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CHAPTER I 

 

INTRODUCTION 

 

 We are continuously exposed to more sensory information than we can 

possibly attend to and process in detail. Since it is not always obvious which 

information is most relevant, in many instances it would be adaptive for neural 

processes to continue monitoring sensory signals that fall outside of 

awareness. In turn, those signals may play a significant role in shaping our 

perceptual experiences and guiding our behavior without our knowledge. Several 

lines of research suggest that unperceived visual information may indeed 

influence perceptual and cognitive operations (e.g. reviews by Bridgeman, 1992; 

Goodale, 2004; Merikle, 1998). While evidence in support of ‘unconscious’ visual 

processing may seem intriguing, it is not always compelling that stimuli are in fact 

presented outside of observers’ awareness in these studies (e.g. Kouider & 

Dehaene, 2007; Merikle, 1992). Luckily, psychophysical techniques in rendering 

stimuli perceptually invisible have progressed and now include motion induced 

blindness, attentional blink, and crowding, among others (review by Kim & Blake, 

2005). What is so compelling about these and other approaches is that the 

perceptual ‘suppression’ of a stimulus seems practically indistinguishable from 

the physical removal or absence of that stimulus. One kind of technique exploits 

the natural suppression that occurs when different images are simultaneously 

presented to the two eyes (Figure 1.1). An advantage of dichoptic stimulation 
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techniques over other approaches is that experimenters can present a variety of 

salient stimuli over extended periods of time and continue to observe reliable 

suppression. Binocular rivalry (Breese, 1909; Wheatstone, 1838), flash 

suppression (Wilke, Leopold, & Logothetis, 2003; Wolfe, 1984), flicker-swap 

rivalry (Logothetis, Leopold, & Scheinberg, 1996) and binocular switch 

suppression (Arnold, Law, & Wallis, 2008), are among a few of the techniques 

that induce such potent perceptual suppression. 

Recently, one particular interocular suppression technique has become 

increasingly popular as a means for “erasing” visual stimuli from awareness. 

Coined ‘continuous flash suppression’ (or CFS) by Tsuchiya and Koch (2005), 

this style of binocular rivalry involves rapidly flashing contour-rich noise patterns 

to one eye in order to perceptually suppress the stimulus presented to the other 

eye. Suppression with CFS is so potent that observers solely perceive the 

dynamic CFS display (while the stimulus in the opposing eye is rendered 

perceptually invisible) for extended periods of time, which are reportedly 10 fold 

longer than suppression produced with traditional binocular rivalry (Tsuchiya & 

Koch, 2005). The experimentally controlled onset and duration of invisibility with 

CFS also deviate from the unpredictable fluctuation in perception typically 

observed with conventional binocular rivalry. In comparison to CFS, temporally 

sensitive techniques such as masking and attentional blink paradigms are 

constrained by short stimulus durations (Kim & Blake, 2005). In addition, 

perceptual suppression with CFS is less susceptible to the effects of unstable 

fixation and eye movements in comparison to suppression induced by crowding 
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and motion induced blindness paradigms (Kim & Blake, 2005). Thus, CFS offers 

several methodological advantages over other psychophysical techniques and 

viewed in this light, it is not surprising that researchers have become fond of 

utilizing CFS in order to investigate stimulus processing outside of awareness. 

The following section reviews those findings. 

 

 

Figure 1.1: Illustrations of 3 interocular suppression techniques. During binocular rivalry, 
dissimilar stimuli are presented dichoptically for a continuous period of time. As a result, 
perception unpredictably fluctuates between the two images. Initially during flash 
suppression, a stimulus is solely presented to one eye. That stimulus is perceptually 
suppressed once another stimulus is abruptly flashed into the other eye. During 
continuous flash suppression, a dynamic sequence of images is presented to one eye 
and the image presented to the other eye is suppressed for an extended period of time. 
 

Behavioral and physiological findings with CFS 

Several CFS studies have utilized a well-established psychophysical 

paradigm in which prolonged neural adaptation to a stimulus gives rise to visual 

aftereffects. These adaptation aftereffects have been used for several decades to 
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isolate and probe the neural mechanisms selective for different stimulus 

attributes, ranging from low-level properties such as spatial frequency and 

orientation to high-level features such as face identity and expression (Mollon, 

1974; Thompson & Burr, 2009). One way to investigate the extent of stimulus 

encoding under interocular suppression is to determine whether full-blown 

adaptation occurs when the inducing stimulus is suppressed from awareness 

during the adaptation period. If full-strength adaptation aftereffects can be 

induced despite interocular suppression, it would imply that the neural events 

responsible for adaptation are unaffected by suppression and transpire 

regardless of observers’ awareness of the inducing stimulus. On the other hand, 

adaptation may be disrupted by suppression, resulting in aftereffects that are 

weakened or even abolished (Blake, Tadin, Sobel, Raissian, & Chong, 2006; 

Wiesenfelder & Blake, 1990). When this strategy is applied using CFS to 

suppress an adapting stimulus, experiments show that CFS effectively weakens 

neural adaptation, leading to reduced aftereffects specific to a number of 

properties of the suppressed stimulus, including spatial phase (Tsuchiya & Koch, 

2005), orientation (Kanai, Tsuchiya, & Verstraten, 2006), motion (Maruya, 

Watanabe, & Watanabe, 2008) and contrast (Shin, Stolte, & Chong, 2009; E. 

Yang, Hong, & Blake, 2010). Furthermore, aftereffects thought to be driven by 

‘high-level’ adaptation are abolished, which includes complex motion aftereffects 

(Maruya et al., 2008) and several face adaptation aftereffects (Amihai, Deouell, & 

Bentin, 2010; Moradi, Koch, & Shimojo, 2005; Shin et al., 2009; Stein & Sterzer, 

2011).  
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In summary, the suppressive effects of CFS undoubtedly hinder the 

analysis of diverse stimulus attributes. If suppression greatly influences the 

encoding of these fundamental visual properties, one could reasonably assume 

that it would similarly affect any combination of these features, underlying the 

neural representations of more complex image properties. However, other lines 

of research suggest that certain classes of complex stimuli continue to be 

processed despite being blocked from visual awareness by CFS. 

For instance, there is an emerging consensus that some neural processes 

involved in face perception remain operational when images of faces are 

suppressed from awareness using CFS. Evidence supporting this conclusion 

comes from experiments using a technique that measures the amount of time 

that an initially suppressed stimulus remains suppressed, the assumption being 

that select stimuli should emerge from suppression sooner if aspects of those 

stimuli continue to be processed during suppression. This technique is based on 

a hallmark characteristic of binocular rivalry: stronger stimuli remain suppressed 

for shorter periods of time (Levelt, 1965).  Using this technique, Jiang, Costello, 

and He (2007) presented face stimuli to observers’ suppressed eye and 

measured the time it took for faces to emerge from suppression and become 

visible. Upright faces gained dominance faster than inverted faces (see also 

Stein, Hebart, & Sterzer, 2011a; E. Yang, Zald, & Blake, 2007) and this inversion 

effect under suppression appears specific to the category of faces, in comparison 

to house stimuli (G.M. Zhou, Zhang, Liu, Yang, & Qu, 2010). The face inversion 

effect was used as evidence that face-selective mechanisms were operational 
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during the unconscious presentation of upright faces. However, there is growing 

speculation as to whether upright and inverted faces are processed differently 

(e.g. Loftus, Obert & Dillon, 2004; Richler, Mack, Palmeri, & Gauthier, 2011; 

Sekuler, Gaspar, Gold, & Bennett, 2004) and so the face inversion effect may not 

be an informative measure in dissociating object-specific processes. Even so, 

physiological data also suggests that faces, or rather the configuration of face 

features, are weakly encoded under CFS. Residual neural activity in response to 

faces suppressed with CFS has been consistently reported using a variety of 

physiological techniques, including functional magnetic resonance imaging or 

fMRI (Jiang & He, 2006; Sterzer, Haynes, & Rees, 2008), 

electroencephalography or EEG (Jiang et al., 2009) and 

magnetoencephalography (Sterzer, Jalkanen, & Rees, 2009). This line of 

research has now inspired investigators to examine whether social cues in faces, 

such as gaze direction, can also be unconsciously processed (Stein, Senju, 

Peelen, & Sterzer, 2011b).  

 There is further evidence, obtained using the “time to break suppression” 

strategy (Jiang et al., 2007), to suggest that the emotional overtones expressed 

in faces are encoded under CFS. For instance, when faces with different facial 

expressions were presented under CFS, faces portraying fearful expressions 

emerged from suppression faster than those with neutral or happy expressions 

(Sterzer, Hilgenfeldt, Frequdenberg, Bermpohl, & Adli, 2011; Tsuchiya, Moradi, 

Felsen, Yamazaki, & Adolphs, 2009; E. Yang et al., 2007). Studies measuring 

face adaptation aftereffects demonstrated that, unlike other face attributes (e.g. 
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identity, gender, shape), aftereffects specific to facial expressions could still be 

induced, albeit more weakly, when the inducing face stimulus was suppressed 

from awareness (Adams, Gray, Garner, & Graf, 2010; E. Yang et al., 2010). 

Furthermore, neuroimaging and EEG studies have reported robust neural activity 

in response to suppressed (fearful) facial expressions, particularly in the face-

responsive areas of the superior temporal sulcus and the amygdala (Jiang & He, 

2006; Jiang et al., 2009), which are also areas associated with affective 

processing. Altogether these findings support the emerging claim that affectively-

laden stimuli are preferentially processed in the absence of observers’ 

awareness and attention of those stimuli (e.g. LeDoux, 1996; Vuilleumier, 

Armony, Driver, & Dolan, 2001; but see Pessoa & Ungerleider, 2003). 

Furthermore, among those who hold this view, many speculate that this process 

occurs through subcortical projections that bypass early visual cortical areas to 

support the rapid emotional evaluation of sensory signals (e.g. LeDoux, 1996; 

Morris, Ohman, & Dolan, 1998; Vuilleumier, Armony, Driver, & Dolan, 2003). 

Behavioral and physiological effects have been reported with other 

categories of meaningful objects besides faces that are rendered invisible owing 

to CFS. In particular, there are some who believe that areas in the dorsal visual 

pathway that are involved in visually guided actions are also responsible for 

registering images of highly-manipulable of objects (e.g. Chao & Martin, 2000; 

Jeannerod, Arbib, Rizzolatti, & Sakata, 1995). According to lesion studies, the 

encoding of such objects in the dorsal pathway furthermore may not depend on 

observers’ perception of those objects (reviews by Goodale & Milner, 1992; 
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Stoerig & Cowey, 1997). Almeida, Mahon, Nakayama, and Caramazza (2008) 

presented images of objects in different categories (i.e. animals, tools, vehicles) 

as prime and target stimuli and the former was suppressed with CFS. Observers’ 

performance in categorizing targets was facilitated when the target was preceded 

by an invisible prime of the same object category. Interestingly this category-

related priming effect occurred only for the tool category, suggesting that this 

object category may be preferentially processed under suppression. Consistent 

with this, Fang and He (2005) reported robust blood oxygen level dependent 

(BOLD) activity in object-sensitive dorsal regions that were selective for tool 

images regardless of whether they were visible or invisible consequent to CFS; 

object-sensitive ventral areas showed very weak responses to suppressed 

images, relative to when those images were not suppressed (but see 

Hesselmann & Malach, in press). Fang and He (2005) speculated that visual 

signals of tool images may have been accessed by the dorsal pathway through 

subcortical projections that bypass V1 or, alternatively, through the magnocellular 

pathway which, they believe, is more resistant to interocular suppression (He, 

Carlson, & Chen, 2005; Lin & He, 2009). 

Researchers have also found that linguistic meaning could be extracted 

from stimuli suppressed from visibility by CFS. For instance, images of 

morphemes that are part of one’s native language tend to emerge from 

suppression faster than images of unfamiliar, foreign words (Jiang et al., 2007). 

Similarly, a word tends to emerge faster from suppression induced by CFS when 

that word is preceded by a semantically related visible word (Costello, Jiang, 
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Baartman, McGlennen, & He, 2009; but see Kang, Blake, & Woodman, in press). 

On the other hand, words with a negative-connotation may be suppressed for 

longer periods of time under CFS than words with neutral affect (Y.H. Yang & 

Yeh, 2010). Categorical and numerical priming effects have also been observed 

with invisible prime stimuli portraying names of tools and numbers, respectively 

(Almeida, Mahon, & Caramazza, 2010; Almeida et al., 2008; Bahrami et al., 

2010). Overall, evidence implies that with CFS, semantic information of an 

invisible stimulus may be encoded and, consequently, may strengthen the neural 

signals associated with that stimulus such that it emerges more quickly from 

suppression. 

While it may seem intuitive that attentional resources can only be 

allocated to stimuli that we perceive (Block, 1996), studies using CFS suggest 

that this intuition is incorrect. Attention can, in fact, be involuntarily drawn to the 

location of a stimulus suppressed by CFS, particularly if that stimulus is 

emotionally arousing (Jiang, Costello, Fang, Huang, & He, 2006). Other CFS 

studies report that spatial attention (Shin et al., 2009; E. Yang et al., 2010) or 

feature-based attention (Kanai et al., 2006) directed towards a suppressed 

adapting stimulus can enhance the potency of that stimulus so that it induces a 

stronger visual aftereffect. Likewise, when attentional resources are fully 

removed from a suppressed stimulus, resulting adaptation aftereffects are 

substantially weakened (Bahrami, Carmel, Walsh, Rees, & Lavie, 2008) and 

related neural responses are reduced in magnitude as well (Bahrami, Lavie, & 

Rees, 2007). Therefore, attention may modulate the strength or level of 
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processing performed under suppression, successfully boosting or weakening 

neural signals arising from the suppressed stimulus. 

 

Caveats of findings with CFS 

Studies using CFS are used as evidence for the functional significance of 

processing certain stimulus properties without awareness. While this 

interpretation seems intriguing, evidence is not entirely unequivocal. In several 

studies, behavioral effects were exclusively measured under conditions of CFS 

and so it is unclear to what extent these effects occur when observers are aware 

of the stimuli and whether these effects with CFS are relatively substantial in 

magnitude (e.g. Almeida et al., 2008 & 2010; Bahrami et al., 2007 & 2008). In 

other studies, the behavioral effects observed with CFS were not replicated 

under visible conditions and so it is unclear as to the purpose of these effects 

when they only occur without awareness (e.g. Costello et al., 2009; Jiang et al., 

2006 & 2007; Stein et al., 2011b; Y.H. Yang & Yeh, 2010; G.M. Zhou et al., 

2010). Take for example, studies that measure the ”time to break suppression” of 

images such as faces. In a separate ‘control’ experiment, faces and CFS stimuli 

were binocularly presented and the contrast of the face was gradually increased 

during a trial in order to mimic the perceptual experience of the face’s emergence 

from suppression. The face inversion effect has not been reliably found in control 

experiments (Jiang et al., 2007; Stein et al., 2011a; G.M. Zhou et al., 2010). If 

face inversion effects are only observed when faces are invisible and the effect is 

considered evidence of face processing, it seems unreasonable to infer that face 
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processing does not occur with visible faces. Rather, the absence of an inversion 

effect with visible faces tends to be used as supporting evidence that any 

reaction time (RT) differences across CFS conditions are not attributed to 

differences in response criteria, detection ability, or low-level visual properties, 

since the same differences are not observed under visible conditions. 

In CFS studies, conclusions about the measured effects purportedly 

surviving suppression rest critically on the ability of observers to reliably judge 

the extent to which the critical stimulus is indeed completely suppressed from 

awareness (see Kang et al., in press). Investigators using CFS typically create 

their own measure of awareness that is implemented as a separate ‘control’ 

experiment.  In some studies, observers have been instructed to discriminate 

between a stimulus used in the experimental condition and a grid-scrambled 

version of that (or another) stimulus while both are being presented under CFS 

(Almeida et al., 2008; Fang & He, 2005; Jiang et al., 2006 & 2009; Jiang & He, 

2006). Still in other studies, observers were instructed to categorize the 

suppressed stimulus into one of two object categories (e.g. tool versus animal or 

human versus non-human; Almeida et al., 2008 & 2010; Arnold et al., 2008; 

Bahrami et al., 2008; Sterzer et al., 2008 & 2009). If performance was at chance 

in discriminating between different types of suppressed stimuli, investigators 

concluded that observers were unaware of the stimuli presented under CFS. 

However, the inability to recognize a stimulus should not be confused with the 

inability to detect the presence of a stimulus under suppression. Such 

discrimination measures cannot rule out the possibility that some visual features 



 12 

of a suppressed stimulus can be detected by the observer, with this residual 

information actually driving the effect observed under CFS. Indeed, there is 

evidence that different aspects of a stimulus suppressed by CFS can be in 

different states of suppression (Hong and Blake, 2009). 

Other investigators collected observers’ subjective reports of perception 

during experimental trials (using key presses) in order to correlate observers’ 

awareness with the measurement of interest (Adams et al., 2010; Bahrami et al., 

2010; Tsuchiya and Koch, 2005) or to reliably initiate probes under perceptual 

suppression (Maruya et al., 2008; Tsuchiya, Koch, Gilroy, & Blake, 2006). 

However, subjective measures of awareness are susceptible to response bias 

and demand characteristics (Lin & He, 2009), and no CFS study to date has 

attempted to objectively measure detection performance, using signal detection 

theory for example. Notably, Sterzer and colleagues (2009) monitored observers’ 

perception of suppressed stimuli during experimental trials using both a detection 

and discrimination task and found that observers’ level of awareness did not 

differ across performance on each task. 

When looking at findings from CFS studies alone, the evidence for visual 

processing outside of awareness seems very compelling. It is important to note, 

however, that the stimulus conditions creating CFS constitute a form of binocular 

rivalry, i.e., dissimilar monocular stimuli presented to corresponding areas of the 

two eyes. And we know there exists a wealth of evidence on visual processing 

during rivalry suppression, and some of that evidence differs substantially from 

what is found using CFS. Since the magnitude of suppression under CFS is 
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reportedly 3 fold greater than suppression induced with binocular rivalry 

(Tsuchiya et al., 2006), it is reasonable to assume that visual signals are more 

strongly attenuated with CFS. Why, then, do some aspects of visual information 

processing seemingly survive CFS when other studies imply that those aspects 

of processing are abolished during suppression phases of rivalry? For instance, 

with CFS affective and semantic components of stimuli can influence the duration 

that those stimuli remain suppressed, typically facilitating their emergence from 

suppression (e.g. Costello et al., 2009; Jiang et al., 2007; Mudrik, Breska, Lamy, 

& Deouell, 2011; E. Yang et al., 2007; Y.H. Yang & Yeh, 2010;). Although studies 

have demonstrated that emotional overtones can modulate a stimulus’ 

predominance in BR (e.g. Alpers & Gerdes, 2007; Bannerman, Milders, De 

Gelder, & Sahraie, 2008; Coren & Russell, 1992; Ogawa & Suzuki, 2000), none 

have reported that the suppression durations of such a stimulus are specifically 

affected. Blake (1988) found no evidence that presenting words or meaningful 

text under BR suppression would break suppression faster than nonsense strings 

of letters (see also Zimba & Blake, 1983). Overall there is weak evidence to 

suggest that semantic information can shorten BR suppression but rather, these 

forms of contextual cues are known to lengthen stimulus dominance during BR 

and more likely reflect the top-down influence of attention on rivalry dynamics 

(review by Blake & Logothetis, 2002). 

 Similarly, attention and priming effects observed with CFS have not been 

reported with BR. Schall, Nawrot, Blake, and Yu (1993) did not find evidence that 

visual cues could direct spatial attention under rivalry suppression, unlike Jiang 
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and colleagues (2006) who reported positive effects using CFS. Similarly, object 

priming effects observed with stimuli suppressed with CFS (Almeida et al., 2008) 

are not found when stimuli are suppressed during BR (Cave, Blake, & 

McNamara, 1998). 

Neuroimaging findings show that neural responses to suppressed stimuli 

are weakened both by CFS and by BR suppression (reviews by Lin & He, 2009; 

Tong, Meng, & Blake, 2006). However, residual activity in high-level visual areas 

is reported more frequently with CFS (Fang & He, 2005; Hesselmann & Malach, 

in press; Jiang & He, 2006; Jiang et al., 2009; Sterzer et al., 2008) than with 

rivalry suppression (Pasley, Mayes, & Schultz, 2004; Williams, Morris, McGlone, 

Abbott, & Mattingley, 2004). In one of the first studies to examine BOLD activity 

during BR, Tong, Nakayama, Vaughan, and Kanwisher (1998) showed that 

category-specific responses (i.e. in fusiform face area and parahippocampal 

place area) were abolished when corresponding stimuli (i.e. images of faces or 

houses) were suppressed during rivalry. On the other hand, a recent study 

showed that responses in these same object-specific areas could be reliably 

extracted when related stimuli were presented under CFS (Sterzer et al., 2008). 

Thus in contrast to CFS, there is little evidence for high-level computations under 

standard BR suppression which, ironically, is reputed to be the weaker form of 

interocular suppression. While methodological differences between CFS and BR 

studies could partly contribute to the discrepancy among findings, the point is 

that CFS findings of high-level unconscious processing is not as compelling 

when examined within the context of all BR research. 



 15 

Research Purpose and Objectives 

Visual processing involves a series of neural operations that are carried 

out in hierarchical stages along parallel pathways (e.g. Livingstone and Hubel, 

1988; Schmolesky et al., 1998; Van Essen, Anderson, & Felleman, 1992). Early 

mechanisms operate locally within small regions of the visual field, encoding 

image properties in terms of their spatial and temporal features. Such features 

refer to contour “size” (defined in terms of spatial frequency) and orientation as 

well as the changes in the distribution of those features over time within a given 

region of the visual field. At later stages in the visual hierarchy, those local 

feature representations are combined to register more complex image properties 

(e.g. 3D shape, texture, global motion), eventually leading to the neural 

representation of objects and events. 

The emerging picture from studies using CFS is that visual processing of 

certain categories of stimuli can occur even when those stimuli are presented 

outside of awareness. The operation of detectors tuned to the physical properties 

(e.g. contrast, orientation, motion) of the suppressed stimuli seem to be 

effectively attenuated by CFS (e.g. Kanai et al., 2006; Maruya, et al., 2008; 

Tsuchiya & Koch, 2005). Despite weakened input from early neural mechanisms, 

advanced stages of analysis may continue to operate, resulting in observable 

effects thought to be driven by meaningful properties of the invisible stimulus, 

such as object category and stimulus valence (review by Lin & He, 2009). Thus it 

is unclear at what stage(s) of visual processing CFS imposes its influence on 

neural representations of stimuli. If all visual signals to the suppressed eye are 
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effectively abolished by CFS, the neural events that give rise to suppression 

would have to occur at a relatively early stage of analysis; only when suppression 

fails (meaning the observer is aware of the stimulus) would visual signals be 

encoded. On the other hand if the signal fidelity is fully preserved under CFS, 

suppression would transpire in subsequent stages of analysis after the neural 

representation of that stimulus has been formed. However, the current body of 

evidence is seemingly at odds with both of these interpretations.  

Recently, Lin and He (2009) proposed an alternative framework for 

understanding the level of visual processing under interocular suppression. 

Some invisible local features can be registered and combined to create a neural 

representation of that stimulus, given the availability of attentional resources. 

However, the fidelity of that representation may depend on the class of visual 

input (e.g. object category) and thus the underlying neural events specific to the 

processing of that stimulus class. This could imply that CFS operates selectively 

within different neural areas where those categories of objects or object 

properties are represented. For instance, suppression may be strongest within 

functionally specialized areas that reside along the ventral visual pathway, which 

are thought to correlate strongly with perception (Rees, Kreiman & Koch, 2002). 

In contrast, areas that are unperturbed by CFS may be those that reside along 

the dorsal visual pathway as well as the subcortical pathway presumably 

responsible for the registration of affective-content (e.g. Jiang & He, 2006; Lin 

and He, 2009). Such an interpretation has huge implications concerning the type 
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of information and, importantly, the functional significance of information that can 

influence perception and behavior outside of awareness and attention. 

Before accepting that framework, however, scientific convention dictates 

that we are obliged to consider simpler, more parsimonious explanations. This 

dissertation focuses on the possibility that CFS may operate exclusively at a 

relatively early stage in visual processing, where it differentially impacts the local 

features that define various classes of objects. Such selectivity could be the 

result of the spatio-temporal nature of CFS itself, for example. Stimulus features 

that are weakly suppressed may be effectively processed, but not necessarily 

without awareness since features that are weakly suppressed are more likely to 

be visible to observers. Regardless of observers’ awareness, this would imply 

that stimulus-driven effects that survive CFS are primarily an artifact, or side 

effect, of the visual nature of the CFS stimulus, rather than the consequence of 

meaningful attributes of the suppressed stimulus itself. Thus, interpreting the 

residual effectiveness of certain stimulus classes under CFS requires that we first 

understand what CFS is actually suppressing. Only then can we determine at 

what stage suppression is occurring and identify the nature of the information 

processed without awareness. In other words, we need to understand the nature 

of this inferential tool – CFS – before we can interpret the consequences of using 

it in studies of visual processing. 

 The objective of this study is to investigate the visual properties that 

empower CFS by sampling select regions of the multi-dimensional feature space 

within which CFS might produce potent suppression. In particular, I explored the 
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local spatio-temporal feature space associated with the CFS stimulus that is most 

frequently utilized to date; I examined how certain properties of CFS influenced 

observers’ sensitivity to information viewed by the suppressed eye. The aim of 

Experiment 2.1 and Experiment 2.2 was to obtain evidence that the currently 

popular CFS stimulus is indeed biased at suppressing certain stimulus features. 

The aim of Experiment 3.1 and Experiment 3.2 was to further attribute this bias to 

the visual properties of the CFS stimulus and to their interaction with the 

properties of the suppressed stimulus. Specifically, I measured the selectivity and 

magnitude of suppression for the spatial frequency and orientation properties of 

the suppressed stimulus and examined whether these measures vary as function 

of the spatial frequency and temporal frequency content of the CFS display. The 

magnitude of suppression is used to gauge the degree to which neural signals 

are attenuated by CFS. This can be indexed by comparing detection thresholds 

to a stimulus when it is perceptually suppressed and when it is visible. The 

selective nature of suppression, to the extent that it exists, should be reflected in 

the differences among measured threshold elevation levels as stimulus features 

are varied under CFS. Only by first learning answers to these questions can we 

draw conclusions about the nature of the stimulus representation being 

suppressed by CFS, the extent to which a stimulus is processed without 

awareness, and the neural substrates of suppression induced by CFS. 
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CHAPTER II 

 

MODULATION OF SUPPRESSION BY THE SPATIAL FEATURES OF THE 
SUPPRESSED STIMULUS 

 

 CFS refers to a potent form of interocular suppression wherein a visual 

stimulus presented to one eye is suppressed from awareness as a result of a 

rapidly displayed series of randomly generated patterns high in contrast and rich 

in contours that is presented to the other eye (in this dissertation I will refer to this 

potent suppressing stimulus as the CFS display). CFS was first created using a 

montage of different sized rectangles whose luminance and locations varied 

randomly over time, with each montage resembling a Mondrian-like pattern. 

Tsuchiya and Koch (2005), the inventors of this display, did not tell us why this 

particular stimulus design was chosen, but for the last few years it has been the 

most frequently utilized CFS display (e.g. Amihai et al., 2010; Hesselmann & 

Malach, in press; Hong & Blake, 2009; Kanai et al., 2006; Mudrik et al., 2011; 

Yamada & Kawabe, in press; E. Yang et al., 2007 & 2010; Y.H. Yang & Yeh, 

2010; W. Zhou, Jiang, He, & Chen, 2010). Some laboratories have created their 

own versions of CFS display that still satisfy the general characteristics of the 

original version (i.e. rapidly flashing, contour rich patterns) and that also 

effectively suppress visual awareness of a rival stimulus viewed by the other eye 

(e.g. Adams et al., 2010; Almeida et al., 2008 & 2010; Bahrami et al., 2007 & 

2008; Costello et al., 2009; Maruya et al., 2008; Sterzer et al., 2008 & 2009).  
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In general, the physical properties of CFS displays seem to be somewhat 

random in nature. Given that suppressed stimuli are typically not equated or 

controlled for in terms of low level properties (with the exception of contrast in 

some cases), this leaves the impression that suppression must be non-selective 

in nature. That is, a stimulus is strongly suppressed irrespective of its spatio-

temporal properties, the properties of the suppressor and the difference in 

properties of the two rival stimuli. There is good reason to believe that this could 

be the case. Several binocular rivalry studies indeed show that observers’ 

sensitivity to probe features such as luminance, chromaticity, spatial frequency, 

and orientation are all significantly attenuated when probes are presented during 

suppression phases of rivalry (Blake & Fox, 1974; Nguyen, Freeman & 

Wenderoth, 2001). Furthermore, probe suppression does not seem to depend on 

differences in the physical properties between the rival stimuli themselves, 

including differences in grating orientation (Blake & Lema, 1978), luminance 

(Hollins & Bailey, 1981; Makous & Sanders, 1978), contrast (Blake & Camisa, 

1979), spatial frequency (Holopigian, 1989) and stimulus complexity (Freeman & 

Li, 2009). This consistent pattern of findings have led to the notion that binocular 

rivalry suppression is nonselective, meaning that visual responses to all kinds of 

probes are adversely affected when presented under suppression. 

However, there is growing evidence that there may be another component 

of rivalry suppression that is selectively tuned to the properties of the stimulus 

being suppressed (Alais & Melcher, 2007; Alais & Parker, 2006; Apthorp, 

Wenderoth, & Alais, 2009; Li, Freeman, & Alais, 2005; Ling & Blake, 2010; Ooi & 
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Loop, 1994; E.L. Smith, Levi, Harwerth, & White, 1982; Watanabe, Paik, & Blake, 

2004; Westendorf, 1989). For instance, Stuit, Cass, Paffen, and Alais (2009) 

showed that impairment in contrast sensitivity was strongest for probes that were 

similar to the suppressed stimulus in terms of orientation or spatial frequency 

content; suppression depth declined as the probe deviated along those feature 

dimensions. Furthermore, Ling & Blake (2010) showed that the orientation 

tuning-bandwidth was also broadened, suggesting increased noise in the signal 

representation of the suppressed stimulus (also Sengpiel, Blakemore, & Harrad, 

1995a). These findings imply that, not only is the neural representation of a 

stimulus weakened, but it may also be significantly altered under suppression. 

What do we know about the characteristics of suppression produced by CFS? 

In the original study that introduced CFS, Tsuchiya and Koch (2005) 

reported that negative afterimages were weakened when the inducing stimulus – 

a Gabor patch -- was perceptually suppressed, with longer periods of 

suppression yielding greater reductions in afterimage strength. In their 

preliminary experiments, investigators found that they could influence the amount 

of time that the Gabor patch was visible by manipulating the spatial frequency of 

that stimulus. Specifically, complete suppression occurred less frequently with 

Gabor patches of high spatial frequency (2 cycles per degree or cpd) in 

comparison to Gabor patches of low spatial frequency (0.6 cpd; Figure 2.1). This 

finding suggests that CFS may differentially affect the suppressed eye’s stimulus 

depending on the spatial frequency content of that stimulus. We cannot be 

certain about this however, because Tsuchiya and Koch tested only 2 spatial 
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frequencies and did not adjust the contrast of their Gabor patches to 

accommodate differences in baseline contrast sensitivity at different spatial 

frequencies. 

 

 

Figure 2.1: Results of Tsuchiya & Koch (2005). Observers tracked visibility of an 
inducing stimulus during periods of adaptation. Plotted are mean duration of visibility 
(left) and proportion of trials of complete suppression (right) for the inducing stimulus as 
a function of its spatial frequency. 
 

The experiments of Chapter II investigated systematically the effects of 

CFS on observers’ contrast sensitivity measured over a wide range of spatial 

frequencies and orientations for stimuli presented to the suppressed eye. A 

forced-choice technique was used to estimate contrast thresholds for detecting 

target stimuli presented to one eye when that eye was suppressed by a CFS 

display presented to the other eye (CFS condition) and when it was not 

suppressed (baseline condition). If CFS does indeed exert differential effects on 

processing of stimuli with different spatial features, detection thresholds in the 

CFS condition should vary depending on the spatial features of the suppressed 

stimulus. But if CFS operates uniformly on all spatial features, elevations in 

detection thresholds should be comparable in magnitude relative to baseline 
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measures. The CFS display used throughout this dissertation consisted of 

Mondrian-like patterns very similar to those used in most other published CFS 

studies. 

 

Experiment 2.1: Spatial frequency of the suppressed stimulus 

 

General Method 

Participants 

    Six observers including the investigator participated in each experiment. 

Observers were recruited from the Vanderbilt University Psychology Department 

and local Nashville area and several were experienced psychophysical 

observers. All had normal or corrected-to-normal acuity and good stereopsis. 

With the exception of the investigator, participants were naïve to the purpose of 

the study and provided written consent prior to participation.  

 

Apparatus 

Stimuli were presented on the left and right halves of a gamma-corrected 

CRT monitor (21” Sony Multiscan; 1024 x 768 resolution; 100 Hz refresh rate) 

and were viewed at a distance of 92 cm in a darkened room. Stimuli were 

generated on a G4 Power Macintosh computer running MATLAB supplemented 

by the Psychophysics toolbox (Brainard, 1997; Pelli, 1997). All experiments 

employed 10-bit luminance resolution using bit stealing. Stimuli were viewed 

through a mirror stereoscope with mounted chin- and head-rests, which 
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presented the stimulus in the right half of the display exclusively to the right eye 

and the stimulus in the left half of the display exclusively to the left eye. 

 

Procedure 

Prior to each main experiment, the root mean square (RMS) contrast of 

the CFS images was determined individually for each observer in order to avoid 

ceiling or floor effects when measuring contrast thresholds under CFS. That is, if 

the contrast of the CFS display is set too high, observers’ will fail to detect the 

target stimulus in the suppressed eye even when the target stimulus is presented 

at full contrast. The contrast of the CFS display was set to a value sufficient to 

produce significant elevations in contrast thresholds relative to baseline while at 

the same time being weak enough so that observers were able to detect the 

target stimulus at relatively high contrast values. Moreover, the optimal CFS 

contrast can vary substantially across observers since individuals vary widely in 

terms of the depth of suppression (e.g. Norman, Norman, & Bilotta, 2000). CFS 

contrast was determined based on observers’ performance on a short task 

immediately prior to the first CFS session. The task and stimuli were identical to 

the main experiments with the exception that, instead of the target stimulus 

contrast varying across trials, the target stimulus was fixed at a high contrast 

(e.g. 75% Michelson contrast in Experiment 3.1) and the CFS display varied 

across trials at intervals of 5% or 10% RMS contrast. The maximum CFS 

contrast at which the target stimulus was detectable more than 90% of the time 

was the contrast used for the main experiments.  
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Method 

Stimuli 

The target stimulus was a Gabor patch of 1° radius (sinusoidal grating 

enveloped by a circular Gaussian) presented at one of six spatial frequencies: 

0.5, 1, 2, 4, 8 or 12 cpd. The Gabor patch was oriented either 10° clockwise or 

counter-clockwise of vertical and the orientation and phase (180° reversal) were 

randomly chosen for each trial. The Gabor patch was embedded in 1D 

broadband Gaussian noise (2° x 2°, 10% RMS contrast) to prevent baseline 

thresholds from reaching the floor and to increase task difficulty.  

The CFS display consisted of a dynamic series of achromatic Mondrian-

like patterned images made of rectangles drawn in variable size (0.12° - 0.59° in 

length), luminance, and location within a 2° square aperture of uniform mean 

luminance (15 cd/m2). Prior to each trial, Mondrian images were generated and 

normalized for contrast and mean luminance, which was determined individually 

for each observer (see General Methods). The Mondrian images changed every 

100 ms (10 Hz) throughout a trial. Binocular fusion contours surrounding the 

stimuli and fixation dots were present at all times to promote stable binocular eye 

alignment. Stimuli were presented against a uniform gray background at mean 

luminance (15 cd/m2). 
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Figure 2.2: Illustration of a trial sequence including CFS in Experiment 2.1. 
 

Procedure 

 On each trial, a Gabor stimulus of a given spatial frequency was 

presented to one eye while the opposing eye viewed at the corresponding retinal 

position a dynamic CFS display (10 Hz) or a blank field at mean luminance. The 

eye that received the Gabor stimulus varied across trials and is described later. 

The contrast of the Gabor stimulus linearly increased from 0 during the initial 300 

ms in order to avoid abrupt transients. For 1 s, the Gabor stimulus remained at a 

set contrast predetermined by the QUEST adaptive staircase procedure (Watson 

& Pelli, 1983). In the remaining 300 ms, the Gabor stimulus decreased in 

contrast in order to reduce subsequent negative afterimages. A trial lasted 1.6 

seconds, during or after which observers made their response for a 2 alternative-

forced-choice (2AFC) orientation discrimination task, indicating whether the 
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Gabor was oriented clockwise or counter-clockwise of vertical. No feedback was 

given and the subsequent trial began 600 ms after a response was made (Figure 

2.2).  

  Observers participated in 4 sessions, 2 devoted to the measurement of 

contrast detection thresholds when the Gabor was suppressed with CFS and 2 

devoted to baseline threshold measurements when CFS was absent. The first 

two sessions always involved CFS. All 6 spatial frequency conditions were 

presented within a session. To prevent trials of one spatial frequency from 

influencing visibility of trials of other spatial frequencies (Hubner, 1996), the 

conditions were blocked within a session and the order of conditions was 

randomized across sessions. 

The QUEST adaptive staircase procedure produced estimates of contrast 

thresholds at 75% performance for Gabor patches at 6 different spatial 

frequencies. Four thresholds were obtained for each spatial frequency condition 

and for both session types (CFS and baseline). A session consisted of 2 

randomly interleaved staircases per condition: each staircase measured the 

contrast threshold for the Gabor viewed by a given eye (i.e. 1 staircase for the 

left eye and the other staircase for the right eye). Each staircase consisted of 50 

trials and with 12 staircases in each session (4), observers performed 600 trials 

per session and a total of 2,400 trials for the experiment. Practice trials were 

performed prior to the first session. Each session took approximately 30 minutes 

to complete. 
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Results & Discussion 

 Mean contrast sensitivity was expressed as the reciprocal of the mean 

threshold contrast estimated from the staircase procedure. A 2 x 6 (session type 

x Gabor spatial frequency) repeated measures ANOVA on mean contrast 

sensitivity values resulted in a main effect of CFS (F(1,5)=70.2, p<.001, effect 

size: ηp
2=0.9) and Gabor spatial frequency (F(5,25)=49.6, p<.001, ηp

2=0.9). 

Mean contrast sensitivity was significantly lower in the CFS sessions (mean ± 

standard error of the mean or SEM= 9.2 ± 0.7) in comparison to baseline 

sessions (23.1 ± 1.4), which indicates that CFS was effective at suppressing the 

Gabor stimulus. Mean contrast sensitivity exhibited an inverted U shape function 

with Gabor spatial frequency (0.5 cpd= 4.5 ± .4; 1 cpd= 9.9 ± 1.1; 2 cpd=19.1 ± 

1.2; 4 cpd= 24.0 ± 1.4; 8 cpd= 24.3 ± 1.6; 12 cpd= 15.1 ± 1.5), consistent with the 

normal human contrast sensitivity function (e.g. Robson, 1966). Figure 2.3 

illustrates contrast sensitivity functions for each observer across sessions. 
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Figure 2.3: Individual results of Experiment 2.1. Each plot represents the contrast 
sensitivity functions obtained for each observer during CFS (blue) and baseline (orange) 
sessions. Axes are in log scale and error bars denote standard deviation. 
 

 Most importantly there was a significant interaction between session type 

and Gabor spatial frequency (F(5,25)=24.6, p<.001, ηp
2=0.8). Mean contrast 

sensitivity was significantly attenuated by CFS for all spatial frequencies (p<.001 

to p=0.03) with the exception of the highest spatial frequency (12 cpd, p=0.1). To 

compare detection threshold estimates for various Gabor spatial frequencies and 
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to account for the natural asymmetries in the human contrast sensitivity function, 

a threshold elevation index was computed as the log ratio of the mean threshold 

estimate for detecting a grating of a given spatial frequency under CFS to the 

mean baseline threshold estimate for detecting that same grating without CFS 

(Figure 2.4). When comparing threshold elevation values across conditions of 

increasing spatial frequency, suppression depth was significantly greater for the 

1 cpd condition relative to the 2 cpd condition (t(5)= 2.6, p=.05) and the 2 cpd 

relative to the 4 cpd condition (t(5)=5.8, p=.002). 

 

 

 
Figure 2.4. Group results of 
Experiment 2.1. Plotted is the 
elevation in contrast thresholds 
for detecting a Gabor patch of a 
given spatial frequency when it 
was suppressed with CFS, 
relative to baseline thresholds. 
Error bars denote standard error 
of the mean (SEM). 
 

 

 

 

Results from Experiment 2.1 show that suppression produced by CFS 

differentially impairs sensitivity dependent on the spatial frequency content of the 

stimulus viewed by the other eye. Contrast thresholds under CFS were strongly 

elevated when the suppressed eye viewed a Gabor patch of low spatial 

frequency (0.5-2 cpd) and threshold elevations weakened as the stimulus further 
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increased in spatial frequency. To determine whether these findings can be 

generalized to other, more complex stimuli, an additional experiment was 

performed in which contrast thresholds were measured for detecting the location 

of bandpass filtered face images suppressed with CFS (Appendix A). Consistent 

with results of Experiment 2.1, contrast thresholds were more strongly elevated 

with low bandpass filtered faces (centered on 0.75 cpd) than with high bandpass 

filtered faces (centered on 6 cpd, Appendix A, Figure A.2). These results extend 

the initial findings by Tsuchiya and Koch (2005) suggesting that CFS attenuates 

low spatial frequency information more than it attenuates high spatial frequency 

information. The results from Experiment 2.1 are further discussed later in this 

chapter, in conjunction with findings from the next experiment. 

 

Experiment 2.2: Orientation components of the suppressed stimulus 

 

Method 

Stimuli 

 The suppressed stimulus was an achromatic noise pattern (4° x 4°; 10% 

RMS contrast) randomly generated prior to each trial in which each pixel was 

assigned a luminance value taken from a uniformly random distribution of values 

between 0 and 1. The noise pattern was then bandpass filtered in the orientation 

domain (20° bandwidth), with orientation frequencies centered either at 0°, 45°, 

90° or 315° (where 0° denotes vertical). The noise pattern was also spatial 

frequency bandpass filtered (<19 cpd) to minimize artifacts that occur when 
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approaching the Nyquist frequency (~20 cpd). Filtering was performed in the 

Fourier domain using a 2D Finite Impulse Response filter and smoothed to 

reduce aliasing. The probe was a contrast increment (3.3° x 2°) that occurred 

above or below fixation. The probe emerged gradually following a Gaussian 

contrast ramp (100 ms) to avoid abrupt onset transients. Contrast along the 

probe edges were also spatially smoothed using a Gaussian filter to reduce the 

perception of edges produced by large differences in contrast. 

The CFS displays (4° x 4°; 10 Hz) were generated in a manner identical to 

those implemented in the previous experiment. The CFS display consisted of 

gray-scale Mondrian-like patterns that were normalized in mean luminance (15 

cd/m2) and RMS contrast, which was determined individually for each observer 

(see General Methods). Five hundred CFS images were pre-drawn prior to each 

block of trials and stored in video memory. 

A mask image (4° x 4°) was presented at the end of each trial and was 

randomly composed of black and white (93.6 cd/m2) pixels. Binocular fusion 

contours surrounding the stimuli and fixation dots were presented at all times to 

promote stable binocular eye alignment. Stimuli were presented against a 

homogenous field at mean luminance (15 cd/m2). 

 

Procedure 

At the beginning of a trial, an orientation bandpass filtered noise stimulus 

was presented to an observer’s dominant eye. The non-dominant eye 

simultaneously received either a dynamic CFS display or a gray field (baseline) 
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in the corresponding retinal location, depending on the session. After 500 ms, the 

probe gradually emerged on the upper or lower half of the noise stimulus and 

remained present for 500 ms. The peak contrast of the probe was determined 

using a staircase procedure. The target and CFS displays were removed from 

the screen 1 s after trial onset. A mask stimulus was presented dioptically in the 

same location in order to reduce possible negative afterimages. The mask also 

signaled the observer that a response should be made by pressing one of two 

buttons to indicate the location (top or bottom half) of the probe stimulus. 

Feedback was given following each response, and the subsequent trial began 

after 200 ms (Figure 2.5). 

The experiment consisted of 2 sessions. The first session collected 

baseline threshold measurements of the target display when it was presented 

without CFS and allowed observers’ to become acclimated to the task and probe 

stimuli. The second session measured contrast thresholds for probe detection 

when the stimulus was paired dichoptically with the CFS display. Within a 

session, each of the 4 conditions (probe orientation) was presented in separate 

blocks of trials and the condition order was randomized across sessions. Each 

block involving CFS began with 3 ‘example’ trials in which the pedestal stimulus 

was presented without CFS (identical to the baseline condition). These example 

trials were to inform observers of the probe orientation that they were to detect. 

Four randomly interleaved 2 down/1 up staircases were executed in each block 

and each terminated after 12 reversals. Similar to the procedure used by 

Tsuchiya et al. (2006), the contrast step size was reduced by half after every four 
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reversals and began at 30% of the initial contrast increment/decrement. Contrast 

detection thresholds representing 71% correct performance (Levitt, 1971) were 

estimated from the mean of the probe contrast values of the last 8 reversals. 

When an individual’s estimated thresholds did not properly converge, additional 

thresholds were collected. Practice trials were performed prior to each session 

and the experiment took approximately 1.5 hours to complete. 

 

 

Figure 2.5: Illustration of a trial sequence including CFS in Experiment 2.2. The 
suppressed stimulus was an orientation bandpass filtered display that was centered on 
one of four orientations (left). 
 

Results & Discussion 

Contrast thresholds were entered into a 2 (session) x 2 (orientation 

category: cardinal vs. oblique) x 2 (orientation angle) repeated measures 

ANOVA. There was a main effect of session (F(1,5)=18.1, p=.008, ηp
2=0.8) in 

which thresholds were significantly elevated in the CFS session (0.26 ± 0.04) 

relative to the baseline session (0.14 ± 0.01). The main effect of orientation was 
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close to significant (F(1,5)= 4.8, p=.079, ηp
2=0.5); probe thresholds for the two 

cardinal orientations (0.21 ± 0.02) were higher than those for the two oblique 

orientations (0.19 ± 0.02). There was neither a main effect of orientation angle 

nor any interaction with orientation angle and cardinal conditions were later 

averaged as well as oblique conditions. Importantly, the interaction between 

session and orientation category was significant (F(1,5)=8.6, p=.03, ηp
2=0.6).  

To examine this interaction a threshold elevation index for each orientation 

condition was calculated as the log ratio of the mean threshold estimate obtained 

under CFS to the mean baseline estimate obtained without CFS.  As shown in 

Figure 2.6, CFS produced a greater relative threshold elevation for detecting 

cardinal orientations (group: 0.33 ± 0.03) in comparison to detecting oblique 

orientations (group: 0.2 ± 0.06, t(6)=3.3, p=0.02). There were large individual 

differences, which may be attributed to differences in the general strength of 

interocular suppression: observers who showed large differences between the 

cardinal and oblique conditions exhibited overall weaker suppression than the 

remaining observers. It is also possible that individual differences may have been 

partly attributed to astigmatisms, which observers were not tested for. However, 

the trend in results was consistent for 5 out of the 6 observers. 
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Figure 2.6: Results of Experiment 2.2. Plotted is the log threshold elevation in probe 
detection as a result of suppression of the pedestal stimulus, which was composed of 
orientation bandpass filtered noise. Data for the two cardinal conditions were averaged 
as well as the two oblique conditions. The bars on the farthest right denote the mean 
elevation values across observers (remaining bars). Error bars on individual data 
represent 95% confidence intervals derived from non-parametric bootstrapped threshold 
estimates (5000 repetitions, Efron & Tibshirani, 1993) and error bars on group data 
represent SEM. 
  

 In Experiment 2.2, contrast thresholds were measured for orientation 

bandpass filtered noise stimuli that were suppressed with CFS. Results indicate 

that sensitivity of cardinal orientations is more greatly impaired than sensitivity of 

oblique orientations. Previous studies found that suppression exhibits broad 

orientation-tuning of the suppressed stimulus (Ling & Blake, 2010; Stuit et al., 

2009). The current results extend these findings by showing suppression with 

CFS is not uniform across all orientation components.  

These results are consistent with the suppressive effects generated by 

dichoptic masking. The suppressive effects of the mask are mediated by the 
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similarity in orientation between the mask and target; the strongest impairment in 

sensitivity occurs when the mask and target are identical in orientation (e.g. 

Baker & Meese, 2007; Harrad & Hess, 1992; Levi, Harwerth, & Smith, 1979). It 

has been further suggested that binocular rivalry and dichoptic masking are 

subserved by the same interocular suppression mechanisms (e.g. Baker & Graf, 

2009; Sengpiel et al., 1995a; van Boxtel, van Ee, & Erkelens, 2007). 

 

General discussion of Chapter II 

 

 Experiment 2.1 and 2.2 measured contrast threshold elevation due to CFS 

as a function of the spatial frequency and orientation features of the suppressed 

stimulus. Observers’ sensitivity towards low spatial frequency information was 

more greatly impaired relative to high spatial frequency components. Moreover, 

stimulus patterns composed of horizontal and vertical features were more 

strongly suppressed in comparison to obliquely oriented stimuli. These findings 

together imply that input signals to the suppressed eye are not only weakened by 

suppression but those signals may undergo a filtering process, possibly leading 

to an altered neural representation of the suppressed stimulus. Such a claim has 

significant implications for previous CFS studies that rely on the intact neural 

representation of the suppressed stimulus as the basis for their claims (see Main 

Discussion). 

A ready explanation for the results of Experiment 2.1 and 2.2 can be found 

when considering the spatio-temporal profile of the stimulus used to produce 
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CFS. Figure 2.7b shows the average 2D Fourier representation of 20 Mondrian 

patterns like those used in the current design (taken from Hong & Blake, 2009). 

Plotted is the amplitude spectrum, which characterizes the distribution of signal 

energy among different spatial frequencies and orientations. As illustrated, the 

effective spectral power of these commonly used Mondrian patterns mostly 

reside in its low spatial frequency components and particularly within the 

horizontally and vertically oriented contours (Figure 2.7c). This is not surprising 

given the composition of the CFS stimulus (i.e. high contrast rectangles, Figure 

2.7a). Coincidently, Experiments 2.1 and 2.2 show that these particular 

components (i.e. low spatial frequencies and cardinal information) are most 

strongly suppressed by CFS. One could conclude that the selectivity and 

magnitude of suppression are modulated by the “strongest” spatial elements of 

the CFS stimulus. Detectors tuned to the features of the suppressor may 

selectively inhibit detectors responding to the same features in the suppressed 

stimulus; inhibitory strength would be directly related to the strength of input to 

those detectors. Because the spectral attributes of the CFS display used in these 

experiments consisted mostly of low spatial frequency and cardinally oriented 

components, corresponding feature detectors were optimally tuned to suppress 

neural responses to those same properties in the suppressed stimulus. Thus it 

follows that changing the spatial frequency and/or orientation content of the CFS 

stimulus should consequently alter the pattern of suppression. The following 

chapter describes experiments that directly address this question. 
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Figure 2.7: Fourier analysis of currently used CFS display. A) Example Mondrian image 
from a CFS display. B) Adapted from Hong & Blake (2009). Mean amplitude spectrum of 
20 achromatic Mondrian images represented in the Fourier domain. Colors depict 
energy normalized to the DC value at different spatial frequencies and orientations, 
which are denoted by the distance from the origin and polar angle, respectively. C) 
Separate plots of the power (amplitude^2) spectra for spatial frequency (top) and 
orientation (bottom) components of 100 achromatic Mondrian images (different colored 
lines).  
  



 40 

 
CHAPTER III 

 

MODULATION OF SUPPRESSION BY THE SPATIO-TEMPORAL FEATURES 
OF THE CFS DISPLAY 

 

It is natural to assume that, during binocular rivalry, the strength of 

suppression exerted by one rival stimulus on the other rival stimulus depends on 

the relative strengths of the two. In terms of contrast, this turns out to be true: a 

high contrast CFS display produces significantly larger elevations in probe 

detection thresholds than does a low contrast CFS display. But to what extent is 

the effectiveness of CFS dependent on the particular stimulus components 

forming that display? There are some hints in the literature that the similarity 

between CFS and probe stimuli should matter. For example, Alais and 

colleagues (2006 & 2007) found that binocular rivalry suppression was stronger 

when the dominant stimulus shared similar features with the suppressed 

stimulus. Also, Hong and Blake (2009) found that chromatic CFS displays 

impaired the ability of observers to identify the color of a suppressed stimulus 

whereas achromatic CFS displays did not. If the spatial features of the 

suppressor indeed influence the depth and selectivity of suppression, this could 

provide clues as to why CFS is so effective and, more specifically, reveal the 

nature of information that is processed under interocular suppression. 

 Results presented in Chapter II show that CFS differentially impairs 

sensitivity to spatial frequency and orientation components of the suppressed 

stimulus. The experiments described in this Chapter ask the complementary 
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question, namely do variations in the spatial frequency and temporal frequency 

components of the CFS display impact suppression depth as gauged by 

observer’s contrast sensitivity for detecting the suppressed stimulus? To 

distinguish the effects of different spatial and temporal frequencies comprising 

the CFS display, Mondrian images were passed through a bandpass filter that 

preserved a given band of frequencies while rejecting frequencies outside this 

band. For Experiment 3.1, contrast detection thresholds for 5 spatial frequency 

gratings were measured as a function of the spatial frequency band of the filtered 

CFS display. 

 

Experiment 3.1: Spatial frequency properties of the suppressor 

 

Method 

Stimuli 

The suppressed stimulus was an annular sinusoidal grating (radius=1.4°), 

the spatial frequency of which was 0.75, 1.5, 3, 6 or 12 cpd. As in Experiment 

2.1, the grating was oriented either 10° clockwise or counter-clockwise of vertical 

and its orientation and phase were randomly selected across trials. The edges of 

the annulus were spatially smoothed using a Gaussian filter. The grating was 

embedded in 1D broadband Gaussian noise (4° x 4°, 15% RMS contrast) to 

prevent baseline thresholds from reaching the floor and to increase task difficulty. 

The CFS displays (4° x 4°; 10 Hz) were Mondrian-like patterns (rectangle 

length between 0.5°-1.4°) that were generated in an identical manner to those 
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used in the experiments in Chapter II. In 5 of 6 CFS conditions, the CFS display 

was spatial frequency bandpass filtered through following steps. The 2D Fast 

Fourier Transform (FFT) was used to represent each image in the Fourier 

domain (Figure 2.7b). A radial bandpass filter (i.e., 2D Finite Impulse Response 

filter smoothed with a Butterworth filter to minimize artifacts) was applied to each 

Fourier transformed image, such that the radial distance from the origin was 

directly proportional to the desired spatial frequency range. The center 

frequencies for the bandpass filters were 0.75, 1.5, 3, 6 or 12 cpd (identical to the 

frequencies of the grating stimuli) with an octave wide bandwidth (Figure 3.1). 

The desired spectral components were also scaled in order to equate spectral 

density across different bandpass filtered images. The DC component was set to 

0 prior to the filtering process and afterwards rescaled to mean luminance before 

the resulting filtered image was inverse Fourier transformed. All bandpass filtered 

and unfiltered Mondrian images were normalized in mean luminance (15 cd/m2) 

and RMS contrast (General Methods). Prior to each block of a given CFS spatial 

frequency bandpass condition, one thousand CFS images were generated and 6 

images were randomly sampled for each trial. 
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Figure 3.1: Examples of spatial frequency bandpass filtered Mondrian images. Values 
denote center spatial frequency (cpd) of each octave-wide bandwidth filter. 
 

A mask image (4° x 4°) composed of randomly generated black and white 

(93.6 cd/m2) pixels was presented at the end of each trial. Binocular fusion 

contours surrounding the stimuli and fixation dots were presented at all times to 

promote stable binocular eye alignment. Stimuli were presented against a 

homogenous field at mean luminance (15 cd/m2). 

 

Procedure 

 The procedure was similar to Experiment 2.1. A trial began with the dioptic 

presentation of binocular fusion contours and a fixation dot for 200 ms. During 

each trial, a grating stimulus of a given spatial frequency and orientation was 

presented to one eye while the other eye viewed either a blank field at mean 

luminance (baseline) or a dynamic CFS display (10 Hz) of a given spatial 

frequency range in the corresponding retinal position. The contrast of the grating 

linearly increased from 0 during the initial 300 ms in order to avoid abrupt 

transients. The grating remained at a set contrast predetermined by a staircase 

procedure for the remaining 300 ms of the trial. The stimuli were immediately 

replaced by a mask image in order to reduce possible negative afterimages and 

to indicate to observers that a response should be made. Observers performed a 
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2AFC orientation discrimination task, indicating whether the grating was oriented 

clockwise or counter-clockwise relative to vertical. Feedback was given once a 

response was made and the subsequent trial began after 1 s. 

The experiment was separated into 6 sessions, each performed on 

separate days. The first session was devoted to measuring baseline contrast 

threshold estimates for orientation discrimination when the grating stimulus was 

presented without CFS. The remaining sessions measured threshold estimates 

in the presence of a CFS display. Gratings of 5 given spatial frequencies (0.75, 

1.5, 3, 6 and 12 cpd) were presented in every combination with CFS displays of 6 

different bandpass spatial frequency ranges (center frequency at 0.75, 1.5, 3, 6 

and 12 cpd), including an unfiltered or all bandpass version. The 30 conditions 

were separated into 5 sessions such that each grating condition and each CFS 

condition were presented at least once within a session. Trials for each condition 

in a session were blocked and the order of conditions was randomized across 

sessions. The QUEST adaptive staircase procedure (Watson & Pelli, 1983) was 

implemented to obtain efficient estimates of contrast thresholds corresponding to 

75% accuracy in performance. A block of trials (each condition) consisted of 4 

randomly interleaved staircases (40 trials per staircase); half of the staircases 

measured threshold estimates for detecting a grating viewed by a given eye. 

When an individual’s threshold estimates did not properly converge, additional 

thresholds were obtained in another session. Practice trials were performed prior 

to the first and second sessions. Each session was approximately 45 minutes 

long and the experiment took about 5 hours to complete. 
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Results & Discussion 

 For every condition that involved CFS, a threshold elevation index was 

calculated as the log ratio of the mean threshold estimate for detecting a grating 

of a given spatial frequency under CFS to the mean baseline threshold estimate 

for detecting that same grating without CFS. Using this threshold elevation index, 

one can directly compare the suppressive effects of different bandpass filtered 

CFS displays on the detection of different spatial frequency gratings. Threshold 

elevation indices were entered into a 6 (CFS spatial frequency range) x 5  

(grating spatial frequency) repeated measures ANOVA. The main effect of CFS 

spatial frequency (F(5,10)= 26.4, p<.001, ηp
2=0.93) and grating spatial frequency 

(F(5,10)=23.1, p<.001, ηp
2=0.92) was significant. Most importantly, the 

interaction between the spatial frequency of the CFS and grating stimuli was 

significant. 
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Figure 3.2: Results of Experiment 3.1. Group (A) and individual (B) mean elevation 
values in contrast thresholds for detecting a grating with a given spatial frequency 
(different color bars) is plotted as a function of the CFS (center) spatial frequency. Error 
bars denote SEM. 
 

Figure 3.2 shows the pattern of threshold elevations for each of the 5 

spatial frequency gratings (denoted by different colored bars) as a function of 

different bandpass filtered CFS displays (center frequency values expressed on 

the horizontal axis). Several features of these results stand out. First, the 

unfiltered CFS display produced higher threshold elevations (i.e. lower contrast 
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sensitivity) as the grating spatial frequency decreased, replicating the results 

from Experiment 2.1. A similar pattern in threshold elevation occurred with low 

bandpass filtered CFS displays with center frequencies of 0.8 cpd and 1.5 cpd; 

the interaction between CFS condition (unfiltered vs. 0.8 cpd; unfiltered vs. 1.5 

cpd) and grating spatial frequency was not significant (ps> 0.5). As the center 

frequency of the CFS bandpass filter increased, however, the bias towards 

higher threshold elevations for low spatial frequency gratings disappeared; the 

interaction between CFS and grating spatial frequency reached significance 

(unfiltered vs. 3 cpd: F(4,20)=2.3, p=.09, ηp
2=0.3; unfiltered vs. 6 cpd: 

F(4(20)=7.3, p=.001, ηp
2=0.6; unfiltered vs. 12 cpd: F(4,20)=11.1, p<.001, 

ηp
2=0.7). Moreover, overall threshold elevations were reduced relative to the 

unfiltered CFS condition particularly for the highest bandpass filtered condition 

(12 cpd: t(5)=4, p=.01), which suggests that this filtered CFS display evoked 

relatively weak suppression despite the fact that it was equivalent in spectral 

density as that of the unfiltered CFS display. In addition, this pattern of results 

obtained in Experiment 3.1 was replicated with 2 new observers and the author 

in a separate experiment using a smaller stimulus display (2° x 2°), longer 

stimulus duration (1.6 s), and a different range of spatial frequency gratings and 

CFS bandpass filters (Appendix B). 

The results from Experiment 3.1 confirm that information composed of low 

spatial frequencies is more strongly suppressed than high spatial frequency 

information by CFS. Furthermore, the pattern in threshold elevation observed 

with unfiltered CFS can be reproduced using CFS displays composed solely of 
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low spatial frequency information. As mentioned previously, the effective spectral 

power of these commonly used Mondrian patterns mostly resides in its low 

spatial frequency components, which is apparent in the average 1D Fourier 

power spectrum illustrated in Figure 2.7. Thus, the potent suppression produced 

by CFS may be mainly attributable to the energy residing in its low spatial 

frequency components. This is also consistent with the result that CFS 

composed mainly of high spatial frequencies was relatively less effective at 

producing strong suppression. Mean threshold elevation with high bandpass 

filtered CFS (center frequency of 6 cpd or 12 cpd) was in the range of 0.3 - 0.5 

log units, which is more similar to the sensitivity loss reported with binocular 

rivalry (e.g. Blake et al., 2006; Nguyen et al., 2001; Wales & Fox, 1970) than with 

CFS (Tsuchiya et al., 2006). Thus, high spatial frequency components of the 

CFS display may contribute little to its potency. 

Altogether these findings suggest that the depth and selectivity of 

suppression are dependent upon the spatial components of the suppressor as 

well as those of the stimulus being suppressed. As mentioned previously, neural 

units tuned to the features of the suppressor may selectively inhibit units 

responding to the same features in the suppressed stimulus, with the strength of 

inhibition modulated by signal intensity. Y. Yang, Rose, and Blake (1992) found 

that rivalry was most prominent with dissimilar patterns that were matched in 

spatial frequency content and especially within the low spatial frequency range 

(also Hollins & Hudnell, 1980; O’Shea, Sims, & Govan, 1997). Consistent with 

this are the findings with the unfiltered, low (0.8-1.5 cpd), and mid-range (3-6 
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cpd) bandpass filtered CFS stimuli: suppression depth peaks at the grating 

spatial frequency that is roughly consistent with the center frequency of CFS 

filter. However, this claim cannot explain the relatively weak and non-selective 

suppression of high spatial frequency information by high (12 cpd) bandpass 

filtered CFS (one way ANOVA: p>.05). This shallow suppression may reflect a 

non-linear component of the suppression mechanism such that not all feature 

detectors are equally effective at producing CFS, as alluded to earlier. Consistent 

with this, Y. Yang et al (1992) also reported that stimuli sharing the same high 

spatial frequency content were readily perceived as superimposed on one 

another whereas transparency was observed when competing stimuli differed in 

spatial frequency information, especially when one stimulus was of high spatial 

frequency. High spatial frequency detectors, in general, may prove to be weak at 

inducing interocular suppression. While it is possible that selectivity may be 

harder to identify with weak suppression, there may be another component that 

contributes to the broad suppression produced by high spatial frequency 

detectors. It is possible that such a component may be evidenced in the temporal 

frequency domain, and it is to that possibility that we turn to next. 

 

Experiment 2.2: Temporal properties of the suppressor 

 

Introduction 

Experiment 2.2 examines whether the temporal characteristics of CFS 

influence its effectiveness in perceptually suppressing stimuli. It is well 
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established that a moving stimulus tends to dominate in rivalry over a stationary 

stimulus (Blake, Zimba, & Williams, 1985; Wade, de Weert, & Swanston, 1984) 

and motion speed can modulate suppression durations during BR (Blake, Yu, 

Lokey, & Norman, 1998; Fox & Check, 1968). Unlike the typically smooth and 

predictable motion implemented in BR studies (e.g. random dot cinematogram), 

CFS usually involves a continuous onset of brief stimulus transients together with 

abrupt changes in shape edge and contrast. These temporal events plausibly 

contribute to the deep suppression evoked by CFS, but it is unclear how. 

         The multiple flashes presented during CFS may lead to the culmination of 

inhibitory signals that evoke perceptual suppression. Indeed, the onset and offset 

of a stimulus generates strong excitatory and inhibitory signals, which can render 

a stimulus perceptually invisible (Macknik & Livingstone, 1998; Macknik, 

Martinez-Conde, & Haglund, 2000). Wen and Zhang (2009) reported long-lasting 

cortical responses (>1 s) to monocular transients produced by flash suppression 

in cat area 18. Furthermore, the inhibitory activity correlated with stimulus onset 

and offset may originate from neurons whose receptive fields correspond to the 

spatial edge of a stimulus (Macknik & Haglund, 1999). Moreover, Tsuchiya et al. 

(2006) showed that CFS was most effective when there were at least 5 

consecutive flashes in a CFS display. 

         The flash interval alone is also found to be another important parameter 

for reliable suppression. Tsuchiya and Koch (2005) found that flash rates 

between 3-12 Hz (80-320 ms flash intervals) were most effective at producing 

long suppression phases of the competing stimulus (see also Arnold et al., 
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2008). Most studies to date continue to present CFS patterns at 10 Hz; however, 

some (~30%) use higher rates that may not produce such potent suppression 

(e.g. Bahrami et al., 2008 & 2010, Jiang et al., 2009; Sterzer et al., 2008 & 2009). 

Interestingly, the temporal frequency range (3-12 Hz) typically employed with 

CFS resonates well with the human spatio-temporal contrast sensitivity function, 

which reaches maximum sensitivity at approximately 5-15 Hz (Kelly, 1969 & 

1974). 

 

Method 

Stimuli 

     For every trial, 10 gray-scale Mondrian-like patterned images (5° x 5°) 

were randomly generated to produce a CFS display in which each image 

repeated for 10 consecutive frames (10 Hz) in a 100-frame sequence (1 s). The 

time-series in luminance change for every pixel within a CFS display was fast 

Fourier transformed and bandpass filtered in the temporal frequency domain by 

removing the sinusoidal components either 10 Hz and below (high-pass) or 

above (low-pass) 10 Hz (Figure 3.3). To account for anisotropies in the temporal 

amplitude spectrum of the original (unfiltered) time-course, the amplitudes of the 

remaining temporal components were scaled such that spectral densities were 

equated across different bandpass filtered sequences. The DC component was 

set to 0 in the beginning of the temporal filtering process and afterwards rescaled 

to mean luminance (15 cd/m2) before the resulting filtered spectrum was inverse 
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Fourier transformed. The image sequence was then normalized in mean 

luminance and RMS contrast. 

The suppressed stimulus was a noise patch (5° x 5°; 15% RMS contrast) 

that was spatial frequency bandpass filtered in the Fourier domain using a 2D 

Finite Impulse Response filter and smoothed to reduce aliasing. The spatial 

frequency band of the noise patch was centered at 1.5 cpd or 8 cpd with an 

octave-wide bandwidth. The probe was a contrast increment (1.6° x 4.3°) that 

occurred above or below fixation. The probe emerged and disappeared gradually 

following a Gaussian contrast ramp to avoid abrupt onset transients. The contrast 

at the edges of the probe was also spatially smoothed using a Gaussian filter to 

reduce the perception of edges produced by abrupt differences in contrast. 

A mask image (5° x 5°) was presented to both eyes at the end of each trial 

and was randomly composed of black and white (93.6 cd/m2) pixels. Binocular 

fusion contours surrounding the stimuli and fixation dots were presented at all 

times to promote stable binocular eye alignment. Stimuli were presented against 

a homogenous field at mean luminance (15 cd/m2). 
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Figure 3.3: Illustration of the outcome of temporal bandpass filtering. Top images 
represent example Mondrian images that were unfiltered, low-pass filtered, or high-pass 
filtered. Bottom images depict the luminance change across time (100 frames) for a 
given pixel (red) within the CFS display above.  
 

Procedure  

In the beginning of a trial, the pedestal stimulus was presented to one eye 

while a CFS display or gray uniform field, depending on the session, was 

presented to the corresponding retinal position of the other eye. To allow for the 

potential accumulation of suppressive effects produced by successive flashes 

(Tsuchiya et al., 2006), the probe was introduced 500 ms after trial onset (after 5 

flashes) and gradually emerged and disappeared for 500 ms (peak at 250 ms). 

The probe randomly appeared either above or below fixation. The contrast 

increment was determined by a staircase procedure. The stimuli were 

immediately replaced by a mask image dioptically in order to reduce possible 

negative afterimages and to signal to observers that a response should be made. 
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Observers performed a 2AFC detection task, indicating the location of the probe 

relative to fixation. Feedback was given once a response was made and the 

subsequent trial began after 2.5 s. 

The experiment consisted of 3 sessions in which contrast thresholds were 

estimated for detecting low and high spatial frequency bandpass filtered probe 

stimuli. The first session obtained baseline measurements in which CFS was 

absent and also served to acclimate observers to the task and stimuli. In the 

remaining sessions, CFS displays were either low temporal bandpass filtered, 

high temporal bandpass filtered or unfiltered. Each temporal CFS condition was 

paired with each of the 2 spatial frequency filtered probe stimuli, resulting in 6 

different conditions. Trials for each condition were blocked and two staircases 

were randomly interleaved within each block. All conditions were equally 

presented in each session. Four threshold estimates corresponding to 71% 

performance were obtained for each condition using a 2 Down-1 Up staircase 

procedure (Levitt, 1971). When an individual’s threshold estimates did not 

properly converge, additional thresholds were collected. Practice trials were 

performed prior to each session and the experiment took approximately 2.5-3 

hours to complete. 

 

Results & Discussion 

 As done in the previous experiments a threshold elevation index was 

calculated for each of the 6 conditions as the log ratio of the mean threshold 

estimate for detecting a given spatial bandpass filtered probe under a given CFS 
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temporal frequency condition to the mean baseline threshold estimate for 

detecting that same probe without CFS (Figure 3.4). The elevation indices were 

then entered into a 3 (CFS temporal filter) x 2 (probe spatial frequency) repeated 

measures ANOVA. The main effects of probe condition (F(1,5)=11.1, p=.02, 

ηp
2=0.7) and CFS condition (F(2,10)=7.4, p=.01, ηp

2=0.6) were statistically 

significant, but the interaction between the two was not. Consistent with previous 

experiments, CFS again produced nearly 3 times greater threshold elevation for 

detecting low spatial frequency probes (0.25 ± 0.04) in comparison to high spatial 

frequency probes (0.09 ± 0.02). A CFS display that consisted of low temporal 

components (including its fundamental frequency) was as effective at 

suppressing high (0.09 ± 0.02) and low spatial frequency probes (0.27 ± 0.03) as 

an unfiltered CFS display (high: 0.13 ± 0.03; low: 0.28 ± 0.02; ps>.05). However, 

a CFS display that consisted of only high temporal components was not as 

effective at suppressing high (0.03 ± 0.02, p=.03) and low spatial frequency 

probes (0.19 ± 0.06. p=.08) in comparison to an unfiltered CFS display. 
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Figure 3.4: Results of Experiment 3.2. Plotted are the threshold elevations in detecting a 
low (green) or high (orange) spatial frequency (SF) bandpass filtered probe stimulus that 
is suppressed with either a temporal low-pass, high-pass, or unfiltered CFS display. 
Lines of different colors denote individual data. Error bars represent SEM. 
 

When an unfiltered sequence of CFS images is presented, a given pixel 

may abruptly change luminance from frame to frame, which in this case is every 

100 ms or 10 Hz. Those sharp luminance changes over time produce a broad 

spectrum of temporal frequencies, which peak at 10 Hz. A CFS display that 

includes only the low temporal components of that distribution appears smooth in 

transition but nonetheless, is as effective in suppression as an unfiltered CFS 

display, according to the results of Experiment 3.2. This is most likely attributable 

the energy concentrated near and at the peak of the CFS temporal spectrum (10 

Hz), which also happens to be the peak of the human temporal contrast 

sensitivity curve under scotopic conditions (5-10 Hz; Kelly, 1961). On the other 

hand, a CFS display that consists of energy only within the high temporal 

frequency range (> 10 Hz) of the unfiltered CFS spectrum appears to have 



 57 

frequently abrupt transitions and yet is less effective at producing strong 

suppression. Thus, the relatively high temporal frequency components in an 

unfiltered CFS display contribute less to suppression than do the low frequency 

components.  

In addition, the relative bias in suppression for low spatial frequencies is 

still observed with both low and high-pass temporal filtered CFS displays. It is 

possible that the temporal characteristics of CFS further increase the imbalance 

in suppression of the spatial frequency domain beyond that of its spatial 

properties. This would explain the results from Experiment 3.1 in which there was 

residual suppression of low spatial frequencies by the high spatial frequency 

bandpass filtered CFS. However, since the natural spatial profile of the CFS 

stimulus was preserved across all conditions (i.e. energy was concentrated 

mostly in low spatial frequencies), it is difficult to determine to what extent the 

temporal profile of CFS contributed to the low spatial frequency bias in 

suppression in the current experiment.  

It is well known that the frequency at which a stimulus flickers or changes 

in velocity modulates the visual system’s sensitivity to the spatial frequency 

content of that stimulus (e.g. Kelly, 1961 & 1969; Kulikowski & Tolhurst, 1973; 

Robson, 1966). As temporal frequency increases, contrast sensitivity to spatial 

frequencies changes from bandpass to low-pass. That is at low temporal 

frequencies (<5 Hz), contrast sensitivity to low and high spatial frequencies is 

relatively weak when compared to intermediate spatial frequencies around 2-6 

cpd where sensitivity is best. At higher temporal frequencies, sensitivity to low 
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spatial frequencies is enhanced and sensitivity to high spatial frequencies is 

depressed. Such dichotomy in spatiotemporal sensitivity corresponds well with 

response profiles of cells residing in the magnocellular (M) and parvocellular (P) 

pathway (e.g. Livingstone & Hubel, 1988; Maunsell & Van Essen, 1983; 

Ungerleider & Mishkin, 1982). P cells are sensitive to stimuli with high spatial 

frequency and low temporal frequency characteristics and exhibit a sustained or 

tonic response throughout the stimulus duration (e.g. Fukuda & Saito, 1971; 

Kaplan & Shapley, 1986). M cells exhibit transient, or phasic, responses to the 

onset and offset of stimuli comprising low spatial frequency and high temporal 

frequency components (e.g. Kaplan & Shapley, 1986; Wilson, 1980).  

Therefore, one could surmise that the spatiotemporal properties of the 

currently utilized (unfiltered) CFS displays - predominately low in spatial 

frequency content with high temporal frequency flicker - may stimulate M cells 

more effectively than P cells. On the other hand, a dynamic CFS display with 

properties that weakly stimulate one or both pathways - low spatial frequency 

contours flashing at low or very high temporal frequencies - may be less effective 

at suppressing a competing stimulus. Thus it may not be so surprising that the 

temporal high-pass filtered CFS condition (temporal components ranging from 

20-50 Hz) failed to produce strong suppression. Moreover, Tsuchiya and Koch 

(2006) showed that dominance durations for a flashing stimulus decline as the 

flash interval is shortened below 100 ms, as is the case for the temporal high-

pass CFS condition. In subsequent studies it would be informative to dissociate 
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the suppressive effects of different temporal components at a finer resolution and 

include a static condition (one CFS frame) for comparison. 
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CHAPTER IV 

 

GENERAL DISCUSSION 

 

The use of continuous flash suppression has become increasingly popular 

in the last decade, especially for the study of unconscious visual processing. 

Investigators have exploited the strong and sustained suppression produced by 

CFS to determine whether select classes of visual input continue to be registered 

without awareness. There is indeed ample evidence to suggest that certain types 

of information can be encoded from a suppressed stimulus, such as its semantic 

and emotional content (review by Lin & He, 2009). It may be easy to conclude 

that the processing of certain ‘meaningful’ classes of stimuli is unaffected by CFS 

and is thus ‘unconscious’ in nature. However, it is also possible that CFS 

differentially suppresses local features common to a stimulus class; effects that 

are presumably driven by the encoding of high-level attributes may, in fact, be 

driven by visual properties that are only weakly affected by CFS. The objective of 

this dissertation was to understand what CFS is actually suppressing so that 

more accurate conclusions can be drawn about the nature of the information that 

is processed under CFS. 

 This study investigated whether the spatio-temporal properties of a CFS 

display contribute to its effectiveness as a potent suppressor. Experiments in 

Chapter II explored the selectivity and depth of CFS within the spatial domain. 

Experiments in Chapter III examined the role of select feature dimensions of CFS 



 61 

in producing such patterns in suppression. Suppression depth was determined 

by elevations in contrast detection thresholds to stimuli as a result of suppression 

and was measured as a function of the spatial frequency (Experiment 2.1) and 

orientation (Experiment 2.2) of the suppressed stimulus and the spatial frequency 

(Experiment 3.1) and temporal frequency (Experiment 3.2) of the suppressor. 

Experiment 2.1 and 2.2 showed that CFS was biased at suppressing certain 

components in the spatial frequency and orientation domains: sensitivity was 

significantly impaired for information in the low spatial frequency range (<4 cpd) 

and at the cardinal orientations. These are also the same components that are 

most strongly represented in the CFS stimulus itself. To determine whether this 

pattern in suppression can be attributed to the spatio-temporal properties of the 

CFS stimulus, in Experiment 3.1 and 3.2 sensitivity measurements were 

repeated but using CFS stimuli composed of select spatial frequency or temporal 

frequency components. Results from Experiment 3.1 showed that low spatial 

frequency bandpass filtered CFS can reproduce the suppression bias for low 

spatial frequencies previously observed with unfiltered CFS. However as the 

CFS spectral profile shifted towards higher spatial frequency ranges, this bias in 

suppression disappeared and suppression became shallow. Similarly in 

Experiment 3.2, temporally low-pass filtered CFS produced the same selectivity 

and depth in suppression as temporally unfiltered CFS. High-pass CFS produced 

similar patterns in selectivity for low spatial frequencies but suppression was 

shallower in general.  
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Altogether this pattern of findings suggest that CFS differentially impairs 

the processing of stimulus features and the magnitude and selectivity of 

suppression is modulated by the spatio-temporal features predominant in the 

CFS stimulus - in this case, low spatial frequency, cardinally oriented spatial 

components and temporal components of 10 Hz and lower. These findings have 

several important implications. For one, they support the growing evidence that 

suppression is not completely non-selective in nature. Not only is the neural 

representation of a stimulus weakened by CFS, but it may also be significantly 

altered under suppression. Secondly, the low-level features of the suppressor 

and suppressed stimulus may be what determine suppression selectivity and 

thus the nature of information that is processed under suppression. This 

questions whether the previously reported effects with CFS were entirely 

attributable to the preferential processing of meaningful stimulus attributes. 

Finally, these findings implicate the involvement of feature selective mechanisms 

during suppression and may alter our current conception of the neural framework 

underlying binocular rivalry. Such implications are discussed in detail below. 

 

Suppression includes a feature-selective component 

 There is a widely held view that rivalry suppression non-selectively 

weakens all visual signals to the suppressed eye (review by Blake & Logothetis, 

2002). In other words, suppression is impartial to the content of information 

presented to the suppressed eye and thus neural signals evoked by different 

stimuli and stimulus properties are all effectively attenuated under suppression, 
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gating the flow of input to subsequent processing stages. However, evidence for 

this view has relied on early psychophysical evidence showing that probe targets 

briefly superimposed on a rival stimulus presented to one eye were harder to 

detect when that rival stimulus was suppressed. Impairments in detection were 

found regardless of the kind of probe presented (e.g., flashes of light, letters) and 

regardless of the similarity of that probe to the suppressed stimulus itself (e.g. 

Fox & Check, 1966; Wales & Fox, 1970; review by Blake, 2001). Impaired 

detection, in other words, generalized to essentially all new stimulation 

introduced to a suppressed eye, leading to the notion that suppression operates 

non-selectively. Note, however, that those early studies were not performed in a 

way that provided a direct measure of the depth of suppression, and they did not 

claim that suppression was equivalent in magnitude for all types of probes 

regardless of their similarity to the suppressed stimulus itself.  

More recent studies have systematically found that suppression is tuned 

to the features of the suppressed stimulus (e.g. Alais & Parker, 2006; Watanabe 

et al., 2004). For instance, Stuit et al. (2009) reported that suppression was 

strongest for probes that were close in orientation or spatial frequency to the 

suppressed stimulus. Changing those features in the suppressed stimulus has 

also been documented to break suppression (O’Shea & Crassini, 1981; Walker & 

Powell, 1979). Furthermore, suppression may deepen along hierarchical stages 

of analysis. Impairments in visual sensitivity worsen as the form and motion 

properties of a suppressed stimulus become more complex in nature (Ngyuen, 

Freeman & Alais, 2003; Li et al., 2005). Contextual illusions attributed to early 
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visual processes (e.g. brightness contrast illusion) survive CFS whereas those 

same illusions and others (e.g. illusory contours with Kanizsa triangles) fail to 

show interocular transfer (Maruya et al., 2008; Cai, Zhou, & Chen, 2008; Kawabe 

& Yamada, 2009) or are abolished when higher computations are necessary 

(Harris, Schwarzkopf, Song, Bahrami, & Rees, 2011; also Sobel & Blake, 2003). 

Finally, there is some indication that suppression naturally inhibits the processing 

of certain stimulus properties more so than others. Rivalry suppression greatly 

impairs color sensitivity in comparison to luminance sensitivity (E.L. Smith et al., 

1982), and furthermore this impairment may be specific for certain ranges of 

wavelengths (Ooi & Loop, 1994 but Nguyen et al., 2001). Importantly, Hong and 

Blake (2011) showed that differential suppression of chromatic and achromatic 

mechanisms is dependent on the luminance properties of the suppressor: 

chromatic CFS displays weakened observers’ color sensitivity whereas 

achromatic CFS displays did not. Along the same lines, Y. Yang and colleagues 

(1992) showed that rivalry occurred most readily with dissimilar patterns matched 

in spatial frequency content and especially within the low spatial frequency 

range. In comparison, stimuli of predominantly high spatial frequency content 

tend to produce non-rivalrous perception such as superimposition or 

transparency. In summary, selectivity in suppression has been observed in 

several different ways - in terms of the features of the suppressed stimulus and 

among the different stages of analysis. The current study underscores the 

importance of another type of selectivity in suppression that is defined by the 
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stimulus properties of the suppressor and their interaction with the features of the 

suppressed stimulus.  

 The feature-selective impairment in contrast sensitivity observed with CFS 

resembles the attenuation in contrast sensitivity resulting from adaptation. Visual 

sensitivity to a test stimulus is significantly weakened after prolonged viewing of a 

stimulus matching in visual features (Blakemore & Campbell, 1969; Pantle & 

Sekuler, 1968). Furthermore, this adaptation effect occurs, although attenuated, 

when the adapting and test stimuli are presented to different eyes (e.g. Bjorklund 

& Magnussen, 1981; Blakemore & Campbell, 1969). There are several reasons 

to suggest that the current findings are unlikely a result of adaptation to the CFS 

display. The short trial duration (600-1600 ms) and continuous change in local 

features (every 100ms) of the CFS display reduces the odds for effective 

adaptation. For instance to obtain the threshold elevation equivalent for a 6 cpd 

grating suppressed with a CFS display of the same center frequency (~0.5 log 

units), based on previous studies, the adaptation duration would have to be on 

the order of 100 s if stimuli were presented to the same eye and 1000 s if they 

were presented to different eyes (Figure 3 of Bjorklund & Magnussen, 1981; also 

Greenlee, Georgeson, Magnussen, & Harris, 1991; Blakemore & Campbell, 

1969). Furthermore, the impairment in sensitivity due to adaptation is limited to 

test stimuli ±1 octave from the adapting spatial frequency (e.g. K.K. De Valois, 

1977), which is far more narrow than the impairment observed in the current 

study: a CFS display centered at 0.8 cpd was still effective in elevating 

thresholds for a grating of 12 cpd, for example. Rather, contrast sensitivity is 
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reportedly enhanced for test stimuli that are 2 octaves away from the spatial 

frequency of the adapting stimulus (e.g. K.K. De Valois, 1977); however such 

enhancement was not observed in the current study. Finally, an adaptation effect 

would not explain the weak selectivity observed with high spatial frequency CFS 

displays. 

 

Implications for past and future studies 

Studies that utilized CFS typically compare the behavioral or physiological 

effects associated with the presentation of different stimulus categories during 

suppression. When differential effects are observed (e.g., face images are 

rendered ineffective but tool images are not), those effects are typically attributed 

to selective processing of high-level (e.g. semantic) properties under CFS. 

Results from these studies, in other words, are interpreted as evidence that 

certain classes of ‘meaningful’ information are preferentially processed in the 

absence of awareness, the implication being that such information has special 

functional significance. Take for example the behavioral study by Almeida et al. 

(2008 & 2010) in which objects of different categories (i.e. animals and tools) 

were presented as invisible prime images using CFS and visible target images. 

Observers’ performance in discriminating targets was facilitated by primes of the 

same category, but this priming effect was only found with tool-related stimuli. It 

was reasoned that the manipulability factor behind tools allows this class of 

objects to be processed differently from other object categories. Since areas 

along the dorsal pathway purportedly respond best to tool-like images (Chao & 
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Martin, 2000; Fang & He, 2005), CFS was thought to disrupt activity mainly in 

ventral areas where other object categories were represented. Almeida’s findings 

have been taken as direct evidence that dorsal processes have privileged access 

to unconsciously presented stimuli (Goodale & Milner, 1992; Stoerig & Cowey, 

1997).  

There is ample evidence that processing of low-level stimulus properties 

including contrast, orientation, and motion are significantly attenuated by CFS 

(e.g. Kanai et al., 2006; Maruya et al., 2008) and to an even greater extent than 

by conventional binocular rivalry (Tsuchiya & Koch, 2005). How, then, can 

advanced stages of analysis occur, such as discriminating object manipulability, 

despite disruption of low-level visual input? Lin and He (2009) proposed the 

unconscious binding hypothesis: “binding during unconscious processing is 

possible, albeit fragile: the brain can associate, group, or bind certain features in 

an invisible scene to form a certain cortical representation, and such binding can 

be detected under optimal conditions… binding is possible during unconscious 

processing if critical features can be registered and attentively grouped.” It is 

unclear exactly how they define ‘critical features’ but it seems to depend on the 

extent to which the underlying neural mechanisms are affected by suppression 

(involved in consciousness). Based on findings by Almeida et al. (2008 & 2010; 

also Fang & He, 2005), critical features were bound to create the neural 

representation of manipulable objects that engaged dorsal processes outside of 

awareness (Lin & He, 2009).  



 68 

An alternative account is that CFS differentially suppresses local features 

that define particular classes of objects, disrupting selective processing of those 

features and the effects (e.g., adaptation) associated with those classes of 

objects.  While this account does not necessarily contradict the framework 

proposed by Lin and He (2009) - they acknowledge that only “critical” low-level 

features may be encoded - it suggests that neither the intact neural 

representation of the stimulus nor the engagement of specific high-level 

processes are necessary to produce the effects reported under CFS. This 

account would also imply that suppression mainly operates at early stages of 

processing, the consequence being that residual activity arising at later stages 

would be even less likely to occur because of the weakened feedforward input to 

those later stages (Nguyen et al., 2003).  

Can this alternative account explain the selective priming results reported 

by Almeida et al (2008 & 2010)? The tool images that were used were all 

elongated and most were oriented in oblique directions. In contrast, animal 

images tended to be oval in shape and thus broad in terms of their orientation 

content. Perhaps, then, the priming effects with tool images were not driven by 

the correspondence in object category but rather the similarity in orientation 

content between the “invisible” tool images used for priming and the visible tool 

images used as targets. Furthermore according to Experiment 2.2, impairments 

in contrast sensitivity are relatively weak for obliquely oriented information. 

Perhaps this stimulus feature can evoke sufficient activity to drive priming effects 

of images sharing similar orientation. Furthermore, such priming may not be 
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necessarily unconscious since such stimuli may be weakly suppressed and more 

likely visible to observers. If these results were evidence of orientation-specific 

priming rather than category-related priming, then logically priming effects should 

be found with other stimuli similar in orientation regardless of object category. For 

instance, elongated animals oriented in oblique directions should produce a 

priming effect whereas round shaped tools should not. 

Yet another possibility is that the visual properties weakly suppressed by 

CFS - for example, high spatial frequency and obliquely oriented components - 

are unconsciously processed to an extent that they are sufficiently bound to 

create a weak stimulus representation. However if feature-specific tuning is 

broadened under suppression (Ling & Blake, 2010), it is likely that more complex 

representations are also altered as well. Nonetheless, this noisy representation 

may still activate high-level computations in which ‘meaningful’ information is 

extracted. Such an account is consistent with both the current findings and the 

framework by Lin and He (2009). The discrepancy arises in understanding why 

those features are processed and consequently why that representation is 

generated. Are the critical features of an object category processed under CFS 

because there is something special about the pathway by which that stimulus 

category is analyzed or because the visual properties of CFS stimulus led to 

weak suppression of those features? This would be easily resolved by examining 

whether results hold after: 1) equating or controlling for several low-level features 

that differ across stimulus categories, 2) using a CFS display that is composed of 
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different visual properties or 3) using a CFS display that is relatively unbiased in 

feature suppression. 

These different sources of effects can be extended to most studies 

utilizing CFS since nearly all have ignored the possibility of feature-selective 

suppression as a consequence of the type of stimuli used. CFS studies can be 

divided into two categories based on their technique and measure of interest. In 

one category, a stimulus is held under suppression and indirectly related to the 

measure of interest. The study by Almeida et al (2008 & 2010) falls in this 

category. In the second category, a stimulus is initially suppressed and the 

measure of interest is the time necessary for its emergence from suppression 

(i.e. suppression duration). In most cases, the contrast of the CFS display is 

slowly reduced while the contrast of the suppressed stimulus is increased during 

a trial in order to promote breakage and reduce trial durations. The idea is that 

stimuli emerging more quickly from suppression, as evidenced by shorter RTs, 

are more likely to have been processed under suppression.  

Previous CFS studies using this “emergence from suppression” technique 

were typically looking for evidence of face or word processing without 

awareness. For instance, it is well documented that fearful faces emerge from 

suppression faster than do faces exhibiting other expressions (Gray, Adams, & 

Garner, 2010; Sterzer et al., 2011; Tsuchiya et al., 2009; E. Yang et al., 2007). 

The common interpretation is that affective processing occurs without awareness 

and, in particular, that fear-related facial expressions receive prioritized 

processing due to their biological significance. Yet this fear-related advantage in 
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overcoming suppression also occurs with inverted faces (E. Yang et al., 2007) 

and inverted luminance-reversed faces, the latter of which substantially impair 

recognition of emotional expressions (Gray et al., 2010). Thus, it is entirely 

plausible that differences in low-level features may contribute to suppression’s 

differential effect on facial expressions as indexed by their emergence from 

suppression. Indeed, categories of affective images may have some consistent 

differences in spatial frequency content (Delpanque, N’diaye, Scherer, & 

Grandjean, 2007). The discrepancies in spatial frequency profiles of fearful and 

neutral faces, however, are not well documented. Based on the current study, 

one could speculate that the rate of overcoming suppression is modulated by 

amplitude differences in high spatial frequency content, since high spatial 

frequencies are least impaired by CFS. Furthermore, this would argue against 

the involvement of the amygdala in stimulus detection since it is more responsive 

to low spatial frequency face information whereas fusiform activity is greater for 

the high spatial frequency content of faces (Vuilleumier et al., 2003). Results 

from an additional experiment (Appendix A) show that not only is suppression 

weaker for faces composed solely of high spatial frequencies, but these images 

break suppression faster in comparison to faces composed of only low spatial 

frequencies (after equating for differences in sensitivity). It is also well 

established that low spatial frequency stimuli tend to be suppressed longer than 

high spatial frequency stimuli (Arnold, Grove, & Wallis, 2007; Breese, 1909; 

Fahle; 1982; Levelt, 1965). Future studies would be wise to equate the spatial 
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frequency content of images before measuring durations of suppression under 

CFS.  

Another concern regarding this second category of CFS studies is whether 

they were examining effects that were driven by the stimulus when it was 

invisible. Authors of these studies claim that the differences in suppression 

duration must be indicative of the rate at which the stimulus is processed 

unconsciously: a stimulus that breaks suppression faster must have been 

processed faster under CFS. On the other hand, accurate performance on a 

detection task requires that the stimulus be processed to some extent on a 

conscious level. Secondly, the discrepancy may occur at a decision-making level 

rather than at the level of stimulus processing. Modeling the data, using a 

diffusion model (P.L. Smith & Ratcliff, 2004) for example, would be one method 

for dissociating RT effects driven by a bias in stimulus processing from those 

driven by a bias on a decisional level.  

The current study may help us reconcile the seemingly discrepant results 

produced by traditional BR compared to CFS. Research with CFS, prior to this 

dissertation, has focused on the processing of high-level visual attributes under 

suppression. On the other hand, the majority of BR research has focused on 

relatively early visual processing under suppression. The few BR studies that 

have investigated high-level processing have found little evidence for its survival 

under suppression (e.g. Blake, 1988; Cave et al., 1998; van der Zwan, 

Wenderoth, & Alais, 1993; Zimba & Blake, 1983). In my view, high-level effects 

reported with CFS may be artifacts from the selective suppression produced by 
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the visual properties of the CFS display. The rival stimulus (suppressor) tends to 

differ from BR study to BR study and this is mostly due to the fact that stimulus 

properties strongly influence the duration of dominant and suppressive phases 

during BR (review by Blake & Logothetis, 2002). The visual features of every BR 

suppressor have to be well suited for suppressing the stimuli of interest for 

sufficient periods of time. Thus suppression in BR studies may be more effective 

at suppressing the particular features of the rival stimuli and in an unbiased 

manner. In contrast, the majority of CFS studies use the same type of suppressor 

(e.g. Mondrian-like pattern) and thus the same visual features for suppression. 

Even the different CFS displays have similar visuo-temporal characteristics 

(Figure 4.1). Furthermore unlike BR studies, the success of suppression is not 

monitored online but rather after completion of the main experiment and typically 

with a sub-optimal task. Regardless of the technique used, it is important that 

future studies carefully take into consideration the low-level features of the 

competing stimuli and the level of observers’ awareness for the suppressed 

stimuli. 
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Figure 4.1: The orientation (top) and spatial frequency (bottom) power spectrum of 8 
different CFS images of previous studies. Data corresponding to each image is denoted 
by border color. Images were equated in size (7o x 7o) and contrast (30RMS) prior to be 
transformed in the Fourier domain. Images were extracted from figures in (top to 
bottom): Tsuchiya & Koch, 2005; Arnold et al., 2008; Bahrami et al., 2010; Maruya et al., 
2008; Costello et al., 2009; Adams et al., 2010; Sterzer et al., 2008; Almedia et al., 2008. 
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Neural framework for suppression with CFS 

Models of BR commonly emphasize reciprocal inhibition between 

competing neural events as the source of interocular suppression (review by 

Tong, 2001). Neurons encoding the effectively stronger stimulus will initially 

inhibit those encoding the competing stimulus, leading to the perceptual 

dominance of only one image at any given moment. As neurons of the dominant 

stimulus adapt over time, their inhibitory influence weakens until the balance of 

activity shifts and inhibition exerted from competing neurons takes over (Alais, 

Cass, O’Shea, & Blake, 2010). BR models mainly differ in terms of the stage(s) in 

the visual processing hierarchy that this neural competition transpires (Blake, 

1989; Freeman, 2005; Lehky, 1988; Logothetis et al., 1996; Wilson, 2003). 

Although it is commonly thought that CFS arises from the same neural 

events as those underlying rivalry suppression (e.g. Lin & He, 2009), there are 

some discrepancies between CFS and BR that raise questions about whether 

binocular rivalry models apply to CFS without refinement. For instance varying 

the strength of a CFS display lengthens its dominance while its periods of 

suppression are unaffected (Tsuchiya et al., 2006). This pattern of results is 

opposite to what is found with BR: increasing the strength of a stimulus 

decreases its suppression durations without changing its durations of dominance 

(e.g. Fox & Rasche, 1969; Levelt, 1965; but Bossink, Stalmeier, & De Weert, 

1993; Brascamp, van Ee, Noest, Jacobs & van den Berg, 2006; see Kang, 2009, 

for a review of this literature). To account for the temporal dynamics of CFS, 

Tsuchiya and Koch (2005) proposed a simple model that incorporates a flash 
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component into the BR model proposed by Levelt (1965). Essentially, every flash 

component within the CFS display resets its dominance state and the strength of 

the flash is dependent upon the flash interval, which is most effective between 80 

- 320ms (3 - 12 Hz; Tsuchiya and Koch, 2005). In effect, their refinement 

minimizes the role of neural adaptation of the dominant stimulus, allowing it to 

maintain its relative strength for considerably longer durations.  

 Although the model refinement proposed by Tsuchiya and Koch (2005) is 

sufficient to account for percept durations under CFS, it does not describe the 

neural mechanisms whereby CFS produces depths of suppression greatly 

exceeding that associated with conventional BR. Recently, Shimaoka and Kineko 

(2011) tackled this challenge by expanding the neural model of BR proposed by 

Wilson (2007) to include CFS. Wilson’s BR model incorporates adaptation, 

reciprocal inhibition and recurrent excitation and is simply composed of 2 

equations: 

 

 (1) 

 

       (2) 

 

Eq 1 defines the activity level for a monocularly-driven neuron (EL, L= Left 

Eye) as the result of input strength (+L(t)), inhibitory strength from the opposing 

eye (-aER), recurrent excitatory activity (+εEL), and self-adaptation (-gHL). Eq 2 

defines the rate of adaptation (HL). Further details are found in Wilson (2007).  
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(3)                                          

 

Shimaoka and Kineko (2011) incorporated monocular units that are tuned 

to different stimulus features (e.g. L1, L2, R1 & R2) in order to simulate neural 

responses to a CFS pattern (Eq 3). Thus, an inhibitory component is added for 

every feature-selective unit that is responding to input in the opposing eye (e.g. 

a2ER2 in Eq 3, Figure 4.2 top). The extended model accurately simulates the long 

dominance durations produced by CFS, as defined by the sum of neural activity 

of units responding to a stimulus in one eye (Figure 4.2 bottom). 

 

 

Figure 4.2: Simulation of neural responses based on the extended model by Shimaoka 
& Kineko (2011). Top illustrates flashing input (e.g. contrast-reverse grating) to left eye 
and static input to the right eye (L and R = input strength to each eye). Units (E) are 
tuned to different stimulus features, such as spatial phase in this example. Er2 does not 
receive input since its preferred stimulus is never presented. a	 represents reciprocal 
inhibition among units.	 Bottom illustrates neural firing of each feature-selective unit 
(thick lines) and hyperpolarizing current (H; thin lines) indicating the rate of neural 
adaptation. Illustration was taken from Shimaoka & Kaneko (2011). 
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With the extended model, Shimaoka and Kineko (2011) attempted to 

simulate suppression depth with CFS, BR and FS, by simulating results from a 

probe detection task. Suppression depth was defined as the minimum probe 

strength that switches dominance from the suppressor to the suppressed 

stimulus, in which the probe is presented. Figure 4.3 shows that suppression 

depth with CFS increases (i.e. stronger probe is necessary for a perceptual 

reversal) as one increases the number of feature-selective units in the model. 

When there are a large number of units responding to monocular input, probes 

are more likely to be presented during one of the several transient peak 

responses. Input to each unit is brief and so adaptation is also low. With fewer 

units the probe is more likely to appear after transient peak responses have 

occurred (during the steady-state response), switching the dominant state to that 

of the probe (Shimaoka & Kineko, 2011).  

 

Figure 4.3: Simulation results of a 
probe detection task with the 
extended model by Shimaoka & 
Kineko (2011). The strength of probes 
presented under CFS, FS, and BR is 
plotted as a function of the number of 
feature-selective units. Probe strength 
(β + θ* exp(-t2/σ2)) varied across trials 
(100 per probe value) while the 
strengths of the competing stimuli 
remained constant. Thresholds 
estimates were based on the probe 
amplitude at which dominance 
switched from the suppressor to the 
suppressed for half of the trials. 
Details can be found in the original 
study. Illustration was taken from 
Shimaoka & Kineko (2011). 
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 At least two additional components are needed in the extended model to 

account for the findings in this dissertation. If suppression depth is modulated by 

the visual properties shared between the suppressor and suppressed stimulus, 

there must be a scaling constant that weights the inhibition from opposing units 

and is dependent upon their distance in feature space. The result should be 

strong inhibition from units with similar feature-specific tuning and weak inhibition 

from units selective for more dissimilar features. Secondly, the current study 

suggests that there may be a non-linear component to suppression; relatively low 

spatial frequency and intermediate temporal frequency (~10 Hz) elements 

produce the strongest suppression regardless of the suppressed stimulus 

properties. If this bias is attributed to our naturally heightened sensitivity for these 

components, another variable is necessary to scale the inhibition according to 

the human spatio-temporal contrast sensitivity function. Inhibition from units 

tuned to features corresponding to peak sensitivity should be weighted more and 

features that we are weakly sensitive to should be weighted less. Overall 

luminance level (scotopic or photopic) will determine the shape of the contrast 

sensitivity function (Kelly, 1961; Van Nes & Bouman, 1967). Both of these 

constants would simply weight every inhibitory component in the extended model 

(e.g. a1ER1, a2ER2). 

 The current findings provide possible clues about the neural sites of 

suppression. Specifically, my results imply that suppression heavily relies on 

reciprocal inhibition occurring among detectors selectively tuned to the physical 

properties of the stimulus. Stuit et al. (2009) observed orientation- and spatial-



 80 

frequency tuning under rivalry suppression that were similar in bandwidth as 

those reported in V1 neurons. Similar tuning properties have also been reported 

within neurons found in extrastriate areas V2, V3, and V4; however, low-level 

feature-specificity tends to decline along successive stages of processing (e.g. 

Hubel & Wiesel, 1962 & 1968; Maunsell & Newsome, 1987). Likewise, LGN lacks 

the necessary orientation response properties (e.g. Hubel & Wiesel, 1961 but 

Leventhal & Schall, 1983; E.L. Smith, Chino, Ridder, Kitagawa, & Langston, 

1990) to yield the current results, but BOLD signal responses measured in LGN 

do correlate with perception during rivalry, perhaps reflecting an involvement of 

cortical feedback (Haynes, Deichmann, & Rees, 2005; Wunderlich, Schneider, & 

Kastner, 2005; but Lehky & Maunsell, 1996). The receptive fields of neurons in 

V1 can be characterized as spatiotemporal Gabor-like filters, transforming visual 

input into a Fourier-like representation (e.g., Movshon, Thompson, & Tolhurst, 

1978). These filters simultaneously analyze multiple stimulus features and relay 

information characteristic of magnocellular and parvocellular channels (e.g. 

Livingstone & Hubel, 1988; Maunsell & Van Essen, 1983; Ungerleider & Mishkin, 

1982). The spatio-temporal properties in the CFS display that are most effective 

in producing suppression are reminiscent of the characteristics that optimally 

drive the M cells (e.g. Kaplan & Shapley, 1986; Wilson, 1980). This could imply 

that CFS suppression more strongly attenuates neural activity within the 

magnocellular pathway, an idea that differs from the view of Lin and He (2009) 

who propose that it is activity within the parvocellular pathway that is more 

affected by CFS (see also Hesselmann & Malach, in press).  
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 The involvement of V1 in neural suppression underlying rivalry remains 

controversial. Single-unit studies in monkeys have reported that the majority of 

neurons recorded in V1 (as well in V2, V4, and MT) respond robustly and reliably 

to their preferred stimuli, irrespective of the state of perceptual dominance of 

those stimuli reported by the monkeys (Keliris, Logothetis, & Tolias, 2010; 

Leopold & Logothetis, 1996; Logothetis & Schall, 1989). While these studies 

implicate on-going visual processing in V1 even during perceptual suppression, 

fMRI studies in humans report that V1 responses are strongly modulated in 

synchrony with a person’s reported perceptual state: fMRI activity is reduced or 

abolished when the stimulus producing that activity is suppressed under BR (e.g. 

Haynes & Rees, 2005; Meng, Remus, & Tong, 2005; Tong & Engel, 2001). 

However, Polonsky, Blake, Braun, and Heeger (2000) showed that the 

magnitude of V1 responses to the suppressed pattern was reduced by 45-83% in 

comparison to non-rivalrous stimulus conditions (also Lee & Blake, 2002), 

implying that neural activity is not completely eliminated by suppression. 

Furthermore, the reduction in BOLD activity during perceptual suppression 

seems to be correlated with low-frequency local field potentials but not with 

spiking activity (Maier et al., 2008). Primate electrophysiology and neuroimaging 

studies together suggest that signals from the suppressed stimulus undergo 

some level of processing in V1, although the evidence is less convincing with 

fMRI.  

Only a few studies to date have directly examined whether rivalry 

suppression involves feature-specific mechanisms, one of which was an fMRI 
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study conducted by Moradi and Heeger (2009). Investigators examined BOLD 

responses to a pair of compatible (iso-oriented) or incompatible (cross-oriented 

or plaid) gratings that were presented dichoptically or monocularly to observers. 

Activity in V1, V2, and V3 showed evidence of stronger interocular suppression 

with compatible gratings in comparison to incompatible gratings. In other words, 

inhibitory interactions were stronger among channels tuned to the same 

orientation than those tuned to orthogonal orientations. These findings resonate 

well with results of Experiment 2.2 in which suppression was more effective when 

the CFS and suppressed stimulus shared similar orientation properties.  

Furthermore, cross-orientation suppression was equally strong under dichoptic 

(i.e. different gratings to each eye) and monocular (plaid to one eye) conditions, 

implicating a general mechanism of suppression that is independent of eye of 

origin (Moradi & Heeger, 2009). 

 Sengpiel and colleagues (1995a) measured neuronal responses in cat 

LGN and area 17 tuned to the stimulus presented in the dominant eye as a 

stimulus of varying orientation and spatial frequency was intermittently presented 

in the non-dominant eye (i.e. flash suppression). Responses in LGN cells and V1 

monocular cells were strongly inhibited by a stimulus flashed in the non-dominant 

eye, irrespective of the orientation differences between the dichoptically 

presented stimuli (also Moore, Spear, Kim, & Xue, 1992; Sengpiel, Freeman, & 

Blakemore, 1995b; but Varela & Singer, 1987). In contrast, inhibition of 

binocularly driven V1 cells was strongly modulated by differences in stimulus 

orientation; inhibition was strongest when the non-dominant stimulus was 



 83 

orthogonal in orientation whereas iso-oriented stimuli produced facilitation (also 

Sengpiel & Blakemore, 1994). Thus, orientation-selective suppression is 

observed in V1 binocular cells but not in LGN or V1 monocular cells and this 

selective suppression is strongest for dichoptic stimuli that are orthogonally 

oriented. In Experiment 2.2, the suppressed stimulus was one of 4 orientation 

bandwidths and 2 bandwidths overlapped with the orientation profile of the CFS 

display (i.e. cardinally oriented components), which was not manipulated in this 

experiment. If the suppressed stimulus were composed of only horizontally 

oriented components, for example, it is possible that the horizontally oriented 

components of the CFS stimulus resulted in facilitation, whereas its vertically 

oriented components led to inhibition of neural responses to the suppressed 

stimulus. This could partially account for the variable pattern of results found 

across observers in Experiment 2.2 (Figure 2.6). It would be informative in future 

studies to dissociate the effects of different orientation components in the CFS 

display, using orientation-band pass filtered CFS images for example. 

In contrast, the effects of stimulus spatial frequency observed by Sengpiel 

et al. (1995a) were quite different. LGN and V1 responses to the dominant 

stimulus were strongly inhibited when non-dominant stimulus matched in spatial 

frequency content and inhibition weakened as the spatial frequency difference 

between the two stimuli increased (also Moore et al., 1992). These results are 

compatible with the current (Experiment 2.1 & 3.1) and previous findings (e.g. Liu 

& Schor, 1994; O’Shea et al., 1997; Y. Yang et al., 1992) in which the 

characteristics of suppression (i.e. depth, duration, exclusivity) varied as a 
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function of the spatial frequency overlap between rival stimuli. Furthermore cat 

physiology studies, in general, seem to demonstrate both the selective and non-

selective nature of interocular suppression, which may represent the role of 

differently tuned neural populations in suppression. Whether this also pertains to 

monkey visual cortex we do not know, for comparable physiological studies have 

not been performed in monkeys. 

 

Limitations of the current study 

 In the current study, suppression was examined as a function of select 

regions in the local spatio-temporal feature space defining one version of a CFS 

display. Spatial frequency and orientation dimensions were explored in particular, 

since they play a fundamental role in spatial vision and have been well studied in 

terms of visual sensitivity and underlying neural representation (e.g. Campbell & 

Kulikowski, 1966; Maffei & Fiorentini, 1973; review by R.L. De Valois & K.K. De 

Valois, 1980). However, other spatial dimensions are worth exploring such as 

luminance and color. Luminance and color sensitivity are reported to be 

differentially affected by suppression (e.g. Hong & Blake, 2009 ; E.L. Smith et al., 

1982; Thomas, 1978; but Ridder, Smith, Manny, Herwerth, & Kato, 1992) and 

recently, Knapen, Kanai, Brascamp, van Boxtel, and Van Ee (2007) showed that 

exclusivity during BR may also depend on the distance in color space between 

the competing stimuli. Approximately half of the studies to date have used 

chromatic CFS displays (see Figure 4.1 for examples), and some researchers 

claim that suppression is more effective with color (Carmel, Arcaro, Kastner, & 
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Hasson, 2010) although supportive evidence for that contention, beyond 

anecdote, is lacking. The temporal frequency domain also warrants further 

investigation since the current study was limited to examining components 

associated with the fundamental frequency of 10 Hz, which is most commonly 

used among CFS studies to date. Findings in the temporal frequency domain 

may be critical in determining the involvement of specific spatio-temporal 

channels in suppression and in examining the extent to which spatial frequency-

dependent suppression is governed by the temporal characteristics of the CFS 

display.  

 If the spatio-temporal components of the CFS display indeed play a 

significant role in suppression, the current pattern of results may not generalize 

to findings observed with other CFS displays. As stated earlier, most of the 

currently utilized displays share similar spatio-temporal characteristics and are 

typically composed of high contrast, flickering, cardinally-oriented contours 

(Figure 4.1). The pattern in spatial frequency amplitude spectra for different CFS 

images is quite similar and follows a power-law function with increasing spatial 

frequency (1/fα), which is common for natural images (e.g., Field and Brady, 

1997). Thus the spatial composition of CFS stimuli is not that unusual, and it is 

likely that similar patterns of selective suppression would be observed with other 

CFS stimuli. 
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Concluding remarks 

 The current study is the first to systematically investigate the 

characteristics underlying suppression with CFS. CFS operates by selectively 

attenuating or abolishing certain low-level signals while leaving others to be 

potentially encoded during suppression. This feature-selective bias in 

suppression may be attributed to the spatio-temporal properties of the CFS 

stimulus and the properties shared with the suppressed stimulus. Findings from 

the current study suggest the involvement feature-selective mechanisms in 

neural concomitants of suppression. Furthermore, they underscore the 

importance of considering the contribution of low-level features in stimulus-driven 

effects that are reported under suppression. 
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APPENDIX A 

 

SELECTIVITY IN SUPPRESSION USING NATURAL IMAGES AS 
SUPPRESSED STIMULI 

 

Experiments 2.1 and 3.1 show that CFS greatly impairs observers’ 

sensitivity to low spatial frequency Gabor patches and gratings in comparison to 

those of high spatial frequency and furthermore, the low spatial frequency 

components of the CFS patterns is largely what drives this selectivity of 

suppression. I then wondered whether such selectivity in suppression could be 

observed with natural images such as faces. In fact, face images are one of the 

most popular categories of stimuli presented under CFS (e.g. Adams et al., 2010; 

Fang & He, 2005; Sterzer et al., 2009). As mentioned previously, there are 

converging lines of evidence to suggest that face processing is not completely 

squelched under suppression. However, what class of stimulus properties are 

exactly driving these effects? For instance, behavioral studies have found that 

upright face images are more likely to emerge from CFS faster than inverted face 

images (Jiang et al., 2007; E. Yang et al., 2007; G.M. Zhou et al., 2010). 

However, other studies suggest that these effects may be driven by differences 

in low-level face properties (Gray et al., 2010) or differences in detection 

thresholds and response criteria (Stein et al., 2011a) among categories of face 

images. If CFS suppression is indeed selective for certain spatial frequency 

components, could the spatial content of a suppressed face also modulate the 

face inversion effect? The Experiment A attempted to address this question. In a 
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series of experiments, I measured observers’ sensitivity to a suppressed face 

that was either low-pass or high-pass filtered and investigated the face inversion 

effect using the spatial frequency band-pass technique implemented in 

Experiment 3.1 and 3.2, with the “time to break suppression” strategy. 

 

Method 

Participants 

 Seven participants, including the investigator, participated in Experiment 

A. Participants were recruited from the Vanderbilt University Psychology 

Department and all had normal or corrected-to-normal acuity and good 

stereopsis. With the exception of the investigator, participants were naïve to the 

purpose of the study and provided written consent prior to participation. 

 

Apparatus & Stimuli 

 The apparatus was identical to previous experiments.  A set of 500 

dynamic Mondrian patterns (4° x 4°, 10 Hz) was randomly generated prior to the 

beginning of a block of trials. A subset was randomly chosen for each trial. The 

RMS contrast of the Mondrian patterns was normalized to 15% for Phases 1 and 

2 and 60% for Phase 3. Two face images with neutral expressions were selected 

from the Karolinska Database of Emotional Faces (Lundqvist & Litton, 1998). 

Face stimuli were cropped to remove features outside of the face (2° x 1.5°) and 

were then scaled to gray and normalized in contrast (50% RMS contrast) and 

mean luminance. The procedure for band-pass filtering was identical to the 
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procedure used in Experiment 3.1 for Mondrian patterns and Experiment 3.2 for 

probe stimuli. The center frequency for the low-pass and high-pass filter was 

0.75 cpd and 6 cpd, with an octave wide bandwidth. The band-pass filtered 

stimuli were then normalized in contrast (50% RMS contrast) and mean 

luminance and embedded in 1D broadband Gaussian noise (4° x 4°, 10% RMS 

contrast). Face stimuli were always presented upright in Phases 1 and 2, 

whereas in Phase 3 the face stimuli were either upright or inverted 180°. The 

distance from the face stimulus center and the center of the background noise 

(fixation) was approximately 1° and across trials, the face stimulus was randomly 

positioned in one of the two vertical halves of the background noise (Figure A.1). 

Binocular fusion contours (4.1° x 4.1°) surrounding the stimuli and fixation dots 

were present at all times to promote stable binocular eye alignment.  

 

 

Figure A.1: Illustration of a trial sequence in Experiment A. 
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Procedure 

 Experiment A consisted of 3 phases. In the first 2 phases, contrast 

threshold estimates for detecting low-pass and high-pass filtered faces were 

obtained in the presence and absence of CFS (baseline).  In the final phase, I 

measured the time it took for the same band-pass filtered faces to emerge from 

suppression when they were upright or inverted and equated for effective 

contrast. 

 In each trial of Phases 1 and 2, a band-pass face stimulus was presented 

to the dominant eye. The non-dominant eye viewed a dynamic CFS display or a 

uniform gray field in Phase 1 and Phase 2, respectively. The contrast of the face 

stimulus linearly ramped on and off during the first and last 300 ms of the trial in 

order to avoid abrupt transients. For 1 s, the face stimulus remained at a set 

contrast predetermined by the QUEST adaptive staircase procedure. The face 

stimulus was presented either in the left or right half of the noise display. At the 

end of the 1.6 s trial, the stimuli were replaced with a mask, which signaled to 

observers that a response had to be made regarding the location of the face 

stimulus (left or right). No feedback was given and the subsequent trial began 

250 ms after a response was made. Eight contrast threshold estimates 

corresponding to 72% performance accuracy were obtained for each band-pass 

condition, using QUEST. Four staircases of the same condition were randomly 

interleaved within a block of trials (4 blocks total). Phases 1 and 2 each took 

approximately 45 minutes to complete. 
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 The procedure for Phase 3 was adapted from previous studies in which 

investigators measured the duration in which stimuli emerged from suppression 

(e.g. Jiang et al., 2007; E. Yang et al., 2007; G.M. Zhou et al., 2010). In the initial 

1000 ms, the non-dominant eye was presented with a high contrast dynamic 

CFS display (60% RMS contrast) and the other eye viewed the band-pass face 

stimulus, the contrast of which linearly increased in order to avoid abrupt 

transients. The orientation of the face image was either upright or inverted 180°. 

The full contrast of the face stimulus was the respective mean threshold contrast 

obtained in Phase 1 for that particular band-pass image. Once the face stimulus 

reached full contrast (1 s), the CFS display linearly decreased in contrast with 

every change in pattern (10 Hz) for the remaining 9 s of the trial. Observers were 

instructed to respond as soon as they could determine the location of the face 

(left or right), using 1 of 2 keys. RT and accuracy were recorded. The trial 

terminated either when a response was made or when the CFS display reached 

0 contrast. If a response was not made within the trial duration (10 s), that trial 

was removed from analysis. Observers were discouraged to make guesses and 

received feedback if an incorrect response was made. A mask stimulus was 

presented dioptically for 500 ms once the trial ended and the next trial began 

after 250 ms. Each face orientation condition (upright or inverted) consisted of 

200 trials and a low-pass (2) or high-pass (2) filtered face image was presented 

in half the trials. Trials of each orientation and band-pass filter condition were 

randomized in order. Phase 3 took approximately 30 minutes to complete. 
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Results & Discussion 

 In Phases 1 and 2, contrast detection threshold estimates were measured 

for high- and low-bandpass filtered face images that were in the presence or 

absence of CFS. A 2 x 2 repeated measures ANOVA on threshold estimates 

revealed a main effect of phase (F(1,6)=26.6, p=.002, ηp
2=0.8) and an interaction 

between phase and spatial frequency condition (F(1,6)=7.0; p=.04, ηp
2=0.5). 

Similarly done with previous experiments, elevations in contrast thresholds were 

computed as the log ratio of the mean threshold estimate for detecting a given 

band-pass filtered face under CFS (Phase 1) to the mean baseline threshold 

estimate for detecting that same face without CFS (Phase 2). The left graph in 

Figure A.2 shows that CFS produced greater elevation in thresholds to low 

spatial frequency bandpass filtered faces relative to high-pass filtered faces 

(mean ± SEM: low-pass: 0.87 ± 0.07; high-pass: 0.44 ± 0.04, t(6)=11.8, p<.001), 

replicating Experiment 2.1 and Experiment 3.1. Furthermore, threshold 

elevations were similar in magnitude as those found with Gabor patches in 

Experiment 2.1 (see Figure 2.4; 1 cpd = 0.85 log units, 4 - 8 cpd= 0.4-0.2 log 

units). 
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Figure A.2: Results of Experiment A. Left: Elevation in contrast thresholds for detecting 
low-pass and high-pass filtered face images under CFS, relative to baseline (Phases 1 & 
2). Right: Normalized mean RT for detecting low-pass and high-pass faces that were 
upright or inverted under suppression (Phase 3). Error bars denote SEM. 
 

 In Phase 3, observers indicated the moment at which the face stimulus 

broke suppression and became visible. There were no significant differences in 

mean accuracy in terms of the face orientation or the spatial frequency filter 

applied to the face images. Overall mean performance was high (97.5% ± 0.76), 

suggesting that observers were careful to respond on the basis of the emergence 

of a face into dominance.  

 Mean RTs for each bandpass filter and face orientation condition were 

normalized to the mean RT for that observer (Figure A.2, right). A 2 x 2 repeated 

measures ANOVA on normalized mean RT values revealed a significant main 

effect of bandpass filter (F(1,6)=8.6, p=.03, ηp
2=0.6) and a significant interaction 

between bandpass filter and face orientation  (F(1,6)=37.7, p=.001, ηp
2=.86). The 

main effect of face orientation was approaching significance (F(1,6)=5.2, p=0.06, 

ηp
2=0.46). Post hoc analysis using paired sample t-tests showed no significant 

difference in normalized RTs for detecting upright low-pass faces versus inverted 
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low-pass faces (p>.05). In contrast, observers were significantly slower to detect 

an inverted high-pass filtered face relative to its upright counterpart (0.13 ± 0.03, 

t(6)=4.8, p=.003); the mean latency difference was approximately 530 ms (SEM: 

150 ms). 

 As illustrated in Figure A.2, RTs were overall slower for low-pass filtered 

faces in comparison to high-pass filtered faces (mean difference in RT: 960 ms). 

This could suggest that low-pass faces were more difficult to detect than high-

pass faces even though faces were all presented at their respective mean 

threshold contrast corresponding to 72% performance accuracy. Nonetheless, 

observers’ mean RT for low-pass faces (4.4 s ± .62) is well below the maximum 

RT that could be measured within a trial (10 s), which implies there was no 

ceiling effect. 

 Experiment A showed that suppression evoked by CFS greatly attenuates 

contrast sensitivity to the low spatial frequency components (0.5 - 1 cpd) of an 

image of a face relative to high spatial frequency components (4 - 8 cpd) of a 

face image. These results are consistent with contrast threshold elevations 

observed with Gabor patches in Experiment 2.1 and with gratings in 2.2. 

Furthermore, faces tended to emerge from suppression faster when they are 

upright as opposed to inverted in orientation, replicating previous studies. 

However, this face inversion effect appears specific to high spatial frequency 

features of the face. This could imply that, due to the selective nature of CFS 

suppression, previous behavioral evidence of face inversion effects under CFS 

could solely driven by high spatial frequency components in the suppressed face. 
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APPENDIX B 

 

REPLICATION OF EXPERIMENT 3.1 USING DIFFERENT PARAMETERS 

 

 The results of Experiment 3.1 showed that the differential impairment in 

contrast sensitivity in the spatial frequency domain (Experiment 2.1) is modulated 

by the spatial frequency components of the CFS display. That is, stimuli 

composed solely of low spatial frequencies are suppressed more strongly than 

those of high spatial frequencies with unfiltered CFS. The pattern in threshold 

elevation observed with unfiltered CFS can be reproduced using CFS displays 

composed solely of low spatial frequency information. As the CFS band-pass 

filter shifted towards high spatial frequencies, the bias in suppression of low 

spatial frequencies weakened and suppression overall grew shallow. In 

Experiment B, I examined whether these results can be generalized across 

experimental designs with different spatial and temporal stimulus parameters. 

 

Method 

 The major differences in design between this experiment and Experiment 

3.1 are that stimuli were smaller in size (2° x 2° vs 4° x 4°), stimuli were 

presented for double the duration (1200 ms vs 600 ms) and the range in spatial 

frequencies of the target stimulus and CFS display differed (see below). The 

procedure and design of this experiment (with the exception of the filtered CFS 

conditions) is identical to those of Experiment 2.1, in which contrast threshold 
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elevations were estimated for 6 different spatial frequency gratings that were 

suppressed solely by unfiltered CFS displays. Three participants from 

Experiment 2.1, including the investigator, were recruited. The spatial frequency 

of the target stimuli (Gabor patches) were 0.5, 1, 2, 4, 8, or 12 cpd. The CFS 

display was a set of dynamic Mondrian patterns (2° x 2°, 10 Hz) randomly 

generated prior to the beginning of a trial. These patterns were filtered in a 

similar manner as those in Experiment 3.1. The center frequency of the 

bandpass filter was either 0.5, 1, 2, 4, 8, or 16 cpd, with an octave wide 

bandwidth. All band-pass filtered Mondrian images were normalized in contrast 

(15% RMS contrast) and mean luminance. Please refer to Experiment 2.1 for 

details of the procedure. Observers performed a 2AFC orientation discrimination 

task on Gabor stimuli presented under CFS. There were 36 conditions (6 Gabor 

spatial frequencies x 6 bandpass filtered CFS displays) and 4 contrast thresholds 

were measured for each condition, using QUEST. Each staircase consisted of 40 

trials and two staircases of the same condition were randomly interleaved within 

a block of trials. Observers participated in 4 sessions and each session consisted 

of 18 randomly chosen conditions (36 staircases). A session took approximately 

60-90 minutes to complete. 

 

Results & Discussion 

Elevations in contrast thresholds were computed in an identical fashion as 

previous experiments and were entered into a 6 (CFS filter) x 6 (gabor spatial 

frequency) repeated measures ANOVA. The main effects of CFS spatial 
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frequency (F(5,10)=14.5, p<.001; ηp
2=0.88) and gabor spatial frequency 

(F(5,10)=31.4, p<.001; ηp
2=0.94) on threshold elevation were significant. More 

important was the significant interaction between the spatial frequency conditions 

of the rival stimuli (F(25,50)=9.3, p<.001; ηp
2=0.8). Figure B.1 clearly shows a 

similar pattern in contrast threshold elevation as the results of Experiment 3.1 

(compare with Figure 2.6). Elevations in contrast thresholds resulting from low-

pass filtered CFS (center frequency: 0.5-4 cpd) produced elevated thresholds 

similar to those measured when the CFS was unfiltered (data obtained from 

Experiment 2.1). High-pass filtered CFS (8-16 cpd), however, produced very little 

elevation in thresholds, despite the fact that they were equated in contrast to low-

pass filtered CFS (15% RMS contrast). And so observers’ contrast sensitivity 

under these conditions were similar to that obtained in the absence of CFS 

(baseline). Results of Experiment B confirm that the low spatial frequency 

properties of the CFS display strongly modulate the selective suppression 

observed for low spatial frequency information presented to the other eye. 
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Figure B.1: Results of Experiment B. Group (left) and individual (right) log threshold 
elevations for detecting a gabor patch of given spatial frequency (bar color) is plotted as 
a function of the CFS spatial frequency bandpass filter. Note that the data for the 
unfiltered CFS display is data obtained from the same 3 observers from Experiment 2.1. 
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