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CHAPTER I 

 

INTRODUCTION 

 

Need for Point-of-Care Viral Detection 

An accurate diagnosis is critical for quickly implementing an effective 

response to an invasive pathogen.  There is a need for a fast and reliable 

detection method which can discriminate among a wide variety of pathological 

agents.  There are several effective antiviral medications but their effects are 

acute and it is extremely critical for the efficacy of the antiviral to be administered 

in the early stages of infection, therefore rapid and early diagnosis of a virus 

could lead to better treatment.  The primary use for point-of-care viral detection is 

the selection of pathogen-specific treatments, but correct identification of specific 

pathogen(s) can also help minimize the spread of infection and lead to more 

effective monitoring of long-term complications.   

Another important use for rapid virus detection in particular is in the control 

of over-prescription of antibiotics.  Viral infections are one of the most common 

reasons patients seek medical care, but the misdiagnosis of viral pathogens as 

bacterial has led to the over-prescription of antibiotics (McGowan and Tenover, 

1997).  Two major complications can arise from this misdiagnosis.  First, the 

virus is not effectively treated because antibiotics have no effect on a virus.  

Secondly, treatment with unnecessary antibiotics exacerbates the ever growing 

list of antibiotic resistance pathogens.  Thus point-of-care detection methods 
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which are inexpensive, simple, reliable, and sensitive would have a great impact 

on patient care. 

 In the following pages, traditional and genome-based viral detection 

methods are reviewed.  Pitfalls and limitations of these methods are highlighted.  

In addition to these topics, the extraction of nucleic acids from patient samples in 

both a laboratory and in a clinical setting is discussed.  

 

Traditional Virus Detection Methods 

 Currently there are several viral detection methods available.  

Conventional methods include the current gold standard using cell culture 

methods.  Additional methods include serology and antigen detection and 

diagnostic methods which include immunofluorescence (IF), and enzyme-linked 

immunosorbent assay (ELISA). 

 

Cell Culture 

Cell culture is considered the gold standard for the detection of most 

viruses, principally because it can provide characterization and identification of a 

viable viral pathogen.  It is performed by replicating or amplifying the viral 

pathogen in a suitable host system.  Host systems include laboratory animals or 

an incubated egg but it is most often a culture of cells.  Although it is both 

sensitive and specific, the procedure is expensive, labor intensive, requires a 

high level of expertise, and the results could take days to weeks.  For example, 
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one study showed the diagnosis of a clinical sample for respiratory syncytial virus 

(RSV) by cell culture took up 16 days (Ahluwalia et al., 1987).           

 

Serology 

 This method relies on the body’s immune response to invasion by a 

foreign body.  Serology characterizes the antibodies circulating in the blood.  

Antibody response varies, but typically beginning at the onset of an infection 

there is a rise in antibody titer which continues until the infection has cleared.  

There several serology techniques including ELISA, latex agglutination, 

precipitation, complement-fixation and immunofluorescence.  The technique 

implemented is dependent upon the antibody to be detected.  Serology is often 

used when other methods of virus detection are not possible or when too much 

viral shedding has occurred.  The specificity and sensitivity varies according to 

the technique used.  Disadvantages of serology include poor correlation with 

disease, high background titers, and cross-reactivity.  Serology was also shown 

to have limited diagnostic value when testing for RSV in children younger than 6 

months (Brandenburg et al., 1997).                   

 

Immunofluorescence 

 Immunofluorescence (IF) allows for direct fluorescent antigen labeling or 

indirect visualization of viral antigens by the use of fluorescently labeled 

monoclonal or antispecies antibodies.  This technique is relatively rapid and 

generates results in as little as 1-2 hours (Madeley and Peiris, 2002).  IF is most 
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commonly used to test nasopharyngeal aspirate specimens for respiratory viral 

infections such as respiratory syncytial virus (RSV), parainfluenza viruses, 

influenza A and B and adenovirus.  In order to analyze and obtain useable 

results from the specimen, there must be an adequate number of cells and the 

specimen must be of high-quality.  Therefore, IF requires highly skilled personnel 

to work.  Low sensitivity also remain a major issue with IF.  The method showed 

a detection of only 19% for respiratory viruses when the viral load was below 106 

copies per mL (Kuyper et al., 2006).            

 

Enzyme- Linked Immunosorbent Assay  

 Another common viral detection method that utilizes antibodies is enzyme-

linked immunosorbent assay (ELISA).  There are several different types of ELISA 

including indirect ELISA, sandwich ELISA, and competitive ELISA.  A typical 

ELISA begins by the passive absorption of a monoclonal or polyclonal capture 

antibody to the surface of a well in a microtiter plate, typically a 96-well plate.  A 

solution containing the antigen is then added to each well of the microtiter plate, 

followed by several washing and blocking steps.  A detection molecule is then 

added to each well, this molecule is often a monoclonal enzyme-linked antibody 

that is different than the capture antibody.  If the target virus is present an 

antibody sandwich is formed and any uncoupled antibody is removed in a rinse 

step.  Finally, the enzyme substrate is added which is converted by the enzyme 

linked to the detection antibody to elicit a chromogenic, fluorogenic, or 

electrochemical signal.  ELISA-based systems are often used for point-of-care 
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detection of RSV, influenza, and herpes simplex virus.  However there are major 

drawbacks.  For example, the monoclonal antibodies must be matched pairs 

otherwise they may hinder the binding onto the antigen, the conjugation of the 

enzyme to the antibody limits restricts the amplification and therefore limits the 

sensitivity of the assay, and the enzyme itself can reduce the immunoreactivity of 

the antibody.  Other limitations of antigen detection include false positives, long 

term antigen shedding, and narrow detection window.  ELISA has also been 

shown to have lower sensitivity but higher specificity than IF (Takimoto et al., 

1991).                     

 

Limitations of Traditional Virus Detection Methods 

Despite the wide use of traditional virus detection methods, they still have 

significant limitations.  Although cell culture produces conclusive and 

unambiguous results it requires days to perform.  While serology, IF, and ELISA 

may be faster to perform they are much lower in sensitivity and specificity.  Also 

a major pitfall of any antibody-based detection method is the inability to detect 

virus infection at an early stage. 

 

Genome-Based Virus Detection Methods 

An alternative to antibody-based detection is genome-based methods.  

Genome-based virus detection methods can potentially take full advantage of the 

ever expanding knowledge of viral genomics.  These methods such as 

polymerase chain reaction (PCR), ligase chain reaction (LCR), molecular 
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beacons and DNA microarrays offer potential advantages over traditional 

methods.  The presence and viability of a pathogen can be addressed without 

the need for culturing the organism, the tests are less time consuming so they 

report results faster, and it offers much higher sensitivity over antibody-based 

detection methods.  Genomic detection also can potentially more fully 

characterize a viral infection by identifying the subtype, genotype, variants, 

mutants, and genotypic resistance patterns.     

 

Polymerase Chain Reaction  

 There are three broad classifications of nucleic acid amplification methods 

and these include target amplification, probe amplification and signal 

amplification (Whelen and Persing, 1996).  Polymerase Chain Reaction (PCR) is 

a widely used clinical tool for target amplification.  It can be used for the direct 

detection of pathogen-specific DNA.  It is an extremely sensitive tool which can 

be used to detect molecules with a copy number as low as 1 molecule per 

milliliter, but typically detection is within the range of 10 to 100 molecules per 

milliliter (Palmer et al, 2003).  Reverse transcriptase can be added to the reaction 

to convert RNA to DNA, thus allowing for the use of PCR as an effective tool for 

the detection of viral RNA.  Also multiplex PCR assays allow for the testing of 

multiple viral pathogens simultaneously (Létant et at., 2007).   

The PCR process can be complex, for instance, primer design is a critical 

component for effectively amplifying the target region.  Primers are designed to 

flank the gene of interest and software is available to help with this process.  The 
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process starts by annealing the DNA to separate the strands to allow for binding 

of the primers.  Then in the presence of activated enzyme such as Taq 

polymerase and excess nucleotide bases, amplification of the target DNA then 

occurs through the repeated heating and cooling cycles (Saiki et al., 1988).  In 

traditional PCR, an agarose or polyacrylamide gel electrophoresis combined with 

a dye or fluorescent marker that binds to double-stranded DNA is used to detect 

the final PCR product.  Real time PCR allows for quantitative analysis of the final 

product by the measuring the increasing fluorescence during the PCR process of 

an intercalating dye added to the initial PRC mix, which binds to double-stranded 

DNA (Bustin, 2004).   

 Although there are many attractive features of PCR, it also has a number 

of disadvantages.  The highly sensitive nature of PCR creates an elevated risk of 

contamination, environmental contaminates or contamination from a previous 

sample which can easily introduce variation into PCR results.  The presence of 

DNase or RNase can destroy the target of interest and can also skew PCR 

results.  Therefore, to avoid these potential issues, PCR should be performed by 

a skilled technician in isolated areas which are specifically dedicated to PCR 

preparation.  PCR also requires a large investment in equipment which makes it 

extremely costly to perform.  PCR is extremely useful in research settings but it is 

less useful for point-of-care detection.          
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Ligase Chain Reaction 

 Ligase Chain Reactions (LCR), similar to PCR, is another technique to 

detect and amplify a target sequence.  However unlike PCR, which amplifies the 

target DNA, LCR instead amplifies the probe.  It is described as an 

oligonucleotide probe-based assay.  In this approach ligation of two sets of 

oligonucleotide pairs is triggered by hybridization to the target DNA (Widemann 

et al., 1994).  The probes are designed to so that the junction between the 3’ end 

of upstream and downstream primers coincides with the nucleotide that 

distinguishes one type of target from another.  A positive reaction occurs only 

when the appropriate target is present and is indicated by the ligation of the two 

sets of oligonucleotides.  If the target sequence matches the two adjacent 

oligonucleotides the ligated probes serve as templates and lead to a 2-fold 

amplification in the number of templates.  This is similar to, but less robust than 

the cycling process of PCR.  However, if there is a mismatch at the pair junction 

there is no ligation between the probes, and the oligonucleotides must be ligated 

in order to be detected.  A single base-pair mismatch can prevent ligation of the 

oligonucleotides, making LCR highly sensitivity for detecting single base-pair 

changes or mutations.  LCR has been shown to be as sensitivity as PCR for the 

detection of viruses (Marshall et al., 1994).  Detection strategies for LCR include 

gel electrophoresis or coupling with PCR.    
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 Molecular Beacons 

 Molecular beacons are single-stranded oligonucleotide probes used for 

the detection of specific nucleic acids.  They have been designed to take 

advantage of the stem-and-loop structure of single-stranded oligonucleotides.  

The probe is located in the loop region, and is designed to be complementary to 

the target DNA.  The loop sequence is flanked by a sequence containing a 

fluorophore on one end and a sequence containing a quencher on the other.  

The two flanking regions anneal to form the stem portion of the beacon, and this 

quenches the fluorphore.  However, in presence of target DNA the beacon forms 

a more stable structure by the hybridization of the target to the probe region, this 

opens up the beacon and separates the fluorophore from the quencher thus 

allowing the fluorophore to fluoresce (Tyagi and Kramer, 1996).                 

Molecular beacons can be used in conjunction with PCR, however there 

are uses for molecular beacons independent of PCR.  For example, viral RNA 

detection has been performed using 100 µm gold-clad filaments with covalently 

attached molecular beacons (Perez, Haselton, and Wright, 2009).  The DNA 

probe used was specifically designed to target an RSV gene end-intergenic start 

sequence, and due to the presence of multiple copies of this region it creates 

multiple targets for each strand of RNA.  The DNA functionalized filament was 

then placed in a series of microcapillary tubes containing 200 µL solutions.  The 

first tube contained viral RNA and was followed by wash solutions.  The analysis 

was done measuring the fluorescence of the filament using a flatbed microarray 

scanner.     
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DNA Microarrays 

 PCR, LCR, and molecular probes methods all require either specifically 

identified primers or probes to operate, meaning they all require a priori 

knowledge of the identity of the virus being tested.  DNA microarrays offer a 

diagnostic system which allows for screening samples without such specific a 

priori knowledge and they offer high levels of sensitivity, specificity, automation, 

and throughput capacity, all with reduced sample volume (Ivnitski et al., 2003).   

There are several techniques used to design DNA microarrays.  Generally 

a glass or silicone chip is used to covalently bond hundreds of oligonucleotides 

designed from various viral genomes.  For example, one approach allowed for 

the potential screening of hundreds of viruses simultaneously by utilizing 70-mer 

long oligonucleotides designed from over 140 sequence viral genomes (Wang et 

al., 2002).  Hybridization of the target DNA to the oligonucleotide probes is then 

detected using fluorphores.  Since the specific viral genome location on the 

microarray is known, the identity of the virus can be determined.          

 

Major Roadblock of Genome-Based Virus Detection Methods  

The complexity and reproducibility of the extraction of nucleic acids from 

patient samples remains one of the greatest limitations to genome-based virus 

detection methods.  Patient samples such as blood, urine, stool, cerebrospinal 

fluid, throat swabs, nasal washes, and nasal swabs contain contaminates which 

block the effectiveness of genomic detection methods.  For instance, it has been 

shown that high concentrations of carbohydrates present in clinical samples can 
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inhibit the results of PCR (Monteiro et al., 1997).  Also one of the biggest barriers 

for the implementation of microarrays in clinical settings is the complexity of the 

sample pretreatment and need for a method which is coupled and codependent 

in terms of sample volume, time, and reagent consumption (Lichtenberg, Rooij, 

and Verpoorte, 2002).  In addition to containing contaminants which inhibit 

genome-based detection, patient samples can also contain DNases and RNases, 

which over time, reduces the number of any target viral nucleic acids present in 

the samples.    

There are several ways to approach the issue of handling contaminants in 

patient samples.  One strategy is to identify and remove the contaminant, but this 

method would not be efficient considering that patient samples most likely 

contain several contaminants and the identification and extraction of each would 

be difficult and time consuming.  Another strategy adds a substance to the 

patient sample to remove the contaminant, but this only works if the contaminant 

could either be cleaved or absorbed and if the substance being added does not 

interfere with testing.  A third option is to extract target viral DNA or RNA from the 

patient sample and place it in a contaminant-free buffer.  Although this is a time-

consuming and labor intensive process, this is currently the strategy pursued by 

most laboratories.                          

 

Commercially Available RNA Extraction Kits/Reagents 

There are numerous commercially available methods used specifically to 

isolate RNA from animal cells and tissue samples.  The most popular of these 
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are the Invitrogen Dynabead mRNA Direct kit, Invitrogen TRIzol, the Qiagen 

RNeasy Mini kit, and the Qiagen MagAttract RNA Cell Mini M48 kit.  Each of 

these is briefly described below.       

 

Invitrogen Dynabeads mRNA Direct Kit 

 The Invitrogen Dynabead kit (Oslo, Norway) is designed to isolate mRNA 

from crude lysates of cells and tissue.  It utilizes magnetic beads with a 

covalently bound short sequence of oligo-dT on the surface, and relies on the 

hybridization of the polyA tail of mRNA to the bead-bound oligo-dT for extraction.  

The lysate is mixed with the provided lysis/binding buffer and then added to the 

dynabeads.  Then the beads are washed with a series of wash buffers, also 

provided in the kit.  And finally the isolated mRNA is extracted from the beads 

using the elution buffer.  

 

Invitrogen TRIzol 

TRIzol (Invitrogen, Oslo, Norway) is a monophasic solution of phenol and 

guanidine thiocyanate used for isolating total RNA, DNA and proteins from cell 

and tissue samples.  TRIzol disrupts cells and cellular components without 

disrupting the integrity of the nucleic acids (Simms, Cizdziel, and Chomczynski, 

1993).  The lysate and TRIzol after centrifugation and the addition of chloroform 

separates into an aqueous phase, which contains the RNA, and an organic 

phase, which contains DNA and proteins.  Isopropanol is used to precipitate the 

RNA and ethanol is used to precipitate DNA.  Although it is an effective reagent 
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for isolating, phenol interferes with PCR amplification and therefore necessitates 

removal of the phenol.  Another disadvantage of using TRIzol is that it contains 

toxic substances such as phenol and chloroform.     

 

Qiagen RNeasy Mini Kit  

 The Qiagen RNeasy Mini kit (Germantown, MD), which is based on silica-

membrane technology, is designed for the purification of total RNA from cells and 

tissues.  The sample with lysis buffer is added to the RNeasy Mini spin column, 

which contains a silica-membrane that binds RNA.  Spin or vacuum technology 

paired with wash buffers are then used to eliminate contaminants.  The purified 

RNA is extracted from the membrane in a final elution step.  This procedure is 

very rapid, in fact, a purification can be obtained in a matter of minutes which is 

ideal for a clinical setting. However, it still requires the use of lab equipment such 

as a centrifuge or a vacuum pump which are not typically available in a 

physician’s office.  

 

Qiagen MagAttract RNA Cell Mini M48 Kit 

 Similar to the RNeasy Mini Kit, the Qiagen MagAttract RNA Cell Mini M48 

kit (Germantown, MD) is intended for the purification of total RNA from cells.  

Silica coated magnetic beads are used to bind nucleic acid contained in cell 

lysates.  Then, similar to the Invitrogen Dynabeads kit, the beads are treated with 

a series of wash buffers to eliminate contaminates.  Then finally the RNA is 

eluted from the silica beads with an elution buffer.  One of the major drawbacks 

 13



of using the MagAttract RNA M48 kit is that it is intended to be used in 

conjunction the Qiagen BioRobot M48 workstation.  It can be used without the 

assistance of the BioRobot, but the manual instructions are not optimized for this.      

 

Ideal Purification for Patient Samples in a Clinical Setting 

The best extraction technique would be simple, safe, fast, cheap, and 

effective.  It needs to be simple so that it does not require the use of a skilled 

technician in order to get the desired results.  Since it will be used within a clinical 

setting it should not be hazardous.  Time is an important factor and the 

preparation of a patient sample should not take longer to perform than the 

detection analysis.  Integration of the extraction strategy into a point-of-care 

device would be difficult if the process was costly therefore it is important that it 

remains inexpensive.  Most important the method needs to isolate enough target 

to run the desired virus detection test.       

An ideal viral detection device allows for the patient sample to be prepared 

and analyzed in a clinical setting, giving accurate and reliable results in short 

amount of time, without requiring the use of skilled technicians, and without 

requiring the need for expensive laboratory equipment.  No existing kit or reagent 

fulfills all of the requirements.  For example, TRIzol may be a simple and cheap 

technique but the trade-off is toxicity, because it requires the handling of 

potentially hazardous chemicals.  Of the kits listed, the RNeasy Mini kit is the 

fastest extraction however, it requires the use of a centrifuge or vacuum which 

increases both the complexity and cost of using this kit for extractions.  The 
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magnetic separation techniques such as Dynabead and MagAttract kits, offer 

certain advantages over the other standard separation procedures.  Magnetic 

separation can be extremely cost effective because of the possible recovery and 

reuse of the magnetic particles (Safarik and Safarikova, 2004).  The 

disadvantage of using the Dynabead or MagAttract kits are that they require 

precise pipetting and handling of several solutions, making them less attractive 

for clinical use.  The kits listed are designed to be used by skilled lab technicians, 

and although they may be the quickest and simplest method for performing 

extraction of genomic target from patient samples in a laboratory, they are not 

the best method for performing extractions in a clinical setting.                 

 

Components of Proposed Magnetic Pull-through Capillary RNA Extraction 

 The goal of this thesis is to design a simple extraction method that is more 

appropriate for use in a clinical setting.  The proposed RNA extraction method 

uses a modified magnetic separation technique to perform the extraction.  The 

components of this proposed method are sketched in Figure 1.  The basic idea of 

this approach combines magnetic entrapment of silica-coated beads and surface 

tension confinement of processing solutions.  In this approach, the sample is 

combined with a lysis buffer and mixed with silica-coated magnetic beads.  Six 

sequential capillary chambers aligned horizontally, with air spacers in between 

each capillary.  The first capillary chamber is initially empty while the other five 

chambers are pre-loaded with processing solutions.  The sample mixed with the 
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Figure 1. Capillary chambers were arranged sequentially on a horizontal stage.  Sample 
lysate with lysis buffer and magnetic beads are added to the first chamber.  As a magnet is 
moved over the exterior of the capillaries the magnetic beads are pulled through the 
chambers and transferred to chamber 6.  This process washes, rinses and elutes RNA from 
the sample lysate.   

lysis buffer and beads is loaded into the empty first chamber.  The 2nd, 3rd, and 

4th chambers are filled with wash buffers.  The 5th chamber is filled with a rinse  

buffer, and the final chamber is filled with an elution buffer.  After the sample is 

added to the first chamber a magnet is placed on the outside of the capillary 

tube.  The beads are attracted to the magnet, and as the magnet is pulled down 

over the wash capillaries, then over the rinse capillary, and then finally over the 

elution capillary the beads follow the magnet.  Because of the small capillary 

diameter (~2mm) the processing solutions do not follow the magnetic beads.  

The spacers between each capillary allow for movement of the beads without 

removal of the buffer from the capillary chamber because the solutions are held 

in place by surface tension.  Figure 2 shows the movement of the beads across a 

spacer.  This allows for sufficient washing of contaminants from the beads and  
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Figure 2. The beads follow the magnet as the magnet is moved from left to right.  Blue 
represents the processing solutions and the air spacers between them allow for movement of 
the beads from one capillary to the next without transferring solutions.  The retention of the 
solution is due to surface tension holding the solution within the capillary chamber.  

 

for the extraction of viral RNA present in the patient sample.  This method does 

not require a skilled technician to perform it and it does not require any additional 

equipment such as a centrifuge.  It only requires a magnet.  This method also 

does not require pipetting or handling of hazardous chemicals.  Finally, the time 

required to perform this extraction is minimal since it basically removes all liquid 
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handling steps.  The design has the potential to dramatically improve viral RNA 

extractions from patient samples in a clinical setting.                 

 

Overall Study Design 

The next section provides additional details of the proposed magnetic pull-

though capillary RNA extraction method and compares its performance to three 

commercially available extraction kits: Invitrogen Dynabead mRNA Direct kit, the 

Qiagen RNeasy Mini kit, and the Qiagen MagAttract RNA Cell Mini M48 kit.  

Each kit is used to extract viral RNA from patient samples known to contain 

respiratory syncytial virus (RSV).    
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CHAPTER II 
 
 
 

DEVELOPMENT OF A NOVEL VIRAL RNA EXTRACTION METHOD 

 

Abstract 

The complexity and reproducibility of the extraction of nucleic acids from 

patient samples remains one of the greatest limitations to genome-based virus 

detection methods.  This report describes magnetic pull-through capillary RNA 

extraction method which uses a magnetic to pull magnetic silica beads through a 

series of capillary chambers separated by air spacers to isolate RNA from clinical 

samples.  The pull-through method and the extraction obtained from this 

approach is compared to three commercially available RNA extraction kits: 

Qiagen RNeasy Mini Kit, Qiagen MagAttract RNA Cell Mini M48 kit, Invitrogen 

Dynabeads mRNA Direct kit.  RT-PCR was used to calculate cycle threshold and 

the number of RNA copies per µL.  Clinical samples known to be positive for 

RSV had a copy number of 3 copies per µL for raw sample, 4,577 copies per µL 

for extractions performed using RNeasy kit, µL 755 copies per µL for extractions 

performed using Dynabeads kit, 973 copies per µL for extractions performed 

using MagAttract kit, and 531 copies per µL for extractions performed using the 

magnetic pull-through capillary method..  The proposed magnetic pull-through 

capillary method is simpler, less time consuming, and requires less additional 

equipment than most commercially available RNA extraction kits. This platform 

may prove attractive for point-of-care settings.   
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Introduction 
 

An accurate diagnosis is critical for quickly implementing an effective 

response to an invasive pathogen.  There is a need for a fast and reliable 

detection method which can discriminate among a wide variety of pathological 

agents.  There are several effective antiviral medications but their effects are 

acute and it is extremely critical for the efficacy of the antiviral to be administered 

in the early stages of infection, therefore rapid and early diagnosis of a virus 

could lead to better treatment.  The primary use for point-of-care viral detection is 

the selection of pathogen-specific treatments, but correct identification of specific 

pathogen(s) can also help minimize the spread of infection and lead to more 

effective monitoring of long-term complications.   

Another important use for rapid virus detection in particular is in the control 

of over-prescription of antibiotics.  Viral infections are one of the most common 

reasons patients seek medical care, but the misdiagnosis of viral pathogens as 

bacterial has led to the over-prescription of antibiotics (McGowan and Tenover, 

1997).  Two major complications can arise from this misdiagnosis.  First, the 

virus is not effectively treated because antibiotics have no effect on a virus.  

Secondly, treatment with unnecessary antibiotics exacerbates the ever growing 

list of antibiotic resistance pathogens.  Thus point-of-care detection methods 

which are inexpensive, simple, reliable, and sensitive would have a great impact 

on patient care. 
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The complexity and reproducibility of the extraction of nucleic acids from 

patient samples remains one of the greatest limitations to genome-based virus 

detection methods.  Patient samples such as blood, urine, stool, cerebrospinal 

fluid, throat swabs, nasal washes, and nasal swabs contain contaminates which 

block the effectiveness of genomic detection methods.  For instance, it has been 

shown that high concentrations of carbohydrates present in clinical samples can 

inhibit the results of PCR (Monteiro et al., 1997).  Also one of the biggest barriers 

for the implementation of microarrays in clinical settings is the complexity of the 

sample pretreatment and need for a method which is coupled and codependent 

in terms of sample volume, time, and reagent consumption (Lichtenberg, Rooij, 

and Verpoorte, 2002).  In addition to containing contaminants which inhibit 

genome-based detection, patient samples can also contain DNases and RNases, 

which over time, reduces the number of any target viral nucleic acids present in 

the samples.    

There are several ways to approach the issue of handling contaminants in 

patient samples.  One strategy is to identify and remove the contaminant, but this 

method would not be efficient considering that patient samples most likely 

contain several contaminants and the identification and extraction of each would 

be difficult and time consuming.  Another strategy adds a substance to the 

patient sample to remove the contaminant, but this only works if the contaminant 

could either be cleaved or absorbed and if the substance being added does not 

interfere with testing.  A third option is to extract target viral DNA or RNA from the 

patient sample and place it in a contaminant-free buffer.  Although this is a time-
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consuming and labor intensive process, this is currently the strategy pursued by 

most laboratories.  

The best extraction technique would be simple, safe, fast, cheap, and 

effective.  It needs to be simple so that it does not require the use of a skilled 

technician in order to get the desired results.  Since it will be used within a clinical 

setting it should not be hazardous.  Time is an important factor and the 

preparation of a patient sample should not take longer to perform than the 

detection analysis.  Integration of the extraction strategy into a point-of-care 

device would be difficult if the process was costly therefore it is important that it 

remains inexpensive.  Most important the method needs to isolate enough target 

to run the desired virus detection test.       

An ideal viral detection device allows for the patient sample to be prepared 

and analyzed in a clinical setting, giving accurate and reliable results in short 

amount of time, without requiring the use of skilled technicians, and without 

requiring the need for expensive laboratory equipment.  No existing kit or reagent 

fulfills all of these requirements. This paper provides details of a proposed 

magnetic pull-though capillary RNA extraction method and compares its 

performance to three commercially available extraction kits: Invitrogen Dynabead 

mRNA Direct kit, the Qiagen RNeasy Mini kit, and the Qiagen MagAttract RNA 

Cell Mini M48 kit.   
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Materials and Methods 

 

Clinical Samples 

 Clinical samples were obtained from Dr. John William’s lab (Vanderbilt 

University Hospital, Nashville, TN).  A total 840 de-identified nasal swabs that 

had been placed in opti-MEM media (Invitogen, Oslo, Norway) and frozen at -

80°C were available for this study.  Each sample was previously characterized 

for respiratory syncytial virus (RSV) using RT-PCR.  They were characterized 

after an extraction using Roche Total Nucleic Acid Extraction Kit (Basel, 

Switzerland), and real-time RT-PCR was performed using Roche LC Magna Pure 

machine (Basel, Switzerland).  We obtained samples which tested positive for 

RSV and positive samples were determined to be samples that had a calculated 

cycle threshold (Ct).  We also obtained samples which tested negative for RSV 

and negative samples were determined to be the ones which did not have a 

calculated cycle threshold (Ct) within the cycles that were performed.      

 

Real time RT-PCR 

Rt-PCR was used to estimate the number of viral copies in the test solutions.  

Real time RT-PCR was performed using a Rotor-Gene Q (Qiagen, Germantown, 

MD).  Reactions were done in a 25 μL volume using 0.5μL of either raw clinical 

samples or samples that had RNA extractions performed using various different 

kits, 12.5 μL of 2X One-Step qRT-PCR Buffer plus SYBR (Clontech, Mountain 

View, CA), 0.5 μL of 50X QTaq DNA Polymerase Mix (Clontech, Mountain View, 
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CA), 0.4μL of 60X qRT Mix (Clontech, Mountain View, CA), 200nM left and right 

RSV primers, and RNase-free water.  The protocol consisted of RT followed by a 

three-step PCR.  RT was performed at 48°C for 20 minutes followed by an initial 

QTaq DNA polymerase activation step of 95°C for 3 minutes and 40 cycles at 

95°C for 15 seconds to denatures, 60°C for 60 seconds to anneal and extend, 

and fluorescence measurements were made after each cycle.  Specificity of the 

amplification was confirmed using melting curve analysis.  Data were collected 

and recorded by [insert software name] and expressed as a function of threshold 

cycle (Ct).  The primer set used was RSV forward primer 5’-

GCTCTTAGCAAAGTCAAGTTGAAATGA-3’ and RSV reverse primer 5’-

TGCTCCGTTGGATGGTGTATT-3’.  The primers were purchased from 

Biosearch Technologies (Novato, CA).  Data was collected and recorded by 

Rotor-Gene Q Software (Qiagen, Germantown, MD) and expressed as a function 

of threshold cycle (Ct) and number of copies of RNA per μL.  Every RT-PCR trial 

was performed with two standard samples from the standard curve, and copy 

number was obtained using a standard curve to relate Ct to starting copy.  Every 

RT-PCR test was performed in triplicate and the results were recorded as an 

average.     

 

PCR Standard Curve for RSV  

 E. coli transformed with the RSV N-gene cloned into pcDNA3.1(-) vectors 

was received from the Crowe Lab (Vanderbilt University, Nashville, TN).  E. coli 

was grown overnight in Miller’s LB Broth (Invitrogen, Oslo, Norway) at 37°C on a 
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rotating rack.  The next day, growth was confirmed by the turbidity of the broth 

and the plasmid was extracted using a Qiagen Spin Miniprep Kit (Germantown, 

MD).  The concentration of extracted plasmid DNA was then calculated using 

UV-Vis spectroscopy.  The purified plasmid was linearized using Pvu I restriction 

enzymes.  Linearization was confirmed by running both pre- and post-linearized 

plasmids on a 1% agarose gel.  Linearized plasmid was purified using ethanol 

precipitation.  The plasmid was then transcribed into RNA using a T7 

MEGAscript transcription kit (Ambion, Austin, TX).  Appropriate RNA length was 

confirmed on a denaturing agarose-formaldehyde gel.  The N-gene RNA was 

then quantified using UV-Vis spectroscopy.  N-gene RNA was separated into 

aliquots and stored at -80°C.  Ten-fold standard curve dilutions were made in TE 

buffer (Ambion, Austin, TX) ranging from 107 copies per µL to 101 per µL, and 

RT-PCR was performed to create a standard curve comparing the number of 

RNA copies per µL to cycle threshold (Ct).  

 

Comparison of the extraction kits on patient samples 

 RT-PCR was performed on 7 positive and 7 negative clinical samples.  

Comparison were made of the cycle threshold (Ct) and number of copies of RNA 

per µL based on the RT-PCR results performed on patient samples before RNA 

extraction (raw sample) and after RNA extractions using the RNeasy Mini kit 

(Qiagen, Germantown, MD), MagAttract RNA Cell Mini M48 kit (Qiagen, 

Germantown, MD), Dynabeads mRNA Direct kit (Invitrogen, Oslo, Norway), and 

the magnetic pull-though capillary method.       
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RNA Extraction using Magnetic Pull-Through Capillary Method 

 The magnetic pull-though capillary method was used to isolate RNA from 

sample lysates.  Glass capillary chambers were cut from ¼ inch stock tubing into 

80 mm lengths, and the ends were flared outward.  The exterior diameter of the 

chamber is 6mm and the interior diameter of the chambers is 2mm.  Six capillary 

chambers were aligned linearly on the top of a horizontal aluminum stage using 

machined aluminum mounts.  A 1000 μL pipette tip was placed as a spacer in 

between each capillary chamber with the wide end of the pipette tip around the 

preceding capillary chamber and the narrow end sitting the in flared region of the 

next capillary chamber.  The arrangement of the chambers and spacers is 

depicted in Figure 3. The MagAttract RNA Cell Mini M48 kit magnetic beads and 

buffers (Qiagen, Germantown, MD)  were used in conjunction with the magnetic 

pull-though capillary system.  The 1st capillary chamber was initially left empty.  

Chambers 2 to 6 were pre-filled with the processing reagents supplied by 

Qiagen.  The 2nd chamber was filled with 200 μL of MW wash buffer (Qiagen, 

Germantown, MD).  The 3rd and 4th chambers were each with 200 μL of RPE 

wash buffer (Qiagen, Germantown, MD).  The 5th chamber was filled with 200 μL 

of RNase-free water.  The 6th and last chamber was filled with 30 μL RNase-free 

water at 65º C.  Thirty μL of sample lysate was added to 150 μL buffer RLT 

(Qiagen, Germantown, MD) and vortex.  The lysate was then passed though a 

20-gauge needle 5 times.  Twenty μL of the MagAttract bead solution (Qiagen, 

Germantown, MD) was added to the lysate and buffer RLT, the mixture was then 
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vortexed, and placed on a mixer for 5 minutes at room temperature.  Two 

hundred μL of the lysate, buffer RLT, and MagAttract bead sample was then 

loaded into the first capillary chamber.  A 2.54cm cube of grade 40NdFeB 

magnet (National Imports, Vienna, VA) was placed on top of the first capillary 

chamber then the magnet was slowly pulled at a rate of ~4mm per second 

sequentially along all the spacers and capillary chambers, all the way to the 6th 

and final chamber, the total pull-through time was just under  2 mintues.  Once 

the magnet was on top of the 6th chamber, the elution was collected.  An 

illustration of the movement of the beads across an air spacer is shown in Figure 

4.  The magnet used generates a magnetic field between 100 and 500mT and 

has a magnetic field gradient of 45Tm-1 (Kuhn, Hallahan, and Giorgio, 2006).                            
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Magnet

Magnetic beads

1                       2                       3               4                        5                       6

Magnet

Magnetic beads

1                       2                       3               4                        5                       6

Magnet

Magnetic beads

Magnet

Magnetic beads

 
 

 

Figure 3. Capillary chambers were arranged sequentially on a horizontal stage.  Sample 
lysate with lysis buffer and magnetic beads are added to the first chamber.  As a magnet is 
moved over the exterior of the capillaries the magnetic beads are pulled through the chambers 
and transfers the beads to chamber 6.  This process washes, rinses and elutes RNA from the 
sample lysate.  
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Figure 4. The beads follow the magnet as the magnet is moved from left to right.  The small 
capillary diameter which creates high surface tension and the air spacers allow for movement 
of the beads from one capillary to the next without transferring buffer from one capillary 
chamber to the next.  
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RNA Extraction using RNeasy Mini Kit 

The RNeasy Mini kit (Qiagen, Germantown, MD) was used to isolate RNA 

from sample lysates following the manufacturer’s instructions.  Briefly, 100 μL of 

sample lysate was added to 600 μL buffer RLT (Qiagen, Germantown, MD) and 

then vortexed.  The lysate was then passed though a 20-gauge needle 5 times.  

Then one volume of 70% ethanol was added, then vortexed.  Seven hundred μL 

of the sample was added to the RNeasy spin column (Qiagen, Germantown, 

MD). The spin column was centrifuged at 10,000 rpm for 15 seconds and the 

flow-though was discarded.  Seven hundred μL buffer RW1 (Qiagen, 

Germantown, MD) was added to the spin column, the spin column was 

centrifuged at 10,000 rpm for 15 seconds, and the flow-though was discarded.  

Five hundred μL buffer RPE (Qiagen, Germantown, MD) was added to the spin 

column, centrifuged at 10,000 rpm for 15 seconds, and the flow-though was 

discarded.  Five hundred μL Buffer RPE was added to the spin column, 

centrifuged at 10,000 rpm for 2 minutes, and then the flow-though was discarded.  

For the elution of the RNA from the spin column,50 μL RNase-free water was 

added to the spin column and then centrifuged at 10,000 rpm for 1 minute and 

the flow-though was collected. 

 

RNA Extraction using MagAttract RNA Cell Mini M48 Kit  

The MagAttract RNA Cell Mini M48 kit (Qiagen, Germantown, MD) was 

used to isolate RNA from sample lysates.  The extraction was performed 
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manually instead of with the assistance of the Qiagen BioRobot M48 workstation 

(Germantown, MD).  One hundred μL of sample lysate was added to 600 μL 

buffer RLT (Qiagen, Germantown, MD) and then vortexed.  The lysate was then 

passed though a 20-gauge needle 5 times.  Sixty μL of the MagAttract bead 

solution (Qiagen, Germantown, MD) was added to the 700 μL of the lysate mixed 

with lysis buffer, vortexed, and then placed on a mixer for 5 minutes at room 

temperature.  The beads were separated on a magnet, supernatant discarded 

and 900 μL of MW wash buffer (Qiagen, Germantown, MD) was added and the 

bead were re-suspended and vortexed.  The beads were separated on a magnet, 

supernatant discarded and 900 μL of RPE wash buffer (Qiagen, Germantown, 

MD) was added and the beads were re-suspended and vortexed, and this was 

repeated once more. The beads were separated on a magnet, supernatant 

discarded and 1 mL RNase-free water was added and pipette 3 times over the 

beads without moving the beads from the magnet.  For elution of the RNA from 

the magnetic beads 50 μL of RNase-free water at 65º C was added, then beads 

were re-suspended and vortexed.  The beads were separated on a magnet and 

the elution was collected.                             

 

RNA Extraction using Dynabeads mRNA Direct Kit 

The Dynabeads mRNA Direct Kit (Invitrogen, Oslo, Norway) was used to 

isolate RNA the sample lysates following the manufacturers instructions.  Briefly, 

100 μL of sample lysate was added to 600 μL buffer RLT and then vortexed.  

The lysate was then passed though a 20-gauge needle 5 times.  Two hundred 
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and fifty μL Dynabeads (Invitrogen, Oslo, Norway) were placed in 1.5 mL 

eppendorff tube and placed on a magnet, supernatant was removed, and 250 μL 

lysis/binding buffer (Invitrogen, Oslo, Norway) was added.  The beads were 

separated on a magnet, supernatant was removed, 700 μL of the lysate was 

added.  The beads were vortexed and placed on a mixer for 5 minutes at room 

temperature.  The beads were separated on a magnet, supernatant discarded 

and 1 mL of washing buffer A (Invitrogen, Oslo, Norway) was added.  The beads 

were re-suspended and then vortexed.  The beads were separated on a magnet, 

supernatant discarded and 1 mL of washing buffer B (Invitrogen, Oslo, Norway) 

was added and the beads were re-suspended and vortexed., and this was 

repeated once more.  For the removal of the RNA from the beads 50 μL of 10mM 

Tris-HCL elution buffer (Invitrogen, Oslo, Norway) was added, the beads were re-

suspended, vortexed then incubated at 65º C for 2 minutes.  The beads were 

separated on a magnet and the elution was collected.      

      

RNA Extraction kit efficiency test 

Extraction methods were compared under idealized lab conditions.  

Extracted RSV N-gene RNA was diluted in TE buffer (Ambion, Austin, TX) to 105 

copies per µL.  Comparison were made of the threshold cycle (Ct) and number of 

copies of RNA per µL based on the RT-PCR results performed on the RSV N-

gene RNA run without RNA extraction (raw sample) and after RNA extractions 

using the RNeasy Mini kit (Qiagen, Germantown, MD), MagAttract RNA Cell Mini 
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M48 kit (Qiagen, Germantown, MD), and the magnetic pull-though capillary 

method.      

 

Spiked negative clinical samples 

The RSV N-gene RNA was added to negative nasal swab samples as 

means to control the viral concentration in an environment that otherwise 

resembles a clinical sample.  Three spiked negative clinical samples containing 

105 copies of RNA per µL each were made by adding 20 µL of RSV N-gene RNA 

to 180 µL of a negative clinical sample.  RT-PCR was used to determine the 

cycle threshold (Ct) of spiked samples before and after extraction using RNeasy 

Mini kit.  Comparison were made of the cycle threshold (Ct) and calculated 

number of copies of RNA per µL based on the RT-PCR results performed on the 

spiked negative clinical samples tested without RNA extraction (raw sample) and 

after RNA extractions using the RNeasy Mini kit (Qiagen, Germantown, MD).      

 

Results and Discussion 

 

Comparison of extraction under ideal conditions 

 A comparison of viral RNA extraction from TE buffer found that the 

RNeasy Mini kit was the most efficient with a recovery of 37.8% ± 17.3%, Qiagen 

MagAttract was second with 27.0% ± 4.8%, and the magnetic pull-through was 

the least efficient with a recovery of 11.7% ± 4.8%.  These results are shown in 

Figure 5, the raw data for the threshold cycle can be found in Appendix Table 1, 
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the raw data for the number of copies can be found in Appendix Table 2, and the 

number of copies normalized to the original can be found in Appendix Table 3.  

The efficiency of the all extraction methods including the commercial kits was 

lower than expected especially considering that the RNA was being extracted 

from TE buffer and not from a clinical samples containing potential contaminants. 

The lower performance of the MagAttract kit as compared to the RNeasy kit is 
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Figure 5. Comparisons were made of the number of copies of RNA per µL before and after 
extraction from TE buffer.  The percent recovery was calculated by dividing the copy number 
values for each extraction method by the copy number obtained before extraction.  Tests were 
run in triplicate and shown as means ± standard deviation (N=3).
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not surprising considering that particular kit is designed to work most optimally 

with the use of the Qiagen BioRobot M48 workstation, and since the extraction 

was performed manually it was expected that the extraction would not be as 

effective.  Although the magnetic pull-through capillary method did not perform as 

well as the commercial kits did, the results show that this method extracts a 

significant fraction of viral RNA which is readily detected by RT-PCR.   

 

Extraction from negative clinical samples 

 The number of RSV RNA copies per µL, as measured by RT-PCR, of un-

isolated negative clinical sample spiked with 105 RSV RNA was calculated to be 

11,000 ± 1,500 copies per µL.  The same negative clinical sample spiked with 

RSV RNA and isolated using the RNeasy Mini kit showed a much higher copy 

number of 27,000 ± 7,020 copies per µL.  The cycle threshold data is listed in 

Appendix Table 4 and the copy number data can be found in Appendix Table 5.  

The data was normalized to the original copy number present in the spiked 

negative clinical sample, and this data is listed in Appendix Table 6.  The results 

for the percent recovery of RSV RNA from spiked negative clinical samples are 

shown in Figure 6.  The percent recovery before extraction was 11% ± 1% RSV 

RNA and after extraction was 28% ± 7% RSV RNA.  The lower copy number and 

low percent recovery of the raw sample shows the negative effects which 

contaminants within patient samples have on viral detection methods such as 

RT-PCR.  The over 2-fold increase in copy number and percent recovery after 

extraction confirms that running an extraction is necessary to rid the sample of 
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contaminants which affect the results of RT-PCR.  The comparison of RSV RNA 

recovery from TE buffer and from spiked negative clinical samples after 

extraction using the RNeasy Mini kit is shown in Figure 7.  There is a higher 

percent recovery when extracting from TE buffer than from a sample which 
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Figure 6. Comparisons were made of the number of copies of RNA per µL before and after 
extraction using RNeasy Mini kit from negative clinical samples spiked with RSV N-gene RNA.  
The percent recovery was calculated by dividing the copy number values for before and after 
extraction by the copy number known to be in the sample.  Tests were run in triplicate and 
copy number was calculated and shown as means ± standard deviation (N=3).  
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Figure 7. Comparison of RSV RNA recovery from TE buffer and from spiked negative clinical 
samples after extraction using the RNeasy Mini kit.  The percent recovery was calculated by 
dividing the copy number values for before and after extraction by the copy number known to 
be in the sample.  Tests were run in triplicate and copy number was calculated and shown as 
means ± standard deviation (N=3).  

 

contains containments, so although extraction is necessary to remove 

containments it does not remove all containments which affect RT-PCR results.           

 

Comparison of the extraction kits on patient samples 

The number of RSV RNA copies per µL, as measured by RT-PCR, of un-

extracted RSV positive clinical samples was calculated to be 3 ± 3 copies per µL.  

The same RSV positive clinical samples after extraction was shown to be 4,400 ± 

10,000 copies per µL for extractions done using RNeasy Mini kit, µL 750 ± 1,300 

copies per µL for extractions done using Dynabeads Direct kit, 940 ± 1,000 

copies per µL for extractions done using MagAttract kit, and 510 ± 800 copies per 
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µL for extractions done using the magnetic pull-through capillary method.  The 

number of RSV RNA copies per µL, as measured by RT-PCR, of un-isolated 

RSV negative clinical samples was calculated to be 0.1 ± 0.2 copies per µL and 

the same RSV positive clinical samples after running extractions was shown to 

be  0.7 ± 1.8 copies per µL for extractions done using RNeasy Mini kit, µL 0.1 ± 

0.2 copies per µL for extractions done using Dynabeads Direct kit,  0.1 ± 0.4 

copies per µL for extractions done using MagAttract kit, and 1.0 ± 1.8 copies per 

µL for extractions done using the magnetic pull-through capillary method.  These 

results are shown in Figure 8.  The data for RSV positive clinical sample cycle 

threshold is in Appendix Table 7, data for RSV negative clinical sample cycle 

threshold is in Appendix Table 8, data for RSV positive clinical sample copy 

number is in Appendix Table 10, data for RSV negative clinical sample copy 

number is in Appendix Table 11.  There is high variation in the average data for 

each kit tested but this variation is largely due to the variation of the clinical 

samples.  Although there is also variation amongst the extraction methods and to 

show this variation a comparison of the cycle threshold (Ct) of the positive clinical 

samples was made and the samples were ranked in order of lowest value to 

highest.  A listing of the ranking for before and after extraction with the various 

methods is shown in Appendix Table 9.   
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Figure 8. Comparisons were made of the number of copies of RNA per µL before and after 
extraction from positive clinical samples (black bars) and negative clinical samples.  
Extractions were performed on 7 positive and 7 negative clinical samples using RNeasy Mini 
kit, Dynabeads mRNA Direct kit, MagAttract RNA Cell Mini M48 kit, and the magnetic pull-
through capillary method.  Tests were performed in triplicate and results are shown as means 
± standard deviation (N=7).  Note the y log-scale, which tends to mask the high standard 
deviations are greater than they appear. 

The best extraction technique for use in a physician’s office would be 

simple, safe, fast, cheap, and effective.  The data shows the magnetic pull-

though capillary method performs similarly to several frequently used commercial 

kits.  The steps for extraction, time necessary and the equipment needed are 

listed in Appendix Table 12 for the RNeasy kit, Appendix Table 13 for the 

Dynabead kit, Appendix Table 14 for the MagAttract kit, and Appendix Table 15 
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for the magnetic pull-through capillary method.  Comparisons of the kits are 

shown in Appendix Table 16.  The magnetic pull-through capillary methods does 

not require as much sample or buffer volume per extraction.  The magnetic pull-

through capillary method has the fewest steps compared with the commercially 

available kits.  The majority of the time and the extra equipment needed for the 

magnetic pull-through capillary method are used in the disruption and 

homogenization of the clinical sample.  Greater optimization of the disruption and 

homogenization could eliminate most of the time necessary to run the extraction 

and could eliminate the use of a 20-gauge needle and syringe, vortex, and a 

rotating mixer, which would remove most of the extra equipment.  Comparing the 

performance and the steps, time, and equipment needed for performing the 

extraction the magnetic pull-through capillary method would be the best for use in 

a clinical setting.  Although the trade-off is a lower efficiency performance, it is 

the quickest, contains the least number of steps, and requires little additional 

equipment.                             

 

Conclusion 

 In summary, the current magnetic pull-through capillary RNA extraction 

method is useful in the extraction of RNA from clinical samples.  It is simpler, less 

time consuming, and requires less additional equipment. This design has the 

potential to be useful in a clinical setting.  Further optimization of the magnetic 

pull-through capillary RNA extraction method is necessary to improve extraction 

efficiency.            
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APPENDIX 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Threshold cycle (Ct)) based on the RT-PCR results were calculated for three 
samples containing RSV N-gene RNA that were performed without RNA extraction (raw 
sample) and after RNA extractions using the RNeasy Mini kit, MagAttract RNA Cell Mini M48 
kit, and the magnetic pull-though capillary method.  Tests were run in triplicate. 

Efficiency Test of Isolation Methods (Threshold Cycle (Ct))

Sample # Raw RNeasy MagAttract Pull-Through

Sample 1 14.62 17.09 16.37 18.78

Sample 2 14.58 16.11 16.88 17.84

Sample 3 14.58 15.51 16.65 17.37

Average 14.59 16.24 16.63 18.00

Standard Deviation 0.03 0.79 0.25 0.72

Efficiency Test of Isolation Methods (Threshold Cycle (Ct))

Sample # Raw RNeasy MagAttract Pull-Through

Sample 1 14.62 17.09 16.37 18.78

Sample 2 14.58 16.11 16.88 17.84

Sample 3 14.58 15.51 16.65 17.37

Average 14.59 16.24 16.63 18.00

Standard Deviation 0.03 0.79 0.25 0.72

Table 2. The number of copies of RSV RNA per µL based on the RT-PCR results were 
calculated for three samples containing RSV N-gene RNA that were performed without RNA 
extraction (raw sample) and after RNA extractions using the RNeasy Mini kit, MagAttract RNA 
Cell Mini M48 kit, and the magnetic pull-though capillary method.  Tests were run in triplicate.  

Efficiency Test of Isolation Methods (RSV RNA Copies per µL)
Sample # Raw RNeasy MagAttract Pull-Through
Sample 1 1000000 200000 320000 66000
Sample 2 1000000 380000 220000 120000
Sample 3 1000000 560000 270000 160000
Average 1000000 380000 270000 115333
Standard Deviation 0 180000 50000 47173

Efficiency Test of Isolation Methods (RSV RNA Copies per µL)
Sample # Raw RNeasy MagAttract Pull-Through
Sample 1 1000000 200000 320000 66000
Sample 2 1000000 380000 220000 120000
Sample 3 1000000 560000 270000 160000
Average 1000000 380000 270000 115333
Standard Deviation 0 180000 50000 47173
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Table 3. The number of copies of RSV RNA per µL based on the RT-PCR results were 
calculated for three samples containing RSV N-gene RNA that were performed without RNA 
extraction (raw sample) and after RNA extractions using the RNeasy Mini kit, MagAttract RNA 
Cell Mini M48 kit, and the magnetic pull-though capillary method.  The copies numbers for the 
samples after RNA extractions were normalized to the raw sample ran without RNA extraction, 
and the results were averaged.  Tests were run in triplicate.  

Efficiency Test of Isolation Methods (Normalized to Raw/Original)
Sample # Raw RNeasy MagAttract Pull-Through
Sample 1 1 0.20 0.32 0.07
Sample 2 1 0.38 0.22 0.12
Sample 3 1 0.55 0.27 0.16
Normalized Average 1 0.38 0.27 0.12
Normalized Standard Deviation 0 0.17 0.05 0.05

Efficiency Test of Isolation Methods (Normalized to Raw/Original)
Sample # Raw RNeasy MagAttract Pull-Through
Sample 1 1 0.20 0.32 0.07
Sample 2 1 0.38 0.22 0.12
Sample 3 1 0.55 0.27 0.16
Normalized Average 1 0.38 0.27 0.12
Normalized Standard Deviation 0 0.17 0.05 0.05

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Threshold cycle (Ct)) based on the RT-PCR results were calculated and averaged for 
three samples containing RSV N-gene RNA that was added to negative nasal swab samples 
as means to control the viral concentration in an environment that otherwise resembles a 
clinical sample. Tests were run in triplicate.  

0.840.38Standard Deviation

30.4733.21Average

31.2933.552-06-048

30.5033.281-06-174

29.6132.801-06-171

RNeasyRawSample ID

Spiked Negative Samples (Cycle Threshold (Ct))

0.840.38Standard Deviation

30.4733.21Average

31.2933.552-06-048

30.5033.281-06-174

29.6132.801-06-171

RNeasyRawSample ID

Spiked Negative Samples (Cycle Threshold (Ct))

 
 
 
 
 
 
 
 
 

 41



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. The number of copies of RSV RNA per µL based on the RT-PCR results were 
calculated and averaged for three samples containing RSV N-gene RNA that was added to 
negative nasal swab samples as means to control the viral concentration in an environment 
that otherwise resembles a clinical sample. Tests were run in triplicate.  

Spiked Negative Samples (RSV RNA Copies per µL)
Sample ID Original Raw RNeasy
1-06-171 100000 13000 35000
1-06-174 100000 11000 27000
2-06-048 100000 10000 21000
Average 100000 11333 27667
Standard Deviation 0 1528 7024

 

 

Table 6. The number of copies of RSV RNA per µL based on RT-PCR results for samples 
before and after extraction contain RSV N-gene RNA that was added to negative nasal swab 
clinical samples was normalized to the original copy number placed in the sample. 

Spiked Negative Samples (Normalized to Original)
Sample ID Original Raw RNeasy
1-06-171 1 0.13 0.36
1-06-174 1 0.11 0.27
2-06-048 1 0.10 0.21
Normalized Average 1 0.11 0.28
Normalized Standard Deviation 0 0.01 0.07
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Table 7. Threshold cycle (Ct)) based on the RT-PCR results were calculated and averaged for 
seven RSV positive clinical samples. Tests were run in triplicate.  

RSV Positive Clinical Samples (Cycle Threshold (Ct))
Sample ID William's Lab Raw RNeasy Dynabead MagAttract Pull-Through
1-06-012 21.86 34.09 22.49 27.07 26.73 26.93
1-06-018 23.25 35.78 23.20 21.49 27.59 26.32
1-06-088 22.83 30.78 25.62 32.94 35.66 24.63
2-06-025 19.84 31.14 18.12 22.36 23.06 24.11
2-06-027 23.82 32.33 23.03 27.73 25.62 26.20
1-06-159 20.79 36.54 23.12 28.30 22.03 21.98
1-06-163 23.68 32.98 25.73 26.25 23.16 31.27
Average 22.30 33.38 23.04 26.59 26.26 25.92
Standard deviation 1.52 2.21 2.53 3.85 4.63 2.90

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8. Threshold cycle (Ct)) based on the RT-PCR results were calculated and averaged for 
seven RSV negative clinical samples. Tests were run in triplicate. The – indicates that the 
sample did not come up before the 40th  cycle, therefore no cycle threshold was calculated.  

Virus Negative Samples (Cycle Threshold (Ct))
Sample ID William's Lab Raw RNeasy Dynabead MagAttract Pull-Though
1-06-014 - - - - - -
2-06-010 - 35.12 - - - -
4-06-011 - - 39.19 - - -
1-06-090 - 39.11 36.19 35.04 - 31.84
1-06-097 - - 31.62 36.34 33.81 32.39
4-06-027 - - - - - -
1-06-157 - - - - - -
Average - 37.12 35.67 35.69 33.81 32.11
Standard deviation - 2.82 3.81 0.92 0.00 0.39

 
 

Table 9. Ranking of positive clinical samples based on calculated cycle threshold (Ct) values. 

RSV Positive Clinical Samples Ranking Based on (Cycle Threshold (Ct))
Sample ID William's Lab Raw RNeasy Dynabead MagAttract Pull-Through
1-06-012 3 5 2 4 5 6
1-06-018 5 6 5 1 6 5
1-06-088 4 1 6 7 7 3
2-06-025 1 2 1 2 2 2
2-06-027 7 3 3 5 4 4
1-06-159 2 7 4 6 1 1
1-06-163 6 4 7 3 3 7
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Table 10. The number of copies of RSV RNA per µL based on the RT-PCR results were 
calculated and averaged for seven RSV positive clinical samples. Tests were run in triplicate.  

RSV Positive Samples (RSV RNA Copies per µL)
Sample ID Raw RNeasy Dynabead MagAttract Pull-Through
1-06-012 1 1600 90 110 98
1-06-018 0.3 1000 3100 64 140
1-06-088 8 220 2 850 420
2-06-025 6 26000 1800 2200 590
2-06-027 3 1100 59 220 150
1-06-159 0.2 1100 41 2200 2200
1-06-163 2 210 150 1000 6
Average 2.93 4461 749 949 515
Standard deviation 3.26 10214 1307 1016 807

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11. The number of copies of RSV RNA per µL based on the RT-PCR results were 
calculated and averaged for seven RSV negative clinical samples. Tests were run in triplicate.  

1.850.470.221.870.20Standard deviation

1.060.180.120.760.08Average

0.000.000.000.000.001-06-157

0.000.000.000.000.004-06-027
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4.370.000.570.280.041-06-090

0.000.000.000.040.004-06-011

0.000.000.000.000.542-06-010

0.000.000.000.000.001-06-014

Pull-ThoughMagAttractDynabeadRNeasyRaw

Virus Negative Clinical Samples (RSV RNA Copies per µL)

 
 
 
 
 
 

Sample ID

Virus Negative Clinical Samples (RSV RNA Copies per µL)

1.850.470.221.870.20Standard deviation

1.060.180.120.760.08Average

0.000.000.000.000.001-06-157

0.000.000.000.000.004-06-027

3.071.250.255.000.001-06-097

4.370.000.570.280.041-06-090

0.000.000.000.040.004-06-011

0.000.000.000.000.542-06-010

0.000.000.000.000.001-06-014

Pull-ThoughMagAttractDynabeadRNeasyRawmple IDSa
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Table 12. List of steps, total time and extra supplies needed to perform an extraction using the 
Qiagen RNeasy Mini kit on a sample prior to performing RT-PCR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Qiagen RNeasy Mini Kit  

Steps Time (s) Extra Supplies needed

Disruption and homogenization
1Add 600uL Buffer RLT to cells 10 Pipet, vortex
2Pass lysate through a 20-gauge needle (5x) 25 Syringe, 20-gauge needle
3Add 1 volume 70% ethanol 10 Pipet

RNA isolation

4Add 700uL sample to RNeasy spin column 10 Pipet, 
5Centrifuge at 10,000rpm 15 Centrifuge
6Discard flow-through 10 Pipet
7Add 700uL Buffer RW1 10 Pipet, vortex
8Centrifuge at 10,000rpm 15 Centrifuge
9Discard flow-through 10 Pipet

10Add 500uL Buffer RPE 10 Pipet, vortex
11Centrifuge at 10,000rpm 15 Centrifuge
12Discard flow-through 10 Pipet
13Add 500uL Buffer RPE 10 Pipet, vortex
14Centrifuge at 10,000rpm 120 Centrifuge
15Place RNeasy spin column in new collection tube 10
16Add 35-50 uL RNase-free water 10 Pipet, vortex
17Centrifuge at 10,000rpm 60 Centrifuge

Total 360s
6min

Qiagen RNeasy Mini Kit  

Steps Time (s) Extra Supplies needed

Disruption and homogenization
1Add 600uL Buffer RLT to cells 10 Pipet, vortex
2Pass lysate through a 20-gauge needle (5x) 25 Syringe, 20-gauge needle
3Add 1 volume 70% ethanol 10 Pipet

RNA isolation

4Add 700uL sample to RNeasy spin column 10 Pipet, 
5Centrifuge at 10,000rpm 15 Centrifuge
6Discard flow-through 10 Pipet
7Add 700uL Buffer RW1 10 Pipet, vortex
8Centrifuge at 10,000rpm 15 Centrifuge
9Discard flow-through 10 Pipet

10Add 500uL Buffer RPE 10 Pipet, vortex
11Centrifuge at 10,000rpm 15 Centrifuge
12Discard flow-through 10 Pipet
13Add 500uL Buffer RPE 10 Pipet, vortex
14Centrifuge at 10,000rpm 120 Centrifuge
15Place RNeasy spin column in new collection tube 10
16Add 35-50 uL RNase-free water 10 Pipet, vortex
17Centrifuge at 10,000rpm 60 Centrifuge

Total 360s
6min
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Table 13. List of steps, total time and extra supplies needed to perform an extraction using the 
Invitrogen Dynabeads mRNA Direct kit on a sample prior to performing RT-PCR. 

Invitrogen Dynabeads mRNA Direct Kit

Steps Time (s) Extra Supplies needed
Preparation of Dynabeads Oligo(dT)25

1 Resuspend Dynabeads 60 Vortex
2 Transfer 250uL of beads from stock tube 10 Pipet
3 Place on magnet (when suspension is clear) 30 Magnet
4 Remove supernatant 10 Pipet
5 Remove from magnet 2
6 Add 250ul Lysis/Binding Buffer 10 Pipet, vortex

Preparation of Lysate from Cultured Cells/ Cell Suspensions
7 Add 1250ul Lysis/Binding Buffer to lysate 10 Pipet
8 Pass lysate through a 20-gauge needle (5x) 25 Syringe, 20-gauge needle
9 Centrifuge to reduce foam 10 Centrifuge

Direct mRNA Isolation Protocol
10 Place beads on magnet 30 Magnet
11 Remove Lysis/Binding Buffer from beads 10 Pipet
12 Remove from magnet 2
13 Add sample lysate 10 Pipet, vortex
14 Incubate with continuous mixing at RT 300 Rotating mixer
15 Place on magnet  120 Magnet
16 Remove supernatant 10 Pipet
17 Add 1mL Washing Buffer A 10 Pipet, vortex
18 Place on magnet 30 Magnet
19 Remove supernatant 2 Pipet
20 Add 1mL Washing Buffer A 10 Pipet, vortex
21 Place on magnet 30 Magnet
22 Remove supernatant 2 Pipet 
23 Add 1mL Washing Buffer B 10 Pipet, vortex
24 Place on magnet 30 Magnet
25 Remove supernatant 2 Pipet
26 Add 25uL of 10mM Tris-HCL (Elution Buffer) 10 Pipet, vortex
27 Incubate at 65-80 C 120 Heating block
28 Place on magnet 10 Magnet
29 Remove supernatant 30 Pipet
30 Transfer supernatant to new Rnase-free tube 10 Pipet

Total 955 s
16 min
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Table 14. List of steps, total time and extra supplies needed to perform an extraction using the 
Qiagen MagAttract RNA Cell Mini M48 kit on a sample prior to performing RT-PCR. 

Qiagen MagAttract RNA Cell Mini M48 Kit

Steps Time (s) Extra Supplies needed
Disruption and homogenization

1 Add 720uL Buffer RLT to cells 10 Pipet, vortex
2 Pass lysate through a 20-gauge needle (5x) 25 Syringe, 20-gauge needle

RNA Isolation Protocol (manual, w/o use of BioRobot)
3 Add 60uL bead solution 10 Pipet, vortex
4 Incubate with continuous mixing at RT 300 Rotating mixer
5 Separate on magnet 10 Magnet
6 Discard supernatant 10 Pipet
7 Add 900uL MW Wash Buffer 10 Pipet, vortex
8 Separate on magnet 10 Magnet
9 Discard supernatant 10 Pipet

10 Add 900uL RPE Wash Buffer 10 Pipet, vortex
11 Separate on magnet 10 Magnet
12 Discard supernatant 10 Pipet
13 Add 900uL RPE Wash Buffer 10 Pipet, vortex
14 Separate on magnet 10 Magnet
15 Discard supernatant 10 Pipet
16 Add 1mL H2O, pipet 3x 10 Pipet
17 Discard supernatant 10 Pipet
18 Add 50-200uL RNase free water at 65C 10 Pipet, heat block
19 Separate on magnet 10 Magnet
20 Collect the eluate 10 Pipet

Total 505 s
8 min

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 15. List of steps, total time and extra supplies needed to perform an extraction using the 
magnet pull-through capillary RNA extraction method on a sample prior to performing RT-
PCR. 

Magnet Pull-Through Capillary RNA Extraction Method

Steps Time (s) Extra Supplies needed

Disruption and homogenization
1 Add 150uL Buffer RLT to cells 10 Pipet, vortex
2 Pass lysate through a 20-gauge needle (5x) 25 Syringe, 20-gauge needle

RNA Isolation Protocol (manual, w/o use of BioRobot)
3 Add 30uL bead solution 10 Pipet, vortex
4 Incubate with continuous mixing at RT 300 Rotating mixer
5 Load 200uL of lysate into the first chamber 10 Pipet
6 Load 200uL of MW Wash buffer into the second chamber 10 Pipet
7 Load 200uL of RPE Wash Buffer into the third chamber 10 Pipet
8 Load 200uL of RPE Wash Buffer into the fourth chamber 10 Pipet
9 Load 200uL of RNase-free water into the fifth chamber 10 Pipet

10 Load 30uL of RNase-free water into the sixth chamber 10 Pipet
11 Drag magnet from first to last chamber 60 Magnet
12 Collect the elute 10 Pipet

Total 475s
8min
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Table 16. Comparison of the number of steps, total time and extra supplies needed to perform 
an extraction using the Qiagen RNeasy Mini kit, Invitrogen Dynabeads mRNA Direct kit, 
Qiagen MagAttract RNA Cell Mini M48 kit, and the magnet pull-through capillary RNA 
extraction method on a sample prior to performing RT-PCR. 

Isolation Method Total Time (mins) No. of Steps Extra Instrumentation
Raw sample, no isolation 0 0
Qiagen RNeasy Mini Kit  6 17 Pipet, syringe, 20-gauge needle, vortex, centrifuge
Invitrogen Dynabeads mRNA Direct Kit 16 30 Pipet, syringe, 20-gauge needle, vortex, centrifuge, heating block, rotating mixer, magnet
Qiagen MagAttract RNA Cell Mini M48 Kit 8 20 Pipet, syringe, 20-gauge needle, vortex, heating block, rotating mixer, magnet
Magetic Pull-Through Capillary Method 8 12 Pipet, syringe, 20-gauge needle, vortex, rotating mixer, magnet
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