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CHAPTER 1

INTRODUCTION

The United States health care system has become more reliant on health infor-
mation technology and active data collection due in part to the Health Information
Technology for Economic and Clinical Health Act of 2009. This Act provides financial
incentives to institutions that are implementing and promoting the “meaningful use”
of electronic health record (EHR) data. As the amount of EHR data proliferates,
nationwide efforts (e.g., Project HealthDesign) have been initiated to generate novel
secondary uses of EHR data to improve public health, such as combining EHR data
with biorepositories to understand complex genotype and phenotype relationships.
The need for efficient study designs is paramount due to resource constraints (e.g.,
financial, limited biospecimens). This dissertation consists of three chapters relating
to the design and analysis of longitudinal and survey sampling studies when utilizing
EHR data and biorepository data.

In Chapter two, we extend the class of outcome dependent sampling (ODS) designs
for longitudinal binary data. These retrospective study designs are implemented
when it is not feasible to collect an expensive exposure on an entire cohort. One
subclass of ODS designs stratifies individuals into three possible strata according
to the categorization of their response vector: those who did not experience the
outcome, those that only experienced the outcome, and those that exhibited response
variation. For time-varying covariate effects, it has been shown that sampling only
those individuals with response variation results in nearly fully efficient estimation. If
inference lies in a time-invariant effect, or a combined time-varying and time-invariant
effect, then the choice of how to allocate resources is not obvious. We propose a
class of two-stage ODS designs where data from both stages are collected using ODS
designs. Two distinct sub-classes of these designs are explored. First, we extend
standard (or single-stage) ODS designs to permit two waves of data collection using
pre-specified sampling probabilities. Second, adaptive two-stage ODS designs are
described whereby information from stage one is used to identify the “conditionally
optimal” stage two design. These designs are applied to data from the Lung Health
Study where it is of interest to identify genetic determinants of lung function decline
among individuals with mild chronic obstructive pulmonary disease.

In Chapter three, we investigate the effects of utilizing an imperfect sampling
frame on the design and analysis of complex survey data. This study is motivated by
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a large multi-center survey developed to elicit perspectives on biobank participation
among under-studied subgroups (e.g., racial and ethnic monitories). A disproportion-
ate stratified sampling scheme is implemented to enrich the sample population with
these less prevalent populations using a sampling frame primarily constructed from
EHR data. Incomplete EHR data is imputed using geocode-derived census summaries
which resulted in a well-defined, but imperfect sampling frame. Chapter five in the
dissertation provides additional details of the construction of the sampling frame,
and the targeted sampling approach that maximizes the entropy of the stratification
information in the final sample. We provide analytic calculations of the expectation
and variance of the design-based estimators of the mean and total under stratum
misclassification. We explore the effects of stratum misclassification in a real-world
example by analyzing a subset of the biobank survey data from Vanderbilt University
Medical Center.

In Chapter four, the MMLB package is introduced and examples are provided to
demonstrate how to estimate parameters from marginalized regression models for
longitudinal binary data. Estimation of model parameters is described when data are
collected prospectively under random sampling, and under a class of ODS designs.
Using data from the Madras Longitudinal Schizophrenia Study, we demonstrate how
this package can be used to fit three types of marginalized regression models, in-
cluding: the marginalized latent variable model, the marginalized transition model,
and the marginalized latent variable and transition model. Examples are provided
to show how MMLB functions may be used to generate longitudinal binary outcomes
under a pre-specified marginal model, and to demonstrate how it is used to estimate
marginalized model parameters under single- and two-stage ODS sampling designs.
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CHAPTER 2

TWO-STAGE FIXED & ADAPTIVE OUTCOME-DEPENDENT SAMPLING
DESIGNS FOR LONGITUDINAL BINARY DATA

2.1 Abstract
Retrospective outcome dependent sampling (ODS) designs are an efficient class

of study designs that may be implemented when resource constraints prohibit the as-
certainment of an exposure on an entire cohort. One type of ODS design for longitu-
dinal binary data stratifies individuals into three strata according to a categorization
of their response vector: those who did not experience the outcome, those that only
experienced the outcome, and those that exhibited response variation (Schildcrout
and Heagerty, 2008). For time-varying covariate effects, it has been shown that sam-
pling only those individuals with response variation results in nearly fully efficient
estimation compared to the full cohort analysis. If inference lies in a time-invariant
covariate effect, or a combined time-varying and time-invariant covariate effect, then
the choice of how to allocate resources, or how to define sampling probabilities, is
not obvious. We propose a class of two-stage ODS designs for longitudinal binary
data. We extend standard (or single-stage) ODS designs to permit two waves of data
collection. Fixed two-stage ODS designs utilize pre-specified sampling probabilities,
and adaptive two-stage ODS designs use information from stage one to inform our
choice of the stage two sampling probabilities. These designs are applied to data from
the Lung Health Study where it is of interest to identify genetic determinants of lung
function decline among individuals with mild chronic obstructive pulmonary disease.

2.2 Introduction
Cost-effective study designs in the health sciences have, and currently remains, an

important research area (Zhou et al., 2013). The use of retrospective study designs to
investigate novel scientific questions are becoming more common due to the prolifera-
tion of existing cohort data (e.g., electronic health records, biobanks). When exposure
of interest is unavailable, it may not be financially possible or scientifically ethical
(e.g., patient burden, limited biospecimens) to collect this information on an entire
cohort (Schildcrout and Heagerty, 2008, 2011). If the outcome of interest is rare,
then a study design which targets sampling to those individuals who are most infor-
mative is necessary to efficiently study the disease-outcome relationship (Schildcrout
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and Heagerty, 2008, 2011; Schildcrout et al., 2015; Zhou et al., 2013). An outcome-
dependent sampling (ODS) design is a type of retrospective study design whereby
the probability of inclusion depends on the subject’s outcome value(s). In the uni-
variate setting, the most common ODS design is the case-control study. Standard
ODS designs for correlated binary data define sampling strata using a summary of an
individuals?? response vector (e.g., sum, or a categorization of the sum) (Neuhaus
and Jewell, 1990; Schildcrout and Heagerty, 2008, 2011). Similarly, ODS designs for
univariate and longitudinal continuous outcomes are typically defined by categorizing
either the outcome or a low-dimensional subject-specific summary (e.g., intercept,
slope, dfbeta) (Zhou et al., 2007; Schildcrout et al., 2013).

In the longitudinal binary data setting, the choice of ODS design depends on the
inferential target. For example, consider the ODS design of Schildcrout and Heagerty
(2011) where individuals are stratified into one of three possible groupings: those
who did not experience the outcome (binary response vector only 0s), those that only
experienced the outcome (binary response vector only 1s), and those that exhibited
response variation. When the scientific question pertains only to a time-varying co-
variate effect, then it has been shown the most efficient ODS designs are those that
devote resources to individuals exhibiting response variation (Schildcrout and Hea-
gerty, 2008). When interest lies in a time-invariant covariate effect, or the joint effect
between a time-varying and time-invariant covariate, then the choice of how to opti-
mally define the triplet of sampling probabilities is not straightforward. Schildcrout
and Heagerty (2011) outline one approach to prospectively compare candidate ODS
designs. The authors assume that all information except the key exposure data is
available on the entire cohort. Missing exposure data is imputed using the observed
data, and positing assumptions regarding the exposure prevalence and the exposure-
outcome relationship. These complete data sets may then be used to evaluate, and
compare, different ODS designs. The results of these simulation-based comparative
design analyses are sensitive to the assumptions regarding the prevalence of the expo-
sure and thus “misspecification could potentially lead to overestimates or underesti-
mates of design precision” (Schildcrout and Heagerty, 2011). One approach to reduce
the dependencies on these assumptions is to collect data in more than one stage, and
use information from the first stage (or internal pilot) to inform the decision making
process at later stages.

Multi-stage study designs, such as the two-stage case-control study, may also be
implemented to efficiently characterize the exposure-outcome relationship (Zhao and
Lipsitz, 1992; Zhou et al., 2013). Two-stage designs typically collect outcome and
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auxiliary exposure data at stage one. Using the cross-classification of these data,
sampling strata are defined to identify the most informative subjects to sample at
stage two. The expensive exposure/confounder is then only collected on the stage two
subsample. Zhou and colleagues have extended ODS designs for continuous outcome
data setting to permit data collection in two stages where an auxiliary variable is
collected in stage one via random- or outcome-dependent sampling, and the exposure
of interest is collected on a subsample during stage two (Song et al., 2009; Zhou et al.,
2010; Xu and Zhou, 2012; Zhou et al., 2013). To date, the extension to longitudinal
binary has yet to be performed.

We propose a class of two-stage ODS designs for longitudinal binary data where
data from both stages are collected using ODS designs and we explore two distinct
sub-classes of these designs. First, we extend standard (or single-stage) ODS designs
to permit two waves of data collection using pre-specified sampling probabilities.
Second, adaptive two-stage ODS designs are described whereby information from
stage one is used to identify the stage two design. These designs are more flexible
than their single- or two-stage fixed design counterparts by permitting mid-study
modifications of the stage two sample size or sampling probabilities. The two-stage
fixed design/adaptive sample size ODS design identifies the stage two sample size
needed to attain a pre-specified level of precision for a time-varying covariate effect
when implementing an extreme ODS design. The two-stage adaptive design/fixed
sample size ODS design identifies the design that maximizes an optimality criterion
(e.g., precision, determinant of the information matrix) for a pre-specified overall
stage two sample size.

In Section 2, we describe a class of the marginalized regression models that are used
to demonstrate our novel two-stage designs for longitudinal binary data. The ODS
designs described are agnostic to the choice of model, but we chose these models since
they permit population-average interpretations of all covariate effects, they separate
the specification of the mean and dependence model, and provide the flexibility to
model a wide range of dependence structures that are typically encountered in the
health sciences. In Sections 3 and 4, we define the fixed two-stage ODS design, and
the adaptive two-stage ODS designs, respectively. We apply these methods to data
from the Lung Health Study in Section 5. The discussion and future directions are
presented in Section 6.
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2.3 Model
Marginalized regression models are defined by a pair of regression models that,

with assumptions regarding random-effect distributions, fully specify the multivariate
distribution of binary outcome vector given the observed design matrix (Heagerty,
1999, 2002; Schildcrout and Heagerty, 2007). First, a marginal mean model is con-
structed to relate covariates to the logit-transformed binary outcome. To capture
second and higher order moments, a dependence model is defined to characterize
serial and/or long-range dependence structures. The marginalized transition and
latent-variable model (mTLV) allows the specification of both types of dependence
structures simultaneously (Schildcrout and Heagerty, 2007).

To define the mTLV model, let Yij denote the binary outcome of subject i at
observation j where i = {1, 2, . . . , N} and j = {1, 2, . . . , ni}. Let X i denote a ni × p
design matrix, X ij the corresponding p-dimensional design vector at time j and βm

the p-dimensional vector of parameters. Then, the marginal mean and dependence
models are defined as:

logit
(
µmij
)

= X ijβ
m (2.1)

logit
(
µcij
)

= ∆ij + γ(X i)Yij−1 + bi where bi ∼ N
(
0, σ2(X i)

)
(2.2)

∆ij is the value that relates the marginal and conditional means via the convolution
equation

µmij =
∫
Aij

µcijdFAij
=
∫
Aij

logit−1 (∆ij +Aijα) dFAij
(2.3)

where Aij and α denote the design matrix of the dependence model and the stacked
parameter vector (γ(X i), σ(X i)), respectively. For the remainder of this paper, we
assume that the dependence model parameters are not modified by covariates. This
implies that γ(X i) = γ and bi ∼ N(0, σ2) which can be rewritten as σZi where
Zi ∼ N(0, 1).

Let θ = {βm,α}, then under random sampling, subject i’s contribution to the
likelihood function is defined as:

Li(θ|yi,xi) = pr(yi|xi;θ) =
∫
zi

 ni∏
j=1

µ
c yij

ij

(
1− µc yij

ij

)1−yij

φ(zi)dzi ≡
∫
zi

Li,zi
φ(zi)dzi.

(2.4)

where φ denotes the standard normal distribution.
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2.4 Two-Stage Fixed Outcome Dependent Sampling Designs
Outcome-dependent sampling (ODS) is a class of retrospective stratified sampling

schemes that are designed to enrich a sample with individuals that are the most in-
formative (Schildcrout and Heagerty, 2008; Zhou et al., 2013; Song et al., 2009).
The most notable ODS design for univariate binary response data is the case-control
study whereby an individual’s sampling probability is dependent on their response
status (Anderson, 1972; Prentice and Pyke, 1979). Neuhaus and Jewell (1990) ex-
tended the case-control design to accommodate correlated binary response data by
defining sampling strata as the sum of an individual’s response vector, and modeling
the exposure-response relationship using a random-intercept logistic model. Schild-
crout and Heagerty (2011) propose a class of ODS study designs based on the coarse
categorization of an individual’s response vector, and describe an approach to esti-
mate mTLV model parameters under these designs using the ascertainment-corrected
likelihood.

Our proposed fixed two-stage ODS designs extend the ODS designs of Schildcrout
and Heagerty (2011) by allowing data to be collected in two waves. Next, we review
the single-stage ODS design, and then describe modifications associated with stage
two ODS sampling probabilities. Finally, we describe how data from both stages are
combined to estimate mTLV model parameters.

2.4.1 Fixed Stage One ODS Design
We consider the class of ODS designs where each individual is stratified into one of

three groups based on their response vector. Let Vi = g(Y i,X i) denote the stratum
membership for subject i. While Vi can depend on both Yi and Xi, we define three
strata with: those that did not experience the event of interest (non-responders,∑
j Yij = 0; Vi = 0), those that exhibited response variation (any-responders, 0 <∑
j Yij < ni; Vi = 1), and those that only experienced the event (all-responders,∑
j Yij = ni; Vi = 2). Let Nv denote the stratum sample sizes in the full cohort

for sampling strata v = (0, 1, 2), and let S1i represent the indicator if subject i is
sampled during stage one. Since S1i is conditionally independent of (Y i,X i) given
Vi (i.e., S1i depends on (Yi, Xi) only through the coarsened response sum), then the
stratum-specific sampling probabilities are defined as:

pr(S1i = 1 | y1i,x1i) = pr(S1i = 1 | Vi = v) ≡ π1(v) (2.5)
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The stage one ODS design is defined as either a pre-specified triplet of sampling
probabilities, π1(0),π1(1), and π1(2), or as the sampling probabilities that are induced
from a pre-specified vector of expected stratum sample sizes n10, n11 and n12. For ease
of interpretation, we define the stage one ODS design as D1[n10, n11, n12] where D1

denotes the design for stage one, and n1v represents the expected stage one sample
size for stratum v.

Via Bayes’ theorem, subject i’s contribution to the conditional, or ascertainment-
corrected, stage one likelihood is

Lc1i(θ | y1i,x1i, S1i = 1) = pr(y1i | x1i, S1i = 1;θ) = pr(S1i = 1 | y1i,x1i)
pr(S1i = 1 | x1i)

· pr(y1i | x1i;θ)

≡ π1(vi)
AC1i

· L1i(θ | y1i,x1i) (2.6)

where AC1i denotes the ascertainment correction, and L1i(θ | y1i,x1i) is the uncondi-
tional likelihood contribution defined in Equation 4.4. The ascertainment correction
is defined as:

AC1i =
2∑
v=0

pr(S1i = 1, Vi = v | x1i) =
2∑
v=0

π1(v) · pr(Vi = v|x1i)

= π1(1) + [π1(0)− π1(1)] pr(Vi = 0 | x1i) + [π1(2)− π1(1)] pr(Vi = 2 | x1i)
(2.7)

Note, pr(Vi = v | x1i) corresponds to the likelihood contribution of subject i when
their response vector is either all 0s (v=0) or 1s (v=2), respectively.

2.4.2 Fixed Stage Two ODS Design
Let q1 = {y1,x1,S1 = s1} denote the response vector, design matrix and the

sampling indicator for the stage one cohort. The design matrix x1 includes the
covariate information available at the beginning of the study and the exposure data
for those sampled at stage one. Since sampling is independent within each stage, the
stage two sampling probabilities are defined as

pr(S2i = 1 | y2i,x2i, q1) ≡ pr(S2i = 1, S1i = 0 | y2i,x2i, q1)

= pr(S2i = 1 | S1i = 0,y2i,x2i, q1) · pr(S1i = 0 | y2i,x2i)

= π2(v; q1) · [1− π1(v)] (2.8)
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where S2i,y2i, and x2i denote the stage two sampling indicator, response vector, and
design matrix for subject i, respectively. Subject i’s stage two sampling probability
is defined as the product of the probability of being sampled at stage two given not
being sampled at stage one, and the probability of not being sampled at stage one.
For a fixed sample size, the stage two ODS design denoted as D2[n20, n21, n22].

Similar to Equations 2.6 and 2.7, subject i’s contribution to the stage two condi-
tional likelihood is:

Lc2i(θ | y2i,x2i, S2i = 1) = π2(v; q1) · [1− π1(v)]
AC2i

· L2i(θ|y2i,x2i) (2.9)

where the stage two ascertainment correction, AC2i, is defined as ∑2
v=0 π2(v; q1)[1−

π1(v)] · pr(Vi = v | x2i), and L2i(θ|y2i,x2i) is defined in Equation 4.4.

2.4.3 Conditional Two-Stage ODS Likelihood
Since (Y i,X i) ⊥⊥ (Y k,Xk) for all i 6= k, the combined two-stage conditional

likelihood is defined as the product of individual likelihood contributions from each
stage. Without loss of generality, we assume that subject identifiers have been re-
ordered such that the first N s

1 subjects correspond to those individuals sampled at
stage one, and the remaining N s

2 ≡ N s
2 (q1) represent individuals sampled at stage

two. The combined two-stage conditional likelihood is defined as

Lc(θ|y,x,S = 1) = pr(y|x,S = 1) = pr(y1|x1,S1 = 1) · pr(y2|x2,S2 = 1,y1,x1,S1 = 1)

=
Ns

1∏
i=1

π1(v)
AC1i

· L1i(θ|y1i,x1i)
 ·
Ns

1 +Ns
2∏

i=Ns
1 +1

π2(v; q1)[1− π1(v)]
AC2i

· L2i(θ|y2i,x2i)


(2.10)

2.4.4 Ascertainment-Correct Maximum Likelihood Estimation
Equation 2.10 explicitly accounts for the biased sampling scheme in the defini-

tion of the conditional likelihood. To estimate parameters, the corresponding score
equation for parameter θ ∈ θ is:

∂

∂θ
logLc(θ|y,x,S = 1) =

Ns
1∑

i=1
− 1
AC1i

∂

∂θ
AC1i + ∂

∂θ
logL1i(θ|y1i,x1i)

+
Ns

1 +Ns
2∑

i=Ns
1 +1
− 1
AC2i

∂

∂θ
AC2i + ∂

∂θ
logL2i(θ|y2i,x2i)

 (2.11)
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where

∂

∂θ
AC1i = ∂

∂θ
pr(Vi = 0|x1i)[π1(0)− π1(1)] + ∂

∂θ
pr(Vi = 2|x1i)[π1(2)− π1(1)]

∂

∂θ
AC2i = ∂

∂θ
pr(Vi = 0|x2i)[π2(0; q1)[1− π1(0)]− π2(1; q1)[1− π1(1)]]

+ ∂

∂θ
pr(Vi = 2|x2i)[π2(2; q1)[1− π1(2)]− π2(1; q1)[1− π1(1)]]

∂

∂θ
logLi(θ|yi,xi) =

[∫
zi

Li,zi
φ(zi)dzi

]−1 ∫
zi

Li,zi

 ni∑
j=1

(
yij − µcij

) ∂

∂θ
(∆ij + γyij−1 + σzi)

φ(zi)dzi

2.4.5 Simulation
We first investigate the operating characteristics of the proposed two-stage fixed

designs by generating data according to the following marginalized transition model:

logit
(
µmij
)

= β0 + βttij + βeXei + βetXei · tij

logit
(
µcij
)

= ∆ij + γYij−1

where Xei is the binary time-invariant exposure that can be retrospectively collected
and tij = {0, 1, 2, 3, 4} for subject i at time j. We assume pr(Xe = 1) = 0.25 and
{β, γ} = {−1.50,−0.25, 1.00, 0.25, 2.00}. When a population of 5000 is genereated,
these parameters induce sampling strata with expected sizes (2360, 2476, 164) which
correspond to no-responders, any-responders, and all-responders. We assume that
three inferential targets are of interest: 1) βet, 2) βe and 3) the joint exposure effect
(βe, βet).

Due to resource constraints, suppose only 500 individuals are sampled. We con-
sider sampling 100 at stage one to mimic an internal pilot study, and permit an
additional 400 to be sampled at stage two. One stage one and five stage two ODS de-
signs are considered: D1[25, 50, 25], and D2[0, 400, 0], D2[25, 350, 25], D2[50, 300, 50],
D2[75, 250, 75] and D2[100, 200, 100]. We examine the operating characteristics of
these two-stage ODS fixed designs and compared them to random sampling and
to the corresponding single stage ODS designs (e.g., D1[25, 50, 25] + D2[0, 400, 0] =
D[25, 450, 25]).

Maximum likelihood, and ascertainment-corrected maximum likelihood, is used
to estimate marginalized model parameters under random and outcome-dependent
sampling, respectively. Other approaches to validly estimate model parameters from
a biased sample include weighted-estimating equations (Robins et al., 1995; Cai et al.,
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2001) and missing data techniques (Schildcrout and Heagerty, 2011; Schildcrout et al.,
2015), which are not currently explored.

We generate a population for each of the 1000 replications of the simulation. In so
doing we implement random and ODS sampling schemes, as well as estimate model
parameters. For all model parameters, percent bias and coverage probabilities are
computed. The efficiency associated with each ODS design is compared to random
sampling for three optimality criteria: the variance of βet, the variance of βe, and the
d-efficiency of (βe, βet) which minimizes the confidence region associated with these
parameter estimates. The relative efficiency estimates are defined as the average
optimality value under random sampling divided by the average value under the
single- or two-stage ODS designs.

Table 2.1 summarizes the percent bias and coverage probabilities for two-stage
fixed ODS designs considered in this simulation. It is clear that estimation is per-
forming as expected since all parameter estimates are unbiased and attain nominal
coverage.

Table 2.1: Percent bias and coverage probabilities for two-stage fixed ODS designs. Rows correspond
to the stage one ODS design, and columns correspond to the stage two ODS design. Percent bias
is defined as 100 times the difference between the average estimate minus the true parameter value
divided by the true value. The coverage probability is defined as the proportion of times the estimated
95% confidence interval contained the true parameter value.

D2[25, 350, 25] D2[50, 300, 50] D2[75, 250, 75] D2[100, 200, 100]
Bias (%) Coverage Bias (%) Coverage Bias (%) Coverage Bias (%) Coverage

D1[25, 50, 25]
β0 0 0.95 0 0.95 0 0.94 0 0.94
βt 0 0.95 0 0.96 1 0.96 0 0.95
βe 1 0.94 0 0.95 0 0.94 1 0.96
βet −1 0.94 0 0.95 1 0.95 −1 0.96
γ 0 0.96 0 0.94 0 0.96 0 0.95
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Figure 2.1 summarize the relative efficiencies of the three optimality criteria when
utilizing D1[25, 50, 25], respectively. For each figure, the x-axis represents the corre-
sponding stage one ODS design. For example, D[25, 450, 25] represents the single-
stage design, as well as the D1[25, 50, 25] + D2[0, 400, 0] two-stage design. For time-
varying covariate effects, designs that oversample those with response variation result
in more efficient estimates than those that do not (i.e., D[25, 450, 25] vs others).

When estimating time-invariant or joint covariate effects, the choice of best design
is not obvious (e.g., that which maximizes an optimality criterion). Depending on
characteristics of the data, such as the magnitude of the exposure effect, differences
in the efficiency of ODS designs can be significant.Our data generating model posited
large effects for both the exposure and the exposure by time interaction, thus sampling
those with response variation also enrich the sample with those with the exposure
resulting in increased efficiency compared to random sampling (all RE>1). The stage
two ODS design that maximizes the precision of the βe is between D2[50, 300, 50]
and D2[75, 250, 75]. For joint effects, all ODS designs considered resulted in larger
d-efficiency values compared to random sampling, and those that sampled between
50-75 no- or all-responders produced the greatest d-efficiency values.

We observe minimal efficiency loss when performing a two-stage fixed ODS design
compared to the induced single-stage ODS design when interest lies in the precision
of a single covariate effect. Differences are observed when utilizing the d-efficiency
criterion due to the definition of this quantity (i.e., a function of the entire covariance
matrix, not simply the diagonal elements), the complex relationship between the
covariates, and the increased variation in the two-stage sampling weights compared
to single-stage weights.
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Figure 2.1: Efficiency relative to random sampling using D1[25, 50, 25].
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2.5 Two-Stage Adaptive Outcome Dependent Sampling Designs
We introduce two adaptive procedures when constructing the second stage of a

two-stage ODS design. The first utilizes stage one information to aid in determining
the stage two sample size needed to estimate a time-varying covariate effect within
a pre-specified level of precision. The second identifies the stage two design that
maximizes an optimality criterion (e.g., precision, or d-efficiency) for a fixed stage
two sample size. These scenarios provide the basis for additional extensions, such as
an adaptive-design and adaptive-sample size two-stage design.

The key to both adaptive methods is the ability to compare candidate designs
which requires the imputation of missing exposure data. We describe two approaches
to estimate the marginal conditional exposure model for non-sampled subjects. The
first only uses information from the sampled subjects, while the second also utilizes
information from the non-sampled subjects. Once a complete data set is created,
different designs are then compared to identify the stage two sample size or design.

Combining data from stages one and two proceeds in the same manner as described
in Section 2.10. Data from the first stage of an adaptive two-stage ODS design
is identical to that of a fixed two-stage ODS design (Section 2.4.1). We describe
the estimation of sampling probabilities, and subject-specific likelihood contributions
using two adaptive approaches.

2.5.1 Stage Two: Adaptive Sample Size
The defining feature of longitudinal studies is that temporal changes may be in-

vestigated directly due to the repeated measurements on study participants (Diggle
et al., 2002). Time-varying covariate effects, such as a gene by time interaction (βet),
are often used to quantify these changes in the regression modeling framework. When
the inferential target is strictly a time-varying covariate, Schildcrout and others have
demonstrated that the single-stage ODS designs that restrict sampling to only those
subjects with response variation are more efficient than those that do not, and are
nearly as efficient as the full-cohort when all these subjects (i.e., those with Vi = 1) are
sampled (Schildcrout and Heagerty, 2008). Using notation outlined in Section 2.4.1,
this extreme sampling design is denoted as D1[0, n11, 0] where n11 is the expected
number of sampled subjects from the “any-responders” sampling stratum when using
a single-stage ODS design.

The primary drawback to this design is that it requires the pre-specification of
n11 which may result in the study being either under- or over-powered. n11 is deter-
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mined either by resource limitations or by performing a sensitivity analysis in which
candidate designs (i.e., different values of n11) are compared. A comparative design
analysis, one type of sensitivity analysis, is used to impute missing exposure data.
This is accomplished by coupling the observed data with assumptions regarding the
missing exposure variable (e.g., prevalence, relationship with other covariates). Un-
fortunately, the choice of design is sensitive to these assumptions (Schildcrout and
Heagerty, 2011).

We define the stage two adaptive sample size design as D2[0, Nκ
21, 0] where Nκ

21

denotes the expected stage two sample size, and κ represented a pre-defined threshold
for the V ar(βet). This quantity is estimated using a what we refer to as a comparative
design analysis (as described in Section 2.5.3). The comparative design analysis
utilizes data from stage one, and modeling assumptions, to impute exposure data for
the non-sampled subjects. The estimation of Nκ

21 proceeds by repeatedly evaluating
candidate designs using these complete data sets until V ar(βet) ≈ κ is obtained.

Since Nκ
21 is now a random variable, the stage two sampling probability is defined

as:

pr(S2i = 1 | y2i,x2i, q1) ≡ pr(S2i = 1, Nκ
21 = nκ21, S1i = 0 | y2i,x2i, q1)

= pr(S2i = 1, Nκ
21 = nκ21 | S1i = 0,y2i,x2i, q1) · pr(S1i = 0 | y2i,x2i)

= pr(S2i = 1 | Nκ
21 = nκ21, S1i = 0,y2i,x2i, q1)·

pr(Nκ
21 = nκ21 | S1i = 0,y2i,x2i, q1) · pr(S1i = 0 | y2i,x2i)

= π2(v; q1) · pr(Nκ
21 = nκ21 | S1i = 0,y2i,x2i, q1) · [1− π1(v)]

(2.12)

where nκ21 is the conditional sample size that satisfies Var(βet) < κ.

Since pr(Nκ
21 = nκ21 | S1i = 0,y2i,x2i, q1) = pr(Nκ

21 = nκ21 | q1), subject i’s stage
two conditional likelihood contribution is

Lc2i(θ | y2i,x2i, S2i = 1, nκ21) =

[1− L2i(θ|Vi = 0,x2i, q1, n
κ
21)− L2i(θ | Vi = 2,x2i, q1, n

κ
21)]−1 · L2i(θ | y2i,x2i)

where L2i(θ | y2i,x2i) is defined in Equation 4.4. For the remainder of this
chapter, we assume that pr(Nκ

21 = nκ21 | q1) = 1 which implies that Nκ
21 is fixed and

known. We realize this assumption results in under-estimated standard errors when
estimating parameters using Equation 2.13.
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2.5.2 Stage Two: Adaptive Design
When the inferential target is not a single time-varying covariate, the choice of the

conditionally-optimal stage two ODS design is not straightforward. Suppose it is of
interest to evaluate the joint effect of a time-invariant and time-variant covariate effect
(e.g., total genetic effect: βe=main gene effect, and βet=gene by time interaction). To
be able to efficiently evaluate the two degree-of-freedom composite test, the stage two
ODS design needs to involve the sampling of individuals from all sampling strata.
As described in Section 2.5.1, the oversampling of any-responders is preferred for
time-varying covariates, whereas the sampling of some of the all- or no-responders
is preferred when it is of interest to estimate a time-invariant covariate effect. Since
time-invariant covariate effects only vary between subjects, most information gain is
obtained by sampling those with the predisposition of being healthy and those who
tend to be sicklier. To identify the conditionally-optimal stage two design, a brute
force approach may be taken, but depending on the stratum sizes, and the desired
stage two sample size, it is likely to be computationally burdensome.

To reduce candidate design space, we only consider symmetric designs of the
form n2 · D2[α, 1 − 2α, α] where n2 denotes the overall fixed stage two sample size
(i.e., n2 = n20 + n21 + n22), and α denotes the proportion sampled in each of the
extreme sample strata. The motivation of a symmetric design is that maximum
variation is obtained by evenly sampling subjects from the most dissimilar strata.
Using this reduced design space, a brute force search may be implemented to identify
the conditionally-optimal balanced stage two ODS design.

Let Dα denote the stage two adaptive design, and the associated stage two sam-
pling probabilities are defined as

pr(S2i = 1 | y2i,x2i, q1) ≡ pr(S2i = 1, Dα = dα, S1i = 0 | y2i,x2i, q1)

= pr(S2i = 1, Dα = dα | S1i = 0,y2i,x2i, q1) · pr(S1i = 0 | y2i,x2i)

= pr(S2i = 1 | Dα = dα, S1i = 0,y2i,x2i, q1)·

pr(Dα = dα | S1i = 0,y2i,x2i, q1) · pr(S1i = 0 | y2i,x2i)

= π2(v; q1) · pr(Dα = dα | S1i = 0,y2i,x2i, q1) · [1− π1(v)]
(2.13)

Similar to the adaptive sample size designs, we assume that pr(Dα = dα | q1) =
1 which implies that Dα is fixed and known. Under this assumption, subject i’s
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contribution to the stage two adaptive design likelihood is:

Lc2i(θ|y2i,x2i, S2i = 1, dα) = π2(v; dα, q1) · [1− π1(v)]
AC2i

· L2i(θ|y2i,x2i) (2.14)

where the stage two ascertainment correction, AC2i, is defined as∑2
v=0 π2(v; dα, q1)[1−

π1(v)] · pr(Vi = v|x2i, q1), and L2i(θ|y2i,x2i) is defined in Equation 4.4.

2.5.3 Comparative Design Analysis
A comparative design analysis, like a power or sample size analysis, is used to

estimate the stage two adaptive sample size or design using available data. The key
to this analysis is that we need to be able to generate Xe from [Xe |Xo,Y ] for non-
sampled subjects where Xo denotes the observed covariate matrix. Once we have this,
we can generate the full cohort and then conduct designs and analysis procedures to
explore which ones are likely to improve operating characteristics. We will describe
two ways of estimating [Xe |Xo,Y ,S1 = 0].

Approach 1
Let Xei,Xoi,Y i and Ski denote subject i’s time-invariant binary exposure of in-

terest (e.g., SNP), observed design matrix, response, and indicator of being sampled
during stage k = {1, 2}, respectively. Since the missing exposure variable is “missing
by design” for those individuals not sampled at stage one, the sampling design is
ignorable (Rubin, 1976). This implies that the conditional exposure model for a non-
sampled subject is identical to that of a sampled subject irrespective of the sampling
stage:

pr(Xei = 1|xoi,yi, S1i = 0) = pr(Xei = 1|xoi,yi)

= pr(Xei = 1|xoi,yi, S1i = 1) (2.15)

Without loss of generality, we momentarily assume that subject i was sampled
during stage one which implies S1i = Si. Via Bayes’ formula, the conditional exposure
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odds for non-sampled subjects is defined as

pr(Xei = 1|xoi,yi, Si = 0)
pr(Xei = 0|xoi,yi, Si = 0) = pr(Xei = 1|xoi,yi, Si = 1)

pr(Xei = 0|xoi,yi, Si = 1)

= pr(Y i | Xei = 1,xoi, Si = 1;θ)
pr(Y i | Xei = 0,xoi, Si = 1;θ)

pr(Xei = 1|xoi, Si = 1)
pr(Xei = 0|xoi, Si = 1)

(2.16)

Modeling the marginal exposure odds among sampled subjects may not be straight-
forward due to spurious associations induced by the sampling design. Alternatively,
the conditional exposure odds may be factored into the product of the ascertainment-
correction ratio and the marginal exposure odds

pr(Xei = 1|xoi, Si = 1)
pr(Xei = 0|xoi, Si = 1) = pr(Si = 1|Xei = 1,xoi)

pr(Si = 1|Xei = 0,xoi)
pr(Xei = 1|xoi)
pr(Xei = 0|xoi)

(2.17)

The conditional exposure odds among non-sampled subjects is estimated by as-
suming the following functional form of the marginal population exposure model

logit [pr(Xei = 1|xoi;ω)] = xoiω

and implementing the following five steps:

Among sampled subjects,

1. estimate θ̂p and Ĉov(θ̂p) by maximizing the combined two-stage ODS
profile-likelihood defined in Equation 2.10 where we profile over parameters
that are used in the identification of the stage two design. For example, we
profile over βet (i.e., fix its value with a hypothesized value) when it is of
interest to find the sample size that minimizes V ar(βet). This reduces the
inflation of type-I errors associated using stage one data to inform future
design choices (Haneuse et al., 2012).

2. estimate ω̂ and Ĉov(ω̂) using an offsetted-logistic regression where the
offsets are defined as the log-transformed ascertainment-correction ratios,
as derived in Equation 2.17.

Among non-sampled subjects,

3. estimate the conditional likelihood ratio using Item 1,

4. estimate the conditional exposure model using Item 2, and
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5. multiply quantities from Items 3 and 4 to estimate the conditional exposure
odds among non-sampled subjects, as summarized in Equation 2.17.

Missing exposure information is estimated by performing independent Bernoulli
sampling where the probability of success (or expsoure presence) is defined as pr(Xei =
1|xoi,yi, Si = 0; θ̂p, ω̂).

Approach 2
The expectation-maximization algorithm utilizes a similar approach to estimate

pr(Xei = 1|xoi,yi, Si = 0) as defined in Section 2.5.3. The expectation steps at
iteration m of this algorithm include:

1. computing pr(Y i | Xei = x,xoi; θ̂
p(m−1)) for x = (0, 1), and

2. computing pi = pr(Xei = 1|xoi,yi; θ̂
p(m−1)

, ω̂)

and the maximization steps include:

3. computing

E(l) =
∑
S1=1

log [pr(Y i | xei,xoi)] +
∑
S1=0

pi log [pr(Y i | Xei = 1,xoi)] + (1− pi) log [pr(Y i | xei = 0,xoi)]

4. and maximizing E(l) with respect to θp and define θ̂p = θ̂
p(m)

This process is repeated until a convergence criterion is achieved. Using Bayes’ rule,
the conditional exposure model for the non-sampled subjects is

pr(Xei = 1 | yi,xoi, Si = 0) = pr(Y i | Xei = 1,xoi; θ̂
p(m))

pr(Y i | Xei = 0,xoi; θ̂
p(m))

pr(Xei = 1 | xoi; ω̂)
pr(Xei = 0 | xoi; ω̂)

Missing exposure information is estimated by performing independent Bernoulli sam-
pling. This approach differs from Approach 1 since the expected likelihood ratio
is being estimated, and not the conditional likelihood for the sampled subjects only.
Since the missingness mechanism is ignorable, we expect these quantities to be similar
and only apply Approach 1 in these analyses.

2.5.4 Simulation
We investigate the operating characteristics of two-stage adaptive ODS designs by

considering the same simulation set-up as described in Section 2.4.5. We assume that
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it is of interest to define the stage one design as D1[25, 50, 25] and to : 1) identify the
stage two design so that V ar(βet) ≈ 0.005, and 2) identify the stage two design of size
400 that maximizes the precision of the βet, the precision of βe, and the d-efficiency
of (βe,βet). Even though the stage one design is not the optimal design for V ar(βet),
it is of interest to estimate the main effect accurately which requires the sampling of
those without response variation.

We perform 250 replicates of the simulation where we generate a population, and
then implement the D1[25, 50, 25] stage one design. We then use the imputation
approach to estimate the exposure for all non-sampled subjects. With a complete
data set, we identify the stage two sample size, nκ21, and the stage two design, dα2 , to
meet the two-stage ODS objectives. This process is repeated on a total of 25 imputed
data sets, and the average sample size, and the design which maximizes the average
optimality criterion of interest is used to define the stage two ODS design. Next, we
describe one approach to estimating nκ21 and dα2 , and summarize the results of the 250
replications.

Adaptive sample size
The two-stage adaptive sample size ODS design in this simulation is defined as

D2[0, n0.005
21 , 0] where n0.005

21 is the stratum sample size for any-responders such that
V ar(βet) ≈ 0.005 conditional on D1[25, 50, 25]. Our goal is to estimate the n21 and
V ar(βet) relationship accurately in the vicinity of V ar(βet) = 0.005. Using the results
from a comparative design analysis, one approach to estimating this relationship is
to evaluate candidate designs at percentiles of the N1 distribution (e.g., D2[0, N1

2 , 0]).
Predicted n21 values can then be used to identify the value n0.005

21 ≈ 0.005. Figure
2.2 is a realization of this approach. The numbers in the plotting region correspond
to the iteration number (e.g., after 30 intial values, 40 is located near the optimal
value). The subgraphic provides details regarding the variability of the estimate of
n0.005

21 after 250 iterations. For this example, 318 (95% CI: 278-361) is the optimal
n0.005

21 . Table 2.2 summarizes the distribution of n0.005
21 after 250 replications. A stage

two sample size of ≈ 280− 300 is required such that V ar(βet) ≈ 0.005.

Table 2.3 summarizes the bias, and coverage probability of the point estimates
after performing this adaptive two-stage ODS design. Point estimates for all model
parameters are unbiased, but this approach does under-estimate the standard error
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Figure 2.2: Example of an algorithm to identify D2[0, nκ21, 0] such that V ar(βet) ≈ 0.005.
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Table 2.2: Distribution of nκ21 after 250 replications.

κ Mean SD Min 5 25 50 75 95 Max
D1[25,50,25] 0.005 293 32 250 261 271 282 306 348 454

by up to 8% (i.e., intercept) in our simulation. This is not unexpected, since we
assume that n0.005

2 is fixed and do not acknowledge the variability associated with
this random quantity. Regardless, for our estimation targets, we are still doing well.
The average standard error for βet = 0.07 which corresponds to a variance estimate
of 0.0049.

Table 2.3: Parameter estimates using a two-stage adaptive sample size ODS design across 250
replications.

True Value Average Estimate Estimate, Bias (%) Average Std. Error Std. Error, Bias (%) Coverage
β0 −1.50 −1.50 0 0.16 −8 0.95
βt −0.25 −0.24 −4 0.05 −6 0.91
βe 1.00 1.02 2 0.22 −5 0.94
βet 0.25 0.25 0 0.07 −5 0.94
γ 2.00 2.00 0 0.16 −1 0.95
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Adaptive design
The two-stage adaptive design ODS design in this simulation is defined as n2D2[α, (1−

2α), α] where n2 = 400 represents the pre-specified stage two sample size, and
α denotes the proportion of individuals sampled from the no- and all-responder
strata. We aim to identify the stage-two ODS design such that the precision of
βe, V ar(βe)−1, or the precision of βet, or the d-efficiency of (βe, βet) is maximized con-
ditional on D1[25, 50, 25]. For the comparative design analysis, we fix βe = βet = 0. A
brute force approach is adopted whereby all possible designs are identified such that
D1[25, 50, 25]+400D2[α, (1 − 2α), α] ≤ [N0, N1, N2] where Nv denotes the number of
subjects in the stratum v in the population. Each of the eligible designs is imple-
mented using an imputed data set, and optimality criteria estimated. This process is
repeated 250 times, and the design that maximizes the average criterion is chosen as
the optimal stage two adaptive design.

Table 2.4 summarizes the percentage of times each candidate stage-two design
is selected by the design implemented in stage one. Eligible designs ranged from
D2[0, 400, 0] to D2[160, 80, 160] since the expected simulated population stratum size
for the all-responder group is 160. Only those designs up to D2[80, 240, 80] are pre-
sented since designs with stratum sizes greater than 80 in the no- or all-responder
strata were never selected as optimal. When it is of interest to estimate a time-varying
effect only then selecting the design that primarily samples those with response varia-
tion is optimal (96% of the selected designs sampled either 0 or 5 in the no-responder
stratum). When it is of interest to estimate a time-invariant covariate effect only
then selecting the design that samples approximately 60-75 in the no- or all-responder
strata is optimal. If interest lies in the joint time-varying and time-invariant covariate
effect, then designs that sample between 55-65 total individuals from the no- or all-
responder strata results in the maximum d-efficiency estimate. Therefore, the chosen
design depends on features of the model.

Table 2.5 presents the bias and coverage probability of all parameter estimates
from a two-stage adaptive design ODS design. All point estimates are unbiased,
and all attain nomial coverage. Stage two designs that only targeted βet resulted in
roughly 15% (0.06 vs 0.07) smaller standard error estimates than those that did not.
Similarly, observations are made for designs that targeted βe (e.g., 0.18 vs 0.20).
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Table 2.4: Percentage of times each stage two design (rows) was selected as optimal by stage one
design (columns) across 250 replications.

D1[25,50,25]
V ar(βet)−1 V ar(βe)−1 d-efficiency(βe, βet)

D2[0,400,0] 95.2 - -
D2[5,390,5] 4.6 - -
D2[10,380,10] 0.2 - -
D2[15,370,15] - - -
D2[20,360,20] - - -
D2[25,350,25] - - 0.2
D2[30,340,30] - 0.2 1.2
D2[35,330,35] - 1.6 7.4
D2[40,320,40] - 15.2 18.4
D2[45,310,45] - 29.8 19.6
D2[50,300,50] - 41.2 29.2
D2[55,290,55] - 9.8 15.4
D2[60,280,60] - 2.2 7.2
D2[65,270,65] - - 1.4
D2[70,260,70] - - -
D2[75,250,75] - - -
D2[80,240,80] - - -

Table 2.5: Parameter estimates using a two-stage adaptive design, fixed sample size design

D1[25,50,25]
True Value Est Bias (%) Avg SE Bias (%) Coverage

V ar(βet)−1

β0 −1.50 −1.51 0 0.15 1 0.96
βt −0.25 −0.25 0 0.04 0 0.96
βe 1.00 1.00 0 0.20 1 0.95
βet 0.25 0.25 2 0.06 0 0.95
γ 2.00 2.00 0 0.14 −3 0.95

V ar(βe)−1

β0 −1.50 −1.50 0 0.12 −2 0.95
βt −0.25 −0.25 0 0.04 −2 0.94
βe 1.00 1.00 0 0.18 2 0.95
βet 0.25 0.25 0 0.07 −1 0.95
γ 2.00 2.00 0 0.12 −1 0.96

d-efficiency(βe, βet)
β0 −1.50 −1.50 0 0.12 3 0.94
βt −0.25 −0.25 0 0.04 2 0.94
βe 1.00 1.00 0 0.18 5 0.95
βet 0.25 0.25 0 0.07 0 0.95
γ 2.00 2.00 0 0.12 −1 0.95
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2.6 Example: Lung Health Study
The Lung Health Study (LHS) was a multi-center study that evaluated the effec-

tiveness of smoking cessation and inhaled bronchodilators on lung function in middle-
aged smokers with mild to moderate chronic obstructive pulmonary disease (COPD)
(Anthonisen, 2004; Connett et al., 1993). Annual spirometry measurements were
collected for five years, and at the last visit blood samples were obtained to aid in
the identification of genetic factors associated with lung function decline and lung
cancer (Anthonisen, 2004). A sub-study, entitled the Genome-Wide Associations En-
vironmental Interactions in the Lung Health Study, genotyped banked DNA on 4,287
European Americans from the LHS cohort (dbGaP (Mailman et al., 2007); access
number phs000335.v2.p2). Hansel et al (2013) identified two genetic risk factors as-
sociated with lung function decline within this cohort including the single nucleotide
polymorphism (SNP) rs177852.

We demonstrate the class of two-stage ODS designs when it is of interest to quan-
tify the relationship between lung function decline and the presence of a T-allele in
rs177852 under the constraint that only 750 subjects (20%) can be genotyped. For
this analysis, lung function decline is defined as a 2-unit decrease in the percent pre-
dicted forced expiratory volume in one-second from baseline (Yuan et al., 2009). We
assume the following marginalized transition and latent variable model:

logit
(
µmij
)

= β0 + βttimeij + βeSNPi + βetSNPi · timeij + . . .

logit
(
µcij
)

= ∆ij + γYij−1 + σZi

where . . . denotes baseline FEV1 percent predicted, gender, baseline BMI, age,
and smoking status. Smoking status included the main effects cigarettes per/day,
pack-years, and current smoking status that had been decomposed into its between-
and within-subject components (i.e., between=x̄i, within=xij − x̄i).

We consider the following three two-stage fixed designs where 250 subjects are
sampled in stage one (similar to an internal pilot study) and the remaining 500 are
sampled in stage two:

1. D[50,650,50] ≡ D1[25, 200, 25]+D2[25, 450, 25],

2. D[100,550,100] ≡ D1[50, 150, 50]+D2[50, 400, 50], and

3. D[150,450,150] ≡ D1[75, 100, 75]+D2[75, 350, 75].

Both adaptive two-stage designs utilized a D1[50, 150, 50] stage one design, and iden-
tified the nκ21 such that D2[0, nκ21, 0] resulted in V ar(βet) ≈ 0.042, and the design
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such that 500 · D2[α, (1 − 2α), α] resulted in maximizing V ar(βe)−1, V ar(βet)−1, or
d-efficiency(βe, βet). We do not consider the extreme design where only subjects with
response variation are sampled since it is of interest to estimate the SNP effect.

We perform 250 replications of the simulation where each of the random and ODS
sampling schemes are implemented on the complete LHS data set. For the two-stage
adaptive ODS designs, we use imputation to conduct a comparative design analysis
to estimate n0.0016

21 and dα2 . This process is repeated on a total of 25 imputed data sets,
and the average sample size, and the design which maximizes the average optimality
criterion of interest is used to define the stage two ODS design. The relative efficiency
(RE) associated with each ODS design is compared to random sampling, and defined
as the average optimality value under random sampling divided by the average value
under the two-stage ODS designs.

Table 2.6 summarizes the demographics of the Lung Health Study cohort that
had been genotyped. Fifty-five percent had at least one T allele on rs177852, and at
baseline 50% had an FEV1 percent predicted less than 80 indicating that half met the
Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria for moderate
COPD. At the first follow-up visit, 30% had reduced lung function as defined as a 2%
reduction in FEV1 percent predicted from baseline (which we now refer to as “lung
function decline”). This value decreased to 16% by the end of the fifth follow-up visit
indicating that lung function decline stabilized for many of the study participants.
Of the 3,771 subjects considered for this analysis, 2103, 1474, and 194 experienced
lung function decline at none, at least one, all follow-up visits, respectively.

Table 2.6: Demographics of the Lung Health Study (genotyped) cohort. Categorical variables are
summarized as proportions and frequencies, and baseline continuous measurements are summarized
with [5, 25, 50, 75, 95]th percentiles.

Summary
Baseline Measurements
Number of observations 3771
Female 0.37
Age (years) [ 37 : 43 : 49 : 54 : 58 ]
BMI (kg/m2) [ 20 : 23 : 26 : 29 : 33 ]
Pack-years [ 17 : 28 : 37 : 50 : 75 ]
Cigarettes (per day) [ 10 : 20 : 30 : 40 : 55 ]
Percent Predicted FEV1 [ 62 : 73 : 79 : 86 : 92 ]
Any T allele 0.55

Longitudinal Measurements
Number of follow-up observations 3671 - 3708 - 3714 - 3662 - 3751
Current smoker 0.70 - 0.69 - 0.67 - 0.65 - 0.64
Percent Predicted FEV1 < −2 from baseline 0.30 - 0.22 - 0.19 - 0.16 - 0.16
No FEV1 < −2 2103
Any FEV1 < −2 1474
All FEV1 < −2 194
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Full Cohort Analysis
Based on the full cohort analysis, we did not detect an association between the

main effect of SNP and of lung function decline (Table 2.7). We observe a significant
SNP by time interaction in which the rate of lung function decline is greater among
those individuals with the SNP compared to those without the SNP (exp(0.08)=1.08,
95%CI: 1.04-1.13). Other factors associated with lung function decline include base-
line FEV1 percent predicted, smoking (pack years, and current smoking status), and
age.

Two-stage Fixed ODS Analyses
Each of the two-stage fixed ODS designs reproduced the full cohort estimates.

When compared to random sampling, the D[50,650,50] design resulted in a more
efficient estimate of the SNP by time interaction (0.036 vs 0.053, RE=2.17), but a less
efficient estimate for the main SNP effect (0.177 vs 0.157, RE=0.78). These efficiency
differences are due to oversampling those with response variation. As the number of
sampled subjects with response variation decreased (sampling fewer individuals in the
central stratum) the efficiency of the main effect of SNP increased (0.157 and 0.149
versus 0.177; RE=1.27-1.44).

Table 2.7: Regression results of the full cohort analysis, and average estimates [average standard
errors] of 500 replications of each study design. Study designs considered, include: full cohort (FC,
n=3771), and the sampling of 750 subjects using random sampling (RS), and two-stage fixed ODS
designs.

FC RS D1[25, 200, 25] D1[50, 150, 50] D1[75, 100, 75]
D2[25, 450, 25] D2[50, 400, 50] D2[75, 350, 75]

Mean
Intercept -1.80 [0.08] -1.81 [0.19] -1.74 [0.24] -1.77 [0.20] -1.81 [0.18]
SNP -0.09 [0.069] -0.11 [0.156] -0.14 [0.177] -0.12 [0.157] -0.07 [0.149]
SNP x Visit 0.08 [0.023] 0.08 [0.053] 0.08 [0.036] 0.09 [0.039] 0.09 [0.042]
FEV, percent predicted (per 2) 0.02 [0.01] 0.02 [0.02] 0.01 [0.02] 0.00 [0.02] 0.00 [0.01]
Cigarettes/day (per 10) -0.01 [0.02] -0.01 [0.05] -0.06 [0.07] -0.05 [0.06] -0.05 [0.05]
Packs/years (per 20) 0.11 [0.04] 0.11 [0.09] 0.15 [0.11] 0.14 [0.09] 0.14 [0.08]
Current smoking status (between) 1.22 [0.08] 1.23 [0.18] 1.20 [0.24] 1.22 [0.20] 1.23 [0.17]
Current smoking status (within) 0.44 [0.07] 0.45 [0.15] 0.42 [0.10] 0.44 [0.11] 0.45 [0.13]
Visit -0.25 [0.02] -0.25 [0.04] -0.25 [0.03] -0.25 [0.03] -0.25 [0.03]
Female 0.01 [0.06] 0.01 [0.15] -0.03 [0.18] 0.01 [0.15] 0.03 [0.14]
Baseline BMI (per 5 kg/m2) 0.01 [0.04] 0.01 [0.09] -0.03 [0.11] -0.02 [0.09] 0.00 [0.08]
Age (per 10 years) 0.12 [0.05] 0.13 [0.11] 0.03 [0.15] 0.08 [0.12] 0.11 [0.11]

Dependence
γ 1.01 [0.08] 1.00 [0.19] 1.00 [0.12] 1.01 [0.14] 1.02 [0.15]
log(σ) 0.61 [0.04] 0.61 [0.09] 0.60 [0.09] 0.60 [0.08] 0.60 [0.08]
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Two-stage Adaptive Sample Size Analysis: D2[0, nκ21, 0]
The two-stage adaptive sample size design resulted in the sampling of an addi-

tional 490 subjects with response variation such that V ar(βet) ≈ 0.042. Table 2.8
summarizes the estimated distribution of n0.0016

21 across 500 replications. Sixty-six
percent of the replications resulted in sample size estimates greater than 500, thus
this approach may be used to assess if the continuation of the planned study is fea-
sible, or if additional resources are needed to meet the study objectives. From Table
2.9, the resultant two-stage adaptive design, D1[50, 150, 50]+D2[0, 490, 0], reproduced
the full cohort point estimates. Point estimates and standard errors are similar to
the two-stage fixed design D[50, 650, 50] (Table 2.7).

Table 2.8: Distribution of nκ21 after 500 replications.

κ Mean SD Min 5 25 50 75 95 Max
D1[50, 150, 50] 0.0016 489 36 373 434 463 486 514 547 598

Table 2.9: Regression results of the full cohort analysis, and average estimates [average standard
errors] of 500 replications of each study design. Study designs considered, include: full cohort (FC,
n=3771), and the two-stage adaptive sample size ODS designs.

FC D2[0, 489, 0]
Mean
Intercept -1.80 [0.08] -1.72 [0.25]
SNP -0.09 [0.069] -0.14 [0.181]
SNP x Visit 0.08 [0.023] 0.08 [0.037]
FEV1, percent predicted (per 2) 0.02 [0.01] 0.01 [0.02]
Cigarettes/day (per 10) -0.01 [0.02] -0.05 [0.07]
Packs/years (per 20) 0.11 [0.04] 0.15 [0.11]
Current smoking status (between) 1.22 [0.08] 1.17 [0.24]
Current smoking status (within) 0.44 [0.07] 0.43 [0.11]
Visit -0.25 [0.02] -0.25 [0.03]
Female 0.01 [0.06] 0.00 [0.19]
Baseline BMI (per 5 kg/m2) 0.01 [0.04] -0.02 [0.12]
Age (per 10 years) 0.12 [0.05] 0.02 [0.15]

Dependence
γ 1.01 [0.08] 1.00 [0.13]
log(σ) 0.61 [0.04] 0.60 [0.10]

Two-stage Adaptive Design Analysis: n2· D2[α, (1− 2α), α]
From Table 2.10, the two-stage adaptive design that aimed to maximize the preci-

sion of βet overwhelmingly chose D2[0, 500, 0] (88%). We observed more variability in
the two-stage adaptive designs that targeted the precision of βe, and the d-efficiency of
(βe, βet). The stage two designs most frequently identified using these optimality cri-
teria were D2[110, 280, 110] (33%) and D2[90, 320, 90] (31%), respectively. Table 2.11
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presents regression estimates and standard errors for the full cohort for each of the
study designs. The two-stage design that targeted the precision of V ar(βet) resulted
in efficiency gains compared to random sampling (0.039 versus 0.053; RE=1.85).
The two-stage designs that targeted the precision of V ar(βe) and the d-efficiency of
(βe, βet) produced standard errors comparable to random sampling, but the later did
result in improved efficiency of the βet covariate effect.

Table 2.10: Percentage of times the stage two design maximized the optimality criteria: precision of
βet or βe, and d-efficiency(βe, βet) based on 500 replications.

V ar(βet)−1 V ar(βe)−1 d-efficiency(βe, βet)
0-500-0 88 0 0
10-480-10 11 0 0
20-460-20 1 0 0
30-440-30 0 0 0
60-380-60 0 0 3
70-360-70 0 0 11
80-340-80 0 0 21
90-320-90 0 8 31
100-300-100 0 28 21
110-280-110 0 33 8
120-260-120 0 26 4
130-240-130 0 5 0
140-220-140 0 0 0

Table 2.11: Regression results of the full cohort analysis, and average estimates [average standard
errors] of 500 replications of each study design. Study designs considered, include: full cohort (FC,
n=3771), and the sampling of 750 subjects using random sampling (RS), and two-stage adaptive
design ODS designs.

FC RS V ar(βet)−1 V ar(βe)−1 d-efficiency(βe, βet)
Mean
Intercept -1.80 [0.08] -1.81 [0.19] -1.76 [0.28] -1.82 [0.19] -1.82 [0.19]
SNP -0.09 [0.069] -0.11 [0.156] -0.13 [0.191] -0.07 [0.158] -0.08 [0.159]
SNP x Visit 0.08 [0.023] 0.08 [0.053] 0.08 [0.039] 0.09 [0.049] 0.09 [0.047]
FEV1, percent predicted (per 2) 0.02 [0.01] 0.02 [0.02] 0.01 [0.02] 0.00 [0.01] 0.00 [0.01]
Cigarettes/day (per 10) -0.01 [0.02] -0.01 [0.05] -0.05 [0.07] -0.06 [0.05] -0.05 [0.05]
Packs/years (per 20) 0.11 [0.04] 0.11 [0.09] 0.15 [0.11] 0.14 [0.08] 0.14 [0.08]
Current smoking status (between) 1.22 [0.08] 1.23 [0.18] 1.18 [0.26] 1.24 [0.17] 1.24 [0.18]
Current smoking status (within) 0.44 [0.07] 0.45 [0.15] 0.43 [0.11] 0.45 [0.15] 0.43 [0.14]
Visit -0.25 [0.02] -0.25 [0.04] -0.25 [0.03] -0.26 [0.04] -0.25 [0.04]
Female 0.01 [0.06] 0.01 [0.15] 0.00 [0.20] 0.03 [0.13] 0.04 [0.14]
Baseline BMI (per 5 kg/m2) 0.01 [0.04] 0.01 [0.09] -0.02 [0.12] 0.00 [0.08] 0.00 [0.09]
Age (per 10 years) 0.12 [0.05] 0.13 [0.11] 0.03 [0.15] 0.11 [0.11] 0.11 [0.11]

Dependence
γ 1.01 [0.08] 1.00 [0.19] 1.02 [0.14] 1.02 [0.18] 1.00 [0.17]
log(σ) 0.61 [0.04] 0.61 [0.09] 0.62 [0.12] 0.60 [0.08] 0.61 [0.08]
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2.7 Discussion
We extended ODS designs for longitudinal binary data to permit data collection in

two stages. We consider two sub-classes of designs: fixed designs where the sampling
probabilities at each stage are pre-specified, and adaptive designs that utilize stage
one data to improve design choice at stage two. We demonstrate that data from both
stages can be aggregated to generate valid parameter estimates using ascertainment-
corrected maximum likelihood methods. Efficiency gains are observed compared to
random sampling, and in certain situations, as efficient as single-stage ODS sampling
designs. Magnitudes of these efficiency gains depend on characteristics of the data,
such as the prevalence of the exposure, and the (relative) magnitude of the effect size
of interest.

These designs show promise based on these preliminary simulations, but a more
thorough empirical study is needed to understand the operating characteristics of
these two-stage ODS designs. For example, we assume the stage two sampling proba-
bilities are fixed when performing an adaptive stage two design. Ignoring this source of
variation likely results in under-estimated standard errors, but based on these simula-
tions the coverage probabilities are adequate. We plan on investigating bootstrapped
standard errors to incorporate this additional source of variation. All simulations are
also based on correctly-specified mean and dependence models. The misspecification
of either model may result in invalid inferences, and result in erroneous stage two
decisions if performing a stage two adaptive design.

Regardless of these limitations, two-stage ODS designs do provide flexibility over
single stage ODS designs. The cost associated with a two-stage design is increased
variability in the sampling weights which leads to a loss in efficiency compared to
the induced single stage design. If the inferential target is a time-invariant covariate
effect, or the joint time-varying and a time-invariant covariate effect, then the choice
of the optimal ODS design is not clear. It may be worthwhile to perform a less
efficient two-stage study versus performing a single-stage stage design that is possibly
under- or over-powered.
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CHAPTER 3

SURVEY DESIGN AND ANALYSIS CONSIDERATIONS WHEN UTILIZING AN
IMPERFECT SAMPLING FRAME

3.1 Abstract
We investigate the effects of utilizing an imperfect sampling frame on the design

and analysis of complex survey data. This study is motivated by a large multi-
center survey developed to elicit perspectives on biobank participation among under-
studied subgroups (e.g., racial and ethnic monitories). A disproportionate stratified
sampling scheme is implemented to enrich the sample population with these less
prevalent populations using a sampling frame primarily constructed from electronic
health record data (EHR). Incomplete EHR data is imputed using geocode-derived
census summaries which resulted in a well-defined, but imperfect sampling frame. We
determine, via analytic calculations and simulations, that in the presence of stratum
misclassification: 1) complex study designs result in more diverse samples compared
to random sampling, 2) the efficiency of design-based estimators change as a function
of the relative size of the sampling strata, and 3) that analytic methods that account
for the design are still required for valid inferences. We explore the effects of stratum
misclassification in a real-world example by analyzing a subset of the biobank survey
data from Vanderbilt University Medical Center.

3.2 Introduction
The Consent, Education, Regulation and Consultation (CERC) working group of

the electronic Medical Records and Genomics (eMERGE) network conducted a large,
eleven-site survey to examine patient concerns about, and barriers to, participating
in biobank-derived research. Since most research has historically been based on in-
dividuals of northern European ancestry, this survey aimed to enrich their sample
with ethnic and racial minorities, as well as younger adults, individuals of low so-
cioeconomic status, low education, and rural residence (Garrison et al., 2016). The
sampling of rare, or under-studied, subpopulations is typically accomplished by apply-
ing a disproportionate stratified sampling scheme to a well-defined sampling frame
(Kalton, 2009). CERC researchers constructed a sampling frame using electronic
health records (EHR) data at each of the sites. As is well known, EHR data are
incomplete and accuracy varies by institution and by variable, and thus incomplete
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EHR data were supplemented with geocode-derived, census summaries. Using this
imperfect sampling frame, disproportionate stratified sampling was used to identify
the final sample. Additional details regarding the survey development (Smith et al.,
2016), the sampling approach, and the results (Sanderson et al., 2017) have been
published previously.

Two broad classes of analysis strategies for complex survey data include design-
based, and model-based methodologies. Design-based inference assumes population
values are fixed, and all inferences are based on the randomization distribution, or
on the probability of being sampled (Cochran, 1977). To account for the sampling
scheme, design-based inferences weight by the inverse of being sampled. This results
in unbiased point estimates, even in the presence of informative sampling (Rubin,
1976; Sugden and Smith, 1984; Kim and Skinner, 2013). In the presence of survey
non-response, weights are commonly modified based on the available data (e.g., post-
stratification, raking). Model-based inference, assumes the observed survey data are
random, and are generated from a statistical model. Model-based approaches ac-
count for the survey design by incorporating design variables into a regression model.
For an outcome Y , matrix of design variables X, and sampling indicator S, then a
study design is ignorable if [Y |X] = [Y |X,S = 1]. Model-based approaches result in
unbiased, and more efficient estimates than the weighting approach when the survey
design is ignorable. Otherwise, model-based estimates are biased.

Because our sampling strata are based on EHR data, we are concerned that an in-
dividual’s assigned stratum identifier may be misclassified. Stratum misclassification
mechanisms are either non-differential or differential. Non-differential (differential)
misclassification occurs when the probability of being misclassified is independent
(dependent) of the outcome of interest. For example, suppose there are h ∈ H sam-
pling strata, and let h? ∈ H? denote the mismeasured strata. In the CERC survey,
H and H? correspond to the true sampling strata defined by the survey responses,
and mismeasured strata derived using EHR and census data, respectively. Table 3.1
describes the square H?×H misclassification matricies between the true and mismea-
sured stratification variables under non-differential misclassification, and differential
misclassification for a binary outcome Y . Let αh|h? denote the probability that an in-
dividual belongs to stratum h, but is assigned to stratum h? where ∑h αh|h? = 1. The
added subscript in Table 3.1 denotes similar values under differential misclassification
and it is assumed that αh|h?,0 6= αh|h?,1. Under no misclassification, αh|h? = αh|h?,y = 1
for all h = h? and all levels of Y = y. Similarly, if αh|h? = αh|h?,y for all h 6= h?, then
the misclassification mechanism is symmetric.
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Table 3.1: Misclassification matrix example. Rows correspond to misclassified stratification vari-
ables, and columns correspond to true stratification values.

Non-differential misclassification
1 2 . . . H

1? α1|1? α2|1? . . . αH|1?

2? α1|2? α2|2? . . . αH|2?

...
...

...
...

...
H? α1|H? α2|H? . . . αH|H?

Differential misclassification for Y = y

1 2 . . . H
1? α1|1?,y α2|1?,y . . . αH|1?,y

2? α1|2?,y α2|2?,y . . . αH|2?,y

...
...

...
...

...
H? α1|H?,y α2|H?,y . . . αH|H?,y

Misclassification mechanisms are sensitive to the coding of the design variables,
and the response (Rothman et al., 2008). For example, grouping racial categories
or dichotomizing the response may result in an originally non-differential mechanism
becoming differential (Flegal et al., 1991). The effect of stratum misclassification has
been well studied in the setting where the design variables are not recollected in the
survey instrument. It has been shown that misclassification leads to arbitrary forms
of bias, and adjustments to sampling weights are needed for valid inference (e.g.,
matrix adjustment, log-linear models) (Kuha and Skinner, 1997; Greenland, 1988).

The purpose of this paper is to investigate the effects of stratum misclassification
on the design, and on the analysis of survey data when mismeasured design variables
are recollected in the survey instrument. In this chapter, we address three main ques-
tions: 1) is performing a complex study design beneficial when utilizing an imperfect
sampling frame, 2) what is the effect of stratum misclassification on the operating
characteristics of design- and model-based estimators, and 3) does the study design,
that uses an imperfect sampling frame, need to be acknowledged when analyzing data
complex survey data? In Section 2, we analytically derive the variance of design-based
estimator of the total under non-differential misclassification, present similar formulas
for the mean, and show that extensions to linear regression parameters are straight-
forward. In Section 3, we conduct a simulation study and present results that address
design and analysis considerations when dealing with an imperfect sampling frame.
Data from the eMERGE survey is analyzed in Section 4. In Section 5, we discuss
general findings and study limitations.
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3.3 Methods
3.3.1 Means and Variances of Design-Based Descriptive Estimators Under No Mis-

classification
Two common types of design-based estimators include Horvitz-Thompson and ra-

tio estimators. In this section, we define the Horvitz-Thompson estimators of the
total and mean, and the ratio estimator of the mean under no stratum misclassifi-
cation. We omit other estimators since our primary focus is on understanding the
effects of stratum misclassification on analytic summaries (e.g., linear regression pa-
rameters are equivalent to a difference in means). Before defining these estimators, we
introduce key notation. For stratum h ∈ H, let Nh and nh denote the population size
and sample size, respectively. Sampling weights are typically defined as the inverse
of the probability of being sampled, wh = Nh

nh
. Let yjh denote a continuous response

for subject j ∈ h, and let xh represent an auxiliary variable related to yh that can be
collected on each sampled individual.

Horvitz-Thompson estimators are typically applied when stratum sizes are known
or when auxiliary information is not available, whereas ratio estimates are used when
stratum sizes are unknown or when adjusting sampling weights to reflect the respon-
dent population (e.g., post-stratification). Ratio estimators utilize auxiliary informa-
tion to aid in the valid estimation of design-based descriptive statistics, and can be
more efficient than Horvitz-Thompson estimators depending on the correlation be-
tween yh and xh. Table 3.2 summarizes these estimates, and their variances, of the
Horvitz-Thompson estimators of the total and mean, and the ratio estimator of the
mean (Lohr, 2009).

Table 3.2: Design-based estimators of descriptive statistics under no stratum misclassification.

Quantity Estimate Variance
Total

∑nh

j=1 whyhj N2
h(1− nh

Nh
)S

2
hy

nh

Mean 1
Nh

∑nh

j=1 whyhj (1− nh

Nh
)S

2
hy

nh

Mean (ratio) Bh · x̄hp 1
nh

(
1− nh

Nh

) [
S2
hy +BhS

2
hx − 2BhRhShxSyh − 1

x̄hp

(
BhS

2
hx +RhShxShy

)]
where Bh = ȳh

x̄h
, x̄hp the known population mean for variable x, S2

hk the population variance for
k = {x, y}, and Rh = Corr(ȳ, x̄). S2

hy is estimated as 1
nh−1

∑nh

j=1(yhj − ȳh)2. Other estimators of
S2
hy have been derived, but are not explored further (Courbois and Urquhart, 2004).

The Horvitz-Thompson and ratio estimators of a mean are equivalent when the aux-
iliary information is fixed within a stratum (e.g., a stratum indicator). If xhj = 1 for
all j ∈ h, then x̄hp = x̄h = 1 and S2

hx = Shx = 0.
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Since a simple random sample of subjects is taken within each stratum, estimates
of marginal descriptive statistics are simply the sum the quantities over all strata.
For example, the estimate of the population total is ∑H

h=1
∑nh
j=1whjyhj, and the cor-

responding variance is ∑H
h=1N

2
h(1 − nh

Nh
) Ŝ

2
h

nh
(Lohr, 2009). Similarly, the variances of

differences between stratum means are the sum of the individual stratum variances.
For more complicated estimators, such as quantiles or generalized linear regres-

sion model parameters, variance formulas and the appropriate choice of weights are
not straightforward. This is because functional forms of variances may be complex,
or unknown, and data characteristics may require ad-hoc weight modifications. Two
common approaches to estimating variances of analytic summaries include lineariza-
tion (i.e., the delta-method) and replication methods (e.g., jack-knife, bootstrapping).
Linearization involves rewriting the variance of the inferential target as a function of
totals, and then approximating this functional using a first-order Taylor series. Vari-
ances of generalized linear regression model parameters fall under this framework,
and are now the default variance estimation method in most survey software (Binder,
1983; Lumley, 2011). If the variance cannot be rewritten in this way, then replication
methods are typically applied (Rust and Rao, 1996).

3.3.2 Non-Differential Stratum Misclassification & Sub-Domain Analysis
To investigate the effects of non-differential misclassification on analytic quanti-

ties, we first derive estimators of descriptive summaries under non-differential stratum
misclassification. Once completed for a mean, we show that extensions to a simple
linear regression parameter is trivial (e.g., difference in means). For other generalized
linear models or for multivariate regressions, analytic extensions are not straightfor-
ward.

We consider the scenario when the design variables used in constructing the sam-
pling strata and the true values for the survey respondents are available at the time
of analysis. In this setting, the problem of stratum misclassification can then be re-
formulated as a sub-domain analysis problem. Sub-domain analyses are performed
when interest lies in analyzing a well-defined subgroup of the original sampled popu-
lation. Since each survey datum contains design information (e.g., a sampling weight,
finite population correction), performing a naïve analysis by ignoring individuals not
belonging to the subgroup of interest results in incorrect standard error estimates
(Graubard and Korn, 1996; Lumley, 2011). To acknowledge the design information,
sub-domain analyses define an indicator to denote subgroup membership. For ex-
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ample, suppose it is of interest to summarize biobank views, ybiobank, among female
respondents. Let Ij,female = 1 if subject j is female, then correct standard errors are
obtained by analyzing Ij,gender · yj,biobank for all N subjects.

To illustrate how stratum misclassification is related to sub-domain analysis, con-
sider the estimation of the total for stratum h. Let Nh? , nh? and wh? as the population
size, sample size and sampling weight for stratum h?, respectively. Define Ih|h?j as the
response and indicator that subject j belongs to stratum h given they were initially
assigned to stratum h?. For each h?, the contribution to the estimate of the total of
stratum h is ∑nh?

j=1 Ih|h?jwh?yh|h?j. Therefore, we are performing a sub-domain anal-
ysis for each value of h? (e.g., our sub-domain of interest includes those individuals
that belong to stratum h). The final estimate of the stratum total is then defined
as the sum of these sub-domain analyses. This version of the sub-domain analysis is
identical to post-stratification because we are conditioning on Ih|h? , or equivalently,
conditioning on the observed stratum sample sizes.

The expectation and variance of a stratum total under misclassification are (see
Appendix 3.7 for the complete derivation):

E

 H?∑
h?=1

nh?∑
j=1

Ih|h?jwh?yh|h?j

 = E

 H?∑
h?=1

wh?

Nh?∑
j=1

Ih?jIh|h?jyh|h?j


=

H?∑
h?=1

Nh?∑
j=1

Ih|h?jyh|h?j =
Nh∑
j=1

yhj (3.1)

V ar

 H?∑
h?=1

nh?∑
j=1

Ih|h?jwh?yh|h?j

 = V ar

 H?∑
h?=1

Nh?∑
j=1

Ih?jIh|h?jwh?yh|h?j


=

H?∑
h?=1

N2
h?

nh?

(
1− nh?

Nh?

)
αh|h?

[
S2
hy + (1− αh|h?)ȳ2

hp

]
(3.2)

where Ih?j denotes the random sampling indicator of subject j in stratum h?, αh|h?

represents the predictive probability (or calibration probability, Table 3.1) of belong-
ing to stratum h conditioned on being initially assigned to stratum h?, and ȳhp and
S2
hy the stratum h population average and variance of y.
From Equation 3.1, it can be seen that this estimator is (design) unbiased when

using the original sampling weights, wh? . The variance formula in Equation 3.2 re-
sembles its counterpart in Table 3.2, but now is also a function of the predictive
probability, as well as the stratum mean. When αh|h? = 1, this variance estimate re-
duces to the variance of the standard Horvitz-Thompson estimator. When αh|h? = 0,
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stratum h? does not contribute to the variance of the mean of stratum h. Due to the
complex functional form of Equation 3.2, it is not necessarily clear how misclassifica-
tion effects the variance when 0 < αh|h? < 1.

We focus on the ratio estimator of a mean since Nh is unknown under stratum
misclassification. Under no misclassification, the variance of the ratio estimator can
be rewritten as a function of residuals: V ar (Bh · x̄hp) = 1

N2
h
V ar

(∑nh
j=1whehj

)
where

ehj = yhj − Bhxhj. Therefore, the ratio estimator may be rewritten in the form of
a Horvitz-Thompson estimator. Additional details of this derivation are provided
in Appendix 3.7. Using the results of Equations 3.1 and 3.2, the expectation and
variance of the ratio estimator under stratum misclassification are:

E

 1
Ñh

H?∑
h?=1

nh?∑
j=1

Ih|h?jwh?yh|h?j

 = E

 1
Ñh

H?∑
h?=1

wh?

Nh?∑
j=1

Ih?jIh|h?jyh|h?j


= 1
Ñh

H?∑
h?=1

Nh?∑
j=1

Ih|h?jyh|h?j = 1
Ñh

Ñh∑
j=1

yhj (3.3)

V ar

 1
Ñh

H?∑
h?=1

nh?∑
j=1

Ih|h?jwh?yh|h?j

 = 1
Ñ2
h

V ar

 H?∑
h?=1

Nh?∑
j=1

Ih?jIh|h?jwh?eh|h?j


=

H?∑
h?=1

N2
h?

nh?

1
Ñ2
h

(
1− nh?

Nh?

)
αh|h?S2

he (3.4)

where Ñh = ∑H?

h?=1
∑Nh?

j=1 Ih|h?wh? . When αh|h? = 1, Equation 3.2 and Equation 3.4
are identical, since Ñh = Nh and S2

hy = S2
he. As noted previously, it is not clear how

0 < αh|h? < 1 effects the variance in Equation 3.4.

From Equation 3.4, the variance of the difference in means between strata a and
b is:

V ar(ȳbr)− V ar(ȳar) =
H?∑
h?=1

N2
h?

nh?

(
1− nh?

Nh?

) [
S2
be

Ñ2
b

αb|h? + S2
ae

Ñ2
a

αa|h?

]
(3.5)

This corresponds to the variance of a linear regression coefficient βb when stratum a

is the referent group.
We perform a simulation to investigate the effects of stratum misclassification on

the efficiency of linear regression parameter estimates using Equation 3.5. We assume
a population consists of three strata with stratum sizes (N1 = 8500, N2 = 1000, N3 =
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500). If it is of interest to sample 1000 individuals, then using a disproportionate
stratified sampling scheme results in sampling, on average, 333 per stratum. We
assume a non-differential, symmetric misclassification mechanism where the diagonal
element of Table 3.1 ranges from 0.5 to 1 (no misclassification). We quantify the
effect of misclassification on the efficiency of the estimator under no misclassification
to that under misclassification. If the sample variances among the three strata are
comparable, then we observe the relative efficiency changes presented in Figure 3.1.
For the most prevalent subgroup, efficiency gains are observed; otherwise, efficiency
losses are observed and the magnitude of the efficiency loss is relative to the sizes of the
sampling strata. The second panel in Figure 3.1 summarizes the relative efficiencies
when (N1 = 5000, N2 = 4500, N3 = 500). Changes in the stratum means, or variances
resulted in similar patterns.
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Figure 3.1: Relative efficiencies of design-based linear regression parameter estimates under non-
differential symmetric stratum misclassification. Relative efficiency values are defined as the ratio of
the variance of the parameter estimate under no misclassification versus that under misclassification,
and are computed using Equation 3.5.

3.4 Simulation
We conducted a simulation study to investigate the effects of stratum misclassi-

fication on choices of study design and method of analysis. We assume our interest
is to estimate the overall prevalence of trust in the healthcare system (trust), and
the relationship between trust and race and ethnicity, poverty, and race and ethnicity
and poverty. Our sampling frame was defined using only race and ethnicity which
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is coded as: Hispanic and non-Hispanic White (reference group), Black, Asian, and
Other. Trust was defined as 1 if the respondent answered either “agree” or “strongly
agree” to the statement “I trust my healthcare system”. Poverty was assigned 1 if
self-reported income is less than the number of people in the household x 4,160 +
11,770 (Sanderson et al., 2017). The four regression models of interest include:

logit [pr(trusti)] = β0 Model 1

logit [pr(trusti|racei, ethnicityi)] = β0 + βBI(Blacki) + βAI(Asiani)

+ βOI(Otheri) + βHI(Hispanici) Model 2

logit [pr(trusti|povertyi)] = β0 + βP I(povertyi) Model 3

logit [pr(trusti|racei, ethnicityi, povertyi)] = β0 + βBI(Blacki) + βAI(Asiani) + βOI(Otheri)

+ βHI(Hispanici) + βP I(povertyi) Model 4
(3.6)

We created a single ‘true’ population to closely resemble the EHR and survey
response dataset from Vanderbilt University Medical Center (VUMC). Self-reported
race and ethnicity were estimated using EHR-reported race and ethnicity, along with
the misclassification matrix of the respondent population (Table 3.3). For exam-
ple, if a subject’s EHR-reported race and ethnicity was non-Hispanic White, then
the predicted probabilities of self-reporting as a non-Hispanic White, Black, Asian,
and Other, or Hispanic were 94.3, 0.6, <0.1, <0.1, 9.5 and 0.9%, respectively. The
following logistic regression models are used to predict poverty and trust:

logit [pr(povertyi|racei, ethnicityi)] = −2.00 + 1.25I(Blacki) + 0.25I(Asiani)

+ 1.75I(Otheri) + 0.50I(Hispanici)

logit [pr(trusti|racei, ethnicityi, povertyi)] = −0.75− 0.25I(Blacki)− 0.50I(Asiani)

+ 1.25I(Otheri)− 1.50I(Hispanici) + 1.00I(povertyi)

Sub-model parameter estimates, such as the intercept-only model, are those that are
induced by marginalizing over race and ethnicity and/or poverty of the full model.

With a complete dataset, misclassified versions of race and ethnicity are con-
structed by using both non-differential and differential misclassification mechanisms.
Two types of non-differential misclassification matrices are utilized: 1) a symmetric
matrix (Table 3.1, MC1−α; diagonal=α, off-diagonal=α/4), and 2) a non-symmetric
matrix based on the observed misclassification matrix (Table 3.3; MCκ×obs for κ =
0.5, 1) where κ times the off-diagonal elements are redistributed to the diagonal of
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the corresponding row. We show the differential misclassification mechanism that we
explore in Table 3.4 where we stratify the observed misclassification matrix by the
observed outcome trust I(trust = 1). A misclassified version of race and ethnicity
was then created using the estimated self-reported race and ethnicity and each of the
misclassification matrices.
Table 3.3: Misclassification matrix among Vanderbilt University Medical Center respondents. Cell
values in brackets respresent row percentages, and those in parentheses denote column percentages.
Two degrees, κ, of non-symmetric misclassification are investigated. All non-diagonal elements are
multiplied by κ and redistributed to the diagonal row element.

Self report
White Black Asian Other Hispanic

EHR: κ = 1
White [94.3] (69.0) [ 0.6] ( 0.9) [ 0.0] ( 0.0) [ 4.4] ( 9.5) [ 0.6] ( 0.9)
Black [ 0.0] ( 0.0) [93.1] (73.6) [ 0.0] ( 0.0) [ 5.7] ( 6.8) [ 1.1] ( 0.9)
Asian [ 2.1] ( 0.9) [ 1.0] ( 0.9) [75.0] (79.1) [18.8] (24.3) [ 3.1] ( 2.8)
Other [22.2] ( 8.3) [ 2.5] ( 1.8) [19.8] (17.6) [43.2] (47.3) [12.3] ( 9.3)
Hispanic [26.7] (21.8) [14.2] (22.7) [ 1.7] ( 3.3) [ 5.1] (12.2) [52.3] (86.0)

EHR: κ = 0.5
White [97.2] (82.1) [ 0.3] ( 0.5) [ 0.0] ( 0.0) [ 2.2] ( 4.5) [ 0.3] ( 0.4)
Black [ 0.0] ( 0.0) [96.6] (85.3) [ 0.0] ( 0.0) [ 2.9] ( 3.2) [ 0.6] ( 0.4)
Asian [ 1.0] ( 0.5) [ 0.5] ( 0.5) [87.5] (89.8) [ 9.4] (11.6) [ 1.6] ( 1.1)
Other [11.1] ( 4.8) [ 1.2] ( 1.0) [ 9.9] ( 8.6) [71.6] (74.8) [ 6.2] ( 3.5)
Hispanic [13.4] (12.6) [ 7.1] (12.7) [ 0.9] ( 1.6) [ 2.6] ( 5.8) [76.1] (94.7)

Table 3.4: Misclassification matrix among Vanderbilt University Medical Center respondents by
trust in the healthcare system. Cell values in brackets respresent row percentages, and those in
parentheses denote column percentages.

Self report
White Black Asian Other Hispanic

EHR: Trust=0
White [97.7] (70.0) [ 0.0] ( 0.0) [ 0.0] ( 0.0) [ 0.0] ( 0.0) [ 2.3] ( 2.2)
Black [ 0.0] ( 0.0) [87.5] (75.0) [ 0.0] ( 0.0) [ 8.3] ( 7.7) [ 4.2] ( 2.2)
Asian [ 0.0] ( 0.0) [ 0.0] ( 0.0) [74.3] (86.7) [22.9] (30.8) [ 2.9] ( 2.2)
Other [24.1] (11.7) [ 0.0] ( 0.0) [10.3] (10.0) [48.3] (53.8) [17.2] (11.1)
Hispanic [19.0] (18.3) [12.1] (25.0) [ 1.7] ( 3.3) [ 3.4] ( 7.7) [63.8] (82.2)

EHR: Trust=1
White [92.9] (69.1) [ 0.9] ( 1.2) [ 0.0] ( 0.0) [ 6.2] (14.6) [ 0.0] ( 0.0)
Black [ 0.0] ( 0.0) [95.2] (72.8) [ 0.0] ( 0.0) [ 4.8] ( 6.2) [ 0.0] ( 0.0)
Asian [ 1.8] ( 0.7) [ 1.8] ( 1.2) [75.0] (73.7) [17.9] (20.8) [ 3.6] ( 3.2)
Other [21.2] ( 7.2) [ 3.8] ( 2.5) [25.0] (22.8) [40.4] (43.8) [ 9.6] ( 8.1)
Hispanic [29.9] (23.0) [15.4] (22.2) [ 1.7] ( 3.5) [ 6.0] (14.6) [47.0] (88.7)

Two types of sampling designs are examined including disproportionate stratified
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sampling and random sampling. Disproportionate sampling aims to enrich the final
sample by applying unequal sampling probabilities to each sample stratum. One
approach to defining these sampling probabilities is by applying the maximum entropy
sampling algorithm (see Chapter 4). It aims to identify the number of subjects to
sample per stratum such that the Shannon entropy of the stratification information
within the sample is maximized, and is achieved when equal number of subjects
are sampled from each stratum. We assume that it is of interest to sample 2,500
individuals. Under no misclassifiation and a random sampling design, the expected
stratum sizes for the non-Hispanic White, Black, Asian, Other, and Hispanic are
2,056, 243, 27, 126, and 47, respectively. Under disproportionate stratified sampling,
we expect to sample 500 from each stratum

We compare design-based and model-based analysis approaches based on the mod-
els described previously. Weighted analyses utilized the original design-based weights
that are constructed using the misclassified race and ethnicity variables, and are esti-
mated using the survey package in R (Lumley, 2011). Unweighted analyses ignored
the design information (e.g., sampling weights, and finite-population corrections)
and are estimated using R’s base generalized linear model functions. All weighted
sub-models are valid (e.g., accounting for the design via weighting), while only the
sub-models that adjusted for race and ethnicity are valid when the study design is
ignorable.

For each of the misclassification matrices considered, a total of 2,500 replications
of the simulation are performed. Each iteration consisted of generating misclassified
‘EHR-reported’ race and ethnicity values, identifying the sample population via dis-
proportionate stratified or random sampling, and estimating all regression parameters
using design-based and model-based analytic methods. Point estimates, and standard
errors are stored for each replicate. Percent bias and coverage probabilities are com-
puted to assess the operating characteristics of each estimation approach. For valid
estimators (i.e., unbiased, 95% coverage), relative variances are calculated to compare
designs, and analysis approaches under varying degrees of misclassification.

Next, we describe the simulation separately for those scenarios under non-differential,
followed by those under differential misclassification.

3.4.1 Non-differential Misclassification
Table 3.5 displays the percent bias and coverage probabilities of the logistic re-

gression parameter estimates for Models 1-4 (Equation 3.6) under random sampling.
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Parameter estimates of the full cohort are also provided to aid in the interpretation
of the percent bias values. Since the design is ignorable, all models are valid and
produce estimates that are unbiased and attained nominal coverage regardless of the
degree of misclassification.

Table 3.5: Bias and coverage probability estimates under random sampling. Parameter estimates
are provided for the full cohort, and percent biases [ coverage probabilities ] are reported by type
and degree of non-differential misclassification. Estimates are based on 2500 simulations when using
model-based analytic methods. Symmetric misclassification mechanisms are denoted as MCα where
α represents the 1-diagonal element of the misclassification matrix. Non-symmetric misclassification
matrices, MCκobs, reflect actually observed, or rescaled, misclassification matrices; see Table 3.3.

Full Cohort No Misclass. Symmetric Non-symmetric
MC0 MC5 MC20 MC30 MC0.5obs MCobs

Model 1
Intercept 0.86 0.4 [94.7] 0.4 [94.7] -0.1 [94.7] 0.1 [94.7] 0.2 [94.7] 0.2 [94.7]

Model 2
Intercept (White) 0.85 0.5 [94.6] 0.5 [94.6] 0.0 [94.6] 0.2 [94.6] 0.3 [94.6] 0.2 [94.6]
Black -0.06 5.9 [94.8] 3.4 [94.8] -2.4 [94.8] -2.1 [94.8] 2.9 [94.8] -4.8 [94.8]
Asian -0.43 0.5 [95.8] 0.3 [95.8] -1.3 [95.8] 1.0 [95.8] -0.6 [95.8] -2.0 [95.8]
Other 1.49 0.4 [95.4] 0.3 [95.4] 1.3 [95.4] 1.8 [95.4] 1.0 [95.4] 2.1 [95.4]
Hispanic -1.44 0.2 [95.7] 0.4 [95.7] 0.8 [95.7] 0.7 [95.7] 0.8 [95.7] 0.8 [95.7]

Model 3
Intercept 0.73 0.3 [94.4] 0.5 [94.4] -0.1 [94.4] 0.1 [94.4] 0.1 [94.4] 0.1 [94.4]
Poverty 1.03 2.4 [95.6] 1.6 [95.6] 1.3 [95.6] 1.5 [95.6] 2.1 [95.6] 1.7 [95.6]

Model 4
Intercept (White) 0.75 0.4 [94.4] 0.6 [94.4] 0.0 [94.4] 0.2 [94.4] 0.2 [94.4] 0.1 [94.4]
Black -0.25 2.4 [95.0] 1.6 [95.0] 0.0 [95.0] 0.3 [95.0] 1.9 [95.0] -0.2 [95.0]
Asian -0.46 0.5 [95.3] 0.6 [95.3] -1.4 [95.3] 1.2 [95.3] -0.5 [95.3] -1.8 [95.3]
Other 1.25 0.5 [95.0] 0.3 [95.0] 1.7 [95.0] 2.1 [95.0] 1.1 [95.0] 2.3 [95.0]
Hispanic -1.53 0.4 [95.3] 0.6 [95.3] 0.9 [95.3] 0.9 [95.3] 0.9 [95.3] 1.0 [95.3]
Poverty 1.00 2.8 [95.7] 1.9 [95.7] 1.6 [95.7] 1.8 [95.7] 2.4 [95.7] 2.0 [95.7]
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Tables 3.6 and 3.7 summarize percent bias and coverage probability under dispro-
portionate stratified sampling when performing design-based and model-based anal-
yses, respectively. Design-based analytic methods resulted in unbiased, and nominal
coverage, for all model parameter estimates. Similar patterns are observed for Models
2 and 4 when performing a model-based analysis though the large biases observed for
the race effect for Black respondents in Model 2 are an artifact of the negligible pa-
rameter estimate (i.e., -0.06). Models 2 and 4 adjust for race and ethnicity, and thus
adequately account for the study design. Significant biases are observed for marginal
effects (Models 1 and 3) which is expected since the design is not acknowledged. As
misclassification increases, the magnitude of the bias does decrease (e.g., Model 1:
-26.7% to 0%), but inadequate coverage remains.

Table 3.6: Bias and coverage probability estimates under disproportion stratified sampling. Parame-
ter estimates are provided for the full cohort, and percent biases [ coverage probabilities ] are reported
by type and degree of non-differential misclassification. Estimates are based on 2500 simulations
when using design-based analytic methods. Symmetric misclassification mechanisms are denoted as
MCα where α represents the percentange misclassified (1-diagonal element of the misclassification
matrix). Non-symmetric misclassification matrices, MCκobs, reflect actually observed, or rescaled,
misclassification matrices; see Table 3.3.

Full Cohort No Misclass. Symmetric Non-symmetric
MC0 MC5 MC20 MC30 MC0.5obs MCobs

Model 1
Intercept 0.86 0.4 [95.3] 0.4 [94.8] -0.1 [95.0] 0.1 [94.7] 0.2 [95.0] 0.2 [95.2]

Model 2
Intercept (White) 0.85 0.5 [95.4] 0.5 [94.7] 0.0 [95.3] 0.2 [94.7] 0.3 [95.0] 0.2 [95.0]
Black -0.06 5.9 [94.8] 3.4 [94.3] -2.4 [95.6] -2.1 [94.7] 2.9 [94.5] -4.8 [95.0]
Asian -0.43 0.5 [95.4] 0.3 [94.7] -1.3 [94.6] 1.0 [95.9] -0.6 [95.0] -2.0 [94.4]
Other 1.49 0.4 [95.0] 0.3 [94.6] 1.3 [95.6] 1.8 [94.5] 1.0 [94.4] 2.1 [93.2]
Hispanic -1.44 0.2 [95.0] 0.4 [95.2] 0.8 [94.9] 0.7 [94.2] 0.8 [95.6] 0.8 [95.0]

Model 3
Intercept 0.73 0.3 [94.9] 0.5 [94.4] -0.1 [94.9] 0.1 [94.6] 0.1 [94.6] 0.1 [94.4]
Poverty 1.03 2.4 [94.4] 1.6 [94.7] 1.3 [94.4] 1.5 [94.5] 2.1 [94.8] 1.7 [94.5]

Model 4
Intercept (White) 0.75 0.4 [95.2] 0.6 [94.3] 0.0 [95.2] 0.2 [94.3] 0.2 [94.9] 0.1 [94.5]
Black -0.25 2.4 [95.1] 1.6 [94.2] 0.0 [94.8] 0.3 [94.7] 1.9 [94.4] -0.2 [94.5]
Asian -0.46 0.5 [95.4] 0.6 [94.7] -1.4 [94.6] 1.2 [95.8] -0.5 [95.0] -1.8 [94.3]
Other 1.25 0.5 [94.9] 0.3 [94.5] 1.7 [95.2] 2.1 [94.1] 1.1 [94.0] 2.3 [93.3]
Hispanic -1.53 0.4 [95.4] 0.6 [95.0] 0.9 [94.6] 0.9 [94.7] 0.9 [95.6] 1.0 [94.7]
Poverty 1.00 2.8 [94.2] 1.9 [94.7] 1.6 [94.2] 1.8 [94.4] 2.4 [94.1] 2.0 [93.8]
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Table 3.7: Bias and coverage probability estimates for model-based parameter estimates under
disproportion stratified sampling. Parameter estimates are provided for the full cohort, and percent
biases [ coverage probabilities ] are reported by type and degree of non-differential misclassification.
Estimates are based on 2500 simulations when using model-based analytic methods. Symmetric
misclassification mechanisms are denoted as MCα where α represents the percentage misclassified (1-
diagonal element of the misclassification matrix). Non-symmetric misclassification matrices, MCκobs,
reflect actually observed, or rescaled, misclassification matrices; see Table 3.3.

Full Cohort No Misclass. Symmetric Non-symmetric
MC0 MC5 MC20 MC30 MC0.5obs MCobs

Model 1
Intercept 0.86 -26.7 [0.0] -11.0 [41.0] -1.5 [93.3] 0.0 [96.0] 5.8 [80.5] 7.6 [69.8]

Model 2
Intercept (White) 0.85 0.5 [95.4] -1.1 [94.9] -0.5 [94.3] 0.3 [95.6] 1.5 [95.5] 0.9 [95.3]
Black -0.06 5.9 [94.8] -16.9 [95.0] -13.4 [95.6] -2.5 [95.0] 29.5 [94.9] 10.0 [95.6]
Asian -0.43 0.5 [96.0] -1.4 [95.6] -4.9 [95.1] 1.8 [96.1] 3.9 [95.8] -7.6 [95.3]
Other 1.49 0.4 [95.3] 1.3 [95.3] 0.7 [95.8] 1.1 [94.9] -1.8 [94.9] -0.6 [95.2]
Hispanic -1.44 0.2 [95.8] -1.0 [95.4] 0.3 [95.4] 0.5 [95.2] 2.5 [95.8] 2.0 [95.3]

Model 3
Intercept 0.73 -45.2 [ 0.0] -23.2 [ 5.3] -6.8 [81.0] -3.6 [92.0] -2.5 [93.9] 1.3 [95.0]
Poverty 1.03 10.2 [86.8] 7.7 [91.0] 2.1 [95.1] 3.1 [95.1] 7.5 [93.2] 5.4 [94.6]

Model 4
Intercept (White) 0.75 1.1 [95.2] -1.2 [95.0] -0.3 [95.1] 0.3 [96.0] 1.8 [95.0] 1.1 [95.2]
Black -0.25 -2.6 [95.1] -7.0 [95.4] -4.9 [95.0] -0.1 [94.7] 5.9 [94.7] -0.4 [95.8]
Asian -0.46 0.0 [96.2] -1.8 [95.4] -4.7 [94.9] 1.9 [96.0] 3.1 [95.9] -8.1 [95.1]
Other 1.25 1.5 [95.0] 2.2 [95.3] 1.2 [96.3] 1.3 [94.9] -1.4 [94.8] -0.2 [95.6]
Hispanic -1.53 -0.3 [95.9] -1.2 [95.2] 0.2 [95.2] 0.6 [95.3] 2.0 [95.8] 1.2 [95.2]
Poverty 1.00 -5.9 [92.4] -2.1 [94.4] -2.1 [94.4] 0.7 [95.7] -2.1 [95.1] -2.8 [94.3]
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Figure 3.2 and Table 3.8 summarize the relative efficiencies of logistic regression
parameter estimates under varying degrees of non-differential misclassification com-
paring disproportionate stratified sampling to random sampling. We estimate relative
efficiency (RE) of a regression model parameter as 100 times the average variance un-
der random sampling divided by average variance under stratified sampling. Values
greater than one indicate that the stratified sampling approach is more efficient (i.e.,
smaller variance) than that under random sampling.

Regardless of the analysis method, utilizing a disproportionate stratified sampling
scheme resulted in more efficient estimation of design parameters for rare subgroups
(RE > 1). Up to 10-times as many Asians are sampled when using the stratified
design compared to random sampling under no stratum misclassification. Among
non-Hispanic Whites, the stratified design resulted in less precise point estimates
compared to random sampling due to the drastic differences in stratum sizes. As
misclassification increased, the efficiency gains associated with stratified sampling
decreased. Even under 30% misclassification, disproportionate stratified sampling
results in a more diverse sample than under random sampling indicating that this
design should still be performed if the goal is to learn about rare subgroups. For
non-design variables (poverty), efficiency gains are observed when using model-based
estimation which is likely due to the correlation between poverty and race/ethnicity.
Since race and ethnicity was used to construct the study design, we expect sample
enrichment on variables related to these design variables.
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Table 3.8: Relative efficiencies of logistic regression parameter estimates under non-
differential stratum misclassification comparing disproportionate and random sam-
pling. Estimates in brackets correspond to unweighted analyses; values are omitted
for Models 1 and 3 since these models did not adjust for the design variables. Degree
of symmetric non-differential misclassification ranged from 5% misclassified (MC5;
or 95% correctly classified) to 30% misclassified, and degree of non-symmetric non-
differential misclassification included MC0.5obs=the observed non-differential misclas-
sification matrix where the off-diagonal elements are reduced by 0.5, and MCobs=the
observed misclassification matrix.

V ar(rs)
V ar(ss) No Misclassification Symmetric Non-symmetric

MC0 MC5 MC20 MC30 MC0.5obs MCobs

Model 1
Intercept 0.29 [] 0.32 [] 0.42 [] 0.51 [] 0.39 [] 0.51 []

Model 2
Intercept (White) 0.24 [0.24] 0.27 [0.50] 0.36 [0.76] 0.45 [0.84] 0.33 [0.58] 0.44 [0.67]
Black 1.15 [1.14] 1.14 [1.57] 1.09 [1.55] 1.08 [1.43] 1.38 [1.74] 1.36 [1.81]
Asian 10.11 [9.47] 5.42 [7.57] 2.36 [3.16] 1.80 [2.25] 6.54 [8.07] 4.19 [5.56]
Other 3.25 [3.18] 2.72 [3.21] 1.89 [2.31] 1.54 [1.85] 2.12 [3.32] 1.64 [2.92]
Hispanic 5.69 [5.47] 3.95 [5.24] 2.11 [2.82] 1.58 [2.06] 1.57 [1.74] 0.95 [1.17]

Model 3
Intercept 0.28 [] 0.31 [] 0.41 [] 0.50 [] 0.38 [] 0.50 []
Poverty 0.36 [] 0.40 [] 0.51 [] 0.60 [] 0.48 [] 0.61 []

Model 4
Intercept (White) 0.25 [0.25] 0.27 [0.52] 0.37 [0.78] 0.46 [0.86] 0.33 [0.59] 0.45 [0.68]
Black 1.10 [1.16] 1.09 [1.57] 1.07 [1.54] 1.06 [1.42] 1.32 [1.73] 1.32 [1.80]
Asian 10.06 [9.51] 5.37 [7.57] 2.35 [3.16] 1.79 [2.24] 6.46 [8.08] 4.18 [5.57]
Other 3.06 [3.16] 2.60 [3.18] 1.84 [2.29] 1.52 [1.84] 2.06 [3.28] 1.62 [2.89]
Hispanic 5.42 [5.51] 3.81 [5.23] 2.07 [2.81] 1.57 [2.06] 1.54 [1.75] 0.95 [1.18]
Poverty 0.35 [1.51] 0.38 [1.35] 0.50 [1.19] 0.59 [1.12] 0.46 [1.27] 0.59 [1.23]
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Figure 3.2: Relative efficiencies of design-based logistic regression parameter estimates under non-
differential symmetric stratum misclassification comparing disproportionate and random sampling.
Misclassification ranged from 0 (100% correctly classified, no misclassification) to 0.5 (50% correctly
classified).
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Figure 3.3 and Table 3.9 summarize the relative efficiencies of logistic regres-
sion parameter estimates under non-differential stratum misclassification comparing
varying degrees of misclassification to no misclassification. The relative efficiency is
estimated as 100 times the average variance under no misclassification divided by
average variance under misclassification. For design effects that are associated with
small subgroups (e.g., non-Hispanic Asian, Hispanic), efficiency is greatly reduced
when design variables are misclassified - even by a “minimal” amount (5%, or 95%
correctly classified). Conversely, efficiency gains are observed for covariate effects
summarizing larger subgroups (e.g., non-Hispanic Whites, RE > 2; non-Hispanic
Blacks, RE > 1.25) and those not explicitly included in the design of the study. As
misclassification increased, so did the efficiency loss (gain) for small (large) subgroups.

Table 3.9: Relative efficiencies of logistic regression parameter estimates under non-
differential stratum misclassification comparing varying degrees of misclassification
to no misclassification. Estimates in brackets correspond to unweighted analyses;
values are omitted for Models 1 and 3 since these models did not adjust for the
design variables. Degree of symmetric non-differential misclassification ranged from
5% misclassified (MC5; or 95% correctly classified) to 30% misclassified, and degree
of non-symmetric non-differential misclassification included MC0.5obs=the observed
non-differential misclassification matrix where the off-diagonal elements are reduced
by 0.5, and MCobs=the observed misclassification matrix.

V ar(MC0)
V ar(MCx) Symmetric Non-symmetric

MC5 MC20 MC30 MC0.5obs MCobs
Model 1
Intercept 1.10 [] 1.46 [] 1.78 [] 1.34 [] 1.75 []

Model 2
Intercept (White) 1.10 [2.08] 1.50 [3.15] 1.87 [3.49] 1.37 [2.38] 1.83 [2.75]
Black 0.99 [1.37] 0.95 [1.36] 0.94 [1.25] 1.20 [1.52] 1.18 [1.58]
Asian 0.54 [0.80] 0.23 [0.33] 0.18 [0.24] 0.65 [0.85] 0.41 [0.59]
Other 0.84 [1.01] 0.58 [0.73] 0.48 [0.58] 0.65 [1.04] 0.51 [0.92]
Hispanic 0.69 [0.96] 0.37 [0.51] 0.28 [0.38] 0.28 [0.32] 0.17 [0.21]

Model 3
Intercept 1.10 [] 1.46 [] 1.79 [] 1.35 [] 1.76 []
Poverty 1.09 [] 1.41 [] 1.66 [] 1.32 [] 1.66 []

Model 4
Intercept (White) 1.10 [2.05] 1.50 [3.07] 1.87 [3.38] 1.36 [2.34] 1.82 [2.69]
Black 1.00 [1.35] 0.98 [1.33] 0.96 [1.22] 1.21 [1.49] 1.21 [1.55]
Asian 0.53 [0.80] 0.23 [0.33] 0.18 [0.24] 0.64 [0.85] 0.42 [0.59]
Other 0.85 [1.01] 0.60 [0.73] 0.50 [0.58] 0.67 [1.04] 0.53 [0.91]
Hispanic 0.70 [0.95] 0.38 [0.51] 0.29 [0.37] 0.28 [0.32] 0.17 [0.21]
Poverty 1.09 [0.89] 1.43 [0.78] 1.68 [0.74] 1.33 [0.84] 1.69 [0.81]
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Figure 3.3: Relative efficiencies of logistic regression parameter estimates for Model 4 under non-
differential stratum misclassification comparing varying degrees of misclassification to no misclassi-
fication. Misclassification ranged from 0 (100% correctly classified, no misclassification) to 0.5 (50%
correctly classified).
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Relative efficiencies of logistic regression parameter estimates under non-differential
stratum misclassification comparing design-based (weighted) to model-based (un-
weighted) analysis approaches are presented in Table 3.10 and Figure 3.4. Marginal
models (1 and 3) are not presented because the model-based analytic approaches did
not adequately account for the study design. Under no misclassification, the efficiency
of both analytic approaches is comparable for the design variables. This implies that
under a 100% response rate, weighting for the design and adjusting for the design vari-
ables simultaneously does not inflate the variance of model estimates. For non-design
variables, design-based approaches are less efficient. Similarly, as misclassification
increased, so did the design-based variance estimates of all model parameters due to
the additional variation in the sampling weights. Therefore, the bias-variance tradeoff
needs to be considered when choosing an approach to analyzing complex survey data.

Table 3.10: Relative efficiencies of logistic regression parameter estimates under non-
differential stratum misclassification comparing design-based (weighted) to model-
based (unweighted) analysis approaches. Models 1 and 3 are omitted since the un-
weighted models did not adjust for the design variables. Degree of symmetric non-
differential misclassification ranged from 5% misclassified (MC5; or 95% correctly
classified) to 30% misclassified, and degree of non-symmetric non-differential mis-
classification included MC0.5obs=the observed non-differential misclassification ma-
trix where the off-diagonal elements are reduced by 0.5, and MCobs=the observed
misclassification matrix.

V ar(unweighted)
V ar(weighted) No Misclassification Symmetric Non-symmetric

MC0 MC5 MC20 MC30 MC0.5obs MCobs
Model 2
Intercept (White) 1.00 0.53 0.48 0.54 0.57 0.67
Black 1.01 0.73 0.71 0.75 0.79 0.75
Asian 1.07 0.72 0.75 0.80 0.81 0.75
Other 1.02 0.85 0.82 0.84 0.64 0.56
Hispanic 1.04 0.75 0.75 0.76 0.90 0.81

Model 4
Intercept (White) 0.97 0.52 0.47 0.54 0.56 0.66
Black 0.94 0.69 0.69 0.74 0.76 0.74
Asian 1.06 0.71 0.74 0.80 0.80 0.75
Other 0.97 0.82 0.80 0.83 0.63 0.56
Hispanic 0.99 0.73 0.74 0.76 0.88 0.80
Poverty 0.23 0.28 0.42 0.53 0.37 0.48
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Figure 3.4: Relative efficiencies of logistic regression parameter estimates for Model 4 under
non-differential stratum misclassification comparing design-based (weighted) to model-based (un-
weighted) analysis approaches. Misclassification ranged from 0 (100% correctly classified, no mis-
classification) to 0.5 (50% correctly classified).
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3.4.2 Differential Misclassification
Table 3.11 displays the percent bias and coverage probabilities of the logistic

regression parameter estimates for Models 1-4 (Equation 3.6) under random and
stratified sampling. Parameter estimates of the full cohort are also provided to aid
in the interpretation of the percent bias values. Valid estimates are obtained when
data is collected under random sampling. When analyzing complex survey data in
the presence of differential misclassification, only design-based approaches produced
unbiased estimates with nominal coverage for all model estimates. Model-based anal-
yses produced biased point estimates for small subgroups (e.g., non-Hispanic Asians,
30%).

Table 3.11: Bias and coverage probability estimates under differential misclassification
as described in Table 3.4. Parameter estimates are provided for the full cohort, and
percent biases [ coverage probabilities ] are reported by study design. Estimates
are based on 2500 simulations when using both design- and model-based analytic
methods.

Full Cohort Random Sampling Stratified Sampling
Model-based Design-based Model-based

Model 1
Intercept 0.86 0.3 [94.7] 0.3 [94.5] 4.6 [87.3]

Model 2
Intercept (White) 0.85 0.4 [94.6] 0.4 [94.7] 0.9 [95.0]
Black -0.06 4.5 [94.8] 4.5 [95.2] -35.9 [95.6]
Asian -0.43 0.7 [95.8] 0.7 [94.4] 32.4 [86.4]
Other 1.49 0.8 [95.4] 0.8 [94.0] -20.6 [56.3]
Hispanic -1.44 1.1 [95.7] 1.1 [95.5] -2.2 [95.6]

Model 3
Intercept 0.73 0.3 [94.4] 0.3 [94.2] -2.7 [92.8]
Poverty 1.03 1.7 [95.6] 1.7 [94.6] 5.7 [93.2]

Model 4
Intercept (White) 0.75 0.4 [94.4] 0.4 [94.3] 1.3 [95.0]
Black -0.25 2.2 [95.0] 2.2 [95.8] -9.9 [95.1]
Asian -0.46 0.9 [95.3] 0.9 [94.3] 30.0 [87.0]
Other 1.25 0.9 [95.0] 0.9 [94.1] -24.7 [58.0]
Hispanic -1.53 1.2 [95.3] 1.2 [95.6] -2.0 [95.7]
Poverty 1.00 2.1 [95.7] 2.1 [94.4] -1.2 [94.6]

3.5 Example: CERC survey
To investigate the effects of stratum misclassification on survey weight analytic

summaries in a real-world setting, we analyze a subset of the data from the eMERGE
CERC survey. The primary goal of this survey is to understand the factors associ-
ated with an individual’s willingness to participate in a biobank. Secondary objectives
included the identification of factors associated with overall trust in the healthcare
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system, trust in medical researchers, and concern about the privacy of health informa-
tion. Details regarding the survey development, the sampling strategy, and the results
have been published previously (Smith et al., 2016; Sanderson et al., 2017). For the
present analysis, only data from Vanderbilt University Medical Center (VUMC) is
explored, and two simplifications are made for ease of exposition. First, 69 of the 687
respondents are omitted because their EHR race or ethnicity is missing. In the orig-
inal study, these data were imputed using geocoded-derived census data. Second, we
define a five-level sampling frame using only race and ethnicity, whereas the original
sampling frame consists of 288 levels using age, gender, race, ethnicity, education,
and rural living. Due to the low response rate (16%), this simplification is necessary
to perform adjusted regression analyses that account for the study design. Finally,
our analysis focuses the demographic factors associated with an individual’s trust in
the healthcare system.

Table 3.12 summarizes respondent sample at VUMC that had complete EHR race
and ethnicity information. We include unweighted observed percentages (counts)
and the survey-adjusted estimates. Only 36% of the respondents in our sample self-
identified as non-Hispanic White, and 17% provided information that indicated they
lived below the poverty line (income, number of individuals living in the household),
which indicates that the disproportionate sampling scheme based on race and eth-
nicity enriched the sample - and thus the respondent sample. The survey weighted
estimates of these demographics estimate the population to which the respondent
population generalizes.
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Table 3.12: Demographics of the Vanderbilt University Medical Center CERC re-
spondent population, and the associated survey-weighted population. Percentages
(counts) are provided for each variable.

Unweighted Weighted
N=618 N=326515

Gender
Female 56 (336) 54 (173177)
Male 44 (268) 46 (150041)

Age group
18-35 26 (156) 27 (86738)
36-50 21 (126) 14 (44399)
51-64 28 (169) 31 (99210)
65+ 24 (142) 27 (87224)

Race/ethniciy
White 36 (216) 83 (268372)
Black 18 (110) 9 (29734)
Asian 15 (91) 1 (2999)
Other 12 (74) 5 (15408)
Hispanic 18 (107) 2 (5561)

Poverty
No 83 (456) 85 (246747)
Yes 17 (96) 15 (44033)
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Table 3.13 presents regression results by analysis method (columns; design-based,
and model-based) and by race and ethnicity definition (rows; EHR, and self-report).
Three sets of comparisons are made using these results: 1) comparisons of analytic
approaches under no stratum misclassification by using models that adjust for EHR
defined race and ethnicity, 2) comparisons of analytic approaches under differential
stratum misclassification by using models that adjust for self-reported race and eth-
nicity, and 3) evaluation of the effects of misclassification on design-based estimators
by comparing models that use EHR data and those that use self-report data.

Under no stratum misclassification, valid estimates are obtained using both an-
alytic methods. Efficiency losses typically associated with design-based approaches
are not observed when weighting and adjusting for the design variables simultane-
ously. Discrepancies between design- and model-based estimates of the poverty effect
in Model 4 (estimate [95% confidence interval], 1.15 [0.03, 2.27] vs 0.31[-0.19, 0.83])
indicate that this model does not adequately account for the study design and addi-
tional interactions between race/ethnicity and poverty are needed.

Under differential stratum misclassification, model-based approaches do not ad-
equately account for the design since EHR data are not utilized. Valid estimates
are only obtained by performing a design based analysis since the study design is
acknowledged via weighting.

Design-based analytic methods result in valid parameter estimates using either
EHR or self-reported race and ethnicity data. Observed differences in these estimates
are due to either differences in variable coding or stratum misclassification. For
example, the definitions of the “Other non-Hispanic” subgroup in the EHR database
differed from that of the survey instrument, and thus is not explore further. The EHR-
Hispanic effect is due to stratum misclassification since 21.8% of EHR-reported non-
Hispanic Whites self-identified as Hispanic (Table 3.3). The EHR Hispanic effect is a
weighted combination of the effects of Hispanics and non-Hispanic Whites resulting
in an overall effect not significantly different than non-Hispanic Whites.

Based on the above observations, we interpret only the design-based results that
adjust for self-reported race and ethnicity. The overall prevalence of healthcare sys-
tem trust in the VUMC population is 71% (95% CI: 64-77%; Model 1). The odds of
an individual trusting their healthcare system among those living below the poverty
line is 3-times that of those that do not (OR=3.0, 1.0-9.1; Model 3). When com-
pared, Hispanics are 88% less likely to trust their healthcare system compared to
non-Hispanic Whites (OR: 0.2, 95% CI: 0.1-0.6; Model 2). There was not sufficient
evidence to conclude that other racial and ethnic groups differed from the referent
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group. Similar effects are observed while simultaneously accounting for race/ethnicity
and poverty (Hispanics: 0.2, 0.1-0.6; poverty: 2.9, 0.9-9.1; Model 4).
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Table 3.13: Design- and model-based logistic regression analyses in which trust in the healthcare system was regressed on:
1) intercept only, 2) race/ethnicity, 3) poverty, and 4) race/ethnicity and poverty. Design weights were defined using EHR
race/ethnicity. Race/ethnicity was also collected at the time of the survey, self-report. Both definitions of race/ethnicity were
used in Models 2 and 4. For each analysis approach, point estimates [standard errors] are presented.

Design-based (weighted) Model-based (unweighted)
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

EHR
Intercept (White) 0.91[0.16] 0.94[0.18] 0.78[0.17] 0.82[0.19] 0.68[0.09] 0.94[0.18] 0.62[0.10] 0.90[0.18]
Black -0.08[0.29] -0.28[0.30] -0.08[0.29] -0.14[0.29]
Asian -0.61[0.27] -0.66[0.28] -0.61[0.28] -0.63[0.28]
Other -0.40[0.27] -0.36[0.28] -0.40[0.29] -0.39[0.29]
Hispanic -0.29[0.24] -0.37[0.24] -0.29[0.24] -0.32[0.24]
Poverty 1.11[0.56] 1.15[0.57] 0.32[0.26] 0.31[0.27]

Self report
Intercept (White) 0.91[0.16] 0.89[0.18] 0.78[0.17] 0.79[0.19] 0.68[0.09] 0.87[0.15] 0.62[0.10] 0.83[0.15]
Black 0.14[0.30] -0.03[0.32] 0.12[0.26] 0.05[0.26]
Asian -0.48[0.30] -0.49[0.31] -0.31[0.27] -0.33[0.27]
Other 1.57[0.55] 1.34[0.57] -0.35[0.28] -0.39[0.28]
Hispanic -1.49[0.54] -1.62[0.52] -0.61[0.25] -0.67[0.25]
Poverty 1.11[0.56] 1.07[0.58] 0.32[0.26] 0.37[0.27]
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3.6 Discussion
This paper investigates the effect of utilizing an imperfect sampling frame on the

planning and analysis of a complex study design. Motivated by the eMERGE CERC
survey, which constructed a sampling frame using both EHR and census data, we
explored the impact of stratum misclassification on the choice of study design, on the
operating characteristics of descriptive and analytic summaries, and on the appro-
priateness of two common approaches to survey design analysis. Under the misclas-
sification scenarios considered, disproportionate stratified sampling is recommended
over random sampling if interest lies in making inferential statements regarding less
prevent subgroups. The efficiency gains typically observed when using this design
are typically dampened in the presence of misclassification, except for prevalent sub-
groups where efficiency gains are observed. If a complex study design is executed,
then accounting for the design during the analysis phase is still required. For the
design to be ignorable, a significant amount of misclassification must be observed,
but rarely would one use such highly mis-measured variables to define the sampling
frame.

Two common approaches to the analysis of complex survey data include design-
based (weighting) and model-based (covariate adjustment) analyses. Rooted in the
frequentist versus Bayesian controversy, the choice of which to use is not straight-
forward. Weighting approaches are typically less efficient, while adjustment methods
may not adequately account for the design (e.g., lack of interactions) (Lin et al.,
2014). In the presence of non-differential stratum misclassification, design-based an-
alytic summaries tended to have desirable operating characteristics (e.g., unbiased,
nominal coverage) for all covariate effects - even those not explicitly used in de-
sign of the study. Model-based analyses produced more precise point estimates than
design-based methods. For marginal effects, these estimates were biased, but this
bias did decrease as misclassification increased. Under differential misclassification,
the design is informative, and must be accounted for valid inferences. In our simu-
lation study, design-based methods were robust to the misclassification mechanism,
whereas model-based methods could not adequately adjust for the design leading to
significant biases.

There are several limitations of the current analysis that warrant consideration.
We only consider the scenario when the design information is recollected at the time
of the survey. If the sampling frame consists only of demographics, like the eMERGE
survey, then including these items in the survey is not a significant burden, and may
aid in better understanding the characteristics of the sample population. It is also
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assumed that these self-reported data are true. The demographics considered are
not sensitive in nature, thus this assumption seems reasonable. Finally, only two
analysis methods of survey data are considered. Numerous extensions are available,
including hierarchical Bayesian and calibrated Bayesian methods (Lin et al., 2014;
Gelman, 2007). The methods investigated are the most common and are a justifiable
starting point when investigating the effects of stratum misclassification on analytic
summaries.

The eMERGE survey response rate at Vanderbilt University Medical Center was
16%. Due to the significant possibility of non-response bias, all analyses must be
interpreted with caution. Since the survey was designed to enrich the sample popula-
tion with under-studied subpopulations, the observed response rate may be an artifact
of the design. If survey response is related to the demographics used to design the
study, then non-response likely induces an informative design with a complex misclas-
sification mechanism. Coding differences between the design and survey-instrument
variables complicate the interpretation of the misclassification matrix, and all re-
sults based on this matrix (e.g., Simpon’s Paradox). For example, the race item in
the eMERGE survey included ‘more than 1 race’. This option was not available in
the EHR dataset and needed to be aggregated into the ‘other’ category to estimate
misclassification probabilities. Misclassification adjustment methods that are based
solely on the matrix are sensitive to these coding differences (Kuha and Skinner,
1997).

3.7 Appendix
The following derivation is used to derive the expectation and variance for the

Horvitz-Thompson estimator of a total (th) under stratum misclassification (Equa-
tions 3.1 and 3.2).
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The h? element of V ar (th) can be rewritten as [minus the w2
h? term]:

59



V ar (th;h?) =
Nh?∑
j=1

Ih|h?jy
2
h|h?jV ar

(
Ih?j

)
+

Nh?∑
j=1

Nh?∑
k 6=j

Ih|h?jIh|h?kyh|h?jyh|h?kCov
(
Ih?j , Ih?k

)
=

Nh?∑
j=1

Ih|h?jy
2
h|h?j

[
nh?

Nh?

(
1−

nh?

Nh
?

)]
+

Nh?∑
j=1

Nh?∑
k 6=j

Ih|h?jIh|h?kyh|h?jyh|h?k

[
−
nh?

Nh
?

( 1
Nh? − 1

)(
1−

nh?

Nh?

)]

=
nh?

Nh?

(
1−

nh?

Nh
?

)[Nh?∑
j=1

Ih|h?jy
2
h|h?j −

( 1
Nh? − 1

)Nh?∑
j=1

Nh?∑
k 6=j

Ih|h?jIh|h?kyh|h?jyh|h?k

]

=
nh?

Nh?

(
1−

nh?

Nh
?

)[Nh?∑
j=1

Ih|h?jy
2
h|h?j −

( 1
Nh? − 1

)Nh?∑
j=1

Ih|h?jyh|h?j

Nh?∑
k=1

Ih|h?kyh|h?k +
( 1
Nh? − 1

)Nh?∑
j=1

Ih|h?jy
2
h|h?j

]

=
nh?

Nh?

(
1−

nh?

Nh
?

)(1 +
1

Nh? − 1

)Nh?∑
j=1

Ih|h?jy
2
h|h?j −

( 1
Nh? − 1

)(Nh?∑
j=1

Ih|h?jyh|h?j

)2
=
nh?

Nh?

(
1−

nh?

Nh
?

)
Nh

?

Nh
? − 1

Nh?∑
j=1

Ih|h?jy
2
h|h?j −

1
Nh?

(
Nh?∑
j=1

Ih|h?jyh|h?j

)2
=
nh?

Nh?

(
1−

nh?

Nh
?

)
Nh

?

Nh
? − 1

[
Nh?hS

2
h +
( 1
Nh?h

−
1

Nh?

)
N2

h?hȳ
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The previous derivation is used to derive the expectation and variance for the ratio
estimator of a mean under stratum misclassification (Equations 3.3 and 3.4). We
first derive the relationship between the variance of the ratio estimator of ȳhr and the
Horvitz-Thompson estimator of ∑nh

j=1whehj.

Under no stratum misclassification, the mean squared error of ȳhr is
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In our setting, E
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]
= V ar (ȳhr) = 1
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.
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Under stratum misclassification,
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since ēph = 0. Nh is unknown and is estimated as Ñh = ∑H?
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CHAPTER 4

MARGINALIZED MODELS FOR LONGITUDINAL BINARY DATA:
THE MMLB R PACKAGE

4.1 Abstract
The MMLB package is introduced and examples are provided to demonstrate how

to estimate parameters from marginalized regression models for longitudinal binary
data. Estimation of model parameters is described when data are collected prospec-
tively under random sampling, and under a class of outcome dependent sampling
(ODS) designs. Using data from the Madras Longitudinal Schizophrenia Study, we
demonstrate how this package can be used to fit three types of marginalized regression
models, including: the marginalized latent variable model, the marginalized transi-
tion model, and the marginalized latent variable and transition model. Examples are
provided to show how MMLB functions may be used to generate longitudinal binary
outcomes under a pre-specified marginal model, and to demonstrate how it is used to
estimate marginalized model parameters under single- and two-stage ODS sampling
designs.

4.2 Introduction
Longitudinal binary data are commonplace in the health sciences. Be it monitor-

ing the presence of delirium in the ICU (Pandharipande et al., 2008) or describing
the association between depression and asthma (Brunner et al., 2014), the desire to
answer questions that quantify temporal changes between- or within-subjects, or aid
in establishing causal relationships between a set of covariates and a binary outcome,
is of interest. Unlike univariate analysis, where observations are assumed to be condi-
tionally independent given observed covariates, the analysis of longitudinal data must
acknowledge that observations are correlated within participants over time.

To address scientific questions while acknowledging within-subject dependence,
two classes of models are often considered: conditional and marginal mean models
(Zeger et al., 1988). Conditional mean models explain the dependence structure by
explicitly incorporating additional subject-specific terms into the specification of the
mean model, such as response history (transition models) or latent characteristics
(latent variable models) (Diggle et al., 2002; Breslow and Clayton, 1993; Stiratelli
et al., 1984). That is, all moments are captured in a single regression model. In
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contrast, marginal mean models do not explicitly account for subject characteristics,
but explain within-subject dependence either by jointly specifying a marginal mean
and a marginal association measure (e.g., correlations or odds-ratios (Molenberghs
and Verbeke, 2005)) or by separating the estimation of the mean from the higher order
moments (Schildcrout and Heagerty, 2007). The target of inference should drive the
model choice. The target of inference is the same for both mean models when using
the identity link and a mean zero random effect, and model choice may be determined
by other factors (e.g., modeling assumptions, computational availability). When the
outcome is binary, inferential targets differ, due to Jensens’ inequality, between these
modeling approaches and thus the choice of model is not straightforward leading some
to debate the appropriateness of each modeling approach (Zeger et al., 1988; Neuhaus
et al., 1991; Lindsey and Lambert, 1998; Lee and Nelder, 2004)).

In this paper, we focus on marginalized regression models which separate the
estimation of the mean from higher-order moments. This permits the estimation
of population-level mean parameters, while allowing for a wide-range of dependence
structures commonly encountered in the health sciences (Schildcrout and Heagerty,
2007). Additionally, we discuss how these models may be applied when analyzing
data collected from a biased sampling design. A review of marginalized regression
models and outcome-dependent sampling designs is presented in Section 2. In Section
3, estimation of marginalized model parameters is described. Syntax of key MMLB
functions are introduced in Section 4. Examples using the Madras Longitudinal
Schizophrenia Study and simulated data are demonstrated in Section 5. Finally, in
Section 6 we describe future directions of the MMLB software.

4.3 Models
Marginalized regression models are defined by a pair of regression models that

fully specify the multivariate distribution of binary outcome vector given the ob-
served design matrix (Schildcrout and Heagerty, 2007; Heagerty, 1999, 2002). First,
a marginal mean model is constructed to relate covariates to the logit-transformed
probability of the binary outcome. To capture second and higher order moments, an
association model (also called a conditional mean or dependence model) is defined to
characterize serial and/or long-range dependence structures. The marginalized tran-
sition and latent-variable model (mTLV; (Schildcrout and Heagerty, 2007)) allows the
specification of both types of dependence structures simultaneously. Special cases of
the mTLV model include: the marginalized logistic normal model (mLV; (Heagerty,
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1999)) which incorporates only a latent-term, such as a random intercept, and the
a first-order marginalized transition model (mT; (Azzalini, 1994; Heagerty, 2002))
which acknowledges a single transition term in the specification of the dependence
model.

To define the mTLV model, let Yij denote the binary outcome of subject i at
observation j where i = {1, 2, . . . , N} and j = {1, 2, . . . , ni}. Let X i denote a ni × p
design matrix, X ij the corresponding p-dimensional design vector at time j and βm

the p-dimensional vector of parameters. Then, the marginal mean and dependence
models are defined as:

logit
(
µmij
)

= X ijβ
m (4.1)

logit
(
µcij
)

= ∆ij + γ(X i)Yij−1 + bi where bi ∼ N
(
0, σ2(X i)

)
(4.2)

∆ij is the value that relates the marginal and conditional means via the convolution
equation

µmij =
∫
Aij

µcijdFAij
=
∫
Aij

logit−1 (∆ij +Aijα) dFAij
(4.3)

where Aij and α denote the design matrix of the dependence model and the stacked
parameter vector (γ(X i), σ(X i)), respectively (Schildcrout and Heagerty, 2007). For
the remainder of this paper, we assume that the association model parameters are
not modified by covariates. This implies that γ(X i) = γ and bi ∼ N(0, σ2) where the
latter can be rewritten as σZi where Zi ∼ N(0, 1).

Estimates of the mTLV mean model parameters, βm, are interpreted as the dif-
ference in the log-odds of having the outcome associated with a unit change in the
covariate of interest between two populations whose covariates are otherwise identi-
cal. By not explicitly accounting for subject-specific quantities, marginal mean mod-
els permit the straightforward interpretation of both time-varying and time-invariant
covariates effects. Dependence model parameters characterize the magnitude of the
variation in the log-odds between individuals within a group defined by their observed
covariates (Heagerty, 1999).

Through the specification of both a marginal mean and dependence model, a full
likelihood is defined. Let θ = {βm,α}, then under random sampling, subject i’s
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contribution to the likelihood function is defined as:

Li(θ|Y i = yi,X i = xi) = pr(yi|xi;θ) =
∫
zi

 ni∏
j=1

µ
c yij

ij

(
1− µc yij

ij

)1−yij

φ(zi)dzi.

(4.4)

where φ denotes the standard normal distribution. This permits the likelihood-based
estimation of model parameters and the application of frequentist, Bayesian or likeli-
hoodist inferential paradigms, the comparison of non-nested models (model selection),
the computation of individual-level predictions, and the reliance on the less stringent
missing data assumptions as compared to semi-parametric approaches (e.g., GEE;
MAR vs MCAR) (Heagerty, 1999; Laird, 1988). The effects of model misspecifica-
tion on summaries of the mTLV model have been explored previously (Schildcrout and
Heagerty, 2007). It was demonstrated that valid point estimates of βm are obtained
under either functional form or dependence model misspecifications, but their associ-
ated standard errors are sensitive to incorrect dependence model formulations, such
as ignoring the modifying impact of a cluster-level covariate. Considering this, the
MMLB software may be used to estimate marginalized model parameters, and robust
standard errors, using weighted estimating equations (Robins et al., 1995).

4.3.1 Outcome-Dependent Sampling Designs
Outcome-dependent sampling (ODS) is a class of retrospective sampling schemes

that are designed to enrich a sampled population with individuals that are the most
informative (?Song et al., 2009; Zhou et al., 2013). The most notable ODS design
for univariate binary response data is the case-control study whereby an individual’s
sampling probability is dependent on their response status (Anderson, 1972; Pren-
tice and Pyke, 1979). Neuhaus and Jewell (1990) extended the case-control design
to accommodate correlated binary response data by conditioning on the sum of an
individual’s response vector, and modeling the exposure-response relationship using
a random-intercept logistic model.

We consider the class of ODS designs where each individual is stratified into one
of three groups based on their response vector (Schildcrout and Heagerty, 2011).
Let Vi = g(Y i,X i) denote the stratum membership for subject i. The three sam-
pling strata are defined as: those that did not experience the event of interest
(non-responders, ∑j Yij = 0; Vi = 0), those that exhibited response variation (any-
responders, 0 <

∑
j Yij < ni; Vi = 1), and those that only experienced the event
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(all-responders, ∑j Yij = ni; Vi = 2). Since Si ⊥⊥ (Y i,X i)|Vi, the corresponding
sampling probabilities are defined as

pr(Si = 1|yi,xi) = pr(Si = 1|Vi = vi) ≡ π(vi) (4.5)

An ODS design is defined as either a pre-specified triplet of sampling probabilities,
π1(0),π1(1), and π2(2), or as the sampling probabilities that are induced from a pre-
specified vector of expected stratum sample sizes n10, n11 and n12. For ease of inter-
pretation, we define the ODS design as D[n10, n11, n12]. Via Bayes’ theorem, subject
i’s contribution to the conditional, or ascertainment-corrected, likelihood is

Lci (θ|yi,xi, Si = 1) = pr(yi|xi, Si = 1;θ) = pr(Si = 1|yi,xi)pr(yi|xi;θ)
pr(Si = 1|xi)

= π(vi)
pr(Si = 1|xi)

· pr(yi|xi;θ) ≡ π(vi)
ACi

· Li(θ|yi,xi) (4.6)

where Si = 1 denotes a sampling indicator, ACi (ascertainment correction) =∑2
vi=0 π(vi) · pr(Vi = vi|xi), and Li(θ|yi,xi) is defined in Equation 4.4.
In Chapter 2 the standard, or single-stage, ODS design is extended to both fixed,

and adaptive two-stage designs. These designs allow for the combined analysis of
data collected in two waves (e.g., internal pilot and main study), as well as “condi-
tionally optimal” designs that utilize stage one information to inform how to choose
the optimal stage two design. For a fixed two-stage ODS design, the first stage sam-
pling probabilities, and likelihood contributions (Equations 4.5 and 4.6), are identical
to the single-stage quantities, but the second stage sampling probabilities, π2, are
defined as:

pr(S2i = 1|y2i,x2i,y1,x1,S1 = 1) ≡ pr(S2i = 1, S1i = 0|y2i,y2i,y1,x1,S1 = 1)

= pr(S2i = 1|S1i = 0,y2i,x2i,y1,x1,S1 = 1) · pr(S1i = 0|Y 2i,x2i)

= π2(vi;y1,x1,S1 = 1) · [1− π1(vi)] (4.7)

where S2i,y2i, and x2i denote subject i’s stage two sampling indictor, response vector,
and observed design matrix. Let S1 denote the N × 1 vector of stage one sampling
indicators, and y1 and x1 represent the response vector, and design matrix for those
sampled at stage one, respectively. Note, x1 contains both the original design matrix,
as well as the newly collected exposure information. Even in a fixed two-stage ODS
design, the second stage sampling probabilities are conditional on the data from the
first stage, since the sampling is performed without replacement. The corresponding
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contribution to the ascertainment-corrected likelihood is:

Lc2i(θ|y2i,x2i,y1,x1,S1 = 1) = pr(y2i|x2i, S2i = 1,y1,x1,S1 = 1)

= π2(vi;y1,x1,S1 = 1)[1− π1(vi)]
pr(S2i = 1|x2i,y1,x1,S1 = 1) · pr(y2i|x2i)

≡ π2(vi;y1,x1,S1 = 1)[1− π1(vi)]
AC2i

· L2i(θ|y2i,x2i)

(4.8)

where AC2i = ∑2
vi=0 π2(vi;y1,x1,S1 = 1) · [1− π1(vi)] · pr(Vi = vi|x1i).

4.4 Estimation
4.4.1 Maximum Likelihood Estimation

Assuming that subjects are independent, the likelihood for θ in the mTLV model
given the data is the product of each individual’s likelihood contribution:

L(θ|y,x) =
N∏
i=1

Li(θ|yi,xi) =
N∏
i=1

∫
zi

ni∏
j=1

µ
c yij

ij (1− µcij)1−yijφ(zi)dzi ≡
N∏
i=1

∫
zi

Li,zi
φ(zi)dzi.

(4.9)

The corresponding score equation for parameter θ ∈ θ is:

∂

∂θ
logL(θ|y,x) =

N∑
i=1

∫
zi
Li,zi

[∑ni
j=1

(
yij − µcij

)
∂
∂θ

(∆ij + γyij−1 + σzi)
]
φ(zi)dzi∫

zi
Li,zi

φ(zi)dzi
(4.10)

The likelihood for subject i requires the calculation of ∆ij for all j ∈ (1, ni). Using
Equation 4.3, it can be show that:

µmij =
∫
zi

µpc,zi
ij φ (zi) dzi

≡
∫
zi

[
logit−1 (∆ij + σzi)

[
1− µpc,zi

ij−1

]
+ logit−1 (∆ij + γ + σzi)µpc,zi

ij−1

]
φ (zi) dzi (4.11)

where µpc,zi
ij denotes the partially conditioned mean for subject i at time j. The

term partially conditioned is used to reflect that the integrand corresponds to the
expectation of the conditional mean over the lagged response distribution.

Since ∆ij is analytically intractable, it is estimated iteratively using the Newton-
Raphson algorithm. Let f (∆ij) =

∫
zi
µpc,zi
ij (∆ij)φ (zi) dzi − µmij = 0. Using a first-
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order Taylor’s series approximation of f (∆ij), the estimated value of ∆ij at iteration

k + 1 is defined as ∆(k+1)
ij = ∆(k)

ij −
f

(
∆(k)

ij

)
f ′
(

∆(k)
ij

) where

f ′
(

∆(k)
ij

)
=
∫
zi

[[
1− µpc,zi

ij−1
] ∂

∂∆(k)
ij

logit−1
(

∆(k)
ij + σzi

)
+ µpc,zi

ij−1
∂

∂∆(k)
ij

logit−1
(

∆(k)
ij + γ + σzi

)]
φ (zi) dzi

(4.12)

From Equation 4.11, it can be seen that estimating ∆ij requires an estimate of µpc,zi
ij−1.

We sequentially estimate each element of ∆i = vec(∆i0,∆i1, . . . ,∆ini
) by first assum-

ing that µ̂pc,zi
i0 = 0 and calculating ∆̂i1, and then use ∆̂i1 to estimate µ̂pc,zi

i1 , and so on.

Guassian-Hermite quadrature is used to approximate all integrals (e.g., Equation
4.9). This numerical integration technique is used to approximate integrals of the
form

∫∞
−∞ e

−x2
f(x) dx with ∑q

i=1wif(xi) where q, xi and wi denote the number of
quadrature points, abscissa (or nodes) and weights, respectively. Let h(z) denote an
integrand of interest, say µpc,zij , then Ez [h(z)] =

∫∞
−∞ h(z) 1√

2πe
− 1

2 z
2
dz. Let x = z√

2 ,
then z =

√
2x and Ez [h(z)] =

∫∞
−∞ h

(√
2x
)

1√
π
e−x

2
dx ≈ ∑q

i=1
1√
π
wih

(√
2xi

)
=∑q

i=1w
′
ih (x′i) where w′i and x′i denote scaled weights and abscissa.

Under (single stage) outcome-dependent sampling, the ascertainment-corrected like-
lihood is:

Lc(θ|y,x) =
Ns∏
i=1

Lci(θ|yi,xi) =
Ns∏
i=1

π(vi)
ACi

· Li(θ|yi,xi) (4.13)

The corresponding score equation for parameter θ ∈ θ is:

∂

∂θ
logLc(θ|y,x) =

Ns∑
i=1
− 1
ACi

∂

∂θ
ACi + ∂

∂θ
logLi(θ|yi,xi) (4.14)

where ∂
∂θ
ACi = pr(Vi=0|xi)

∂θ
[π(0)−π(1)]+ pr(Vi=2|xi)

∂θ
[π(2)−π(1)] and ∂

∂θ
logLi(θ|yi,xi)

is of the form defined in Equation 4.10.
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Similarly, the combined two-stage ascertainment-corrected likelihood is:

Lc(θ|y,x,S = 1) = pr(y|x,S = 1) = pr(y1|x1,S1 = 1) · pr(y2|x2,S2 = 1,y1,x1,S1 = 1)

=

Ns
1∏

i=1

π1(vi)
AC1i

· L1i(θ|y,x)

 ·
Ns

1 +Ns
2∏

i=Ns
1 +1

π2(vi;y1,x1,S1 = 1)[1− π1(vi)]
AC2i

· L2i(θ|y2i,x2i)


(4.15)

whereN s
1 denotes the number of subjects sampled in stage one, andN s

2 ≡ N s
2 (y1,x1,S1 =

1) denotes the number of subjects sampled in stage two.
The corresponding score equation for parameter θ ∈ θ is:

∂

∂θ
logLc(θ|y,x) =

Ns
1∑

i=1
− 1
AC1i

∂

∂θ
AC1i + ∂

∂θ
logL1i(θ|y1i,x1i)


+

Ns
1 +Ns

2∑
i=Ns

1 +1
− 1
AC2i

∂

∂θ
AC2i + ∂

∂θ
logL2i(θ|y2i,x2i)

 (4.16)

where ∂
∂θ
AC1i = ∂

∂θ
pr(Vi = 0|x1i)[π1(0) − π1(1)] + ∂

∂θ
pr(Vi = 2|x1i)[π1(2) − π1(1)],

∂
∂θ
AC2i = ∂

∂θ
pr(Vi = 0|x2i)[π2(0;y1,x1,S1 = 1)[1− π1(0)]− π2(1;y1,x1,S1 = 1)[1−

π1(1)]] + ∂
∂θ
pr(Vi = 2|x2i)[π2(2;y1,x1,S1 = 1)[1 − π1(2)] − π2(1;y1,x1,S1 = 1)[1 −

π1(1)]] and ∂
∂θ

logLki(θ|yki,xki) is of the form defined in Equation 4.10 for k = 1, 2.

4.4.2 Weighted Estimating Equations
An alternative estimation approach to maximum likelihood is weighted estimating

equations (WEE) (Robins et al., 1995; Cai et al., 2001). The WEE estimator of θ
is defined as the solution to the system of equations defined by ∑Ns

i Uw
i (θ) = 0

where Uw
i (θ) = 1

π(vi)
∂

∂θ log[Li(θ|yi,xi)] and N s denotes the total number of sampled
subjects (e.g., N s ≡ N s

1 +N s
2 if performing a two-stage ODS design). The covariance

matrix is of the form A−1B(A−1)′ where A = E
[
∂

∂θU
w
i (θ)

]
and B = E [Uw

i (θ)Uw
i (θ)′].

4.5 MMLB Syntax
The mm function is used to fit marginalized models for longitudinal binary data.

Table 4.1 summarizes each argument of mm. Regardless of the sampling design, or the
estimation method, mm requires the specification of a marginal mean model (Equa-
tion 4.1, mean.formula), the right-hand side of the association model (Equation 4.2,
lv.formula and/or t.formula), a cluster identifier, id, and a data object, data,
which is assumed to be sorted by id and time.
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Three notable arguments of the mm function include cond.like, samp.probs, and
samp.probi. Under an ODS design, cond.like is set to TRUE to indicate that the
ascertainment-corrected likelihood should be maximized. ODS sampling probabilities
are supplied to this function using the samp.probs argument, and depending on the
type of ODS design (single or two-stage), it is either vector of size 3, or an nrow(data)
x 3 matrix. Model parameters may be estimated via weighted estimating equations
by assigning a vector of subject-specific sampling probabilities to the samp.probi
argument.

The remaining mm arguments pertain to estimation. Gauss-Hermite quadrature
is used to approximate all integrals defined in Section 4.4. Weights and abscissa
are calculated using the gaussHermiteData function from the fastGHQuad R package
(Blocker, 2014). MMLB’s internal get.GH function is a wrapper for the gaussHermiteData
and returns appropriately scaled abscissa and weights for a given q value. R’s nlm
function is used to calculate the maximum likelihood estimates of θ. The inits,
step.max, step.tol, hess.eps, and iter.lim arguments are all optional arguments
for this function, and additional details are provided in the nlm help file.

Fitting a model using mm results in the creation of an object of class MMLongit. Ba-
sic summary and extraction functions for MMLongit objects, such as print, summary,
coef, and vcov, have been incorporated into the MMLB package. Since marginalized
models are defined by a pair of regression models, the coef, and vcov functions return
a list estimates by model. Detailed descriptions of mm’s output are described in Table
4.2.
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Table 4.1: MMLB’s mm() arguments

mean.formula mean model formula in which a binary variable is regressed on covariates
lv.formula latent variable component of the dependence model (right hand side only)
t.formula transition component of the association model (right hand side only)
id a vector of cluster identifiers
data a required data frame, ordered by id and time
cond.like logical, if the ascertainment-corrected likelihood should be maximized
samp.probs if analyzing data from an outcome-dependent sampling design, then this argu-

ment is either a vector of 3 values (single-stage) or a matrix (nrow(data) × 3)
that denote the sampling probability of non-responders, any-responders, and
all-responders.

samp.probi a vector of sampling probabilities if using weighted estimating equations
inits an optional list of length 3 containing initial values for marginal mean param-

eters and all dependence parameters. The format of the list should be: (1)
estimates of the mean parameters, (2) estimates of the transition parameters
(or NULL if only fitting a mLV model) and (3) estimates of the latent variable
parameters (or NULL if only fitting a mT model). If NULL, initial values will
be automatically generated.

offset an optional offset term; typically used when maximizing a profile likelihood
q a scalar to denote the number of quadrature points used for Gauss-Hermite

numerical integration
step.max a scalar
step.tol a scalar
hess.eps a scalar
iter.lim a scalar to denote the maximum iteration limit
return_args logical, if key arguements should be returned post model fit (only used when

performing indirect imputation)
verbose logical, if model output should be printed to the screen during fitting process

Table 4.2: MMLB’s mm() output

call mm function call
logLik estimate of minimum log-likelihood
beta a vector mean model parameter estimates; equivalent to coef(fit)$beta
alpha a vector association model parameter estimates; equivalent to

coef(fit)$alpha
mod.cov estimated model-based covariance matrix; see also vcov(fit)$beta and

vcov(fit)$alpha
rob.cov estimated robust, or sandwich, covariance matrix
control a vector of summaries used in summary.MMLongit()
info_stats a vector of information criteria (AIC, BIC, logLik, Deviance); used in

summary.MMLongit()
LogLikeSubj a vector of subject-specific contributions to the log-likelihood
ObsInfoSubj list of subject-specific contributions to the observed information matrix
ACSubj a vector of subject-specific log-transformed ascertainment corrections
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The GenBinaryY function is used to generate binary response data under a marginal-
ized regression model. The outcome, Yij, for subject i at time j, is generated from a
Bernoulli distribution where the probability of success is defined as the inverse-logit
of the conditional mean, µcij. The calculation of µcij is not straightforward since it
is a function of ∆ij. The arguments of GenBinaryY are summarized in Table 4.3.
This function returns the entire data object augmented with the new binary outcome
labeled Yname.

Table 4.3: MMLB’s GenBinaryY() arguments

mean.formula mean model formula (right side only)
lv.formula latent variable component of the dependence model (right hand side only)
t.formula transition component of the association model (right hand side only)
beta a vector of values for mean.formula
sigma a vector of values for the latent variable portion of the association model
gamma a vector of values for the transition porition of the association model
id a vector of cluster identifiers
data a required data frame, ordered by id and time
q a scalar to denote the number of quadrature points used for Gauss-Hermite

numerical integration
Yname a character string of the name of new binary variable

4.6 Examples
4.6.1 Madras Longitudinal Schizophrenia Study

The Madras Longitudinal Schizophrenia Study was performed to characterize the
clinical course of schizophrenia among those with first-episode psychoses in develop-
ing countries (Thara et al., 1994). Between October 1981 and October 1982, a total
of 90 subjects met eligibility criteria. Demographics and clinical data were collected
including monthly measurements of six psychiatric symptoms (hallucinations, delu-
sions, thought disorders, flat affect, apathy, and withdrawal). A subset of these data
has been analyzed previously in which thought disorder trajectories were compared
between genders and age of onset groupings (Diggle et al., 2002; Schildcrout and
Heagerty, 2007).

The subset of the Madras data used in Diggle et al. (2002) and Schildcrout
and Heagerty (2007) are provided in the the MMLB package. These data contain
information on 86 patients including: patient identifier (id), an indicator of the
presence of a thought disorder (thought), month since hospitalization (month), age
at onset (1 =< 20, 0 =≥ 20; age), and gender (1=female, 0=male; gender). Slight
differences exist in the coding of the Madras variables when comparing these authors’
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analyses and care is needed if attempting to replicate either analysis. To demonstrate
functions found in the MMLB package, data subsetting (i.e., requiring measurements at
baseline and month 1) and variable coding (e.g., female reference group) are applied
to replicate the analysis of Schildcrout and Heagerty (2007).

The marginal mean model of interest is defined as:

logit(µmij ) = β0 + β1monthij + β2agei + β3genderi + β4agei ·monthij + β5genderi ·monthij

We explore three different dependence models:

logit(µcij) = ∆ij + γYij−1 + σzi (mTLV)

= ∆ij + γYij−1 (mT)

= ∆ij + σzi (mLV)

First, the MMLB package, which is currently maintained on GitHub, is installed using
devtools library. The Madras data set is then loaded, and prepared for analysis.

#library(devtools)
#install_github(’mercaldo/MMLB’,force=TRUE)
library(MMLB)

data(madras)

# Prep data to match Schildcrout and Heagerty, 2007
madras2 <- madras[,c(’id’,’thought’,’month’)]
madras2$gender <- factor((madras$gender==0)*1,labels=c(’female’,’male’)) # 1= Male
madras2$age <- factor((madras$age==0)*1,labels=c(’>=20’,’<20’)) # 1= <20
madras2$nvisit <- unlist( lapply( split(madras2$month, madras2$id), function(ZZ) rep(length(ZZ), length(ZZ)) ) )

head(madras2,n=5)

id thought month gender age nvisit
1 1 0 male >=20 12
1 1 1 male >=20 12
1 1 2 male >=20 12
1 1 3 male >=20 12
1 1 4 male >=20 12

# Restrict analysis to those with at least 2 visits (id=82 is dropped)
madras2 <- madras2[ which(madras2$nvisit>1), ]

Next, the three marginalized models are declared by changing the lv.formula
and t.formula arguments. By default, both are initially assigned NULL, and thus
non-applicable formulas can be ignored if fitting either a mT or mLV model. If
neither association models are specified, then an error is returned. Summaries may
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be explored using either the print or summary functions, but for brevity, we report
only the mean and association summary tables for the mTLV model.

mTLV <- mm(thought~month*gender+month*age, lv.formula=~1, t.formula=~1, data=madras2,id=id)
mT <- mm(thought~month*gender+month*age, t.formula=~1, data=madras2,id=id)
mLV <- mm(thought~month*gender+month*age, lv.formula=~1, data=madras2,id=id)

#print(mTLV)
#summary(mTLV)
lapply( summary(mTLV)[c("mean.table","assoc.table")], round, 4)

$mean.table
Estimate Model SE Chi Square Pr(>Chi)

(Intercept) 0.2657 0.3336 0.6343 0.4258
month -0.3560 0.0716 24.7333 0.0000
gendermale 0.3224 0.4045 0.6350 0.4255
age<20 0.7633 0.4378 3.0399 0.0812
month:gendermale 0.1069 0.0783 1.8642 0.1721
month:age<20 -0.1211 0.0809 2.2385 0.1346

$assoc.table
Estimate Model SE Chi Square Pr(>Chi)

gamma:(Intercept) 2.5076 0.3039 68.0822 0.0000
log(sigma):(Intercept) 0.0786 0.2447 0.1033 0.7479

The primary question of interest is whether subjects with an older age-at-onset
tend to recover more or less quickly than younger subjects, and whether female pa-
tients recover more or less quickly than males. Based on these data, and the assumed
mTLV model, younger individuals (< 20) tended to recover more quickly than older
subjects (-0.12, 95% CI: -0.28,0.04), and males more slowly than females (0.11, -
0.04,0.26). A significant non-zero amount of serial and non-diminishing dependence
is observed, and acknowledged by this model (γ̂ = 2.5, σ̂ = 1.08).

4.6.2 Simulation Example
To generate longitudinal binary response data, that is consistent with a marginal-

ized regression model, both the functional forms, and parameter values of the marginal
mean and dependence models need to be specified. Suppose it is of interest to generate
response data on 2500 subjects according to the following mTLV model:

logit(µmij ) = −1.5 + 0.25 timeij + 0.25 Xei + 0.1 Xei · timeij (4.17)

logit(µcij) = ∆ij + Yij−1 + zi

where timeij = 0, 1, . . . ni for ni ∈ {5, 10} and Xei ∼ Bernoulli(0.35) is a binary
exposure.
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# Generate data
set.seed(1)
N = 2500
nclust = sample( seq(5,10), N, replace=TRUE)
id = rep(seq(N), nclust)
Xe = rep(rbinom(N,size=1,prob=.35), nclust)
time = unlist( sapply( as.list(nclust), function(ZZ) seq(ZZ)-1 ) )
data = data.frame(id, time, Xe)
data = data[order(data$id, data$time),]

# Generate response data, called Y
newdata = GenBinaryY(mean.formula=~time*Xe, lv.formula=~1, t.formula=~1,

beta=c(-1.5, .25, .25, .1), sigma=1, gamma=1, id=id, data=data, Yname = "Y")

head(newdata, n=5)

id time Xe Y
1 0 0 0
1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0

# Fit model; verify parameters and estimates
mod_mtlv = mm(Y~time*Xe,lv.formula=~1, t.formula=~1, data=newdata,id=id)
lapply( summary(mod_mtlv)[c("mean.table","assoc.table")], round, 4)

$mean.table
Estimate Mod.SE Chi Square Pr(>Chi)

(Intercept) -1.4939 0.0459 1059.6929 0.0000
time 0.2589 0.0091 814.2626 0.0000
Xe 0.1790 0.0760 5.5530 0.0184
time:Xe 0.1169 0.0162 52.2462 0.0000

$assoc.table
Estimate Mod.SE Chi Square Pr(>Chi)

gamma:(Intercept) 1.0543 0.0507 432.4830 0.0000
log(sigma):(Intercept) -0.0783 0.0423 3.4277 0.0641

4.6.3 Outcome-Dependent Sampling Examples
A hypothetical two-stage ODS design is performed on simulated data where the

data are generated according to the mTLV model from Equation 4.17, except all
subjects had 10 observations. To resemble a small internal pilot study of 100 subjects,
and a follow-up study of 300 subjects, the first and second stage ODS designs are
defined as D[25, 50, 25] and D[0, 300, 0], respectively. These data are available in the
MMLB package and accessible via data(odsdat). This dataset contains information on
the 383 sampled subjects, and includes the following key variables: id, time, Xe, Y,
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sample, sp1,sp2, and sp3. Note, since independent Bernoulli sampling is performed,
it is not unusual to observe a sample size not equal to 400. The sample variable
corresponds to the stage of the study (1=stage 1, and 2=stage 2), and sp1-sp3
denote the appropriately calculated sampling weights for each of the sampling strata.

To demonstrate how the mm function is used when analyzing data from an ODS de-
sign, we restrict the odsdat to only those measurements from stage one. To estimate
the mTLV model parameters that maximize the ascertainment-corrected likelihood
(Equation 4.6), cond.like is assigned TRUE and samp.probs is assigned the numeric
vector of sampling probabilities. Alternatively, model parameters associated with the
unconditional likelihood (Equation 4.4) may be estimated using weighted estimating
equations. This is accomplished by specifying samp.probi a vector of subject-specific
sampling probabilities (i.e., if v1 = 1, then samp.probi[1]=π(1)).

data(odsdat)

head(odsdat, n=5)

sample id time Xe Y nobs sumY ss sp1 sp2 sp3
1 3 0 0 0 10 0 1 0.1196172 0.02238138 0.4385965
1 3 1 0 0 10 0 1 0.1196172 0.02238138 0.4385965
1 3 2 0 0 10 0 1 0.1196172 0.02238138 0.4385965
1 3 3 0 0 10 0 1 0.1196172 0.02238138 0.4385965
1 3 4 0 0 10 0 1 0.1196172 0.02238138 0.4385965

# Restrict data to stage 1 data only
stage_1_ods <- odsdat[odsdat$sample==1,]
samp_probs <- as.numeric(stage_1_ods[1, c(’sp1’,’sp2’,’sp3’)])
# or samp_probs=as.matrix( stage_1_ods[,c(’sp1’,’sp2’,’sp3’)] )

mtlv_ods <- mm(Y~time*Xe, lv.formula=~1, t.formula=~1, data=stage_1_ods,
id=id, cond.like=TRUE, samp.probs=samp_probs)

lapply( summary( mtlv_ods )[c(’mean.table’,’assoc.table’)], round, 4)

$mean.table
Estimate Model SE Chi Square Pr(>Chi)

(Intercept) -1.9720 0.2345 70.7397 0.0000
time 0.2812 0.0428 43.2042 0.0000
Xe 0.3626 0.3040 1.4221 0.2331
time:Xe 0.0927 0.0618 2.2443 0.1341

$assoc.table
Estimate Model SE Chi Square Pr(>Chi)

gamma:(Intercept) 0.9438 0.2913 10.4997 0.0012
log(sigma):(Intercept) 0.1669 0.1448 1.3274 0.2493

# Via weighted estimating equations
mtlv_wee <- mm(Y~time*Xe, lv.formula=~1, t.formula=~1, data=stage_1_ods,

id=id, samp.probi=as.numeric(stage_1_ods[1, c(’sp1’,’sp2’,’sp3’)])[stage_1_ods$ss])
lapply( summary( mtlv_wee )[c(’mean.table’,’assoc.table’)], round, 4)
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$mean.table
Estimate Robust SE Chi Square Pr(>Chi)

(Intercept) -2.3293 0.3541 43.2767 0.0000
time 0.3253 0.0593 30.0684 0.0000
Xe 0.6774 0.4515 2.2517 0.1335
time:Xe 0.0174 0.0714 0.0591 0.8079

$assoc.table
Estimate Robust SE Chi Square Pr(>Chi)

gamma:(Intercept) 0.9514 0.2698 12.4308 0.0004
log(sigma):(Intercept) 0.1000 0.1536 0.4233 0.5153

Robust standard errors are displayed when summarizing a model whose parameters
were estimated using weighted estimating equations. When comparing the estimation
approaches, the point estimates are comparable (roughly within one standard error),
and the robust standard errors are larger than the model-based standard errors due
to variability in the sampling weights.

When analyzing the combined data from a two-stage ODS design, one only needs
to supply a numeric matrix of sampling probabilities to the samp.probs argument.
# The sampling probabilites for each stage are:
unique(as.matrix( odsdat[,c(’sp1’,’sp2’,’sp3’)] ))

sp1 sp2 sp3
597 0.1196172 0.02238138 0.4385965
1958 0.0000000 0.13453467 0.0000000

# To analyze data from a two-stage ODS design, the same function call is made.
mtlv_ods_2 <- mm(Y~time*Xe, lv.formula=~1, t.formula=~1, data=odsdat,

id=id, cond.like=TRUE, samp.probs=as.matrix( odsdat[,c(’sp1’,’sp2’,’sp3’)] ))
lapply( summary( mtlv_ods_2 )[c(’mean.table’,’assoc.table’)], round, 4)

$mean.table
Estimate Model SE Chi Square Pr(>Chi)

(Intercept) -1.9921 0.1190 280.0728 0.0000
time 0.2707 0.0179 227.5144 0.0000
Xe 0.2972 0.1789 2.7596 0.0967
time:Xe 0.0800 0.0294 7.3884 0.0066

$assoc.table
Estimate Model SE Chi Square Pr(>Chi)

gamma:(Intercept) 0.8408 0.1152 53.3127 0.0000
log(sigma):(Intercept) 0.1389 0.0795 3.0514 0.0807

4.7 Conclusions and future developments
We have illustrated how the MMLB package can be used to analyze longitudinal bi-

nary data using marginalized regression models. Using the mm function, it is straight-
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forward to fit models with different mean, and dependence model specifications. Data
collected under random or outcome-dependent sampling may be analyzed with min-
imal modifications to the mm function call. We also demonstrated how longitudinal
binary data can be generated under a marginally specified mean model.

Currently, the MMLB package only permits the estimation of model parameters, and
their standard errors. We plan to incorporate the empirical Bayes modal prediction
estimates of latent variables. This will allow for the estimation of individual-level
predictions, as well as more efficiently approximating integrals by using adaptive
Gauss-Hermite quadrature. Additionally, to evaluate the feasibility of an ODS de-
sign, or to perform an adaptive ODS two-stage design, it is essential to estimate
exposure values for non-sampled subjects (Schildcrout and Heagerty, 2011; ?). The
mm function currently returns attributes that are needed to estimate the conditional
exposure odds for the non-sampled subjects (e.g., subject-specific likelihood contri-
butions and ascertainment-corrections), but flexible, user-friendly functions are still
under development.
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CHAPTER 5

ENRICHMENT SAMPLING FOR A MULTI-SITE PATIENT SURVEY USING
ELECTRONIC HEALTH RECORDS AND CENSUS DATA

5.1 Abstract
We describe an enrichment-motivated stratified sampling design that combines

electronic health records (EHR) and United States Census data to construct the
sampling frame. The design was motivated by a multicenter survey that sought to
examine patient concerns about and barriers to participating in research studies,
especially among under-studied populations (e.g., minorities and those with low ed-
ucational attainment). We defined sampling strata by the cross-tabulation of several
key socio-demographic variables (age, gender, race, ethnicity, rural living, and ed-
ucation). We used individual-level data from the EHR when available, and when
missing, we imputed aggregated census data. This sampling strategy led to a far
more diverse sample than would have been expected under random sampling (e.g.,
3-,8-,7- and 12-fold increase in African-Americans, Asians, Hispanics and those with
less than a high-school degree, respectively). We observed that EHR data tend to mis-
classify minority races more often than majority races, and that non-majority races,
Latino ethnicity, younger adult age, lower education, and urban/suburban living are
associated with lower response rates to the mailed surveys.

5.2 Introduction
The United States health care system has become more reliant on health infor-

mation technology and active data collection due in part to the Health Information
Technology for Economic and Clinical Health Act of 2009 (HITECH). This Act pro-
vides financial incentives to institutions that are implementing and promoting the
“meaningful use” of electronic health record (EHR) data. As the amount of EHR
data proliferates, nationwide efforts (e.g., Project HealthDesign) have been initiated
to generate novel secondary uses of EHR data to improve public health (Safran et al.,
2007; Casey et al., 2016). These data are used to reevaluate prior research findings,
to develop, assess and refine predictive models, to aid in the planning of epidemio-
logical and survey studies, and combined with biorepositories to understand complex
genotype and phenotype relationships (Roden et al., 2008).
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To date, research derived from biorepositories is primarily based on individuals of
northern European ancestry. To engage more diverse populations in genomic research,
surveying under-studied populations is needed to better understand concerns about
and barriers to participating in research studies. Such surveys are typically extremely
resource intensive unless a well-defined sampling frame exists (Sudman et al., 1988).
Defining a sampling frame from EHR demographic data is possible since recipients of
HITECH funds are required to collect standardized demographic data that may be
associated with health disparities (Douglas et al., 2015). The quality of the resulting
sampling frame is dependent on the accuracy and completeness of each institution’s
EHR system and may not be sufficient for certain research questions (e.g., coarse-
ness of racial/ethnic groups) (Douglas et al., 2015; Coorevits et al., 2013; Shivade
et al., 2014; Holland and Palaniappan, 2012). In this paper, we describe a strati-
fied sampling design that we used for the Electronic Medical Records and Genomic
(eMERGE) Network’s survey of perspectives on broad consent and data sharing in
biomedical research (Smith et al., 2016). An aim of this multi-site survey was to
ensure that under-studied populations were adequately represented (e.g., minorities
and those from rural areas). We defined the sampling frame using EHR data, and
when necessary using United States Census (USC) data. In addition to describing
the design, we report response rates among the various subgroups and the extent to
which EHR data used to define sampling strata agreed with those reported by survey
respondents.

5.3 Methods
5.3.1 Population and data sources

The eMERGE Network was initiated by the National Human Genome Research In-
stitute to “develop, disseminate, and apply approaches to research that combine DNA
biorepositories with EHR systems for large-scale, high-throughput genetic research”
(Gottesman et al., 2013). The Consent, Education, Regulation and Consultation
(CERC) Working Group was commissioned to conduct a broad-based survey on the
acceptability of and barriers to broad consent and data sharing for genomics research,
especially among those with low socioeconomic status, low education, rural residence,
younger adults, and ethnic and racial minorities (Garrison et al., 2016). Among the
eMERGE Network’s 11 US clinical centers, this survey was administered to seven
sites that sampled from their adult patient population, three sites that sampled from
their pediatric patient population only, and one site that sampled from both its adult
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and pediatric populations. Patients that had an inpatient or outpatient encounter
between October 1, 2013 and September 30, 2014 and were not known to be deceased,
whose address was geocodable (see Linking EHR and USC Data), and whose age and
gender could be identified in the EHR were eligible for sampling. Overall, the sam-
pling frame consisted of approximately 2.4 million individuals. The completeness of
the sociodemographic variables used to define sampling strata within each site’s EHR
varied greatly. When EHR data were not available, USC based estimates were used.
The following subsections describe the EHR and USC data sources and the process
of merging the datasets to create the variables needed to define the sampling strata.

5.3.2 EHR data
Table 5.1 summarizes the EHR data, including percentage of missing data, sum-

marized by population (adult, pediatric) and by site. Within adult sites, the median
patient age was 52 years. Fifty-eight percent were female, 87% were white and 4%
were Hispanic/Latino. At pediatric sites, the median age was 8 years, and a majority
was male (52%), white (66%) and not Hispanic/Latino (93%). Race and ethnicity
was missing from 14% and 16% of adult EHR records, respectively, and from 13%
and 12% of pediatric EHR records. We observed substantial site-to-site variability in
the availability of race and ethnicity data with values ranging from 67 to 99%.
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Table 5.1: Marginal distributions of age, gender, race, and ethnicity by population and by site. Age is summarized as the 5, 25,
50 (median), 75 and 95th percentiles while gender, race and ethnicity are summarized with percentages (percentage missing).
Age and gender were complete by design.

Age Gender Race Ethnicity
N 5 25 50 75 95 Female Missing White Black Asian AI/AN HI/PI Other Missing Hispanic

Population
Adult 1787295 22-36-52-65-82 58.3 14.1 87.1 5.7 2.4 0.7 0.3 3.8 19.3 4.1
Pediatric 601867 1-4-8-13-17 47.6 13.1 66.0 19.3 2.9 0.2 0.1 11.6 11.8 6.7

Site
Essentia Institute for Rural Health 243092 21-35-53-66-84 56.7 1.0 94.8 1.1 0.4 2.1 0.1 1.5 1.3 0.9
Group Health Cooperative 217959 22-35-51-63-78 58.3 30.1 78.3 5.5 9.7 2.0 1.3 3.1 30.0 5.3
Geisinger Health System 356488 22-36-52-66-82 58.0 3.9 96.3 2.6 0.6 0.1 0.3 < 0.1 7.3 2.9
Mayo Clinic 136391 23-41-57-69-83 53.2 3.4 93.5 2.0 1.9 0.4 0.1 2.1 10.1 2.1
Marshfield Clinic 134212 21-35-52-66-83 54.6 8.4 97.2 0.5 1.4 0.8 0.1 < 0.1 9.1 1.8
Mount Sinai School Medicine 162927 23-39-54-67-83 59.9 30.8 60.8 11.8 4.7 0.2 0.1 22.4 70.2 26.1
Northwestern University 206554 23-35-47-60-77 62.6 21.1 70.9 13.2 3.6 0.2 0.1 12.0 22.8 9.9
Vanderbilt University Medical Center 329672 21-36-52-66-81 59.7 18.3 86.6 10.7 1.4 0.2 0.1 0.9 19.0 2.4
Boston Children’s Hospital 140304 1-4-8-13-17 47.4 21.5 67.5 10.0 4.2 0.2 0.1 17.9 19.9 6.8
Cincinnati Children’s Medical Center 143994 1-3-8-12-16 48.4 11.3 75.8 18.5 1.7 0.1 0.1 3.9 6.2 4.5
Children’s Hospital of Philadelphia 209755 1-4-8-13-17 47.6 1.0 55.3 24.7 3.1 0.1 0.1 16.7 3.0 7.0
Vanderbilt Children’s Hospital 107814 1-3-8-13-16 46.6 28.1 76.0 19.1 2.5 0.3 0.1 1.9 25.6 9.6

AI/AN = American Indian / Alaska Native, NH/PI = Native Hawaiian / Pacific Islander. The population file used for
sampling at Mt. Sinai contained 70.2% missing ethnicity values (the overall adult population had 19.3% missing ethnicity).
Sampling was performed using the erroneous data while the corrected results are reported in this table.

82



5.3.3 USC data
Populations with low educational attainment and with rural residences have been

understudied in prior research, and data fields that capture these characteristics were
not available in any of the EHR systems. For these two fields, and for missing values
in EHR records, we exploited US Census Bureau data to provide proxy values. For
instance, rural residence as determined by the 2010 Census urban areas criteria is
likely to be fully accurate to the extent that patients’ addresses in the EHR are accu-
rate. The US Census Bureau administers several surveys each year, in addition to the
Decennial Census. This includes the American Community Survey (ACS), an ongoing
nationwide program that collects sociodemographic and economic information about
the US population (US Census Bureau, n.d.a,n). Table 5.2 describes the USC sources,
variable definitions and transformations used to complete race, ethnicity, education
and rural living when needed.

Table 5.2: US Census variables, sources, definitions and transformations used for im-
puting missing stratification information.

Variable US Census Variable Source Description Variables Transformation

Race/Ethnicity Hispanic Or
Latino Origin
By Race

B03002
(001-021)

Number overall and of each race (White
alone, Black or African American alone,
American Indian / Alaska Native alone,
Asian alone, Native Hawaiian / Other
Pacific Islander, Some other race alone,
Two or more races, White alone not his-
panic or latino, hispanic or latino Two
races including some other race, two
races excluding some other race / three
or more races) by ethnicity (Hispanic,
not hispanic).

Marginal distributions of race
were defined as white (003,013),
Black or African American
(004,014), Asian (006,016),
American Indian/Alaska Native
(005,015), Native Hawaiian/Pa-
cific Islander (007,017), Other
(008,009,018,019). Marginal
distributions of ethnicity were
defined as: Not Hispanic/Latino
(002), Hispanic/Latino (012)

Education Sex By Ed-
ucational At-
tainment For
The Popula-
tion 25 Years
And Over

B15002
(001-035)

Number of each educational attainment
group (no schooling, nursery to fourth
grade, 5th and 6th, 7th-8th, 9th,
10th, 11th, 12th with no diploma, HS
grad/GED/Alternative, some college less
than 1 year, some college one or more
years and no degree, associates degree,
bachelor’s degree, masters degree, pro-
fessional school degree, doctorate) by
gender for those who are 25 or older.

Marginal distributions of educa-
tion were defined as: < 12 (003-
010,020-027), 12− < 16 (011-
014,028-031), ≥ 16 (015-018,032-
035).

Rurality LSAD10 2010 Cen-
sus urban
area crite-
ria

75=urbanized area (50000 or more),
76=urban cluster (2500 to 50000), miss-
ing=rural.

75 or 76 (Suburban/Urban), Miss-
ing (Rural)

Age and gender were complete by design presented. ACS 2008-2012 5-Year summary files were used to define census

block group values of race, ethnicity and education while the 2010 Census was used to assign urban and rural

classifications.

5.3.4 Linking EHR and USC data
Estimating EHR data from USC data requires linking home addresses to USC

geographical identifiers. Address processing involved cleaning address fields, such as
the primary street address, city, state and zip code, and applying quality control
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checks. Processed addresses were then converted to latitude and longitude values,
or geocoded, using specialized software, such as ArcGIS and R (ESRI, 2011; R Core
Team, 2017)]. Each site performed its own address processing and quality assessment.
Seven sites geocoded their addresses, and the coordinating center (CC, Vanderbilt
University) geocoded the rest. Geocoded addresses were then linked to USC block
group geographical identifiers, which are the most granular identifiers found in USC
datasets, using specialized state-specific files and software. The CC managed and
curated data obtained from the 2008-2012 ACS summary tables and the 2010 urban
areas database and then distributed the data to all sites for merging with the site-
specific EHR data.

5.3.5 Imputing missing EHR data with USC data
To identify the sampling frame, we “filled-in” (i.e., imputed) missing demographic

variables using the most-frequent (mode) value from the patient’s census block group.
For example, if race was missing for a patient and the most common race in the pa-
tientâĂŹs census block group was African American, we imputed “African American.”
We conducted single imputation where necessary to define the sampling strata, while
recognizing that the sampling frame is measured with some error.

5.3.6 Sampling scheme
We conducted a disproportionate stratified sampling scheme to identify the sam-

ple. Using the combined EHR and USC data, we defined sampling strata at the adult
sites based on the cross-classification age (< 35 and ≥ 35 years), gender, race (White,
Black or African-American, Asian, Native American/Alaska Native, Hawaiian/Pa-
cific Islander, Other), ethnicity (Hispanic or not), educational attainment (less than
high school, high school degree or some college, and at least a bachelor’s degree), and
rural living (suburban/urban, rural). Patient data from pediatric sites were surro-
gates for their parents. That is, we sampled the parents from strata defined by the
demographics of the child. We defined sampling strata similarly at pediatric sites,
except the age variable was categorized as < 12 and ≥ 12 years. These categories
were determined using results from an extensive literature review conducted by our
team that showed the extent to which some subpopulations are under-represented in
biorepository-derived research and based on the scientific questions of interest (Gar-
rison et al., 2016). The cross-classification of the six sampling variables resulted in
288 possible strata although not all were observed at all sites.
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5.3.7 Maximum entropy sampling algorithm
We conducted the sampling design to increase the diversity of those observed

compared to the population at each site. Shannon’s entropy, which corresponds to
the uncertainty of predicting an individual’s sampling stratum, was used to quantify
diversity (Shannon, 2001). It is defined as H = −pi log2(pi) where pi denotes the
probability of randomly selecting sampling stratum i. For s possible sampling strata,
entropy values range from 0 to log2(s) and correspond to the extreme scenarios where
all individuals belong to the same stratum (H = 0) or where individuals are divided
equally across all strata (i.e., assuming equal numbers of subjects were available from
each stratum; H = log2(s)). To enrich our final sample with individuals from strata
that tended to have small counts, we implemented a maximum entropy sampling
(MES) algorithm. The MES algorithm iteratively determines the number of subjects
to sample from each stratum so the desired sample size is obtained and the overall
entropy is maximized. That is, MES seeks to sample as evenly as possible across
strata under the constraints of overall desired sample size and the individual stratum
sizes. Once the desired MES stratum counts were calculated, we implemented the
sampling procedure with sampling probabilities defined as the ratio of the MES deter-
mined sample size for the stratum divided by the stratum size. Within each stratum
sampling preference was given to those with complete (not imputed) stratification
information.

Figure 5.1 describes the MES algorithm at Vanderbilt University Medical Center
(VUMC) where 4,500 adults were sampled from a population of 329,672. Among the
288 total possible sampling strata, 230 were populated with at least one patient. The
per stratum frequency in the population is denoted by the light gray shaded region
(note the severe truncation at the top of the figure). When sampling 4,500 patients
from 230 strata, Shannon entropy is maximized if 19 (4,500/230) were sampled from
each stratum (see ideal sampling frequency line). However, only 118 strata contained
more than 19 patients. To maximize entropy under stratum size constraints, all pa-
tients were sampled from the smallest 132 strata and 34 or 35 patients were sampled
from the 98 strata with at least 35 patients. To contrast with MES, the black shaded
region shows the numbers sampled from each stratum in one realization of a random
sampling (RS) design. As expected, RS results in a far more skewed distribution (i.e.,
with lower Shannon entropy) and those from small strata are unlikely to be included
in the sample. In this case, only 41% of the strata would be represented in the sample
under this RS design.
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Figure 5.1: Truncated histograms of the sorted sampling strata for the entire Vanderbilt-Adult pop-
ulation and for samples of size 4,500 using random and maximum entropy sampling (MES). The
ideal sampling frequency is 19 per stratum with the remaining the 130 individuals being randomly
selected from available strata. The MES sample is enriched compared to the random sample, es-
pecially with individuals from strata with sparse counts (strata 1-112); all individuals belonging to
strata 1-132 were included in the final sample.
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An R package was written to estimate MES counts for a given vector of stratum
counts and an overall sample size. Code, installation instructions, and an example
are publicly available at https://github.com/mercaldo/mes.
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5.4 Results
5.4.1 Enrichment among those sampled

Table 5.3 summarizes the marginal distributions of the six stratification vari-
ables using the EHR data only and the combined EHR and USC data for the entire
eMERGE network. Due to inclusion criteria, age and gender were available on all pa-
tients and so EHR and combined EHR and USC values are identical. At adult sites,
the marginal distributions of race and ethnicity remained relatively unchanged after
incorporating the USC data, likely due to only sampling 4.9% and 8.9% of partici-
pants with imputed race and ethnicity values, respectively. Most individuals lived in
census block groups where the mode of the adult educational attainment distribution
was between high school and some college (77%) followed by at least a bachelor’s de-
gree (22%). A total of 48% of the population resided in rural areas. Similar patterns
were observed at pediatric sites, though fewer participants (29%) lived in rural areas.

Table 5.3: Marginal distributions of stratification variables when using only EHR data
and when using both EHR and USC data. Percentages of non-missing values are
reported by population (pediatric, adult) and for the sample of 90,000 households
using maximum entropy sampling (MES).

Adult Pediatric
EHR Data Only EHR/USC Data MES EHR Data Only EHR/USC Data MES

Age
Low age group 22.9 22.9 43.8 68.7 68.7 56.7

Gender
Female 58.3 58.3 52.9 47.6 47.6 49.7

Race
White 87.1 87.6 34.3 66.0 69.3 33.0
Black 5.7 5.6 18.3 19.3 17.7 22.5
Asian 2.4 2.3 16.1 2.9 2.6 14.7
AI/AN 0.7 0.6 7.1 0.2 0.1 2.5
NH/PI 0.3 0.2 4.9 0.1 0.1 1.8
Other 3.8 3.6 19.2 11.6 10.2 25.5
Missing 14.1 13.1

Ethnicity
Hispanic/Latino 4.1 4.4 30.7 6.7 6.1 30.5
Missing 19.3 11.8

Education
<HS 1.0 11.9 1.2 13.6
HS+some college 76.8 54.9 72.4 48.9
≥Bachelor’s 22.2 33.2 26.4 37.6

Rurality
Rural 48.0 37.5 29.3 36.1

Low age group (< 12 in pediatric sites, < 35 in adult sites), AI/AN = American
Indian / Alaska Native, NH/PI = Native Hawaiian / Pacific Islander.

As can be seen from the MES columns in Table 5.3, the sample identified by MES
was enriched with target subpopulations as compared to the original population
(EHR+USC Data). For example, the sample was enriched with all minority races; it
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was enriched three-fold for African-Americans (18% vs 6%), 8-fold for Asians (16%
vs 2%) and more than four-fold (19% vs 4%) for other races. The sample was also
enriched more than 7-fold among those of Hispanic ethnicity (31% vs 4%), and 12-fold
among those without a high school or equivalent degree (12% vs 1%). However, the
survey was administered only in English and written at an 8th-grade literacy level
thus possibly reducing the enrichment of the returned sample.

To further characterize enrichment due to MES sampling, entropy values by popu-
lation are shown in Table 5.4. At adult sites, 262 of the 288 possible strata were
observed corresponding to a maximum possible entropy of 8.03. The entropy val-
ues under random and maximum entropy sampling were 4.39 and 7.35, respectively.
Overall, 81% and 72% of the maximum entropy was obtained by conducting the MES
strategy compared to random sampling in the adult and pediatric sites, respectively.
Site-specific results are provided in online appendices.

Table 5.4: Sampling frequencies and entropy estimates by sampling method and by population.
Observed strata frequencies (nstrata) are provided along with maximum entropy (Hmax), entropy
under RS (Hrs) and MES (Hmes) and the percentage of maximum entropy accounted for by the
MES sample above and beyond that of random sampling.

MES Sample nstrata Hmax Hrs Hmes
Hmes−Hrs

Hmax−Hrs

Population
Adult 58500 262 8.03 4.39 7.35 0.81
Pediatric 31500 251 7.97 5.16 7.18 0.72

5.4.2 Survey response rate and EHR accuracy
The CERC survey sampled 90,000 individuals and 7,761 were excluded due to

invalid addresses (n=7,504), death/incapacity (n=168), or previous involvement in
the pilot (n=89). A total of 13,000 surveys were returned resulting in an overall re-
sponse rate of 16.7% at adult sites and 13.9% at pediatric sites (Table 5.5, see online
appendix for pediatric and site-specific summaries). Response rates were also calcu-
lated for each stratification variable. Among adult sites, participants were less likely
to respond if they were young (10.3% if < 35 years and 21.6% if ≥ 35 years), male
(16.0% if male and 17.4% if female), non-white (e.g., 13.2% if African American and
20.1% if white), Hispanic or Latino (14.2% if Hispanic and 17.9% if not), reside in
low-education census blocks groups (13.6% if education model was <HS and 18.9%
if education model was ≥ Bachelor’s degree) or residing in non-rural areas (15.5% if
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urban or suburban and 17.9% if rural).

Table 5.5: Overall and marginal response frequencies, rates and accuracy measures between com-
bined EHR and USC sampling values and self-reported survey response values at adult sites.

N Response Rate p Se Sp PPV NPV

Age Group
< 35 8901 10.3 24.8 98.6 96.9 91.2 99.5
≥ 35 21.6 75.2 96.9 98.6 99.5 91.2

Gender
Female 9011 17.4 56.0 97.3 98.3 98.7 96.7
Male 16.0 44.0 98.3 97.3 96.7 98.7

Race
White 8941 20.1 48.7 77.3 91.1 89.1 80.8
Black or African American 13.2 11.2 93.2 96.3 76.0 99.1
Asian 17.1 16.2 84.9 96.4 82.1 97.1
American Indian or Alaska Native 17.4 2.7 81.8 94.7 29.9 99.5
Native Hawaiian or Pacific Islander 13.3 1.2 70.9 96.9 20.9 99.7
Other 14.2 20.0 33.3 88.4 41.8 84.1

Ethnicity
Not Hispanic or Latino 8870 17.9 81.1 88.7 88.5 97.1 64.6
Hispanic or Latino 14.2 18.9 88.5 88.7 64.6 97.1

Education Group
<HS 8769 13.6 7.6 20.7 91.4 16.7 93.3
HS+Some College 16.1 38.9 66.0 56.7 49.3 72.3
≥Bachelors 18.9 53.4 52.4 77.8 73.0 58.8

Rurality
Rural 9185 18.7 42.7
Suburban/Urban 15.5 57.3

N= frequency p = prevalence, Se = sensitivity, Sp = specificity, PPV = positive predicted values,

NPV = negative predictive value. Response rates equal the number of responses divided by the

number in sample that satisfied integrity checks (previous inclusion in the pilot study, bad addresses,

death, opt-out requests and blank responses were excluded).

Sensitivity (Se), specificity (Sp), positive and negative predictive values (PPV, NPV)
were used to quantify the accuracy of EHR + USC data using survey response values
as the gold standard. These are summarized in Table 5.5 for the adult sites only
because at pediatric sites, the EHR data reflected characteristics of the child while
survey responses reflected those of the parent or guardian. We therefore would not
expect high accuracy. Accuracy estimates were not calculated for rural living since
the true value is based on the address and not on a participant response. EHR age
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and gender were at least 97% sensitive and specific for the ‘true’ value based on the
survey response, and PPV and NPV were also reasonably high even though overall
PPV for age < 35 years was only 91%. EHR and USC data showed variable sensitiv-
ity for race, ranging from 33% for other race to 93% for African American race, and
the PPV for the smaller minority races was alarmingly low (∼20-40%). Even though
EHR and USC data were reasonably sensitive for Hispanic ethnicity (89%), the PPV
was only 65%. Finally, utilizing only USC data to determine an individual’s edu-
cational attainment resulted in low discriminative and predictive values (e.g., <HS:
Se=21%, PPV=17%).

Overall, we observed that using EHR and possibly USC data to identify demographic
subgroups may be a reasonable approach for common subgroups (African-American
race, gender, non-Hispanic ethnicity); however, the smaller subgroups with very low
prevalences (American Indian / Alaska Native race, Hispanic ethnicity) are often mis-
classified, and caution should be taken when using EHR data for their identification.

5.5 Discussion
This paper outlines a complex survey design that utilized both EHR and USC data

for sample frame construction and introduced an algorithm that sought to enrich the
final sample with individuals from rare subpopulations. In our sample, we observed
substantial enrichment from subpopulations that would not have been observed had
a standard random sampling scheme been used. There were several challenges with
implementing such a design in this setting that include: incomplete and inaccurate
EHR data, misclassification due to imputing missing EHR data with USC data, the
targeting sampling to sparse sampling strata and ultimately, induced complexities
associated design-based analyses.

The drawbacks of using EHR data for secondary research have been well documented
(Weiskopf and Weng, 2013; Menachemi and Collum, 2011). Since these data are
not primarily collected for research purposes their content and quality may vary by
institution. The lack of universally accepted EHR criteria, except for the minimal
criteria set by HITECH, may result in these data being insufficient to address certain
research questions. In the primary results paper for our study, EHR data were used
to define the sampling frame but were not used for primary study analyses (Sander-
son et al., 2017). Further research is needed to quantify effects of measurement error
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(or misclassification) on stratification variables, especially since EHR data are seldom
complete and are often mismeasured (e.g., EHR race, Table 5.5) (Klinger et al., 2015;
Fiscella and Fremont, 2006; Grundmeier et al., 2015).

The overall response rate in this study may have been influenced by the sampling
of subgroups that are less inclined to participate in biomedical research. If sampling
strata frequencies are related to willingness to respond, then this enrichment approach
may result in a lower than expected response rate (e.g., ∼17% in the eMERGE sur-
vey). An alternative study design would decrease the number of subjects sampled
while increasing resources towards ensuring that those who were sampled, answered
the survey. However, at the onset of the study, we are determined that such a design
was determined to be impractical across the 11 participating institutions.

In summary, we have outlined an approach that increases the diversity of a sample by
oversampling those subjects that belong to rarer sampling strata. The magnitude of
sample enrichment depends on the accuracy of the data used to define the sampling
frame as well as the overall response rate. Thus, additional resources may be required
to ensure that the frame is correctly enumerated and that sampled subjects complete
the questionnaire. This approach may be especially well suited for health disparities
research or other endeavors where it is of interest to elicit information from vulnerable
or understudied populations.
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CHAPTER 6

CONCLUSION

This dissertation has examined several topics related to the design and analysis
of complex longitudinal and survey sampling studies.

In Chapter two, we extend outcome-dependent sampling (ODS) designs for lon-
gitudinal binary data to permit data collection in two stages. We consider two sub-
classes of designs: fixed designs where the designs at each stage are pre-specified,
and adaptive designs that utilize stage one data to improve design choice at stage
two. We demonstrate that data from both stages can be aggregated to generate valid
parameter estimates using ascertainment-corrected maximum likelihood methods. Ef-
ficiency gains are observed compared to random sampling, and in certain situations,
single-stage ODS sampling designs.

In Chapter three, we investigate the effects of utilizing an imperfect sampling
frame on the design, and analysis of complex survey data. We explore the impact of
stratum misclassification on the choice of study design, on the operating characteris-
tics of survey estimators, and on the appropriateness of two common approaches to
survey design analysis. Stratified sampling is recommended over random sampling if
interest lies in making inferential statements regarding rare subgroups. In the pres-
ence of misclassification, the relative efficiency depends on the subgroup prevalence,
and analytic methods that account for the design are still required for valid inferences.

In Chapter four, we introduce the MMLB R package which is used to estimate
parameters from marginalized regression models for longitudinal binary data. These
models are described, and estimation procedures outlined under random, and ODS
schemes. We provide examples to demonstrate how to fit these models, and how data
may be generated under a pre-specified marginal mean model.

We hope these chapters provide specific and general insights that will improve our
ability to conduct efficient research studies under resource constraints.
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control studies, Sankhyā: The Indian Journal of Statistics, Series B 326–337.

Casey, J. A., Schwartz, B. S., Stewart, W. F. and Adler, N. E. (2016), Using Elec-
tronic Health Records for Population Health Research: A Review of Methods and
Applications, Annual Review of Public Health 37(1), 61–81.

Cochran, W. G. (1977), Sampling techniques, John Wiley & Sons.

Connett, J. E., Kusek, J. W., Bailey, W. C., O’Hara, P. and Wu, M. (1993), Design of
the Lung Health Study: a randomized clinical trial of early intervention for chronic
obstructive pulmonary disease., Controlled clinical trials 14(2 Suppl), 3S–19S.

Coorevits, P., Sundgren, M., Klein, G. O., Bahr, A., Claerhout, B., Daniel, C.,
Dugas, M., Dupont, D., Schmidt, A., Singleton, P., De Moor, G. and Kalra, D.
(2013), Electronic health records: new opportunities for clinical research, Journal
of Internal Medicine 274(6), 547–560.

93



Courbois, J.-Y. P. and Urquhart, N. S. (2004), Comparison of survey estimates of the
finite population variance, Journal of Agricultural, Biological, and Environmental
Statistics 9(2), 236–251.

Diggle, P., Heagerty, P., Liang, K.-Y. and Zeger, S. (2002), Analysis of longitudinal
data, Oxford University Press.

Douglas, M. D., Dawes, D. E., Holden, K. B. and Mack, D. (2015), Missed policy
opportunities to advance health equity by recording demographic data in electronic
health records., American journal of public health 105 Suppl 3(S3), S380–8.

ESRI (2011), ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems
Research Institute.

Fiscella, K. and Fremont, A. M. (2006), Use of geocoding and surname analysis to
estimate race and ethnicity., Health Services Research 41(4 Pt 1), 1482–1500.

Flegal, K. M., Keyl, P. M. and Nieto, F. J. (1991), Differential misclassification
arising from nondifferential errors in exposure measurement., American journal of
epidemiology 134(10), 1233–1244.

Garrison, N. A., Sathe, N. A., Antommaria, A. H. M., Holm, I. A., Sanderson, S. C.,
Smith, M. E., McPheeters, M. L. and Clayton, E. W. (2016), A systematic literature
review of individuals’ perspectives on broad consent and data sharing in the United
States., Genetics in medicine : official journal of the American College of Medical
Genetics 18(7), 663–671.

Gelman, A. (2007), Struggles with Survey Weighting and Regression Modeling, Sta-
tistical Science 22(2), 153–164.

Gottesman, O., Kuivaniemi, H., Tromp, G., Faucett, W. A., Li, R., Manolio, T. A.,
Sanderson, S. C., Kannry, J., Zinberg, R., Basford, M. A., Brilliant, M., Carey,
D. J., Chisholm, R. L., Chute, C. G., Connolly, J. J., Crosslin, D., Denny, J. C.,
Gallego, C. J., Haines, J. L., Hakonarson, H., Harley, J., Jarvik, G. P., Kohane, I.,
Kullo, I. J., Larson, E. B., McCarty, C., Ritchie, M. D., Roden, D. M., Smith, M. E.,
Böttinger, E. P. and Williams, M. S. (2013), The Electronic Medical Records and
Genomics (eMERGE) Network: past, present, and future, Genetics in medicine :
official journal of the American College of Medical Genetics 15(10), 761–771.

Graubard, B. I. and Korn, E. L. (1996), Survey inference for subpopulations., Amer-
ican journal of epidemiology 144(1), 102–106.

94



Greenland, S. (1988), Variance estimation for epidemiologic effect estimates under
misclassification., Statistics in medicine 7(7), 745–757.

Grundmeier, R. W., Song, L., Ramos, M. J., Fiks, A. G., Elliott, M. N., Fremont, A.,
Pace, W., Wasserman, R. C. and Localio, R. (2015), Imputing Missing Race/Eth-
nicity in Pediatric Electronic Health Records: Reducing Bias with Use of U.S.
Census Location and Surname Data, Health Services Research 50(4), 946–960.

Haneuse, S., Schildcrout, J. and Gillen, D. (2012), A two-stage strategy to accommo-
date general patterns of confounding in the design of observational studies, Bio-
statistics 13(2), 274–288.

Heagerty, P. J. (1999), Marginally specified logistic-normal models for longitudinal
binary data., Biometrics 55(3), 688–698.

Heagerty, P. J. (2002), Marginalized transition models and likelihood inference for
longitudinal categorical data, Biometrics 58(2), 342–351.

Holland, A. T. and Palaniappan, L. P. (2012), Problems With the Collection and
Interpretation of Asian-American Health Data: Omission, Aggregation, and Ex-
trapolation, Annals of Epidemiology 22(6), 397–405.

Kalton, G. (2009), Methods for oversampling rare subpopulations in social surveys,
Survey methodology 35(2), 125–141.

Kim, J. K. and Skinner, C. J. (2013), Weighting in survey analysis under informative
sampling, Biometrika 100(2), 385–398.

Klinger, E. V., Carlini, S. V., Gonzalez, I., Hubert, S. S., Linder, J. A., Rigotti, N. A.,
Kontos, E. Z., Park, E. R., Marinacci, L. X. and Haas, J. S. (2015), Accuracy of
race, ethnicity, and language preference in an electronic health record., Journal of
general internal medicine 30(6), 719–723.

Kuha, J. and Skinner, C. (1997), Categorical Data Analysis and Misclassification,
Vol. 32, John Wiley & Sons, Inc., Hoboken, NJ, USA.

Laird, N. M. (1988), Missing data in longitudinal studies., Statistics in medicine
7(1-2), 305–315.

Lee, Y. and Nelder, J. A. (2004), Conditional and Marginal Models: Another View,
Statistical Science 19(2), 219–238.

95



Lin, X., Genest, C., Banks, D. L., Molenberghs, G. and Scott, D. W. (2014), Past,
present, and future of statistical science, CRC Press.

Lindsey, J. K. and Lambert, P. (1998), On the appropriateness of marginal models
for repeated measurements in clinical trials., Statistics in medicine 17(4), 447–469.

Lohr, S. L. (2009), Sampling: design and analysis. 2nd, Cengage Learning.

Lumley, T. (2011), Complex Surveys: A Guide to Analysis Using R, John Wiley &
Sons.

Mailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao,
L., Kiang, A., Paschall, J., Phan, L., Popova, N., Pretel, S., Ziyabari, L., Lee, M.,
Shao, Y., Wang, Z. Y., Sirotkin, K., Ward, M., Kholodov, M., Zbicz, K., Beck, J.,
Kimelman, M., Shevelev, S., Preuss, D., Yaschenko, E., Graeff, A., Ostell, J. and
Sherry, S. T. (2007), The NCBI dbGaP database of genotypes and phenotypes.,
Nature genetics 39(10), 1181–1186.

Menachemi, N. and Collum, T. H. (2011), Benefits and drawbacks of electronic health
record systems., Risk management and healthcare policy 4, 47–55.

Molenberghs, G. and Verbeke, G. (2005), Models for discrete longitudinal data,
Springer.

Neuhaus, J. M. and Jewell, N. P. (1990), The effect of retrospective sampling on
binary regression models for clustered data, Biometrics 46(4), 977.

Neuhaus, J. M., Kalbfleisch, J. D. and Hauck, W. W. (1991), A comparison of cluster-
specific and population-averaged approaches for analyzing correlated binary data,
International Statistical Review/Revue Internationale de Statistique 59(1), 25–35.

Pandharipande, P., Cotton, B. A., Shintani, A., Thompson, J., Pun, B. T., Mor-
ris Jr, J. A., Dittus, R. and Ely, E. W. (2008), Prevalence and Risk Factors for
Development of Delirium in Surgical and Trauma Intensive Care Unit Patients,
The Journal of Trauma: Injury, Infection, and Critical Care 65(1), 34–41.

Prentice, R. L. and Pyke, R. (1979), Logistic disease incidence models and case-control
studies, Biometrika 66(3), 403–411.

R Core Team (2017), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria.
URL: https://www.R-project.org/

96



Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995), Analysis of semiparametric
regression models for repeated outcomes in the presence of missing data, Journal
of the american statistical association 90(429), 106–121.

Roden, D. M., Pulley, J. M., Basford, M. A., Bernard, G. R., Clayton, E. W., Balser,
J. R. and Masys, D. R. (2008), Development of a Large-Scale De-Identified DNA
Biobank to Enable Personalized Medicine, Clinical Pharmacology & Therapeutics
84(3), 362–369.

Rothman, K. J., Greenland, S. and Lash, T. L. (2008), Modern epidemiology. 3rd
Edition, Lippincott Williams & Wilkins.

Rubin, D. B. (1976), Inference and missing data, Biometrika 63(3), 581–592.

Rust, K. F. and Rao, J. N. (1996), Variance estimation for complex surveys using
replication techniques., Statistical methods in medical research 5(3), 283–310.

Safran, C., Bloomrosen, M., Hammond, W. E., Labkoff, S., Markel-Fox, S., Tang,
P. C., Detmer, D. E. and Panel, E. (2007), Toward a national framework for the
secondary use of health data: an American Medical Informatics Association White
Paper., Journal of the American Medical Informatics Association 14(1), 1–9.

Sanderson, S. C., Brothers, K. B., Mercaldo, N. D., Clayton, E. W., Antommaria,
A. H. M., Aufox, S. A., Brilliant, M. H., Campos, D., Carrell, D. S., Connolly,
J., Conway, P., Fullerton, S. M., Garrison, N. A., Horowitz, C. R., Jarvik, G. P.,
Kaufman, D., Kitchner, T. E., Li, R., Ludman, E. J., McCarty, C. A., McCormick,
J. B., McManus, V. D., Myers, M. F., Scrol, A., Williams, J. L., Shrubsole, M. J.,
Schildcrout, J. S., Smith, M. E. and Holm, I. A. (2017), Public Attitudes toward
Consent and Data Sharing in Biobank Research: A Large Multi-site Experimental
Survey in the US, The American Journal of Human Genetics 1–14.

Schildcrout, J. S., Garbett, S. P. and Heagerty, P. J. (2013), Outcome Vector Depen-
dent Sampling with Longitudinal Continuous Response Data: Stratified Sampling
Based on Summary Statistics, Biometrics 69(2), 405–416.

Schildcrout, J. S. and Heagerty, P. J. (2007), Marginalized models for moderate to
long series of longitudinal binary response data., Biometrics 63(2), 322–331.

Schildcrout, J. S. and Heagerty, P. J. (2008), On outcome-dependent sampling designs
for longitudinal binary response data with time-varying covariates, Biostatistics
9(4), 735–749.

97



Schildcrout, J. S. and Heagerty, P. J. (2011), Outcome-Dependent Sampling from
Existing Cohorts with Longitudinal Binary Response Data: Study Planning and
Analysis, Biometrics 67(4), 1583–1593.

Schildcrout, J. S., Rathouz, P. J., Zelnick, L. R., Garbett, S. P. and Heagerty, P. J.
(2015), Biased Sampling Designs to Improve Research Efficiency: Factors Influ-
encing Pulmonary Function Over Time in Children with Asthma, The annals of
applied statistics 9(2), 731–753.

Shannon, C. E. (2001), A mathematical theory of communication, ACM SIGMOBILE
Mobile Computing and Communications Review 5(1), 3–55.

Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P. J., Elhadad, N., Johnson,
S. B. and Lai, A. M. (2014), A review of approaches to identifying patient phe-
notype cohorts using electronic health records, Journal of the American Medical
Informatics Association 21(2), 221–230.

Smith, M. E., Sanderson, S. C., Brothers, K. B., Myers, M. F., McCormick, J.,
Aufox, S., Shrubsole, M. J., Garrison, N. A., Mercaldo, N. D., Schildcrout, J. S.,
Clayton, E. W., Antommaria, A. H. M., Basford, M., Brilliant, M., Connolly, J. J.,
Fullerton, S. M., Horowitz, C. R., Jarvik, G. P., Kaufman, D., Kitchner, T., Li,
R., Ludman, E. J., McCarty, C., McManus, V., Stallings, S., Williams, J. L. and
Holm, I. A. (2016), Conducting a large, multi-site survey about patients’ views
on broad consent: challenges and solutions, BMC Medical Research Methodology
16(1), 1–11.

Song, R., Zhou, H. and Kosorok, M. R. (2009), A note on semiparametric efficient
inference for two-stage outcome-dependent sampling with a continuous outcome,
Biometrika 96(1), 221–228.

Stiratelli, R., Laird, N. and Ware, J. H. (1984), Random-effects models for serial
observations with binary response., Biometrics 40(4), 961–971.

Sudman, S., Sirken, M. G. and Cowan, C. D. (1988), Sampling rare and elusive
populations., Science 240(4855), 991–996.

Sugden, R. A. and Smith, T. (1984), Ignorable and informative designs in survey
sampling inference, Biometrika 71(3), 495–506.

98



Thara, R., Henrietta, M., Joseph, A., Rajkumar, S. and Eaton, W. W. (1994),
Ten-year course of schizophrenia–the Madras longitudinal study., Acta psychiatrica
Scandinavica 90(5), 329–336.

US Census Bureau (n.d.a), 2008-2012 American Community Survey 5-year estimates.
http://www.census.gov/programs-surveys/acs/data/summary-file.html. Accessed
June 2014.

US Census Bureau (n.d.b), 2010 Urban and Rural Classification and Urban Area Cri-
teria. https://www.census.gov/geo/reference/ua/urban-rural-2010.html. Accessed
June 2014. .

Weiskopf, N. G. and Weng, C. (2013), Methods and dimensions of electronic health
record data quality assessment: enabling reuse for clinical research., Journal of the
American Medical Informatics Association : JAMIA 20(1), 144–151.

Xu, W. and Zhou, H. (2012), Mixed effect regression analysis for a cluster-based two-
stage outcome-auxiliary-dependent sampling design with a continuous outcome,
Biostatistics 13(4), 650–664.

Yuan, R., Hogg, J. C., Pare, P. D., Sin, D. D., Wong, J. C., Nakano, Y., McWilliams,
A. M., Lam, S. and Coxson, H. O. (2009), Prediction of the rate of decline in FEV1
in smokers using quantitative computed tomography, Thorax 64(11), 944–949.

Zeger, S. L., Liang, K. Y. and Albert, P. S. (1988), Models for longitudinal data: a
generalized estimating equation approach, Biometrics 44(4), 1049.

Zhao, L. P. and Lipsitz, S. (1992), Designs and analysis of two-stage studies, Statistics
in medicine 11(6), 769–782.

Zhou, H., Chen, J., Rissanen, T. H., Korrick, S. A., Hu, H., Salonen, J. T. and
Longnecker, M. P. (2007), Outcome-dependent sampling: an efficient sampling and
inference procedure for studies with a continuous outcome., Epidemiology (Cam-
bridge, Mass.) 18(4), 461–468.

Zhou, H., Song, R., Wu, Y. and Qin, J. (2010), Statistical Inference for a Two-
Stage Outcome-Dependent Sampling Design with a Continuous Outcome, Biomet-
rics 67(1), 194–202.

Zhou, H., Xu, W., Zeng, D. and Cai, J. (2013), Semiparametric inference for
data with a continuous outcome from a two-phase probability-dependent sampling

99



scheme, Journal of the Royal Statistical Society: Series B (Statistical Methodology)
76(1), 197–215.

100


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Two-Stage Fixed & Adaptive Outcome-Dependent Sampling Designs for Longitudinal Binary Data
	Abstract
	Introduction
	Model
	Two-Stage Fixed Outcome Dependent Sampling Designs
	Fixed Stage One ODS Design 
	Fixed Stage Two ODS Design
	Conditional Two-Stage ODS Likelihood
	Ascertainment-Correct Maximum Likelihood Estimation 
	Simulation 

	Two-Stage Adaptive Outcome Dependent Sampling Designs
	Stage Two: Adaptive Sample Size 
	Stage Two: Adaptive Design
	Comparative Design Analysis 
	Simulation

	Example: Lung Health Study
	Discussion

	Survey Design and Analysis Considerations when Utilizing an Imperfect Sampling Frame
	Abstract
	Introduction
	Methods
	Means and Variances of Design-Based Descriptive Estimators Under No Misclassification
	Non-Differential Stratum Misclassification & Sub-Domain Analysis

	Simulation
	Non-differential Misclassification
	Differential Misclassification

	Example: CERC survey
	Discussion
	Appendix 

	Marginalized Models for Longitudinal Binary Data:  the MMLB R Package
	Abstract
	Introduction
	Models
	Outcome-Dependent Sampling Designs

	Estimation 
	Maximum Likelihood Estimation
	Weighted Estimating Equations

	MMLB Syntax
	Examples
	Madras Longitudinal Schizophrenia Study
	Simulation Example
	Outcome-Dependent Sampling Examples

	Conclusions and future developments

	Enrichment sampling for a multi-site patient survey using electronic health records and census data
	Abstract
	Introduction
	Methods
	Population and data sources
	EHR data
	USC data
	Linking EHR and USC data
	Imputing missing EHR data with USC data
	Sampling scheme
	Maximum entropy sampling algorithm

	Results
	Enrichment among those sampled
	Survey response rate and EHR accuracy

	Discussion

	Conclusion
	REFERENCES

