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CHAPTER I 

 

INTRODUCTION 

 

A reliability concern of growing interest in the microelectronics community is the 

deleterious effect of ionizing radiation.  The so-called "single events" – single particles 

which can penetrate semiconductor material leaving ionized charge in their wake – can 

cause information corruption and transient system failure.  Single events are ubiquitous – 

this radiation exists in the environment external to a circuit, and emanates from 

processing and packaging material integral to a circuit.  Once only the concern of space-

bound systems where increased susceptibilities to SEEs have been reported as device 

feature sizes decrease and operating frequencies increase [Bu01, Do96], integrated circuit 

(IC) density and power scaling have propelled this issue to the forefront of reliability 

concerns at current technology nodes in ground-based and space-deployed electronic 

systems. 

The increased susceptibility to single-event effects (SEE) in advanced 

Complementary Metal-Oxide Semiconductors (CMOS) can be attributed primarily to 

factors associated with device scaling trends [Jo98].  Early scaling theories through the 

1970’s and 1980’s followed two basic approaches: constant-voltage scaling and constant-

field scaling [Ba84, De74].  In recent years, however, the higher currents necessary for 

greater operating frequencies, in combination with the need for higher packing densities, 

require the semiconductor devices to have shorter channel lengths and widths with higher 

oxide breakdown fields [Hu93].  These scaling pressures are principally constrained by 
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the acceptable leakage currents when the transistors are “off,” and many works have 

focused on more complicated scaling algorithms to counteract these scaling tradeoffs.  

Ultimately, the fast-paced scaling trends in CMOS technologies, consequently decreasing 

nodal capacitances [Ba84], results in increased single-event (SE) vulnerabilities by 

reducing the minimum amount of charge (i.e., critical charge) required to alter the state of 

a circuit node [Pe82]. 

Furthermore, as device feature sizes decrease, the nodal separation between devices 

in an IC also decreases.  The decrease in nodal separation results in a phenomenon not 

previously encountered in pre-nanometer technologies; that is, higher package densities 

result in increased probabilities of multiple devices collecting charge from a single ion 

strike (i.e., charge sharing).  This phenomenon has recently been characterized in  

130 nm technologies [Am06, Am07] and will no doubt be a primary concern for future 

CMOS electronics as the drive for faster speeds and higher packing densities continues. 

An SE occurs when a high-energy ionizing particle, such as a heavy ion, strikes the 

circuit.  As the particle penetrates the semiconductor material it loses energy through 

Coulombic interactions with the lattice structure and leaves a dense track of electron-hole 

pairs in the material.  These excess carriers can be collected as charge on circuit nodes, 

resulting in undesirable circuit responses which can vary depending on the circuit 

topology and the amount of charge collected [Do03, Ma93].  In mixed-signal (analog and 

digital) systems, the effect of an SE particle strike is the generation of a transient signal 

(single-event transient or SET) that competes with the legitimate signals propagating 

through a circuit or perturbs the functionality of the circuit.  In digital circuits, an SET 

can result in a single-event upset (SEU), that is, an alteration of the state of memory 
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circuits (e.g., a memory cell can be changed from a logic “0” state to a logic “1” state).  

The SEU can lead to a circuit error if the corrupted data propagates throughout the circuit 

and is observable at the output.  These upsets are often termed “soft errors” as they do not 

result in permanent failures within the circuit.  However, there exists no standard metric 

for soft errors in analog and mixed-signal circuits, as the effect of an SE is dependent on 

the circuit topology, type of circuit, and the operating mode. 

Since first reported through heavy-ion induced experiments [Ko93], SET effects in 

analog microelectronics have been examined through a variety of experimental 

procedures [Bu87, Ec94, Mc03, Pe02, Po99, Sa02, Sa03] and computer simulation 

techniques [Ad00, Bo04a, Jo00b, Pe01, St02b].  Furthermore, the combination of 

experimental testing and simulation efforts has enabled an understanding of analog SEE 

that experimental testing alone did not provide [Bo04b].   

In recent years, there is a particular interest in the effect of SETs on the phase-locked 

loop (PLL) because of the propensity to cause a loss of frequency integrity, and the 

resultant wide-spread impact on high-performance systems [Bo05, Bo06, Ch06b, Ch06a, 

Ha05a, Ha05b, Jo96a, Lo06, Lo07a, Lo08, Lo09, Lo07b, Lo07c].  In fact, voltage-

controlled oscillators (VCO) - integral components of PLL circuits - have been reported 

to have increased susceptibilities to SEE in advanced technology nodes [Bo05].  

Additionally, as PLLs (sometimes termed bit synchronization circuits, or clock-recovery 

circuits) are widely used in commercial and space-deployed electronics systems to reduce 

the phase delay associated with the distribution of clock signals, to generate high-speed 

clock signals, and to synchronize data transfer [Ba08, Be98], there is a growing interest 

on the impacts SETs in the PLL can have on circuit designs that utilize PLLs for clock 
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signals [SEE04].  Furthermore, recent works have not only identified the most sensitive 

PLL sub-circuit to SEs [Bo06], but have designed and verified radiation-hardened-by-

design (RHBD) alternatives that reduce the effects of SEs in the PLL by orders of 

magnitude over conventional designs [Lo06, Lo07a, Lo07b, Mc07].  These results 

indicate that RHBD is effective for high-speed mixed-signal circuits using 

unconventional analog design techniques and targeted SE circuit simulations. 

This dissertation applies circuit-level simulations and experimental testing to 

characterize the effects of SEs on a general PLL topology.  The simulations and 

experimental procedures target the PLL sub-circuits so that individual contributions to 

the overall PLL SE vulnerability are distinguished and analyzed.  RHBD alternatives to 

each sub-circuit are offered if necessary.  Additionally, novel analyses are presented that 

can effectively predict the relative contributions of SET generation within the PLL.  

Furthermore, the analyses are utilized to develop a generalized model for single transient 

propagation through the PLL.   

Although this work primarily discusses PLLs in the context of on-chip clock 

generation and skew reduction in the presence of single ionizing particles, it is the goal of 

this work to present a generalized model for single transient propagation through PLL 

topologies for a variety of applications and environments.  The transient model is 

formulated from a conventional linear PLL model commonly used in a variety of noise 

analyses [Ha04, He04, Kr82, Me02].  However, the model is unique in that the resulting 

fundamental design equations are derived in closed-form under the assumption that 

transients are a result of single transient impulses applied to the various sub-circuits 

rather than continuous nondeterministic sources.  This approach vastly simplifies the 
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analysis and provides insight into the closed-loop parameters that directly influence the 

generation and propagation of transients through the PLL.  As a result, a list of design 

guidelines is developed that can be applied to all PLL topologies.  The set of principles 

may be applied for ‘analytical transient mitigation’ to reduce the sensitivity of PLLs to 

single transients resulting from extrinsic noise sources such as single-event radiation and 

crosstalk noise. 

 

Organization of Dissertation 

The research effort presented in this dissertation is organized as follows: 

1) Chapter I introduces the motivation for this work. 

2) Chapter II provides a detailed background on phase-locked loop circuits, 

including a control-systems analysis and derivations of important electrical 

parameters and characteristics.  Also discussed are the detailed topologies of each 

PLL sub-circuit and any critical design equations. 

3) Chapter III provides a background on SEEs, especially those of particular 

pertinence to this work.  An introduction to the space radiation environment is 

included along with a discussion of the various radiation effects including total-

ionizing dose, displacement damage, and SEEs.  However, the section primarily 

focuses on SEEs.  Finally, charge generation and collection mechanisms for SEEs 

are discussed. 

4) Chapter IV focuses on two common methods employed in this work for modeling 

SETs in circuit simulators.  Also, some examples of various SETs observed in 

analog and digital circuits are presented. 
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5) Chapter V details SETs generated within unity gain PLL circuits specifically.  

Simulation and laser two-photon absorption experimental results will be presented 

for the phase-frequency detector, voltage-controlled oscillator, and charge pump 

sub-circuits.   

6) Chapters VI and VII discuss SETs in the voltage-controlled oscillator sub-circuit 

exclusively.  Various models, simulations, and novel analysis techniques are 

presented for the SET characterization of mixed-signal topologies.  Additionally, 

numerous hardening options for the VCO are presented. 

7) Chapter VIII provides an analysis of SETs in frequency divider topologies.  

Further, the various impacts of the divider configuration on SETs generated 

internal and external to programmable PLL topologies is discussed. 

8) Chapter IX presents a systems-oriented analysis of SET generation and 

propagation in PLLs.  Specifically, the closed-loop parameters that have a direct 

impact on SET generation are identified.  Additionally, a novel design/analysis 

parameter, the ‘PLL critical time constant’, is presented to facilitate the design of 

PLL circuits in extrinsically noisy environments.  A general list of design 

guidelines for the analytical mitigation of single transients in PLL circuits is 

provided. 

9) Chapter X will provide some concluding remarks regarding the presented 

research.
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CHAPTER II 

 

PHASE-LOCKED LOOPS 

 

Introduction 

For a basic understanding of phase-locked loops (PLL), this chapter provides a 

background on PLL topologies and develops a set of linear models for PLL feedback 

systems, including the fundamental design equations for PLL development.  A derivation 

of the closed-loop transient response and fundamental tracking properties is also provided 

as necessary for the subsequent chapters.  Although PLL systems are highly non-linear in 

practice it is useful to approximate PLLs as linear negative feedback networks for a 

fundamental understanding of their functionality.  The chapter will conclude by 

presenting the various PLL building blocks examined throughout this work, including the 

phase-frequency detector, charge pump, loop filter, voltage-controlled oscillator, and 

frequency divider.  

 

Basic PLL Topology 

The general idea behind a PLL is to create a stable output signal that is synchronized 

to an input reference signal.  The input reference signal, for example, may be a digital 

clock signal or data received from a transmission network.  Therefore, in steady-state, the 

output phase of the PLL should be “in lock” with the phase of the input signal; that is, the 

difference between the input and output phases (ФoutVCO - Фref) should not be changing 
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over time.  The basic architecture of a PLL is shown in Fig. II-1 and consists of a phase 

detector (PD), low-pass filter (LPF), and voltage-controlled oscillator (VCO). 

 

 

 

The PD compares the phase of the output signal (VoutVCO) to the phase of the reference 

signal (Vref), generating an error signal (VPD) describing the phase difference  

(ФoutVCO - Фref) between VoutVCO and Vref.  Ideally the error signal consists only of a DC 

component for the control of the VCO; however undesirable high-frequency noise is 

typically coupled onto the node and must be filtered through a LPF.  The resulting control 

voltage (VinVCO) is then fed to the VCO to set the oscillating frequency. 

As the PLL compares the phases of the input/output signals it requires no knowledge 

of the voltages or currents on the input/output nodes.  Therefore, for sufficient phase gain 

(ФoutVCO / Фref), the phase difference between the two signals is expected to be small in 

steady state, denoting phase alignment (phase lock).  Thus, in steady state  

ФoutVCO - Фref should be constant and close to zero.  From this property, the loop is said to 

be in lock if ФoutVCO - Фref does not change with time, thus following Eqn. (II-1).  As 

frequency is the derivative of phase with respect to time, Eqn. (II-2) also holds true for 

 
 
Fig. II-1.  Diagram of a basic PLL consisting of a phase detector (PD), low-pass filter 
(LPF), and voltage-controlled oscillator (VCO). 
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PLLs in the lock state.  Thus, for the PLL shown in Fig. II-1, the output frequency is 

equivalent to the input frequency while in phase lock (unity gain) [Ra01]. 

 

 0=
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While a unity gain PLL that produces an output signal that is in phase with an input 

signal of equivalent frequency is not terribly practical, the basic topology may be 

developed for a variety of applications.  For example, large ICs require a clock 

distribution network such that single or multiple clocks are required to drive thousands of 

transistors in multiple locations throughout the IC.  Driving an entire IC with a single 

clock may result in clock skew and decrease the performance.  Therefore a PLL may be 

designed to include high current drive buffers internal to the loop such that the high 

current drive output signal of the PLL is in phase lock with the reference clock, as seen in 

Fig. II-2.  This technique may also be used to regenerate a full swing clock signal with 

large drive strength from an attenuated reference signal. 

 

 

 
 
Fig. II-2.  Diagram of a PLL for reducing the clock skew associated with clock 
distribution.  Buffers are included internal to the closed-loop. 
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Many applications, such as frequency synthesis and high-frequency clock generation, 

require the signal generated by the PLL to have a different frequency than the reference 

signal.  High-frequency clock generation, for example, may be achieved by designing a 

high-frequency VCO and including a frequency divider in the loop feedback network.  In 

this case, the output phase of the frequency divider (Φfb) is compared to phase of a low-

frequency reference signal (Φref), as shown in Fig. II-3.  Thus, the output frequency of the 

PLL is a multiple of the input frequency and is related to the input frequency by Eqn. (II-

3).  Rather than creating a high-frequency clock off-chip and supplying the signal to the 

IC, this technique allows for high frequency clock generation on-chip, thus reducing the 

clock skew associated with the input capacitance.  Frequency divider circuits may also be 

placed in additional locations internal and external to the closed-loop for a variety of 

frequency synthesis applications in order to generate signals at multiple frequency levels 

[Ba08, Be98, Le04a, Ra01]. 

 

 
β

ω
ωω ref

refout N ==   (II-3) 

 
Fig. II-3.  Diagram of a PLL for high-frequency clock generation. 



11 
 

Although many applications for PLL circuits exist, this section shows three basic 

configurations commonly referred to throughout this dissertation.  The following section 

discusses the linearized models used for the design of the PLLs discussed throughout this 

work. 

 

A Linear PLL Model 

The basic linear model of the PLL is shown in Fig. II-4, where KPD is the gain of the 

phase detector (PD), F(s) is the LPF transfer function (integrator), KVCO is the gain of the 

VCO, and β is the feedback factor (adapted from [Be98]).  KPD has units of volts/radian 

or amps/radian (dependent on the type of PD) and KVCO has units of 

radians/(second·volt).  Since the PLL compares the phases of the output and reference 

signals rather than the frequencies, the integral of the VCO stage must be used in order to 

obtain the phase.  As the Laplace transform of a constant C is C/s, the gain of the VCO 

stage is KVCO/s, and thus adds a pole to the loop. 

 

 

 

 

 

 
Fig. II-4.  Linear model for a PLL (adapted from [Be98]). 
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Open and Closed Loop Analyses 

The linear model displayed in Fig. II-4 is the fundamental building block for a wide 

variety of PLL analyses; consequently, the open-loop transfer function is given by  

Eqn. (II-4). 
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The closed-loop transfer function (H(s)) may be readily obtained from Eqn. (II-4) 

through a standard control-systems analysis and is shown by Eqn. (II-5). 
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Assuming the loop filter consists of at least one pole and is of the form shown by  

Eqn. (II-6), the PLL is minimally a second order closed-loop system and therefore has a 

natural frequency (ωn) and damping ratio (ζ).  Accordingly, the closed-loop transfer 

function can be expressed as Eqn. (II-7), such that the denominator is in the format  

s
2
 + 2sζωn + ωn

2. 
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The 2nd order transfer equation indicates that the PLL system can be overdamped (ζ > 

1), underdamped (ζ < 1), or critically damped (ζ = 1), where ζ is the damping ratio.  Some 

works commonly refer to the Q factor rather than the damping ratio, where Q = 1/(2ζ).  

Accordingly, the natural frequency (ωn) and the damping ratio (ζ) may be determined by 

Eqns. (II-8) and (II-9), respectively.  The natural frequency is a measure of the response 

time of the loop, whereas the damping ratio measures the loop ringing and overshoot.  

Conventional guidelines suggest that the natural frequency should be designed to be as 

large as possible in order to minimize the loop response time [Ba08].  Furthermore, to 

obtain a maximally flat magnitude in the pass band, ζ should be designed to equal 1/√2.  

In order to avoid excessive ringing ζ is typically designed to be approximately equal to 1.     
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The closed-loop PLL system as described by Eqn. (II-7) has two poles given by  

Eqn. (II-10).  Thus, if ζ > 1, both poles are real and the system is overdamped.  On the 

other hand, both poles are complex and the system is underdamped for ζ < 1.  

Furthermore, if ζ = 1, both poles are equal to -ωn and the system is critically damped. 
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The loop equations predict that if the input frequency changes slowly (s → 0) the 

output will track the input, as expected.  Also, if the input frequency changes abruptly 

and given enough time to settle (s → 0), then the change in the output frequency is equal 

to that of the input frequency divided by the feedback factor.  However, as the PLL 

system consists of multiple poles, the damping ratio suggests that given a unit step 

change in the input frequency, the output will take some time to track the input and settle.  

The initial tracking time (tacq) and settling time (ts) is of particular importance for most 

PLL applications.  Overdamped systems (ζ > 1), for example, will take longer to track the 

input frequency shift over a critically damped system (ζ = 1).  For underdamped systems 

(ζ < 1), the output frequency can be expected to overshoot the input frequency and take 

some time, ts, to settle.  

Let f0 be the initial frequency at the output of the VCO and let flock = N·fref be the 

desired lock frequency such that ∆f = ∆ω/2π is the frequency shift required at the output 

to obtain lock.  As previously mentioned, the damping ratio of the closed-loop indicates 

that there are three possible cases that determine the acquisition properties of the PLL  

(ζ < 1, ζ = 1, or ζ > 1), however only two of the three cases will be considered. 

1. ζ < 1 - the system is underdamped:  The output frequency of the PLL will 

overshoot flock by a frequency fovershoot [Ba06].  Fig. II-5 illustrates an 

underdamped response of a PLL to a unit step frequency change on the input.  

The output frequency overshoots the input frequency and rings at the natural 

frequency, ωn.  Following, the output frequency will decay exponentially 
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towards flock with a time constant of ζωn [Ba06, Ra01].  For this case, the 

required frequency shift at the output is ∆f* = ∆f + fovershoot during the tracking 

time, tacq.  Then, the system will require some time, ts, to settle about flock.  The 

total time to phase-lock is given as tlock = tacq + ts.  The settling time is derived in 

[Ba06]. 

 

 

 

 
 
Fig. II-5.  Underdamped response of a PLL to a unit frequency step at the input 
(adapted from [Ra01] and [Ba06]). 
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2. ζ = 1 or ζ > 1 - the system is critically damped or overdamped, respectively: 

Theoretically, the output frequency of the PLL will track the input frequency 

without any frequency overshoot.  Thus the total time to lock is given as  

tlock = tacq for a frequency shift of ∆f* = ∆f.  For increasing ζ > 1, however, the 

time to pull-in phase lock grows rapidly and it may become increasingly 

difficult to obtain and maintain lock.  As it is many times impractical to design 

for ζ >> 1, it is therefore assumed for the remainder of this work that ζ is close 

to 1. 

Moreover, it can be shown that for minimum settling time, ζωn must be maximized.  

For this type of PLL, Eqns. (II-8) and (II-9) yield a critical trade-off between settling 

speed and ripple on the VCO control line, given by Eqn. (II-11) where ωLPF is the -3 dB 

frequency of the loop filter [Ra01].  That is, the lower ωLPF, the greater the PD high-

frequency noise suppression but the longer the settling time.  This point is especially 

important when considering the SE performance, as discussed in later chapters. 

 

 LPFn ωζω
2

1
=   (II-11) 

 

Linear VCO Model 

In order to develop a suitable first-order model of the PLL transient response, the 

approximation of the VCO functionality is critical.  The gain, KVCO, is a linear estimate of 

the VCO transfer function.  However, in practice the VCO is a highly non-linear sub-

circuit.  Fig. II-6 illustrates the transfer function of a VCO designed using the IBM 90 nm 

CMOS9SF (9SF) process-design-kit (PDK) and indicates the linear range of operation.  
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The gain, KVCO,  is determined by finding the slope during the linear range.  Also 

displayed in Fig. II-6 is the linear approximation of the VCO transfer characteristics, as 

determined by Eqn. (II-12).  Eqn. (II-2) may be used in the time domain to monitor loop 

changes for foutVCO(VinVCO) in the range of F, where F ∈  [fmin fmax].  In order for this 

approximation to hold true the output frequency at VinVCO of 0 V (f0) must be estimated as 

the y-intercept in Fig. II-6. 
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PLL Locking Characteristics 

The analysis in the previous section shows that an input frequency step response will 

cause the PLL to begin tracking the output signal.  Furthermore, it will take some amount 

 
Fig. II-6.  Illustration of the linear approximation for the VCO transfer curve. 
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of time for the frequencies to be equivalent, and an additional amount of time to settle 

such that the phase of the output signal is in lock with the phase of the input signal.  As 

the output frequency of the PLL is equal to the input frequency divided by the feedback 

factor (a constant) when in phase lock, it is useful to think of the phase transfer function 

in terms of output frequency rather than phase.  Also, since a change in output frequency 

must be accompanied by a change in the VCO control voltage, the relationship shown in 

Eqn. (II-13) may be derived.  Thus, the response of the closed-loop system can be 

obtained by monitoring the variations in the VCO control voltage, VinVCO [Ra01]. 
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Fig. II-7 illustrates a simulation of the VCO control voltage versus time from PLL 

start-up to steady-state, and is called the acquisition and lock curve.  The basic topology 

of the PLL simulated is shown in Fig. II-2.  The PLL was designed using the IBM  

130 nm CMRF8RF (8RF) PDK for a center frequency of operation of 400 MHz, a 

minimum frequency of 150 MHz, a maximum frequency of approximately 1 GHz, and a 

power supply of 1.2 V [Lo06, Lo07a].  First, the acquisition curve illustrates the tracking 

(frequency acquisition) period where the output frequency of the PLL is less than the 

input frequency and is increasing versus time, as shown by zoom area 1 and Fig. II-8 

[Lo07a].  Phase lock is represented by the period when VinVCO is constant versus time, 

denoting a phase error close to zero and ωout = ωin, as shown by zoom area 2 and Fig. II-9 

[Lo07a]. 
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Fig. II-8.  Vref and VoutVCO during the acquisition period, as indicated by Zoom Area 1 

in Fig. II-7 [Lo07a]. 

 
Fig. II-7.  Acquisition and lock curve:  VinVCO versus time at 700 MHz operation.  The 
reference and output signals represented by the highlighted boxes (Zoom Area 1 and 
Zoom Area 2) are displayed in Fig. II-8 and Fig. II-9 [Lo07a]. 



20 
 

 

 

PLL Lock Time Estimator 

The importance of an accurate first-order model for the PLL acquisition is crucial for 

the error propagation model presented in Chapter IX.  This sub-section is devoted to 

deriving an estimate of tacq based on the fundamental linear PLL model. 

Many works have examined the tracking and settling characteristics of PLLs and a 

wide range of estimators for a PLL lock time (acquisition and/or settling) have been 

provided for various PLL types [Ba06, Ba08, Ga79, Ga05].  This work defines a PLL 

lock time as the time required by a PLL to track the reference frequency from start-up 

and settle into a stable phase-locked state.  An estimator for the PLL lock time is 

provided in subsequent sections under the following conditions: 

 
Fig. II-9.  Vref and VoutVCO during the lock period, as indicated by Zoom Area 2 in  
Fig. II-7 [Lo07a]. 
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• the reference frequency undergoes a unit step frequency shift of ∆ωin requiring 

an output frequency shift of ∆ω = N∆ωin 

• ∆ω is assumed to be much greater than ωn, ∆ω >> ωn  

• the final output frequency in phase lock, ωlock, is within the VCO linear 

operating range (ωlock ∈  2π·F) 

The natural frequency of the PLL is a useful performance metric because it provides a 

measure for the response time of the loop (i.e., the time it takes for a signal to propagate 

through the loop, or the time it takes the PLL to respond to a change at the input). The 

loop response time is given as Eqn. (II-14). 
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Assuming that when activated, the PD sub-circuit sources/sinks a constant current 

(ICP) to the loop filter’s capacitance (C1), Eqn. (II-15) describes the amount of voltage 

shift (Vloop) at the VCO input during time tloop.  Note that the mechanism for the current 

source/sink by the PD is discussed in subsequent sections.  Derivations may be followed 

by assuming KPD = ICP/2π. 
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It follows that the slope of the acquisition curve (VinVCO versus time), as illustrated in 

Fig. II-10, is given by Eqn. (II-16). This result is consistent with that shown in [Ra01]. 
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This result indicates that for high-gain PLL circuits where ∆ω >> ωn, the acquisition 

time will be determined by the PD current, loop filter capacitance, and the required 

output frequency shift. 

 

 

 

Utilizing Eqn. (II-12) describing the VCO transfer characteristics, the voltage shift 

required at the VCO input (∆VinVCO) is given as Eqn. (II-17), where Vlock is the voltage at 

ωlock, V0 is the voltage at ω0, and ∆ω
* is the required frequency shift as previously 

discussed.  The acquisition time (tacq) is thus given as Eqn. (II-18).  

 

 
Fig. II-10.  Simulated acquisition curve (VinVCO versus time) for PLL designed using the 
IBM 9SF PDK at a center frequency of 1.1 GHz.  Calculated acquisition time is 607 ns, 
whereas the simulated acquisition time is approximately 650 ns (ignoring the final 
settling time). 
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Therefore to the first-order, the acquisition time increases linearly with increasing 

frequency steps and decreases as a quadratic with increasing natural frequency. 

Furthermore, the result shows that the acquisition time is independent of β as changes in 

β result in proportional changes in ωn
2 (Eqn. (II-8)).  Also note that the initial acquisition 

time is independent of the damping ratio, which primarily affects the final settling 

characteristics.  Phase acquisition will be a non-linear process for small ∆ω as determined 

by the closed-loop damping response discussed in the previous section. 

Fig. II-10 illustrates the simulated acquisition curve for a PLL designed using the 

IBM 9SF PDK for a center frequency (frequency at which VinVCO is Vdd/2) of 1.1 GHz 

(VCO transfer curve shown in Fig. II-6).  The design parameters ICP, C1, and KVCO are 

provided in the figure.  The simulation is for an output frequency of 1.1 GHz and VinVCO 

initialized to 0 V.  The acquisition time as calculated by Eqn. (II-18) is 607 ns, which is 

within approximately 7% of the simulated acquisition time of 650 ns (ignoring settling 

time).  Note that the frequency step, ∆ω
*
, used for the calculation requires the initial 

frequency (f0) as given by the linear VCO approximation in Eqn. (II-12) and not the 

actual VCO transfer curve. 

Additional approaches have been developed for estimating the lock time that may 

result in a wide range of predictions under various assumptions.  Banerjee has provided a 
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first order approximation that is useful in estimating the lock time, tlock, time to peak 

frequency, tpeak, and the amount of frequency overshoot, fovershoot.  The approximations 

depend only on the damping ratio, natural frequency, and the amount of the input 

frequency step [Ba06].  A variable, tol, in units of Hz is also included to represent the 

settling tolerance of the output frequency.  As tol → 0, the estimated lock time will 

approach infinity, thus an appropriate frequency tolerance based on the nominal phase 

error and control voltage variation during the lock state must be chosen.  Eqns. (II-19), 

(II-20), and (II-21) represent the approximations for tlock, tpeak, and fovershoot, respectively 

[Ba06].  As expected, tlock and tpeak may be minimized by designing the natural frequency 

to be as high as possible.  Also consistent with the results in previous sections, fovershoot 

depends strongly on the damping ratio. 
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Although Eqns. (II-19), (II-20), and (II-21) provide a quick estimate they are not valid 

for ζ ≥ 1, that is, for critically damped or overdamped PLL systems.  Also, many factors 
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can degrade the locking performance of the PLL such as nonlinearity in the VCO, 

discrete sampling effects in the PD, input/output capacitances, and current mismatches 

[Ba06].  These factors may cause the simulated and tested parameters to deviate from the 

estimated parameters significantly; therefore extreme caution should be used when 

utilizing locking performance estimators.  The estimations may be useful, however, in 

determining trends in the performance variation over various design parameters. 

Generally, the PLL lock time is defined as the time it takes to for the PLL to move 

from one frequency to another specified frequency within a given frequency tolerance 

[Fo02].  However, Baker refers to this definition as the pull-in time, and the lock time is 

defined as the amount of time it takes the PLL to obtain phase lock within one single beat 

note [Ba06].  Baker also provides an approximation of the classical definition of lock 

time, similar to that described by Banerjee [Ba06] for various phase detector 

implementations.  Baker’s definitions are referred to as the pull-in time rather than lock 

time.  In order to avoid confusion, this paper uses the classical definition of lock time 

provided in [Fo02].   

 

Charge Pump PLLs 

Although many PLL topologies have been developed utilizing various phase detectors 

for a variety of applications, perhaps the most common topology is the charge pump (CP) 

PLL shown in Fig. II-11.  The CP PLL considered in this work is a negative feedback 

closed-loop system consisting of five primary components: the phase-frequency detector 

(PFD), charge pump (CP), low-pass filter (LPF), voltage-controlled oscillator (VCO), and 

a divide-by-N frequency divider (β).  The PD sub-circuit shown in the previous sections 
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can be segmented into two components: the PFD and the CP.  Additionally, “e-graded” 

buffers are included subsequent to the VCO module to account for loading effects and to 

reduce the clock skew.  On start-up the PFD compares the phase and frequency of the 

input reference signal (Vref) and the feedback signal (VFB). When VFB is lagging (leading) 

Vref in phase and frequency, an output pulse will be generated on the UP (DOWN) output 

of the PFD.  This leads the CP module to source (sink) charge to (from) the LPF, thus 

changing the VCO control voltage (VinVCO) and adjusting the output frequency of the 

VCO.  The following sections will discuss the design of each individual component. 

 

 

 

The Phase-Frequency Detector 

A simplified implementation of the phase-frequency detector (PFD) used in this work 

is shown in Fig. II-12 in order to facilitate the discussion of the circuit operation [Ba08].  

Rather than depending only on the phase difference between the inputs, the PFD 

measures differences between the phase and frequency of the two inputs, Vref and VFB.  

 
 
Fig. II-11.  Block diagram of the charge pump PLL including the phase-frequency 
detector (PFD), charge pump (CP), low-pass filter (LPF), voltage-controlled oscillator 
(VCO), and frequency divider (β).  Additionally, “e-graded” buffers are included in 
order to account for loading effects. 
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The actual PFD used in this work is an all CMOS variant of the PFD and is displayed in 

Fig. II-13.  The circuits displayed in Figs. II-12 and II-13 are functionally equivalent. 

 

 

 

In contrast to a phase detector, the PFD cannot lock onto a harmonic frequency (that 

is, a multiple of the input frequency), as it compares the phase and frequency of Vref and 

VFB.  It achieves this by requiring the rising edge of both Vref and VFB to be present for a 

phase comparison.  Three states can be considered for the PFD and are graphically 

illustrated in Fig. II-14, respectively. 

1) The rising edge of VFB is lagging the rising edge of Vref (Fig. II-14 (a)): 

The rising edge of Vref causes the UP signal to transition to a logic high value.  

Upon the arrival of the rising edge of VFB, the DOWN signal will momentarily 

go high, causing the reset line to go high, thus resetting the latches and causing 

both the UP and DOWN signals to return to a logic low state.  The UP signal 

therefore represents the phase difference between the rising edges of Vref and 

 
Fig. II-12.  Simplified block diagram of the phase-frequency detector [Ba08]. 
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VFB, and indicates that the VCO output frequency should be increased in order 

to decrease the phase difference.  Care should be taken to minimize the 

momentary spike on the DOWN line, so as both the UP and DOWN lines are 

not simultaneously in the logic high state for a significant amount of time. 

 

 

 

2) The rising edge of VFB (VoutVCO) is leading the rising edge of Vref (Fig. II-14 (b)): 

Similar to the first state, the rising edge of VFB causes the DOWN signal to 

transition to a logic high value.  Upon the arrival of the rising edge of Vref, the 

UP signal will momentarily go high, causing the reset line to go high, thus 

resetting the latches and causing both the UP and DOWN signals to return to a 

logic low state.  The DOWN signal therefore represents the phase difference 

 
Fig. II-13.  CMOS implementation of the phase-frequency detector used in this work 
[Ba08]. 
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between the rising edges of Vref and VFB, and indicates that the VCO output 

frequency should be decreased in order to decrease the phase difference.  Care 

should be taken to minimize the momentary spike on the UP line, so as both the 

UP and DOWN lines are not simultaneously in the logic high state for a 

significant amount of time. 

3) The rising edge of VFB (VoutVCO) is in phase with the rising edge of Vref  

 (Fig. II-14 (c)): 

Momentary spikes will appear on the UP and DOWN signal lines if both rising 

edges arrive at the same time, causing the reset line to clear the latches, 

returning both the UP and DOWN signal lines to a logic low value.  Thus, in 

phase lock, the UP and DOWN lines in the PFD ideally remain at logic low.  In 

contrast, phase lock is represented in typical PDs with active UP and DOWN 

signal lines, where signals are inverses of one another with 50% duty cycles.  

As the PFD does not generate any output signals during phase lock, the amount 

of control voltage ripple is therefore reduced, subsequently reducing the phase 

jitter due to the phase detector characteristics. 

Based on the functionality of the PFD, numerous characteristics can be described.  

First, a rising edge from Vref and VFB must be present when making a phase comparison.  

Second, the widths of Vref and VFB are irrelevant.  Consequently, the PFD will not lock on 

a harmonic of the data.  Next, the outputs of the PFD are both logic low when the loop is 

in lock, eliminating voltage ripple on the output of the loop filter.  Although the PFD has 

numerous advantages over standard PDs, the PFD has poor input noise rejection; that is, a 

false edge on either input will affect the outputs of the PFD [Ba08]. 
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The Charge Pump and Loop Filter 

The charge pump is a circuit capable of converting the PFD output signals, 

representing the phase difference between VFB and Vref, into an electrical current or 

voltage.  Fig. II-15 illustrates two basic topologies of charge pump circuits.  For the case 

of the current-based charge pump (Fig. II-15(a)), the UP/DOWN outputs of the PFD 

drive pMOS/nMOS switches to source/sink current (ICP) to/from the LPF.  Similarly, a 

voltage-based charge pump (tri-state) may be used where the UP/DOWN outputs of the 

PFD connect the charge pump output to either Vdd or GND (or a voltage reference).  

Typically, current-based charge pumps are used because they show higher immunity to 

power supply variations over voltage-based charge pumps (power supply rail is closely 

coupled to the VCO control voltage).  Finally, the PFD gain (KPD) is directly controlled 

by the chosen value of ICP (for the current-based charge pump) or the power supply 

voltage (for the voltage-based charge pump).  Furthermore, it can be shown that  

 
Fig. II-14.  PFD inputs and outputs for (a) VFB lagging Vref, (b) VFB leading Vref, and (c) 
VFB in phase lock with Vref (adapted from [Ba08]). 
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Eqns. (II-22) and (II-23) represent the PFD gain for the current-based charge pump (KPDI) 

and the voltage-based charge pump (KPDV), respectively. 
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Following the charge pump, the loop filter integrates the charge supplied by the 

switching of the charge pump.  Basic loop filters required for the current-based and 

voltage-based charge pumps are shown in Figs. II-16 (a) and (b), respectively.  As shown 

in previous sections the design of the loop filter is crucial in determining the overall 

performance of PLL system.  The impacts of the loop filter on the PLL performance are 

 
Fig. II-15.  Basic schematic of (a) current-based charge pump and (b) voltage-based 
charge pump (tri-state). 
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derived by determining the transfer equation for the chosen loop filter, inserting it into 

the PLL loop transfer equations, and calculating the PLL performance parameters such as 

the natural frequency and damping ratio.   

 

 

 

First, for the loop filter shown in Fig. II-16 (a), the loop filter transfer function is 

given by Eqn. (II-6) as previously discussed.  The capacitance C2 is ignored as it is 

typically much smaller than C1.  Typically, C2 is chosen to be approximately 10 times 

smaller than C1 (or less) in order to improve the stability of the loop while in lock.  Thus, 

the closed-loop transfer function for the PLL shown in Fig. II-4 is given by Eqn. (II-7).  

Subsequently, the loop natural frequency and damping factor are given by Eqns. (II-8) 

and (II-9), respectively. 

Thus, for the current-based charge pump the natural frequency is influenced by the 

source/sink current (ICP) and the capacitance of C1 in the loop filter.  As C1 is increased 

the natural frequency is decreased.  Also, the time constant RC1 directly influences the 

 
Fig. II-16.  Basic loop filters for the (a) current-based and (b) voltage-based charge 
pumps. 
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damping ratio.  A larger time constant that suppresses high-frequency noise also 

increases the damping ratio and may lower the natural frequency of the loop. 

Next, Eqn. (II-24) represents the loop filter transfer function shown in Fig. II-16 (b).  

When the filter is driven by the voltage-based charge pump, no current flows through 

either resistor when the output of the charge pump is in the high impedance state.  Thus, 

the filter can be thought of as an ideal integrator with a transfer function given by  

Eqn. (II-25).  Furthermore the closed-loop transfer function, natural frequency, and 

damping ratio for the PLL shown in Fig. II-11 are given by Eqns. (II-26), (II-27), and (II-

28), respectively. 
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Fig. II-17.  Practical implementations of the (a) current- and (b) voltage-based charge 
pumps and respective loop filters. 
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Thus, for the voltage-based charge pump the natural frequency is influenced by the 

power supply voltage and the loop filter time constant (R1+R2)C.  As the time constant is 

increased the natural frequency is decreased.  Also, the time constant R2C directly 

influences the damping ratio.  A larger R2C time constant increases the damping ratio and 

may lower the natural frequency of the loop. 

Finally, Figs. II-17 (a) and (b) illustrate practical implementations of the current- and 

voltage-based charge pumps along with their respective loop filters used for this work 

[Bo06, Lo06, Lo07a, Lo07b].  In both cases the UP and DOWN switches utilize 

transmission gates.  To ensure that the nMOS and pMOS devices in the transmission 

gates turn on and off simultaneously, circuitry consisting of four inverters and a 

transmission gate delay cell are used.  Additionally, for the current-based charge pump, 

the current sources should be sized such that the sink and source currents are equivalent 

when biased through displayed bias circuit. 

 

The Voltage-Controlled Oscillator 

The charge pump is a circuit capable of converting the measured phase difference 

between the inputs of the PFD into an analog control voltage applied to the input of the 

voltage-controlled oscillator (VCO).  The VCO, therefore, is required to generate an 

oscillating output signal at a frequency determined by the input voltage, VinVCO.  This 

work concentrates primarily on current-starved VCO topologies as they typically have 

wide operating frequency ranges; however, current-starved VCOs may not be suitable for 

low jitter applications, in which case an LC tank VCO with low jitter and a small 

frequency range may be used [Ba08]. 
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Fig. II-18 illustrates the schematic of the current-starved VCO used throughout this 

work and indicates the input-bias stage and the current-starved ring-oscillator stage.  

MOSFETs MP4 and MN3 operate as an inverter, while MOSFETs MP3 and MN4 limit 

the current available to the inverter, thus setting the delay of the current-starved inverter 

stage.  The input-bias stage is used to force the current in the MOSFETs to be linearly 

related to VinVCO.  The width of MOSFET MN1 is made wide (a W/L of ~100/1) so that 

VGS is always approximately VTN (close to independent of VinVCO).  The current in 

MOSFET MP1 is then mirrored to MOSFETs MP2 and MN2 to control the current used 

in the current-starved ring-oscillator stage.  Alternative biasing schemes may be utilized 

[Ba08]. 

The design equations for the VCO may be developed by considering the simplified 

schematic of one current-starved inverter stage, as in Fig. II-19.  The total capacitance on 

 
 
Fig. II-18.  Schematic of the current-starved VCO. 
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the drains of the inverter (MP4 and MN3), Ctot, can be described as the sum of the output 

and input capacitances of the inverter, and can be shown to be approximately equal to 

Eqn. II-29.  If we assume that IP3 = IN4 = ID, and the time for Ctot to discharge from Vdd to 

0 V is equivalent to the time for Ctot to charge from 0 V to Vdd, then the charge (t1) and 

discharge (t2) time (or the total delay time of the cell (tD)) is represented by Eqn. (II-30). 
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Thus, the oscillating frequency of the VCO for N (an odd number ≥ 5) number of stages 

is represented by Eqn. (II-31) [Ba08]. 

 

 
 
Fig. II-19.  Simplified schematic of a single current-starved stage in the VCO. 
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Examples of the frequency characteristics for the current-starved VCO are shown in 

Fig. II-20, where output frequency is plotted versus VinVCO for a ‘good’ design and a ‘bad’ 

design [Bo05].  The designed center frequency (the frequency at which VinVCO is Vdd/2) 

should be within ± 10% of (fmax – fmin)/2 in order to ensure a symmetric range of linear 

operation around the center frequency (fc) [Ba08, Bo05].  The frequency transfer curve 

for the ‘bad’ design is a result of deliberately mismatched W/L ratios for MOSFETs 

MP2, MP3, MN2, and MN4. 

 

 

 

 
 
Fig. II-20.  Current-starved VCO gain characteristics illustrating an example of a poor 
VCO design where the frequencies fc and (fmax + fmin)/2 are far apart, to be contrasted 
with a desirable design example where the frequencies are within 10% of each  
other [Bo05]. 
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The gain of the VCO, KVCO, is in units of radians per seconds per volts.  KVCO is 

typically approximated by finding the slope of the linear portion of the transfer curve 

shown in Fig. II-20.  Eqn. (II-32) shows the gain of the VCO, where fmax and fmin are the 

maximum and minimum frequencies of the VCO operating range, respectively.  

Similarly, Vmax and Vmin are the input voltages that result in fmax and fmin, respectively. 
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An additional design variable often useful for VCO designs is the estimated phase 

jitter.  Phase jitter describes the amount of time or phase fluctuation present in the output 

signal of the VCO during steady state.  A simple method of estimating the phase jitter is 

to first monitor or estimate the amount of voltage variation on VinVCO.  Next, from the 

VCO transfer characteristics, the corresponding frequency fluctuation, ∆fVCO, may be 

obtained.  Then, Eqn. (II-33) may be used to estimate the jitter, ∆tjitter, in the output 

[Ba08]. 

 

The Frequency Divider 

Frequency dividers are commonly used in PLLs for frequency synthesis applications 

or high frequency clock generation applications.  The frequency dividers are typically 

implemented as an asynchronous cascade of divide-by-2 circuits, where each stage is 
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clocked by the previous one [Le04b, Ra95].  The general block diagram of a single 

divide-by-2 frequency divider is shown in Fig. II-21 (adapted from [Le04b]).  The D-

Flip-Flops are connected in a master-slave fashion with the output of the slave stage fed 

back to the input of the master stage.  The frequency divider displayed may be cascaded 

in order to form a divide-by-N frequency divider, where N is a multiple of 2.  

Additionally, a multiplexer may be used to select the desired outputs of the frequency 

dividers.  Many other digital and analog implementations have been developed for 

improved jitter performance and low power, however all designs may be thought to have 

similar functionality for the use in PLL applications. 

 

 

 

Conclusion 

This chapter presents a detailed background on phase-locked loop circuits, beginning 

with a control-systems analysis of the general functionality.  Derivations of important 

electrical parameters such as the natural frequency, damping ratio, and lock time, along 

with the electrical characteristics are also provided.  Finally, the detailed circuit 

topologies and any critical design equations of each sub-circuit within the charge pump 

PLL are provided.  The next chapter presents a background on single-event phenomena 

 
Fig. II-21.  Diagram of a single divide-by-2 frequency divider (after [Le04b]). 
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and the radiation environments that are of particular concern to mixed-signal circuit 

topologies, such as the PLL, designed for operation in space. 
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CHAPTER III 

 

RADIATION EVIRONMENTS AND SINGLE-EVENT PHENOMENA 

 

Introduction 

Microelectronic circuits in space-deployed systems are subject to a variety of 

radiation environments and their characteristic particles.  In order to ensure the reliability 

and durability of the components it is crucial to consider all of the potential effects 

irradiation can have on circuit operation.  Irradiation can result in a wide variety of device 

and circuit level effects such as Displacement Damage (DD), Total-Ionizing Dose (TID), 

Prompt Dose (Dose Rate), and Single-Event Effects (SEE).  With the continual 

advancement of microelectronic technology, SEEs are likely to become an increasingly 

important upset mechanism for ICs deployed in space and terrestrial applications [Ma93], 

therefore will be the primary focus of this discussion.  In fact, as shown in Fig. III-1, 

Koons et al. showed that SEEs account for over 28% of spacecraft anomaly records, 

including electrostatic discharge (ESD) damage, other radiation damage, plasma and 

micrometeoroid impacts, and uncategorized solar energetic particle effects [Ko99, 

Ma02].  Additionally, SEUs account for over 84% of all radiation effects observed, as 

seen in Fig. III-2 [Ko99, Ma02].  Although not discussed in this work, DD [Sr03], 

Prompt Dose [Al03], and TID [Ol03] references are included for the interested reader. 

The remainder of this chapter will discuss the various radiation environments of 

particular concern for SEEs.  Next, a discussion on the fundamental charge generation 

and collection mechanisms for SEEs will be provided.  The chapter will conclude with 
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details of the different types of SEEs that can occur in ICs with a particular emphasis on 

Single-Event Upsets (SEU) and Single-Event Transients (SET).  

 

 

 

 

 
 
Fig. III-2.  Breakdown of SEU and radiation damage anomaly records [Ma02]  
(data from [Ko99]). 

 
Fig. III-1.  Distribution of spacecraft anomaly records versus anomaly type (ESD: 
electrostatic discharge; SEU: single event upset) [Ma02] (data from [Ko99]). 
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Radiation Environments and Single-Event-Inducing Particles 

Ionizing radiation interacts with various materials used in an IC to produce results 

depending on the nature of the radiation source.  The primary contributors to the space 

radiation environment are galactic cosmic rays (GCR), solar flares, and particles trapped 

within the Earth’s magnetosphere. 

 

 

 

Galactic Cosmic Rays 

While the actual source of GCRs is unknown, one likely explanation is the several 

supernovae (exploding stars) that occur within the galaxy each century.  The ionizing 

particles that are carried by the GCRs include most elements present in the periodic table 

with energies varying from 109 eV up to the highest ever reported of 1020 eV [Bi95].  The 

 
Fig. III-3.  Galactic cosmic ray particle spectrum as a function of atomic number 
(adapted from [Me74] and [Ba98]). 
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relative abundance of elements present in GCRs is shown in Fig. III-3 (adapted from 

[Me74] and [Ba98]), where hydrogen is the most abundant element. 

 

 

 

An additional source of space irradiation is the sun.  The cyclical activity of the sun, 

which averages as an 11 year cycle, not only contributes to trapped electron fluxes, which 

are typically a TID concern, but also trapped proton fluxes in the Low Earth Orbit (LEO) 

[Xa06].  Trapped protons, which reach their maximum during solar minimum, can cause 

TID effects, DD effects, and SEE, where most proton-induced SEE occur as a result of 

secondary recoil products that result from interactions with the incident proton [Xa06].  

Furthermore, the continual solar wind (plasma or ionized gas emitted by the sun) interacts 

with the Earth’s magnetosphere.  As depicted by Fig. III-4, the Earth’s magnetosphere is 

shown to consist of both an external and an internal magnetic field.  The external field is 

 
 
Fig. III-4.  The Earth’s magnetosphere [Xa06]. 
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the result of the solar wind, whereas the internal (geomagnetic field) originates primarily 

from within the Earth and is approximately a dipole field.  During solar maximums the 

solar wind diverts GCRs from the magnetosphere (the magnetosphere can be compressed 

to approximately 6 Earth radii), whereas higher GCR fluxes are typical of solar 

minimums (the magnetosphere can be expanded to approximately 10 Earth radii) [Xa06].   

 

Solar Flares and Coronal Mass Ejections 

Solar flares and coronal mass ejections are sudden, rapid, and intense bursts of gases 

and plasma emitted from the sun’s atmosphere and corona.  Typically, the most energetic 

and frequent solar flares occur within the 7 years of high activity within the 11 year solar 

cycle.  Two types of solar flares can occur: gradual eruptions and rapid, intense bursts.  

Gradual eruptions (lasting days) are rich in protons with energies spanning from 30 MeV 

to 100 MeV, whereas the most intense eruptions (lasting hours) may contain energies as 

high as 100 GeV.  Also, the radiation that is emitted during a solar flare spans virtually 

the entire electromagnetic spectrum, from radio waves to x-rays and gamma rays, and 

will increase the fluxes of cosmic rays that penetrate the Earth’s magnetosphere [Ho07].  

The largest ever recorded solar flare, captured by the Solar and Heliospheric Observatory 

(SOHO) satellite, occurred on April 2, 2001 as a coronal mass ejection.  The eruption 

projected particles into space at roughly 7.2 million kilometers per hour and produced a 

radio blackout on the sunlit side of the Earth.  Fig. III-5 illustrates the event through a 

series of photos captured by charge coupled devices (CCD) [Ma99, SOHO].  As protons 

from the event reach the instrument’s CCDs, they “pepper” the image with transients. 
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The Trapped Radiation Environment 

An additional source of radiation is trapped charged particles within the Earth’s 

magnetic field.  Charged particles in the near-Earth atmosphere can become trapped by 

the constraining geo-magnetic field lines.  The charged particles in this field move in a 

spiral fashion around the magnetic field lines, tightening as they approach the magnetic 

poles where the field strength increases.  Eventually the field strength is sufficient to 

compel the particle to reverse direction.  Fig. III-6 illustrates the motion of trapped 

charged particles in the Earth’s magnetic field [St88b, Xa06]. 

 
 
Fig. III-5.  The most energetic solar flare ever recorded, Monday, April 2, 2001.  
Coronagraphs from the SOHO satellite follow the evolution of a coronal mass 
ejection.  Protons from the event reach the instrument’s charge coupled devices (CCD) 
and “pepper” the image with transients in the lower two panels [Ma99, SOHO]. 
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The trapping of charged particles results in an accumulation of charged particles 

along the magnetic field lines, termed the Van Allen radiation belts [Va59].  There are 

two permanent belts, as shown by the drawing in Fig. III-7: an outer zone centered at 

approximately 6 Earth radii and an inner zone centered at approximately 2.5 Earth radii.  

The outer zone comprises of primarily electrons and some protons trapped from solar 

flare events, whereas the inner zone consists of primarily protons and some trapped 

electrons [Ba03, St88b].  Electrons contribute to most radiation events in the outer zone, 

whereas protons contribute to the majority of events in the inner belt [Ma02].  The proton 

and electron domains within the two primary belts are indicated in Fig. III-8 [St88b].  

During intense solar activity, additional belts may appear, however are temporary and 

therefore will not be discussed in detail. 

 
 
Fig. III-6.  Motion of trapped charged particles in the Earth’s magnetic field [St88b, 
Xa06]. 
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Protons are the most predominant source of SEEs for spacecrafts in near-Earth (1.5 to 

3.5 Earth radii) and polar orbits, with energies ranging from tens of keV to hundreds of 

MeV.  Fluxes for these energies range from over 106 protons/(cm2-day) (for 102 MeV 

protons) to 109 protons/(cm2-day) (for 10-2 MeV protons).  In fact, proton spectra in Low-

 
Fig. III-8.  The proton and electron domains within the two primary Van Allen belts 
[St88b]. 

 
 

Fig. III-7.  Diagram of the Earth’s Van Allen radiation belts [Ma02]. 
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Earth Orbit (LEO) tends to remain fairly stable across energy with the proton flux 

decreasing by only 4 orders of magnitude between 50 MeV and 500 MeV [St88b]. 

 

 

 

The proton belt also contains an anomaly of particular concern for near-Earth orbiting 

vehicles.  The anomaly, named the South Atlantic Anomaly (SAA), is located off the 

coast of South America and displays a great increase in proton flux at altitudes less than 

1000 km.  The “dip” in the proton belt is a result of the tilt and shift of the Earth’s 

geomagnetic and rotational axes relative to each other, causing a displacement of the 

magnetic field from the center.  Fig. III-9 shows a contour plot of proton fluxes >  

10 MeV in the SAA at a 500 km altitude during solar maximum.  The lower magnetic 

field region of high proton fluxes is localized to an area off the coast of Argentina.  

 

 

 
 

Fig. III-9.  Contour plot of proton fluxes > 10 MeV in the SAA at a 500 km altitude 
during solar maximum [Xa06]. 
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Single-Event Mechanisms 

Heavy ions, alpha particles, and trapped protons from the radiation environments 

previously discussed can result in significant damage to microelectronic circuits.  When 

an energetic particle penetrates semiconductor material it loses energy through Coulomb 

collisions with the target electrons and nuclei of the lattice structure, leaving a dense 

track of electron-hole pairs in the material [Re08].  These excess carriers can be collected 

as charge on circuit nodes, resulting in undesirable circuit responses which can vary 

depending on the circuit topology and the amount of charge collected.  The resulting 

effect from this interaction is termed a Single-Event Effect (SEE) as it results from the 

penetration of a single energetic particle into the material.  In fact, as previously stated, a 

compilation of spacecraft anomalies [Ko99] shows that SEEs account for over 84% of the 

radiation damage that occurs to critical on-board electronics, and over 28% of the total 

records, including ESD events, plasma, micrometeoroid impacts, and uncategorized solar 

energetic particle effects.  

 

Charge Generation 

Energetic particles that pass through microelectronic circuits can generate charge in a 

semiconductor device through two fundamental mechanisms: indirect ionization and 

direct ionization.  Indirect ionization occurs through the nuclear reactions of an incoming 

particle with elements of the molecular lattice.  The nuclear reactions can be inelastic 

collisions producing Si recoils, Alpha/Gamma particle emission and the recoil of a 

daughter nucleus, and spallation reactions, each of which can independently recoil 
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[Do99].  The nuclear reactions can thus result in the emission of heavier ions that can 

interact with the semiconductor devices through direct ionization. 

 

 

 

Direct ionization typically requires heavy-ion (Z > 1) or low-energy proton [Si09] 

strikes and occurs when the ion itself penetrates the semiconductor material, losing 

energy through Coulomb interactions with the target electrons and nuclei of the lattice 

structure [Re08].  As the ion transfers energy to the lattice, electrons are excited from the 

valence band into the conduction band, thus leaving behind valence band holes.  The 

 
 
Fig. III-10.  Radial distributions of the electron-hole pair densities surrounding the ion 
path (after [St88a]). 
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excitation of the electrons can further emit photons and phonons, which can create new 

electron-hole pairs.  This scattering, which follows the Compton scattering effect, leaves 

a dense plasma track of excess carriers that follows the range (path length) of the incident 

ion.  Fig. III-10 shows calculations of electron-hole distributions through the silicon’s 

depth versus the radial distance of the plasma track created by Ni and Cl ions of various 

energies.  In both cases the higher energy particle produces a less dense track due to the 

decreased interaction efficiency of the energetic ion with the bound electrons within the 

lattice.  Subsequent paragraphs explain the phenomenon further. 

Linear Energy Transfer (LET) is typically used to describe this energy loss of the 

ionizing particle through the material.  LET is the energy loss per unit length normalized 

by the density of the target material, and is typically given in units of MeV-cm2/mg.  

Thus, LET is a function of the incident particle, ion energy, and penetration depth.  

Fig. III-11 shows LET versus penetration depth for 210 MeV chlorine ions in silicon, 

where the integral of the curve represents the total energy deposition.  As the particle 

penetrates deeper into the structure it slows allowing for a more effective interaction with 

the bound electrons and the LET gradually increases.  Finally, maximum energy loss 

occurs close to the particles resting point when the remaining energy is released into the 

structure.  This point (peak of curve) is referred to as the Bragg peak (Fig. III-11 [Do99]), 

and following the Bragg peak the LET dramatically decreases.  Such information is 

useful for SEE analysis because it provides information as to the depth that the majority 

of the charge is generated within the devices.  This knowledge can be used to assist in 

device and circuit modeling for the simulation of SEEs. 
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Fig. III-12.  Depletion region drift collection from an ion strike [Ma93]. 

 
Fig. III-11.  Linear energy transfer (LET) vs. depth curve for 210 MeV chlorine ions 
in silicon [Do99]. 
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Charge Collection 

The excess carriers generated from an SE strike present a problem for ICs when the 

charge is collected on circuit nodes, resulting in undesirable circuit responses.  If the 

charge is collected near a p-n junction, the built-in electric field at the junction causes 

holes to be swept into the p-region and electrons into the n-region (drift current), as 

displayed by Fig. III-12.  Drift current is limited by the saturation velocity of the carriers; 

therefore, the resulting current transient is typically on the order of picoseconds in length 

[Ma93]. 

Early investigations on the effects of ionizing particle strikes on p-n junctions showed 

that the plasma track of free carriers generated from the strike distorts the potential 

gradients along the track length, creating a field funnel [Hs81].  The plasma track of free 

carriers between the n- and p-regions effectively creates a wire between the regions along 

the track, allowing electrons to move toward, and holes to move away from the positively 

biased n-region.  The spreading resistance along the wire results in a voltage drop along 

the length of the track and effectively collapses the junction electric field.  Thus, the 

potential which initially appeared across the depletion region is distributed down the 

plasma track, and exposes carriers outside the original depletion region to the electric 

field [Ma93].  The overall result is an increase in charge collected drift current.  Fig. III-

13 illustrates the creation of the plasma wire leading to the field-assisted funneling.  In 

modern devices at the sub-nanometer scale this process may be more complicated as the 

radial dimension of the plasma wire may be on the order of the transistor size or greater; 

however the fundamental concept is still useful for understanding the basic charge 

collection mechanisms.  For the interested reader, references have been provided for 
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recent works that have analyzed charge collection mechanisms in sub-100 nm devices not 

previously encountered in 130 nm and older technology nodes [Da07a, Da07b]. 

 

 

 

Additionally, charge generated from an ion strike may be collected by a diffusion 

process rather than a drift process.  Diffusion collection arises when charge is generated 

within a diffusion length of a junction.  The charge may be collected by the hit node or 

neighboring nodes, possibly affecting multiple nodes at once.  In contrast to drift 

collection with a time domain on the order of picoseconds, diffusion collection can result 

in current transients on the order of hundreds of picoseconds to nanoseconds.  Though the 

collection may last longer, diffusing charges through the semiconductor bulk are more 

susceptible to recombination mechanisms [Mu03], decreasing the amount of electrons 

and holes that reach a junction.  Fig. III-14 illustrates the charge collected through drift 

and diffusion processes in a reverse-biased n+/p junction [Ba05].  The initial charge 

collection is due to field-assisted drift, followed by the collection of charge diffused 

through the substrate.  

 
 
Fig. III-13.  Qualitative view of the funnel effect: a) creation of the ion-induced 
plasma track, b) movement of electrons toward the positive bias, and c) potential drop 
along the track and redistribution of equipotential lines down the track [Ma93]. 
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Additional collection mechanisms such as the ion shunt effect [Ha85] and parasitic 

bipolar amplification [Am06, Do96, Fu85, Ke89, Ol05, Ol07, Wo93] are increasingly 

important in modern ICs.  Briefly, the ion shunt effect occurs when an energetic ion 

passes through two proximal junctions.  The plasma track of free carriers penetrates the 

two junctions and can conduct current if the two regions are of the same type, thus 

resulting in increased charge collection at a node.  Parasitic bipolar amplification has also 

been shown to enhance charge collection from an SE strike, especially in pMOS devices 

in an n-well with p-substrate.  Following an ion strike, the collection of electrons in the n-

well reduces the n-well potential.  This potential collapse, along with the additional 

carriers present in the substrate due to the ion strike, turns on the parasitic PNP bipolar 

transistor between the drain (collector), body (base), and source (emitter), resulting in 

increased charge collection.  Drift and diffusion are the dominant charge collection 

mechanisms for nMOS devices. 

  

 
Fig. III-14.  Illustration of an ion strike on a reverse-biased n+/p junction [Ba05]. 
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A consequence of charge generation and collection within a semiconductor device is 

radiation-induced photocurrents at the device terminals.  The shape of the current pulse is 

related to the collected charge by Eqn. (III-1), where I is the current, Q is the charge, and 

t is the time.  As seen in Fig. III-15, an initial spike of current occurs due to drift 

collection, followed by a slow decrease in current due to diffusion collection [Ma93]. 

 

 [ ]Amps
dt

dQ
I   =   (III-1) 

 

 

 

An additional phenomenon, although not discussed in detail within this paper but is 

increasingly more important as modern electronics scale to sub-100 nm dimensions, is 

multiple-node charge collection.  Due to the decreased feature sizes and increased 

packing densities, the plasma track of free carriers (electron-hole cloud) generated from 

 
Fig. III-15.  Typical shape of the SE current at a junction.  The total collected charge 
corresponds to the area under the curve [Ma93]. 
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an ion strike may span multiple device junctions, allowing for charge collection by drift 

and diffusion processes at multiple device terminals.  Fig. III-16, for example, illustrates 

the relative range of the electron-hole cloud created by a single-ion strike in a 1 µm 

CMOS technology and a 90 nm CMOS technology [Da07a].  The width of the electron-

hole cloud is technology independent; however the electron-hole cloud spans multiple 

charge collection terminals in the advanced technology, resulting in the potential 

modulation of many junctions and current transients at multiple locations. 

 

 

 

An additional mechanism that can result in multiple node charge collection is 

illustrated in Fig. III-17 where a proton collides with a single sensitive volume of bulk 

silicon, producing secondary particles including a 14 MeV oxygen ion, a proton, gamma 

 
Fig. III-16.  Relative range of the electron-hole cloud in a 1 µm and a 90 nm 
technology.  Top figure (a) shows the electron-hole cloud creating a potential 
perturbation only on a small portion of the drain. Bottom figure shows a strike with 
the same radius covering the source, drain and well contact [Da07a]. 
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rays, and alpha particles.  In this case the heavy oxygen ion continues to transverse six 

additional sensitive volumes of silicon, depositing between 30 fC and 40 fC of charge 

within each volume [Ti06].  This type of multiple-bit-upset, along with those resulting 

from charge collection by diffusion of charge to nodes within proximity of the strike, are 

expected to increase with scaling and are progressively more important for full SE 

characterization.  

 

 

 

Single-Event Effects 

Excess carriers collected as charge on circuit nodes through the previously described 

mechanisms can result in multiple types of SEEs.  Some SEEs are destructive and can 

lead to catastrophic system failures.  These permanent SEEs (i.e., hard errors), such as 

 
 
Fig. III-17.  Simulated nuclear event with a 63 MeV incident proton.  Proton interacts 
with a silicon nucleus producing secondary particles including a 14 MeV oxygen ion, 
a proton, gamma rays, and alpha particles.  The heavy oxygen ion transverses six 
sensitive volumes, which collect between 30 fC and 40 fC each [Ti06]. 
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single-event burnout (SEB), single-event gate rupture (SEGR), and single-event latchup 

(SEL), will not be discussed in detail in this work; however, various references are 

provided for the interested reader [Do99, Ga96, Jo96b, Wa86]. 

Single-ion perturbations in CMOS electronics commonly manifest as temporary (i.e., 

soft error) errors.  One type of effect resulting from SEs in an IC is a single-event 

transient (SET).  SETs are undesirable asynchronous electrical pulses that can propagate 

through signal paths and result in a variety of erroneous circuit responses.  In digital 

circuits, an SET can result in a single-event upset (SEU), that is, an alteration of the state 

of memory circuits (e.g. a memory cell can be changed from a logic “0” state to a logic 

“1” state).  Similarly, a multiple-bit upset (MBU) may occur if the ion perturbs multiple 

nodes within the circuit.  The SEU/MBU can lead to a circuit error if the corrupted data 

propagates throughout the circuit and is observable at the output.  In analog and mixed-

signal circuits, however, there exists no standard metric for soft errors, as the effect of a 

single-event is dependent on the circuit topology, type of circuit, and the operating mode.   

 

Conclusion 

This chapter presents a brief introduction into the primary space radiation 

environments that are of particular concern for SEEs in microelectronic circuits.  

Additionally a background of the basic charge generation and collection mechanisms 

following the interaction of ionizing particles with semiconductor material is presented.  

Finally, various SEEs are discussed with an emphasis on SETs.  The remainder of this 

work will be focused on SETs, specifically in mixed-signal phase-locked loop circuits.  



62 
 

The following chapter will describe SETs in digital and analog electronics, as well as 

various methods for modeling SETs in circuits. 
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CHAPTER IV 

 

SINGLE-EVENT TRANSIENTS 

 

Introduction 

The previous chapter describes the radiation environments and the processes that lead 

to charge generation and collection following the impact of an ionizing particle with a 

semiconductor device.  Following a particle strike near or at a junction, charge can be 

collected and manifest as a single-event transient (SET) – an undesirable asynchronous 

electrical pulse at an IC node that competes with the legitimate signals propagating 

through a circuit or perturbs the functionality of the circuit.  If the SET characteristics 

(amplitude and width) exceed the circuit tolerances, the SET can propagate through 

signal paths and result in a variety of erroneous circuit responses.  SETs can occur in 

digital and analog circuit topologies and are termed digital single-event transients 

(DSET) and analog single-event transients (ASET), respectively.  This chapter is devoted 

to discussing details on modeling SETs in circuit and device simulators.  Additionally, 

ASETs and DSETs that are of particular concern to the mixed-signal phase-locked loops 

presented in later chapters will be discussed. 

 

Modeling Single-Event Transients 

Since spacecraft malfunctions (NASA’s TOPEX/Poseidon satellite in 1992 [Bu05, 

Ko93]) were first attributed to SETs, the SET phenomenon has been widely researched 

through both experimental and simulation efforts.  The increased interest in SETs can be 



64 
 

attributed to three main factors.  First, the LET threshold (minimum LET for which SETs 

can be observed) for SET generation is low; heavy-ions with an LET as low as 1 MeV-

cm2/mg can generate SETs in certain analog circuit configurations, thus allowing for a 

large number of heavy-ions being capable of creating SETs [Ko93].  Second, SETs have 

been observed with amplitudes spanning the power supply rails (or greater) and durations 

as long as milliseconds [Bo04b].  Finally the energy threshold (minimum particle energy 

required for SET generation) is low; protons and even alpha-particles have been shown 

capable of generating SETs in advanced CMOS electronics [Bu05, Ga08]. 

In recent years, heavy-ion broadbeams [Sa03], ion microbeams [Pe02], and several 

types of lasers [Bo04b, Bu87, Lo07b, Mc03, Po99] have been used to characterize SETs 

in ICs.  Additionally, with increasing computing capabilities, recent works have shown 

the feasibility of computer models and device-, circuit-, and system-level simulations for 

predicting SETs in advanced IC designs, as well as the ability to identify many aspects 

that experimental testing alone does not provide  [Bo04b, Bo06, Lo06, Lo07a, Lo07b].  

As SETs in complex ICs may be simulated and analyzed quickly before experimental 

testing, it is crucial that we have descriptive and accurate models for the analyses.  

Modeling and simulation tools for predicting and analyzing SETs in ICs include: circuit 

simulators for modeling the circuit response to SEs, device simulators for modeling the 

interaction of the generated charge with the semiconductor device, mixed-mode 

simulators (a hybrid of circuit- and device-level simulators), and error rate predicting 

codes.  The following sections discuss circuit-level and mixed-mode simulators for their 

pertinence to this work. 
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Circuit-Level Simulations 

Though many circuit simulators exist, this work utilizes the Cadence Virtuoso Spectre 

simulator exclusively.  All work was performed using the IBM 130 nm 8RF and 90nm 

9SF PDKs for simulating complex designs at the transistor level.  All transistor and 

device models were calibrated to experimental device parameters as will be discussed in 

later chapters.  

 

 

 

The most common approach for representing the radiation-induced photocurrents in a 

circuit-level simulation is a double-exponential current source, and was developed by 

 
Fig. IV-1. The double-exponential current pulse model used for circuit-level 
simulations of radiation-induced photocurrents.  Also shown are the piece-wise 
equations directly compatible with SPICE-level circuit simulators. The total charge 
(Q) delivered by the current pulse is obtained by integrating I(t) over time, t [Ma93]. 
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Messenger in 1982 [Me82].  Fig. IV-1 shows the double-exponential current profile, 

along with the SPICE-compatible equations of a piece-wise exponential function [Ma93].  

The current profile can be compared to the typical photocurrent shape shown in Fig. III-

15. 

In order to implement the current profile(s) in a circuit-level simulator, current 

sources may be placed across the junction terminals, as in Fig. IV-2 [We02].  The use of 

a current source simplifies the charge collection process (a given ion penetrates the 

device to a certain depth, depositing a certain amount of charge that can be collected at a 

junction), while still maintaining the total charge collected over time. 

 

 

 

Mixed-Mode Simulations 

DasGupta, et. al. recently suggested that while the double-exponential profile 

adequately models the radiation-induced photocurrents in older technologies, the model 

 
Fig. IV-2.  Placement of current sources to model the radiation-induced photocurrents 
(after [We02]). 
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may not accurately predict the SE current pulse generated from particle interactions 

(large LET values) in advance sub-100 nm technology nodes [Da07a, Da07b].  In order 

to obtain tolerable current models in deep sub-micron technologies, two types of mixed-

mode simulations may be performed: decoupled and coupled. 

The current profiles in decoupled mixed-mode simulations may be extracted from 

device-level simulations and imported into the circuit-level simulator as a current source.  

The most common decoupled technique involves the 3D TCAD simulation of a single 

transistor loaded either by an RC time constant or a minimum sized inverter.  The single 

device is connected to compact models calibrated to the PDK for a given technology, as 

in Fig. IV-3.  Following the simulated ion strike, the current profile at the irradiated node 

is extracted from the 3D TCAD simulation and imported as a current source in a circuit-

level simulation.  The imported current source is connected to the circuit as described in 

the previous section discussing the implementation of the double-exponential current 

source model. 

While the decoupled mixed-mode technique preserves the physics within the single 

device, any larger scale effects that may impact multiple devices, such as the potential 

collapse within the substrate, are not captured by the technique.  Also, the decoupled 

technique assumes that the loading for the struck device remains constant.  Furthermore, 

for ICs where transistors of varying device dimensions are used, the SE current profiles 

for each device may be necessary.  Using a single current profile for multiple device 

dimensions and loading may be adequate depending on the circuit’s level of complexity; 

however, in many analog and mixed-signal designs the device dimensions vary widely.  

In order to fully characterize each node, decoupled mixed-mode simulations should be 
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performed for every device and loading combination in the circuit.  However, simulating 

all devices and loading combinations typically requires large amounts of computing time 

and therefore may not be feasible.  Each current profile used in this work is therefore an 

approximation based on the minimum device dimensions and standard loading. 

 

 

 

Coupled mixed-mode simulations allow for device-level interactions while 

maintaining the integrity of the circuit operation.  In coupled mixed-mode simulations, 

the 3D TCAD device is electrically connected to the calibrated compact models for the 

entire circuit, rather than importing the current profile into a circuit-level simulator as in 

the decoupled mixed-mode approach.  For small digital circuits this approach is ideal as 

the simulation can characterize effects such as a substrate potential collapse across 

multiple devices.  However, for large-scale analog electronics with varying device 

 
Fig. IV-3.  Mixed mode device/circuit simulation (after [Bu01]). 
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dimensions this approach is currently computationally infeasible.  The following sections 

discuss analog and digital single-event transients that are of particular concern to the 

phase-locked loop circuit presented in later chapters. 

 

 

 

Analog Single-Event Transients 

Since the radiation effects community has recognized analog single-event transients 

(ASET) as a significant source of various anomalies in space missions, there has been an 

increased interest in SETs in analog topologies such as voltage comparators, operational 

amplifiers, voltage references, DC/DC converters, voltage-controlled oscillators, and 

phase-locked loops [Ad00, Bo04a, Bo05, Bo06, Bo04b, Ch03, Ch06b, Ch07, Ch06a, 

Ec94, Jo96, Jo00a, Jo02, Jo00b, Ko00, La02, La06, Lo06, Lo07a, Lo07b, Lo07c, Lo08, 

 
 
Fig. IV-4.  Amplitude versus time-width (at full-width at half-maximum of amplitude) 
of an SET observed at the LM124 output.  The ions used during the broad-beam 
experiment are 100 MeV Br, 150 MeV Mg, and 210 MeV Cl.  The corresponding LET 
values of the ions used are 38.6, 6.25, and 11.5 MeV-cm2/mg, respectively [Bo02]. 
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Lo09, Pe01, Pe02, Sa02, Sa03, St02b].  Part of the challenge in characterizing and 

hardening against ASETs is the widely varying amplitudes and widths that can occur in 

the various topologies, as the ASET characteristics typically depend not only on the ion 

and LET value, but the circuit node and state as well.  Fig. IV-4, for example, shows a 

scatter plot of ASET amplitudes versus time-width (at full-width at half-maximum of 

amplitude) for heavy-ion experiments on an LM124 operational amplifier [Bo02].  The 

figure shows the wide range of amplitudes and pulse widths observed, identifying three 

specific trends: 1) slowly increasing transients with negative amplitude, 2) slowly 

increasing with positive amplitude, and 3) quickly increasing with positive amplitude and 

a saturation effect. 

 

 

 
Fig. IV-5.  Input of VCO (VinVCO) vs. time for PLL at 700 MHz operation.  Simulated 
SE strikes occur at 1.2 µs and span over approximately 280 clock cycles, lasting over 
500 ns.  The P-Hit curve represents the response of a strike on a pMOS device, 
whereas the N-Hit curve represents the response of a strike on an nMOS device 
[Lo06]. 
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Additional analog topologies, however, may have different ASET characteristics.  

Fig. IV-5 illustrates a simulation showing two types of transients that can occur on the 

voltage-controlled oscillator’s (VCO) input within the phase-locked loop (PLL) circuit 

[Lo06].  The simulated transients are generated following an ion strike depositing 200 fC 

of charge on the output node of the charge pump sub-circuit.  The transients reach  

640 mV in amplitude and last approximately 400 µs, spanning over 280 clock cycles 

[Lo06].  These large voltage transients ultimately manifest as frequency modulations at 

the PLL output and can affect the integrity of the systems for which the PLL is a part.  

Fig. IV-6 illustrates an experimentally captured transient within the output signal of a 

PLL designed in the IBM 130 nm 8RF technology [Lo07b].  The frequency transient is a 

manifestation of a similar voltage transient to that shown in Fig. IV-5.  The experimental 

transient was captured through the use of a two-photon absorption laser [Bo86, Mc02, 

 
Fig. IV-6.  (a) The reference and output signals versus time following a laser strike of 
incident energy 30 nJ in the charge pump component of the PLL at 200 MHz. (b) 
Voltage representation (output of diode detector) of the laser strike [Lo07b]. 
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Mc03, Mc07, St85] technique by striking an nMOS device within the charge pump sub-

circuit [Lo07b]. 

Figs. IV-4, IV-5, and IV-6 show some examples of various ASETs that can be 

generated within a single analog topology.  As each topology can impact the 

characteristics of the ASETs generated, and each application typically has individual 

upset thresholds, it is important to fully characterize the transient response for each 

circuit and its application.  Additionally, mixed-signal topologies, such as the PLL, may 

also include some digital components that may impact the overall SET vulnerability of 

the IC.  The next section is devoted to examining digital single-event transients (DSET) 

and their relationship to soft error generation within digital and mixed-signal topologies. 

 

Digital Single-Event Transients 

Single-event transients (SET) in digital microelectronics have generally received less 

attention at the device level over ASETs, although in recent years DSETs have been of 

particular interest.  In 0.25 µm technologies and older the error rates for digital 

electronics have been dominated by single-event upsets (SEU).   With the decreasing 

feature sizes and increasing operating frequencies, however, SETs are expected to 

dominate the soft error rates for space-deployed electronics systems [Ma02, Mc07].  

Moreover, the overall error cross-sections in advanced deep submicron CMOS 

technologies have been shown to increase for increasing operating frequencies due to 

DSETs in latches [Be04]. 

Similar to the transients in analog topologies, DSETs are spurious electrical signals 

that can propagate through signal paths and result in a variety of erroneous circuit 
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responses.  In digital circuits, an SET can result in a single-event upset (SEU), that is, an 

alteration of the state of memory circuits (e.g. a memory cell can be changed from a logic 

“0” state to a logic “1” state).  The SEU can lead to a circuit error if the corrupted data 

propagates throughout the circuit and is observable at the output.  These upsets are often 

termed “soft errors” as they do not result in permanent failures within the circuit.  With 

increasing operating frequencies, SETs are more likely to result in SEUs because the SET 

time-widths span a larger portion of the operating period, thus increasing the window of 

vulnerability for upset.  This effect is illustrated by the increase in SEU cross-section for 

various frequencies, as in Fig. IV-7 where the heavy-ion SEU cross-sections for dual 

interlocked cells (DICE) designed in a 180 nm technology are shown for frequencies 

varying from 10 MHz to 300 MHz [Ga04].  The cross-section, thus the error rate, 

increases with increasing frequency. 

 

 

 
Fig. IV-7.  Data from a 0.18 µm DICE latch showing the frequency dependence on the 
cross section [Ga04]. 
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The increasing sensitivity of ICs to SETs with increasing frequency and decreasing 

feature sizes presents numerous challenges for future technology nodes.  Also, in mixed-

signal technologies where DSETs and ASETs can result in a wide variety of circuit 

responses, the characterization of complex microelectronics in advanced technologies 

requires novel analyses, simulation, and testing techniques in order to ensure the 

reliability and integrity of the designs for radiation environments.  The next chapter 

discusses various novel analysis techniques and designs for un-hardened and radiation-

hardened PLL circuits, as well as simulation and experimental verification of each 

design. 

 

Conclusion 

As SEUs have been shown to account for over 84% of all radiation effects observed 

in space-deployed systems [Ko99, Ma02], and SETs are suspected to become the 

dominant contributor to SEUs in advanced microelectronics [Ma02, Mc07], it is crucial 

that reliable models for SET generation and propagation exist for digital and analog 

topologies.  This chapter is devoted to describing early and recent developments for SET 

modeling in circuit and device simulators.  Also discussed are the various impacts SETs 

can have on various testing approaches and the overall error-rates of the systems in-flight.  

The following chapter utilizes the simulation techniques presented throughout this 

chapter in order to analyze the various SETs that are of concern to mixed-signal PLL 

topologies.  Additionally, hardening approaches for each sub-circuit (if necessary) in the 

PLL will be presented along with any experimental results corroborating the developed 

models and simulations. 
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CHAPTER V 

 

SINGLE-EVENT EFFECTS IN UNITY GAIN PHASE-LOCKED LOOPS 

 

Introduction 

In this chapter, the SET performance of a general unity gain PLL circuit is analyzed 

through the use of simulations and targeted two-photon absorption (TPA) laser 

experimentation [Bo86, Lo07b, Mc02, Mc03, St85].  PLLs were designed using the IBM 

130 nm 8RF CMOS PDK and fabricated through the MOSIS foundry system.  Table V-1 

shows the simulated and tested frequency specifications for each PLL discussed 

throughout this chapter.   

 

 

 

Experimental testing was performed using a two-photon absorption (TPA) laser 

technique [Bo86, Mc02, Mc03, St85] on the PLL circuits for single-event upset (SEU) 

mapping and SET error signature characterization.  SEU mapping is used to quantify the 

vulnerable areas of each PLL sub-circuit, indicating an approximate 99% reduction in the 

sensitive area of the radiation-hardened-by-design (RHBD) charge pump over the 

TABLE V-1 
PLL GENERAL DESIGN SPECIFICATIONS 

Design Specifications

PLL 

Type/Name Technology Parameter Simulated Measured

Current-based CP 
PLL / CPLL

130 nm Center Frequency (fc) 400 MHz 200 MHz
Frequency Range 50-850 MHz 40-550 MHz

Voltage-based CP 
PLL / VPLL

130 nm Center Frequency (fc) 400 MHz 200 MHz
Frequency Range 50-850 MHz 40-600 MHz  
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conventional design.  Second, analysis of the measured PLL output error signatures is 

used to quantify the relative hardness of PLL circuits implementing a voltage-based 

charge pump (V-CP) over a design implementing a current-based charge pump (C-CP), 

demonstrating 2.3 orders of magnitude improvement in SE tolerance.  Further, 

demonstration of the SE sensitivity of the integrated voltage-controlled oscillator (VCO) 

and phase-frequency detector (PFD) is investigated [Lo07b].  

 

PLL Circuit Description 

Two PLL topologies were designed for this work using the IBM 130 nm 8RF CMOS 

technology available through the MOSIS foundry.  Similar to the PLLs presented in 

chapter II, both PLLs consist of four primary components: the phase-frequency detector 

(PFD), charge pump (CP), low-pass filter (LPF), and voltage-controlled oscillator (VCO), 

as shown in Fig.  II-11.  Buffers were included subsequent to the VCO module to account 

for loading effects.  The first PLL was implemented with a conventional C-CP while the 

second PLL was implemented with an RHBD V-CP.  Finally, both PLLs employed a 

feedback factor of 1 such that the PLL was in a unity gain configuration. 

 

Charge Pump Designs 

The C-CP, schematically represented in Fig. II-17(a), was designed to source/sink  

2 µA of current upon receiving a signal on the UP/DOWN signal lines.  Due to the fixed 

current sourcing/sinking capability of such a charge pump, the removal time of collected 

charge due to an SE hit is directly proportional to the total charge deposited.  This results 

in long recovery times, and higher vulnerability of this type of design for heavy ion 
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exposure.  This type of charge pump is typically used because of the high linearity and 

power supply noise rejection.  However, previous works have shown that the C-CP is the 

most sensitive PLL sub-circuit to SEs [Bo06, Lo06, Lo07a].  

Recent work with circuit-level simulations has suggested a voltage-based charge 

pump (V-CP) for improved SE tolerance [Lo06, Lo07a].  The V-CP and LPF, 

schematically represented in Fig. II-17(b), was designed such that the input to the LPF is 

switched between Vdd and GND.  In contrast with the C-CP, current to/from the LPF 

depends directly on the control voltage of the VCO (VinVCO) and the RC time constant of 

the LPF.  As described in [Ga80, Lo06, Lo07a], although the V-CP is more sensitive to 

power supply variations than the C-CP module, numerous advantages are gained.  First, 

the RHBD V-CP reduces the number of vulnerable nodes present in the charge pump.  

Second, as the rate of charge sourcing and sinking is increased, a faster 

acquisition/recovery time can be achieved.  Additionally, the operational performance 

can be improved (i.e. an increased natural frequency, improved damping, increased loop 

bandwidth) while reducing the vulnerability of the charge pump to SEs.  Finally, the 

RHBD V-CP provides a mechanism (the addition of the resistor R1 in the LPF) to isolate 

the vulnerable output node of the charge pump from the control voltage of the VCO 

[Lo06, Lo07a]. 

 

Simulation Study of Single-Event Transients in the PLL 

As discussed, previous works have shown that the SET response of the PLL is 

dominated by the SET response of the charge pump module [Bo06, Lo06, Lo07a].   

Fig. IV-4 (see Chapter IV) displays two simulated transients occurring on the input 
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voltage of the VCO as a result of strikes on pMOS (P-Hit) and nMOS (N-Hit) devices 

depositing 200 fC of charge in the C-CP module.  The simulations were performed using 

the CADENCE EDA tool suite, the SPECTRE environment, and calibrated IBM 130 nm 

8RF device models.  Charge collection from heavy-ion strikes were simulated using a 

double exponential current source injected into the circuit with time constants calibrated 

to the drift and diffusion processes affecting the free-carriers in the technology nodes of 

study [Bo06, Lo06, Lo07a].  The transients last approximately 500 ns and result in 

approximately 120 erroneous clock pulses [Lo06, Lo07a].  Similar hits in hardened PLL 

designs result in only a few erroneous clock pulses. 

 An additional metric that can be useful in examining the response of the PLL to SEs 

is the amount of phase displacement present in VoutVCO.  The phase displacement is the 

amount of phase shift that occurs in the output of the PLL.  For the SE strike to cause an 

erroneous pulse a phase displacement of at least 2π radians (360 degrees) must occur.  

Fig. V-1 shows that the accumulated output phase displacement (the phase shift present 

in the output signal with respect to the ideal reference signal) resulting from strikes 

within the PLL can be reduced by approximately two orders of magnitude by 

implementing the RHBD V-CP module [Lo06, Lo07a].  Also shown in Fig. V-1 is the 

output phase displacement versus frequency for simulated ion strikes in the VCO.  These 

simulation results are verified experimentally using laser exposures and are presented in 

the following sections. 
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Laser Two-Photon Absorption Experimental Details 

Recently, a method of laser-induced carrier generation for single-event effects (SEE) 

applications based on two-photon absorption (TPA) using high peak power femtosecond 

pulses at sub-bandgap optical wavelengths has been demonstrated [Mc02, Mc03].  A 

primary motivation for the development of the TPA SEE technique is its ability to 

interrogate SEE phenomena through the wafer using backside irradiation.  This 

eliminates interference from the metallization layer stacks that are prevalent in modern 

devices, and circumvents many of the testing issues associated with flip-chip-mounted 

parts.   In this paper, the through-wafer TPA SEE technique is used to perform SEU 

mapping of the PLL circuits, and to investigate and characterize the SET response of PLL 

circuits. 

 
Fig. V-1.  Simulation results showing the maximum phase displacement vs. frequency 
for SE strikes depositing 500 fC of charge in the C-CP, VCO, and V-CP.  At least 2 
orders of magnitude improvement is achieved by the V-CP over the C-CP [Lo06, 
Lo07a]. 
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The TPA SEE experimental setup is described in [Mc02, Mc03].  The device under 

test (DUT) was mounted on a motorized xyz translation platform with 0.1 µm resolution. 

Optical pulses are focused through the wafer onto the front surface of the DUT with a 

100x microscope objective, resulting in a near-Gaussian beam profile with a typical 

diameter of approximately 1.6 µm at focus [Mc02].  Because the carrier deposition varies 

as the square of the irradiance (I2), where I represents the laser pulse intensity [Bo86, 

Mc02, St85], this corresponds to a Gaussian carrier density distribution with an 

approximate diameter of 1.1 µm (full-width-at-half-maximum).  All experiments were 

performed at room temperature. 

 

Description of the DUT 

The DUT, schematically represented in Fig. V-2, includes two PLL circuits (CPLL 

and VPLL) and two additional VCO circuits to serve as the reference signals.  The CPLL 

was designed with the C-CP, whereas the VPLL implemented the RHBD V-CP.  For both 

PLLs the reference signals (VREF1 and VREF2) and the outputs (VoutCPLL and VoutVPLL) are 

bonded to output pads.  Fig. V-3 illustrates the circuit schematics of the VCO, C-CP, and 

V-CP and indicates the most sensitive node(s) of each design.  The most sensitive nodes 

(as defined in [Bo05, Bo06, Lo06, Lo07a, Lo07b, Lo07c]) are represented in the 

schematics by laser targets consisting of 1 µm x 1 µm diffusion areas tied to the circuit 

nodes in the layout.  The diameters of the additional diffusion areas for the laser targets 

were chosen to be approximately the diameter of the laser spot size (~1 µm) and were 

used to facilitate the SET characterization experiments.  Furthermore, Fig. V-4 displays 

an image of the VCO circuit for the CPLL captured by the Indigo Alpha near-infrared 
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(NIR) focal plane array, and indicates a laser target connected to the output of a current-

starved inverter stage within the VCO.  Additionally, the reference clock circuit for the 

CPLL and some of the output buffers are also displayed in Fig. V-4.  

 

 

 

The VCO circuits for the experiments were designed to achieve a center frequency 

(frequency at which VinVCO=Vdd/2) of approximately 200 MHz.  The maximum frequency 

for the VCO in the PLL implementing the C-CP (VCO a in Fig. V-5) was measured to be 

approximately 530 MHz, whereas the maximum frequency measured for the PLL 

implementing the RHBD V-CP (VCO b in Fig. V-5) was measured to be approximately 

600 MHz.  For both PLL circuits, the locking range was between approximately 40 MHz 

and 350 MHz. 

 
 

Fig. V-2. General block diagram of the DUT, including the two PLL circuits (CPLL 
and VPLL) and two on-chip reference clock generating circuits. 
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Fig. V-3.  Schematics of the (a) VCO, (b) C-CP, and (c) V-CP circuits indicating the 
locations of the 1 µm x 1 µm diffusion areas used for the laser targets. 
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Fig. V-5.  Measured transfer characteristics of the VCO circuits. 

 
 
Fig. V-4.  Near-infrared photo of one strike location tied to a node in the VCO circuit 
located in the CPLL. Also indicated is the reference clock generation circuit and 
output buffers. 
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Fig. V-5 illustrates the measured transfer characteristics (output frequency versus 

VinVCO) of the VCO circuits and indicates the PLL locking range.  Although the maximum 

frequencies of the VCO circuits differ slightly, the operating ranges of the PLLs are 

closely matched and can be varied independently, thus a direct comparison between the 

circuits can be made. 

 

TPA-induced SEU Mapping 

Using the through-wafer TPA technique, SEU maps of the sensitive regions in the 

PLL sub-circuits were generated.  The SEU maps display the 2-dimensional spatial 

dependence of the PLL error signatures that cannot be determined through the use of 

broadbeam heavy-ion measurements.  The experiments were performed as a function of 

x-y location, the incident laser pulse energy, and PLL sub-circuit. For each scan the PLLs 

were operated at 200 MHz.  

In order to quantify an SEU, the definition of a PLL upset must be established. We 

have defined an SEU as a single-event that resulted in a PLL loss-of-lock.  However, 

loss-of-lock is customarily dependent on the manufacturer and the type of lock detector 

implemented.  Table V-2 shows five sets of criteria for loss-of-lock provided by various 

PLL manufacturers [An06, Fr04, Ha05a, Id04] together with our criteria for loss-of-lock 

used to quantify an SEU.  For this work, loss-of-lock was determined to occur if the 

phase error was greater than 2.5 ns for at least 6 cycles in a window of 160 clock pulses.  

In order to determine if this criteria for loss-of-lock occurred, a Tektronix-TDS6124C 

oscilloscope sampling at 20 GS/s was used.  The trigger was setup to acquire a signal that 
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met the criteria for a loss-of-lock.  Upon the occurrence of a triggered signal, the x-y 

location of the SEU was recorded. 

 

 

 

The SEU maps were generated by scanning the laser over a defined region of interest 

at 0.2 µm/step.  The laser was operated at a 1 kHz repetition rate, and was focused on 

each grid point for 10 ms, thus allowing for ten laser strikes per grid point in the scan 

area.  The 10 ms focus time for each grid point was an adjustable parameter and was 

chosen to ensure that the data captured by the oscilloscope and the software corresponded 

to the proper grid point.  However, SEUs resulting from noise could also be present in the 

data sets.  The erroneous upset signatures that could unambiguously be identified as 

TABLE V-2 
CRITERIA FOR LOSS-OF-LOCK 

 
 

Part D may function in 1low-frequency or 2high-frequency operating modes. 
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being in error were removed from the data.  Additionally, multiple runs were performed 

in order to help eliminate erroneous data points resulting from noise. 

For each x-y location in the grid, an upset was recorded once the criteria for a loss-of-

lock were satisfied.  Fig. V-6 illustrates an example of a captured SEU resulting from a 

strike in the C-CP sub-circuit. The PLL was operating at 200 MHz, and lost phase lock at 

approximately 70 ns with respect to the time origin of the image.  Although the phase and 

frequency recovery of the reference signal cannot be visualized in Fig. V-6, phase lock 

was regained 420 ns following the laser strike. 

 

 

 

 

 

 
 

Fig. V-6.  Capture of an SEU (PLL loss-of-lock) following a 70 nJ laser strike in the 
conventional current-based charge pump sub-circuit. The PLL was operating at  
200 MHz and lost phase lock for approximately 420 ns. 
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SET Characterization 

Additionally, the TPA technique was used to investigate and characterize the error 

signatures of the PLL sub-circuits.  This experiment utilized the critical nodes [Lo06, 

Lo07a] with at least 1 µm x 1 µm diffusion areas within each sub-circuit.  In contrast 

with the SEU mapping experiments for which the incident pulse energy was variable, all 

SET error signature experiments were performed for incident pulse energy of 30 nJ. 

During steady-state operation, the output of the PLL is locked to the phase and 

frequency of the reference signal.  A SE occurring within the PLL is expected to cause a 

temporal perturbation in the output signal [Bo06, Lo06, Lo07a].  By monitoring and 

comparing the reference signal to the PLL output signal, the number of erroneous 

(missing or additional) pulses present in the output of the PLL following a strike can be 

extracted. 

Data were collected for a total of ten laser strikes per strike location for varying input 

bias conditions (VREF1 and VREF2) representing various frequencies of PLL operation.  For 

all strikes the reference signal and the PLL output signal were recorded following the 

strike until the PLL returned to its locked state.  Fig. V-7 illustrates an example of the 

reference and output signals following a laser strike of energy 30 nJ in the C-CP 

component of the CPLL.  The PLL loses phase/frequency lock as the output frequency is 

reduced following the strike.  Subsequently the frequency gradually increases until the 

PLL returns to the locked state after 2.6 µs. 
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Experimental Results 

TPA-induced SEU Mapping 

Fig. V-8 illustrates the layout view of the VCO and indicates the input and output 

stages.  Also displayed are the TPA-induced SEU maps of the VCO circuits for incident 

laser pulse energies of 1.9 nJ, 2.8 nJ, and 7.0 nJ.  Laser strikes in the input bias stage, 

three internal nodes, and the output stage resulted in SEUs for the lowest energies tested 

(1.9 nJ and 2.8 nJ).  Strikes in the input bias stage will alter the bias voltages applied to 

each current-starved inverter in the structure and thus modulate the frequency of 

oscillation [Lo06, Lo07a].  Therefore, almost every strike occurring within the input bias 

stage will result in an SEU.  

Conversely, strikes occurring within the current-starved inverter structures will result 

in an oscillation failure depending on the drive current of the current-starved inverter and 

 
 
Fig. V-7. (a) The reference and output signals versus time following a laser strike of 
incident energy 30 nJ in the C-CP component of the CPLL at 200 MHz. (b) Voltage 
representation (output of diode detector) of the laser strike.  
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the temporal location of the strike with respect to the oscillation cycle [Lo06, Lo07a].  In 

addition, a strike occurring closer to the output buffer will be more likely to result in an 

SEU as the transient is more likely to propagate to the output.  Hence, SEUs were 

recorded for lower incident energy strikes in some of the internal VCO nodes and the 

output nodes.  Furthermore, as the incident laser pulse energy was increased, the number 

of SEUs increased, resulting in a larger vulnerable area.  

 

 

 

Fig. V-9 illustrates the layout view of the PFD and RHBD V-CP sub-circuits.  Also 

displayed is the TPA-induced SEU map of the PFD and V-CP circuits for incident laser 

 

 
Fig. V-8. (a) The layout view of the VCO circuit indicating the input and output 
stages. Also shown are the TPA-induced SEU maps of the VCO circuit for incident 
laser pulse energies of (b) 1.9 nJ, (c) 2.8 nJ, and (d) 7.0 nJ. 
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pulse energy of 7.0 nJ.  No SEUs were recorded at energies below 7.0 nJ.  Moreover, 

only strikes in the output stages of both the PFD and V-CP resulted in SEUs at the 

highest incident energy tested (7.0 nJ).  

 

 

 

Finally, Fig. V-10 displays the layout view of the C-CP sub-circuit.  Also displayed 

are the TPA-induced SEU maps of the C-CP circuit for incident laser energies of 2.5 nJ, 

3.7 nJ, and 7.0 nJ.  Strikes at incident laser energy of 2.5 nJ in one of the output 

transmission gates resulted in SEUs, indicating that the output node of the C-CP is the 

most sensitive node.  As charge is deposited directly onto the output node, the control 

voltage of the VCO (VinVCO) is perturbed, thus altering the output frequency of the PLL 

 

 
 
Fig. V-9. (a) The layout view of the PFD and V-CP sub-circuits. Also displayed is the 
TPA-induced SEU map of the PFD and V-CP sub-circuits for incident laser pulse 
energy of (b) 7.0 nJ. 
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[Bo06, Lo06, Lo07a].  Additionally, as the laser energy was increased to 3.7 nJ, strikes in 

some of the delay inverters and delay transmission gates–located in the “dead-zone” 

circuitry as defined in [Bo06, Lo06, Lo07a]–also resulted in SEUs.  Strikes in the delay 

inverters and gates alter the state of the output transmission gates, resulting in a false 

activation of the charge pump.  Furthermore, at the highest energy tested of 7.0 nJ almost 

every device in the charge pump resulted in an SEU. 
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Fig. V-10. (a) The layout view of the C-CP sub-circuit. Also displayed are the TPA-
induced SEU maps of the C-CP sub-circuit for incident laser energies of (b) 2.5 nJ, (c) 
3.7 nJ, and (d) 7.0 nJ. 
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In order to quantify the results of the TPA-induced SEU maps, laser sensitive areas 

were calculated for each sub-circuit.  The sensitive areas were calculated by multiplying 

the area of each grid point in the 2D scan (0.2 µm x 0.2 µm) by the number of SEUs per 

scan.  However, as the laser spot size was on the order of 1 µm in diameter and was 

greater than the dimension of the scan resolution, the laser sensitive area will be an 

under-estimation of the true sensitive area.  Therefore, we calculated error bars based on 

the amount of area the laser spot extended past each sensitive area.  Eqn. (V-1) represents 

the error in the cross-section calculation for a single upset, where LS is the diameter of 

the laser spot in µm and SR is the scan resolution in µm. 

 

 2
2

single 4
SR

LS
e −

⋅
=

π
  (V-1) 

    

However, when multiple SEUs are grouped together, Eqn. (V-1) cannot be used as 

the cross-sections for each individual SEU will overlap.  Therefore, to avoid a gross over-

estimation of the error in cross-section, a script was developed to account for the larger 

area of the laser spot size (~1 µm2) with respect to the scan resolution (0.2 µm x 0.2 µm). 

Using the script to calculate the error in laser sensitive areas, Fig. V-11 displays the 

calculated cross-sections of each PLL sub-circuit versus the square of the laser energy, 

because carrier generation in the two-photon process is proportional to the square of the 

laser pulse irradiance (I2) [Bo06, Mc02, St85].  Only upper error bars are included as the 

calculated laser cross-section is lower bounded by the 2D scan resolution.  
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The VCO has the greatest sensitive area versus laser energy, followed by the 

conventional charge pump (C-CP) sub-circuit and the RHBD charge pump (V-CP) and 

PFD modules.  When comparing the charge pump sub-circuits directly, the RHBD V-CP 

reduces the vulnerable area, by approximately 99%, almost 2 orders of magnitude, at  

7.0 nJ.  These data indicate that the VCO and C-CP modules dominate the number of 

SEUs that will occur in the PLL.  Moreover, implementing the RHBD V-CP can 

significantly reduce the overall sensitive area of the PLL, reducing the total sensitive area 

of the PLL by approximately 32%. 

 

PLL Error Signature Characterization 

The second set of experiments examined the SET characteristics and error signatures 

of the PLL sub-circuits.  Data were collected for 10 strikes per location per input bias 

 
 
Fig. V-11.  Laser sensitive area versus the square of the incident laser energy.  Upper 
error bars were calculated from a script that accounted for the amount of additional 
area that the laser spot size covered over the scan resolution. 
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condition, and the number of erroneous clock pulses (missing or additional pulses in the 

output of the PLL) was calculated as a result of strikes in the various PLL components.  

The maximum number of erroneous pulses in the output of the CPLL and VPLL 

following strikes in the C-CP, VCO, and RHBD V-CP modules are displayed in  

Fig. V-12 as a function of the frequency of operation on a semi-log scale. 

 

 

  

Laser strikes in the C-CP result in a maximum of 2.3 orders of magnitude more 

erroneous pulses than strikes in the V-CP, and between 1 and 2 orders of magnitude more 

erroneous pulses than strikes in the VCO.  This result illustrates the reduced vulnerability 

of the PLL implementing the V-CP over the C-CP.  For the C-CP, the maximum number 

of erroneous pulses due to a single hit (3745 missing pulses) occurs at 140 MHz and 

 
 
Fig. V-12.  Maximum number of erroneous clock pulses versus frequency for laser 
strikes in various PLL sub-circuits.  A maximum of 2.3 orders of magnitude 
improvement was achieved by the RHBD charge pump over the conventional design. 
The incident laser energy was 30 nJ. 
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results from strikes on the output node.  The maximum number of erroneous pulses due 

to a single strike in the VCO and V-CP circuits occurs at 200 MHz with 54 erroneous 

pulses and 290 MHz with 35 missing pulses, respectively.  The average number of 

erroneous pulses is plotted in Fig. V-13 (note the difference in y-axis scale).  In 

agreement with the results of Fig. V-12, the mean number of erroneous pulses is 

approximately 2 orders of magnitude lower for strikes occurring in the V-CP over the C-

CP.  Error bars represent 1 standard deviation from the mean. 

 

 

 

Fig. V-14 illustrates the average number of erroneous pulses for the VCO and V-CP 

in the VPLL circuit when operating at two different supply voltages.  For the VCO, the 

reduction in the power supply voltage from 1.2 V to 1.0 V results in an increased 

 
 
Fig. V-13.  Average number of erroneous clock pulses versus frequency for laser 
strikes in various PLL sub-circuits (note the difference in y-axis scale).  The mean 
number of erroneous pulses is approximately 2 orders of magnitude lower for strikes 
occurring in the V-CP over the C-CP at incident laser energy of 30 nJ.  Error bars 
represent one standard deviation from the mean. 
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vulnerability to SEs and a decrease in the frequency of operation.  Although the 

frequency of oscillation decreases due to the lower drive current in the VCO, the 

restoring drive of the VCO responsible for the SET recovery also decreases.  The 

frequency decrease will improve the SE response because the SET width will span a 

smaller percentage of the PLL output pulse width, resulting in a smaller perturbation on 

the output.  However, the overall increase in the number of erroneous PLL output pulses 

indicates that the reduction in drive current dominates the reduction in the frequency, and 

highlights the importance of drive current in determining the SET response of VCO sub-

circuit. 

 

 

 

Conversely, the response to strikes in the V-CP for a reduced power supply of 1.0 V 

versus 1.2 V is a slight decrease in the overall susceptibility to SEs, indicating that the 

 
 
Fig. V-14. Average number of erroneous pulses versus frequency for various power 
supply voltages in the VCO and V-CP of the VPLL circuit. 

 



 98

reduction in the power supply has a minimal effect on the SE response to strikes in the V-

CP module.  This effect results from the fundamental mechanisms controlling the RHBD 

V-CP.  As there are no fixed current sources setting the drive current as in the VCO and 

the C-CP, the reduction in drive current is minimal because the current depends strongly 

on the RC time constant in the LPF.  Therefore, the reduction in frequency is the 

dominant contributor to the decrease in erroneous PLL output pulses as the power supply 

voltage is reduced. 

 

 

 

An additional effect observed is illustrated in Fig. V-15 in which the number of 

erroneous pulses in the hardened (VPLL) and non-hardened (CPLL) PLL outputs is 

compared for strikes in the VCOs.  Typically, the maximum number of erroneous clock 

pulses resulting from strikes in the VCO will increase with increasing frequency of 

 
 
Fig. V-15. Maximum number of erroneous pulses versus frequency in the outputs of 
the CPLL and VPLL for strikes in the VCOs. 
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operation.  However, once the increasing drive currents within the VCO begin to 

dominate the SE response of the VCO, the number of erroneous clock pulses will begin 

to decrease with increasing frequency of operation [Bo05, Lo06, Lo07a, Lo07c].  This 

effect corresponds to the decrease in the maximum number of erroneous clock pulses for 

the VCO in the CPLL as the frequency is increased from 200 MHz to  

290 MHz.  Moreover, although the VCOs are identical, the slope of the number of 

erroneous pulses versus frequency is greater for the CPLL than the VPLL.  This result 

indicates that a faster response time of a closed-loop PLL improves the overall SE 

response and impacts the shape of the maximum number of erroneous pulses versus 

frequency for strikes in the VCO module.  As a strike in the VCO will result in a 

frequency perturbation, the response time of the loop will determine the length of time 

the PLL will take to recover from the SE.  Therefore, since the VPLL’s loop response 

time is decreased due to the implementation of the RHBD V-CP, the susceptibility of the 

VPLL to SETs is also reduced.  The decreased slope of the VPLL is due to the increased 

natural frequency and decreased damping when implementing the V-CP over the C-CP 

[Lo06, Lo07a]. 

 

Conclusion 

Two phase-locked loop circuits were designed, fabricated, and tested in the IBM  

130 nm CMRF8RF process available through the MOSIS foundry for SET sensitivity and 

the effectiveness of RHBD mitigation.  The first PLL implements a conventional current-

based charge pump technique, the second utilizes a RHBD voltage-based charge pump 

for improved SE performance.  Results from a through-wafer two-photon absorption 
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technique show 2.3 orders of magnitude improvement in the number of erroneous pulses 

present in the output of the PLL following a SE strike in the hardened design.  TPA-

induced SEU maps indicate that implementing the RHBD voltage-based charge pump 

over the conventional current-based module reduces the vulnerable area of the charge 

pump module by approximately 99%.  The proposed hardening technique effectively 

reduces the sensitivity of the charge pump sub-circuit below the upset level of the 

voltage-controlled oscillator.  Additional improvements are possible by addressing upsets 

in the VCO.  These results show that RHBD is effective for high-speed, mixed-signal 

circuits using unconventional analog design techniques and targeted single-event circuit 

simulations. 
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CHAPTER VI 
 
 

MODELING AND MITIGATING SINGLE-EVENT TRANSIENTS IN  
VOLTAGE-CONTROLLED OSCILLATORS 

 
 

Introduction 

The previous chapter presented a simulation and experimental characterization of 

single-event upsets (SEU) and single-event transients (SET) for two types of unity gain 

PLL circuits.  The first, a conventional current-based charge pump PLL, was shown to 

possess an inherent vulnerability to SETs in the charge pump module.  Therefore, a 

voltage-based charge pump was proposed to significantly reduce not only the length and 

magnitude of SETs generated within the charge pump, but also the cross-sectional area 

sensitive to SEUs [Lo06, Lo07a, Lo07b].  Also, it is shown that if the charge pump 

functional block is hardened to a sufficient level, the VCO becomes the dominant SE 

upset source at 130 nm.  These results illustrate that VCOs can contribute to the overall 

single-event (SE) susceptibility of mixed-signal systems [Lo06, Lo07a, Lo07b].  

Furthermore, previous work has shown an increased sensitivity to SEs in VCO topologies 

as technologies scale [Bo05].  These observed sensitivities and trends warrant a closer 

look into the fundamental mechanisms governing the generation and propagation of SETs 

in the VCO. 

This chapter presents an analytical model to predict the response of the stand-alone 

VCO to SEs, and radiation-hardened-by-design (RHDB) techniques to improve the SE 

tolerance of VCO designs.  All RHBD techniques presented in the following sections 

were implemented on VCO designs developed in the IBM 9SF 90 nm process.  The 

effectiveness of the RHBD techniques is illustrated through the use of circuit-level 
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simulations, and further compared to analytical calculations.  By using the RHBD 

techniques presented here, the amount of phase displacement in the output of the VCO 

can be reduced by up to 66%.  As a result, the novel RHBD techniques of this chapter, 

which can be applied to all current-starved inverter structures, can reduce the 

susceptibility of the VCO to SEs and significantly harden the mixed-signal circuits of 

which it is a part.  Furthermore, the analytical model may serve as a tool for designers in 

developing VCOs to not only meet design specifications, but to minimize the effects of 

SEs. 

 

The Current-Starved Voltage-Controlled Oscillator 

Description of VCO Circuit Topology 

The VCOs discussed in this chapter follow the topology presented in Chapter II,  

Fig. II-18.  The VCO circuits in this study were designed with the IBM 9SF 90 nm PDK 

using low-voltage threshold (LVT) devices for a power supply voltage of 1.0 V.  All of 

the circuits presented share the same overall topology with appropriate changes in bias 

and ring-oscillator (RO) stages for the RHBD techniques.  Fig. VI-1 illustrates the 

transfer characteristics of the VCO designed with 7 RO stages and a center frequency (fc) 

of approximately 1.3 GHz.  The VCO was designed such that for VinVCO = Vdd/2 (fc), the 

oscillating frequency was within 10% of (fmax+fmin)/2 to ensure the proper balance 

between gain, jitter, and stability [Bo05]. 

Furthermore, the linear region of operation was maximized by introducing an 

additional pMOS device, a wide nMOS device, and a resistor in the input-bias circuit, as 

described in [Be98].  The primary advantages of the linearization is an increase in the 
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input operating voltage range and the predictability (∆f/∆V is constant) across the 

operating range.  A decrease in the maximum operating frequency will arise with this 

linearization scheme; however, this decrease in maximum operating frequency will also 

result in decreased jitter.  Although the design does result in an increase in power (~3% 

for  11 RO stages) and vulnerable area to SEs (~100% for 11 RO stages), it is ideal for 

operation in a PLL as the linearized VCO results in a large linear operating range and 

decreased jitter in the output. 

 

 

 

Single-Event Response of the VCO 

In order to separate the effects of the negative feedback within the PLL on the SE 

response of the VCO, the remainder of this chapter discusses the response of the VCO to 

SEs as a stand-alone oscillator.  To analyze the SE response of the VCO, two 

 
Fig. VI-1.  Transfer characteristics, output frequency versus input voltage, of the VCO 
designed for a center frequency of 1.3 GHz and implemented with 7 RO stages. 
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mechanisms representing SE strikes in either the input-bias stage or in a current-starved 

inverter must be studied.   SE strikes in the input-bias stage will alter the biasing voltages, 

Vpbias and Vnbias (see Fig. II-18), resulting in altered current through the current mirrors 

and current-starved inverters.  This ultimately results in a frequency modulation of the 

output signal.  For example, Fig. VI-2 shows a typical response following a strike in the 

bias circuit.  The output frequency of the VCO prior to the simulated ion strike is fixed to 

approximately 1.6 GHz.  The frequency is determined by the current dissipation through 

each RO stage, which directly depends on the bias voltages Vpbias and Vnbias.  Immediately 

following the ion strike, voltage Vpbias is reduced below its normal operating value, 

consequently increasing voltage Vnbias above its normal operating value.  The changes in 

bias voltages result in stronger current drives through each RO stage and temporarily 

increase the output frequency of the VCO to approximately 3 GHz (positive frequency 

modulation).  Cases where negative frequency modulation (the output frequency is 

temporarily reduced) may also occur.  

On the other hand, SE strikes in a current-starved inverter stage will either deposit or 

deplete the charge stored on the output node of the inverter stage.  The voltage on the 

affected node will remain perturbed until this charge is dissipated, ultimately resulting in 

a temporary oscillation failure until the perturbation is removed, as shown in Fig. VI-3. 
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Fig. VI-2. The output voltage of the VCO during an SE in the input bias stage.  The 
strike occurs at approximately 15 ns and has an LET of 80 MeV-cm2/mg. A frequency 
modulation occurs until the current can be restored to its initial value. 

 

 
Fig. VI-3. The output voltage of the VCO and drain voltage of the hit device during a 
single-event in a current-starved inverter stage.  The strike occurs at approximately  
15 ns and has an LET of 80 MeV-cm2/mg. The output of the VCO is locked to Vdd 
until the drain voltage recovers. 
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Modeling SETs in the VCO 

As the basic mechanism affecting the current-starved inverter response to an SE strike 

is its ability to dissipate deposited charge, one possible RHBD technique for SET 

mitigation is to decrease the localized delay of each current-starved inverter stage and 

compensate for the decrease in overall system delay by increasing the number of total 

stages.  Although increasing the number of stages also has the adverse effect of 

increasing the total active area, it is initially assumed that the individual stage 

vulnerabilities will be reduced.  A simple model depicting the response of the VCO to SE 

hits can be represented by two current sources (ID) representing the restoring device 

current in a current-starved inverter, an output nodal capacitance (C), and a current 

source representative of the current induced by the SE (Ihit), as shown in Fig. VI-4.  

 

 

 
 
Fig. VI-4. A simple model for an SE hit in a current-starved inverter can be 
represented by two current sources (ID) representing the restoring device current in an 
inverter, an output nodal capacitance (C), and a current source representative of the 
current induced by the SE (Ihit). 
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As long as Ihit exceeds ID, the capacitor voltage will be controlled by Ihit, resulting in a 

perturbed voltage at the inverter output node.  When Ihit is less than ID, the output node 

will begin to recover.  This recovery can be used to define the critical time for a VCO as 

the time for which Ihit > ID or the time during which the output node voltage stays 

“upset”.  The critical time was determined through current profiles for heavy ion hits that 

were obtained through 3D TCAD simulations of device models calibrated to the IBM  

90 nm 9SF process [Da07a, Da07b].   

Specifically, the current profiles were extracted by performing SE simulations on a 5-

inverter (minimum device dimensions) cascade, with either the pMOS or nMOS device 

within the middle inverter implemented in TCAD.  The remaining devices were 

employed using compact models calibrated to the PDK [Da07a, Da07b].  Although the 

 
 
Fig. VI-5.  Current pulse generated by a simulated heavy-ion with an LET of  
80 MeV-cm2/mg.  The critical time of the VCO with a current drive of 12.75 µA is 
illustrated. 
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devices in each simulation were constructed with minimum device dimensions and 

identical loading (the actual circuit consists of various device dimensions), the current 

profiles have been shown to provide adequate modeling of the ion-induced transient 

effects [Lo08, Lo09].  In fact, identical techniques discussed in Chapters VII, VIII, and 

IX are used to produce experimentally supported results for various circuit topologies 

including current-starved ring oscillators. 

The current profiles for an incident ion with varying LET at the drain of the struck 

device were extracted and compared with device currents, ID.  Fig. VI-5 illustrates an 

example of a current profile extracted from 3D TCAD mixed-mode simulations with the 

critical time labeled as the amount of time that the SE-induced current exceeded the 

current-starved inverter’s drive current of 12.75 µA.  Moreover, the phase error (Φe), 

defined as the number of degrees for which the output is perturbed, can be represented by 

Eqn (VI-1).  

 

 °××= 360osccrite ftφ   (VI-1) 

 

Phase error (specifically termed phase displacement when directly resulting from 

single-events) can be used to determine the severity of a hit and is used in the rest of this 

chapter.  Thus, to reduce the impact of SE hits, or reduce the critical time for a VCO, the 

designers can increase ID for each stage.  However, the frequency of oscillation, fosc, is 

determined by Eqn. (II-31) (see Chapter II) where ID is the current through each inverter 

stage, N is the number of RO stages, and Ctot is the equivalent capacitance at the output of 

each RO inverter stage [Be98]. 
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For a fixed frequency (fosc), ID is directly proportional to N; therefore, any increases in 

the current drive for each inverter stage must be accompanied by either increasing N or 

Ctot.  The rest of the chapter deals with increasing N to mitigate SE hits, but increasing 

Ctot proportionally with increasing ID will also yield similar results (see Eqn. (II-31) in 

Chapter II).  As these designs with different combinations of ID and N will yield slightly 

varying fosc due to parasitics, care should be taken to ensure proper operation. 

 

 

 

An SE that occurs in the input-bias stage of the VCO will result in transients on the 

bias voltage nodes, Vpbias and Vnbias, and ultimately result in a frequency modulation of the 

output signal.  This type of transient can be effectively mitigated through the use of 

analog redundancy, as shown in Fig. VI-6.  The input-bias stage is replicated M times and 

 
Fig. VI-6.  Schematic representation of the VCO implementing analog redundancy in 
the input-bias stage in order to reduce the voltage perturbation on Vpbias and Vnbias 
resulting from an ion strike in the bias stage.  The input stage is implemented with 2 
identical copies and averaged with identical resistors, RAVG. 
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averaged using identical resistors, thus reducing any perturbation (∆V) due to an SE 

strike on any one copy to ∆V/M.  Simulations show that for 2 copies of the input stage, 

the phase displacement in the output of the VCO can be reduced by 35%.  To achieve a 

desired level of error mitigation, an appropriate value of M (number of copies) can be 

used.  Proper layout techniques must be used to avoid charge-sharing between these 

stages.  It is also important to note that the total active area, thus the total area subject to 

SEEs, will also be increased. 

A second type of transient that can occur within the VCO will result from a strike in a 

RO stage, which will temporarily impede the oscillations.  This type of transient can be 

mitigated by increasing the number of RO stages, N, and equivalently increasing the 

drive current, ID, through each RO stage. 

To verify these models and RHBD techniques, 5 VCO circuits were designed with 7, 

11, 15, 19, and 23 RO stages with VinVCO ranging from 300 mV to 800 mV.  The transfer 

characteristics for these VCO circuits designed for identical center frequencies are 

displayed in Fig. VI-7.  The VCOs differed in the number of current-starved inverter 

stages, N, and the current drive of each inverter stage, ID, to control the delay through 

each stage.  Among the 5 designs, the center frequencies varied by only 1.5%.  In 

addition the gains of the VCOs decreased by 20% from 7 stages to 23 stages and the 

maximum frequencies reduced by 11%.  In general, a PLL will not be designed to operate 

at the maximum frequency of the VCO, thus the reduction in maximum frequency is 

generally not significant unless it also decreases the linear operating region.  Moreover, 

the slight gain reduction results in a diminished overall jitter with no considerable 

impacts on the VCO operation. 
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SET Simulations and Modeling 

Single-event transient simulations were performed on the VCO circuits using the 

CADENCE EDA tool suite, the SPECTRE environment, and IBM 90 nm 9SF process 

parameters.  All simulations were performed using the Advanced Computing Center for 

Research & Education (ACCRE) computing cluster at Vanderbilt University [ACCRE].  

The ion strike current profile, obtained from 3D TCAD simulations, was injected into 

every node in each VCO circuit.  The primary metric that was considered when analyzing 

the effects of the SETs on the VCO was the phase displacement in the output signal of 

the VCO.  Fig. VI-8 illustrates the phase displacement versus the input voltage and the 

number of stages as obtained from the analytical model.  As expected, for a fixed 

frequency at higher ID values (larger number of current-starved inverter stages, N), the 

 
 
Fig. VI-7.  Transfer characteristics, output frequency versus input voltage, for VCOs 
designed with 7, 11, 15, 19, and 23 current-starved inverter stages. 
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VCO shows lower phase displacement for SE hits.  Figs. VI-9 and VI-10 compare the 

results of the analytical model to the SET simulations at 80 MeV-cm2/mg. 

 

 

 

 
Fig. VI-8. (a) Maximum phase displacement versus input voltage (VinVCO) and number 
of RO stages (N) for varying LET values (MeV-cm2/mg) as generated by the 
analytical model. (b) Alternative view. 
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Three main observations can be made from these results.  First, as the number of 

stages increases the maximum phase displacement decreases as expected.  Up to 66% 

reduction in maximum phase displacement was achieved when implementing 23 stages 

over 7 stages.  Second, the trends of the phase displacement versus input voltage change 

for varying number of stages (Fig. VI-9).  For a low number of stages the maximum 

phase displacement increases for increasing bias voltage.  The increase in phase 

displacement results from the increase in frequency of operation.  As the frequency 

increases there are a greater number of oscillations during the time the voltage is 

perturbed within the VCO, thus there will be a greater phase displacement in the output.  

Conversely, for a higher number of stages the maximum phase displacement begins to 

increase for increasing input bias and proceeds to decrease.  The decrease in phase 

displacement versus input voltage occurs because the stronger drive currents begin to 

 
Fig. VI-9.  Maximum phase displacement versus input voltage for the VCO circuits at  
80 MeV-cm2/mg.  Results obtained from the analytical model are compared to 
simulations for various N. 
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overcome the effects of the increasing frequency.  Finally, the jagged curves, as produced 

by the simulations, are a result of a low statistical resolution.  That is, in order to smooth 

the curves out, a large number of simulations are required for various temporal strike 

locations with respect to the operating frequency.  This point will be further described in 

the following chapter.  

 

 

 

Finally, a plot of phase displacement versus the number of stages (Fig. VI-10) shows 

an increasing slope with increasing input voltage.  This result indicates that increasing the 

number of stages is more effective for bias conditions in the upper range of the linear 

region of operation.  Furthermore, the linearity and accuracy of the VCO designs can be 

evaluated by examining this plot for a given input voltage.  The phase displacement 

reduces linearly for increasing number of stages because the drive currents in the inverter 

 
Fig. VI-10.  Maximum phase displacement versus the number of inverter stages (N) 
for 3 bias conditions (300 mV, 500 mV, and 800 mV) at 80 MeV-cm2/mg.  Results 
obtained from the analytical model are compared to simulations. 
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stages increase linearly.  This linearity can be visualized when examining Φe/N for  

300 mV and 500 mV.  The slope is constant for all N, thus the center frequencies of the 

VCOs and frequencies for low bias voltages were closely matched.  However, as the 

number of stages is increased the maximum frequency was decreased, thus the frequency 

at 800 mV for the VCO designed for 7 stages is different than the VCO designed for 23 

stages, which results in a non-linear slope Φe/N.  

 

Design Tradeoffs 

Though implementing the hardening techniques as described throughout this chapter 

can result in a significant improvement in SET susceptibility, certain electrical 

performance and design tradeoffs such as area and power must be considered.   

Eqn. (VI-2) represents the total vulnerable area (TA) of the VCO where N and M 

represent the number of current-starved inverter stages and the number of redundant input 

bias stages, respectively. 

 

 ( )32
2

1),( cNcMNcMNTA ++=   (VI-2)  

 

The coefficients c1, c2, and c3, can be determined by Eqns. (VI-3), (VI-4), and (VI-5), 

respectively. 
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AI represents the vulnerable area of 1 current starved-inverter stage (drain and source 

areas of the inverters and drain areas of the current sources), ABN1 represents the 

vulnerable area of the input-bias network (drain areas of pMOS and nMOS devices) 

excluding the wide nMOS device, and ABN2 represents the vulnerable area of the wide 

nMOS device (drain and source areas).  The vulnerable areas were determined from the 

original VCO design with 7 RO stages.  Because many of the device sources are not 

connected directly to the power rails (e.g. a current-starved inverter), the sources as well 

as the drains are included in the calculation of the vulnerable areas.  Additionally, NB, 

represents the number of stages in the original VCO design for which all other design 

parameters were extracted.  Furthermore, the coefficients, c1, c2, and c3, represent the area 

of 1 inverter stage, the area of 1 bias stage excluding the wide nMOS device, and the area 

of 1 wide nMOS device, respectively.   

Fig. VI-11 represents the total vulnerable area of the VCO circuits for varying 

numbers of input-bias stages and current-starved inverter stages.  The different curves 

represent the vulnerable areas obtained by varying the number of input-bias stages.  

Additionally, the area determined analytically is compared to the actual achieved areas 

for the cases of 1 and 2 input-bias stages. 
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Fig. VI-12.  Average power dissipation versus N normalized to the power dissipation 
for 7 RO stages.  The dashed line represents the power obtained analytically and the 
solid line represents the actual power dissipation. 

 
Fig. VI-11.  Total vulnerable area versus N for different numbers of input bias stages.  
The dashed lines represent the area obtained analytically and the solid lines represent 
the actual achieved areas. 
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Finally, the average power consumption, normalized to the power achieved at 7 

stages, is plotted versus the number of stages (Fig. VI-12).  As the average power 

dissipation of a VCO is linearly related to the drive current, ID, as described in [Be98], 

and the RHBD technique as described throughout this work requires ID to increase by the 

same factor as N, the power dissipation therefore increases linearly with increasing 

number of RO stages (N).  

 

Conclusion 

Because of the high sensitivity of the voltage-controlled oscillator (VCO) to single-

events (SEs) an analytical model was developed to determine the VCO design parameters 

and the associated SE vulnerability.  The model has been validated with simulations 

performed using the IBM 90 nm 9SF process parameters with SE strikes represented by 

current profiles obtained from 3D TCAD mixed-mode simulations of varying LET 

values.  Additionally, RHBD techniques for mitigating SEs in VCOs have been 

presented.  The proposed mitigation techniques have been shown to reduce the output 

phase displacement following an SE by approximately 66%.  As significant power and 

area penalties result from implementing the mitigation techniques, application specific 

tradeoffs must be considered based on the dominant design constraints.  The availability 

of such a technique and the analytical model will improve the SE performance of PLL 

designs to ensure a specified tolerance to SEs.  As this chapter discusses a specific model 

and SET characterization technique in terms of the worst-case operating conditions, the 

following chapter presents an additional analysis technique for a complete probabilistic 

SET characterization of mixed-signal topologies such as the VCO and PLL. 
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CHAPTER VII 
 
 

A PROBABILISTIC ANALYSIS TECHNIQUE APPLIED TO A  
RADIATION-HARDENED-BY-DESIGN VOLTAGE-CONTROLLED OSCILLATOR 

FOR MIXED-SIGNAL PHASE-LOCKED LOOPS 
 
 

Introduction 

The previous chapter presented a model and simulation results for the SET 

characterization of conventional and hardened VCO topologies.  The SET 

characterization and determination of the SET vulnerability presented is strictly based on 

the measured worst-case transients (in terms of maximum phase displacement values 

following ion strikes).  In this chapter, the SET response of a stand-alone, five-stage 

current-starved VCO designed for a center frequency of 1.75 GHz using the IBM 90 nm 

9SF PDK is analyzed from a probabilistic point-of-view.  Next, an RHBD VCO for SET 

mitigation is presented that effectively reduces the output phase displacement following 

ion strikes in the VCO to below the normal operating noise floor.  Also, a novel 

probabilistic analysis of the conventional and RHBD VCOs is presented to show that 

maximum reduction in output phase displacement is achieved by the RHBD VCO.  This 

analysis technique can be readily applied to all analog topologies and provides not only 

detailed quantification of the transients, but a first step into quickly estimating the 

likelihood of transient generation and propagation within circuit topologies of interest.  

Next, the probabilistic analysis is experimentally verified on a standard VCO topology 

designed and fabricated in the IBM 130 nm 8RF process available through the MOSIS 

foundry, and illustrates the feasibility of the technique for the characterization of complex 

SET signatures.  Finally, detailed design considerations for the RHBD VCO are 
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provided.  Although the RHBD VCO increases the required area and power, the phase 

jitter due to supply noise and device variations/mismatch is reduced.  Furthermore, the 

proposed RHBD technique can be readily implemented within any mixed-signal PLL and 

delay-locked-loop (DLL) application for improved radiation tolerance. 

 

VCO Circuit Description 

The Current-Starved VCO Circuit Topology 

The conventional, unhardened VCO designed for this work is equivalent to the 

general topology presented in the previous chapter.  The circuit, however, was designed 

using the IBM 90 nm 9SF PDK with a power supply voltage of 1.2 V, and includes five 

current-starved inverters, such that the center frequency of operation (the frequency at 

which VinVCO = Vdd/2) is approximately 1.75 GHz. 

 

 

 
 
Fig. VII-1.  Frequency transfer characteristics of the unhardened five-stage VCO. 

 



 121

VCO Electrical Specifications 

The frequency transfer characteristics for the VCO are displayed in Fig. VII-1.  

Additionally, 100 Monte Carlo simulations of 3σ-process variations provided by the PDK 

were performed using the CADENCE EDA tool suite, the Spectre Environment, and the 

ACCRE computing cluster at Vanderbilt University [ACCRE].  The results show that the 

standard deviation from the center frequency, fc, is approximately 232 MHz, an 

approximate 12% deviation from fc.  This value is within an acceptable range for use in 

PLL applications.  

 

Definition of Phase Jitter 

In order to facilitate the SET analyses of the VCO circuits, this section presents an 

approach for quantifying phase jitter so that SETs may be directly compared to a 

common and critical performance specification for VCO designs.  Phase jitter represents 

the amount of phase or time fluctuation in the output signal during steady state operation.  

Many factors, such as power supply fluctuations and unmatched current sources, can 

result in phase jitter [Ba08].  This work quantifies phase jitter as the amount of time each 

consecutive period of the output signal, VoutVCO, deviates from the ideal period, Tclk.  This 

definition is commonly referred to as cycle-to-cycle phase jitter.  The cycle-to-cycle 

phase jitter is calculated by creating a vector, jittercc, as shown in Eqn. (VII-1) and 

illustrated in Fig. VII-2, where ti is the ith clock period and Tclk is the ideal clock period. 

The ideal clock period, Tclk, may not be known, in which case the mean, or expected 

clock period, must be used.  
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RMS phase jitter is a typical metric used to quantify the cycle-to-cycle phase jitter and 

is calculated by finding the standard deviation of jittercc, as defined by Eqn. (VII-2), 

where Var(X) is the variance of X [He99]. 
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Fig. VII-2.  Illustration of time-domain measurements of the local operating periods 
(ti) used for the calculation of phase jitter, rms phase jitter, and the expected value of 
peak phase jitter, 

eφ , as described by Eqns. (VII-1 to VII-3). 
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In order to simulate the phase jitter due to power supply variation, a noisy power 

supply was created by connecting an ideal DC power supply in series with a pseudo-

random-noise source generating an error value within ±2% of Vdd (1.2 V).  Additionally, 

a low frequency sinusoidal source with amplitude of 15% of Vdd was also connected in 

series with the noise source.  The resulting noisy power supply was utilized during all 

simulations of the VCO. 

 

 

 

As expected, the cycle-to-cycle phase jitter due to a noisy power supply was found to 

follow a Gaussian distribution with a mean of 0 ps.  The rms phase jitter of the VCO at a 

center frequency of 1.75 GHz was calculated to be approximately 48 ps and is indicated 

in Fig. VII-3 where the simulated cycle-to-cycle phase jitter is fit to a probability density 

 
 
Fig. VII-3.  Simulated cycle-to-cycle phase jitter fit to a probability density function 
for a Guassian distribution with a mean value of 0 ps and a standard deviation (rms 

phase jitter) of 48 ps. 
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function (pdf) for a Guassian distribution.  Typically, phase jitter is quantified in units of 

ps; however, in order to relate the phase-displacement resulting from SEs in the VCO to 

the oscillator phase jitter, it is also useful to express the phase jitter in units of radians, by 

dividing the phase jitter by the period of oscillation and multiplying by 2π.  Thus, the rms 

phase jitter (due to a noisy power supply) in units of radians is approximately  

0.53 radians and the 3σ value is approximately 1.58 radians.  

 

 [ ] rmscce jitter3)Var(3
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In order to distinguish the phase jitter due to noise from any phase error following an 

SE (described in further detail in subsequent sections), it is useful to quantify the upper 

bound of the noise floor. Throughout the rest of this paper we will approximate the upper 

bound of the noise floor as the 3σ value of the cycle-to-cycle phase jitter, as described by 

Eqn. (VII-3).  The 3σ value of cycle-to-cycle phase jitter is thus an approximation of the 

expected peak value of phase jitter due to factors other than SEs.  A large number of 

finite-length samples are required to estimate the expected peak value of phase-error for 

these factors accurately.  It follows that for M transient samples of finite length, the peak 

jitter for each sample will generate a distribution of peak jitter values with a mean 

approximately equal to that of the 3σ value of cycle-to-cycle phase jitter.  Furthermore, 

the expected peak value of phase-error has a standard deviation, σ′,  resulting in 99.6% of 

the output pulses with phase jitter less than or equal to 1.58 ±  σ′  radians as shown in  

Fig. VII-3.  Consequently, if an SE occurring within the VCO results in a phase-

displacement less than 1.58 ± σ′, it cannot be distinguished from the nominal phase noise.  
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This point will be described in further detail during the SET analysis presented in later 

sections, and will be used to distinguish SETs from phase jitter due to noise.  

 

The Radiation-Hardened-by-Design Voltage-Controlled Oscillator 

The basic premise behind the RHBD VCO structure is to create a single oscillator that 

does not degrade operating performance specifications, such as phase jitter.  Multiple 

designs involving the alteration of device sizes and the number of inverters have been 

proposed that improve the radiation response with minimal performance degradation 

[Lo07c].  In this chapter, an approach based on triple-modular-redundancy (TMR) is used 

for achieving radiation tolerance levels higher than those for previously proposed 

approaches.  The conventional TMR implementation – three self-running VCOs in 

parallel, each with its own feedback path – is difficult to synchronize and may result in 

increased phase jitter.  This is because any minor variations in device or parasitic 

elements result in unsynchronized operation and increased jitter. 

Therefore, rather than implementing three self-running VCOs in parallel, three 

voltage-controlled variable-delay lines (VCDL) are implemented with current-starved 

inverters in parallel.  It is important to note that each VCDL utilizes its own bias 

circuitry.  A single bias circuit may be used but will increase the SET vulnerability of the 

VCO significantly, as will be explained in further detail in later sections.  The VCDLs 

may also be implemented with any other single-ended or fully-differential delay cell.  

The outputs of the three VCDLs are then fed into inverting buffers, a non-inverting 

majority voting circuit, and an inverting output buffer for increased current drive.  The 

output of the final buffer device is then fed back to the inputs of the three VCDLs, 
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ensuring that the three VCDLs are synchronized, as shown in Fig. VII-4.  This 

implementation may also be used to create an RHBD VCDL for use in a DLL by 

removing the feedback path. 

 

 

 

The RHBD VCO was designed with five delay stages in each VCDL, as in the 

original, unhardened VCO design.  However, implementing the additional output buffers 

and majority voting circuit introduces a constant delay which slows the operating center 

frequency by some factor.  In this case the center frequency was slowed down by 

approximately 20%.  Therefore, the device aspect ratios of the current sources in each 

delay element were increased to approximately 2.5 times the original specifications so as 

to increase the current drive to match the respective center frequencies.  Depending on 

the number of delay elements and the designed center frequency, the slow-down factor 

 
 
Fig. VII-4.  Simplified diagram of the RHBD VCO excluding the input-bias stages 
and current-sources required to set the delay in each delay stage. 
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and required compensation may vary, but will nevertheless be required.  The final 

frequency transfer curve of the RHBD VCO is shown in Fig. VII-5 and is compared to 

the unhardened VCO.  The center frequencies are within 2% of each other, and the gain 

(slope) of the RHBD VCO is reduced by approximately 25%.  The gain reduction, while 

decreasing the maximum operating frequency, widens the input voltage range, 

consequently decreasing the rms phase jitter to 43 ps, a 10% reduction from the 48 ps rms 

phase jitter value achieved by the unhardened VCO.  

 

 

 

One hundred Monte Carlo simulations of the 3σ-process variations were again 

performed and show that the standard deviation of the operating center frequency is  

181 MHz, an approximate 9% deviation from the mean value.  Thus, by implementing 

the RHBD VCO, a 40% reduction in the center frequency variance due to device 

 
 
Fig. VII-5.  Frequency transfer characteristics of the RHBD VCO compared to the 
unhardened five-stage VCO. 
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variations was achieved.  Similar design adjustments to decrease the rms phase jitter on 

the unhardened VCO may also be made by limiting the current and adjusting the device 

dimensions, however these adjustments will not significantly change the SET 

performance. 

 

Single-Event Transient Simulation Parameters 

Simulations of the unhardened and RHBD VCOs were performed using the 

CADENCE EDA tool suite, the Spectre Environment, and the ACCRE computing cluster 

at Vanderbilt University [ACCRE].  All simulations were performed over four design 

parameters: the circuit node of the strike, the simulated ion Linear-Energy-Transfer 

(LET) value, the temporal location of the strike within the clock period, and the input-

bias condition.  Ion-strike current profiles were obtained from 3D TCAD simulations on 

device models calibrated to the IBM 90 nm 9SF PDK [Da07b], and were injected into 

every node in each VCO circuit.  The circuits were simulated over ten different input-bias 

conditions ranging from 0.3 V to 1.2 V, spanning the VCO operating frequency ranges, 

and three LET values (10 MeV-cm2/mg, 20 MeV-cm2/mg, and  

80 MeV-cm2/mg).  Additionally, for each set of parameters (node, bias, LET), the 

temporal location of the strike was varied ten times within a cycle in order to span the 

operating period of the signal.  Simulating over all combinations of the four simulation 

parameters (node, bias, LET, and temporal location) required over 13,000 simulations on 

the unhardened VCO and over 38,000 on the RHBD VCO.  The large number of 

simulations were performed in order to ensure that all operating conditions are 

represented by the results and to achieve statistical significance.  All simulations were 
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performed with a noisy power supply as described previously, and for each simulation the 

output phase displacement [Lo06, Lo07c] following the ion strike was measured. 

 

Single-Event Transient Response 

Quantification of Single-Event Transients 

SEs occurring within the current-starved VCO can result in two effects and are 

described in detail in previous chapters.  Briefly, strikes within the input-bias stage and 

current sources can result in a frequency modulation of the output signal, whereas strikes 

within the current-starved ring-oscillator structure can result in a temporary oscillation 

failure.  Both upset mechanisms can be quantified by calculating the output phase 

displacement, Фdisp, following an SE, where phase displacement in units of radians is the 

difference between the SET perturbation at the output node (Te) and the operating period 

(Tclk), normalized by the nominal period of oscillation, Tclk, multiplied by 2π, as given in 

Eqn. (VII-4). 
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clke

disp TT
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ω

π
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−
=

2
  (VII-4) 

 

The phase displacement is useful to quantify the effect of the SET as the number of 

erroneous clock pulses and perturbation time can be derived [Lo06, Lo07a]. Also, the 

phase displacement may be related to conventional oscillator parameters, such as phase 

jitter, by representing phase jitter in units of radians. Additionally, the phase 

displacement may be directly implemented in phase analyses of PLL and DLL 

applications. Fig. VII-6 shows an example of a temporary loss-of-oscillation resulting 
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from an SE in a current-starved inverter, as well as the time perturbation, Te, used to 

calculate Фdisp. 

 

 

 

Maximum Phase Displacement 

Fig. VII-7 shows the maximum phase displacement and corresponding number of 

erroneous pulses versus input voltage, VinVCO, following simulated ion strikes in the 

unhardened VCO and RHBD VCO. The number of erroneous pulses, n, can be related to 

phase displacement by Eqn. (VII-5) where k is a positive integer.  

 

 ( ) 0  , 122for      ≥+⋅<≤⋅= kkkkn disp πφπ   (VII-5) 

 
Fig. VII-6.  Illustration of the time perturbation, Te, used to calculate the phase 
displacement resulting from an SE. 
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For example, one erroneous pulse requires at least 2π radians of phase displacement, 

whereas 2 erroneous pulses require at least 4π radians of phase displacement. 

 

 

 

For simulated LET values of 10 and 20 MeV-cm2/mg, the maximum phase 

displacement at the output of the RHBD VCO was decreased by approximately 5-6% 

over that of the conventional VCO.  The small decrease in the maximum phase 

displacement for the RHBD VCO will be further investigated in subsequent sections.  

The maximum phase displacement at the output of the RHBD VCO was decreased by 

approximately 30% at an LET of 80 MeV-cm2/mg.  Although the maximum phase 

displacement for strikes (over all LET values simulated) in the unhardened VCO shows a 

specific trend versus input-bias that is consistent with that of other work such as [Bo05, 

 
 
Fig. VII-7.  Maximum phase displacement (radians) and corresponding number of 
erroneous pulses versus input voltage for the unhardened VCO and RHBD VCO.  
Square, circle, and diamond symbols represent LET values of 80, 20, and 10 MeV-
cm2/mg, respectively. Closed symbols represent the unhardened VCO whereas the 
open symbols represent the RHBD VCO. 
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Lo06, Lo07a, Lo07b, Lo07c], the RHBD VCO appears to follow trends typical of 

combinational logic circuits tested at high data rates [Ha06, Ma04 Su06]. 

In the case of the RHBD VCO, phase displacement can be directly related to a burst-

error that may contain multiple erroneous data bits (e.g. 2π radians of phase displacement 

is equivalent to 1 erroneous data bit).  The largest numbers of erroneous data bits (clock 

pulses) resulting from strikes in the RHBD VCO were generated from strikes within the 

majority voter and buffers as SETs generated within in the VCDLs were voted out.  Thus, 

the number of erroneous pulses is expected to follow combinational logic trends versus 

frequency.  At an LET of 80 MeV-cm2/mg for the RHBD VCO, for example, the 

maximum phase displacement monotonically increases with increasing input voltage.  As 

the output frequency increases, the number of clock periods that span the SET pulse 

width increases, subsequently increasing the output phase displacement and number of 

erroneous clock pulses.   

However, at LETs of 10 and 20 MeV-cm2/mg for the RHBD VCO, the maximum 

number of erroneous pulses is 1 versus all input voltages simulated.  This characteristic 

has also been shown in SEU error signatures for SiGe logic at high speed data rates 

[Ha06, Su06].  For the frequency range of the oscillator, the SET pulse widths generated 

at 10 and 20 MeV-cm2/mg are less than one clock period, and therefore result in a 

maximum of 1 erroneous data bit, or approximately 2π radians of phase displacement.  A 

similar effect would occur at an LET of 80 MeV-cm2/mg for sufficiently low frequencies.  

Also, at 10 and 20 MeV-cm2/mg, the maximum phase displacement versus input voltage 

would monotonically increase for sufficiently high frequencies where the SET pulse 

width is greater than the period of the operating frequency. 
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The trends in phase displacement (erroneous data bits) versus frequency observed for 

strikes in the combinational logic portion of the RHBD VCO suggest that burst-error 

behavior, previously only observed for high data-rate SiGe logic [Ha06, Ma04, Su06], is 

also a concern for CMOS combinational logic devices operating at GHz speeds. 

  

A Probabilistic Comparison of the Unhardened and RHBD VCOs 

Although the maximum phase displacement is a useful tool in determining the worst-

case response of the VCO, it does not provide any information on the likelihood of the 

large phase displacements following SEs or the distribution of phase displacement values 

that can be expected.  Figs. VII-8 and VII-9, for example, shows histograms of the phase 

displacements for LET values of (a) 10, (b) 20, and (c) 80 MeV-cm2/mg at an input 

voltage of 0.6 V (1.75 GHz) for strikes in each node and at each temporal location 

simulated.  All of the histograms are normalized such that the sum of all bins is equal to 

one; as a result, the histograms represent a discrete probability density function (pdf) of 

phase displacement values for a particular operating condition.  Fig. VII-8 represents the 

pdfs for the unhardened VCO, whereas Fig. VII-9 represents the pdfs for the RHBD 

VCO.  It is important to note that if the phase displacement following the strike falls 

within the normal operating phase jitter, or less than or equal to the calculated noise floor, 

the maximum phase displacement of the simulation cannot be distinguished from that of 

the phase jitter due to noise.  Thus, the pdf always contains a sub-distribution resembling 

that of a Gaussian distribution located at the edge of the noise floor.  The mean of this 

distribution is approximately equal to the 3σ value of the phase jitter as calculated 

previously. 
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Fig. VII-8.  Histograms of maximum phase displacement (radians) for the unhardened 
VCO at various LET (MeV-cm2/mg) for an input voltage of 0.6 V, corresponding to a 
frequency of 1.75 GHz.  All histograms are normalized so that the total area is 1, so as 
to represent the discrete pdf of phase displacement. 
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Fig. VII-9.  Histograms of maximum phase displacement (radians) for the RHBD 
VCO at various LET (MeV-cm2/mg) for an input voltage of 0.6 V, corresponding to a 
frequency of 1.75 GHz. All histograms are normalized so that the total area is 1, so as 
to represent the discrete pdf of phase displacement. 
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Fig. VII-10.  Empirical Cumulative Distribution Functions (CDF) of phase 
displacement (radians) for the (a) unhardened VCO and (b) RHBD VCO for various 
LET at an input voltage of 0.6 V.  (c) Also shown is a direct comparison of the two 
circuits at 80 MeV-cm2/mg and an input voltage of 0.6 V. 
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Furthermore, for the unhardened VCO (shown in Fig. VII-8), there are numerous data 

points that lie outside the noise band.  The outliers in Fig. VII-8 (a) and (b) visually group 

into two distinct clusters; the largest phase displacement values were a result of strikes in 

the input-bias circuit.  At the maximum LET simulated, as seen in Fig. VII-8 (c), the 

outliers are visually segmented into well-defined clusters representing the phase 

displacement following strikes in the input-bias circuit, current sources, or current-

starved inverters.  Moreover, the results indicate that the largest transients at the center 

frequency are generated by strikes on the PMOS devices within the input-bias circuit.  

This further emphasizes the importance that each VCDL line should contain its own bias 

circuitry in order to eliminate the largest transients. 

In contrast, the pdfs for the RHBD VCO, (Fig. VII-9), do not contain clustered 

outliers.  First, the near-Gaussian distributions on the left-most portion of the histograms 

have approximately the same mean value equal to that of the 3σ value of the phase jitter, 

further indicating that the values comprising the distribution are a result of normal phase 

jitter due to noise.  Additionally, the few outliers are all due to strikes in the majority 

voter circuit or the output buffers.  The largest phase displacement values for an LET of  

80 MeV-cm2/mg are a result of PMOS strikes on the output node of the majority voting 

circuit.  The phase displacement for strikes on the output node of the majority voter may 

be reduced by increasing the nodal capacitance; however, the oscillating frequency will 

subsequently decrease and must be compensated for by increasing the current drive 

within the delay chains.  As described in detail in section V-B, the output phase 

displacement for LET values of 10 and 20 MeV-cm2/mg never takes on values greater 

than 2π radians because the generated SET pulse widths are never greater than a single 
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clock period.  For operating frequencies such that the clock period is on the order of the 

SET pulse width or less, the output phase displacement is expected to increase. 

Although the histograms provide detailed information as to the relative density of 

phase displacements and the physical location of the strikes responsible for the various 

phase displacements, cumulative distribution functions1 (CDFs) of phase displacement 

provide an estimate of the likelihood of a particular value occurring.  CDFs were 

calculated empirically for the simulations of strikes in every node within each VCO and 

are displayed in Fig. VII-10.  As expected, as the LET is increased from 10 MeV-cm2/mg 

to 80 MeV-cm2/mg for the unhardened VCO, the CDF curve translates to the right  

(Fig. VII-10 (a)), indicating an increased probability of encountering larger phase 

displacements as the LET is increased.  Additionally, the clusters of phase displacement 

values resulting from strikes in the various components of the VCO can be visualized by 

the break-points in the CDF curve.  The CDFs for the RHBD VCO (Fig. VII-10 (b)), 

however, do not translate, but remain relatively constant versus LET, indicating that the 

majority of the strikes do not result in a phase displacement greater than the noise floor.  

In fact, the probability that the output phase displacement is below the noise floor is 

approximately 0.95, indicating that no additional hardening of the VCO is necessary 

unless the phase noise of the circuit can be reduced significantly.  Fig. VII-10 (c) directly 

compares the CDFs of phase displacement for the unhardened and RHBD VCOs at 0.6 V 

and 80 MeV-cm2/mg. 

It is important to note that these calculations assume that each node within the VCO 

is equally likely to be struck by a heavy-ion.  Further refinement of the estimations can be 

 
1 The cumulative distribution function (CDF) is also termed probability distribution function (PDF) in 

some texts [St02a]. The probability density function (pdf) is the derivative of the CDF, or inversely, the 
CDF is the integral of the pdf. 



 139

made by weighting each node by the physical dimensions of the sensitive area.  However, 

a first-order estimation of the likelihood of phase displacement values can be obtained.  

These simulation results and calculations illustrate that not only significant improvement 

in SET tolerance can be obtained by implementing the RHBD technique presented, but 

detailed knowledge of the complex distributions of the generated transients may be 

obtained by utilizing the presented analysis technique. 

 

Experimental Validation of Analysis Technique 

The probabilistic analysis and simulation techniques have been experimentally 

validated on a similar unhardened VCO topology designed in the IBM 130 nm 

CMRF8RF CMOS technology available through the MOSIS foundry.  Experiments were 

performed on the VCO circuit using laser-induced carrier generation based on two-

photon absorption (TPA) [Bo86, Mc02, Mc03, St85] for SET error signature 

characterization.  

The TPA experimental setup is described in [Bo86, Lo07b, Mc02, Mc03, St85].  The 

DUT includes an unhardened VCO shown in [Lo06, Lo07b] (see  

Fig. II-18) designed with eleven current-starved inverter stages for a center frequency of 

200 MHz and a maximum frequency of approximately 455 MHz.  In order to capture 

SETs following a laser strike within the VCO a Tektronix-TDS6124C oscilloscope 

sampling at 20 GS/s was used.  The oscilloscope was set to trigger on the rising edge of 

the laser pulse, and the FastFrame™ feature of the oscilloscope was utilized to capture 

100 transients per strike location.  Furthermore, 2000 SETs were captured following laser 

strikes within the input-bias circuit and current-starved inverter stages.  All experiments 
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were performed at incident laser energy of 12 nJ and at the VCO’s maximum frequency 

of approximately 455 MHz2. 

Figs. VII-11 and VII-12 illustrate the pdf and CDF of the phase displacement values 

following the laser strikes within the VCO.  In Fig. VII-11 (a) the bins of the histogram 

(normalized to represent the discrete pdf) are color-coded by the region of the laser strike.  

For example, the phase displacement values resulting from strikes in the input-bias circuit 

are colored red and occupy the upper portions of each bin.  Phase displacement values 

resulting from strikes between the input-bias circuit and the current-starved inverter 

stages are colored yellow, and the blue portions represent phase displacement values 

resulting from strikes in the current-starved inverters.  The color bar indicates the colors 

and the corresponding circuit components.  As previously described, the distribution of 

phase displacement values includes a near-Gaussian distribution on the left portion of the 

pdf and represents the peak expected phase error due to noise.  To further emphasize this, 

Fig. VII-11 (b) illustrates the portion of the distribution representing the peak phase error 

due to noise.  The mean value of this near-Gaussian distribution is approximately 1.55 ns 

(4.3 radians) and was verified by removing the laser and measuring the peak jitter of the 

VCO due to noise.  Additionally, strikes in the input-bias circuit resulted in a secondary 

peak in the right-hand side of the overall distribution of phase displacements, as indicated 

by the red-yellow portion.  For this particular VCO at 455 MHz, laser strikes in the 

current-starved inverters resulted in the worst-case response. 

 
2 See Chapter IX: Operating the PLL at the VCO’s maximum frequency will result in worst-case 

negative frequency modulations and will minimize positive frequency modulations. 
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The CDF of phase displacement values following laser strikes is shown in  

Fig. VII-12.  Similar to the curves in Fig. VII-10 the CDF increases rapidly at 

 

 
Fig. VII-11.  (a) Histogram of phase displacement (radians) obtained from TPA laser 
experiments at incident energy 12 nJ for the 130 nm unhardened VCO.  The histogram 
is normalized so that the total area is 1, so as to represent the discrete probability 
density function (pdf) of phase displacement.  (b) Histogram identifying the 
contributions due to noise and laser strikes in the VCO. 



 142

approximately the noise floor value of 1.55 ns (4.3 radians).  Slight break-points in the 

CDF curve occur at approximately 1.8 ns and 2.5 ns and indicate the contributions of 

strikes in input-bias stage and current-starved inverter stages to the overall distribution of 

phase displacement values, respectively.  Furthermore, the CDF indicates that 

approximately 95% of all strikes will result in phase displacements of 2.6 ns (7.3 radians) 

or less. 

While validating the simulation and analysis techniques subsequently presented, these 

experimental results show the complex nature of the distribution of SETs within the VCO 

and highlight the importance of a full characterization of the SETs in order to determine 

the SE response of the circuit.  

 

 

 

 
 
Fig. VII-12.  Cumulative Distribution Function (CDF) of phase displacement (radians) 
obtained from TPA laser experiments at incident energy 12 nJ for the 130 nm 
unhardened VCO. 
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Design Tradeoffs 

Though implementing the RHBD technique as described throughout this chapter can 

result in a maximum improvement in SET susceptibility and performance, certain 

electrical performance and design tradeoffs such as area and power must be considered.  

As the VCDL for the VCO is implemented in a triple-modular redundancy scheme, the 

area and average power dissipation for the VCDL portion of the VCO will be tripled.  

Also, the addition of the buffers and majority voting circuit will also add a power and 

area penalty depending on the number of extra buffers and the dimensions of the majority 

voter chosen.  Therefore, the area penalty of the RHBD VCO design will be slightly 

greater than three times the original specifications.  The power, however, due to the 

addition of the buffers and majority voter will dominate the overall power of the VCO as 

the combinational logic used in the circuits contains full drive strength and dissipates a 

much greater current over the current-starved inverters.  The actual dynamic power 

dissipation of the RHBD design implemented in this paper at 1.75 GHz operation is 

approximately 876 µW, whereas the unhardened VCO dissipates approximately  

70 µW of power.  

Moreover, the power and area penalty of the hardening scheme may also vary 

depending on the application for which it is implemented.  For example, in a PLL 

application with an on-chip loop filter, the overall area penalty of implementing the 

RHBD VCO will not be significant when compared to the total area of the passive 

components necessary for the loop filter.  The primary tradeoff will therefore be the 

increased power dissipation, as the VCO circuit typically dominates the overall power 

dissipation of the PLL.  
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Conclusion 

A probabilistic analysis technique has been presented and experimentally verified that 

effectively identifies the origins of a variety of transients generated within a circuit 

topology.  Specific details of the transients generated throughout the circuit may also be 

extracted from the measurements and can provide a circuit designer with insight into 

where and when to apply hardening schemes within a topology.  The analysis technique 

provides a first-order estimation of the likelihood of the various transients occurring.  All 

techniques can be readily applied to all analog topologies. 

Using the analysis technique presented, an RHBD voltage-controlled oscillator has 

been presented for SET mitigation that maximally reduces the output phase displacement 

following strikes in the VCO to below the normal operating noise floor.  Although the 

RHBD VCO increases the required area and power, the phase jitter due to supply noise 

and device variations/mismatch is reduced.  The RHBD technique can be readily 

implemented within any mixed-signal PLL and DLL application.   
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CHAPTER VIII 
 
 

ANALYSIS OF SINGLE-EVENT TRANSIENTS IN INTEGER-N FREQUENCY 
DIVIDERS AND IMPACTS ON PHASE-LOCKED LOOP PERFORMANCE 

 
 

Introduction 

In practice most PLL topologies include a variation of the basic topologies presented 

thus far; common PLL variants include frequency dividers in various locations including 

the feedback path for frequency synthesis and multiplication applications, as well as at 

the PLL output and input [Ba08, Be98, Ga79, Ga05].  Therefore, examining SETs in 

frequency dividers is essential for the understanding of SET generation and propagation 

in PLLs.  In fact, Hafer et al. recently showed data indicating that both the location and 

gain of the frequency divider(s) in the PLL configuration strongly influence the predicted 

error rate of PLLs [Ha08]. 

This chapter analyzes the SET signatures of an integer-N frequency divider topology 

in a 90 nm CMOS bulk process.  A single divide-by-2 circuit is analyzed for various 

input frequencies ranging from 31 MHz to 2 GHz in order to establish the SET 

vulnerability of each stage within the divide-by-N topology.  Also, an analytical analysis 

of SET propagation through the divider network is provided, and identifies the SET 

bottleneck of the integer-N frequency divider from a probabilistic point-of-view.  The 

impacts of feedback and input/output (I/O) frequency dividers on the SET vulnerability 

of the PLL are also discussed.  Finally, experimental measurements on a programmable 

PLL designed in a commercial 250 nm CMOS technology are provided and corroborate 

the discussed analyses. 



 146

 

 

Integer-N Frequency Divider Topology 

The integer-N frequency divider used in this chapter consists of a cascade of K 

divide-by-2 circuits as shown in Fig. VIII-1.  The circuit accepts an oscillatory signal 

(and its compliment) and divides the frequency of the signal by factors of two; thus the 

divisor (N) is 2
K for K divide-by-2 stages.  Each divide-by-2 stage is achieved by 

implementing two D-Flip-Flops (DFF) in the fashion shown in Fig. II-21 (Chapter II), 

where the complementary output of the second DFF is connected to the D input of the 

first DFF [Ra95].  The first DFF in the divide-by-2 circuit functions as a master stage, 

latching the D input (complementary Q output signal) on the rising edge of the input 

signal.  The second DFF operates as a slave stage latching the output of the master stage 

(XDFF13) on the falling edge of the input signal (rising edge of the complementary input 

signal).  Therefore, node XDFF1 changes state (from logic-low to logic-high, or vice 

versa) at each rising edge of the input signal (in) and the Q output of the second DFF 

changes state each time the rising edge of the complementary input signal arrives, 

achieving a frequency division of exactly two.  Each DFF is implemented using CMOS 

NAND gates, as shown in Fig. VIII-2; however, the single-event analysis presented in 

 
3 As a convention we will denote the output node of the first DFF in each divide-by-2 stage as 

XDFF{K}, where {K} is the number of the divide-by-2 circuit in the divide-by-N chain. For example, the 
node will be labeled XDFF1 within the first divide-by-2 circuit and XDFF2 within the second divide-by-2 
circuit. 

 
Fig. VIII-1.  Integer-N frequency divider achieving divisors of N = (2, 22, …, 2i, 2i+1, …, 
2K). 
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this work is applicable to all divide-by-2 circuit topologies and is not restricted to the 

particular configuration illustrated in Figs. II-21 and VIII-2. 

  

 

 

Single-Event Transient Simulations and Measures 

The integer-N frequency divider was designed using the IBM 90 nm 9SF PDK and 

consists of seven divide-by-2 stages such that divisors of 2, 4, 8, 16, 32, 64, and 128 may 

be achieved.  Simulations were performed using the CADENCE EDA tool suite, the 

Spectre Environment, and the ACCRE computing cluster at Vanderbilt University 

[ACCRE].  Ion strike current profiles were obtained from 3D-TCAD simulations on 

device models calibrated to the 9SF PDK [Da07b].  All simulation techniques have been 

experimentally calibrated using laser two-photon absorption (TPA) on PLL and VCO 

topologies [Lo08, Lo07b].  In fact, through identical techniques, Loveless et al. predicted 

and experimentally measured a 2.3 orders of magnitude improvement in SET response by 

a radiation-hardened-by-design (RHBD) charge pump PLL over its conventional 

counterpart [Lo06, Lo07b].  

 
Fig. VIII-2.  Schematic of the CMOS DFF used in the divide-by-2 topology. 
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SET simulations were performed on a stand-alone divide-by-2 circuit across four 

parameters, requiring a total of 12,936 simulations: the input frequency, the node of the 

simulated ion strike, the temporal location of the strike with respect to the input/output 

signal, and the simulated ion strike’s linear-energy-transfer (LET) value.  Input 

frequencies ranging from 2 GHz to 31 MHz by factors of two were used in order to 

establish frequency dependencies on the SET vulnerability (analogous to the divide-by-2 

stage number within the divider chain).  Also, for pMOS and nMOS transistors connected 

to a common node, simulations were performed for strikes on the pMOS and nMOS 

diffusion areas separately.  Finally, eleven temporal locations of the ion-strike (at four 

LET values of 1, 10, 20, and 80 MeV-cm2/mg) spanning the period of the output signal 

(consequently spanning the period of the input signal) were chosen.  The output phase 

displacement (Фdisp) following the ion strike was measured for each simulation. 

 

Single-Event Transient Response of a Stand-Alone Divide-by-2 Circuit 

Phase Transients in a Divide-by-2 Circuit 

SEs in a divide-by-2 circuit can result in latched upsets at the outputs of either DFF.  

Assuming the ion-induced voltage pulse is shorter in duration than the pulse width of the 

input signal, the latched upset will remain on the outputs of the DFF(s) until the state of 

the input signal changes allowing for the latches to be reset.  For cases where the ion-

induced voltage pulse is longer in duration than the input signal’s pulse width, 

consecutive latched upsets may be present in the output signal.  This temporary latching 

behavior results in an apparent stretching or compression in the output signal.  The 
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resulting phase transient, or change in output phase displacement versus time, at the 

output of the divider stage may be quantified by calculating the maximum Фdisp. 

 

 

 

One example of two such phase SETs resulting from a single strike within the divide-

by-2 circuit is shown in Fig. VIII-3, along with the measured Фdisp versus time (in units 

of ns and π-radians).  The input and output frequencies are 2 GHz and 1 GHz, 

respectively.  The SETs on the Q output and its compliment are a result of a single pMOS 

strike on XDFF1 (indicated in Fig. II-21) with an LET of 20 MeV-cm2/mg.  The ion 

strike results in latched events on both outputs that are reset after 500 ps (one half of the 

output signal’s period of 1 ns).  The peak of the measured phase displacement is 500 ps  

(π radians) for both outputs. 

 
Fig. VIII-3.  An example of two identical phase transients on the outputs of a single 
divide-by-2 circuit.  Input frequency is 2 GHz resulting in an output frequency of 1 GHz. 
Peak of transient reaches a Фdisp of 500 ps (π radians).  
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Single-events in the divide-by-2 circuit can also result in non-identical transients on 

the Q and complementary-Q outputs, as shown in Fig. VIII-4.  The transients illustrated 

in Fig. VIII-4 result from a single strike (LET of 20 MeV-cm2/mg) on an nMOS device 

connected to the complementary-Q output node.  The strike causes an initial glitch on the 

complementary-Q output, followed by a latched upset.  The output phase is modulated 

from approximately -2π radians to π radians. 

 

A Probabilistic Analysis of Single-Event Phase Transients in a Divide-by-2 Circuit 

 In order to quantify the transients and to provide an indication of the probability of 

the generation of the transients, cumulative distribution functions (CDFs) of the absolute 

value of the maximum phase displacement (|Фdisp|) were calculated empirically from the 

 
Fig. VIII-4.  An example of two non-identical phase transients on the outputs of a single 
divide-by-2 circuit.  Input frequency is 2 GHz resulting in an output frequency of 1 GHz. 
Peak of transient approaches a Фdisp of -1 ns (-2π radians).  
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simulations of strikes on every node within the divide-by-2 circuit.  As shown in [Lo08], 

high-performance mixed-signal topologies may have extremely complex transient 

distributions.  CDFs provide an estimate of the likelihood of a particular range of values 

occurring, as well an illustration of the distribution(s) of phase-displacement values under 

various operating conditions.  The CDF represents the probability of an ion strike 

resulting in a given phase displacement value or less. 

 

 

 

Fig. VIII-5 shows the simulated CDF curves for SE hits at three different LET values 

(1, 20, and 80 MeV-cm2/mg) and at an input frequency of 500 MHz.  First, as the LET 

value increases the CDF translates down, as expected, indicating an increased likelihood 

of obtaining larger phase displacement values.  Second, there exists a sharp increase in 

 
Fig. VIII-5.  Empirical CDFs of the |Фdisp| (units of 2π radians and ps) for strikes (LETs 
of 1, 20, and 80 MeV-cm2/mg) in the divide-by-2 circuit.  Input and output frequencies 
are 500 MHz and 250 MHz, respectively. 
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the CDF curves as |Фdisp| approaches π radians (2 ns for an output frequency of  

250 MHz).  The majority of strikes that result in a phase displacement of exactly π 

radians are due to strikes in the first DFF. 

  

 

 

In fact, as shown in Fig. VIII-6 where the CDF curves for strikes (LET of 20 MeV-

cm2/mg) in individual DFF components are constructed individually for an input 

frequency of 250 MHz, no strikes in the first DFF result in Фdisp values of greater than π 

radians.  This is due to the fact that XDFF1 is always reset at the period of the input 

signal, which is one-half the period of the output signal, or π radians.  Moreover, for all 

LET values simulated (Fig. VIII-5), the phase displacement has an upper bound of 2π, 

meaning that the ion-induced current never perturbs more than a single clock period (two 

 
 

Fig. VIII-6. Total empirical CDF of the |Фdisp| (units of 2π radians and ps) for strikes 
(LET of 20 MeV-cm2/mg) in the divide-by-2 circuit.  Empirical CDFs for strikes in the 
1st and 2nd DFF stages are also shown.  Input and output frequencies are 250 MHz and 
125 MHz, respectively. 
 



 153

pulse widths).  The CDF upper bound indicates that the ion-induced current pulses (at the 

LET values simulated) do not deposit enough charge to incorrectly latch data for more 

than the period of the output signal with a frequency of 250 MHz. 

 

 

 

Fig. VIII-7 shows the CDF curves for various input frequencies (62 MHz, 250 MHz, 

500 MHz, 1 GHz, and 2 GHz) at an LET of 80 MeV-cm2/mg.  As the input frequency 

increases, the CDF curve translates to the right and down indicating an increased 

probability of a given range of phase displacement values for higher operating 

frequencies.  This result is consistent with a window-of-vulnerability approach for 

determining the probability of a SET being latched.  Although this result provides no 

indication of how an SET will propagate through a divider network (a cascade of divide-

 
Fig. VIII-7.  Empirical CDFs of phase displacement (units of 2π radians) for strikes (LET 
of 80 MeV-cm2/mg) in the divide-by-2 circuit for input frequencies of 31 MHz, 
250 MHz, 500 MHz, 1 GHz, and 2 GHz. 
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by-2 stages), it does suggest that the smallest possible divisor of a divide-by-N circuit 

will result in the largest probability of an ion strike resulting in a given range of phase 

displacement values. 

Additionally, Fig. VIII-7 shows that the phase displacement for all input frequencies 

simulated at 500 MHz and less are upper-bounded by 2π radians.  As frequency 

increases, the time-width of the cycles decreases while the pulse width of the ion-induced 

voltage remains constant.  Therefore, the results indicate that the width of the ion-induced 

voltage pulse is no greater than the period at 500 MHz.  At 1 GHz and above, however, 

the phase displacement is bounded by 3π and 5π, respectively, indicating that the ion-

induced current pulse deposits enough charge to incorrectly latch data over multiple data 

pulses (or clock cycles). 

  

Impacts of Frequency Dividers on the SET Response of the Phase-Locked Loop 

General PLL Topology 

Fig. VIII-8 illustrates the general block diagram of a common PLL configuration 

including the phase-frequency detector (PFD), charge pump (CP), low-pass filter (LPF), 

voltage-controlled oscillator (VCO), feedback frequency divider (β=1/N), and output 

divider (1/M).  As detailed in Chapter II, charge pumps are typically used in conjunction 

with PFDs to detect and convert a phase and/or frequency difference between the input 

reference signal (VREF) and the PLL’s feedback signal (VFB) into an electrical current.  

The PFD generates a pulse on the UP/DOWN signal lines whenever VFB lags/leads VREF 

in phase.  The generation of a signal on the UP/DOWN line will activate the CP to 
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source/sink current to/from the LPF, adjusting the voltage, VinVCO, applied to the input of 

the VCO, thus modifying the output frequency of the VCO [Ba08, Be98]. 

The rate at which the PLL can track and lock an input signal (i.e., acquisition time) 

depends on the natural frequency, damping factor, and input frequency step [Ga05].  

Although the feedback factor affects the natural frequency and damping factor, the 

internal loop characteristics (voltage and frequency step per loop cycle) change 

proportionally; therefore, the acquisition time of the PLL is independent of the feedback 

divisor.  However, increasing the feedback divisor does decrease the damping factor of 

the loop, thus modifying the settling characteristics and increasing the jitter during the 

lock state. 

 

 

 

 

 

 

 

 

Fig. VIII-8. General block diagram of the PLL circuit including the phase-frequency 
detector (PFD), charge pump (CP), low-pass filter (LPF), voltage-controlled oscillator 
(VCO), feedback frequency divider (β=1/N), output frequency divider (1/M), and buffers. 
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SET Propagation through a Stand-Alone Divide-by-N Circuit (I/O Frequency Divider) 

1) Theoretical and Simulation Analyses 

As the output frequency (ωout) of a divider network equals the input frequency (ωin) 

divided by the divisor (M), the relationship between the instantaneous output phase and 

input frequency/phase may be established (Eqn. (VIII-1)). 
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Assuming Фout(0) is small, Eqn. (VIII-1) states that the output phase is merely the input 

phase divided by M.  For a divisor (M) of 16, for example, the output phase will be 1/16th 

that of the input phase. 

The results presented in Fig. VIII-7 indicate that frequency dividers are more 

vulnerable for increasing frequencies, suggesting that the first output divider stage will 

produce the largest phase displacement.  However, Eqn. (VIII-1) states that phase is 

divided as the signal propagates through the divider chain.  Depending on the desired 

divisor (M=2
K), an erroneous transient generated within the i

th divide-by-2 stage 

(assuming i < K) must propagate through the remaining K-i stages.  Thus, the phase error 

at the output of the divider may be determined by Eqn. (VIII-2), where Фi is the phase 

error generated at the ith divide-by-2 stage and ФK is the resulting phase displacement at 

the output of the Kth stage. 
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This phenomenon is illustrated in Fig. VIII-9 where the CDF of phase displacement 

values for various divisors (M) in a divide-by-M circuit are displayed for ion strikes with 

an LET of 80 MeV-cm2/mg.  The input frequency is 2 GHz for each case, resulting in 

output frequencies given by 2/M GHz.  The CDF curves were generated by projecting the 

simulation results for a single divide-by-2 circuit over various operating frequencies to 

the analogous stage number in the divide-by-M circuit, and utilizing Eqn. (VIII-2) to 

describe the propagation of transients through the divider chain.  For an M equal to 4, for 

example, there are two active divide-by-2 stages.  The input frequency to the first stage is 

2 GHz whereas the input frequency to the second stage is 1 GHz, resulting in an output 

frequency of 500 MHz.  Therefore, the simulation results for a divide-by-2 circuit for 

input frequencies of 2 GHz and 1 GHz represent the phase displacements at the outputs 

of the first and second stages, respectively.  Moreover, the phase displacements generated 

 
Fig. VIII-9.  Empirical CDFs of phase displacement (units of 2π radians) for strikes (LET 
of 80 MeV-cm2/mg) in the divide-by-M. 
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within the first stage must propagate through the remaining stage and are therefore 

divided by 2 before reaching the output. 

The results presented in Fig. VIII-9 indicate that increasing the divisor (M) decreases 

the probability of strikes in the divider chain resulting in a given range of phase errors at 

the divider’s output.  Therefore, for stand-alone frequency dividers such as those that are 

external to the closed-loop PLL (I/O dividers), increasing M is expected to decrease the 

probability of an ion strike resulting in a given range of phase displacements.  This result 

is consistent with data presented in [Ha08] showing a decreasing error rate for increasing 

output divisors. 

 

2) Experimental Analysis 

Single-event effects (SEE) testing was performed in order to illustrate and quantify 

the impacts of the PLL configuration (output and feedback dividers) on the SET 

vulnerability of the topology.  The PLL was designed and manufactured by Aeroflex 

Colorado Springs using a commercial 250 nm CMOS technology [Ha05a, Ha08].  The 

general PLL topology is identical to that shown in Fig. VIII-8 and has an oscillation 

range of 48 MHz to 100 MHz.  Additionally, the PLL consists of programmable output 

and frequency dividers with selectable divisors (M and N) between 1 and 32. 

Testing was performed using the K500 cyclotron at Texas A&M University’s 

(TAMU) Cyclotron Institute.  Xenon and argon 25 MeV/amu heavy ions were used at 

incident angles between 0º (normal to surface) and 60º in order to achieve effective LET 

values between 10 and 109 MeV-cm2/mg.  All testing was performed at a nominal power 

supply voltage of 3.0 V and at room temperature.  Errors were recorded when the output 
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signal was out of phase with the reference signal by 90º (π/2 radians of phase 

displacement) or more. 

 

 

 

Fig. VIII-10 illustrates the event cross-section (cm2/device) versus LET (MeV-

cm2/mg) for two PLL configurations (N, M) at an operating frequency of 100 MHz.  Both 

(1, 1) and (1, 32) configurations (constant feedback divisor) have identical LET 

thresholds of approximately 40 MeV-cm2/mg.  However, the cross-sections decrease for 

increasing output divisor M, indicating a decreased probability of upset.  This result is 

consistent with that illustrated in Fig. VIII-9.  Perhaps surprising is that the cross-section 

decreases although the total chip area increases (more divider stages are being utilized as 

M increases).  As described in the previous sub-section, this phenomenon results from the 

 
Fig. VIII-10.  Measured event cross-section (cm2/device) versus effective LET 
(MeV-cm2/mg) for the programmable Aeroflex PLL discussed in the text.  Two different 
PLL configurations (constant feedback divider) are illustrated at an operating frequency 
of 100 MHz.  Increasing the output divisor, M, decreases the measured cross-sections. 
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competing effects of the fundamental propagation nature of phase transients through the 

divider, and the individual vulnerabilities of the PLL and divider circuits.  The end result 

of this competing effect is that the overall probability of PLL upset following an ion 

strike may be reduced by increasing the output divisor M due to the dominating effect of 

the transient division through the circuit. 

 

Impacts of the Feedback Divider on the SET Propagation in the PLL 

1) Theoretical and Simulation Analyses 

Though the previous analysis states that decreasing the output divisor (M=1 being the 

smallest possible, M≥1) increases the probability of strikes in the output frequency 

divider resulting in a given range of phase error values, this result does not indicate how 

the presence of a feedback divider impacts SETs generated from the additional PLL sub-

circuits.  In order to examine the impacts (if any), SET simulations for strikes in each 

PLL sub-circuit were performed for various feedback divisors, N (see Fig. VIII-8).  As 

the purpose of this study is to illustrate the effect of the divider on the propagation of 

phase SETs through the PLL, only strikes on nodes characteristic of the typical sub-

circuit responses (as defined in previous works [Bo05, Bo06, Lo06, Lo08 Lo07c]) were 

chosen for this study.  For example, strikes on nodes UP and DOWN were chosen as the 

representative ‘worst-case’ conditions for the PFD sub-circuit.  Similarly, strikes on 

nodes VinVCO, VoutVCO, and XDFF{K} represent the CP, VCO, and feedback divider sub-

circuits, respectively. 

Additionally, the charge deposition representative of the ion-induced current pulse 

was simulated by injecting a piece-wise linear current pulse for various integrated charge 
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amounts (250 fC, 500 fC, 1 pC, and 2 pC).  The PLL circuit shown in Fig. VIII-8 was 

simulated with feedback divisors of N=1, N=2, N=4, and N=8 at an output frequency of 

1.1 GHz (the center frequency of the VCO).  As in the previous analysis, the temporal 

location of the strike with respect to the PLL’s input frequency was varied in order to 

span the operating periods of the input/output signals.  For each simulation, the PLL’s 

maximum output phase displacement and the loop’s recovery time were measured.  The 

maximum output phase displacement was determined by finding the peak of the phase 

error as shown in Figs. VIII-3 and VIII-4.  The recovery time (time required for the PLL 

to regain phase lock) was measured as the time for which the output phase displacement 

was greater than 50 ps (0.35 radians).  A threshold of 50 ps was chosen in order to 

discriminate between any errors generated by the circuit’s characteristic noise and 

numerical errors in the calculations.  Fig. VIII-11 shows the mean values of (a) output 

phase displacement and (b) recovery time for various PLL configurations (N) and for a 

deposited charge of 50 fC.  Error bars represent one standard deviation. 

The results shown in Fig. 13(a) suggest that the feedback factor has little impact on 

the phase magnitude (Фdisp) of the transients, where a slight increase in Фdisp was 

measured for increasing N.  This is partly due to the fact the output frequency is constant 

regardless of the feedback divisor.  As the output frequency (ωout) is unchanged, the input 

frequency (ωin) must decrease with increasing feedback divisors (N) in order to satisfy 

the relationship ωout = N·ωin.  Therefore, the natural frequency must decrease 

proportionally with increasing N, thereby increasing only the response time of the loop 

[Ga05]. 
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The previous observations that the input and natural frequencies must decrease 

proportionally with increasing N indicates that the relative change within the loop (the 

 

 
Fig. VIII-11. Mean (a) Фdisp and (b) trec vs. N for SET simulations of strikes in the PFD 
(nodes UP and DOWN), CP (node VinVCO), VCO (node VoutVCO), and Frequency Divider 
(nodes XDFF1, XDFF2, and XDFF4) within the PLL.  Simulations were for a deposited 
charge of 50 fC. All simulations were performed for a constant output frequency of 
1.1 GHz. 
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frequency adjustment per loop cycle) must be constant for any feedback divisor.  For 

example, PLLs with smaller feedback divisors can respond to perturbations with finer 

adjustments per loop cycle (greater time resolution), and can make more adjustments for 

a given amount of time (due to the increased natural frequency) when compared to PLLs 

with large feedback divisors. 

Fig. 13(b) indicates that the feedback divisor chiefly impacts the PLL’s recovery time 

following a strike.  Moreover, the nature of the PLL recovery strongly depends on the 

location of the initial perturbation.  Further details of the observed phenomena are 

explained in the following sub-sections, highlighting details for strikes in the PFD, CP, 

VCO, and feedback frequency divider. 

a) Strikes in the PFD: 

For perturbations due to strikes in the PFD, the recovery time of the PLL increases for 

increasing feedback divisors.  Strikes in the PFD will result in an erroneous pulse at 

either the UP or DOWN node, thus ‘tricking’ the charge pump into sourcing/sinking 

charge due to the incorrectly detected phase error.  Ideally, the PLL can correct this 

perturbation by activating the charge pump (in an opposite manner of the strike) for 

exactly the amount of time of the initial perturbation.  However, the PLL cannot correct 

this internal change until the rising edges of the subsequent reference and feedback 

signals arrive at the PFD.  Therefore, as the input frequency is greater for smaller 

feedback divisors, the rate at which the PLL can correct itself following the PFD 

perturbation is also greater for smaller feedback divisors.  Thus, the recovery time 

increases approximately proportional to a decrease in input frequency. 
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b) Strikes in the CP: 

Strikes in the CP sub-circuit deposit/deplete charge to/from the capacitive load in the 

loop filter, thus adjusting the input voltage to the VCO.  The frequency perturbation at 

the output of the VCO is therefore directly proportional to the change in stored charge in 

the loop filter.  The recovery of the output frequency and phase begins once the PFD 

detects the resulting phase error and is thus dependent on the fundamental acquisition 

properties of the PLL.  As the acquisition properties of the PLL and output frequency 

remain constant versus feedback divisor, the recovery time and phase displacement of the 

PLL due to strikes in the charge pump is loosely dependent (independent, for practical 

purposes) on the feedback divisor.  The slight increases in output phase displacement and 

recovery time are due to the decreased loop stability, increased jitter, and increased loop 

response time with increasing feedback divisor, N.  

c) Strikes in the VCO: 

SETs occurring within the VCO sub-circuit propagate directly to the output of the 

PLL, thus the magnitude of the transient depends on the nature and location of the strike 

within the sub-circuit [Bo05, Lo07c].  The recovery time, however, is determined by two 

factors: the removal of charge within the oscillator, and the feedback response of the PLL 

to the change in the VCO output.  Once the phase error present in the VCO output signal 

propagates and is divided through the feedback divider, any phase error present at the 

output of the divider is detected by the PFD, thus activating the charge pump.  

Furthermore, as the VCO is not likely to immediately return to its initial phase lock with 

respect to the reference signal, the PLL will subsequently require some period of time to 

settle back into phase lock.  The recovery time therefore depends on the initial transient 
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perturbation and the PLL settling characteristics (which depends on the loop’s response 

time and damping).  As in the case of strikes in the PFD, the recovery time following 

strikes in the VCO will increase with increasing feedback divisors, as the fundamental 

response time of the loop increases. 

d) Strikes in the Frequency Divider: 

As previously stated, strikes in the frequency divider can result in a phase 

perturbation at the output of the divider.  As in the case of strikes in the VCO sub-circuit, 

the phase error at the output of the divider is detected by the PFD, thus causing the loop 

to adjust its operating condition.  The magnitude of the phase error at the output of the 

PLL is a result of the initial ‘false’ phase error detected by the PFD which activates the 

CP to modify the VCO’s control voltage.  As in the case for strikes in the PFD and VCO, 

the recovery time depends on the detected phase error and the loop response time.  

Therefore, as the loop response time increases due to increases in the feedback divisor, 

the recovery time increases proportional to increases in the feedback divisor (decreases in 

input frequency). 

 

2) Implications of PLL Feedback Factor 

The results presented specify that for increasing feedback divisors (N), the recovery 

time increases following SETs originating in the PLL sub-circuits.  Additionally, as the 

output phase displacement increases slightly with increasing N, the feedback divider is 

shown to have little impact on the magnitudes of the phase displacement values resulting 

from strikes within any PLL sub-circuit.  Although the PLL specification for phase lock 

is entirely application dependent, the trends illustrated in Fig. VIII-11 suggest that 
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increasing the feedback divisor increases the SET vulnerability of the PLL.  Moreover, 

assuming that the PLL area is dominated by the primary sub-circuits (PFD, CP, LPF, and 

VCO), the saturated event cross-section can be expected to remain relatively constant for 

increasing N.  These observations are consistent with data presented in [Ha08] indicating 

that the calculated error rate increases with increasing feedback divider, N.  It is 

important to note the feedback divider will not change the probabilities of strikes in 

additional PLL sub-circuits resulting in output phase transients. 

 

3) Experimental Analysis 

Fig. VIII-12 illustrates the event cross-section (cm2/device) versus LET (MeV-

cm2/mg) for two PLL configurations (N, M) at a VCO operating frequency of 48 MHz.  

All experiments utilize the parameters discussed in the previous experimental sub-

section.  First, both (1, 1) and (32, 1) configurations (constant output divisor) have similar 

saturated cross-sections.  However, the LET thresholds decrease for increasing feedback 

divisor N.  This result is a consequence of the increasing transient magnitudes and 

recovery times for increasing feedback divisors (illustrated in Fig. VIII-11).  In essence, 

the feedback divisor magnifies the generated transients within the PLL such that the 

resulting output phase displacement and loop recovery is greater for increasing N.  As a 

result the minimum LET required for PLL upset (in this case, a phase displacement of π 

radians) decreases for increasing N. 
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Conclusion 

Single-event transients have been analyzed in integer-N divider networks for the use 

in PLL circuits.  Simulations on a single divide-by-2 stage show that SETs within the 

divider can result in phase transients at the outputs bounded by multiples of the output 

signal’s period.  Moreover, the probability of an ion-strike resulting in a given range of 

phase displacement values increases with increasing input frequency, therefore 

decreasing the probability of obtaining a given phase displacement for increasing divider 

factors.  Also, as phase transients propagate through stand-alone divider networks, such 

as the I/O frequency divider, they are attenuated through the chain, indicating that strikes 

in the final stage will most likely result in the largest phase displacement values at the 

 
Fig. VIII-12. Measured event cross-section (cm2/device) versus effective LET 
(MeV-cm2/mg) for the programmable Aeroflex PLL discussed in the text.  Two different 
PLL configurations (constant output divider) are illustrated at an operating frequency of 
48 MHz.  Increasing the feedback divisor, N, decreases the LET threshold. 
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outputs of the divide-by-N circuit.  Moreover, increasing the divisor of the I/O divider 

network in PLL circuits will decrease the probability of strikes in the divider chain 

resulting in PLL upsets.  This result is corroborated with heavy-ion data illustrating a 

decrease in event cross-section for increasing output divisors.  

Although increasing the I/O divisor decreases the probability of PLL upset due to 

large output phase displacements, increasing the divisor of the feedback divider increases 

the SET vulnerability of the PLL circuit.  Consequently, the LET threshold decreases for 

increasing feedback divisors.  Therefore, the optimal PLL configuration (in terms of SET 

vulnerability) requires maximizing the output frequency divider while minimizing the 

feedback frequency divider.  This result indicates the importance of characterizing the 

SET response of the PLL under the worst case configuration (maximum N and minimum 

M).  The individual impacts of N and M on the calculated error rates may subsequently be 

assessed by analyzing the SET performance for a variety of configurations. 

 



 169

CHAPTER IX 
 
 

A GENERALIZED LINEAR MODEL FOR SINGLE TRANSIENT PROPAGATION 
IN PHASE-LOCKED LOOPS AND GUIDELINES FOR ERROR REDUCTION 

 
 

Introduction 

Numerous simulation, experimental, and analytical analyses have been presented thus 

far in an attempt to characterize the fundamental nature of SET generation in the PLL 

sub-circuits and the propagation of SETs through the PLL closed-loop.  This chapter 

presents an analytical model for transient effects in PLLs, unifying all of the discussed 

results and observations, in a general closed-form.   

Although this dissertation primarily discusses PLLs in the context of on-chip clock 

generation and skew reduction in the presence of single ionizing particles, it is the goal of 

this work to present a generalized model for single transient propagation through PLL 

topologies for a variety of applications and environments.  The transient model is 

formulated from a conventional linear PLL model commonly used in a variety of noise 

analyses [Ha04, He04, Kr82, Me02].  However, the model is unique in that the resulting 

fundamental design equations are derived in closed-form under the assumption that 

transients are a result of single transient impulses applied to the various sub-circuits 

rather than continuous nondeterministic sources.  This approach vastly simplifies the 

analysis and provides insight into the closed-loop parameters that directly influence the 

generation and propagation of transients through the PLL.  As a result, a list of design 

guidelines is developed that can be applied to all PLL topologies.  The set of principles 

may be applied for analytical transient mitigation to reduce the sensitivity of PLLs to 
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single transients resulting from extrinsic noise sources such as single-event radiation and 

crosstalk noise. 

 

 

 

Transient Propagation 

The model for transient propagation in the PLL is shown in Fig. IX-1.  The 

parameters VSET, ISET, and QSET represent the cases where the input perturbation has the 

form of a voltage, current, and charge, respectively.  Additionally, the parameter tSET 

represents the length of time of the initial extrinsic perturbation.  All transient 

perturbations are assumed to be a result of extrinsic noise and are generated by a single 

impulse perturbation at either the outputs of the PFD, conventional CP, VCO, or 

frequency divider.  In regards to transients resulting from single ionizing radiation, recent 

works discussed throughout this dissertation have characterized the SET response of each 

sub-circuit in terms of the voltage perturbation (Ve) at the input to the VCO, the recovery 

 
Fig. IX-1.  PLL model for single transient propagation. 
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time (trec) of the loop, and the output phase displacement (Фdisp) [Bo06, Lo06, Lo07a, 

Lo08, Lo07b, Lo07c].  Therefore, a set of equations will be derived in order to estimate 

each parameter following single perturbations in each sub-circuit.  

 

 

 

This chapter considers Фdisp as a measure discussed in [Lo08] for measuring the phase 

error in a signal without the need for an ideal reference.  Phase displacement, in units of 

radians, is calculated by measuring the time-difference between the local erroneous 

operating period (Te) containing the phase perturbation and the nominal operating period 

of the output signal (Tlock), normalized by Tlock and multiplied by 2π, as given by  

Eqn. (IX-1) [Lo08].  An illustration of Te required to measure Фdisp is presented in 

Chapter VII (Fig. VII-6). 
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TABLE IX-1 
PLL-90NM AND PLL-130NM DESIGN PARAMETERS  

(DESIGNED USING IBM CMOS9SF AND CMRF8RF PROCESSES) 

Parameter PLL-90NM  PLL-130NM  

VDD 1.2 V 1.2 V 
ICP 2 µA 2 µA 
C1 2.14 pF 770 fF 

KVCO 2.5·1010 rad/(s·V) 4.82·109 rad/(s·V) 
ωn (β=1) 6.1·107 rad/s 1.4·108 rad/s 

ζ ~1 ~1 
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The following sub-sections discuss transient generation within each sub-circuit and 

the transient’s closed-loop propagation.  All illustrations utilize the PLL design 

parameters described in Table IX-I and illustrated in Figs. II-6 and II-10 (Chapter II). 

 

Loop Recovery 

Following an impulse perturbation resulting in a frequency/phase shift at the output, 

the closed-loop transfer function (Chapter II) suggests that the PLL will re-track the input 

such that the output frequency is equal to that of the input frequency divided by the 

feedback factor.  Assuming the PLL can respond instantaneously to a loop perturbation, 

the ideal recovery time (trec) of the loop will depend on the resulting frequency shift and 

will follow Eqn. (II-18) for the acquisition time.  The recovery (re-acquisition) time, 

however, only occurs following the arrival of the next rising edge of the input or 

feedback signal.  Thus, at most there will be a time TREF (period of reference signal) 

before re-acquisition can occur.  Therefore, the actual recovery time (t′rec) is at most the 

ideal recovery time (trec) time plus TREF and some settling time, ts (Eqn. (IX-2)). 

 

 sREFrecrec tTtt ++≤′  (IX-2) 

 

Table IX-II shows the equations for the ideal recovery time following transients in 

each sub-circuit as derived in APPENDIX A where tSET represents the length of the initial 

transient pulse, QSET is the amount of charge in/out of the CP sub-circuit as a result of the 

perturbation, Tc is the cycle time error at the output of the VCO, and Tc,DIV is the cycle 

time error at the output of the frequency divider.  Following the perturbation, the PLL 
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will reacquire the input signal by activating the CP sub-circuit in an opposite fashion of 

the initial perturbation.  Assuming a linear response of the closed-loop PLL and a 

constant CP current, the ideal recovery times following transient perturbations originating 

within the PFD, VCO, or frequency divider sub-circuits is exactly the length of time of 

the original transient. 

 

 

 

However, the ideal recovery time following transient perturbations within the CP sub-

circuit is not only dependent on the original perturbation time.  As a perturbation at the 

output of the CP will abruptly alter the voltage applied to the input of the VCO, causing a 

prompt shift in the output frequency, the closed-loop PLL will reacquire the input 

frequency as determined by the transfer equations.  Therefore, the recovery time will 

follow the initial acquisition characteristics as determined by Eqn. (II-18), where the 

amount of voltage perturbation, Ve, depends directly on the amount of charge, QSET, 

deposited or depleted from the LPF, as shown by the equation in Table IX-II.  Fig. IX-2 

illustrates an example of a voltage transient on VinVCO and corresponding frequency 

transient resulting from an initial perturbation at the output of the CP sub-circuit.  The 

TABLE IX-2 
IDEAL RECOVERY TIMES FOR TRANSIENT PERTURBATIONS  

GENERATED WITHIN EACH PLL SUB-CIRCUIT 

Sub-Circuit trec 

PFD tSET 

CP QSET/ICP + tSET 
VCO |Tc| 

β |Tc,DIV| 

Following a transient perturbation, tSET represents the length of the transient pulse, QSET is the amount of 
charge in/out of the CP sub-circuit as a result of the perturbation, ICP is the nominal CP current, Tc is the 
cycle time error at the output of the VCO, and Tc,DIV is the cycle time error at the output of the frequency 
divider.  
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simulation was performed on a PLL designed using the IBM CMOS 9SF PDK using the 

parameters in Table IX-I (PLL-90nm).  Moreover, the initial perturbation was induced by 

injecting 300 fC of extraneous charge at the output node of the CP sub-circuit (charge 

collected on LPF capacitor, C1).  As indicated in Fig. IX-2, the simulated recovery time 

ignoring any settling effects is approximately 140 ns.  Utilizing the equation in Table IX-

II for calculating trec following CP perturbations, the estimated recovery time is 150 ns, a 

7% deviation from the simulated trec. 

 

 

 

 

 

 

Fig. IX-2.  An example of a voltage transient on VinVCO and corresponding frequency 
transient resulting from an initial perturbation at the output of the CP sub-circuit.  The 
simulation was performed on a PLL designed using the IBM CMOS 9SF PDK. The 
initial perturbation was induced by depositing 300 fC of extraneous charge at the output 
node of the CP sub-circuit. 
 



 175

Voltage Transient Generation 

As the PLL output frequency is equal to the input frequency divided by the feedback 

factor when in phase lock, it is useful to think of the phase transfer function in terms of 

output frequency rather than phase (also discussed in detail in Chapter II).  Also, since a 

change in output frequency must be accompanied by a change in the VCO control 

voltage, the relationship shown in Eqn. (IX-3) may be derived.  Thus, the response of the 

closed-loop system can be obtained by monitoring the variations in the VCO’s control 

voltage, VinVCO [Ra01]. 
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For example, a perturbation occurring within the PFD sub-circuit may cause a 

corrupted bit which can propagate through the combinational logic blocks and appear at 

either the UP or DOWN signal lines.  The resulting signal on node UP or DOWN will 

have a voltage VSET over time tSET.  Assuming the CP is perfectly matched (sink current 

equals source current) and VSET is large enough to engage the CP, the activation of the CP 

sub-circuit will perturb VinVCO by some voltage Ve.  Similarly, transient perturbations in 

the CP sub-circuit may directly activate the CP to source/sink current to/from the LPF, or 

deposit/deplete charge directly to/from the LPF, thus adjusting VinVCO.  Further, 

perturbations occurring within either the VCO or frequency divider sub-circuits may 

result in phase error that is detected by the PFD.  The resulting phase error will appear at 

the output of the PFD and ultimately perturb VinVCO in an identical fashion as previously 

discussed. 
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Assuming the VCO is linear, Eqn. (IX-3) indicates that the frequency transient will 

precisely follow the voltage transient as shown in Fig. IX-2.  Moreover, as derived in 

APPENDIX A, it is shown that the maximum voltage perturbation at VinVCO following 

transient perturbations in each sub-circuit is given as Eqn. (IX-4) where KPD is the gain of 

the phase detector, trec is the ideal recovery time given in Table IX-II, and C1 is the loop 

filter’s primary capacitance.  Consistent with the results illustrated in Fig. IX-2, the 

calculated Ve resulting from 300 fC of extraneous charge at the output of the CP is  

0.14 V.  Further, Eqns. (A-1), (B-2), (C-4), and (D-2) located in APPENDIX A represent 

simplified expressions for Ve following perturbations in the PFD, CP, VCO, and β sub-

circuits, respectively. 
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Although VinVCO is directly proportional to the output frequency and accurately 

represents the frequency error following perturbations within the PFD, CP, and frequency 

divider sub-circuits, it is important to note that voltage transients resulting from 

perturbations within the VCO do not directly correspond to the frequency transient 

appearing at the output of the VCO.  As the initial VCO perturbation manifests as a 

phase/frequency transient, the voltage error, Ve, is a secondary effect that occurs as a 

result of the detected phase error.  Thus, the transient on VinVCO represents only the output 

frequency during the PLL recovery and not the initial VCO perturbation and resulting 

recovery.  Conversely, output frequency transients resulting from perturbations 

originating in every other sub-circuit may be completely described by the voltage 
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transient on VinVCO, as discussed and displayed in Fig. IX-2.  This observation suggests 

that examining only the voltage transient on VinVCO is not adequate for completely 

describing the transient behavior of the PLL. 

 

Output Phase Displacement 

The output phase displacement, Фdisp, may be utilized in order to absolutely describe 

the phase/frequency transient resulting from an initial perturbation in any sub-circuit.  

The maximum Фdisp, for example, describes the peak of the phase shift accrued, whereas 

Фdisp quantified versus time may be used to describe the loop’s recovery time and 

resulting number of erroneous output pulses [Lo08, Lo07b, Lo07c]. 

As derived in APPENDIX A, it follows that the voltage error, Ve, will modify the 

output frequency, thus resulting in an instantaneous frequency error (fe) at VoutVCO given 

by Eqn. (IX-5).  
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The notation used in Eqns. (IX-4) and (IX-5) will always result in positive values for Ve 

and fe; in other words, Eqns. (IX-4) and (IX-5) represent the magnitudes of the voltage 

and frequency shifts.  However, a decrease/increase in VinVCO will subsequently 

decrease/increase foutVCO.  The subsequent text will denote positive frequency 

modulations (increases in foutVCO) by stating that ∆foutVCO > 0, whereas negative frequency 

modulations (decreases in foutVCO) will be stated as ∆foutVCO < 0.  Consequently, as derived 

in APPENDIX A, the output phase displacement following perturbations in the PFD, CP, 
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and β sub-circuits is given as Eqn. (IX-6) where trec is the ideal recovery time given in 

Table IX-II, ωn is the PLL natural frequency, β is the feedback factor, and flock is the 

steady-state output frequency in phase lock.  The plus sign in the denominator is used 

when estimating the response for transients on UP, sourcing current to C1, or those 

resulting in a positive frequency modulation.  The negative sign in the denominator is 

used for transients on node DOWN, depleting charge from C1, or those resulting in a 

negative frequency modulation. Note that for negative frequency modulations,  

Eqn. (IX-6) is only valid for trec < βflock/ωn
2 as it assumed that the output frequency 

cannot be reduced further than f0 as described by the linear approximation of the VCO 

transfer characteristics shown in Fig. II-6. 
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In contrast to perturbations originating in the PFD, CP, or frequency divider, 

perturbations within the VCO sub-circuit initially affect the output phase regardless of the 

loop characteristics.  In this case, the initial phase displacement following transient 

perturbations in the VCO is given merely as Eqn. (IX-1).  However, following the initial 

phase displacement in the VCO, the phase error propagates through the closed-loop, thus 

perturbing the steady-state loop conditions.  As a result, the output phase of the VCO is 

further modified resulting in a secondary phase displacement as determined by  

Eqn. (IX-9).  Moreover, Eqns. (A-6), (B-4), (C-1), and (D-3) located in APPENDIX A 

represent simplified expressions for the phase displacements following perturbations in 

the PFD, CP, VCO, and β sub-circuits, respectively. 
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The following observation can be made regarding the output phase displacement: 
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Hence, transients resulting in positive frequency modulations will always be upper-

bounded by 2π whereas transients resulting in negative frequency modulations have no 

upper bound.  Thus, the most severe loop perturbation occurs when VinVCO is reduced to  

0 V, subsequently reducing the output frequency to f0.  Conversely, for transients 

resulting from positive frequency modulations, the output frequency approaches a 

maximum dependent on the VCO transfer curve.  From the definition of Te in  

Eqn. (IX-1), Te approaches 0 for increasing trec.  Consequently, according to Eqn. (IX-1), 

Фdisp approaches 2π for increasing trec. 

 

The PLL Critical Time Constant 

Fig. IX-3 illustrates Фdisp vs. trec for perturbations resulting in (a) positive and (b) 

negative frequency modulations.  The phase displacement is calculated using Eqn. (IX-6) 

for the design parameters shown in Fig. II-10 and Table IX-I (PLL-90nm).  Results from 

five lock frequencies (flock) within the VCO linear operating range are displayed and 

indicate that Фdisp decreases slightly with increasing flock (signified by the horizontal 

translation of the Фdisp vs. trec curve).  This decrease in sensitivity with increasing lock 

frequencies (for a given VCO design) is due to the increase in the steady-state VinVCO 

required to achieve larger values of flock.  Larger VinVCO values require either longer CP 
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activation times or larger charge depletions in order to reduce the nodal voltage to 

equivalent values. 

 

 

  

The results displayed in Fig. IX-3 also show that Фdisp increases for increasing trec.  

Initially, Фdisp tends to increase pseudo-linearly versus trec for both positive and negative 

frequency modulations.  However, as discussed in the previous sub-section, Фdisp 

resulting from positive frequency modulations asymptotically approaches 2π for 

increasing trec (Fig. IX-3 (a)).  Conversely, for negative frequency modulations, each 

curve for a given flock consists of a unique vertical asymptote on trec such that Фdisp 

approaches infinity for increasing trec (Fig. IX-3 (b)).  This asymptote on trec, denoted as 

 

Fig. IX-3.  Output phase displacement versus trec for (a) positive and (b) negative 
frequency modulations as determined by Eqn. (IX-6) and the PLL parameters provided in 
Table IX-I (PLL-90nm).  The critical time constant, τcrit, corresponds to the vertical 
asymptote on trec and is determined by Eqn. (IX-7) for various lock frequencies. 
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the PLL critical time constant (τcrit), increases linearly with increasing frequency, and is 

described by Eqn. (IX-7) where β is the feedback factor, flock is the steady-state output 

frequency in phase lock, and ωn is the PLL natural frequency.  For the PLL design 

parameters in Fig. II-10 and Table IX-1 (PLL-90nm) at a flock of 1 GHz, for example, τcrit 

is approximately 200 ns.  For perturbations resulting in trec > τcrit, it can be expected that 

Фdisp → ∞ for increasing trec. 

 

 
2
n

lock

crit

f

ω

β
τ =  (IX-7) 

 

Conceptually, τcrit corresponds to the minimum time constant of the initial 

perturbation required to maximally disturb the closed-loop PLL.  Utilizing the equations 

for trec in Table IX-II (PLL-90nm), the perturbation characteristics for each sub-circuit 

may be examined and compared to a given τcrit in order to estimate the ease with which 

the perturbation will affect the closed loop.  For perturbations originating in the PFD sub-

circuit, for example, transients with time-widths, tSET, of close to 200 ns or greater are 

required before phase displacement values can be expected to rapidly increase.  In the 

case of single ionizing particle disturbances, transient widths of 200 ns or greater are 

highly improbable as typical transient distributions at sub-100 nm technology nodes are 

reported between picoseconds and nanosecond values [Be06, Ga04, Na07].  Therefore, 

the PFD sub-circuit is likely to have little impact in the overall transient vulnerability.  

For perturbations originating in the CP sub-circuit, however, a QSET of 400 fC or greater 

(much more likely in the case of single ionizing particles) will result in trec values of τcrit 

or greater.  These observations are consistent with previous simulation and experimental 
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works identifying the CP sub-circuit as the dominant contributor to the transient 

vulnerability of the PLL [Bo06, Lo06, Lo07a, Lo07b]. 

 

 

 

Eqns. (IX-6) and (IX-7) also suggest that the output phase displacement and critical 

time constant are highly dependent on the PLL natural frequency.  Fig. IX-4 shows the 

output phase displacement versus recovery time at various natural frequencies for (a) 

positive and (b) negative frequency modulations as determined by Eqn. (IX-6) and the 

PLL parameters provided in Table IX-I (PLL-90nm).  Results for five natural frequencies 

achieved by modifying the CP current are displayed and indicate a decrease in Фdisp for 

decreasing ωn at a given trec (signified by the horizontal translation of the Фdisp vs. trec 

 
Fig. IX-4. Output phase displacement versus trec for (a) positive and (b) negative 
frequency modulations as determined by Eqn. (IX-6) and the PLL parameters provided in 
Table IX-I (PLL-90nm).  The critical time constant, τcrit, corresponds to the vertical 
asymptote on trec and is determined by Eqn. (IX-7) for various natural frequencies 
achieved by modifying the charge pump current ICP. 
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curve).  This decrease in sensitivity is due to the loop’s increased response time for 

decreasing natural frequency.  In other words, for a given perturbation, the transient will 

propagate slower through the loop for smaller natural frequencies, thus reducing the 

impact on the output phase.  Also indicated in Fig. IX-4 is the increase in τcrit for 

decreasing ωn.  Moreover, the results suggest that the critical time constant increases as a 

quadratic with decreasing natural frequency, thereby decreasing the PLL ease of 

propagating extrinsically induced transients. 

 

Principles for Transient Reduction 

Conventional PLL design guidelines typically suggest designing the PLL with as 

large a natural frequency as possible [Ba08].  However, the results presented in the 

previous section suggest that increasing ωn also increases the ease at which transients 

ensuing in large Фdisp values propagate through the closed-loop.  This observation 

indicates that when considering extrinsic single transient perturbations, there should be an 

upper bound for the natural frequency as given by Eqn. (IX-8). 
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By ensuring that ωn << ωn,crit, the magnitudes of the output phase displacement values 

following transient perturbations can be minimized.  For example, assuming typical QSET 

and tSET values of 500 fC and 1 ns for CP perturbations (which may be estimated from the 

operating environment), the maximum calculated trec (Table IX-II) is approximately  

250 ns for the PLL parameters provided in Table IX-I (PLL-90nm).  According to Fig. 
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IX-4, transient perturbations in the CP are likely to result in extremely large Фdisp values 

for ICP values of 3 µA and greater.  In other words, the PLL critical time constant for ICP 

values of 3 µA and greater is much less than the expected trec.  However, for an ICP of 1 

µA, τcrit is approximately 600 ns and the estimated Фdisp for an expected trec of 250 ns is 

approximately 2π radians. 

The discussed results and observations lead us to define a list of design guidelines, or 

principles, for analytical mitigation of single transient propagation through PLL circuits. 

1. First, τcrit should be as large as possible.  Consequently, ωn must be upper 

bounded by ωn,crit.  

2. The gain of the VCO, KVCO, should be minimized, thus decreasing the 

bandwidth of the VCO.  Decreasing KVCO also decreases the output jitter; 

however, KVCO may not be entirely adjustable for a given application with 

particular output frequency requirements.  Accordingly, applications requiring 

large output frequencies should be designed with low bandwidth VCOs. 

3. The PLL lock frequency should be greater than the center frequency of the 

VCO while remaining within the linear operating region.  Increasing flock for a 

given VCO has the effect of increasing τcrit. 

4. The CP source/sink current, ICP, should be minimized in accordance with the 

application’s lock-time specifications and the design equations presented in 

this work.  As decreasing ICP increases the lock time, the recovery time 

following transient perturbation also increases.  Therefore, the estimated 

output recovery times should be weighed against the calculated critical time 

constant, as in Figs. IX-3 and IX-4. 
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5. The loop filter’s capacitance, C1, should be maximized in accordance with the 

application’s lock-time specifications and area requirements.  Increasing C1 

has the same effect as decreasing ICP. 

As a design example, assume a given application can tolerate up to 2π radians of 

phase displacement.  According to Fig. IX-4, the PLL with an ICP of 1 µA (τcrit = 600 ns) 

ensures that transients resulting in trec values of up to 300 ns can be tolerated.  If we 

assume that tSET << QSET/ICP, it appears that a good “rule of thumb” is that for every 1 ns 

of desired tolerance in trec, the CP can tolerate up to 1 fC of charge perturbation.  

Similarly, if ICP is 3 µA, the CP can tolerate up to 3 fC of charge perturbation for every  

1 ns of desired tolerance.  Thus, for a maximum trec value of up to 300 ns for an ICP =  

1 µA or 100 ns for ICP = 3 µA, the CP can tolerate a QSET of up to  

300 fC of charge perturbation in order to ensure that the output phase displacement will 

be less than 2π radians. 

 

Model Validation 

The transient model has been validated through simulations and experiments on two 

PLL designs.  The first (denoted as PLL-90nm), was designed using the IBM 90 nm 9SF 

PDK and the design parameters listed in Table IX-I.  PLL-90nm is utilized for all 

simulations in order to validate the discovery of the PLL critical time constant.  The 

second PLL (PLL-130nm), designed using the IBM 130 nm 8RF PDK and the parameters 

listed in Table IX-I, was fabricated through the MOSIS foundry [MOSIS].  Experiments 

validate the analytical model and all simulation results. 
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Simulation Results 

The simulations on PLL-90nm (Table IX-I) were performed using the CADENCE 

EDA tool suite, the Spectre Environment, and the ACCRE computing cluster at 

Vanderbilt University [ACCRE].  All simulations were performed over four design 

parameters: the circuit node of the injected perturbation, the length of the initial transient 

perturbation and/or the amount of deposited/depleted charge, the temporal location of the 

perturbation within the clock period, and the PLL operating frequency.  All voltage 

transient perturbations were induced by injecting a piecewise linear (rectangular) voltage 

source for a length of time, tSET, and a maximum voltage of VDD.  Similarly, all charge 

perturbations were induced by injecting a rectangular current source for a length of time, 

tSET.  The maximum current was varied in order to set the total amount of deposited 

charge over time tSET. 

Following the simulated transient perturbation, the output phase displacement was 

directly measured using Eqn. (IX-1).  Fig. IX-5 illustrates the output phase displacement 

(Фdisp) versus deposited charge (QSET) resulting from simulated charge perturbations at 

the output of the CP sub-circuit in PLL-90nm.  Also displayed is the Фdisp versus trec 

characteristic (and corresponding QSET as determined from Table IX-II) as calculated 

from Eqn. (IX-6).  Both the simulations and model indicate that the PLL critical time 

constant is 300 ns.  Note that no calibration of the model is necessary in order to 

accurately predict the critical time constant.  Thus, for CP perturbations, the 

corresponding critical charge (the charge, Qcrit, at which trec=τcrit) is 600 fC.  Similarly, 

transient perturbations originating in the PFD (tSET), VCO (|Tc|), and frequency divider 
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(|Tc,DIV|) sub-circuits require 300 ns of time perturbation in order to result in trec equal to 

τcrit. 

 

 

  

Although the model accurately predicts τcrit, the Фdisp values deviate from the model 

slightly as QSET decreases from Qcrit.  As the first-order model does not take into account 

any settling effects (loop damping), it is expected that for trec < τcrit the model under-

predicts the output response as it does account for additional time required by the loop to 

reacquire the input signal.  Additionally, for large trec > τcrit (QSET > Qcrit), the model will 

over-predict the output response.  The model states that the output phase will approach 

infinity as the output frequency is reduced to 0 Hz; realistically, the output frequency is 

 
Fig. IX-5.  Simulated output phase displacement (Фdisp) versus deposited charge at the 
output of the CP sub-circuit (QSET) and corresponding trec value following single transient 
perturbations.  The estimated τcrit and Qcrit values resulting from the simulation results 
and model are approximately 300 ns and 600 fC, respectively. 
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only temporarily reduced to fmin as given by the VCO transfer curve.  Thus, the output 

phase displacement will eventually reach a maximum value dependent on fmin and flock. 

 

 

 

Experimental Results 

The analytical model, determination of τcrit, and the simulation results have been 

experimentally validated on the PLL topology illustrated in Fig. II-11 for the parameters 

in Table I (PLL-130nm).  The PLL was designed using the IBM 130 nm 8RF CMOS 

technology and fabricated through the MOSIS Service [MOSIS].  Fig. IX-6 illustrates the 

layout of the test chip (PLL-130nm) and indicates the location of the PLL.  Fig. IX-7 

shows the VCO measured transfer characteristics for two PLL-130nm test chips, the PLL 

operating region, and the linear approximation used for the transient model calculations. 

 
Fig. IX-6.  Layout view of the PLL-130nm test chip indicating the PLL sub-circuit. 
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Single transient perturbations were injected into the PLL circuit using laser-induced 

carrier generation based on two-photon absorption (TPA) using high peak power 

femtosecond pulses at sub-bandgap optical wavelengths [Mc02, Mc03].  Described in 

detail in previous chapters, the TPA technique has proven effective in interrogating 

transient phenomena through the wafer using backside irradiation [Lo08, Lo07b, Mc02, 

Mc03].  This eliminates interference from the metallization layer stacks that are prevalent 

in modern devices, and circumvents many of the testing issues associated with flip-chip-

mounted parts. 

The TPA experimental setup is described in previous chapters and in [Lo07b, Mc02].  

The device under test (DUT) was mounted on a motorized xyz translation platform with 

0.1 µm resolution.  Optical pulses are focused through the wafer onto the front surface of 

the DUT with a 100x microscope objective, resulting in a near-Gaussian beam profile 

 
Fig. IX-7.  Measured VCO transfer characteristics for two PLL-130nm test chips and 
linear approximation for transient model calculations. 
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with a typical diameter of approximately 1.6 µm at focus [Mc02]. Because the carrier 

deposition varies as the square of the irradiance (I2) [Bo86, Mc02, St85], this corresponds 

to a Gaussian carrier density distribution with an approximate diameter of 1.1 µm (full-

width-at-half-maximum).  All experiments were performed at room temperature. 

In order to characterize output transients following laser strikes within the PLL a 

Tektronix-TDS5104 oscilloscope sampling between 250 MS/s and 1.25 GS/s was used.  

The oscilloscope was set to trigger on the rising edge of the pulsed laser sync pulse, and 

the FastFrame™ feature was utilized to capture multiple transients per injection location.  

All experiments were performed at multiple incident laser energies for various operating 

frequencies within the PLL operating region. 

Previous works indicate that the largest output phase transients are most likely a 

result of initial perturbations occurring within the CP sub-circuit [Bo06, Lo06, Lo07a, 

Lo07b].  In order to determine the most sensitive node within the CP sub-circuit, the 

through-wafer TPA technique was utilized to generate a map of the sensitive regions in 

the CP.  The map displays the 2-dimensional (2D) spatial dependence of the PLL 

transient signatures by scanning the laser through the CP sub-circuit and recording the 

output phase transients following strikes in each location.  In contrast to the 2D SEU 

maps displayed in Chapter V where only the x-y coordinates of laser strikes resulting in 

SEUs (as defined by a pre-defined threshold) were identified, multiple transients were 

recorded for each x-y location.  This technique is expected to reduce the noise in the 

measurements and more accurately display the SET sensitive regions.  Fig. IX-8 displays 

an image of the scanned CP sub-circuit captured by an Indigo Alpha NIR focal plane 

array. 
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The 2D-mapping was performed as a function of x-y location using a step size of  

0.2 µm.  The incident laser pulse energy was 3.5 nJ and the PLL was operated at  

200 MHz.  Fig. IX-9 illustrates an image of the output phase displacement versus x-y 

location fused to the layout image of the CP sub-circuit.  Each x-y point represents the 

average phase displacement for 10 transient perturbations.  Additional 2D sensitivity 

maps are provided in APPENDIX C. 

According to Fig. IX-9, the most sensitive region of the CP is the NMOS portion of 

the output switch.  Therefore, laser-induced perturbations on the NMOS device at the 

output of the CP sub-circuit are used in order to characterize the worst-case transients and 

to validate the models presented in this paper.  Fig. IX-10 shows an example of a 

captured transient following a laser perturbation in the CP sub-circuit.  The PLL output 

frequency in steady-state is approximately 200 MHz.  Following the laser strike of 

 
Fig. IX-8.  Image of the CP sub-circuit captured by an Indigo Alpha near infrared (NIR) 
focal plane array. 
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incident energy 5.4 nJ (occurring at approximately 250 ns in Fig. IX-10), the output 

frequency is reduced to ~50 MHz, subsequently increasing the output phase displacement 

to ~15 radians.  The peak output phase error versus time is measured for each 

experimental condition as the output phase displacement.  

 

 

 
Fig. IX-9.  An image of the output phase displacement versus x-y location fused to the 
layout image of the CP sub-circuit.  The laser, with incident pulse energy of 3.5 nJ, was 
scanned through the CP using a step size of 0.2 µm.  The PLL operating frequency was 
200 MHz.  Each x-y point represents the average phase displacement for 10 transient 
perturbations. 
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Quantifying the results as discussed, Fig. IX-11 illustrates the average phase 

displacement in units of radians versus the squared laser energy.  Note that the laser 

energies are squared because TPA carrier deposition increases linearly with the energy 

squared [Bo86, St85, Mc02].  Each point represents the average of 100 transients with the 

error bars representing the standard deviation.  Multiple data points per energy value are 

displayed for separate sets of data acquisition and indicate a high degree of repeatability.  

Also displayed is the analytical solution to Eqn. IX-6 for the design parameters listed in 

the figure.  The data indicates that the critical laser energy (the energy, Ecrit, at which 

Фdisp → ∞ for increasing E > Ecrit) is approximately 5.4 nJ.  Although the exact amount of 

charge deposition from TPA is difficult to determine from the incident laser energy, the 

 
Fig. IX-10.  Example of a measured output frequency/phase transient following a laser 
perturbation in the CP sub-circuit.  The PLL was operating at 200 MHz.  Following the 
laser strike with incident energy of 5.4 nJ, the output frequency was reduced to 
approximately 50 MHz, thus increasing the output phase displacement to approximately 
15 radians.  The recovery time of the PLL was over 200 ns. 
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analytical model suggests that the critical time constant (τcrit) and corresponding Qcrit are 

~325 ns and ~650 fC, respectively. 

  

 

 

The model presented in section IV specifies that increasing the operating frequency 

increases the critical time constant, thus increasing the length (or deposited charge) of the 

initial perturbation required to induce equivalent output phase displacements.  In order to 

illustrate this effect, Fig. IX-12 shows the average phase displacement in units of radians 

versus operating frequency.  Again, each point represents the average of 100 transients 

with the error bars representing the standard deviation.  Moreover, multiple data points 

per frequency value are displayed for separate sets of data acquisition in order to examine 

repeatability in the measurements.  Also displayed by the dashed line is the analytical 

solution to Eqn. IX-6 for the design parameters listed in the figure.  The model predicts 

 
Fig. IX-11.  Average measured phase displacement versus the squared laser energy.  Also 
displayed is the analytical solution to Eqn. IX-6 for the design parameters listed in the 
figure. 
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that the output phase displacement should approach infinity for decreasing flock.  

However, the output frequency can only be temporarily reduced to the VCO 

characteristic fmin.  Therefore, as the frequency error is at most flock – fmin, the output phase 

displacement reaches a maximum proportional to flock – fmin when trec > τcrit. 

 

 

 

For a given laser energy (analogous to QSET or trec), τcrit increases as the frequency 

increases.  Therefore, eventually trec will be less than τcrit, causing the output phase 

displacement to decrease with increasing frequency. As shown in Fig. IX-12, this 

phenomenon occurs at an operating frequency of approximately 200 MHz. 

 

 

 
Fig. IX-12.  Average phase displacement versus lock frequency within the PLL operating 
region for incident laser energy of 5.4 nJ.  Also displayed is the analytical solution to 
Eqn. IV-6 for the design parameters listed in the figure assuming a QSET of 
650 fC.  
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Conclusion 

A linear model has been presented for the examination of single transient propagation 

through phase-locked loops (PLL).  Using the first-order model, a set of equations is 

formulated in closed-form under the assumption that transients are a result of single 

impulses applied to the various sub-circuits rather than continuous nondeterministic 

sources.  As a result, the critical time constant of the PLL (τcrit) is identified as the 

primary motivator for single transient propagation through the PLL.  Initial perturbations 

with characteristic time constants greater than τcrit result in output phase transients orders 

of magnitude greater than initial perturbations with characteristic time constants less than 

the τcrit.  Moreover, utilizing the equations presented, the critical time constant may be 

maximized (thus reducing the impacts of single loop perturbation) by modifying the 

designed loop characteristics of the PLL such as the loop gain and natural frequency.  In 

fact, this result indicates that all PLL systems should be designed with an upper bound to 

the natural frequency in order to reduce the effects of single loop perturbations. 

In addition, various simulations and experiments have been performed on PLLs 

designed in 130 nm and 90 nm technology nodes.  Using the described simulation and 

laser two-photon absorption (TPA) techniques, the generalized model is shown to 

accurately predict the output phase displacements and critical time constant of the PLL 

following transient perturbations, validating the analytical results independent of 

technology.  Moreover, no calibration parameters are necessary in order to estimate the 

characteristic time constants. 
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CHAPTER X 

 

CONCLUSION 

 

A phase-locked loop (PLL) reliability concern of profound interest is the unavoidable 

effect of ionizing radiation.  In particular, single events (SE) – single particles which can 

penetrate semiconductor material leaving ionized charge in their wake – can cause 

information corruption and transient system failure.  Single events are ubiquitous – this 

radiation exists in the environment external to a circuit, and emanates from processing 

and packaging material integral to a circuit.  Once only the concern of space-bound 

systems, integrated circuit density and power scaling have propelled this issue to the 

forefront of reliability concerns at current technology nodes in ground-based and space-

deployed electronic systems.   

In mixed-signal systems, SEs present unique challenges for the characterization and 

analyses of the device-, circuit-, and system-level effects.  Mitigation of these effects 

requires exceptional understanding of the generation and propagation nature of the 

transients through the variety of integral circuits within the system.  In recent years, there 

has been a particular interest in the effect of single-event transients (SET) on the PLL 

because of the propensity to cause loss of frequency lock, and the resultant wide-spread 

impact on high-performance systems. 

This dissertation addresses these fundamental reliability concerns for PLL circuits, 

and mixed-signal topologies in general, by: 
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1) Characterizing the SET signatures of a general PLL topology, including the 

individual sub-circuits such as the phase-frequency detector, charge pump, 

voltage-controlled oscillator, and frequency divider. 

2) Providing various hardening alternatives (if necessary) for the PLL at the sub-

circuit level. 

3) Identifying the specific closed-loop parameters that directly influence the 

generation and propagation of SETs in the PLL. 

4) Developing a set design guidelines for the analytical mitigation of SETs in 

PLL circuits. 

The following are the important contributions provided by this dissertation: 

1) Output phase displacement has been introduced as a single-event transient 

metric to quantify the portion of a dynamic output signal perturbed by a 

single-event.  The phase displacement is useful for quantifying all dynamic 

signals, and is the essential parameter (all other performance metrics are 

shown to be derivatives) for quantifying the erroneous response due to single 

particles in PLLs. 

2) A novel probabilistic analysis technique, applicable to numerous analog 

topologies, has been demonstrated for SET characterization.  The technique 

allows for a full characterization of complex transient distributions for circuits 

in noisy environments, without the need to independently characterize system 

noise.  The technique has been shown practical in simulation and experimental 

analyses. 
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3) For the first time, various experimental techniques for SET characterization 

have been performed on mixed-signal PLL circuits at native operating 

frequencies.  The techniques show the feasibility in achieving statistical 

significance in the transient characterization of complex analog structures.  

Also illustrated is the ability to map the spatial dependence of the multifaceted 

nature of transient generation and propagation. 

4) Non-conventional, targeted RHBD is shown to be effective for complex 

mixed-signal topologies.  RHBD techniques for various PLL sub-circuits are 

provided and applicable to a variety of PLL applications. 

5) A generalized closed-form model for single transient propagation in all PLL 

topologies is developed.  Accordingly, the specific closed-loop parameters 

that directly influence the generation and propagation of SETs in PLLs are 

identified.  Moreover, a novel design parameter, the PLL critical time 

constant, is discovered to be the fundamental factor determining the ease at 

which transients influence the output phase displacement. 

6) A comprehensive list of design guidelines for analytical transient mitigation is 

developed and applicable to all PLL topologies subject to single transient 

phenomena. 
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APPENDIX A 
 
 

DERIVATIONS FOR THE GENERALIZED LINEAR MODEL FOR SINGLE 
TRANSIENT PROPAGATION IN PHASE-LOCKED LOOPS 

 
 

A) Transient Generation in the PFD 

A perturbation occurring within the PFD sub-circuit may cause a corrupted bit which 

can propagate through the combinational logic blocks and appear at either the UP or 

DOWN signal lines.  The resulting signal on node UP or DOWN will have a voltage VSET 

over time tSET.  Assuming the CP is perfectly matched (sink current equals source current) 

and VSET is large enough to engage the CP, the resulting voltage error (Ve) on VinVCO is 

given by Eqn. (A-1), which states that Ve increases linearly with increasing tSET and is 

independent of operating frequency. 
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It follows that Ve will modify the output frequency of the VCO, thus resulting in an 

instantaneous frequency error at VoutVCO given by Eqn. (A-2). 
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Then, the worst-case output frequency during the error is given by Eqn. (A-3), where fe ≥ 

0 for tSET on UP and 0 ≤ fe < flock for tSET on DOWN. 
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For the calculation of output phase displacement, it is necessary to determine the 

worst-case cycle time error (portion of the output signal that is erroneous, Tc=Te-Tlock), as 

given by Eqns. (A-4) and (A-5). Again, fe ≥ 0 for tSET on UP and 0 ≤ fe < flock for tSET on 

DOWN. 
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Note that for tSET on DOWN, the equation for Tc is not valid for fe = flock as Tc would 

approach infinity. This condition corresponds to the case where the VCO output 

frequency is reduced to f0.  Finally, the worst-case phase displacement at the PLL output 

is given as Eqn. (A-6). 
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Assuming the PLL can respond instantaneously to an error, the re-acquisition time of 

the PLL is given by Eqn. (A-7), which states simply that the ideal recovery time 

following the transient perturbation will be the length of time of the transient. 
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The re-acquisition time, however, only occurs during the period of time following the 

arrival of the next rising edge of the input signal up until the arrival of the next rising 

edge of the feedback signal.  Thus, at most there will a time TREF before re-acquisition 

can occur.  Therefore, the actual recovery time (t′rec) is at most the transient perturbation 

time plus TREF and some settling time, ts (Eqn. (A-8)).  Note that Eqn. (A-8) is not valid 

for β = 0 as this would be an open-loop condition for the PLL. 
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B)  Transient Generation in the CP 

A transient occurring within the CP can temporarily activate the CP source or sink 

current sources, thus modifying the voltage on VinVCO.  Moreover, it has been shown that 

perturbations such as those resulting from ionizing particles on the CP output node can 

deposit/deplete charge directly to/from C1, thus modifying VinVCO [Bo06, Lo06, Lo07a, 

Lo07b]. 
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Assuming that QSET is the amount of charge collected over time tSET at the output of 

the charge pump, the total charge in/out of the charge pump during time tSET is given by  

Eqn. (B-1). 

 

 SETCPSETe tIQQ +=∆  (B-1) 

 

As shown by Eqn. (B-2), the resulting voltage error on VinVCO is given merely as the 

change in total charge in/out of the charge pump during time tSET divided by the loop 

filter capacitance, C1.  Ve increases linearly for increasing QSET and/or increasing tSET, and 

results in an instantaneous output frequency error as shown by Eqn. (B-2).  
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Utilizing Eqns. (A-3), (A-4), and (A-5), it can be shown that the resulting output phase 

displacement is given by Eqn. (B-4), where fe ≥ 0 for QSET deposited (source) and 0 ≤ fe < 

flock for QSET depleted (sink). 

 The ideal recovery time of the PLL following single transient generation within the 

CP sub-circuit is determined by Eqn. (B-5), assuming that the PLL can respond 

instantaneously to an error.  Thus, the ideal recovery time following the transient 

perturbation depends on the amount of charge deposited/depleted and the CP current.  

Although Фdisp may be reduced by increasing C1, trec is independent of C1. 
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Assuming tSET << QSET/(ICP), the recovery time can be approximated as Eqn. (B-6).  

As the recovery time follows the acquisition properties of the PLL as defined by Eqn. 

(13) and cannot occur instantaneously as in the case of the PFD, the actual recovery time 

(t′rec) is at most trec plus the period of the reference signal and some settling time (Eqn. 

(B-7)).  However, if trec >> TREF and trec >> ts, Eqn. (B-6) is suitable for estimating the 

recovery time following transients generated within the CP. 
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Similar to transients occurring in the PFD, the recovery time following CP transients 

increases approximately linearly with increasing deposited/depleted charge.  In contrast, 

the recovery time following CP perturbations is weakly dependent on β.  Assuming that 

QSET/ICP >> TREF, the recovery time will follow Eqns. (B-5) or (B-6).  Additionally, as the 

fundamental acquisition time of the PLL was found to be independent of β, the recovery 

time of the PLL following large VinVCO perturbations must also be independent of β.  

 

C)  Transient Generation in the VCO 

Transient generation within the VCO sub-circuit is a complex phenomenon and has 

been analyzed for a variety of oscillator types [Bo05, Ch03, Ch06a, Ch07, Lo08, Lo07c].  

In general, oscillator perturbations can result in amplitude modulation, frequency 

modulation, and temporary oscillation failures.  As the phase error resulting from single 

transients is the predominant concern in this work, we consider only cases of frequency 

modulation and oscillation failures, both of which can be quantified by output phase 

displacement [Lo08].  For single ionizing particles, detailed trends on the SET 

vulnerability of the current-starved VCO are presented in [Bo05, Lo08, Lo07c] and 

indicate that the vulnerability is a result of complex interdependencies of device biasing, 

currents, and operating frequency.  As it is the goal of this work to understand the 

impacts of the closed-loop on the transient propagation, it is assumed for this work that 

the VCO type has been characterized. 

Let Te be the measured maximum erroneous operating period of the output of the 

VCO. Then the worst-case cycle time-error (Tc), which represents the portion of the 

operating period that is erroneous, is given as Tc = Te – Tlock.  In contrast to the PFD and 
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CP cases where the Фdisp values resulting from PFD and CP transients are secondary 

effects resulting from loop perturbations, the VCO transient results in an instantaneous 

phase displacement given as Eqn. (C-1). 
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Following the initial phase perturbation in the VCO, the transient propagates through 

the frequency divider to the input of the PFD. Eqn. (C-2) shows the relationship between 

the divider’s output phase (Фout) and input phase (Фin), where ωin and Фout(0) are the 

input frequency and initial output phase, respectively.  As the frequency divider preserves 

the time error present in the input signal, the phase error (which is normalized to the 

operating period) is modified as the signal propagates through the divider. 
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Assuming Фout(0) is small, Eqn. (C-2) states that the output phase is merely the input 

phase multiplied by the feedback factor, β=1/N.  For a division factor (N) of 16, for 

example, the output phase will be 1/16th that of the input phase.  Thus, the phase 

displacement at the output of the frequency divider is determined as Фdisp,DIV = Фdisp·β.  

Then, the cycle time-error at the output of the frequency divider detected by the PFD is 

also Tc = Te-Tlock such that the relationship is Eqn. (C-3) holds true. 
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As the PFD detects Фdisp,DIV, |Tc| is the length of a voltage pulse at either the UP (Tc > 

0) or DOWN (Tc < 0) output of the PFD.  By following the analysis of transients 

generated in the PFD, the voltage error at the input to the VCO and resulting secondary 

frequency error and phase displacement can be determined.  In an iterative fashion, the 

process of determining the feedback adjustments of the loop indicates that the output 

phase displacement approaches zero for increasing iterations, signifying that the PLL is 

re-acquiring phase lock.  Consequently, the secondary phase displacement following the 

initial transient perturbation at the output of the VCO will always be less than the initial 

phase displacement. 

Similar to the case of transients generated in the PFD, it follows that Ve resulting from 

the transient at the output of the VCO is given by Eqn. (C-4). Additionally, the actual 

recovery time is given by Eqn. (C-5) where the ideal recovery time is simply trec = |Tc|. 

As for the PFD, trec and Ve increase linearly with increasing transient perturbation at the 

output of the VCO. 
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D)  Transient Generation in the Frequency Divider 

Similar to the transient manifestations observed in the VCO, a transient can perturb 

the output phase of the frequency divider (although transients in the divider cannot result 

in frequency modulation as in the VCO sub-circuit) [Lo09].  Therefore, if Te,DIV is the 

measured erroneous operating period of the output of the divider, the initial phase 

displacement at the output of the divider is given by Eqn. (D-1).  It is shown in [Lo09] 

that transients in the frequency divider are bounded by multiples of the input frequency; 

therefore it is useful in this case to consider the input transient in terms of phase rather 

than time. 

In contrast to transients in the VCO, the divider transient does not directly affect the 

output phase of the PLL and must propagate through the closed loop. Note that Eqn. (D-

1) is determined in an identical fashion as Eqn. (C-1) except that the phase is determined 

with respect to the output frequency of the divider (fREF) rather than flock. 
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As the divider’s output phase error is detected by the PFD, it follows that Ve, t′rec, and 

Фdisp may be determined by following the procedure outlined in sub-section (A) for 

determining the parameters following PFD transient generation. Thus, it can be shown 

that that Ve, Фdisp, and t′rec are given by Eqns. (D-2), (D-3), and (D-4), respectively. 
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General Observations from Transient Model 

The equations derived in the previous sections lead to a general observation regarding 

the propagation of transients resulting from erroneous impulses in the various PLL sub-

circuits. By substituting the ideal recovery times (Eqns. (A-7), (B-5), and (C-5)) into the 

equations for the output phase displacements (Eqns. (A-6), (B-4), and (D-3)) following 

transients in the PFD, CP, and frequency divider, respectively, Eqn. (IX-6) can be derived 

to represent the output phase displacement independent of the sub-circuit of the original 

perturbation. 
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APPENDIX B 

 

BASIC SPICE NETLIST FOR THE UNITY GAIN PHASE-LOCKED LOOP CIRCUIT 

 

This appendix details the general SPICE netlist for the unity gain PLL used 

throughout this work, excluding the specific PDK parameters and the netlist for the 

frequency dividers.  This particular netlist represents a PLL designed for a center 

frequency of 1.2 GHz. 

// Design cell name: BASIC PLL NETLIST 
// Design view name: schematic 
simulator lang=spectre 
global 0 vdd! 
 
//////////////// BEGIN BASIC PLL TOPOLOGY ///////////////// 
// Cell name: CPLL_1.2GHz 
I14 (VinVCO VoutVCO) _sub11 
I2 (VinVCO) CLPF_generic 
I12 (Down Up VinVCO) CP_2uA 
I11 (VoutPLL VoutBuff) bufferx3_8 
I13 (VoutVCO net14 VoutPLL) bufferx2 
I0 (Vclock VoutPLL Down Up) PDF_BuffX4 
V0 (Vclock 0) vsource type=pulse val0=0 val1=1.2 
period=909p delay=0 \ 
        rise=80p fall=80p width=375p 
///////////////// END BASIC PLL TOPOLOGY ////////////////// 
 
////////////// BEGIN BASIC PLL SUB-CIRCUITS /////////////// 
// PHASE-FREQUENCY DETECTOR (PFD) 
// Cell name: PDF_BuffX4 
// View name: schematic 
subckt PDF_BuffX4 Data Dclock Down Up 
    I0 (net49 Data vdd! 0) invx4 
    I45 (net011 net0121 net058 vdd! 0) nor2x1 
    I79 (net037 net036 net0150 vdd! 0 net052) nand3x1 
    I36 (net9 net067 net078 vdd! 0 net036) nand3x1 
    I80 (net048 net069 vdd! 0) invx1_schematic 
    I81 (net052 net048 vdd! 0) invx1_schematic 
    I46 (net036 net011 vdd! 0) invx1_schematic 
    I34 (net071 net064 vdd! 0) invx1_schematic 
    I35 (net067 net071 vdd! 0) invx1_schematic 
    I77 (net083 net036 net0150 vdd! 0) nand2x1 
    I82 (net069 net068 net037 vdd! 0) nand2x1 
    I78 (net058 net069 net0150 vdd! 0) nand2x1 
    I44 (net0121 net078 net064 vdd! 0) nand2x1 
    I74 (net082 net078 net036 vdd! 0) nand2x1 
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    I76 (net0150 net083 net069 vdd! 0) nand2x1 
    I73 (net078 net064 net082 vdd! 0) nand2x1 
    I33 (net064 net9 net49 vdd! 0) nand2x1 
    I37 (Up net9 vdd! 0) invx4_schematic 
    I83 (Down net037 vdd! 0) invx4_schematic 
    I84 (net068 Dclock vdd! 0) invx4_schematic 
ends PDF_BuffX4 
// End of subcircuit definition. 
// END PHASE-FREQUENCY DETECTOR 
 
 
// CHARGE-PUMP (CP) 
// Cell name: CP_2uA 
// View name: schematic 
subckt CP_2uA ChDown ChUp Vcap 
    I0 (net42 Vcap ChUp) _sub0 
    I32 (Vcap net27 ChDown) _sub0 
    T5 (net27 vnbias 0 0) nfet w=30u l=3u 
    T2 (vpbias vnbias 0 0) nfet w=30u l=3u 
    T9 (vdd! vdd! n1 0) nfet w=900n l=900n 
    T13 (n1 n1 vnbias 0) nfet w=900n l=900n 
    T15 (0 vnbias vnbias 0) nfet w=720.0n l=720.0n 
    T1 (net42 vpbias vdd! vdd!) pfet w=30u l=3u 
    T0 (vpbias vpbias vdd! vdd!) pfet w=30u l=3u 
ends CP_2uA 
// End of subcircuit definition. 
 
// Cell name: p_switch_1.2 
// View name: schematic 
subckt _sub0 SW0 SW1 in 
    I13 (net039 net021 vdd! 0) invx1 
    IP1 (net015 net019 vdd! 0) invx1 
    I14 (net019 in vdd! 0) invx1 
    I12 (net051 net015 vdd! 0) invx1 
    T0 (SW0 net051 SW1 vdd!) pfet w=5.6u l=240.0n 
    TN2 (net021 0 net019 vdd!) pfet w=1.83u l=80n 
    T3 (SW0 net039 SW1 0) nfet w=1.6u l=240.0n 
    TN1 (net021 vdd! net019 0) nfet w=915.00n l=80n 
ends _sub0 
// End of subcircuit definition. 
// END CHARGE-PUMP 
 
// LOW-PASS FILTER (LPF) 
// Cell name: CLPF_generic 
// View name: schematic 
subckt CLPF_generic lpf_in 
    R1 (net8 0) resistor r=500.0 
    C0 (lpf_in net8) capacitor c=2.14p 
    C1 (lpf_in 0) capacitor c=210f 
ends CLPF_generic 
// End of subcircuit definition. 
// END LOW-PASS FILTER 
 
// VOLTAGE-CONTROLLED OSCILLATOR (VCO) 
// Cell name: vco_1.2_fc1.2GHz 
// View name: schematic 
subckt _sub11 n_bias v_out_11 
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    I30 (n_bias p_bias) _sub9 
    I72 (net104 n_bias net112 p_bias) _sub10 
    I102 (net68 n_bias v_out_11 p_bias) _sub10 
    I103 (net100 n_bias v_out_7 p_bias) _sub10 
    I95 (net112 n_bias net96 p_bias) _sub10 
    I101 (net84 n_bias net68 p_bias) _sub10 
    I98 (net108 n_bias net100 p_bias) _sub10 
    I97 (net92 n_bias net108 p_bias) _sub10 
    I100 (net76 n_bias net84 p_bias) _sub10 
    I31 (v_out_11 n_bias net104 p_bias) _sub10 
    I99 (v_out_7 n_bias net76 p_bias) _sub10 
    I96 (net96 n_bias net92 p_bias) _sub10 
ends _sub11 
// End of subcircuit definition. 
 
// Cell name: vco_input_stage_fc1.2GHz 
// View name: schematic 
subckt _sub9 n_in p_out 
    T8 (p_out n_in 0 0) nfet w=230.0n l=80n 
    T14 (p_out p_out vdd! vdd!) pfet w=540.0n l=80n 
ends _sub9 
// End of subcircuit definition. 
 
// Cell name: vco_stage_fc1.2GHz 
// View name: schematic 
subckt _sub10 _net0 n_in out p_in 
    T1 (out _net0 net20 0) nfet w=200n l=80n 
    T27 (net20 n_in 0 0) nfet w=230.0n l=80n 
    T40 (net050 p_in vdd! vdd!) pfet w=540.0n l=80n 
    T0 (out _net0 net050 vdd!) pfet w=480.0n l=80n 
ends _sub10 
// End of subcircuit definition. 
//END VOLTAGE-CONTROLLED OSCILLATOR 
//////////////// END BASIC PLL SUB-CIRCUITS /////////////// 
 
/////////////// BEGIN BASIC DIGITAL LIBRARY /////////////// 
// Cell name: invx1 
// View name: schematic 
subckt invx1 O1 i1 vdd_avt vss_avt 
    T0 (O1 i1 vss_avt vss_avt) nfet w=200n l=80n 
    T1 (O1 i1 vdd_avt vdd_avt) pfet w=480.0n l=80n 
ends invx1 
// End of subcircuit definition. 
 
// Cell name: invX128_1.2 
// View name: schematic 
subckt _sub1 in out 
    T1 (out in 0 0) nfet w=25.68u l=80n 
    T0 (out in vdd! vdd!) pfet w=61.44u l=80n 
ends _sub1 
// End of subcircuit definition. 
 
// Cell name: invX64_1.2 
// View name: schematic 
subckt _sub2 in out 
    T1 (out in 0 0) nfet w=12.84u l=80n 
    T0 (out in vdd! vdd!) pfet w=30.72u l=80n 
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ends _sub2 
// End of subcircuit definition. 
 
// Cell name: invX32_1.2 
// View name: schematic 
subckt _sub3 in out 
    T1 (out in 0 0) nfet w=6.42u l=80n 
    T0 (out in vdd! vdd!) pfet w=15.36u l=80n 
ends _sub3 
// End of subcircuit definition. 
 
 
// Cell name: invX16_1.2 
// View name: schematic 
subckt _sub4 in out 
    T1 (out in 0 0) nfet w=3.21u l=80n 
    T0 (out in vdd! vdd!) pfet w=7.68u l=80n 
ends _sub4 
// End of subcircuit definition. 
 
// Cell name: invX8_1.2 
// View name: schematic 
subckt _sub5 in out 
    T1 (out in 0 0) nfet w=1.6u l=80n 
    T0 (out in vdd! vdd!) pfet w=3.84u l=80n 
ends _sub5 
// End of subcircuit definition. 
 
// Cell name: invX4_1.2 
// View name: schematic 
subckt _sub6 in out 
    T1 (out in 0 0) nfet w=800n l=80n 
    T0 (out in vdd! vdd!) pfet w=1.92u l=80n 
ends _sub6 
// End of subcircuit definition. 
 
// Cell name: bufferx3_8 
// View name: schematic 
subckt bufferx3_8 in out 
    I13 (net018 out) _sub1 
    I12 (net017 net018) _sub2 
    I11 (net012 net017) _sub3 
    I10 (net08 net012) _sub4 
    I2 (net16 net08) _sub5 
    I0 (in net16) _sub6 
ends bufferx3_8 
// End of subcircuit definition. 
 
// Cell name: invX2_1.2 
// View name: schematic 
subckt _sub7 in out vdd vss 
    T1 (out in vss 0) nfet w=280.0n l=80n 
    T0 (out in vdd vdd!) pfet w=910.0n l=80n 
ends _sub7 
// End of subcircuit definition. 
 
// Cell name: invX1_1.2 
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// View name: schematic 
subckt _sub8 in out vdd vss 
    T1 (out in vss 0) nfet w=200n l=80n 
    T0 (out in vdd vdd!) pfet w=480.0n l=80n 
ends _sub8 
// End of subcircuit definition. 
 
// Cell name: bufferx2 
// View name: schematic 
subckt bufferx2 in nout out 
    I2 (nout out vdd! 0) _sub7 
    I0 (in nout vdd! 0) _sub8 
ends bufferx2 
// End of subcircuit definition. 
 
// Cell name: invx4 
// View name: schematic 
subckt invx4 O1 i1 vdd_avt vss_avt 
    T0 (O1 i1 vss_avt vss_avt) nfet w=800n l=80n 
    T1 (O1 i1 vdd_avt vdd_avt) pfet w=1.92u l=80n 
ends invx4 
// End of subcircuit definition. 
 
// Cell name: nor2x1 
// View name: schematic 
subckt nor2x1 O1 A B vdd_avt vss_avt 
    T1 (O1 A vss_avt vss_avt) nfet w=200n l=80n 
    T0 (O1 B vss_avt vss_avt) nfet w=200n l=80n 
    T3 (net8 A vdd_avt vdd_avt) pfet w=960.0n l=80n 
    T2 (O1 B net8 vdd_avt) pfet w=960.0n l=80n 
ends nor2x1 
// End of subcircuit definition. 
 
// Cell name: nand3x1 
// View name: schematic 
subckt nand3x1 O1 i1 i2 vdd_avt vss_avt i3 
    T4 (net29 i2 net062 vss_avt) nfet w=600n l=80n 
    T5 (net062 i1 vss_avt vss_avt) nfet w=600n l=80n 
    T0 (O1 i3 net29 vss_avt) nfet w=600n l=80n 
    T3 (O1 i2 vdd_avt vdd_avt) pfet w=480.0n l=80n 
    T6 (O1 i1 vdd_avt vdd_avt) pfet w=480.0n l=80n 
    T1 (O1 i3 vdd_avt vdd_avt) pfet w=480.0n l=80n 
ends nand3x1 
// End of subcircuit definition. 
 
// Cell name: invx1 
// View name: schematic 
subckt invx1_schematic O1 i1 vdd_avt vss_avt 
    T0 (O1 i1 vss_avt vss_avt) nfet w=200n l=80n 
    T1 (O1 i1 vdd_avt vdd_avt) pfet w=480.0n l=80n 
ends invx1_schematic 
// End of subcircuit definition. 
 
// Cell name: nand2x1 
// View name: schematic 
subckt nand2x1 O1 i1 i2 vdd_avt vss_avt 
    T4 (net29 i1 vss_avt vss_avt) nfet w=400n l=80n 
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    T0 (O1 i2 net29 vss_avt) nfet w=400n l=80n 
    T3 (O1 i1 vdd_avt vdd_avt) pfet w=480.0n l=80n 
    T1 (O1 i2 vdd_avt vdd_avt) pfet w=480.0n l=80n 
ends nand2x1 
// End of subcircuit definition. 
 
// Cell name: invx4 
// View name: schematic 
subckt invx4_schematic O1 i1 vdd_avt vss_avt 
    T0 (O1 i1 vss_avt vss_avt) nfet w=800n l=80n 
    T1 (O1 i1 vdd_avt vdd_avt) pfet w=1.92u l=80n 
ends invx4_schematic 
// End of subcircuit definition. 
//////////////// END BASIC DIGITAL LIBRARY //////////////// 
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APPENDIX C 
 
 

2D TRANSIENT-SENSITIVITY MAPS OF CONVENTIONAL CHARGE PUMP 
OBTAINED FROM LASER TWO-PHOTON ABSORPTION EXPERIMENTS 

 
 
Fig. C-1 illustrates the layout view of the conventional charge pump circuit in PLL-

130nm.  Indicated by the dashed rectangular region is the approximate region of interest 

(nMOS portion of an output switch) corresponding to the results displayed in Fig. C-2.  

The TPA laser (0.2 µm resolution) was used to generate 2D transient maps of the output 

phase displacement (Фdisp) as a function of incident laser energy at a PLL operating 

frequency of 150 MHz (see Chapter IX). 

 

 

 
Fig. C-1.  Layout view of the conventional charge pump circuit in PLL-130nm 
indicating the approximate region of interest for the results displayed in Fig. C-2. 
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Fig. C-2.  2D transient maps (0.2 µm x-y resolution) of the output phase displacement 
(Фdisp) as a function of incident laser energy (see Chapter IX) at a PLL operating 
frequency of 150 MHz. 
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