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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Probabilistic performance assessment evaluates a system’s capability to accomplish the required 

functions under uncertainty. The results of probabilistic performance assessment can be used to support 

decision making such as data collection, design optimization and operational risk management. There are 

two different approaches for probabilistic performance assessment – (1) physics model-based, and (2) 

test-based or data-driven. In the physics model-based approach, models are constructed based on first-

principles to explain the real-world phenomena, which are used for performance assessment. In the data-

driven approach, the performance of the system is estimated using experimental or operational data. 

Performance assessment is affected by different types of aleatory (natural variability) and epistemic (lack 

of knowledge) uncertainty sources. Lack of sufficient data or knowledge causes epistemic uncertainty, 

both in model inputs (statistical uncertainty) and models (model uncertainty). Therefore, methods for the 

systematic incorporation of various sources of epistemic uncertainty in performance assessment need to 

be investigated.  

Systems may consist of a single component or may be composed of multiple components (subsystems). 

A conceptual representation of a single-component system (𝑀) along with the inputs (𝑿) and outputs (𝒀) 

is provided in Fig. 1.1. When multiple components are composed to form a complex system, interactions 

arise between them, which need to be quantified and included in performance assessment. In addition, 

each component is associated with different sources of aleatory and epistemic uncertainty; therefore, a 

framework is needed for dependence learning, uncertainty aggregation, and performance assessment. 
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Fig. 1.1. Conceptual representation of a single-component system along with the inputs and outputs 

Bayesian networks have shown much effectiveness for uncertainty aggregation across complex 

networks in many application domains, such as information retrieval, data fusion and engineering 

decision-making [1], computational biology and bioinformatics [2], epidemiology [3], and civil 

infrastructure networks [4].  BNs can be constructed either using physics-models or data or their 

combination. Current implementations of learning in hybrid Bayesian networks involve an assumption of 

conditional linear Gaussian distributions [5] or discretization of continuous variables into discrete 

variables. Several discretization strategies have been developed such as uniform distributions [6], 

Gaussian mixture model (GMM) [7] and truncated exponentials [8]. The discretization process is arbitrary 

and dependent on the analyst or expert opinion. Therefore, techniques for learning hybrid Bayesian 

networks that eliminate the discretization of continuous variables need to be investigated.  

Systems can often be decomposed into multiple hierarchical levels. An illustration of a hierarchical 

system in provided in Fig. 1.2. For example, in a production network, a factory can be divided into several 

lines, where each line undertakes a fraction of the overall manufacturing process. Each line may consist 

of several unit processes, where each unit process accomplishes a specific task. In some cases, a unit 

process can also be further divided into several lower level unit processes. Each unit process can be 

associated with a single machine or a machine assembly. Hierarchical Bayesian networks (HBNs) [9], 

which are extensions of Bayesian networks, can be used to model hierarchical systems, and estimate the 

uncertainty in the overall performance assessment. Segmented learning can decompose the learning effort 

into several smaller learning efforts, thus making the computation affordable; however, interactions 
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between different segments need to be carefully learned. As the network becomes larger, dimension 

reduction techniques are also necessary to eliminate unnecessary computational complexity.  

 

Fig. 1.2 Conceptual representation of a hierarchical system 

The interactions between components or between subsystems may be one-way or two-way, and may 

be time-dependent or time-dependent; such features may or may not be revealed depending on the level 

of resolution at which the system is analyzed. So far, we considered systems with one-directional and 

time-independent interactions between several subsystems. The interactions are assumed time-

independent due to the assumed low resolution in time. In some systems, the different subsystems may 

operate with a time lag (e.g., multiple processes in a manufacturing network).  

In some systems with multiple subsystems, there exists two-directional interactions between them; 

these interactions can occur with a time lag or occur simultaneously. In addition, the individual subsystems 

can be computational or physical in nature. An example of a system with interactions between subsystems 
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with a time lag, with both computational and physical subsystems is a cyber-physical system (CPS), which 

is a control system, where the computational subsystem (software) controls a physical subsystem. 

Examples of systems where interactions occur simultaneously include multi-physics systems such as an 

aircraft wing where fluid and elastic analyses occur simultaneously, or a multi-component system with 

the same physics such as a sandwich composite beam (shown in Fig. 1.3), i.e., a beam with three layers in 

which the material of the middle layer is different from the material used in the top and bottom layers. For 

the given load, there exists interactions between the different material media in order to converge to same 

displacement response due to the compatibility requirements at the material interface. In this dissertation, 

we consider performance assessment of both cyber-physical (interactions with a time lag) and multi-

physics (simultaneous interactions) systems under uncertainty.  

 

Fig. 1.3. A cantilever sandwich composite beam subjected to a tensile load 

In a CPS, a software subsystem controls a physical subsystem (also referred to as plant) by collecting 

sensor data regarding the system parameters and implementing the necessary actuation. The interactions 

in a generic CPS occurs at two levels: (1) interactions between individual subsystems (plant, cyber, 

actuation, sensors), and (2) interactions between computing nodes, if a distributed computational 

subsystem is considered. Fig. 1.4 shows the interactions between several subsystems and between 

computational nodes (𝐶1, 𝐶2 and 𝐶3). The different types of interactions between computational nodes are 

discussed in Section 5.3. Each of the subsystems is associated with different uncertainty sources. Physical 

and actuation subsystems may be associated with model uncertainty and uncertainty in the inputs; sensors 
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may be associated with sensor measurement uncertainty and software subsystem may be associated with 

uncertainty in communication between several software nodes. 

 

Fig. 1.4. Two-level interactions between several subsystems and computational nodes in a cyber-

physical system 

In the control system discussed above, the interactions among the subsystems occur with a time lag, 

i.e., each subsystem takes a finite amount of time to complete its task. As a result, the interactions are one-

directional when time lag is considered. Therefore, uncertainty aggregation approaches to quantify the 

uncertainty in the QoI of a CPS are needed. 

 

Fig. 1.5. Conceptual representation of a two-discipline multi-physics system 

For analysis of multi-physics systems, where interactions between multiple subsystems occur 

simultaneously, models may be employed for each individual physics phenomenon and are run iteratively 

until the results from individual models are compatible. This results in a high computational expense as 

the individual models are run multiple times to reach compatibility.  Fig. 1.5 presents a conceptual 

representation of two-discipline coupled system, where 𝐴1 and 𝐴2 represent individual disciplines. For 
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example, consider the aero-elastic response of an aircraft wing: the deformation is affected by 

aerodynamic pressure, and the aerodynamic pressure is affected by the deformation. A computational fluid 

dynamics (CFD) model is employed for aerodynamics analysis, and a finite element (FE) model is 

employed for deformation analysis.   

The computational effort further increases when uncertainty is considered, since the multidisciplinary 

analysis has to be repeated at multiple realizations of the uncertain variables. Current techniques combat 

the high computational expense in the performance assessment of multidisciplinary systems by the use of 

inexpensive surrogates to replace the individual disciplinary models [10] and by the use of decoupled 

analyses, where the bi-directional interaction between individual disciplines is approximated with a one-

directional interaction, using first-order approximations [11].  Even though the surrogates that replace the 

individual disciplinary models are inexpensive, they need to be run multiple times at several realizations 

of the uncertain variables. In the case of decoupled approaches, the individual disciplinary models can be 

non-linear and in such cases, the first order approximations may not be accurate. Therefore, performance 

assessment techniques that overcome the repeated runs of the surrogates and the first order approximations 

of the decoupled approaches need to be investigated.  

Based on the above discussion, the following research objectives are proposed to overcome the 

shortcomings identified above, for performance assessment under uncertainty in time-independent and 

time-varying coupled systems.   

1.2 Research objectives 

1. The first objective investigates a Bayesian framework for the inclusion of multiple sources of 

aleatory and epistemic uncertainty in model-based performance assessment. The developed 

techniques are demonstrated for two mechanical load-bearing systems.    
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2. The second objective investigates hierarchical Bayesian networks for uncertainty aggregation in 

multi-level systems for performance assessment. Techniques for hierarchical Bayesian network 

learning, efficient dimension reduction and model calibration are developed.  These techniques are 

illustrated using an injection molding process.  

3. The third objective investigates dynamic Bayesian networks for performance assessment in time-

varying coupled systems by aggregating uncertainty from several subsystems that are performing 

tasks in a time sequence. These techniques are illustrated with a smart indoor heating system and 

a smart manufacturing process.  

4. The fourth objective investigates Bayesian network approach for computationally efficient 

performance assessment in coupled multi-physics systems. The proposed techniques are 

demonstrated for performance assessment of an aircraft wing.  

1.3 Organization of the dissertation 

The remaining chapters of this dissertation are organized as follows to tackle the objectives identified 

in Section 1.2.  

Chapter 2 provides a brief introduction and review of the several concepts, which are later used to 

develop the solution methodologies to meet the objectives. The concepts that are briefly discussed are: (1) 

Types of uncertainty sources (aleatory, statistical and model), (2) Reliability analysis for performance 

assessment under uncertainty (both component and system), (3) Different types of surrogate modeling 

techniques, (4) Variance-based global sensitivity analysis, (5) Auxiliary variable approach (to enable 

global sensitivity analysis under epistemic uncertainty), (6) Bayesian network and its variants 

(Hierarchical Bayesian network and Dynamic Bayesian network), and (7) Bayesian inference techniques 

in both static and dynamic Bayesian networks.  
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Chapter 3 develops a model-based performance assessment (reliability analysis) framework for single-

disciplinary physical systems, considering both aleatory and epistemic (statistical and data) uncertainty 

sources. A surrogate model of the performance limit state is constructed and used for computationally 

efficient reliability analysis. The additional uncertainty introduced by the surrogate model and by Monte 

Carlo sampling is also incorporated in the framework.  

Chapter 4 develops a Hierarchical Bayesian network methodology to enable uncertainty quantification 

in multi-level systems, and illustrates the methodology with an example of a manufacturing network.  A 

new learning algorithm for Bayesian networks with both discrete and continuous variables is developed 

to overcome the discretization approaches discussed in Section 1.1.  A segmented approach is developed 

for constructing a HBN and using it for Bayesian inference. In addition, an efficient dimension-reduction 

approach is developed based on global-sensitivity analysis.  

Chapter 5 develops a model-based performance evaluation framework for a dynamic system with 

multiple subsystems operating in sequence, and illustrated with two examples of control systems (indoor 

thermal control, and a manufacturing process). A two-level dynamic Bayesian network is developed to 

aggregate the uncertainty arising from several subsystems. The higher level DBN considers the coupling 

across the subsystems whereas the lower-level DBN considers the interactions within the subsystem. The 

structure of the lower-level DBN depends on the architecture within the subsystem, namely synchronous 

or asynchronous; both types of architecture are considered, and their extension to complex architectures 

is detailed. The use of the proposed performance evaluation methodology for design-time and run-time 

decision-making is illustrated.  

Chapter 6 discusses a Bayesian network-based approach for computationally efficient performance 

assessment of multi-physics system and systems with coupled subsystems undergoing the same physics. 

The developed Bayesian network method does not make any first-order assumptions made in the existing 
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decoupled approaches and does not require repeated evaluations for uncertainty analysis, contrary to the 

existing surrogate-based approaches. Using the Bayesian network approach, the values of system QoI can 

be obtained simultaneously for several realizations of the uncertain variables at interdisciplinary 

compatibility. The extension of performance assessment framework to carry out design optimization is 

also illustrated.  

Chapter 7 concludes the dissertation, with a summary of intellectual contributions made and possible 

extensions of the reported research.   
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CHAPTER 2 

BACKGROUND CONCEPTS 

2.1. Types of uncertainty   

Uncertainty in variables has generally been classified into two types: aleatory (natural variability) and 

epistemic (lack of knowledge) [12]. Aleatory uncertainty represents the inherent randomness in a quantity; 

this uncertainty is irreducible and is typically represented in a probabilistic framework through a 

probability distribution. On the contrary, epistemic uncertainty refers to uncertainty regarding a quantity 

due to lack of knowledge. Epistemic uncertainty can be divided into two categories – statistical uncertainty 

and model uncertainty [13]. Statistical uncertainty stems from inadequacies in the available data (e.g., 

sparse, imprecise, qualitative, missing, or erroneous) which results in uncertainty regarding the probability 

distributions of the input random variables or the precise values of deterministic inputs. Model uncertainty 

is due to uncertainty in model parameters, numerical solution errors, and model form assumptions [14]. 

Numerical solution errors may include discretization error, round-off error, truncation error, surrogate 

model error and Monte Carlo sampling error [15]. The model form error and numerical solution errors can 

together be referred to as model discrepancy. In the rest of this section, we discuss the approaches for the 

representation of epistemic uncertainty.  

2.1.1. Representation of statistical uncertainty 

Several theories, both probabilistic and non-probabilistic, have been used to represent this type of 

epistemic uncertainty. Some of the approaches include interval analysis [16], convex models [17], fuzzy 

sets and possibility theory [18], evidence theory [19], Bayesian probability theory [20] and imprecise 

probabilities [21]. This dissertation uses a Bayesian probabilistic approach to model the epistemic 

uncertainty about the input random variables. A random variable can be represented either by using a 
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parametric (e.g., normal) or a non-parametric distribution. In this work, we adopt the parametric 

representation of a random variable. A parametric distribution is associated with a distribution type and 

distribution parameters. If the distribution type of an input variable 𝑋  is known but the distribution 

parameters are uncertain, then 𝑋 can be represented by a distributional p-box. If the distribution type is 

also uncertain, then 𝑋 may be represented by a free p-box [22]. 

Distribution parameter uncertainty: In the presence of sparse point data on 𝑋, two approaches may 

be used to construct the probability distributions of distribution parameters  Θ  (using a Bayesian 

perspective). The first approach is to use resampling methods such as Jack-knife and Bootstrap [23] to 

generate multiple values of Θ that are used to construct their distributions; the second approach is to use 

a likelihood-based representation of the available data to construct distributions of Θ  using Bayes’ 

theorem [24]. The likelihood-based approach can be extended to accommodate interval data and to 

construct parametric as well as non-parametric distributions [25].  

    Let a dataset  𝐷  for a variable  𝑋  consist of 𝑛  point data 𝑝𝑖 (𝑖 = 1 𝑡𝑜 𝑛)  and 𝑚  interval 

data [𝑎𝑗, 𝑏𝑗](𝑗 = 1 𝑡𝑜 𝑚). The likelihood function for the distribution parameters Θ can be constructed as 

 
𝐿(θ) =∏𝑓𝑋(𝑥 = 𝑝𝑖|θ)

𝑛

𝑖=1

 ∏[𝐹𝑋(𝑥 = 𝑏𝑗|θ) − 𝐹𝑋(𝑥 = 𝑎𝑗|θ)]

𝑚

𝑗=1

 (2.1) 

where 𝑓𝑋(𝑥) and 𝐹𝑋(𝑥) represent the PDF and CDF of variable 𝑋 respectively. After constructing the 

likelihood function, the distributions of the distribution parameters are obtained using Bayes’ theorem as 

 
𝑓Θ
′′(𝜃) =

𝐿(θ)𝑓Θ
′(𝜃)

∫ 𝐿(θ)𝑓Θ
′(𝜃)𝑑θ

ΩΘ

   (2.2) 

where  𝑓Θ
′(𝜃) and 𝑓Θ

′′(𝜃) refer to the joint prior and posterior distributions of the distribution parameters. 

ΩΘ refers to the domain of the Θ. Sometimes, point data and/or interval data may be directly available on 
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the distribution parameters (e.g., in the reliability estimation of mechanical components, point and interval 

data on failure rates may be available from several sources). In this case, a non-parametric distribution 

can be constructed to express the uncertainty in the parameters. A detailed procedure for the construction 

of a non-parametric distribution is described in [25]. Only important steps are presented here for the sake 

of completeness. 

    Let the data available on Θ consist of 𝑟 point data, 𝜃𝑝
𝑖  (𝑖 = 1 𝑡𝑜 𝑟) and 𝑠 interval data [𝜃𝑎

𝑗
, 𝜃𝑏

𝑗
] (𝑗 =

1 𝑡𝑜 𝑠). From the available data, the range of Θ is obtained by observing the maximum and minimum 

values. The domain is then discretized into 𝑄 points, given by 𝜃1, 𝜃2, … 𝜃𝑄 and the PDF values at these 

discretized points are represented by 𝛼1, 𝛼2, … 𝛼𝑄 . Using(𝜃𝑘, 𝛼𝑘)(𝑘 = 1 𝑡𝑜 𝑄), the probability density 

function can be constructed through an interpolation technique (e.g., linear, spline-based or Gaussian-

process interpolation) over these 𝑄 points. The likelihood function, in this case, can be defined as  

 𝐿(𝛼) =  ∏𝑓Θ(𝜃 = 𝜃𝑝
𝑖 |𝛼)

𝑟

𝑖=1

 ∏[𝐹Θ(𝜃 = 𝜃𝑏
𝑖 |𝛼) − 𝐹Θ(𝜃 = 𝜃𝑎

𝑖 |𝛼)]

𝑠

𝑗=1

 (2.3) 

The values of 𝛼𝑘(𝑘 = 1 𝑡𝑜 𝑄) can be obtained by maximizing the likelihood function, subject to the 

following constraints. 

(1) 𝛼𝑘 ≥ 0 

(2) 𝑓Θ(𝜃) ≥ 0 for all values of 𝜃  

(3) ∫ 𝑓Θ(𝜃) = 1ΩΘ
 

    The likelihood approach helps to construct either parametric or non-parametric distributions of a 

variable or its distribution parameters (Eqs. 2.1 and 2.3) and either of these options can be used depending 

on the available data and analysis requirements. 
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Distribution type uncertainty: The first step in the probabilistic representation of an uncertain 

variable is the selection of a distribution type, if a parametric approach is used. In the presence of sparse 

data, when the distribution type of a variable is not known precisely, a set of candidate distribution types 

can be obtained through a combination of prior knowledge and results from statistical goodness-of-fit tests.  

With the list of candidate distribution types, one could either construct a composite distribution, i.e., a 

weighted average of all the candidate distribution types using Bayesian model averaging (BMA) [26], or 

select a single distribution type that best explains the observations. The weights for averaging or selection 

can be computed using Bayesian hypothesis testing (BHT) [27] by comparing the likelihoods of possible 

distribution types. Given a dataset  𝐷 , the ratio of the posterior probabilities of two distribution 

types 𝑓𝑋(𝑥|𝜃𝑐) and 𝑓𝑋(𝑥|𝜃𝑑), is calculated as  

 Pr (𝑓𝑋(𝑥|𝜃𝑐)|𝐷)

Pr (𝑓𝑋(𝑥|𝜃𝑑)|𝐷)
=  
Pr (𝐷|𝑓𝑋(𝑥|𝜃𝑐))

Pr (𝐷|𝑓𝑋(𝑥|𝜃𝑑))
  
Pr (𝑓𝑋(𝑥|𝜃𝑐))

Pr (𝑓𝑋(𝑥|𝜃𝑑))
 (2.4) 

where Pr (𝑓𝑋(𝑥|𝜃𝑐)) and Pr (𝑓𝑋(𝑥|𝜃𝑐)) refer to the prior probabilities of the two distribution types and  

𝐏𝐫 (𝑫|𝒇𝑿(𝒙|𝜽𝒄))

𝐏𝐫 (𝑫|𝒇𝑿(𝒙|𝜽𝒅))
  refers to the ratio of likelihoods (also referred to as Bayes factor 𝐵). The Bayes factor is a 

quantitative measure of extent of data support for  𝑓𝑋(𝑥|𝜃𝑐) relative to support for 𝑓𝑋(𝑥|𝜃𝑑). If 𝐵 > 1, the 

dataset 𝐷  supports  𝑓𝑋(𝑥|𝜃𝑐)  over  𝑓𝑋(𝑥|𝜃𝑑) . When BMA is used, a composite distribution can be 

constructed as  

 

𝑓𝑋(𝑥|𝜃) = ∑𝑤𝑘 𝑓𝑋(𝑥|𝜃𝑘)

𝑁

𝑘=1

 (2.5) 

where  𝑓𝑋(𝑥|𝜃) represents the composite distribution, 𝑓𝑋(𝑥|𝜃𝑘) (𝑘 = 1 𝑡𝑜 𝑁) refers to each of the 𝑁 

possible distribution types with 𝑤𝑘, 𝜽𝑘 representing their weights and distribution parameters. Note that 

the weights are proportional to the posterior probabilities calculated using Eq. (2.4).  In general, adequate 

data may not be always available to characterize the correlations between the input variables. Similar to 
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the distribution parameters, parametric or non-parametric distributions may be used to represent the 

uncertainty regarding correlation coefficients. In the case of a parametric approach, bounded distributions 

such as a beta distribution may be used because correlation coefficients lie between -1 and 1. In a non-

parametric approach, Eq. (2.3) may be used to construct a non-parametric PDF to represent the uncertainty 

regarding the correlation coefficients.  

2.1.2. Representation of model uncertainty 

As discussed at the beginning of this section, there are three sources of model uncertainty – model 

parameter uncertainty, solution approximation errors and model form errors. The model error 𝝐𝒎  is 

composed of solution approximation errors and model form error. Methods for the quantification of model 

parameter uncertainty, model form error, and solution approximation errors (discretization error, surrogate 

model bias error and Monte Carlo sampling error) are discussed below. 

Model parameter uncertainty represents the uncertainty in the model parameters due to either natural 

variability or limited data or both. The three possible scenarios of model parameter uncertainty are – (1) 

model parameter is deterministic but unknown (epistemic uncertainty), (2) model parameter is stochastic 

with known distribution parameters (aleatory uncertainty), and (3) model parameter is stochastic with 

unknown distribution parameters (aleatory and epistemic uncertainty). If a model parameter is 

deterministic but unknown, it can be estimated using available data using least squares, maximum 

likelihood or Bayesian calibration.  

    Model parameters that are associated with aleatory uncertainty (probability distributions) and with fixed 

distribution parameters, can be treated similar to input variables for reliability analysis and the techniques 

used for the quantification of uncertainty in the inputs (parametric and non-parametric approaches, 

described in Section 2.1.1) can also be used for model parameters.  If the distribution parameters of model 

parameters are unknown (both aleatory and epistemic uncertainty), then one of the three aforementioned 



 15 

calibration techniques can be used to estimate the distribution parameters using available data. Among 

these, Bayesian calibration can explicitly quantify the uncertainty in the model parameters or their 

distribution parameters. 

Model discrepancy, in this discussion, represents the combined error introduced due to the assumptions 

and simplifications made in building a model (model form error) as well as the errors that arise in the 

methodology adopted in solving the model equations (numerical solution errors). Different types of 

numerical solution errors exist such as discretization error, round-off error, and truncation error. Suppose 

𝑔𝑜𝑏𝑠(𝑋), 𝑔𝑚𝑜𝑑𝑒𝑙(𝑋)  and 𝛿(𝑋)  represent the observations, simulation model prediction and model 

discrepancy respectively. For a given 𝑋 = 𝑥, the three quantities are related as 𝑔𝑜𝑏𝑠(𝑥) = 𝑔𝑚𝑜𝑑𝑒𝑙(𝑥) +

𝛿(𝑥) + 𝜖𝑜𝑏𝑠(𝑥). Here, 𝜖𝑜𝑏𝑠(𝑥) refers to the observation (or experimental) error, which may or may not be 

dependent on the input.  In the model calibration framework developed by Kennedy and O’Hagan [28], 

the quantification of the model discrepancy is performed together with the calibration of model 

parameters. Kennedy and O’Hagan proposed two approaches for model calibration – (1) fully Bayesian, 

and (2) modular Bayesian. A good overview of both fully and marginal Bayesian approaches is available 

in [29]. In the fully Bayesian approach, the model parameters of simulation model and the hyper 

parameters are calibrated together by obtaining joint posterior distributions. Using the joint posterior 

distributions, marginal distributions can be obtained.  

The model calibration using the modular Bayesian approach can be summarized in the following steps 

[29]: (1) Estimation of MLE (maximum likelihood estimates) of the hyper parameters of the simulation 

model GP surrogate using the simulation data, (2) Estimation of MLE of hyper parameters of the model 

discrepancy GP surrogate using the experimental data, simulation data, and hyper parameters of the  

simulation model GP surrogate, (3) Calibration of model  parameters based on the estimated hyper 

parameters of the GP surrogates, and (4) Prediction, where the overall prediction is marginalized over the 
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model parameters. The model prediction at any input, when conditioned on the model parameters and 

MLE of hyper parameters of GP surrogates, follows a Gaussian distribution. However, the unconditional 

prediction at any input is obtained by marginalizing over the posterior distributions of the model 

parameters; in this case, the model prediction is not Gaussian. When the overall prediction is marginalized 

over the model parameters, an expected value for the reliability estimate is obtained. The above 

marginalization results in the overall prediction to not being Gaussian. However, since the goal in this 

work is to quantify the uncertainty in the reliability estimate (as opposed to an expected value), 

marginalization over model parameters is not performed and the model parameters (with their posterior 

distributions) are treated just like any stochastic inputs. In this case, the prediction (for a given realization 

of system input and model parameter) will be Gaussian. As stated in [29], the separation of both the GP 

models for calibration is intuitive and therefore, the modular Bayesian approach for calibration is adopted. 

The outputs of the model calibration analysis using the KOH framework are – (1) data on the inputs, 

simulation output and observations, which are used for model calibration, (2) a GP model for the 

simulation model, (3) a GP model for the model discrepancy, and (4) Posterior distribution of the model 

parameters. The above four elements are later used in the construction of a limit-state surrogate (discussed 

in Section 2.3) for reliability analysis in Chapter 3.  

2.2. Reliability analysis 

Here, we briefly discuss the definitions for performance assessment, namely reliability analysis, with 

respect to a single performance criterion or limit state (referred to as component reliability analysis) and 

with respect to multiple criteria or limit states (referred to as system reliability analysis). 
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2.2.1. Component reliability analysis 

 Consider a single performance function of a system mathematically expressed as 𝑔(𝑿), where 𝑿 =

[𝑋1, 𝑋2…𝑋𝑛] is a vector of input random variables, such that 𝑔(𝑿) > 0 refers to satisfactory performance, 

𝑔(𝑿) < 0  refers to failure, and 𝑔(𝑿) = 0  is referred to as the limit state . The component failure 

probability (𝒑𝒇
𝒄) is given as  

 𝑝𝑓
𝑐 = Pr (𝑔(𝑿) ≤ 0) (2.6) 

In surrogate-based reliability analysis using Monte Carlo sampling (MCS), the component failure 

probability can be calculated as  

 
𝑝𝑓
𝑐 =

∑ 𝐼(�̂�(𝒙(𝑗)) ≤ 0)
𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
 (2.7) 

where 𝒙  is a realization of random variables  𝑿 , 𝑛𝑀𝐶𝑆  is the number of MCS samples, �̂�(𝑿)  is the 

surrogate, �̂�(𝒙(𝑗)) is the surrogate prediction at the jth sampling point 𝑥(𝑗), and 𝐼(�̂�(𝒙(𝑗)) ≤ 0) is a failure 

indicator function defined as  

 1, if an event is true
(event)

0, otherwise
I


 


 (2.8) 

2.2.2 System reliability analysis 

 When system performance is assessed with respect to multiple criteria, system failure may occur 

through the union, intersection, or a combination of unions and intersections of component failures [30]. 

Let 𝑔𝑖(𝑿), 𝑖 = 1,2…𝑚  be the individual limit-state functions. The failure probability of the union of 

individual failures (referred to as a series combination) is given by  

 
𝑝𝑓
𝑠 = Pr(⋃𝑔𝑖(𝑿) ≤ 0

𝑚

𝑖=1

) (2.9) 
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where 𝑝𝑓
𝑠  is the system failure probability and Pr (. )  is the probability operator. The system failure 

probability, using a surrogate and MCS, can be calculated as  

 
𝑝𝑓
𝑠 = 

∑ 𝐼(⋃ �̂�𝑖(𝒙
(𝑗)) ≤ 0𝑚

𝑖=1 )
𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
 (2.10) 

where �̂�𝑖(𝒙
(𝑗)) is the surrogate prediction of the ith limit-state function at the jth sampling point 𝑥(𝑗). Eq. 

(2.10) can be re-written as  

 

𝑝𝑓
𝑠 = 

∑ 𝐼(min(�̂�𝑖(𝒙
(𝑗)))≤0)

𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
= 

∑ 𝐼(�̂�𝑚𝑖𝑛(𝒙
(𝑗))≤0)

𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
 (2.11) 

 

Similarly, the failure probability of the intersection of individual failures (referred to as a parallel 

combination) is given by 

 
𝑝𝑓
𝑠 = Pr(⋂𝑔𝑖(𝑿) ≤ 0

𝑚

𝑖=1

) (2.12) 

Similar to the series system, the failure probability of a parallel system can be calculated using MCS as 

 
𝑝𝑓
𝑠 = 

∑ 𝐼(⋂ �̂�𝑖(𝒙
(𝑗)) ≤ 0𝑚

𝑖=1 )
𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
 (2.13) 

The above equation can be written as  

 

𝑝𝑓
𝑠 = 

∑ 𝐼(max(�̂�𝑖(𝒙
(𝑗)))≤0)

𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
= 

∑ 𝐼(�̂�𝑚𝑎𝑥(𝒙
(𝑗))≤0)

𝑛𝑀𝐶𝑆
𝑗=1

𝑛𝑀𝐶𝑆
 (2.14) 

Fig. 2.1 provides graphical illustrations of composite limit states for series and parallel combinations of 

three individual limit states, 𝑔𝑖(𝑿) = 0, 𝑖 = 1,2, . . 𝑚. When a system failure is defined through a mixture 

of series and parallel combinations of component failures, the system reliability can be estimated by the 

following steps [31]: (1) decompose the combined system into a set of mutually exclusive series 
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combinations, (2) compute the reliability of each series combination, and (3) compute the system 

reliability using the reliabilities of each of the mutually exclusive series combinations.  

  

(a) (b) 

Fig. 2.1. Composite limit state of three individual limit states 

2.2.3. Reliability analysis errors 

In addition to the uncertainty sources mentioned in Section 2.1, other sources such as the uncertainty 

in the surrogate model prediction and Monte Carlo sampling error exist during prediction analysis (such 

as uncertainty quantification and reliability analysis). For the sake of simplicity, these two errors are 

referred to as reliability analysis errors in this work. 

Uncertainty in surrogate model prediction: In this work, the variance (and not bias) associated with 

the prediction of a surrogate is called surrogate uncertainty. For example, the calibration framework by 

Kennedy and O’Hagan (referred to as KOH) [28] constructs a Gaussian Process surrogate model to replace 

the expensive physics model. The prediction of a Gaussian process model is not a deterministic quantity 

but a Gaussian distribution, with parameters dependent on the input. The uncertainty in the surrogate 

model prediction (i.e., prediction variance) represents another uncertainty source to be considered for a 

comprehensive reliability analysis. Since a surrogate (GP model) is employed in this work for reliability 

analysis, the details about surrogate uncertainty and its impact on the reliability estimate are discussed 

later, in Section 3.2.  
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Monte Carlo Simulation (MCS) error: MCS error represents the error due to the use of limited 

number of Monte Carlo samples for uncertainty propagation. The MCS error is quantified as the difference 

between the empirical CDF (constructed  using Monte Carlo samples after uncertainty propagation) and 

the true CDF of the output quantity of interest [32].  

 Consider the model 𝑌 = 𝑔(𝑿) and let 𝑁𝑠 samples be generated from the input and propagated through 

the model to obtain the samples of the output 𝑌. Let �̅�𝑌(𝑦) represent the empirical CDF constructed from 

𝑁𝑠 samples and 𝐹𝑌(𝑦) be the true CDF. If 𝑛𝑦 samples are less than a value of 𝑌 = 𝑦∗, then 𝑛𝑦 follows a 

binomial distribution 𝑛𝑦~𝐵(𝑁𝑠, 𝐹𝑌(𝑦)) considering the value of each sample as the result of a Bernoulli 

trial [31]. As 𝑁𝑠  becomes larger, the binomial distribution can be approximated with a Gaussian 

distribution. A review of several empirical rules that have been proposed in the literature for approximating 

a binomial distribution with a Gaussian distribution is provided in [33]. The most commonly used rule, as 

stated in [33], is 𝑁𝑠𝐹𝑌(𝑦) > 5 and 𝑁𝑠(1 − 𝐹𝑌(𝑦)) > 5. Let us consider this case. A large of Monte Carlo 

samples are generally used in surrogate-based methods since it is computationally inexpensive. Even if 

we use about 100,000 samples (which is a common number in surrogate-based methods), the threshold 

𝐹𝑌(𝑦)  value is 5
0.00005

100000
  , which covers more than 99.99% of the domain.  

Since the CDF value from the Monte Carlo output samples is given by �̅�𝑌(𝑦) =
𝑛𝑦

𝑁𝑠
, we have   

 

�̅�𝑌(𝑦) ~𝑁(𝐹𝑌(𝑦),√
(𝐹𝑌(𝑦)(1 − 𝐹𝑌(𝑦))

𝑁𝑠
 (2.15) 

Therefore, the MCS error associated with �̅�𝑌(𝑦) can be expressed as a Gaussian random variable with 

mean and standard deviation as given in Eq. (2.15). Since the true CDF (𝐹𝑌(𝑦) is unknown, Eq. (2.15) 

cannot be used directly. However, confidence intervals for 𝐹𝑌(𝑦) can be estimated given the empirical 



 21 

CDF �̅�𝑌(𝑦) , the number of samples used 𝑁𝑠  and the degree of accuracy 𝛾  as [�̅�𝑌(𝑦)  + 
𝑧𝛾
2

2

2×𝑛𝑀𝐶𝑆
 ±

 √
𝑝𝑓
𝑠(𝑗) (1−𝑝𝑓

𝑠(𝑗))

𝑁𝑠
+ 

𝑧𝛾
2

2

4×𝑛𝑀𝐶𝑆
2 ] ×

1

1+ 

𝑧𝛾
2

2

𝑛𝑀𝐶𝑆

, where 𝑧𝛾
2
  refers to the 1 −

𝛾

2
 quantile of the standard normal 

distribution [34]. It should be noted that the true CDF 𝐹𝑌(𝑦) is a fixed quantity but unknown; therefore, it 

is an epistemic source of uncertainty and quantified using confidence intervals. For given values of 

�̅�𝑌(𝑦) and 𝑁𝑠, we can estimate the percentile values of 𝐹𝑌(𝑦) by varying the accuracy parameter 𝛾. From 

the percentile values, the entire CDF can be numerically constructed which can then be used to obtain a 

PDF. 

For illustration, let ,l u  represent the lower and upper bounds of confidence intervals corresponding 

to accuracy parameter 𝛾 . Therefore, 𝑃𝑟(𝐹𝑌(𝑦) < 𝑢) = 1 −
𝛾

2
  and 𝑃𝑟(𝐹𝑌(𝑦) < 𝑙) =

𝛾

2
 . Hence, the CDF 

values at 𝐹𝑌(𝑦) = 𝑙, 𝑢 are 
𝛾

2
  and 1 −

𝛾

2
 respectively. Following the same procedure at multiple values of 

𝛾, the CDF values at the corresponding lower and upper bounds of the confidence intervals can be obtained 

which can be used to construct the CDF of 𝐹𝑌(𝑦). After identifying and quantifying several uncertainty 

sources (statistical and model uncertainty, reliability analysis errors), their aggregated effect on the 

reliability estimate is detailed in Chapter 3.  

2.3 Surrogate modeling 

If the computational model for 𝑔(𝑿) is expensive, two categories of surrogates have been used in the 

reliability analysis literature – general-purpose surrogates that estimate the output for any given input i.e. 

𝑔(𝑿), and limit-state surrogates that particularly model the failure limit state i.e. 𝑔(𝑿) − 𝑔𝑜 = 0.  
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2.3.1 General purpose surrogate 

The goal of a general-purpose surrogate is prediction of response at particular input values within the 

domain in which the surrogate is constructed. The first step in building a surrogate is the selection of the 

input variable ranges. After selecting the input ranges, training points are generated in such a way that 

they cover all regions of the input domain.  Typically, several design of experiments (DoE) techniques 

[35] such as Latin hypercube sampling (LHS), full-factorial design and stratified sampling are used to 

generate training points for building a surrogate.  

In this work, we use a Gaussian process surrogate for its flexibility to capture non-linear variations of 

the original function for which the surrogate is constructed. A Gaussian process (GP) model represents 

the function outputs at several inputs using a multivariate Gaussian distribution. Let 𝒙𝑻 and 𝑦𝑇 represent 

the training inputs and their corresponding outputs. Let 𝒙𝑷 represent the new inputs at which their model 

prediction (𝑦𝑃 ) are required. A Gaussian process is parameterized through a trend function and a 

covariance function, parameterized through a covariance kernel.  For illustration, we define a Gaussian 

process below with one input and one output.  

 𝐺(𝑋) = ℎ(𝑋)𝑇𝛽 + 𝑃(𝑋) (2.16) 

In the above equation, 𝐺(𝑋) is the approximation to the original model, ℎ(𝑋)𝑇𝛽 is the trend function and 

𝑃(𝑋) represents a zero-mean Gaussian process. The trend function is typically a parametric function such 

as a linear or a quadratic function; this captures the overall behavior of the original function whereas 𝑃(𝑋)  

captures the errors between the trend and the original function. The covariance between the outputs is 

represented through the assumed kernel function. Several types of kernels are available such as linear, 

squared-exponential and Matern kernels [36]. The squared-exponential kernel (given below) represents 

the most-widely used covariance kernel.  
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 𝐶(𝑦𝑖, 𝑦𝑗) = 𝜎2 × exp (−𝜆(𝑥𝑖 − 𝑥𝑗)
2
) (2.17) 

In Eq. (2.17), 𝜎 and 𝜆 are referred to as process variance and length-scale parameter; these parameters are 

estimated using the training points. 𝐶(𝑦𝑖, 𝑦𝑗) represents the covariance between outputs 𝑦𝑖 and 𝑦𝑗 at two 

inputs, 𝑥𝑖 and 𝑥𝑗. Given the training points, the estimated parameters (𝜎, 𝜆) and the new inputs, 𝑥𝑃, the 

corresponding model predictions 𝑦𝑃 can be calculated as  

 Pr(𝑦𝑃|𝑥𝑇 , 𝑦𝑇 , 𝜆, 𝜎) ~ 𝑁(𝑚, 𝑆) (2.18) 

As the function outputs are represented through a multivariate Gaussian distribution, the conditional 

distribution over a subset of those outputs also represents a multivariate Gaussian distribution. In the above 

equation, 𝑚 and 𝑆 represent the mean and covariance functions of 𝑦𝑃; the expressions of them are given 

below as   

 𝑚 =  ℎ(𝑥)𝑇𝛽 + 𝐾𝑃𝑇𝐾𝑇𝑇
−1(𝑦𝑇 − ℎ(𝑥𝑃)

𝑇𝛽) (2.19) 

 𝑆 = 𝐾𝑃𝑃 −𝐾𝑃𝑇𝐾𝑇𝑇
−1𝐾𝑇𝑃 (2.20) 

In Eqs. (2.19) and (2.20), 𝐾𝑇𝑇  and 𝐾𝑃𝑃  represent the covariance matrices between the training and 

prediction points. 𝐾𝑇𝑃 represents the covariance matrix between the training and prediction points, and 

𝐾𝑃𝑇 is the transpose of 𝐾𝑇𝑃. More details regarding Gaussian Process models are available in [36]. After 

considering a general-purpose surrogate, we consider a limit-state surrogate below.  

2.3.2. Limit state surrogate 

The limit state surrogate is primarily useful for reliability analysis (prediction around the limit state) 

and not for general-purpose prediction in the input domain. For a general-purpose surrogate, the training 

points are selected using DoE techniques such that the entire input ranges are covered. However, a limit 
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state surrogate requires training points along the failure limit state, as its goal is to accurately model the 

limit state. Several techniques have been developed in the literature such as EGRA [37], META-IS [38] 

and AK-MCS [39] that proposed several criteria for selecting training points. In this work, we follow the 

EGRA (Efficient Global Reliability Analysis) approach for selecting training points, as discussed below.  

In EGRA, a Gaussian Process surrogate is constructed to approximate the limit state equation, 

 𝑔𝑒𝑥𝑡(𝑿) = 𝑔𝑜, i.e., we are building a surrogate for the classifier or boundary between failure and safety. 

(Note that 𝑔𝑒𝑥𝑡(𝑿) = 𝑔(𝑿) for a component, 𝑔𝑒𝑥𝑡(𝑿) = 𝑔𝑚𝑖𝑛(𝑿)  for a series system; and 𝑔𝑒𝑥𝑡(𝑿) =

𝑔𝑚𝑎𝑥(𝑿)  for a parallel system). Using the idea of the Expected Improvement (EI) [40], EGRA adaptively 

selects training points close to the limit state to accurately model 𝑔𝑒𝑥𝑡(𝑿). The selection of training points 

is based on a learning function called the Expected Feasibility Function (EFF) defined as [37] 

𝐸𝐹𝐹(𝒙) = (𝜇𝑔(𝒙) − 𝑒) [2𝛷 (
𝑒 − 𝜇𝑔(𝒙)

𝜎𝑔(𝑥)
) − 𝛷 (

𝑒𝐿 − 𝜇𝑔(𝒙)

𝜎𝑔(𝑥)
) − 𝛷 (

𝑒𝑈 − 𝜇𝑔(𝒙)

𝜎𝑔(𝑥)
)]

− 𝜎𝑔(𝒙) [2𝛷 (
𝑒 − 𝜇𝑔(𝒙)

𝜎𝑔(𝒙)
) − 𝛷 (

𝑒𝐿 − 𝜇𝑔(𝒙)

𝜎𝑔(𝒙)
) − 𝛷 (

𝑒𝑈 − 𝜇𝑔(𝒙)

𝜎𝑔(𝒙)
)]

− [𝛷 (
𝑒𝐿 − 𝜇𝑔(𝒙)

𝜎𝑔(𝒙)
) − 𝛷 (

𝑒𝑈 − 𝜇𝑔(𝒙)

𝜎𝑔(𝒙)
)] 

(2.21) 

where 𝑒  is the failure threshold, 𝑒𝑈 = 𝑒 + 𝜖 , 𝑒𝐿 = 𝑒 − 𝜖 , 𝜇𝑔(𝒙) , 𝜎𝑔(𝒙)  are the mean and standard 

deviation of the GP prediction at point 𝑿 = 𝒙, 𝜖  is usually chosen as 2𝜎𝑔(𝒙) [13], and 𝛷  and 𝜙 are the 

CDF and PDF of a standard Gaussian variable, respectively. In EGRA, a new training point is identified 

by maximizing the EFF as 𝒙∗ = 𝑀𝑎𝑥(𝐸𝐹𝐹(𝒙)). More details about EGRA are available in [41]. EGRA 

and other similar methods that focus on limit state surrogates such as META-IS [38] and AK-MCS [39] 

have so far concentrated on reliability analysis with only aleatory uncertainty. In practical applications, 

several sources of epistemic uncertainty may be involved in the reliability analysis; therefore, Chapter 3 

considers the inclusion of epistemic uncertainty in the limit state surrogate construction. In addition, the 
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uncertainty in the reliability estimate computed using a limit state surrogate due to reliability analysis 

errors is detailed in Chapter 3. 

2.4 Global sensitivity analysis 

Sensitivity analysis, in general, estimates the influence of model inputs or model components to some 

feature of interest in the model output. Two types of sensitivity analysis are available – local and global 

[32] . The local sensitivity index of a quantity (input variable, model parameter or model error term) 

measures the variation of the model prediction when the variable is fixed at a single value whereas the 

global sensitivity index measures the variability of model prediction when the quantity is varied over its 

probability distribution. Variance has been commonly used as the measure of model output variability. 

Global sensitivity analysis (GSA) is used in this work as it considers the entire probability distribution of 

a variable in assessing the uncertainty contribution to the output. 

Consider a model with 𝒏 random input variables 𝑋1  , 𝑋2 , . . . , 𝑋𝑛 given by  

 𝑌 =  𝐺(𝑋1 , 𝑋2 , 𝑋3 , . . . , 𝑋𝑛 ) (2.22) 

    Variance-based GSA is based on the variance decomposition theorem, where the variance in an output 

variable is decomposed as  

 𝑉𝑎𝑟(𝑌) = 𝐸𝑋𝑖 (𝑉𝑎𝑟𝑋~𝑖(𝑌|𝑋𝑖)) + 𝑉𝑎𝑟𝑋𝑖(𝐸𝑋~𝑖(𝑌|𝑋𝑖)) 
(2.23) 

where 𝑌 represents the output variable (model prediction), 𝑋𝑖  is the variable for which the sensitivity 

measures are computed, and  𝑋~𝑖  represents all the other variables excluding  𝑋𝑖 . Two indices are 

commonly computed for each variable – main effect, also called the first-order effect, and total effect. The 

first-order effect index (𝑆𝑖
𝐼 ) quantifies the individual contribution from the uncertainty in an input variable 
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𝑋𝑖  (without considering its interaction with other variables), to the overall uncertainty in the output 

variable and is given by 

 

𝑆𝑖
𝐼  =

𝑉𝑎𝑟𝑋𝑖 (𝐸𝑋~𝑖(𝑌|𝑋𝑖))

𝑉𝑎𝑟(𝑌)
 (2.24) 

where 𝐸𝑋~𝑖(𝑌|𝑋𝑖) calculates the expected value of the model output 𝑌 when 𝑋𝑖 is fixed at a specific value, 

and  𝑉𝑎𝑟𝑋𝑖 computes the variance of this expected value when the randomness in  𝑋𝑖 is included. The 

contribution from the variable 𝑋𝑖 including its interaction with all other variables is quantified by the total 

effects index, computed as 

 

𝑆𝑖
𝑇 = 1 −

𝐸𝑋~𝑖 (𝑉𝑎𝑟𝑋𝑖(𝑌|𝑋~𝑖))

𝑉𝑎𝑟(𝑌)
 (2.25) 

where 𝑉𝑎𝑟𝑋𝑖(𝑌|𝑋~𝑖) computes the variance of 𝑌 when all the input variables except for 𝑋𝑖 are fixed at 

specific values, and  𝐸𝑋~𝑖  calculates the expected value of this variance considering the randomness in 

𝑋~𝑖 . Note that superscripts 𝐼 and 𝑇 on 𝑆𝑖 in Eq. (2.24) and (2.25) are used to represent individual effects 

and total effects respectively. 

The above described sensitivity analysis approach can also be extended to include model parameters, 

𝜣𝑴.  Consider a function 𝑌 = 𝐺(𝑿,𝜣𝑴) where 𝐺(. ) represents a deterministic function connecting the 

inputs and model parameters to the output 𝑌. In such cases, for the purpose of sensitivity analysis, the 

model parameters can also be treated in the same manner at the input variables 𝑿 [42]. One of the 

assumptions made in the development of these indices (Eqs. 2.24 and 2.25) is the independence between 

several inputs and model parameters [43]. In the presence of correlated inputs (or model parameters), the 

first order index can still be used to measure the relative importance of several inputs (or model 

parameters) to the output; however the total effects index is no longer applicable [44].  
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Computation of sensitivity indices (Eqs 2.24 and 2.25) can be computationally expensive as it involves 

a double-loop Monte Carlo, where in the case of the first order index, 𝐸𝑋~𝑖(𝑌|𝑋𝑖) is calculated for 𝑘1 

realizations of 𝑋−𝑖 and in the outer loop, 𝑉𝑎𝑟𝑋𝑖 (𝐸𝑋~𝑖(𝑌|𝑋𝑖)) is computed for 𝑘2 realizations of 𝑋𝑖. For 

computation of the total variance in 𝑌(𝑉𝑎𝑟(𝑌)), i.e., the denominator in Eq. 2.24, assume 𝑘3 realizations 

of the inputs (or model parameters) are considered. Therefore, the total number of model evaluations 

required can be computed as 𝐶 = 𝑛𝑘1𝑘2 + 𝑘3, where 𝐶 represents the total number of model evaluations, 

𝑛 is the number of inputs (or model parameters). For sampling-based methods, the number of realizations 

that need to be considered is typically very high, in the order of 103 and may increase depending on the 

problem. For a ten-dimensional problem, the number of model evaluations can be in the order of 107.   

Several algorithms have been developed in the literature to combat the high computational expense 

involved with the computation of sensitivity indices. Some of the techniques include Sobol’s scheme [45], 

Fourier Amplitude Sensitivity Test (FAST) [46] and its variant, improved FAST [47], Importance 

sampling and kernel regression [48]  and a modularized approach for sensitivity analysis [49]. In this 

dissertation, we use the modularized approach for computation of first order sensitivity indices, as it uses 

the input-output samples from the computation of 𝑉𝑎𝑟(𝑌) to estimate the first-order indices. The steps in 

the algorithm are given below.  

1. The domain of an input variable (or model parameter) whose first order index is required, is 

discretized into 𝑀 equally probable intervals.  

2. The samples of the output 𝑌 corresponding to the each of the intervals are obtained. 

3. Using the samples in each interval, the mean value of 𝑌 in each interval is calculated. The mean 

value corresponds to 𝐸(𝑌|𝑋𝑖) 
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4. Using the mean values obtained in the previous step for several intervals, the variance of all the 

mean values is computed. This provides us with the numerator term 𝑉𝑎𝑟𝑋𝑖 (𝐸𝑋~𝑖(𝑌|𝑋𝑖)) in Eq. 

2.24.  

5. First order index of 𝑋𝑖 is thus equal to the ratio of output from Step 4 and the overall variance 

computed ahead of Step 1 (those samples are used to carry out Steps 1-4).  

The above five steps are repeated to compute first-order sensitivity indices of all input variables (or 

model parameters). Therefore, the overall computational expense is equal to 𝑘3 and does not vary with 

the number of input variables. The computational expense is significantly lower than the double-loop 

approach, which is equal to 𝑛𝑘1𝑘2 + 𝑘3, from the discussion above.  

As sensitivity analysis provides the relative contributions of several inputs to the variance in the system 

output, the inputs that do not have significant contributions can be assumed deterministic at their nominal 

values; this process can be used for dimension reduction. More details regarding the application of 

sensitivity analysis for dimension reduction are provided in Section 4.2.4.  

2.5 Auxiliary variable approach 

Section 2.4 discussed sensitivity analysis when the distributions of inputs (or model parameters) are 

known, i.e., the distribution parameters are known deterministically. There may arise some cases where 

the distribution parameters of some inputs are not precisely due to sparse, uncertain or imprecise data as 

discussed in Section 2.1.1. When the distribution parameters are unknown, then the distribution 

parameters are also represented using probability distributions in a Bayesian probability framework 

(Section 2.1.1). It is desirable to estimate the sensitivity indices of the distribution parameters to identify 

their contributions to the variance of the output. However, for a given value of the distribution parameter, 

the random variable 𝑋 is represented by a probability density function (PDF). As 𝑋 is represented by a 
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PDF, the system output is also represented by a PDF in the presence of a deterministic function between 

the inputs and the output. Therefore, the relationship between the distribution parameters and the model 

output is not deterministic but stochastic in nature. In such scenarios where stochastic relationship exist, 

the auxiliary variable approach [50] can be used to devise a deterministic relationship between the 

distribution parameters and the model output.  

Let 𝑋 represent a random variable with 𝚯𝑋 as its distribution parameters. When the values of 𝚯𝑋 are 

known, then the random variable 𝑋 can be represented using a single probability distribution. However, 

if 𝚯𝑋 is uncertain, then 𝑋 has a different probability distribution for each realization of the distribution 

parameters (𝚯𝑋 = 𝚯𝑋
∗ ). When multiple realizations of 𝚯𝑋 are considered, then 𝑋 is represented using a 

family of distributions, as shown in Fig. 2.2.  

 

Fig. 2.2. Illustration of a family of PDFs due to parameter uncertainty 

 

If 𝑓(. ) represents a PDF (probability density function), then 𝑓(𝑋|𝚯𝑋 = 𝚯𝑋
∗ ) is a single PDF whereas 

𝑓(𝑋)  is represented as a family of PDFs.  𝑓(𝑋|𝚯𝑋 = 𝚯𝑋
∗ )  represents the variability in 𝑋  when the 

parameters are fixed, i.e., 𝚯𝑋 = 𝚯𝑋
∗ . Therefore, the overall uncertainty in 𝑋 is due to two uncertainty 
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sources – (1) uncertainty regarding the distribution parameters (epistemic uncertainty), and (2) variability 

in 𝑋 when the distribution parameters are fixed (aleatory uncertainty). 

It is desirable to quantify the contributions of each of the uncertainty sources to the overall uncertainty 

as it helps in the decision-making process, i.e., if the contribution of epistemic uncertainty is larger 

compared to the aleatory uncertainty, then additional data may be collected to reduce the uncertainty in 

the distribution parameters. In the auxiliary variable approach [50], the auxiliary variable corresponds to 

the variability in 𝑋 for fixed distribution parameters. If 𝑈𝑋 represents the auxiliary variable, then it can be 

defined as 𝑈𝑋 = 𝐹(𝑋|𝚯𝑋), where 𝐹(. ) represents the CDF of 𝑋. Thus, for a realization of 𝑈𝑋, denoted as 

𝑈𝑋
∗ , a sample of 𝑋, denoted as 𝑥, can be computed as  

 𝑥 = 𝐹−1(𝑈𝑋 = 𝑈𝑋
∗|𝚯𝑋 = 𝚯𝑋

∗ ) (2.26) 

In Eq. (2.26), 𝐹−1(. ) represents the inverse CDF of 𝑋. It should be noted that 𝑈𝑋 follows a uniform 

distribution between 0 and 1, as it represents the CDF of 𝑋, when conditioned on a set of distribution 

parameters, 𝚯𝑋 = 𝚯𝑋
∗ . For several realizations of 𝑈𝑋 and 𝚯𝑋, several values of the random variable 𝑋 can 

be obtained  using the inverse CDF, and thus sensitivity analysis can be carried out.  

To differentiate between the inputs with and without uncertainty distribution parameters, we divide 

the inputs into two non-intersecting subsets 𝑿𝑝  and 𝑿𝑛𝑝 . Therefore,  𝑌 = 𝐺(𝑋𝑝, 𝑋𝑛𝑝, 𝛩𝑀)  is a 

deterministic relationship. Using the auxiliary variable representation, an input ∈ 𝑋𝑝can be replaced by an 

auxiliary variable and its distribution parameters using Eq. 2.26.  Therefore, a deterministic relationship 

between the inputs and the output, after considering uncertain distribution parameters can be given as  

 𝑌 = 𝐻(𝑈𝑝, 𝛩𝑝, 𝑋𝑛𝑝, 𝛩𝑀) (2.27) 

where 𝑈𝑝 and 𝛩𝑝 correspond to the auxiliary variables and distribution parameters of 𝑋𝑝. 𝐻(. ) represents 

the deterministic relationship between the uncertain distribution parameters and the model output. The 
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functions 𝐻(. ) and 𝐺(. )  can be related using the inverse CDF in Eq. 2.26 as 𝐻(𝑈𝑝, 𝛩𝑝, 𝑋𝑛𝑝, 𝛩𝑀) =

𝐺(𝐹−1(𝑈𝑝|𝛩𝑝), 𝑋𝑛𝑝, 𝛩𝑀). In some cases, it might be possible that the relationship between the inputs 𝑋 

and 𝑌 is not deterministic but stochastic in nature. An example of such a case is when a Gaussian process 

model is used, which provides a Gaussian distribution as an output with parameters dependent on the input. 

Presence of a stochastic model is not conducive for carrying out sensitivity analysis. Therefore, we again 

use the auxiliary variable for representing the uncertainty in the model output, which enables us to obtain 

a deterministic relationship and to carry out sensitivity analysis.  

Similar to Eq. (2.26), the model output can be represented in terms of an auxiliary variable and its 

distribution parameters as 𝑌 = 𝐹−1(𝑈𝑌|𝛩𝑌). The distribution parameters 𝛩𝑌 (which represent the mean 

and a standard deviation when a Gaussian process is used) are dependent on the inputs (or distribution 

parameters of inputs or model parameters) as 𝛩𝑌 = 𝐽(𝑈𝑝, 𝛩𝑝, 𝑋𝑛𝑝, 𝛩𝑀) . Therefore, the deterministic 

relationship (represented as 𝐾) between the model output and the several types of inputs (model inputs, 

model parameters and distribution parameters of model inputs) in the presence of a stochastic model can 

be given as  

 𝑌 = 𝐾(𝑈𝑌, 𝑈𝑝, 𝛩𝑝, 𝑋𝑛𝑝, 𝛩𝑀) (2.28) 

where 𝐾(𝑈𝑌, 𝑈𝑝, 𝛩𝑝, 𝑋𝑛𝑝, 𝛩𝑀) =  𝐹
−1(𝑈𝑌|𝐽(𝑈𝑝, 𝛩𝑝, 𝑋𝑛𝑝, 𝛩𝑀)) . Though the auxiliary variable was 

initially developed to represent the aleatory uncertainty at a given realization of the distribution parameters, 

it is later extended to handle uncertainty in the model prediction (a source of epistemic uncertainty). Thus, 

the auxiliary variable can be used to represent both aleatory and epistemic uncertainty sources. More 

details regarding the use of auxiliary variable to handle different uncertainty sources are given in [51]. In 

this dissertation, we use the auxiliary variable to represent the uncertainty in the model discrepancy 

prediction, as it is modeled using a Gaussian process. The auxiliary variable-based model discrepancy 
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representation is then used in the construction of a limit state surrogate, which is used for reliability 

analysis. More details are provided in Section 3.2. 

2.6 Bayesian networks 

The discussion thus far considered uncertainty representation in variables and their propagation 

through a single physics-based model to obtain the uncertainty in the output QoI. For a system with 

multiple components, physics-based models may not be available for all the components but some data 

might be available. In addition, the uncertainty from several individual models may combine in a linear 

or a non-linear manner to obtain the uncertainty in the system QoI.  In such cases, where a combination 

of physics-based models and data are available to represent a system, Bayesian networks offer a systematic 

and a rigorous approach to fuse the information from multiple models and aggregate several uncertainty 

sources arising from multiple models to estimate the uncertainty in the system QoI. Also, in the presence 

of any new information regarding the system, a Bayesian network facilitates the inference of parameters 

corresponding to several models simultaneously. In this dissertation, we consider multi-level systems, 

time varying coupled systems and coupled multi-physics systems each consisting of several components. 

Therefore, a brief introduction to Bayesian networks is given below.  

A Bayesian network (BN) represents the joint probability distribution of a set of random variables 

through a directed acyclic graphical model. The graphical model consists of nodes and directed arcs where 

nodes represent random variables and arcs represent the dependence between the nodes. Using the 

directional information from the graphical model, the joint probability of the random variables is 

represented as a product of conditional and marginal probability distributions. The joint probability of 𝒏 

random variables, 𝑿 = {𝑋1, 𝑋2…𝑋𝑛} can be represented as  
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𝑓(𝑿) =  ∏𝑓(𝑋𝑖|Π𝑋𝑖)

𝑛

𝑖=1

 (2.29) 

where Π𝑋𝑖  represents the set of parent nodes of  𝑋𝑖 , i.e., nodes from which the arcs direct to 𝑋𝑖  and 

𝑓(𝑋𝑖|Π𝑋𝑖) represents the conditional probability distribution of 𝑋𝑖 conditioned on its parent nodes. If 𝑋𝑖 

has no parent nodes (also referred to as root nodes), then 𝑓(𝑋𝑖|Π𝑋𝑖) represents the marginal distribution 

of 𝑋𝑖. For illustration, consider a 5-node Bayesian network shown in Fig. 2.3. 

 

Fig. 2.3. An illustrative Bayesian network. 

Using the dependence information from Fig. 2.3, the joint probability distribution of 𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5 

can be described as  

 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5) = 𝑓(𝑋1)𝑃(𝑋2)𝑃(𝑋3|𝑋1, 𝑋2)𝑃(𝑋4|𝑋3, 𝑋1)𝑃(𝑋5|𝑋2) (2.30) 

Techniques for the construction of Bayesian networks are discussed below in Section 2.6.1. Bayesian 

networks are primarily used to update our knowledge on a subset of random variables when another subset 

of random variables is observed. Depending upon the network complexity, several analytical and 

approximate techniques have been developed to perform Bayesian Inference; these techniques are 

discussed in Section 2.7. 
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2.6.1 Bayesian network construction 

The techniques for constructing a BN can be broadly classified into three types: (1) physics-based, (2) 

data-driven, and (3) hybrid approaches. The physics-based approach relies on mathematical models that 

represent the relationships between the system variables.  The data-driven approach uses the available 

data to learn the BN structure and conditional probabilities using learning algorithms discussed later in 

this section. In some cases, mathematical models might be available for some segments of the system and 

data is available for other segments. In such a scenario, a hybrid approach is taken, where physics-based 

equations are used to model some dependence relations whereas the remaining relationships are learned 

from the available data. The BN is constructed in two stages – (1) a partial BN is obtained using the 

available physics-based models, and (2) the BN constructed in step 1 is used as a prior for learning the 

remaining dependence relations using the available data. 

2.6.2. Learning Bayesian networks from data 

The goal of the learning algorithms is to identify a BN that best describes the available data. The 

learning process involves two tasks: structure learning and parameter learning.  Structure learning involves 

finding a graphical structure that best represents the dependence between nodes based on available data. 

Parameter learning involves quantification of dependence among the nodes by estimating the parameters 

of the conditional probability distributions/tables [52].  

      The structure learning algorithms can be broadly divided into three categories: (1) constraint-based, 

(2) score-based, and (3) hybrid [52].  Constraint-based methods employ conditional independence tests to 

learn an optimal BN [52]. A commonly used conditional independence test is the mutual information test. 

The expressions for mutual information (𝐼𝑋,𝑌) in the case of discrete variables and continuous variables 

are given in Eqs. (2.29, 2.30) respectively, as 
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𝐼𝑋,𝑌 = ∑∑𝑃𝑟(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑃𝑟(𝑥, 𝑦)

𝑃𝑟(𝑥)𝑃(𝑦)
)

𝑋𝑌

 (2.31) 

 
𝐼𝑋,𝑌 = ∫ ∫ 𝑃𝑟(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑃𝑟(𝑥, 𝑦)

𝑃𝑟(𝑥)𝑃(𝑦)
)

𝑋𝑌

 (2.32) 

where 𝑃𝑟(𝑥, 𝑦) represents the joint probability distribution of 𝑋 and 𝑌, and 𝑃𝑟(𝑥) and 𝑃𝑟(𝑦) represent 

the marginal distributions of 𝑋 and 𝑌, respectively. Some other conditional independence tests that are 

used include linear correlation and conditional correlation for continuous variables, and G-test and Chi-

square test [23] for discrete variables.  

In score-based learning, every candidate BN structure is assigned a network score based on the 

goodness-of-fit for available data and a set of heuristic optimization techniques are used to obtain the BN 

that optimizes the defined score. Some commonly used metrics that are used for scoring Bayesian 

networks include Log-likelihood, Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Minimum Description Length (MDL) and Bayesian Dirichlet Equivalence (BDe) [22]. A 

commonly used scoring metric is Bayesian Dirichlet equivalence (BDe). The BDe based scoring criterion 

maximizes the posterior probability of a network-structure given data and is given as 

 
𝑃𝑟(𝐺|𝐷)  ∝ 𝑃𝑟(𝐷|𝐺) 𝑃(𝐺) = 𝑃 𝑟(𝐺)∫𝑃𝑟(𝐷|𝐺, 𝛩) 𝑃𝑟(𝛩|𝐺) 𝑑𝛩 (2.33) 

      In Eq. (2.33), 𝐺, 𝐷 represent the structure of the BN and available data, respectively. Θ represents the 

parameters of the conditional probability distributions.  

Hybrid algorithms employ both conditional independence tests and network scores for learning the 

BN structure. The conditional independence tests are first used to reduce the space of candidate BN 

structures and score-based methods are then used to obtain the optimal BN structure among them [52].  

Parameter learning algorithms estimate the parameters of the conditional probability distributions from 
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available data using the maximum-likelihood approach [53]. We use the concept of Bayesian networks 

for computationally efficient performance assessment framework in multi-level and multi-physics systems 

detailed in Chapters 4 and 6 respectively.  

 

Fig. 2.4. A conceptual representation of a hierarchical Bayesian network 

2.6.3 Hierarchical Bayesian networks 

A hierarchical Bayesian network (HBN) can be considered as a Bayesian network where each node 

may be connected to another lower-level Bayesian network forming a hierarchy. Any number of levels 

are possible i.e., a node in a lower level BN can also represent a further lower level Bayesian network. 

The focus in this work is to compose the BN of a hierarchical system (such as a manufacturing network) 

by integrating the BNs of subsystems at multiple levels (see Chapter 4). Fig. 2.4 shows a simple 

representation of a hierarchical Bayesian network. In Fig. 2.4, the HBN consists of two levels – Level 1 

and Level 2. The root variables in the Level 2 BN (𝑺𝟏 and 𝑺𝟐) are connected to lower-level BNs. Chapter 

4 discusses HBNs for performance assessment in multi-level systems, with multiple possible levels of 

hierarchy.  
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2.6.4 Dynamic Bayesian networks 

Dynamic Bayesian Networks belong to a class of state-space models used to model the time-dependent 

behavior of dynamic systems. A DBN can be regarded as a composition of two BNs. (1) a BN connecting 

the variables in a single time instant, also referred to as a Static BN, and (2) a BN connecting variables 

across time instants, and also referred to as a Transitional BN; these BNs are shown in Fig. 2.5. We 

consider DBNs with the Markov assumption, i.e., the state variables in the current time step are only 

dependent on the state variables in the previous time step and the inputs in the current time step, resulting 

in a 2-slice DBN [54]: 

 𝑷𝒕+𝟏 = 𝐺(𝑷𝒕, 𝒗𝒕+𝟏) (2.34) 

 𝑸𝒕 = 𝐻(𝑷𝒕) (2.35) 

 In the above equations, 𝑷𝒕  and 𝑷𝒕+𝟏  represent the state variables in two time steps. Similarly, 𝑸𝒕 

and 𝑸𝒕+𝟏  represent observation variables at two time steps. The evolution to 𝑷𝒕+𝟏 from 𝑷𝒕  can be 

represented in Eq. (2.34). 𝒗𝒕 and 𝒗𝒕+𝟏 refer to system inputs at time 𝑡 and 𝑡 + 1 respectively. Eq. (2.35) 

represents the relationship connecting observation variables 𝑸𝒕  and state variables 𝑷𝒕 . Probabilistic 

modeling of systems where Markov assumption does not hold good is not considered in this research. 

The techniques used for BN learning (Section 2.6.2) can be extended for learning DBNs [54]. As 

discussed above, a DBN consists of two BNs – static BN and a transitional BN. First, the static BN can 

be learnt using a combination of available physics-based models or data or their combination (hybrid 

approach). We discussed above that the state variables in one time step are dependent on the state variables 

in the previous time step and the inputs in the current time step. As the variables in the transitional BN are 

known, the learning techniques (model, data or hybrid) can again be used for learning the transitional BN. 

Thus, the learning of a DBN reduced to learning two BNs.   
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Dynamic Bayesian networks have been used for real-time health monitoring, diagnosis, prognosis and 

remaining useful life (RUL) estimation for a variety of mechanical [55], manufacturing [56], 

infrastructural [57] and aerospace [58] engineering systems. In this dissertation, we use DBNs for 

modeling coupled and time-varying systems (such as cyber-physical systems) for the purpose of their 

performance assessment. 

 

Fig. 2.5.  A conceptual DBN between two consecutive time steps 

 

2.7 Bayesian inference 

In this section, we discuss the implementation of Bayesian inference in both static and dynamic 

Bayesian networks.  

2.7.1 Inference in a static Bayesian network 

The Bayesian network constructed using the techniques in Section 2.6 can now be used for inferring 

the posterior distributions of unobserved variables (denoted as 𝑿𝒖𝒏𝒐𝒃𝒔) using any data (𝑫) on the observed 

variables (𝑿𝒐𝒃𝒔) via the Bayes’ theorem as  
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𝑓(𝑿𝒖𝒏𝒐𝒃𝒔|𝑿𝒐𝒃𝒔 = 𝑫) =  

𝑓(𝑿𝒐𝒃𝒔 = 𝑫|𝑿𝒖𝒏𝒐𝒃𝒔)𝒇(𝑿𝒖𝒏𝒐𝒃𝒔)

∫ 𝑓(𝑿𝒖𝒏𝒐𝒃𝒔, 𝑿𝒐𝒃𝒔 = 𝑫)  𝒅𝑿𝒖𝒏𝒐𝒃𝒔
 (2.36) 

In Eq. (2.36), the terms 𝑓(𝑿𝒖𝒏𝒐𝒃𝒔|𝑿𝒐𝒃𝒔 = 𝑫) , 𝑓(𝑿𝒖𝒏𝒐𝒃𝒔)  and 𝑓(𝑿𝒐𝒃𝒔 = 𝑫|𝑿𝒖𝒏𝒐𝒃𝒔)  represent the 

posterior distributions of unobserved variables, their prior distributions and the likelihood function of 

observed variables. The denominator term, ∫𝑓(𝑿𝒖𝒏𝒐𝒃𝒔, 𝑿𝒐𝒃𝒔 = 𝑫)  𝒅𝑿𝒖𝒏𝒐𝒃𝒔, refers to the probability of 

observed variables to be equal to the data; this is a deterministic value that can be computed by 

marginalizing over the unobserved variables.  

Updating in a generic Bayesian network can be computationally intractable due to high-dimensional 

integration, i.e., exact inference is prohibitively expensive. However, exact algorithms are available for 

updating in special classes of Bayesian networks such as discrete Bayesian networks, conditional linear 

Gaussian networks, networks where conditional dependence relationships are modeled using mixtures of 

truncated exponentials or truncated polynomials [59].  Some of the exact inference algorithms include 

Junction Tree[53], Variable Elimination [53] and Differential Approach methods [60]. When exact 

updating techniques are not available, sampling-based (approximate) techniques are used to obtain the 

posterior distributions. In the case of forward uncertainty propagation when the observed variables are 

simply the inputs, then the posterior distributions of unobserved (output) variables can be obtained using 

Monte Carlo sampling over the conditional dependence relationships. For the inverse problem of Bayesian 

inference, techniques such as Markov Chain Monte Carlo (MCMC) methods [27], Variational methods 

[28], Bootstrap filters [29] and Approximate Bayesian Inference (ABC) [30] can be used to obtain the 

posterior distributions. Among these approximate methods, the MCMC-based methods are widely used. 

MCMC is not a single algorithm but a class of algorithms that use Markov Chain techniques to achieve 

an approximation to the underlying true posterior distribution. Algorithms such as Metropolis-Hastings 

[61], Gibbs sampling [62] and Slice sampling [63] fall under the class of MCMC algorithms. In this 
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dissertation, we used the Metropolis-Hastings algorithm for Bayesian inference. A brief introduction to it 

is given below.  

As mentioned above, the Metropolis-Hastings (MH) algorithm can be used to obtain an approximation 

of posterior distributions of variables when the analytical solution is computationally expensive. The MH 

algorithm generates a Markov chain of samples, i.e., the next sample is dependent on the previous sample 

(Markov assumption). When the Markov chain converges, the samples in the Markov chain after 

convergence are used to construct the posterior distributions.  A Markov chain is assumed to converge 

when there exist no trend on the sequence of samples and no correlation between successive samples. The 

MH algorithm requires three inputs – (1) a function ℎ(𝑥), that is proportional to the posterior distribution, 

(2) a proposal density function, 𝑗(𝑥∗|𝑥𝑖), which is used to generate samples in the Markov chain and (3) 

an initialization point of the Markov chain, 𝑥0.  

Let 𝐶𝑋 represent the Markov chain of samples. Initially, 𝐶𝑋 = {𝑥𝑜} as 𝑥𝑜  is the initial sample. The 

following steps are repeated for the generation of samples in the Markov chain.  

1. Using the 𝑖𝑡ℎ  sample 𝑥𝑖 , a candidate sample 𝑥∗  is generated according to the proposal density 

function, 𝑗(𝑥∗|𝑥𝑖). Next, we evaluate if this sample needs to be accepted as part of the Markov 

chain. We calculate the acceptance ratio, as 𝑟 = min (1,
ℎ(𝑥∗)

ℎ(𝑥1)
). 

2. The acceptance ratio is then compared against the random uniform sample, 𝑢, generated between 0 

and 1.  

3. If 𝑢 < 𝑟, then the candidate sample is accepted to the Markov chain, i.e., 𝑥𝑖+1 = 𝑥∗. On the contrary, 

if 𝑢 > 𝑟, then the previous sample 𝑥𝑖 is repeated, i.e., 𝑥𝑖+1 = 𝑥𝑖.  
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The samples from the converged segment of the Markov chain are used to construct the posterior 

distributions using techniques such as kernel density estimation. More details regarding the MH algorithm 

are given in [61]. The MH algorithm is later used in Chapter 4 for inference in hierarchical Bayesian 

networks. After considering inference technique in a static BN, we now consider inference in a DBN.  

2.7.2 Inference in a dynamic Bayesian network 

In a DBN, the state variables need to be estimated using the data on observation variables at every 

time step. As DBNs are used in real-time analysis, the inference techniques used need to be 

computationally inexpensive. The commonly used MCMC methods can be computationally demanding 

and may not be suited for real-time analysis. Therefore, several exact and approximate inference 

techniques have been developed to estimate the state variables in real-time. Different techniques are 

available for inference in discrete, continuous and hybrid (both discrete and continuous) variable DBNs. 

In this work, we do not consider discrete variable DBNs but consider only continuous and hybrid DBNs. 

A list of possible inference techniques for discrete DBNs are available in [42]. One of the simplest 

formulations of a DBN is a linear Gaussian system, with linear functions between the state and observation 

variables, and between state variables in successive time steps, and the observation data is associated with 

Gaussian noise (zero mean and fixed covariance). For such linear Gaussian systems, the Kalman filter 

technique [64] provides exact and analytical inference of state variables using data on observation 

variables.  

For non-linear Gaussian systems, variants of Kalman filter such as Extended Kalman filter (EKF) [65] 

and Unscented Kalman filter (UKF) [66] have been developed. These methods are approximate but 

computationally inexpensive. The extended Kalman filter implements local linear approximations, which 

helps to obtain analytical inference. The unscented Kalman filter is based on the concept of unscented 

transform, where the state and observation variables are approximated using Gaussian distributions, and 
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their first and second order moments are obtained with “sigma” points and their associated weights. These 

sigma points are also used to obtain the covariance between the state and observation variables. After 

obtaining Gaussian approximations of the state and observation variables, and the covariance, analytical 

inference (similar to that used in Kalman filter) is used to infer the state variables according to the 

observation data. More details regarding the use of EKF and UKF are given in [67]. 

Apart from Kalman filter and its variants, several sampling-based inference techniques are available 

for generic non-linear and non-Gaussian noise systems such as particle filtering methods. Similar to 

MCMC, particle filtering is not a single algorithm but a class of algorithms; some of the algorithms include 

Sequential Importance Sampling (SIS), Sequential Importance Resampling (SIR) and Rao-Blackwellized 

Particle Filter [67]. In this work, we use the SIR algorithm; the steps in the algorithm are given below. 

1. Generate 𝑁 samples of the state variables at the current time step, 𝑃𝑘
𝑡, 𝑘 = 1,2. . 𝑁  

2. Compute the likelihood of each of the 𝑁 particles by propagating them through the static BN and 

by using the observation data.  

3. Compute weights for each particle as being proportional to their likelihood measures 

4. Resample the generated 𝑁 values of the state variables according to the computed weights and 

obtain 𝑁 values; these values can be used to construct the posterior distributions of the state variables. 

These samples can then be used to obtain the prior distributions of the state variables in the next time step 

by propagating them through the transitional BN.  This process can be repeated for several time steps as 

required for the analysis. The SIR algorithm-based filtering is used in Chapter 5 for dynamic updating of 

model parameters in coupled and time-varying systems.  
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CHAPTER 3 

PERFORMAMCE ASSESSMENT IN SINGLE-COMPONENT SYSTEMS 

3.1. Introduction 

Performance assessment under uncertainty can be considered as a generalization of reliability analysis, 

which computes the probability that a pre-defined performance function is greater than a threshold. 

Techniques for reliability analysis can be categorized into analytical methods and simulation-based 

methods [68]. Analytical methods such as First Order Reliability Method (FORM) and Second Order 

Reliability Method (SORM) approaches employ first order and second order approximations of the limit 

state [31]. First-order and second-order bounds for system reliability estimates have been proposed based 

on first-order and second-order approximations of the limit states [69, 70]. The FORM and SORM-based 

methods become inaccurate when the limit-states are highly nonlinear. Monte Carlo sampling (MCS) 

approaches can be accurate but computationally expensive. To reduce the computational effort, surrogate-

based reliability analysis methods have been developed [71–73] . If the computational model is expensive, 

two categories of surrogates – general purpose and limit state have been used in the reliability analysis 

literature. A brief introduction to these types of surrogates was provided in Section 2.3. 

      In the context of general purpose surrogate (commonly known as response surface), Faravelli [74], 

Choi et al [75] used a polynomial expansion response surface model, Papadrakikis et al [76] used a neural 

network based surrogate, Dubourg et al [77], Kaymaz [78] used a Kriging (or Gaussian process) surrogate. 

In the case of limit state surrogates (which are basically classifiers), Bichon et al [37] and Echard et al 

[39] used a Gaussian process (GP) surrogate while Song et al [79] used a support vector machine (SVM)-

based surrogate. In this work, the limit state surrogates (classifiers) are considered. The surrogate-based 

reliability methods have mainly considered only aleatory uncertainty (natural variability) so far. However, 
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practical reliability analysis is affected by many sources of epistemic uncertainty (lack of knowledge); 

therefore, this work investigates approaches to include such uncertainty sources in surrogate-based 

reliability analysis. Different types of epistemic uncertainty sources and their quantification are discussed 

in Section 2.1. In recent years, efforts have been made to account for both aleatory and epistemic 

uncertainty within reliability analysis, such as the auxiliary variable approach [13], the conditional 

reliability index method [80], and the Bayesian network approach [69]. These methods have only 

concentrated on component reliability analysis (i.e. a single limit state) considering a few sources of 

epistemic uncertainty.  

Therefore, this chapter seeks to incorporate all the discussed epistemic uncertainty sources in Sections 

2.1and 2.2.3, i.e., statistical uncertainty (distribution parameter and distribution type), model uncertainty 

(model parameter uncertainty and model discrepancy) and reliability analysis (surrogate uncertainty and 

Monte Carlo sampling error) in limit state surrogate-based reliability analysis.  

Earlier studies such as [37, 39, 77, 78] considered construction of the limit state surrogate for the 

physics-based simulation model without any model discrepancy. In this work, the model discrepancy is 

also considered in constructing the limit state surrogate. However, construction of any surrogate requires 

point values of paired input-output data whereas in the presence of model discrepancy, the output at any 

input is a PDF. This problem is overcome in this work by using an auxiliary approach, which allows for a 

one-to-one relationship between input and output. This work uses a GP surrogate to model the limit state 

following the Efficient Global Reliability Analysis (EGRA) approach proposed by Bichon et al [37]. 

However, the techniques proposed in this work are not limited to GP models and can be extended to any 

surrogate. The GP surrogate of the simulation model obtained from the KOH framework-based calibration 

analysis (discussed in Section 2.1.2) is further refined to construct the limit state surrogate by adding more 

training points close to the limit state.  The training points are adaptively selected by maximizing a learning 



 45 

function called the Expected Feasibility Function (EFF). More details about the EFF and selection of 

training points are provided in Section 2.3.2. 

In the presence of statistical uncertainty, an input variable can be represented through a family of 

PDFs, where each PDF corresponds to a realization of the distribution parameters and a distribution type. 

The sampling of the input variable can be done through a nested sampling approach where the distribution 

type and parameters are sampled in the outer loop, and the samples of the input variable are generated in 

the inner loop. This nested-loop procedure is computationally expensive; therefore a faster single loop 

sampling approach using the probability integral transform [24] is used here.  

      The major contribution is a unified framework connecting the model calibration analysis to 

constructing a limit state surrogate and estimating the uncertainty in reliability analysis by incorporating 

different sources of epistemic uncertainty. The basic contributions include: (1) The use of the auxiliary 

variable approach to represent the model discrepancy for its inclusion in limit state surrogate refinement, 

and (2) Quantification of different types of epistemic uncertainty and their incorporation in reliability 

analysis to quantify the uncertainty in the reliability estimate.  

3.2. Proposed methodology 

An overview of the proposed methodology for surrogate-based reliability estimation by including 

different types of epistemic uncertainty is presented in Fig. 3.1.  

The overall approach can be divided into two stages as shown in Fig. 3.1 – (1) construction of a 

surrogate, and (2) use of the surrogate for reliability analysis. Uncertainty sources such as statistical 

uncertainty in the inputs, uncertain model parameters, and model discrepancy influence the surrogate 

construction, thereby affecting the reliability estimate, whereas the surrogate uncertainty and MCS error 

do not influence the surrogate construction but only affect the reliability estimate. Details regarding the 

handling of different sources of epistemic uncertainty in these two stages are discussed in this section. 
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Fig. 3.1. Flow chart of proposed framework for reliability analysis under uncertainty 

3.2.1. Limit state surrogate construction including epistemic uncertainty 

      First, the different inputs to be included in the surrogate are discussed which is followed by the 

surrogate construction.   

A. Inputs to the surrogate  

In this work, the inputs for the surrogate model include the inputs for the simulation model (𝑿), the 

uncertain model parameters (𝚿 ) and the model discrepancy. Consider a system with 𝑚  limit state 

functions given by 𝑔𝑖(𝑿,𝚿) = 𝑔𝑚𝑜𝑑𝑒𝑙,𝑖(𝑿,𝚿) + 𝛿�̂�(𝑿)  where 𝑔𝑚𝑜𝑑𝑒𝑙,𝑖(𝑿,𝚿)  and 𝛿�̂�(𝑿)  are the 

simulation model and the model discrepancy of the ith limit state function respectively. Since the KOH 

calibration framework is used, the model discrepancy is not modeled as a function of model parameters. 

However, including the model parameters in the model discrepancy term might be a more rigorous. The 

quantification of the model discrepancy is by using the simulation model. The performance of the overall 

model (simulation model and model discrepancy) might be satisfactory over the entire range of the inputs 

but the main idea of the limit state surrogate is to model the limit state perfectly and is not concerned about 

the its performance in the interior domain of the inputs (away from limit state). Since the limit state model 
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governs the reliability estimate (and its uncertainty), we wish to model it as precisely as possible. In system 

reliability, it is possible in some cases that we may have some calibration data on a few limit states but not 

a lot of data on the remaining limit states. Therefore, the construction of the limit state surrogate refines 

the system limit state by obtaining training points considering all the individual limit states. The focus of 

this work is to quantify the uncertainty in the reliability prediction by investigating various sources of 

epistemic uncertainty. It is based on the assumption that the model calibration has already been performed. 

We obtain a GP surrogate for the model discrepancy from calibration analysis.  

The key idea is to include the model discrepancy terms in the construction of the limit state surrogate 

and then use the surrogate for reliability analysis. The limit-state function 𝒈𝒆𝒙𝒕(𝑿,𝚿) for surrogate-based 

reliability analysis is formulated as 

 

𝒈𝒆𝒙𝒕(𝑿,𝚿) = {

𝑔𝑚𝑜𝑑𝑒𝑙(𝑿,𝚿) + 𝛿(𝑿),    for a component

𝑀𝑖𝑛 {𝑔𝑚𝑜𝑑𝑒𝑙,𝑖(𝑿,𝚿) + 𝛿�̂�(𝑿)}, for a series system

𝑀𝑎𝑥 {𝑔𝑚𝑜𝑑𝑒𝑙,𝑖(𝑿,𝚿) + 𝛿�̂�(𝑿)}, for a parallel system

 (3.1) 

 

Note that the model discrepancy,𝛿�̂�(𝑿) , is random at any given point 𝑿 = 𝒙 , which results in 

uncertainty in the response 𝑔𝑒𝑥𝑡(𝑿,𝚿). Directly constructing a surrogate for the implicit response given 

in Eq. (3.1) is not practical due to randomness in 𝛿�̂�(𝑿). An explicit representation of variability in 𝛿�̂�(𝑿) 

is required to formulate Eq. (3.3) as a deterministic function; this challenge is addressed using the auxiliary 

variable method, briefly described in Section 2.5.  

The auxiliary variable approach provides a deterministic relationship between (𝚯, 𝒖)  and 𝑿. Here, 𝚯 

and 𝒖 represent the distribution parameters and auxiliary variables respectively.  In this work, we have 

extended the concept of the auxiliary variable further, to represent the epistemic uncertainty in the 

prediction of model discrepancy and in the reliability estimate. In general, whenever there is a stochastic 

mapping, i.e., mapping of a single value to a probability distribution, the auxiliary variable can be used to 
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convert the stochastic mapping to a deterministic mapping. An auxiliary variable is used to represent the 

variability in the prediction of model discrepancy in order to build the limit state surrogate. Since a GP is 

used to model 𝛿�̂�(𝑿) , for any given 𝑿 = 𝒙 , the model discrepancy follows a Gaussian distribution given 

by 𝛿�̂�(𝑿) ~ 𝑁(𝝁𝛿𝑖(𝒙), 𝝈𝛿𝑖(𝒙)) . The PDF of  𝛿�̂�(𝑿) is  𝑓𝛿(𝛿𝑖(𝒙)|𝝁 = 𝝁𝛿𝑖(𝒙), 𝝈 = 𝝈𝛿𝑖(𝒙)) and the CDF value 

is given by 

 
𝑢𝑀𝐷,𝑖 = 𝐹𝛿(𝛿𝑖(𝒙,𝝍)|𝝁 = 𝝁𝛿𝑖(𝒙), 𝝈 = 𝝈𝛿𝑖(𝒙)) =  ∫ 𝑓𝛿(𝒘|𝝁 = 𝝁𝛿𝑖(𝒙), 𝝈 = 𝝈𝛿𝑖(𝒙))𝒅𝒘

𝜹𝒙

−∞

 (3.2) 

Using the auxiliary variable, a realization of 𝛿𝑖(𝒙,𝝍)  for a given 𝑈𝑀𝐷,𝑖 = 𝑢𝑀𝐷,𝑖,  𝝁 = 𝝁𝛿𝑖(𝒙), 𝝈 = 𝝈𝛿𝑖(𝒙), 

can be computed by 

 𝛿𝑖(𝒙) = 𝐹𝛿𝑖(𝒙)
−1 (𝑈𝑀𝐷,𝑖 = 𝑢𝑀𝐷,𝑖|𝝁 = 𝝁𝛿𝑖(𝒙), 𝝈 = 𝝈𝛿𝑖(𝒙)) (3.3) 

where 𝐹𝛿𝑖(𝑥)
−1  is the inverse Gaussian CDF of 𝜹𝒊(𝒙).  Combining Eqs. (3.1) and (3.3), we have 

𝑔𝑒𝑥𝑡(𝑿,𝚿,𝐔) =

{
 
 

 
 𝑔𝑚𝑜𝑑𝑒𝑙(𝑿,𝚿) + 𝑭𝜹(𝒙)

−𝟏 (𝑼𝑴𝑫|𝝁 = 𝝁
𝜹(𝒙), 𝝈 = 𝝈𝜹(𝒙)),    for a component

𝑀𝑖𝑛 {𝑔𝑚𝑜𝑑𝑒𝑙,𝑖(𝑿,𝚿) + 𝑭𝜹𝒊(𝒙)
−𝟏 (𝑼𝑴𝑫,𝒊|𝝁 = 𝝁

𝜹𝒊(𝒙)
, 𝝈 = 𝝈𝜹𝒊(𝒙))} , for a series system

𝑀𝑎𝑥 {𝑔𝑚𝑜𝑑𝑒𝑙,𝑖(𝑿,𝚿) + 𝑭𝜹𝒊(𝒙)
−𝟏 (𝑼𝑴𝑫,𝒊|𝝁 = 𝝁

𝜹𝒊(𝒙)
, 𝝈 = 𝝈𝜹𝒊(𝒙))} , for a parallel system

 (3.4) 

Thus, the original model with stochastic output is mapped to a deterministic model, which can then be 

used to build a surrogate for reliability analysis. Initial GP surrogates (for simulation model and model 

discrepancy) are obtained from the KOH calibration framework as shown in Stage 1 of Fig. 3.1. These 

surrogates can directly be used for reliability analysis. However, if better accuracy is desired, then the GP 

surrogate of the simulation model can be further refined around the limit state (Stage 2 in Fig. 3.1). This 

local refinement requires additional training points and these are obtained by evaluating the simulation 

model. After constructing the limit state surrogate, it is directly used for reliability analysis without any 

further runs of the original model. 
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B. Surrogate construction 

      As stated in Section 2.3.2, the training points for the construction of the limit state surrogate are 

adaptively selected by maximizing a learning function called the Expected Feasibility Function (EFF). 

Several optimization techniques (gradient-based, sampling-based) are available for maximizing the EFF. 

In this work, a Monte Carlo sampling-based technique is implemented, as demonstrated in the Adaptive-

Kriging Monte Carlo Simulation (AK-MCS) method [39]. The key idea in MCS-based optimization is to 

generate a pool of samples of the inputs from their corresponding PDFs and choose the sample from the 

pool that maximizes the EFF. The epistemic uncertainty in the inputs of the limit state surrogate can be 

included in the surrogate modeling construction through the sampling of input variables, which is 

discussed below. 

Inputs to the simulation model (𝑿): Quantification of uncertainty in the distribution parameters and 

distribution type of random input variables was discussed in Section 2.1. For a realization of distribution 

parameters and distribution type, the input variable is represented by a PDF; therefore, for multiple 

realizations of distribution parameters and type, the input variable is represented through a family of PDFs. 

The traditional approach for sampling of an input variable with uncertain distribution parameters and 

distribution type is through a nested double-loop procedure where the distribution parameters and 

distribution type are sampled in the outer loop and samples of the input random variable are generated in 

the inner loop. The double-loop sampling procedure is computationally expensive; therefore, a single-loop 

sampling procedure using an auxiliary variable based on the probability integral transform is used. An 

auxiliary variable 𝑈𝑋 is defined to represent the aleatory uncertainty in a random variable and represented 

using the probability integral transform as  

 
𝑢𝑋 = 𝐹𝑋(𝑥|Θ = 𝜃, 𝑑𝑋 = 𝑑𝑋

∗ ) =  ∫ 𝑓𝑋(𝑤|Θ = 𝜃, 𝑑𝑋 = 𝑑𝑋
∗ ) 𝑑𝑤

𝑥

−∞

 (3.5) 
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where Θ, 𝑑𝑋 represent the uncertain distribution parameters and distribution type; their realizations are 

represented by 𝜃 and 𝑑𝑋
∗ , 𝑤 is a dummy variable for integration, 𝐹𝑋(𝑥) and 𝑓𝑋(𝑥) represent the CDF and 

PDF of 𝑋 respectively. Thus, for a realization of auxiliary variable 𝑈𝑋 = 𝑢𝑋, distribution parameters 𝜃 

and distribution type 𝑑𝑋
∗  generated from their corresponding PDFs, one realization of the input variable 

can be obtained as 𝑥 = 𝐹𝑋
−1(𝑢𝑋|Θ = 𝜃, 𝑑𝑋 = 𝑑𝑋

∗ )  using the inverse CDF method. Following this 

procedure, several realizations of the input can be obtained.             

      If a non-parametric approach is used for the representation of statistical uncertainty (i.e. no distribution 

type or parameters), its CDF is constructed using numerical techniques which is then used for generating 

samples using inverse CDF technique. If an input variable is not associated with any statistical uncertainty 

(i.e. only known distribution type and distribution parameters), then the conventional inverse CDF 

technique [31] can be used for generating samples. To perform sampling of correlated variables, the 

correlated variables are first transformed into an uncorrelated space using orthogonal transformation or 

Cholesky decomposition. Samples are then generated individually in the uncorrelated space and 

transformed into the correlated space. Please refer to Chapter 9 in [31] for more details. 

Uncertain model parameters (𝚿): Since we are adopting the modular Bayesian approach, the obtained 

posterior distributions of the model parameters are conditioned on the MLE of hyper parameters, and 

correlations are not calculated between the model parameters and the model discrepancy. Correlations 

would be calculated when the fully Bayesian approach of Kennedy and O’Hagan [28] is implemented. 

The uncertain model parameters (𝚿) can be treated similar to the inputs; therefore the sampling techniques 

presented above for the inputs can also be used for sampling the uncertain model parameters.  

Model discrepancy (𝑼𝑴𝑫): The auxiliary variable approach to explicitly represent the uncertainty in 

the model discrepancy has been discussed above. Since the auxiliary variables follow a uniform 
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distribution between 0 and 1, their sampling can be carried out through random uniform sampling between 

0 and 1.  

      From the model calibration analysis, we have data on the inputs, model parameters and simulation 

model output that was used for calibration. If we have 𝑘 samples, then 𝑘 random samples of the model 

discrepancy (𝑼𝑴𝑫) are generated and these data can be used as initial training points to construct the limit 

state surrogate. Then, more training points are adaptively added by maximizing the EFF until a 

convergence criterion is satisfied. In this work, convergence is assumed to be achieved when the maximum 

EFF is less than a threshold value (EFFmax < EFF* ).  

3.2.2 Uncertainty quantification in reliability analysis 

In Stage 1, several Monte Carlo samples of the inputs (𝑿,𝚿,𝑼𝑴𝑫) were generated to carry out the 

maximization of EFF for adaptive selection of training points for limit state surrogate construction. Since 

these samples are generated from their corresponding PDFs, these samples can also be used to carry out 

reliability analysis.  Using these samples, the failure probability can be calculated as  

 

𝑝𝑓 = ∑ 𝐼(�̂�𝑒𝑥𝑡(𝒙
(𝑗), 𝒖𝑴𝑫

(𝑗)
, 𝝍(𝑗) ≤ 0)/𝑛𝑀𝐶𝑆

𝑛𝑀𝐶𝑆

𝑗=1

 (3.6) 

where 𝒙(𝑗), 𝒖𝑴𝑫
(𝑗)
, 𝝍(𝑗) are the jth sample of 𝑿,𝑼𝑴𝑫 and 𝚿 respectively. �̂�𝒆𝒙𝒕(. ) represents the surrogate 

used to approximate the true limit state 𝑔𝑒𝑥𝑡(. ) and 𝐼(. ) is the failure indicator function.  

A. Inclusion of surrogate uncertainty in the reliability estimate 

      Since a GP surrogate is used, the prediction at any input is a Gaussian distribution with parameters 

dependent on the input. In most cases, only the mean predictions 𝜇�̂�𝑒𝑥𝑡(𝒙
(𝑗), 𝒖𝑴𝑫

(𝑗)
, 𝝍(𝑗)) are used to 

estimate �̂�𝑒𝑥𝑡(𝒙
(𝑗), 𝒖𝑴𝑫

(𝑗)
, 𝝍(𝑗)). The failure probability is therefore estimated as 
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�̂�𝑓
𝑠 = ∑ 𝐼(𝜇�̂�𝑒𝑥𝑡(𝒙

(𝑗), 𝒖𝑴𝑫
(𝑗)
, 𝝍(𝑗) ≤ 0)/𝑛𝑀𝐶𝑆

𝑛𝑀𝐶𝑆

𝑗=1

 (3.7) 

where �̂�𝑓
𝑠 is the estimate of the failure probability obtained by using the mean predictions. If our purpose 

is only to estimate the expected failure probability, we may ignore the correlation between the uncertain 

responses [81]. However, the focus of this work is to quantify the uncertainty in the reliability estimate. 

Therefore, the uncertainty due the surrogate prediction is also considered to quantify the overall 

uncertainty in reliability estimate. When the accuracy of the surrogate is high (i.e. the uncertainty of 

prediction is low), the above treatment of using the mean predictions works well, and results in a single 

value of the reliability estimate. If the accuracy of the model prediction is low, it becomes necessary to 

also include the prediction uncertainty for reliability estimation. In order to quantify the effects of 

surrogate uncertainty on reliability analysis, an uncertainty quantification problem is therefore formulated 

as shown in Fig. 3.2.  

 

Fig. 3.2. Effects of surrogate uncertainty on reliability analysis 

 

(a) Correlation analysis of surrogate predictions 

For any input  𝝓(𝑗) = [𝒙(𝑗), 𝒖𝑴𝑫
(𝑗)
, 𝝍(𝑗)] , the prediction from the surrogate follows a Gaussian 

distribution given by �̂�𝑒𝑥𝑡(𝝓
(𝑗))~𝑵(𝜇�̂�𝑒𝑥𝑡(𝝓

(𝑗)), 𝜎�̂�𝑒𝑥𝑡(𝝓
(𝑗))) . Also, �̂�𝑒𝑥𝑡(𝝓

(𝑗)), 𝑗 = 1,2,3…𝑛𝑀𝐶𝑆, are 

correlated due to the covariance function assumed in a GP.  
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As indicated in Fig. 3.2, the uncertainty of the system failure probability estimate (the unconditional 

failure probability estimate given in Eq. (3.7)) due to surrogate uncertainty can be quantified by 

propagating the uncertainty in �̂�𝑒𝑥𝑡(𝝓
(𝑗)) , 𝑗 = 1,2,3…𝑛𝑀𝐶𝑆 , through Eq. (3.7). Since �̂�𝑒𝑥𝑡(𝝓

(𝑗)) , 𝑗 =

1,2,3…𝑛𝑀𝐶𝑆 , are 𝑛𝑀𝐶𝑆  correlated random variables, their correlations are analyzed based on which a 

sampling-based method is developed for uncertainty quantification.  

In MCS-based reliability analysis, 𝑛𝑀𝐶𝑆 is usually large. Performing the correlation analysis for the 

𝑛𝑀𝐶𝑆 random variables is computationally expensive. In order to reduce the number of random variables 

�̂�𝑒𝑥𝑡(𝝓
(𝑗)), 𝑗 = 1,2,3…𝑛𝑀𝐶𝑆 are partitioned into two groups based on the probability that they may result 

in the error of failure probability estimate. The first group includes responses  �̂�𝑒𝑥𝑡(𝝓
(𝑗)), 𝑗 = 1,2,3…𝑛𝑔1 , 

for which the probability of making an error in the sign of 𝐼(�̂�𝑒𝑥𝑡(𝝓
(𝑗))) is very low (i.e., 0.001). 

Therefore, the mean predictions 𝜇�̂�𝑒𝑥𝑡(𝝓
(𝑗))  are used to substitute for �̂�𝑒𝑥𝑡(𝝓

(𝑗)) . The remaining 

responses in, �̂�𝑒𝑥𝑡(𝝓
(𝑗)), 𝑗 = 1,2,3…𝑛𝑀𝐶𝑆  form the second group, which are treated as random variables.  

The system failure probability given in Eq. (3.7) then becomes [82] 

 

𝑝𝑓
𝑠 = ∑𝐼(𝜇�̂�𝑒𝑥𝑡(𝝓

(𝑗)) ≤ 0)/𝑛𝑀𝐶𝑆

𝑛𝑔1

𝑗=1

+ ∑𝐼(𝜇�̂�𝑒𝑥𝑡(𝝓
(𝑗)) ≤ 0)/𝑛𝑀𝐶𝑆

𝑛𝑔2

𝑗=1

 (3.8) 

where 𝑛𝑔1 and 𝑛𝑔2 are the number of samples in the first and second groups respectively.  The partition 

of  �̂�𝑒𝑥𝑡(𝝓
(𝑗)), 𝑗 = 1,2,3…𝑛𝑀𝐶𝑆 is achieved based on the following function [39] 

 
𝑈𝐴𝐾(𝝓

(𝑗)) =  
|𝜇�̂�𝑒𝑥𝑡(𝝓

(𝑗))|

𝜎�̂�𝑒𝑥𝑡(𝝓
(𝑗))

 (3.9) 

𝑈𝐴𝐾(𝝓
(𝑗)) represents the coefficient of variation of the model prediction, which can be used to estimate 

the probability of making an error in the sign of �̂�𝑒𝑥𝑡(𝝓
(𝑗)). The first group of responses correspond to 

𝑈𝐴𝐾(𝝓
(𝑗)) ≥ 3.1  and the rest of the responses fall into the second group.  Defining the training points in 
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the current GP model as 𝝓𝒔  and 𝑔𝑒𝑥𝑡(𝝓
𝒔) , the covariance matrix of �̂�𝑒𝑥𝑡(𝝓

(𝒌)) , 𝑘 =

1,2,3…𝑛𝑔2 conditioned on the training points is given by 

 𝚺𝒑|𝒕 = 𝚺𝒑𝒑 − 𝚺𝒑𝒕𝚺𝒕𝒕
−𝟏𝚺𝒑𝒕

𝑻  (3.10) 

where 𝚺𝒑𝒑, 𝚺𝒑𝒕 and 𝚺𝒕𝒕 are the covariance matrixes between �̂�𝑒𝑥𝑡(𝝓
(𝒋)) and �̂�𝑒𝑥𝑡(𝝓

(𝒋)), �̂�𝑒𝑥𝑡(𝝓
(𝒋)) and 

𝑔𝑒𝑥𝑡(𝝓
𝒔), 𝑔𝑒𝑥𝑡(𝝓

𝒔) and 𝑔𝑒𝑥𝑡(𝝓
𝒔) respectively. Based on the covariance matrix 𝚺𝒑|𝒕 , the conditional 

correlation matrix 𝝆𝒑|𝒕  of  �̂�𝑒𝑥𝑡(𝝓
(𝒌)),  𝑘 = 1,2, …𝑛𝑔2  is equal to 𝝆𝒊𝒋 , which represents the correlation 

between �̂�𝑒𝑥𝑡(𝝓
(𝒊)),  and �̂�𝑒𝑥𝑡(𝝓

(𝒋)), 𝑖, 𝑗 = 1,2, … 𝑛𝑔2 , conditioned on current training points. 

(b) Propagation of surrogate prediction uncertainty 

 After obtaining the correlation matrix, the sampling-based method can be used to propagate the 

surrogate prediction uncertainty of �̂�𝑒𝑥𝑡(𝝓
(𝒋)) to the uncertainty in 𝑝𝑓

𝑠. To do this, samples of   �̂�𝑒𝑥𝑡(𝝓
(𝒌)),  

𝑘 = 1,2, …𝑛𝑔2 are generated using the following expression [82]: 

 

  �̂�𝑒𝑥𝑡(𝝓
(𝑘)) =  𝜇�̂�𝑒𝑥𝑡(𝝓

(𝑘)) + 𝜎�̂�𝑒𝑥𝑡(𝝓
(𝑘))∑𝜁𝑗

𝑛𝑔2

𝑗=1

𝝓𝑗
𝑇𝜌:𝑖/√𝜂𝑗 (3.11) 

Where 𝜁𝑗 , 𝑗 = 1,2,3…𝑛𝑔2  are independent standard Gaussian variables; and 𝜂𝑖  and 𝝓𝒊
𝑻  are the 

eigenvalues and eigenvectors of 𝝆𝒑|𝒕 and 𝝆:𝒊 = [𝝆𝒊𝟏, 𝝆𝒊𝟐, 𝝆𝒊𝟑… . 𝝆𝒊𝒏𝒈𝟐]
𝑻

.  Since the surrogate prediction 

at each input is a random variable, 𝑁𝑠𝑖𝑚  samples are generated for each �̂�𝑒𝑥𝑡(𝒙
(𝑘)), 𝑘 = 1,2…𝑛𝑔2 , 

resulting in the following sampling matrix: 

 𝑔𝑁𝑠𝑖𝑚×𝑛𝑔2 = {𝑔𝑒𝑥𝑡(𝑖, 𝑗)}, ∀ 𝑖 = 1,2…𝑁𝑠𝑖𝑚; 𝑗 = 1,2,3…𝑛𝑔2 (3.12) 

 

Using the samples of �̂�𝑒𝑥𝑡(𝒙
(𝒌)), 𝑘 = 1,2…𝑛𝑔2 and Eq. (3.11) samples of 𝒑𝒇

𝒔  are obtained as 
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𝑝𝑓
𝑠(𝑗) =

{∑ 𝐼 (𝜇𝑔𝑒𝑥𝑡(𝝓
(𝑖))) +

𝑛𝑔1
𝑖=1

 ∑ 𝐼(𝑔𝑒𝑥𝑡(𝑖, 𝑗))
𝑛𝑔2
𝑖=1

}

𝑛𝑀𝐶𝑆
, 𝑗 = 1,2,3…𝑁𝑠𝑖𝑚 

(3.13) 

where 𝑝𝑓
𝑠(𝑗) is the 𝑗𝑡ℎ  sample of 𝑝𝑓

𝑠  due to the surrogate prediction uncertainty. Using the samples of 

𝑝𝑓
𝑠(𝑗), 𝑗 = 1,2,3…𝑁𝑠𝑖𝑚, a PDF can be constructed for the system failure probability 𝑝𝑓

𝑠. This distribution 

represents the uncertainty in 𝑝𝑓
𝑠 due to surrogate uncertainty. 

B. Inclusion of MCS error in reliability estimate 

 Using Eq. (3.13), several samples of 𝒑𝒇
𝒔  are obtained through correlated sampling of the model predictions at several 

inputs. As discussed in Sec. 2.2.3, there exists an uncertainty in the estimation of each failure probability sample, 𝑝𝑓
𝑠(𝑗), 𝑗 =

1,2,3…𝑁𝑠𝑖𝑚 due to the limited number of Monte Carlo samples (referred to here as MCS error), which results in each 𝑝𝑓
𝑠(𝑗) 

being a random variable. To avoid any confusion in the notation, the failure probability when MCS error is also considered is 

denoted as 𝑝𝑓
𝑀𝐶𝑆(𝑗) . Following the discussion on MCS error in Section 2.2.3, we can construct the PDF of 𝑝𝑓

𝑀𝐶𝑆(𝑗)  by 

estimating its quantiles using 𝑝𝑓
𝑠(𝑗) , number of samples 𝑛𝑀𝐶𝑆  and degree of accuracy 1 − 𝛾  as [𝑝𝑓

𝑠(𝑗)  + 
𝑧𝛾
2

2

2×𝑛𝑀𝐶𝑆
 ±

 √
𝑝𝑓
𝑠(𝑗) (1−𝑝𝑓

𝑠(𝑗))

𝑁𝑠
+ 

𝑧𝛾
2

2

4×𝑛𝑀𝐶𝑆
2 ] ×

1

1+ 

𝑧𝛾
2

2

𝑛𝑀𝐶𝑆

, where 𝑧𝛾
2
 represents the 1 −

𝛾

2
 quantile of a standard normal distribution. After including 

surrogate uncertainty and MCS error, 𝑝𝑓
𝑠 is represented by a family of PDFs (Fig. 3.3 (b)). After the inclusion of surrogate 

uncertainty, the failure probability is represented using a PDF as shown in Fig. 3.3 (a).  𝒑𝒇
𝒔  is a sample 

from this PDF (shown as a red dot in Fig 3.3 (a)). When MCS error is also considered, 𝒑𝒇
𝒔  is not a single 

value but a PDF denoted as 𝒑𝒇
𝑴𝑪𝑺 (shown as a continuous red curve in Fig 3.3 (b)). Similarly, each sample 

from the PDF in Fig 3.3 (a) corresponds to a different PDF in Fig 3.3 (b). Thus, the failure probability is 

represented as a family of PDFs in the presence of surrogate uncertainty and MCS error. This family of 

PDFs can then be integrated to an unconditional PDF (bold broken red curve in Fig. 3.3(b)) using the 

auxiliary variable approach described in Section 3.1. The family of PDFs for the failure probability 
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estimate (Fig. 3.3(b)) can be treated similar to the family of PDFs for an input variable and uncertain 

distribution parameters. Note that in the case of an input variable, the auxiliary variable represents its 

aleatory uncertainty whereas in the case of the failure probability estimate, it represents the epistemic 

uncertainty due to limited Monte Carlo samples. The single loop sampling approach used for sampling 

the input variables can also be used for sampling the failure probability estimates.  

 

Fig. 3.3. Uncertainty in failure probability due to surrogate uncertainty and MCS error 

 

Assume that there are 𝑁𝑠𝑖𝑚 PDFs of the failure probability (i.e., 𝑁𝑠𝑖𝑚 samples of 𝑝𝑓
𝑠), 𝑁𝑠𝑖𝑚 samples of 

the auxiliary variable 𝑈𝑀𝐶𝑆  are generated in the interval [0,1] . Here, the auxiliary variable is used to 

represent the contribution of epistemic uncertainty of MCS error to the overall uncertainty in the reliability 

estimate. The reliability estimate without the inclusion of surrogate uncertainty and MCS errors is a point-

value (single-value). However, when surrogate uncertainty and MCS errors are included, the reliability 

estimate is represented through a family of PDFs as shown in Fig.  3.3(b). As discussed in Section 2.2.3, 

the reliability estimate is represented through a PDF with some distribution parameters. Here, these 

parameters are calculated after incorporating aleatory uncertainty, statistical uncertainty in input variables, 

uncertain model parameters, model discrepancy and surrogate uncertainty. Therefore, for each realization 

of distribution parameters, the reliability estimate follows a PDF. 
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For one realization of the auxiliary variable and 𝑝𝑓
𝑠, one realization of the failure probability estimate 

from its unconditional PDF is obtained. For a given value of 𝑝𝑓
𝑠, there exists an associated PDF due to 

MCS error which is numerically estimated after obtaining the quantiles as stated above.  Denoting the 

generated samples as 𝑢𝑀𝐶𝑆
(1)

,  𝑢𝑀𝐶𝑆
(2)

 … 𝑢𝑀𝐶𝑆
(𝑁𝑠𝑖𝑚) , the samples of unconditional failure probability estimate 

can be obtained as  

 
𝑝𝑓
𝑈𝑁(𝑗) = 𝐹𝑀𝐶𝑆

−1 (𝑢𝑀𝐶𝑆
(𝑗)

|𝑝𝑓
𝑠(𝑗)) , 𝑗 = 1,2,3. . 𝑁𝑠𝑖𝑚 (3.14) 

where 𝑭𝑴𝑪𝑺
−𝟏 (. ) is the inverse CDF of the MCS error. Based on the generated samples of 𝒑𝒇

𝑼𝑵(𝒋), the 

unconditional PDF of the failure probability can be estimated. This PDF represents the uncertainty in the 

failure probability estimate due to both surrogate prediction uncertainty and MCS error. 

3.3. Example 1: Mechanical beam 

Consider a short cantilever beam subjected to a point load at its free end as shown in Fig. 3.4. Two 

limit states – maximum deflection and maximum stress are considered for the failure of the beam. The 

goal in this problem is to compute the reliability with respect to each of the individual limit states and the 

system reliability, considering both the limit states. 

 

Fig. 3.4. A cantilever beam with point-load at the free end 
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Assume that the free end deflection of the beam due to the point load is modeled (according to the 

Euler-Bernoulli beam theory) as 𝑑(𝑃) =
𝑃𝐿3

3𝐸𝐼
. Here, 𝐸 and 𝐼 represent the Young’s modulus and moment 

of inertia respectively. Since the beam is short, there exists a discrepancy between the experimental 

observations and predicted deflections computed (because the Euler-Bernoulli model is not accurate for 

short beams). This model discrepancy is calibrated using the KOH framework. A total of 30 points were 

generated through Latin Hypercube Sampling (LHS) across the domain of inputs, at which both simulation 

and experimental data are available. Among them 25 points were used for calibration (model parameters 

and model discrepancy using the KOH framework) and 5 points were used for validation. The maximum 

COV (coefficient of variation) among the testing points is 0.1134. Therefore, the deflection of the beam, 

after accounting for model discrepancy 𝛿(𝑃), is given as  

 
𝑑(𝑃) =

𝑃𝐿3

3𝐸𝐼
+ 𝛿(𝑃) (3.15) 

The expression for the computation of maximum stress is given as  

 
𝑠(𝑃) =

𝑃𝐿ℎ

2𝐼
 (3.16) 

The load 𝑃 is assumed to be aleatory with uncertain distribution type and distribution parameters. 𝐸 

and 𝐿 are aleatory following Gaussian distributions with known distribution parameters. The cross-section 

parameters (b, h) are also assumed to be aleatory with known parameters due to geometric variations in 

the manufacturing process. Table 3.1 shows the random variables and their statistics used in this example, 

and Table 3.2 gives two candidate distribution types of P and their corresponding probabilities.  

The two limit state functions corresponding to deflection and stress are given as  

 𝑔𝑑(𝑃) = 𝑑0 − 𝑑(𝑃) (3.17) 

 𝑔𝑠(𝑃) = 𝑠0 − 𝑠(𝑃) (3.18) 
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where 𝑔𝑑(𝑃) < 0  and 𝑔𝑠(𝑃) < 0  indicate failure, and 𝑠0 , 𝑑0  are the limiting values of stress and 

deflection. In this example, the threshold values for stress and deflection are assumed deterministic (𝑑0 = 

0.01 m, 𝑠0 = 500 MPa). Let the models in Eqs. (3.17, 3.18) be known as simulation models for deflection 

and stress respectively. 

Table 3.1. Example 1. Variables and their statistics 

Parameters Distribution Mean Standard deviation 

𝑃 
𝜇𝑃(× 10

5 𝑁) Normal 35 0.3 

𝜎𝑃(× 10
5 𝑁) Lognormal 4 0.1 

𝐸(× 109 𝑁/𝑚2) Normal 210 10 

𝐿(𝑚) Normal 2 0.01 

𝑏(𝑚) Normal 0.18 0.005 

ℎ(𝑚) Normal 0.75 0.005 

 

Table 3.2. Distribution types and their probabilities for Load P 

Distribution type Normal Type 1 EVD 

Probability 0.2 0.8 

 

The system fails when either 𝑔𝑑(𝑃) < 0  or 𝑔𝑠(𝑃) < 0, and the system failure probability is given by 

 𝑝𝑓
𝑠 = Pr (𝑔𝑑(𝑃) < 0 ∪  𝑔𝑠(𝑃) < 0) (3.19) 

 (a) Component reliability analysis 

The reliability analysis with respect to each of the individual limit states is first performed using the 

proposed method. Since the deflection limit state is associated with model discrepancy, the reliability 

analysis is performed with and without discrepancy, in order to investigate the effectiveness of the 

proposed method in handling model discrepancy during surrogate construction.  
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Tables 3.3 and 3.4 show the reliability analysis results, along with the number of function evaluations 

(NOF), without considering the surrogate uncertainty and MCS error, in order to compare with the 

simulation model estimate. In this example, the threshold EFF value for selection of training points in 

surrogate construction is assumed to be 0.002. The results show that the proposed method can 

comprehensively estimate the component reliability in the presence of various sources of epistemic 

uncertainty. The results illustrate that the reliability estimate can be improved by considering the model 

discrepancy (Table 3.3).  

Table 3.3. Example 1. Component failure probability results (Deflection) 

 fp  NOF (%)  

Simulation model  0.0249 1x106 - 

Limit state surrogate without model discrepancy 0.0057 25+0 77.11 

Limit state surrogate with model discrepancy 0.0248 25+2 0.4 

Note: The NOF include the initial number of samples from calibration (25) and the number 

of added new samples.   

 

Fig. 3.5 shows the comparison between the simulation model limit state, and the limit-state from 

surrogate with and without consideration of model discrepancy. Since it is not possible to show the limit 

state contours with all the random variables, Fig. 3.5 shows the contours between length and load on the 

𝑋 and 𝑌 axes respectively. The other random variables 𝐸, 𝑏 and ℎ are conditioned at their mean values. It 

shows that the surrogate constructed taking model discrepancy into consideration is closer to the true limit 

state than the surrogate without considering the model discrepancy.  

Fig. 3.6 provide the failure probability distribution with respect to each limit state after considering 

both the surrogate uncertainty and MCS error. The figures illustrate that the proposed method can 

effectively quantify the uncertainty in the reliability analysis results.  
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Fig. 3.5. Comparison of limit states between the simulation model and surrogate, with and without 

considering model discrepancy  

Table 3.4. Example 1. Component failure probability results (Stress)  

 fp  NOF (%)  

Simulation model  0.0605 1×106 - 

Limit state surrogate model 0.0633 32 4.63 

(b) System reliability analysis 

A surrogate is constructed considering both the limit states for system reliability analysis using the 

method discussed in Section 3.2. Fig. 3.7 gives the PDF of failure probability after considering both the 

deflection and stress limit states. It shows that the proposed method can effectively quantify the 

uncertainty in the system failure probability estimate.  

Table 3.5. Example 1. Failure probability estimates using MCS and proposed method 

 
s

fp  NOF (%)  

Simulation model 0.0625 1×106 - 

Limit state surrogate model 0.0648 276 3.68 
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(a) (b) 

Fig. 3.6. Failure probability with respect to (a) deflection, and (b) stress 

 

 

Fig. 3.7. System failure probability with respect to both deflection and stress limit states 
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3.4. Example 2: A two-bar system 

      Example 1 demonstrated the proposed method for component reliability analysis and reliability 

analysis of a series system. In this example, reliability analysis of a parallel system is demonstrated. 

Consider the two-bar system shown in Fig. 3.8. The system consists of two bars supporting a panel on 

which a load P  is applied at its center. 

   

Fig. 3.8. A two-bar system 

 

The two bars are assumed to be made of different materials with different failure stress characteristics. 

The Young’s moduli of the materials (𝐸𝐴, 𝐸𝐵) are assumed to be aleatory variables with known distribution 

types and distribution parameters. For illustration, the bars are assumed to be of equal length (𝐿= 1 m) and 

the area of cross-section of the two bars are assumed to be deterministic (𝐴𝐴= 0.04 m2,  𝐴𝐵= 0.0625 m2). 

The forces in the bars are given by 

 
𝐹𝑖 = 𝑃 ×

𝐸𝑖𝐴𝑖
𝐸𝐴𝐴𝐴 + 𝐸𝐵𝐴𝐵

, 𝑖 = 𝐴, 𝐵 (3.20) 

Let 𝜎𝐴
𝑜 and 𝜎𝐵

𝑜 represent the failure stresses of the bars; the limit state functions are given by 

 
𝑔𝑖(𝑋) = 𝐴𝑖𝜎𝑖

𝑜 − 𝑃 ×
𝐸𝑖𝐴𝑖

𝐸𝐴𝐴𝐴 + 𝐸𝐵𝐴𝐵
, 𝑖 = 𝐴, 𝐵 (3.21) 

The applied load is assumed to aleatory, but with uncertain distribution type and uncertain distribution 

parameters. The failure stress is assumed to be deterministic but not known precisely. Some point and 

interval data are assumed to be available from material testing. Table 3.6 provides the list of variables used 
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in this example and their statistics. Using the available data, non-parametric distributions are constructed 

for both the threshold stresses using the likelihood approach discussed in Section 2.1, and spline-based 

interpolation is employed for the PDF modeling. The failure stress of a material is not calibrated. We 

assume that data about failure stress is directly available from material testing and we construct a non-

parametric distribution to represent the uncertainty. After constructing the PDF, it is treated as any other 

input random variable for reliability analysis. 

Table 3.6. Example 2. Variables and their statistics  

Variable Distribution Mean Standard deviation 

Load 𝑃 
𝜇𝑃(× 10

6 𝑁) Normal 19 0.3 

𝜎𝑃 (× 10
6 𝑁) Lognormal 1.6 0.1 

Young’s Modulus 𝐸𝐴(× 10
9 𝑃𝑎) Normal 210 20 

Young’s Modulus 𝐸𝐵(× 10
9 𝑃𝑎) Normal 180 15 

Failure stress of bar A, 

 σA
0  (× 107 Pa) 

Point data – [24.7, 24.95,25.1,25.3] 

Interval data – [(24.6, 24.62), (24.8, 24.84), (25.1, 25.15)] 

Failure stress of bar B, 

 σB
0  (× 107 Pa) 

Point data – [21.8, 21.92,22.08,22.15] 

Interval data – [(21.85, 21.88), (22.06, 22.08), (22.13, 

22.16)] 

 

For illustration purposes, the same candidate distribution types for load 𝑷 and their probabilities are 

used as in Table 3.2. The system described here is a parallel system and therefore failure occurs when both 

the bars fail i.e. 𝑔𝐴(𝑋) < 0 and 𝑔𝐵(𝑋) < 0. The system failure probability is given by 

 𝑝𝑓
𝑠 = Pr (𝑔𝐴(𝑋) < 0 ∩ 𝑔𝐵(𝑋) < 0) (3.22) 

Table 3.6 gives the system failure probability analysis results after consideration of statistical 

uncertainty, model discrepancy and uncertain model parameters, and without considering surrogate 

uncertainty and MCS error. Similar to the previous example, the threshold EFF value for selection of 
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training points in surrogate construction is assumed to be 0.002. Fig. 3.9 shows the system failure 

probability estimates without considering surrogate uncertainty and MCS error, considering only surrogate 

uncertainty and considering surrogate both uncertainty and MCS error. It can be seen that the surrogate 

uncertainty and MCS error result in larger uncertainty in the reliability estimate compared to considering 

only surrogate uncertainty. In order to reduce the uncertainty in the estimate, the surrogate needs to be 

further refined by adding more training points and the number of Monte Carlo samples need to be 

increased to reduce the MCS error.  

Table 3.7. System Failure probability estimates using simulation model and limit state surrogate 

 s

fp  NOF Error (%) 

Simulation model (Euler model + model discrepancy) 0.0048 6×105 - 

Limit state surrogate model 0.0049 302 2.08 

 

 

Fig. 3.9. System failure probability estimate using simulation model and limit state surrogate 
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3.5. Summary  

      This chapter proposed a unified framework to quantify the uncertainty in the reliability estimate due to 

the incorporation of different types of epistemic uncertainty.  Epistemic uncertainty due to data (statistical 

uncertainty) and model (model parameter uncertainty, model discrepancy, surrogate uncertainty, Monte 

Carlo sampling error) are considered. A parametric approach is proposed for the quantification of input 

variables with statistical uncertainty. Non-parametric distributions are used to quantify uncertain model 

parameters with statistical uncertainty. First, model calibration is carried out using the KOH framework, 

whose output include GP surrogates for simulation model and model discrepancy. The general purpose 

(global) GP surrogate of simulation model is further refined by adding more training points close to the 

limit state (local refinement) to obtain the limit state surrogate for reliability analysis; this is referred to as 

a hybrid approach (local refinement of the general purpose GP surrogate).  An auxiliary variable is used 

to represent the model discrepancy, which enables the construction of a limit state surrogate that includes 

the model discrepancy. The inputs for the limit state surrogate are the original input variables along with 

the uncertain model parameters and the model discrepancy. The selection of training points is carried out 

using a learning function called the Expected Feasibility Function (EFF). The GP model is then used to 

carry out reliability analysis using Monte Carlo sampling.  A single-loop sampling approach using an 

auxiliary variable is used for the sampling of input variables with statistical uncertainty and samples of 

the inputs are generated and passed through the surrogate to obtain the reliability estimate. Note that this 

results in a single value of the failure probability.  

      The model prediction using a GP model is a Gaussian distribution with the parameters dependent on 

the input. In addition, the model predictions at different inputs are correlated due to the covariance function 

in the GP model. To account for the surrogate uncertainty (i.e., the variability in the prediction), correlated 

sampling of model predictions at several inputs is carried out and used for reliability analysis. Inclusion 
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of surrogate uncertainty results in a probability distribution (PDF) for the failure probability. When MCS 

error is incorporated, each sample in the failure probability distribution is represented by a PDF, which 

results in a family of PDFs for the failure probability. Two examples demonstrated the effectiveness of the 

proposed method. The proposed method is able to not only address heterogeneous sources of epistemic 

uncertainty during system reliability analysis, but also provide the uncertainty associated with the 

reliability estimate. 

This chapter considered performance assessment of single-component systems; the next chapter 

considers performance assessment of multi-level systems, which could be considered as a collection of 

multiple components.   
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CHAPTER 4 

PERFORMANCE ASSESSMENT IN MULTI-LEVEL SYSTEMS 

4.1. Introduction 

Multi-level systems represent systems composed of several components (subsystems) organized in a 

hierarchical manner. An example of a multi-level system is a manufacturing process shown in Fig. 1.2. In 

such systems, estimation of a system-level QoI requires aggregation of uncertainty from several 

subsystems at multiple levels.  The focus in this chapter is to develop a methodology for performance 

assessment of multi-level systems using Hierarchical Bayesian Networks [9], which are an extension to 

Bayesian networks. A brief introduction to a BN and an HBN is provided in Section 2.6. HBNs offers 

several advantages for modeling, analysis and visualization of multi-level systems. Learning of an HBN 

in its entirety can be computationally expensive as the system consists of several subsystems and therefore, 

may have a large number of variables. When learning algorithms such as score-based methods in Section 

2.6.2, are used to learn the entire HBN, they may not provide accurate dependence relationships as they 

output locally optimum models. Therefore, in its chapter, we propose a segmented learning framework, 

where the learning of a large HBN is divided into several small subsystem-level BNs; this makes the 

learning more efficient.  

As mentioned in Section 2.6.1, the BNs for several subsystems can be constructed using physics-based 

models or learnt from available data using BN learning algorithms or by their combination (hybrid 

approach). Section 1.1 detailed the issues relating to learning in hybrid Bayesian networks such 

conditional linear Gaussian assumption [5] and discretization of continuous variables. In this work, an 

improvement to the existing algorithm is presented which eliminates discretization challenges and 

Gaussian assumption in learning BNs.   



 69 

One advantage of using a BN is that it encodes the expert domain knowledge into the model. Experts, 

in general, may have a wealth of knowledge on a subsystem that they have experience with and therefore 

can support in building a BN associated with that unit process. A HBN approach allows the integration of 

expert knowledge from multiple domains in modeling the multi-level. HBNs allow modeling at different 

resolutions depending upon the analysis requirements. As a result, HBNs provide better visualization of 

the models.  

    In a multi-level system, data for calibration might be available at multiple levels. As the complexity of 

the multi-level system increases, the dimension of the HBN also increases, in terms of the number of 

calibration parameters. Estimating all the unknown parameters using the HBN with the entire data together 

becomes computationally expensive. Therefore, a segmented approach for model calibration is proposed 

here for estimating the unknown parameters at multiple levels. A segmented approach for model 

calibration has been studied earlier for multi-physics problems [83, 84]. In this work, the segmented 

approach is expanded to multi-level systems that include a mixture of discrete and continuous variables, 

in the presence of mathematical models, expert knowledge and observation data in different segments of 

the manufacturing network. 

    The complexity of the model increases with the number of variables/parameters used in the model. 

Therefore, dimension reduction techniques have been studied to reduce the complexity of the model by 

eliminating the variables that do not significantly influence the model prediction. Nannapaneni et al  [85] 

demonstrated a variance-based global sensitivity analysis approach for dimension reduction in a single-

component BN. In this work, a multi-level sensitivity analysis approach is developed for hierarchical 

systems, thus enabling dimension reduction and improving the scalability and affordability of the analysis. 

The proposed methodologies are demonstrated for an injection-modeling process.  
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4.2. Proposed methodology 

HBNs, as stated in Section 2.6.3, are extensions of BNs for modeling hierarchical systems, i.e. a HBN 

is a BN where each node may represent a lower level BN. Another interpretation of a HBN is that it is a 

fusion of BNs at different levels of hierarchy. The BNs at different levels can be individually learnt from 

either available physics-based models or data. An improved method for learning hybrid Bayesian network 

is presented first. After learning the BNs at different levels in the hierarchy, composition of the BNs to 

form the HBN is pursued. Then methods for model updating and dimension reduction are discussed. 

4.2.1 Learning Bayesian networks 

As stated in Section 2.6.2, the learning of a BN consists of structure learning (topology) and parameter 

learning (conditional probability distributions). The proposed refinement belongs to the parameter-

learning task, in the estimation of conditional probability distributions.  

    The topology of a Bayesian network with discrete and continuous variables can be learnt by first 

discretizing the continuous variables using Gaussian mixture models (GMM) [86] using the algorithm 

presented in [7], which uses a score-based method for learning. During the learning process, every 

continuous node is represented as a two-component GMM, where the statistics (mean and variance) of the 

two normal distributions are estimated from the data. As a pre-processing step to the learning procedure, 

data is clustered into two groups using the k-means clustering algorithm [87]. For data in each group, a 

Gaussian distribution is fit by estimating the mean and variance of the data. The learning algorithm is also 

able to use any prior knowledge about the ordering of the nodes. In addition, any available information on 

a possible set of parent nodes for a child node can also be used. Using such information from domain 

experts makes the learning of the BN faster and more accurate.  
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    The output of the learning procedure provides the topology of the BN, conditional probability tables for 

the discrete nodes and conditional probability distributions for the continuous nodes. The conditional 

probability tables of the discrete nodes are exact since no approximations are made in their representation. 

The conditional probability distributions of the continuous nodes are not exact but approximate due to 

their representation as two-component GMMs. The proposed refinement is in estimation of the conditional 

probability distributions of continuous nodes, in particular, the following three cases – (1) continuous 

node, with all continuous parent nodes, (2) continuous node, with parent nodes, which are a collection of 

discrete and continuous nodes, and (3) Continuous nodes with all discrete parent nodes.  

    One interpretation of a conditional probability distribution is that it is a stochastic model connecting the 

parent nodes to the child node. Therefore, the proposed method is to fit parametric or non-parametric 

models using the available data and topology; these models can then be used as conditional probability 

distributions.  

    Consider case 1 – continuous child node 𝑋𝑐 with continuous parent nodes 𝑃𝑎(𝑋𝑐). Due to the possibility 

of many parametric and non-parametric models, the following models are tried and the best one is chosen 

– (1) Gaussian conditional probability, where the mean is a linear function of parent nodes and with 

constant but unknown variance, 𝑓(𝑋𝑐|𝑃𝑎(𝑋𝑐))  ~  𝑁(𝑓1(𝑃𝑎(𝑋𝑐)), 𝜎
2)  where 𝑓1  represents a linear 

function and 𝜎2  represents the variance; (2) Gaussian conditional probability, where the mean is a 

quadratic function of parent nodes and with constant variance, i.e., 𝑓(𝑋𝑐|𝑃𝑎(𝑋𝑐)) ~ 𝑁(𝑓2(𝑃𝑎(𝑋𝑐)), 𝜎
2); 

and (3) a Gaussian Process model, i.e., 𝑓(𝑋𝑐|𝑃𝑎(𝑋𝑐)) ~ 𝐺𝑃(𝑃𝑎(𝑋𝑐)). The parameters of the above 

models are estimated from the data. The first two models are parametric models with variance independent 

of the parent nodes whereas the third model is non-parametric and the variance is dependent on the values 

of the parent nodes. The three models are in increasing order of complexity (and computational expense). 

The selection of the best-fit model can be based on quantitative model selection techniques such as residual 
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mean squared error (RMSE), Akaike information criterion (AIC), and Bayesian Information criterion 

(BIC) [88].   

    For case 2, where the parent node set consists of both discrete and continuous nodes, one of the above 

three parametric and non-parametric models can be fit to every combination of the discrete nodes, i.e., for 

every combination of the parent discrete nodes, a parametric or a non-parametric model is constructed for 

the continuous child node conditioned on the continuous parent nodes. Let 𝑃𝑎(𝑋𝑐) = 𝑃𝑎(𝑋𝑐)
𝐷 +

𝑃𝑎(𝑋𝑐)
𝐶 , where 𝑃𝑎(𝑋𝑐)

𝐷 , 𝑃𝑎(𝑋𝑐)
𝐶  represent the sets of discrete parent nodes and continuous parent 

nodes. Then the conditional probability distribution can be represented as 

 𝑓(𝑋𝑐|𝑃𝑎(𝑋𝑐)) ~ ∑𝛿(𝑃𝑎(𝑋𝑐)
𝐷 − 𝜈)𝑀𝜈(𝑃𝑎(𝑋𝑐)

𝐶)

𝜈

 (4.1) 

where 𝛿(. ) represents the Dirac delta function, 𝜈 represents a possible combination of discrete parent 

nodes 𝑃𝑎(𝑋𝑐)
𝐷, and 𝑀𝑣 represents any of the three parametric or non-parametric models for 𝑋𝑐 dependent 

on the continuous parent nodes (𝑃𝑎(𝑋𝑐)
𝐶).  

    For case 3, when the continuous child node is dependent on only discrete parent nodes, the child node 

assumes a different probability distribution for every combination of the discrete parent nodes. Flexible 

parametric distributions families such as Johnson, beta etc. [89] or non-parametric distributions can be fit 

to the available data [24], for every combination of the discrete parent nodes. The key idea of this learning 

algorithm is to eliminate the approximations made in existing learning algorithms in representation of the 

continuous variables. 

4.2.2 Construction of hierarchical Bayesian networks 

Here, construction of the HBN corresponding to a multi-level system is discussed. In addition, an 

automated procedure for the construction of HBN is described.  
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Fig. 4.1. Hierarchy in a multi-level process 

BNs at multiple levels can be constructed either using physics-based models or available data using 

BN learning algorithms (as shown in Fig. 4.1). In cases when physics-based models are unavailable, the 

BNs are constructed using available data following the procedure in Section 4.2.1, which are usually 

specific to that process. As stated in Section 4.1, the topology of the multi-level system can be used to 

connect the BNs for individual subsystems, to obtain a preliminary HBN. In some cases, when multiple 

subsystems are composed, unknown dependences may be observed. (For example, consider two simple 

systems – a heating system and a pipe to transport a flammable liquid. The two systems when separated 

by a large distance may function properly but when the heating system is brought close to the pipe, the 

pipe gets heated, thereby heating up the flammable liquid and eventually causing fire).  

Input

Output
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    The BN learning procedure is used to quantify the unknown dependences across several subsystems. 

The HBN constructed by composing the individual BNs following the topology of multi-level system is 

used as a prior network for the BN learning algorithm. When learning the unknown dependencies, the 

dependencies within each subsystem are fixed and any dependencies across subsystems are learnt. It is 

assumed that all the dependencies within a subsystem are characterized when learning the individual BNs. 

Using the operational data for the entire multi-level system; the unknown dependences across individual 

subsystems are learnt. In summary, the HBN for a multi-level system can be constructed in three steps – 

(1) learning BNs for individual subsystems, (2) constructing an initial HBN following the topology of the 

multi-level system, and (3) learning the unknown dependences across several subsystems using the BN 

learning algorithms. 

Automation: BNs built for individual subsystems can be stored in a model library in an exchangeable 

format such as JavaScript Object Notation (JSON) [90], and can be imported from the model library 

wherever that subsystem is used. In the case of BN learning, the outputs (nodes and their conditional 

probability distributions) are stored in the JSON format. Thus, all the JSON representations of BNs at 

different levels can be fused together to obtain a JSON representation of the entire system or process. An 

algorithm can then be developed to automate the conversion of the JSON representations of all the 

variables into a corresponding Bayesian network. In this work, a Python script is created to convert the 

JSON representation into a BN, using the PyMC module [91] in Python, and the constructed BN is then 

used for further UQ analysis. The unknown dependences depend on the topology of the network. 

Therefore, after automated construction the HBN following the network topology, the unknown 

dependences are quantified. Note that only the BNs for the individual subsystems or components 

(constructed through physics-models or learning algorithms) may be stored in the JSON format and not 

the entire HBN, because the unknown dependences are configuration-dependent. 
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4.2.3 Multi-level segmented model calibration 

Typically, the data for model calibration may be available at multiple levels in a system. Using the 

entire available data to estimate all unknown parameters becomes unnecessarily expensive (in terms of 

computation). A more suitable method for model calibration is by adopting a multi-level segmented 

approach where data in each lower-level BN is used to obtain the posterior distributions of the nodes in 

that BN; these posterior distributions are used as prior distributions for re-calibration of the nodes that go 

into higher-level BNs using the corresponding data. The remaining nodes in the lower-level BN can also 

be re-calibrated if necessary, based on passing the information down the hierarchy. This multi-level 

calibration approach is explained using the HBN shown in Fig. 2.4.  

    Let the calibration parameters include 𝑆11, 𝑆12, 𝑆21, 𝑆22, 𝑆23. Since  𝑆11, 𝑆12 and 𝑆21, 𝑆22, 𝑆23 correspond 

to parameters of subsystems at different levels, by using the independence assumption, their joint prior 

distribution Π( 𝑆11, 𝑆12, 𝑆21, 𝑆22, 𝑆23)  can be decomposed into a product of Π( 𝑆11, 𝑆12) 

and Π(𝑆21, 𝑆22, 𝑆23). For convenience, let 𝑆1
𝑝 = {𝑆11, 𝑆12} and 𝑆2

𝑝 = {𝑆21, 𝑆22, 𝑆23}. Their corresponding 

joint prior and posterior distributions are denoted by  Π(𝑆1
𝑝, 𝑆2

𝑝) = Π(𝑆1
𝑝) Π(𝑆2

𝑝) and Π(𝑆1
𝑝, 𝑆2

𝑝|𝑆1
∗, 𝑆∗) 

respectively. Let 𝑆1 = 𝑆1
∗ and 𝑆 = 𝑆∗ represent the data available on 𝑆1 and 𝑆. Two cases are presented 

below – (1) 𝑆1
∗, 𝑆∗ are independent, and (2) 𝑆1

∗, 𝑆∗ have a one-to-one correspondence. Let us consider the 

first case. The posterior distributions Π(𝑆1
𝑝, 𝑆2

𝑝|𝑆1
∗, 𝑆∗) can be obtained as 

 Π(𝑆1
𝑝, 𝑆2

𝑝|𝑆1
∗, 𝑆∗) ∝ 𝐿(𝑆1

∗, 𝑆∗|𝑆1
𝑝, 𝑆2

𝑝)Π(𝑆1
𝑝, 𝑆2

𝑝)  

                                                      ∝ 𝐿(𝑆1
∗|𝑆1

𝑝
)𝐿(𝑆∗|𝑆1

∗, 𝑆1
𝑝
, 𝑆2
𝑝
) Π(𝑆1

𝑝
)Π(𝑆2

𝑝
) 

                                               ∝ 𝐿(𝑆1
∗|𝑆1

𝑝)𝐿(𝑆∗|𝑆1
𝑝, 𝑆2

𝑝)Π(𝑆1
𝑝)Π(𝑆2

𝑝) 

                                                           ∝  𝐿(𝑆1
∗|𝑆1

𝑝) Π(𝑆1
𝑝) 𝐿(𝑆∗|𝑆1

𝑝, 𝑆2
𝑝)Π(𝑆2

𝑝) 

(4.2) 

In the last step of the above expression, the first two terms provide the posterior distributions of 𝑆1
𝑝
 using 

the data on 𝑆1, i.e., updating the Level 1 BN corresponding to 𝑆1. The posterior distributions of 𝑆1
𝑝
 are 
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then used as prior distributions for model calibration in the HBN using the data on 𝑆. The last two terms 

provide the posterior distributions of 𝑆1
𝑝
 and 𝑆2

𝑝
 using the data on 𝑆. 𝐿(𝑆∗|𝑆1

∗, 𝑆1
𝑝, 𝑆2

𝑝) can be simplified to 

𝐿(𝑆∗| 𝑆1
𝑝, 𝑆2

𝑝) since 𝑆1
∗, 𝑆∗ are assumed to be independent. In short, the data in lower-level BNs are used 

to obtain posterior distributions, which are later used as prior distributions for re-calibration using the data 

in the higher-level BN.  

In the second case, the data on 𝑆1 and 𝑆are assumed to have a one-to-one correspondence, (i.e., for a 

𝑆1 = 𝑆1
∗ there exists an associated 𝑆 = 𝑆∗). Here, the posterior distributions can be obtained as  

 Π(𝑆1
𝑝, 𝑆2

𝑝|𝑆1
∗, 𝑆∗) ∝ 𝐿(𝑆1

∗, 𝑆∗|𝑆1
𝑝, 𝑆2

𝑝)Π(𝑆1
𝑝, 𝑆2

𝑝)  

                                                     ∝ 𝐿(𝑆1
∗|𝑆1

𝑝)𝐿(𝑆∗|𝑆1
∗, 𝑆1

𝑝, 𝑆2
𝑝) Π(𝑆1

𝑝)Π(𝑆2
𝑝) 

                                             ∝ 𝐿(𝑆1
∗|𝑆1

𝑝)𝐿(𝑆∗|𝑆1
∗, 𝑆2

𝑝)Π(𝑆1
𝑝)Π(𝑆2

𝑝) 

                                                        ∝  𝐿(𝑆1
∗|𝑆1

𝑝) Π(𝑆1
𝑝) 𝐿(𝑆∗|𝑆1

∗, 𝑆2
𝑝)Π(𝑆2

𝑝) 

(4.3) 

From the HBN topology, it can be observed that 𝑆 is independent of 𝑆1
𝑝
 when 𝑆1 is known. Therefore, 

𝐿(𝑆∗|𝑆1
∗, 𝑆1

𝑝, 𝑆2
𝑝) can be simplified to 𝐿(𝑆∗|𝑆1

∗, 𝑆2
𝑝). In the last expression, similar to the previous case, the 

first two terms provide the posterior distributions of 𝑆1
𝑝

 using 𝑆1
∗ whereas the last two terms can be used 

to estimate 𝑆2
𝑝
 using 𝑆1

∗, 𝑆∗. In this case, the final posterior distributions of 𝑆1
𝑝, 𝑆2

𝑝
 can be obtained in one 

shot separately as opposed to the earlier case, where the final posterior of  𝑆1
𝑝
 is obtained in two steps – 

(1) calibrate using 𝑆1
∗ only, and (2) re-calibrate with both 𝑆2

𝑝 using 𝑆∗, using the posterior from step (1). 

The above two cases can be extended to calibrate HBNs with multiple levels.  

    After model calibration, the posterior distributions of all other variables in the HBN can be obtained 

through forward uncertainty propagation where the samples from posterior distributions of estimated 

parameters are propagated through the HBN using Monte Carlo sampling (MCS).  
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4.2.4 Multi-level sensitivity analysis for dimension reduction 

   Dimension reduction techniques are classified into two types – filter approach [92] and wrapper 

approach [93]. In the filter approach, all input variables are ranked according to a ranking criterion and 

the most significant variables can be selected. The number of variables selected depends on the analysis 

requirements and accuracy. In the wrapper method, a subset of variables is selected from all possible 

subsets of variables that best describe the output quantity of interest. An optimization search technique is 

generally used to obtain the best subset of variables. The proposed dimension reduction technique is based 

on variance-based global sensitivity analysis and falls under the filter approach. Fig. 4.2 describes the 

dimension reduction methodology using variance-based global sensitivity analysis.  

 

Fig. 4.2. Dimension reduction using global sensitivity analysis 

As stated in Section 4.1, the global sensitivity analysis approach for dimension reduction has been 

illustrated in [85]; the same approach can also be used for hierarchical systems. However, as the number 

of levels increases in the network, the sensitivity analysis can become computationally expensive due to 

repeated evaluation of the entire network. Here, we develop an efficient dimension reduction approach 
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where a segmented approach is taken, i.e., sensitivity analysis is carried out at multiple individual levels 

of the network as against the entire network.   

Using the prior distributions of the root nodes (nodes with no parent nodes), the prior distributions of 

all the nodes in the HBN can be obtained using Monte Carlo sampling. The overall uncertainty in a system-

level variable is due to the accumulation of several sources of uncertainty occurring at different lower 

levels, starting from the root variables. Thus, the uncertainty accumulation follows a bottom-to-top 

approach. The key idea in the proposed method is top-to-bottom decomposition of uncertainty at the 

system-level until the uncertainty contribution of a variable is below the threshold value.  

    As stated in Section 2.6.3, a HBN is a BN where some nodes may represent lower-level BNs. Therefore, 

the uncertainty contribution of the system-level node to the overall process performance includes the 

contributions of the uncertain variables in the lower-level BN that the node represents. Therefore, if the 

sensitivity index of the node is less than the threshold value then the sensitivity indices of each of the 

variables in the lower level, when calculated, are lower than the sensitivity index of the higher level node. 

As a result, the entire lower level BN can be collapsed and the node can be assumed deterministic at its 

most probable value. If the sensitivity indices of some of the nodes at any level are greater than the 

threshold value, then the nodes are replaced by their corresponding lower-level BNs and sensitivity indices 

are again re-computed. 

    The HBN in Fig. 2.6 is again used for illustration of the proposed approach. Using the prior distributions 

of root nodes (𝑆11, 𝑆12, 𝑆21, 𝑆22, 𝑆23), the prior distributions of higher-level variables can be obtained using 

some assumed conditional probability distributions. Using the prior distributions, sensitivity analysis is 

first performed in the Level 2 BN.  For a given value of 𝑆1 and 𝑆2, the prediction of 𝑆 is a PDF due to the 

conditional probability distribution (𝑆|𝑆1, 𝑆2); this represents a stochastic relation between (𝑆1, 𝑆2) and 𝑆. 

GSA requires a deterministic relation between the inputs and the output; therefore, the stochastic 
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relationship is converted to a deterministic relationship through explicit representation of the stochasticity 

using an auxiliary variable. The auxiliary variable approach was briefly discussed in Section 2.5.  

In this work, we extend the auxiliary variable approach to represent the stochasticity due to a CPD. 

Note that the stochasticity due to the CPD may represent aleatory uncertainty (such as process 

imperfections) or epistemic uncertainty (lack of knowledge about a process). For illustration, an auxiliary 

variable (𝑢𝑆) can be used to represent the stochasticity due to the CPD of 𝑆|𝑆1, 𝑆2 as  

𝑢𝑆 = 𝐹𝑆(𝑠|𝑆1 = 𝑆1
∗, 𝑆2 = 𝑆2

∗) = ∫ 𝑓𝑆(𝑤|𝑆1
∗, 𝑆2

∗)
𝑠

−∞

 𝑑𝑤 (4.5) 

where 𝑆1
∗, 𝑆2

∗ are realizations of 𝑆1, 𝑆2 respectively. A deterministic relationship can thus be constructed 

between 𝑆1, 𝑆2 and 𝑢𝑆 to 𝑆 as given by Eq. (4.6), which therefore facilitates global sensitivity analysis: 

 𝑆 = 𝐹𝑆
−1(𝑢𝑆 = 𝑢𝑆

∗|𝑆1 = 𝑆1
∗, 𝑆2 = 𝑆2

∗) (4.6) 

 where 𝐹𝑆
−1 represents the inverse CDF of the CPD and 𝑢𝑆

∗ is a realization of 𝑢𝑆. Let the threshold value 

of sensitivity index of a variable for it to be considered insensitive be equal to 0.1. Assume the first-order 

sensitivity indices of 𝑆1 and 𝑆2 to 𝑆 be equal to 0.7 and 0.08 respectively. The uncertainty contribution of 

𝑆2 to 𝑆 includes the contribution from 𝑆21, 𝑆22 and 𝑆23. Therefore, the sensitivity indices of  𝑆21, 𝑆22 and 

𝑆23 each would be smaller than 0.08. Hence, the entire Level 1 BN corresponding to 𝑆2 can be eliminated 

and all the corresponding variables can be assumed deterministic at their most probable values or their 

mean values. The most probable value of an input corresponds to that input with the highest PDF value. 

In the above illustration, the dimension reduction with respect to a random variables ( 𝑆1, 𝑆2 ) is 

demonstrated.  

    In some cases, it may also be possible that the sensitivity index of an auxiliary variable representing the 

stochasticity due to a CPD such as 𝑢𝑆 is less than the threshold value.  Low sensitivity index of such an 
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auxiliary variable signifies that the stochasticity due to a CPD does not cause substantial uncertainty in 

the model prediction. Hence, the auxiliary variable can be assumed deterministic at its mean value (𝑢𝑆 = 

0.5). Here, the mean value is chosen as opposed to the most probable value since every value is equally 

probable for the uniformly distributed auxiliary variable. Assuming a deterministic value for the auxiliary 

variable results in the CPD to be replaced by a deterministic function given as  

 𝑆 = 𝐹𝑆
−1(𝑢𝑆 = 0.5|𝑆1 = 𝑆1

∗, 𝑆2 = 𝑆2
∗) (4.7) 

    After performing sensitivity analysis and dimension reduction in the Level 2 BN, we then advance to 

the next lower level, i.e., Level 1 BN. Sensitivity analysis can now be performed between  𝑆11, 𝑆12 and 𝑆. 

From 𝑆11, 𝑆12  to 𝑆, there exist four CPDs of 𝑆13, 𝑆14, 𝑆1  and 𝑆. The stochasticity due to the CPDs of 

𝑆13, 𝑆14, 𝑆1 and 𝑆 is explicitly represented using auxiliary variables 𝑢𝑆13 , 𝑢𝑆14 , 𝑢𝑆1 and , 𝑢𝑆 respectively as  

 𝑆13 = 𝐹𝑆13
−1(𝑢𝑆13|𝑆11 = 𝑆11

∗ , 𝑆12 = 𝑆12
∗ ) (4.8) 

 𝑆14 = 𝐹𝑆14
−1(𝑢𝑆14|𝑆11 = 𝑆11

∗ , 𝑆12 = 𝑆12
∗ ) (4.9) 

 𝑆1 = 𝐹𝑆1
−1(𝑢𝑆1|𝑆13 = 𝑆13

∗ , 𝑆14 = 𝑆14
∗ ) (4.10) 

 𝑆 = 𝐹𝑆
−1(𝑢𝑆|𝑆1 = 𝑆1

∗, 𝑆2 = 𝑆2
𝑀) (4.11) 

where 𝜓∗ represents a realizations of 𝜓 (𝜓 = 𝑆11, 𝑆12, 𝑆13, 𝑆14, 𝑢𝑆13 , 𝑢𝑆14 , 𝑢𝑆1 , 𝑢𝑆) and 𝑆2
𝑀  represents the 

most probable value of 𝑆2 since it is assumed deterministic from sensitivity analysis of the Level 2 BN.  

Thus, the constructed deterministic relationship from 𝑆11, 𝑆12  𝑆  can be used to carry out sensitivity 

analysis. If the sensitivity indices of variables are less than a threshold value, then they can be assumed 

deterministic at their most probable values or their mean values. 
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4.3. Illustrative example: Injection molding 

In this section, the proposed methodologies are demonstrated to evaluate the overall energy 

consumption of an injection molding process. The injection molding process is composed of three stages 

– (1) Melting of the polymer, (2) Injection of the polymer into the mold, and (3) Cooling of the polymer. 

Physics-based mathematical models are available for the estimation of energy consumption of each of the 

three stages and for overall energy consumption. Using the physics-based models, Bayesian networks can 

be constructed in each of the three stages, along with the overall energy consumption to estimate the 

uncertainty in overall energy consumption. Thus, the BNs corresponding to each of the three stages form 

the lower-level BN and the overall energy consumption forms the higher-level BN, thus forming a two-

level HBN. To demonstrate the learning of Bayesian networks, one of the physics-based models (energy 

consumption for melting process) is assumed unavailable and it is learnt from available data. A synthetic 

dataset is generated by adding Gaussian errors to the corresponding mathematical model and used in the 

learning process. For melting and injection stages, overall energy consumption, the physics-based models 

are used. The segmented approach for model calibration is demonstrated using another synthetic dataset 

and later the proposed multi-level sensitivity analysis is demonstrated for dimension reduction. The 

physics-based models for energy consumption in the injection molding process are described below.  

Melting process 

     This is the first stage of the injection molding process where the polymer, which initially is in the solid 

state, is converted into the liquid state. The power consumption in melting the polymer is given as  

 𝑃𝑚𝑒𝑙𝑡 =  0.5 × 𝜌 × 𝑄 × 𝐶𝑃 × (𝑇𝑖𝑛𝑗 − 𝑇𝑝𝑜𝑙) + 0.5 × 𝜌 × 𝑄 × 𝐻𝑓 (4.12) 

where 𝑃𝑚𝑒𝑙𝑡 refers to power consumption in melting process, 𝜌, 𝑄, 𝐶𝑝, 𝐻𝑓 refer to the density, flow rate, 

heat capacity and heat of fusion of the polymer respectively. 𝑇𝑖𝑛𝑗  and 𝑇𝑝𝑜𝑙  represent the injection 
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temperature and temperature of polymer respectively. If 𝑉𝑝𝑎𝑟𝑡 represents the volume of a part, then the 

volume of a shot (𝑉𝑠ℎ𝑜𝑡) considering the shrinkage (𝜖), buffer (Δ), number of cavities (𝑛) is given as  

 
𝑉𝑠ℎ𝑜𝑡 = 𝑉𝑝𝑎𝑟𝑡 × (1 +

𝜖

100
+

Δ

100
) × 𝑛 (4.13) 

Using the power consumption for melting and volume of a shot, the energy consumption for melting 

process (𝐸𝑚𝑒𝑙𝑡) is given as  

 
𝐸𝑚𝑒𝑙𝑡 =

𝑃𝑚𝑒𝑙𝑡 × 𝑉𝑠ℎ𝑜𝑡
𝑄

 (4.14) 

Note that this model will only be used to generate a synthetic dataset to demonstrate BN learning. It will 

not be used for BN construction. In reality, such data comes from observation of the actual process 

operational data. 

Injection process 

     This is the second stage of the injection molding process where the molten polymer is injected into the 

mold. The energy consumed in the injection process (𝐸𝑖𝑛𝑗) is given as  

 𝐸𝑖𝑛𝑗 = 𝑝𝑖𝑛𝑗 × 𝑉𝑝𝑎𝑟𝑡 (4.15) 

where 𝑝𝑖𝑛𝑗 refers to the injection pressure.  

Cooling process 

    The third stage of the injection molding process where the molten polymer is cooled to form the final 

product. The energy consumption in cooling process (𝐸𝑐𝑜𝑜𝑙) is given as  

           
𝐸𝑐𝑜𝑜𝑙 =

𝜌 × 𝑉𝑝𝑎𝑟𝑡 × [𝐶𝑝 × (𝑇𝑖𝑛𝑗 − 𝑇𝑒𝑗)]

𝐶𝑂𝑃
 (4.16) 
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where 𝑇𝑒𝑗 , 𝐶𝑂𝑃  represent the ejection temperature and coefficient of performance of the cooling 

equipment respectively.  

Overall energy consumption 

    Given the energy consumption for each of the three stages, the expression for overall energy 

consumption of a part (𝐸𝑝𝑎𝑟𝑡) is given as  

 
𝐸𝑝𝑎𝑟𝑡 =

1

𝑛
× [(

0.75 × 𝐸𝑚𝑒𝑙𝑡 + 𝐸𝑖𝑛𝑗

𝜂𝑖𝑛𝑗
+
𝐸𝑟𝑒𝑠𝑒𝑡
𝜂𝑟𝑒𝑠𝑒𝑡

+
𝐸𝑐𝑜𝑜𝑙
𝜂𝑐𝑜𝑜𝑙

+
0.25 × 𝐸𝑚𝑒𝑙𝑡
𝜂ℎ𝑒𝑎𝑡𝑒𝑟

)

×
𝑛 × (1 + 𝜖 + Δ)

𝜂𝑚𝑎𝑐ℎ𝑖𝑛𝑒
+ 𝑃𝑏 × 𝑡𝑐𝑦𝑐𝑙𝑒]   

(4.17) 

where 𝜂𝑖𝑛𝑗 ,  𝜂𝑟𝑒𝑠𝑒𝑡,  𝜂𝑐𝑜𝑜𝑙,  𝜂ℎ𝑒𝑎𝑡𝑒𝑟 ,  𝜂𝑚𝑎𝑐ℎ𝑖𝑛𝑒 refer to the efficiencies of injection, reset, cooling, heating 

and machine power respectively, 𝑡𝑐𝑦𝑐𝑙𝑒 refers to the total cycle time, 𝑃𝑏 refers to the power required for 

basic energy consumption when the machine is in stand-by mode, 𝐸𝑟𝑒𝑠𝑒𝑡 refers to the energy required for 

resetting the process and is given as  

 𝐸𝑟𝑒𝑠𝑒𝑡 = 0.25(𝐸𝑖𝑛𝑗 + 𝐸𝑐𝑜𝑜𝑙 + 𝐸𝑚𝑒𝑙𝑡) (4.18) 

For simplicity, power consumption when machine is in stand-by model (𝑃𝑏) is not considered because 

it depends on the type of machines used in the process. The Bayesian networks corresponding to the 

energy consumption in three stages and for the overall process, built using the physics-based models are 

provided in Fig. 4.3. For a given injection molding process, the volume of a part (𝑉𝑝𝑎𝑟𝑡) is a constant and 

all the efficiency terms (𝜂𝑖𝑛𝑗 ,  𝜂𝑟𝑒𝑠𝑒𝑡,  𝜂𝑐𝑜𝑜𝑙,  𝜂ℎ𝑒𝑎𝑡𝑒𝑟 ,  𝜂𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ) and 𝐶𝑂𝑃  are assumed to be known 

constants (equal to 0.7); therefore these variables do not appear in the Bayesian network representations 

in Fig. 4.3. All the physics-based models are assumed to be available in model libraries in JSON format 

as stated in Section 4.2.2.  
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BN Learning for the melting process: The BN corresponding to the melting process is learnt from data 

using a synthetic dataset that is generated from the physics-based models along with assumed Gaussian 

errors. The Gaussian errors are assumed with zero mean and a standard deviation of 1𝑜𝐶 , 1.5 ×

10−6 𝑚3/𝑠, 0.00002 𝑚3  and 10 𝑘𝑔/𝑚3 for temperature, flow rate, volume and density measurements 

respectively. The parameters for the synthetic dataset are provided in Table 4.1.  

 
 

(a) (b) 

 
 

(c) (d) 

Fig. 4.3. Bayesian Network representations of physics-based models for (a) Melting process, 

(b) Injection process and (c) Cooling process (d) Overall energy consumption 

The synthetic dataset consists of 20,000 samples and using all the samples for BN learning can be 

computationally expensive. Therefore, subsets of different sizes (N = 100, 500, 1000, 2500, 5000, 7500, 

10000) are obtained from the synthetic dataset and used for learning. To verify the learnt BN at any given 

dataset size, the learning procedure is carried out with two higher dataset sizes. If the learnt BN remains 

the same, then that BN is assumed to represent the true underlying BN. In this example, the BN learning 
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converges within 5,000 samples and the learnt BN is further verified with 7,500 and 10,000 samples. The 

topology of the Bayesian network is learnt using the algorithm in [5] where a continuous variable is 

divided into a two-component Gaussian mixture model. The learned Bayesian network structures using 

different dataset sizes are provided in Fig. 4.4. From the learning results, it can be seen that a large amount 

of data is required to establish a relationship (an arc in the BN) Energy for melting (𝐸𝑚𝑒𝑙𝑡) vs Heat capacity 

(𝐶𝑝) and Volume of shot (𝑉𝑠ℎ𝑜𝑡) which indicates that their influence on 𝐸𝑚𝑒𝑙𝑡 is weak. To verify this 

conclusion, sensitivity analysis is carried out and the results are provided in Table 4.2. 

Table 4.1.Synthetic dataset for learning BN of melting process 

Parameter Value 

Shrinkage (𝜖) Uniform(0.018,0.021) 

Volume of a part (𝑚3) 0.002048 

Buffer (Δ) 0.01 

Polymer temperature (𝑇𝑝𝑜𝑙) Normal(50,2) 

Injection temperature (𝑇𝑖𝑛𝑗) Uniform(205,220) 

Density (𝜌) (𝑘𝑔/𝑚3) Uniform(960,990) 

Heat of fusion (𝐻𝑓) (𝑘𝐽/𝑘𝑔) 240 

Heat capacity (𝐶𝑝) (𝐽/(𝑘𝑔 𝐾)) Uniform(2250,2290) 

Table 4.2. Sensitivity analysis results for the melting process 

Parameter First order Total effects 

Shrinkage (𝜖) / 𝑉𝑠ℎ𝑜𝑡 0.000516 0.000644 

Polymer temperature 𝑇𝑝𝑜𝑙 0.148 0.0159 

Injection temperature (𝑇𝑖𝑛𝑗) 0.767 0.777 

Heat capacity (𝐶𝑝) 0.0083 0.0087 

Density of polymer (𝜌) 0.067 0.071 
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(a)  (b)  

  

(c)  (d)  

Fig. 4.4. Learnt Bayesian network structures with multiple dataset sizes (a) N = 100, (b) N = 

500, (c) N = 1000 and (d) N = 5000 

Since 𝑉𝑠ℎ𝑜𝑡 is dependent only on shrinkage (𝜖), the sensitivity index corresponding to shrinkage is the 

same as the sensitivity index corresponding to 𝑉𝑠ℎ𝑜𝑡. From the results, it could be seen that the sensitivity 

indices to corresponding to 𝐶𝑝 and 𝑉𝑠ℎ𝑜𝑡 are the lowest, thereby validating the above assumption.  

    The next step after learning the topology of the Bayesian network is to estimate the conditional 

probability distributions between (1) 𝑉𝑠ℎ𝑜𝑡 and 𝜖, (2) 𝐸𝑚𝑒𝑙𝑡 and 𝜌, 𝑇𝑝𝑜𝑙 , 𝑇𝑖𝑛𝑗, 𝐶𝑝, 𝑉𝑠ℎ𝑜𝑡. For fitting several 

models to represent the CPDs, an error threshold of 1% is assumed. The percent error is defined as the 

percent ratio of the root mean square (RMS) error to the mean of the model prediction. If the percent error 

of a model is greater than the threshold, a higher complex model is constructed. A Gaussian linear CPD 
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is first constructed which yielded a percent error of 0.9, which is less than the assumed threshold. The 

estimated CPD associated with 𝑉𝑠ℎ𝑜𝑡 is given as 

 𝑉𝑠ℎ𝑜𝑡 = 𝑁(0.002089 ∗ 𝜖 + 0.002067, 0.000392 ) (4.12) 

 For the conditional probability distribution (CPD) associated with 𝐸𝑚𝑒𝑙𝑡, a Gaussian linear CPD was fit 

which resulted a percent error of 0.03.  Therefore, a Gaussian linear CPD is used to represent the CPD 

associated with 𝐸𝑚𝑒𝑙𝑡 as  

𝐸𝑚𝑒𝑙𝑡 = 𝑁(2332.3 × 𝑇𝑖𝑛𝑗 − 2331.6 × 𝑇𝑝𝑜𝑙 + 641.43 × 𝜌 + 167.08 × 𝐶𝑝 + 2.96

× 108 × 𝑉𝑠ℎ𝑜𝑡 − 1383730.2, 219. 69) 
(4.13) 

For estimating the above CPDs, 3500 random samples were used for fitting and another 1500 samples 

were used for estimating the RMS error (validation).  Thus, the Bayesian network corresponding to 

melting process is learnt from data. A JSON representation of the constructed BN is then created which 

is later used for the automated construction of HBN for the overall injection molding process (Fig. 4.5). 

 

Fig. 4.5. Hierarchical Bayesian network for the injection molding process 
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Dimension reduction: The parameters to be estimated are the density of the polymer (𝜌), injection 

temperature (𝑇𝑖𝑛𝑗), ejection temperature (𝑇𝑒𝑗), polymer temperature (𝑇𝑝𝑜𝑙) and injection pressure (𝑃𝑖𝑛𝑗). 

The prior distributions and the true values of the calibration parameters are provided in Table 4.3. Using 

the prior distributions of calibration parameters, prior distributions of all the variables in the HBN are 

obtained using Monte Carlo sampling (MCS). 

Table 4.3. Prior distributions and true values of calibration parameters 

Parameter True value Prior distribution 

Density of polymer (𝜌) (𝑘𝑔/𝑚3) 985 Uniform(970,990) 

Injection temperature (𝑇𝑖𝑛𝑗) ( 𝐶𝑜 ) 215 Uniform(205,220) 

Ejection temperature (𝑇𝑒𝑗) ( 𝐶𝑜 ) 55 Uniform(45,60) 

Polymer temperature (𝑇𝑝𝑜𝑙) ( 𝐶𝑜 ) 49 Normal(50,2) 

Injection pressure (𝑃𝑖𝑛𝑗) (𝑀𝑃𝑎) 93 Uniform(88,95) 

 

Using the prior distributions, the multi-level sensitivity analysis is carried out for dimension reduction. 

First, sensitivity analysis in the higher-level BN is carried out and the sensitivity indices are provided in 

Table 4.4. Note that the sum of first-order sensitivity indices is less than 1; this can be attributed to the 

presence of a strong correlation of 0.84 between 𝐸𝑐𝑜𝑜𝑙 and 𝐸𝑚𝑒𝑙𝑡. The strong correlation between them 

can be due to a shared set of input variables (𝑇𝑖𝑛𝑗, 𝜌 and 𝐶𝑝). 

Table 4.4. Sensitivity analysis results in the higher level BN of the injection molding process 

Parameter First-order sensitivity index 

Energy consumption in melting process (𝐸𝑚𝑒𝑙𝑡) 0.06 

Energy consumption in injection process (𝐸𝑖𝑛𝑗) 0.007 

Energy consumption in cooling process (𝐸𝑐𝑜𝑜𝑙) 0.68 
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After carrying out sensitivity analysis in the higher-level BN, the retained variables (𝐸𝑚𝑒𝑙𝑡, 𝐸𝑐𝑜𝑜𝑙) are 

replaced by their corresponding lower-level BNs and sensitivity analysis is again carried out between 𝑇𝑖𝑛𝑗, 

𝑇𝑒𝑗, 𝑇𝑝𝑜𝑙 and 𝜌 to the overall energy consumption (𝐸𝑡𝑜𝑡𝑎𝑙); the sensitivity results are shown in Table 4.5. 

Since the sensitivity indices of all the variables are not less than the threshold value (0.01), all the variables 

can be retained for model calibration. 

Table 4.5. Sensitivity analysis results in the HBN of the injection molding process 

Parameter First-order sensitivity index 

Injection temperature (𝑇𝑖𝑛𝑗) 0.61 

Ejection temperature (𝑇𝑒𝑗) 0.33 

Polymer temperature (𝑇𝑝𝑜𝑙) 0.01 

Density of the polymer (𝜌) 0.039 

Model calibration: To estimate the unknown parameters, observation data is assumed to be available 

on 𝑇𝑖𝑛𝑗 , 𝑇𝑒𝑗 , 𝑇𝑝𝑜𝑙  and 𝐸𝑡𝑜𝑡𝑎𝑙 . The observation data is synthetically generated using the true values of 

calibration parameters (Table 4.3) and by adding Gaussian observation errors. The observation errors 

associated with temperature and energy are assumed to be Gaussian distributions with zero mean and 

standard deviations of 2𝑜𝐶 and 100 𝐾𝐽 respectively. The multi-level segmented approach (Section 4.2.4) 

is used to carry out model calibration. The data in the lower-level BN (𝑇𝑖𝑛𝑗, 𝑇𝑒𝑗, 𝑇𝑝𝑜𝑙) is used to obtain the 

posterior distributions of the calibration parameters using Markov Chain Monte Carlo sampling 

(Metropolis-Hastings algorithm), which are then used as prior distributions for calibration using the data 

in the higher-level BN (𝐸𝑡𝑜𝑡𝑎𝑙). The prior and posterior distributions of the parameters after the multi-level 

model calibration approach are provided in Fig. 4.6. 
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(a) (b) 

  

(c) (d) 

Fig. 4.6. Prior and posterior distributions of (a) density of polymer (b) injection temperature (c) 

ejection temperature (d) polymer temperature 

4.4. Summary 

This chapter proposed a systematic methodology for modeling multi-level systems using hierarchical 

Bayesian networks, where some of the nodes may represent lower-level BNs. BNs at different levels can 

either be constructed using physics-based models or from available data using BN learning algorithms. 

An improved BN learning algorithm is presented for learning a hybrid BN (with both discrete and 

continuous variables), where several parametric and non-parametric models are proposed to obtain the 
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best fitting conditional probability distributions. The BNs constructed from physics-based or data-driven 

models are stored in an exchangeable data format (such as JSON). Then all the JSON representations of 

BNs at different levels are fused together which are then used to create a Bayesian network in an automated 

manner. In this work, a Python script is created and PyMC package is used for BN construction.     

    Data for model calibration can be available at multiple levels; therefore, a multi-level segmented 

approach for model calibration is used where data from lower-level BNs is used to obtain posterior 

distributions of unknown distributions which are later used as prior distributions for calibration using data 

in the higher-level BN. To address to issue of scalability in large systems, a multi-level sensitivity analysis 

approach is developed for dimension reduction. First, sensitivity analysis is performed for the top-level 

BN and if the sensitivity index of any node is less than an assumed threshold value, the entire lower-level 

BN associated with that node in the top-level BN is discarded. The most influential nodes in the top-level 

BN are then replaced by their lower-level BNs and sensitivity analysis is again carried out. This procedure 

is continued all the way to the variables in the lowest-level BN. 

    The proposed methodologies are demonstrated using an injection molding process. A two-level HBN 

is considered for modeling the energy consumption. The three stages of injection molding BNs (melting 

of the polymer, injection into the mold, cooling to form the part) forming lower level and the energy 

consumption for the overall process forming the higher-level BN. 

The dissertation thus far considered performance assessment of time-independent systems; the next 

chapter considers performance assessment of coupled and time-varying systems.  
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CHAPTER 5 

PERFORMANCE ASSESSMENT IN TIME-VARYING SYSTEMS 

5.1. Introduction 

Engineering systems can sometimes be associated two-directional interactions between several 

subsystems. As discussed in Section 1.1, the two-directional interactions can happen simultaneously or 

occur with a time lag depending on the resolution of time considered in the analysis. This chapter considers 

systems where interactions between subsystems occur with time lag and Chapter 6 considers coupled 

systems where interactions occur simultaneously. The partitioned approach [94] is commonly used for 

modeling systems with time lag interactions. In a partitioned approach [94], the several subsystems are 

evaluated in a time sequence, the sequence is defined by the dependence between the interactions between 

the subsystems. Partitioned approaches for model-based performance assessment of systems consisting of 

only physical subsystems have been studied earlier; this chapter extends such approaches for systems with 

both computational and physical subsystems. An example of a system with computational and physical 

subsystems is a feedback control system where the computational subsystem controls a physical 

subsystem by implementing an appropriate actuation. In this dissertation, we refer to such software-

controlled feedback control systems as cyber-physical systems or smart systems.  

The problem of performance assessment under uncertainty can be considered as a generalization of 

reliability evaluation, which computes the probability that a pre-defined performance function crosses a 

design threshold. Current studies on CPS reliability have primarily considered data-driven approaches 

[95–98]  where failure rates for individual components are assumed to be available. Failure rates are 

generally obtained by repeated experimental or simulation-based evaluation of components until failure. 

As opposed to the existing approaches, this work considers a probabilistic model-based approach, which 
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is particularly useful when experimentation or simulation under uncertainty becomes prohibitively 

expensive or not feasible. As discussed in Section 1.1, we consider a CPS as a system with four 

subsystems: (1) physical, (2) sensors, (3) actuation and (4) computational. The coupling between the 

individual subsystems is shown in Fig. 1.4. 

As discussed above, we consider a partitioned approach [94] to analyze the interactions in a smart 

system, considering it as a feed-forward system over time. In addition to interactions between several 

subsystems, there exists interaction between several computational nodes when a distributed 

computational subsystem is used rather than a single node. We model the smart system using a two-level 

Dynamic Bayesian Network (DBN), a higher-level DBN to model the interactions between the subsystems 

and a lower-level DBN to model the interactions between the computational nodes. 

      A DBN model is used here for performance evaluation as opposed to performing Monte Carlo analysis 

on the system  model (such as a Simulink model) for the following reasons: (1) In addition to prediction 

over time, a DBN naturally allows for performing Bayesian inference when new sensor data is available, 

and (2) Prediction from a smart system model (Simulink) is generally deterministic for a given input 

whereas the prediction from a DBN is stochastic after aggregating several uncertainty sources. DBNs have 

been previously used for uncertainty modeling and performance evaluation of mechanical [55], industrial 

[56] and aerospace systems [99]. In this work, we use its capabilities to model a smart system for 

performance assessment.  

Two examples – a smart indoor heating system and a smart manufacturing process are used to illustrate 

the proposed performance assessment techniques for a cyber-physical system. The smart indoor heating 

system considers a distributed computational system whereas the smart manufacturing process considers 

a single computational node. The smart manufacturing process considers online estimation of unknown 

model parameters using real-time data while the smart indoor heating system considered offline parameter 
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estimation. The control variable in the indoor heating system is discrete in nature while a continuous 

control variable is considered in the smart manufacturing process.  

5.2. Uncertainty sources in a smart system 

In this section, we discuss the several uncertainty sources that may affect the performance of a cyber-

physical system.  

5.2.1 Computational subsystem 

We assume that a software application that runs on a computational subsystem is designed, tested and 

validated to perform within a set of design input ranges. We do not consider the random coding/latent 

errors, which are traditionally used to assess software performance [100]. Aside from software coding 

errors, we consider the following three uncertainty sources. 

Software Inputs: The inputs for the software application are obtained from the sensors collecting data 

about the physical subsystem and may be from the environment. When the sensor inputs are outside the 

design ranges (due to faulty sensors or large environmental variability), the software application may not 

provide correct outputs. 

Hardware resources: A software application requires hardware resources (such as memory) to 

perform computation. In cases when hardware resources are unavailable, the computation cannot be 

completed resulting in faulty outputs. 

Communication uncertainty: There are three types of communication in a smart system: (1) sensors 

to a computational subsystem, (2) between computational nodes, and (3) computational subsystem to an 

actuation subsystem. Faulty computational outputs and faulty control actions may arise due to 

unsuccessful communication. Robust communication protocols can be implemented to avoid any 

communication uncertainty but such robust protocols may not be always feasible due to high design costs. 
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5.2.2. Actuation and physical subsystems 

Uncertainty sources during the modeling of these subsystems are similar to those discussed in Section 

2.1 and include model inputs, model parameters and model errors. With time, an actuation or a physical 

subsystem may degrade; this degradation needs to be estimated and included in the models. If the 

degradation cannot be observed directly, it needs to be inferred through indirect methods, which may lead 

to uncertainty in its estimation.  

 

Fig. 5.1. A two-level DBN of a conceptual smart system 

5.3. Multi-level DBN construction 

We first discuss the construction of a DBN and then consider performance evaluation. Fig. 5.1 shows 

a representative DBN model; the description of variables is presented in Table 5.1. In Fig. 5.1, the 

rectangle with rounded corners named `Computational' does not represent a DBN node, but represents a 
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lower-level DBN depending on the interaction pattern as detailed here. Distributed computing systems are 

often arranged into a sequence of components communicating over well-defined interaction protocols 

[101]. Such rigid interaction semantics help analyze the behavior of distributed system and also enables 

developing online fault detection and diagnosis mechanisms [102].   

Table 5.1. Parameters in the DBN model (Fig. 5.1) 

Parameter Description 

𝑃𝑡 , 𝑃𝑡+1 State variable at time 𝑡 = 𝑡, 𝑡 + 1 

𝑄𝑡, 𝑄𝑡+1 Observation variables at time 𝑡 = 𝑡, 𝑡 + 1 

𝑄𝑠
𝑡, 𝑄𝑠

𝑡+1 Sensor measurements of observation variables at time 𝑡 = 𝑡 + 1 

𝐸𝐼𝑠
𝑡+1 Sensor measurements of environmental inputs at time 𝑡 = 𝑡 + 1 

𝑅𝐴𝑡+1 Resource availability at time 𝑡 = 𝑡 + 1 

𝑆𝑂𝑡+1 Computational subsystem output at time 𝑡 = 𝑡 + 1 

𝐶𝐴𝑡+1 Control action at time 𝑡 = 𝑡 + 1 

 

We focus on developing conditional relationships for a distributed computing subsystem as the 

conditional relationships for physical and actuation subsystems can be derived from physics models or 

data  [53]. The conditional relationships for complex computational subsystems are studied by breaking 

them down into two basic interaction patterns: (1) 2-node asynchronous, and (2) 2-node synchronous  

[101], discussed below. 

 

Fig. 5.2. 2-node asynchronous interaction pattern 
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2-node asynchronous interaction pattern: We first consider a 2-node asynchronous interaction 

pattern with two computational nodes 𝐶1 and 𝐶2 as shown in Fig. 5.2, where inputs to the computational 

system are input to 𝐶1. 𝐶1 performs some computation,  communicates the results to 𝐶2, which performs 

further computation and outputs the results. Let 𝐸1  and 𝐸2  denote the events that the 𝐶1  and 𝐶2 

successfully perform their analysis. And let 𝐸12  correspond to the event that the data from 𝐶1  is 

successfully transmitted to 𝐶2. In general, data is transmitted across a network in packets. Let 𝐸12 = 0,1 

correspond to the two states that a given packet reaches and does not reach the destination (here 𝐶2). We 

define a smaller time-scale where a time step (𝑛) corresponds to the time it takes to send a packet of data. 

Let  𝐸12
𝑛  corresponds to the event that a packet reaches the destination at time step𝑛. We make a Markov 

assumption that the state of the event 𝐸12
𝑛  depends on the state of the event at the previous time step, 𝐸12

𝑛−1. 

In other words, if a packet cannot be transmitted at time 𝑛 − 1 due to network interruptions, then it is 

assumed to affect the probability packet transmission at time 𝑛. Therefore, the DBN corresponding to a 

2-node asynchronous interaction pattern can be represented as shown in Fig. 5.3. 

 

Fig. 5.3. DBN for a 2-node asynchronous pattern 

 

 

Fig. 5.4. 2-node synchronous interaction pattern 

2-node synchronous interaction pattern: A synchronous interaction pattern is characterized by a 

sequence of request and reply messages as shown in  Fig. 5.4, where 𝐶2 requests for data and 𝐶1 replies 

accordingly.  Similar to the previous asynchronous case, we define a smaller time-scale where a time step 
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contains a set of request and reply messages (represented using a rectangle in Fig. 5.5). We decompose 

the request-reply communication into a series of request and reply messages similar to the partitioned 

approach between the computational and physical subsystems. 

 

Fig. 5.5. Decoupling request and reply messages in a 2-node synchronous interaction pattern 

In addition to 𝐸1 , 𝐸2and 𝐸12  defined above, we further define 𝐸21  as the event representing the 

successful transmission of data packet from 𝐶2 to 𝐶1. Thus, at every time step 𝑛 one event each of 𝐸21 and 

𝐸12 occur.  Since both these events happen at the same time step, their states are assumed to be dependent 

one each other.  If  𝐸21 = 1 (failure), then  the probability of  𝐸12 = 1  will be higher when compared to 

when 𝐸21 = 0.  In addition to the dependence at the same time step, there exists a dependence between 

the states of  𝐸21 events at successive time steps, as mentioned in the case of asynchronous case.  The 

DBN for this 2-node synchronous case is provided in Fig. 5.6.  When 𝐸21
𝑛  is successful, then 𝐸21

𝑛+1is 

dependent on 𝐸12
𝑛  and if 𝐸21

𝑛  is not successful (failed request message and this implies no reply message), 

then 𝐸21
𝑛+1 is assumed to be dependent on 𝐸21

𝑛 . 

 

Fig. 5.6. DBN for a 2-node synchronous interaction pattern 
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Fig. 5.7. 4-node complex interaction pattern 

Extending to complex interaction patterns: If complex interaction patterns are present, then they 

are broken into sets of 2-node asynchronous and synchronous interaction patterns.  Consider a 4-node 

interaction pattern shown in Fig 5.7. In this pattern, the inputs to the computational subsystem are 

communicated to 𝐶1 which performs some computation and communicates its output to 𝐶2. From  𝐶2  

information is communicated to  𝐶3  and then 𝐶4  which outputs the result from the computational 

subsystem. The interactions between 𝐶1 and  𝐶2, and  𝐶2 and 𝐶3 are  synchronous whereas  interaction 

between 𝐶3 and 𝐶4 is asynchronous  in nature. Therefore, the DBN in Fig. 5.6 can be used to model the 

synchronous interactions between 𝐶1and 𝐶2, and  𝐶2 and 𝐶3,  and the DBN in  Fig. 5.5 to model the 

interaction between  𝐶3 and 𝐶4 .  It should be noted that the communication between the nodes are 

sequential in nature, i.e., communication between 𝐶2 and 𝐶3 occurs after the communication between 𝐶1 

and 𝐶2.  Therefore, their DBNs can also be represented sequentially.  In some cases, it might be possible 

that the outcome of one interaction may influence the outcome of the following interaction; this influence 

may be quantified through a conditional dependence relationship across the DBNs. 

5.4. Performance evaluation 

Modeling sensor uncertainty: The sensor uncertainty 𝜖𝑠  is typically modeled using a Gaussian 

distribution with zero mean; since positive and negative errors occur with equal probability [103]. The 

relationship  of the measurement variable (𝑄𝑠
𝑡) conditioned  on the unknown  value of the observation 

variable (𝑄𝑡) can be represented as 
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 𝑄𝑠
𝑡|𝑄𝑡 = 𝑄𝑡 + 𝜖𝑠 (5.1) 

The sensor then reads a value from the probability distribution of  𝑄𝑡
𝑠  and sends the data to the 

computational subsystem. 

Simulating asynchronous interaction pattern: Consider the 2-node interaction pattern as shown in 

Fig. 5.2, where 𝐶1 receives the input, processes the information and outputs to 𝐶2. Let 𝑝  data packets be 

transferred from 𝐶1 to 𝐶2 and if 𝑟 packets get successfully transmitted, then it is assumed that all the 

information can be reconstructed at 𝐶2 . In the lower-level DBN, one data packet is assumed to be 

transmitted in each time step. Since there are 𝑝 packets, 𝑛, which represents time in the lower-level DBN 

goes from 𝑛 = 1 to 𝑛 = 𝑝. The events corresponding to each data packet transmission are represented as 

𝐸12
𝑛 . The joint probability of all the events corresponding to transmission of 𝑝 data packets is equal to 

𝑃(𝐸12
1 , 𝐸12

2 …𝐸12
𝑝 ) . This joint probability can then be decomposed into a product of marginal and 

conditional probabilities defined as 

 𝑃(𝐸12
1 , 𝐸12

2 …𝐸12
𝑝
) = 𝑃(𝐸12

1 ) × 𝑃(𝐸12
2 |𝐸12

1 ) × … . 𝑃(𝐸12
𝑝
|𝐸12
1 , 𝐸12

2 …𝐸12
𝑝−1

) (5.2) 

Using the Markov assumption as mentioned in Section 5.3, Eq. (5.2) can be simplified as 

 𝑃(𝐸12
1 , 𝐸12

2 …𝐸12
𝑝 ) = 𝑃(𝐸12

1 ) × 𝑃(𝐸12
2 |𝐸12

1 ) × … . 𝑃(𝐸12
𝑝 |𝐸12

𝑝−1) (5.3) 

Let  𝑅1  represent the probability of a successful data packet transfer at a lower time-scale time 

step 𝑛 = 1. The conditional dependence relationship for successful data transmission are represented as 

shown in Table 5.2. In Table 5.2, 𝑅𝑖𝑗 represents the probability of data transmission event in the current 

time step 𝑗 conditioned on the data transmission event in the previous time step 𝑖 (𝑖, 𝑗 = 0,1). 0 and 1 

represent success and failure of an event respectively. The parameters in Table 1 can be estimated through 

an aggregation of historical data, simulations and expert knowledge regarding the system. 
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Table 5.2. Conditional Probabilities of successful data transfer between two consecutive time steps 

 Successful at time step 𝑛 + 1 Unsuccessful at time step 𝑛 + 1 

Successful at time step 𝑛 𝑅00 𝑅01 

Unsuccessful at time step 𝑛 𝑅10 𝑅11 

 

For illustration, consider a case when 𝑟 = 2  and 𝑝 = 3 . Across three time steps, there exist 8 

combinations with two outcomes in each time step (data packet delivered or not delivered). If two 

successful transmissions are required, then four combinations result in successful data transmission.  The 

set of successful combinations and their probabilities are given in Table 5.3. Since 𝑝 = 3, there are three 

elements in each combination. The overall success probability can be calculated as the sum of all the 

individual probabilities.  Using the overall probability, a binary random sample can be drawn to simulate 

the data transmission in a 2-node asynchronous interaction pattern. 

Table 5.3. 2-node asynchronous interaction pattern: Successful combinations and their probabilities 

Combination Probability 

[0,0,0] 𝑅1 × 𝑅00 × 𝑅00 

[0,0,1] 𝑅1 × 𝑅00 × 𝑅01 

[0,1,0] 𝑅1 × 𝑅01 × 𝑅10 

[1,0,0] (1 − 𝑅1) × 𝑅10 × 𝑅00 

 

 Simulating synchronous interaction pattern: As opposed to the asynchronous system, we assume 

we require  𝑟 successful request-reply pairs in a synchronous system since a reply does not occur unless 

there is a request and reply does not always occur for every request. The joint probability of 𝑝 request-

reply pairs, assuming one occurs at each lower-scale time step can be computed using Eqs. 2 and 3. 
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Let 𝑅2 represent the probability of successful request message at lower time-scale time step 𝑛 = 1. 

Let 𝑅12 represent the probability of successful reply message when the request message is successful. 

Therefore, 𝑅2 × 𝑅12 refers to the reliability of a request-reply pair at any time step 𝑛 = 1. For illustration, 

assume the same conditional relationships between two requests across two successive time steps as 

provided in Table 5.2. Given the dependence relationships across time steps, the probability of 𝑟 

successful pairs out of 𝑝 can be computed. For  𝑝 = 3 and 𝑟 = 2, the set of successful combinations and 

their probabilities are provided in Table 5.4. Therefore, the overall success probability can be calculated 

as the sum of all the individual probabilities. 

Table 5.4. 2-node synchronous interaction pattern: Successful combinations and their probabilities 

Combination Probability 

[0,0,0] (𝑅2 × 𝑅12) × (𝑅00 × 𝑅12) × (𝑅00 × 𝑅12) 

[0,0,1] (𝑅2 × 𝑅12) × (𝑅00 × 𝑅12) × (1 − 𝑅00 × 𝑅12) 

[0,1,0] (𝑅2 × 𝑅12) × (𝑅01 × (𝑅10 × 𝑅12) + (𝑅00 × (1 − 𝑅12)) × (𝑅10 × 𝑅12) 

[1,0,0] (𝑅2 × (1 − 𝑅12) × (𝑅10 × 𝑅12) + (1 − 𝑅2) × (𝑅10 × 𝑅12)) × (𝑅00 × 𝑅12) 

 

As mentioned in Section 5.3, a failure in a message transmission can be due to a failure in either 

request or reply message transmission. Therefore, the last two combinations in Table 5.4, have two terms 

representing the cases of failures in request and reply message transmissions. After the completion of 

computational analysis, the computational output is communicated to the actuation system; this 

communication can be simulated using an asynchronous or a synchronous system as described above.  If 

the actuation system cannot receive the data, an assumption that the control action in the previous time 

step is continued in the current time step is made. In order to obtain a correct output from the computational 

subsystem, all the individual nodes should have access to resources in addition to successful data 
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transmission between them. Simulation of data transmission between basic interaction patterns has been 

discussed above. We next discuss the simulation of resource availability. 

Simulating resource availability: In the DBN model for a generic smart system shown in Fig. 5.1, if 

the data is successfully transmitted from sensors, the computational subsystem estimates the state 

variables 𝑃𝑡  through Bayesian Inference (typically using particle-filtering [67]) and calculates the 

necessary control action for the next time step. To perform the analyses, the computational nodes should 

have the necessary resources. Let there be 𝑁 computational nodes and 𝐸𝑖,𝑘, 𝑖 = 1,2,3. . . 𝑁 represent the 

events corresponding to their resource availability. The joint probability can  be defined as 

𝑃(𝐸1,𝑘, 𝐸2,𝑘… .𝐸𝑁,𝑘) = 𝑃(𝐸1,𝑘) × 𝑃(𝐸2,𝑘|𝐸1,𝑘) × … . . 𝑃(𝐸𝑁,𝑘|𝐸1.𝑘, 𝐸2,𝑘 …𝐸𝑁−1,𝑘) (5.4) 

In this discussion, we consider two hardware resources: power and memory.  We assume that the 

power is supplied through a battery and each node is assumed to have an associated battery.  Under this 

assumption, the resource availability of one node is independent of the resource availability of another 

node.  Thus, Eq. (5.4) can be simplified as 

𝑃(𝐸1,𝑘, 𝐸2,𝑘 … .𝐸𝑁,𝑘) = 𝑃(𝐸1,𝑘) × 𝑃(𝐸2,𝑘) × … . . 𝑃(𝐸𝑁,𝑘) (5.5) 

Let 𝑆𝑟 refers to the probability of having necessary resources at each computational node.  Therefore, 

the probability that all the events, 𝐸𝑖,𝑘, 𝑖 = 1,2,3. . . 𝑁 , are successful (assuming the same resource 

probability)  is equal to  𝑆𝑟
𝑁. A binomial random sample with a success probability of  𝑆𝑟

𝑁 is drawn to 

simulate the resource availability. It may be possible that different nodes will have different resource 

probabilities and dependent on each other. An example of such a case is when a group of nodes has a 

common power supply unit. In cases of dependent resource availability, Eq. (5.4) cannot be simplified to 

obtain Eq. (5.5), and the dependence needs to be modeled using either expert knowledge or simulations. 

Simulation of resource availability and data transmission in the computational subsystem provides the 

posterior distributions of 𝑃𝑡 and the control action at time 𝑡 + 1, which are then used to estimate the prior 
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distributions of  𝑃𝑡+1. Sensor measurements at time 𝑡 + 1 are used to estimate the posterior distributions 

of 𝑃𝑡+1 and control action at time  𝑡 + 2.  This process is repeated until a pre-defined analysis time for 

performance evaluation. 

5.5. Example 1: Smart indoor heating system 

We consider here a smart indoor heating system in a commercial building that can control the heating 

vents in different rooms independently, enabling room-by-room temperature control similar to [104]. For 

illustration, we consider a building with four rooms as shown in Fig. 5.8.  

 

Fig. 5.8. Smart building showing heat flow across rooms and outside environment 

 

Table 5.5. Comfort levels of occupants 

Parameter Lower bound Mode Upper bound 

𝐶𝐴 67 70 73 

𝐶𝐵 65 68 70 

𝐶𝐶 68 72 74 

𝐶𝐷 69 73 75 

 

Every occupant in a room is assumed to have a temperature comfort level, defined as the temperature 

range at which an occupant is comfortable in. These comfort levels are quantified using triangular 

distributions; their parameters are shown in Table 5.5. In Table 5.5, 𝑪𝑨 , 𝑪𝑩, 𝑪𝑪 and 𝑪𝑫 represent the 
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occupant comfort levels in each of the rooms. The table should be read as follows. The occupants in room 

𝐴 are comfortable between temperatures 67 𝐹 and 73 𝐹 while their maximum comfort temperature is 70 

𝐹. Based on the current temperature, each occupant accumulates “comfort credits'' defined in Eq. (5.6). 

 
𝐶𝑐𝑟𝑒𝑑 =  ∫ ∫ 𝛽𝑃𝑟(𝑇, 𝑡)𝑑𝑇 𝑑𝑡

𝑇2

𝑇1

𝑡2

𝑡1

 
(5.6) 

In Eq. (5.6),  𝑇1and 𝑇2 represent the room temperatures when time 𝑡 = 𝑡1 and 𝑡 = 𝑡2 respectively. 𝛽 

is a comfort credit factor and 𝑃𝑟(𝑇, 𝑡)  represents the probability density function of comfort level 

evaluated at the current room temperature at a given time 𝑡. A comfort credit can be regarded as a 

numerical measure that denotes the comfort level of an occupant. 

Maintaining the rooms at the occupant comfort levels requires energy. To achieve energy conservation, 

a sustainability baseline temperature is set. If a room temperature is greater than a set baseline temperature, 

the occupant is penalized with negative “energy credits'' and if the temperature is less than the baseline 

temperature, the occupant is awarded positive “energy credits''. The energy credits are defined as 

 
𝐸𝑐𝑟𝑒𝑑 =  ∫ ∫ 𝛼𝑑𝑇 𝑑𝑡

𝑇𝐵−𝑇

0

𝑡2

𝑡1

 
(5.7) 

In Eq. (5.7),  𝑇𝐵 , 𝑇 and 𝛼 represent the baseline temperature, current room temperature and energy 

credit factor respectively. The goal of this problem is to design a controller that maximizes the 

combination of comfort and energy credits such that a minimum comfort level is attained for all the 

occupants simultaneously. Due to the presence of uncertainty sources, the computed energy and comfort 

credits are not deterministic but stochastic. Therefore, we maximize the expected value of the sum of 

energy and comfort credits, formulated as 
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𝑀𝑎𝑥 ∑ 𝐸[𝐸𝑐𝑟𝑒𝑑
𝑖 + 𝐶𝑐𝑟𝑒𝑑

𝑖 ]

𝑖=𝐴,𝐵,𝐶,𝐷

 

subject to Pr(𝐶𝑐𝑟𝑒𝑑
𝐴 > 0 ∩ 𝐶𝑐𝑟𝑒𝑑

𝐵 > 0 ∩ 𝐶𝑐𝑟𝑒𝑑
𝐶 > 0 ∩ 𝐶𝑐𝑟𝑒𝑑

𝐷 > 0) > 𝛾  

(5.8) 

 

In the above formulation, 𝐻𝐴, 𝐻𝐵, 𝐻𝐶 and 𝐻𝐷 are boolean variables representing if the heating system 

in a room is turned on or off. 𝛾 represents a probability threshold that all room temperatures are in their 

occupant comfort ranges. 𝐸[. ]  represents the expectation operator. 𝐸𝑐𝑟𝑒𝑑
𝑖  and 𝐶𝑐𝑟𝑒𝑑

𝑖 , 𝑖 = {𝐴, 𝐵, 𝐶, 𝐷} 

represent the energy and comfort credits accumulated by the occupants in each of the rooms. 

Table 5.6. Components with their costs and uncertainties 

Component Performance Cost 

Type 1 sensor 0.1 40 

Type 2 sensor 0.15 25 

Type 3 sensor 0.2 15 

Type 1 network 0.95 200 

Type 2 network 0.97 300 

Type 3 network 0.99 400 

 

Let three types of temperature sensors and three types of wireless network systems such as Bluetooth, 

2.4 GHz Wi-Fi and 5 GHz Wi-Fi networks be available for design purposes.  The uncertainty in a 

component performance and its costs are given in Table 5.6. These values are chosen arbitrarily for 

illustration purposes and can be replaced with actual values from a manufacturer. The affordable budget 

to this design is assumed to be 450 units. In Table 5.6, performance for a sensor refers to the standard 
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deviation of the measurement error in 𝐹 while that for a network refers to its reliability, i.e., probability 

that a data packet is successfully transmitted. 

The uncertainty sources with respect to the computational subsystem include: (1) Sensor uncertainty 

in the room temperature measurements, (2) Environmental variability in outside temperature, (3) 

Communication uncertainty between the temperature sensors, computational subsystem and the heating 

system, and (4) Resource availability as the computational subsystem is assumed to perform other 

operations such as lightening control and security systems. Uncertainty in the physical subsystem include 

the uncertainty in the estimation of thermal conductivity, which is used for calculating a suitable control 

action. The goal is to find the best design combination of sensors and a network that satisfies the budget 

constraints and maximizes a performance evaluation metric, defined as the probability that the controller 

cannot find a control action to maintain the occupant comfort requirements. 

Table 5.7. Design Configurations and their costs 

 Type 1 network Type 2 network Type 3 network 

Type 1 sensor 400 500 600 

Type 2 sensor 325 425 525 

Type 3 sensor 275 375 475 

 

For each design, five temperature sensors are used (one for each room and one for outside temperature) 

and the overall cost for each design is given in Table 5.7. Due to budget constraints, only 5 out of 9 

configurations from Table 5.7 are feasible; these configurations are indicated in bold. For each sensor type, 

the most reliable of all possible network types is identified and considered for analysis. This corresponds 

to the first two design options along the diagonal in Table 5.7. The conditional dependence relationships 
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for communications across two lower time-scale time steps (as discussed in Section 5.3) are provided in 

Table 5.8. In Table 5.8, 𝑋  equals 0.95, 0.97 and 0.99 when networks of Types 1,2 and 3 are used 

respectively (Table 5.6). 

Table 5.8. Communication Probability 

 Successful at time step 𝑛 + 1 Unsuccessful at time step 𝑛 + 1 

Successful at time step 𝑛 𝑋 1 − 𝑋 

Unsuccessful at time step 𝑛 0.9 0.1 

 

Problem parameters: Each room has dimensions 9𝑚 ×  9𝑚 ×  5𝑚  and one window with 

dimensions 1𝑚 ×  1𝑚. The thermal conductivity of the window is assumed to be 0.3 𝑊/𝐹.𝑚 while that 

of the wall is not known precisely and need to be calibrated from data. The thickness of wall and window 

insulations are assumed to be 0.8 𝑚 and 0.04 𝑚 respectively. The density and heat capacity of air are 

assumed to be equal to 1.225 𝑘𝑔/𝑚3 and 558.55 𝐽/𝑘𝑔. 𝐹. The temperature and the amount of hot air 

blown from the heater are 110 𝐹 and 106 𝑘𝑔/ℎ𝑟 respectively. The values of 𝑇𝐵, 𝛼 and 𝛽 are assumed as 

70 𝐹, 50 and 100 respectively. The outside temperature data are obtained from SML2010 Data Set [105], 

which can be downloaded from the UCI Machine Learning Repository [106]. We used the weather 

temperature data from this dataset as the outside temperature data for our analysis. 

Computational subsystem: The computational subsystem is assumed to consist of two nodes, 𝐶1 and 

𝐶2. 𝐶1 receives the sensor data and estimates the indoor temperatures through Bayesian Inference; these 

estimates are then transmitted to 𝐶2  which calculates the control action for the next time step. The 

probability of resource availability for both nodes is assumed as 0.9. Two-node asynchronous interactions 

are assumed between the temperature sensors and the computational subsystem, and between the 
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computational and actuation subsystems, and a two-node synchronous interaction between the 

computational nodes. 

DBN model: Fig. 5.9 presents the DBN for the smart heating system. It should be noted that there 

exists no state variable 𝑃𝑡 but only an observation variable 𝑄𝑡, which are the actual temperatures in each 

room and the outside temperature (𝑇𝐴, 𝑇𝐵, 𝑇𝐶 , 𝑇𝐷 and 𝑇𝑜𝑢𝑡). The corresponding measurements of these 

variables are represented as 𝑇𝐴,𝑠, 𝑇𝐵,𝑠, 𝑇𝐶,𝑠, 𝑇𝐷,𝑠 and 𝑇𝑜𝑢𝑡 respectively. 𝑘 refers to the thermal conductivity 

coefficient of the wall. 𝑅1  and 𝑅2  refer to the resource availability variables corresponding to 

computational nodes 𝐶1 and 𝐶2 respectively. 𝐻𝐴, 𝐻𝐵, 𝐻𝐶 and 𝐻𝐷 refer to the control actions in each of the 

rooms. The thermal conductivity and outside temperature affect the temperatures in all rooms, which needs 

to be represented by arrows from 𝑘 and 𝑇𝑜𝑢𝑡 to every room temperature. For better visualization, all room 

temperatures are grouped in a 'dotted' rectangle. An arrow to the 'dotted' rectangle should be interpreted 

as an arrow going to every room temperature. Fig. 5.9 shows a higher-level DBN; the lower-level DBNs 

can be constructed as detailed in Section 5.3. 

 

Fig. 5.9.  DBN model for smart indoor heating system 
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Model calibration: Each design results in a different calibration of thermal conductivity due to the 

difference in sensor uncertainty. The prior and posterior distributions for both the design options are 

presented in Fig. 5.10. From the plots, it can be seen that the posterior variance in Fig. 5.10 (b) is higher 

due to higher sensor uncertainty. 

Performance analysis: We ran the smart indoor heating system for one day (with time steps of 15 

min). We used the outside temperature corresponding to March 25 in the SML2010 Dataset. The reason 

for choosing this date is explained later in this section. We start with available sensor measurements at 12 

am and the analysis continues until 12 am to next day. For each type of communication, two messages are 

transmitted and even if one reaches successfully, the data is assumed to be successfully transmitted. For 

simplicity, the conditional relationships for communication uncertainty within and across two lower time-

scale time steps in the synchronous interaction pattern between the computational nodes are assumed to 

be the same as given in Table 5.8. Eqs. (5.6, 5.7) are evaluated between every two successive sensor 

measurements (15 min); therefore, 𝑡2  =  𝑡1  +  15 and 𝑡1  =  0. 

 
 

(a) (b) 

Fig. 5.10. Calibration results with sensor uncertainty of (a) 0.1 F and (b) 0.15 F 
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Using the sensor measurements, Bayesian inference is performed using particle filtering to estimate 

the outside temperature and room temperatures. For predicting the outside temperature in the next time 

step, we used the weather data from the previous 10 days to construct a Gaussian distribution to represent 

the change of temperature between the current time step and next time step; this Gaussian distribution is 

used for temperature forecasting in the next time step. We used data from March 15 to March 24 for 

temperature forecasting on March 25, 2012. Using the forecast outside temperature, the control action that 

optimizes the sum of energy and comfort credits is identified, and using this, the prior distributions of the 

room temperatures in the next time step are obtained. The same process is repeated 250 times to obtain 

the failure probability. The practical reasoning for this is as follows. If a particular design alternative is 

installed at 250 homes, what is the probability that the occupants be uncomfortable at any time during the 

analysis? The analysis is carried out using both the design alternatives and the success probabilities are 

0.99 and 0.93 respectively. Therefore, the better design option is the one with the sensor uncertainty of 

0.1 𝐹 (Type 1 sensor) and 0.95 network reliability (Type 1 network). 

Note that the above problem formulation does not adapt over time to new conditions or changes in 

system properties. Thermal conductivity is a model parameter that varies with time due to the wear of 

insulation. Therefore, the system needs to re-calibrate the thermal conductivity on the go with the 

temperature sensor data for further decision-making. This learning process is not considered in this work 

as the time of analysis (1 day) is small compared to the time scale of the wear of insulation (typically in 

the order of several months). 

5.6. Example 2: Smart manufacturing process (Turning) 

The proposed methodology is demonstrated for real-time quality monitoring and control of a smart 

turning process. We first provide a brief background to the turning process, then consider a conceptual 

smart turning process and use it to illustrate the proposed performance evaluation methodology.  
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5.6.1. Introduction to Turning process 

Turning is a manufacturing operation that falls under the category of machining operations, which 

involve transforming a raw material into desired shapes through controlled material removal processes. 

Turning involves removal of material from the surface of a rotating cylindrical part while moving linearly 

in the axis of rotation and against a cutting tool; this operation is generally carried out on a lathe (manual 

or computer-controlled). This turning operation results in the removal of material along an axis 

perpendicular to the axis of rotation of the part, i.e., along the radial direction when considering the cross 

section of the cylindrical part. The material of the cutting tool is typically harder than the material of the 

part.  Several types of turning operations exist such as straight turning, taper turning, contour turning, 

facing and grooving. In this example, we consider only straight turning, where the final diameter of is the 

same all along with part. Refer to [107] for more details regarding turning operations. 

The inputs for this example include: (1) Feed rate (𝑓), which refers to the speed at which the cutting 

tool is fed onto the cylindrical part, (2) Cutting speed (𝑉), which is the relative speed between a part and 

the cutting tool along the axis of the part, and (3) Depth of cut (𝑑), which is the distance travelled by the 

cutting tool along the radial direction of the part. If the cutting tool is initially in contact with the part, then 

the distance travelled by the cutting tool equals the amount of material removed of the part along with 

radial direction. Let the initial and target final diameters of the part be represented as 𝐷𝑜  and 𝐷𝑓 

respectively. Therefore, the depth of the cut, initial and target diameters are related as shown in Eq. (5.9) 

assuming the cutting tool is in contact with the part.  

 
𝑑 =

𝐷𝑜 − 𝐷𝑓

2
 (5.9) 

Over several turning operations, the tip of the cutting tool that comes in contact to the part wears out; this 

type of wear is known as flank wear (𝑤). The presence of flank wear results in a final diameter greater 
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than the target diameter. Therefore, the position of the cutting tool needs to be adjusted in order to achieve 

the desired target diameter. This adjustment to the position of cutting tool is termed as tool wear 

compensation (𝛿). Therefore, the amount of tool wear compensation increases with the amount of cutting 

time, i.e., the time spent in the turning process. Consider 𝑛 finished parts produced by a turning process, 

and let their tool wear compensations be denoted as 𝛿𝑖, 𝑖 = 1,2, … 𝑛. Therefore, the revised depth of cut 

after considering tool wear compensation is given as  

 
𝑑𝑖 = 

𝐷𝑜 − 𝐷𝑓

2
+ 𝛿𝑖 (5.10) 

where 𝑑𝑖 refers to the depth of the cut of the 𝑖𝑡ℎ part. The flank wear cannot be observed directly but 

empirical expressions are available in [1] given as  

 𝑤𝑖 = 𝑘𝑤𝑉
𝛼𝑤𝑓𝛽𝑤𝑑𝑖

𝛾𝑤(𝑡𝑤,𝑖 + 𝑡)
𝜎𝑤 (5.11) 

where 𝑘𝑤, 𝛼𝑤, 𝛽𝑤 and 𝜎𝑤 are model parameters that needs to be estimated using experimental data. 𝑡 and 

𝑑𝑖 refer to the cutting time spent on part 𝑖 and depth of cut of 𝑖𝑡ℎ part, and 𝑤𝑖 refers to the tool wear on 

the 𝑖𝑡ℎ part at spending time 𝑡 on it. 𝑡𝑤,𝑖 refers to the time that could have been spent on the 𝑖𝑡ℎ part to 

achieve the same tool wear that is achieved after processing (𝑖 − 1) parts. Let 𝑊𝑖 refer to the total wear 

after processing 𝑖  parts. Similarly, if 𝑊𝑖−1  refers to the tool wear after (𝑖 − 1) parts, then 𝑡𝑤,𝑖  can be 

calculated as  

 

𝑡𝑤,𝑖 = (
1

𝑘𝑤
𝑉−𝛼𝑤𝑓−𝛽𝑤𝑑𝑖

−𝛾𝑤𝑊𝑖−1)

1
𝑤

 

(5.12) 

Let �̅�𝑖 = 𝐷𝑜 − 𝑑𝑖 represent the mean diameter after the turning operation. If 𝐿 denotes the length of the 

part, then the total cutting time for the 𝑖𝑡ℎ part can be calculated as [107] 
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𝑡𝑐,𝑖 =

Π(𝐷𝑜 − 𝑑𝑖)𝐿

𝑉𝑓
 

(5.13) 

Using Eqs. 5.11, 5.12 and 5.13, the total wear after processing 𝑖 parts can be evaluated as  

 𝑊𝑖 = 𝑘𝑤𝑉
𝛼𝑤𝑓𝛽𝑤𝑑𝑖

𝛾𝑤(𝑡𝑤,𝑖 + 𝑡𝑐,𝑖)
𝜎𝑤 (5.14) 

The presence of tool wear causes a drift in the final diameter of the part; this drift (Δ𝑖 for part 𝑖) with a 

clearance angle (sometimes referred to as relief angle) 𝜃 can be estimated as  

 Δ𝑖 = 2 × (𝑤𝑖 −𝑊𝑖−1)tan (𝜃), for 0 ≤ 𝑡 ≤ 𝑡𝑐,𝑖 (5.15) 

The clearance angle is the angle made by the surface of the flank tool with finished surface of the part 

[108]. The drift calculated using Eq. (7) represents the additional drift that occurs in the current part 𝑖 

when compared to the previous part 𝑖 − 1.  To achieve the target diameter, tool wear compensation (𝛿𝑖) 

is initiated to counteract the effect of the increased part diameter due to the drift (Δ𝑖). The final diameter 

after considering tool wear compensation and drift can be computed as  

 𝐷 = 𝐷𝑓 − 2 × 𝛿 + 𝛥 (5.16) 

Therefore, the quality losses due to the deviation from the target diameter can be quantified as [107] 

 
𝑄𝑊 = ∫ (2 × 𝛿𝑖 − Δ𝑖)

2𝑑𝑡
𝑇𝑖

𝑇𝑖−1

 
(5.17) 

In Eq. (5.17), 𝑄𝑊 represent the quality losses due to deviations from target diameter. 𝑙𝑤 represent the loss  

factors corresponding to 𝑄𝑊 respectively. 𝑇𝑖 represents the cumulative machining time over 𝑖 parts.  
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5.6.2. Smart Turning process 

In most existing implementations of the turning process, the output diameter of the 𝑖𝑡ℎ part is measured 

externally and the tool wear compensation is implemented accordingly for the (𝑖 + 1)𝑡ℎ  part using the 

deviation in the diameter for the 𝑖𝑡ℎ part. This implementation works well for (1) parts with shorter lengths, 

where the variation in diameters at the head and tail portions of the part is not significant, and (2) longer 

parts for which the tolerance is greater than the deviations observed in the diameter measurements.  

However, such a strategy may not be suitable for manufacturing parts with ultra-high precision 

requirements, i.e., the variation in the diameters at the head and tail portions of the part is greater than the 

tolerance required. In such cases, two options are possible to achieve the desired measurements: (1) use 

appropriate cutting tool and relief angle such that the deviations due to tool wear are less than the required 

tolerance, and (2) make real-time changes to the tool wear compensation as the part is being manufactured. 

Traditionally, the first option is implemented for manufacturing ultra-high precision parts, but in this work, 

we consider the second option, where real-time tool wear compensation is implemented. In addition, we 

look at the various uncertainty sources affecting the tool wear compensation and impose the appropriate 

compensation accordingly.  

With the background of the turning process in Section 5.6.1, we consider a smart turning process. In 

a smart turning process, the diameter of the part is measured while the part is being manufactured; these 

diameter measurements are transmitted to a computational system, which then computes the necessary 

tool wear compensation (is equivalent to a control action in control theory literature) and implements it 

while the part is in being processed. Several in-process dimensional measurement techniques are available 

to measure the output diameter of a part. Different classes of techniques exist such as mechanical 

techniques, optical techniques, pneumatic techniques, and ultrasonic techniques. Brief descriptions of all 

the above techniques are available in [109]. In this work, we assume a scanning laser beam technique (an 
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optical technique), which emits a high-speed laser beam onto the part, and diameter measurements are 

made based on the shadow produced due to the obstruction of the laser beam [110].  

Uncertainty sources: Several sources of uncertainty may exist at several stages in the above-

described smart turning process. The physical subsystem here refers to the part that is being manufactured, 

sensors are associated with the diameter measurements, the computational subsystem computes the tool 

wear compensation, and the actuation subsystem represents the mechanical system used to implement the 

tool wear compensation.  

The uncertainty in the physical subsystem refers to the uncertainty in the model parameters of the 

empirical models discussed in Section 5.6.1. Uncertainty in the input to the physical system may refer to 

the actual clearance angle that is implemented, which may be slightly different from the intended angle. 

Sensor uncertainty refers to the uncertainty in the diameter measurements from the scanning laser beam 

technique. Similarly, the uncertainty in the computational subsystem may be due to the unavailability of 

necessary resources to perform the computation, uncertainty in the communication between the sensors 

and the computational subsystem, and between the computational and actuation systems. In this example, 

we do not consider a distributed system but a single computational node. Thus, there exists no issue of 

communication uncertainty between the computational nodes. The illustrative example in Section 5.5 

considered a distributed computational subsystem.  Uncertainty in the actuation subsystem may be due to 

the variation in the actual tool wear compensation implemented, which could be slightly different from 

the computed tool wear compensation.  

5.6.3. Performance analysis 

Problem Parameters:  The specifications and dimensions of the parts are provided in Table 5.9. The 

process parameters such as the feed rate and cutting speed are assumed to be 60 𝑚/𝑚𝑖𝑛  and 
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0.065 𝑚𝑚/𝑟𝑒𝑣 respectively. The initial tool wear compensation is assumed to be equal to 0.009 mm. The 

values of model parameters for several empirical models discussed in Section 5.6.1 are obtained from 

[107], and provided in Table 5.10. In addition, the uncertainty in the actual tool wear compensation that 

is implemented is quantified using a Gaussian distribution, where the mean is the intended tool wear 

compensation and a standard deviation of 0.0005 mm. The uncertainty in the sensor measurements is also 

represented using a Gaussian distribution with a standard deviation of 0.0025 mm. The uncertainty in the 

clearance angle is also represented using a Gaussian distribution with a mean and a standard deviation of 

15 and 0.5 degrees.  

Table 5.9. Specifications of the parts from the cyber-physical turning process 

Parameter Value 

Initial diameter (𝐷𝑜) 100 mm 

Final diameter (𝐷𝑓) 98 mm 

Length of part (𝐿) 100 mm 

Lower bound of target diameter (𝐷𝑓,𝐿) 97.98 mm 

Upper bound of target diameter (𝐷𝑓,𝑈) 98.02 mm 

In this example, Gaussian distributions are used to represent several uncertainties for illustration 

purposes and can be replaced by their actual probability distributions, if available. The variation in model 

parameters, clearance angle and tool wear compensation represents aleatory uncertainty, i.e., the values 

of these parameters vary across several parts. However, these values are constant for a particular part but 

these values are unknown; therefore, they represent epistemic uncertainty sources when a single part is 

considered. Thus, it should be noted that the same parameters can be either aleatory, when a population 

of parts are considered or epistemic, when a single part is considered. When multiple parts are processed, 
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their associated parameter values need to be calibrated using the diameter sensor measurements. The 

probability distributions in Table 5.10 are considered as prior distributions for the calibration process.  

Table 5.10. Parameters in the tool wear empirical model 

Parameter Value 

𝑘𝑤 𝑁(8.2961 × 10−5, 8.2961 × 10−7)  

𝛼𝑤 𝑁(2.747, 0.02747) 

𝛽𝑤 𝑁(1.473,0.01473) 

𝛾𝑤 𝑁(1.261, 0.01261) 

𝜎𝑤 𝑁(0.43, 0.0043) 

For the computational subsystem, asynchronous interaction is assumed between the sensors and the 

computational subsystem, and between the computational and actuation subsystems. The sensor data are 

assumed to be sent in three data packets and two packets are required for successful communication. 

Similarly, one of two data packets is necessary for a successful communication between the computational 

and actuation systems. The reliability (probability that a data packet is successfully transmitted) of the 

first packet is assumed to be 0.95. The reliability of the following data packet is obtained using the 

conditional probability table, given in Table 5.11. The probability that the necessary computational 

resources are available is assumed as 0.95. Therefore, a successful total wear compensation analysis 

requires successful communication between sensors and computational subsystem, computational 

resources and successful communication between computational and actuation subsystem.  

Table 5.11. Conditional probability table of a data packet transmission 

 Successful at time step 𝑛 + 1 Unsuccessful at time step 𝑛 + 1 

Successful at time step 𝑛 0.95 0.05 

Unsuccessful at time step 𝑛 0.9 0.1 
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 The length of the time step at which sensor measurements of the output diameter of a part are made 

is equal to 0.25 second. The goal of the computational system is to estimate the tool wear compensation 

using the sensor measurements of the output diameters of a part at different time steps. Estimation of the 

tool wear compensation for the next segment of the part is by minimizing the loss function, given in Eq. 

(5.18) and subject to the tolerance requirements given in Table 5.9. Due to the presence of uncertainty in 

the model parameters, the clearance angle, tool wear compensation and sensor uncertainty, the loss and 

the constraint functions are not deterministic but stochastic in nature. Therefore, the optimization 

formulation for tool wear compensation after considering several uncertainty sources is given as  

 
𝑀𝑖𝑛 𝐸 [∫ (𝛿𝑖 −

Δ𝑖
2
)
2

𝑑𝑡
𝑇

0

] 

such that 

Pr(𝐷 > 𝐷𝑓,𝐿 ∩ 𝐷 < 𝐷𝑓,𝑈) ≥ 0.95 

(5.18) 

In Eq. (5.18), 𝑇  represents the time of analysis. The overall goal of this example is to quantify the 

uncertainty in the output diameter along the length of the part after implementing the smart turning process.  

Dimension Reduction: The parameters to be calibrated using the diameter sensor measurements 

include the model parameters in Table 5.12 (𝑘𝑤, 𝛼𝑤, 𝛽𝑤, 𝛾𝑤 and 𝜎𝑤), clearance angle (𝜃) and tool wear 

compensation (𝛿).Variance-based global sensitivity analysis is then performed to reduce the number of 

parameters to be calibrated.  The first-order indices are used for dimension reduction; if the first-order 

index of a parameter is less than 0.1, then that parameter is removed from calibration process and is 

assumed deterministic at its modal value (i.e., the value with the highest probability). Using the prior 

distributions of the parameters, the output parameter is estimated after every time step, i.e., 0.25 second. 

The stratified sampling algorithm proposed by Li and Mahadevan [49]  is used to compute the first-order 

sensitivity indices.  The sensitivity indices of several parameters are given in Table 5.12.  
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Table 5.12. Sensitivity indices for dimension reduction 

Parameter Sensitivity index 

𝑘𝑤 0.0075 

𝛼𝑤 0.8585 

𝛽𝑤 0.1201 

𝛾𝑤 0.0045 

𝜎𝑤 0.0076 

𝜃 0.0072 

𝛿 0.0022 

From the results of sensitivity analysis, only 𝛼𝑤  and 𝛽𝑤  are considered for calibration and the 

remaining parameters are fixed at their modal values, i.e., the values of  𝑘𝑤, 𝛾𝑤, 𝜎𝑤 , 𝜃 and 𝛿 are fixed at 

their mean values (for Gaussian distributions, the modal value and the mean are equal). It should be noted 

that the actual values of these parameters could be different from the values that were fixed at. 

DBN Model: The DBN model for the smart turning process is shown in Fig. 5.11. In Fig. 5.11, the 

superscript  𝑘  refers to the time step of analysis. Since 𝛼𝑤  and 𝛽𝑤  are deterministic but unknown 

parameters, they do not vary with time, i.e., 𝛼𝑤
𝑘 = 𝛼𝑤

𝑘+1 and 𝛽𝑤
𝑘 = 𝛽𝑤

𝑘+1. 𝑑𝑘, 𝑤𝑘, Δ𝑘 refer to the depth of 

cut, tool wear and drift at the 𝑘𝑡ℎ  time step. 𝐷𝑘  and 𝐷𝑆
𝑘  refer to the output diameter and its sensor 

measurement respectively. 𝑅1
𝑘 refers to the availability of computational resources at  𝑘𝑡ℎ time step while 

𝐶1 refers to the computational subsystem and not a physical variable. The wear at the current time step is 

affected by the wear in the previous time step through the parameter 𝑡𝑤,𝑖,  as shown in Eq. (5.11). The 

drift in the current time step in affected by the wear in the previous time step as shown in Eq. (5.15). The 

sensor measurements, 𝐷𝑆
𝑖  are transmitted to the computational subsystem, which under the availability of 

necessary resources computes the tool wear compensation in the following time step (𝛿𝑘+1).  
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Estimation of model parameters and tool wear compensation:  Parameter estimation is carried out 

in each time step using the sensor measurement. We used the particle filtering technique and used to 

Sequential-Importance Resampling (SIR) algorithm [67] with 1000 samples. A brief introduction to the 

SIR algorithm is provided in Section 2.7.2. The posterior samples are then used to estimate the tool wear 

compensation in the next time step by solving the optimization problem detailed in Eq. (5.18). This process 

is repeated for all the time steps until a part is completely processed. The prior and posterior distributions 

of 𝛼𝑤  and 𝛽𝑤, along with their true values, for a sample part  are given in Fig. 5.12. The insensitive 

parameters (𝑘𝑤, 𝛾𝑤, 𝜎𝑤, 𝜃 and 𝛿) are fixed at their modal values; however, it should be noted that the true 

values may be different than the values they are fixed at. The true values of these parameters are given in 

Table 5.13.  The true values of all parameters are denoted using a superscript ‘𝑇’, as shown in Table 5.13.  

 

Fig. 5.11. DBN model for the smart turning process 
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(a) (b) 

Fig. 5.12. Prior and Posterior distributions of calibration parameters 

Table 5.13. Underlying true values of parameters 

Parameter Sensitivity index 

𝑘𝑤
𝑇  8.2676e-5 

𝛼𝑤
𝑇  2.7195 

𝛽𝑤
𝑇  1.4899 

𝛾𝑤
𝑇 1.2627 

𝜎𝑤
𝑇  0.4247 

𝜃𝑇 15.0427 

𝛿𝑇(initial) 0.0093 

 

During real-time control, an appropriate tool wear compensation is implemented to reduce the losses 

due to deviations from the target diameter. However, the actual tool wear compensation at each time step 

may be different due to the presence of associated uncertainty in tool wear compensation. Within each 

time step, a particular length of the part is processed; this length can be estimated using Eq. (5.13). As 

mentioned above, it is assumed that the length of each time step is 0.25 second. However, it may be 
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possible that the part in its final time step may be processed for less than 0.25 second, depending on the 

length of the part that needs to be processed.  Let 𝐾 represent the total number of time steps required to 

process a part. Let 𝐿𝑗 , 𝑗 = 1,2,3…𝐾 − 1 represent the lengths of segments of a part processed in each of 

first 𝐾 − 1 time steps. Therefore, the length of the part to be processed in the last time step can be 

computed as 𝐿𝐾 = 𝐿 − ∑ 𝐿𝑗
𝐾−1
𝑗=1 . If the tool wear compensation in the final time step is 𝛿𝐾, then the time 

spent in processing a length of 𝐿𝐾 can be computed using Eq. (5.13). Let 𝑡𝐾 represent the length of last 

time step, then the total processing time for a part can be computed as 𝑇 = (𝐾 − 1) ∗ 𝜖𝑡 + 𝑡𝐾. 𝜖𝑡 refers to 

the length of time step, which is assumed to be equal to 0.25 second in this illustration example. Thus, 

real-time quality control of turning process is affected by several uncertainty sources.  

 

Fig. 5.13. Comparison of output diameter profiles with and without real-time control 

Fig. 5.13 provides a comparison of the output diameter profiles in two cases, with and without the 

real-time control assuming the same initial conditions. In the case of no control, the tool wear 

compensation remains the same as at the initial value; however, in the real-time control, the tool wear 

compensation changes at each time step with the diameter sensor measurements. 
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Fig. 5.14. Comparison of the computed and the actual tool wear compensation 

Fig. 5.14 shows the change in the tool wear compensation at each time step. In Fig. 5.14, the computed 

tool wear compensation and the actual tool wear compensation implemented are shown. The difference 

between the two plots in Fig. 5.14 is due to the presence of uncertainty in the physical actuation of tool 

wear compensation. The following observations can be made from Fig. 5.14. 

1. Computed tool wear compensation increases with every time step. However, the actual tool wear 

implemented in a time step can be lower than that implemented in the previous time step if the tool 

wear uncertainty is more than the increase in the computed tool wear compensation.  

2. In the region identified in Fig. 5.14, the computed time wear compensation remained the same in 

two successive time steps. This is because of the lack of necessary computational resources to 

compute the tool wear compensation, as shown in Fig. 5.15. 

In Fig. 5.15, ‘0’ and ‘1’ represents success and failure of action, which could be either calibration of 

parameters using sensor data or implementation of tool wear compensation. Calibration require successful 

communication between sensors and computational subsystem, and availability of computational 
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resources. However, tool wear compensation requires successful communication between computational 

and actuation subsystems in addition to requirements for successful calibration. In Fig. 5.15, 

implementation of appropriate tool wear compensation has been unsuccessful at one instant, whereas 

calibration has been successful at all time instant. Therefore, unsuccessful implementation of tool wear 

compensation can be attributed to communication loss between computational and actuation subsystems.  

 

Fig. 5.15. Outcome of tool wear compensation and calibration analyses due to availability of 

computational resources and successful communication between several subsystems 

To quantify the effects of aleatory uncertainty sources in the communication between computational 

and actuation systems, and sensors and computational system, resource availability for the computational 

system, uncertainty in the clearance angle, uncertainty in the model parameters to estimate the tool wear, 

and uncertainty in the physical implementation of tool wear, the above-described steps are repeated several 

times. This repetition simulates the processing of multiple parts using the turning operation and thus the 

aleatory variability across multiple parts. Fig. 5.16 represents the diameter profiles of several parts, after 

considering both aleatory and epistemic uncertainty sources. It should be noted that the epistemic 

uncertainty is considered when performing the real-time control of each individual part. After obtaining 
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the diameter profiles, the uncertainty in the diameter along the length of the part can obtained by 

constructing a probability distribution using the data points at the required point of interest along the length 

of the part.  

 

Fig. 5.16. Diameter profiles of parts considering both aleatory and epistemic uncertainty in the 

smart turning process 

5.7 Summary 

This chapter developed a model-based framework for uncertainty quantification and aggregation in a 

smart system for its performance assessment to enable design-time decision-making. As discussed in 

Section 5.1, earlier studies have primarily adopted data-driven approaches such as reliability block 

diagrams using failure rates of components that are experimentally obtained or expensive simulation 

models such as Simulink for performance evaluation of smart system. Data-driven approaches may not be 

always feasible in complex systems and running Simulink models multiple times when considering 

uncertainty sources can be computationally expensive. In addition, a simulink model does not facilitate 



 127 

real-time inference when new data is available. For the above reasons, we developed a Bayesian network-

based approach for performance evaluation of smart systems under uncertainty.  

Uncertainty in the physical subsystem may be due to uncertain model parameters and model 

inadequacy. Uncertainty in the computational subsystem is due to the uncertainty in the availability of 

hardware resources and in the network communication. A smart system containing physical, sensing, 

computational and actuation subsystems is analyzed as a feed-forward system in time and modeled using 

a Dynamic Bayesian network. The computational subsystem may have communication between multiple 

nodes; this interaction is also modeled using a DBN, resulting in a two-level DBN for modeling a smart 

system. Physics models and/or data are used to establish the conditional dependence relationships for the 

physical and actuation subsystems. DBNs corresponding to basic interaction patterns such as 2-node 

asynchronous and synchronous are detailed. Complex interaction patterns can be broken down into these 

basic patterns for performance evaluation. The proposed methods are demonstrated for two examples: (1) 

the design of a smart indoor heating system that enables room-by-room temperature control, and (2) real-

time control of a smart turning process.   

The first example is a design-time analysis problem where an appropriate design configuration (sensor 

and network types) has to be selected that maximizes the reliability under budget constraints.  In this 

problem, reliability is defined as the probability that temperature in various rooms are according to their 

pre-set limits. The design-time decision-making requires the implementation of the proposed performance 

evaluation for multiple design configurations and choosing the best configuration among them. The 

second example considered real-time control (real-time decision-making, as opposed to design-time 

decision-making in the first example) of a smart turning process. Also, the first example considered a 

distributed computational system whereas the second example considered a single-node computational 
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system. The presence of a distributed computational system results in an additional uncertainty source, 

i.e., the communication between the individual nodes.   

The proposed methodology is generic and can be extended to more complex interaction patterns 

between and within the subsystems. An example with such properties of complex computational 

interaction pattern is a smart grid, which has a collection of sensors (smart meters), computational, 

actuation (electricity transfer mechanism such as lines) and physical subsystems (houses). The inputs 

(power generation sources such as fossil fuels, wind and solar) are associated with variability due to 

environmental conditions. In the case of a smart grid, the user requirements change with time every day; 

these user requirements can be considered similar to occupant comfort levels in the smart indoor heating 

system. A smart grid consists of several utility units or substations, and each utility unit can be modeled 

as a computational node. These units collect sensor data from a region and communicate with each other 

to find an optimum way to meet the electricity demands. The proposed methodology is able to handle such 

systems; however, the computational effort will grow with the size of the system. The strategies for 

sensitivity analysis, dimension reduction, and joint distribution approximation may be employed in scaling 

up the methodology to large systems. 

After considering systems where interactions between several subsystems occur with a time lag, the 

next chapter considers systems where interactions occur simultaneously such as multi-physics systems.  
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CHAPTER 6 

PERFORMANCE ASSESSMENT IN COUPLED MULTI-PHYSICS SYSTEMS 

6.1. Introduction 

Systems with coupled interactions between multiple physics disciplines are often encountered in 

engineering applications such as hypersonic aircraft (fluid, structural and thermal interactions) [111], and 

long-span bridge (fluid and structural interaction) [112]. In such coupled systems, the interactions between 

several subsystems occur simultaneously as opposed to the software-controlled feedback control systems 

discussed in Chapter 5, where interactions between several subsystems occur with a time lag. As discussed 

in Section 1.1, models are often employed for each individual subsystem (may represent a different 

physics in a multi-physics system) and are run iteratively until the results from individual models are 

compatible; this approach is commonly referred to as fixed point iteration [113]. This results in a high 

computational expense as the individual models are run multiple times to reach compatibility. This 

computational expense is further exacerbated in the presence of uncertainty, as the multi-physics system 

evaluation needs to be repeated a large number of times at the same design input (thus simulating multiple 

realizations of the uncertain variables), in order to compute the probability distribution of the output.  

As discussed in Section 1.1, two approaches have been developed in the literature to counter the large 

computational expense due to the use of physics-based models for performance assessment of multi-

physics systems under uncertainty. The first approach reduces the large computational expense by 

replacing the expensive disciplinary computational models with inexpensive surrogate models. A variety 

of surrogate modeling techniques have been studied, such as Polynomial Chaos models, Kriging (Gaussian 

Process) models and Neural Networks [10, 114]. These surrogates are termed as deterministic (or 

algebraic) surrogates as they provide point-output values, corresponding to a realization of design input 
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and uncertain variables. It should be noted that Gaussian Process surrogate results in a stochastic output; 

the stochasticity merely represents the uncertainty in the prediction; however, this stochastic prediction 

corresponds to a realization of design input and uncertain variables.  

The second approach to reduce the computational effort is to decouple the disciplinary analyses.  Du 

and Chen [11] proposed the collaborative reliability analysis framework, where the multidisciplinary 

compatibility are treated as optimization constraints when performing reliability analysis in the RBDO 

framework. Mahadevan and Smith [115] proposed a decoupled framework, where the coupling variables 

between several individual disciplinary analyses are estimated through First-Order Second Moment 

(FOSM) [31] approximations and later used in reliability analysis. Sankararaman and Mahadevan [116] 

developed a decoupled likelihood-based approach (LAMDA) to obtain the distributions of the coupling 

variables by using the First-Order Reliability Methods (FORM) [31]. 

The existing methods for multidisciplinary analysis (MDA) and optimization under uncertainty have 

several shortcomings. When surrogates are used to replace the individual disciplinary computational 

models, the accuracy of those surrogates is of concern since it affects the accuracy of the optimization 

results. Note that repeated runs of the surrogate model at the same design values with multiple realizations 

of the uncertainty variables are required in order to compute the reliability or robustness constraints (or 

probabilistic objectives).  The decoupled approaches have used first order methods (such as FOSM and 

FORM) to decouple the bi-directional coupling between individual disciplines, and the coupled analysis 

is treated as a uni-directional analysis [116]. After decoupling, the severed coupling variable is treated as 

an additional input to the individual disciplinary analyses. A drawback of this approach is that it loses the 

statistical relationship between the design input and the severed coupling variables, i.e., the distribution 

of the severed coupling variable remains the same irrespective of the value of the design input variables. 

In reality, the distribution of the coupling variable changes with the values of design input variables.  
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Thus, there exists a need for the development of an approach that is computationally efficient yet 

overcomes the approximations introduced by first-order estimates of coupling variable distributions, and 

is scalable to coupled problems with multiple disciplines (more than two). This chapter also uses a 

surrogate-based strategy but a key distinction with the existing approaches is the use of a probabilistic 

(i.e., distribution) surrogate as opposed to an algebraic surrogate of the model output. An algebraic 

surrogate (also referred to as deterministic surrogate in Liang [117]) provides a point output value for a 

given set of inputs also opposed to a probabilistic surrogate (such as a Bayesian network), which provides 

a distribution output for a given set of inputs. In other words, the probabilistic surrogate is constructed in 

the probability space whereas the deterministic surrogate is constructed in the variable space. 

It should be noted that response surrogate models (also referred to as algebraic) such as Kriging also 

provide distributions for output predictions but such distributions arise due to sparse or noisy data [117]. 

In the presence of sufficient and precise data, the uncertainty in the output prediction decreases. When 

developing algebraic surrogates, the inputs for such surrogates are the design variables and uncertain 

variables. To obtain the uncertainty in the output prediction at a given input, the algebraic surrogate needs 

to be evaluated multiple times at the same design input for multiple realizations of uncertain variables. In 

contrast, a single evaluation of the probabilistic surrogate provides the entire output distribution 

considering all the uncertain variables at a given value of the design variable [117].  

In a generic Bayesian network, prediction (i.e., forward propagation) and inference (i.e., backward or 

inverse propagation) do not have analytical solutions; instead, sampling-based techniques such as Markov 

Chain Monte Carlo (MCMC) methods need to be used, which are computationally expensive and not 

exact (see Chapter 2). This chapter considers three types of multivariate distribution models (that have 

analytical solutions for the forward and inverse problems) as approximations to the general Bayesian 
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network. The three models are: (1) Multivariate Gaussian (MG), (2) Gaussian Copula (GC), and (3) 

Gaussian Mixture Model (GMM).  

Copulas have been previously used in reliability analysis and RBDO for correlated input random 

variables [117]. Liang and Mahadevan [118] approximated the Bayesian network with the Gaussian 

copula and used it for single objective reliability-based MDO and multi-objective RBDO [119]. A mixture 

model represents the joint distribution of multiple variables through a weighted combination of individual 

multivariate distributions. Mixture models are typically used to model multi-modal distributions. When 

the individual components are modeled using Gaussian distributions, then the mixture model is known as 

a Gaussian Mixture Model. A GMM can be considered as an extension of MG for modeling multi-modal 

joint distributions. Mixture models have been studied in reliability analysis [120], traffic flow forecasting 

[121], process monitoring [122], uncertainty quantification in dynamic systems [123] and probabilistic 

community discovery [124].  In this chapter, we use these probabilistic surrogates with analytical 

inference for efficient performance assessment in coupled multi-physics systems.  

 

Fig. 6.1. Nested three-loop analysis for multidisciplinary design under uncertainty 

The results from performance assessment are typically used in decision-making process either at 

design-time (such as design optimization) or at run-time (such as control). In the chapter, we illustrate the 

use of developed performance assessment framework for design optimization of multi-physics under 

uncertainty; however, these techniques can also be used for run-time decision-making. Optimization under 
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uncertainty adds a third layer of iterative computation in order to converge to the optimum solution. 

Overall, the design of multidisciplinary systems under uncertainty can be regarded as a nested three-loop 

process as shown in Fig. 6.1, with the convergence analysis in the innermost loop, uncertainty analysis in 

the middle loop, and optimization analysis in the outermost loop. Design optimization under uncertainty 

has been pursued primarily in three directions: (1) Reliability-based design optimization (RBDO) [125], 

(2) Robustness-based design optimization (RDO) [126] and (3) Reliability-based Robust Design 

Optimization (RBRDO) [127].  RBDO generally considers the design of systems with reliability 

requirements and RDO considers robustness requirements, whereas RBRDO considers both reliability 

and robustness requirements. The reliability and robustness computations are performed in the middle 

loop of Fig. 6.1, as part of the uncertainty analysis. In this chapter, we exploit the analytical solution of 

MG, GC and GMM models for efficient performance assessment and design optimization of coupled 

multi-physics systems. 

6.2. Generation of training data for a probabilistic surrogate 

In this section, the one-pass analysis approach proposed by Liang and Mahadevan [118] to generate  

training data for a multi-disciplinary system is briefly discussed. Then, we define a two-input and a two-

output system to illustrate the probabilistic modeling.  

6.2.1. One-pass multidisciplinary analysis 

Consider a two-discipline coupled multi-physics system as shown in Fig. 6.2. Let 𝑿𝑫, 𝑿𝑼 and 𝑿𝑫,𝑼 

represent the set of deterministic design variables, uncertain but non-design variables and design variables 

with uncertainty respectively.  Let 𝒈𝟏 and 𝒈𝟐 represent the outputs of the coupled systems, which are 

propagated through 𝐴3 to obtain the system outputs 𝒇 and 𝒄. The coupling variables between 𝐴1 and 𝐴2 

are represented as 𝒖𝟏𝟐 and 𝒖𝟐𝟏 respectively.  
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Fig. 6.2. A conceptual two-discipline coupled system 

Given the physics models of the two individual disciplinary models, we perform a one-pass analysis 

to generate necessary training data, which is later used to build a probabilistic surrogate. One-pass analysis 

refers to one passage of all the individual disciplinary models. To reach compatibility among individual 

disciplines, the one-pass analysis need to be carried out multiple times with the outputs of previous one-

pass analysis as the inputs for the following one-pass analysis.  A possible path for a one-pass analysis is 

shown in Fig. 6.3. 

 

Fig. 6.3. One-pass analysis path for a two-discipline coupled system 
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In Fig. 6.3, 𝒖21,𝑖𝑛 and 𝒖21,𝑜𝑢𝑡 are the same set of coupling variables but before and after carrying out 

a one-pass analysis. One-pass analysis refers to one passage through the individual disciplines, here 𝐴1, 

𝐴2 and 𝐴3.  Compatibility is assumed to be achieved when 𝒖21,𝑖𝑛 = 𝒖21,𝑜𝑢𝑡. To achieve compatibility, a 

few iterations of the coupled analysis are necessary in traditional MDA. However, instead of iterations to 

convergence, we build a Bayesian network using one-pass data, and then impose the compatibility 

condition on the Bayesian network. This saves tremendous computational expense.  

Using the one-pass training data, Liang and Mahadevan [118] constructed a Gaussian copula, which 

was used for two-disciplinary analysis under uncertainty. In this chapter, we extend this idea to three-

discipline and four-discipline multidisciplinary systems. 

6.2.2. Probabilistic modeling 

Section 2.6 presented a brief introduction to a Bayesian network, which is used as a probabilistic model 

to represent the joint representation over a set of random variables. Fig. 6.4(a) shows a conceptual example, 

which is later used in the discussion of probabilistic modeling. The model M has two inputs 𝑋1 and 𝑋2; 

and two outputs 𝑌1 and 𝑌2. Based on the model in Fig. 6.4(a), a Bayesian network can be constructed as 

shown in Fig. 6.4(b). The nodes represent random variables, and edges represent the probabilistic 

dependence relations between them. 

 

 

(a) (b) 

Fig. 6.4. A Bayesian network surrogate shown in (b) of a model with two inputs and two 

outputs shown in (a) 
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The Bayesian network can be used for model prediction 𝑓(𝑌1, 𝑌2| 𝑋1 = 𝑥1, 𝑋2 = 𝑥2), i.e., estimation of 

outputs 𝑌1, 𝑌2  for given values of inputs 𝑋1, 𝑋2  or model inference 𝑓(𝑋1, 𝑋2| 𝑌1 = 𝑦1, 𝑌2 = 𝑦2) , i.e., 

inferring the possible values of the inputs that may have resulted in given values of outputs. The above 

joint conditional PDFs (for prediction or inference) are often evaluated using expensive sampling 

strategies such as Markov Chain Monte Carlo (MCMC) methods, for inference, and Monte Carlo analysis, 

for model prediction.  

6.3. Performance assessment of multi-physics systems 

The proposed methodology for performance assessment of a coupled multidisciplinary system is 

carried out in three steps: (1) Generation of the training points, (2) Construction of a probabilistic surrogate, 

and (3) Evaluation of system quantities of interest at inter-disciplinary compatibility.  

6.3.1. Generation of training points 

In this section, we extend the one-pass analysis approach developed by Liang and Mahadevan [118] 

to higher-order coupled multidisciplinary systems. Performing one-pass analysis requires the generation 

of a feasible one-pass analysis path; this path determines the sequence in which several disciplinary 

analyses need to be carried out to generate training points. We describe the one-pass analysis sequences 

for conceptual three-discipline and four-discipline coupled systems, both with bi-directional coupling, and 

later for a three-discipline system with bi-directional and uni-directional coupling between disciplines.   

A. Conceptual three-discipline coupled system 

Consider a conceptual coupled three-discipline system as shown in Fig. 6.5, where 𝐴1, 𝐴2 and 𝐴3 

represent the three-coupled disciplines and 𝐴4  represent the fourth discipline, which does not have 

coupling with any of the other three disciplines.  Let 𝑢𝑖𝑗 represent the coupling variables between any two 
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disciplines, which are output from the 𝑖𝑡ℎ discipline and input to the 𝑗𝑡ℎ discipline. Let 𝑔𝑚, 𝑚 = 1,2,3 

represent the outputs from each of the three disciplines which are input to 𝐴4, the outputs of which are the 

values of QoIs. The primary goal to carry out the one-pass analysis is to generate training points, which 

are later used to construct a probabilistic surrogate.  

 

Fig. 6.5. Conceptual three-discipline coupled system 

The one-pass analysis path should be developed in such a way that individual disciplines do not form 

a closed loop.  Since there are three sets of coupling {𝐴1, 𝐴2}, {𝐴2, 𝐴3} and {𝐴1, 𝐴3}, we can choose the 

one-pass path between the three disciplines in one of several ways, such that the path does not form a 

closed loop. First, let us consider the coupling between 𝐴1 and 𝐴2. Between the two directional links, we 

can choose either 𝒖𝟐𝟏 or 𝒖𝟏𝟐 as an input for one-pass analysis. For every selected coupling variable (𝒖𝟏𝟐 

or 𝒖𝟐𝟏), we create two sets of the same variable, here, 𝒖𝟐𝟏,𝒊𝒏and 𝒖𝟐𝟏,𝒐𝒖𝒕 assuming 𝒖𝟐𝟏 as an input, which 

represent the values of 𝒖𝟐𝟏  before and after the one-pass analysis. The ‘in’ variables are inputs to a 

disciplinary analysis while ‘out’ variables refer to outputs from a disciplinary analysis. Here, 𝒖𝟐𝟏,𝒊𝒏 and 

𝒖𝟐𝟏,𝒐𝒖𝒕 are inputs to 𝐴1 and outputs from 𝐴2 respectively. After selecting one of the coupling variables 

between 𝐴1 and 𝐴2 as an input, let us consider one of the two remaining sets – {𝐴1, 𝐴3}. Again, the 

coupling variables in either of the directions can be chosen. Let us choose 𝒖𝟑𝟏 resulting in 𝒖𝟑𝟏,𝒊𝒏 and 
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𝒖𝟑𝟏,𝒐𝒖𝒕.  In order to not form a loop, we need consider 𝒖𝟐𝟑 as the final input for one-pass analysis among 

coupling variables, resulting in 𝒖𝟐𝟑,𝒊𝒏 and 𝒖𝟐𝟑,𝒐𝒖𝒕. Thus, a possible one-pass analysis path for the three-

discipline coupled system is given in Fig. 6.6. 

 

Fig. 6.6. One-pass analysis path for a three-discipline coupled system 

The inputs for the one-pass analysis are the original inputs (𝑿𝑫, 𝑿𝑼 and 𝑿𝑫,𝑼) and all the ‘in’ coupling 

variables, i.e., 𝒖𝟐𝟏,𝒊𝒏 , 𝒖𝟐𝟑,𝒊𝒏  and 𝒖𝟑𝟏,𝒊𝒏 . The ranges of the design variables and distributions of the 

uncertain variables are available at the beginning of analysis. The input ranges for the coupling variables 

can be obtained from three sources: (1) expert opinion, (2) design of experiments, and (3) a few 

realizations of the coupled analysis. In the presence of available subject experts, they can provide plausible 

input ranges for the coupling variables. The multidisciplinary analysis can be carried out (until 

convergence) at several inputs values, obtained from the Design of Experiments techniques such as Latin 

Hypercube sampling. The values of coupling variables after convergence can be used to obtain their ranges.  

After obtaining the ranges of the coupling variables, one-pass analysis is performed at several 

realizations of design and uncertain variables, and the ‘in’ coupling variables. We start the one-pass 

analysis with 𝐴1  where the values of necessary design and uncertain variables, 𝒖𝟐𝟏,𝒊𝒏  and 𝒖𝟑𝟏,𝒊𝒏  are 



 139 

available. Next, we perform 𝐴3 (and not 𝐴2, as it requires values of 𝑢32 from 𝐴3) using the values of 𝒖𝟏𝟑 

from 𝐴1 and 𝒖𝟐𝟑,𝒊𝒏. Later, we perform 𝐴2 and then 𝐴4 in that order. Next, the values of inputs and the 

outputs from all the individual disciplines are used as training points for the construction of a probabilistic 

surrogate. If the samples of uncertain variables (𝑿𝑼) are considered in surrogate construction, the resulting 

surrogate would have been an algebraic surrogate. In a probabilistic surrogate, the samples of uncertain 

variables (𝑿𝑼) are not considered, and therefore, the output prediction is a distribution considering all 

values of the uncertain variables.  

 

Fig. 6.7. Incorrect one-pass analysis path for a three-discipline coupled system 

Earlier in this section, it was mentioned that the one-pass analysis path (sequence of individual 

disciplines) should be selected in such a way that the disciplines do not form a closed loop. For illustration, 

Fig. 6.7 shows a one-pass analysis path that forms a closed loop; this path does not enable the generation 

of training points for the reasons below. For one-pass analysis, we require a discipline whose inputs are 

all known (such as 𝐴1 in Fig. 6.6). The one-pass analysis starts with this discipline and all the other 

disciplinary analysis are performed in succession, as discussed earlier in this section. For the one-pass 

analysis path in Fig. 6.7, there is not a single discipline, for which all the inputs are known. 𝒖𝟐𝟏 is required 
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for 𝐴1, which is an output of 𝐴2; 𝐴2 requires 𝒖𝟑𝟐 from 𝐴3 and 𝐴3 requires 𝒖𝟏𝟑 from 𝐴1. Thus, one-pass 

analysis path that forms a closed loop is not feasible for generating training points.  

B. Conceptual four-discipline coupled system 

After detailing the one-path analysis path for a three-discipline coupled system, we now demonstrate 

it for a four-discipline coupled system. An example of a four-discipline multidisciplinary system can be 

found in Culler and McNamara [128]. We show one of the several paths for one-pass analysis that is 

feasible for generating training points. Fig. 6.8 shows a four-discipline coupled multidisciplinary system, 

and Fig. 6.9 shows a possible one-pass analysis path.   

 

Fig. 6.8. Conceptual four-discipline coupled system 

In the one-pass analysis path shown in Fig. 6.9, the analysis starts with 𝐴1  with the design and 

uncertain variable inputs, and associated ‘in’ coupling variables (𝑢21,𝑖𝑛, 𝑢31,𝑖𝑛 and 𝑢41,𝑖𝑛). 𝐴2 is performed 

after 𝐴1  using values of  𝑢12  (obtained from 𝐴1), 𝑢32,𝑖𝑛  and 𝑢42,𝑖𝑛 . 𝐴3  follows 𝐴2  using values of 𝑢13 

(from 𝐴1), 𝑢23 (from 𝐴2) and 𝑢43,𝑖𝑛. 𝐴4 is analyzed later as it requires coupling variable values from all 

the three other disciplines -  𝑢14 (from 𝐴1), 𝑢24 (from 𝐴2) and 𝑢34 (from 𝐴3). After discussing the one-
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pass analysis paths for three-discipline and four-discipline coupled multidisciplinary system, we discuss 

below a three-discipline system with both uni-directional and bi-directional coupling. 

 

Fig. 6.9. One-pass analysis path for a four-discipline coupled system 

C. Three-discipline coupled system with one-directional coupling between two disciplines 

The discussion thus far considered one-pass analysis paths for three-discipline and four-discipline 

coupled systems with bi-directional coupling between individual disciplines. However, in some cases, it 

might be possible to have a one-directional coupling between some of the individual disciplines as shown 

in Fig. 6.10. In Fig. 6.10, one-directional coupling exists between 𝐴1  and 𝐴2  whereas bi-directional 

couplings exist between 𝐴1 and 𝐴3, and 𝐴2 and 𝐴3. Two possible one-pass analysis paths are presented in 

Fig. 6.11 and Fig. 6.12 respectively. The difference between the two paths is that one path results in an 

acyclic loop of individual disciplines whereas the other path does not form a loop. Both paths are feasible 

as they facilitate the one-pass analysis. The choice among the possible one-pass analysis paths depends 
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on the analyst. It should be remembered that the ultimate goal of identifying a feasible one-pass analysis 

path is to generate training points for the construction of the probabilistic surrogate.  

 

Fig. 6.10. Three-discipline coupled system with one-directional coupling between two disciplines 

In Fig. 6.11, one-directional interactions exist between any two of 𝐴1, 𝐴2 and 𝐴3; however, in Fig. 

6.12, there exists no interaction between 𝐴1 and 𝐴2. In Fig. 6.11, the sequence of analyses is 𝐴2, 𝐴1, 𝐴3 

and 𝐴4 in that order. However, in Fig. 6.12, the sequence of analyses is 𝐴1, 𝐴3, 𝐴2 and 𝐴4 respectively. 

The different sequence of analyses in Fig. 6.11 and Fig. 6.12 is due to the different in one-pass paths. 

6.3.2. Construction of a probabilistic surrogate  

Using the generated training points, we construct a probabilistic surrogate and use it for further 

multidisciplinary analysis. As discussed in Section 6.1, there exist two options for constructing a 

probabilistic surrogate - (1) A generic Bayesian network, where all the dependencies are accurately 

quantified, but the inference is approximate through computationally expensive MCMC methods, and (2) 

An approximate Bayesian network, where dependencies are not accurately quantified (due to simplifying 

joint probability assumptions), but which has fast, analytical inference. This chapter considers the second 

option of building an approximate surrogate with analytical inference. Fig. 6.13 shows the dependency 
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relationships between several variables; the relationships between variables are obtained from the 

available physics-based models. Note that as discussed in Section 2.6, the dependence relationships 

between variables can be obtained from physics-based models, available data or their combination. 

 

Fig. 6.11. One-pass analysis path of a three-discipline coupled system with one-directional 

coupling between two disciplines, resulting in one-directional coupling between all disciplines 

 

Fig. 6.12. One-pass analysis path of a three-discipline coupled system with one-directional 

coupling between two disciplines, resulting in no interaction between two disciplines 
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Fig. 6.13. Bayesian network for a conceptual multi-physics system 

In Fig. 6.13 𝑫𝒖𝟏𝟐  represents the difference between the coupling variables (𝒖𝟏𝟐 ) in successive 

iterations (𝒖𝟏𝟐,𝒊𝒏 and 𝒖𝟏𝟐,𝒐𝒖𝒕).  Note that the values of 𝒖𝟏𝟐,𝒐𝒖𝒕 in one iteration becomes the values of 𝒖𝟏𝟐,𝒊𝒏 

in the following iteration. 𝑫𝒖𝟏𝟐  is not a stochastic variable, but a deterministic variable as it is the 

difference between the same set of coupling variables in successive iterations (𝑫𝒖𝟏𝟐 = 𝒖𝟏𝟐,𝒐𝒖𝒕 − 𝒖𝟏𝟐,𝒊𝒏). 

To achieve multidisciplinary compatibility, we require the difference variables to be zero (𝑫𝒖𝟏𝟐 = 0). As 

𝑫𝒖𝟏𝟐 are deterministic nodes, the arcs between 𝒖𝟏𝟐,𝒐𝒖𝒕 and 𝑫𝒖𝟏𝟐 are reversed (commonly referred to as 

arc reversal process [129]) such that 𝑫𝒖𝟏𝟐  and 𝒖𝟏𝟐,𝒐𝒖𝒕  become stochastic and deterministic nodes 

respectively. To reduce the complexity of the Bayesian network, 𝒖𝟏𝟐,𝒐𝒖𝒕 variables are discarded as they 

can be estimated from 𝒖𝟏𝟐,𝒊𝒏 and 𝑫𝒖𝟏𝟐. The transformed Bayesian network surrogate is shown in Fig. 6.14. 

Upon constructing the topology of the Bayesian network, we then proceed to quantify the conditional 

dependence relationships between them. The conditional relationships can be regarded as stochastic 

models connecting several random variables in a Bayesian network, as discussed in Chapter 4. 
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Fig. 6.14. Transformed Bayesian network of multidisciplinary system (after arc reversal) 

In this work, we discuss three approximate probabilistic surrogates with analytical inference, namely 

(1) Multivariate Gaussian, (2) Gaussian Copula, and (3) Gaussian Mixture Model. All the three models 

are trained using the training data from Section 6.3.2. Similar to the Bayesian network, we consider 𝑫𝒖𝟏𝟐 

and ignore 𝒖𝟏𝟐,𝒐𝒖𝒕  in training the three surrogates.  A brief introduction to the three models and their 

application to multidisciplinary analysis are discussed below. 

A. Multivariate Gaussian distribution 

The multivariate Gaussian distribution to represent the joint distribution of  𝑝 random variables 𝑿 =

{𝑋1…𝑋𝑝} is given as  

 𝑓𝑿(𝒙) =  𝑁𝑿(𝒙|𝝁, 𝚺) =  
1

(2𝜋)
𝑝
2  |𝚺|

1
2

exp(−
1

2
(𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁))  (6.1) 

where 𝝁 = 𝐸[𝑿]  is a 𝑝-dimensional vector representing the expectation values of all the 𝑝  random 

variables and 𝚺 = 𝐸[(𝑿 − 𝝁)(𝑿 − 𝝁)𝑻] is a 𝑝 × 𝑝 covariance matrix. Here. 𝐸[. ] refers to the expectation 

operator. As discussed in Section 6.1, an MG assumes that every random variable follows a univariate 
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Gaussian distribution. Similarly, the joint distribution or a conditional distribution of a subset of 𝑝 random 

variables also follows a multivariate Gaussian. In Eq. (6.1), |𝚺|  represents the determinant of the 

covariance matrix. 

B. Gaussian Copula 

Consider 𝑝 random variables 𝑋1…𝑋𝑝, with continuous CDFs  𝐹1(𝑥1)…𝐹𝑝(𝑥𝑝), then a copula function 

can be defined as shown in Eq. (6.3). 

 𝐶(𝑢1…𝑢𝑝) = 𝑃[𝐹1(𝑥1) ≤ 𝑢1, … , 𝐹𝑝(𝑥𝑝) ≤ 𝑢𝑝] (6.2) 

In Eq. (6.2), 𝑃[. ] represents the probability density function, 𝐶(. ) is the copula function and 𝐶(𝑢1…𝑢𝑛) 

represents the joint CDF of 𝑋1…𝑋𝑛. Several types of copula functions are available to model various 

dependence relationships between random variables such as Gaussian, Gumbel, Clayton and 

Independence copulas [130]. Among them, only Gaussian copula has analytical inference whereas other 

copulas require sampling-based inference.  A Gaussian copula represents the joint CDF of all marginal 

CDFs using a multivariate Gaussian distribution. The dependence between the variables in Fig. 6.4(b), 

when a Gaussian copula is used can be represented as shown in Eq. (6.3) [130]. 

 𝐶𝐺(𝑢𝑥1 , 𝑢𝑥2 , 𝑢𝑦1 , 𝑢𝑦2) = Φ𝐺(Φ
−1(𝑢𝑥1),Φ

−1(𝑢𝑥2),Φ
−1(𝑢𝑦1),Φ

−1(𝑢𝑦2) )  (6.3) 

In Eq. (6.3), 𝐶𝐺(𝑢𝑥1 , 𝑢𝑥2 , 𝑢𝑦1 , 𝑢𝑦2)  represents the Gaussian copula used to model the joint CDF of 

𝑥1, 𝑥2, 𝑦1, 𝑦2; Φ−1(. ) represents the inverse CDF of a standard Gaussian and  Φ𝐺(. ) represents the joint 

CDF of 𝑥1, 𝑥2, 𝑦1, 𝑦2. Using the joint CDF, the joint PDF can be obtained as shown in Eq. (6.4), where 𝑅 

represents the correlation matrix and 𝑐𝐺(𝑢𝑥1 , 𝑢𝑥2 , 𝑢𝑦1 , 𝑢𝑦2) represents the joint PDF.  
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𝑐𝐺(𝑢𝑥1 , 𝑢𝑥2 , 𝑢𝑦1 , 𝑢𝑦2) =
1

√det(𝑅)
exp

(

 
 
 
 

−
1

2

(

 
 

Φ−1(𝑢𝑥1)

Φ−1(𝑢𝑥2)

Φ−1(𝑢𝑦1)

Φ−1(𝑢𝑦2))

 
 

T

∙ (𝑅−1 − 𝐼) ∙

(

 
 

Φ−1(𝑢𝑥1)

Φ−1(𝑢𝑥2)

Φ−1(𝑢𝑦1)

Φ−1(𝑢𝑦2))

 
 

)

 
 
 
 

 (6.4) 

The multivariate Gaussian distribution in Eq. (6.4) can be used to generate a large number of samples of 

correlated normal random variables. In this case, samples of 4 variables from this joint normal distribution 

are generated and denoted as 𝑋1
′ , 𝑋2

′ , 𝑌1
′, 𝑌2

′ . For each sample of the variables, compute the CDF with 

respect to the marginal distributions of standard normal distribution, and denote the CDF values as 

𝑢𝑋1 , 𝑢𝑋2 , 𝑢𝑌1  and 𝑢𝑌2 . Samples of 𝑋1, 𝑋2, 𝑌1  and 𝑌2  are then obtained by taking the inverse CDFs of 

𝑢𝑋1 , 𝑢𝑋2 , 𝑢𝑌1 and 𝑢𝑌2 with respect to their marginal distributions. 

C. Gaussian mixture model 

Let 𝑿 = {𝑋1, 𝑋2…𝑋𝑝} represent 𝑝  random variables whose joint probability, 𝑓𝑿(𝒙) is represented 

using an 𝑁-component GMM given as [86]  

 

𝑓𝑿(𝒙) =  ∑𝑤𝑖 × 𝑁𝑿,𝑖(𝒙|𝝁𝒊, 𝚺𝒊) 

𝑁

𝑖=1

 (6.5) 

where 𝑁𝑿,𝑖(𝒙|𝝁𝑖, 𝚺𝑖) and 𝑤𝑖 represent the 𝑖𝑡ℎ Gaussian Mixture component and its corresponding weight 

respectively. It should be noted that the sum of the weights of all Gaussian components is equal to 1. The 

first step in approximating a joint probability distribution through a GMM is the selection of the number 

of components 𝑁 . The optimal number of components is typically obtained by maximizing a model 

selection score measure such as Akaike Information Criterion (AIC) [131], Bayesian Information 

Criterion (BIC) [132] and Mutual Information (MI) [52]. For illustration, this work used the BIC score 

which is the defined as  



 148 

 𝐵𝐼𝐶 = ln(𝐿) − 0.5 × 𝑘 × ln (𝑀) (6.6) 

where 𝐿 refers to the likelihood of observing the data given a GMM, 𝑘 and 𝑀 refer to the number of 

parameters to be estimated in the GMM and the amount of available data respectively. The parameters in 

a GMM to be estimated include the weights (𝑤𝑖), the expectation and variance matrices of all Gaussian 

Mixture components. The estimation of parameters in a GMM is typically through the Expectation-

Maximization (EM) algorithm [133]. The EM algorithm estimates the parameters in two steps: the E step 

and the M step. The E step estimates the weights of the Gaussian components conditioned on the Gaussian 

component parameters (mean and variance). The M step estimates the Gaussian component parameters 

conditioned on the weights. The E and M steps are repeated until convergence is achieved in weights and 

Gaussian component parameters.  

D. Model characteristics  

Here, we discuss the underlying assumptions in each of the three approximate models mentioned 

above. The Multivariate Gaussian assumes that all the individual random variables follow a Gaussian 

distribution, both individually and jointly, and can be used to model a uni-modal joint distribution. A less 

restrictive model compared to Multivariate Gaussian is the Gaussian Copula, which does not assume that 

the individual random variables follow Gaussian distributions. The Gaussian copula can model non-

Gaussian marginal distributions and only a uni-modal joint distribution. A Gaussian mixture is the least 

restrictive of the three models, as it does not assume that the individual variables follow Gaussian 

distributions and can be used to model multi-modal joint distributions. By changing the number of 

Gaussian components in the GMM, any order of modality can be represented; however, it should be noted 

that a multivariate Gaussian distribution is used in modeling each of the individual GMM components.  
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6.3.3. Forward propagation and inference 

We first discuss below the generalized updating procedure for a GC and GMM, and then then discuss 

their applicability to multidisciplinary analysis. Since an MG can be considered a special case of a GMM, 

its updating is not particularly discussed, as the updating procedure for a GMM can be adapted for 

updating in MG. One-pass analysis results in one-way interactions between several disciplines. Here, 

forward propagation refers to the estimation of downstream variables (such as system QoI) for a given 

realization of the input variables. Inference refers to the estimation of upstream variables when a 

downstream variable is fixed a given value. In the case of a multi-physics system, the difference variable 

is the downstream variable and is fixed at zero (multidisciplinary compatibility). Here, we perform 

forward propagation and inference together (termed as updating) by conditionalizing the input variable at 

some chosen values and the difference variables 𝑫𝒖 at zero, and obtain the distributions of the remaining 

variables. Let 𝒙𝑫
∗  and 𝝁𝑫,𝑼

∗  refer to the design values of 𝑿𝑫 and 𝝁𝑿𝑫,𝑼 at which the unobserved variables 

need to be evaluated. 

A.  Updating in a Gaussian copula 

 First, we illustrate the procedure of obtaining the conditional PDF 𝑓(𝑌1, 𝑌2| 𝑋1 = 𝑥1, 𝑋2 = 𝑥2) for the 

example in Fig. 6.4(b) and then extend to the Bayesian network in Fig. 6.14. Conditionally sampling with 

the Gaussian copula assumption is easy to implement since the joint PDF in Eq. (6.5) can be converted to 

a conditional PDF analytically. For example, the conditional samples of  𝑌1 and 𝑌2 need to be generated 

given 𝑋1 = 𝑥1, 𝑋2 = 𝑥2. The equivalent normals corresponding to 𝑋1 = 𝑥1, 𝑋2 = 𝑥2 are first calculated as 

𝑥1
′ = Φ−1 (𝐹𝑋1 (𝑥1)) ,  𝑥2

′ = Φ−1 (𝐹𝑋2 (𝑥2)) . Let 𝜇  be the mean of 𝑋1, 𝑋2, 𝑌1  and 𝑌2  in the equivalent 

normal space; therefore, 𝜇 is a zero vector with 4 entries, and 𝑹 is the covariance matrix given as 
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(6.7) 

Then the conditional joint distribution of 𝑌1
′  and 𝑌2

′  given 𝑋1
′ = 𝑥1

′ , 𝑋2
′ = 𝑥2

′  is denoted 

as: 𝑓(𝑌1
′, 𝑌2

′|𝑋1
′ = 𝑥1

′ , 𝑋2
′ = 𝑥2

′ )~ 𝑁(�̃� , �̃�) where the conditioned mean vector �̃� and covariance matrix �̃� 

are given as 

 𝜇 = Σ1Σ3
−1 ∗ [

𝑥1
′

𝑥2
′ ] (6.8) 

 Σ̃ = Σ2 − Σ1Σ3
−1Σ1

T (6.9) 

Samples 𝑌1
′ and 𝑌2

′ are jointly generated from a multivariate normal distribution, of which the mean and 

covariance matrix are calculated as in Eqs. (6.8, 6.9). The CDF values of each 𝑌1
′ and 𝑌2

′ sample with 

respect to the standard normal distribution (𝑢𝑌1 , 𝑢𝑌2) are computed, and the inverse CDF is taken to 

obtained the conditional samples of 𝑌1 and 𝑌2.  

𝑐𝐺 (𝑢𝑋𝐷 , 𝑢𝜇𝑋𝐷,𝑈
,   𝑢𝑋𝐷,𝑈 , 𝑢𝑢12 , 𝑢𝑢21 , 𝑢𝐷𝑢 , 𝑢𝑓 , 𝑢𝑐, 𝑢𝑋𝑈)

=
1

√det(𝑅𝑀)
exp
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𝑇

× (𝑅𝑀
−1 − 𝐼) ×

(

 
 
 
 
 
 
 
 
 
 

Φ−1(𝑢𝑋𝐷)

Φ−1 (𝑢𝜇𝑋𝐷,𝑈
)

Φ−1(𝑢𝑋𝐷,𝑈)

Φ−1( 𝑢𝑢12)

Φ−1(𝑢𝑢21)

Φ−1(𝑢𝐷𝑢)

Φ−1(𝑢𝑓)

Φ−1(𝑢𝑐)

Φ−1(𝑢𝑋𝑈) )
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(6.10) 
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The Gaussian Copula model between several variables of one-pass analysis, as seen from Fig. 6.14 is 

given in Eq. (6.11), in which 𝑅𝑀 refers to the covariance matrix. Using the above GC and observed data, 

i.e., 𝒙𝑫 = 𝒙𝑫
∗ , 𝝁𝑫,𝑼 = 𝝁𝑫,𝑼

∗  and 𝑫𝒖 = 𝟎 (multidisciplinary compatibility), the updating can be performed 

analytically using expressions in Eqs. (6.9, 6.10). 

B. Updating in a Gaussian mixture Model 

In a GMM, let data (𝒙𝑜𝑏𝑠
𝐷 ) be available on a subset of variables, 𝑿𝑜𝑏𝑠 ⊂ 𝑿, and 𝑿𝑢𝑛𝑜𝑏𝑠 represent the set 

of variables to be inferred. The posterior distributions of the unobserved variables can be obtained as 

 
𝑓(𝒙𝑢𝑛𝑜𝑏𝑠|𝑿𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠

𝐷  ) =
𝑓(𝒙𝑢𝑛𝑜𝑏𝑠, 𝒙𝑜𝑏𝑠

𝑫 )

𝑓(𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 )

 

= 
∑ 𝑤𝑖 × 𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠, 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠

𝐷 |𝜇𝑖, Σ𝑖)
𝑁
𝑖=1

∫∑ 𝑤𝑖 × 𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠, 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 |𝜇𝑖, Σ𝑖)

𝑁
𝑖=1  𝑑𝒙𝑢𝑛𝑜𝑏𝑠

 

= 
∑ 𝑤𝑖 ×𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠| 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠

𝐷 )𝑁
𝑖=1 × 𝑁𝑋,𝑖(𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠

𝐷 )

∫∑ 𝑤𝑖 × 𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠, 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 |𝜇𝑖, Σ𝑖)

𝑁
𝑖=1  𝑑𝒙𝑢𝑛𝑜𝑏𝑠

 

=∑𝛾𝑖

𝑁

𝑖=1

× 𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠| 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 ) 

(6.11) 

In Eq. (6.11), 𝑤𝑖 , 𝑁𝑋,𝑖(𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 )  and the denominator ∫∑ 𝑤𝑖 ×𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠, 𝒙𝑜𝑏𝑠 =

𝑁
𝑖=1

𝒙𝑜𝑏𝑠
𝐷 |𝜇𝑖, Σ𝑖)  𝑑𝒙𝑢𝑛𝑜𝑏𝑠 are all constants, and therefore Eq. (6.12) can be simplified to Eq. (6.13) as 

 

𝑓(𝒙𝑢𝑛𝑜𝑏𝑠|𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷  ) =  ∑𝛾𝑖

𝑁

𝑖=1

× 𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠| 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 )  (6.12) 

where 𝛾𝑖  is a new constant combining all the three constants described above. In Eq. (6.12), 

𝑁𝑿,𝑖(𝒙𝑢𝑛𝑜𝑏𝑠| 𝒙𝑜𝑏𝑠 = 𝒙𝑜𝑏𝑠
𝐷 ) represents the posterior distribution of each Gaussian mixture component. As 

the posterior distribution of each component also represents a Gaussian distribution, the overall posterior 

distribution, 𝑓(𝒙𝑢𝑛𝑜𝑏𝑠|𝒙𝑜𝑏𝑠 =  𝒙𝑜𝑏𝑠
𝐷  ), represents another GMM. The posterior distributions associated 
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with each of the Gaussian components, can be obtained using Eqs. (6.9, 6.10). Thus, inference can be 

carried out in a GMM in an analytical manner. We now implement the inference procedure for the 

Bayesian network shown in Fig. 6.14.  

Let 𝑿 = {𝑿𝑫, 𝑿𝑼, 𝝁𝑿𝑫,𝑼 , 𝑿𝑫,𝑼, 𝒖𝟏𝟐,𝒊𝒏, 𝒖𝟐𝟏, 𝑫𝒖𝟏𝟐 , 𝒇, 𝒄}, then their joint probability distribution 𝑓𝑿(𝒙) 

when represented as a GMM is given in Eq. (6.6) and the inference can be carried out using Eq. (6.13). In 

this case, 𝒙𝒐𝒃𝒔 = {𝑿𝑫, 𝝁𝑫,𝑼, 𝑫𝒖}  and 𝒙𝒐𝒃𝒔
𝑫 = {𝒙𝑫

∗ , 𝝁𝑫,𝑼
∗ , 𝟎}  and 𝒙𝒖𝒏𝒐𝒃𝒔 = {𝑿𝑼, 𝑿𝑫,𝑼, 𝒖𝟏𝟐,𝒊𝒏, 𝒖𝟐𝟏, 𝒇, 𝒄} . 

Using the joint posterior distributions, the marginal distribution of the system QoIs can be obtained by 

integrating over all the other variables. Following the probabilistic surrogate approach, the compatibility 

and the uncertainty analyses can be performed simultaneously. Thus, the traditional double-loop approach 

where uncertainty analysis is carried out in the outer loop and compatibility analysis in the inner loop is 

collapsed into a single-loop approach. As discussed in Section 6.1, the results from performance 

assessment can be extended for design optimization of multi-physics systems under uncertainty. In the 

next section, we briefly discuss multidisciplinary optimization under uncertainty and ways to extend the 

developed performance assessment approach for design optimization.  

6.4. Design optimization of multi-physics systems 

The generic optimization formulation (RBDO, RDO and RBRDO) for the design of multi-physics 

systems under uncertainty can be given as  

 𝑀𝑖𝑛 {𝐻[𝑓𝑖(𝑿𝑫, 𝑿𝑼, 𝑿𝑫,𝑼)]}   𝑖 = 1,2, … 𝑘 

(6.13) 

𝑠. 𝑡 

𝑃𝑟(𝑐𝑗(𝑿𝑫, 𝑿𝑼, 𝑿𝑫,𝑼, 𝒖𝟏𝟐, 𝒖𝟐𝟏) < 0) > 𝜸𝑗     𝑗 = 1,2, …𝑚 

ℎ𝑙(𝑿𝑫, 𝑿𝑼, 𝑿𝑫,𝑼, 𝒖𝟏𝟐, 𝒖𝟐𝟏) =  0   𝑙 = 1,2, … 𝑛 

𝒍𝒃𝒅 ≤ 𝑿𝑫 ≤ 𝒖𝒃𝒅 

Pr(𝑿𝑫,𝑼 ≥ 𝒍𝒃𝑿𝑫,𝑼) ≥ 𝒑𝒍𝒃 
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Pr(𝑿𝑫,𝑼 ≤ 𝒖𝒃𝑿𝑫,𝑼) ≥ 𝒑𝒖𝒃  

In the above formulation, 𝑓𝑖( 𝑖 = 1 𝑡𝑜 𝑘), 𝑐𝑗(𝑗 = 1 𝑡𝑜 𝑚)  and ℎ𝑙(𝑙 = 1 𝑡𝑜 𝑛)  represent the sets of 

objective functions, constraint functions and multidisciplinary compatibility conditions respectively. 𝑐𝑗 <

0  represents the safe region and 𝛾𝑗 represents the reliability threshold for the 𝑗𝑡ℎ constraint. Note that for 

design variables associated with uncertainty (𝑿𝑫,𝑼 ), we optimize their mean values (𝝁𝑿𝑫,𝑼) . For 

deterministic design variables (𝑿𝑫), we have strict lower and upper bounds (𝒍𝒃𝒅 and 𝒖𝒃𝒅). Similarly, 

design variables with associated uncertainty (𝑿𝑫,𝑼 ) have probabilistic bounds given as the last two 

constraints. 𝒑𝒍𝒃 and 𝒑𝒖𝒃 represent the probability thresholds for 𝑿𝑫,𝑼  that they are in between their lower 

and upper bounds (𝒍𝒃𝑿𝑫,𝑼  and 𝒖𝒃𝑿𝑫,𝑼). 𝐻[. ] refers to an operator, which can be either an expectation 

operator or an operator to compute standard deviation, depending on the type of optimization. For RBDO, 

𝐻[. ] is an expectation operator, a standard deviation operator for RDO and both for RBRDO, i.e., for 

some objective functions, 𝐻[. ] acts an expectation operator and for others, as standard deviation operator.  

As RDO does not consider any reliability constraints, 𝛾𝑗 in the above formulation can be assumed to be 

equal to 1. As mentioned in Section 6.1, the multi-objective optimization is converted to a single 

optimization problem through a weighted-sum of the individual objective functions. Therefore, the new 

single objective function is defined as 

 
𝐹 =  ∑𝛽𝑖  

𝐻[𝑓𝑖]

𝑓𝑖,𝑡ℎ
 ,   ∑𝛽𝑖 = 1 (6.14) 

In Eq. (6.14), 𝑓𝑖 , 𝑖 = 1,2…𝑘  refer to 𝑘  competing objective functions. 𝑓𝑖,𝑡ℎ  correspond to the 

normalization values of these objective functions and 𝛽𝑖 refer to the weights associated with each of the 

objective functions. By changing the weight coefficients (𝛽𝑖) several single optimization functions can be 

generated, and for each of these single objective functions, multidisciplinary optimization is carried out 
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and an optimum design point is obtained. The results from these optimization evaluations can be visualized 

through the creation of a Pareto surface, which can be used for further decision-making such as obtaining 

the best design point among all the available design points considering trade-offs between individual 

objective functions. The number of weight coefficient combinations depends on the desired accuracy of 

the Pareto surface.  Typically, the design of experiments techniques such as Latin Hypercube sampling 

can be used to determine several combinations of weight coefficients. 

Using different types of probabilistic surrogates, the joint posterior distributions of several variables 

at a given realization of input variables after imposing the compatibility condition can be obtained 

analytically, as described in Section 6.3.3. From the joint posterior distribution, the marginal posterior 

distributions of the objectives and constraints can be obtained for further analysis such as reliability 

calculations for the constraints. Thus, reliability-based multidisciplinary and multi-objective optimization 

is carried out using a Bayesian network surrogate and weighted-sum approach for the Pareto surface. The 

design optimization process, which traditionally is a nested three-loop process as shown in Fig. 6.1 is 

converted to a double-loop analysis where optimization analysis is carried out in the outer loop and 

uncertainty and convergence analysis in the loop simultaneously using the procedure laid down in Section 

6.3. The proposed methodology is demonstrated below for an airfoil design problem with two design 

objectives and a reliability constraint.  

6.5. Illustration example: Fluid-Structure interaction on an aircraft wing 

 We demonstrate the proposed methods for performance assessment and design optimization of multi-

physics systems using an aircraft wing with a NACA 0012 airfoil.  
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6.5.1 Performance assessment of an aircraft wing 

 An aircraft wing can be regarding as a multi-physics system due to the fluid-structure interaction 

occurring on the surface of the aircraft wing. The fluid-structure interaction can be analyzed by creating 

two separate individual disciplinary models (structural analysis and fluid dynamics) and solving them 

iteratively until their results are compatible.  The individual disciplines along with the coupling variables 

between them are illustrated in Fig. 6.15. The fluid and structural meshes for the analyses are shown in 

Fig. 6.16.  

 

Fig. 6.15. Coupling in aircraft wing analysis 

 

 
 

(a) (b) 

Fig. 6.16. Aircraft wing modeling in ANSYS (a) Overall view, and (b) Structural and Fluid 

mesh nodes 
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 In this example, the system QoIs are considered as the maximum stress experienced at the wing surface 

and the generated lift. The input variable is the backsweep angle.  The backsweep angle is assumed to be 

associated with aleatory uncertainty represented through a Gaussian distribution with parameters 0 and 

0.04 respectively. Since, the variability in the backsweep angle is known, we consider the mean of the 

backsweep angle as the design variable. As mentioned in Section 6.1, the traditional approach to compute 

the distributions of maximum stress and lift is through a double-loop analysis, where the compatibility 

analysis between CFD and FEA is solved in the inner loop while the uncertainty analysis, i.e, multiple 

realizations of the aleatory uncertainty associated with the backsweep angle are sampled in the outer loop; 

this could be computationally expensive. Therefore, we build the three probabilistic surrogates discussed 

in Section 6.3.3 (MG, GC and GMM) and obtain the distributions of QoIs by performing compatibility 

and uncertainty analyses simultaneously.  

 The training points for the construction of a probabilistic surrogate are obtained through ANSYS fluid-

structure interaction simulations. The probability distribution of the mean of the backsweep angle (𝜇𝑏𝑤) 

is assumed to be a uniform distribution between 0 and 0.5. One-pass analysis is performed to generate 

training points later used to construct several probabilistic surrogates.  We discarded the first two iterations 

and considered the third iteration data on nodal pressures since the nodal pressures in the first two 

iterations varied drastically. 200 training points with different realizations of backsweep angle and nodal 

pressures are used to generate training points on lift and maximum stress. This problem has a large number 

of coupling variables; the displacement and pressure variables at each node on the boundary on the wing 

where the fluid-structure interaction occurs are the coupling variables. In this analysis, we have 258 

coupling variables. Due to the large number of coupling variables, the Principal Component Analysis 

(PCA) is performed to reduce the number of coupling variables from 258 to 6. The first 6 PCs are chosen 
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as they explain 95% variance in the data.  Please refer to Liang and Mahadevan [134] regarding the use 

of PCA for reducing model complexity in multidisciplinary analysis. 

 

Fig. 6.17. Graphical representation of the dependence between variables 

 In total, we have 16 variables in the Bayesian network surrogate – mean of backsweep angle, 

backsweep angle (after considering aleatory uncertainty), 6 ‘in’ nodal pressures, 6 difference values of 

nodal pressures, 1 maximum stress and 1 lift variable; the graphical representation of dependence between 

these variables is shown in Fig. 6.17. The graphical model is drawn using the Uninet software package 

[135].  The intermediate variable in Fig. 6.17 refers to variables that are not coupling variables, design 

variables, objectives or constraints. In the problem, the backsweep angle after considering aleatory 

uncertainty is treated as the intermediate variable. In this problem, the intermediate coupling variables 

(i.e., coupling variables that are not considered as inputs in the one-pass analysis) refer to the nodal 

displacements. The nodal displacements affect the maximum stress on the wing. The three probabilistic 
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surrogates discussed earlier in Section 6.3.2 are then fit for 16 variables and with 200 samples. In the case 

of a GMM, a two-component model is used as it has the lowest BIC score as seen from Table 6.1. 

Table 6.1. Variation of BIC score with Gaussian Mixture Components 

Number of GMM components BIC score 

1 36946.3 

2 36675.6 

3 37129.3 

4 37294.9 

 

After constructing the three surrogates, we use them for performance assessment by conditionalizing 

them at a given value of the mean of backsweep angle and imposing the multidisciplinary compatibility. 

For illustration, the distributions of system QoI (lift and maximum stress) when 𝜇𝑏𝑤 is fixed at 0.4 are 

given in Fig. 6.18.  

  

(a) (b) 

Fig. 6.18. Prediction of QoIs (lift and maximum stress) using the three probabilistic surrogates (MG, 

GC and GMM) 
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6.5.2 Design optimization of an aircraft wing airfoil 

 After performance assessment, we consider the three probabilistic surrogates for design optimization. 

We consider two competing objective functions to perform Reliability-based Robust Design Optimization 

(RBRDO): (1) Maximize the expected value of lift, and (2) Minimize the standard deviation of lift. The 

design is performed under a reliability constraint associated with the maximum stress and the backsweep 

angle is the design variable. Overall, the mathematical formulation of the design can be written as  

 Max 𝐸[𝐿(𝜇𝑏𝑤)]  &  Min 𝑆𝑡𝑑[𝐿(𝜇𝑏𝑤)] 

𝑠. 𝑡 Pr(𝑠 > 3 × 105) ≤ 0.001 

0 ≤ 𝜇𝑏𝑤 ≤ 0.5 

(6.15) 

 In Eq. (6.15), 𝐸[. ] and 𝑆𝑡𝑑[. ] represent the expectation and standard deviation operators respectively. 

𝐿, 𝜇𝑏𝑤 and 𝑠 represent the lift, mean of backsweep angle and maximum stress respectively. To facilitate 

the Pareto surface construction, the multi-objective optimization is converted to a single-objective 

optimization using the weighted-sum approach. The new objective function is defined as 

 
 Min  𝛽 ∗

𝑆𝑡𝑑[𝐿]

𝑆𝑏𝑙
− (1 − 𝛽) ∗

𝐸[𝐿]

𝐸𝑏𝑙
 (6.16) 

  In Eq. (6.16), 𝛽 represents the weight factor for combining the two objective functions. 𝐸𝑏𝑙 and 𝑆𝑏𝑙 

represent the normalization factors since the two objectives are in different order of magnitude; these 

values are assumed to be 1666.7 and 113 respectively.  51 values of 𝛽 equally spaced between 0 and 1, 

and including them, are considered for the construction of the Pareto surface. Using the surrogates, 

multidisciplinary optimization is performed by conditionalizing the 6 ‘difference’ variables at zero and 

the design variable (mean of backsweep angle) at a different value in each iteration of the optimization 

analysis. For different values of 𝛽, optimization is carried out and Pareto surfaces using all the three 

surrogates are constructed. The global optimizer DIRECT [136] is used to carry out each single objective 
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optimization at a given value of 𝛽. For comparison of Pareto surfaces, the optimum design points obtained 

from optimization analysis using the three types of surrogates are evaluated using the GMM and plotted 

against each other in Fig. 6.19. In Fig. 6.19, the points in upper right corner correspond to 𝛽 = 0 

(maximization of the expected value of lift) and correspondingly, the lower left corner correspond to 𝛽 =

1, i.e., minimization of the standard deviation of lift. It can be seen that all the three surrogates provide 

similar solutions for the optimization of expected value of lift, whereas the GMM provides lower values 

of standard deviation, when compared to the other two surrogates. From this plot, it can be concluded that 

a GMM is better suited to carry out design optimization with variance requirements such as Robust Design 

Optimization (RDO) and Reliability-based Robust Design Optimization (RBRDO). 

 

Fig. 6.19. Comparison of Pareto Surfaces obtained using Multivariate Gaussian, Gaussian Copula and 

a Gaussian Mixture Model 
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6.6 Summary 

This chapter developed a probabilistic surrogate-based approach to perform efficient multidisciplinary 

analysis and optimization under uncertainty. Multidisciplinary analysis is computationally expensive, as 

it requires iterative analysis of individual disciplinary models until convergence to inter-disciplinary 

compatibility. Optimization under uncertainty involves a nested three-loop process where the 

multidisciplinary analysis is performed in the inner loop, uncertainty analysis in the middle loop and 

optimization in the outer loop. For computational efficiency, the physics-based computational models are 

typically replaced by computationally inexpensive surrogate models. Deterministic surrogates (in the 

variable space), which provide a point-valued output for a given set of inputs are traditionally considered; 

these surrogates are run at several realizations of uncertain variables and at a given set of design variables, 

to perform optimization analysis under uncertainty. In contrast, we considered a probabilistic surrogate 

(in the probability space), one run of which provides a distribution prediction considering the uncertain 

variables. Two options exist for building a probabilistic surrogate: (1) build an accurate Bayesian network, 

but which has approximate and computational expensive sampling-based inference through Markov Chain 

Monte Carlo methods (MCMC), or (2) build an approximate surrogate but with analytical inference (fast 

and exact) such as a Multivariate Gaussian, Gaussian Copula and Gaussian Mixture Model; the latter 

option is investigated in this chapter.   

Multivariate Gaussian is the most restrictive model as it assumes a uni-modal joint normal distribution 

along with Gaussian marginal distributions. Gaussian Copula also assumes a uni-modal joint distribution 

but can handle any distribution type for the individual variables. The Gaussian Mixture Model does not 

make any assumptions regarding the distribution types of individual variables or the modality of the joint 

distribution. The training points for building the surrogate are obtained from a one-pass analysis through 

the individual disciplines in a multidisciplinary system. Performing a successful one-pass analysis requires 
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careful organization of the analysis sequence, as shown for three- and four-discipline systems. The 

probabilistic surrogate is then trained, and used to infer the distributions of coupling variables, the 

objective and the constraint functions by imposing the multidisciplinary compatibility condition.  

The proposed methodologies are demonstrated for performance assessment and reliability-based and 

robust design optimization of a simplified two-disciplinary aircraft wing airfoil design. From the example, 

it was observed the design solutions obtained the Gaussian Mixture Model are significantly better when 

compared against the other two probabilistic surrogates (Multivariate Gaussian and Gaussian Copula).  

It is important to note that by using the probabilistic surrogate, the three-loop optimization analysis is 

now collapsed into a two-loop analysis as the uncertainty analysis and multidisciplinary analysis are 

performed simultaneously in the inner loop, which is also very fast due to the availability of the analytical 

solution.  This feature helps to scale up multidisciplinary optimization under uncertainty to large systems 

with multiple coupled disciplines and a large number of coupling variables between individual disciplines. 

In this chapter, we considered multi-physics systems; however, the developed techniques are applicable 

to systems with coupled interactions between multiple subsystems following the same physics such as a 

composite beam, as discussed in Section 1.1. 

Chapters 3 to 6 discussed solution methodologies for various issues discussed in Section 1.1 regarding 

performance assessment in single-component systems, multi-level systems, coupled and time-varying and 

multi-physics systems. The next chapter presents concluding remarks and discusses some possible 

extensions of this dissertation as future work.  
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CHAPTER 7 

CONCLUSION 

Model-based methods are increasingly becoming popular in designing and analyzing complex 

engineering systems for which real-world testing can be prohibitively expensive. Engineering systems, 

when operated under real-world scenarios are impacted by several sources of uncertainty. Identification 

and incorporation of all such uncertainty sources is necessary for a comprehensive performance 

assessment framework. The performance assessments can later be used for both design-time and run-time 

decision-making processes. This dissertation developed efficient Bayesian probabilistic methods for 

model-based performance assessment of single-component systems, systems with one-directional 

interactions between subsystems, coupled systems with time-varying interactions, and coupled systems 

with simultaneously interactions (such as multi-physics systems) under different sources of aleatory and 

epistemic (statistical and model) uncertainty sources. A summary of the intellectual contributions made 

through this dissertation are detailed below.  

7.1. Summary of contributions 

This dissertation made the following contributions to advance the state of the art in performance 

assessment of engineering systems. 

1. A unified framework connecting the model calibration analysis to the reliability analysis, and 

quantifying the uncertainty in the reliability estimate after the inclusion of different types of 

aleatory and epistemic uncertainty (statistical, model and sampling errors).  

2. Methods for learning Bayesian networks considering qualitative and quantitative data, and 

extension of the approach to the construction of hierarchical Bayesian networks.  
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3. Efficient methods for calibration and dimension reduction in hierarchical Bayesian networks 

through segmented calibration approaches and multi-level variance-based sensitivity analysis.  

4. A dynamic Bayesian network approach for the performance assessment of systems where the 

interactions between subsystems occur with a time lag. In particular, we considered cyber-physical 

control systems, where the coupled interactions occur at two levels – between the individual 

subsystems at the higher-level and between several computing nodes in the lower-level; the 

performance assessment is therefore performed using a two-level DBN.  

5. Efficient performance assessment approaches of multi-physics systems analysis through a 

probabilistic surrogate, which helps collapse the computational intensive double loop uncertainty 

and multidisciplinary compatibility analysis into a single loop analysis, where uncertainty and 

compatibility analysis are performed simultaneously.   

7.2 Future work 

Based on the research reported in this dissertation, the following issues may be investigated as part 

of future research.  

1. This work primarily considered quantitative data in performance assessment analysis. Other forms 

of information such as system model data, linguistic and image data, streaming data need to be 

considered. In addition, unstructured data also needs to be considered.  

2. The first step for model-based analysis is the development of models. As discussed in Section 1.1, 

models can be constructed from available physics, data or their combination. This work considered 

constructing models from “small” data sets (datasets that can be stored on a stand-alone 

workstation). Future work should consider model construction in the presence of big data. Two 

approaches may be investigated – (1) Dimension and/or data reduction, and (2) Analyzing the 

entire data using big data frameworks such as Apache Spark and Hadoop. 
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3. The constructed models can then be used for design-time and run-time decision-making. When 

these models are used for run-time decision-making (such as control), fast Bayesian inference 

techniques need to be implemented in order to update the models using the sensor data and 

implement appropriate control action. The Bayesian inference can be sped up by implementing 

fast and approximate algorithms (such as Kalman filter), perform parallelized MCMC or other 

inference algorithms in a distributed framework (such as Apache Spark). Kalman filter involves 

strong assumptions regarding the systems and the variables (as described in Section 2.6); therefore, 

less restrictive methods such as parallelized inference techniques need to be investigated. 

4. This work considered CPS with no human involvement in its functioning. Future work should 

consider Human-in-the-loop CPS, also referred to as H-CPS. Analysis of H-CPS requires 

consideration of additional uncertainty sources associated with human such as human reliability 

and modeling human interactions to the CPS, which may be stochastic in nature, as every person 

reacts differently when presented with same scenarios.  

5. In this dissertation, we considered modeling of systems using with either Bayesian networks (with 

sampling-based inference), or analytical probabilistic models such as Multivariate Gaussian, 

Gaussian Copula and Gaussian Mixture Model (each with analytical inference). For efficient 

computation and scalability to large-scale systems, a hybrid approach for modeling need to be 

investigated, where some subsystems are modeled with analytical probabilistic models (wherever 

appropriate) and other subsystems with Bayesian networks.  
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