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Chapter 1

Introduction

It has been predicted theoretically that under extreme conditions, a novel phase of matter,

quark gluon plasma (QGP), where quarks and gluons are the degree of freedom, can form.

Due to the extreme conditions required to form QGP, the only places that QGP can be found

are the early universe, shortly after the Big Bang, neutron stars, and heavy ion collisions.

Thus, to study the properties of QGP, powerful colliders are needed. In 2005, the experi-

mental collaborations at Relativistic Heavy Ion Collider (RHIC), announced the discovery

of a strongly coupled system with partonic degrees of freedom. Since then, numerous in-

triguing analyses were performed around the world. The Large Hadron Collider started the

heavy ion program in 2010 by colliding lead ions with a center-of-mass energy per nucleon

pair of 2.76 TeV, which is 14 times larger than that of RHIC, and later on increased the

collision energy by roughly a factor of 2. The Compact Muon Solenoid (CMS) is one of

the four detectors at the LHC. Details on the LHC and the CMS detector will be introduced

in Ch. 3. One of the signatures of QGP is the enhancement of strange particles in heavy

ion collisions. Studies of strange particle production in different collision systems provide

important tool for understanding the particle production mechanism and the evolution of

the medium created in relativistic heavy ion collisions. This thesis will focus on the strange

particle production with data recorded by the CMS detector.
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1.1 Quantum chromodynamics and quark gluon plasma

Quantum Chromodynamics (QCD) is the theory that can describe the strong interaction

between quarks 1 and the gluons. The main properties of QCD are:

• asymptotic freedom: the strength of the strong interaction decreases at small distance

or high energies

• color confinement: isolated quarks or gluons are never observed

The asymptotic freedom is the main success of QCD, and its discovery was awarded the

Nobel Prize in 2004. Perturbative QCD has shown great success in predicting the cross

section of high energy processes. However, perturbative calculations are not applicable at

lower energy, or in parton scattering with low momentum transfer, where the coupling con-

stant is large. Many models have been developed to study processes in the non-perturbative

domain. Among those, lattice QCD is the most promising one. In lattice QCD, field equa-

tions are solved in a finite number of discrete space-time grids. This numerical method

has shown great success in the past decades thanks to the development of supercomput-

ers and efficient algorithms. However, lattice QCD can only explore the region near the

temperature axis with µ < T because of the sign problem [1] at finite baryon chemical

potential.

The exact phase diagram of QCD matter is unknown. The proposed phase diagram of QCD

matter is shown in Fig. 1.1, as it is conceived today. The control parameters are temperature

T and baryon chemical potential µ . The heavy ion collisions start with normal nuclear

matter and QGP with small baryon density is expected to be formed after the collisions.

The evolution of the formed QGP is similar to the evolution of the early universe started

1Gell-Mann coined the name based on James Joyce’s book Finnegans Wake: Three quarks for Muster
Mark!
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with high temperature and zero baryon density. The lattice QCD calculations show that

the phase transition from QGP to hadron gas changes from a first order transition at high

baryon density to a crossover [2, 3]. However, the position of the critical point is unknown.

A beam energy scan project is undergoing in the STAR collaboration at RHIC with the goal

of locating the critical point. At the bottom right of the phase diagram with low T and high

µ , a color superconducting phase is predicted [4, 5]. Unfortunately, not much is known

about this exotic phase of matter.

Figure 1.1: The phase diagram for strongly interacting matter, QCD. The three basic phases
can be distinguished: hadronic phase, quark gluon plasma, and color super-conducting
quark matter. The first order transition is represented with black solid lines. The black
dashed lines represent transitions that are crossover. [6]

The Stefan-Boltzmann law for bosons [7] is:

εb = 3p = g
π2

(h̄c)3
(kBT )4

30
= g

π2

30
T 4[MeV 4] (1.1)

where ε is energy density, p is pressure, and g is the number of degrees freedom of in the

system.
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The Stefan-Boltzmann law for fermions [7] is similar to that for bosons:

εf = 3p = g
7π2

(h̄c)3
(kBT )4

240
= g

7π2

240
T 4[MeV 4] (1.2)

For QGP with free massless light quarks (u, d, s) and gluons, the energy density of the

system is:

ε = (
π2

30
gg +

7π2

240
gq)T 4[MeV 4] (1.3)

where gg and gq are degrees of freedom of gluons and quarks, respectively, with gg = 16 (2

helicity states and 8 color states) and gq = 36 (2 spin states, 3 color states, 3 flavor states,

and 2 particle-antiparticle states). With the above calculation, the Stefan-Boltzmann limit

for 3 flavors of massless quarks and 8 gluons is:

εSB = 15.63T 4[MeV 4] (1.4)

The ε/T 4 as a function of T from lattice QCD calculation is shown in Fig. 1.2. The calcu-

lation indicates a critical temperature Tc at around 170 MeV.

1.2 Heavy Ion collisions

Heavy ion collisions at relativistic energies have been studied since the early 1970s starting

with the BEVALAC at Lawrence Berkeley National Laboratory, and the center of mass

energy per nucleon has increased from 2.1 GeV to 5.5 TeV. With heavy ion collisions

at different center of mass energy, different regions of the QCD phase diagram can be

explored.

Various studies have been done to study the dynamic evolution of heavy ion collisions and

4



Figure 1.2: Dependence of the energy density as a function of the temperature of the
hadronic matter at zero baryon potential calculated by lattice QCD at finite temperature.
The calculations are performed for two massless quarks, three massless quarks and two
massless quarks and one (s) with its real mass. A transition is observed at a temperature of
around 173 MeV. For the calculations with a real s mass, the transition is faded away. [8]

the properties of QGP. Fig. 1.3 shows a schematic view of the stages heavy ion collisions

depicted in the beam-axis vs time view. The two solid lines represent the trajectories of the

two incoming nuclei that collide at z = 0 and t = 0. At the time of impact, initial events

are very high energy inelastic collisions between individual nucleons, which liberate many

of the partons. With enough energetical collision to get the temperature, T , larger than the

critical temperature, Tc, QGP can form. Then, the formed QGP will expand and cool, and

at some point T ≈ Tc hadrons reform. These hadrons may interact inelastically and still

change identities in the hadron gas. The temperature at which the hadron abundances are

fixed is denoted as the chemical freeze-out temperature, Tch, which may be lower or it may

coincide with Tc. The system will continue cool down until the elastic collisions among the

hadrons stop. This is known as the kinetic freeze-out point. After this point, the hadrons
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leave the system and can be detected.

Figure 1.3: The space-time evolution of a relativistic heavy ion collision. [9]

1.3 Signatures of QGP

The properties of QGP cannot be observed directly, thus signatures are needed. These

signatures include: strangeness enhancement [10, 11], jet quenching [12, 13, 14, 15], col-

lective flow [16, 17, 18], and others.

1. Strangeness enhancement: This was the first signature of QGP proposed in the 1980s [10].

Since the colliding nuclei do not contain valence strange quarks, in leading order,

any strange quarks observed after the collision must come from the collision. It

is believed that more strange quarks will be produced in the heavy ion collisions

with the existence of QGP in comparison to proton-proton collisions. Details of the

strangeness production will be introduced in Ch. 2.
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2. Jet quenching: A jet is a spray of particles produced by the fragmentation of a highly

energetic parton, quark or gluon, in a collision. At the beginning of a collision, a pair

of partons with large transverse momentum, pT, will be created from hard scatterings

of incoming partons. With the existence of QGP, the colored partons lose energy by

gluon emission through the strong interaction. The partons that travel a longer path

will lose more energy due to the interaction with the medium. Thus, the energy

of the two back-to-back jets will be unbalanced. This phenomenon is called “jet

quenching”.

In CMS, jets were reconstructed based on their energy deposits in the CMS calorime-

ters. An event display of a dijet unbalanced event recorded by the CMS detector can

be seen in Fig. 1.4.

To characterize the dijet momentum imbalance quantitatively, the asymmetry ratio,

AJ, is employed. The definition of AJ is as follows:

AJ =
pT,1− pT,2

pT,1 + pT,2
(1.5)

where the subscript 1 always refers to the leading jet, and subscript 2 always refers to

subleading jet. In Fig. 1.5(a), the AJ calculated by PYTHIA is compared to pp data,

which shows a good agreement. The good agreement between PYTHIA + DATA and

the most peripheral PbPb data is shown in Fig. 1.5(b). The centrality 2 dependence

of AJ can be seen in Figs. 1.5(b)– 1.5(f). The dijet momentum balance exhibits a

dramatic change in shape for the most central collisions.

3. Collective flow: In a non-central heavy ion collision, the initial overlap region of

has an almond-like shape. If no collective behavior takes place in the medium, the

outgoing particles will be azimuthally isotropic. However, the observed outgoing

2centrality is used in heavy ion physics to quantify the overlap region of the two colliding nuclei, with
centrality 100% denoting the most peripheral collisions
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Figure 1.4: Example of an unbalanced dijet in a PbPb collision event at √sNN = 2.76 TeV.
Plotted is the summed transverse energy in the electromagnetic and hadron calorimeters
vs η and φ , with the identified jets highlighted in red, and labeled with the corrected jet
transverse momentum. [19]

particles are not azimuthally isotropic, which means that collective behavior happens

in the medium. In the context of hydrodynamics, the pressure gradient in the medium

is larger in the short direction of the almond, thus, more particles are collectively

pushed to the short direction of the almond. The presence of collective flow reveals

the fluid nature of QGP, and is considered to be an important signature of QGP.

The collective flow effect is one of the main discoveries at RHIC. The elliptic flow 3

measurements of identified hadrons are compared to ideal hydrodynamic predictions

in Fig. 1.6. The good agreement between data and ideal hydrodynamic predictions

indicates that the matter created at RHIC behaves like a nearly perfect fluid.
3the second harmonic coefficient of the azimuthal Fourier decomposition of the momentum distribu-

tion [21]
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Figure 1.5: Dijet asymmetry ratio AJ for leading jets of pT,1 > 120 GeV/c, subleading jets
of pT,2 > 50 GeV/c, and ∆φ12 > 2π/3 for 7 TeV pp collisions (a) and 2.76 TeV PbPb
collisions in several centrality bins: (b) 50%–100%, (c) 30%–50%, (d) 20%–30%, (e)
10%–20%, and (f) 0%–10%. Data are shown as black points, while the histograms show
(a) PYTHIA [20] events and (b)-(f) PYTHIA events embedded into PbPb data. The error
bars show the statistical uncertainties. [19]

1.4 Role of pA collisions

In the early days of QGP studies, pA collisions have been considered to be a control ex-

periment for AA collisions with the expectation to disentangle the initial state effects (e.g.

nuclear effects due to the presence of a cold nucleus) from the final state effects, where

hot nuclear matter is created. The assumption is that QGP will not form in such a small

collision volume, and only initial state effects will play a role.

However, as more and more analyses are done on pA collisions, pA collisions are found to

be far more important than a simple control experiment. Recent studies on high-multiplicity
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Figure 1.6: The elliptical flow for identified hadrons from STAR and PHENIX compared
to ideal hydrodynamics calculations in 200 GeV AuAu collisions. [22]

pp and pA collisions show the collective behavior of the created matter just as the AA col-

lisions [23, 24, 25, 26]. However, jet quenching is not observed in pA collisions [27, 28].

Thus, it is still not conclusive, whether QGP can be formed in small systems. Also, the

studies of pA collisions provide a unique chance to study effects that can impact particle

production in AA collision, such as initial-state multiple scattering of the partons prior to a

hard-scattering (also known as Cronin enhancement), modification of the parton distribu-

tion functions in the nucleus, hadronization by quark recombination, and radial flow.

1.5 Outline of this thesis

There are two goals of this thesis. The first goal is to study the potential collective effect

in small collision systems. Another goal is to study the particle production mechanism in

pPb collisions reaching from low to high transverse momentum (pT).
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To achieve the first goal, K0
S, Λ, and Ξ− particle spectra in different multiplicity ranges

are measured for all the three collision systems: pp, pPb, and PbPb. Particle ratios and

average transverse kinetic energy, 〈KET〉, are compared among different collision systems

in similar multiplicity ranges.

As to the second goal, nuclear modification factors, RpPb, and particle yield rapidity asym-

metry, Yasym, are measured for different particle species. With these measurements, particle

production mechanism such as Cronin effect, nuclear shadowing effect, radial flow effect,

and recombination effect can be studied. They can provide new insights into the physics of

small-volume nuclear collisions at high energies.

In Ch.2 of this thesis, the brief history and importance of strangeness production in QGP is

introduced. Some previous experimental results are presented to give an idea what can be

done in terms of strangeness studies.

In Ch.3, the apparatus involved in this thesis, LHC and CMS, are introduced. Special

attention is given to the tracking system of the CMS detector, since this is the part that

makes the results in this thesis possible.

The experimental methods are introduced in Ch.4. In this chapter, reconstruction cut crite-

ria of strange hadrons are introduced. The way to obtain the transverse momentum spectra

of strange hadrons is also presented.

The results of multiplicity dependence of strange hadron production is presented in Ch.5.

Data samples and event selections used in this analysis are discussed. Systematic uncer-

tainty checks are also presented.

In Ch.6, the results of RpPb and Yasym are shown. The structure of this chapter is similar to

the previous one.

The discussion and conclusion part of the thesis is reached in Ch.7.
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Chapter 2

Strangeness production in QGP

Strangeness as a signature of QGP was first proposed by Johann Rafelski and Berndt Müller

in 1982 [10]. Since then, the study of strangeness in heavy ion collisions has been an intense

field.

2.1 Strange quark

In 1964, Murray Gell-Mann [29] and George Zweig [30, 31] proposed the quark model

independently. Nowadays, the model has been absorbed as a component of the established

quantum field theory of strong and electroweak particle interactions, known as the Standard

Model. The elementary particles in the standard model are shown in Fig. 2.1. In this

writing, the three lightest quarks: u, d, and s, and the gluons will be discussed.

2.2 Strangeness as a QGP signature

Johann Rafelski and Berndt Müller proposed strangeness enhancement as a signature of

QGP based on the s quark production in two different systems:

• Hadron gas, where quarks and gluons are confined in hadrons

• QGP, where the degrees of freedom are quarks and gluons

The energy threshold of producing strange hadrons in a thermally equilibrated hadron gas

is significantly higher than in QGP. In the hadron gas, direct production of strange hadrons
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Figure 2.1: The Standard Model of elementary particles. [32]

can be achieved via π + π → π + π+ strange and antistrange hadron pair. The energy

threshold of this interaction is twice the rest mass of the strange hadrons. Take Λ-Λ baryon

pair production as an example: the energy threshold is around 2231 MeV. Strange hadrons

can also be produced via chain reactions: π +N→K+Λ, π +Λ→K+Ξ, π +Ξ→K+Ω.

The strange hadron production via chain reactions is smaller. In this case, the production

of Λ baryon has a energy threshold of around 530 MeV. In the case of QGP, s quarks can

be formed through both quark anti-quark annihilation and gluon fusion processes. The

Feynman diagrams of these interactions are shown in Fig. 2.2. In these interactions, the

gluon fusion is the dominant process, contributing to 80% of the ss quark production. The

energy threshold needed for these interactions is reduced to the mass of ss quark pair, which

is around 200 MeV. Besides the lower energy threshold of strange quark creation in QGP,

the equilibration time of partonic reactions, especially due to the gluon fusion processes, are
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much shorter than the ones of hadronic reactions. Based on the above arguments, creations

of strange hadrons would be much easier in QGP in comparison to the production in a

hadron gas, because the energy threshold is comparable to the temperature of the system

and the ss pair can be produced thermally.

Figure 2.2: The lowest order Feynman diagrams showing the thermal production of ss
pairs, via quark (left most) and gluon fusion (right three diagrams). [33]

2.3 Experimental results

Since there are no valence s quarks in the incoming nuclei before collisions, at the leading

order, any strangeness detected later must come from the medium produced in the colli-

sions. Thus, the study of strangeness can provide insights about this medium. The s quark

is the third lightest quark, its mass is between the mass of the two lightest quarks, u and d,

and the three heavier quarks. So, the production of s quarks is much easier than the heav-

ier quarks (charm, beauty, and top). With a relatively small number of events, the studies

of strange hadrons can be performed unlike the heavy flavor analyses that require signif-

icant statistics. The analyses of strange hadrons usually involve the following particles:

K0
S,φ ,Λ,Λ,Ξ

−,Ξ
+
,Ω− and Ω

+. Summary of these particles is shown in Table 2.1. These

strange hadrons provide unique opportunities to study particle production mechanisms in

collisions. The reasons are as following:

• these particles include both mesons and baryons, and therefore provide information

about baryon number transport and hadronization by quark recombination
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• these identified particles have mass values from 497 to 1672 MeV, providing a large

dynamic range to study collective effects that depend on the particle mass

• these particles have strangeness quantum numbers S = -3, -2, -1, 0, 1, 2, 3

Table 2.1: Summary of strange hadrons involved in this thesis. Numbers are taken from
Ref. [34].

Meson Baryon
Particle symbol K0

S φ Λ Ξ− Ω−

Rest mass (MeV) 497.611 1019.445 1115.683 1321.71 1672.45
Quark content ds̄+sd̄√

2
ss̄ uds dss sss

Mean lifetime (s) 8.954×10−11 1.55×10−22 2.631×10−10 1.639×10−10 8.21×10−11

With these strange hadrons, various analyses can be conducted. Some examples are given

below.

2.3.1 Particle ratios

Particle ratios provide insights on particle production mechanism by comparing the relative

production rate of particles.

In Ref.[35], ALICE measured K0
S and Λ production in PbPb collisions. The Λ/K0

S ratio is

shown in Fig. 2.3. The Λ/K0
S ratios in pp collisions do not change with collision energy.

The Λ/K0
S ratio in most peripheral PbPb collisions is consistent with that of pp collision.

As the centrality moves from peripheral bins to central bins, the maximum of Λ/K0
S ratio

shifts towards higher pT, which is consistent with the prediction from radial flow effect. At

higher pT, Λ/K0
S ratios in PbPb collisions are similar to the pp results, which indicates that

the particle production in this pT region is dominated by hard processes and fragmentation.

The particle ratio can reveal the nature of the particle production mechanism if compared

to various theoretical models.
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Figure 2.3: ALICE: Λ/K0
S ratios as a function of pT for different event centrality intervals

in PbPb collisions at 2.76 TeV and pp collisions at 0.9 and 7 TeV. [35]

2.3.2 Strangeness enhancement

As mentioned above, the strangeness production rate in QGP is higher than in hadron gas.

Thus, comparing strangeness production in heavy ion collisions and pp collisions can quan-

tify whether strangeness is enhanced or not in heavy ion collisions.

In Ref.[36], the enhancement for Ξ− and Ω− in PbPb collisions at 2.76 TeV as a function

of the mean number of participants is shown in Fig. 2.4. The enhancements are larger than

unity for all the particles. They increase with the strangeness content of the particle, show-

ing the hierarchy already observed at lower energies and also consistent with the picture of

enhanced ss̄ pair production in a hot and dense partonic medium. Comparing the ALICE

results with those from other experiments, the enhancements are found to decrease with

increasing center-of-mass energy.
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Figure 2.4: ALICE: Enhancements in the rapidity range |y| < 0.5 as a function of the
mean number of participants 〈Npart〉, showing LHC (ALICE, full symbols), RHIC and SPS
(open symbols) data. The LHC data use interpolated pp values. Boxes on the dashed
line at unity indicate statistical and systematic uncertainties on the pp or p-Be reference.
Error bars on the data points represent the corresponding uncertainties for all the heavy-ion
measurements and those for pPb at the SPS. [36]

Lately, ALICE has published a paper [37], which demonstrates that the enhancement of

multi-strange hadrons can be seen in high-multiplicity. This could mean that QGP can be

formed in small systems with high multiplicity.

2.3.3 Nuclear modification factors

For collisions between two nuclei, A and B, the nuclear modification factor, RAB, is defined

as the ratio of particle yield in AB collisions to those in pp collisions scaled by the average
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Figure 2.5: ALICE: pT-integrated yield ratios to pions as a function of multiplicity mea-
sured in |y| < 0.5. The error bars show the statistical uncertainty, whereas the empty and
dark-shaded boxes show the total systematic uncertainty and the contribution uncorrelated
across multiplicity bins, respectively. The values are compared to calculations from MC
models, and to results obtained in pPb and PbPb collisions at the LHC. [37]

number of binary nucleon-nucleon collisions, 〈Ncoll〉, in AB collisions. It is given by

RAB(pT) =
d2NAB/dpTdyCM

〈Ncoll〉d2Npp/dpTdyCM
=

d2NAB/dpTdyCM

〈TAB〉d2σpp/dpTdyCM
, (2.1)
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where yCM is the rapidity computed in the center-of-mass frame of the colliding nucle-

ons, and 〈TAB〉, the nuclear overlap function, accounts for the nuclear collision geometry

and is calculated from a Glauber model [38]. If nuclear collisions behave as incoherent

superpositions of nucleon-nucleon collisions, RAB is expected to be unity.

In Ref.[39], PHENIX measured RdA of identified particles as a function of pT in different

centrality classes shown in Fig. 2.6. The charged kaon agrees with the charged pion within

the systematic uncertainties. The φ meson exhibits no apparent modification. However,

the protons show a very large and strongly centrality-dependent Cronin enhancement. The

RdA of π , K, φ , and p show significant dependence on the number of valence quarks, which

suggests an important role of recombination in particle production.

Figure 2.6: PHENIX: Nuclear modification factor RdA as a function of pT in different
centrality classes of charge-averaged pions, kaons, and protons, π0, and φ . A dashed black
line is drawn at unity as a visual aid, indicating no modification. The shaded gray boxes
indicate the associated uncertainty on Ncoll from the Glauber model calculations. [39]
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2.3.4 Radial flow of strange hadrons

As identified particles, the measurement of v2 of strange hadrons can also be used to probe

the potential mass dependence predicted by hydrodynamic models.

In Ref.[40], CMS measured v2 values of K0
S and Λ and compared the results to charged

hadrons. In the top row of Fig. 2.7, for pT < 2 GeV region for all high-multiplicity ranges,

the v2 values of K0
S particles are larger than those for Λ particles at each pT value. Both of

them are consistently below the v2 values of inclusive charged particles. As most charged

particles are pions, the data indicate a mass ordering behavior, which is consistent with the

hydrodynamic expectations. At higher pT, the v2 values of Λ particles are larger than those

of K0
S. The inclusive charged particle v2 values fall between the values of these two. In the

bottom two rows, the number of constituent quarks scaling is investigated. After scaling by

the number of quarks, the v2 for K0
S and Λ particles are found to be in agreement.
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Figure 2.7: Top row: the v2 results for K0
S (filled squares), Λ (filled circles), and inclusive

charged particles (open crosses) as a function of pT for four multiplicity ranges obtained
from high-multiplicity triggered pPb sample at √sNN = 5.02 TeV. Middle row: the v2/nq

ratios for K0
S (filled squares), Λ (filled circles) particles as a function of KET/nq, along

with a fit to the K0
S results using a polynomial function. Bottom row: ratios of v2/nq for

K0
S and Λ particles to the fitted polynomial function as a function of KET/nq. The error

bars correspond to the statistical uncertainties, while the shaded areas denote the systematic
uncertainties. The values in parentheses give the range of the fraction of the full multiplicity
distribution included for pPb. [40]
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Chapter 3

The LHC and CMS detector

In this chapter, apparatuses used in the analysis performed in this thesis will be introduced.

The LHC collider is the world’s largest and most powerful particle accelerator, with the

capability of accelerating proton and heavy-ion beams to extremely high energy and col-

liding at designed interaction points. The CMS detector is located at one of these points.

The LHC collider and the CMS detector will be discussed in the following text.

3.1 The Large Hadron Collider

The LHC is a two-ring-superconducting-hadron accelerator as well as a collider [41]. The

26.7 km tunnel where LHC is installed is between 45 m and 170 m underground and strad-

dles the border of Switzerland and France. The LHC was designed to collide proton beams

with a center-of-mass energy of up to 14 TeV and an unprecedented luminosity of 1034

cm−2s−1, and collide heavy (lead) ions with an energy of up to 5.5 TeV per nucleon and

a peak luminosity of 1027 cm−2s−1 [41]. At the time of this writing, both proton beams

and heavy-ion beams have been collided in the LHC, and the top energy for pp and PbPb

collisions have reached 13 and 5.5 [42] TeV, respectively. The proton beams were collided

in 2010, 2011, 2012, 2013, 2015, 2016, 2017, and 2018. Proton-lead collisions took place

in 2013 and 2016. Lead-lead collisions happened in 2010, 2011, 2013, and 2015. In 2017,

there was a short run of xenon-xenon collisions.

This powerful collider is designed with the purpose of answering some of the fundamental

questions in physics, which can be not studied otherwise. These questions are as follows:
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• The Higgs boson Does Higgs boson exist, as predicted in the Standard Model? The

discovery of this new boson with mass around 125 GeV was announced by scientists

working at the LHC in year of 2012. More research on the Higgs boson is ongoing.

• Supersymmetry Do all known particles have more massive, invisible twins?

• Dark matter What is the nature of dark matter that makes up 27% of the universe?

• Antimatter The universe should be created with equal amounts of matter and anti-

matter. Where are the antimatter particles?

• Extra dimensions Could there be more dimensions besides the four space-time di-

mensions?

• Quark Gluon Plasma What is the nature of the matter that existed at the very be-

ginning of our universe just after the Big Bang? This is the key goal of heavy ion

physics and is the focus of the thesis.

In Fig. 3.1, the layout of the LHC is shown. From the figure, eight arcs and four beam-

crossing points can be easily seen. These four beam-crossing points are where the collisions

happen and the four large detectors located. The four large detectors are: A Toroidal LHC

ApparatuS (ATLAS, located at P1), A Large Ion Collider Experiment (ALICE, located

at P2) ,Compact Muon Solenoid (CMS, located at P5), and The Large Hadron Collider

beauty experiment (LHCb, located at P8).

Besides the four large detectors, there are three smaller detectors, and they share the same

collision points with ATLAS, CMS and ALICE. The three smaller detectors are: TOTal

Elastic and diffractive cross section Measurement (TOTEM, located at P5), Large Hadron

Collider forward (LHCf, located at P1), and Monopole and Exotics Detector At the LHC

(MoEDAL, located at P2).

The purposes of these seven detectors are as follows:
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Figure 3.1: Current layout of the LHC ring. [41]

• ATLAS and CMS: general-purpose detectors built to study high-luminosity pp colli-

sions. Later, these two experiments also showed excellent performance in heavy-ion

collisions, and became key players in the heavy-ion filed ever since.

• ALICE: a dedicated heavy-ion detector.

• LHCb: focuses on CP-violation in the b-quark systems in pp collisions.

• TOTEM: designed for the measurement of total cross section, elastic scattering, and

diffractive processes in pp collisions.

• LHCf: designed to study particles in “forward” region.

• MoEDAL: a new detector to search for Magnetic Monopole at the LHC.
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The CMS detector will be introduced in the following text, since data used in this the-

sis were recorded by it. Other detectors are not the focus of this thesis, thus will not be

introduced here.

3.2 The Compact Muon Solenoid Detector

As mentioned above, CMS is a general-purpose detector and can be used to study both

pp and heavy-ion collisions. A detailed description of the CMS detector can be found in

Ref.[43]. The overall layout of the CMS detector is shown in Fig. 3.2. The CMS detector

with a weight of 12500 tons is 21.6 m long and has a diameter of 14.6 m. Inside out, each

layer of the CMS detector will be introduced briefly in the following text.

Figure 3.2: Overall layout of the CMS detector. Different parts are indicated with different
color coding: the beige cylinder represents the silicon tracker, the green material represents
the electromagnetic calorimeter, the purple material represents the hadronic calorimeter,
the gray part is the solenoid magnet, the iron return yoke is represented by yellow, and the
muon stations are shown by red. A sketch of person is placed to show the scale of the CMS
detector. [44]

The first layer is the tracker that can provide a precise and efficient measurement of the

trajectories of charged particles emerging from the LHC collisions, as well as a precise

reconstruction of secondary vertices. The CMS tracker contains a pixel detector and a
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silicon strip tracker. Detailed descriptions of the tracker will be given in the next section.

The second layer is the Electromagnetic Calorimeter (ECAL) which is designed to measure

electrons and photons with good energy resolution. Lead tungstate (PbWO4) crystals are

used in ECAL, due to their properties of high density, short radiation length, and small

Molière radius. The barrel part of the ECAL covers the pseudorapidity 1 range |η |< 1.479,

while the endcaps cover the pseudorapity range 1.479 < |η |< 3.0. Thus, the whole ECAL

has a pseudoraidity coverage up to |η |< 3.0.

The third layer is the Hadron Calorimeter (HCAL), which is particularly important for the

measurement of hadron jets, and neutrinos or exotic particles resulting in apparent missing

transverse energy. The HCAL includes the following subdetectors: barrel (HB), endcap

(HE), outer calorimeter (HO), forward calorimeter (HF). The longitudinal view of the CMS

detector is shown in Fig. 3.3. The dashed lines are at fixed η values.

Figure 3.3: Longitudinal view of the CMS detector showing the locations of the hadron
barrel (HB), outer (HO), and forward (HF) calorimeters. [43]

1η ≡− ln[tan( θ

2 )], where θ is the angle between the particle three-momentum and the positive direction
of the beam axis.
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The name “Compact Muon Solenoid” implies that the muon system is one of the signatures

of CMS. The muon system played an important role in the discovery of the Higgs boson,

as the “gold plated” decay of the Standard Model Higgs boson is its decay into four muons.

The muon system has three functions: muon identification, momentum measurement, and

triggering. The muon system has a cylindrical, barrel section and two planar endcap re-

gions. In the barrel region, drift chambers with standard rectangular drift cells are used,

since the muon rate is low and the 4-T magnetic field is uniform and mostly contained in

the steel yoke. In the two endcap regions, cathode strip chambers are used, because the

muon rates are high and the magnetic field is non-uniform.

Besides the subdetectors mentioned above, there are other subdetectors, such as The Beam

Scintillator Counters (BSC) and The Beam Pick-up Timing for the eXperiments (BPTX).

These subdetectors will not be discussed in this thesis.

In the following section, the tracker system of CMS will be described as it is directly

relevant to the analysis of strange particles.

3.2.1 The Inner Tracker System

As mentioned above, the goal of the tracking system of CMS is to provide a precise and

efficient measurement of the trajectories of charged particles emerging from the LHC col-

lisions. At the LHC design luminosity of 1034 cm−2s−1 2, there will be on average about

1000 particles from more than 20 overlapping proton-proton interactions traversing the

tracker for each bunch crossing, i.e. every 25 ns. Therefore, a detector technology featur-

ing high granularity and fast response is required. Furthermore, the intense particle flux

could cause severe radiation damage to the tracking system and the detector components

should be able to operate for an expected lifetime of ten years in such harsh environment.
2In 2017, the instantaneous luminosity reached 2.06×1034 cm−2s−1, which is over twice of the de-

sign. [45]
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To fulfill all the requirements, the tracker was designed entirely based on silicon detector

technology.

The CMS tracker is composed of a pixel detector with three barrel layers at radii between

4.4 cm and 10.2 cm and a silicon strip tracker with ten barrel detection layers extending

outwards to a radius of 1.1 m. Each system is completed by endcaps which consist of two

disks in the pixel detector and three plus nine disks in the strip tracker on each side of

the barrel, extending the acceptance of the tracker up to a pseudorapidity of |η | < 2.5. A

schematic drawing of the CMS tracker is shown in Fig. 3.4. As shown in Fig. 3.4, these

layers are: Tracker Inner Barrel (TIB), Tracker Outer Barrel (TOB), Tracker Inner Disc

(TID), and Tracker Endcap (TEC).

Figure 3.4: Schematic cross section through the CMS tracker. Each line represents a de-
tector module. Double lines indicate back-to-back modules which deliver stereo hits. [43]

3.2.1.1 Pixel detector

The pixel system is the part of the tracking system that is closest to the interaction region.

It contributes precise tracking points in r-φ and z and therefore is responsible for a small
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impact parameter resolution that is important for good secondary vertex reconstruction. A

geometrical layout of the pixel detector can be seen in Fig. 3.5. From Fig. 3.5, it is clear

that the pixel detector can cover a pseudorapidity range −2.5 < η < 2.5, which matches

the acceptance of the central tracker. There are three barrel layers (BPix) and two endcap

disks (FPix). The 53-cm-long BPix layers locate at mean radii of 4.4, 7.3, and 10.2 cm.

The FPix disks extending from 6 to 15 cm in radius, are placed on each side at z = ± 34.5

and z = ±46.5 cm.

Figure 3.5: Geometrical layout of the pixel detector. [43]

To meet the challenge of the increasing luminosity in LHC, the CMS collaboration has

built a new pixel detector that was installed in March 2017 [46]. This new pixel detector is

called “Phase-1”, while the previous one is called “Phase-0”. A comparison of the layouts

of Phase-1 pixel detector and Phase-0 pixel detector is shown in Fig. 3.6. With the new

pixel detector, high tracking efficiency can be maintained until Long Shutdown 3, which

will take place in 2024–2025. A two year shutdown (Long Shutdown 2) is also scheduled

for 2019–2020.

All the data used in this thesis were collected with Phase-0 pixel detector.
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Figure 3.6: CMS pixel detector upgrade: “Phase-1” versus “Phase-0”. [47]

3.2.1.2 Silicon strip tracker

The TIB consists of four concentric cylinders placed at radii of 255.0 mm, 339.0 mm, 418.5

mm, and 498.0 mm respectively from the beam axis that extend from -700 mm to + mm

along the z axis. The TID contains three disks placed in z between ± 800 mm and ± 900

mm. The disks are identical and each one consists of three rings, which span the radius from

roughly 200 mm to 500 mm. The TOB consists of a single mechanical structure (wheel)

supporting 688 self-contained sub-assemblies, called rods. The wheel has a length of 2180

mm, and inner and outer radii of 555 mm and 1160 mm, respectively. As to the TEC, the

endcaps extend radially from 220 mm to 1135 mm and from ± 1240 mm to ± 2800 mm

along the z-direction. The silicon strip tracker has the same pseudorapidity coverage as the

pixel detector, which is |η | < 2.5. As can be seen later, the large pseudorapidity coverage

of CMS tracker enables the measurement of the pT spectra of strange particles in different

rapidity ranges, and to study their evolution with rapidity.
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Chapter 4

Experimental method

In this chapter, the methods used to reconstruct K0
S, Λ, Ξ−, and Ω− candidates, how signal

counts are extracted, how efficiency corrections are performed, and how to deal with “non-

prompt” Λ are discussed in details.

4.1 Reconstruction of K0
S, Λ, Ξ−, and Ω− candidates

The K0
S and Λ candidates, generally referred to as V 0 1, are reconstructed via their decay

topology, K0
S → π++ π− and Λ→ π−+ p+, by combining pairs of oppositely charged

tracks that are displaced from the primary vertex to form a good secondary vertex with

an appropriate invariant mass. For K0
S candidate reconstruction, two tracks are assumed

to be pions, and pion mass is assigned to each track. For Λ candidate reconstruction,

the track with lower momentum is assumed to be a pion track, while the one with higher

momentum is assumed to be a proton track. For Ξ− and Ω− candidate reconstruction,

(Ξ− → Λ+ π− and Ω− → Λ+K−), a track with the proper charge is combined with a

previously reconstructed Λ candidate to form a good secondary vertex with a reasonable

invariant mass. This extra track is assumed to be a pion (kaon) for Ξ− (Ω−) candidate

reconstruction. Detailed discussion regarding reconstruction criteria for K0
S, Λ, Ξ−, and

Ω− candidates is shown below.

In Fig. 4.1, the decay topology as well as the topological selections that will be mentioned

below of Λ are demonstrated. A schematic plot of Ξ− decay topology is shown in Fig. 4.2.

1The name comes from the facts that they are neutral particles and their decay topology have the “V”
shape.
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Figure 4.1: Decay topology as well as topological selections of Λ baryon. “DCA” stands
for distance of closest approach. [48]

Figure 4.2: Schematic decay topology of Ξ− baryon. [49]

4.1.1 Reconstruction of V 0 candidates

To reduce the background of V 0 candidates, a set of topological selections, shown in

Fig. 4.1 are needed. In our analysis, a quantity called “DCA significance”, which is de-

fined as DCA value divided by the uncertainty of DCA, is used.

Criteria of V 0 reconstruction are summarized below:

• 3D distance of closest approach significance with respect to the primary vertex > 2

for both daughter tracks, since secondary tracks that come from particle decays will

be displaced.
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• 3D distance of closest approach significance of the V 0 candidate with respect to the

primary vertex < 2.5, since primary tracks will point to the primary vertex will small

significance.

• 3D separation significance between V 0 vertex and primary vertex > 3, since decay

length of V 0s are in the order of several centimeters 2.

The cut variables used for V 0 reconstruction mentioned above are identical as previous

CMS publication: QCD-10-007 [50]. In a recent CMS publication, which is also an im-

portant part of this thesis, HIN-15-006 [51], cosine pointing angle cut, which is shown in

Fig. 4.3, was used instead of the 3D distance of closest approach significance of the V 0 with

respect to the primary vertex. Both cuts serve the same purpose to require the momentum

of V 0 candidates to point back to the primary vertex. My research confirmed that these two

cuts yield consistent results.

Figure 4.3: Demonstration of pointing angle cut. [52]

To make sure that the reconstruction efficiency and acceptance are properly evaluated, it

is crucial to investigate the distribution of the cut variables in data and Monte Carlo (MC)

such as EPOS [53, 54] and PYTHIA [20]. The EPOS event generator [54] was used to

evaluate the efficiency and acceptance. It is a phenomenological approach that based on

the parton model [53]. Comparison plots for the distribution of cut variables of V 0s in data

and MC are shown in Fig. 4.4 and Fig. 4.5. These comparison plots are from pp collisions.
2cτ(K0

S) = 2.69 cm, cτ(Λ) = 7.89 cm.
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Similar studies have been done for pPb collisions as well. These plots show that the cut

variables used in V 0 reconstruction in data and MC are in good agreement.

CutPi1stIpSigValue
0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

MC MB Sig

Data Sig

CutPi2ndIpSigValue
0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CutFlightSigValue

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CutKsIpSigValue

0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4.4: Cut variables of K0
S in pp data and pp EPOS: normalized distributions of π+

(top left) and π− (top right) track 3D distance of closest approach significance with respect
to primary vertex, distribution of the 3D vertex separation significance between V 0 vertex
and primary vertex (bottom left), and V 0 candidates 3D distance of closest approach signif-
icance with respect to primary vertex (bottom right). Red circles represent pp data, while
blue circles stand for pp EPOS.

4.1.2 Reconstruction of Ξ− and Ω− candidates

To reconstruct Ξ− and Ω− candidates, an extra charged track with the correct sign is com-

bined with a previously reconstructed Λ candidate to form a good secondary vertex with

an appropriate invariant mass. To reduce background, cut criteria for Ξ− (Ω−) candidates

reconstruction are summarized below:

• 3D distance of closest approach significance of proton track from Λ decay with re-
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Figure 4.5: Cut variables of Λ in pp data and pp EPOS: normalized distributions of proton
(top left) and π− (top right) track 3D distance of closest approach significance with respect
to primary vertex, distribution of the 3D vertex separation significance between V 0 vertex
and primary vertex (bottom left), and V 0 candidates 3D distance of closest approach signif-
icance with respect to primary vertex (bottom right). Red circles represent pp data, while
blue circles stand for pp EPOS.

spect to the primary vertex > 2

• 3D distance of closest approach significance of π track from Λ decay with respect to

the primary vertex > 3 3

• 3D distance of closest approach significance of π (K) track from Ξ− (Ω−) decay with

respect to the primary vertex > 4

• 3D distance of closest approach significance of the Ξ− (Ω−) candidate with respect

to the primary vertex < 3

3Comparing to proton track, the momentum of π track is smaller, thus DCA significance of π track is
larger.
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• 3D separation significance between Λ vertex and primary vertex > 10

• 3D separation significance between Ξ− (Ω−) vertex and primary vertex > 2

The cut variables used for Ξ− reconstruction mentioned above are identical to the ones used

in CMS publications: QCD-10-007 [50] and HIN-15-006 [51].

To make sure that the reconstruction efficiency and acceptance are properly evaluated, it is

crucial to investigate the distribution of cut variables in data and MC. Comparison plots for

cut variables distribution of Ξ− and Ω− candidates in data and MC are shown in Fig. 4.6

and Fig. 4.7 for pp collisions. Similar studies have been done for pPb collisions as well.

These plots show that cut variables used in Ξ− and Ω− reconstruction in data and MC are

in good agreement.
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Figure 4.6: Cut variables of Ξ− in pp data and pp EPOS: normalized distributions of proton
track from Λ decay (top left), π− track from Λ decay (top middle), and bachelor π− track
(top right) 3D distance of closest approach significance with respect to primary vertex,
Ξ− candidates 3D distance of closest approach significance with respect to primary vertex
(bottom left), distribution of the 3D vertex separation significance between Ξ− vertex and
primary vertex (bottom middle), and distribution of the 3D vertex separation significance
between Λ vertex and primary vertex (bottom right). Red circles represent pp data, while
blue circles stand for pp EPOS.
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Figure 4.7: Cut variables of Ω− in pp data and pp EPOS: normalized distributions of pro-
ton track from Λ decay (top left), π− track from Λ decay (top middle), and bachelor K−

track (top right) 3D distance of closest approach significance with respect to primary ver-
tex, Ω− candidates 3D distance of closest approach significance with respect to primary
vertex (bottom left), distribution of the 3D vertex separation significance between the Ω−

vertex and the primary vertex (bottom middle), and distribution of the 3D vertex separa-
tion significance between the Λ vertex and the primary vertex (bottom right). Red circles
represent the pp data, while the blue circles stand for pp EPOS.

4.1.3 Removal of mis-identified candidates

As the identity of each track cannot be determined, the mass of each charged particle leav-

ing a track in the detector has to be assumed depending on the identity of the V 0 candidate.

It is possible that K0
S (Λ) candidates are mis-identified as Λ (K0

S) candidates. Especially,

there is a high probability that a track assumed to be a proton in a Λ candidate is actu-

ally a pion, due to the abundance of pions. To select a clean sample of K0
S and Λ, the

Armenteros-Podolanski (A-P) plot [55] is investigated.

The A-P plot is a two-dimensional plot of transverse momentum (pT) of the oppositely

charged decay products with respect to the V 0 candidates versus the longitudinal momen-

tum asymmetry α = (p+L − p−L )/(p+L + p−L ). Examples of A-P plot can be found in Fig. 4.8
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and Fig. 4.9. The obtained distribution can be explained by the fact that the pair of pions

from the K0
S decay have the same masses and therefore their momenta are distributed sym-

metrically on average (upper band), while the proton (anti-proton) in Λ (Λ) decay carries,

on average, a larger portion of the total momentum and results in an asymmetric distribution

(two lower bands).

Figure 4.8: Armenteros-Podolanski(A-P) plot for K0
S candidates in pPb data before mis-

identified mass cut (left) and after mis-identified mass cut (right).

Figure 4.9: Armenteros-Podolanski(A-P) plot for Λ candidates in pPb data before mis-
identified mass cut (left) and after mis-identified mass cut (right).

To identify the mis-identified K0
S, the π − π hypothesis is applied to Λ candidates. The
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hypothesis assumes that both daughter tracks from the decay of Λ candidates are pions and

re-calculates the invariant mass of the decayed mother particle. Similar procedure is used to

identify the mis-identified Λ particles. The re-calculated invariant mass distribution for K0
S

and Λ in data and MC are shown in Fig. 4.10 for pPb collisions. Clear peaks at the present

best experimental value of the K0
S (Λ) particle mass, as determined by the Particle Data

Group (PDG) [34] mass value, 0.497614 (1.15683) GeV, can be seen the for re-calculated

invariant mass peaks of Λ (K0
S) candidates. To remove those mis-identified Λ (K0

S), the

re-calculated masses of the K0
S (Λ) candidates are required to be 10 (20) MeV away from

the Λ (K0
S) PDG mass value. Effects of the cut can be seen on the right hand side of Fig. 4.8

and Fig. 4.9. With this cut, mis-identified band is completely removed, while only a tiny

fraction of the real candidates are removed. A similar cut is needed for Ω− candidates

reconstruction to remove the mis-identified Ξ−, due to the abundance of Ξ− candidates in

comparison to the Ω− candidates. The re-calculated mass of the Ω− candidates is required

to be 15 MeV away from the Ξ− PDG mass value. This procedure is not necessary for

the Ξ− candidates, since the amount of Ω− candidates is small in comparison to the Ξ−

candidates.
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Figure 4.10: Re-calculated invariant mass in pPb : K0
S (left) and Λ (right) for data (black)

and pPb EPOS (red)

For V 0 candidates, there is also a chance that both of the daughter tracks are, in fact,
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electrons from a photon conversion. Therefore, to remove the mis-identified photons, the

re-calculated V 0 mass is required to be larger than 15 MeV.

4.2 Transverse momentum spectra

4.2.1 Yield extraction

The invariant mass distributions of the reconstructed K0
S, Λ, Ξ−, and Ω− candidates in pPb

collisions simulated by EPOS for differential pT bins are shown from Fig. 4.11 to Fig. 4.14.

Only plots for the first several pT bins are shown as examples. To extract signal counts from

the invariant mass distribution, a double Gaussian with a common mean is used for the

signal function. To describe the background, a second-order polynomial is used to fit the

background of K0
S, while a function in the form AqB, where q = mmother− (mdau1+mdau2),

is used for the three strange baryon species. The mean values of the mass peaks from this

fitting are close to the PDG values of particle masses, and the average standard deviat, σ ,

of the double Gaussian function is calculated as:

σave =

√
Y1

Y1 +Y2
σ2

1 +
Y2

Y1 +Y2
σ2

2 , (4.1)

where σ1(σ2) and Y1(Y2) are σ and yield of first (second) Gaussian.

The fittings are performed using the RooFit [56] package in ROOT [57]. The raw yield is

given by the integral of the signal function for the entire mass range.

Once the invariant mass peaks are fitted with background and signal functions, the signal

counts can be obtained by integrating the signal function over the full mass range.
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Figure 4.11: Samples of invariant mass distributions for K0
S in pPb collisions simulated by

EPOS after applying cut criteria mentioned above. Pull plots are also provided. “Pull” is
defined as the difference between the histogram value and the fitting value normalized by
the histogram error.

4.2.2 Efficiency corrections

The performance of reconstructing K0
S, Λ, Ξ−, and Ω− candidates is evaluated based on

MC simulations. The efficiency × acceptance is calculated as follows:

α× ε =
NRECO

y,pT,allcuts

NGEN
y,pT

(4.2)

where the ratio between reconstruction level (RECO) number of candidates and that from

the generated level (GEN) is calculated in each pT and center-of-mass rapidity (yCM) inter-

val for pp and pPb collision separately. With the above correction, the branching ratio and

detector acceptance are also taken into account.
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Figure 4.12: Samples of invariant mass distributions for Λ in pPb EPOS after applying cut
criteria mentioned above. Pull plots are also provided.

Due to the fact that the z coordinate of the position of primary vertex (vertex z) could have

a large effect on particle reconstruction, it is essential ensure that the collision z-vertex

distributions are the same in the data and in the MC. If this turns out not to be the case, the

vertex z distribution of the MC is reweighted it the same as in the data. The reweighting

factor is derived as follows: First we fit vertex z distribution of the data and the MC with

Gaussian function separately; then we take ratio of the two Gaussian functions (data over

MC); after getting the ratio, reweighting factors are obtained according to the vertex z

value of a certain event in MC. The vertex z reweighting for MC is shown in following

plots. Fig.4.15 shows the vertex z distribution of pp data, PYTHIA before and after vertex

z reweighting. From the plot, it is clear that the reweighting procedure matches vertex z

distribution in PYTHIA to that in data. The vertex z reweighting is done for pp EPOS and

pPb EPOS as well, which is shown in Fig.4.16 and Fig.4.17.
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Figure 4.13: Samples of invariant mass distributions for Ξ− in pPb EPOS after applying
cut criteria mentioned above. Pull plots are also provided.

Three different approaches can be deployed to get RECO level number of candidates:

1. fit the invariant mass peak and integrate the signal function to get signal counts, as

what is done for data;

2. count the number of candidates within [peak−3σ , peak+3σ ] mass window to es-

timate the total counts (ytot) and use the sum of counts in [peak−7σ , peak−4σ ]

and [peak+4σ , peak+7σ ] to estimate the background counts (ybkg), then the signal

counts equals ytot− ybkg;

3. match reconstructed strange particle candidates to generated strange particle candi-

dates, as what is done in previous CMS publication, QCD-10-007 [50]. Due to the

long lifetime of K0
S, Λ, Ξ−, and Ω−, these particles are decayed by GEANT4 [58]

rather than generators and are not normally stored in the “GenParticles” collec-
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Figure 4.14: Samples of invariant mass distributions for Ω− in pPb EPOS after applying
cut criteria mentioned above. Pull plots are also provided.
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Figure 4.15: Vertex z reweighting for PYTHIA: black dots stand for vertex z distribution of
pp data; blue circles represent vertex z distribution of PYTHIA before vertex z reweighting;
red circles show vertex z distribution of PYTHIA after vertex z reweighting.
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Figure 4.16: Vertex z reweighting for pp EPOS: black dots stand for vertex z distribution of
pp data; blue circles represent vertex z distribution of pp EPOS before vertex z reweighting;
red circles show vertex z distribution of pp EPOS after vertex z reweighting.
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Figure 4.17: Vertex z reweighting for pPb EPOS: black dots stand for vertex z distribu-
tion of pPb data; blue circles represent vertex z distribution of pPb EPOS before vertex z
reweighting; red circles show vertex z distribution of pPb EPOS after vertex z reweighting.

tion [59]. The “GenPlusSimParticleProducer” [60] is used to produce a new col-

lection with both generator and GEANT4 particles.
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For V 0 candidates, the matching criteria are:

• Each reconstructed track must be matched to the proper generated track by requiring

∆R < 0.1 where ∆R =
√

(∆φ)2 +(∆η)2

• The distance between the reconstructed V 0 vertex and the true reconstructed vertex(∆L)

must be smaller than 10 cm

Note that the ∆R matching is performed using the track parameters at the location of the

V 0 vertex.

For Ξ− and Ω− candidates, the matching criteria are:

• Each reconstructed track must be matched to the proper generated track by requiring

∆R < 0.05

• The distance between the reconstructed Ξ− or Ω− vertex and the true reconstructed

vertex(∆L) must be smaller than 5 cm

Fig.4.18 shows the difference of the yields obtained with the three different methods in

the pPb EPOS MC sample. The full integral of the signal fitting function is the nominal

method used in this analysis. The efficiency plots shown below are obtained with this

method. The side-band method to estimate the background shows some difference to the

nominal method only at low pT. This is expected, as the side-band method is equivalent

as assuming the background shape around the invariant mass peak can be described with

a linear function. The small discrepancy between the matching method and the nominal

one is also expected, as the signal counts obtained with the matching method depend on

the matching criteria. Overall, the three methods show consistent results within 5% for all

particles.
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Figure 4.18: Ratio of RECO yields obtained with matching of RECO to GEN (blue dots)
and direct counting of the number of candidates under the mass peak within ±3σ using
side band to estimate the number of candidates in background (red dots) to RECO yields
obtained with full integral of the fitting double Gaussian function for different particles:
K0

S (top left), Λ (top right), Ξ− (bottom left), and Ω− (bottom right) as a function of pT in
|yCM|< 1.8 derived from pPb EPOS.

At the RECO level, the same cut criteria as data are used. Also, the vertex z distribution is

properly weighted for each event to match that of data. Efficiency × Acceptance of K0
S as

a function of pT in several yCM bins for pp and pPb collisions are shown from Fig. 4.19 to

Fig .4.21. Due to statistic limitations of the MC samples, Efficiency×Acceptance may have

some uneven structure. In this case, a fourth order polynomial function is used to smoothen

out the Efficiency×Acceptance. The smoothed Efficiency×Acceptance of K0
S particles as

a function of pT in several yCM bins for pp and pPb 4 collisions are shown from Fig.4.22
4In the middle of the 2013 pPb data taking, the direction of beam was reversed. Thus, there are two sets

47



to Fig.4.24. Similar efficiency tables are studied for other strange hadrons as well. The

smoothed Efficiency×Acceptance of Λ, Ξ−, and Ω− particles in pp collisions are shown

from Fig. 4.25 to Fig. 4.27 as examples.
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Figure 4.19: Efficiency × Acceptance of K0
S as a function of pT in several |yCM| bins as

described in each plot derived from pp EPOS.
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Figure 4.20: Efficiency × Acceptance of K0
S as a function of pT in several |yCM| bins as

described in each plot derived from pPb EPOS with proton goes to the negative z direction.

The raw yields of strange particles are corrected for branching ratio (BR), acceptance (α),

of efficiency tables for pPb data.
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Figure 4.21: Efficiency × Acceptance of K0
S as a function of pT in several |yCM| bins as

described in each plot derived from pPb EPOS with proton goes to the positive z direction.
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Figure 4.22: Smoothed Efficiency × Acceptance of K0
S as a function of pT in several |yCM|

bins as described in each plot derived from pp EPOS.

and reconstruction efficiency (ε) using simulation, based on the EPOS generator and a

GEANT4 model of the detector,

Ncorr
K0

S/Λ/Ξ−/Ω−
=

Nraw
K0

S/Λ/Ξ−/Ω−

BR×α× ε
(4.3)
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Figure 4.23: Smoothed Efficiency × Acceptance of K0
S as a function of pT in several |yCM|

bins as described in each plot derived from pPb EPOS with proton goes to the negative z
direction.

where BR×α× ε is obtained by the ratio of raw reconstructed yield to generated yield of

strange particles in MC simulations. Nraw
K0

S/Λ/Ξ−/Ω−
and Ncorr

K0
S/Λ/Ξ−/Ω−

represent the yield of

strange particles before and after corrections.

4.2.3 Feed-down correction of Λ candidates

The raw yield of Λ candidates contains a contribution from decays of Ξ− and Ω− particles.

This “non-prompt” contribution is largely determined by the ratio of Ξ− to Λ candidate

yield (Ω− candidate yield is negligible, in comparison to the yield of Ξ− candidates). Al-

though tight cuts on the 3D distance of closest approach significance of Λ candidates with

respect to the primary vertex help remove a large fraction of non-prompt Λ candidates, up

to 4% non-prompt Λ could still remain in the Λ candidate sample at intermediate pT. If the
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Figure 4.24: Smoothed Efficiency × Acceptance of K0
S as a function of pT in several |yCM|

bins as described in each plot derived from pPb EPOS with proton goes to the positive z
direction.
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Figure 4.25: Smoothed Efficiency × Acceptance of Λ as a function of pT in several |yCM|
bins as described in each plot derived from pp EPOS.

ratio of Ξ− to Λ yield is modeled precisely in simulations, contamination of non-prompt Λ

candidates will be corrected in the correction procedure using Eq. 4.3. Otherwise, an addi-

tional correction for the residual effect is necessary. As the Ξ− candidate yield is explicitly

measured in this analysis. The residual correction factor can be derived in a data-driven
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Figure 4.26: Smoothed Efficiency× Acceptance of Ξ− as a function of pT in several |yCM|
bins as described in each plot derived from pp EPOS.
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Figure 4.27: Smoothed Efficiency × Acceptance of Λ as a function of pT for |yCM| < 1.8
derived from pp EPOS.

way as:

f residual
Λ,np = 1+ f raw

Λ,np×

(
Ncorr

Ξ− /Ncorr
Λ

NMC
Ξ− /NMC

Λ

−1

)
, (4.4)

where f raw
Λ,np denotes the fraction of non-prompt Λ in the raw reconstructed Λ sample, and

is obtained from MC simulations. Ncorr
Ξ− /Ncorr

Λ
and NMC

Ξ− /NMC
Λ

are the Ξ−-to-Λ ratios from

the data after applying corrections in Eq. 4.3, and from generator-level MC simulations,

respectively. The final prompt Λ particle yield is obtained after dividing by this residual
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factor, f residual
Λ,np . The effect from residual non-prompt Λ particles is negligible when the

EPOS event generator is used, since it has a similar Ξ−/Λ ratio as in the data. In the

nominal results presented here, the EPOS event generator is used and in this case, the

residual correction is negligible. However, for crosscheck purpose, other event generators,

PYTHIA or HIJING [61], are also used to test the residual correction. Note that Ncorr
Λ

used

in Eq. 4.4 is first derived using Eq. 4.3, which, in principle, still contains the residual non-

prompt Λ particles. Therefore, by applying Eq. 4.4 iteratively, Ncorr
Λ

will approach the final

corrected yields for prompt-only Λ particles. Studies showed that a second iteration of this

correction has an effect of less than 0.1% on the spectra.

4.2.4 Normalization

In pp collisions, the differential invariant cross section ( 1
Nevt

E d3σ

d3 p ) is used to represent par-

ticle production, where Nevt is number of events. It can be transformed to measurable

quantities based on following equation:

1
Nevt

E
d3σ

d3 p
=

1
Nevt

d2σ

2π pTd pTdy
(4.5)

In pPb collision, per-event yield ( 1
Nevt

E d3N
d3 p ) is used to represent particle production. It can

be measured based on following equation:

1
Nevt

E
d3N
d3 p

=
1

Nevt

d2N
2π pTd pTdy

(4.6)

For direct comparison, a factor of 70 mb [62] can be used to scale the pp spectrum from a

differential cross section to a per-event yield.
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Chapter 5

Multiplicity dependence of strange hadron production

Usually, particle correlation measurements, such as elliptic flow (v2) and triangular flow

(v3) [17, 63, 64, 65], are used to study the collectivity of the matter produced in the colli-

sions. In this chapter, a new way to study the potential collective flow is introduced. To test

whether the radial flow is there or not in the small systems, identified particle spectra can

be used, since radial flow will push all the particles out at the same velocity, thus, particles

with larger masses end up with larger momentum. Multiplicity dependent spectra of K0
S, Λ,

and Ξ− in pp, pPb, and PbPb collisions provide an ideal way to study radial flow in small

systems.

5.1 Data samples and event selection

The pp, pPb, and PbPb data used are recorded by CMS in the year of 2010, 2013, and 2011,

respectively. Monte Carlo (MC) samples of pp, pPb, and PbPb collisions are generated to

determine the performance of strange hadron reconstruction, event selection efficiency and

crosscheck other potential detector effects. For pp collisions, PYTHIA event generator is

used to produce the MC sample. For pPb collision, both HIJING and EPOS event gener-

ators are used to produce the MC samples. For PbPb collision, since only the peripheral

events are needed, HIJING event generator with requirement on the impact parameter (b)

is used.

A key component for this analysis is to get enough statistics for high multiplicity events in

both pp and pPb collisions. With the goal of studying the properties of high multiplicity pp

and pPb collisions, dedicated high multiplicity triggers were designed and implemented.
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Fig. 5.1 shows Noffline
trk distribution of minimum bias and high multiplicity triggers in pPb

collisions. In this analysis, Noffline
trk is used to represent the multiplicity, and it is defined as

the offline reconstructed tracks that were counted within the kinematic cuts of |η | < 2.4

and pT > 0.4 GeV/c, where η is the pseudorapidity and pT is the transverse momentum of

the track.

offline
trkN
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P
(N

)

-610

-510

-410

-310

-210

-110

1

10 MinBias
>100online

trkHLT N
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trkHLT N
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trkHLT N

CMS Preliminary

Figure 5.1: Noffline
trk distribution of minimum bias and high multiplicity triggers in pPb col-

lisions. [66]

The full track multiplicity range is divided into many different multiplicity bins: [0,20),

[20,30), [30,40), [40,50), [50,60), [60,80), [80,100), [100,120), [120,150), [150,185),

[185,220), [220,260), [260,300), [300,350). The faction of total number of events for each

multiplicity interval, as well as the average track multiplicity before and after corrections,

are summarized in Table 5.1 and Table 5.2 for pp and pPb collisions, respectively. The

uncertainties on
〈
Ncorrected

trk
〉

come from track quality cuts and from the tracking efficiency

correction procedure, a total systematic uncertainty of 3.2%.

In order to compare the PbPb collisions with pp and pPb collisions directly, a subset of

data from peripheral PbPb collisions were reanalyzed using the same track reconstruction

algorithm as the one used in pp and pPb collisions. The selection of events and tracks is the
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same as for the present pPb analysis although a different trigger is used. The average Noffline
trk

and Ncorrected
trk values, and corresponding average PbPb collision centrality, as determined

by the total energy deposited in the HF calorimeters [67], are listed in Table 5.3 for each

Noffline
trk bin. Similarly, the uncertainties on Ncorrected

trk come from track quality cuts and from

the tracking efficiency correction procedure, a total of 3.2%.

Table 5.1: Fraction of the full event sample in each multiplicity bin and the average mul-
tiplicity per bin for pp data. The multiplicity of offline reconstructed tracks, Noffline

trk , was
counted within the kinematic cuts of |η | < 2.4 and pT > 0.4 GeV/c. The third and forth
columns list the average values of Noffline

trk as well as the average of Ncorrected
trk , the event

multiplicity corrected for all detector and algorithm inefficiencies.

Multiplicity bin (Noffline
trk ) Fraction

〈
Noffline

trk
〉 〈

Ncorrected
trk

〉
[0,35) 0.93 13 14±1
[35,60) 0.06 43 51±2
[60,90) 6×10−3 68 79±3
[90,110) 2×10−4 96 111±4
[110,130) 1×10−5 116 134±5
[130,∞) 7×10−7 138 161±6
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Table 5.2: Fraction of the full event sample in each multiplicity bin and the average mul-
tiplicity per bin for pPb data. The multiplicity of offline reconstructed tracks, Noffline

trk , was
counted within the kinematic cuts of |η | < 2.4 and pT > 0.4 GeV/c. The third and forth
columns list the average values of Noffline

trk as well as the average of Ncorrected
trk , the event

multiplicity corrected for all detector and algorithm inefficiencies.

Multiplicity bin (Noffline
trk ) Fraction

〈
Noffline

trk
〉 〈

Ncorrected
trk

〉
MB 1.00 40 50±2
[0,20) 0.31 10 12±1
[20,30) 0.14 25 30±1
[30,40) 0.12 35 42±2
[40,50) 0.10 45 54±2
[50,60) 0.09 54 66±3
[60,80) 0.12 69 84±4
[80,100) 0.07 89 108±5
[100,120) 0.03 109 132±6
[120,150) 0.02 132 159±7
[150,185) 4×10−3 162 195±9
[185,220) 5×10−4 196 236±10
[220,260) 6×10−5 232 280±12
[260,300) 3×10−6 271 328±14
[300,350) 1×10−7 311 374±16

Table 5.3: Average centrality under standard definition based on HF total energy in each
multiplicity bin and the average multiplicity per bin for PbPb data. The multiplicity of
offline reconstructed tracks, Noffline

trk , was counted within the kinematic cuts of |η | < 2.4
and pT > 0.4 GeV/c. The third and forth columns list the average values of Noffline

trk as well
as the average of Ncorrected

trk , the event multiplicity corrected for all detector and algorithm
inefficiencies.

Multiplicity bin (Noffline
trk ) <Centrality> ± RMS (%)

〈
Noffline

trk
〉 〈

Ncorrected
trk

〉
[0,20) 92±4 10 13±1
[20,30) 86±4 24 30±1
[30,40) 83±4 34 43±2
[40,50) 80±4 44 55±2
[50,60) 78±3 54 68±3
[60,80) 75±3 69 87±4
[80,100) 72±3 89 112±5
[100,120) 70±3 109 137±6
[120,150) 67±3 134 168±7
[150,185) 64±3 167 210±9
[185,220) 62±2 202 253±11
[220,260) 59±2 239 299±13
[260,300) 57±2 279 350±15
[300,350) 55±2 324 305±18
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5.2 Systematics

The systematic uncertainties in pp, pPb, and PbPb collisions have been investigated, and no

obvious multiplicity dependence has been observed among different multiplicity intervals

for the measured strange particle spectra. Therefore, the same relative systematic uncertain-

ties on the yields would be quoted for different multiplicity intervals. Due to this reason,

only the multiplicity interval with the largest statistics for each system is used to perform

the systematic study to reduce the effect of limited statistics. For some systematic sources,

non-negligible pT dependence has been observed. In this case, different systematic un-

certainties are quoted for different pT ranges. The total uncertainties in the particle yields

are calculated by adding all the systematic sources in quadrature, assuming that they are

independent. However, when we calculate the systematic uncertainty in the particle ratios

some of the uncertainties that are common will cancel. Due to the fact that both K0
S and

Λ candidates are reconstructed by combining two tracks, the uncertainties from tracking

efficiency [68] can be canceled out in Λ over K0
S yield ratios. However, Ξ− candidates are

reconstructed from three tracks, which means the systematic uncertainties from tracking

efficiency will contribute 3.9% to Ξ− over Λ ratios.

For each of the systematic sources, the ratios of invariant yields are calculated with various

alternative conditions with respect to the default condition that is used in the analysis as a

function of pT for K0
S, Λ, and Ξ−. Then, the absolute values of maximum discrepancy in the

ratio among various conditions for different pT bins are fitted with a constant value, taking

into account corresponding statistical uncertainties of each pT bin. For those systematic

sources that show clear pT dependence, systematic values are quoted for low pT and high

pT parts separately with the same technique described above. In the following subsections,

each systematic uncertainty source is studied thoroughly for pp, pPb, and PbPb collisions,

considering the length of this thesis, only some sample plots for pPb collision will be

shown.
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After carefully investigating all the systematic sources, no obvious system dependence has

been seen, thus, for each systematic source, the same value is quoted for each collision

system. Table 5.4 summarizes the different sources of systematic uncertainties of the pT

spectra in the mid-rapidity range for K0
S, Λ, and Ξ−.

Table 5.4: Summary of systematic uncertainties on pT spectra in mid-rapidity for three
collision systems.

Source K0
S (%) Λ (%) Ξ− (%)

< 1.5 GeV/c > 1.5 GeV/c < 1.5 GeV/c > 1.5 GeV/c
Pile-Up Effect( pp only) 3 1 3 1 3
Beam Direction( pPb only) 3 3 4
Efficiency Correction 5
Yield Extraction 2 2 3
Rapidity Binning 1 1 2
Selection Criteria 3.6 2.2 3.6 2.2 7
Momentum Resolution 2 2
Tracking Efficiency 7.8 7.8 7.8 7.8 11.7
Feed-down Effect 2 3
Total ( yields in pp ) 9.6 8.7 9.8 8.9 15.3
Total ( yields in pPb ) 9.6 9.2 9.8 9.4 15.5
Total ( yields in PbPb ) 9.1 8.6 9.3 8.9 15.0

< 1.5 GeV/c > 1.5 GeV/c
Total ( Λ/K0

S ratios in pp ) 8.1 5.8
Total ( Ξ−/Λ ratios in pp ) 12.1 11.4
Total ( Λ/K0

S ratios in pPb ) 8.1 7.1
Total ( Ξ−/Λ ratios in pPb ) 12.4 12.1
Total ( Λ/K0

S ratios in PbPb ) 6.9 5.6
Total ( Ξ−/Λ ratios in PbPb ) 11.3 11.0

Besides the systematic uncertainties on the spectra for each pT bin, average transverse kine-

matic energy, 〈mT〉−m, of measured spectra is also studied. Due to the fact that the spectra

for each particle species are not measured down to pT = 0 GeV/c, extrapolation is needed to

estimate the total yields. Details of how systematic uncertainty is evaluated for the extrap-

olation procedure is discussed below, and this systematic uncertainty source is system size

and multiplicity dependence since spectral shapes are different. Tables 5.5 to 5.7 summa-

rize the systematic uncertainties of the measurement of 〈mT〉−m from different sources for
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each multiplicity interval in pp, pPb, and PbPb collisions. For each systematic source, the

〈mT〉−m value is extracted from the spectra for each alternative condition and compared

to default one to evaluate the systematic uncertainty. The Table 5.8 summarizes systematic

sources of 〈mT〉−m. Only systematic uncertainties that are larger than 0.1% are presented.

Table 5.5: Summary of 〈mT 〉−m results of mid-rapidity of K0
S, Λ in the pp system. statis-

tical uncertainties are negligible compared to the systematic uncertainties, only systematic
uncertainties are shown in the table

multiplicity ranges K0
S (GeV/c2) Λ (GeV/c2)

(0,35) 0.434 ± 0.004 0.42±0.023
[35,60) 0.583 ± 0.004 0.622±0.019
[60,90) 0.671 ± 0.004 0.736±0.02
[90,110) 0.743 ± 0.004 0.857±0.014
[110,130) 0.787 ± 0.004 0.926±0.013
[130,above) 0.833 ± 0.004 0.964±0.011

Table 5.6: Summary of 〈mT 〉−m results of mid-rapidity of K0
S, Λ and Ξ− in pPb system.

statistical uncertainties are negligible compared to systematic uncertainties, only systematic
uncertainties are shown in the table

multiplicity ranges K0
S (GeV/c2) Λ (GeV/c2) Ξ− (GeV/c2)

(0,35) 0.467 ± 0.005 0.47±0.025 0.514±0.045
[35,60) 0.556 ± 0.003 0.609±0.015 0.679±0.038
[60,90) 0.604 ± 0.004 0.68±0.018 0.776±0.031
[90,120) 0.637 ± 0.004 0.736±0.013 0.862±0.042
[120,150) 0.662 ± 0.004 0.779±0.01 0.907±0.03
[150,185) 0.678 ± 0.004 0.809±0.011 0.946±0.036
[185,220) 0.699 ± 0.004 0.842±0.012 1.01±0.042
[220,260) 0.713 ± 0.004 0.862±0.014 1.04±0.037

5.2.1 Systematics in the pT spectra

Systematic sources related to the pT spectra of K0
S, Λ, and Ξ− candidates in pp, pPb, and

PbPb collisions are discussed in details in the following sections.
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Table 5.7: Summary of 〈mT 〉−m results of mid-rapidity of K0
S, Λ in PbPb system. sta-

tistical uncertainties are negligible compared to systematic uncertainties, only systematic
uncertainties are shown in the table

multiplicity ranges K0
S (GeV/c2) Λ (GeV/c2)

(0,35) 0.382 ± 0.004 0.384±0.02
[35,60) 0.433 ± 0.03 0.462±0.016
[60,90) 0.447 ± 0.003 0.485±0.018
[90,120) 0.458 ± 0.003 0.503±0.011
[120,150) 0.471 ± 0.003 0.521±0.01
[150,185) 0.479 ± 0.003 0.535±0.007
[185,220) 0.491 ± 0.003 0.55±0.008
[220,260) 0.502 ± 0.003 0.551±0.014

Table 5.8: Summary of systematic uncertainties of 〈mT 〉−m results at mid-rapidity of K0
S,

Λ and Ξ− in pPb system. This table provides detail systematic uncertainties that come from
each systematic sources from multiplicity bin 220≤ Noffline

trk < 260 for pPb collisions

systematic sources K0
S (%) Λ (%) Ξ− (%)

Reconstruction cuts 0.4 0.3 1.0
Beam direction 0.3 0.1 0.7
Mass fitting 0.1 1.0 0.5
Extrapolation 0.3 1.1 1.0
Total 0.6 1.5 1.7

5.2.1.1 Reconstruction criteria of K0
S, Λ, and Ξ− candidates

In order to investigate the systematic uncertainties that come from the reconstruction crite-

ria of the strange particle candidates, results using a set of tighter and looser reconstruction

cuts are studied. Studies show that varing the reconstruction cuts could introduce around

20% difference in efficiency, however, the efficiency-corrected spectra would only change

by a few percent.

The set of tight (loose) cuts for V 0s are as follows:
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• Daughter track DCA significance > 1.25(1)

• V 0 candidate pointing angle > 0.9995(0.995)

• V 0 candidate decay length significance > 7(3)

For Ξ− reconstruction, the set of tight (loose) cuts are as follows:

• 3D impact parameter significance of proton track from Λ decay with respect to the

primary vertex > 4(2)

• 3D impact parameter significance of π track from Λ decay with respect to the primary

vertex > 5(3)

• 3D impact parameter significance of π track from Ξ− decay with respect to the pri-

mary vertex > 6(4)

• 3D impact parameter significance of the Ξ− candidate with respect to the primary

vertex < 2(3)

• 3D separation significance between Λ vertex and primary vertex > 14(10)

• 3D separation significance between Ξ− vertex and primary vertex > 4(2)

These studies are done independently for pp, pPb, and PbPb collisions. Here, only a sample

plot for Ξ− in mid-rapidity pPb collisions at 185≤ Noffline
trk < 220 is shown in Fig. 5.2.

5.2.1.2 Yield extraction of K0
S, Λ, and Ξ− candidates

In this section, systematic uncertainties related to the way the signal was extracted are

studied: mass fitting range, background fitting function, fitting or counting to get yield

counts. These sources will be discussed in the following texts one by one.
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Figure 5.2: Ξ− systematics plot evaluating the effect of the reconstruction cuts in mid-
rapidity pPb collisions at 185≤ Noffline

trk < 220. The red dots in the figure stand for the ratio
of spectra using looser cut criteria over nominal one. The blue dots represent the ratio of
spectra using tighter cut criteria over nominal one.

Since the background functional forms used in the nominal results are very stable, changing

the fitting range does not change the results much. Studies showed that the change is within

1%, which can be neglected.

To study how much the results depend on the choice of the background functional forms,

results using polynomial as a background functional form are compared to the nominal

results. For V 0s and Ξ−, 4th order polynomial and linear background functional form

are studied, respectively. The sample plot for Ξ− in mid-rapidity pPb collisions at 185 ≤

Noffline
trk < 220 is shown on the left of Fig. 5.3.

Once the invariant mass peaks are fitted with signal and background functions, the signal

counts can be obtained either by integrating the signal function or by using a background

estimation based on the yield obtained in side-bands located away from the main mass peak.

The results from these two methods are compared. A sample plot for Ξ− in mid-rapidity
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pPb collisions at 185≤ Noffline
trk < 220 is shown on the right of Fig. 5.3.
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Figure 5.3: Ξ− systematics plot of varied background functions (left) and varied methods
of yield extraction (right) in mid-rapidity pPb collisions with 185≤ Noffline

trk < 220.

In general, for systematic uncertainty in the yield extraction, 2% and 3% is assigned for V 0

and Ξ− respectively.

5.2.1.3 Rapidity binning of K0
S, Λ, and Ξ− candidates

Since the particle’s rapidity distribution is not flat, the rapidity binning used in this analysis

may result in incorrect efficiency due to the large bin width. To investigate if there is a

binning issue that could change the particle spectra, the following procedure is used:

• Divide the default rapidity bins into 2 smaller bins, and calculate the efficiency for

K0
S, Λ, and Ξ−

• Extract raw yield from the smaller bins and obtain corrected spectra with efficiency

correction

• Integrate the smaller bins back to default rapidity binning, and compare with the

original spectra
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• Take the deviations from unity as systematic uncertainties

A sample plot for Ξ− in mid-rapidity pPb collisions at 185 ≤ Noffline
trk < 220 is shown in

Fig. 5.4.
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Figure 5.4: Ξ− systematics plot evaluating the effect of rapidity binning in mid-rapidity
pPb at 185≤ Noffline

trk < 220.

5.2.1.4 Efficiency smoothing of K0
S, Λ, and Ξ− candidates

In the efficiency table, uneven structure may show up due to limited statistics of the MC

samples. This is not the case for V 0s, because of their abundance in the samples. However,

for Ξ− candidates, it is hard to get enough statistics to get smooth efficiency table. So, a 4th

order polynomial function is used to fit the efficiency table to get a smooth efficiency table.

Thus, systematic uncertainties related to this source should be studied. A sample plot for

Ξ− in mid-rapidity pPb collisions at 185≤ Noffline
trk < 220 is shown in Fig. 5.5.
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Figure 5.5: Ξ− systematics plot of evaluation the uncertainty in the efficiency correction in
mid-rapidity pPb at 185≤ Noffline

trk < 220.

5.2.1.5 Momentum resolution of K0
S, Λ, and Ξ− candidates

Since the detector does not have perfect momentum resolution, the momentum of each

particle could have uncertainties due to the finite resolution, which could also change the

shape of the pT spectra. In order to investigate this issue, a simple pseudo-experiment in the

MC samples needs to be performed, which is also done in the charged hadron analysis [69].

• Perform matching between the generated level particles with reconstructed level par-

ticles in order to produce a smearing function in bins of pT for both K0
S and Λ , where

the smearing function would be mostly a Gaussian and it would give the probability

of how much the momentum could deviate from the true values.

• Smear each particle’s pT value by randomly assigning a smearing factor ( 20-50

MeV/c) from the Gaussian function in each corresponding pT bins and generate the

smear spectra.
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• Compare the default generated spectra with the smeared spectra and take the devia-

tions for systematic uncertainties

To be conservative, 2% is quoted for the entire pT range for all particle species.

5.2.1.6 Beam direction of K0
S, Λ, and Ξ− candidates in pPb collisions

In the middle of the pPb data taking, the direction of the beam was reversed. To ensure

data from two beam directions can be combined, pT spectra in pPb collisions of two dif-

ferent beam directions are compared. In CMS Heavy Ion group, pPb means proton goes

to positive z direction (“reverse”), while Pbp means proton goes to negative z direction

(“prompt”). Sample plot for Ξ− in mid-rapidity pPb collisions at 185 ≤ Noffline
trk < 220 is

shown in Fig. 5.6. For systematic uncertainty of beam direction, for entire pT range, 3%

and 4% are quoted for V 0s and Ξ− candidates, respectively.
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Figure 5.6: Ξ− systematics plot of beam direction in mid-rapidity pPb at 185 ≤ Noffline
trk <

220.
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5.2.1.7 Pileup in pp collisions

During the 2010 pp run, the pileup 1 is not negligible. To investigate systematic uncertainty

of pileup, especially for very high multiplicity events, results with different pileup rejection

conditions are studied. The pileup rejection conditions are as following:

• No pileup rejection

• Standard pileup rejection

• Only one reconstructed vertex present in the event, this will result in some loss of

good single collision events that have split reconstructed vertices but no real pileup

collisions.

The results of particle spectra as a function of pT in 7 TeV pp collisions with different

pileup rejection conditions are compared. For systematic uncertainty of pileup in pp, 3%

and 1% for pT < 1.5 GeV and pT > 1.5 GeV for V 0s, and 3% for Ξ− for the entire pT

range. Sample plot of Ξ− is shown in Fig. 5.7.

Pileup effect in other collision systems is negligible, thus not considered.

5.2.2 Systematics of 〈mT〉−m calculation

To extract the 〈mT〉 −m, a key step is to get the pT spectra down to 0 GeV, however,

sometimes, spectra can only be measured down to a certain pT. In this case, extrapolation

is needed to estimate the shape of pT spectra at low pT. Systematic uncertainties related to

calculation of 〈mT〉−m are discussed in details in the following context.

1more than one collisions in the same bunch crossing
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Figure 5.7: Pile-up study of Ξ− in mid-rapidity pp with multiplicity bin 0 ≤ Noffline
trk < 35.

In this plot, “Nominal” stands for our default pp pileup filter. “PU vtx1” stands for the
tightest filter where only one reconstructed vertex presented in each event. Red dots are the
ratios of No pile-up filter over the default one, while blue dots stand for the ratios of the
tightest filter over the default one.

5.2.2.1 Extrapolation of low pT spectra

In order to estimate the systematic uncertainties of extrapolation of low pT particle spectra,

results with different function forms have to be investigated. For the nominal results, indi-

vidual blast wave function [70] is used. Linear function and 2nd order polynomial function

are used for the systematic study. The three functions forms are used to fit the same set of

data points. The Fig. 5.8 demonstrates how these fittings look like. From Fig. 5.8, it is easy

to see that individual blast wave function describes data points best.
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Figure 5.8: Individual blast-wave fits, 2nd order polynomials and linear function have been
fitted to K0

S, Λ, and Ξ− for mid-rapidity range −1.0 < ycm < 1.0 in pPb system. The fitting
range individual blast-wave fits for K0

S is (0,1.5) GeV/c and Λ (0.6,3.0) GeV/c.

5.2.2.2 Method for 〈mT〉−m calculation

To take advantage of pT spectra measurement, extrapolation is only used at the low pT part,

where the spectra can not be measured. For the nominal results, individual blast wave fit is

used to estimate the shape of spectra in the low pt region. After getting the fitting function

for the low pT part, the low pT region is binned into pT bins based on the fitting function.

In this way, new histograms consist two parts: measurement and extrapolation. Then, pT

boundaries are transformed into mT boundaries. By doing this, mT spectra can be obtained

without redoing the analysis. The last step is to calculate 〈mT〉 using the histograms of

mT spectra. From the histograms, number of particles within a specific m interval can be

obtained easily. Then, the total mT for all the particles in this mT bin can be estimated by

using mT at the bin center times the number of particles. By summing us total mT of all

mT bins, the total mT for the whole mT range can be obtained. Then 〈mT〉 can be easily

calculated by dividing the total mT by the total number of particles.

Notice that the above calculation contains some approximation to simplifying the calcula-

tion process, verification is needed to ensure that the above method can get the correct 〈mT〉.
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This can be verified with MC samples, which contains GEN level information. The study is

performed with EPOS. Since, at GEN level, pT of each generated particle is known, mT can

be calculated for each particle. Thus, the true 〈mT〉 can be known. By binning the generated

particle spectra into histograms, 〈mT〉 can be calculated with the method introduced above.

By comparing the true 〈mT〉 with the calculated 〈mT〉, systematic uncertainties related to

the method for 〈mT〉 calculation can be known. The comparison is as following:

• For K0
S, the true value of 〈mT〉 is 0.991895, and 〈mT〉 = 0.98637 by using the same

method as data. The difference is 0.557%

• For Λ the true value of 〈mT〉 is 1.74013, and 〈mT〉 = 1.72511 by using the same

method as data. The difference is 0.863%

• For Ξ− the true value of 〈mT〉 is 1.99051, and 〈mT〉 = 1.96682 by using the same

method as data. The difference is 1.190%

The calculated 〈mT〉 value is very close to the true value. To be conservative, 1.5% is

assigned as systematic uncertainty for this source.

5.3 Results

Details of the results can be found in the published paper [51].

5.3.1 Invariant mass peaks

In this section, invariant mass distributions of reconstructed K0
S, Λ, and Ξ− candidates with

1 < pT < 3 GeV are shown in Fig. 5.9 for pPb events with 220≤Noffline
trk < 260. Prominent

mass peaks are visible, with little background. The solid lines show the result of maximum

likelihood fit. Details of the fitting can be found in Sec. 4.2.1.
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Figure 5.9: Invariant mass distribution of K0
S (left), Λ (middle), and Ξ− (right) candidates

in the pT range 1–3 GeV for 220 ≤ Noffline
trk < 260 in pPb collisions. The inclusion of the

charge-conjugate states is implied for Λ and Ξ− particles. The solid lines show the results
of fits described in the text. The dashed lines indicate the fitted background component.

5.3.2 Multiplicity dependence of pT spectra of K0
S, Λ, and Ξ−

With the cut criteria and analysis methods introduced above, the pT spectra of K0
S, Λ, and

Ξ− particles with |yCM| < 1 in pp collisions at
√

s = 7 TeV (top), pPb collisions at √sNN

= 5.02 TeV (middle), and PbPb collisions at √sNN = 2.76 TeV (bottom) are presented in

Fig. 5.10, for different multiplicity intervals. Due to details in the implementation of the

dedicated high-multiplicity trigger thresholds used to select the pp events, the multiplicity

intervals for pp events differ slightly from those for pPb and PbPb events. The pT differen-

tial yields is defined as dN2/(2πpTdpTdy). For the purpose of better visibility, the data are

scaled by factors of 2−n, as indicated in the figure legend. A clear evolution of the spec-

tral shape with multiplicity can be seen for each particle species in each collision system.

For higher multiplicity events, the spectra tend to become flatter, indicating a larger 〈KET〉

value. Within each collision system, heavier particles (e.g., Ξ−) exhibit a harder spectrum

than lighter particles (K0
S), especially for high-multiplicity events.
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5.3.3 Particle ratios

To examine the difference in the multiplicity dependence of the spectra in greater detail,

the ratios Λ/K0
S and Ξ−/Λ of the yields are shown in Fig. 5.11 as a function of pT for

different multiplicity ranges in the pp, pPb, and PbPb systems. The results for the Λ/K0
S

ratio are shown in Fig. 5.11 (top). For pT ≤ 2 GeV, the Λ/K0
S ratio is seen to be smaller in

high-multiplicity events than in low-multiplicity events for a given pT value. In pp and pPb

collisions, this trend is similar to what has been observed between peripheral and central

PbPb collisions [71]; this trend is not as evident for the PbPb data in Fig. 5.11 (top right)

because in the present study only PbPb events of 50–100% centrality are considered. At

higher pT, this multiplicity ordering of the Λ/K0
S ratio is reversed. In hydrodynamic models

such as those presented in Refs.[72, 73], this behavior can be interpreted as the effect of

radial flow. A stronger radial flow is developed in higher-multiplicity events, which boosts

heavier particles (e.g., Λ) to higher pT, resulting in a suppression of the Λ/K0
S ratio at low

pT. Comparing the various collision systems at low pT, the difference in the Λ/K0
S ratio

between low- and high-multiplicity events is seen to be largest for the pp data. In the

hydrodynamic model of Ref.[74], smaller collision systems like pp produce a larger radial-

flow effect than larger systems like pPb or PbPb, for similar multiplicities, which could

explain this observation. For pT > 2 GeV, the baryon enhancement could be explained by

recombination models, in which free quarks recombine to form hadrons [75]. In previous

studies (e.g., Ref.[76], it has been shown that the average pT value of various particle

species has only a slight center-of-mass energy dependence (10% at high multiplicity).

This dependence is not sufficient to explain the difference observed in Fig. 5.11 among

various systems.

For each multiplicity interval, the Λ/K0
S ratio reaches a maximum that has a similar value for

all three collision processes, and then decreases at higher pT. The location of the maximum

increases with multiplicity from around pT = 2 to 3 GeV.
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The results for the Ξ−/Λ ratio are shown in Fig.5.11(bottom). In this case, the difference

between the low- and high-multiplicity events is much smaller than for the Λ/K0
S ratio, for

all three collision systems. This could be explained by the fact that Ξ− and Λ have similar

masses. However, due to the large systematic uncertainty, it is not possible to draw a solid

conclusion with respect to the radial-flow interpretation. For all systems, the Ξ−/Λ ratio

increases with pT and reaches a plateau at around pT = 3 GeV.

5.3.4 〈mT〉−m distribution of K0
S, Λ, and Ξ−

The evolution of the pT spectra with multiplicity can be compared more directly among the

three systems through examination of the 〈KET〉 value. The 〈KET〉 values at |yCM|< 1 for

K0
S, Λ, and Ξ− particles as a function of multiplicity are shown in Fig. 5.12. Extrapolation

of the pT spectra down to pT = 0 GeV is a crucial step in extracting the 〈KET〉 values, while

the impact of the extrapolation up to pT ≈ ∞ is negligible, both on the value of 〈KET〉 and

its uncertainty. For the Ξ− particle, only results in pPb collisions are shown due to the

limitation of the low-pT reach in pp and PbPb collisions, as can be seen from Fig.5.10.

Blast-wave fits to the individual spectra, which only consider the spectrum shape but do

not impose any physics constraint, are used to obtain the extrapolation. The fraction of the

extrapolated yield with respect to the total yield is about 1.2–2.5% for the K0
S, 5.8–15.1%

for the Λ, and 5.4–20.4% for the Ξ− particles, depending on the multiplicity. Alternative

methods to perform the extrapolation are used to evaluate the systematic uncertainty, in-

cluding use of 2nd order polynomial fit to the particle spectra, and a linear extrapolation

from the yields in low pT.

For the lowest multiplicity range, the 〈KET〉 values for each particle species are seen to be

similar. For all particle species, 〈KET〉 increases with increasing multiplicity. However, the

slope of the increase differs for different particles, with the heavier particles exhibiting a
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faster growth in 〈KET〉 for all systems. For a given multiplicity range, the 〈KET〉 value is

roughly proportional to the particle’s mass. In PbPb collisions, this can be understood to be

due to the onset of radial flow [77, 78]. The observed difference between particle species

at high multiplicity is seen to be larger for pp and pPb events than for PbPb events. Note,

however, the difference in the center-of-mass energies among the three systems.
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Figure 5.10: The pT spectra of K0
S, Λ, and Ξ− particles in the center-of-mass rapidity range

|ycm|< 1 in pp collisions at
√

s = 7 TeV (top), pPbcollisions at√sNN = 5.02 TeV (middle),
and PbPb collisions at √sNN = 2.76 TeV (bottom) for different multiplicity intervals. The
inclusion of the charge-conjugate states is implied for Λ and Ξ− particles. The data in
the different multiplicity intervals are scaled by factors of 2−n for better visibility. The
statistical uncertainties are smaller than the markers and the systematic uncertainties are
not shown.
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Figure 5.11: Ratios of pT spectra for Λ/2K0
S (top) and Ξ−/Λ (bottom) in the center-of-

mass rapidity range |ycm| < 1.0 for pp collisions at
√

s = 7 TeV (left), pPb collisions at√sNN = 5.02 TeV (middle), and PbPb collisions at √sNN = 2.76 TeV (right). Two (for
pp) or three (for pPb and PbPb) representative multiplicity intervals are presented. The
inclusion of the charge-conjugate states is implied for Λ and Ξ− particles. The error bars
represent the statistical uncertainties, while the boxes indicate the systematic uncertainties.
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Figure 5.12: The average transverse kinetic energy, 〈KET〉, at |ycm|< 1 for K0
S, Λ, and Ξ−

particles as a function of multiplicity in pp, pPb, and PbPb collisions. The inclusion of the
charge-conjugate states is implied for Λ and Ξ− particles. For the Ξ−, only results from
pPb collisions are shown. The error bars represent the statistical uncertainties, while the
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Chapter 6

Nuclear modification factors of strange hadrons

Previous publication [51] focuses on the spectra of K0
S, Λ, and Ξ− at low pT part for dif-

ferent multiplicity intervals. The radial flow effect on the spectra shape is studied by com-

paring particle ratios at similar multiplicity ranges for different collision systems. In the

latest analysis [79], K0
S, Λ, Ξ−, and Ω− pT spectra at 5 TeV pp and pPb are measured to

as high pT as possible. With particle spectra of pp and pPb at the same energy, the nuclear

modification factor, RpPb, can be studied.

The initial idea is to use pp collisions as the baseline, and use pPb collisions as the control

experiment to study PbPb collisions. However, recent studies [23, 24, 25, 26] regarding the

high-multiplicity events in small systems show that small systems are an interesting and

informative system to study on its own.

Another quantity measured in this analysis is called particle yield rapidity asymmetry,

Yasym, as pPb is an asymmetrical system. The definition of Yasym is as follows:

Yasym(pT) =
d2N(pT)/dyCMdpT|yCM∈[−b,−a]

d2N(pT)/dyCMdpT|yCM∈[a,b]
, (6.1)

where a and b are always positive and refer to the proton beam direction.

The effect of radial flow [80], Cronin enhancement [81, 82], and nuclear shadowing [83]

on particle spectra can be studied with the measurement of RpPb and Yasym. Details about

the measurements will be discussed below.
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6.1 Data samples and event selection

The pp data sample at
√

s = 5.02 TeV used in this analysis is recored with CMS detector

in 2015. The pp sample corresponds to an integrated luminosity of 27.4 pb−1. The pPb

data sample at √sNN = 5.02 TeV used in this analysis is recored with CMS detector in

2013. The pPb sample corresponds to an integrated luminosity of 35 nb−1. To determine

the performance of strange hadron reconstruction, event selection efficiency, and cross-

check of other potential detector effects, EPOS samples are generated for both pp and pPb

collisions.

In order to ensure that the events selected for this analysis are not contaminated by non-

collision events (beam-gas, beam-pipe, beam-halo, cosmics, beam-scraping events), stan-

dard set of event selections used by the CMS Heavy Ion Group for physics analysis are

applied for pp and pPb data. For this analysis, strange particle spectra in pp collisions are

corrected to inelastic collisions, as what was done in Ref.[62]. While spectra in pPb colli-

sions are corrected to “double sided” (“DS”) collisions, as what was done in Ref.[69]. A

DS collision is defined as a collision in which at least one particle of lifetime cτ > 10−18m

with energy E ≥ 3 GeV is produced in the region 3 < η < 5, and another such particle is

produced in the region−5< η <−3. This definition was chosen as the combination of the

single track trigger and HF coincidence filter produces a collection of events that closely

match the double sided definition and it is easy to evaluate in simulation.

The event selection criteria for pp used in this analysis are listed below:

• The standard filter for vertices: !isFake & |vertexz| ≤ 25 & position.Rho ≤ 2 &

tracksSize ≥ 2

• The standard beam-scraping filter: if there are more than 10 tracks, then at least 25%

of the tracks have to be highPurity
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Besides the event selection criteria for pp collision, there is an additional requirement for

pPb collision: at least one tower records > 3 GeV in energy deposits on each side.

6.2 Systematics

The systematic uncertainty sources of K0
S, Λ, Ξ−, and Ω− are investigated for different yCM

bins in both pp and pPb collisions. The systematic uncertainty sources that have been inves-

tigated are following: the method to extract yield, the effect of rapidity binning, strange par-

ticle candidates selection criteria, the effect of momentum resolution, tracking efficiency,

feed-down effect of Λ candidates, pileup effect (pp only), beam direction (pPb only), and

luminosity (pp only). For some of the systematic sources, non-negligible pT dependence

can be observed, in this case, different systematic uncertainties are quoted for different

pT ranges. The total systematic uncertainties of particle yields are calculated by adding

all the listed sources in quadrature. To calculate the total systematic uncertainties of nu-

clear modification factors and particle yield rapidity asymmetry, cancellation of systematic

uncertainties is needed to be taken into account.

For each of the systematic sources, the ratios of pT spectra are calculated with various

alternative conditions with respect to the nominal condition. Then, the absolute values of

maximum discrepancy to on in the ratio among various conditions for different pT bins are

fitted by a constant value. For some systematic uncertainty sources, the spectra ratios of

K0
S (Λ) show different values for pT < 0.6(1.0) GeV and pT > 0.6(1.0) GeV, due to the

fact that background level of invariant mass distributions of K0
S (Λ) is higher at the low

pT region. Hence, for those systematic sources, the systematic uncertainties are evaluated

separately for pT < 0.6(1.0) GeV and pT > 0.6(1.0) GeV using the method described

above.

For systematic uncertainties of RpPb and Yasym, the cancellation between numerator and de-
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nominator is evaluated thoroughly. Instead of checking how much spectra has changed with

various alternative conditions with respect to the nominal condition, the changes of RpPb

and Yasym is checked. The systematic uncertainties are quoted using the method described

above.

Detailed discussion of each systematic source is introduced below.

Tables 6.1 and 6.2 summarize the sources of systematic uncertainties in K0
S, Λ, Ξ−, and

Ω− pT spectra, RpPb, and Yasym at different yCM ranges in both pp and pPbcollisions. The

dominant sources of systematic uncertainty are associated with the strange-particle recon-

struction, especially the efficiency determination.

Table 6.1: Summary of different sources of systematic uncertainties of K0
S, Λ, Ξ−, and

Ω− pT spectra and RpPb at different yCM ranges in both pp and pPbcollisions. The ranges
quoted cover both the pT and the rapidity dependence of the uncertainties.

Source K0
S (%) Λ (%) Ξ− (%) Ω− (%)

Yield extraction 0–2.0 0–4.0 2.0 3.0
Selection criteria 1.0–4.0 1.0–5.0 3.0 6.0
Momentum resolution 1.0 1.0 1.0 1.0
Tracking efficiency 8.0 8.0 12.0 12.0
Feed-down correction – 2.0–3.0 – –
Pileup effect(pp only) 1.0–2.3 1.0–2.0 3.0 3.0
Beam direction(pPbonly) 1.0–4.0 1.0–5.0 3.0 4.0
Luminosity (pp only) 2.3 2.3 2.3 2.3
〈TpPb〉 (for RpPb) 4.8 4.8 4.8 4.8
Total (yields in pp) 8.6–9.3 8.9–10.6 13.1 14.3
Total (yields in pPb) 8.2–10.1 8.6–12.3 13.8 15.1
Total (RpPb) 3.1–5.6 4.3–10.4 6.8 10.8

6.2.1 Reconstruction cut criteria

In order to estimate the systematic uncertainties that come from the cut criteria that are used

for strange particle reconstruction, a set of looser and tighter cuts compared to the nominal

ones are checked.
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Table 6.2: Summary of systematic uncertainties on Yasym in pPbcollisions. The ranges
quoted cover both the pT and the rapidity dependence of the uncertainties.

Source K0
S (%) Λ (%)

Yield extraction – 0–3.0
Selection criteria 1.0–5.0 1.0–6.0
Momentum resolution 1.0 1.0
Feed-down correction – 2.0–3.0
Beam direction 2.0–4.0 2.0–6.0
Total (Yasym) 2.4–6.5 3.2–9.3

The tight (loose) cut criteria for V 0 candidates are as follows:

• 3D distance of closest approach significance with respect to the primary vertex >

2.5(1.5) for both daughter tracks,

• 3D distance of closest approach significance of the V 0 candidate to the primary vertex

< 2(3),

• 3D separation significance between V 0 vertex and primary vertex > 3.5(2.5).

The tight (loose) cut criteria for Ξ− and Ω− candidates are as follows:

• 3D distance of closest approach significance of proton track from Λ decay with re-

spect to the primary vertex > 2.5(1.5)

• 3D distance of closest approach significance of π track from Λ decay with respect to

the primary vertex > 3.5(2.5)

• 3D distance of closest approach significance of π (K) track from Ξ− (Ω−) decay with

respect to the primary vertex > 4.5(3.5)

• 3D distance of closest approach significance of the Ξ− (Ω−) candidate with respect

to the primary vertex < 2.5(3.5)
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• 3D separation significance between Λ vertex and primary vertex > 11(9)

• 3D separation significance between Ξ− (Ω−) vertex and primary vertex > 2.5(1.5)

Sample plots for K0
S are shown from Fig. 6.1 to Fig. 6.4. Considering the length of this

writing, similar plots for other particles are not shown here.
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Figure 6.1: Ratio of K0
S spectra with looser (left) and tighter (right) cuts to the one with

nominal cuts in pp and pPb for various yCM bins: [-1.8,1.8], [0,1.8], [-1.8,0]. The yellow
band stands for the systematic uncertainty value quoted for this source.

6.2.2 Yield extraction

In this section, the systematic uncertainty sources related to the way signal counts are

extracted are studied: background fitting function, fitting or counting to get yield counts.

These two sources will be discussed in the following context.

To study how much measured spectra rely on the background fitting function forms, results

with nominal background function are compared to results using third order polynomial as

background function. In order to avoid the statistic fluctuation invades into the systematical

effects, toy MC datasets are generated. The nominal signal and background function is
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Figure 6.2: Ratio of K0
S spectra with looser (left) and tighter (right) cuts to the one with

nominal cuts in pPb for various yCM bins: [-0.8,-0.3], [0.3,0.8]. The yellow band stands for
the systematic uncertainty value quoted for this source.
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Figure 6.3: Ratio of K0
S spectra with looser (left) and tighter (right) cuts to the one with

nominal cuts in pPb for various yCM bins: [-1.3,-0.8], [0.8,1.3]. The yellow band stands for
the systematic uncertainty value quoted for this source.

used to fit data first. Then based on the combined probability distribution function (PDF)

of signal and background function, 50K events are generated for each pT, yCM bin. Then

the generated toy MC dataset is fitted by a third order polynomial plus the nominal signal

function. Particle yield obtained in this way is compared to the nominal yield. A sample
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Figure 6.4: Ratio of K0
S spectra with looser (left) and tighter (right) cuts to the one with

nominal cuts in pPb for various yCM bins: [-1.8,-1.3], [1.3,1.8]. The yellow band stands for
the systematic uncertainty value quoted for this source.

of invariant mass distribution fittings of the toy MC for K0
S in pPb data is shown in Fig.6.5.

The yield comparison plots for K0
S are shown from Fig.6.6 to Fig.6.9. In these plots, the

legend “Pol3” represents yield obtained by fitting toy MC dataset generated with PDF of

nominal signal function and 3rd order polynomial background function, while the legend

“Nominal” means yield obtained with the nominal method.

Once the invariant mass distributions are fitted, the signal counts can be obtained either by

integrating the signal function or by using side-band subtraction method as mentioned in

Sec. 4.2. The comparison plots are shown from Fig.6.10 to Fig.6.13.

6.2.3 Rapidity binning

Since strange particles’ rapidity distribution are not flat, the rapidity bins selected in this

analysis may result in incorrect efficiency due to the large bin width. In order to estimate

if there is a binning issue that could affect strange particles’ pT spectra, the following

procedures are deployed:
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Figure 6.5: Generated toy MC invariant mass peaks of K0
S in pPb data fitted by third order

polynomial plus the nominal signal function.
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Figure 6.6: Ratio of K0
S yield obtained with third order polynomial background function
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the systematic uncertainty value quoted for this source.
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Figure 6.7: Ratio of K0
S yield obtained with third order polynomial background function

form fit to toy MC generated with nominal signal and background PDF to the nominal
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Figure 6.8: Ratio of K0
S yield obtained with third order polynomial background function

form fit to toy MC generated with nominal signal and background PDF to the nominal
yield in pPb for various yCM bins: [-1.3,-0.8], [0.8,1.3]. The yellow band stands for the
systematic uncertainty value quoted for this source.
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Figure 6.9: Ratio of K0
S yield obtained with third order polynomial background function

form fit to toy MC generated with nominal signal and background PDF to the nominal
yield in pPb for various yCM bins: [-1.8,-1.3], [1.3,1.8]. The yellow band stands for the
systematic uncertainty value quoted for this source.
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Figure 6.10: Ratio of K0
S using counting method to extract signal to the one using nominal

method to extract signal in pp and pPb for various yCM bins: [-1.8,1.8], [0,1.8], [-1.8,0].
The yellow band stands for the systematic uncertainty value quoted for this source.

• Divide one default rapidity bins into two smaller bins, and calculate efficiency for

each particle species in those smaller bins;
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Figure 6.11: Ratio of K0
S using counting method to extract signal to the one using nominal

method to extract signal in pPb for various yCM bins: [-0.8,-0.3], [0.3,0.8]. The yellow
band stands for the systematic uncertainty value quoted for this source.
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Figure 6.12: Ratio of K0
S using counting method to extract signal to the one using nominal

method to extract signal in pPb for various yCM bins: [-1.3,-0.8], [0.8,1.3]. The yellow
band stands for the systematic uncertainty value quoted for this source.

• Extract raw yield from smaller bins and get efficiency corrected spectra

• Merge spectra of the smaller bins into spectra of the default bin
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Figure 6.13: Ratio of K0
S using counting method to extract signal to the one using nominal

method to extract signal in pPb for various yCM bins: [-1.8,-1.3], [1.3,1.8]. The yellow
band stands for the systematic uncertainty value quoted for this source.

• Compare the merged spectra with the nominal one

In principle, this method can check the effect of rapidity binning issue. However, since

fitting invariant mass distribution needs to be performed for each pT and yCM bins, this

method is limited by statistics. Only bins with sufficient statistics can be checked, other-

wise, the difference between merged spectra and nominal spectra could be a purely statistics

issue. The comparison plots for K0
S are shown from Fig.6.14.

6.2.4 Momentum resolution

Since the detector does not have perfect momentum resolution, the momentum of each

particle could have uncertainties due to the finite resolution, which could change the shape

of strange particle pT spectra. In order to investigate this issue, the iterative procedure is as

follows:
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Figure 6.14: Ratio of K0
S merged spectra to nominal spectra in pp (left) and pPb (right) for

yCM bin: [-1.8,1.8].

1. Determine the momentum resolution based on simulation and matching

2. Smearing the measured pT distribution with the momentum resolution.

3. Comparison of the original and the smeared pT distribution; the ratio of the two will

be the initial resolution correction, the input for the iterative method

4. The resolution correction is applied on the original measured spectrum

5. Use the new resolution-corrected measured spectrum as input for step 2, 3, and 4.

Repeat the procedure until a stable resolution correction are reached.

If the resolution correction turns out to be small in step 3, the iterative procedure is not

needed.

The correlation between reconstructed and simulated K0
S pT in EPOS embedded p̂T = 50

PYTHIA sample is shown in top left of Fig.6.15. The changes of bin width can be directly

seen in the figure. In order to determine how wide pT bins should be chosen so that the

derived resolution is not biased due to too wide pT bins, correlations of simulated and
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reconstructed pT values are filled into two dimensional histograms, which had pT bin width

from 12 MeV/c to 400 MeV/c. The computed K0
S pT resolution are shown in the top right

of Fig. 6.15. From the plot, it is clear that having finer pT bins is very important at low pT.

For the study of resolution smearing, the parameterization indicated in top right of Fig. 6.15

will be used.

The measured pT distribution is fitted with a global fit function, shown in bottom left of

Fig. 6.15. The combined global fit function is used to generate entries in a histogram,

which has the same binning as the measurement. At the same time, a second histogram is

filled with pT values smeared according to the resolution parameterization. The ratio of the

original and the smeared distribution is shown in bottom right of Fig. 6.15.

The same check is repeated for EPOS embedded particle gun samples for Λ, Ξ−, and Ω−.

However, due to the limitation of the length of this writing, these plots are not shown here.

6.2.5 Beam direction

In the middle of the 2013 pPb data taking, the direction of beam was reversed. In the first

part of the data taking, the proton beam traveled to the negative z direction (Pbp), while for

the second part, the proton beam traveled to the positive z direction (pPb). To ensure data

taken from two beam directions can be combined, the spectra difference between the two

beam directions are compared for K0
S, Λ, Ξ−, and Ω−. The results of K0

S are shown from

Fig. 6.16 to Fig. 6.19.

6.2.6 Pileup

During the 2015 pp run, the condition that more than on collision happens in the same

event is not negligible. The average pileup rate was approximately 0.9. In order to take
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Figure 6.15: Top left: Correlation between simulated and reconstructed K0
S pT values in

EPOS embedded K0
S particle gun sample. Top right: K0

S momentum resolution computed
from EPOS embedded K0

S particle gun sample for various bin width. The derived resolution
converges at low-pT as the bin width gets narrower. Bottom left: Measured K0

S pT distri-
bution together with the combined global fit function. Bottom right: Ratio of not smeared
K0

S pT spectrum to smeared spectrum with momentum resolution parameterization derived
from EPOS embedded K0

S particle gun sample.

this into account, strange particles are selected as long as they are compatible with at least

one reconstructed vertex, and the luminosity is used to normalize the pp strange particle

spectra. In order to check this procedure, a comparison was made between strange particle

spectra of pp collisions measured with all runs in the golden JSON 1 file and runs in the

1JSON format files used in CMS to describe which luminosity sections in which runs are considered good
and should be processed.
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Figure 6.16: Ratio of K0
S pT distribution of pPb to the nominal combined spectra for yCM

bin: [-1.8,1.8], [0,1.8], [-1.8,0]. The yellow band stands for the systematic uncertainty
value quoted for this source.
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Figure 6.17: Ratio of K0
S pT distribution of pPb to the nominal combined spectra for yCM

bin: [-0.8,-0.3], [0.3,0.8]. The yellow band stands for the systematic uncertainty value
quoted for this source.

low pileup JSON file. The comparison plot for K0
S can be seen in Fig. 6.20.
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Figure 6.18: Ratio of K0
S pT distribution of pPb to the nominal combined spectra for yCM

bin: [-1.3,-0.8], [0.8,1.3]. The yellow band stands for the systematic uncertainty value
quoted for this source.
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Figure 6.19: Ratio of K0
S pT distribution of pPb to the nominal combined spectra for yCM

bin: [-1.8,-1.3], [1.3,1.8]. The yellow band stands for the systematic uncertainty value
quoted for this source.
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dle), [-1.8,0](right).

6.2.7 Data-MC difference in tracking efficiency

The difference in modeling tracking for data and MC is a significant source of system-

atic uncertainty for particle spectra. One way to estimate the difference is to study tracks

coming from resonances (particularly of D mesons). One such study in CMS [84] has

been done for the same pp dataset used in this analysis. According to the study, 4% is

quoted as systematic uncertainty of data and MC difference in pp tracking. This number is

also supported by previous studies [68], which measured the relative efficiency of recon-

structing pion tracks in data and simulation. The method involves the reconstruction of D0

mesons in pp collision data using two decay channels. One is D0→ K−π+, and the other

is D0→ K−π+π−π+. D0 mesons mentioned above is from the decay chain D∗+→D0π+.

By doing this, purity of the sample can be increased and it provides a common production

sources. The ratio of branching fractions can be measured as:
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R =
NK3π

NKπ

· εKπ

εK3π

(6.2)

where the NKxπ are the number of D0 mesons from a specific decay channel, and εKxπ

are the reconstruction efficiency of that channel. Assuming that simulation agrees with

data perfectly, then R should be equal to the true ratio of branching fractions, which is

represented by the world-average ratio of branching fractions RPDG = 2.08± 0.05. The

relative tracking efficiency for pions in data and simulation can be estimated as:

εdata

εMC
=

√
R

RPDG
(6.3)

where the εdata is the tracking efficiency of pions in data, while εMC is the tracking effi-

ciency of pions in simulation. The final result of this technique was εdata/εMC = 1.007±

0.034± 0.014± 0.012, where the first uncertainty is statistical, the second is systematic,

and the third is from the value of RPDG.

6.3 Results

Details of the results can be found in the paper to be published [79].

6.3.1 Invariant mass peaks

The invariant mass distributions of reconstructed K0
S, Λ, Ξ−, and Ω− candidates in the

range −1.8 < yCM < 1.8 are shown in Fig. 6.21 for pPb events. Prominent mass peaks are

visible, with little background. The solid lines show the results of a maximum likelihood
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fit. The details of fitting function can be found in Sec. 4.2.1. These fit functions are found

to provide a reasonable description of the signal and background with relatively few free

parameters. The fits are performed over the ranges of strange-particle invariant masses

indicated in Fig. 6.21 to obtain the raw strange-particle yield Nraw
K0

S/Λ/Ξ−/Ω−
.
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Figure 6.21: Invariant mass distribution of K0
S (top left), Λ (top right), Ξ− (bottom left), and

Ω− (bottom right) candidates in |yCM|< 1.8 in pPb collisions. The inclusion of the charge-
conjugate states is implied for Λ, Ξ−, and Ω− particles. The solid lines show the results of
fits described in the text. The dashed lines indicate the fitted background component.

6.3.2 Nuclear modification factor

The invariant pT-differential spectra of K0
S, Λ, Ξ−, and Ω− particles at −1.8 < yCM < 1.8,

−1.8 < yCM < 0, and 0 < yCM < 1.8 in pp and pPb collisions at 5.02 TeV are presented in

99



Fig. 6.22. Due to statistical limitation, spectra of Ω− is measured at only −1.8 < yCM <

1.8. Invariant pT-differential yield is defined as the average number of particles per event

weighted by 1/(2π pT), for each pT and yCM range. The pp spectrum, for the purpose

of measuring the RpPb, is measured as a differential cross section with normalization de-

termined from the integrated luminosity. In order to convert this quantity to a per-event

yield for comparison on the same figure, a scaling factor of 70 ± 5 mb [62], corresponding

approximately to the total inelastic pp cross section, is applied. To compare the strange-

particle spectra in pp and pPb collisions directly, the spectra in pPb collisions are divided by

the average number of binary nucleon-nucleon collisions, 〈Ncoll〉 = 6.9, which is obtained

from a Glauber MC simulation [38]. For purpose of better visibility, spectra for different

yCM ranges are scaled by factors of 10n, with −1.8 < yCM < 1.8 not scaled.

With the efficiency-corrected strange-particle spectra, the RpPb of K0
S, Λ, Ξ−, and Ω− are

calculated in different yCM ranges. The Fig. 6.23 shows the RpPb of each particle species

at −1.8 < yCM < 1.8. The RpPb values of K0
S are consistent with unity for pT > 2 GeV.

For baryons, the RpPb values of K0
S of both Λ and Ξ− reach unity at around 7 GeV. This is

consistent with the charged-particle RpPb [69, 85, 86], which also shows no modification in

the pT range from 7 to 20 GeV. In the intermediate pT range from 3 to 6 GeV, Cronin-like

enhancements are visible and clear mass ordering is observed for baryons with the greater

mass showing larger RpPb. The observed mass ordering is consistent with expectations

from the radial-flow effect in hydrodynamic models [80]. The calculation from EPOS

LHC, including collective flow in pp and pPb collisions, are compared to data in Fig. 6.23.

They indeed show clear mass ordering for baryon RpPb in this pT range, with even stronger

mass dependence in the calculations. At higher pT, RpPb calculated from EPOS LHC is

clearly smaller than the data because of the strong screening in nuclear collisions in EPOS

which reduces the number of binary collision in the initial state [54]. It is not clear from

current measurements whether effects from recombination [87, 88, 89] play a role. This can

be addressed by similar studies with more identified particles, such as the measurements of
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Figure 6.22: The invariant pT-differential spectra of K0
S (top left), Λ (top right), Ξ− (bottom

left), and Ω− (bottom right) particles at−1.8< yCM < 1.8,−1.8< yCM < 0, and 0< yCM <
1.8 in pp and pPb collisions at√sNN = 5.02 TeV. Spectra for different yCM ranges are scaled
by factors of 10n, with −1.8 < yCM < 1.8 not scaled. A factor of 70 mb is used to scale
the pp spectra of strange particles from a differential cross section to a per-event yield. The
error bars correspond to statistical uncertainties.

proton and φ meson RdAu at RHIC [39]. For pT less than 3 GeV, the predicted RpPb values

from EPOS LHC agree with data for each particle species. The values of RpPb for K0
S and

Λ become less than unity for pT less than 2 GeV, which is consistent with the RpPb of

charged particles in this pT range and could be contributed to both, radial-flow and nuclear

shadowing, effects.

The RpPb values of K0
S, Λ, and Ξ− particles for −1.8 < yCM < 0 and 0 < yCM < 1.8

are presented as functions of pT in Fig. 6.24. Because of the limited statistical precision,
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the RpPb of Ω− baryon is not shown in the p- and Pb-going direction separately. The

RpPb of all three species are found to be larger in the Pb-going direction than the p-going

direction, with a stronger mass splitting between the heavier and the lighter particles in the

Pb-going direction. This trend is consistent with expectations from the radial-flow effect in

hydrodynamic models. The Cronin effect with the parton multiple scattering interpretation

predicts a stronger enhancement in the p-going direction with a larger RpPb on the p-going

side, which is inconsistent with data. However, this could be explained by the prediction

that this effect is small compared to the nuclear shadowing effect [90] at the LHC energies.

The accessed parton momentum fraction, x, in the nucleus is less than 0.02 for the pT and

rapidity considered in this analysis. Therefore, these measurements are sensitive to the

shadowing effect, and RpPb should be smaller in the p-going direction because the accessed

x fractions in the nucleus are smaller.

6.3.3 The particle yield rapidity asymmetry of K0
S and Λ particles

The invariant pT-differential spectra of K0
S and Λ at −1.8 < yCM <−1.3, −1.3 < yCM <

−0.8, −0.8 < yCM < −0.3, 0.3 < yCM < 0.8, 0.8 < yCM < 1.3, and 1.3 < yCM < 1.8

in pPb collisions at √sNN = 5.02 TeV are presented in Fig. 6.25. Spectra in different yCM

ranges are scaled by factors of 10n, with −0.8 < yCM <−0.3 not scaled.

The Fig. 6.26 shows the Yasym as functions of pT for K0
S and Λ for different rapidity ranges.

It is found that Yasym of both K0
S and Λ in the forward Yasym ranges rise up to a certain

pT, and then approach unity at higher pT. The values of Yasym are larger than one in all

three rapidity ranges. The observed Yasym are larger in the forward region, consistent with

expectations from nuclear shadowing. The Yasym of K0
S and Λ in the above three yCM ranges

are compared to the Yasym of charged particles in similar ηCM ranges. It is found that the

Yasym of K0
S and Λ are larger than that of charged particles, and the pT value of the charged-
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particle Yasym peak is between that of K0
S and Λ in forward |yCM| ranges. These detailed

structures, with mass dependence or meson-baryon difference, can provide constraints to

models such as hydrodynamic and recombination, which also have mass ordering effect and

number of constituent quark difference, respectively. The results of Yasym are compared to

EPOS LHC calculations in the three rapidity ranges. The calculated Yasym increases from

mid-rapidity to forward rapidity, consistent with the trend in data, but fails to describe the

particle species dependence at forward rapidities.
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Figure 6.23: (Top) Nuclear modification factors of K0
S (black filled circles), Λ (red filled

squares), Ξ− (blue open circles), and Ω− (purple open squares) at−1.8< yCM < 1.8 in pPb
collisions are presented. The error bars correspond to statistical uncertainties, while the
boxes around the markers denote the systematic uncertainties. The TpPb and pp integrated
luminosity uncertainties are represented by the shaded areas around one. The results are
compared to EPOS LHC predictions including collective flow in pp and pPb collisions. The
data and predictions share the same color for each particle species. (Bottom) The ratios of
nuclear modification factors of K0

S, Λ, Ξ−, and Ω− of EPOS LHC to measurements are
shown. The bands represent the combination of statistical uncertainties and systematic
uncertainties.
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Figure 6.24: Nuclear modification factors of K0
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luminosity uncertainties are represented by the shaded areas around one. The results are
compared to EPOS LHC predictions including collective flow in pp and pPb collisions.
The data and predictions share the same color for each particle species.
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Figure 6.25: The invariant pT-differential spectra of K0
S (left) and Λ (right) particles at

−1.8 < yCM < −1.3, −1.3 < yCM < −0.8, −0.8 < yCM < −0.3, 0.3 < yCM < 0.8, 0.8 <
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bars correspond to statistical uncertainties.
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Chapter 7

Discussion and conclusion

As mentioned above, the thesis has two goals. The first is to study the effect of radial

flow on the particle spectra with the help of CMS high-multiplicity triggers. The other

goal is to investigate the particle production mechanism with the measurements of nuclear

modification factor, RpPb, and particle yield rapidity asymmetry, Yasym.

To achieve the first goal, measurements of K0
S, Λ, and Ξ− transverse momentum, pT, spec-

tra in pp, pPb, and PbPb collisions are performed over a wide range of charged particle

multiplicity. With these spectra, particle yield ratios, Λ/K0
S and Ξ−/Λ, are calculated. A

clear mass effect on the particle ratios is observed, and the results are consistent with the

expectation of hydrodynamic models. The average transverse kinetic energy, 〈KET〉, is

also calculated. The results show that 〈KET〉 in small systems behave similar as the heavy

ion collisions. This is also consistent with the expectation of hydrodynamic models. One

caveat of this analysis is that the center-of-mass energy of pp, pPb, and PbPb collisions

available at that time were different. The center-of-mass energy may have an effect on the

spectra as well. Fortunately, CMS has data of pp, pPb, and PbPb at 5.02 TeV available

now. A similar analysis can be performed to determine the effect of center-of-mass energy

on particle spectra.

For the second goal, measurements of K0
S, Λ, Ξ−, and Ω− transverse momentum, pT, spec-

tra in pp and pPb collision at 5.02 TeV are measured. Based on these spectra, RpPb and

Yasym are calculated. The results of RpPb and Yasym are consistent with the expectation of

radial flow, recombination, and nuclear shadowing effect, and disfavor the multiple scatter-

ing interpretation of Cronin effect. However, with current measurements it is not possible
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to distinguish these effects. To improve this, theoretical predictions of these effects are

needed. With the comparison of data and theoretical predictions, each effect can be under-

stood better. One more improvement is to have the measurement of φ mesons, because it

is a meson and has mass that is close to Λ baryon. With the measurement of φ mesons, the

effect of radial flow and recombination may be disentangled.

The measurement of strangeness in different collision systems is intriguing. More mea-

surements and theoretical calculations should be done to improve our understanding of the

deconfined QCD phase at high temperature and energy density.
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and R. L. Sumner. Production of hadrons at large transverse momentum in 200-, 300-,

and 400-gev p− p and p-nucleus collisions. Phys. Rev. D, 19:764–778, Feb 1979.

[83] Michele Arneodo. Nuclear effects in structure functions. Physics Reports, 240(5):301

– 393, 1994.

[84] Nuclear modification factor of d0 mesons in pbpb collisions at snn=5.02tev. Physics

Letters B, 782:474 – 496, 2018.

[85] The ALICE Collaboration. Transverse momentum distribution and nuclear modifica-

tion factor of charged particles in p+Pb collisions at
√

sNN=5.02 TeV. Phys. Rev.

Lett., 110:082302, Feb 2013.

117



[86] Transverse momentum, rapidity, and centrality dependence of inclusive charged-

particle production in snn=5.02 tevp+pb collisions measured by the atlas experiment.

Physics Letters B, 763:313 – 336, 2016.

[87] Rudolph C. Hwa and C. B. Yang. Scaling distributions of quarks, mesons, and proton

for all pT , energy, and centrality. Phys. Rev. C, 67:064902, Jun 2003.

[88] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass. Hadronization in heavy-ion col-

lisions: Recombination and fragmentation of partons. Phys. Rev. Lett., 90:202303,

May 2003.
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