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CHAPTER I 

1. INTRODUCTION 

1.1 Overview 

The pervasiveness of Micro-Electro-Mechanical Systems (MEMS), along with the 

advancement in materials technologies, have stimulated increased interest in understanding the 

potential of these technologies for use in radiation environments [1]. MEMS technologies will 

fill an increasing demand for lighter, smarter components and systems. The dramatic reduction in 

size and power consumption provided by MEMS make these ideally suited for a range of 

application areas including consumer, medical, military, and space devices [2]. Since MEMS 

technology is new, most of the research has been centered on technological advances and 

demonstrating the potential benefits available with MEMS, with little emphasis placed on 

understanding their reliability. The reliability of MEMS utilized within a space system is 

compounded by the potentially harsh radiation environment. There is little research about 

reliability of piezoelectric MEMS and electrothermal MEMS in radiation environments [3]. With 

the possibility that piezoelectric MEMS and electrothermal MEMS will be used to enhance 

current capabilities for systems operating in harsh radiation environments comes the reality that 

these MEMS must be known to operate predictably in those environments. This research directly 

contributes to the reliability knowledge base.  

Isolated two-dimensional (2D) materials are especially suitable for applications in ultra-

miniaturized MEMS [1]. However, as their scale decreases, MEMS become potentially more 

sensitive to changes in their electrical and physical properties. As the ultimate thin-film geometry, 

2DACs (two-dimensional atomic crystals) present unique considerations for the study of 

radiation effects. It is very important to understand the differences between bulk and 2D 

materials in radiation environments and their influence on MEMS. SRIM, a Monte Carlo 

computer code to calculate how a moving ion transfers its energy to the target atoms in bulk 

materials, cannot directly be applicable to two dimensional (2D) systems. A new Monte Carlo 

computer code is needed to describe how an ion transfers its energy to 2D materials.  

The dramatic reductions in size and power consumption offered by MEMS offer 

compelling advantages for potential adoption in space and military systems. The understanding 
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of extreme environment operational capabilities, and models of the observed effects provided by 

this research are necessary factors to enable capitalization on these benefits. 

 

1.2 Objectives and Approach 

The overall objective of the research is to develop a fundamental understanding of the 

interaction mechanisms of ionizing and displacement damage with MEMS. This work is 

significant both because the topics have not been studied in detail and because of the depth at 

which this work will investigate the interaction mechanisms.  

The interactions between radiation effects and MEMS have been mainly investigated by 

experimental methods. The MEMS mechanical and electronic property changes due to radiation 

exposure are observed by using experimental characterization and the parametric changes are 

calculated.  

The four specific objectives addressed in this dissertation are: 

1. Investigate the radiation effects on piezoelectric micromachined ultrasonic transducers, 

including charge trapping influences on electrical properties and mechanical properties. 

Study the interaction mechanism of dielectric charges with piezoelectric MEMS dynamic 

responses. 

2. Investigate the radiation effects on electrothermal microscanners, including charge 

trapping influences on electrical properties and mechanical properties. Study the 

interaction mechanism of dielectric charges with electrothermal MEMS static responses. 

3. Investigate displacement damage effects on ultra-thin membranes, including 

displacement damage scaling effects and development of a new measurement method to 

stop ions in ultra-thin membranes. 

4. Develop a framework for evaluating the displacement damage mechanisms of energetic 

ions onto 2DACs. This includes the analysis of carbon atoms movements and a Monte 

Carlo simulation methodology for defect density calculation. 
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1.3 Structure of the dissertation 

This dissertation is organized into six chapters. Chapter 2 contains a review of relevant 

literature pertaining to the research in this dissertation. Chapter 3 discusses the radiation effects 

mechanisms of pMUTs, including evaluation of the dielectric layer charging and the data 

analysis methodology used, in particular the determination of the relationship between resonant 

frequency and trapped charge density. Chapter 4 discusses the interaction mechanisms of TID 

with the electrothermal microscanners. Chapter 5 discusses the displacement damage on ultra-

thin materials, including SiC membranes and 2DACs. A Monte Carlo simulation methodology is 

used to evaluate displacement damage in 2DACs. Chapter 6 summarizes the results and presents 

recommendations for future work. 
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CHAPTER II 

2. BACKGROUND 

2.1 Radiation Environment 

Radiation can originate from several sources encountered by a device over its lifetime. 

For this research, the sources can be classified into two environments: space radiation and 

nuclear reactor environments. A thorough description of these environments is provided by Ma 

[4] and Olesen [5]. These radiation environments will briefly be described in the following 

sections.  

 

2.1.1 Space Radiation 

Devices operating on satellites or other spacecraft are subjected to several ionizing 

radiation sources. The type of radiation encountered is dictated by the level of orbit of the 

spacecraft. The space radiation environment near the Earth’s surface, usually 1 to 10 Earth radii, 

is of most interest since most spacecraft orbits range in altitude from 100 miles to 22,300 miles 

(geostationary orbit). Within this range of orbits spacecraft will encounter electrically charged 

particles trapped by the Earth’s magnetosphere (Figure 2.1) and high-energy particles from 

cosmic rays. The two types of radiation commonly encountered within the space arena are 

trapped electrons and trapped protons. 

 

Figure 2.1. The charged particles trapped by the Earth’s magnetosphere (adapted from [6]). 
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Energies of electrons trapped in the Earth’s magnetosphere can range from low energies, 

kilo-electron-Volts (keV), to around 5 mega-electron-volts (MeV). These electrons are trapped in 

a region termed the Van Allen Belts which is centered on the geomagnetic equator and extends 

from approximately 1.2 to 11 Earth radii [6]. The region is commonly separated into two regions, 

the inner and outer belts. Although there is no distinct division, the outer extent of the inner belt 

is commonly taken to be 10,000 km. Energies of protons trapped in the Earth’s magnetosphere 

can range up to approximately 800 MeV. Trapped protons are generally found in the same region 

as are the trapped electrons; however, the regions of high flux are not coincidental for the two 

particles. 

The amount of total ionizing dose accumulated by a device in the space environment 

depends on the orbit of the satellite, the length of the mission, the solar activity and the amount 

of shielding on the satellite. 

 

2.1.2 Nuclear Reactors 

 Nuclear power plants are a source of radiation. Electronics used to control and operate 

the plant are continuously subjected to radiation. A thorough discussion of the radiation 

environment within a nuclear reactor is provided by Gover [7]. The containment building of a 

nuclear reactor houses most of the devices that must be radiation hard. Therefore, the radiation 

environment of interest is within the containment building. The radiation present within the 

containment building is primarily composed of gamma rays; however, neutrons are also present. 

In a possible accident the radiation environment can change drastically and therefore must be 

considered when designing control devices.  

These two radiation environments have ionizing radiation and high energy ions present 

(Table 2.1). This commonality steered this research toward exploring the effects of ionizing 

radiation and displacement damage on MEMS. Cumulative effects of ionizing and non-ionizing 

radiation will alter the electrical and mechanical properties of the constituent materials and alter 

device operation and long-term reliability. The operating principles of many of these devices 

may provide inherent tolerance to single-event transient radiation effects (SEE). The supporting 

circuitry will be the consideration for SEE and is not the primary interest of the proposed 

research.  
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Table 2.1 Radiation sources in space and nuclear reactors and their possible damage mechanisms 

to MEMS. 

 

 

2.2 Microelectromechanical Systems 

MEMS are among the fastest growing technology areas. With an average annual growth 

rate of more than 20%, the MEMS industry is expected to reach over $29 billion by the year 

2024 [8]. They not only provide better substitute solutions for many conventional technologies, 

but also have been proven to be key enabling solutions for new applications in consumer 

products, health care, military, transportation, telecommunication and space industries. 

Medical/biomedical instrumentation, automotive industry, and consumer products applications 

will continue to dominate the MEMS market in the near future. As they continue to expand, the 

applications of MEMS technology can be virtually everywhere.  

MEMS are promising devices for space systems because of their small size, low mass, 

possible integration with integrated circuits, low power consumption and the ability to perform 

non-electronic functions: e.g., sensing and actuation [9]. In general, typical MEMS include 

mechanical components, such as cantilevers and membranes; electrical components, such as 

control circuits; and energy conversion components, such as piezoelectric materials that are used 

for sensing and actuation (Figure 2.2). The idea behind the application of electro-mechanical 

devices is a correlated energy conversion between the mechanical and electrical (sensors) or 

electrical and mechanical (actuators) components. These relationships can be accomplished in 
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various manners. The characteristics of these parts may be affected in the space radiation 

environment [10]. 

 

 

 

Figure 2.2 The MEMS lumped model. 

 

MEMS can be operated using a wide variety of physical energy conversion principles. 

The most common principles are electrostatic, thermal, electromagnetic and piezoelectric. The 

degradation of MEMS devices due to radiation is a complex interplay of changes to the sensing 

and actuation physical principle [3]. MEMS operating on electrostatic principles can be highly 

sensitive to charge accumulation in dielectric layers, especially for designs with dielectrics 

located between moving parts [11]. In contrast, thermally and electromagnetically actuated 

MEMS are typically much more radiation tolerant [12], [13]. Piezoelectric MEMS were thought 

to be tolerant to radiation, especially to total-ionization-dose (TID) effects [3]. But recent work 

discovered that TID effects can significantly affect piezoelectric materials [14]. In this research, 

we will focus on radiation effects on piezoelectric and electrothermal MEMS.  

How can radiation effects influence MEMS? Normally, TID causes dielectric layer 

charging. These charges change the properties of electrical components. The changes of 

electrical properties can lead to changes in mechanical components through energy conversion 

mechanisms. DD can introduce damage to materials and changes properties of mechanical 

components. These changes can also be reflected in electrical components (Figure 2.3). 

The study of radiation effects on electronic components has a decades-long history, while 

the study of radiation effects in mechanical parts is more limited. The mechanical components 
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are usually thought to be radiation hard [10]. But as MEMS device dimensions continue to shrink 

and new materials are added, the mechanical components are more easily affected by the 

irradiation. In this research, how radiation interacts with the ultra-thin membrane and 2D 

materials and how defects change their mechanical properties are investigated.  

 

 

 

Figure 2.3 Effects of TID and DD on MEMS. 

 

2.3 Radiation Effects on Electrostatic MEMS 

For electrostatic MEMS devices, the main failure mode at high radiation doses is the 

accumulation of charge in dielectric layers, which can move the mechanical structure and change 

the resonant frequency of the device essentially by applying an electrostatic force. The failure 

may appear mechanical, e.g., a stuck comb-drive, but the root cause is electrical [3]. For a given 

device, TID is the main radiation parameter that leads to charging.  

Photons, electrons, and protons create electron-hole pairs in dielectrics through ionization. 

The carriers that survive the initial recombination move in response to the local electric field, 

with electrons typically being much more mobile than holes. Carriers that become trapped have a 

decay time of hours or days. Details of charging depend on the geometry, secondary electrons 

emitted from nearby surfaces, and vary significantly with the applied bias. 
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Figure 2.4 shows the charging effects on electrostatic MEMS. The left part is the 

simplified MEMS model with electrode and dielectric layer. The right part is the equivalent 

dielectric layer in electrical MEMS. The thickness of these dielectric layers are td and the 

distance between these two dielectric layers is g. ρ1 and ρ2 are uniform surface charge sheets 

assumed to be present at the oxide-air interface of each dielectric layer. εd and εo are the 

dielectric constants of the dielectric layer and the air. The extra electrostatic force Fex caused by 

the accumulated charge is [15]: 

                                  
( )( ) ( )

( )

2

0 1 2 0 1 2

2

0

2

2 2

d bias d d

ex

d d

A t AV t
F

t g

      

 

− + −
=

+
                                 (2-1)   

                                    

 

 

Figure 2.4 Charging effects on electrostatic MEMS. 

 

From equation 2-1, we can get some important conclusions:  

(1) The extra electrostatic force Fex depends strongly on the electrical potential difference 

Vbias. Since dielectric layers might be floating in MEMS with no certain Vbias, the 

accumulated charges bring more uncertainty to the electrostatic MEMS application in 
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radiation environments. 

(2) Fex is proportional to the difference of surface charge densities ρ1 – ρ2. 

(3) The MEMS equivalent displacement dm caused by Fex can be expressed as: 

                                                      
( )ex mex

m

F dF
d

k k
= =                                                         (2-2) 

k is the equivalent elastic constant of the MEMS. This equation shows the accumulated charges 

can cause static displacement of MEMS. Fex is inversely proportional to the distance g between 

MEMS and equivalent dielectric layer and is a function of dm.  

Most electrostatically operated MEMS devices degrade between 10 and 100 krad(Si) [3]. 

Failures are often caused by electrostatic forces introduced by trapped charge in dielectric films. 

Those electrostatic forces can move the mechanical parts of MEMS and cause a stuck comb 

drive [16], and/or lead to snapped-down parallel plates [17] or change in calibration of capacitive 

sensors [16],[18].  

Analog Devices and Motorola have both produced commercially available comb drive-

based accelerometers. Accelerometers from both companies have been subjected to radiation 

testing by the Naval Research Lab [19]. A comb drive used as a microengine was also subjected 

to radiation testing at Sandia National Laboratories [20]. All the tests conducted have 

demonstrated that the operation of MEMS comb-drives is affected by radiation. A brief 

discussion on the relationship between dielectric charges and electrostatic forces will be 

undertaken prior to presenting the results of the radiation testing. 

The “spring softening” is the change in the natural frequency f0 of a MEMS structure due 

to presence of the electric field in surrounding the MEMS structure. The MEMS resonant 

frequency tuned by the electric field in Figure 2.4 can be expressed as 

                             

( )
( )

2

2
3

'

0 0 3

1 1
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2 2 2
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AV t
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−  
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                              (2-3) 

V(t) can be expressed as: 

( ) ( )cosDC acV t V V t= +
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Then the resonant frequency can be expressed as: 

( )
( ) ( )

2

' 2 2 2

0 0 03 3

1 1
1 1 2 cos cos 2

2 2 2 2
DC ac DC ac ac

AV t A
f f f V V V V t V t

kg kg

 
 

    
= − = − + + −         

        (2-4) 

From this equation, we can see the MEMS resonant frequency is closely related to the static 

component VDC and dynamic component Vac. The TID effects can lead to fixed trapped charges 

in dielectric layer and change the static component VDC, which can cause long-term resonant 

frequency shifts and then degrade MEMS performance. On the other hand, the real time radiation 

and electromagnetic interference in radiation environment can lead to an additional dynamic 

component Vac to the MEMS and tune the resonant frequency. 

 

2.4 Radiation Effects on Piezoelectric MEMS 

Piezoelectric MEMS devices simultaneously achieve large force, high working frequency, 

high energy density, low power consumption, and no electromagnetic interference, which makes 

them suitable for applications in space or nuclear reactors. Furthermore, the extremely large 

piezoelectric and dielectric response of PZT presents an opportunity for integrating multiple 

functionalities at the micron and nanometer scale, including sensing and actuation capabilities, 

energy harvesting for self-powered devices, miniaturized multilayer capacitors, and logic control 

mechanical relays. For example, piezoelectric micro-mirror-based mass spectrometers can be 

used in space for materials analysis [21], and piezoelectric accelerometers can be used in small 

satellite systems for motion detection [22]. Radiation effects on lead zirconate titanate (PZT) 

have been reported [23], [24], but very little is known about piezoelectrically-actuated MEMS 

performance in radiation environments.  

 

2.4.1 Piezoelectric Effects and Piezoelectric Micromachined Acoustic Sensor 

 Piezoelectric effects reflect the ability of certain materials to generate an electric charge 

in response to applied mechanical stress. In other words, the piezoelectric materials can sense the 

vibration and transfer it to charges on the surface. Piezoelectric sensors utilize this property to 

sense movements and transfer it to electric signals.  

One of the unique characteristics of the piezoelectric effect is that it is reversible. When 
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piezoelectric material is placed under mechanical stress, a shifting of the positive and negative 

charge centers in the material takes place, which then results in an external electrical field. The 

generation of stress when an electric field is applied is called the inverse piezoelectric effect. 

Piezoelectric actuators utilized this property to transfer electric signals to movements. 

Ultrasound can be excited by many different methods, including the piezoelectric effect, 

magnetostriction, and the photoacoustic effect. Of these, the piezoelectric effect is the most 

common. A typical structure of a conventional piezoelectric ultrasonic transducer usually has a 

layer of piezoelectric material sandwiched by thin high conductivity electrode layers, of e.g., Au 

or Pt, often with an underlying adhesion layer e.g., of Cr or Ti, and connected with electrical 

wires. 

The effective piezoelectric response of PZT thin films is usually very different from that 

of bulk PZT, particularly because of the in-plane clamping of the film by the substrate, as well as 

from the residual stress in the film. By releasing the substrate beneath the thin film PZT, the 

mechanical constraints near the bottom interface of the PZT are reduced and the piezoelectric 

domain walls can more freely respond to the electric field and contribute more to the dielectric 

and piezoelectric properties, leading to better performance of the pMUTs. Partially unclamping 

diaphragm edges, optimizing electrode configurations and even adding DC bias have also been 

used to increase the coupling coefficients and acoustic output of pMUTs [25].  

Intrinsic stress in the membrane generated during fabrication can affect the resonant 

frequency dramatically. In the case of an edge-clamped circular diaphragm with low intrinsic 

stress, the membrane behaves as a plate with the resonant frequencies, f, given as [26] 
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where α is the resonance mode constant, ᵞ is the radius of the diaphragm, DE is the flexural 

rigidity, ρ is the effective density of the diaphragm, h is the diaphragm thickness, E is the 

effective Young’s modulus, and υ is Poisson’s ratio. With high intrinsic stress, T, the stress can 
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dominate over the flexural rigidity, hence the membrane behaves as a membrane with no 

bending stiffness with the resonant frequencies given as [27] 

                                                                  
2

T
f
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=                                                     (2-6) 

The high sensitivity of the resonant frequency to the residual stress of the membrane may 

cause difficulties during the design process. 

In lumped element models, the coupling between the various energy domains is realized 

by using equivalent two-port models of the physical system. An equivalent circuit model is 

constructed by lumping the distributed energy storage and dissipation into ideal generalized one-

port circuit elements. An impedance analogy is employed, in which elements that share a 

common effort are connected in parallel, whereas those sharing a common flow are connected in 

series. For a pMUT, three different energy domains are involved: electrical, mechanical, and 

acoustic. The electromechanical sensor consists of a clamped PZT composite diaphragm. The 

composite diaphragm senses motion and outputs an applied ac voltage. The primary purpose of 

the piezoelectric diaphragm is to sense volume displacements causing by the air into and out of 

the cavity, which represents a conversion from the mechanical to the acoustic energy domain. 

Consequently, the frequency range of the analysis is limited from dc to somewhat beyond the 

fundamental vibration mode of the composite diaphragm, but less than the natural frequency of 

any higher-order modes [28]. Linear composite plate theory is used to obtain the characteristics. 

Then, the diaphragm is lumped into an equivalent acoustic mass and acoustic compliance. The 

former represents stored kinetic energy and the latter models stored potential energy. Similarly, 

the electromechanical transduction characteristics are determined by the unloaded or “free” 

voltage-detection characteristics [29]. The piezoelectric electromechanical coupling is lumped 

into an effective acoustic piezoelectric coefficient. In general, the cavity contains a compressible 

gas that stores potential energy and is, therefore, modeled as an acoustic compliance. 
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Figure 2.5 Side view of a piezoelectric micromachined acoustic sensor and the transition to its 

lumped elements model. 

The equivalent circuit representation for the pMUT is shown in Figure 2.5. The 

compliance, mass, and damping of the piezoelectric diaphragm are normally represented in the 

mechanical domain. C0 is the blocked electrical capacitance of the piezoelectric diaphragm 

driven by an ac voltage. The term blocked is used because it is the impedance seen by the source 
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when the diaphragm motion is prevented. Although not shown here, a resistor can be introduced 

in series or in parallel with C0 to represent the dielectric loss in the PZT. 

The lumped element model of pMUT provides a compact analytical model and valuable 

physical insight into the dependence of the device behavior on geometry and material properties. 

The physical insight of energy transformation between electrical and mechanical domain provide 

us an effective way to analyze the radiation effects on piezoelectric MEMS, which can be seen in 

the following chapters.  

 

2.4.2 Previous Investigation of Radiation Effects on Piezoelectric MEMS 

Figure 2.6 provides a summary of the many potential radiation vulnerabilities associated 

with three different functional locations within a piezoelectric MEMS structure [1]; the 

complexity of the analysis may also be inferred from the figure. Based on prior work, the 

ultimate failure of the device likely results from accumulated damage in the piezoelectric active 

layer, through defect-domain wall interactions, which diminish its electromechanical response. 

Previous knowledge of radiation effects on piezoelectric MEMS mainly focuses on the 

properties of thin film ferroelectric materials. In the 1990s, the radiation response of the 

ferroelectric properties of PZT were studied extensively. Both [24] and [23] examined the impact 

of high TIDs using x-ray sources and found very little degradation of the polarization or leakage 

current up to a total dose of 5 Mrad(Si). In [30], the material was subjected to neutrons and was 

found to have a 10% reduction in switching charge at a neutron fluence of 1015 /cm2. Despite the 

intensive ferroelectric property studies, the piezoelectric properties were not examined at that 

time. More recently, researchers have started to investigate the piezoelectric properties of thin-

films of the material. In [31], Pb(Zr0.52 Ti0.48 )O3 films were irradiated in the neutron spectrum of 

a nuclear reactor at a 1 MeV equivalent neutron flux of (7.17±0.04)×1011 cm-2s-1. Following 

exposure, a decrease in reversible and irreversible contributions to extrinsic permittivity were 

observed. The changes were attributed to the formation of defect dipoles and other charged 

defects within the material that impede domain wall mobility. In [32], both X-rays and proton 

irradiation were used to examine thin-film PZT piezoelectric stability. Again, a decrease in the 

piezoelectric properties was observed and was attributed to point defects generated within the 

material. Oxygen vacancies are also known to exist in PZT thin films making a similar 
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mechanism possible. The primary defect formation mechanism is ionizing dose related, not 

through direct displacement damage. The researchers from Georgia Institute of Technology and 

Naval Research Laboratory have investigated the effects of gamma radiation on the dielectric 

and piezoelectric response of Pb[Zr0.52Ti0.48]O3 (PZT) thin films as a function of metallic (Pt) or 

conductive oxide (IrO2) top electrodes [33]. All samples showed a general degradation of 

dielectric, polarization, and electromechanical responses when exposed to 2.5 Mrad(Si) 60Co 

gamma radiation. 

 

 

Figure 2.6 Schematic representation of a piezoelectric MEMS mechanical logic architecture and 

impact of radiation on various functional locations. (Arutt etc. [1]) 

 

However, only a small amount of work shows how radiation affects piezoelectric MEMS 

device performance, including deformation, resonant frequency and quality factor. A bridge is 

needed between piezoelectric materials variation and MEMS performance in radiation 

environments. 
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2.5 Radiation Effects on Electrothermal MEMS 

 

2.5.1 Stress, Strain and Electrothermal Bimorph Actuator  

An electrothermal bimorph structure consists of a stack of two layers of thin-film 

materials with different coefficients of thermal expansion (CTEs). The simplest bimorph actuator 

is a single cantilevered bimorph beam, shown in Figure 2.7. The cantilevered bimorph beams can 

be intelligently connected to form more complicated bimorph actuators. But the basic 

principle of electrothermal bimorph actuation can be drawn from this basic building block. 

As the thin films in a bimorph undergo internal or external changes, e.g., thermal expansion, 

phase transformation or other physical effects, the strain generated in each thin film is different if 

the two thin films are freed of the constraint imposed by each other. This difference in their 

strain development is referred to as the strain incompatibility or strain mismatch within 

the bimorph when it is considered as a unity [34]. Thermal bimorph actuation uses intrinsic stress 

to determine the initial rest position of the object of interest and use Joule-heating induced 

extrinsic stress to realize the actuation.  

 

 

Figure 2.7 Cross sectional view of the curvature. 
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2.5.2 Previous Investigation of Radiation Effects on Electrothermal MEMS 

Two groups of researchers have tested horizontally deflecting electrothermal actuators 

within a radiation environment. Taylor et al. [35] irradiated the actuator with protons and gamma 

rays and Johnstone et al. [36] irradiated the device with protons. Taylor et al. used an ion 

microbeam to irradiate specific sections of the actuator believed to be high tensile stress areas. 

They explored degradation in operability directly due to dielectric charging, a common 

consequence of radiation exposure. Their testing revealed that no ion induced degradation 

occurred. Furthermore, they found no cracking or degradation in deflection in the device because 

of the irradiation. The researchers pointed out that high fluences or different conditions can result 

in adverse charge build-up which can lead to system failure as a result of stiction. Johnstone et al. 

[36] irradiated their devices with 50 MeV protons at total doses ranging from 109 to 1013 p /cm2. 

There were no noticeable changes in the current versus voltage (IV) characteristics before or 

after irradiation. However, some changes were noted concerning the deflection between the un-

irradiated and irradiated devices. This change was attributed to stiction. The researchers were 

unsure if the stiction was a result of the irradiation or just environmental contamination. 

 

 
Figure 2.8 Isometric drawing of horizontally deflection electrothermal actuator. (Caffey [37]) 

 

Figure 2.8 is an illustration of a horizontally-deflecting electrothermal actuator used for 

radiation tests by Jared R. Caffey [37]. The electrothermal actuator is typically characterized by 

the relationship between the amount of tip deflection and applied voltage. The measurement 

procedures consisted of applying a DC voltage and monitoring the tip deflection using the video 

capture software. A total of eight die containing electrothermal actuators were irradiated with 50 
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keV X-rays. The die was irradiated to total ionizing doses of 250, 500, 750 and 1000 krad(Si). 

The deflection-voltage response for electrothermal actuators irradiated with 50 keV X-rays using 

the low energy X-Ray source. The plots in Figure 2.9 represent the average measured tip 

deflection plus and minus the standard error in the measurements. The measured tip deflection 

for all the irradiated actuators shows a decrease. The change in tip deflection seems to extend to 

lower voltage levels as the total ionizing dose is increased. 

The author also did the “control” experiment on electrothermal actuators not subjected to 

any radiation. The actuator was cycled through a voltage sweep from 0 to 20 V for 

approximately 34 minutes. The same procedures used to characterize the actuators before and 

after irradiation were followed. Figure 2.10 illustrates the measured tip deflection before and 

after the actuator was broken-in. The amount of tip deflection associated with a given voltage 

decreases after break-in. This is the same phenomenon noted for the irradiated actuators. Based 

on this experiment, the author concluded that the radiation has no effects on electrothermal 

MEMS and all the observed variations are due to device break in. 

The actuators were swept with positive voltage for long times. This process is similar to 

the stress test in the radiation researches. Long time application of an electric field can lead to 

charge accumulation in dielectric layers of MEMS. The “control” experiment verified that the 

obvious radiation effects on electrothermal MEMS are closely related to charge accumulation. 

The “break in” process is the process in which charges move and are trapped in pre-existing 

defects. 
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Figure 2.9 Pre- and post-irradiation deflection measurements for 250 µm long electrothermal 

actuators subjected to total ionizing doses of (a) 250 krad(Si), (b) 500 krad(Si), (c) 750 krad(Si), 

and (d) 1000 krad(Si) in low energy X-Ray source. (Caffey [37]). 
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Figure 2.10 Measured tip deflection after 34 mins 0 to 20 V voltage sweeping. (Caffey [37]). 

 

In conclusion, the deflection changes between the un-irradiated and irradiated 

electrothermal MEMS. This change was attributed to stiction, break in or stress annealing. 

Recent research shows the deflections are closely related to charge accumulation and radiation 

may cause the deflection variations. 
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2.6 Radiation Effects on 2D MEMS 

Two-dimensional materials have attracted great research interest in recent years for 

various potential applications. Specifically, the large surface area to volume ratio of these 

carbon-based material make them prime candidates for sensing applications in MEMS [38]. The 

atomic thickness leads to very low volume for interaction with radiation. However, the response 

of micromechanical properties to radiation damage is virtually unstudied. 

 

 

Figure 2.11 Schematic diagram of the (a) the suspended graphene flake and radiation 

experiments. (b) AFM experiment for measuring Young’s modulus. (K. Liu etc. [39]). 

Several irradiations on 2D MEMS are done with different kinds of ions. AFM and Raman 

spectroscopy are normally used for investigating relationships between radiation dose and 

Young’s modulus. Figure 2.11 (a) shows a schematic diagram of a graphene flake transferred 

onto a porous substrate and irradiated by 3 MeV He2+ ions [39]. Their 2D elastic modulus (E2D) 

is measured by indenting the center of these circular, free-standing graphene membranes with an 

atomic force microscope (AFM) tip.  

Figure 2.12 (c) plots normalized E2D as a function of cumulative irradiation dose. In the 

low-dose regime, E2D remains nearly a constant, insensitive to the defects. When the dose is 

higher than 1013 ions cm-2, E2D starts to decrease, as the high density of point defects weakens the 

average atomic bonds in the graphene. In contrast, the measured values of tension fluctuate and 

do not show a clear trend over the range of irradiation dose, revealing that the irradiation does 

not loosen the membrane that can result in the modulus softening. However, the E2D curves show 

a clear dip at the dose of 3 × 1014 ions cm-2 because of a residual contamination layer. Under 
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such high doses, the contamination layer tends to form a continuous film and becomes difficult 

to clean thoroughly.  

 

 

Figure 2.12 (a) Raman spectra of monolayer graphene after various doses of ion irradiation. (b) 

Intensity ratio of the D and G peaks (ID/IG) of the three flakes as a function of irradiation dose. 

The difference of ID/IG for flakes with different number of layers may result from different 

scaling rules between ID/IG and defect density, owing to different band structures. (c) Normalized 

E2D of the three flakes as a function of irradiation dose. (d) Simulated force curves of indentation 

processes under different defect densities (K. Liu etc. [39]). 

 

The AFM is good for measuring elastic modulus of 2D materials with high defect density. 
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It is still unknown how elastic modulus varies at low radiation dose. The relationship between 

radiation dose and defect density is unknown. An effective method is needed for evaluating 

defects generated by radiation. 

Researchers from Case Western Reserve University have examined 662 keV gamma ray 

radiation effects from a 137Cs source upon 2D MoS2 nanomechanical resonators [40]. The results 

show that all the MoS2 resonators exhibit 0.5–2.1% resonance frequency upshifts due to the 

ionizing gamma ray induced charges and their interactions. The gamma ray radiation generates 

trapped charges in the device structure across the SiO2 layer and cause electrostatic forces 

between the charged MoS2 drumhead and the Si substrate, resulting in electrostatic tension and 

deflection of the MoS2 drumheads, and the resonance frequency upshifts. 

More and more new materials are being incorporated into MEMS. To create high 

frequency (~MHz) resonators, some 2D membranes are utilized in MEMS. How radiation 

impacts the ultra-thin 2D membranes properties is not clear. In this research, we need to figure 

out how energetic ions interact with 2D membrane. 

Figure 2.13 shows a model for high energy ion bombardments on an ultra-thin target 2D 

membrane. The number of created defect Nevents can be expressed as [41]: 

                                                         events incidentN kN nx=                                                          (2-5) 

in which k is a constant, Nincident is number of incident particles, σ is the cross section, n is target 

atoms per unit volume and x is the thickness of the target material. 

For Coulomb scattering, the cross section σ can be calculated through: 
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in which dΩ is an element of solid angle, z is the beam particle charge, Z is the target particle 

charge, ions kinetic energy is Ek and α is Coulomb's constant. 
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Figure 2.13 Schematic illustration of cross section of target material. 

 

So, the defects generated during the ion bombardment is proportional to the target 

thickness x. For ultra-thin 2D membranes, the displacement damage is very low. These equations 

indicate that (1) 2D materials membranes are resistant to the energetic ion bombardment and (2) 

it is difficult to create high defect density in the 2D membrane experimentally (instrument 

limitations).  

To investigate the defect influence on the 2D membrane mechanical properties 

experimentally, we need to introduce different defect density into the membrane by irradiation. 

In the Pelletron system, the parameters we can adjust are beam flux ψ and ion kinetic energy Ek. 

Normally, the beam fluence increases with ion kinetic energy. Since cross section σ is inversely 

proportional to the ion kinetic energy and then the beam flux, it is very challenging to create high 

defect density in 2D membranes by using the Pelletron system. Simulation methods are normally 

used to analyze defects generated in 2D materials by radiation. 

 

2.7 Summary 

The key question for this research is: How does radiation damage to constituent 

materials impact the mechanical and electrical basis of operation of MEMS? Cumulative 
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damage by non-ionizing energy loss can, in principle, alter the mechanical properties of 

structures such as cantilevers and 2D membranes, and trapped charge in insulators can impact 

electrical operating conditions. Presently, the extent to which such effects impact the operation 

of advanced MEMS is unclear.  

There are limited studies of radiation effects on MEMS, and most of them focus on 

radiation influence on MEMS mechanical or electrical properties. Since MEMS is an 

electrical/mechanical to mechanical/electrical energy transforming system, any variations in the 

mechanical parts should lead to corresponding variations in the electrical part of the system and 

vice versa. A complete investigation on radiation effects on MEMS should include both 

electrical and mechanical variation caused by radiation.  

 

Table 2.2 Previous Radiation Tests and Main Degradation Mechanisms of MEMS 

 

 

There are four main energy transforming mechanisms: electrostatic, piezoelectric, 

electrothermal and electromagnetic. Most radiation studies are focused on electrostatic MEMS, 

while fewer studies are conducted on piezoelectric, electrothermal and electromagnetic MEMS 

(Table 2.2). This is because the electrostatic MEMS are the most mature MEMS, 

commercialized and widely used in space system. The advances in fabrication process, namely 

the ability to create nanoscale structures, and the introduction of new materials have made it 

possible to commercialize many newly developed piezoelectric, electrothermal and 

electromagnetic MEMS in the very near future. The successful application of these MEMS in 
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radiation environments requires that reliability issues be thoroughly explored and understood. 

This research evaluates radiation effects on piezoelectric MEMS and electrothermal MEMS 

through investigating one typical piezoelectric MEMS (pMUT) and one typical electrothermal 

MEMS (electrothermal microscanner). 

  There are a number of radiation experiments on 2DAC, especially energetic ions 

bombardment on graphene. The elastic constant of graphene changes with radiation dose. But 

there is no effective way to evaluate the defect density generated during these processes. It can 

be very challenging to compare radiation results from experiments using different energetic ions. 

Also, it is difficult to understand the reliability of 2D MEMS in radiation environments without 

these data. In this research, a Monte Carlo approach is developed for analyzing the defects 

generated in monolayer graphene during energetic ions irradiation. This approach can be used in 

other 2DAC with a few modifications. 
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CHAPTER III 

3. RADIATION EFFECTS ON PIEZOELECTRIC MEMS 

3.1 Overview and Objectives 

Radiation effects on lead zirconate titanate (PZT) have been reported, but very little is 

known about piezoelectrically-actuated MEMS performance in radiation environments. The most 

prevalent piezoelectric MEMS are pMUTs. pMUT-based resonators can be used to generate 

signals of a precise frequency for electrical circuits, with potential applications in space. In this 

chapter we summarize a study of radiation effects on pMUTs that was reported in [14]. 

 

3.2 Device Structure and Sample Preparation 

A PZT-based pMUT array is fabricated using a combination of thin film and bulk 

micromachining processes on a 4-inch silicon-on-insulator (SOI) wafer with a 1 μm thick buried 

oxide layer, 50 μm thick Si device layer, and a 400 µm thick Si substrate [42]. First, a 1 µm 

silicon dioxide layer is thermally grown, followed by a sputtered Pt/Ti (200 nm / 20 nm) 

conductive layer for the bottom electrodes. Eight layers of Pb(Zr0.53 Ti0.47)O3 (PZT) are 

consecutively deposited using a sol-gel process in which a colloidal solution is spun at 3,000 rpm 

and the resultant film is annealed at 650-700 ºC by rapid thermal processing (RTP). The film 

thickness for each sol-gel layer is ~ 120 nm. The PZT material can sense applied force and 

transfer it to electrical charge (piezoelectric effect) or transfer applied electrical field to strain 

(inverse piezoelectric effect), which makes it a desirable material for MEMS applications. The 

top electrode pattern is then formed by lift-off of a sputtered Pt/Ti (150 nm / 7 nm) conductive 

layer. Backside deep reactive ion etching (DRIE) is used to create resonant cavities in the 

pMUTs.  

A schematic diagram of a circular pMUT array is shown in Figure 3.1. A pMUT with the 

diaphragms clamped on all edges has been chosen as the enabling microarray element. The 

acoustic sensor is composed of a Pt/Ti/PZT/Pt/Ti/SiO2/Si multilayer membrane, which works in 

a flexure mode to sense acoustic energy. Three types of 2 × 2 pMUT arrays with different shapes 

have been used for the radiation tests. The parameters of the test samples are listed in Table 3.1. 
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Initial resonant frequencies and quality factors differed by less than ± 5%. Data shown in this 

work were selected as representative from multiple samples for each experimental condition.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 3D (a) and cross-sectional view (b) of the pMUT array. 

 

 
 

Table 3.1 The pMUT array samples for radiation. 

Samples Shapes Size (µm) 

A Square L=360 

B Rectangle W×L=260×360 

C Circular R=180 

 

 

3.3 Piezoelectric MEMS Lumped Model 

The piezoelectric MEMS electro-mechanical lumped model shown in Figure 3.2(a) 

consists of two parallel networks: a mechanical network and an electrical network [43]. The 

equivalent capacitor, C0, in the electrical network represents the parallel plate capacitor formed 

by the metal electrodes and the sandwiched PZT membrane. In the mechanical domain, the 

Si SiO2 PZT Pt/Ti 

(b) (a) 
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piezoelectric MEMS can be treated as a rigid body and all interactions on the rigid body can be 

represented using a mass-spring-damper model.  

 

 

 

 

 

 

 

 

 

 

 

 

          

 

Figure 3.2 Piezoelectric MEMS lumped parameter model. 

 

By considering the velocity and the exciting force as the analogs of the electric current 

and the electric potential, respectively, these mechanical lumped elements can be expressed as a 

capacitor, an inductor, and a resistor. The effective mass, M, is represented by an inductor, the 

spring with spring constant K is represented as a capacitor, and the damper with damping 

R1=b/n2 

C1=n2/K 

L1=M/n
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coefficient b is represented by a resistor. Piezoelectric materials, such as PZT, can transfer 

energy between the electrical and mechanical domains. These transfers can be modeled as an 

ideal transformer with a factor n that can transform the damper, spring, and mass constants from 

the mechanical regime to the electrical analogs R1, L1, and C1 in the equivalent electrical-

mechanical circuit shown in Figure 3.2(b). The impedance of the electrical-mechanical circuit in 

Figure 3.2 is: 
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Device characterization was performed in air with an Agilent 4284A precision LCR 

meter. An idealized impedance curve is shown in Figure 3.3. Curve fitting is used to derive the 

corresponding electrical parameters C0, R1, L1, and C1 from the impedance curve. After that, 

these “electrical components” R1, L1, and C1 are transformed back to the mechanical domain to 

obtain the mechanical properties of the piezoelectric MEMS, as described in Section 3.4. 

 

 

 

 

 

 

 

 

 

Figure 3.3 Idealized impedance vs. frequency curve of piezoelectric MEMS. 

 

3.4 X Ray Irradiation Experiments 

pMUTs were irradiated with a 10 keV X-ray system at biases of -1 V to 1 V to doses up 

to 3 Mrad(SiO2). The dose rate was 31.5 krad(SiO2)/min. All impedance measurements were 

performed in-situ without any applied bias. The response of more than 20 pMUTs were 
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evaluated; representative results are shown. Figure 3.4 shows a typical set of impedance vs. 

frequency curves under x-ray irradiation with 1V DC bias voltage applied to sample B (the 

rectangular device). The five different color curves represent the impedance responses of sample 

B at different doses. The resonant frequency increases by up to 5% with increasing dose. 

Because MEMS resonator output frequency stability requirements are often near 100 ppm 

(0.01%), see [44] for example, these relatively large shifts can negatively affect system 

performance. 
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Figure 3.4 Impedance frequency response under x-ray radiation with 1 V bias for sample B. 

 

Curve fitting was used to derive the corresponding electrical parameters C0, R1, L1, and 

C1 from each curve. The electrical inductor L1 and capacitor C1 are transferred back to the 

mechanical mass M and spring constant K. n is the turns ration of the transformer, which 

represents the coupling of electric and mechanic domain in piezoelectric materials. Then the 

mechanical resonant frequency f0 can be derived from: 
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The mechanical resonant frequency is equal to the electrical resonant frequency of the series 
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LRC circuit. The resonant frequency and quality factor together determine the characteristic 

MEMS frequency response. The mechanical quality factor Q is defined as: 
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The corresponding frequency resolution, and thus the system's sensitivity and stability, are 

directly linked to Q. A decrease in quality factor can degrade system sensitivity. On the other 

hand, an excessive quality factor can introduce unwanted noise and signal overshoot, resulting in 

instability [45]. 

 

3.5 Experimental Results and Discussion 

Figure 3.5 summarizes pMUT array resonant frequency shifts and corresponding changes 

in quality factor with total ionizing dose for different biases. The resonant frequency increases 

with increasing dose for zero or positive bias and decreases for negative bias. Reasons for these 

shifts are now discussed. 

Defects and charge trapping near the electrode regions have direct impacts on PZT thin-

film properties, such as coercive voltage, polarity switching and domain morphology [46], [47], 

[48], [49], [50], [51]. Previous work shows that a large concentration of defects exists in a typical 

as-processed PZT film, usually associated with acceptor oxygen vacancy and oxygen vacancy 

complexes [24], as illustrated in Figure 3.6. X-rays generate electrons and holes that can become 

trapped in pre-existing defects near the PZT/electrode interfaces, with both electron and hole 

trapping commonly observed [46], [47], [48], [49], [50]. These trapped charges change the strain 

and stress in the PZT membrane due to the reverse piezoelectric effect, and therefore shift the 

resonant frequency. 

Since defects in these kinds of MEMS devices are mainly distributed on the surface [46], 

[47], [48], [49], [50], [51], most radiation-induced electrons or holes are trapped near the 

electrodes. Hence, we model the trapped charges as a thin sheet near the PZT surface. The 

surface charge density can be evaluated from the static capacitance of the device C0. Trapped 

charges cause vertical strain in the pMUT due to the reverse piezoelectric effect.  
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Figure 3.5 (a) Resonant frequency f0 and (b) quality factor Q for x ray irradiation. Three devices 

were tested in each bias condition; error bars represent the standard deviation of these test results. 

 

The static capacitance after irradiation C0
rad can be calculated from: 

                                                       0
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Here d0 is the thickness of the PZT, ε is the permittivity, S is the area of the PZT membrane, d33 

is the strain coefficient of PZT, and E3 is the equivalent radiation-induced electric field between 

the electrodes. Hence:  

                                              0
33 3 33

0 0 0

1 1
rad

C S
d E d

C d C


= + = +


                                                  (3-5) 

 The equivalent radiation-induced surface charge density, σ, after irradiation can be derived from 

the change in measured static capacitance via: 

                                                   
( )0 0 00

0 33

rad

rad

d C CC

C d S


−
= 


                                                        (3-6) 

If, for simplicity, we assume that one dominant type of charge is trapped in these pMUTs, 

the positive value of σ observed for positive bias irradiation likely reflects hole trapping at the 

lower interface or electron trapping at the upper interface, which reinforces the polarization field, 

while the negative value of σ observed for negative bias irradiation likely reflects hole trapping 

at the upper interface or electron trapping at the lower interface, which opposes the polarization 

field [51]. 

We note that for positive bias irradiation in Figure 3.5 there is an initial negative shift in 

device resonant frequency that is small relative to the observed radiation-induced shifts at higher 

doses, but larger than experimental error and part-to-part variation. This initial negative shift 

may result from the radiation-induced neutralization [52] of a small amount of remanent charge 

in these devices. In this regard, PZT has been shown to have both shallow hole traps and deep 

electron traps that can be activated during processing and/or pre-irradiation testing [46], [47], 

[48], [49]. Thus, it is quite possible that the initial negative shift under +1 V irradiation may 

result from the passivation of this small amount of remanent charge by the capture of radiation-

induced carriers [52]. This is followed by a positive shift caused by the buildup of radiation-

induced trapped charge at higher doses. For -1 V irradiation, each of these effects leads to a 

negative shift. From these results, it is clear that (1) biased irradiation leads to both positive and 

negative shifts in resonant frequency in these devices, depending on applied bias during the 

irradiation, and (2) that, at higher doses, the radiation-induced shifts are much larger than the 

potential effects of remanent trapped charge in these pMUT devices.  

Finally, we note that the resonant frequency variation of a piezoelectric resonator is 
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proportional to the vertical electrical field, and can be expressed as [53]: 

                                                  33 311
0 0 3

11

(0) 1
2 2 E

d d
f f E

S

  
= + −  

  

                                                     (3-7) 

Here f0(0) is the resonant frequency at 0 V, S11
E is the elastic compliance under constant electric 

field, d311 is the nonlinear piezoelectric coefficient, and E3 = σ/ε is the vertical electrical field. 

Hence, the resonant frequency is related to σ via: 

                                          33 311 0
0 0 0

11

(0)
(0)

2 2 E

d d f
f f f

S




 
 = − = −   

 
                                         (3-8) 

This shows that changes in resonant frequency are linear with changes in radiation-induced 

charge density. Figure 3.7 summarizes the values of σ inferred for the devices of Figure 3.5. The 

bandwidth is defined as f0/Q. Because both f0 and Q change linearly with σ, radiation induced 

charge trapping does not significantly affect the bandwidth. 

 

 

 

 

Figure 3.6 Defects in sol-gel based PZT material. 

Lead ion vacancies 

Oxygen ion vacancies 

O vacancy complexes 
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Figure 3.7 Surface charge density σ under x ray irradiation. 
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Figure 3.8 (a) Resonant frequency f0 and (b) quality factor Q under different DC biases. 

 

To further investigate the effects of charge trapping and applied voltage on piezoelectric 

MEMS, DC biases ranging from -1 V to 1 V were applied on the top electrodes of unirradiated 

pMUT capacitors. An Agilent 4284A precision LCR meter was used to apply biases and measure 

the impedance of the pMUT. Curve fitting is again used to derive corresponding electrical 
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parameters, and mechanical properties are calculated with the same approach as that illustrated 

above. Figure 3.8 shows the resulting resonant frequency and quality factor variation as a 

function of applied DC bias. 

In terms of voltage, according to Eq. (3-7), the resonant frequency can be expressed as: 

                                          33 311
0 0

11 0 33

(0) 1
2 2 E

d d V
f f

S d d V

  
= + −   

+  

                                           (3-11) 

The DC bias test results of Fig. 8 are consistent with the x ray radiation results, which confirm 

the strong effect of radiation induced charge on resonant frequency and quality factor. 

Figure 3.9 shows a COMSOL simulation model of the pMUT used in the radiation tests. 

Different surface charge densities ranging from 0 to 5×1011/cm2 were simulated on the top 

surface of the PZT layer. The first order resonant frequency was calculated. The mesh size in the 

simulation should be fine enough to obtain the small size deviations. The resulting close 

agreement of the COMSOL simulations and the 0 V bias test results is shown in Figure 3.10, 

confirming the strong effect of accumulated charge on resonant frequency. 

 

 

Figure 3.9 COMSOL model of pMUT with a simulated charge density of 5 x 1011/ cm2. 
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The above results clearly demonstrate that piezoelectric materials with low defect density 

are needed for applications in harsh radiation environments. Recently, it was shown that bulk 

single crystal piezoelectric AlN is able to survive for extended periods in reactor cores [54]. 

Hence, in future work, it would be useful to compare the responses of these PZT devices with 

those of AlN and other types of piezoelectric materials. 
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Figure 3.10 Resonant frequency vs surface charge density. The squares are irradiations under 0 V 

bias. The circles are COMSOL simulations. The curves are aids to the eye. 

 

3.5 Conclusions 

The pMUT resonant frequency and quality factor response to 10 keV X-ray irradiation 

are investigated in this chapter. The impedances of pMUTs under irradiation were measured and 

corresponding equivalent electrical parameters were derived though curve fitting. The 

mechanical resonant frequency and quality factor of pMUTs were derived from equivalent LRC 

circuits. The resonant frequency and quality factor change with the irradiation dose. The worst 

case for TID effects in these pMUTs is positive bias during the radiation. The bias-dependent 

transport and trapping of radiation-induced charge near the electrodes and the resulting changes 

in stress and strain of the PZT are responsible for these changes. These results illustrate the 
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strong dependence of piezoelectric MEMS resonant frequency and quality factor on trapped 

charge buildup, and hence the defect density of piezoelectric materials. In summary, radiation 

effects on piezoelectric MEMS must be considered for applications that need high resolution and 

long-term reliability. 
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CHAPTER IV 

4. RADIATION EFFECTS ON ELETROTHERMAL MEMS 

4.1 Overview and Objectives 

Total-ionizing-dose (TID) effects on Al/SiO2 bimorph electrothermal microscanners are 

investigated using 10-keV X-rays and 14.3 MeV oxygen ions under different bias conditions. 

The corresponding changes in mechanical displacement are measured using an optical 

microscope. Applied DC voltage and/or radiation-induced charging change the stress and strain 

in the materials, resulting in mirror plate shifts and thermal resistance variation, due to the 

interplay between radiation-induced charging and bias-induced heating effects. The radiation 

response of the electrothermal microscanners depends strongly on applied DC voltage, as well as 

bias during irradiation. The results in this chapter were presented at the 2017 IEEE Nuclear and 

Space Radiation Effects Conference and published in the IEEE Trans. Nucl. Sci. [55]. 

 

4.2 Device Structure and Samples Preparing 

Electrothermally actuated MEMS have the potential to simultaneously achieve large 

force and high displacements, which makes them potentially well suited for space actuation 

applications, such as electrothermal valves used in MEMS thrusters for nano- and pico-satellites 

[56] and microswitches [57]. Al/SiO2 bimorph actuators are widely used in electrothermal 

MEMS because of their large differences in coefficients of thermal expansion, desirable 

mechanical properties, and ease of fabrication [58]. Optical MEMS have extensive application 

prospects in space. For example, micromirrors are required for inter-satellite and Earth/satellite 

laser communications and micro-electromechanical louvers for satellite thermal control [59], 

[60]. Microlenses are used to cool the focus panel of visible/infrared imager radiometer suites 

[61]. Microscanners are used as drivers for micromirror/microlens elements. 

An electrothermal bimorph structure consists of a stack of two layers of thin-film 

materials with different coefficients of thermal expansion (CTEs). When this structure is heated, 

the different thermal expansion of the two materials induces mismatch strain, which leads to 

vertical displacement [62]. A SEM image of an electrothermal microscanner is shown in Figure 

4.1(b). The square microlens holder is supported by four groups of electrothermal bimorph 
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actuators symmetrically located on the four sides of the center holder. Each group consists of two 

S-shaped inverted-series-connected (ISC) bimorph actuators, as shown in Figure 4.1(a). The ISC 

bimorph actuator consists of four S-shape bimorph sections attached end-to-end such that both S-

shape sections point in opposite directions, as shown in Figure 4.1(c). An individual S-shape 

section consists of two single bimorph sections attached in series, where one section has a high-

CTE metal (Al) top layer and a low-CTE dielectric (SiO2) bottom layer, and the adjacent section 

has opposite layer composition. This alternating construction of the material layers and the 

double S-shape construction allows each adjacent single bimorph section to have equal and 

opposite curvature upon actuation so that the entire beam deforms with no rotation angle and 

displaces purely in one direction at the tip.  

The design depicted in Figure 4.1 overcomes both holder-plate shift and rotation-axis 

shift problems that exist in single cantilever actuators [63]. The double ISC actuator structure 

amplifies the small strain mismatch between bimorph materials, leading to large lateral shifts of 

the mirror plate. The layer structure parameters of each S-shaped bimorph series are shown in 

Figure 4.1(d). A Pt resistor is embedded between the bottom SiO2 and Al layer and shares the 

same path as the Al beam for thermal uniformity. Each pair of ISC actuators shares a single Pt 

resistor. 

The device is fabricated by a combined surface and bulk micromachining technology in 

the nanoscale research facility at the University of Florida [62]. This microfabrication process 

starts from a bare SOI wafer. First, a 1.2 µm thick layer of PECVD SiO2 (labeled as SiO2-B) is 

deposited and patterned to form the bimorphs that require SiO2 as the bottom layer. For better 

step coverage, the patterning of this SiO2 layer uses wet etching to form an acceptable slope of 

the step. Then, a thin (∼ 0.1 µm) protective layer of SiO2 is deposited, followed by a 0.25 µm 

thick Cr–Pt–Cr sputtering and liftoff. Another thin insulating SiO2 layer (~ 0.1 µm, labeled as 

SiO2-C in Figure 4.1(d)) is deposited and patterned to prevent electrical shorts between Al and Pt 

on the bimorph beams, exposing pad and wiring areas for wire bonding purposes and reducing 

parasitic resistance. After this, a 1.1 µm aluminum liftoff is performed to define the bimorphs 

and the mirror plate. Next, a second SiO2 layer of 1.2 µm (labeled as SiO2-A in Figure 4.1 (d)) is 

deposited and patterned to form the bimorphs that require SiO2 to be the top layer. A back-side 

silicon etch is then performed, followed by the buried SiO2 etching step with RIE to form the 
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cavity under the mirror plate and actuators, leaving a controllable thickness (∼ 40 µm) of silicon 

to support the mirror plate. Finally, a front side silicon etch-through, followed by an isotropic 

undercut, is performed to release the entire microstructure. The presence of the three SiO2 layers 

makes the structure of Figure 4.1 potentially sensitive to ionizing radiation exposure, owing to 

the high probability of radiation-induced charging effects due to charge trapping in insulating 

layers, as well as potential changes in the sensitivity of the structure to DC voltage-induced 

heating, leading to significant strain as a result of differential rates of thermal expansion. 

 

Figure 4.1 (a) Bimorph series and connections. (b) Side View. (c) ISC actuators. (d) Layer 

structures of a microscanner. 

 

(a) 

(b) 

(c) 

SiO2 

Scanner 

Plate 



 

44 
 

4.3 Bias Stress and X ray Irradiation 

The microscanner can function in piston-mode and rotation-mode actuation. Piston-mode 

actuation is achieved by applying equal voltage to all resistors. In piston-mode actuation all 

resistors create an equal temperature change, which results in equal displacement of all actuators, 

and pure downward displacement of the scanner plate. Static rotation measurements were taken 

by applying similar DC voltages to all four actuators and, at the same time, superimposing two 

differentially varying voltages to one opposing actuator pair. Mechanical piston motion 

characterization was performed in air with a Signatone CM210 microscope with 1 μm resolution 

in the z-direction. 

Test voltages of 1 to 6 VDC were applied to all actuators to evaluate piston movements. I-

V curves were measured using an HP 4156 semiconductor parameter analyzer. After each test 

voltage, 15 s was allowed for actuators to reach thermal balance. Then the image was refocused, 

and the z-position reading of the scanner plate was recorded. The anchor plane was set as the 

zero plane. The image was refocused at each voltage and the corresponding z-position reading of 

the scanner plate was recorded. The stressing and measurement process takes ~ 60 s for each data 

point. Data points for multiple locations on the scanner plate were taken to verify piston motion, 

and average results are shown below. Typical variations in measurements are less than ± 10%. 

Figure 4.2 shows COMSOL finite element simulations of resistance temperature increases during 

a typical DC biasing sequence [64]. The maximum increase during testing is 230 K, which 

occurs when actuators are biased at 6 V.  

     To characterize the radiation response, electrothermal microscanners were irradiated 

at room temperature with 10-keV x-rays or 14.3 MeV oxygen ions with top electrode bias of 0 or 

+1 V and other terminals grounded at a dose rate of 31.5 krad(SiO2)/min. We measured z-

position vs. voltage at each dose using a procedure similar to that illustrated above. The 

displacement of the plane of the scanner plate at each test voltage is derived from the z-position 

curve. More than three microscanners were evaluated for each bias condition, with similar 

results. Typical results are shown below. 
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Figure 4.2 Micro-scanner resistor temperature increases as a function of applied DC voltage as 

determined by COMSOL simulation. 

 

4.4 X Ray and Bias Test Results 

To evaluate the stability of the structure, first all Pt resistors were grounded, and the z-

position and resistance were monitored every two hours. No variations were found after 24 h of 

room temperature storage. The effects of repeated voltage cycling were then evaluated. Figure 

4.3 shows the z-position and Pt resistance vs. test voltage before and after 2 hours of continuous 

I-V sweeping from 0 V to 6 V at a rate of ~ 4.5 V/s. As the scanner plate moves downward due 

to heating-induced strain and the resulting material-dependent differences in rates of thermal 

expansion during each cycle, the length of the Pt resistor increases, and the cross-sectional area 

decreases, leading to an increase of the resistance. These results show that cyclical, ramped 

voltage sweeps do not cause permanent changes in device response. 

 

 

 

 

 

 

 



 

46 
 

-1 0 1 2 3 4 5 6 7 8 9

600

800

1000

1200

1400

1600

1800

2000

R
e

s
is

ta
n

c
e
 (


)

Voltage (V)

 Pretest Resistance

 After 2 hours IV Sweeping Resistance
-125

-100

-75

-50

-25

0

25

50

75

100

125
 Pretest Position

 After 2 hours IV Sweeping Position

P
o

s
it
io

n
 (

m
m

)

 

Figure 4.3 Characterization of micro-scanners after cycling 2025 times: (left y axis) 

displacement position as a function of sweep voltage, and (right y axis) resistance as function of 

sweep voltage. The I-V sweep rate is ~ 4.5 V/s. 

 

Figure 4.4 shows the z-position and resistance variation after DC bias of 7 V, 1 V, or -1 

V was applied to all top electrodes (connected to Pt resistors) for bias times of 5 to 900 minutes. 

The maximum temperature increases during stress is ~ 275 K for the long-term 7 V stress 

(Figure 4.2). These measurements were performed after removal of DC bias, with 0 V applied to 

the top electrodes, after the device was allowed to equilibrate to room temperature. The 

resistance increases by ~ 15% during the 900 minutes stressing period, and the z-position drops 

by ~ 25%. In contrast to the results of Figures 4.2 and 4.3, in which the resistance and z-position 

changed reversibly with cycling, these changes were stable for times of at least several hours, in 

the absence of reapplication of bias. Hence, these micro-scanners can exhibit two kinds of 

voltage-induced changes: (1) reversible changes in resistance and z-position with application of 

bias for short periods of time (Figure 4.3), and (2) relatively stable, long lasting changes in 

equilibrium position that can result from the application of DC bias for long periods of time 

(Figure 4.4). 
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Figure 4.4 Change in (a) Pt resistance and (b) displacement (z-position) as a function of DC 

stress time. These measurements were performed after removal of DC bias, with 0 V applied to 

the top electrodes, after the device was allowed to equilibrate to room temperature. 

 

Figure 4.5 shows the z-position and resistance variation after devices were irradiated with 

10-keV X-rays to doses up to 2 Mrad(SiO2). For grounded bias irradiation at the highest doses, 

the resistance increases by ~ 10% and the z-position decreases by 25%. For devices irradiated 

with 1 V on the top electrodes, the resistance and z-position are nearly unchanged, with 

(a) 

(b) 
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responses indistinguishable from those of control devices. Changes in responses of irradiated 

devices were stable for at least several hours, in the absence of application of bias. Hence, 

radiation-induced charges induce long term changes in the equilibrium position and resistance of 

the microscanner. Post-irradiation charge densities are evidently approximately balanced for 1 V 

bias irradiation (no net displacement), but not grounded bias irradiation (net downward 

displacement). 

 Because these changes are similar in magnitude and direction to those caused by the 

application of 7 V DC bias voltage for long times in Figure 4.4, these results suggest that longer-

term changes due to the application of DC stress may also be due to dielectric charging, as 

opposed to other potential factors, e.g., mechanical slip, or other inelastic relaxation processes. 

Note also in Figure 4.5 that irradiation under grounded bias leads to significant changes in 

microscanner equilibrium position, but irradiation with 1 V bias does not. 

Figure 4.6 shows the responses of irradiated microscanners to test voltages of 1 to 6 VDC, 

applied to all actuators, after devices were irradiated with (a) all electrodes grounded, or (b) 1 V 

bias on the top electrodes. The microscanner still performed successfully after irradiation. 

Applying DC voltage to devices irradiated with all electrodes grounded (Figure 6(a)) leads to 

upward displacement of the irradiated device, and a return to a position close to original 

equilibrium values. Applying DC voltage to devices irradiated with 1 V bias (Figure (6b)) leads 

to displacement above initial equilibrium values. 

 Taken together, the results of Figures 4.5 and 4.6 suggest that both positive and negative 

charge can be trapped in device dielectric layers or on their surfaces. The results of Fig. 6 are 

analogous to (a) post-irradiation recovery or (b) “super-recovery/rebound” often observed for 

irradiated MOS devices with relatively thick SiO2 gate dielectric layers. Such recovery or super-

recovery is typically caused by annealing of trapped positive charge in SiO2, in conjunction with 

stable or increasing negative charge densities in interface (surface) traps [65], [66], [67], [68]. 
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Figure 4.5 Change in (a) Pt resistance and (b) displacement (z-position) as a function of dose. 

Devices were irradiated with 10-keV X-rays at a dose rate of 31.5 krad(SiO2)/min with top 

electrode bias of 0 V or +1 V and other terminals grounded. Measurements were performed after 

removal of DC bias, with 0 V applied to the top electrodes. Error bars represent the ranges of 

responses for two different devices. Control devices were unirradiated and not bias stressed. 
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Figure 4.6 Relative changes in Pt resistance and displacement (z-position) of the microscanners 

of Figure 4.5 as functions of dose and post-irradiation DC bias. Devices in (a) were irradiated 

with all electrodes grounded. Devices in (b) were irradiated with top electrode bias of +1 V and 

other terminals grounded. 

 

(a) 

(b) 



 

51 
 

4.5 Oxygen Ion Irradiation Experiments 

To evaluate potential heavy ion effects, a microscanner was irradiated with 14.3 MeV 

oxygen ions to a fluence of 5.6×1013/cm2, using the Vanderbilt Pelletron [69]. Results are shown 

in Fig. 7. The electrodes were all grounded during irradiation. The two curves in Fig. 7 represent 

the changes in z-position and resistance with different test voltages after irradiation. Results are 

qualitatively consistent with those observed following X-ray irradiation with all pins grounded. 

The resistance increases, the z-position decreases, and the application of post-irradiation DC 

voltage leads to recovery of the device toward its original position and resistance. 

When oxygen ions interact with the microscanner, they transfer energy to materials via 

TID and displacement damage effects [3], [68], [19], [70], each of which may potentially affect 

the positioning of the microscanner. Ion irradiation can create new defects in either the large-area 

SiO2 scanner plate at the top of the structure, or in the multiple oxide layers of the bimorph 

structures that support the scanner plate, potentially leading to increased oxide charging. 

Displacement damage can generate physical defects in microscanner materials. In this regard, 

Figure 4.8 shows the results of SRIM simulations [71] of ionizing energy loss in one of the 

bimorph cantilever structures. Most of the 14.3 MeV oxygen ions penetrate the top layers of the 

structure without creating defects. Hence, more than 99% of the energy loss in the top layers of 

the bimorph cantilever is due to ionizing radiation. Significant displacement damage is likely in 

the SiO2 layer that underlies the Pt layer. However, the equivalent ionizing dose during the 

oxygen ion irradiation is more than 40 Grad(SiO2), which is much higher than doses for X-ray 

irradiations. In Fig. 4.7, though, the observed z-position and resistance variations are similar to 

those produced by X-ray irradiation at ~ Mrad(SiO2) doses. This similarity in responses suggests 

that (1) TID effects dominate the irradiation process in each case, consistent with results for 

other types of MEMS devices [3], [19], [70], [11], and (2) TID effects saturate at doses less than 

or on the order of 1 Mrad(SiO2) under these bias conditions (all pins grounded). The observed 

saturation of the TID response is likely due to the high rate of electron-hole recombination that 

occurs when oxides are irradiated with 0 V applied bias [68], [72], which is the realistic steady-

state condition for these devices in a potential space application. 
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Figure 4.7 Relative changes in Pt resistance and displacement (z-position) as a function of post-

irradiation DC bias for microscanners irradiated with 14.3-MeV oxygen ions at a flux of 

~7×1012/cm2/h to a fluence of 5.6×1013/cm2. Devices were irradiated with all electrodes 

grounded. 

 

 

Figure 4.8 SRIM simulation results of ionizing energy loss in the microscanner bimorph 

structure of Figure 4.1. 
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4.6 Discussion 

The structure in Figure 4.1 includes a number of dielectric layers and surfaces, some of 

which are in contact with other materials which may be grounded or biased, and others that are 

floating. These dielectric layers are deposited using CVD methods that are not optimized for 

electrical response; instead, mechanical performance and stability are the primary considerations. 

This makes it challenging to assess the potential effects of radiation- and/or bias induced 

charging on the positioning and resistance of the structure. Nevertheless, with plausible 

assumptions, some first-order estimates of potential effects can be made.  

 

4.6.1 Scanner Plate Charging 

We first consider the potential effects of charging of the 600 μm x 600 μm SiO2 scanner 

plate, which is initially at equilibrium, supported by the four bimorph structures. For simplicity, 

the scanner plate and ground plane can be modeled as a parallel plate capacitor. The net 

radiation-induced trapped charge on the scanner plate, projected to its lower surface, induces an 

equal and opposite charge on the top surface of the ground plane. Elementary electrostatics 

suggests that the resulting downward (attractive) force F on the scanner plate that results from 

the resulting charge densities is approximately： 

                                                               

2 2

02

spq N A
F


=                                                                 (4-1) 

Here q is the magnitude of the electron charge, Nsp is the net radiation-induced areal charge 

density on the scanner plate as projected to the lower surface, A is the scanner plate area, and εo 

is the permittivity of free space. If we assume a value for Nsp that is near the lower end of 

anticipated radiation-induced charge densities, e.g., 5 x 1010/cm2, then F ≈ 130 μN. 

We now consider whether a force of ~ 130 μN is sufficient to move the scanner plate. 

The spring constant of the Al/SiO2 bimorph cantilever may be estimated via [43]: 

                                                            
3

34
cantilever

EWH
k

L
=                                                            (4-2) 

Here E is the elastic modulus of the cantilever (70 GPa [73]), W is its width (10 µm), H is its 

thickness (2 µm), and L is its length (300 µm). Four cantilevers are connected in series to form 
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the double ISC structure, and 8 double ISC structures support the scanner plate (Figure 4.1). 

Hence, the combined spring constant of the full structure is [74]: 

                                             8 2 0.1 /
4

cantilever
cantilever

k
k k N m=  =                                            (4-3) 

 The maximum displacement variation of the scanner plate during irradiation is ~ 30 μm 

from its equilibrium position. The force required to move the microscanner Fd corresponding to 

30 μm displacement is therefore: 

                                                            3dF k d Nm=                                                               (4-4) 

Although the above models include a number of simplifying assumptions, the results show at 

least qualitatively that scanner plate charging is a plausible mechanism for the observed 

radiation-induced changes in z-position and resistance. 

 

4.6.2 Bimorph Cantilever Charging 

In addition to scanner plate charging, bimorph cantilever beam structures (Figure 4.1) 

almost certainly contribute to radiation-induced changes in resistance and z-position of the 

microscanner. Figure 4.9 shows COMSOL simulation results for the bimorph cantilever. In 

Figure 4.9(a), the simulated surface charge density in the SiO2 layer that overlies the cantilever 

beam is chosen to be at the upper end of the range of anticipated radiation-induced positive 

charge densities, 1×1012/cm2, for purposes of illustration. The resulting electrostatic force bends 

the beam upward. This direction is opposite to that observed in irradiation or DC voltage-

stressing experiments. 

On the other hand, if there is a negative surface charge density on the SiO2 layer in the 

beam of 1×1012/cm2, the electrostatic force bends the beam downward, as shown in Figure 4.9(b). 

This movement is similar to that caused by X-ray irradiation under grounded bias conditions 

(Figures 5 and 7) or as a result of the application of 7 V DC bias stress (Figure 4). These results 

imply that trapping of electrons, e.g., in surface states, may contribute to the observed changes in 

resistance and z-position [75], [76]. Alternatively, trapping of positive charge in these oxide 

layers can oppose the forces of attraction created by charge trapping in the scanner plate. More 

work is required to determine the relative roles of these effects. 
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Figure 4.9 COMSOL simulation results of (a) upward and (b) downward displacements caused 

by (a) positive and (b) negative charge trapping in two s-shape electrothermal actuators that 

comprise the bimorph cantilever. (c) Disturbance in microscanner piston motion caused by 

charge accumulation in the elbow parts. 

 

Figure 4.9(c) shows the results of simulating radiation-induced electrostatic force effects 
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on the elbow parts of the actuator (Figure 4.1). Again, the simulated surface charge density on 

the SiO2 is 1×1012/cm2. The electrostatic force is larger in this case than for the anchor portion 

because of the short distances between the upper and lower portions of the elbow. In this case the 

electrostatic force causes the two adjacent parts to repel each other. The repulsion causes the 

scanner plate to both move upward and to exhibit a small tilt, as illustrated in Figure 9(c). Hence, 

there are not only changes in vertical position, but the microscanner can be rotated, leading to the 

possibility of signal distortion in device application [74]. 

We emphasize that, despite the observed changes in z-position and resistance caused by 

irradiation or bias-induced charging effects described here, the microscanners remained 

completely functional and controllable through the full series of tests performed in this study. 

This suggests that a suitable, sensor-based feedback and control system can be developed and 

applied to adjust biasing voltages to compensate for radiation or dielectric charging induced 

changes in resistance and z-position, much in the way that equilibrium was restored via the 

application of DC bias in Figure 6(a). 

Finally, given that both the scanner plate and the bimorph cantilever beam structures 

contain a number of insulating layers, spacecraft charging is likely to also be a significant issue 

for the potential use of such structures in spacecraft systems [77]. This is an additional factor that 

must be considered before using such structures in the space environment. 

 

4.7 Conclusions 

Responses of Al/SiO2 bimorph electrothermal microscanners to 10 keV X ray and 14.3 

MeV oxygen ion irradiation have been investigated. Results demonstrate the dependence of 

microscanner displacement on total ionizing dose and/or applied-voltage induced charge trapping 

in dielectric layers. The resulting electrostatic forces lead to changes in resistance, position, and 

orientation of the microscanner. These results emphasize that radiation effects on electrothermal 

MEMS with dielectric layers can be both significant and complex and must be considered and 

mitigated for potential space applications that require high resolution and long-term reliability. 
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CHAPTER V 

5. MONTE CARLO SIMULATION OF RADIATION EFFECTS ON GRAPHENE 

5.1 Overview and Objectives 

Graphene is a single atomic layer of an allotrope of carbon in the form of very tightly 

bonded carbon atoms organized into a hexagonal lattice [78]. It is the basic structural element of 

graphite, charcoal, carbon nanotubes and other allotropes. Graphene has attracted widespread 

interest due to its exceptional electrical, mechanical and optical properties. Carbon atoms in 

graphene can be substituted by doping, which fundamentally changes the electrical properties of 

the graphene, enabling its semiconducting capability and a wide range of applications [79]. 

Potential applications of graphene mechanical properties include flexible electronics [80], 

nanomechanical resonators [81] and DNA sequencing [82].  

The graphene properties are very sensitive to atomic scale defects [83], [84]. For example, 

decreases in electron mobility [85] or drop in mechanical characteristics [86] have been reported 

with an increase in defect concentration. However, defects can be useful in some applications, as 

they make it possible to tailor the local properties of graphene and to achieve new functionalities. 

Defects can be deliberately introduced into graphene, for example, by irradiation or chemical 

treatments [87]. On the other hand, inadvertently introduced defects can severely deteriorate the 

useful properties of graphene in hostile radiation environments, such as outer space. Hence, for 

the proper use of graphene-based devices, it is important to control defect density and understand 

the effect on device operation. 

Various ions with energies range from keV to MeV have been used to introduce defects 

in graphene. Compagini et al. demonstrated 500 keV C+ interaction with graphene [88]. Mathew 

et al. investigated 2 MeV proton irradiation effects in graphene [89]. Kumar et al. showed the 

defects in graphene introduced by 100 MeV Ag7+ ion irradiation [90].  

  Molecular dynamics combined with the analytical potential and density functional theory 

methods are utilized to simulate impacts of energetic ions onto suspended graphene [91]. 

However, the molecular dynamics simulations should be long enough to be relevant to the time 

scales of the collision processes being studied. Several CPU-days to CPU-years are needed for 

one simulation. It is time-consuming and costly to investigate various ions with different energy 
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irradiation effects on graphene. SRIM, a Monte Carlo computer code to calculate how a moving 

ion transfers its energy to the target atoms in bulk materials, may not directly be applicable to 

two dimensional (2D) systems; the sample is treated as an amorphous matrix with a 

homogeneous mass density in SRIM while the explicit account for the atomic structure is very 

important in assessing the effects of irradiation on graphene. 

In this chapter, the objectives include: (1) Investigate ions bombardment on graphene, (2) 

New Monte Carlo method programming. (3) Monte Carlo calculation for multilayer graphene 

and other 2D materials.  

 

5.2 Different Types of Defects in Graphene  

The simplest defect in any material is one missing lattice atom. Single vacancies in 

graphene as shown in Figure 5.1 (a) have been experimentally observed by TEM [92]. Double 

vacancies can be created either by the coalescence of two single vacancies or by removing two 

neighboring atoms. The removal of more than two atoms may be expected to result in larger and 

more complex defect configurations as Figure 5.1 (b) shows. The interstitials shown in Figure 

5.1 (c) refers to a disorder of carbon in the plane of the graphene. Two or more carbon atoms 

may share one lattice site. Substitution indicated in Figure 5.1 (d) appears when a carbon atom is 

replaced by the incident ion. 

The proposed Monte Carlo approach is described in detail in this section. First, different 

defect types generated under energetic ion irradiation and binary collision model are described. 

Then the impact parameter is calculated according to the atomic structure of graphene. 

Furthermore, the defect yield in graphene depends strongly on the scattering angle of the incident 

energetic ions. Cascade collisions in graphene plane are taken into account in small angle 

scattering.  
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Figure 5.1 Defect patterns in graphene: (a) single vacancy; (b) multiple vacancies; (c) 

interstitials; (d) substitution. 

 

 

5.3 Binary Collision Model  

As illustrated in Figure 5.2, the simulation system consists of incident ions and a 

monolayer graphene sheet. Ions (yellow) perpendicularly bombard the graphene sheet. Normally, 

the incident ion beam size is assumed to be larger than the size of the graphene sheet so that the 

incident ions are uniformly distributed over surface of the graphene. Each carbon atom position 

in the graphene sheet is identical, so, the irradiation damage can be derived from the results of 

binary collisions between one ion and one carbon atom.   

 

(a) (b) 

(c) (d) 
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Figure 5.2 Energetic ions bombardment on graphene sheet. 

 

Atomistic simulation models based on the binary collision approximation (BCA) are 

much faster than MD models. The BCA is a high-energy approximation, especially appropriate 

when high-energy encounters dominate the phenomena being studied. At low energies, where 

recoil trajectories are less easily represented in terms of discrete collisions, the BCA becomes 

less useful. On the other hand, relativistic effects should be taken into account at ultra-high 

energy. In general, the BCA approximation should be appropriate for ion energies in the range of 

~ 100 keV to ~ 100 MeV [93]. 

Figure 5.3 shows an elastic collision between a projectile atom (yellow) of mass m1, 

charge q1 and initial kinetic energy E, and an initially stationary carbon atom (gray) of mass m2 

and charge q2. The impact parameter b shown in the figure is defined as the perpendicular 

distance between the path of a projectile and the center of a potential field created by a carbon 

atom that the projectile is approaching. The collision of an electron or ion with a carbon nucleus 

can be treated by using a simple Coulomb potential since the screening effect of the surrounding 

electrons can be neglected [94].  
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Figure 5.3 Classical elastic scattering. 

 

The scattering angle of the projectile θ, the scattering angle ϕ of carbon atom and the 

kinetic energy E1 of carbon atom after collision can be derived using the following formula [94]: 

                                                    1 2 1 cos

2 1 cos

k q q
b
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                                                          (5-1) 
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 = −                                                                         (5-2) 
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m m
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+
                                                             (5-3) 

in which k is Coulomb's constant. 

   The minimum energy transferred to the atom required to produce a vacancy-interstitial 

(Frenkel) pair that does not spontaneously recombine is called the displacement energy Ed. In 

graphene, the displacement energy of a carbon atom is 22 eV [95]. A Frenkel pair is created in 

the collision process if E1 > Ed. 



 

62 
 

5.4 Atomic Structure and Impact Parameter  

Impact parameter is a very important factor, affecting not only the scattering angle, but 

also the scattering energy. The atomic structure of graphene must be taken into account in 

determining the impact parameter. In graphene, each carbon atom is densely packed in a regular 

atomic-scale hexagonal pattern. The atoms are about 1.42 Å apart. Each carbon atom in the 

graphene plane is identical. 

 

Figure 5.4 Impact parameter distribution. 

The impact parameter distribution depends on the relative position of the incident ion to 

the target carbon atom. The carbon atom collision probability relies on the area it occupies 

(sensitive area) on the graphene plane since the incident ions are uniformly distributed in space. 

The impact parameter does not have a fixed value, but is described by a statistical distribution. 

This distribution depends on the relative position of the incident ion to the target carbon atom. 

Besides, the carbon atom collision probability relies on the area it occupies (sensitive area) on 

the graphene plane since the incident ions are uniformly distributed in space. For a target atom in 

graphene, an equilateral triangle sensitive area shown in Figure 5.4, with the target carbon 

nucleus in its center, is formed by connecting the centers of three adjacent hexagonal cells which 

share the target carbon atom. The incident ions that fall into this equilateral triangle area will 

make elastic collisions with the target carbon nuclei. Each target carbon atom in the graphene 
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sheet has the same equilateral triangle sensitive area. The impact parameter’s distribution can be 

derived from incident ions’ distribution in the sensitive area. 

As Figure 5.5 shows, the target carbon nucleus located in the center of the equilateral 

triangle with coordinates (0, L/2). L is the length of the C-C bond in graphene. The incident ions 

distribute uniformly in the equilateral triangle area. The horizontal coordinate of the incident ion 

is an equally distributed random variable between points A point and B. The vertical coordinate 

of the incident ion is also an equally distributed random variable and its equally distributed range 

can be derived by its corresponding horizontal coordinate. The incident ions coordinates can be 

expressed as: 

x = 𝑟𝑎𝑛𝑑𝑜𝑚 (−
√3

2
𝐿,

√3

2
𝐿)   

𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 𝑡𝑎𝑛
𝜋

3
× (

√3

2
𝐿 − |𝑥|)) 

With these coordinates, the distribution of impact parameter b can be obtained by using the 

distance formula.  

 

Figure 5.5  Impact parameter calculation. 
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Another random variable that needs to be considered is the incident ions’ kinetic energy. 

Normally, the incident ions come out from a particle accelerator and the kinetic energy E follows 

a normal distribution. The distribution of E can be expressed as: 

                                                     ( )
( )

2

0

22
1

=
2

E E

f E e 

 

−
−

                                                   (5-4) 

in which E0 is the user preset ion kinetic energy, σ is the standard deviation which determined by 

the accelerator.  

The Monte Carlo approach is based on the above discussion. First, the kinetic energy and 

impact parameter of one incident ion are sampled according to their distribution. Then, the 

scattering angle of the projectile θ, the scattering angle ϕ of carbon atom and the kinetic energy 

E1 of carbon atom after collision are calculated using formula (5-1) to (5-3). The whole process 

is repeated N times since collision results of one incident ion cannot reflect the randomness and 

statistical features in the collision process. At last, the carbon atoms movements after collision 

are analyzed based on the statistical results of the Monte Carlo simulation.  

The Monte Carlo simulation flowchart is shown in Figure 5.6. We use N = 106 in this 

chapter. The program simulates 106 ions incident onto one target carbon atom in graphene one by 

one. A complete execution of the proposed Monte Carlo simulation (written with MATLAB 

code; see appendix) on Intel i5-4670 and Windows 10 Pro takes less than 1 min.  
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Figure 5.6 Monte Carlo simulation flowchart. 

 

5.5 Small Angle Scattering and in Plane Cascade Collision.  

The carbon atom’s movements after collision and defect generation strongly depend on 

its scattering angle. The scattering angle of the incident ion is inversely proportional to E and b 

according to formula (5-1). Hence the scattering angle of incident ions with high energy E is 

usually small (0.1-10˚) and the scattering angle of the corresponding target carbon atom is close 

to 90˚. That means the incident ion “passes through” the graphene sheet without changing its 

direction while the impacted carbon atom continues to move in the graphene plane.  
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Figure 5.7 The collision between high energy incident ion and target carbon nucleus and their 

movements after collision. 

The collision between a high energy incident ion and target carbon nucleus and their 

movements after collision are described in Figure 5.7. Figure 5.7(a) shows an ion bombardment 

perpendicular to the graphene sheet. When the ion approaches the graphene sheet, the 

corresponding target carbon atom gains kinetic energy E1 through the elastic collision and moves 

aside from its original position to allow the ion pass through, as shown in Figure 7(b). When E1 

is less than the displacement threshold, the carbon target atom oscillates in the graphene plane 

(a) (b) 

(c) (d) 
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around its original position, and finally returns to its original place as Figure 5.7(d) shows. When 

E1 is larger than the displacement energy, the target carbon atom is knocked out from its original 

position and a single vacancy and interstitial defects are created in the collision process. The 

knocked out energetic target carbon atom continues to move in the graphene plane and make 

cascade collisions with other carbon atoms in the graphene sheet as Figure 5.7(c) shows. 

Multiple Frenkel pairs (Multiple vacancies and interstitials defects) are created in this cascade 

collision process. 

There are many physical models of calculating the cascade collision damage generated by 

primary knock-on atom (PKA). Kinchin and Pease estimate the number of Frenkel pairs 

generated by a PKA with energy T [94]: 

                                            Nd = 0                        if  T < Ed 

                                           Nd = 1                        if  Ed ≤ T ≤ 2Ed 

                                          Nd = T/2Ed                 if  2Ed ≤ T ≤ Ea 

                                                              Nd = Ea/2Ed                if T > Ea 

At energy Ea (~ keV, we use Ea = 5 keV in the Monte Carlo simulation for simplicity), most 

energy is lost by transfer to electrons. Below Ea, the recoils lose energy entirely by hard-core 

elastic scattering. Hence, the knocked-out target atom in graphene can be treated as a PKA with 

energy E1 – Ed and the number of Frenkel pairs generated by this PKA is (E1 – Ed) /2Ed when (E1 

– Ed) < 5 keV. 

When E is larger than 1 MeV, most of the scattering angles ϕ are close to 90˚. The 

defects in the graphene sheet are generated by primary ion collisions and the subsequent carbon 

atom’s cascade collisions in the graphene plane.  
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Figure 5.8 The distribution of carbon scattering angle ϕ after collisions with 3 MeV, 500 keV 

and 50 keV He+ ions.  

Figure 5.8 shows the distribution of carbon scattering angle ϕ after collisions with 3 MeV, 

500 keV and 50 keV He+ ions calculated by the proposed Monte Carlo approach. 106 He+ ions 

impinge on the target carbon atom in graphene one by one, and the scattering energy E1 and 

angle ϕ after collisions are recorded. Most scattering angles are very close to 90˚ and almost no 

energy is lost by transfer to electrons in the collision when E is 3 MeV. When E is smaller than 1 

MeV but larger than 500 keV, a small portion of the scattering angle ϕ deviates from 90˚ and 

energy transferred to electrons in the collision is small. For example, the 500 keV He+ (green) 

histogram in Figure 5.8 shows this trend. The cascade collision in the graphene plane still 

dominates the carbon atoms movements after the collision. The defects in the graphene sheet can 

be calculated by adding the Frenkel pairs generated in the primary ion collision and following 

the carbon atom’s cascade collisions in the graphene plane.  

  As the energy E decreases from hundreds to tens of keV, more and more impacted carbon 

atoms are displaced from the graphene plane. The cascade collisions are not limited in the 

graphene plane. For example, the blue circles (50 keV He+ bombardment) in Figure 5.8 show 

50 keV 500 keV 3 MeV 
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this situation. Since the number of cascade collisions that happen before the knocked-out carbon 

atoms leave the graphene plane is unknown, the defect generation in the collision process is 

difficult to evaluate. But the proposed Monte Carlo approach can be used to estimate the upper 

bound and lower bound of the defect numbers in the graphene. First, we assume that there are no 

carbon atom cascade collisions in the graphene plane. The defects are only created by primary 

collision of incident ions. This is the lower bound of the number of defects. Then we suppose 

that all the knocked-out atoms move in the graphene plane. The defects are created by the 

primary collision of incident ions and the following carbon atoms cascade collisions. This is the 

upper bound of the number of defects.  

 

5.5 Simulation Results of C Ions with Different Energy 

The proposed Monte Carlo simulation is used to investigate different ion irradiation 

effects on graphene sheets. First, we explore the influence of incident ion energy E on defect 

generation in a graphene sheet. Then, different types of ions with the same energy are used to 

explore the effects of incident ion nuclei mass and charge. After that, published irradiation 

results are evaluated using the Monte Carlo simulation.  

Carbon ions with different incident energies have been widely used for introducing 

defects to graphene. In this section, 6 MeV, 3 MeV and 1 MeV C ions irradiation effects are 

studied and dependence of defect generation on incident ion energy is revealed by Monte Carlo 

simulation. Defect yield (defects generated by one ion) can be obtained by Frenkel pairs / N. The 

number of single vacancy and multiple vacancies depend on the target carbon atoms scattering 

energy E1. If Ed < E1 <3Ed, one single vacancy is created by the PKA collision. If E1 > 3Ed, 

multiple vacancies are created by the PKA collision and cascade collisions in the graphene plane. 

The yield can be obtained by dividing the number of single vacancy and multiple vacancies by N. 

For each incident energy, we run 10 Monte Carlo simulations and the results are shown in Figure 

5.9.  
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Figure 5.9 The distribution of (a) defect yield, (b) single vacancy yield and (c) multiple 

vacancies yield in graphene sheet after collisions with 6 MeV, 3 MeV and 1 MeV C ions.  

 

(c) 
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Figure 5.10 The relationship between (a) defect yield (DY), (b) single vacancy yield (SY) and (c) 

multiple vacancies yield (MY) and incident energy.  

 

The simulated defect yield is very close to the published defect yield test results of C ion 

bombardments on SiO2-supported graphene [96]. Since the number of sputtered ions from the 

SiO2 surface is 0 (calculated by SRIM), the substrate should have little effect on defect 

generation in the graphene. Figure 5.10 shows that the defect yield, single vacancy yield and 

multiple vacancies yield decrease as the incident energy increase. These three curves have the 

same trends. These results can be explained by considering the impact parameter distribution. 

(a) 

(b) 

(c) 
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From formula (5-1) and (5-3), we can get the relationship between impact parameter b 

and the incident energy E, target carbon atom scattering energy E1: 
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As Figure 5.11 shows, the impact parameter distributes uniformly inside the red equilateral 

triangle. We suppose b = b1 when E1 = 3Ed and b = b2 when E1 = Ed and b1, b2 are in the 

equilateral for high incident energy E. The probability of scattering target carbon atoms with 

energy Ed < E1 < 3Ed is: 
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in which C is a constant. This probability is equal to the single vacancy yield. Similarly, the 

multiple vacancies yield can be expressed as: 
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From formula (5-5) and (5-6), we can get two important conclusions: 

1. The defect yield, single vacancy yield and multiple vacancies yield are inversely proportional 

to the ion incident energy. 

2. The single vacancy yield = 2 × multiple vacancies yield. 

As the incident energy E increases, the b1 and b2 decrease and the area outside the green ring 

increase. That means the probability P (E1 < Ed) increases. Hence the phonon yield in the 

collision process increases.  

Production of defects in graphene under ion irradiation with different incident energy has 

been simulated by the analytical potential molecular dynamics [97]. The reported defect yield, 

single vacancy yield, double vacancies yield decreases as the incident energy increase within the 

high energy range, which shows good agreement with our analysis results.  
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Figure 5.11 The relationship between impact parameter and energy 

 

5.6 Simulation results of Various Ions with 1 MeV Incident Energy 

The incident ion’s mass m1 and nuclear charge q1 play important roles in defect 

calculations. From formulas (5-5) and (5-6), the defect yield, single vacancy and multiple 

vacancies yield should increase with increasing atomic number. 1 MeV He, Ar and Xe ions are 

used to present this trend. For each incident energy, we run 10 Monte Carlo simulations and the 

results are shown in Table 5.1 and Figure 5.12.  
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Figure 5.12 The distribution of (a) defect yield, (b) single vacancy yield and (c) multiple 

vacancies yield after collisions with 1 MeV Xe, Ar and He ions.  

 

Table 5.1 The Monte Carlo Simulation Results (/ion):                   

Ion 
Monte Carlo 

Defect Yield 

Single Vacancy 

Yield 

Multiple 

Vacancies Yield 

Molecular Simulation 

Defect Yield [98]  

Xe 0.427 0.00965 0.00428 0.32 

Ar 0.105 0.00222 0.001 0.07 

He 0.00128 2.46×10-5 1.3×10-5 <0.02 

 

The Monte Carlo simulation results are compared with the published molecular dynamic 

simulation results in table 5.1. The molecular dynamic simulation cannot give the defect yield of 

(c) 
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He+ ions, since it only includes one ion with 1500 independent simulations and cannot give 

reliable results of low probability events.  

 

5.7 Comparison with Experimental Irradiation Results  

The defect yield in the graphene irradiation experiments can be directly extracted from 

the ID/IG ratio in Raman spectra at low defect density (less than 3.2×1011/cm2), avoiding the 

defect coalescence effect. The defect density nD can be expressed as [99], [100]: 

                                             ( )
( ) 22
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1.8 0.5 10
D

D

L G

I
n cm

I

−
   

=  
 

                                                   (5-7) 

In which λL is the laser excitation wavelength expressed in nm. The defect yield is equal to the 

defect density divided by the corresponding ion fluence. We use (1.8+0.5) in formula (5-7) to 

estimate the maximum defect yield. 

   Table 5.2 includes experimental data adapted from published work. These experimental defect 

yields are calculated from the low ID/IG (low fluence) results in Raman spectra. 

 

Table 5.2 The Monte Carlo simulation and irradiation experiments results:          

          

 

 

 

 

 

 

 

Ion Energy 
Mote Carlo Calculation 

Results 
Experimental Results 

C 500 keV 0.033/ion 0.032/ion [88] 

He 3.04 MeV 3.6×10-4/ion 2.6×10-4/ion [101] 

He 3 MeV 3.51×10-4/ion 2.3×10-4/ion [39] 

Ag 100 MeV 3.5×10-3/ion 2.3×10-3/ion [90] 

H 2 MeV 2.67×10-5/ion 1.43×10-5/ion [89] 
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The simulation results in Table 5.2 are the average of 10 independent Monte Carlo 

simulation results. For small defect yield, like 2 MeV H ions, N = 107 is used in the program to 

improve the precision of the simulation results.  

The Monte Carlo simulation results are slightly larger than the experimental results. This 

is because we assume that all the scattered target carbon atoms collide with other carbon atoms 

in the graphene plane. A small percentage of carbon atoms with larger scattering angle leave the 

graphene plane after several collisions. On the other hand, the defect yield in experiments is by 

nature a random variable with its own distribution. The proposed Monte Carlo simulation can 

simulate this random process and give a satisfactory approximation of the experimental results in 

a short time. 

In the Monte Carlo simulations, every ion is calculated with the assumption of no damage 

in the graphene. For example, the graphene is perfect and previous ions have no effect on 

subsequent ions. This assumption is rational when the defect density in the graphene is low. For 

instance, when the vacancy density in graphene increases, the average distance between two 

carbon atoms in the graphene increases. Hence the area of the red equilateral triangle shown in 

figure 11 increases. But the area of green rings is maintained constant. That means the 

probability P (E1 > Ed) decreases and the defect yield is lower than what we get from the Monte 

Carlo simulation. It also means that the defect yield under irradiation decreases as the vacancy 

density in graphene increases. 

The above discussion focuses on displacement damage defects in a beam environment. 

The space environment has ions and particles that are omnidirectional, as opposed to a beam 

environment where it is primarily the rare right-angle scattering events that lead to defects. This 

also involves: (1) knowledge of the relevant radiation environment (particle flux, energy, angular 

distribution, etc.), (2) translation of the external environment into the internal environment via 

the transport of the incident radiation through any materials or structures that surround the 

sensitive materials, and (3) energy deposition in the electronic materials by the impinging 

radiation [102]. These are now standard elements of error rate calculations due to single event 

effects caused by heavy ions and protons [102], [103]. It is relatively straightforward to extend 

the Monte Carlo approach described here, with suitable modifications to enable integration over 
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the full 4π environment, to obtain first-order estimates of defect densities in proton- and heavy-

ion-irradiated graphene layers in realistic space environments. 

This Monte Carlo simulation is used for monolayer graphene. It also can be used for 

estimating the defect yield in several layers of graphene since most of the ions with high incident 

energy “pass through” graphene layer with little energy loss. But as the number of graphene 

layer increases, the scattering angle of target carbon atom decrease and less cascade collisions 

occur in the graphene plane.  

 

5.8 Conclusions  

In this section, we used Monte Carlo simulations based on the molecular structure of 

graphene and in-plane cascade collision models to study the production of defects in graphene 

under energetic ion irradiation. We identified the types and concentrations of defects that appear 

in graphene under impacts of various ions with energies ranging from hundreds of eV to MeV 

and showed that all defects generated by ions with high incident energy are formed via head on 

collision and in-plane recoils, which is unique for two-dimensional materials. Finally, we 

compared the Monte Carlo simulation results with molecular dynamic simulation results and 

experimental results. The agreement between MC simulation results and experimental 

observations suggest that the Monte Carlo simulation is powerful and efficient analysis tool for 

defect evaluation and control in irradiated graphene. 
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CHAPTER VI 

6. SUMMARY AND PERSPECTIVES FOR FUTURE WORK 

6.1 Summary of Main Results 

The present work yielded the following results for radiation effects on MEMS:  

• The pMUT resonant frequency and quality factor response to 10 keV X-ray irradiation 

are investigated in this work. The impedances of pMUTs under irradiation were 

measured and corresponding equivalent electrical parameters were derived though curve 

fitting. The mechanical resonant frequency and quality factor of pMUTs were derived 

from equivalent LRC circuits. The resonant frequency and quality factor change with the 

irradiation dose. The worst case for TID effects in these pMUTs is positive bias during 

the radiation. The bias-dependent transport and trapping of radiation-induced charge near 

the electrodes and the resulting changes in stress and strain of the PZT are responsible for 

these changes.  

• Responses of Al/SiO2 bimorph electrothermal micros-canners to 10 keV X ray and 14.3 

MeV oxygen ion irradiation have been investigated. Results demonstrate the dependence 

of microscanner displacement on total ionizing dose and/or applied-voltage induced 

charge trapping in dielectric layers. The resulting electrostatic forces lead to changes in 

resistance, position, and orientation of the microscanner. These results emphasize that 

radiation effects on electrothermal MEMS with dielectric layers must be considered for 

potential space applications that require high resolution and long-term reliability. 

• A Monte Carlo simulation technique was developed based on molecular structure of 

graphene and in plane cascade collision model to study the defect production in graphene 

under energetic ion irradiation. We identified the types and concentrations of defects that 

appear in graphene under impacts of various ions with energies ranging from hundreds of 

electron volts to mega-electron volts and showed that all defects generated by ions with 

high incident energy are formed via head on collision and in-plane recoils, which is 

unique for two-dimensional materials. Finally, Monte Carlo simulation results were 

compared with molecular dynamic simulation results and experimental results. The 

agreement between Monte Carlo simulation results and experimental observations 
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suggest that the Monte Carlo simulation is powerful and efficient analysis tool for defect 

evaluation and control in graphene. 

 

6.2 Perspectives for Future Work 

The present work investigated radiation effects on piezoelectric, electrothermal and 2D 

materials. The present work provided fundamental knowledge about interaction mechanisms and 

the models. To fully understand radiation effects on MEMS, the following factors should be 

considered in future research: 

• The PZT based pMUTs dynamic response has been investigated. There are multiple 

piezoelectric materials, such as crystalline and amorphous Al2O3. Radiation effects on 

different piezoelectric materials should be investigated. For piezoelectric MEMS, 

displacement is also important for its applications. A piezoelectric actuator is a good 

device for the static stability research.  

• The static responses of an electrothermal microscanner have been investigated. The 

dynamic responses of the microscanner is also attractive. How electrothermal MEMS 

resonant frequency varies with radiation dose is still unknown. Also, there are many 

different combination of bimorph materials. More works are needed to understand the 

radiation effects on these combinations of bimorph materials. 

• The Monte Carlo approach is applied on graphene. By considering the different 

molecular structures of other 2D materials, such as MoS2, this approach can be used to 

calculate defects of 2D materials generated by energetic ions. Also, the defects generated 

in multiple 2D materials can be predicted by using this approach.  

• There are many kinds of MEMS and few radiation experiments have been conducted on 

these MEMS. The radiation effects can degrade MEMS electrical and mechanical 

properties at the same time. Radiation effects on MEMS must be carefully investigated 

before applied in environments that need high resolution and long-term reliability. 
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