ω = 0 firms always have incentive to charge full information prices
21 Note that if the pooling price occurs at the full information price of the high type, then the pooling profits for the

high type are necessarily higher than the high type’s full information profits
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that Π(ppool,H,λ ) = Π(p′H ,H,0) yields:

p′H =

1
2 +θ +

√(1
2 +θ

)2−4ppool
(1

2 +R+λωXH − ppool
)

2
,

which can easily be shown to be real as the expression under the square root is a concave quadratic

(in ppool) that is positive at its minimum; moreover, it can easily be shown that ∂Π(p,H,0)
∂ p |p′H < 0.

Therefore, by the strict concavity of the profit functions for a fixed b, if b(p) = 0 for any price

p > p′H , the resulting profits for the high type at p would be less than the high type’s pooling profits

at ppool .

Solving for the larger price of the two prices such that Π(ppool,L,λ ) = Π(p′L,L,0) yields,

p′L =

1
2 +θ + c+

√(1
2 +θ + c

)2−4
(

ppool
(1

2 +θ +λωXH + c− ppool
)
− cλωXH

)
2

,

which can easily be shown to be real as the expression under the square root is a concave quadratic

(in ppool) that is positive at its minimum; moreover, it can easily be shown that ∂Π(p,L,0)
∂ p |p′L < 0.

Therefore, for any price p < p′L, if b(p) = 0 the profits for the low type would be greater at p than

at the pooling price. What remains is to prove that p′H < p′L, which can be shown, and a proof is

provided in the technical appendix. Therefore there will be a price p between p′H and p′L such that

if b(p) = 0, the profit for the high type will be less than the pooling equilibrium profit, but the profit

for the low type will be greater than the pooling equilibrium profit. Thus by the Intuitive Criterion,

the beliefs at this price must be 0, and the pooling equilibrium fails refinement. The ω > 0 case is

similar, and therefore refinement by the Intuitive Criterion eliminates all pooling equilibria of the

model.

To see that there can be no partial-pooling equilibria, suppose that pp−pool is a pooling price that

is part of a partial-pooling equilibrium. As there is a positive probability of either type choosing

pp−pool , let φ ∈ (0,1) denote the true probability that the firm is the high type given the price

pp−pool is observed by consumers. As the above proof that all pooling equilibria fail refinement

by the Intuitive Criterion was derived using an arbitrary λ (which in the demand/profit equations

above is interpreted as the true probability of the firm being the high type given the observed pooling
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price), the same proof can be used to show that the partial-pooling price pp−pool will fail refinement

as well, simply by replacing λ with φ in the analysis. As a result, there will always be at least one

firm with incentive to deviate from pp−pool , and refinement by the Intuitive Criterion will eliminate

all partial-pooling equilibria.

II.6.3 Proof of Proposition 7

Here the case for ω < 0 is shown, with the ω > 0 case being similar and left to the reader. Since

consumers must have correct beliefs in a Perfect Bayesian equilibrium, by Lemma (4) it must be that

a≤ λ̂ γ2
S and a≤ λ̂ γ2

A in order for both types of consumer to audit in a single-price equilibrium. By

Lemma (15) the only possible SPFA equilibrium price is pSPFA = p f ull
H . The incentive compatibility

constraints are then given by:

Π
11(p f ull

H ,H,λ )≥max
p≥0

Π
δAδS(p,H,b(p)) (II.16)

Π
11(p f ull

H ,L,λ )≥max
p≥c

Π
δAδS(p,L,b(p)) (II.17)

Note that since the firm’s type is known by all consumers in an SPFA equilibrium, the high type

earns full information profits. This implies that the prices at which the high type is indifferent

between charging pSPFA = p f ull
H and charging a different price at which b(p) = 0 (mimicking the

low type) are the same as in condition (II.15). Thus if b(p′) = 0 for any p′ such that p′ ≤ .5+θ−z1
2 or

p′ ≥ .5+θ+z1
2 , the high type would have no incentive to deviate to p′ from pSPFA.

If z1 ≤ c, then .5+θ+z1
2 ≤ p f ull

L ,and the high type has no incentive to deviate to p f ull
L when

b(p f ull
L ) = 0. Since p f ull

L maximizes the profits for the low type over all prices where the low type

is identified, and the firm is identified in an SPFA equilibrium, refinement of the SPFA equilibrium

by the Intuitive Criterion will require b(p f ull
L ) = 0 and the SPFA equilibrium will fail. Thus in any

SPFA equilibrium it must be that z1 > c.

If z1 > c, then .5+θ−z1
2 < p f ull

L < .5+θ+z1
2 , and it is easily shown that Π00( .5+θ−z1

2 ,L,0) <

Π00( .5+θ+z1
2 ,L,0). Using psep

L = .5+θ+z1
2 = p f ull

L + z1−c
2 , it must be that the SPFA equilibrium profits

for the low type are at least as large as those received by the low type when charging psep
L with
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b(psep
L ) = 0, or equivalently:

Π
11(p f ull

H ,L,λ )≥Π
00(p f ull

L +
z1− c

2
,L,0); (II.18)

otherwise, the Intuitive Criterion would require b(psep
L )= 0 and the low type would have incentive to

deviate from p f ull
H . It is shown in the proof of Proposition 1 that Π(psep

L ,L,0)≥maxp≥c Π(p,L,1),

which implies Π00(psep
L ,L,0) > maxp≥c Π00(p,L,1). Therefore, if z1 > c and condition (II.18) is

met, the SPFA equilibrium wherein pSPFA = p f ull
H with supporting beliefs given by b(p) = λ if

p = p f ull
H and b(p) = 0 otherwise, will satisfy the incentive compatibility constraint (II.16) and

(II.17). Moreover, the strict concavity of the low type’s profit function at a fixed b guarantees the

low type would have no incentive to deviate to any p for which b(p) = 0 that does not satisfy

condition (II.15), and while the low type may have incentive to deviate to some price p that does

satisfy condition (II.15) if b(p) = 0, the high type would also have incentive to deviate to any such

p. Thus the SPFA equilibrium wherein pSPFA = p f ull
H with supporting beliefs given by b(p) = λ if

p = p f ull
H and b(p) = 0 otherwise will satisfy the Intuitive Criterion. As condition (II.18) reduces

to z1 > 2c−ωXH the necessary and sufficient conditions to guarantee the existence of an SPFA

equilibrium satisfying the Intuitive Criterion in which pSPFA = p f ull
H with supporting beliefs given

above are a≤ λ̂ γ2
S , a≤ λ̂ γ2

A, and z1 > max{c,2c−ωXH}= 2c−ωXH . These conditions are shown

to result in a non-empty set in the main text.

II.6.4 Proof of Proposition 8

Consider a potential SPAA equilibrium price pSPAA. As only X-avoiders audit in the SPAA equi-

librium, this implies that γ2
S < γ2

A, and the audit decisions at out-of-equilibrium beliefs, (δA,δS), can

only take the form (0,0), (1,0), or (1,1), as (0,1) would require γ2
S > γ2

A. Given beliefs b(p) and the

audit decisions δA and δS, the profits for the high type when charging a price other than pSPAA are

given by equation (II.11), and the profits for the low type when charging a price other than pSPAA are

given by equation (II.12). If ω < 0, this implies that the lowest possible demand that the low type

could face at a given price p (over all possible beliefs and audit choices) is given by Q00(p,L,1),

yielding profits Π00(p,L,1). As a result, it must be that Π10(pSPAA,L,λ )≥maxp Π00(p,L,1). Sub-
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sequently, since maxp Π00(p,L,1)≥Π00(p f ull
H ,L,1), the low type would have no incentive to devi-

ate from pSPAA to p f ull
H . Therefore, it must be that Π10(pSPAA,H,λ ) ≥ Π00(p,H,1), otherwise the

Intuitive Criterion would require b(p f ull
H ) = 1 and the high type would deviate from the SPAA price.

Finally, (from the proof of Prop 1), since the high type is receiving profits at least as large as those

the separating equilibrium, the high type will have no incentive to deviate to psep
L . As a result, the

low type must be earning at least as much profit in the SPAA equilibrium as in the separating equilib-

rium, as otherwise the Intuitive Criterion would require b(psep
L ) = 0, and the low type would deviate

from the SPAA price. Now consider if ω > 0. In this case, the lowest possible demand the low type

could receive over all possible beliefs and audit decisions is given by Q00(p,L,0), yielding profits

Π00(p,L,0). Thus the lowest possible profits the low type can receive in the SPAA equilibrium are

given by maxp Π00(p,L,0), which are exactly the profits the low type would receive in the separat-

ing equilibrium. Moreover, since this implies that the low type has no incentive to deviate to psep
H , it

must be that the high type is making SPAA profits at least as large as in the separating equilibrium,

as otherwise the Intuitive Criterion would require b(psep
H ) = 1 and the high type would deviate from

the SPAA price. Therefore, regardless of the value of ω , it must be that both firm types are earning

profits at least as large as those of the corresponding separating equilibrium. As a result, for a SPAA

equilibrium to exist, it must be the case that c < pSPAA < .5+θ +αγAXH +(1−α)λγSXH so that

profits for both firm types are positive (as separating equilibrium profits are positive via assumption

A.1′)

Having established that SPAA profits are positive for both types, the proof is split into two cases

(note that there are no longer restrictions on ω). For the first case suppose that (1−α)(1−λ )γS ≤

−αγA, or equivalently, Π10(p,L,λ )≥Π00(p,L,1) for all prices p> c. As this implies that the SPAA

profits for the low type at any price p≥ c are at least as large as the profits the low type could earn

if believed to be the high type at the same price, it must be that Π10(pSPAA,L,λ )≥Π00(pSPAA,L,1).

Since avoider audit implies that Π10(p,H,λ )< Π00(p,H,1) for all p > 0, there will exist an ε price

deviation (upward or downward) such that the low type would have no incentive to deviate, but the

high type would have incentive to deviate (a rigorous derivation of this deviation is provided in the

technical appendix). As a result, the Intuitive Criterion will require b(pSPAA + ε) = 1 and the high

type will deviate from the SPAA price.

Now consider the second case in which (1−α)(1−λ )γS >−αγA, or equivalently, Π10(p,L,λ )<

49



Π00(p,L,1) for all prices p such that p ≥ c. Solving for the larger of the two prices such that

Π10(pSPAA,L,λ ) = Π00(p,L,1) yields

p′L = .5
(
.5+θ + c+ωXH

+
√
(.5+θ + c+ωXH)2 +4((pSPAA)2− pSPAA(.5+θ + c+(1−α)γSλXH)− c(ω− (1−α)γSλ )X)

)
,

which can easily be shown to be real as the expression under the square root is a concave quadratic

(in pSPAA) that is positive at its minimum under the assumption of this case. Moreover, it can easily

be shown that ∂Π00(p,L,1)
∂ p |p′L < 0. Therefore by the strict concavity of the profit functions for a fixed

b, if b(p) = 1 for any price p > p′L, the resulting profits for the low type at p would be less than

the low type’s SPAA profits. Solving for the larger of the two prices such that Π10(pSPAA,H,λ ) =

Π00(p,H,1) yields

p′H = .5
(
.5+θ +ωXH

+
√

(.5+θ +ωXH)2 +4((pSPAA)2− pSPAA(.5+θ +ωXH − (1−α)(1−λ )γSXH))

)
,

which can easily be shown to be real as the expression under the square root is a concave quadratic

(in pSPAA) that is positive at its minimum under the assumption of this case. Moreover, it can easily

be shown that ∂Π00(p,H,1)
∂ p |p′H < 0. Therefore by the strict concavity of the profit functions at a fixed

b, if b(p) = 1 for any price p < p′H , the resulting profits for the high type at p would be greater than

the high type’s SPAA profits. What remains to be shown to prove failure of the equilibrium is that

p′L < p′H , which can be shown to be the case, and a proof is provided in the technical appendix to

this paper. Therefore, there will always exist a price p between p′L and p′H such that if b(p) = 1 the

high type has incentive to deviate but the low type does not, and any beliefs that support an SPAA

equilibria will fail to satisfy the Intuitive Criterion. Furthermore, since the two cases exhaust all

possibilities for SPAA equilibria, refinement by the Intuitive Criterion eliminates all such equilibria.

II.6.5 Proof of Proposition 10

To see why such equilibria cannot exist under consumer audit, assume that phybrid is an equi-

librium price that is part of a hybrid equilibrium of the model wherein both types charge phybrid
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with positive probability. Given this, define φ ∈ (0,1) as the true probability that the firm is the

high type given that the price phybrid is observed. Therefore, since consumer beliefs must be correct

in equilibrium, it must be that b(phybrid) = φ . Given the consumer audit decision functions, there

are now four possibilities to consider. Depending on the parameters of the model, phybrid could

be a full pooling price (wherein no consumers audit), an SPAA price, an SPSA price, or an SPFA

price. Regardless of the which of the four possibilities characterizes phybrid , it is clear that this

price is analogous to the single-price equilibria of this section, with the differences being i) that

the true probability of the firm being the high type is no longer required to be λ , and ii) there are

other prices over which one or both of the firm types are mixing. However, phybrid , together with

φ , must still meet the profit maximization condition and survive refinement by the Intuitive Crite-

rion in order for the hybrid equilibrium to survive refinement. Since Propositions 6-9 are proved

using an arbitrary value for λ (interpreted in the single-price equilibria as the probability of the

firm being the high type given that the single price is observed) these same propositions will ap-

ply to phybrid , simply by replacing λ with the analogous φ . Therefore, it cannot be that phybrid is

a true pooling price, an SPAA price or an SPSA price, as any beliefs that support phybrid would

fail refinement by the Intuitive Criterion (by the proofs of Propositions 6,8 and 9). This leaves the

possibility that phybrid is an SPFA equilibrium; however, this would require that phybrid be equal

to the full information price of the weak type (as the weak type is fully identified at phybrid). To

see why this cannot result in a hybrid equilibrium, consider the case where ω < 0 (with the ω > 0

case being analogous). In order for the equilibrium to be a hybrid equilibrium in this case, one or

both of the firm’s types must be mixing between phybrid = p f ull
H and another price. First, suppose

that the high type is mixing between phybrid and another price p′ 6= phybrid . Since the high type is

earning full information profits
(

Π11(p f ull
H ,H,φ)

)
at phybrid it must also be earning full information

profits at p′; however, it cannot be the case that p′ is charged only by the high type, as this implies

that the high type is identified and by the strict concavity of the high type’s full information profit

function Π00(p′,H,1)< Π00(p f ull
H ,H,φ). Also, it cannot be the case that both firm types charge p′,

as this would require p′ to be an SPFA price as well (for reasons described above), again implying

Π11(p′,H,1)< Π00(p f ull
H ,H,1). Thus the high type could not be playing a mixed strategy in equi-

librium. Now suppose the low type is mixing between phybrid and some price p′ 6= phybrid . Again, p′

cannot be a full pooling price, an SPAA price, or an SPSA price, and as shown above, the high type
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would never choose to mix between phybrid and p′ if it where an SPFA price. Thus it must be that

only the low type charges p′, and thus b(p′) = 0 with no consumers auditing at p′. From the proof of

Proposition 1, p′ cannot be between .5+θ−z1
2 and psep

L = .5+θ+z1
2 as this would cause the high type to

deviate to p′ (as the high type is earning full information profits at phybrid and could earn larger prof-

its via mimicry by charing p′ in this price range). Additionally, from the proof of Proposition 1 and

by the strict concavity of the low type’s full information profit function, since .5+θ−z1
2 < p f ull

L and

Π00( .5+θ−z1
2 ,L,0)<Π00(psep

L ,L,0)≤Π11(p f ull
H ,L,φ), it must be that Π00(p,L,0)<Π11(p f ull

H ,L,φ)

for all p ≤ .5+θ−z1
2 ; moreover, Π00(p,L,0)< Π00(psep

L ,L,0) for all p > psep
L as well. Finally, from

Proposition 7, it must be that Π11(p f ull
H ,L,φ)≥Π00(psep

L ,L,0) in order for phybrid = p f ull
H to meet the

conditions of an SPFA equilibrium price. Therefore, the only possible way for a hybrid equilibrium

to exist occurs in the degenerate case when Π11(p f ull
H ,L,φ) = Π00(psep

L ,L,0), or equivalently, when

Π(p f ull
H ,L,0) = Π(psep

L ,L,0) in the case without consumer audit, so that the low type is exactly

indifferent between being fully identified at the high type’s full information price, and being fully

identified at the separating price. Note that this requires a deterministic relationship between the

parameters, in this case c = −ωXH(.5+θ+ωXH)
z1−ωXH

, and thus this case does not occur in general. There-

fore, refinement by the Intuitive Criterion eliminates all (general) hybrid equilibria in the model

with consumer audit.

II.7 Technical Appendix

II.7.1 Proof of maxp>c Π(p,L,1)≤Π

(
p f ull

L + z1−c
2 ,L,0

)
when c < z1 (For Propositions 1 and

9)

To see that this is the case, assume to the contrary that c− 2ωXH > 2z1, or equivalently after

squaring both sides and rearranging terms,

c(c+4ωXH)+8ωXH(
1
2
+θ +ωXH − c)> 0.

If c+4ωXH ≤ 0, then c(c+4ωXH)+8ωX(1
2 +θ +ωXH − c)≤ 0, resulting in the desired contra-

diction. Otherwise, if c+4ωXH > 0, note that A.1′ implies −ωXH < z1, and since c < z1:
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c(c+4ωXH)+8ωXH(
1
2
+θ +ωXH − c)

< z1 (z1 +4ωXH)+8ωXH(
1
2
+θ +ωX− c)

=−2ωXH(
1
2
+θ)− (ωXH)

2 +4ωXHz1 +8ωXH(
1
2
+θ +ωXH − c)

= ωXH

(
6(

1
2
+θ +ωXH − c)+(ωXH −2c+4z1)

)
< 0.

Thus c+ 4ωXH > 0 results in a contradiction as well. Thus it must be that c− 2ωXH ≤ 2z1, and

maxp>c Π(p,L,1)≤Π

(
p f ull

L + z1−c
2 ,L,0

)
when c < z1.

II.7.2 Proof that p′H < P′L for Proposition 4

Suppose to the contrary that p′H ≥ p′L, or equivalently (after simplifying, squaring both sides,

and rearranging) that:

1
2
+θ + c−2ppool +2λωXH +

√
(

1
2
+ c+θ)2−4(−p∗2−λcωXH + ppool(

1
2
+ c+θ +λωXH))≤ 0

Then since ω < 0 and ppool < 1
2 +θ +λωXH ,

1
2
+θ + c−2ppool +2λωXH +

√
(

1
2
+θ + c)2−4(−p∗2−λcωXH + ppool(

1
2
+ c+θ +λωXH))

=
1
2
+θ + c−2ppool +2λωXH

+

√
(

1
2
+θ + c−2ppool +2λωXH)2 +2ppoolλωXH −4(.5+θ +λωXH)λωXH

>
1
2
+θ + c−2ppool +2λωXH

+

√
(

1
2
+θ + c−2ppool +2λωXH)2 +2(.5+θ +λωXH)λωXH −4(.5+θ +λωXH)λωXH

=
1
2
+θ + c−2ppool +2λωXH +

√
(

1
2
+θ + c−2ppool +2λωXH)2−2(.5+θ +λωXH)λωXH

>
1
2
+θ + c−2ppool +2λωXH +

√
(

1
2
+θ + c−2ppool +2λωXH)2

≥ 0,

a contradiction. Thus p′H < p′L for all values of θ , XH , and c when ω < 0.
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II.7.3 Derivation of the ε price deviation for Proposition 10

There are two sub cases to consider. First, suppose that pSPAA ≤ argmax{Π10(p,H,λ )}, that

is, the SPAA equilibrium price is no larger than the price that would maximize the low type’s

profits in a SPAA equilibrium. Now consider the profits for both types at the price pSPAA− ε1 when

b(pSPAA− ε1) = 1, and ε1 is defined by:

0 <ε1 < min
{

pSPAA− c, .5(−(.5+θ +(αγA +(1−α)γS)XH −2pSPAA)

+
√
(.5+θ +(αγA +(1−α)γS)XH −2pSPAA)2 +4(1−α)(1−λ )γS pSPAA )

}
.

Note that the latter expression in this minimum can easily be shown to be positive under the assump-

tions of the model. As Π10(p,L,λ ) will be strictly increasing22 in p at pSPAA, and Π10(p,L,λ ) ≥

Π00(p,L,1) for all p > c, it must be that Π10(pSPAA,L,λ ) > Π00(pSPAA− ε1,L,1) so that the low

type would have no incentive to deviate from pSPAA if beliefs b(pSPAA− ε1) = 1. The profits for the

high type at pSPAA−ε1 are given by Π00(pSPAA−ε1,H,1), and these profits are greater than the high

type’s profits in the SPAA equilibrium when:

(pSPAA− ε)(.5+θ +(αγA +(1−α)γS)XH − pSPAA + ε)

> (pSPAA)(.5+θ +αγAXH +(1−α)γSλXH).

This results in a quadratic inequality in ε1, with solution given by:

.5
(
− (.5+θ +(αγA +(1−α)γS)XH −2pSPAA)

−
√
(.5+θ +(αγA +(1−α)γS)XH −2pSPAA)2 +4(1−α)(1−λ )γS pSPAA

)
< ε1 < .5

(
− (.5+θ +(αγA +(1−α)γS)XH −2pSPAA)

+
√

(.5+θ +(αγA +(1−α)γS)XH −2pSPAA)2 +4(1−α)(1−λ )γS pSPAA

)
,

where the lower bound is always negative and the upper bound is always positive. As a result, the

22If pSPAA = argmax{Π10(p,H,λ ), then Π10(p,L,1λ ) will not be strictly increasing at pSPAA; however, Π10(p,L,λ )
will be strictly less for all p < pSPAA.

54



high type will earn larger profits by deviating to pSPAA−ε1 when b(pSPAA−ε1) = 1. Thus there will

always be a price p < pSPAA for which b(p) = 1 will provide incentive for the high type to deviate,

but no incentive for the low type to deviate. Therefore there are no SPAA equilibria in this subcase

that satisfy the Intuitive Criterion.

For the second case suppose that pSPAA > argmax{Π(p,XH ,1,0;λ ). A similar argument to that

of the previous subcase shows that if b(pSPAA + ε2) = 1, where ε2 is defined:

0 <ε2 < min
{
.5+θ +(αγA +(1−α)γSλ )XH − pSPAA, .5

(
(.5+θ +(αγA +(1−α)γS)XH −2pSPAA)

+
√
(.5+θ +(αγA +(1−α)γS)XH −2pSPAA)2 +4(1−α)(1−λ )γS pSPAA

)}
,

then the high type would have incentive to deviate to pSPAA + ε , while the low type would not.

Therefore any SPAA equilibrium in this subcase will not satisfy the Intuitive Criterion. As the two

subcases above exhaust the possibilities of the larger case, there are is no SPAA equilibrium in

which Π10(p,L,λ )≥Π00(p,L,1) (ie. (1−α)(1−λ )γS ≥−αγA) that satisfy the Intuitive Criterion.

II.7.4 Proof that p′L < p′H for Proposition 10

To show that p′L < p′H , or equivalently (simplifying, squaring both sides, and rearranging)

2pSPAA(αγAXH)+ c(.5+θ −ωXH +2(1−α)γSλXH −2pSPAA)

− c
√

(.5+θ +ωXH)2 +4((pSPAA)2− pSPAA(.5+θ +ωXH − (1−α)(1−λ )γSXH))< 0.
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Then

2pSPAA(αγAXH)+ c(.5+θ −ωXH +2(1−α)γSλXH −2pSPAA)

− c
√

(.5+θ +ωXH)2 +4((pSPAA)2− pSPAA(.5+θ +ωXH − (1−α)(1−λ )γSXH))

=2pSPAA(αγAXH)+ c(.5+θ −ωXH +2(1−α)γSλXH −2pSPAA)

− c
√

(.5+θ +ωXH −2pSPAA)2 +4pSPAA(1−α)(1−λ )γSXH

<2pSPAA(αγAXH)+ c(.5+θ −ωXH +2(1−α)γSλXH −2pSPAA)− c
√

(.5+θ +ωXH −2pSPAA)2

=2pSPAA(αγAXH)+ c(.5+θ −ωXH +2(1−α)γSλXH −2pSPAA)− c|(.5+θ +ωXH −2pSPAA)|

=2pSPAA(αγAXH)+ c(.5+θ +ωXH −2pSPAA)− c|(.5+θ +ωXH −2pSPAA)|+ c(−2ωXH +2(1−α)γSλXH)

=2pSPAA(αγAXH)+ c(.5+θ +ωXH −2pSPAA)− c|(.5+θ +ωXH −2pSPAA)|+ c(−2αγA−2(1−α)(1−λ )γS)XH

< 0

since (1−α)(1−λ )γS >−αγA. Thus it must be that p′L < p′H . Therefore there will always exist a

price p between p′L and p′H such that if b(p) = 1 the high type has incentive to deviate but the low

does not, and any SPAA equilibria in this case will fail to satisfy the Intuitive Criterion.
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CHAPTER III

ASSESSING THE VALUE OF A PROXY FOR CONSUMER HEALTH CONSCIEN-

TIOUSNESS IN THE ESTIMATION OF DEMAND

III.1 Introduction

Nutrition is currently an active area of policy debate because of its potential to reduce obesity

rates as well as other associated health problems. Disentangling the effects heterogeneity in healthy

vs unhealthy eating habits is not only an important step toward understanding how consumer health

can be improved, but is also important in determining a firm’s optimal strategy across markets in

which consumer preferences over a product’s “healthiness” differ. To this end, we seek to assess

the value of a proxy variable for consumer health conscientiousness in estimation of demand for

products wherein a brand’s healthiness may be of concern. Naturally, a consumer’s determination

of a product’s healthiness is a matter of perception, which could be argued to be a function of any

number of observable and unobservable product characteristics together with the consumers’ level

of concern for their health (consumer health conscientiousness). One could attempt to perform an

analysis that controls for heterogeneity in the perception of a product’s healthiness. However, a

complicated analysis of perception is unnecessary given our stated goal (and would almost neces-

sarily be confined to an experimental setting). We proceed by investigating the significance of the

coefficients on the interactions of a variable measuring health conscientiousness with observable

product characteristics in the estimation of demand across a category wherein a brand’s “healthi-

ness” is important to some consumers.

The ideal dataset for such a study would be a panel of individual (household) purchases, com-

plete with demographic information including a variable serving as a measure of health conscien-

tiousness. Given such a dataset, the analysis would be a straightforward application of discrete

choice, such as a random coefficients logit model. However, to our knowledge no such panel cur-

rently exists. Therefore, we apply the discrete choice model presented in Nevo (2001) to a simulated

population of households combining data from both the Current Population Survey (henceforth

57



CPS) and the Behavioral Risk Factor Surveillance System (henceforth BRFSS) in order to asso-

ciate each household with a dummy variable for smoking. Given the well known and very serious

health implications of smoking, the result is a simulated panel of households for each city that in-

cludes an easily justifiable proxy variable for consumer health conscientiousness. This dataset is

then used to investigate whether or not the coefficients on the interaction of the smoking dummy

and health-related product characteristics are statistically significant in the estimation of demand in

the ready-to-eat cereal market; a category chosen for the substantial variation in the characteristics

associated with healthy eating, such as sugar, fat, and fiber content, and for the variety of brands

that target health-conscious consumers.

This investigation is of interest for two reasons. First, if consumer health conscientiousness is

an important component in the decisions of consumers and firms, models that do not adequately

control for this could produce biased estimates. Thus, the significance of the interactions in this

paper should be of interest to both marketers and economists. Obviously, knowing that a variable

is important is somewhat moot if the variable is not available in the data. To this end, our analysis

also provides necessary evidence for firms considering the collection of health-related demographic

variables, as there are significant costs in collecting, storing, and protecting consumer data. The final

reason that the results of this paper are important is that if the fairly basic interactions considered

in this model have significant effects on demand, it stands to reason that a more complex model of

consumer perception, product “healthiness” and product characteristics is justified and potentially

valuable to marketing academics and practitioners.

III.1.1 Outline

Section 2 of this paper describes the consumer demand model. Section 3 provides a description

of the data used in the estimation. Section 4 outlines the estimation procedure, and Section 5

provides the results of the structural estimation. Section 6 concludes the paper.
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III.1.2 Related Literature

To our knowledge, there are no papers that use proxy variables for consumer health conscien-

tiousness in the estimation of demand for a product. However, there is a substantial literature in

the field of marketing consumer behavior that relates to our goal. Andrews, Burton, and Netemeyer

(2000), Kozup, Creyer, and Burton (2003), Raghunathan, Naylor, and Hoyer (2006), and Downs,

Loewenstein, and Wisdom (2009) are all examples of research directed at how consumers choose

healthy versus unhealthy products. These papers investigate the effects of nutrition claims, infor-

mation disclosure, and consumer perception on such choices. Though interesting and related, these

papers are the result of experimental work and yield no information with respect to our stated goal

other than suggesting that health conscientiousness may be valuable in the estimation of demand.1

As mentioned in the previous section, there is currently no individual-level panel dataset com-

plete with purchases and demographic information about consumer health conscientiousness. There-

fore, we use city-level scanner data together with demographic information from other sources to

create and analyze a model of individual demand at the aggregate level. The prominent paper by

Berry, Levinsohn, and Pakes (1995), henceforth BLP, develops the random-coefficients logit model

for aggregate data that is used in our analysis. This method allows the use of instrumental variables

to control for the endogeneity of prices, and is applied to the US automobile market (at the aggregate

level) to derive estimates for elasticities that allow for consumer heterogeneity in a structural model

without the unreasonable substitution patterns resulting from a basic multinomial logit analysis. A

key step in the process of estimation is the inversion of the market shares via simulation with a

technique presented in Berry (1994), alternatives to which are discussed in the conclusion of this

paper.

The model most similar to what we apply to our data is that of Nevo (2001), wherein he applies

the method of BLP to panel data from the IRI Marketing data set. A nice feature of this model is

that the panel structure allows the inclusion of brand-specific dummy variables, allowing for the

assumption of the exogeneity of product characteristics (required in BLP) to be relaxed. Nevo uses

this method to investigate the strategic behavior/market power of firms in the ready-to-eat cereal

1 The results from the consumer behavior literature may not be directly applicable to the model presented here, but
could be quite useful in the construction of a model that controls for consumer perception in the estimation of demand.
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industry. Though similar in construction, there are several differences between Nevo’s methodol-

ogy and what we present here. First, Nevo is not interested in consumer health conscientiousness.

More importantly, since Nevo does not control for health conscientiousness, any residual effects of

health conscientiousness not picked up by his demographic variables (age and income) are left in

the error term. As a result, if health conscientiousness is considered by firms in the pricing decision,

it must be assumed that health conscientiousness is uncorrelated across the markets within the dif-

ferent Census regions (South, Northeast, Midwest, West) for Nevo’s price instruments to be valid.

Another difference between Nevo’s model and our model is the determination of the size of each

market in the sample. Nevo simply sets the number of people in the market to the population of

the corresponding city. However, the stores in the IRI dataset are far from a census of the stores in

each city, and thus Nevo’s estimate of market size is a sizable overestimate. Moreover, the degree of

overestimation varies in magnitude from city to city, as the number (and size) of stores from which

data is collected in each city is not proportional to population. Alternatively, we seek to estimate the

number of people “served” by each store in the dataset, then aggregate this number over the stores

in each city to construct our market size estimates.

III.2 Consumer Demand

As mentioned in the previous section, there does not currently exist a panel dataset with individual-

level purchases together with a proxy variable for health conscientiousness. Therefore, to answer

the question at hand we adapt the model of consumer demand described in Nevo (2001), applicable

to aggregate-level datasets, wherein a consumer is assumed to either purchase a single unit of the

good2 or take the outside option. Suppose that for each of m = 1, ...,M markets there are i = 1, ...,Im

consumers, and j = 1, ...,Jm brands, together with a K-dimensional row vector of observable prod-

uct characteristics x j (other than price). Given this, if p jm is the price of brand j in market m and yi

is consumer i’s income, the indirect utility that consumer i receives from consuming a single unit of

2 The calculation of observed market shares is made via an assumption on the maximum amount of cereal a person
can consume in a single sitting (Nevo uses a maximum of 1 serving per day, per consumer). Thus the unit demand
assumption can be justified as reflecting a per-sitting decision, or can simply be viewed as a reasonable approximation
to true consumer demand. It is worth noting that there are recent papers that relax the unit demand assumption, such as
Nevo, Rubinfield, and McCabe (2005) and Gentzkow (2007). However, we believe that our goal of a simple analysis is
best served with the model at hand.
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brand j is given by3

ui jm = αi(yi− p jm)+ x jβi +ξ j +∆ξ jm + εi jm, (III.1)

wherein αi is the individual-specific marginal utility of income, βi is the K-dimensional vector of

individual-specific coefficients for product characteristics, ξ j is the (unobserved) mean contribution

to utility of brand j across all consumers in all markets, ∆ξ jm is the market-specific deviation from

ξ j, and εi jm is an individual-specific mean-zero stochastic deviation from ξ j. Given that αi and

βi determine how consumer i values brand j, it is natural to think that these coefficients will not

only depend on the product’s characteristics, but on the characteristics of the consumer as well.

To that end, suppose Di is a d-dimensional vector of demographic variables of consumer i. Since

a marketer (or an econometrician) cannot observe all characteristics of the consumer, let vi be a

K + 1-dimensional vector capturing the unobserved characteristics that interact with product char-

acteristics. Assuming that the unobserved characteristics vi are distributed multivariate normal and

are independent of Di,

(
αi

βi

)
=

(
α

β

)
+ΠDi +Σvi, vi ∼ N(0, IK+1), (III.2)

wherein Π is a (K+1)×d-dimensional matrix of coefficients on the interaction between consumer

demographic variables and product characteristics, Σ is a (K + 1)× (K + 1)-dimensional scaling

matrix of parameters determining the interaction of the unobserved consumer characteristics in vi

with the product’s characteristics, and α and β are the components of αi and βi that are identical

across consumers. Since α , β , and ξ j are invariant across all consumers, and ∆ξ jm is invariant across

all consumers in market m, the portion of consumer i’s valuation of brand j that depends upon the

characteristics of brand j can be broken into the sum of a mean valuation of the characteristics of

brand j across all consumers in the market and a heterogeneous (individual specific) component.

Defining x jm =
(p jm

x j

)
, a vector of product characteristics of brand j in market m, utility can be written

as follows:
3 Note that this indirect utility function is the result of a quasilinear utility function, wherein there are no wealth

effects (a reasonable assumption in the ready-to-eat cereal category). If this assumption is considered too strong for a
given product, utility can be constructed similarly to that of BLP (using Cobb-Douglas utility) so that wealth effects are
included in the model.
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ui jm = αiyi +δ jm + x′jm(ΠDi +Σvi)+ εi jm, . (III.3)

where the income term αiyi will be shown to have no effect, δ jm = x jβ −α p jm + ξ j +∆ξ jm is the

mean utility, and the remainder of the expression is a mean-zero individual-specific heteroskedastic

deviation from the mean utility. Note that this specification yields two distinct sets of parameters,

those that enter utility in a linear fashion (α, β , ξ jm) and those that enter utility in a non-linear

way (Π, Σ); this difference in parameter types is exploited to simplify the estimation procedure in

Section 3.2.

Based on the utility for each brand j, consumers will choose to purchase one unit of the brand

that provides the greatest utility, or choose to purchase none of the brands. To facilitate the latter

possibility, it is assumed that there is an outside good with indirect utility given by ui0m. The

components of the utility for the outside good are not identified individually, and are estimated only

via the coefficient on the intercept term in the x j matrix.

III.3 Data and Estimation

III.3.1 The Data

Given the model described above, the following data is required to proceed with the estimation:

i) market shares and prices of a variety of cereal brands in several different markets, ii) characteris-

tics of each cereal brand in our sample, and iii) the distribution of relevant consumer characteristics

in each of the markets in our sample, in particular, a characteristic that serves as a proxy for con-

sumer health conscientiousness. The prices and market shares (as well as our instrumental variables

to handle price endogeneity) all come from the IRI marketing database (described below). Con-

sumer characteristics are constructed by combining data from the annual March Current Population

Survey with data from the Behavioral Risk Factor Surveillance System. Finally, the cereal charac-

teristics were obtained by visiting grocery stores and looking at the labels of each cereal in our data

set.
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Table III.1: Cereal brands used in the analysis.

III.3.1.1 IRI Marketing Data

Information Resources, Inc. have recently made a large set of scanner data available for academic

research. These data cover 31 categories in 50 different markets from 2001 and 2006. Although the

full data set contains both grocery stores and drug stores, we limit our analysis to the market shares

of cereal sold in grocery stores. 4 The weekly store-level information is aggregated to the city-

quarter level, less store-quarters for which there are missing weeks as well as cities for which we do

not have sufficient consumer data. This leaves us with a total of 28 cities with observations for each

of 24 quarters. We define each city-quarter as a market, and thus we have 672 total markets in the

sample, with observations for each market-brand of the number of servings sold and revenue.5 Price

is the average price paid per serving (for each brand-market-quarter). We estimate demand across

the 23 universally available cereal brands listed in Table III.1, leaving us with a total of 15,456

observations.

The dependent variable in our structural model is market share. Thus, we need an operational

definition of market share that is a close approximation to the concept assumed in the underlying

demand model. This is accomplished by assuming that the total market size is some (maximum)

number of servings of cereal per person per day for each person in the market. In order to implement

this idea, an estimation of the number of people served by each store is required. In Nevo (2001),

the size of each market is estimated using the total population of the city (market) in question to

calculate the maximum number of cereal servings possible per quarter. As the IRI data is not a

4Our presumption is that cereal purchase patterns found in drug stores may not be representative of those found in the
rest of the market.

5Serving size was obtained from cereal packaging labels.
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census of all stores in the market, this estimation of market size will generally overestimate the

number of people served by the stores in the sample, and the degree of this overestimation may

vary substantially across markets. Moreover, the small fraction of the population of a given city that

actually shops at the included stores could also vary substantially over time. As a result, we chose

to estimate the market size based on the number of individuals “served” by each store, that is, the

total number of people in households wherein at least one individual from the household made at

least one purchase at the given store in the given quarter. Once the number of people served by each

store is estimated, we can then aggregate the number of people served by individual stores to get

the total number of people served by each market.

The basic idea behind our approach is to use household level data included in the IRI data set for

multiple stores in two US cities to estimate the conditional per capita consumption of 20 different

categories of goods purchased at grocery stores using local demographic information. We then use

the conditional averages and demographic data from the IRI scanner data markets to forecast per

capita consumption for each store in the full sample. This leaves us with a forecast of per capita

consumption for each of 20 product categories together with the observed total consumption in

those categories for every store/quarter in the dataset. Finally, we pick the number of people that

minimizes the sum of squared differences between actual volume sold and forecasted volume. This

gives us an estimate of number of people served in each store/quarter.

We begin by assuming that per capita consumption depends on price of a category (averaged

over the quarter and across all brands), and two demographic variables (age and income), and apply

what is essentially a representative agent approach.

Suppose that the quantity sold in category j, at store s, during quarter t is determined the fol-

lowing way:

Yjst = Nst ×g j(xst).

or on a per capita basis:

y jst ≡ Yjst/Nst = g j(xst).

Suppose now that the function g j(.) is such that the equations indexed by j above can be written

as in matrix form as
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ln(yst) = γ ln(pst)+Gxst .

where yst is a J×1 vector with the jth element equal to the volume sold per capita in category j at

store s during quarter t, γ is a J×J diagonal matrix of price elasticities6, pst is a vector of the log of

the average price per unit in each category, and where G is a matrix of coefficients that captures the

effect of demographic variables xst on the average quantity sold per quarter in each category. These

demographic variables are the log of income, the average age, and the percent of the population that

are children.

Prior to completing this stage of the estimation, the data are aggregated to the store-quarter

level. The volumes are averaged across people-weeks so that the unit of measure is physical units

per person per week. We then use the consumer panel data to estimate the system of equations

indicated above using seemingly unrelated regressions, resulting in parameter estimates γ̂ and Ĝ.

Next, using the (aggregate level) IRI demographic data linked to the individual stores, together

with the parameters estimated in the procedure outlined above, we predict the per capita consump-

tion in each category via

ln(ŷ jst) = γ̂ ln(p jst)+ Ĝxst

As Yjst is observed in the scanner data (and nst is the variable we wish to estimate), we assume

the model above can be applied to other stores7 yielding

Yjst = Nst ŷ jst + ε jst ,

where ε jst is the forecast error. Given this, we can use the generated regressor ŷ to run an OLS

regression using the J = 20 observations (for each combination of s and t in the data) and obtain an

estimate of Nst for each market.

There are, of course, potential problems in this estimation of market size. Forcing the regres-

6 For simplicity we assume that the cross-category price elasticities are zero, thus this matrix is diagonal.
7 The two US cities from which we estimate the model (Eau Clair, WI, and Springfield, IL) were specifically chosen

by IRI as cities that represent the “average” person in the US. While there are most certainly differences between the
populations of these cities and other cities in our dataset, we feel this should still provide a reasonable approximation of
the number of people served by a store in other cities.
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sion line through the origin removes the guarantee of mean zero errors in the OLS stage of the

regression, and could also result in endogeneity between the generated regressors (predicted per-

capita consumption) and the OLS errors. Figure III.1 provides a scatterplot of the OLS residuals

versus the predicted total sales volumes for 10 randomly-selected stores. As expected, given that

the regression line passes through the origin and that predicted total volumes must be positive, the

residuals for very small predicted total sales volumes tend to be positive. However, Figure III.1

still provides evidence that the errors are mean zero away from the origin. The lack of endogeneity

between the explanatory variable and the errors in the OLS stage (also potentially created by the

lack of a constant term) can be seen in Figure III.2, plotting the predicted per-capita consumption

for each category against the observed total volumes for 10 randomly selected stores. This graph

provides evidence that the OLS errors are still orthogonal to the generated regressors, and that the

estimation technique leaving the constant out of the regression is valid. Though it is clear from Fig-

ure III.1 that the residuals for the individual categories can be quite large relative to the predicted

total volumes, it should be noted that the estimates of the number of people served by each store

are consistent across quarters, while also tracking well with the observed total volumes of the cate-

gories for stores that are decreasing in total sales volumes (and subsequently the number of people

the store serves). Moreover, an in-sample pseudo R-squared calculation using the IRI household

panel data (wherein we have the true value of N jst) yields a value of 94%, indicating that the above

method does have significant explanatory power for predicting the number of people served by a

given store. We contend that this procedure provides a much better picture of the size of the market

than simply setting the number of people served by each market equal to the population of the city.

The final step in estimating market size is to define the maximum number of servings of ce-

real per person per quarter. Nevo (2001) makes the assumption that each individual consumes a

maximum of one serving per day, though the data shows that some people, on average, consume

significantly more than one serving of cereal per day. Analysis of the IRI Household Panel Data,

reflected in Figure III.3, indicates that the median household consumes 5.3 servings of cereal per

person per week and 10% of households consume more than 7 servings per person per week (based

on a serving size of 28 mg). Though Nevo’s estimation of market size is unlikely to be affected

by this (given that the population of a city is a significant over-estimate of the people who enter

the stores in the data set), to insure an accurate representation of the market (and to assure that the
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Figure III.1: Residuals versus fitted values.

Figure III.2: Predicted per-capita consumption versus total volume.
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Figure III.3: Kernel density estimate of consumed weekly servings per person.

outside share is nonnegative) we take the highest per capita total cereal consumption found in the

data set and use that as the basis for market size computation (slightly less than 3 servings per day).

Given this, we can calculate the market size for each individual store (and for each market, which is

the sum across all stores in a city/quarter).

III.3.1.2 Consumer Data

We simulate draws from the population of consumers using the March Current Population Survey

for the years corresponding to the cereal market share data. For our primary estimates, we sample

(with replacement) 40 individuals from the CPS for each market-year. The consumer variables we

consider are income (total household income divided by the number of individuals in the house),

income squared, age, and the dummy variable child, set equal to one if the individual is 16 years old

or younger. Income is deflated by the CPI-U specific to that market. For the unobservable consumer

characteristics, we simulate draws from an iid standard normal distribution.

Our proxy variable for health conscientiousness comes from data collected by the CDC via

the Behavioral Risk Factor Surveillance System (BRFSS). This annual phone survey is conducted

across the United States and includes a variety of demographic information including questions

about tobacco use, the consumption of fruits and vegetables, amount of physical exercise, etc. Fig-
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Figure III.4: Annual BRFSS smoking rates for each market

ure III.4 shows the smoking rates for the annual samples of the BRFSS for each of the 28 markets in

our data, demonstrating the relative consistency of the survey data (and the slow decline of smoking

over time). The problem, however, is that this information is limited to the adult that answers the

phone, and does not include information about others in the household. In order to estimate the full

structural model presented here, it is necessary to have a distribution of consumer characteristics

(including that of children), from which to simulate the market shares. Thus, the limitations of

the BRFSS prevent us from using this data alone. In order to construct a distribution of consumer

characteristics, we need to predict tobacco use in the CPS dataset using the BRFSS data set.

A simple approach would be to use the BRFSS survey data to predict smoking behavior across

all adults in the CPS data set. However, this would give no proxy variable for the health conscien-

tiousness of children. This could be handled by assigning a dummy variable that takes the value 1

if an adult within the household smokes. However, note that tobacco use is very likely correlated

within households, and thus predicting smoking across all adults across a market will result in an

upward bias in the number of households with an adult smoker.

To facilitate the construction of a variable that reflects some measure of tobacco use across a

market using the BRFSS data, we first estimate a probit model to predict the probability of smoking

by income, age, education level, and whether or not there are children in the home (the demographic

variables included in the BRFSS). After this, we draw a random adult from each household in the
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Table III.2: Number of observations for each income/education level

CPS data set, and using the results of the aforementioned probit model we forecast the probability

that each randomly selected person smokes. These probabilities are then used in a single Bernoulli

trial for each randomly selected (adult) individual from each household to determine a prediction of

whether or not the individual smokes or does not smoke. The resulting value of the dummy variable

is then extended to each individual in the household. It is important to note that since we are using

many years worth of the BRFSS data to estimate the probit, the parameter estimates for the probit

model are constant for each city (market) across all quarters in the dataset.

Though psuedo R-squared calculations for the probit model in each individual market yield very

low numbers (between 7% and 10%), these results are not surprising given the many contributing

factors to individual smoking behavior (beyond age, income and education level). Moreover, if these

demographic variables easily explained smoking behavior, then these same demographics would be

able to control for health conscientiousness (given our assumption that smoking is a good proxy

for health conscientiousness), and so the low explanatory power of these variables in predicting

smoking behavior suggests the potential value of information about smoking behavior in the esti-

mation of demand. On the other hand, our technique does do well in aggregate. Given income and

education levels, Table III.2 provides the total number of observations for each income/education

combination, while Table III.3 provides the difference between the aggregate predicted rates and

the true aggregate rates from the BRFSS. As shown by these results, the model provides predictions

that track well with aggregate smoking rates for income/education blocks with many observations.
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Table III.3: Difference between predicted and actual smoking rates by income/educaton level.

Therefore, as the individual dummy variable will reflect both the explained variation in the city-level

probit model and the across-city variation in smoking rates, we contend that this variable is a rea-

sonable proxy for health conscientiousness (provided that health conscientiousness is significantly

correlated across individuals within a household).

III.3.1.3 Instruments

We instrument prices with an average of that brand’s price in all other markets in the region for each

of 24 quarters. 8 For example, the price of Cheerios in Chicago during Q1 in 2001 is instrumented

by the average price of Cheerios in the Midwest excluding Chicago for each of the 24 quarters in

the data set. Note that these instruments should be correlated with market-level unobservables that

effect endogenous prices, and thus are reasonable instruments.

III.3.2 Estimation

Given that each consumer is assumed to purchase a single unit of one brand, or purchase nothing

at all, we can define the set of variables for which a consumer will choose to purchase good j; if x·m

is the matrix of characteristics, p·m is the vector of prices, and δ·m is the vector of mean utilities (the

same for all consumers in the market), for all brands in market m, this set is:

8The IRI markets are assigned to one of four census regions: West, Midwest, South, or Northeast.
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C jm(x·,m, p·,m,δ·,m;Π,Σ) = {(Di,vi,εi jm)|uikm ≤ ui jm∀k 6= j}.

Assuming that Di has a known distribution F(D), εi jm has distribution F(ε), and the distribution

of vi is F(v), we can use the assumed independence of these variables to derive the market share for

brand j in market m (assuming that consumers are never indifferent between products):

s jm =
∫

C jm

dF(D)dF(v)dF(ε). (III.4)

As previously mentioned, F(v) is a multivariate normal distribution, and we assume that the

values for εi jm are i.i.d. and that F(ε) is a type 1 extreme value distribution. As we “observe” the

market share of each brand in our data set, the above market share equation, which is dependent

upon the values of the parameters, suggests a comparison between the observed market shares and

those predicted via the consumer model. To facilitate easier calculation of s jm, it could be assumed

that consumers are identical save for the value of εi jm, and thus the values of all parameters that enter

utility non-linearly are zero, αi = α , βi = β , and the only remaining error is the additively separable

error εi jm. Though restrictive, this assumption results in the model reducing to the multinomial logit

model, in which case equation (III.4) becomes

s jm =
exp(x jmβ −α p jm+ξ jm)

1+∑
r=Jm
r=1 exp(xrmβ −α prm+ξrm)

,

where income drops out due to its presence in the utility of all brands. Though computationally

easy to work with, the multinomial logit model results in unreasonable substitution patterns and

downward biased own-price elasticities as discussed in the literature review of this paper. For a

basis of comparison we do report results for the simplified (multinomial logit) model, but we then

estimate the full model using the method described in Section 2. To begin, we construct a set of

consumers for each market, complete with the vector of demographics Di, by randomly selecting a

fixed number (ncons) of “consumers” from the CPS data discussed in Section 3.1. Following Nevo

(2001) and BLP, we use this set of consumers to approximate equation (III.4) using the smooth

estimator
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s jm ≈
1

ncons

ncons

∑
i=1

exp(δ jm + x′jm(ΠDi +Σvi))

1+∑
r=Jm
r=1 exp(δrm + x′rm(ΠDi +Σvi))

. (III.5)

As this estimation of market shares is a function of the parameters, we could move forward with

the estimation by simply trying to minimize the difference between observed shares from the data

and the estimated shares; however, there are two problems with this approach. First, the number of

parameters over which the minimization occurs would be very costly in the computational sense.9

Second, and more importantly, price in this model is endogenously chosen by the firm, and thus

may be chosen in response to variables remaining in the modeled error (in this case the difference

between the observed shares and the shares given by equation (III.5)). Thus it is reasonable to

assume that price is correlated with the error term, and we are left with an endogeneity problem.

Both of these issues are resolved by applying the method put forth by BLP.

To implement this approach using the addition of brand dummy variables as in Nevo (2001),

note that Berry (1994) defines the structural error term to be the effect on utility of the unobserved

product characteristics, or ξ j +∆ξ jm. As brand dummy variables will capture all effects of unob-

served product characteristics that are identical across consumers (ξ j), this implies that the only

remaining structural error10 in the model is due to ∆ξ jm. Recall that δ jm = x jβ −α p j +ξ j +∆ξ jm,

and thus ∆ξ jm = δi jm−(x jβ−α p j+ξ j). Since product characteristics for a given brand are constant

across all markets in the data set, brand dummy variables will also capture the effect of observed

product characteristics (save for price), thus ∆ξ jm = δ jm− (B j−α p j), where B j denotes the value

of coefficient on the brand dummy variable for brand j. Therefore, ∆ξ jm can be written as a function

of the model’s parameters (as δ jm is a function of these parameters). Denoting the parameters as θ ,

and using a set of instruments for each brand/market, Z jm, such that E[Z′jm ·∆ξ jm(θ
∗)] = 0 for all j

and all m, where θ ∗ denotes the structural error at the true parameter values, we can then construct

a GMM estimator as follows:11

9The MPEC method put forth in Dubé, et al. (2012) allows direct maximization using a different objective subject
to the “constraints” given by the equality of observed versus simulated shares and moment conditions. We have not yet
implemented this approach.

10Note that ε is not considered as part of the structural error as the i.i.d. assumption on ε would imply this to be
superfluous in the moment condition expression.

11Note that our instruments, the average price of a brand over the region less the price within the given market, should
be correlated with any market-level shocks to the price that would otherwise be in the error term. Thus the identification
assumption is reasonable.
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θ̂ = argmin
θ

ξ (θ)′Zφ
−1Z′ξ (θ), (III.6)

wherein φ−1 is a weighting matrix consisting of a consistent estimator of E[Z′ξ ξ ′Z].

Now consider δ jm, the mean utility for brand j in market m, required to calculate the value of

the GMM objective. To solve for the value of δ jm for each brand in each market we numerically

invert the corresponding shares via the contraction mapping

δ
a+1
·m = δ

a
·m− ln(S·m)− ln(s·m), (III.7)

for m = 1, ...,M, a = 1,2, ..., and wherein S·m denotes the observed shares. This equation is iterated

until ||δ a+1
·m −δ a

·m|| is below a predetermined tolerance level, yielding an estimate for the vector δ·m

for each market. As a result, for any given value for the model parameters, δ·m can be estimated as

a function of those parameters. Also note that since α and B j enter the GMM objective in a linear

fashion, the FOC’s w.r.t. these parameters allow us to solve for the linear parameters in terms of the

nonlinear parameters.12 Therefore, since the only parameters required to estimate δ·m for all m are

those that enter consumer utility in a non-linear fashion (that is, α , β , and B, where B is the vector

of B j’s, are not required in order to get an estimate for mean utility), once the value of δ·m has been

estimated for all markets, this estimate can be used to get an estimate for the parameters α and B.

The estimates for δ·m, α , and B can then be used to calculate the value of the GMM objective.

To summarize, for a given set of starting values for the nonlinear parameters Π and Σ, we can

then estimate δ·m using the aforementioned contraction mapping. With the estimate of δ·m we can

estimate the values of α and B, and with all of these estimates we can calculate the value of the

GMM objective given by equation (III.6). We then search over values of Π and Σ to minimize this

objective, which is done using the optimization program Knitro with an analytical gradient.

There are now three details left to discuss. First, we must estimate E[Z′ξ ξ ′Z]. We follow Nevo’s

primary suggestion by starting with φ̂ = Z′Z, searching for a “first-stage” estimate of the parameters,

θ̂1, and then using φ̂ = ∑
M
m=1 ∑

Jm
j=1(∆ξ jm(θ̂1)

2Z′jmZ jm to find a (re-weighted) second-stage estimate

θ̂2. Second, the variance covariance matrix for the estimates above is calculated, correcting for

12Using matrix calculus, with XB denoting a matrix of prices and brand dummy variables, it can be shown that [αB·]′ =
(X ′LZΦ−1Z′XL)

−1X ′LZΦ−1Z′δ−−.
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the estimation error due to the contraction mapping. Finally, once an estimate of α , B·, Π, and Σ

is found, we follow Nevo in exploiting the fact that the brand dummy variable coefficients B j are

composed of the mean effects of the observed product characteristics x jβ and the mean effects of the

unobserved product characteristics ξ j so that B j = x jβ +ξ j. Thus by assuming that the conditional

expectation of ξ j given the observed product characteristics is zero (E[ξ |x j] = 0), and defining VB

to be the variance covariance matrix of the B̂′js, generalized least squares can be used to obtain

β̂ = (X ′V−1
B X)−1X ′V−1

B B,

wherein X = [x1 x2 ... xJ] is the matrix of product characteristics of all brands in the sample (i.e. the

observations are the brands), and ξ· = B−X β̂ .

III.4 Results

As a first step in investigating the interaction of health conscientiousness and product charac-

teristics, we estimate the model as a multinomial logit as described in Section 3.2. This reduces

the problem to a regression of ln(S jm)− ln(S0m) (wherein S0m is the share of the outside good in

market m) on price and product characteristics, with added interactions of product characteristics

and consumer variables that are averaged over markets. These regressions are repeated for various

combinations of these variables using two stage least squares regressions with the aforementioned

price instruments, together with dummy variables for each brand and quarter. The final regression

(vi) also includes a dummy variable for each market. The results of these regressions can be found

in Table III.4, with heteroskedastically robust standard errors reported in parentheses. Note that

throughout these results there is a positive and significant coefficient on the interaction of the to-

bacco proxy variable and sugar content, while the interactions of this proxy with fat content and

fiber content are consistently insignificant. Though these regressions do support the notion that a

proxy variable for consumer health conscientiousness is important in the estimation of demand, we

must be careful in the interpretation of what this means given the aggregated (city-level) structure

of this simplified model. For example, in regression (v) the coefficient on the interaction of the

proportion of children in a market with the fiber content of a product is positive and significant
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(a seemingly counter-intuitive result). These results demonstrate the difficulty in estimating such

effects using city-level consumer charactersitics, as the proportion of children is highly correlated

with household size and age, and the resulting coefficient on this interaction could be explained

via non-linearity of demand for fiber with respect to age combined with other variables “soaking

up” the intuitive effects of the proportion of children in a city. While these logit results do provide

evidence of the potential value of our smoking dummy variable in the estimation of demand, they

also provide strong motivation for continuing to the full model, wherein the included consumer

heterogeneity allows these variables to differ across consumers in the same market.

The next step is to estimate the full random-coefficients logit model using the smoking proxy

variable. This was performed with a simulation draw of 40 consumers, resulting in the estimates

presented in Table III.5 below,13 where the first column presents the minimum-distance estimates,

the second column is the estimates of the deviations from these values due to the unobserved con-

sumer characteristics, and the final five columns are estimates of the coefficients on the interaction

terms (with standard errors in parentheses).

The model results in estimates of price coefficients (and others) that are in line with previous

results, including a negative coefficient on the interaction of child and fiber. While the coefficient

on the interaction of tobacco and sugar is nearly, but not quite significant at the 10% level, it does

suggest that tobacco use may be linked with increased demand for sugary cereals (especially in leu

of the previously provided multinomial logit results). Moreover, the coefficients on the interaction

terms of the smoking dummy and the other health-related product characteristics are also quite close

to being significant at the 10% level, and in-line with what a researcher might intuitively expect.14

Given these results with our simulated explanatory variables, it stands to reason that further anal-

ysis with survey data and/or panel data containing stated smoking behavior could sharpen these

results significantly. In any case, marketers and economists should take note that measures of health

conscientiousness could have significant interactions with health-related product characteristics in

the determination of demand, and that the collection of these (possibly very relevant) consumer

characteristics should be considered.
13The simulation was run 10 times for pseudo-random starting values generated from a normal distribution with mean

zero and standard deviation 25, all of which converged to the results presented here. The (tight) inner loop tolerance for
the contraction mapping was 10−14.

14Higher fat content is typically associated with cereals containing nuts, and thus the negative coefficient on fat would
indicate that people who smoke are less likely to purchase such cereals.
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Table III.4: Multinomial logit results.

VARIABLES (i) (ii) (iii) (iv) (v) (vi)

Price -4.755*** -5.026*** -4.709*** -4.994*** -4.973*** -6.308***

(0.212) (0.212) (0.212) (0.212) (0.212) (0.212)
Log of Median Income 0.755*** 0.663*** 0.819*** 0.707*** 0.736*** -1.069

(0.0306) (0.0308) (0.0639) (0.0639) (0.0664) (1.107)
Log of Median Age -1.405*** -1.148*** -1.409*** -1.150*** -1.209*** -3.427

(0.117) (0.116) (0.116) (0.116) (0.274) (2.664)
Median HH Size 0.175*** 0.153*** 0.204*** 0.174*** 0.189*** -0.119

(0.00904) (0.00907) (0.0183) (0.0183) (0.0206) (0.830)
Prop of Children -6.991*** -6.453*** -6.987*** -6.451*** -7.248*** -10.83

(0.263) (0.260) (0.263) (0.260) (0.607) (6.973)
Sugar Content 0.00101 -0.000604 -0.0331*** -0.0563*** 0.125 -0.0649***

(0.00230) (0.00228) (0.00744) (0.00855) (0.101) (0.00582)
Fiber Content 0.300*** 0.298*** 0.374*** 0.374*** -0.0556 0.367***

(0.0172) (0.0170) (0.0231) (0.0248) (0.220) (0.0166)
Fat Content 4.350*** 4.254*** 4.477*** 4.413*** 3.914*** 3.943***

(0.212) (0.210) (0.214) (0.215) (0.691) (0.151)
Tobacco Use - -1.772*** - -2.364*** -2.334*** -9.012***

(0.0945) (0.213) (0.215) (2.403)
Tobacco x Sugar - - - 0.101*** 0.111*** 0.106***

(0.0201) (0.0202) (0.0145)

Tobacco x Fiber - - - -0.00845 -0.0364 -0.0211

(0.0453) (0.0455) (0.0323)
Tobacco x Fat - - - -0.166 -0.189 -0.135

(0.128) (0.130) (0.0848)
Age x Sugar - - - - -0.0351 -

(0.0249)
Age x Fiber - - - - 0.0763 -

(0.0542)
Age x Fat - - - - 0.106 -

(0.163)
Income x Sugar - - -0.0476*** -0.0437*** -0.0332*** -0.0431***

(0.00597) (0.00599) (0.00641) (0.00433)
Income x Fiber - - 0.0307** 0.0295** 0.000164 0.0250**

(0.0135) (0.0136) (0.0145) (0.00973)
Income x Fat - - 0.221*** 0.215*** 0.191*** 0.218***

(0.0355) (0.0353) (0.0383) (0.0260)
Children x Sugar - - - - -0.279*** -

(0.0567)
Chidren X Fiber - - - - 0.800*** -

(0.125)
Children x Fat - - - - 0.616* -

(0.361)
HH Size X Sugar - - 0.00211 -0.0168*** 0.00764*** 0.00343***

(0.00162) (0.00361) (0.00189) (0.00109)
HH Size x Fiber - - -0.0167*** -0.0168*** -0.0304*** -0.0165***

(0.00359) (0.00361) (0.00428) (0.00241)
HH Size X Fat - - 0.00439 0.00200 -0.00566 0.000947

(0.0102) (0.0102) (0.0119) (0.00647)
Constant -4.479*** -4.925*** -4.563*** -4.875*** -4.527*** 6.511

(0.577) (0.575) (0.578) (0.578) (1.160) (8.365)

Observations 15,456 15,456 15,456 15,456 15,456 15,456

1st stage R-Sq 0.9499 0.9449 0.9449 0.945 0.945 0.9561

1st stage F-Test 382.27 380.05 381.691 378.801 380.052 232.745

R-Sq 0.759 0.765 0.761 0.767 0.768 0.889

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table III.5: Results of the full model.

III.5 Conclusion

The goal of this paper is to investigate whether or not the interactions of a proxy variable for

consumer health conscientiousness and easily-observed health-related quantitative product charac-

teristics are useful in the estimation of demand for products where healthiness may be a concern

to some consumers. We have shown that there is some evidence to suggest that smoking behavior,

as a proxy for health conscientiousness, may be an important explanatory variable in the determi-

nation of demand for health-related product characteristics of ready-to-eat cereals. Replication of

the above estimation procedures using different proxy variables and/or different food categories, or

using a true household panel complete with stated smoking behavior, may provide more evidence

for the importance of considering consumer health conscientiousness in the estimation of demand.

These results may not only provide an impetus to pursue the question with more complex models,

they may also provide guidance in how such models could and/or should be constructed. The use of

health rankings of products, surveys of consumer perceptions about products, and other such data

sources could potentially be justified by our analysis.

It should also be noted that while we have chosen to use the random coefficients logit with the

BLP-style contraction mapping to analyze our aggregate-level dataset, there are alternatives to this

method. The MPEC method put forth in Dubé, Fox, and Su (2012) uses the properties of sparse
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matrices to directly minimize the objective using the share equation as an extra constraint, and the

SQUAREM technique suggested by Reynarts, Varadhan, and Nash (2012) is also an alternative to

the BLP-stlye contraction mapping. Finally, the Bayesian technique presented in Jiang, et al. (2009)

provides an additional avenue with which aggregate level data could be used to estimate the model

of this paper. Though replication of the above results should be possible with the above methods, we

believe the next step in the analysis is to collect individual-level data rather then rely on (inherently

noisy) aggregate-level estimation techniques.
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CHAPTER IV

ESTIMATING THE COMPONENTS OF HOUSEHOLD DEMAND USING REVEALED

PREFERENCE DATA

IV.1 Introduction

One of the primary goals of marketing is to determine how a consumer base feels about the

brands and/or relevant product characteristics in a product category. The ability to answer such

questions is complicated by the significant amount of consumer heterogeneity present within most

markets, which must be handled in such a way as to draw inference about “average” consumer

preferences while still allowing for the recovery of actionable information about how preferences

differ across the consumer base. This last point is especially important given the increasing amount

of data available to marketing practitioners about consumer characteristics and purchase history,

and the ever-improving ability to reach individual consumers with targeted marketing.

An often overlooked problem in modeling consumer preferences originates from the form of

a common type of dataset, the household-level panel. It is widely accepted that the decisions of

a household are affected by the interactions of the individuals within the household, and that a

single set of preferences is insufficient to control for the underlying amalgamation of the (possi-

bly) several sets of preferences that leads to observed purchasing behavior. Though there are many

methods for handling heterogeneity across households (e.g. Random coefficients models, finite

mixture models, and continuous mixture models1), almost every model in the extant literature on

the estimation of consumer preferences either treats the household as having a single set of prefer-

ences or ignores households altogether and (essentially) assumes that individuals act independently.

These approaches are somewhat defensible in much of the econometrics literature, as the parame-

ters yielding individual consumer preferences are typically considered nuisance parameters in the

estimation of the aggregate-level parameters used in market analysis and/or policy. However, given

the aforementioned goal, such models are inadequate for the purposes of marketing.

1 For a thorough discussion of the model available for handling heterogeneity across households, and their applicabil-
ity to marketing problems, see Allenby and Rossi (1998).
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In contrast, this paper presents a hierarchical Bayesian finite mixture model that allows the indi-

vidual purchases in a household panel to be segmented into similar groups. The model estimates the

parameters of the distribution of each segment as well as the probabilities that a given household’s

purchases belong to each segment, yielding valuable information about the “important” segments

within a household demographic. Thus, the model presented in this paper is novel in that it retrieves

both aggregate-level preferences and the individual-level information useful for targeted marketing,

while also allowing for household purchases to be the result of multiple sets of preferences. Ad-

ditionally, the Markov chain Monte Carlo (henceforth MCMC) algorithm for estimating the model

may be run in parallel across households, allowing for application to the large datasets that are in-

creasingly common in practice. For the purposes of demonstrating the function of the algorithm, the

model is applied to a simulated household panel dataset, with convergence providing good results

in the estimation of the true parameters used in the generation of the data.

IV.1.1 Outline

Section 2 of this paper describes the consumer demand model. Section 3 provides a description

of the simulated data on which the model is applied. Section 4 demonstrates the potential problems

with ignoring within-household heterogeneity. Section 5 provides the algorithm for the MCMC

routine. Section 6 presents the results of the model when applied to the simulated dataset and

discusses application to real household panel data. Section 7 concludes the paper.

IV.1.2 Related Literature

One potential method for handling the within-household heterogeneity discussed above is the

technique found in Nevo (2001), applying the popular model of Berry et al. (1995) to household-

level scanner data from U.S. grocery stores. Nevo’s model specifies the utility for individuals as a

function of the interactions between product characteristics and the characteristics of the individual

(including age). However, as the data used in the Nevo’s analysis is limited to aggregate-level

shares of each brand (i.e. purchases are not linked to a specific person or household), estimation

is achieved through simulation of the city-level markets. This is accomplished by taking a random
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sample of individuals from the current population survey (census data) of the cities in question and

using the given values of the utility parameters to calculate the simulated shares of each brand in

each market. Estimation of the parameters proceeds via a method for selecting the parameter values

that minimize the distance between the observed shares and the simulated shares in each market.

While useful in many applications, this method has several drawbacks that make it unsuitable for

handling the problem highlighted here. First, Nevo’s model essentially assumes that each individual

makes their own purchases independently, ignoring the interactions between individuals in each

household that result in the observed shares. Though my model does not explicitly estimate these

interactions, any such effects will be picked up in the simulation of the household-level preference

distributions. Second, Nevo’s method is designed for aggregate-level data, and while household-

level purchase data could be aggregated to create such a dataset, this results in the loss of potentially

useful information (such as the vector of prices faced by individual households). Obviously, this

loss of information can result in poor estimation of the individual vs. product interaction parameters.

While these are nuisance parameters in Nevo’s analysis, the fact that these parameters are the the

unique points of interest to marketers make this technique unsuitable for the problem at hand.

Another method that could be used to address the problem at hand is given in Dubé (2004). In

this paper, Dubé develops a model of household demand that is applied to household-level puchase

data within the carbonated soft-drinks category. In order to handle the issue of multiple discrete-

ness (i.e. multiple brands being purchased for a single household on a given shopping trip), Dubé

defines the concept of a consumption occasion. Each purchase made by the household is assumed

to maximize the utility for a specific consumption occasion, and the preferences for each product at

a specific occasion are drawn from a household-specific distribution (a distribution of heterogeneity

within each household’s purchases). This distribution allows each household’s set of purchases to

be split over multiple preference draws (from the aforementioned distribution), and the estimated

parameters of the this distribution can then be used to explain the observed multiple discreteness

in the soft drink data. While my model adopts the notion of each purchase being linked to a “con-

sumption occasion,” a reasonable approach to handling variety-seeking in a household panel, there

is an important flaw in Dubè’s model with respect to the goal of this paper.

While Dubé does explicitly model within-household heterogeneity, the model assumes the dis-

tribution of the vector of utilities for a given household is distributed multivariate normal with a
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diagonal variance-covariance matrix. As a result, the unimodal structure of these distributions pre-

vents the model from picking up differences in household preferences that are multi-modal. To see

this, consider an example in the ice cream category in which there are two types of occasions for

which a household purchases, one in which the adults in the household consume the ice cream and

strongly prefer brand a over brand b, and another where children are the consumers and strongly pre-

fer brand b over brand a. Modeling the distribution of this household’s utilities over the two products

with a bivariate normal distribution will provide poor estimates of the household’s true preferences,

as the unimodal distribution will (incorrectly) force the “average” of these preferences to be a more

likely draw than either of the true sets of preferences associated with observed purchases. This

problem is made worse by the use of a diagonal variance-covariance matrix in the within-household

heterogeneity distribution, resulting in parameter estimates that yield no information about how the

utility of brand a covaries with the utility of brand b. In this situation, Dubé’s model will provide the

marketer little to no evidence of the underlying preferences of such households, a serious problem

when such preferences are prevalent in the category.

Rather than using a single distribution to model within-household heterogeneity, the model

presented here applies what is known as a finite mixture model. In such models, the preferences

of an individual (yielding the vector of probabilities of choosing any one product) are assumed

to be described by one of finitely many “mixing distributions.” For the previous example, one

could imagine a model of the preferences over ice-cream flavors where adults are modeled with one

distribution and children are modeled with another. The usefulness of such models comes from the

ability to estimate the parameters of each of the mixing distributions without knowing, ex-ante, the

distribution from which the preferences of each individual arise. One method for evaluating such

models, known as the latent class model (henceforth LCM), is presented in Kamakura and Russell

(1989). As in McFadden (1974), Kamakura and Russel specify an individual’s utility to be a (linear)

function of product characteristics with a random (Type I extreme value) error component, but

with the parameters in the utility function of each consumer coming from one of finitely many

“segments.” It is assumed that the probability of each household belonging to a given segment

is fixed, and estimation of the model proceeds via maximum likelihood using the likelihood of

the observed purchase histories of the individuals. While Kamakura and Russell’s model is an

interesting, and very popular, method for segmenting a sample of households into homogeneous
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groups, it should be noted that this method alone does not address the aforementioned problem

of within-household heterogeneity. The LCM assigns each household to a single segment, and

therefore treats each household as having a single set of preferences.

The paper that is closest in structure to what is present in my model is that of Varki and Chintagunta

(2004), wherein an LCM is augmented by the possibility that the purchases of some proportion of

households are the result of a mixture of segments; that is, while some percentage of households

are assigned to a single segment, the purchases of the rest of the households are a mixture wherein

each purchase of the household results from the preferences of an individual segment. Varki and

Chintangunta’s choice model therefore allows for some degree of within-household segmentation

to be picked up in the estimation, including the percentage of households in which purchases are

the result of a mixture of segments and the parameters of the Dirichlet distribution that determines

the probabilities of membership to each segment. Though their model is a step in right direction,

there are still important reasons that Varki and Chintagunta’s model does not adequately solve the

problem. First, their model would have significant problems handling large datasets in which house-

holds purchase a wide variety of brands. This is because (as in most LCMs) the preferences for each

individual at each choice occasion are a single draw from a fixed distribution that is the same for

all members of the segment. As a result, if there is a significant number of households purchasing

several brands from a large set of possible brands, the distribution of product purchases assigned to

each segment for each household must reflect the fixed preferences of that segment. While this is

not an issue if the number of segments is large relative to the number of brands being considered,

or in cases where only a single brand is purchased fairly consistently (as in Varki and Chinatgunta’s

datasets of observed peanut butter and ketchup purchases), their model is ill-suited for datasets such

as ready-to-eat cereal and soft-drinks.

Another important drawback of Varki and Chintagunta’s approach is the treatment of the latent

probability that a single purchase belongs to a given segment (for those households with purchases

reflecting a mixture of segments). Households with different demographic characteristics will differ

substantially with respect to the segments that combine to yield their observed purchases. For

example, a household consisting of a young unmarried male will not likely have similar probabilities

of assignment across segments as a family with several children. In Varki and Chintagunta’s model,

these probabilities are all drawn from the same distribution for all households (a single Dirichlet
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distribution). While this Dirichlet distribution will be able to pick up some heterogeneity in the

assignment probabilities across households, the resulting parameters estimates will provide little

to no information about how these households vary across the segments. That is, if the Dirichlet

parameters are relatively small, as to allow for vastly differing probability vectors across households,

the resulting distribution will be very “flat” and will yield little information about the probability

of segment membership. However, if the estimated Dirichlet parameters are large enough to be

somewhat informative about segment membership they will severely restrict the ability of the model

to pick up heterogeneity in the assignment probabilities across household types, leading to dubious

results.

In defense of Varki and Chintagunta’s analysis, this is not likely an issue in the peanut butter

and ketchup categories to which they apply their model, as preferences may not vary as widely

across household types. Again, however, Varki and Chintagunta’s model is unsuitable for cate-

gories such as ready-to-eat cereal and soft drinks, wherein the assignment to different segments

will differ substantially across household types. A final problem with their model is that the esti-

mation proceeds by integrating over the aforementioned Dirichlet density (via simulated maximum

likelihood). Though the results include an estimated aggregate probability vector of all purchases

belonging to a given segment, the mixture probabilities of households are not individually identi-

fied. Therefore, though some households are modeled as a mixture across the segments, there is

little information about segment membership of these households recovered in the estimation. So

Varki and Chintagunta’s model does not provide much in the way of useful information for targeted

marketing.

By comparison, the model presented in this paper uses Bayesian techniques to fit a finite

mixture choice model, a technique presented in Diebolt and Robert (1994). I adapt the model of

Allenby et al. (1998), a variant of Diebolt and Robert’s model that (like Diebolt and Robert’s and

the typical LCM) assigns each household to a single segment to allow the individual choices of each

household to be the result of a mixture of segments (defined as “consumption occasion types).” This

allows my model to easily handle multiple discreteness/variety-seeking in complex markets such

as ready-to-eat cereal and soft drinks. Moreover, unlike the models above, my model allows the

probability vector of choice assignments to be drawn from a different Dirichlet distribution for

each pre-specified household demographic. The benefit of applying this method over the traditional
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LCM or hierarchical Bayesian mixture model is that within-household heterogeneity is modeled in

such a way as to estimate the distribution of preferences within each consumption occasion type,

while providing useful information about the how the choices of specific household (demographic)

types are distributed across the consumption occasion types. As a result, the model provides both

aggregate-level information about preferences and the more granular information about individual

households that is valuable in modern marketing, all while being logically and computationally

suitable for larger household panel datasets.

IV.2 The Model

The assumptions about household behavior used to derive the model are straightforward. As

previously mentioned, I follow Dubé (2004) in using the notion of a “consumption occasion.” A

consumption occasion, the specific point at which the product is consumed, can differ greatly across

individuals, or even across the same individual using a product for different purposes. For example,

ready-to-eat cereal can be consumed for breakfast or for a late-afternoon snack, with preferences

quite possibly being very different between these occasion types, even for the same individual.

Thus, a structure built upon the idea of a consumption occasion can be very flexible in handling

heterogeneity in purchase decisions, both across individuals and within the purchases of a single

individual. To link consumption occasions to the observed purchase choices of a household within

the context of a discrete choice model, it is assumed that each observed choice results from the

maximization of the household’s utility for a specific consumption occasion, so that each choice

corresponds to a single consumption occasion, and viceversa. These consumption occasions are

then assumed to belong to one of finitely many consumption occasion types, with the type of the

consumption occasion determining the preferences for the specific choice. These consumption oc-

casion types have similar, but not identical, preferences across households, and the probability that

a choice belongs to any one of the consumption occasion types is fixed for each individual house-

hold. Unlike the model of Varki and Chintagunta, each household’s vector of probabilities is not

restricted to be drawn from the same distribution, but these probability vectors are assumed to be

similar across demographically similar households. The choice model used to describe this structure

is then constructed using the following notation:
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i) The product is denoted by j ∈ {1,2, ...,J}

ii) The household is denoted by h ∈ {1,2, ...,H}

iii) The household demographic type is denoted by τ ∈ {1,2, ...,ϒ}

iv) The consumption occasion is denoted by t ∈ {1,2, ..,T}

v) The consumption occasion type is denoted by k ∈ {1,2, ...,K}

Given this, the utility for household h for a unit of product j at a consumption occasion of type k is

given by

Uhk = γhk j + εhk jt

where γhk j is the mean utility of household h for product type j at consumption occasions of type k,

and εhk jt is a stochastic deviation from that mean utility that is different for each single consumption

occasion of type k of the household. As all households are assumed to have similar, but not identical,

preferences for a given consumption occasion type, the γhk j for each consumption occasion type of

household h is a function of product characteristics defined as

γh jk = xh jβk +ξh jk

where xh j is a household-specific row vector of product characteristics, βk is a column vector of

coefficients that are the same across all households at consumption occasions of type k, and ξh jk

is household-product specific error for that occasion type. Thus, the term xh jβk is the mean utility

(given the value of the product characteristics) across all households at consumption occasions of

type k and ξh jk is the deviation from that mean utility for household h.

Estimation proceeds via a hierarchical Bayesian mixture model, the algorithm for which is de-

scribed in section 6 below, by assuming that the ε’s are distributed iid type I extreme value and

that the vector of ξh jk’s are distributed multivariate normal with variance-covariance matrix Σk.

Note that, given the resulting logit choice probabilities, the γ value for one of the products must

be fixed for the model to be identified, and thus there are J− 1 elements in the γh vector for each

household/occasion type. Therefore, xh jβk actually yields the difference in mean utility between
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the given product and the first (fixed) product. The values for the γh vectors are drawn using the

purchase choices of individual households, while identification of the βk vectors and the Σk matrices

is achieved using the observed values of the γh vectors across all households with a positive number

of choices from the corresponding occasion type k.

As previously mentioned, the vector of probabilities for assignment into the consumption occa-

sion types is the same across demographically similar households2, and this vector is denoted pvecτ

for each household type τ . These probabilities are identified across households of the same type

that differ in their values of γhk. Estimation of this vector is important in this analysis, as it these

probabilities that will allow marketers to identify the segments that are “important” to a specific

demographic.

The intuition behind the above structure is as follows. While a household’s preferences for a spe-

cific consumption occasion type are fixed, these preferences are a function of many variables, some

of which are unobservable. To model the unobserved portion of occasion type/household choices,

the iid “error” is added to preferences, as in any discrete choice model. Given the coefficients on

utility of individual households over the occasion types, these coefficients (within an occasion type)

will be related across households. For example, households purchasing for a “healthy breakfast”

will tend to have similar preferences over characteristics of ready-to-eat cereals. These preferences

will differ slightly3 due to heterogeneity in individual tastes, and thus the second vector of errors

is added to reflect a distribution of tastes within each occasion type. This distribution is assumed

to be multivariate normal, as it makes sense that differences in tastes for one product over another

will be correlated across households. Note that estimation of these distributions of household coef-

ficients over an occasion type will provide useful information about the relative importance of var-

ious product characteristics within the occasion type, how the coefficients “move” together across

households, the relationship of products purchased for the given occasion, and could be used for

counterfactual analysis and/or new product introductions. It is also important to note that I make no

attempt to identify the actual context of these occasion types, that is, I do not attempt to determine

whether the occasion is “healthy breakfast” or “late-afternoon cereal snack.” However, given that

2For the sake of practical application to identify the preferences of demographic segments, the set of household types
are assumed to be pre-specified by the marketer. The model could be extended to make the pvec vector draws a function
of household demographics.

3I use “slightly” to describe these differences, as it is expected that the differences within an occasion type will differ,
but to a lesser degree than the preferences across occasion types.
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the probabilities of each household belonging to a specific occasion type will also be identified by

the model, the occasion types with the largest probabilities (within a targeted demographic) can be

further analyzed to discover the structure of the the market for that occasion type4. Thus the market

structure for “important” occasion types can be analyzed without specifically labeling the occasions.

IV.3 The Simulated Data

To demonstrate the general convergence properties of the model, I simulate a household-level

panel dataset and estimate the known value of the given parameters. I simulate 5 brands/products in

a category in which there are frequent purchases and significant variety-seeking within individual

household purchases, even within occasion types. The simulate product data uses brand intercepts

together with two characteristics for each product. Therefore, the design matrix for each product

consists of 4 dummy variables and two generated characteristics. The first generated characteristic

is assumed to be price, and is simulated accordingly to reflect similarity across households. This was

done by randomly drawing a vector of mean prices from a uniform distribution and using these mean

prices to create random draws of prices for each product. To realistically reflect price differences

across markets, each household is assigned a “price inflator” of 1, 1.1, 1.2, or 1.3, which is used (via

multiplication) to change the mean price vector for that household across all choice occasions. The

mean and standard deviation of prices across households for each product are shown in table IV.1.

The second characteristic is simply a vector of standard uniform draws, and could be interpreted as

a measure of promotion, advertising in the area, etc. Given the logit form of the choice probabilities,

the design matrix used in the simulation is the matrix of differences between each product and the

first product. That is, if x1 denotes the characteristics of the first product, the characteristics used in

the simulation are given by xd
j = x j− x1 for all j 6= 1.

The household data is simulated using the data generating mechanism described in the previous

section, wherein:

i) Some number of purchase choices are observed for each household.

ii) The choices of each household are randomly distributed across a finite number of consumption

4 It should be noted that given the preferences over the products within an occasion type, it may be possible for a
practitioner to draw some conclusions about the context of each occasion type.
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Table IV.1: Mean and variance of simulated
prices.

Table IV.2: Values of the β vectors used to
simulate the data.

Table IV.3: Values of the Σ matrices (and corresponding correlation matrices) used to simulate the
data.

occasion types according to a fixed probability vector for each household type.

iii) The choice probabilities for each household at each consumption occasion type are calculated

using a random draw from the fixed distribution of preferences (across households) for each

consumption occasion type.

iv) The choice for each consumption occasion is randomly assigned using the resulting choice

probabilities of the corresponding occasion from step iii) above.

To proceed with the simulation, the number of households and the number of choices are both

fixed at 300, representative of a long household panel of a relatively frequently purchased product.

Two occasion types are used in the simulation of the choices, and the vector of probabilities of

assignment to each consumption occasion type for each household type is calculated from normal-
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Table IV.4: Simulated purchase quantities of 4 randomly selected households.

ized vectors of 2 random standard uniform draws. The values of the β vectors for each occasion

type are randomly drawn as iid vectors of Uniform(-2,2) draws, and are shown in table IV.2. The

values for the Σ matrices are random draws from an inverted Wishart distribution with parameters

ν = 8 and V = 2∗ I6, the values of which (together with the corresponding correlation matrices) are

shown in table IV.3, yielding a decent amount of correlation in the heterogeneity of tastes across

households within the same occasion type. The γ vectors for each consumption occasion type for

each household are simulated by multiplying a vector of iid standard normal draws by the transpose

of the Cholesky root of the inverse of the corresponding Σ matrix and adding the corresponding β

vector5. Using the drawn probability of assignment for each household, the household choice occa-

sions are randomly assigned over the two segments using random binomial draws. Using the choice

probabilities resulting from the draws of the γ vectors, the choices for each consumption occasion

are random draws from a multinomial distribution. The cumulative choices for each consumption

occasion type for 4 randomly selected households are presented in table IV.4, demonstrating the

presence of significant heterogeneity across households even within a given consumption occasion

type.

5 This is a common way to draw from a multivariate normal with mean β and variance-covariance matrix Σ.
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IV.4 Demonstration of the Problem

To demonstrate the seriousness of ignoring within-household heterogeneity, I analyze the sim-

ulated dataset described above using a simplified logit choice model. Suppose that a practitioner

chooses to model the simulated data with the (single) choice utility for each household defined by

uh j = xd
j β + εh j

where β is similar across all households and ε is distributed iid type I extreme value.Given this

structure, if yt denotes a single choice and yt j = 1 indicates that product j is chosen, then the choice

probabilities of household h are given by

Pr(y jt = 1|Xd
h ,β ) =

exp(xd
h jβ )

1+∑
N
i=2 exp(xd

hiβ )
,

where the 1 in the denominator represents the choice utility of product 1 begin fixed at 0 for identifi-

cation of the model, and Xd
h is the matrix composed of the differenced vectors of product character-

istics. Note that each choice probability is essentially (via the modeling assumption) the population

proportion of choice occasions over the “infinite” population of choice occasions in which which

household h chooses product j. Taking the natural log of this expression yields

log(Pr(y j|Xd
h ,β ))

log(Pr(y1|Xd
h ,β ))

= xh jβ .

Therefore, given the large number of choice occasions over the relatively small number of products

so that the observed shares of each product for each household are positive, the ratio of observed

shares can be calculated as above and the logit model reduces to regressing the ratio of log observed

shares on the observed (differenced) data.

Running this regression yields the results presented in table IV.5, wherein the regression could

be taken as having a reasonably believable result given an R-squared of nearly 60% and the flat/bal-

anced plot of the residuals versus the fitted values in IV.1. Intuitively speaking, modeling the house-

hold with a single set of preferences would seem to estimate the single β vector as an “average”

of the true β vectors, and in the case of the (differenced) brand intercept for product 4 (β3), this is
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Table IV.5: Results of the logit regression on simulated purchase shares.

Figure IV.1: Residual plot for the logit regression on observed purchase shares.

true. The estimated value of β3 is essentially zero, which is roughly half-way between the values

of the two true occasion type means in table IV.2. Though an average can often be quite useful,

this estimate could yield very poor results if used in the calculation of elasticities for counterfactual

analysis on pricing or promotion. To see this, note that the true values of the coefficients imply that

most households either significantly prefer product 3 to product 1 or significantly prefer product 1

to product 3, and thus changes in the price or promotions of either product will not induce as great a

change in the observed shares as the estimated coefficients would indicate. Even more concerning is

the unmodeled correlation that, if picked up by the single estimated β vector, can result in different

values than one might expect. For example, the price coefficients (β5) in the simulated data are
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-1.32 and -1.44, respectively, while the estimated coefficient in the simplified logit analysis is -1.16,

far from an “average” of the two modes of the occasion types. Therefore, even if a marketer desires

only an “average” effect over the true β vectors of household purchases, ignoring within-household

heterogeneity for the sake of computational simplicity could yield very misleading estimates. My

model is specifically designed to be applied by practitioners to avoid such problems.

IV.5 MCMC Algorithm

Given the structure presented in section 2, the Markov chain Monte Carlo estimation algorithm

proceeds as follows:

1. Choose the parameters of the prior distributions for the Σk matrices and the βk vectors. The

Σk matrices are assumed to be drawn from an inverted Wishart distribution with parameters ν

and V0, and the βk vectors are assumed to be normally distributed with mean β and variance

A−1.

2. Pick arbitrary starting values of γhk for each of the k segments for each household h.

3. Begin estimation at the household level, h (this step allows parallelization across households).

i) Data Augmentation step: Assign each cereal choice, yt , purchased by household h of de-

mographic type τ to a given occasion type according to the vector of probabilities pvecτ ,

augmented by the probability that the choice yt maximizes the utility of the household

given the current value of γhk for each occasion type. That is, if πkhi denotes the proba-

bility that the choice yt of household h with demographic type τ is assigned to occasion

type k, and pvecτk denotes the element of pvecτ that corresponds to occasion type k, and

Pr(yt |γhk) denotes the probability that choice yt would result from the vector of utilities

γhk, then:

πkhi =
pvecτk Pr(yt |γhk)

1+∑
K
i=2 pvecτi Pr(yt |γhi)

where, given that the ε’s are distributed type I extreme value, the choice probabilities

Pr(yt |γh·) are of the logit form. Thus, if yt j = 1 corresponds to choosing product j at
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choice occasion t,

Pr(yt j = 1|γhk) =
exp(γhk j)

1+∑
J
i=2 exp(γhki)

where γhk1 is fixed at 0 for all households. Note that due to the simplicity of these cal-

culations, they are computationally inexpensive and allow the chain to move relatively

quickly over each choice of the household.

ii) Given the choices assigned to each of the k occasion types of household h, draw a new

value of γhk using a Metropolis Hastings Gaussian random-walk. To implement this

step, a new γhk is drawn and is either accepted or rejected. Dropping the subscripts,

define γold as the current value of γhk, and draw a new value via

γnew = γold + ε where ε ∼ N(0,s2I)

with s defined as the step size of the chain. Denoting the set of observed choices of

household h assigned to occasion type k as Yk, the random walk proceeds by calculating

α = min
{

1,
Pr(Yk|γnew)p(γnew|βk,Σk)

Pr(Yk|γold)p(γold |βk,Σk)

}

where Pr(Yk|γ·) can be easily calculated given the previously stated logit probabilities

using the multinomial distribution,and p(γ·|βk,Σk) is simply the density of the multi-

variate normal distribution with parameters βk and Σk evaluated at γ· . Given that these

are common distributions, most software programs have prewritten functions to calcu-

late these values6. Once α is calculated, the new value of γhk is accepted with probability

α , and rejected (i.e. leaving the current value in place) with probability (1−α). Note

that the choice of step size, s, is important to how a Metropolis Hastings random-walk

functions and must be chosen in such a way as to allow the chain to navigate the space

without accepting new values too frequently7.

6 The simulations in this paper are run using the R software package, with the function dmultinom being used to
calculate the probability of Yk and lndMvn (from the bayesm package) being used to evaluate the multivariate normal
density at γ·

7 The simulations in this paper dynamically adjust the step size s over the first several thousand iterations to achieve
acceptance rates around .23, the value suggested by Rossi and Allenby (2003).
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4. After drawing the choice assignments and γ vectors for each household, the value of pvecτ

is updated for each household demographic type. This is accomplished via a draw from a

Dirichlet distribution with parameters (ak + nk) where ak is the initial value of the Dirichlet

parameters and nk is the number of choices assigned to occasion type k at the current draw. A

draw from the corresponding Dirichlet distribution is taken for each household demographic

type, which allows the probabilities to differ substantially between household types.

5. Begin estimation at the aggregate, occasion-type, level k (this step allows parallelization

across occasion types).

i) Assuming that the ξh jk’s are distributed multivariate normal with covariance matrix Σk,

use the given values of γhk for the households assigned to occasion type k to draw new

values for the βk’s and Σk’s using the seemingly-unrelated-regression (henceforth SUR)

sampler proposed by McCulloch, Polson, and Rossi (2000) for the multinomial probit

model. This is implemented by first drawing βk given the current value of Σk and the

observed matrix of γhk vectors, using

βk ∼ N(β̃ ,Ṽ ),

with

Ṽ = (X ′stXst +A)−1 , β̃ = Ṽ (X ′stγst +Aβ )

where Xst is the stacked matrix of the product characteristics for each household and γst

is the vector composed of the stacked γhk vectors of the household, with both multiplied

by the transpose of the Cholesky root of the inverse of Σk. The draw of β is then

completed by the common procedure of multiplying a vector of standard normal draws

by the Cholesky root of Ṽ and adding β̃ .

ii) The draw of Σk is then completed using an inverted Wishart distribution with param-

eters (ν + n) and (V0 + S)−1, where n is the number of households with a positive

number of choices assigned to occasion type k, and S is the matrix composed of the

sum of the crossproduct of the row of the residual vectors for each household (S =
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∑
n
i=1(γhk −Xhβk)(γhk −Xhβk)

′ ). Most popular software programs can provide draws

from an inverted Wishart distribution once these parameters are calculated.

6. Repeat steps 2-4 for a sufficient number of draws for the Markov chain to burn-in and con-

verge.

IV.6 Applying the Model to Data

IV.6.1 Application to Simulated Data

The model was applied to the simulated data using the typical “flat” prior distribution parameters

of β = 0, A = .1 ∗ I6, and ν = 8, with the exception being the prior parameter V0. This parameter

for the inverted Wishart distribution is typically chosen to be ν ∗ I6 in the SUR regression for the

multinomial probit. However, for the purposes of the model presented here, V0 was set to I6. The

reason for this change is in the modeling assumption that preferences within an occasion type are

somewhat similar across households. Larger values for V0 allow the values on the diagonal of

the draws of the Σ matrices (and the subsequent deviations from mean utility across households)

to become very large relative to the fixed size of the within-household type I extreme value errors,

removing the necessity of similarity across households required by the model (a problem not present

in the multinomial probit model). Therefore, the prior was set to a smaller value that still provides

ample freedom for the sampler to navigate the space, and is still “diffuse” relative to the expected

size of the ξ error terms. The algorithm was run for 100,000 draws using a thinning parameter of

100 and a burn-in of 15,000 draws.

A summary of the posterior draws of the elements of the β vectors and Σ matrices are presented

in tables IV.6 and IV.7, respectively, together with the upper and lower bounds for 95% Bayesian

credible intervals and the corresponding true values. The algorithm does very well in navigating to

the true values for both occasion types with all of the 95% intervals of the elements of the β vectors

including their corresponding true values, and all but one of the 95% intervals of the elements of the

Σ matrices including their corresponding true values (the single element of the Σ matrix of occasion

type 2 that is not included in the interval is still within the range of the post-burn-in draw sequence).
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The trace plots for all of these draw sequences are presented in the appendix for the interested reader.

Table IV.6: Summary of the posterior draws for the elements of the β vectors of each occasion type,
together with the true values of each element (an “*” indicates that the true value falls within the
given 95% Bayesian credible interval).

Table IV.7: Summary of the posterior draws for the elements of the Σ matrix of each occasion type,
together with the true values of each element (an “*” indicates that the true value falls within the
given 95% Bayesian credible interval).

A summary of the posterior draws of the values of pvec for the 4 aforementioned randomly

selected households are presented in table IV.8, together with the bounds of the corresponding 95%

Bayesian credible intervals and the corresponding true values. Though more diffuse than the draws

of parameters estimated over all households (as expected), the model also does well in picking up

these values, with the exception being the draws for simulated household number 80 for which the

95% credible intervals do not include the true values (though the true values are within the range of
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the post-burn-in draw sequence). Note that, coincidentally, simulated household number 80 is one

of only 3 households of the 300 simulated households in which the credible intervals for the draws

of the elements of pvec do not include the true values.

Table IV.8: Summary of the posterior draws for the elements of pvec for four randomly selected
households, together with the true values of each element (an “*” indicates that the true value falls
within the given 95% Bayesian credible interval).

Given the structure of the model, one may think that the algorithm would have difficulty iden-

tifying the parameters in datasets for which there are strong differences in preferences between

occasion types (i.e. large differences in the values of the β vectors). The intuition behind this being

that the β vectors could “soak up” the variation in purchases, leaving very little heterogeneity for

identification of the Σ matrices. To investigate this, the results of another simulation, run on three

occasion types, are presented in tables IV.10, IV.11, and IV.12 in the appendix. The β vectors used in

this simulation are presented in table IV.9, and are clearly representative of very strong preferences

for different products across the 3 occasion types.

As shown in the appendix, the results of 100,000 draws with a burn-in of 15,000 draws are still

very good. All of the 95% credible intervals of the elements of the β vectors of the three occasion

types include their corresponding true values, and while the Σ results are slightly weaker given the

strong effects from the β vectors, the sampler still consistently navigates to the true values. All but 6

of the 95% credible intervals of the elements of the Σ matrices for the 3 occasion types include their
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Table IV.9: Values of the β vectors used to simulate the 3 occasion type data.

corresponding true values, with all 30 of the true values being within the range of the post burn-

in draw sequences. Finally, the pvec draws for the 4 randomly selected households are also quite

good, with all intervals for these elements including their corresponding true values. Moreover, only

1 element of the pvec vector for two household types (out of the 90 total simulated elements across

all household types) is outside of the corresponding credible interval, indicating that the model

again does an impressive job of picking up the underlying true values. If, however, a practitioner

is concerned that the model may not pick up the small covariance parameters of the distributions

across occasion types, the model can easily be changed to include only a single Σ distribution across

all occasion types, with the assumption being that correlation in household’s tastes across products

are relatively similar across occasions (a strong, but not unrealistic assumption).

IV.6.2 Application to a Household Panel

As shown above, the model will perform quite well on a variety of household panel datasets in

which the practitioner believes the data-generating process to be in line with the assumptions laid out

in section 2. The remaining issue is choosing the number of segments with which to model the given

data. For this purpose, computation of the model likelihood can be used for comparison of models

with a different number of specified occasion types. Though more complex than a basic LCM or

finite mixture model, the logit choice probabilities do allow direct calculation of the conditional

likelihood of the observed data given the value of the parameters. The first step to calculate the

conditional likelihood is to calculate the vector of probabilities that a single consumption occasion

for a given household results in the selection of each product. Given the design matrix Xd
h , the values

of the γhk vectors for household h ( henceforth denoted γh) , and the value of pvec for household h,
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the probability that product j is chosen at choice occasion t is then

Pr(yt j = 1|Xd
h ,γh, pvec) =

K

∏
i=1

Pr(yt j = 1|k = i,Xd
h ,γhi)Pr(k = i|pvec).

Once these probabilities have been calculated (using the previously provided formula for logit

choice), the distribution of the observed purchase quantities for household h, conditional on γh

and pvec, is multinomial (via the modeling assumption that each unit results from an independent

choice). Therefore, the probability of the observed choice data for household h conditional on γh

and pvec, denoted Pr(datah|Xd
h ,γh, pvec), can be easily calculated for each household using built-in

functions for multinomial probabilities. As this probability is conditional on parameter values, the

conditional likelihood of these parameter values are also included in the full conditional likelihood

calculation for each household. After calculating p(γhk|βk,Σk) for each occasion type k (via the

evaluation of a multivariate normal density discussed in section 4), the conditional likelihood of the

observed data for each household h given the parameter values can easily be calculated as

`(datah|Xd
h ,γh,β h,Σh, pvec) = Pr(datah|Xd

h ,γh, pvec)
K

∏
i=1

p(γhi|βi,Σi)

where β h = {β1,β2, ...,βK} and Σh = {Σ1,Σ2, ...,ΣK}. Given this likelihood for each household, the

(log) conditional likelihood for the observed choice data given the parameter values is then

`(Data|Xd
h ,γh,β h,Σh, pvec) =

H

∑
i=1

log(`(datah|Xd
h ,γh,β h,Σh, pvec)).

Despite the nested calculations, this likelihood is fairly inexpensive computationally as almost all of

the above calculations are required at some point during the sampling process of each iteration. To

compare two given models (with different numbers of segments), a practitioner may either compare

the sequences of log likelihoods given above (stored at each iteration) as a gauge of the fit of each

model, or use the method of Newton and Raftery (1994) to calculate the log marginal density for

each model (a built-in function which is included in R and other popular software programs) as a

comparison of fit.

Another issue that should be addressed is the possibility of “label switching” over the occasion

types. Given that each occasion type of the model has the same prior, it is possible (as in all
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mixture models) that the occasion types could switch “labels.” That is, two (or more) occasion

types switch the preferences with which they are identified and continue in the draw sequence.

This can typically be identified via the trace plots of the posterior draws, as the parameter values

of two or more occasions will appear to “switch places” through the sequence of draws. Though

label switching is not of great concern in my model due to the mitigating effects of Metropolis

Hastings (preventing large changes in the γ values of each occasion type between iterations) and

the connection of households through pvec (preventing large changes in pvec between iterations8),

there are methods for handling label switching that I will discuss for the sake of being thorough in

my presentation of a mixture-driven model.

There are two popular ways to handle the label switching problem: post-processing the draws

and constraining the segments. As mentioned above, the iteration at which a switch of label occurs

can be (roughly) identified via the posterior draw sequence. Post-processing consists of marking

these events in the chain and relabeling the segments according to the “new” labels. Though the-

oretically simple, post processing can be quite challenging in practice as developing a strategy for

deciding exactly when a label switch has occurred is not a trivial exercise. The latter option, con-

straining the segments, prevents label switching from occurring in the first place and avoids the

challenges of the post-processing method. In this latter method, some of the parameters are con-

strained across segments, preventing the draws of these parameters from switching between those

segments. While this may seem to defeat the purpose of the mixture model, these constraints need

not be heavy handed. For example, if one is attempting to model health-related segments of a

category, a simple ordering constraint over the value of the coefficient on fat content (across the

segments of the model) may alleviate any observed label switching in a model without constraints.

Moreover, it is typical that practitioners will have some information about the category they seek to

analyze, and parameter constraints can be an effective way of incorporating this information into the

model. Implementation can be as simple as redrawing parameters that do not meet the constraints,

making such constraints a quick and easy way to handle label switching when it does occur.

8 The Gibbs sampler typically used in Bayesian mixture models can allow large changes between iterations, leading
to label switching in the draw sequence. My model uses a hybrid sampler, including both Gibbs and Metropolis Hastings
steps, and (together with the modeling assumptions) is much less likely to struggle with label switching.
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IV.7 Conclusion

The goal of this paper was to develop a method, applicable to large household panel datasets, for

investigating preferences over products in a category in such a way as to allow household purchases

to be the result of multiple sets of preferences while also allowing for recovery of household-level

information useful for targeted marketing. The presented hierarchical Bayesian finite mixture model

is both logically and computational attractive, allows for application to large complex datasets such

as ready-to-eat cereal and soft drinks, and allows for useful household-level information about pref-

erences over different types of purchases to be recovered where other (previously presented) models

do not. Results applying the model to multiple simulated datasets demonstrates the ability of the

Markov chain Monte Carlo algorithm to pick up the true underlying parameters, yielding a model

that is both logically and computationally attractive for estimating the components of household

demand.

IV.8 Appendix
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Table IV.10: Summary of the posterior draws for the elements of the β vectors of each occasion
type in the 3 occasion type dataset, together with the true values of each element (an ”*” indicates
that the true value falls within the given 95% Bayesian credibility interval).

Table IV.11: Summary of the posterior draws for the elements of the Σ matrix of each occasion type
in the 3 occasion type dataset, together with the true values of each element (an ”*” indicates that
the true value falls within the given 95% Bayesian credibility interval).
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Table IV.12: Summary of the posterior draws for the elements of pvec for four randomly selected
households in the 3 occasion type dataset, together with the true values of each element (an ”*”
indicates that the true value falls within the given 95% Bayesian credibility interval).
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Table IV.13: Trace plots for the posterior draws of the elements of the β vector for both occasion
types (type 1 on the left).

106



Table IV.14: Trace plots of the posterior draws of each element of the Σ matrix for occasion type 1.
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Table IV.15: Trace plots of the posterior draws of each element of the Σ matrix for occasion type 2.
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