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CHAPTERI

INTRODUCTION

Although not explicit in the federal definition (Individuals with Disabilities Education
Act Amendments, 1997), an 1Q-achievement discrepancy often forms the basis for alearning
disability label. Thisidentification procedure is problematic for children in kindergarten or first
grade, however, because students in the early grades have not had sufficient exposure to
academic curricula to demonstrate such a discrepancy. Further, possible biases in intelligence
testing (Vaencia& Suzuki, 2001) and the overrepresentation of minority students identified as
having alearning disability (Ferri & Connor, 2005) question the validity of this “wait-to-fail”
approach (Vaughn & Fuchs, 2003), for younger students as well as older ones. A call for an
aternative to the | Q-achievement discrepancy model for identifying learning disability has been
issued (e.g., the President’s Commission on Excellence in Special Education, 2001), and a
response-to-intervention (RTI) approach represents one possible alternative.

I mplementing evidence-based academic interventions and documenting response (or non-
response) to these interventions are the major features of RTI (Marston, 2005). Students progress
through levels of a prevention system, with increasing intensity, and only those students for
whom standard forms of instruction are deemed insufficient receive formal evaluation for
placement into special education. Although the Individuals with Disabilities Education
Improvement Act (2004) allowed for identification of learning disability within a RTI
framework, many questions remain unanswered concerning the standardized, large-scale

implementation of this approach (Marston; Mastropieri & Scruggs, 2005).



Regardless of the diagnostic model (i.e., |Q-achievement discrepancy or RTI), accurate
assessment of student performance is crucial. Teachers and diagnosticians require reliable and
valid measures that document both level of performance and growth. For example, within most
RTI models, the main focus of screening (i.e., conducted at one point in time, early in a student’s
schooling) isto determine which students are at possible risk for academic failure if they do not
receive additional intervention. The classroom progress of these students is then monitored with
some sort of classroom-based assessment. Trend lines resulting from progress monitoring serve
to predict future performance and become the basis for confirming or disconfirming a student’s
actual risk for academic failure.

Particularly with respect to students in the early grades, measurement tools that screen for
the potential risk for developing learning disability represent an important focus of assessment.
The earlier risk for future disability isidentified, the earlier efforts can begin to prevent or
minimize the effects of that disability. In the area of reading, for example, researchers have
documented that poor phonemic awareness for young students predicts future reading difficulty
(e.g., Berninger, Thalberg, DeBruyn, & Smith, 1987; Kaminski & Good, 1996; Nationa Institute
of Child Health and Human Development, 2000; Scarborough, 1998; Torgesen, 1998). Thus,
early screening efforts to identify students with such a deficit alow for intervention; thegoa is
to prevent future reading difficulty. Even so, screening for future reading disability at an early
age produces a set of false positives (i.e., students who seem to be at-risk based on the screen,
but whose forecasted deficits disappear largely without additional intervention). Nevertheless,
the construct of phonemic awareness continues to prove a strong predictor of reading ability.

By contrast, identification of a construct or set of skillsthat represents a strong predictor
of future mathematics difficulty (MD) has yet to be identified. A 2005 issue in the Journal of

Learning Disabilities focused on the early identification and intervention efforts for students



with (or at risk for) MD. In thisissue, Gersten, Jordan, and Flojo (2005) summarized research on
early identification for MD. They concluded that a screening instrument for 5- and 6-year-olds
based on the skills of counting/smple computation or a sense of quantity/use of mental number
lines may offer utility. These skills are both aspects of “number sense” (e.g., Dehaene, 1997;
Okamoto & Case, 1996), which may serve as a predictor of mathematics performance for young
children.

In contrast to phonemic awareness, which is alanguage ability that does not involve
actual reading, number sense represents actual math knowledge. According to Gersten and Chard
(1999), number sense involves the flexibility and ease with which a student mentally computes
and intuitively relates mathematical concepts. The authors argued that number sense directly
relates to mathematical performance and that screening measures based on this construct should
yield predictive information regarding future mathematics ability. As Berch (2005) and Dowker
(2005) pointed out, however, number sense is not clearly defined or easily operationalized. To
illustrate this point, Berch listed 30 alleged components of number sense proposed by various
researchers, ranging from “faculty permitting the recognition that something has changed in a
small collection when, without direct knowledge, an object has been removed or added to the
collection” (No. 1) to “can recognize gross numerical errors’ (No. 16) to “process that develops
and matures with experience and knowledge” (No. 30). Clearly, number sense means different
things to different people. Even so, whether number sense drives arithmetic performance or
whether increased arithmetic skill leads to deeper conceptual understanding and stronger number
sense remains unknown. In spite of the ambiguous nature of number sense, screening measures
that incorporate aspects of number sense such as counting skill or quantity discrimination may
prove an effective means of forecasting which young students are at risk for MD (Gersten et al.,

2005). In the meantime, future research should continue to investigate and operationalize the



construct of number sense. Perhaps deficient number sense links directly to MD, with
intervention leading to decreased probability of occurrence. Until research more clearly
demonstrates the link between specific behaviors indicative of number sense and mathematics
outcomes, however, this remains conjecture.

When identifying the type of skills predictive of future mathematics performance,
researchers must demonstrate aspects of technical adequacy and predictive utility. With respect
to screening measures, adequate reliability of test scores indicates that scores are consistent and
reasonably free from measurement error to serve as useful indicators of present level of
functioning. Statistics for these indices include a method of rational equivalence such asthe
Kuder-Richardson formulas or coefficient apha, the coefficient of stability, and the coefficient
of equivalence (Gall, Gall, & Borg, 2003). Additionally, atest’s validity is based on the
appropriateness of inferences made from the test scores (Salvia & Y sseldyke, 1991). As
Cronbach and Meehl (1955) described, test validity can be examined in terms of criterion-
related, content, or construct validity. Criterion-related validation can be examined relative to
both concurrent and predictive validity (Urbina, 2004) by examining the relationship between the
screening measure and valid outcome measures administered at the same time as or alater time
frame. A strong correlation suggests the screening measure has tapped the same underlying
construct as the criterion measure. With respect to kindergarten mathematics screening
instruments, the criterion is future mathematics difficulties. Finally, applying specific criteriato
designate risk on the outcome and then comparing the predictions made with actual outcome
yields information about the sensitivity and overall accuracy of the screening measure. The
predictive utility of a screener represents perhaps the most compelling evidence for the

usefulness of ameasure in establishing risk status for eventual MD.



Toward that end, researchers investigate the utility of screening young learners for
potential MD. In the next section, we summarize prior work assessing MD risk for kindergarten
students. We then describe how the present study extends the literature with respect to screening
kindergarten students for MD risk and clarify the purposes of this study.

Prior Work Determining MD Risk of Kindergarten Sudents

We identified 12 studies that targeted kindergarten students, included screening measures
or outcome variables specific to mathematics performance and documented the predictive
validity or predictive utility of the screening measures (Baker et a., 2002; Bramlett, Rowell, &
Mandenberg, 2000; Chard et al., 2005; Clarke, Baker, Smolkowski, & Chard, 2008; Jordan,
Kaplan, Locuniak, & Ramineni, 2007; Kurdek & Sinclair, 2001; Lembke & Foegen, 2005;
Mazzocco & Thompson, 2005; Pedrotty Bryant, Bryant, Kim, & Gersten, 2006; Simner, 1982;
Tied, Mazzocco, & Myers, 2001; VanDerHeyden, Witt, Naquin, & Noell, 2001). For each study,
Table 1 documents the number of participants, grades at which screening and outcome
assessment took place, screening and outcome measures, correlations between screeners and
outcomes, and the predictive utility of measures, if so provided by the authors (i.e., sensitivity,
specificity, and overall accuracy).

Studies that screened children prior to entering kindergarten but did not include evidence
of predictive validity or utility or did not include screening measures or outcome variables
specific to mathematics performance were excluded. Screening measures for use with children
prior to entering kindergarten tend to include more global measures of school “readiness’ rather

than specific measures of math-related skill (Costenbader, Rohrer, & Difonzo, 2000). Although
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these measures may answer interesting questions concerning future overall academic
performance, they may not specifically predict math performance. Thus, studies that screened
pre-kindergarten children with readiness scales (e.g., Augustyniak, Cook-Cottone, & Calabrese,
2004; Kelly & Peverly, 1992) did not meet selection criteriafor the purpose of this paper and
were read solely for background information. Additionally, although VanDerHeyden et al.
(2004) included math-related screening measures with preschool participants, the authors did not
examine the predictive utility of the measures. Finally, Magliocca, Rinaldi, and Stephens (1979),
for example, studied the efficacy of a screening instrument for identifying at-risk kindergarten
and first-grade participants, but did not include predictors or outcome variables specific to math
performance. Studies such as these were excluded.

As Table 1 shows, the mgority of studies screened students in kindergarten and assessed
mathematics outcome later that same year (Chard et al., 2005; Clarke et a., 2008; Lembke &
Foegen, 2005; Pedrotty Bryant et a., 2006; Simner, 1982; VanDerHeyden et al., 2001) or the
following year (Baker et al., 2002; Bramlett et al., 2000; Jordan et al., 2007; Simner; Tied et d.,
2001). Only three studies (Jordan et al., 2007; Kurdek & Sinclair, 2001; Mazzocco & Thompson,
2005) allowed for greater than ayear to elapse before assessing outcome. (Note: Three studies
[Chard et al., 2005; Lembke & Foegen, 2005; Pedrotty Byrant et al., 2006] included samples of
both kindergarten and first-grade students; we report results for the kindergarten samples only.)

With the exception of Mazzocco and Thompson (2005) and VanDerHeyden et al. (2001),
all studies provided data attesting the predictive validity of their respective screening measures.
Correlations ranged from .27 to .72, with an average of .51. Five studies provided information
regarding the overall accuracy, sensitivity, and specificity of math screeners, either with
predictive validity correlations (Bramlett et a., 2000; Simner, 1982; Tied et a., 2001) or without

(Mazzocco & Thompson; VanDerHeyden et al.). For these studies, the overall accuracy of the



screeners ranged from 59.8% to 89.4%. Sengitivity ranged widely, from 00.0% to 91.7%;
specificity did not range as such (57.5% to 94.4%). Based on these data, screeners were more
accurate in predicting students who would not develop MD than for specifying which students
would develop MD.

The majority of studies used single-skill rather than multiple-skill screeners. Two studies
(Bramlett et al., 2000; Simner, 1982) used only one single-skill measure to predict mathematics
outcome. Bramlett et a. presented students with randomly ordered numbers (i.e., from 1-20) on a
sheet of paper, and students named as many numbers as possible in one minute; Simner had
students write the 41 reversible numbers and letters from memory, exposing students to one item
at atimefor aperiod of 2.5 seconds. The remainder of the studies with single-skill screening
measures used two or more measures to predict math outcome (Baker et al., 2002; Chard et al.,
2005; Clarke et al., 2008; Jordan et al., 2007; Kurdek & Sinclair, 2001; Lembke & Foegen, 2005;
Pedrotty Bryant et al., 2006; VanDerHeyden et al., 2001); many of the measures used across
studies assessed the same skill. For example, the ability to write numbers from dictation was
assessed by Baker et a., Chard et al., and VanDerHeyden et al., in addition to Simner. Further,
severa studies measured students’ ability to judge the magnitude of a pair of numbers, i.e., to
choose the bigger of two numbers (Baker et a.; Chard et al.; Clarke et a.; Lembke & Foegen;
Pedrotty Byrant et al.). Requiring students to state numbers as they were presented visually,
identifying the missing number in a sequence of numbers, and counting ability were key skills
addressed across several studies, as well.

In contrast to the single-skill screening measures, four studies incorporated multiple-skill
screeners to their predictive models. Baker et al. (2002) used the Number Knowledge Test
(Okamato & Case, 1996), an individually administered test of basic arithmetic concepts and

applications. Mazzocco and Thompson (2005) used composite scores from avariety of



commercialy published tests and subtests of math, reading, and visual-spatial ability to predict
future mathematics performance. The authors selected items from the KeyMath-Revised (KM-R;
Connolly, 1998), the Test of Early Mathematics Ability, 2" Edition (TEMA-2; Ginsburg &
Baroody, 1990) the Woodcock-Johnson Psycho-Educational Battery-Revised (WJ-R; Woodcock
& Johnson, 1989) Math Calculations subtest, and the Stanford Binet (4" ed.) (Thorndike, Hagen,
& Sattler, 1986) Quantitative Reasoning subtest to assess math abilities. Tied et a. (2001)
required teachersto rate students mathematics performance levels with selected items from the
Teacher’ s Report Form (Achenbach, 1991) and the Conners' Teacher Rating Scale (Conners,
1997) short form. Finally, Jordan et al. (2007) combined results from five tasks (i.e., comprising
counting skills, number knowledge, nonverbal calculation, story problems and number
combinations) to yield a score for “Number Sense Core.” Students were assessed across six time
points from fall of kindergarten to spring of first grade. Across studies, predictive validity was
similar for the single- versus multi-skill screeners. Coefficients for the single-skill screeners
ranged from .27 to .67, averaging .54; coefficientsfor the multi-skill screeners ranged from .36
to .73, with an average of .55. Although some studies used both types of screeners, none
specifically tested which type predicted various math outcomes with greater precision, in terms
of decision utility.

The mgjority of studies used outcome variables reflecting mathematics performance on
published tests (e.g., the Stanford Achievement Test, 9" ed. [SAT-9; The Psychological
Corporation, 1995]; the WJR [Woodcock & Johnson, 1989] Calculations and Applied Problems
subtests). Y et, authors also reported outcomes such as teacher rankings of kindergarteners
readiness for first grade and June (of first-grade) report card grades in mathematics (Simner,
1982); ateacher rating scale of general math proficiency (Lembke & Foegen, 2005); and

professional judgments of academic difficulties (VanDerHeyden et al., 2001). Although some of
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these outcomes related to conceptual understanding of mathematics concepts, such as the
Number Knowledge Test, or to operational outcomes such as the Cal culations subtest of the WJ-
R (Woodcock & Johnson), none of the studies specifically addressed whether development could
be forecast more precisely for either type of outcome. This seems an important question to
address, given the variability in kindergarten classrooms with respect to calculation skill. For
example, if kindergarten students are not ssmilarly exposed to curricula that emphasize written
computation skills, a screening measure that comprises this skill seems unlikely to generaize
across settings. Across studies, predictive validity seemed similar when outcomes such as
published tests were used (average of .51) and when outcomes reflected teacher judgment
(average of .54). In terms of decision utility data, the sensitivity of screening variables ranged
widely, from 0.00% (i.e., VanDerHeyden et a.’ s prediction of “Validation Problem”) to 91.7%
(i.e., Mazzocco & Thompson’'s 2005 prediction of composite scores on published tests). Authors
did not directly address the issue of timed versus untimed mathematics screeners or outcomesin
any of the previous studies.

Across these studies, we offer two observations. First, the mgjority of kindergarten
screening studies conducted thus far assessed mathematical outcomes one year or less from the
time screening occurred. Because kindergarten students vary in their experience with number
concepts prior to commencing formal schooling, assessing math outcome before a substantial
amount of mathematics instruction takes place potentially yields an inflated number of false
positives. Thisis problematic in that too many false positives stress the resources available in
school settings to provide remediation for students who truly need intervention. Waiting longer
than one year before assessing math outcome allows students who have had less preschool
exposure to number concepts to “catch up” to their peers via strong classroom instruction, and

thus lowers the risk of mistakenly identifying those students as potentially MD.
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Our second observation concerns the predictive utility of kindergarten math screening
tests. The mgjority of studies we reviewed relied on predictive validity correlational data as an
indication of ameasure’s ability to predict students' risk for developing MD. Few studies,
however, looked beyond predictive correlations to evaluate the sensitivity or specificity of math
screeners. Although predictive correlations do provide a certain amount of support for the value
of a kindergarten screening event, the decision utility data that could further attest a screener’s
value are missing from the majority of previous work.

How the Present Study Extends Previous Work

In the present study, we sought to extend previous work on early math screening in
severa ways. First, by piloting the screening tests, we allowed for item response theory analyses
to order the items by difficulty, eliminate items with poor discrimination, and establish an
administration ceiling for the untimed portion of the assessment. This increased efficiency of
administration. Second, we adopted alonger perspective than in most prior studies, screening the
students in the fall and spring of kindergarten and subsequently retesting during the spring of
first grade to investigate the accuracy of the screening measures in identifying students who
develop math difficultiesin first grade. By contrast, the majority of studies we reviewed alowed
for one year or less of elapsed time before assessing student outcome. Third, in addition to
providing evidence of the technical adequacy (i.e., reliability; concurrent and predictive validity)
of the screeners, we also examined the math screeners’ predictive utility with respect to
sensitivity and specificity. Few of the studies we reviewed provided thisinformation. Finaly,
and in arelated way, we extended previous research on the predictive utility of kindergarten
math screeners by evaluating (a) the predictive accuracy of single- versus multi-skill screeners,
(b) fall versus spring administration of kindergarten testing, and (c) conceptual versus

operational outcomes. To our knowledge, no previous studies have addressed these specific
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guestions that shed light on the benefit of single- versus multiple-skill screening measures, the
most opportune time in the kindergarten year to screen for MD (i.e., fal vs. spring), and whether
conceptual or operational mathematics skill should be the focus of outcome.

Our research questions included the following: What is the reliability of mathematics
screening measures for kindergarten students? What are the concurrent and predictive validities
of these measures, with respect to kindergarten and grade one performance on the EMDA (The
Psychological Corporation, 2002a), the Estimation and Numerations subtests of the KM-R
(Connolly, 1998), and First-Grade Math CBM Computation and Concepts/Applications (Fuchs,
Hamlett, & Fuchs, 1989; 1990)? How do single-skill versus multiple-skill math screeners
compare in terms of predictive efficiency? How accurate is fall versus spring kindergarten
screening? And finally, Can first-grade mathematics development be forecast more precisely in

terms of conceptual or operational outcomes?

CHAPTERII

METHOD

Participants

13



Twenty kindergarten teachers from five schools in a southeastern metropolitan school
district were randomly selected from a pool of interested teachers to participate in the study. Two
schools each had three participating teachers, two additional schools each had four participating
teachers, and the remaining six kindergarten teachers were from one school. Ten of the 20
kindergarten classrooms received Title-1 funding due to low socio-economic status of the
enrolled student population in the school. From the 20 classrooms, 252 students returned signed
parental consent and participated in the initia testing wave in the fall of kindergarten. Of the
original 252 kindergarten students, 196 completed testing through the end of first grade (or the
second year of kindergarten, if retained), an attrition rate of approximately 22% over the two
years of the study (i.e., 20 students moved out of the school district before the end of thefirst
year of the study, and 36 additional students moved during the second year). We used inferential
statistics to compare the students who exited versus those who remained on demographic
variables and screening scores. There were no significant differences except on the Number
Sense multi-skill screener. The mean score of students who exited the study on this measure was
12.91 (SD = 6.04); for those who remained, 15.65 (SD = 6.80). In this study, we report results for
the sample of 196 students with complete data

Participating teachers provided demographic information on consented students’ date of
birth, gender, subsidized lunch status, race, special education status, English language learner
status, previous preschool experience, math ranking, and minutes of daily math instruction (i.e.,
by classroom). The average age of students at the onset of the study was 5 years 8 months
(however, two students did not provide this data). Students received, on average, 49.08 minutes
of daily math instruction (SD = 20.83). See Table 2 for the remaining demographic information
for the sample.

Kindergarten Screening Measures

14



Two of the kindergarten math tests were multiple-skill screeners. Computation Fluency,
which is group administered, and Number Sense, which isindividually administered. Items for
inclusion were determined from three sources: (a) from interviews with experienced kindergarten
and first-grade teachers; (b) from examination of the existing literature base and the published set
of kindergarten academic standards of the school district in which the study took place; and (c)
from discussions with university professors familiar with elementary school kindergarten skills.
Further, after piloting the measures with 90 kindergarten students to identify items with poor
discrimination, we used WINSTEPS Rasch measurement software (Version 3.58.1) to eliminate
or revise items that were inappropriate or ambiguous. We also used the results from the
WINSTEPS Rasch software to order the items by difficulty and devise aceiling rule for the
administration of the individually administered screening measure. The ceiling rule allowed
examiners to discontinue testing after five consecutive incorrect answers, shortening the
assessment time for some students.

Computation fluency. The first multi-skill measure, Computation Fluency, isa5-min

timed assessment of counting, addition, and subtraction fluency. It isadministered in a
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Table 2

Demographics of Final Participant Sample (n = 196)

Variable n %
Males 103 52.55
Subsidized Lunck 101 51.53
Race: African Americar 71 36.22
Caucasian 86 43.88
Hispanic 21 10.71
Asian 11 5.61
Kurdish 4 2.04
Other® 3 1.53
Special Ed Diagnosis: None 170 86.73
Learning Disability 1 0.51
Speech/Language 12 6.12
Gifted 11 5.61
Other” 2 1.02
English Language Learner 9 4.59
Known to Attend Preschool 99 50.50
Teacher Math Rating: Above Grade Level 49 25.00
Grade Level 116 59.20
Below Grade Level 31 15.80

Note: “One student each was Indian, Samolian, or Iraqi. °One student each
was diagnosed as having a Visual Impairment or Developmental Delay.
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whole-class setting and includes 25 items (five items each of five problem types) presented
randomly on one side of an 8 1/2- x 11-inch piece of paper. Thefive types of items are counting
stars in a set; counting two sets of stars; subtracting crossed-out stars from a set; adding
arithmetic combinations (presented without star icons); and subtracting arithmetic combinations
(without star icons). This measure contains five rows of five problems each; theitems are
bordered in black to help delineate each problem. The examiner conducts a scripted 10-min
whole-class lesson explaining how students respond to the five types of items and that they need
to stop working (i.e., pencil held in the air) when the timer goes off. After this brief
administration lesson, the examiner instructs students to answer as many problems as they can, to
look for the easiest problems first, and then to go back to try the harder ones. The student is not
penalized for number reversals or poorly formed written responses. Scores of correct responses
(across the five types of items) in 5 min are recorded. We created two forms, identical in format
but comprising different items.

Computation Fluency is conceptually based on the Computation CBM probes for grades
one through six as developed by Fuchs and colleagues (e.g., Fuchs, Fuchs, Hamlett, Phillips, et
a., 1994; Fuchs & Fuchs, 2004). It resembles the Computation CBM probes in appearance; both
Fuchs s CBM probes and the Computation Fluency subtest include five rows of fiveitemsin a
bordered grid design. Further, it samples computation items across the kindergarten curriculum,
as do the CBM probes for grades one through six sample computation items for the
corresponding grade level curriculum. Because it can be group administered, is brief in duration
(i.e., 5min), and easily scored, this measure has potential for use as screening and progress
monitoring, as are the CBM probes at the higher grade levels. See Appendix A for an example of

the Computation Fluency measure.
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Number sense. The second multi-skill measure, Number Sense, isindividually
administered. It samples a greater number of mathematics skills at the kindergarten level, with 30
items (3 items each of 10 types), ordered in difficulty from easiest to hardest, based on item
response analyses of the pilot data. The 10 types of items are quantity discrimination, mental
number lines, ordering numbers, estimation, patterns, counting backward, shape discrimination,
number sentences, writing numbers, and one-to-one correspondence. The tester reads the
directions from a script for each item to the student, and then allows up to 1 min for the student
to respond or moves on as soon as the child responds. The student is provided a pencil and writes
answersto items; as with Computation Fluency, the student is not penalized for misspelled or
poorly formed written responses. The five pages of this measure each contain six items; the
examiner holds a piece of cardstock over the items and dlides the cardstock down to expose one
new item at atime. The examiner scores each item immediately following the student’ s response.
Correct responses receive a score of 1; incorrect responses receive a score of 0. The examiner
stops administering items after five consecutive scores of 0. The score is the number of correctly
answered items.

Number Sense, similar to the Concepts/Applications CBM probes developed by Fuchs
and colleagues (Fuchs & Fuchs, 2004; Fuchs, Hamlett, & Fuchs, 1989), is a multiple-skill
screener that samples grade-level skills. However, it differs from the Concepts/Applications
CBM probesin that it is not designed for group administration, items are scored immediately
subsequent to each response, and a ceiling rule limits the length of the test for some students. See
Appendix B for a copy of the Number Sense measure and Appendix C for the scoring sheet.

In the spring of 2005, Computation Fluency and Number Sense were piloted with 90
kindergarten students in three public elementary schools. All three schools received Title-1

funding; 46 (i.e., 51.1%) of the studentsin the pilot sample were female; 53 (i.e., 58.9%) of the
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students were six years old at the time of testing (all others were five years old). Interscorer
agreement was computed with 18 (i.e., 20%) of both the Computation Fluency and Number
Sense protocols. A second scorer independently scored the 36 total tests; interscorer agreement
for each subtest was calculated as the number of tests for which both scorers agreed on the score
divided by 18. Interscorer reliability was .94 for Computation Fluency and 1.00 for Number
Sense.

Students' average score on the Computation Fluency subtest was 13.77 (SD =5.78) of a
possible score of 25. Further, the data from the pilot group showed anormal distribution of
scores that corresponded with ability level, indicating that individual differencesin computation
skill could be indexed with this measure. The average score for the pilot group on the Number
Sense subtest was 18.98 (SD = 5.96) of a possible score of 30. These data similarly demonstrated
anormal distribution of scores and dight negative skewness. See Table 3 for means and standard
deviationsfor al classrooms in the pilot study. All teachers provided their students’ scores on a
district-mandated kindergarten test (administered by the teacher during the same time frame) to
allow comparison with the screening measures. The district test correlated .64 with Computation
Fluency and .75 with Number Sense; the Computation Fluency measure correlated .69 with
Number Sense. Coefficient alphafor this pilot study sample was .88 for Computation Fluency
and .87 for Number Sense.

Quantity discrimination. The third and single-skill kindergarten screening measure,
Quantity Discrimination (QD; Chard et a., 2005), is a 1-min timed probe measuring students
ability to name the larger of two numbers (ranging from O to 10), presented in 28 individual
boxes across two pages. Clarke et al. reported test-retest reliability as .85-.99 and concurrent and

predictive validity coefficients that ranged from .70 to .80. The QD measure was chosen because
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it has demonstrated strong predictive capability for early mathematics skill (Clarke & Shinn,
2004) for first graders and strong predictive capabilities for kindergartners (Chard et al).
Outcome Measures and MD Designation

Early math diagnostic assessment math reasoning and numerical operations. The EMDA
(The Psychologica Corporation, 2002a) is an individually-administered norm-referenced test for
use with preschool to third-grade students. The test, which takes approximately 20 min to
administer, comprises two sections. Math Reasoning measures skills such as counting, ordering
numbers, identifying/comparing shapes, problem solving with whole numbers, patterns, time,
money, graphs, and measurement. Students are shown a stimulus page corresponding to each
item and orally respond to the examiner’ s prompts. Numerical Operations measures one-to-one
correspondence, number identification, number writing, calculation, and rational numbers.
Students identify and circle numbers within amixed set of numbers and letters; write numbers as
prompted by the examiner; count a set of eight pennies and write the amount; and write answers
to arithmetic computation problems. The items are ordered by difficulty, and basal and ceiling
rules are provided. Thetest yields raw scores, percentile ranges, and standard scores. The EMDA
examiner’s manual provides reliability coefficients ranging from .71 to .93. Correlations with the
Wechdler-Individual Achievement Test (The Psychological Corporation, 1992b) are listed in the
manual as .82 and .78, correlations with the Wide Range Achievement Test-Revised (Wilkinson,
1993) as .67 and .77. The EMDA was selected for its appropriateness with young children, its
ease of administration (i.e., advance degree not required), and itsinclusion of skills similar to
those of the screening measure.

Keymath-revised numeration and estimation. The KM-R (Connolly, 1998) is an
individually administered norm-referenced test for use with students from kindergarten through

grade 12. Two subtests were used in this study: Numeration (i.e., concepts such as counting,
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correspondence, sequencing numbers, and ordinal positions) and Estimation (i.e., estimation of
rational numbers, measurement, and computation). As with the EMDA, test items are ordered by
difficulty, basal and ceiling rules are provided, and raw scores, standard scores, and percentile
ranks are available. The examiner’s manual reports alternate form reliability coefficients as .50
to .70 for the subtests and .90 for the entire test. Correlations with the Total Mathematics Score
of the lowa Test of Basic Skills (Hoover, Hieronymous, Dunbar, & Frisbie, 1993) and the KM-R
Numeration and Estimation subtests are reported as .67 and .43, respectively. The KM-R was
selected for smilar reasons as the EMDA; in addition, it was selected because it provides a
measure of estimation.

CBM computation and concepts/applications. At the end of first grade (i.e., the second
year of the study), we assessed participating students with First-Grade Computation and
Concepts/Applications CBM probes (Fuchs & Fuchs, 2004; Fuchs, Hamlett, & Fuchs, 1989),
which sample items from the first-grade curriculum. These items are presented to studentsin a
25 item 3-min timed test for Computation and in a22 item (approximately) 10-min test for
Concepts and Applications. Each CBM test is scored as number of problems and number of
digits correct. Each alternate form of each test contains a comparable number of items
representing the same group of problem types, and data from these probes provide the basis of
progress monitoring over time.

MD designation. Students received a designation of MD in one of two ways: scoring
below the 16" percentile on either the EMDA Math Reasoning subtest or the EMDA Numerical
Operations subtest at the end of first grade (or the end of the second year of kindergarten, if a
student repeated kindergarten). We used the normative tables provided by the examiner’ s manual
for designating MD.

Interscorer Agreement
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Data were examined for interscorer agreement at each of three testing waves. After the
first wave of testing (i.e., fall of kindergarten), a second scorer independently scored
approximately 20% of all protocols. Interscorer agreement (computed by dividing the number of
agreed points by the total number of points, across tests) ranged from 99.29 — 100.0%. This
procedure was repeated after the second testing wave (i.e., spring of kindergarten). Interscorer
agreement at this wave ranged from 98.96 — 100.0%. Following the third testing wave (i.e.,
spring of first grade), 100% of the testing protocols were rescored by a second scorer for
accuracy, and all discrepancies were resolved by examining the original products.

Procedure

Participating students were tested by the first author and by trained examiners. All
examiners were graduate students with varying degrees of classroom experience; trained to
acceptable levels of accuracy during practice sessions, and monitored by the first author
throughout all testing waves.

We administered tests to students in three waves. During the first wave (i.e., fall of
kindergarten), students were tested on three separate days. On thefirst day, students received one
form of Computation Fluency in awhole-class setting as well as the individually administered
Number Sense subtest. One-half of the students were randomly chosen to receive Form A of
Computation Fluency; the other half, Form B. One week later, students were tested with both
subtests of the EMDA and both subtests of the KM-R. The following week (i.e., two weeks had
elapsed from the first day of testing), students received the alternate form of Computation
Fluency; however, thistime, it was administered on an individual basis. Students also received
QD following the administration of Computation Fluency.

During the second testing wave (i.e., the final weeks of kindergarten), students were

again tested across three weeks and on three separate days. The testing schedule was identical to
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that of thefirst wave, with one exception: Both administrations of Computation Fluency were
group-administered.

The third testing wave occurred during the final weeks of the subsequent school year. For
most students, this was the end of first grade. However, three students repeated kindergarten, so
this wave occurred at the end of their second full year of kindergarten. At this point, students had
dispersed from 20 classrooms in five public schools to 45 classrooms in 22 public schools and
two local-area private schools. In the fall of this school year, parents received aletter reminding
them of their consent and apprising them that their child(ren) would be tested again in the spring,
for follow-up purposes. Teachers of these students were also contacted to schedule convenient
testing times.

As with the previous two testing waves, assessment occurred over three weeks and on
three separate days. On the first day, students received one form of CBM Computation and CBM
Conceptg/Applications tests. One week later, testers administered the EMDA subtests and the
KM-R Numeration subtest. (Because of afloor effect for the KM-R Estimation subtest when
administered the previous times, and because one of the examiners administered this subtest
incorrectly to alarge group of studentsin the previous testing wave, we elected to omit this test
from the final testing wave.) Finaly, testers returned the following week to administer alternate
forms of the first-grade CBM tests. All testing was conducted individually at this wave.

Data entry was conducted by two graduate students independently into two separate, but
identical, Excel spreadsheets. The databases were compared for discrepancies, which were
resolved by examining the original protocols. In thisway, afinal spreadsheet was created and
imported into SPSS 16 for analyses.

Data Analysis
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Reliability of the screening measures. To examine the reliability of the kindergarten
screening, we evaluated the internal consistency reliability (i.e., coefficient alpha) of both multi-
skill screeners and alternate form reliability (i.e., Pearson product moment correlation
coefficients for Forms A and B) of Computation Fluency.

Correlations among screening and outcome measures. We examined the concurrent
validity of the three kindergarten screening measures (i.e., Quantity Discrimination, Computation
Fluency, and Number Sense) by correlating the results from the fall and spring administrations
with each mathematics outcome measure administered at the same time. Further, we computed
Pearson product moment correlation coefficients for the fall administration of the screening
measures and the spring administration of the outcome measures to examine the predictive
validity from the beginning to the end of kindergarten. To assess predictive validity from the
beginning of kindergarten to the end of first grade and from the spring of kindergarten to the end
of first grade, we correlated the kindergarten fall and spring screening scores with the first-grade
EMDA subtests, KM-R subtest, and CBM mathematics tests.

Logistic regression to predict MD. We used logistic regression to evaluate the utility of
the kindergarten screening measures for predicting MD status, separately for math reasoning
(i.e., conceptual) and numerical operations (i.e., operational) outcomes. Binary logistic
regression is used when the outcome variable is dichotomous (e.g., MD vs. not-MD); predictor
variables (e.g., scores on the screeners) can be of any type. Logistic regression provides the
percentage of variance in the outcome variable that is explained by the predictor variable(s), as
well asaranking of the independent variables relative importance. The output of alogistic
regression analysisis a set of equation coefficients that alows for the calculation of the
probability that a caseis of certain class. Logistic regression is used rather than linear regression

when the outcome is binary because logistic regression does not assume alinear relationship
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between the predictor and outcome variables, normal distribution of the outcome variables or
error terms; homogeneity of variance; or interval-level or unbounded predictor variables.

Within the context of RTI, we were most interested in maximizing the number of
students who truly required additional and intensive mathematics instruction (i.e., “true
positives’) while limiting the number of those who did not (i.e., “false positives’). The set of true
and false positives would comprise the set of students identified for secondary intervention. For
this reason, we set the classification cutoff for the logistic regression models to be equal to the
proportion of first-grade MD children in the sample. We used SPSS 16.0 statistical software to
generate the logistic regression models, and entered the screeners independently to contrast their
predictive capabilities.

ROC curves to contrast various models. We used measures of sengitivity, specificity,
overall hit rate, and area under the ROC curve (AUC) to contrast the utility of various logistic
regression models. First, sensitivity refers to the true positives, that is, the proportion of children
correctly predicted by the model to be MD (in this study). Sensitivity is computed by dividing
the number of true positives by the sum of true positives and fal se negatives. Second, specificity,
or true negatives, by contrast, represents the proportion of children correctly predicted to be not
MD. Specificity iscomputed by dividing the number of true negatives by the sum of true
negatives and false positives. Third, the overall hit rate refersto the proportion of children
correctly classified as either MD or not-MD, and represents the overall accuracy of a prediction
model. Finally, the AUC isaplot of the true positive rate against the false positive rate for the
different possible cutpoints of atest.

To contrast the predictive accuracy of logistic regression models, we used the AUC asa
measure of discrimination (Swets, 1992). To illustrate this procedure, imagine that we had

already placed children into their correct MD or not-MD group. If we then selected one child at
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random from each group, we would assume that the child scoring higher on the kindergarten
screeners would be the child from the not-MD group. The AUC represents the proportion of
randomly chosen pairs of students for which the screeners correctly classified as MD versus not-
MD. It ranges from .50 to 1.00. The greater the AUC, the less likely that classification was due
to chance. An AUC below .70 indicates a poor predictive model; .70 to .80, fair; .80 to .90, good;
and greater than .90, excellent (e.g., Fuchs, Fuchs, Compton, Bryant, Hamlett, & Seethaler,
2007). The output from ROC analyses includes confidence intervals for the AUC and alack of
overlap for the confidence intervals across models indicates significant difference in predictive

accuracy for the models.
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CHAPTER 11

RESULTS

Descriptive Satistics
See Table 3 for the means and standard deviations of each test for each of the three
testing waves.
Table3

Means and Sandard Deviations for Number of Problems Correct for Pilot Data Collectiol

K-Math Test
Computation Fluency? Number Sense’
n M (SD) M (SD)
Class#1 18 11.83 (5.02) 18.00 (5.35)
Class #2 11 10.45 (4.41) 15.36 (6.48)
Class#3 13 14.23 (6.62) 20.23 (5.60)
Class #4 15 16.60 (6.02) 19.53 (6.36)
Class#5 16 15.63 (5.32) 22.25 (4.97)
Class #6 17 13.64 (5.23) 18.36 (5.80)
Overall 90 13.77 (5.78) 18.98 (5.96)

Note: 2number correct out of 25 items; "number correct out of 30 items.

Technical Adequacy of Kindergarten Screening Measures
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One purpose of this study was to evaluate the technical adequacy of the kindergarten
screening measures. With respect to reliability of the scores, we evaluated inter-item consistency
of both Computation Fluency and Number Sense with coefficient apha, and content sampling
consistency of the alternate forms of Computation Fluency. Because previous work had
evaluated the reliability of the single-skill, Quantity Discrimination measure (e.g., Chard et al .,
2005; Clarke & Shinn, 2004; Lembke & Foegen, 2006; Pedrotty Bryant et a., 2006), we were
interested in the reliability of only the two multi-skill screeners.

We evaluated inter-item consistency for the fall administration of Computation Fluency
asfollows. Students received two forms of the measure (i.e., Forms A and B). Half of the
students were randomly selected to receive Form A during the first (group) administration and
Form B during the second (individual) administration; the remaining students received first Form
B and then Form A. We then computed coefficient alpha for the four sets of data and averaged
the results. We repeated this procedure in the spring of kindergarten, although at this wave,
Computation Fluency was administered in agroup format at both occasions. In this way, alpha
for the fall administration of Computation Fluency averaged .88 and for the spring administration
averaged .92. For the same set of students, coefficient alpha for Number Sense was .91 for the
fall administration and .88 for the spring.

Alternate form reliability for Computation Fluency was determined by correlating each
student’ s score on Form A with his or her score on Form B. In the fall and spring testing
occasions of kindergarten, correlations were significant and .54 and .77, respectively. Note that
tests were administered both within agroup and individually in the fall; by contrast, in the
spring, al tests were group administered. To evaluate the degree to which the fall group and fall

individual testing administration formats were related, we also examined the correlation between
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students scores as a function of testing format; the scores correlated at a statistically significant
72

To further examine the technical adequacy of the kindergarten math screeners, we
examined the concurrent and predictive validity of the scores with various mathematics outcome
measures. With respect to concurrent validity, Table 4 provides the zero-order correlations for
the fall kindergarten screening and criterion measures; Table 5 provides the same information for
the second wave of testing (i.e., spring of kindergarten). All correlations at both testing occasions
were significant at the 0.01 (2-tailed) level. With the exception of correlations with the KM-R
Estimation subtest, which ranged from .26 to .32 in the fall and from .35 to .41 in the spring,
correlations for the kindergarten screeners with outcome measures ranged from .60 to .79 in the
fall and from .55 to .74 in the spring.

Similar to the concurrent validity correlations, al predictive validity correlations were
significant at the 0.01 (2-tailed) level. See Tables 6, 7, and 8 for the zero-order correlations
among fall and spring kindergarten measures, fall kindergarten and spring of first-grade
measures, and spring of kindergarten and spring of first-grade measures, respectively. For the
first set of test data (i.e., fall of kindergarten with spring of kindergarten measures), correlations
ranged from .53 to .82, excluding those with KM-R Estimation, which ranged from .34 to .49.
Furthermore, the predictive validity datawere similar for all three kindergarten screeners with
the math outcome measures. Regarding the predictive validity for the spring of first-grade math
outcomes, there was not much difference in range for the fall versus spring kindergarten testing

occasions. As Tables 7 and 8 show, predictive validity correlations ranged from .43 to .72 when
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Table 4

Means and Standard Deviations for Kindergarten (K) and Grade 1 Measures

Grade K Fal Grade K Spring Grade 1 Spring

Measures M® (D*) M" (D") M*® (D“) M"' (D") M* (D*) M" (SD")
CF1 (K Fall: Group) 7.55 (5.12) - - 16.27 (6.12) - - - - - -
CF 2 (K Fall: Ind) 1122 (5.72) - - 17.58 (6.14) - - - - - -
CF Avg 9.38 (5.03) - - 16.92  (5.79) - - - - - -
NS 15.65 (6.80) - - 21.84 (5.57) - - - - - -
KM-R Num 4.71 (1.90) 103.54 (12.41) 6.39 (2.14) 10931 (11.62) 9.20 (3.38) 106.76 (13.03)
KM-R Est 1.08 (1.12) - - 1.09 (1.42) - - - - - -
EMDA MR 1242  (4.64) 99.92 (13.55) 17.46 (4.99) 106.68 (14.85) 22.77 (5.66) (98.27 (14.77)
EMDA NO 6.29 (2.01) 101.63 (11.38) 8.14 (1.81) 103.93 (11.99) 10.81 (2.34) 95.01 (14.72)
QD 16.45 (10.13) - - 25.89 (10.09) - - - - - -
CBM Comp, Form 1 - - - - - - - - 1222 (4.77) - -
CBM Comp, Form 2 - - - - - - - - 12.94 (5.74) - _
CBM Comp, Average - - - - - - - - 12.58 (4.93) - -
CBM C/A, Form 1 - - - - - - - - 2123 (422) - -
CBM C/A, Form 2 - - - - - - - - 2031 (4.70) - -
CBM C/A, Average - - - - - - - - 20.77 (4.16) - -

Note: n = 196. *Raw score. ° Standard score. CF1 = Computation Fluency, first administration; CF2 = Computation Fluency,
second administration; CF Avg = average score of CF 1 and CF 2; NS = Number Sense; KM-R Num = KeyMath-Revised
Numeration subtest; KM-R Est = KM-R Estimation subtest; EMDA MR = Early Mathematics Diagnostic Assessment Math
Reasoning subtest; EMDA NO = EMDA Numerical Operations subtest; QD = Quantity Discrimination; CBM Comp = Grade 1
Curriculum-based Measurement Computation probe; CBM C/A = Grade 1 CBM Concepts and Applications probe.
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Table 5

Concurrent Validity: Correlations among Fall Kindergarten Screening and Criterion Measures

KM-R KM-R EMDA EMDA
CF1 CF2 CFAvg NS QD Num  Est MR NO

CF1 -
CF2 7 -

CFAvg 92 94 -

NS 58 67 68 -

QD 55 67 66 1 -

KM-R Num 55 59 62 67 .64 -

KM-R Est 26 29 30 30 31 32 -

EMDA MR 60 68 69 79 66 .67 39 -
EMDA NO 56 59 62 68 .60 .61 26 .62 -

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency,
first administration; CF2 = Computation Fluency, second administration, CFAvg = averaged
score of CF1 and CF2; NS = Number Sense; QD = Quantity Discrimination; KM-R Num =
KeyMath-Revised, Numeration subtest; KM-R Est = KM-R Estimation subtest; EMDA MR
= Early Math Diagnostic Assessment, Math Reasoning subtest; EMDA NO = EMDA
Numerical Operations subtest.
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Table 6

Concurrent Validity: Correlations among Spring Kindergarten Screening and Criterion Measures

KM-R KM-R EMDA EMDA
CF1 CF2 CFAvg NS QD Num  Est MR NO

CF1 -

CF2 79 -

CFAvg 94 95 -

NS 67 69 72 -

QD 61 64 66 68 -

KM-R Num 62 60 64 68 61 -

KM-R Est 35 34 36 38 34 4 -

EMDA MR 71 68 74 74 64 68 49 -
EMDA NO 64 62 67 55 56 58 40 .66 -

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency,
first administration; CF2 = Computation Fluency, second administration; CFAvg = averaged
score of CF1 and CF2; NS = Number Sense; QD = Quantity Discrimination; KM-R Num =
KeyMath-Revised, Numeration subtest; KM-R Est = KM-R Estimation subtest; EMDA MR
= Early Math Diagnostic Assessment, Math Reasoning subtest; EMDA NO = EMDA
Numerical Operations subtest.
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Table 7

Predictive Validity: Correlations among Fall Kindergarten Screening and Spring Kindergarten Measures

Spring Kindergarten

KM-R KM-R EMDA EMDA
Fall Kindergarten CF1 CF2 CFAvg NS Num Est MR NO QD

CF1 58 .52 .58 .54 58 48 .61 51 49
CF2 .67 .62 .67 .64 .66 44 .68 57 .62
CFAvg .67 .62 .68 .64 .67 49 .70 58 .60
NS .68 .63 .69 .82 71 40 74 .56 .62
QD .64 .64 .68 71 .68 34 .65 .53 75

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency,
first administration; CF2 = Computation Fluency, second administration; CFAvg = average
score of CF1 and CF2; NS = Number Sense; KM-R Num = KeyMath-Revised, Numeration
subtest; KM-R Est = KeyMath-Revised, Estimation subtest; EMDA MR = Early
Mathematics Diagnostic Assessment, Math Reasoning subtest; EMDA NO = EMDA
Numerical Operations subtest; QD = Quantity Discrimination.
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Table 8

Predictive Validity: Correlations among Fall Kindergarten Screening and Spring Grade 1 Measures

Spring Grade 1
KM-R EMDA EMDA
Fall Kindergarten =~ Num MR NO CBM1 CBM2 CBMAvg C/Al C/A2  C/AAvg
CF1 .58 .59 .56 41 45 46 42 44 46
CF2 .64 .65 53 45 A48 .50 .50 .50 .54
CFAvg .66 .67 .58 46 .50 52 .50 Sl .54
NS 72 .70 .55 A48 .55 .56 .62 .63 .67
QD .65 .66 52 43 .56 53 .52 .56 .58

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, first administration; CF2 =
Computation Fluency, second administration; CFAvg = average score of CF1 and CF2; NS = Number Sense; Num =
KeyMath-Revised, Numeration subtest; MR = Early Mathematics Diagnostic Assessment, Math Reasoning subtest;
NO = EMDA Numerical Operations subtest; CBM1 = Gr 1 Curriculum-based measurement Computation probe, first
administration; CBM2 = seond administration; CBMAvg = average score of CBM1 and CBM2;C/A1 = Gr 1 Concepts
and Applications probe, first administration; C/A2 = second administration; C/Aavg = average score of C/Al and
C/A2; QD = Quantity Discrimination.



Table 9

Predictive Validity: Correlations among Spring Kindergarten Screening and Spring Grade 1 Measures

Spring Grade 1

KM-R EMDA EMDA

Spring Kindergarten Num MR NO CBM1 CBM2 CBMAvg C/Al C/A2 C/AAvg
CF1 .60 .66 .59 51 .53 .56 .55 .58 .61
CF2 .59 .62 51 45 51 52 .53 .55 .58
CFAvg .63 .68 .58 51 .55 57 57 .60 .63
NS .70 72 .55 48 .56 .56 .66 .68 12
QD .62 .62 47 44 .54 .53 49 .54 .55

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, first administration; CF2 =
Computation Fluency, second administration; CFAvg = average score of CF1 and CF2; NS = Number Sense; Num =
KeyMath-Revised, Numeration subtest; MR = Early Mathematics Diagnostic Assessment, Math Reasoning subtest; NO =
EMDA Numerical Operations subtest; CBM1 = Gr 1 Curriculum-based measurement Computation probe, first
administration; CBM2 = seond administration; CBMAvg = average score of CBM1 and CBM2;C/A1 = Gr 1 Concepts
and Applications probe, first administration; C/A2 = second administration; C/Aavg = average score of C/Al and C/A2;
QD = Quantity Discrimination.
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using the fall kindergarten test scores; from .44 to .72 when using the spring kindergarten test
scores (i.e., using the averaged scores of the two forms of Computation Fluency).
MD Prevalence as a Function of Mathematics Outcome

We determined MD prevalence for students based on their performance on criterion
measures administered at the third testing wave, that is, the end of first grade. This allowed for
approximately two academic yearsto elapse from the initial screening occasion to the fina
measurement of mathematics outcome. MD designation was operationalized as scoring below
the 16" percentile on either the EMDA Math Reasoning subtest or the EMDA Numerical
Operations subtest. The former focused primarily on conceptua skills and mental manipulation
of whole numbers; students scoring below the 16" percentile on this subtest were designated
MD-conceptua. In contrast, the EMDA Numerical Operations subtest measured students' ability
to identify numerical symbols and perform written calculations; students scoring below the 16"
percentile on this subtest were designated MD-operational. Based on these criteria, 40 students
(i.e., 20.41% of the sample) were MD-conceptual and 59 students (i.e., 30.10%) were MD-
operational. Twenty-one students (i.e., 10.71%) met criteriafor both MD designations.

ROC Curvesto Contrast the Predictive Utility of Logistic Regresson Models

In Tables 10 and 11, we report the results of the logistic regression analyses for
predicting MD status at the end of first grade, with respect to conceptual and operational
outcomes. The tables show the predictive utility of the three kindergarten math screeners when
administered to studentsin thefall and in the spring. Hit rate (i.e., overall accuracy), sensitivity,
specificity, and area under the ROC curve (AUC) are included for each math screener.

For predicting MD-conceptual based on the fall-administered screeners (i.e., the top half

of Table 10), the single-skill Quantity Discrimination measure resulted in ahit rate of 74.5%,

36



Table 10

Classification Indices for Logistic Regression Models for MD-Conceptual

ROC

Qutcome/Model B SE Wald p N FN TP FP _ HitRate Sens  Spec  AUC SE CI

Fall Predictors
Quantity Discrimination -.206 .037 30.233 .000 113 7 33 43 74.5 82.5 724 857 0.03 .797-916
Constant 1.042 386 7.288 .007
Computation Fluency (ind) ~ -.245 .049 24919 .000 108 7 33 48 71.9 82.5 69.2  .797 033 .732-.862
Constant 912 432 4448 .035
Number Sense -207 .035 35.007 .000 121 8 32 35 78.1 80.0 77.6 .841 .030 .783-.900
Constant 1.377 446 9.525 .002

Spring Predictors
Quantity Discrimination -.168 .026 40.187 .000 126 9 31 30 80.1 77.5 80.8 .861 035 .793-.929
Constant 2.303 548 17.649 .000
Computation Fluency -276 .045 37.657 .000 116 8 32 40 75.5 80.0 744 860 .028  .806-.915
Constant 2.655 611 18.890 .000
Number Sense -315 .051 37.416 .000 124 7 33 32 80.1 82.5 79.5 877 .028  .822-931
Constant 4.887 986 24.544 .000
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Table 11

Classification Indices for Logistic Regression Models for MD-Operational

ROC

Qutcome/Model B SE Wald p N FN TP FP _ HitRate Sens  Spec  AUC SE CI

Fall Predictors
Quantity Discrimination -074 018 16.314 .000 82 21 38 55 61.2 64.4 59.9 .690 .040 .612-.768
Constant .268 .298 .808 369
Computation Fluency (ind) ~ -.102 .031 10.627 .001 76 25 34 61 56.1 57.6 555 .639 .041 .558-.720
Constant 237 350 456 499
Number Sense -110 025 19.028 .000 96 25 34 41 66.3 57.6  70.1 .696 .040 .619-.774
Constant 775 388 3.987 .046

Spring Predictors
Quantity Discrimination -.062 .017 14.105 .000 95 26 33 42 65.3 559 693 .661 043 .577-745
Constant 701 426 2.705 .100
Computation Fluency -.136 .030 21.114 .000 89 24 35 48 63.3 59.3 65.0 .722 037  .649-.794
Constant 1.343 484 7.703 .006
Number Sense -130  .030 18.164 .000 87 24 35 50 62.2 59.3 63.5 .687 .041 .605-.768
Constant 1.914  .655 8.551 .003
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with sengitivity (82.5%) exceeding specificity (72.4%). The multi-skill screeners, Computation
Fluency and Number Sense, resulted in similar fashion. Hit rates for those screeners were 71.9%
and 78.1%, respectively, and sensitivity for both (82.5% and 80.0%) exceeded specificity (69.2%
and 77.6%). The AUCsfor the three fall screeners were .857, .797, and .841, which are deemed
good (Fuchs et al., 2007). Confidence intervals for the AUCs overlapped, indicating that the
models were not significantly different. Based on the fall screeners, 7 to 8 students who were
designated M D-conceptual were missed (i.e., see “FN” column) and 35 to 48 students who were
identified with the screeners as at risk did not the meet end-of-first-grade criterion for MD-
conceptua (i.e., see “FP’ column).

For predicting the same MD-conceptual outcome, yet based on the spring-administered
screening measures (i.e., the bottom half of Table 10), similar results were found. The single-
skill and multi-skill screeners resulted in hit rates ranging from 75.5% (Computation Fluency) to
80.1% (both Quantity Discrimination and Number Sense). Quantity Discrimination resulted in
higher specificity (80.8%) than sensitivity (77.5%); the multi-skill Computation Fluency and
Number Sense showed the reverse, with sengitivity (80.0% and 82.5%, respectively) exceeding
specificity (74.4% and 79.5%, respectively). AUCs ranged from .860 to .877, which are deemed
good, and overlapping confidence intervals again attested to statistical equivalence across
models. False negatives ranged from 7 to 9 with the spring administration of the screeners; false
positives ranged from 30 to 40.

For predicting MD-operational status, the three screeners performed similarly in the fall
and in the spring (see Table 11). Hit rates for Quantity Discrimination, Computation Fluency,
and Number Sense based on fall screening were 61.2%, 56.1%, and 66.3%, respectively. Based
on spring screening, the hit rates changed only dightly: 65.3%, 63.3%, and 62.2%, respectively.

Sensitivity across both testing occasions ranged from 57.6% to 64.4%; specificity ranged from
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55.5% to 70.1%. With the exception of the spring-administered Computation Fluency, which
resulted in an AUC of .722 (deemed fair), the screeners AUCswere al less than .70 (deemed
poor). Number of false negatives (i.e., missed students) ranged from 21 to 26 and number of
false positives ranged from 41 to 61. The predictive utility of the three screening measures were
statistically equivalent at both kindergarten testing occasions, based on overlapping confidence
intervals of their corresponding AUCs.

Although there were no significant differences when looking separately at MD-
conceptua and MD-operational results (i.e., screeners performed similarly, irrespective of testing
occasion, when predicting MD-conceptual or MD-operational status), there was a significant
difference when combining the results. Specifically, the screeners predicted future MD statusin
terms of conceptual outcome with significantly greater accuracy than in terms of operational
outcome. The AUCs for the three screeners when predicting M D-conceptual were higher than
when predicting MD-operational; their non-overlapping confidence intervals indicated statistical

significance.
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CHAPTER 1V

DISCUSSION

We evauated the technical adequacy and predictive utility of one single-skill and two
multi-skill measures for screening kindergarten students for risk for MD. The single-skill
screener assessed students' ability to discriminate larger numbers from pairs of numbers ranging
from 0-10 in one minute. The multi-skill screeners assessed computational fluency and various
mathematical concepts central to typical early mathematical development. Conceptual and
operational math outcomes were assessed at the end of first grade, with MD operationalized as
performance below the 16" percentile on nationally norm-referenced tests.

Previous studies had investigated the reliability and validity of the single-skill (i.e.,
Quantity Discrimination) screening measure (Chard et al., 2005; Clarke & Shinn, 2004; Lembke
& Foegen, 2006; Pedrotty Bryant et al., 2006). Results from these earlier studies showed
reliability, on average, to be about .90, with concurrent and predictive validity averaging
approximately .60. Our results echo these findings with respect to validity. We found average
validity correlationsfor thistest to range from .57 to .63 with criterion measures (i.e., excluding
the KM-R Estimation scores, for reasons mentioned previoudy). With the present study, we
focused our attention on the technical adequacy of the two multi-skill kindergarten screeners
(i.e., Computation Fluency and Number Sense), even as we considered the validity of the single-
skill Quantity Discrimination test.

Reliability averages of the two multi-skill screeners were somewhat lower than what had
been found previoudly for the single-skill screener (i.e., .78 and .86 for the fall and spring

administrations, respectively), but these reliability estimates fall within an acceptable range
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(Urbina, 2004). In terms of concurrent and predictive validity, however, figures for the multi-
skill screeners generally surpassed those of the single-skill screener. For example, with respect to
fall-of-kindergarten to end-of-first-grade predictive validity, coefficients ranged from .55 to0 .72
for the two multi-skill math screeners with outcome measures (i.e., vs. .52 t0 .66 for the single-
skill screener). Interestingly, the (average) predictive validity datafor our three math screeners
with respect to end-of-first grade math skill remained nearly the same from the fall to the spring
testing occasions (i.e., .63 and .62, respectively). These validity estimates for the multi-skill
screeners are higher than the average predictive vaidity of the kindergarten screening literature
we reviewed (i.e., Baker et a., 2002; Bramlett, Rowell, & Mandenberg, 2000; Chard et al.;
Clarke et a.; Jordan, Kaplan, Locuniak, & Ramineni, 2007; Kurdek & Sinclair, 2001; Lembke &
Foegen; Mazzocco & Thompson, 2005; Pedrotty Bryant et a.; Tied, Mazzocco, & Myers, 2001,
VanDerHeyden, Witt, Naguin, & Noell, 2001), which comprises an assortment of screening and
outcome measures. Kindergarten math screeners from these earlier studies correlated (on
average) .46 with future measures of mathematical performance. Because kindergarten students
begin school in the fall with varying levels of developmental maturity, attention, or experience
with paper-and-pencil tasks, it would be understandable if the relations among math screeners
and criterion measures were stronger in the spring, once some of the variability due to unequal
preschool experiences evens out. Our results did not demonstrate this, however. Predictive
validity remained stable across the kindergarten school year, with respect to end-of-first-grade
mathematics outcomes--a harbinger of the resulting overall accuracy of the screenersin
predicting MD.

Although it was not the sole focus of the present study, documenting the technical
adequacy of the math screening assessments constituted an essential first step toward drawing

conclusions about the screeners' predictive utility. Practically speaking, if educators and
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diagnosticians are to rely on atest to forecast future MD status, the test must demonstrate
reasonable levels of score stability and consistency. Furthermore, inferences drawn from the
test’ s scores must be meaningful and justifiable (in this case, with respect to students’ early
mathematics ability). As did previous evaluations of the Quantity Discrimination measure (e.g.,
Chard et al.), our data lend support to its technical adequacy as well as that of the multi-skill
Computation Fluency and Number Sense screeners.

In addition to examining the kindergarten math screeners, however, we were particularly
interested in aspects of the screeners decision-making utility. Only a handful of previous
kindergarten screening studies looked beyond predictive validity correlations and directly
analyzed the senditivity or specificity of their screeners (Bramlett et al., 2000; Mazzocco &
Thompson, 2005; Simner, 1982; Tied et al., 2001; VanDerHeyden et al., 2001). With the present
study, we specifically questioned whether the predictive utility of our tests would differ asa
function of item composition (i.e., single- vs. multiple-skill); the time of year screening occurred
(i.e, fall vs. spring of kindergarten); or the focus of mathematical outcome (i.e., conceptual vs.
operational). To our knowledge, no previous work has addressed these concerns. If educators are
to accurately pinpoint students in need of intensive math intervention (i.e., in an attempt to
prevent future MD), research should inform the practice of how, when, and with respect to what
outcome this may best be accomplished.

First, with respect to how, we asked, Might a brief single-skill test of magnitude
comparison forecast future math ability of kindergarten students just as well as, or perhaps better
than, multiple-skill tests of varied early numerical concepts? Gersten et al. (2005) suggested that
measures comprising items of counting/simple computation skill and quantity/use of mental
number line may effectively screen young students for potential MD. Along these lines, we

guestioned whether a single aspect of “number sense” (i.e., such as quantity discrimination)
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would prove sufficient as a predictor of MD. Alternately, to maximize effectiveness, we asked
whether a screener comprising items of multiple early numeracy concepts would provide
enhanced decision-making utility. To answer these questions, we compared the AUCs of the
single-skill to the multiple-skill screeners, at both the fall and spring testing occasions, and with
respect to two mathematical outcomes. Non-overlapping confidence intervals would indicate
statistical differences between models.

Our results showed no significant differencesin predictive utility for single- versus multi-
skill screening, at fall or spring, for either math outcome. Thisisinteresting, given that the
predictive validity of the multi-skill screeners was generally higher than that of the single-skill
screener. This highlights the importance of looking at the predictive utility of screening measures
in addition to the ssimple predictive correlations. Our results indicate that a brief, timed measure
of quantity discrimination is comparable to the multiple-skill screeners (which include more
widely varied arithmetical and numerical items and take dightly longer to administer) in
forecasting future MD. Thisislikely welcome news for kindergarten teachers who often have
limited time and/or resources available to screen their classes of young learners. As areminder,
the single-skill quantity discrimination was a one-minute, timed probe; the multi-skill
Computation Fluency screener was a 5-minute timed, group-administered test; and the multi-skill
Number Sense test was untimed, individually administered, and took from 10 to 15 minutes per
student to complete. Of course, separate from the issue of efficiency, the multi-skill screeners
may provide teachers with better information for instructional planning than the single-skill
screener. Thisis because sampling awider variety of early mathematical skills, as the multi-skill
screeners do, provide an opportunity for error analysis and for highlighting students' specific
numerical strengths and weaknesses. The single-skill screener, on the other hand, provides

information on only one aspect of mathematical skill.



Second, in terms of when, we asked, Do marked differences exist in decision-making
utility when screening students in the fall versus the spring of kindergarten? Thisisimportant to
know, for two related and competing reasons. On the one hand, studies show that screening for
future reading disability at an early age produces a high proportion of false positives (Catts,
1991; Johnson, Jenkins, Petscher, & Catts, 2008), stressing the school system to provide
intervention to students who do not require that help. Thus, waiting afew months or even until
the kindergarten year is complete may better identify students whose initial low performance
results from developmental or experiential lag rather than true MD. If this were the case, one
would expect to uncover asignificant difference in predictive accuracy from the fall to the spring
testing occasions. On the other hand, refraining from screening students for MD until the spring
of kindergarten (or even later), with the belief that fall screening is not trustworthy, denies
students of months of intervention time that could well serve to offset or prevent extreme math
deficits. To address this dilemma, we compared the AUCs of the fall versus the spring math
screeners with respect to the same two end-of-first grade mathematical outcomes. Our results
showed no statistical differencesin predictive utility from the fall to the spring testing occasions,
underscoring the potential value of beginning early, in the fall of students kindergarten year, to
identify young learners in need of mathematical intervention. In spite of this, the large numbers
of false positives (i.e., ranging from 30 to 48 and from 41 to 61 for conceptual and operational
outcomes, respectively) suggest that delaying screening until after kindergarten may be prudent.
Thisissue should be pursued in future work.

Third, with respect to what outcome, we asked, What should we look for in terms of MD?
Should educators and diagnosticians consider conceptual mathematical deficits as a hallmark of
MD at the end of first grade, or conversely, should the focus be on operational deficits? Prior

work shows that elementary-aged students with MD show marked deficits in computational
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fluency and difficulty with number processing (e.g., Jordan et al. 2003; Mazzocco, 2007). Y et, it
is plausible that students as young as 5 and 6 years may simply not have had sufficient or
comparable formal instruction with paper-and-pencil tasks such as counting, addition, or
subtraction facts. As such, choosing a math outcome to designate MD which focuses on
operational skill for students at this young age (i.e., such as written number combinations or 2-
digit addition and subtraction items) may prove less useful than one that focuses on early
numeracy concepts more likely to have been taught with early math curricula (i.e., such as shape
identification or the meaning of “more than” or “lessthan”). Our results supported this. When we
contrasted predictive models with conceptual versus operational mathematical outcomes, we
found those with conceptual outcomes to be statistically better than those with operational
outcomes, regardless of type of screener (i.e., single- or multi-skill) or time of testing (i.e., fall or
spring). During the fall or spring of kindergarten, AUCs for our screening models ranged from
.80t0 .88, indicating “good” predictive utility for conceptual outcome using the EMDA Math
Reasoning subtest. By contrast, during the same time frames, AUCs ranged only from .64 to .72,
indicating “poor” predictive utility for operational outcome using the EMDA Numerical
Operations subtest. This suggests that we can predict future computational deficits less
accurately than conceptual deficits, at least when screening learners in the kindergarten year.

In summary, single-skill and multiple-skill screening measures produced good and
similar fits at both fall and spring of kindergarten, in terms of forecasting conceptual
mathematics outcome at the end of first grade. Y et, with respect to operational outcome at the
same time, the single- and multi-skill screeners produced similar but significantly less accurate
fits. Although our results lend tentative support to the potentiality of screening students as young
as kindergarteners for future MD, additional study is needed to increase the overall accuracy of

thistask. That is, regardless of the predictive model used, we found an unacceptably high
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proportion of students misidentified as false positives and/or false negatives. This weakens the
decision-making utility of the screeners and raises concerns about one-time universal screening
within an RTI framework. Similar findings are accruing in reading (e.g., Jenkins, Hudson, &
Johnson, 2007; Johnson, 2008). This suggests the potential need for a multiple-gating screening
procedure, in which a cut-point on the universal screen is set to minimize false negatives, and
then a more thorough conventional assessment or a dynamic assessment or short-term progress
monitoring is conducted among the subset of students who failed the universal screen. In
reading, Compton, Fuchs, Fuchs, & Bryant (2006) showed how such a multiple-gating screening
procedure, using six weeks of short-term progress monitoring at the beginning of the first grade
could eliminate false positives and fal se negatives. Future work should investigate the potential
of multiple-gating kindergarten screening procedures to identify risk of MD more precisely.
Asreadersinterpret findings, however, at least four limitations to the study should be
considered. Three pertain to the participants; one to the nature of the screening measures. First,
participants were selected from only one school district in a southeastern metropolitan area.
Sampling students from a more diverse and representative population would provide for greater
generalizability of results. Second, although our attrition rate was within reason, 22%, it is
unclear how results may have been affected had the 56 students who moved remained through
the end of first grade. We however note that on the fall kindergarten multi-skill Number Sense
screening measure, students who remained through the end of first grade scored significantly
higher than those who exited. This finding raises questions about whether results would change
if the exiters had remained. Even so, the students who exited and those who remained were
demographically comparable. Moreover, they were mathematically comparable, asindexed on
the other two screeners. Third, consented students represented less than half of the classroom

population, questioning whether results would remain stable had more families/students agreed
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to participate. Finaly, we did not address the issue of timed testing in this study. The single-skill
guantity discrimination screener and the multi-skill Computation Fluency screener were timed,;
the multi-skill Number Sense screener was untimed. Additionally, neither subtest used to
determine MD status was timed. Students were aware when they were completing assessments
with timed limits, and for some students, timing may have been a distraction or a stressor. Y et, as
shown with some reading tests (e.g., Fuchs, Fuchs, Hosp, & Jenkins, 2001), fluency may be an
important way of drawing distinctions among students' skill levels, abilities, and potential. In
any case, we cannot state whether timed tests makes a difference in predictive utility for students
at this age.

To address these limitations, future research should employ a more representative sample
and should systematically vary timed versus untimed administration of screening measures.
Additionally, future research should evaluate how the use of our multi-skill measures for
progress monitoring might enhance teachers' instructional planning and student learning. Finally,
and in arelated way, the role of multiple-gating screening processes should be investigated as a

means of lowering the rate of false positives and fa se negatives.
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Appendix A — Computation Fluency

COMPUTATION FLUENCY Score;____ /25
Form A
Name:
Date:
Cross out 2 *.
* * * % %
+ =
2+3= * * 4-2= * *k Kk *
Cross out 4 *.
* * Rkk Rk
3-1=_ * % % % % * % % 0+4=
* % *
Cross out 1 *.
* *kkk  Kkkk
* % * + =
* 2+2= 5-1=
Cross out 3 *.
* * %
* % % % %
+ = * * *
3.3= * % % % % 1+4=
* * %
* % % % %
Cross out 0 *.
****+**** B
* * * % * 3+1= * 5_3=
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Appendix B — Number Sense

Name:

Date:
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4)

5)
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Score:
Age:
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Appendix C — Number Sense Score Sheet

Number Sense Score Shee

Now we're going to do some math activities.

Scoring
1 = correct response

0 = incorrect response
Ceiling =5 (Stop after 5 consecutive scores of 0)
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