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ABSTRACT 

 

Objective: Obesity has become a major worldwide health issue over the past 

few years and often leads to insulin resistance (IR) and type 2 diabetes (T2D).  

Macrophage accumulation in adipose tissue (AT) during obesity contributes to 

inflammation and IR. In the decade since macrophages were shown to 

accumulate in AT, the majority of studies have focused on recruitment-dependent 

mechanisms for their accrual. However, recent evidence suggests that 

recruitment-independent mechanisms, including increased proliferation and 

decreased egress, may also regulate pro-inflammatory AT macrophage (ATM) 

numbers. Interestingly the regulation of longevity in ATM accrual in obesity had 

not been explored. The work in my dissertation shows that increased ATM 

survival during obesity is a recruitment-independent mechanism that contributes 

to ATM accumulation. Results: My studies demonstrated that cleaved caspase 3 

activation is significantly reduced in the ATMs of diet-induced and genetically 

obese mice. This data suggests that activation of apoptotic pathways is 

significantly reduced in ATMs from diet-induced and genetically obese mice. 

Concurrently, pro-survival Bcl-2 family member protein levels and localization to 

the mitochondria was elevated in ATMs from obese mice. Conversely, the 

activities of pro-apoptotic proteins Bax and Bak were decreased in ATMs from 

obese compared to lean mice. Interestingly, this increased pro-survival signaling 

in obese ATMs was associated with elevated activation of the p65 subunit of the 

transcription factor, NF-κB. Furthermore, NF-κB was more nuclear localized in 
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ATMs of obese mice, resulting in increased expression of NF-κB pro-survival 

target genes, XIAP and cIAP. Finally, an obesogenic milieu increased ATM 

viability only when NF-κB signaling pathways were functional.  Conclusions: 

Our data demonstrate that obesity promotes survival of inflammatory ATMs, 

possibly through an NF-κB-regulated mechanism. 
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CHAPTER I 
 

INTRODUCTION 

 

Portions of this Introduction have been published in a review article titled A 

Decade of Progress in Adipose Tissue Macrophage Biology written by Hill, Bolus 

and Hasty (1). 

 

Our laboratory studies Immunometabolism, where we focus on macrophage 

function and their contribution to pathology in obesity and type 2 diabetes (T2D). 

A hallmark of obese adipose tissue (AT) is increased numbers of pro-

inflammatory adipose tissue macrophages (ATMs). These macrophages largely 

contribute to the inflammatory state of obese AT and therefore the development 

of insulin resistance (IR). Our field has been increasingly interested in 

understanding the mechanism involved in regulating this increased accrual of 

pro-inflammatory ATMs in obese AT. The most well studied mechanism thought 

to regulate this process is recruitment. However, many studies demonstrate that 

deficiencies in pathways involved in recruitment do not fully attenuate 

macrophage accumulation in AT. In light of this, the focus has now turned to 

studying recruitment-independent mechanisms, where recent studies have 

elucidated the roles of increased proliferation and decreased egress as 

mechanisms that contribute to ATM accumulation in AT. My dissertation work 

shows that increased ATM survival serves as an additional recruitment-

independent mechanism that controls ATM accrual in AT. In order to bring this 
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new finding into perspective, I first will describe the obesity epidemic, its health 

and economic impact, and why it still remains a major focus in biomedical 

research. Secondly, I will define how the body responds to nutrient intake and 

how the insulin signaling pathway regulates the uptake of dietary glucose and 

lipids under normal conditions. Next, I will detail the history of the discoveries 

made in the metabolism field in regards to obesity-induced IR and T2D that set 

the foundation for the work performed in this dissertation. I then will detail how 

the inflammatory state of obesity interrupts the ability of the insulin signaling 

pathway to properly control glucose uptake leading to the development of IR and 

T2D. As AT is one of the main organs affected in obesity, its role in regulating 

energy balance and its inflammatory nature during obesity will be detailed. 

Furthermore, I will describe how ATMs have been defined as the inflammatory 

source of AT and describe the distinctions between ATMs found in the lean 

compared to the obese state. Finally, I will describe the proposed research in this 

dissertation investigating the role of an ATM inflammatory mediator, NF-κB, as a 

recruitment-independent mechanism that promotes pro-inflammatory ATM 

survival and accrual in obese AT.  

 

The Obesity Epidemic 

Obesity has become a major worldwide health issue over the past two decades 

and is defined as having a body mass index of greater than or equal to 30 kg/m2.  

Center for Disease Control (CDC) data shows that more the one-third of U.S. 

adults are obese. Even more alarming, childhood obesity is on the rise affecting 
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approximately 12.7 billion children and adolescents worldwide. The prevalence of 

obesity seems to affect some groups more than others, with low-income groups 

having increased prevalence due to the inaccessibility of nutritious foods. As the 

rate of obesity rises, the rate of the development of many obesity-related 

metabolic disorders also increases. Cancer, sleep apnea, cardiovascular 

disease, and premature mortality are all associated with obesity (2). Of particular 

interest to my lab, the prevalence of obesity-induced IR and T2D is also on the 

rise. The American Diabetes Association estimates that the economic cost of 

obesity-related complications with T2D to be $245 billion annually 

(www.diabetes.org). 

 

Nutrient Disposition, Insulin Signaling, Insulin Resistance and Type 2 

Diabetes 

Obesity predisposes individuals to the development of IR and T2D. As of 2014, 

the Center for Disease Control suggests that 86 million adults are living with pre-

diabetes and 15-30% of those individuals will develop T2D within five years. Over 

the years, the scientific community has made great advancements in defining the 

mechanisms that are involved in the development of IR and T2D but still have no 

reliable method of decreasing its prevalence. Continuing to research and define 

the mechanisms involved in the development of IR and T2D is necessary to 

prevent its continued progression. 
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Nutrient Disposition and Insulin Signaling 

After ingestion of a meal, the body activates signaling pathways to uptake dietary 

glucose and lipids. Glucose and lipids are transported through the blood 

throughout the body. In response to glucose, β cells in the pancreas release 

insulin to signal the uptake of glucose and lipids to be stored or used as an 

energy source in the liver, muscle and AT (3). In these tissues, insulin signaling 

leads to the autophosphorylation of the tyrosine kinase insulin receptor, 

promoting the phosphorylation of insulin receptor substrate (IRS) family proteins. 

IRS1 phosphorylation leads to the activation of phosphatidylinositol 3-kinase 

(PI3K) at the plasma membrane. PI3K catalyzes the formation of a lipid second 

messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Ultimately, PIP3 and 

protein kinase-1 (PDK-1) phosphorylate and activate the serine-threonine kinase, 

AKT/protein kinase B, leading to glycogen synthesis and glucose uptake in the 

liver and muscle (Figure 1.1) (3, 4). Insulin signaling in the liver results in 

decreased glucose production and increased lipogenesis. In the muscle, glucose 

is taken up by the glucose transporters, GLUT1 and GLUT4, and stored as 

glycogen (3).  Insulin action on the AT leads to inhibition of lipolysis and storage 

of lipids in the form of triglycerides.  In the fasting state, lower blood glucose 

levels result in glycogen breakdown in the liver and muscle. Furthermore, 

lipolyzed lipids are released from AT in the form of free fatty acids to be used for 

fatty acid oxidation by the muscle and other tissues.  
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IR and T2D 

In the obese setting, insulin signaling pathways can become resistant to insulin. 

The IR state is manifested by decreased insulin-stimulated glucose uptake by the 

muscle and dysregulated hepatic glucose output, resulting in elevated levels of 

glucose in the blood (5). To compensate for the decreased response to insulin, 

the body maintains normoglycemia by increasing insulin production by the 

pancreas (6). This state of hyperinsulinemia allows for insulin signaling to occur 

and blood glucose levels to be normalized. 

 
 
Figure 1.1. The insulin signaling pathway. Adapted from Jung and Choi. 
Int. J. Mol. Sci. 2014: 6184-6223. Insulin binds to the insulin receptor resulting 
in its autophosphorylation. A series of phosphorylation steps ultimately leads 
to the activation of AKT/PKB. As a result, glucose is taken up in the liver and 
muscle for storage as glycogen. In addition, lipolysis is inhibited in the AT.  
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In the obese state, it has been well established that inflammation 

promotes IR [reviewed in (7)]. Obesity is often described as a state of low-grade 

chronic inflammation, where inflammatory chemokines such as TNFα activate the 

inflammatory mediator, c-Jun N-terminal kinase (JNK), resulting in inhibition of 

insulin receptor substrate (IRS) and insulin action (8). Additionally, I kappa B 

kinase (IKK) activation by TNFα leads to downstream signaling through NF-κB, 

leading to production of inflammatory cytokines that perpetuate the inflammatory 

state (9). Activation of these inflammatory pathways leads to dysregulated 

lipolysis in AT resulting in ectopic lipid storage in the muscle, liver, and pancreas. 

As a result, these tissues lose their ability to function properly leading to 

increased hepatic glucose production by the liver and decreased glucose uptake 

by the muscle. Elevated levels of glucose in the blood signal to β cells to secrete 

more insulin in order to promote glucose uptake. However, the increased 

demand for the production of insulin causes increased cellular stress and this, 

coupled with exposure to excessive lipids from AT, can result in β cell 

dysfunction and death (10). With the lack of a mechanism to alleviate elevated 

blood glucose levels, β cells lose their ability to compensate and individuals 

progress towards developing T2D (10). Furthermore, the sustained elevation of 

glucose levels in T2D leads to pathologies such diabetic neuropathy, diabetic 

retinopathy, and mortality (2). 
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AT in Regulating Energy Balance 

AT is a metabolically active endocrine organ that plays an essential role in 

energy balance. During energy excess, AT stores lipids in adipocytes in the form 

of triglycerides. Conversely, during nutrient shortage, free fatty acids (FFAs) 

lipolyzed from AT serve as an energy source for muscle and liver (11). In addition 

to its lipid buffering capacity, AT also secretes adipokines such as leptin and 

adiponectin (11). Leptin has been demonstrated to decrease food intake and 

energy expenditure. Its action on the brain serves as a signal for long-term 

energy stores when energy in the body is sufficient. Another adipokine, 

adiponectin, enhances insulin sensitivity, increases fatty acid oxidation, and 

reduces hepatic glucose output among many other things (3, 11). This adipokine 

is specifically secreted from adipocytes and is inversely correlated with the 

degree of adiposity. In addition to these adipokines, AT is known to secrete 

inflammatory cytokines, such as TNFα, IL-6, MCP-1 and IL-1β, during obese 

conditions. It has been demonstrated that AT-derived TNFα, IL-6, MCP-1, and IL-

1β all contribute to the insulin resistant state of obesity (12-15). 

 

Historical Perspective on Adipose Tissue Inflammation 

An association between the immune system and metabolism had been 

appreciated clinically for many decades; however, the impact of immune cell-

secreted inflammatory cytokines on adipocyte function was not studied in detail 

until the mid-1980’s. These initial studies showed that endotoxin-treated 

macrophages secrete products that can promote lipolysis in adipocytes (16) and 
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that a macrophage-secreted factor, cachectin, has the metabolic effect of 

inducing cachexia (17). Simultaneously, TNF-α was being studied for its 

cytotoxic, anti-tumorigenic, and inflammatory properties. It was soon discovered 

that cachectin and TNF-α are the same protein, which has since been referred to 

as TNF-α(18, 19). This marks the beginning of our understanding of the effects of 

inflammatory factors secreted by macrophages on metabolic processes. The 

mechanism underlying this new concept lies at the intersection of inflammatory 

and insulin signaling pathways [reviewed in (20, 21). In the mid-1990’s, it was 

discovered that inflammatory mediators, including TNF-α, IL-6, iNOS, and CCL2, 

are elevated in obese compared to lean AT (13, 22-24). Furthermore, it was 

discovered that genetic deficiency of TNF-α (25, 26), iNOS (23), and JNK1 (8) 

improve systemic insulin sensitivity in obese models. These studies gave insight 

into the possible role of AT inflammation in metabolic homeostasis. 

 

Macrophages are the Inflammatory Source in Adipose Tissue  

Despite the growing body of evidence linking inflammation and metabolism, the 

cellular sources of inflammatory mediators in AT were unknown. Localization of 

macrophages to AT had been mentioned by several groups (27-30); however, 

the functional contribution of AT macrophages (ATMs) to obesity-related 

metabolic diseases remained unappreciated. In 2003, two seminal manuscripts 

were published by Weisberg et al. (31) and Xu et al. (32). These groups used 

microarray analysis to establish differences in gene expression between AT from 

lean and obese mice. They found many differences in genes related to 
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macrophages including surface markers and secreted products. Separation of AT 

into its two primary components, the stromal vascular fraction (SVF) and 

adipocytes, showed that canonical macrophage inflammatory genes are most 

highly expressed in the SVF of obese AT. Flow cytometry and 

immunohistochemical analyses confirmed the increased presence of 

macrophages in AT of obese mice. Importantly, this increase in ATMs occurs 

independently of the etiology of obesity: monogenetic forms of obesity and diet-

induced obesity both result in increased ATMs (31, 32). Notably, this dramatic 

accumulation of macrophages was not found in liver, muscle, lung, or spleen 

(32). In addition, human subjects displayed a similar elevation in macrophages in 

obese compared to lean individuals (31). Thus, these two groups unequivocally 

demonstrated that macrophage number and inflammatory potential increase in 

AT in obesity. Furthermore, it should be noted that nearly every type of immune 

cell is present in AT, with their phenotypes and proportions changing in obesity 

(Figure 1.2) [reviewed in (33-36)]. 
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Relevance of ATMs to Metabolic Disease  

As Dixit points out in his commentary (37), 1 g of AT can contain up to 5 million 

stromal vascular cells, greater than 50% of which are leukocytes. Thus, even in 

lean individuals, AT cannot be excluded as a major contributor to systemic 

immune regulation – including immunometabolism. The newly discovered 

increase in pro-inflammatory macrophages has significant implications for IR and 

metabolic disease associated with obesity (Figure 1.3). In fact, Xu et al. showed 

that the increased AT inflammatory response in obesity preceded rises in plasma 

                 
 
Figure 1.2. Immune cell types in AT. From Winer and Winer. Immunology 
and Cell Biology. 2012: 755-762. Macrophages are the most abundant 
immune cell in AT. However, T-cells, NK cells, and eosinophils are also 
present in AT. Furthermore, many of these cell types play a role in 
macrophage polarization state in AT. Additionally, the levels of the immune 
cells types change from the lean to the obese state, with many of these 
immune cell levels decreasing during obesity. 
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insulin, an indication of insulin resistance (32). Macrophages can impact AT 

function 1) by inducing adipocyte insulin resistance leading to dysregulation of 

basal lipolysis and ectopic lipid storage, 2) by inducing adipocyte chemokine and 

cytokine production, or 3) by impacting AT expansion capacity during obesity 

Thus, continued exploration of ATM function in lean and obese conditions 

enables a better understanding of how AT impacts systemic insulin action and 

glucose metabolism. Obesity-related accumulation of ATMs in humans is less 

robust than in mice, but it has been clearly demonstrated by multiple groups (38-

41). The majority of human ATMs accumulate in omental rather than 

subcutaneous depots (40-42). Importantly, omental ATMs have been shown to 

correlate positively with fasting glucose and insulin levels, suggesting a link 

between AT inflammation and metabolic disease (40, 43). In addition, it has been 

demonstrated that weight loss decreases macrophage content in omental AT, 

improving glucose homeostasis (42). Thus, the preponderance of current 

literature supports a role for ATMs in metabolic homeostasis in rodents and 

humans. 
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AT Macrophage Heterogeneity 

It was noted in publications by Weisberg and Xu (31, 32) that lean AT also 

contains macrophages, albeit at lower levels than obese AT. Thus, researchers 

became interested in the phenotypic differences between ATMs in lean and 

obese AT. Although macrophage phenotypes span a continuum and no single 

system of nomenclature can provide all of the required definitions, investigators 

have gravitated to identifying ATMs as either M1-like or M2-like. Regardless of 

the nomenclature used, pioneering investigators in the AT field have pursued the 

 
 
Figure 1.3. Adipose tissue expansion, function and macrophage 
accumulation from the lean to obese state. In the lean state AT is an 
insulin sensitive and lipid buffering organ containing small adipocytes and 
anti-inflammatory macrophages. As a result of overnutrition, AT in the obese 
state becomes dysfunctional, insulin resistant, and contains pro-inflammatory 
macrophages. AT dysfunction results in ectopic lipid storage in non-lipid 
buffer tissues (liver and muscle) resulting in their dysfunction (not shown).  
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notion that resident M2-like ATMs have a role in AT homeostasis, while recruited 

M1-like macrophages contribute to inflammation and insulin resistance. 

 

M1 and M2 Categorization 

M1, or “classically activated,” macrophages are produced upon exposure to TH1 

cytokines or inflammatory mediators such as IFNγ and LPS. Thereafter, they 

generate reactive oxygen species and release inflammatory cytokines such as 

TNF-α or IL-6. M2, or “alternatively activated,” macrophages are produced upon 

exposure to TH2 cytokines such as IL-4 and IL-13 and express factors including 

IL-10 and arginase (Figure 1.4) (44, 45). Macrophage fuel utilization varies by 

polarization as M1 macrophages primarily utilize glucose, whereas M2 

macrophages utilize fatty acids (46, 47). 
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Throughout the body, M1 macrophages are involved in inflammatory 

processes (such as combating infectious agents), while M2 macrophages play a 

role in immunosuppressive activities (such as tissue repair). Polarization of 

macrophages in AT is thought to confer similar properties. For example resident 

M2 macrophages likely contribute to AT homeostasis, while M1 macrophages in 

obese AT likely promote inflammation leading to IR. These properties are 

discussed in detail below.  

 
 
Figure 1.4. Classical and alternative macrophage activation. Classical 
activation polarizes macrophages to an M1 state. M1 macrophages are pro-
inflammatory and secrete pro-inflammatory cytokines. The classical activation 
state can be induced by LPS and IFNγ. Glucose is the primary fuel source for 
classically activated macrophages. Alternative activation polarizes 
macrophages to an M2 state. M2 macrophages are anti-inflammatory and 
express arginase 1. Alternative activation can be induced by IL-4, Il-13, and 
IL-10. Utilization of fatty acids for fatty acid oxidation serve as the primary fuel 
source for alternatively activated macrophages. 
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M1 versus M2 ATM Localization and Plasticity 

Localization of macrophages within AT differs in lean and obese mice, 

demonstrating yet another difference in ATM subpopulations. While the resident 

macrophages in lean AT are interstitially spaced, Cinti et al. (48) demonstrated 

that a preponderance of all macrophages in obese AT are localized in clusters 

referred to as “crown-like structures (CLSs)” – a term that is now commonly used 

in the Immunometabolism field. Lumeng and colleagues made the novel 

observation that ATMs within CLSs express M1 markers such as CCR2 and 

TLR4, while interstitially spaced ATMs express M2 markers such as Mgl1 and IL- 

10 (49). Using PKH26 labeling studies, they showed that recruited macrophages 

primarily localize to CLSs. 

Although obesity induces a dramatic increase in M1-like ATMs, M2 

macrophages increase in absolute number as well, even if their proportion 

compared to M1 ATMs decreases (50). Not all of the macrophages within the 

CLSs are M1 macrophages, indicating that some M2 ATMs are retained in 

obesity (49, 51). In addition, CD11c+ ATMs in obese mice express varying levels 

of Mgl1, indicating a broad range of phenotypes and an increase in M2 as well as 

M1 ATMs (50).  

 

Standardization of Macrophage Categorization  

It is becoming clearer that a caveat to the current M1 and M2 macrophage 

categorization is its inability to encompass the larger spectrum of macrophage 

phenotypes. In light of this, there has been a push to categorize macrophages 
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based on source of origin (bone marrow versus embryonic-derived), stimuli they 

are exposed to, and activation state. Many studies now demonstrate that 

macrophage phenotype is largely regulated by the tissue milieu it is present in 

(52). Recent studies have demonstrated that ATMs from obese mice display a 

mechanistically distinct cell surface marker profile and pro-inflammatory 

phenotype that differs from the traditional markers that categorize a macrophage 

as M1 or M2. Kratz and colleagues termed this activation state as “metabolic 

activation”, where ATMs express pro-inflammatory, Tnfα and Il-1β, and lipid 

metabolism genes, Abca1 and Plin2, which are not present in traditional 

classically activated macrophages (53). For simplification of terminology, the 

remainder of this dissertation will refer to lean ATM polarization as “anti-

inflammatory” and obese ATM polarization as “pro-inflammatory”.  

 

Mediators of Anti-inflammatory Polarization 

Anti-inflammatory macrophages are thought to promote AT homeostasis and to 

protect against IR. Through their efforts to elucidate the origin of anti-

inflammatory macrophages in AT, investigators have defined multiple AT-specific 

mediators of anti-inflammatory polarization, including transcription factors, 

adipokines, fatty acids, and other immune cells. For the purpose of my 

dissertation, I will focus only on fatty acid induced anti-inflammatory polarization.  
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Unsaturated Fatty Acids  

Macrophages in AT are exposed to various types of fatty acids released from 

adipocytes in both basal and demand lipolysis. The degree of fatty acid 

saturation greatly impacts macrophage polarization: saturated fatty acids (SFAs) 

induce a pro-inflammatory phenotype while unsaturated fatty acids (UFAs) 

induce an anti-inflammatory phenotype. For example, the Hasty lab has shown 

that macrophages treated with the UFA oleic acid express increased levels of the 

anti-inflammatory markers Clec10a and Cd163 (54). UFAs can also reverse the 

effects of SFA-induced pro-inflammatory polarization of macrophages. L’homme 

et al. demonstrated that treatment of human monocytes/macrophages with UFAs 

prevented SFAs activation of the NLRP3 inflammasome (55). Furthermore, Chan 

and colleagues have also demonstrated that treatment of BMDMs with 

palmitoleate prevented palmitate-induced inflammatory polarization (56).   

 

Mediators of Pro-inflammatory Polarization 

Reports from both Weisberg et al. (31) and Xu et al. (32) describe the 

inflammatory nature of macrophages in obese AT. Based upon the knowledge 

that inflammatory cytokines can induce IR in multiple cell types – including 

adipocytes – subsequent studies focused on blocking inflammatory pathways to 

ameliorate AT IR. Extracellular signals that can induce inflammatory signaling 

pathways include lipids and other molecules that activate pattern recognition 

receptors in ATMs. With regards to intracellular signaling pathways, NLRP3 
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inflammasome and NF-κB pathways have both been areas of relevance to 

ATMs, specifically M1 polarization. 

  

 Lipid-Mediated Activation of ATMs 

ATMs are exposed to excess lipids via at least three different routes: delivery 

from dietary chylomicrons, basal and demand lipolysis from adipocytes, and 

adipocyte cell death. Subsequent to dietary fat ingestion, chylomicrons and 

chylomicron remnants are routed to AT where lipoprotein lipase facilitates 

release of fatty acids for uptake and storage in adipocytes. Fatty acids from very 

low density lipoproteins (VLDL) can also be delivered to AT for storage. The 

Hasty laboratory reasoned that in obesity, hyperlipidemia could result in 

increased exposure of ATMs to lipolyzed fatty acids, thereby promoting 

inflammation in a paradigm similar to what is known for arterial macrophages in 

atherosclerotic lesions. In support of this, they showed that exposure of 

macrophages to VLDL (57) and SFAs (58) induces secretion of pro-inflammatory 

cytokines, typical of a pro-inflammatory phenotype. Of relevance, fatty acid 

composition  in the AT and plasma is partially dependent on dietary intake(59). 

Although there is conflicting evidence of fatty acid composition in AT, studies 

suggests that intraadominal AT is enriched in SFAs. If so, increased dietary 

intake of SFAs could increase the exposure of ATMs to SFAs, thus promoting a 

pro-inflammatory phenotype. 

 Adipocyte death may also contribute to lipid-related changes in ATM 

phenotype. Phagocytic ingestion of dead cells results in lipid droplet 
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accumulation in ATMs (48). In fact, macrophages that surround dead adipocytes 

display a morphology similar to that of foam cells in atherosclerotic plaques (48, 

60-62), although they most likely contain TG rather than cholesterol (60). Thus, 

lipid debris from dead adipocytes could also be lipotoxic to the ATMs promoting 

inflammation and pro-inflammatory polarization. As noted above, Kratz and 

colleagues demonstrated that ATMs present in AT are “metabolically activated” 

presumably from the uptake of the lipid debris from dead adipocytes and the 

lipolyzed SFAs (53).  

 

Inflammasome-Mediated Activation of ATMs 

ATMs can activate many pathways that promote secretion of pro-inflammatory 

cytokines in response to pathogens through pattern recognition receptors such 

as the Toll-like receptors. This can also be achieved through recognition of 

danger-associated molecular patterns (DAMPs). DAMP signaling results in the 

activation of the Nlrp3 inflammasome, which involves the formation of a 

multiprotein scaffold complex, including Nlrp3 and caspase-1. Formation of this 

complex is required for caspase 1 to obtain full activation allowing for cleavage 

and release of IL-1β and IL-18 [reviewed in (63)]. Stienstra and colleagues have 

shown that global deficiency of caspase 1 or Nlrp3 results in improved insulin 

sensitivity. They concluded this to be due to effects on adipocytes rather than 

ATMs (64). In contrast, Dixit and colleagues demonstrated that Nlrp3 co-localized 

to lipid-engorged ATMs (65). In their study, expression of IL-1β and Nlrp3 in 

visceral AT was positively correlated with body weight and adiposity (65), and 
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conversely, chronic caloric restriction reversed these effects and resulted in 

improved insulin sensitivity in mice and in human subjects. Elimination of Nlrp3 

resulted in decreased caspase-1 cleavage, along with reduced IL-18 and IFN-γ 

expression concomitant with improved insulin sensitivity (65). Importantly, the 

Nlrp3-/- mice had increased anti-inflammatory gene expression along with 

decreased pro-inflammatory gene expression in AT, possibly accounting for the 

improved insulin sensitivity detected. The Nlrp3 inflammasome has been shown 

to recognize DAMPs such as ATP, urate, asbestos, β amyloid and SFAs. With 

relevance to ATMs, Dixit and colleagues demonstrated that the Nlrp3 

inflammasome also recognizes ceramides (65). This new role of the 

inflammasome in lipid-laden macrophages uncovered a mechanism by which 

toxic lipid species (SFAs and ceramides) may act as danger signals to ATMs and 

promote an inflammatory phenotype. 

 

NF-κB-Mediated Activation of ATMs 

Many of the above mentioned macrophage polarization mediators intersect with 

the NF-κB signaling pathway, a key mediator of macrophage polarization. NF-κB 

is a multi-subunit transcription factor composed of Rel subunits such as RelA 

(p65), RelB, c-Rel, p50, and p52, which form various homo- and hetero-dimers 

that bind DNA to induce transcription of a plethora of genes. The p65/p50 

heterodimer is the most common form of NF-κB and regulates transcription of 

inflammatory genes in many cell types, including macrophages. NF-κB activation 

is regulated by its activator I kappa kinases (IKKs) and its inhibitor, I kappa B 
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alpha (IκBα). Common obesity-related stimuli such as TNFα, LPS, and other 

inflammatory cytokines can induce activation of the NF-κB pathway to promote 

even further inflammation. In this regard, researchers have been interested in 

ATM NF-κB activation.  

Dampening of the NF-κB pathway has been known for some time to 

improve systemic insulin sensitivity (66); however, AT-specific effects of NF-κB 

were not discovered until more recently. Using NF-κB reporter mice, Chiang et al. 

demonstrated HFD-fed mice displayed a 2-fold increase in luminescence in the 

AT depots compared to chow-fed controls (67). Furthermore, they demonstrated 

that ATMs from obese mice have increased IKK and NF-κB activity compared to 

ATMs from their lean counterparts. Upon closer examination by confocal 

microscopy, it was shown that luciferase illumination and nuclear localization of 

the NF-κB p65 subunit was only enriched in ATMs in HFD-fed mice. 

 Manipulating upstream IKK activators of NF-κB has been a major focus in 

understanding the role of NF-κB-induced activation of inflammatory pathways in 

ATMs. For example, mice lacking IKK-β in myeloid cells retain insulin sensitivity; 

however, whether this protection is due to reduced ATM inflammation was not 

determined (9). Another IKK, IKKε, was shown to be significantly upregulated in 

pro-inflammatory ATMs of HFD-fed mice compared to controls. Furthermore, 

IKKε deficiency attenuated inflammation and insulin resistance in HFD-fed mice 

(67).  

One modulator of NF-κB in ATMs could be SFAs. As noted above, 

exposure to SFAs and PUFAs resulting in inflammatory or anti-inflammatory 
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polarization of ATMs has been extensively studied. Dysregulated lipolysis in 

obesity exposes ATMs to excessive amounts of SFAs. Although the mechanism 

remains to be determined, many studies suggest that SFAs activate NF-κB 

pathways in macrophages promoting an inflammatory phenotype. Reports from 

Suganami and colleagues have shown that treatment of macrophages with the 

SFA palmitate significantly induces NF-κB activation (68). This activation was 

followed by a significant increase in expression of NF-κB regulated inflammatory 

molecules TNF-α and CCL2. Thus, NF-κB activation is a likely player in driving 

the pro-inflammatory phenotype in ATMs. Chapter III of this dissertation will 

explore the contribution of exacerbated NF-κB activation in ATMs to ATM 

accumulation and disease progression during obesity. 

 

Mechanisms for Macrophage Accrual in AT 

As detailed above, the AT milieu plays a significant role in regulating the 

polarization state of ATMs. Lean AT supports an anti-inflammatory phenotype; 

whereas, obese AT supports a pro-inflammatory phenotype.  Interestingly, the 

lean and obese AT environment also have additional distinctions between them 

with regards to the macrophages present in each environment. In particular, the 

obese AT milieu displays a significant increase in overall macrophage content as 

a result of a large influx of pro-inflammatory macrophages present in the tissue. 

Due to the detrimental effects pro-inflammatory macrophages have on AT 

function and their promotion of disease progression in obesity, much of the 
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Immunometabolism field has focused on understanding the mechanisms that 

regulate macrophage accrual in AT. 

 The number of cells that accumulate in any given tissue can be 

theoretically attributed to fluxes in at least 4 different mechanisms: recruitment, 

egress, proliferation, or death (Figure 1.5). Although the overwhelming number of 

studies in AT have focused on the recruitment side of the equation, there is 

evidence in the literature for all four of these mechanisms contributing to 

macrophage accumulation in AT. The discussion of this topic has been divided 

into two categories: recruitment-dependent and recruitment-independent 

mechanisms of macrophages accrual in AT. 
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Recruitment-Dependent Pathways of Macrophage Accrual in AT 

After the discovery of increased macrophages in obese AT, Weisberg et al. 

performed traceable bone marrow transplants in newly obese mice to determine 

the origin of ATMs with obesity (31). These studies demonstrated that the 

majority of the macrophages in the obese AT are bone marrow derived, and thus, 

recruited (Figure 1.6). Since this landmark publication, many studies have aimed 

to identify the major factors responsible for monocyte recruitment, underlying 

 

      
 
Figure 1.5. Mechanisms of macrophage accrual in AT. From Hill et al. 
Immunological Reviews. 2014: 132-152. Many publications have focused 
on recruitment-dependent mechanisms that can account for adipose tissue 
macrophage accrual. In addition, there is recent evidence for recruitment-
independent mechanisms such as proliferation, egress, and apoptosis to 
also contribute to total adipose tissue macrophage numbers. 
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ATM accumulation during AT hypertrophy. These factors include adipocyte 

death, chemokines, adipokines, and lipids. 

 

 

 

Adipocyte Death 

Hypoxia can occur in AT when adipocytes expand in excess of microvasculature 

growth, or when adipocyte size exceeds the diffusion of nutrients, leading to 

adipocyte cell death [reviewed in (69)]. Similar to macrophage functions in other 

tissues, it has been hypothesized that ATMs are recruited to phagocytose cellular 

 

 
 
Figure 1.6. Recruitment-dependent mechanisms of macrophage accrual 
in AT. Inflammatory macrophage accrual in obese AT is thought to be a 
result of the recruitment of inflammatory monocytes to obese AT by 
chemotactic signals secreted from the AT. Defined as a chronic inflammatory 
state, obese AT recruitment cycle continues presumably resulting in 
inflammatory macrophages accumulation.  
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debris following adipocyte apoptosis. This has been visualized by light 

microscopy in the CLSs of obese AT where multinucleated ATMs form as a result 

of engulfing residual adipocyte lipid droplets (48). In an obese mouse model of 

massive adipocyte apoptosis, macrophage recruitment to dead adipocytes, as 

well as number and CLSs dramatically increase compared to control mice (70). 

Like in normal models of obesity, this influx of macrophages was largely of the 

pro-inflammatory phenotype and further promoted inflammation in the obese 

state.   

 

 Chemokines / Chemokine Receptors 

In humans and mice, expression of many different chemokines and chemokine 

receptors is elevated in obese compared to lean AT (31, 32, 71). The MCP1 

(CCL2)/CCR2 chemokine/chemokine receptor axis is one of the most potent for 

monocyte recruitment in inflammatory settings. Further support for a potential 

role of CCL2/CCR2 in ATM recruitment stems from the fact that AT gene 

expression of CCR2 and its ligands (CCL2, CCL7, and CCL8) is increased 2-7 

fold in obese compared to lean mice (72). Thus, several groups have assessed 

CCL2 and CCR2 deficient mice to determine whether ATM recruitment is 

reduced. Kanda et al. showed increased levels of CCL2 both in AT and plasma 

of obese mice corresponding with increased AT macrophage content (14), and 

identified adipocytes as one source of CCL2. Transgenic AT-specific 

overexpression of CCL2 increases AT macrophage infiltration, IR, fasting blood 

glucose, serum free fatty acid (FFA), and hepatic steatosis, even in the lean 
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state. From the other end of the spectrum, CCL2-/- mice in their studies had 

reduced HFD-induced ATM accumulation, associated with decreased IR, serum 

FFA, and hepatic steatosis. 

 In stark contrast to this, studies by Inouye et al. (73) and Kirk et al. (74) 

saw no reduction in ATM accumulation in CCL2-/- mice challenged with short-

term or long-term HFD. In both of these studies, the CCL2-/- mice gained more 

weight and had slightly worsened IR compared to controls (73, 74). Thus, 

although the published literature is mixed, there is more support for an absence 

of effect of CCL2 on macrophage recruitment to AT. 

 Because CCR2 is a receptor for several chemokines in addition to CCL2, 

and CCR2 deficiency results in a near absence of circulating Ly6Chi inflammatory 

monocyte precursors (75), it is plausible that CCR2 deficiency could have a 

greater impact than CCL2 deficiency on macrophage recruitment to AT. 

Weisberg et al. compared weight-matched CCR2-/- and wild type mice and found 

that CCR2-/- mice fed HFD for 24 weeks display reduced ATMs concomitant with 

lower fasting blood glucose and insulin levels as well as higher plasma 

adiponectin (72). This finding was reproduced by Sullivan et al. in mice fed HFD 

for 20 weeks (76) and by Lumeng et al. who detected reduced recruitment of 

ATMs to CLSs in CCR2-/- mice (49). The Hasty laboratory performed a time 

course study of HFD-feeding in CCR2-/- mice, and were only able to detect a 

reduction in ATMs after 20 weeks (77). Thus, the age of mice and time on HFD 

may be important to detecting effects of CCR2 deficiency.  
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 Many other chemokines and their receptors have also been studied with 

regards to their role in macrophage recruitment to AT. Similar to the findings with 

CCL2 and CCR2, the results have been mixed. For example, CCR5 is the 

receptor for CCL3 (macrophage inflammatory 1α), CCL4 (macrophage 

inflammatory 1β), and CCL5 (RANTES). The Hasty laboratory has shown no 

effect of CCL3 or CCR5 deficiency on macrophage recruitment to AT (78, 79). 

However, Kitade et al. reported that CCR5 deficient mice have reduced ATM 

numbers and inflammatory gene expression (80), resulting in improved insulin 

sensitivity.  

 

Lipids 

As previously discussed, it is known that various fatty acids can alter the 

inflammatory potential of ATMs. Furthermore, ATMs in expanding AT form 

multinucleated syncytia filled with large lipid droplets (48) and increased 

expression of genes associated with lipid metabolism (49). In fact, lipolysis 

(pharmacologically-induced or through short-term fasting) is associated with 

increased macrophage recruitment to AT (62). The levels of FFAs in circulation 

are also positively associated with increased AT chemokine expression and lipid 

uptake by ATMs. Inversely, reduced lipolysis (through genetic or dietary means) 

leads to reduced accumulation of macrophages in AT.  Furthermore, blocking 

lipolysis prevents macrophage influx into AT. These findings suggest that as 

ATMs accumulate lipids they take on a foam-like state so that they can function 

to buffer local increases in lipid concentrations. 
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The studies discussed above demonstrate that adipocyte cell death, the 

absence of a single chemokine or chemokine-like molecule, and lipids can 

substantially impact macrophage accumulation in AT. Furthermore, a large 

portion of these studies focus on chemokine-dependent mechanisms of 

recruitment of macrophages to AT. The inconsistencies from laboratory to 

laboratory in the case of chemokine-mediated recruitment of macrophages to AT 

suggests that chemokines have redundant roles and can compensate for one 

another. Ultimately, it appears that no single chemokine or factor is single-

handedly responsible for the recruitment of circulating monocytes to AT. 

Although there is a large body of evidence suggesting a role of recruitment as the 

key mechanism for macrophage accrual, inhibition of recruitment does not 

attenuate the accumulation of macrophages in AT. This suggests that 

recruitment alone does not control this process. Therefore, recruitment-

independent mechanisms may be the missing link in understanding how 

macrophages accumulate in obese AT. 

 

Recruitment-Independent Pathways of Macrophage Accrual in AT 

While recruitment of circulating macrophages to AT was the focus of many early 

experiments, several of these published studies unexpectedly revealed the 

likelihood of recruitment-independent mechanisms for ATM accrual. For 

example, in CCR2-/- and MGL1-/- mice, there are significantly lower levels of 

circulating Ly6Chi monocytes (75, 81). If circulating Ly6Chi monocytes are a 

primary driver of macrophage accrual in AT, it would be expected that the mice 
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would have a near absence of macrophage recruitment in obesity. Interestingly, 

HFD-fed MGL1-/- mice have only a 30% reduction CD11b+ macrophages and no 

significant differences in AT expression of F4/80 compared to controls (81). 

Furthermore, in CCR2-/- mice, a difference in number of ATMs is only detected 

after prolonged periods of HFD feeding (72, 77). If circulating Ly6Chi monocytes 

are the cells recruited to AT in obesity, CCR2-/- mice would be expected to have 

dramatic reductions in ATMs even early after HFD-feeding. Thus, recruitment-

independent mechanisms for macrophage accrual in AT have been the topic of 

recent publications. These studies demonstrate a role for proliferation, egress 

and apoptosis in driving ATM accumulation in obese AT (Figure 1.7). 
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Proliferation 

Proliferation has only very recently been shown to contribute to increased ATM 

content in obese AT. Two groups published the novel finding that macrophages 

in obese AT proliferate at higher rates than those in lean AT (82, 83). Using Ki67 

and EdU staining coupled with immunofluorescence and flow cytometric assays, 

Amano and colleagues demonstrated that 10-17% of ATMs are proliferating in 

obese ob/ob or diet-induced obese mice (82). This process is not impacted by 

the presence or absence of circulating monocytes and does not occur in other 

organs such as liver, spleen, or blood. CCL2/MCP-1 was determined to be a 

   
    
Figure 1.7. Mechanisms of Macrophage Accumulation in AT. 
Recruitment of macrophages plays a significant role in increased ATM 
content during obesity. In recent years the significant roles recruitment-
independent mechanisms (proliferation, egress) have now been identified as 
major contributors to increase ATM number in obese AT. In Chapter III of 
this dissertation I will focus on the role of decreased ATM apoptosis in 
macrophage accumulation in obese AT. 
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likely AT-specific macrophage proliferation cue. It was also suggested that this 

increase in proliferation contributed to AT inflammation. A concurrent report by 

Hasse et al. similarly demonstrated that macrophages in AT proliferate at higher 

rates in obese compared to lean mice (83). In both studies, the proliferation was 

shown to occur mostly in the CLS-localized ATMs. However, Hasse et al. 

uniquely observed that the proliferating ATMs expressed markers of anti-

inflammatory rather than pro-inflammatory polarization. With only two major 

studies addressing ATM proliferation, many questions remain regarding the 

contribution of proliferation to ATM numbers and will certainly be the topic of 

future investigation in the field.  

 

Egress  

Moore and colleagues have given the first insight into the role of retention in the 

accumulation of macrophage in obese AT (84). Their studies focus on the 

neuronal molecule Netrin-1 and its target receptor Unc5b. Activation of Unc5b by 

Netrin-1 results in chemorepulsive signaling that decreases cell migration out of 

tissues. Interestingly, they reported an increased expression of Netrin-1 and 

Unc5b in the AT of mice fed HFD compared to chow-fed controls. This 

expression was localized to CLSs in the AT. Interestingly, this localized 

expression was also seen in AT from obese humans. Importantly, they showed 

that hematopoietic Netrin-1 deficiency facilitates the ability of macrophages to 

emigrate from the AT. The model outlined by the Moore group suggests that 

Netrin-1 promotes defective ATM migration and accumulation in AT by blocking 
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chemokine induced migration. Overall, this study brings an innovative idea of 

involvement of egress signaling in ATM accumulation. 

 

Apoptosis 

Apoptosis is a common mechanism for cell turnover and the maintenance of 

homeostatic cell number in many tissues. The possibility of ATM apoptosis being 

important for maintenance of AT homeostasis is suggested by two lines of 

evidence. First, clodronate liposome-mediated depletion of ATMs from obese 

mice reduces AT inflammation and improves insulin sensitivity (85, 86). These 

data indicate that loss of inflammatory macrophages can improve AT function. In 

support of the relevance of this observation to humans, Kern and colleagues 

have shown that treatment of humans with the insulin sensitizing drug 

pioglitazone reduces the number of macrophages in AT via apoptotic 

mechanisms (87). Determining how the modulation of apoptosis regulates ATM 

number is the basis of the work performed in this dissertation. 

 

Signaling Pathways Studied in this Dissertation 

The balance between death and survival can be regulated by many pathways. 

Detailed below are the signaling pathways that are involved in regulating the 

intrinsic pathway of cell death and survival, which is the focus of the studies in 

my dissertation. 
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Apoptosis Signaling Pathway: Apoptosis (programmed cell death) is known to 

be a vital process involved in homeostatic maintenance of cell number in many 

tissues. Alterations in apoptotic signaling pathways have been linked to the 

development of cancer, autoimmune, neurodegenerative and many other 

diseases (88). Signaling through two pathways, the extrinsic and intrinsic 

pathways, largely controls activation of apoptosis. These pathways induce 

apoptosis in two distinct but overlapping mechanisms (Figure 1.8). The extrinsic 

pathway involves signaling through death receptor, FasL or TnfR, resulting in 

caspase 8 activation. Intrinsic activation of apoptosis is largely induced by 

cellular stress and mitochondrial outer membrane permeabilization (MOMP). 

Both signaling pathways converge on the activation of the executor caspase, 

caspase 3. Caspase 3 cleavage leads to a series of biochemical reactions in the 

cell such as protein cleavage, DNA damage and changes in cellular morphology 

that allows it to be phagocytized and removed from the tissue site (89). The 

regulation of apoptosis in ATMs in the lean and obese state will be explored in 

Chapter III. 
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Figure 1.8. Apoptosis signaling pathway. Activation of apoptosis occurs 
primarily through two signaling pathways, extrinsic and intrinsic, which 
ultimately converge at the activation of cleaved caspase 3. The extrinsic 
pathway signaling is activated through of the death receptor (FasL) whereas 
intrinsic signaling is activated as a result of cellular stress. The intrinsic 
pathway is the major focus of the work presented in this dissertation. 
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Bcl-2 Family Cell Survival/Apoptosis Regulatory Pathway: The Bcl-2 gene 

was first discovered in B-cell follicular lymphomas and subsequently linked to 

increased survival of cancer cells [reviewed in (90)]. Since its discovery, a series 

of proteins sharing similar BH3 domain homology have been identified. Bcl-2 

family members have been grouped into two major classes: pro-apoptotic (Bax, 

Bak) and pro-survival (Bcl-2 and Bcl-xl). These proteins play a significant role in 

the balance of cell survival and apoptosis through the disruption or maintenance 

of the mitochondrial outer membrane (Figure 1.9). Pro-apoptotic Bax and Bak 

promote cellular apoptosis by oligomerizing at the outer membrane of the 

mitochondria, inducing pore formation and the release of cytochrome c. 

Cytochrome c release in to the cytosol initiates the formation of the apoptosome, 

ultimately leading to the activation of cleaved caspase 3 and apoptosis. The pro-

survival Bcl-2 and Bcl-xl proteins antagonize MOMP by preventing Bax and Bak 

oligomerization. Although the mechanism in not completely clear, Bcl-2 and Bcl-

xl are thought to bind to the BH3-only domains of Bax and Bak sequestering the 

proteins away from each other [reviewed in (91)].  The balance of cell death and 

cell survival through MOMP can be largely associated with the relative ratio of 

proteins levels and mitochondrial localization of Bax and Bcl-2. The pro-survival 

Bcl-2 proteins have been generally associated with increasing cell survival under 

pathological conditions [reviewed in (92, 93)]. Studies performed in this 

dissertation will explore the differential modulation of pro-survival and pro-

apoptotic proteins in ATMs of lean and obese mice. 
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Figure 1.9. The Bcl-2 family signaling pathway. The Bcl-2 family members 
regulate cellular apoptosis and survival through the disrupting or maintaining 
the integrity of the mitochondrial outer membrane. Pro-apoptotic proteins, Bax 
and Bak, induce pore-formation in the outer membrane of the mitochondria. 
This results in cytochrome c release, cleaved caspase 3 activation and 
apoptosis. Bcl-2 and Bcl-xl oppose the activities of Bax and Bak, promoting 
cell survival. 
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Inhibitors of Apoptosis Regulatory Pathway: Inhibitors of Apoptosis (IAPs) 

belong to a family of proteins that are involved in the inhibition of apoptosis 

(Figure 1.10). They provide protection from a variety of apoptotic stimuli. 

Although first discovered in baculoviruses, various homologs of this protein family 

have also been discovered in mammalian cells [reviewed in (94)]. The ability of 

IAPs to suppress apoptosis is primarily through direct inhibition of pro-caspase 

and caspase. Their activities are thought to be redundant and have been 

demonstrated to inhibit activated caspase 3 and 7 activity [reviewed in (94)]. 

However, XIAP is thought to be the most powerful regulator of the IAP family due 

to its ability to directly inhibit caspase activity (95). In addition, IAPs demonstrate 

the ability to suppress apoptosis through non-caspase inhibitory mechanisms 

involving their transcriptional activator NF-κB. Interestingly, XIAP has been 

demonstrated to directly promote NF-κB signaling by promoting the degradation 

of the NF-κB inhibitor, IκBα, allowing for NF-κB nuclear translocation (96). 

Furthermore, IAPs play a significant role in inhibiting cell death through the 

modulation of cell cycle progression and cell division. With importance to the 

studies performed in this dissertation, studies have demonstrated that IAPs play 

a significant role in increasing macrophage survival under pathological conditions 

(97-99).  
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Figure 1.10. The Inhibitors of Apoptosis (IAPs) family signaling 
pathway. From Johnstone et al. Nature Reviews Cancer. 2008: 782-798. 
The IAP family of proteins regulate apoptosis through the inhibition of 
caspases. The most prominent IAP, XIAP, has been known to directly 
inhibit the activity of active cleaved-caspase 3. Additionally, other IAPs 
have also been shown to inhibit caspase7, 8 and 9. Furthermore, IAPs 
also been shown to promote the activation of NF-κB. 
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NF-κB Signaling Pathway in Cell Survival: Nuclear factor kappa-light-chain-

enhancer of B cells (NF-κB) was discovered almost 30 years ago and has been 

demonstrated to be involved in many pathological pathways (100, 101). The NF-

κB complex consists of several proteins (RelA (p65), RelB, c-rel, NF-κB1 and NF-

κB2) that form various homo and hetero-dimers involved in gene transcription 

(102). NF-κB is largely known to induce the transcription of many inflammatory 

genes; however, its regulatory control spans various genes, including pro-

survival factors (Figure 1.11). Activation of NF-κB is regulated through the 

canonical and alternative pathways. Exposure of cells to cytokines, antigens and 

TLR ligands activate the canonical signaling pathway. Canonical signaling leads 

to the activation of IκB kinases (IKKs) that phosphorylate the NF-κB inhibitor, 

IκBα, resulting in its ubiquitination and its degradation by the proteasome. After 

IκBα degradation, NF-κB (p65) translocates to the nucleus to induce the 

transcription of genes related to innate immunity and cell survival [reviewed in 

(103)]. The alternative signaling pathway activated by the TNF ligand and 

receptor family, results in activation of NF-κB inducing kinase (NIK) and IKKα. 

IKKα activity results in the phosphorylation and proteolytic processing of NF-κB1 

and NF-κB2 leading to the induction of genes related to the adaptive immune 

system [reviewed in (103)]. NF-κB activity has been demonstrated to play a 

major role in the inflammatory nature of macrophages in AT (67); however, its 

mediation of signaling pathways beyond inflammatory pathways in ATMs has yet 

to be elucidated. Chapter III of this dissertation will focus on the role of its pro-

survival signaling arm in ATM survival during obesity. 



 

 
 

41 

 

 

 
 
 
Figure 1.11. NF-κB signaling pathway. From Gerondakis et al. Nature 
Immunology. 2013: 15-25. NF-κB is a transcription factor involved in the 
regulation of many genes. It is comprised of various subunits (RelA (p65), 
RelB, c-rel, NF-κB1 and NF-κB2) that form homo and hetero-dimers. It is 
activated through two pathways, classical and alternative, that induce a 
series of events that lead to NF-κB nuclear translocation and gene 
transcription. The classical pathway, involving p65, results in the expression 
of genes involved in inflammation, survival, and proliferation. The classical 
activation will be focused on in Chapter III of this dissertation. 
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Significance  

It is apparent that the increase in pro-inflammatory macrophage content in obese 

AT plays a major role in the progression of AT inflammation and dysfunction. 

Although recruitment-dependent mechanisms of ATM accrual in AT have been 

most well studied, it is becoming clear that they may not be the sole mechanism 

involved in this process. In the past couple of years, Immunometabolism 

investigators have expanded their thinking and hypotheses to embrace the idea 

that recruitment-independent mechanisms may also play a role in macrophage 

accrual in AT during obesity. In light of the recent studies elucidating the roles of 

proliferation and egress as contributing factors, ATM apoptosis or survival are 

likely to be contributing factors to increased pro-inflammatory ATM content in 

obesity. In Chapter III, I detail my work showing that ATM apoptosis is repressed 

in obesity through NF-κB-dependent mechanisms allowing for increased ATM 

survival and contributing to ATM accrual in during obesity. Overall, the studies 

performed in my dissertation have expanded the understanding of mechanisms 

that regulate ATM number under normal and metabolic conditions. These 

findings could promote the development of novel therapies that target multiple 

signaling pathways to reduce ATM content and AT inflammation, thus decreasing 

the metabolic pathology of obesity. 
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CHAPTER II 

MATERIALS AND METHODS 

 

 Animal Usage and Phenotyping  

 All animal procedures were performed with prior approval from the 

Institutional Animal Care and Usage Committee of Vanderbilt University. Male 

C57Bl/6 mice were purchased from Jackson Laboratories. At 8-weeks of age, 

mice were placed on diets containing either 10% (low fat diet, LFD; Research 

Diets #D12450B) or 60% (high fat diet, HFD; Research Diets #D12492) of kcal 

from fat. The diets are protein and micronutrient-matched, providing equivalent 

quantities of vitamins and minerals. Ob/ob mice (stock number 000632) and lean 

littermate controls were purchased from Jackson Laboratories at 7 weeks of age 

and maintained on standard chow diet (LabDiet 5001) until 9-10 weeks of age. 

NF-κB-GFP-Luciferase (NGL) mice ubiquitously express an enhanced GFP 

(EGFP)/luciferase gene that is controlled by an enhanced promoter containing 

two NF-κB binding sites (104). All mice were given free access to food and water. 

When indicated, total fat and lean mass were quantified by nuclear magnetic 

resonance using a Bruker Minispec instrument (Woodlands, TX) in the Vanderbilt 

Mouse Metabolic Phenotyping Center.  Mice were fasted for 5 h before tail vein 

collection of blood for the determination of glucose levels using a LifeScan One 

Touch Ultra glucometer (Johnson & Johnson, Northridge, CA).  
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Tissue Cell Isolations 

Isolation of AT Stromal Vascular Fraction (SVF)  

Mice were euthanized and perfused through the left ventricle with 20 mL of PBS. 

Epididymal AT was removed and 0.25-0.5 g of tissue was minced in 3 mL PBS 

with 0.5% FBS (FBS/PBS).  Subsequently, 3 mL of 2 mg/mL collagenase II 

(Sigma-Aldrich, St. Louis, MO) was added to achieve a final concentration of 1 

mg/mL. Tissue was incubated at 37 °C for 20-30 min while shaking at 200 RPM. 

The cell suspension was then filtered through a 100 μM cell strainer. Cells were 

spun at 500 x g for 10 min to separate adipocytes from the SVF. The SVF was 

re-suspended in 3 mL ACK buffer to lyse red blood cells. Cells were washed 2X 

with PBS, then lysed for Western blot or real-time RT-PCR analysis, or counted 

using a Cellometer Auto T4 and plated to select for macrophages based upon 

their strong adhesive properties (see Section 2.2.3 below).  

 

Isolation of Hepatocyte and F4/80-enriched Fractions from the Liver   

Mice were euthanized and perfused as described above. The liver was removed 

and minced in 3 mL RPMI with 5% FBS. Next, 3 mL of 2 mg/mL collagenase II 

was added and tissue was incubated at 37 °C for 30 min while shaking at 200 

RPM. The cell suspension was filtered through a 100 μM cell strainer and spun at 

300 RPM for 3 min. The hepatocyte fraction (pellet) was collected for Western 

blot analysis, while the supernatant (non-parenchymal fraction) was spun at 1500 

RPM for 10 min. Cells were then re-suspended in a 33% normo-osmotic Percol 

solution containing 10 U/mL heparin and spun at 500 x g for 15 min. 
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Subsequently, cells were washed and incubated with Fc block for 10 min and 

then stained with anti-mouse F4/80-APC (eBioscience, San Diego, CA) at a 

concentration of 5 x 106 cells/mL. Cells were incubated with anti-APC magnetic 

beads for 15 min at 4 °C, washed, re-suspended in FACS buffer, and sorted 

using a Miltenyi AutoMACs magnetic cell sorter. The F4/80-enriched fraction was 

collected for Western blot analysis. 

 

ATM Selection by Adherence 

Isolated SVF cells (Chapter III) were plated in 5% DMEM for 2 h in tissue culture 

dishes with well sizes specific to the subsequent application purpose. The plate 

was then washed 2X with PBS, leaving any adherent ATMs attached and 

eliminating all other cells. Attached cells were verified as macrophages based 

upon positive immunostaining for F4/80 (86.88% ± 0.77% from LFD mice and 

87.74% ± 0.72% from HFD mice, quantified from 10 images/group). ATMs were 

used for the following assays: 1) fixed for immunofluorescence staining (Figures 

3.9-3.10 and 3.12), 2) Real-time RT-PCR (Figures 3.10 and 3.12), or 3) 

metabolic cocktail studies (Figure 3.12).  

 

Western Blot Analysis   

SVF cells and the F4/80-enriched fraction isolated from the liver were collected in 

lysis buffer containing 20 mM Tris-HCL (pH 8.0), 150 nM NaCl, 1 mM EDTA, 1 

mM EGTA, 0.1 % Nonidet P-40, 2.5 mM sodium pyrophosphate, 1 mM sodium 

orthovanadate, and 0.5 mM PMSF. A modified Lowry protocol was used to 
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quantify protein concentration. Whole AT, hepatocytes, and spleen were 

sonicated in 500-700 μL of 2% SDS containing 2.5 mM sodium pyrophosphate 

and 0.5 mM PMSF. Protein was quantified using a bicinchoninic acid (BCA) 

assay (Thermo Scientific, Waltham, MA). Subsequently, 10-15 μg of protein was 

electrophoresed through 4-12% Bis-Tris gels (Invitrogen, Grand Island, NY), 

transferred to a nitrocellulose membrane, and immunoblotted with the following 

antibodies: cleaved caspase-3, Bax, Bak, Bcl-2, Bcl-xl and phospho-p65. All 

antibodies were obtained from Cell Signaling Technology (Boston, MA). Blots 

were developed using either Western Lightning enhanced chemiluminescence 

substrate and film (Perkin Elmer, Waltham, MA) followed by band intensity 

quantification using ImageJ64 software, or were imaged using Odyssey Blocking 

Buffer and the Li-Cor Odyssey Infrared Imaging System (Li-Cor, Lincoln, NE) 

followed by band intensity quantification using Image Studio Lite Version 3.1 

software.  A list of the antibodies, company, product number and concentrations 

are detailed in Table 1 below. 

 

Gene Expression by real-time RT-PCR  

SVF cells were collected in TRIzol reagent (Invitrogen, Carlsbad, CA). Total RNA 

was isolated using a phenol-chloroform extraction, according to the 

manufacturer’s instructions. An iScript cDNA synthesis kit (BioRad, Hercules, 

CA) was used for reverse transcriptase reactions. Real-time RT-PCR analysis 

was performed using an iQ5 multicolor real-time PCR detection system (Bio-

Rad).  Primer-probe sets (Assays-on-Demand) were purchased from Applied 
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Biosystems (Foster City, CA). All genes were analyzed using the Pfaffl method 

(105) and normalized to Rplp0. The expression of the following genes was 

assessed: Emr1 (Mm00802530_m1), Rplp0 (Mm00725448_s1), Bax 

(Mm00432051_m1), Bak1 (Mm00432045_m1), Bcl2 (Mm00477631_m1), Bcl2l1 

(Mm00437783_m1), Tnf (Mm00443258_m1), Xiap (Mm01311594_mH) and Birc3 

(Mm01168413_m1), Abca1 (Mm00442646_m1), and Plin2 (Mm00475794_m1). 

 

Immunofluorescence Microscopy and Analysis 

Confocal Staining of Whole AT for TUNEL+ Macrophages  

PBS perfused epididymal AT was harvested and immediately fixed in 1% 

paraformaldehyde for 1 h. Tissue was blocked in 5% goat serum in PBS for 1 h 

and stained with a rat anti-mouse F4/80 antibody (Abcam, Cambridge, MA) 

overnight at 4 °C. After washing with PBS, tissue was incubated with an Alexa 

488-conjugated anti-rat secondary antibody (Cell Signaling Technology) for 1 h at 

RT. TUNEL staining was performed using the In Situ Cell Death Detection Kit 

(Roche-Applied Science, Indianapolis, IN), according to manufacturer’s 

instructions. Tissue was then counter-stained with DAPI (0.2 mg/mL) and imaged 

at 40X magnification using an Olympus FV-1000 Inverted Confocal Microscope. 

In order to avoid endogenous tissue autofluorescence, tissues were first imaged 

under the DAPI filter. There was no apparent pattern to which areas of AT 

displayed autofluorescence. CLSs were determined by eye as a small adipocyte 

surrounded by macrophages as reported by other groups (106-108). All other 

macrophages were considered interstitially spaced macrophages. Areas with no 
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autofluorescence were then selected for imaging. At least 3 images were 

captured from 4-7 mice per group.  

 

Automated and Confocal Imaging for Nuclear and Mitochondrial Co-

localization 

The Image Xpress Automated Micro XL Microscope with Meta Xpress analysis 

software in the High-Throughput Screening Core at Vanderbilt University was 

used for these studies.  SVF was collected and ATMs were adherence-selected 

in a 96-well plate, as described above. Adherent ATMs were then fixed with 4% 

PFA for 1 h. ATMs were stained with antibodies against F4/80 and Bax, Bcl-2, or 

p65 (Cell Signaling Technology) in order to determine co-localization with nuclear 

(DAPI) and mitochondrial (Cox IV, Abcam, Cambridge, MA) markers. Images 

were acquired from 4 areas per well at 40X magnification on the Image Xpress 

Automated Micro XL Microscope. An analysis software module was developed to 

allow for quantification of the overlap of the fluorescence signal of a specific 

protein with a defined organelle compartment of interest (nucleus or 

mitochondria). Analysis parameters were set to identify macrophages (F4/80+) 

with intact nuclei (DAPI positive, diameter of 2-8 µm) and mitochondria (Cox IV, 

diameter of 1-3 µm). Co-localization data was collected from 10,000- 30,000 

ATMs per mouse from 6-7 mice per group. For statistical purposes the average 

co-localization from all the macrophages of an individual mouse were counted as 

a single biological replicate. To obtain higher quality images for the purpose of 

visualization and confirmation of these computed changes, the representative 
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images displayed in Figures 3.9 and 3.10 were performed using an Olympus FV-

1000 Inverted Confocal Microscope at 100X or 60X magnification with a 1.5 or 

4.5 zoom. All images were taken at the same magnification, voltage, and gain 

level required for proper imaging in each channel. To perform these studies, 

ATMs were plated in 8 well chamber slides for 2 h to allow for selection by 

macrophage adherence. ATMs were then fixed for 1 h with 4% PFA, and stained 

for DAPI, p65, Bax and Bcl-2 as described. Mitochondria were stained using 

MitoTracker Deep Red FM (Life Technologies, Grand Island, NY) at 100 nM for 

25 min. A list of the antibodies, company, product number and concentration are 

detailed in Table 1 below. 

 

Ex vivo Studies in Isolated ATMs  

NF-κB-regulated Luciferase Reporter Assay 

ATMs were collected from NGL mice by SVF isolation and macrophage selection 

by adherence, as described above. ATMs were washed once with PBS followed 

by the addition of 20 μL of luciferase lysis buffer (Promega, Madison, WI). 

Luciferase substrate was added to the sample and luminescence was 

immediately read on a Monolight 3010 (BD PharMingen, San Diego, CA). 

 

Metabolic Activation of ATMs 

ATMs were treated with a metabolic cocktail (MetaC) containing 30 mM glucose, 

10 nM insulin and 0.4 mM palmitic acid as previously described (53). Palmitic 

acid was dissolved in ethanol and added to DMEM containing 5% FBS, 30 mM 
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glucose and 10 nM insulin. ATMs were treated with the MetaC in the presence or 

absence of 10 μM BMS-345541 (Sigma-Aldrich) to inhibit NF-κB. ATMs in the 

BMS treatment groups were pretreated with 20 μM BMS-345541 for 1 h prior to 

time-course studies. ATMs were exposed to MetaC for a time-course of 0-8 h. 

 

Cell-Titer Blue Assay 

ATMs were adherence-selected and plated in 96-well plates. Metabolic activation 

cocktail studies were performed as described in Section 2.6.2. Cell-Titer Blue 

reagent (Promega) was added at a volume of 20 µL to wells containing 100 µL of 

media 2 h prior to end of each time-point. Fluorescence was measured at 

560Ex/521Em using the GloMax Discover System (Promega). Background 

fluorescence was measured in wells containing media and Cell-Titer Blue only 

(i.e. without cells) and was subtracted from each experimental measurement. 

 

Statistical Analysis   

GraphPad Prism 5.0 software was used for all statistical analyses.  Data was 

analyzed using a two-tailed unpaired t-test to determine differences between two 

groups or a one-way ANOVA when more than two treatment groups were 

compared. Outliers were excluded from the data for each individual parameter 

using the Grubbs outlier test (109). A p value of <0.05 was considered significant. 
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   Table 1 

Western blot antibodies 

Antibody Company Product # Concentration 

Bax Cell signaling 2772s 1:100 

Bak Cell signaling 12105s 1:100 

Bcl-2 Cell signaling 3498s 1:100 

Bcl-xl Cell signaling 2764s 1:100 

Cleaved 

Caspase 3 

Cell signaling 9664s 1:50 

Phosp-p65 Cell signaling 3033s 1:100 

Immunofluorescence antibodies 

Antibody Company Product # Concentration 

Bax Abcam Ab5174 1:100 

Bcl-2 Abcam Ab692 1:100 

CoxIV Abcam Ab16056 1:100 

Dapi BD 

Bioscience 

564907 1:2000 

F4/80 Abcam Ab6640 1:100 

MitoTracker Life 

Technologies 

M22426 100 nM 

p65 Cell signaling 8242 1:200 
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CHAPTER III 

ACTIVATION OF NF-κB DRIVES THE ENHANCED SURVIVAL OF ADIPOSE 

TISSUE MACROPHAGES IN AN OBESOGENIC ENVIRONMENT 

 

INTRODUCTION 

Portions of this Introduction have been published in my manuscript titled 

Activation of NF-κB drives the enhanced survival of adipose tissue macrophages 

in an obesogenic environment written by Hill, Anderson-Baucum, Webb, 

Kennedy, Yull and Hasty, Molecular Metabolism, 2015. 

 

In 2003, two seminal papers demonstrated that macrophages accumulate 

in adipose tissue (AT) during obesity (31, 32). AT macrophage (ATM) number 

positively correlates with adiposity, systemic inflammation, and insulin resistance 

(IR), suggesting that these immune cells play an essential role in the 

pathogenesis of obesity. Recent findings also demonstrate a role for other 

immune cell subsets, including T cells (110-113), B cells (114), eosinophils (115), 

and neutrophils (116) in the control of AT inflammation. However, in mice, 

macrophages are the most prevalent immune cell type in AT and are a major 

source of inflammatory cytokines and chemokines secreted from AT during 

obesity (31, 32). This heightened immune response changes the types and 

amounts of lipids and adipokines released from AT, which can then negatively 

impact other tissues and promote metabolic disease (117). In fact, increased AT 

inflammation is now considered one of the primary drivers of IR associated with 
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obesity (reviewed in (21)). Thus, the immune system is now at the forefront of 

metabolic research, and extensive efforts have focused on determining 

mechanisms by which macrophages accumulate in obese AT.  

 Obesity increases expression of numerous chemokines and chemokine 

receptors in AT (118). Furthermore, labeling studies have shown that obesity 

results in recruitment of monocytes from the bone marrow into AT (31, 49). 

Therefore, to date, the majority of published studies have sought to determine 

whether reducing the chemoattractant potential of AT can inhibit ATM 

accumulation during obesity. However, in many instances, obese mice 

genetically lacking certain chemokines or chemokine receptors exhibit no change 

in ATM number and no improvement in metabolic abnormalities (73, 74, 119-

121). Additionally, even in studies showing that deficiency or antagonism of 

chemokines decreases ATM number during obesity, macrophage accumulation 

during high fat diet (HFD) feeding is never completely abolished (14, 49, 72, 122-

124). Furthermore, several models with deficiencies in chemoattractant 

molecules demonstrate a pronounced decrease in circulating inflammatory 

monocytes without a corresponding large reduction in ATM number (72, 81). 

Together these findings suggest that recruitment-independent mechanisms may 

also contribute to the accumulation of pro-inflammatory macrophages in obese 

AT. Indeed, recently published studies have highlighted that alterations in 

macrophage proliferation (82, 83) and egress (84) contribute to the increased 

number of ATMs in obesity. In addition to macrophage recruitment, proliferation, 
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and egress, modification of cell survival/death pathways are another mechanism 

by which tissue cell number could be modulated. 

Regulation of cell survival through the proper control of programmed cell 

death (apoptosis) is essential for homeostatic maintenance of cell number in 

many tissues [reviewed in (125)]. For example, accelerated apoptosis is 

observed in neurodegenerative disorders, while impaired apoptosis can 

contribute to tumorigenesis, autoimmunity, and inflammatory disorders [reviewed 

in (89)]. Interestingly, it is not known whether macrophage apoptosis/survival is 

modulated in AT during obesity.  

The control of cell survival is intricately balanced by the activation of pro-

apoptotic and pro-survival signaling pathways. Apoptosis is initiated by either 

intrinsic or extrinsic pathways, both of which proximally activate the caspase 

cascade [reviewed in (89)]. To oppose apoptosis, cells can activate pro-survival 

pathways. Much of the balance between death and survival in a cell is controlled 

via transcriptional and post-transcriptional regulation of vital factors that maintain 

mitochondrial outer membrane integrity (90). The transcription factor, NF-κB, is a 

key regulator of pro-survival factors such as the Bcl-2 family and inhibitors of 

apoptosis proteins (IAPs). These proteins are important in preventing caspase-

induced cell death, thus allowing for increased survival in many cell types. NF-

κB-induced progression of multiple diseases through promotion of cell survival 

has been well documented (102, 126). Of relevance, a previous study has 

demonstrated increased nuclear translocation of the p65 subunit of NF-κB in 

ATMs of obese compared to lean mice (67).  
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Our findings presented below demonstrate that activation of NF-κB in 

ATMs during obesity may promote cell survival. Therefore, NF-κB-dependent 

modulation of the balance between cell survival and death may be an additional 

mechanism – along with recruitment, proliferation, and retention – that promotes 

macrophage accumulation in AT during obesity. 

 

RESULTS 

Diet-induced Obesity Decreases ATM Apoptosis 

To determine the impact of obesity on ATM apoptosis and survival, mice were 

fed 10% LFD or 60% HFD for 9 weeks (Figure 3.1A). As expected, mice fed HFD 

became obese, gained lean and fat mass, and were hyperglycemic compared to 

LFD-fed controls (Figure 3.1B-E). Additionally, expression of Emr1 (the gene for 

F4/80) in the stromal vascular fraction (SVF) of AT was significantly increased by 

obesity (p<0.05, Figure 3.1F), confirming that 9 weeks of HFD feeding is 

sufficient to promote the accumulation of macrophages in AT.   
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Recent studies suggest that obesity increases apoptosis in whole AT, 

likely due to adipocyte cell death resulting from local hypoxia and/or decreased 

vasculature (106, 108, 127, 128). Consistent with these findings, HFD feeding 

increased expression of the pro-apoptotic proteins Bax (p<0.001) and Bak 

(p<0.01) in AT, although it did not affect caspase-3 cleavage (Figure 3.2). These 

data support the concept that obesity increases apoptosis in whole AT. However, 

                                   
    
Figure 3.1: Metabolic phenotype of lean and obese mice. A) Study 
design: male C57Bl/6 mice were placed on a 10% low fat diet (LFD) or 60% 
high fat diet (HFD) for 9 weeks. B-E) Metabolic parameters were assessed at 
sacrifice: B) body weight, C) lean mass, D) fat mass, and E) fasting blood 
glucose concentrations. F) Real-time RT-PCR quantification of Emr1 (F4/80) 
gene expression in the SVF of the AT normalized to Rplpo. Data are 
presented as mean ± SEM, B) n = 12/ group, C-E) n = 7-12/group, F) n = 
7/group. * p<0.05, ** p<0.01, **** p<0.0001 between groups.  
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the metabolic regulation of apoptosis in ATMs during obesity has not been 

explored.  

 

 

 

To determine if obesity alters apoptotic signaling in AT immune cells, 

protein was isolated from the SVF of AT and assessed for apoptotic markers by 

Western blot analysis. Remarkably, HFD-fed mice demonstrated a 50% 

decrease in SVF cleaved caspase-3 protein levels compared to LFD-fed controls, 

suggesting decreased AT immune cell apoptosis during obesity (p<0.001, Figure 

3.3A). Although the SVF is a macrophage-enriched cell preparation, other 

leukocytes and pre-adipocytes are also contained within this fraction. To 

determine if obesity decreases apoptosis specifically in macrophages, AT was 

stained for F4/80, DAPI, and the apoptosis marker TUNEL. In both LFD- and 

 
Figure 3.2: Obesity increases apoptotic markers in whole AT. Male 
C57Bl/6 mice were placed on a LFD or HFD for 9 weeks. A-C) Whole AT 
was sonicated in 2% SDS and apoptotic markers were analyzed using 
Western blot: A) cleaved caspase-3, B) Bax, and C) Bak. Levels of specific 
proteins were normalized to total protein level, as measured by Ponceau S 
staining. Data are presented as mean ± SEM, n = 5/group. ** p <0.01, *** 
p<0.001 between groups.  
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HFD-fed mice, around 10-20% of cells with TUNEL+ nuclei were F4/80 negative, 

and about 80-90% of the apoptotic cells were macrophages, indicating that 

macrophages are the major cell type undergoing apoptosis in the AT (data not 

shown). Interestingly, quantification of confocal images demonstrated that ~17% 

of the macrophages in lean AT were TUNEL+ (apoptotic), while only ~4% of 

macrophages in obese AT were TUNEL+ (p<0.0001, Figure 3.3B-C). This 

decrease in apoptotic ATMs was also detected when quantified as number per 

high power field (p<0.01; Figure 3.3D). As expected because almost all ATMs in 

lean AT are interstitially spaced, the apoptotic ATMs in lean mice were also 

interstitially spaced (Figure 3.3E). Even in obese AT, about 50% of the apoptotic 

ATMs were localized to interstitial spaces.  
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To determine if the degree of obesity altered ATM apoptosis, mice fed 

HFD for an extended time period of 16 weeks were analyzed. These mice 

displayed an even further 75% decrease in cleaved caspase-3 levels in the SVF 

(p<0.0001), and a decrease in TUNEL positive ATMs (p<0.05) compared to mice 

on LFD for 16 weeks (Figure 3.4A-B). Interestingly, when the data from mice fed 

LFD or HFD for either 9 or 16 weeks were combined (Figure 3.4C), a clear 

negative correlation between body weight and the level of cleaved caspase-3 in 

SVF was found (r2 = 0.48, p<0.0001). Furthermore, even when only HFD-fed 

 
Figure 3.3: HFD feeding decreases apoptosis of ATMs. Male C57Bl/6 mice 
were placed on LFD or HFD for 9 weeks. A) SVF was collected and cleaved 
caspase-3 was analyzed using Western blot. B) AT explants were collected 
and analyzed by confocal staining for the macrophage marker F4/80 (green), 
nuclear stain DAPI (blue), and apoptosis marker TUNEL (pink). Magnification: 
40X. C-D) Quantification of TUNEL positive ATMs by percent of F4/80 
positive cells (C) or by number per high-power field (D). E) Quantification of 
localization of apoptotic ATMs. Data are presented as mean ± SEM, A) n = 
11-14/group, C-D) n = 4-8/group for confocal imaging.  
** p <0.01, *** p <0.001, **** p <0.0001 between groups. 
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mice (9 and 16 weeks HFD) were included in the analysis (Figure 3.4D), SVF 

cleaved caspase-3 levels remained negatively correlated with body weight (r2 = 

0.24, p<0.05), suggesting that obesity drives the decrease in immune cell 

apoptosis.  

 

 

 

 

          
Figure 3.4: Apoptosis of ATMs is negatively correlated with body 
weight. Male C57Bl/6 mice were placed on a LFD or HFD for 16 weeks. A) 
SVF was collected and cleaved caspase-3 was analyzed using Western blot. 
B) Quantification of TUNEL positive ATMs by percent of F4/80 positive cells. 
C) Correlation of SVF cleaved caspase-3 with body weight of mice fed LFD 
and HFD for either 9 or 16 weeks. D) Correlation of SVF cleaved caspase-3 
with body weight for HFD fed mice only (9 and 16 weeks).  A-B) Data are 
presented as mean ± SEM, n = 5-6/group.  
* p <0.05, **** p <0.0001 between groups.  
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Genetic Obesity Decreases ATM Apoptosis 

To determine if the decreased macrophage apoptosis observed in obese AT was 

the result of dietary intervention or due to overt obesity, a mouse model of 

genetic obesity was analyzed. Leptin-deficient ob/ob mice and lean littermate 

controls were maintained on a chow diet until 9-10 weeks of age, at which point 

they were of similar weight to the mice fed HFD for 9 weeks. As expected, ob/ob 

mice were obese compared to lean littermate control mice (p<0.0001; Figure 

3.5A), were hyperglycemic (p<0.001; Figure 3.5B) and the increase in body 

weight in the ob/ob mice was due to elevated fat mass, rather than lean mass 

(p<0.0001; Figure 3.5C-D). 
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Caspase-3 cleavage was significantly decreased in the SVF of ob/ob mice 

compared to lean controls (p<0.01, Figure 3.6A). AT was evaluated by confocal 

microscopy to determine if genetic obesity decreased apoptosis specifically in 

macrophages. Quantification of confocal images demonstrated that macrophage 

apoptosis is significantly decreased in the AT of ob/ob mice compared to lean 

controls (p<0.01 and p<0.05, Figure 3.6B-D). Additionally, 50% of apoptotic 

macrophages were localized to interstitial spaces, rather than crown-like 

structures (Figure 3.6E). Thus, both diet-induced and genetic obesity result in 

decreased ATM apoptosis.  

 
 

Figure 3.5: Metabolic phenotype of ob/ob mice and lean littermate 
controls. Metabolic parameters of ob/ob mice and lean littermate controls 
were assessed at sacrifice: A) body weight, B) fasting blood glucose, C) total 
lean mass, and D) total fat mass. Data are presented as mean ± SEM, A-B) n 
= 8/group, C-D) n = 5/group.  *** p<0.001, **** p<0.0001 between groups. 
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The Obesity-related Decreases in Macrophage Apoptosis is AT-

specific 

To determine if obesity modulates apoptosis in a similar manner in other 

metabolically-relevant tissues, protein was isolated from hepatocytes, an F4/80-

enriched non-hepatocyte fraction of the liver and whole spleen of mice fed LFD 

and HFD for 9 weeks. Markers of apoptosis, including protein levels of cleaved 

caspase-3, Bax, and Bak, were not modified by HFD feeding in either the 

hepatocyte fraction (Figure 3.7A-C) or the F4/80-enriched fraction of the liver 

 
 
Figure 3.6: Genetic model of obesity decreases apoptosis of ATMs. 
Male C57Bl/6 lean or ob/ob mice were maintained on chow diet until 9-10 
weeks of age. A) SVF was collected and cleaved caspase-3 was analyzed 
using Western blot. B) AT explants were collected and analyzed by confocal 
staining for the macrophage marker F4/80 (green), nuclear stain DAPI (blue), 
and apoptosis marker TUNEL (pink). Magnification: 40X. C-D) Quantification 
of TUNEL positive ATMs by percent of F4/80 positive cells (C) or by number 
per high-power field (D). E) Quantification of localization of apoptotic ATMs. 
Data are presented as mean ± SEM, A) n = 5/group, C-E) n = 4-6/group. 
* p <0.05, ** p <0.01 between groups. 
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(Figure 3.7D-F). Additionally, obesity did not impact markers of apoptosis in the 

spleen, an immune cell-enriched organ (Figure 3.7G-I). Therefore, while obesity 

decreased macrophage apoptosis in AT, this signaling pathway was not 

modulated in macrophages of the liver or whole spleen, indicating that this 

regulation is specific to AT.  
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Figure 3.7: Obesity does not modulate apoptotic markers in 
hepatocytes, an F4/80-enriched fraction of the liver, or in the spleen. 
Male C57Bl/6 mice were placed on LFD or HFD for 9 weeks. A-C) The 
hepatocyte fraction of the liver was sonicated in 2% SDS and apoptotic 
markers were analyzed using Western blot with data normalized to total 
protein as measured by Ponceau S staining: A) cleaved caspase-3, B) Bax, 
and C) Bak. D-F) The non-parenchymal fraction of the liver was enriched for 
F4/80+ macrophages using magnetic beads. Western blot analysis was 
performed for markers of apoptosis: D) cleaved caspase-3, E) Bax, and F) 
Bak. G-I) Whole spleen was sonicated in 2% SDS and Western blot analysis 
was performed: G) cleaved caspase-3, H) Bax, and I) Bak. Data are 
presented as mean ± SEM, A-C) n = 6-9/group, D-E) n = 7-8/group, F) n = 
4/group, G-I), n = 6/group.   
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Decreased ATM Apoptosis Correlates with Increased Protein Levels 

of Total and Mitochondrial-localized Pro-survival Bcl-2 Protein 

A common intrinsic mechanism to regulate apoptosis is maintenance of the 

integrity of the mitochondrial outer membrane. Within the Bcl-2 family, Bax and 

Bak are pro-apoptotic, promote mitochondrial outer membrane permeablization 

(MOMP), and activate the caspase cascade. Conversely, Bcl-2 and Bcl-xl are 

pro-survival and inhibit the pore-forming activities of Bax and Bak. To determine 

if obesity increases immune cell survival through the modulation of Bcl-2 family 

members, RNA and protein were isolated from the SVF of mice placed on LFD or 

HFD for 9 weeks.  SVF from obese mice displayed increased gene expression of 

Bax (p<0.01, Figure 3.8A), with no change in the gene expression of other Bcl-2 

family members (Bak1, Bcl2, Bcl2I1 (gene for Bcl-xl), Figures 3.8B-D). At the 

protein level, there was a significant increase in Bax (p<0.0001, Figure 3.8E) in 

SVF of obese mice, while Bak protein expression was significantly decreased 

(p<0.0001, Figure 3.8F). Interestingly, levels of the pro-survival protein, Bcl-2, 

were 2.5-fold elevated in SVF of obese compared to lean mice (p<0.001, Figure 

3.8G), while no change was seen in Bcl-xl (Figure 3.8H). These data 

demonstrate that obesity modifies the protein expression of both pro-apoptotic 

and pro-survival members of the Bcl-2 family in AT immune cells.  
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The cellular level of Bcl-2 family members is not the sole determinant of 

cell survival versus apoptosis. Instead, their localization to the outer membrane 

of the mitochondria is essential (reviewed in (90, 129, 130)). To determine if the 

subcellular localization of the major Bcl-2 family members, Bax (pro-apoptotic) 

and Bcl-2 (pro-survival), was altered specifically in ATMs during obesity, 

adherence selected macrophages from the SVF of LFD and HFD mice were 

assessed. To quantitatively analyze the mitochondrial localization of Bax and Bcl-

2, we used automated high-throughput fluorescent microscopy and analysis 

 
 
Figure 3.8: Pro-apoptotic/survival Bcl-2 family members are 
differentially regulated in the SVF of AT of obese mice. Male C57Bl/6 
mice were placed on LFD or HFD for 9 weeks. A-D) SVF was collected and 
Bcl-2 family pro-apoptotic/survival gene expression was analyzed using real-
time RT-PCR: A) Bax, B) Bak1, C) Bcl2, and D) Bcl2l1. E-H) SVF was 
collected and Bcl-2 family pro-apoptotic/survival protein levels were analyzed 
using Western blot: E) Bax, F) Bak, G) Bcl-2, and H) Bcl-xl. mRNA levels 
were normalized to housekeeping gene Rplpo and levels of specific proteins 
were normalized to β-actin. Data are presented as mean ± SEM, A-D) n= 
7/group, E-F) n = 17-19/group, G-H), n = 4-8/group.  
** p <0.01, *** p <0.001, **** p <0.0001 between groups. 
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software described in Chapter II. We first used the Image Xpress imaging 

technique to quantitatively determine the amounts of Bax and Bcl-2 protein 

localized to the mitochondria in ATMs of lean and obese mice. Although total 

protein levels of Bax were increased in the SVF during obesity (Figure 3.8E), 

there was no difference in the localization of Bax to the mitochondria (based 

upon co-localization with Cox IV) ATMs of LFD versus HFD fed mice (Figure 

3.9A). Interestingly, obesity increased the localization of the pro-survival protein, 

Bcl-2, to the mitochondria of ATMs (p <0.05, Figure 3.9B). To confirm the 

changes quantified using Image Xpress software, we also used confocal 

microscopy to visualize the differences in Bax and Bcl-2 mitochondrial 

localization (based upon co-localization with MitoTracker Deep Red). In support 

of our Image Xpress quantification data, the confocal images show that there 

was no apparent difference in Bax protein co-localization with mitochondria in 

ATMs from lean and obese mice by immunofluorescence staining (Figure 3.9C). 

Furthermore, Bcl-2 protein was highly co-localized to the mitochondria in ATMs 

of obese compared to lean mice (Figure 3.9D). Together, the data from Figures 

3.8 and 3.9 suggest that the increased protein and mitochondrial localized levels 

of Bcl-2 may allow for increased ATM survival observed during obesity.  
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NF-κB Activity and its Pro-survival Gene Targets are Activated in 

ATMs of Obese Mice  

A key mediator of inflammatory gene expression in macrophages is the 

transcription factor NF-κB. Previous studies have demonstrated greater 

 
Figure 3.9: Mitochondrial localization of the pro-survival protein Bcl-2 is 
increased in ATMs of obese mice. Male C57Bl/6 mice were placed on a 
LFD or HFD diet for 9 weeks. ATMs were obtained using a 2 h macrophage 
selection by adhesion assay and stained for quantification of Bax and Bcl-2 
mitochondrial localized protein levels by Image Xpress Automated HTS 
Fluorescence Microscopy or visualization by confocal microscopy. A) 
Quantification of the co-localization of Bax to the mitochondria of ATMs. B) 
Quantification of the co-localization of Bcl-2 to the mitochondria of ATMs. 
Magnification for quantifications: 40X. C) Representative images of Bax 
(green) mitochondrial (red, MitoTracker (Mito)) localization by confocal 
microscopy. D) Representative images of Bcl-2 (green) mitochondrial (red, 
MitoTracker (Mito)) localization by confocal microscopy. Magnification for 
representative images: 60X with a 4.5 zoom. Data are presented as mean ± 
SEM, n = 6-7/group.  
* p <0.05 between groups. 
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localization of the p65 subunit of NF-κB to the nucleus in ATMs during obesity 

(67). In addition to its control of inflammatory gene expression, NF-κB also 

promotes cell survival through the transcription of pro-survival Bcl-2 family 

members (131). Therefore, we hypothesized that increased NF-κB activity during 

obesity may promote ATM survival. To confirm NF-κB activation in ATMs from 

obese mice, the protein level of the phosphorylated (active) form of the p65 

subunit (P-p65) was assessed in the SVF of mice fed LFD or HFD for 9 weeks. 

P-p65 was significantly increased in the SVF of HFD mice (p<0.05, Figure 

3.10A). Furthermore, nuclear localization of p65 was increased in adherence-

selected ATMs from obese compared to lean mice (Figure 3.10B) and as 

quantified by Image Xpress Automated HTS Fluorescent Microscopy (p<0.001; 

HFD: 1.3 x 106 ± 1.1 x 105 RLU, and LFD: 0.82 x 106 ± 0.44 x 105 RLU, N=7). 

Next, we determined the transcriptional activity of NF-κB in adherence-selected 

ATMs through the use of NF-κB promoter-driven GFP-Luciferase reporter mice 

(NGL) described previously (104). Luciferase activity was significantly increased 

in ATMs of obese mice, indicating elevated NF-κB transcriptional activity (p<0.05, 

Figure 3.10C). To determine if increased NF-κB transcriptional activity resulted in 

elevated expression of NF-κB target genes, expression of the inflammatory 

cytokine, Tnf, and the pro-survival inhibitors of apoptosis, Xiap and Birc3 (gene 

name for cIAP), was analyzed specifically in adherence-selected ATMs. As 

expected, Tnf gene expression was significantly increased in ATMs of HFD-fed 

mice (p<0.05, Figure 3.10D). Interestingly, there was a trend towards an increase 

in Xiap expression (p=0.07) and a significant increase in Birc3 expression 
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(p<0.05) in ATMs from obese mice (Figure 3.10D). These data demonstrate that 

increased NF-κB transcriptional activity in ATMs promotes the expression of pro-

survival genes. Therefore, it is likely that NF-κB contributes to the increased ATM 

survival observed during obesity.  

 

 

 

      
Figure 3.10: NF-κB activity and its pro-survival target genes are 
increased in ATMs of obese mice. Male C57Bl/6 mice were placed on a 
LFD or a HFD for 9 weeks. A) SVF was collected and phosphorylated p65 (P-
p65) was analyzed using Western blot. B) Nuclear localization of the p65 
subunit of NF-κB. ATMs were obtained using a 2 h macrophage selection by 
adhesion assay and stained for nuclear stain DAPI (blue), p65 (red), F4/80 
(green). Magnification: 100X with a 4.5 zoom. C) Transcriptional activity of 
NF-κB in ATMs using NF-κB-GFP-Luciferase mice. D) Real-time RT-PCR 
analysis of NF-κB-driven pro-inflammatory and pro-survival target genes in 
ATMs (Tnf, Xiap, Birc3). Data are presented as mean ± SEM, A) n = 4/group, 
C) n = 9-10/group, and D) n = 7-8/group.  
* p <0.05 between groups.  
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Metabolic Activation-induced Survival of ATMs is Blunted by 

Inhibition of NF-κB 

In previous studies, it has been shown that exposing bone marrow-derived 

macrophages (BMDMs) to high levels of glucose, insulin and palmitate 

(“metabolic activation”) induces a gene expression profile/phenotype similar to 

ATMs of obese mice (53). I sought to determine if exposure of ATMs to this 

metabolic activation cocktail (MetaC; 30 mM glucose, 10 nM insulin and 0.4 mM 

palmitic acid) would result in increased NF-κB activation, augmented expression 

of its pro-survival target genes, and increased cell viability. I felt it was important 

to perform these studies specifically in ATMs, as recent data from the 

Immunological Genome Project emphasize the fact that macrophages derived 

from different tissue/cellular sources have vastly different transcriptomes (132). 

Therefore, in order to obtain a sufficient number of ATMs for these studies, mice 

were fed HFD for 3 weeks prior to the isolation of adherence-selected ATMs. 

This short-term HFD feeding did not significantly increase NF-κB activity, as 

measured by NGL luciferase activity (Figure 3.11A). Subsequently, the 

adherence-selected ATMs were exposed to control or MetaC conditions for 30 

min and p65 nuclear localization was visualized using confocal microscopy. In 

support of my ex vivo results, exposure of ATMs to the obesogenic milieu 

(MetaC) increased nuclear localization of the p65 subunit of NF-κB (Figure 

3.12A). Furthermore, 2 h of metabolic activation of ATMs recapitulated the 

reported (53) gene expression profile of ATMs in vivo (Tnf; p<0.05, Abca1; 

p=0.09, Plin2; p=0.06). Of note, metabolic activation in ATMs also significantly 
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increased the levels of NF-κB pro-survival target genes Bcl2 (p<0.05) and Xiap 

(p<0.05), while modestly increasing Birc3 (Figure 3.12B). These findings 

demonstrate that metabolic activation of ATMs increases NF-κB transcriptional 

activity and pro-survival gene expression, similar to what we observed in vivo 

during obesity. Furthermore, these studies were attempted using adipocyte 

conditioned media; however, HFD adipocyte conditioned media did not increase 

NF-κB activity compared to control. This is further detailed in Appendix A. 

Interestingly, exposure of ATMs to MetaC alone significantly increased cell 

viability at 6 and 8 h post-treatment (p<0.01 and p<0.05, respectively; Figure 

3.12C), supporting my earlier data demonstrating that the in vivo obese milieu 

promotes ATM survival.  I next used this model system to determine the role of 

NF-κB activation in this increased ATM survival under obesogenic conditions by 

treating ATMs with MetaC in the presence or absence of the highly selective NF-

κB inhibitor, BMS-345541(133). Importantly, MetaC increased and BMS inhibited 

NGL luciferase activity in metabolically activated ATMs from chow-fed mice, 

indicating that BMS does, in fact, decrease NF-κB activity (Figure 3.11B). In 

support of my hypothesis, inhibition of NF-κB in ATMs, reduced the pro-survival 

effect of MetaC, a finding that trended at 4 and 8 h of treatment and was 

significant (p<0.05) at 6 h of treatment (Figure 3.12C). Taken together, these 

data suggest that NF-κB activation in ATMs in the obese state increases their 

ability to survive. 
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Figure 3.11: ATMs from chow diet-fed NGL mice respond to MetaC and 
BMS. A) NGL Luciferase Activity in ATMs of mice fed LFD or HFD for 4 
weeks.  Four weeks of HFD feeding doesn’t significantly increase NF-κB 
activity in ATMs from NGL mice. N=ATMs from 4 mice/per group.  B) ATMs 
were collected from chow-fed NGL mice and treated with BMS, MetaC, or 
MetaC+BMS as described for Figure 3.12. After 2 hours, cells were lysed and 
Luciferase activity measure. n = ATMs from 3-4 mice/group. 
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Figure 3.12: Inhibition of NF-κB activity decreases ATM survival in an 
obesogenic setting. Male C57Bl/6 mice were placed on a HFD for 3 weeks 
to obtain sufficient numbers of ATMs for ex vivo studies. A) Nuclear 
translocation of NF-κB. Adhesion-selected ATMs were treated with the 
metabolic cocktail (MetaC, 30 mM glucose, 10 nM insulin, 0.4 mM of palmitic 
acid) for 30 minutes and subsequently stained with DAPI (blue), p65 (red), 
F4/80 (green). Magnification: 60X with a 1.5 zoom. B) Gene expression.  
ATMs were treated with the MetaC for 2 h and RNA isolated for real-time RT-
PCR analysis of expression of lipid metabolism (Abca1 and Plin2) as well as 
NF-κB-driven pro-inflammatory (Tnf) and pro-survival (Bcl2, Xiap, Birc3) 
genes. C) Cell viability. ATMs were treated with DMEM (control), MetaC, 
BMS-34551 (BMS), or MetaC + BMS for 0-8 h. Cell viability was detected 
using the Cell-Titer Blue assay as described in the Chapter II. Data are 
presented as mean ± SEM, n = 4-5/group.  
* p<0.05, ** p <0.01, *** p<0.001 between groups. 
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Discussion 

During obesity, pro-inflammatory macrophages accumulate in metabolic tissues, 

including AT (31, 32), and contribute to obesity-associated IR both locally and 

systemically (21). Since this novel discovery, much effort has been focused on 

determining mechanisms by which this accumulation occurs. The overwhelming 

majority of these studies have sought to identify recruitment-dependent 

mechanisms for the increase in ATM number during obesity.  

 Much work has focused around the central hypothesis that obesity 

increases circulating inflammatory Ly6Chi monocytes that are then recruited to 

AT via chemoattractants. Thus, recruitment-dependent mechanisms for 

increased ATMs should be contingent upon increased circulating inflammatory 

monocytes and chemotaxis of these cells to AT during HFD feeding. Despite the 

logical nature of this hypothesis, recent findings have called into question 

whether chemoattractant-mediated monocyte recruitment is the sole mechanism 

regulating ATM number during obesity. First, single gene deletion of multiple 

chemokines or chemokine receptors such as Ccl3 (119), Ccr5 (120), and Cx3cr1 

(121), does not modulate ATM number during HFD feeding. Even in studies 

demonstrating that a chemokine or its receptor plays a role in promoting 

macrophage accumulation in obese AT, ATM number is not normalized to levels 

observed in lean AT (72, 77, 89, 123, 124) . Second, in Ccr2-/- mice, there is a 

near absence of circulating Ly6Chi cells (75), yet there is either no difference in 

ATM numbers or these differences are noted only after long periods of HFD 

feeding (49, 72, 77). Third, MGL1 has been identified as a critical factor 



 

 
 

77 

regulating the survival and migration of Ly6Chi monocytes, as animals deficient in 

MGL1 do not mobilize Ly6Chi monocytes from the bone marrow to the blood in 

response to HFD feeding (81). However, despite the near absence of circulating 

pro-inflammatory monocyte populations, deletion of Mgl1 does not normalize 

ATM number to levels observed in lean AT (81). This dissociation between the 

chemoattractant potential of AT, circulating blood monocyte number, and ATM 

content suggests that an increase in the recruitment of inflammatory Ly6Chi 

monocytes is not the only mechanism regulating ATM accrual during obesity. 

Indeed, taken together, these published reports suggest that recruitment-

independent mechanisms for macrophage accrual in obese AT should be 

considered.   

 Potential recruitment-independent mechanisms that could also play a role 

in the regulation of ATM number during obesity include: increased proliferation of 

macrophages within AT, decreased egress of macrophages from AT, or 

increased ATM survival. Recent studies now show that increased proliferation 

and decreased egress of ATMs can, in fact, contribute to ATM accumulation 

during obesity (82-84). I now show that macrophage longevity is an additional 

metabolically regulated process that, when dysregulated during obesity, 

promotes macrophage survival and accumulation in AT, thus contributing to the 

diminished function of the tissue. 

In agreement with my findings, recent studies show that macrophage 

apoptosis occurs infrequently in obese AT. For example, sophisticated imaging 

studies in AT explants demonstrate very few apoptotic macrophages in obese AT 
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(134). Furthermore, these studies showed that macrophages within the CLS of 

obese AT were stable, showing no shrinkage or cell death, over the 7-day 

imaging time-course, suggesting that ATMs in obese AT are long-lived (134). 

Beyond this, there have also been hints in the literature that decreasing 

macrophage survival in AT of obese mice and humans reduces the metabolic 

abnormalities associated with obesity. Feng, et al. showed that activation of ATM 

apoptosis via treatment with liposomal clodronate decreased AT inflammation 

and improved systemic glucose tolerance and insulin sensitivity in a mouse 

model of obesity (85). Additionally, Kern and colleagues reported that 

pioglitazone, an insulin sensitizing TZD, increased macrophage apoptosis in 

human AT, possibly contributing to the reduced ATM number observed after TZD 

treatment (135, 136). These findings demonstrate that pharmacological activation 

of macrophage apoptosis in obese AT reduces ATM content and improves 

metabolic function. If ATM apoptosis can be manipulated to improve AT function, 

it is logical that macrophage survival may also be regulated in a physiologically 

relevant manner to control macrophage content of AT.   

 

Macrophage Apoptosis in Healthy Tissues 

My studies showed that ~17% of ATMs were TUNEL+ in the lean AT. This 

is quite surprising, given that one might expect efferocytic processes to quickly 

clear the apoptotic cells. However, this finding is in agreement with published 

literature. In their work using AT-specific p65 knockout mice (discussed in more 

detail below), Gao, et al. also showed a fair amount of TUNEL staining in wild 
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type lean AT (137). Furthermore, studies by Cai, et al. demonstrated significant 

macrophage apoptosis (22% of macrophages were TUNEL positive) and 

turnover (35% turnover rate in 48 h) in interstitial macrophages from the lung 

tissue of healthy rhesus macaques (138). In agreement with these findings, 

tissue macrophages in murine lung were found to have substantial turnover 

during a 21-day study, and these macrophages were replaced through a self-

renewal process (139). Together, these studies support the idea that significant 

macrophage apoptosis/turnover occurs in multiple tissues of healthy animals. It 

should also be noted that about 10-20% of the TUNEL+ were not macrophages. 

These cells could be adipocytes, as has been reported (127); however they could 

also include other immune cells such as neutrophils, T cells, B cells, or 

eosinophils. Further studies are needed to determine whether apoptosis of other 

leukocytes takes place in AT and whether this is of relevance to AT homeostasis. 

In other metabolic settings, control of macrophage death/survival is known 

to be important for disease progression. For example, in atherosclerotic lesions, 

macrophage apoptosis and clearance by other efferocytic macrophages protects 

from early lesion formation (140, 141). Conversely, decreased macrophage 

apoptosis or impaired efferocytosis in advance lesions contributes to plaque 

instability (142). Of potential relevance to ATMs, Tabas and colleagues have 

shown that prior engagement of Toll Like Receptor 4, i.e. activation of an acute 

inflammatory pathway, protects macrophages from subsequent apoptosis in 

settings of sustained ER stress (143). This pathway is suggested to prolong cell 

survival to allow for continued production of inflammatory cytokines and 
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antimicrobial proteins in order to remove the infectious insult. Because chronic 

activation of ATMs during obesity can activate similar inflammatory pathways, 

these cells may be “tricked” into survival, with the ultimate result being 

detrimental rather than protective. In fact, both my in vivo and ex vivo studies 

support this notion that activation of macrophages increases their survival. These 

data suggest that modulation of macrophage survival is beneficial in the setting 

of microbial infection, but that activation of these same pathways may be a 

significant contributor to the pathological processes occurring during obesity by 

promoting both the survival and the inflammatory nature of ATMs. 

 

 NF-κB Signaling and ATM Survival 

Inflammatory activation of macrophages is largely regulated by the 

transcription factor, NF-κB. Studies by Chiang et al. demonstrated increased 

nuclear translocation of the p65 subunit of NF-κB ATMs from obese compared to 

lean mice (112), suggesting that ATM inflammation may be driven by NF-κB-

dependent mechanisms. Although NF-κB is often only appreciated for its pro-

inflammatory role, this transcription factor also acts as a potent pro-survival 

factor. My data demonstrate that the pro-survival axis of NF-κB is initiated in 

ATMs during obesity, as indicated by increased p65 nuclear localization, 

elevated NF-κB–driven luciferase activation, increased Bcl-2 protein levels and 

mitochondrial localization, and elevated expression of IAP genes. These data 

demonstrate that obesity-driven NF-κB activity not only promotes an 

inflammatory phenotype in ATMs in obese AT, but also increases the expression 
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of pro-survival genes/proteins.  Further, my ex vivo studies suggest that NF-κB 

activity is necessary for increase ATM survival under obesogenic conditions. 

The use of the inhibitor BMS-34551 to inhibit NF-κB specifically in ATMs is 

a novel model that has given great insight in to the contribution of this pathway to 

ATM survival. BMS-345541 has been previously demonstrated to be highly 

effective at inhibiting NF-κB transcriptional activity via its specificity to the NF-κB 

activator, IKK (133). Importantly, the compound was tested against a panel of 15 

other kinases, including c-Jun, STAT3, and MAPK, and failed to inhibit the 

activity of these inflammatory factors (133). Furthermore, it has been 

demonstrated that treatment of NGL bone marrow derived macrophages with 

BMS-345541 significantly decreased LPS induced NF-κB transcriptional activity 

(104, 133, 144). MetaC-mediated upregulation of NF-κB was also inhibited by 

BMS in my ATMs (Figure 3.12B).  Although this specificity has been shown in 

other cell types, I cannot rule out that there could be off target effects on 

pathways other than NF-κB that control ATM apoptosis. Of note, this could alter 

the interpretation of my pharmacological data. In light of this, future studies, such 

as siRNA manipulation of NF-κB in ATMs, should be performed to better identify 

the importance of this transcription factor in regulating ATM survival.  

As this manuscript was in preparation, Gao, et al. reported their findings 

regarding inflammation in an AT-specific p65 knockout model (driven by the ap2 

promoter, i.e. deletion in adipocytes and likely macrophages) (137). Surprisingly, 

absence of p65 resulted in different effects in lean versus obese mice. They 

demonstrated that absence of the p65 subunit of NF-κB reduced inflammation 
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and ATM content in lean mice – presumably due to the absence of the 

inflammatory and survival arm of NF-κB signaling in the lean setting. In contrast, 

absence of p65 in obese mice led to adipocyte apoptosis. In addition, ATM 

numbers and overall AT inflammation were increased during obesity – most likely 

as a consequence of the adipocyte death. Although ATM content was increased, 

the authors also noted that ATM apoptosis was elevated in the p65-null obese 

mice, a finding they attributed to the absence of p65-mediated pro-survival 

signaling in the ATMs (137). These results suggest that adipocyte apoptosis and 

macrophage apoptosis may have different outcomes in regards to increasing or 

decreasing macrophage number in AT.  The increased ATM content found in this 

model may be solely due to an immense and overwhelming amount of adipocyte 

cell death, which likely induced macrophage recruitment to AT. In this case, 

deletion of p65 in both the adipocytes and macrophages makes it complicated to 

determine the contribution of each process to the regulation of ATM number. 

However, these data further support my finding that NF-κB controls ATM 

apoptosis/survival. 

Many of my studies focused of the role of NF-κB-induced ATM survival in 

vitro. I first set out to determine the role of NF-κB in ATM survival in vivo; 

however, I had difficulty in finding a usable model system. These studies are 

detailed in Appendices B and C. In light of this, determining the in vivo 

contribution of NF-κB to ATM survival and number in obese AT still remains to be 

elucidated. As discussed above, understanding ATM origin may also be 
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beneficial in understanding their role in restoring AT homeostasis and how, under 

metabolic conditions, this may be detrimental. 

 

Conclusion 

In light of the new knowledge obtained from the studies performed in this 

dissertation and the recent findings demonstrating the role of recruitment-

independent mechanisms in AT accrual, many questions still remain. No one 

recruitment-dependent or independent mechanism has been unequivocally 

identified as the sole regulator of macrophage accumulation in AT. In fact, all of 

these mechanisms may be working jointly to regulate ATM number. It will be 

interesting to understand the relative contributions of each mechanism in 

promoting pro-longed macrophage longevity. Even more importantly, should all 

be targeted or are other undiscovered mechanisms the culprit?  

The data presented in Chapter III of this dissertation demonstrate that the 

obese AT micro-environment metabolically activates ATMs in a way that may 

promote their survival. Furthermore, NF-κB appears to be at the center of 

controlling this life and death balance. These findings, combined with recent 

literature demonstrating that increased proliferation and reduced egress of 

macrophages promote increased ATM content in obese AT, indicate that 

recruitment-independent mechanisms indeed also modulate ATM number during 

obesity. A further understanding of the relative contributions of recruitment, 

proliferation, egress, and survival to the control of ATM number and inflammatory 
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status could pave the way for the development of novel therapeutics for the 

treatment of metabolic disorders. 
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CHAPTER IV 

DISSCUSSION AND FUTURE DIRECTIONS 

 

The mechanisms that control inflammatory macrophage accumulation in AT have 

long been a question of interest. Although recruitment is the most largely studied 

mechanism regarding this process, it is now being understood that recruitment-

independent mechanisms (proliferation and egress) are also contributing factors. 

The data presented in my dissertation now show that regulation of life/death 

signals in ATMs also contributes to their accrual in AT (Figure 4.1).  

 

 

 
 
Figure 4.1. Survival as an additional mechanism of macrophage accrual 
in AT.  
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The original hypothesis leading into my studies was that the obese state 

would promote a more pro-apoptotic (rather than pro-survival) phenotype in 

ATMs due to the exposure of increased levels of SFAs in obese AT. In support of 

this idea, work I was involved in when I began my time in the Hasty laboratory 

had demonstrated that SFA lipid loading of macrophages in vitro induced 

apoptosis, suggesting that SFAs in the obese milieu would be toxic to ATMs (58). 

Surprisingly, during the completion of my dissertation, I found the opposite to be 

true in the in vivo setting. My work presented in this dissertation now 

demonstrates the novel finding that the obese environment actually promotes 

increased survival in ATMs and their accumulation in obese AT. Furthermore, I 

demonstrate that NF-κB controls macrophage survival through increasing the 

expression of pro-survival Bcl-2 and IAPs family proteins. These findings are 

distinctive because macrophage longevity in AT had not previously been studied. 

Furthermore, this is the first time, in the context of obesity, that the NF-κB 

survival arm has been described as a factor regulating ATM function in AT. 

These new findings bring great insight into how the obese environment can 

perpetuate the pathology of obesity by increasing inflammatory ATM survival and 

promoting their accrual in AT. This insight opens up a plethora of questions, in 

regards to ATM longevity in AT. The following questions will be discussed in this 

chapter: 1) Why do the results of the in vivo studies performed in this dissertation 

differ from previous in vitro SFA-accumulation studies in regards ATM survival? 

2) Do anti-inflammatory or pro-inflammatory macrophages preferentially undergo 

apoptosis? 3) Is the NF-κB pro-survival arm activated in macrophages in other 
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lipid-rich metabolic settings? 4) Is this pro-survival activation intentional or a 

consequence of inflammatory activation? 5) Are other pro-survival pathways 

involved? 6) Is macrophage turnover a normal aspect of tissue homeostasis and 

does it apply to AT? 7) What controls macrophage turnover?    

 

Why do the results of the in vivo studies performed in this dissertation 

differ from previous in vitro SFA-accumulation studies in regards ATM 

survival? 

Previous studies performed in the Hasty laboratory demonstrated that lipid 

loading of macrophages with SFAs induced apoptosis. In these studies, 

peritoneal macrophages were treated with a long fatty acyl CoA synthetase 

inhibitor, Triacsin C, to inhibit their ability to metabolize lipids. As a result, SFAs 

were unable to be stored in the form of triglycerides (TG) and caused increased 

levels of intracellular free fatty acids (FFAs). This lipotoxic state resulted in 

endoplasmic reticulum (ER) stress-mediated apoptosis (58). In obese AT, 

dysregulated lipolysis exposes macrophages to increased levels of FFAs, 

including SFAs (145). In light of these findings, it was hypothesized that the 

lipotoxic environment found in obese AT would induce their apoptosis in vivo. 

Surprisingly, my studies demonstrated that the in vivo obese setting increased 

ATM survival. The inconsistencies in the results found between these studies 

could be explained by the modulation of lipid metabolism in macrophages in both 

settings. Under normal physiological conditions, lipid metabolism would not be 

disabled in macrophages. As a result, FFAs can be properly stored as TG and 
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presumably prevent lipotoxic-induced ER stress-mediated apoptosis. In fact, 

Kratz and colleagues demonstrated that ATMs of obese AT display increased 

expression of lipid metabolism genes, Abca1 and Plin2 (53). Furthermore, my in 

vitro studies demonstrate that exposure of ATMs to a SFA-rich metabolic cocktail 

increased their survival as seen in the in vivo setting. In the previous in vitro SFA 

studies, the inhibition of lipid metabolism in macrophages did not fully 

recapitulate the lipid handling abilities of macrophages in the in vivo setting. In 

light of this, the interpretation of these results, in regards to macrophage 

apoptosis in vivo, were not exact. Although these studies differ in their outcomes, 

they both provide insight into how macrophage lipid metabolism can control their 

survival. In fact, altering lipid metabolism genes and pro-survival pathways in 

ATMs could serve as therapeutic targets to increase their apoptosis and reduce 

their numbers in obese AT. 

 

Do anti-inflammatory or pro-inflammatory macrophages preferentially 

undergo apoptosis? 

The data presented in Chapter III demonstrate that macrophages in lean AT 

undergo apoptosis more frequently than macrophages in obese AT. As detailed 

in the Introduction, interstitially spaced macrophages, found in lean and obese 

AT, tend to be M2-like (anti-inflammatory) versus M1-like (pro-inflammatory) 

CLS-localized ATMs present in obese AT. Furthermore, the data presented in 

Figure 3.1E shows that the majority of apoptotic ATMs in the lean or obese state 

are interstitially spaced with few localized to CLSs. Taken together, these 
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findings would suggest that interstitially spaced anti-inflammatory macrophages 

are also more pro-apoptotic. However, it is not known whether anti-inflammatory 

or pro-inflammatory macrophages in AT preferentially undergo apoptosis and 

how this relates to maintaining or restoring AT homeostasis. My data in figure 3.1 

would suggest that interstitially spaced ATMs, presumably of an anti-

inflammatory phenotype, are more prone to apoptosis unlike CLS pro-

inflammatory macrophages. This dichotomy could be explained by differential 

regulation of the NF-κB pro-survival signaling pathway in both phenotypes. The 

data presented in Figures 3.10 and 3.11 clearly demonstrate that ATM turnover 

in obesity is subdued, due to the activation of the NF-κB pro-survival arm. This 

pro-survival phenotype is not apparent in ATMs found in the lean state. Taken 

together, this would suggest that the lower level of NF-κB activity present in anti-

inflammatory ATMs found in lean AT makes them more prone to apoptosis. 

Additionally, interstitially spaced ATMs in obese AT also seem to be infrequently 

undergoing apoptosis compared to ATMs in the lean state. Of note, 

macrophages are thought to be plastic in nature whereby the polarization state 

spans a continuum and can be controlled by the tissue microenvironment(146). 

In obese AT, interstitially spaced anti-inflammatory ATMs could be progressing 

towards a more pro-inflammatory phenotype due to the inflammatory 

environment of obese AT. As a result, NF-κB pro-survival signaling can occur, 

resulting in decreased susceptibility to apoptosis. If so, this would suggest that 

even a progressive increase in NF-κB activity in anti-inflammatory ATMs in obese 

AT could promote their survival. In efforts to understand whether anti- or pro-
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inflammatory macrophages preferentially undergo apoptosis, it would be 

interesting to determine to what extent the NF-κB pro-survival arm has to be 

activated to promote longevity. Future in vitro studies could modulate the 

activation of NF-κB, using various concentrations of stimuli, in ATMs under 

apoptotic conditions to determine the threshold of NF-κB pro-survival activation 

required to prevent apoptosis. Furthermore, anti- and pro-inflammatory ATM NF-

κB activity can be compared to the data from these studies to determine if one 

phenotype is more susceptible to apoptosis. 

 

Is the NF-κB pro-survival arm activated in macrophages in other lipid-rich 

metabolic settings? 

Interestingly, NF-κB induction in the context of inflammatory diseases is often 

associated with increased cell survival [reviewed in (102, 147, 148)]. In the obese 

setting, the glucose and lipid–rich microenvironment of AT seems to play a 

critical role in activating NF-κB survival pathways in ATMs. Although my data 

suggest that the changes in macrophage apoptosis/survival were specific to AT 

and were not seen in liver or spleen, there are other obesity-related metabolic 

diseases that display similar characteristics. It has been suggested that lipids 

secreted from dysfunctional AT promote bone loss in obesity (149). SFA 

enhanced survival of osteoclasts (bone macrophages) is implicated in 

contributing to bone loss in obesity due to the ability of osteoclast to resorb bone 

cells, induce inflammation, and prevent new bone formation. Oh and colleagues 

demonstrated that treatment of BMDM-derived osteoclasts with palmitic acid 
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significantly induced their survival via an NF-κB, MyD88, Mip-1α dependent 

mechanism (149). Furthermore, it has been shown that inhibition of NF-κB in 

osteoclast induced apoptosis (150). In other metabolic settings, such as 

atherosclerosis, exposure of macrophages to elevated levels of glucose and 

oxidized low-density lipoprotein (oxLDL) is responsible for foam cell formation in 

atherosclerotic lesions. These lipid-laden cells play a central role in plaque 

formation, progression, and instability. Interestingly, their increased survival in 

advanced lesions is suggested to play a role in the growth and destabilization of 

advanced atherosclerotic plaques (151). For example, in vitro studies in BMDMs 

treated with oxLDL demonstrated significant increases in pro-survival proteins 

Bcl-2 and Bcl-xl (152). This increase in survival factors was not seen in BMDMs 

treated with native LDL. Furthermore, the extent to which the levels of the pro-

survival Bcl-2 proteins were elevated mirrored levels induced by a known 

macrophage pro-survival protein activator, CSF-1. Protein levels of pro-survival 

IAPs, XIAP and cIAP, were also elevated in BMDMs treated with ox-LDL. Of 

note, the ability of oxLDL to induce a pro-survival phenotype was largely 

dependent on the macrophages utilization of glucose (152). The PI3K pathway is 

accredited for this increase survival; however, studies demonstrate the PI3K 

hyperactivates NF-κB signaling in macrophages (150).It is not clear why certain 

lipid species activate NF-κB. It would be interesting to determine the mechanisms 

by which certain lipid species result in activation of pro-survival pathways in 

macrophages. Is their structure recognized as an antigen? Do they cause rigidity 

of the cellular membrane? Are there specific lipids relevant to pro-survival 
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activation of ATMs compared to other macrophages? Taken together, these 

studies further suggest the integral role of NF-κB in macrophage survival in the 

progression of metabolic diseases. 

 

Is this pro-survival activation intentional or a consequence of inflammatory 

activation?  

It is not clear whether the association between NF-κB-induced 

inflammation and survival in ATMs is direct or indirect. This brings to question 

whether 1) a macrophage “knowingly” activates the survival arm of NF-κB under 

inflammatory conditions or 2) if it’s a “side effect” of classical NF-κB activation. In 

the case of scenario 1, this activation may provide protection against lipotoxicity 

present in the local AT environment. Furthermore, this idea suggests a level of 

control that the macrophage has in regards to its survival. Conversely, scenario 2 

implies that increased survival is merely a consequence of inflammatory 

activation and is unable to be dampened even when it promotes pathology.  If 

macrophages “knowingly” activate the survival arm of NF-κB, it would be 

interesting to understand the signaling pathways that control NF-κB-induced 

survival of ATMs in inflammatory settings and use them as therapeutic targets for 

decreasing ATM survival and content in obese AT. Inhibition of the NF-κB 

inflammatory signaling pathway could allow for its pro-survival arm to be more 

easily studied. This would allow for both the pro-inflammatory and pro-survival 

signaling arms of NF-κB to be evaluated and the ability to determine whether 
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there is cross talk between both pathways or if they act independently of each 

other.  

 

Are other pro-survival pathways involved? 

My studies demonstrate that increased markers of ATM survival in the 

obesogenic environment may be NF-κB-dependent. However, ATM survival may 

also be regulated by additional mechanisms. Kratz et al. demonstrates that ATMs 

in obese AT display a “metabolic activation” phenotype (53). An aspect of this 

phenotype is the induction of sequestome-1 (p62). These authors suggested that 

uptake of palmitic acid induces not only NF-κB activation, but also results in 

impaired autophagy. Interestingly, several studies suggest a role for both 

autophagic degradation and NF-κB signaling pathways in regulating cell survival 

(153). Interestingly, NF-κB activates pro-survival regulators, Bcl-2 and Bcl-xl, 

which inhibit key players in autophagy, including Beclin 1. The inhibition of 

autophagosome formation can lead to the accumulation of p62. Together, the 

above findings suggest that decreased autophagy in ATMs during obesity may 

be an additional mechanism contributing to increased cell survival. However, 

much of the literature suggests that the role of autophagy in inhibition or 

activation of cell survival is context dependent. Genetic manipulation of p62 in 

vivo or in vitro, under obese metabolic conditions, could help determine whether 

p62 is involved in ATM survival in obesity. Furthermore, this could help determine 

if p62 activates or antagonizes NF-κB-induced ATM survival in the obese setting. 
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An additional mechanism that may be involved in ATM survival is signaling 

through the nuclear factor E2-realted factor-2 (Nrf2) pathway. Nrf2 is a 

transcription factor that is induced under oxidative stress conditions where it 

plays a role in inducing the transcription of antioxidant genes to counter the 

dangerous effects of reactive oxygen species. Like NF-κB, Nrf2 promotes 

survival by inducing the transcription of pro-survival proteins Bcl-2 and Bcl-xl 

(154, 155). In regards to improving the AT inflammatory state, global deficiency 

of Nrf2 protects against diet-induced obesity (156). Furthermore, studies 

demonstrate that myeloid specific deletion of Nrf2 decreased the number of 

CLSs in HFD fed mice; however this deficiency did not protect from HFD-induced 

AT inflammation and IR (107). Future studies are needed to better elucidate the 

role of Nrf2 in ATM number and AT inflammation during obesity as well as 

whether Nrf2 and NF-kB pathways intersect in ATMs. Inhibition of these 

pathways, through genetic or pharmacologic manipulation, in ATMs under 

obesogenic conditions could help provide some insight into if these pathways 

play a role ATM survival. 

 

Is macrophage turnover a normal aspect of tissue homeostasis and does it 

apply to AT? 

Interestingly, studies suggest that macrophage turnover is a normal process that 

occurs to maintain and restore tissue homeostasis in other tissues. This brings 

into light the importance of macrophage self-renewal in the maintenance of 

homeostasis (139, 157). Embryonic-derived resident macrophages are present 
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through the development of different tissues and replenish macrophage content 

in tissues over a period of time to maintain tissue homeostasis. Conversely, 

monocyte-derived macrophages are recruited from the bone marrow, particularly 

during times of infection or inflammation. Under inflammatory conditions or 

pathological stress, recruited macrophages replace resident macrophages in 

different tissues – a process likely relevant in AT. In AT, anti-inflammatory 

macrophages are thought to be resident macrophages, whereas pro-

inflammatory macrophages are recruited. If macrophage self-renewal is 

applicable to AT, it is possible that resident and recruited macrophages are 

derived from different precursors and respond differently to metabolic 

inflammation. If so, the inflammatory status of obese AT could result in the 

inability of resident ATMs to self-renew during the early stages of obesity- 

resulting in their replacement by recruited monocyte-derived ATMs. Although 

replacement of resident ATMs with monocyte derived cells is likely a 

compensatory mechanism to restore AT homeostasis, the increased NF-κB 

activity present in these ATMs could possibly prevent them from undergoing 

apoptosis unlike their embryo-derived counterparts. From a physiological 

standpoint, these ATMs maybe attempting to restore AT homeostasis; however, 

the obese milieu may indirectly drive their perpetuation of AT dysfunction through 

promoting their survival and inflammatory state by activating NF-κB. It would be 

interesting to use lineage tracing studies to determine whether resident and 

recruited macrophages are derived from different precursors. If so, their 
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susceptibility to apoptosis could be determined using in vitro and ex vivo MetaC 

studies. 

 

What controls macrophage turnover? 

The data presented in this dissertation details how ATM apoptosis is inhibited; 

however, the mechanisms that control ATM turnover in a normal setting still 

remain unknown. The interaction of ATMs in the lean state with other immune 

cells may provide some insight. In lean AT, eosinophils are present in greater 

numbers than in the obese state. Eosinophils have been demonstrated to control 

macrophage phenotype by secreting anti-inflammatory phenotype polarizing 

agents, IL-4 and IL-13(115, 158). Furthermore, eosinophils have been 

demonstrated to release pre-resolvins to aid in the attenuation of peritonitis 

(159). Interestingly, these molecules increased the expression of adiponectin, 

which has been shown to promote an anti-inflammatory phenotype (160). Like 

eosinophils, studies demonstrate that resolvins are increased in the lean 

compared to obese state and are important in restoring AT homeostasis during 

weight loss (161). One would speculate that if anti-inflammatory macrophages 

preferentially undergo apoptosis, the interaction between eosinophils and ATMs 

could be regulating their phenotype as well as turnover. In fact, preliminary 

studies from the Hasty laboratory demonstrate, in a model of eosinophilia, that 

the increased presence of eosinophils is strongly correlated with reduced 

numbers of ATMs. In opposition, the almost complete absence of eosinophils in 

obese AT may perpetuate the inflammatory activation state and survival of 



 

 
 

97 

ATMs. Others have hypothesized that eosinophils are major regulators of tissue 

homeostasis in both health and disease state (162). It is likely that regulation of 

ATM apoptosis by eosinophils may be a part of normal maintenance of tissue 

homeostasis. 

In conclusion, the studies performed during the completion of this 

dissertation have provided insight into the regulation of ATM survival and accrual 

in during obesity. These findings suggest that activation of NF-κB in ATMs is 

responsible for their pro-survival phenotype. Furthermore, this body of work has 

increased the understanding of mechanisms and consequences of immune cell 

accumulation in AT. 
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Appendix A 

 

NF-κB Inhibition in ATMs Cultured in Adipocyte Conditioned Media 

 

Introduction. NF-κB has been shown to promote survival in many cell types in 

the presence of a death stimulus in vivo and in vitro (163, 164). Obese AT is 

thought to be a toxic environment that exposes macrophages to secreted 

molecules that could induce apoptosis in ATMs and other stromal vascular cells 

(SVCs). The goal of these studies was to determine whether inhibition of NF-κB 

can promote apoptosis of ATMs ex vivo. 

  

Experimental design:  The macrophage selection by adhesion assay was 

performed on the SVF of obese mice fed HFD for 9 weeks to obtain ATMs for ex 

vivo studies. AT from 9 week HFD obese mice were cultured for 24 h to obtain 

adipocyte conditioned media. The conditioned media from these adipocytes was 

used to culture ATMs collected from an additional obese mouse for 2 hours in the 

presence or absence of 10μM of the NF-κB inhibitor, BMS-345541 (BMS). 

Adipocyte conditioned media (AD media) was also obtained from 9 LFD mice for 

control purposes. ATMs in DMEM alone or LFD conditioned media should not 

promote a pro-inflammatory phenotype or activation of NF-κB. Western blot 

analysis for phosphorylated p65 (P-p65) and cleaved caspase 3 was utilized to 

assess NF-κB activation and apoptosis in ATMs cultured in DMEM, LFD AD 

media, and HFD AD media alone or in the presence of BMS. ATMs cultured in 

HFD AD media alone should have increased NF-κB activation compared to 
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DMEM and LFD AD media conditions. Addition of BMS should induce apoptosis 

in all groups but have a greater effect on ATMs in the HFD AD media condition. 

 

Results. To determine the role of NF-κB activation in ATM survival under 

obesogenic conditions, I treated ATMs with AD media in the presence of 

absence of the NF-κB inhibitor BMS. HFD AD media alone did not significantly 

increase P-p65 activation in ATMs compared to DMEM or LFD AD media treated 

ATMs (Figure A1.1A). Furthermore, addition of BMS decreased p65 activation in 

all treatment groups (Figure A1.1A). However, cleaved caspase 3 activation was 

not increase in ATMs in HFD AD media conditions compared to DMEM or LFD 

AD media treated groups (Figure A1.1 B). 

 

Conclusions.  My hypothesis suggested that elevated levels of NF-κB activation 

in ATMs protects them from the toxic environment of obese AT. In these ex vivo 

studies, treatment of ATMs with HFD AD media did not recapitulate the 

increased protein levels of Pp65 in ATMs in HFD compared to the LFD mice as 

seen in Figure 3.10 of Chapter III. As a result, I concluded that the HFD AD 

media would not activate NF-κB in ATMs to level that would allow for the role of 

NF-κB in ATM survival in the obese setting to be adequately assessed. An 

alternative method of NF-κB activation was used to circumvent this issue. This is 

described in greater detail below. 
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Alternative Experimental Design. To circumvent the issues with the above 

experiment, an alternative obesogenic treatment cocktail was used to induce 

                       
 
Figure A1.1: Adipocyte conditioned media and BMS treatments in ATMs. 
ATMs from male C57BL/6 mice where treated with DMEM or AD media from 
LFD or HFD fed mice in the presence or absence of BMS for 8 h. Protein was 
collected for Western blot analysis. Treatment groups are as follows: DMEM, 
LFD AD media (LFD AD), HFD AD media (HFD AD) with or without BMS. A) 
Protein levels of phosphorylated p65. B) Protein levels of cleaved caspase 3. 
Data are presented as mean ± SEM, n = 4/group.  
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increased activation of p65 under HFD obesogenic conditions (Figure A1.2A). 

Previous studies by Kratz et al. demonstrated that metabolic activation of 

BMDMs induced a genetic profile that resembled that of ATMs found in the 

obese state (53). I used this model system to determine the role of NF-κB in ATM 

survival ex vivo. Before beginning my studies, I wanted to determine if metabolic 

activation of ATMs from 3 week HFD mice would induce NF-κB activation in 

ATMs from male NGL mice were treated with DMEM or MetaC for 0-24 h. The 

metabolic activation cocktail (MetaC) in the Kratz et al. studies contained 30mM 

glucose, 10nM insulin, and 0.4 mM palmitic acid. I also used a MetaC cocktail 

containing oleic acid to determine if the saturation state of the fatty acid played a 

role in NF-κB activation. As detailed in Chapter I, SFAs activate the NF-κB 

signaling pathway and are highly increased in obesity, whereas UFAs are not. I 

would expect that the UFA, oleic acid, would not induce NF-κB activation like the 

SFA, palmitic acid.  

 

Results. MetaC containing palmitic acid induced a significant increase in NF-κB-

induced luciferase activity at 1 h (p<0.01) and 4 h (p<0.05) after treatment 

compared to DMEM or MetaC containing oleic acid (Figure A1.2A). This 

difference was not apparent after 6-24 h of treatment.  

 

Conclusions. The above finding were important because it demonstrated 1) that 

this model system would be a useful tool to study the role NF-κB in ATM survival 

ex vivo and 2) recapitulated the idea that SFAs significantly induced the NF-κB 
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signaling pathway compared to UFAs, further confirming that components of the 

obesogenic environment promoted NF-κB activation. This metabolic activation 

cocktail was used to perform the experiments in Figure 3.12 of Chapter III. 

  

 

 

 

 

 

 

 

            
Figure A1.2: Obesogenic metabolic cocktail (MetaC) increases NF-κB-
induced luciferase activity in ATMs. ATMs from male NGL mice were 
treated with DMEM, MetaC containing oleic acid (OA+G+I: 0.4 mM oleic acid, 
30mM glucose, 10nM insulin) or MetaC containing palmitic acid (PA+G+I: 0.4 
mM palmitic acid, 30mM glucose, 10nM insulin) for 0-24 h. After treatment, a 
luciferase assay was performed to determine luciferase activity in ATMs at 
each timepoint in the study. Data are presented as mean ± SEM, n = 2-
3/group.  
* p<0.05 and ** p <0.01 between groups. 
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Appendix B 

 

Macrophage-specific, Inducible NF-κB Inhibition Model 

 

Introduction. My initial Thesis Proposal contained a description of in vivo 

experiments to determine the role of NF-κB in ATM apoptosis in obese mice. Drs. 

Timothy Blackwell and Fiona Yull from Vanderbilt University generated inducible 

transgenic mouse models that allow for macrophage-specific inhibition of NF-κB. 

This model is referred to as NF-κBi. Previous studies have demonstrated that 

treatment of these transgenic mice with doxycycline (dox) is sufficient to induce 

inhibition of NF-κB in macrophages in vivo (165). The goal of these studies was 

to use this model to inhibit NF-κB in ATMs and to determine the impact of this on 

their ability to survive in the obesogenic environment. 

 

Experimental design. The cfms promoter was used to target expression of the 

reverse tetracycline transactivator specifically in macrophages to drive the 

expression of a tetracycline operon that controls the dominant negative form of 

the NF-κB inhibitor, IκBα (Figure B1.1). C57BL/6 male inducible NF-κBi 

transgenic mice expressing a dominant negative IκBα (DN-IκBα) were used for 

these experiments. NF-κBi transgenic mice were placed on HFD for 8 weeks 

then continued on diet and given dox for 1 or 4 weeks as previously described 

(165). Dox was administered in the drinking water at a dose of 2 mg/ml. 

Littermate controls that do not express the transgene (control) and NF-κBi mice 
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without dox treatment (vehicle) under the same conditions were used as controls. 

Prior to the initiation of the proposed studies, WT mice were placed on dox to 

rule out any effects of this drug on ATM apoptosis. Introduction of dox should 

induce activation DN-IκBα specifically in macrophages, thus resulting in NF-κB 

inhibition. Confirmation of DN-IκBα was determined via mRNA expression of the 

SVF collected from treated mice. The primary endpoint measurements for this 

experiment are listed below in (Table B1). 

 

 

 

 
 

Figure B1.1. Tet-on system and feeding study design.  
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Results. After 1 week of dox treatment, mRNA expression of the DN-IκBα 

transgene was seen in the NF-κBi compared to the WT mice (Figure B1.2A). 

However, DN-IκBα protein expression was not able to be verified, suggesting that 

the protein was not being expressed (Figure B1.3A). Additionally, phosphorylated 

p65 (Pp65) protein expression was not decreased in dox treated NF-κBi mice 

(Figure B1.3A). In light of these findings, these data suggested that inhibition of 

NF-κB in ATMs did not occur. Furthermore, there was no difference in TUNEL 

staining between groups (Figure B1.4A). When both groups were treated with 

dox only for 4 weeks, there was increased expression of mRNA levels of DN-

IκBα in NF-κBi mice (Figure B1.5A-B). However, expression of the DN-IκBα 

protein was not seen after 4 weeks of dox treatment (Figure B1.6A-B). 

Additionally, TUNEL staining was not detected in ATMs from 4 week dox treated 

NF-κBi mice (Figure B1.7A-B). 

 

Conclusions: In light of the above results, I concluded that the cfms promoter 

was not strong enough to drive protein expression of the DN-IκBα transgene in 

Table B1 Measure Method 

 
Activation of NF-κB in ATMs 

 
p65 translocation into the nucleus of 

ATMs 

 
Immunofluorescence for NF-κB, F4/80 

 
NF-κB targeted inflammatory 

genes 

 
Expression of TNF-α, Bcl-2 family 

genes, IAPs, iNOS 

 
Real-time PCR 

 
ATM Apoptosis 

 
Apoptosis 

 
TUNEL staining and Cleaved caspase 3 

 
Changes in pro/ anti-survival 

protein expression ATMs 
 

 
 

NF-κB, Bcl-2 family proteins, 
caspase 3 

 
F4/80 sort of ATMs, 

Western blot, Immunofluorescence for    
NF-κB, F4/80 and Cleaved caspase 3 in 

AT explants 

 
AT insulin sensitivity 

 
AKT phosphorylation in AT explants 

 
Insulin injections, Western blot 

 
Subcellular localization of 

Bcl2 and BAX 

 
Localization of Bcl2 and Bax to the 

mitochondria 

 
Western blot for Bcl2 and Bax in the 

mitochondrial fraction 
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NF-κBi mice even after extended dox treatments. Therefore, NF-κB activity would 

not be inhibited and its role in ATM apoptosis in vivo cannot be tested. 

Furthermore, the cfms promoter is not expressed in all macrophages. This could 

result in the promoter not being expressed in ATMs and would further complicate 

the study. Due to the inability to verify the protein expression of the DN-IκBα 

transgene, I was unable to move forward with any of the proposed experiments 

for this model. 

 

 

                                                          

  
   
Figure B1.2. mRNA gene expression levels of DN-IκBα in 1 week 
vehicle or dox treated control and NF-κBi mice. Mice were treated with 
or without dox for 1 week. SVF was collected for mRNA expression 
analysis. GAPDH was used as a loading control. n= 5-6/group 
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Figure B1.3. Protein expression levels of Pp65 and DN-IκBα in 1 week 
vehicle or dox treated control and NF-κBi mice. Mice were treated with 
or without dox for 1 week. Protein was collected from the SVF for Western 
blot analysis. Protein levels of Pp65 and the DN-IκBα transgene was 
analyzed. n= 5-6/group 
 

 

Figure B1.4. TUNEL 
staining in AT of 1 week 
vehicle and dox treated 
control and NF-κBi mice. 
Mice were treated with or 
without dox for 1 week. AT 
was collected for 
immunofluorescence 
staining of Dapi (blue), 
F4/80 (green) and 
apoptosis marker, TUNEL 
(pink). n= 5-6/group. 
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Figure B1.5. mRNA gene expression level of DN-IκBα in 4 week dox 
treated NF-κBi mice. Mice were treated with dox for 4 weeks. SVF was 
collected for mRNA expression analysis. GAPDH was used as a loading 
control. n= 4/group 
 

 
 
Figure B1.6. Protein expression levels of Pp65 and DN-IκBα in 4 week 
dox treated control and NF-κBi mice. Mice were treated with dox for 4 
weeks. Protein was collected from the SVF for Western blot analysis. 
Protein levels of Pp65 and the DN-IκBα transgene was analyzed. n = 
4/group. 
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Figure B1.7. TUNEL staining in AT of 4 week dox treated control and NF-
κBi mice. Mice were treated with dox for 4 weeks. AT was collected for 
immunofluorescence staining of Dapi (blue), F480 (green), and apoptosis 
marker, TUNEL (pink), in ATMs. n= 3/group. 
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Appendix C 

 

Pharmacological Inhibition of NF-κB In Vivo 
 

 
Introduction. As an alternative to the above studies, I performed in vivo 

pharmacological inhibition of NF-κB in ATM studies using BMS-34551 (BMS). 

Previous studies have demonstrated treatment of an LPS NGL model with 

75ug/g significantly decreased LPS induced luciferase activity (104). The goal of 

my studies was to use pharmacological inhibition of NF-κB in vivo to determine 

the role of NF-κB in ATM survival. 

 

Experimental Design. All studies were performed after obtaining IACUC 

approval. Eight week old male NGL mice fed LFD and HFD for 9 weeks were 

used for these studies. The selective IKK inhibitor, BMS-345541 (BMS), was 

administered intravenously at doses of 0 µg/g- 100 µg/g once a day for a period 

of up to 24 h. Previous studies demonstrate that administration of 100 µg/g per 

day for up to 6 weeks did not display any toxicological effects (166). Vehicle (3% 

Tween 80 and sterile water) was administered as a control. BMS was obtained 

from Sigma-Aldrich. The compound was formulated as a 7.5 mg/ml solution in 

3% Tween 80 and sterile water. One hour prior to sacrifice a selective caspase 

inhibitor probe, FLIVO, would be administered intravenously. Mice would be 

injected with 100mcl of a 1x concentration of FLIVO (ImmunoChemistry 

Technologies). Prior to these studies, a BMS treatment timecourse study was 

performed on 9 week LFD and HFD-fed NGL mice to determine the proper time 
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ATM apoptosis should be assessed after treatment (Figure C1.1). This study is 

further detailed below. A significant decrease in body luminescence intensity 

(BLI) would suggest that NF-κB transcriptional activity is decreased and therefore 

ATM apoptosis may occur. NGL mice were treated with BMS as described above 

and then injected with the luciferase substrate, luciferin, at 1mg/mouse. BLI was 

measured using the Xenogen IVIS 200 imaging system in the Vanderbilt imaging 

core at 1, 6, 8 and 24 h after BMS treatment. Experimental groups were as 

follows: LFD/Vehicle, HFD/Vehicle and HFD/BMS. 

 

 

 

 

 

 

 
 

Figure C1.1.Timecourse experimental design for BLI imaging of BMS 
treated NGL mice. Vehicle and BMS treated NGL mice were injected with the 
luciferase substrate, luciferin, at 1mg/mouse and BLI was measured 
immediately at each designated timepoint. Images were taken using the 
Xenogen IVIS 200 bioluminescent and fluorescent imaging system at 
Vanderbilt Imaging Institute.  
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Results. To determine the role of NF-κB in ATM survival in vivo, 9 week LFD or 

HFD-fed NGL mice were treated with vehicle or the NF-κB inhibitor, BMS for 0-24 

h (Figure C1.1). At treatment T0, all mice displayed luciferase activity, as seen by 

BLI, demonstrating that all mice can be used for NF-κB-induce luciferase activity 

measurements (Figure C1.2A). Unexpectedly, HFD fed mice did not display 

increased NF-κB-induce BLI compared to lean mice at T0. Control and BMS 

treated mice displayed decreased BLI at T1, T6 and T24 h compared to T0 

(Figure C1.2A-D). However, BMS treatment of HFD mice did not decrease 

luciferase activity compared to the LFD and HFD vehicle treated groups (Figure 

C1.2C-D). Furthermore, luciferase activity returned to baseline levels 24 h after 

treatment (Figure C1.2E).  
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Conclusions. These observations suggested that there was no difference in the 

levels of luciferase activity between control and BMS treatment groups at T0 or 

throughout the timecourse study. This may be due to the high baseline levels of 

NF-κB-induced luciferase activity in various tissues with high proliferation such as 

the intestines. If so, imaging through the abdomen of the mouse would make it 

 
 
Figure C1.2. Live Imaging of vehicle and BMS treated LFD and HFD NGL 
mice. NGL mice were treated with BMS and imaged for luciferase activity at 
1, 6 and 24 h after injection. A) Time zero (T0) whole BLI before vehicle or 
BMS administration. B) Baseline measurement before luciferin injection for 1 
h timepoint (T1) (top panel). BLI 1 h after BMS treatment (bottom panel). C) 
Baseline measurement before luciferin injection for 6 h timepoint (T6) (top 
panel). BLI 6 h after BMS treatment (bottom panel). D) Baseline 
measurement before luciferin injection 24 h timepoint (T24) (top panel). BLI 
24 h after BMS treatment (bottom panel).E) Graph of BLI counts for each 
experimental group at each time point. n = 1 per group 
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difficult to determine luciferase activity in AT. To circumvent this issue, the AT 

would have to be imaged alone. This may it difficult to determine if ATM 

apoptosis was due to NF-κB inhibition or technical matters. Due to the inability to 

determine if this technique would be useful and cost effective, I chose not to 

move forward with these studies. 

 

 

 

 

 

 


