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Summary 

This thesis describes my work in using computational protein modeling to design broadly 

reactive antibodies. Antibodies are a key component of the human immune response to infectious 

disease. By studying human antibodies against pathogens such as HIV and influenza, we have 

been able to learn a great deal about the mechanisms by which antibodies protect us from these 

viruses. The best antibody response is one that is potent and broad, covering a large number of the 

many diverse viral variants. Unfortunately, natural human antibodies are rarely perfect in that they 

don’t cover the entire spectrum of possible viral variants.  

 To address this shortcoming, I used computational design within the ROSETTA software to 

re-engineer and improve human antibodies to improve their coverage of large viral panels, also 

known as their breadth. Prior to this work, the computational methods for designing an antibody 

against a large viral panel were very limited, due to the computational intensity of such 

simulations. Previously existing methods were limited to only redesigning a small portion of the 

antibody and only modeling a limited number of viral proteins. In my thesis work I developed two 

new methods for increasing the scale of computational design against many viral proteins, a 

technique known as multistate design, and applied one of these methods to an anti-influenza 

system to define the molecular limits of breadth and affinity. 

 In Chapter I, I introduce the topics that will be discussed at length in this thesis. I briefly 

review the structure and function of antibody molecules, as well as mechanisms of generating 

antibody diversity and antibody-antigen recognition. I also introduce the two major pathogens that 

were used as target systems for my thesis work, influenza and HIV. I describe the major 

characteristics of these two viruses, as well as what is known about the antibody response to both 

of these pathogens and the antibodies that can achieve broad neutralization. I provide a brief 
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description of structure-based reverse vaccinology, which is a paradigm that uses knowledge of 

broadly neutralizing antibodies to build better, more informed vaccines. I then describe the protein 

modeling techniques that are related to this work, either directly or tangentially, and the specific 

use of protein modeling in antibody design. Finally, I summarize the significance and innovation 

of the work described in this thesis, and how it ties together all of these seemingly unrelated fields. 

 Chapter II is the first research chapter, which is largely a reproduction of (Sevy et al., 

2015). As previously stated, the field of protein multistate design was limited when I began my 

thesis work, in terms of the size of the design problem that could be addressed. I developed a new 

multistate design method within the ROSETTA software suite, known as the RECON method, that 

enables more efficient searching through sequence space in a multistate design problem. I 

benchmarked this method on two test cases – multistate design of promiscuous proteins that 

naturally bind many targets, measuring recovery of the native sequence; and multistate design of 

antibodies encoded by the same germline gene, measuring recovery of the germline, polyspecific 

sequence. I compared the results of the RECON method to an existing method for multistate design 

in ROSETTA and show that RECON recovers more biologically relevant sequences and does so in 

a fraction of the computing time. 

 Chapter III extends the work done in Chapter II by reoptimizing the RECON method to 

run in parallel on many computing cores, allowing much larger panels of viral proteins to be 

simulated. I applied the optimized algorithm to designing anti-influenza antibodies against a large 

viral panel of influenza HA proteins of subtype H1. One antibody in particular, called C05, showed 

promising computational results and the designed variants were expressed and tested for their 

binding activity. Variant antibodies showed increased affinity against one member of the panel, 

with a 5x increase in affinity, and increased breadth to a new member of the panel. This 



 vii 

 

improvement was achieved without losing affinity or neutralization potency for other antigenic 

strains recognized by wild-type C05. A crystal structure of a C05 double mutant confirmed that 

the ROSETTA models were accurately positioning the mutated side chains. 

 Chapter IV is largely a reproduction of (Sevy et al., 2018). In this chapter I collaborated 

with another graduate student to developed another method for performing multistate design 

against large viral panels, called BROAD. The BROAD method uses ROSETTA to create structural 

models of an antibody against a large viral panel, and trains a support vector machine to learn the 

ROSETTA score function for quick approximation. We then used linear optimization to find the 

optimal antibody sequence for both breadth against the panel and for antibody stability. Using this 

algorithm, we were able to improve the predicted breadth of a target HIV antibody, known as 

VRC23, from 53% experimentally determined breadth to up to 100% predicted breadth. In 

addition, we found that BROAD sampled new amino acids that were never sampled using 

structure-based multistate design. BROAD introduced amino acids into the gp120 binding site that 

mimicked known broadly neutralizing antibodies even though no such information was provided 

to the algorithm as input.  

 In Chapter V I describe my work on engineering cross-reactive HIV and influenza 

antibodies. Based on structural similarity between human antibodies targeting the influenza 

receptor-binding site and the HIV membrane-proximal external region, I hypothesized that it 

would be possible to engineer an antibody that was cross-reactive to both antigens, despite the fact 

that the antigenic proteins have largely different overall folds. We collected B cells from HIV-

infected donors after influenza vaccination to isolate the time point at which naturally occurring 

cross-reactive antibodies would be boosted, and sequenced the antibody repertoire from five such 

donors. I then used ROSETTA modeling to predict the likelihood that the sequenced antibodies 
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would adopt the bound conformation of either an influenza or HIV antibody, and identified many 

with predicted cross-reactivity between both targets. These putative cross-reactive clones were 

improved even further for predicted influenza-HIV cross-reactivity by applying the multistate 

design method from Chapter II and III to optimize the sequence.  

 Chapter VI uses protein engineering in ROSETTA to design molecules with greater binding 

breadth, but approaches the problem differently from previous chapters. Rather than re-

engineering an antibody sequence, I used computational modeling to design cyclic peptides that 

recapitulate the activity of an antibody CDRH3 loop. I designed peptides that bind to group 1 and 

2 influenza HA based on the CDRH3 loop of antibody C05. In addition, these peptides expand the 

breadth of binding to two new subtypes, H4 and H7, that were not recognized by the IgG molecule. 

This represents a new strategy for engineering breadth into antibodies. 

 Lastly, Chapter VII summarizes all of the major findings from this thesis and places them 

in the context of the fields of broadly neutralizing antibodies and protein design. I examine 

shortcomings in the computational protocols and what can be done to improve them. I conclude 

by discussing implications of the findings from this thesis and future directions that could be taken 

for these projects. 
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CHAPTER I.  

Introduction 

 

Adapted from Sevy, A. M. & Meiler, J. Antibodies: Computer-Aided Prediction of Structure and 

Design of Function. Microbiol Spectr 2, (2014). 

 

Author contributions: I am the first author of the manuscript titled “Antibodies: Computer-Aided 

Prediction of Structure and Design of Function” in the Microbiology Spectrum journal (Sevy and 

Meiler, 2014). All figures were either created for use in this thesis or are reprinted with 

permission from the publisher. 

 

Introduction to antibodies 

 The adaptive immune response is the mechanism by which humans respond to infection 

by viruses and bacteria. This facet of the immune system is remarkable in both its speed in 

responding to a novel pathogen, and its memory to be able to respond for a lifetime to a pathogen 

seen only once. The immune system is able to mount such an effective response through the 

activity of B and T cells. In this thesis I will primarily focus on the activity of B cells and the 

immunoglobulin molecules they produce, known as antibodies. Antibodies are extraordinary 

molecules, as they recognize their targets with extreme precision through chemical interactions 

between the antibody and antigen molecules. I will briefly review the structure and function of 

antibody molecules, as well as mechanisms of antibody diversity and antibody-antigen 

recognition. 
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Antibody structure 

The fundamental structural unit of the antibody is the immunoglobulin (IG) domain of 70-

110 amino acids that adopts the characteristic IG β-sandwich fold. Antibodies are homodimers of 

heterodimers, where each heterodimer consists of one heavy and one light chain (Figure I.1), each 

chain having multiple IG domains (Harris et al., 1997). The antibody can be divided into two 

segments, the constant fragment (Fc) and the variable fragment (Fv). The constant domain is 

named as such since it is virtually identical between antibodies of the same isotype, whereas the 

variable domain can vary greatly between antibodies and is responsible for antigen specificity. The 

mammalian antibody heavy chain consists of four IG domains, the first two domains comprising 

the Fv and the next two domains comprising the Fc. The mammalian light chain consists of two 

IG domains, which interact with the two N-terminal IG domains of the heavy chain to form 

heterodimers. These heterodimers homo-dimerize via the C-terminal IG domains of the heavy 

chain to form the complete antibody. This domain arrangement ensures that the variable domains 

of heavy and light chain co-localize in space to form the paratope. Each of these variable domains 

contains three complementarity-determining regions (CDRs), referred to as the CDRH1-3 on the 

heavy chain, and CDRL1-3 on the light chain. The six CDRs form the combining site that is 

responsible for antigen recognition. 

Mechanisms of antibody diversity  

To respond to the virtually limitless space of antigenic proteins, antibodies must have 

extreme diversity to create a unique antibody specific to each pathogenic threat. Such diversity is 

generated by four main mechanisms. The amino acid sequence of the variable region is determined 

by a process called somatic recombination, where an IG domain is assembled by combining 

randomly chosen gene segments, known as the Variable (V), Diversity (D), and Joining (J) gene 
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segments (Tonegawa, 1983). The heavy chain is encoded by recombination of V, D, and J genes, 

whereas the light chain is encoded only by V and J genes (Figure I.2). This process generates large 

combinatorial diversity, as there are 43 V, 23 D and 6 J genes encoding the human heavy chain 

(Matsuda et al., 1998). The human light chain has 33-38 V and 4-5 J genes, depending on subtype, 

κ or λ (Lefranc et al., 2005; Murphy et al., 2012). The second mechanism of antibody diversity is 

the pairing of heavy chain with light chain.  

The third mechanism is a process which occurs during V(D)J recombination known as 

junctional diversity. During gene recombination the enzymes RAG1 and RAG2 remove 

nucleotides from single-stranded DNA at the recombination site (Oettinger et al., 1990; Schatz et 

al., 1989), and the enzyme terminal deoxyribonucleotidyl transferase (TdT) nonspecifically adds 

back nucleotides during the DNA repair process (Desiderio et al., 1984; Isobe et al., 1985). 

Through the activity of these enzymes the final DNA sequence of the recombined gene is altered 

from that of the germline sequence, creating new levels of diversity during the recombination 

process itself. In addition the reading frame of the D gene can be changed during recombination, 

leading to new amino acid combinations in the CDRH3 (Benichou et al., 2013). Since junctional 

diversity occurs in the third CDR loop of each chain, this loop is the most diverse of the CDR 

loops, and consequently is frequently involved in antigen recognition. 

The germline-encoded antibodies produced by these three diversification mechanisms are 

further modified in the fourth mechanism of diversity, known as somatic hypermutation or affinity 

maturation. After B cells are activated by recognition of an antigen, the enzyme activation-induced 

cytidine deaminase (AID) is expressed at high levels (Muramatsu et al., 2000). Expression of this 

enzyme leads to extremely high mutation rates during B cell division and replication, up to 1 

mutation per 1,000 base pairs per division (Rajewsky et al., 1987), with the mutations focused in 
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the region encoding the CDR loops (Jolly et al., 1996). B cell mutants with higher-affinity binding 

to their antigens then proliferate and undergo further maturation to produce antibodies with 

extremely high affinity for the antigen (Victora and Nussenzweig, 2012). 

  

 
Figure I.1. Structure of an antibody molecule. All human antibodies consist of a heavy chain 
(magenta) paired with a light chain (yellow), which dimerize to form a full immunoglobulin 
molecule. Domains can be separated into variable (Fv) and constant (Fc) regions. The structure 
shown above is from PDB ID 1IGT. Figure is adapted from (Sevy and Meiler, 2014). 
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Mechanisms of antibody-antigen recognition 

 Although the theoretical number of potential antibody structures is large, it is finite, and 

must contend with an infinite set of antigens, presented by pathogens that can undergo rapid cycles 

of antigenic shift. A key question in immunology is the mechanism by which a limited set of 

antibodies can respond to an unlimited set of antigens. One mechanism is the ability of many 

antibodies to recognize multiple distinct targets, known as multi-specificity. Many antibodies have 

been studied that are able to bind multiple, often structurally distinct targets, including small 

molecules (Sethi et al., 2006; Tapryal et al., 2013; Yin et al., 2003), peptides (Kramer et al., 1997), 

and proteins (Bostrom et al., 2009; Fagète et al., 2012; Garcia-Rodriguez et al., 2006). Multi-

specificity can be achieved by various molecular mechanisms. In some cases, multi-specificity can 

be imparted by structural flexibility, wherein an antibody can adopt a number of distinct 

conformations, each functioning to recognize a certain target (Foote and Milstein, 1994; James et 

 

Figure I.2. Somatic recombination of antibody gene segments generates diversity in the 
variable region. Antibody heavy chains are encoded by recombination of Variable (V), 
Diversity (D), and Joining (J) gene segments to generate large combinatorial diversity. Light 
chains are encoded by V and J gene segments. Figure is adapted from (Sevy and Meiler, 
2014). 
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al., 2003). This is analogous to the conformational selection and induced fit models of protein-

protein recognition, where interaction of an antibody with an antigen requires a conformational 

change from the unbound to bound state. According to this paradigm it is thought that germline 

antibodies are highly flexible and multi-specific, and affinity maturation reduces the flexibility of 

CDR loops while preconfiguring the combining site for specific antigen recognition (Babor and 

Kortemme, 2009; Schmidt et al., 2013; Sethi et al., 2006; Willis et al., 2013; Xu et al., 2015).  

 However, in other cases the germline flexibility model is insufficient to explain multi-

specificity. In one case it was shown that an antibody can recognize two unrelated targets by 

differential positioning within a rigid paratope (Sethi et al., 2006). Another in silico study 

supported the idea that rigidification of CDR loops is not a driving mechanism of antibody 

maturation on a repertoire-wide scale (Jeliazkov et al., 2018). While the germline flexibility model 

states that germline antibodies are multi-specific and lose their reactivity after affinity maturation, 

there are several examples of the opposite phenomenon, where the germline antibody is mono-

specific and affinity maturation increases multi-specificity and imparts binding to a new target 

(Corti et al., 2011; Fu et al., 2016; Mouquet et al., 2010). The literature suggests that antibody 

multi-specificity is a complex phenomenon that can be achieved through many different 

mechanisms. 

 

Introduction to influenza 

Influenza virus is a yearly threat to global public health. Global pandemics caused by 

influenza have been among the deadliest events in human history, including the Spanish Flu 

pandemic of 1918 that caused 50 million deaths, ~3% of the world’s population at the time 

(Taubenberger and Morens, 2006). Even today the seasonal circulation of influenza causes as 
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many as 56,000 deaths and 710,000 hospitalizations annually (Rolfes et al., 2016). The influenza 

virus is a member of the Orthomyxoviridae family, and is an enveloped, double stranded RNA 

virus with a segmented genome (Acheson, 2011). The influenza A genome contains eight 

segments, expressing a total of 11 proteins. This thesis will primarily focus on the hemagglutinin 

protein (HA), which is the viral spike protein responsible for host cell recognition and fusion, since 

it is the primary target of antibody response. 

Hemagglutinin glycoprotein 

HA is a trimeric glycoprotein on the surface of the viral capsid. It is initially synthesized 

as an HA0 precursor, which is proteolytically cleaved into HA1 and HA2 subunits by trypsin and 

other proteases (Skehel and Wiley, 2000). The full HA spike is a trimer of heterodimers of the 

HA1 and HA2 subunits, which are covalently linked by disulfide bonds. The HA1 subunit, also 

referred to as the globular head domain, is composed of hypervariable loops that are a major target 

of the antibody response (Sahini et al., 2010). This domain also contains the receptor-binding site, 

where HA recognizes its host cell receptor, sialic acid. The HA2 subunit, also referred to as the 

stem domain, is composed of a long a helix and contains the hydrophobic fusion peptide. This 

subunit is highly conserved due to its involvement in membrane fusion. To initiate membrane 

fusion HA first binds sialic acid on the cell surface, which causes internalization of the virion into 

an endosome. As the pH of the endosome drops to 5-6, the HA2 subunit undergoes a 

conformational change exposing the fusion peptide, which inserts into the membrane and induces 

fusion (Russell, 2014). 

Taxonomy 

Influenza viruses can be classified into four types, known as type A – D, although only 

type A – C infect humans (Ducatez et al., 2015; Hampson and Mackenzie, 2006). Influenza A 
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viruses are responsible for the majority of epidemics and pandemics, and therefore will be the 

primary focus of this thesis. Influenza A can be further broken down into subtypes based on the 

HA and neuraminidase (NA) proteins. HA has 18 subtypes (H1 – H18) and NA has 11 subtypes 

(N1 – N11) (Petrova and Russell, 2018). The combination of HA and NA proteins in a given virus 

is what determines the common nomenclature of influenza viruses (i.e. H1N1, H3N2, etc.). Since 

the HA protein is the primary focus of this thesis I will discuss only these subtypes in detail. The 

18 HA subtypes can be classified into two groups, group 1 and 2 (Figure I.4). Only three HA 

subtypes are currently circulating among humans – H1, H3, and influenza B. Influenza type B is 

less divergent than type A and as such is not divided into subtypes, but rather into two lineages 

known as B/Yamagata and B/Victoria (Petrova and Russell, 2018). Although there are currently 

two influenza A subtypes circulating, there are others that have circulated in humans in the past 

and have the potential to re-emerge, such as H2 (Figure I.3). In addition there are zoonotic subtypes 

that are able to infect humans and periodically emerge and cause epidemics, such as H5, H7, and 

H9 (Kumar et al., 2018). 

Antigenic drift and shift 

Influenza viruses have such high diversity due to two major mechanisms of mutation. The 

first is known as antigenic drift – this occurs when the viral polymerase makes errors in copying 

the viral genome and introduces point mutations in the viral genes. The HA gene is estimated to 

accumulate roughly 5 nucleotide mutations per year (Klein et al., 2014). This results in a slow 

accumulation of mutations and can cause epidemics if the mutated amino acids are sufficient to 

evade antibody recognition. The second mechanism is known as antigenic shift, and occurs when 

gene segments from two or more viruses co-infecting the same host recombine to form a new virus 
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(Kumar et al., 2018). This mechanism is responsible for most of the global pandemics, as the new 

virus is much different from anything that has previously circulated. 

 

Figure I.4. Phylogenetic tree showing the taxonomy of influenza A HA subtypes H1 – H16. 
Shown in color are the two groups, group 1 (cyan) and group 2 (green). Figure adapted from 
(Russell et al., 2008). 

 

 

Figure I.3. Annual circulation of influenza viruses in humans. Circulating strains of influenza 
types A and B are shown. Stars show years with pandemic viruses. Figure adapted from 
(Hampson and Mackenzie, 2006). 
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Broadly neutralizing antibodies to influenza 

For a universal influenza vaccine to be successful, it must elicit broadly neutralizing 

antibodies (bnAbs) that cross-react between different seasonal variants. However, due to the 

antigenic variability of the HA glycoprotein, universal bnAbs against influenza HA have been 

elusive. Early studies on anti-HA antibodies focused on antibodies targeting the head domain, 

which is the major immunogenic component of the HA molecule (Caton et al., 1982; Wiley et al., 

1981). These studies identified four major antigenic sites on the globular head domain, mainly 

consisting of protruding loops which are subject to continual antigenic mutation. Early anti-

influenza head domain antibodies were primarily strain-specific (Nakajima et al., 1983; 

Underwood, 1982). However, recent work has identified the conserved receptor-binding site of the 

globular head of HA as a broadly neutralizing epitope. Several receptor-binding site antibodies 

have been identified that bind and neutralize divergent strains both within a subtype (Hong et al., 

2013; Lee et al., 2014; Xu et al., 2013, Whittle et al., 2011) and across subtypes (Ekiert et al., 

2012; McCarthy et al., 2018). These antibodies achieve broad reactivity by mimicking the host 

cell receptor sialic acid in their recognition of the receptor-binding site. This molecular mimicry 

is achieved either by placing an aspartic acid residue in the position of the carboxylate group of 

sialic acid, or by placing a hydrophobic residue in the position of the acetamide moiety of sialic 

acid (Lee et al., 2014). The discovery of bnAbs targeting the receptor-binding site was a promising 

sign for the potential of a universal influenza vaccine, as this domain is highly immunogenic and 

is a promising vaccine candidate. 

In addition to the receptor-binding site, there have been many bnAbs that bind to the highly 

conserved stem region of HA. The first anti-influenza bnAb was isolated from mice in the early 

1990s (Okuno et al., 1993), and was shown to bind to the stem region and prevent viral fusion and 
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entry (Dreyfus et al., 2013). Stem-binding antibodies have been isolated that cross-react across 

group 1 and 2 viruses (Corti et al., 2011; Ekiert et al., 2009; 2011; Sui et al., 2009) and even across 

types to influenza B (Dreyfus et al., 2012). In several cases it has been shown that this class of 

antibodies begin as relatively strain-specific in their germline-encoded sequence, and are only able 

to expand breadth to new subtypes upon exposure and subsequent rounds of affinity maturation 

(Corti et al., 2011; 2013; Liao et al., 2013; Pappas et al., 2014). In addition, in studies of 

 

 

Figure I.5. Binding epitopes of broadly neutralizing antibodies to influenza. HA protomers are 
shown in shades of gray. Shown above are antibodies CH65 (cyan, PDB ID 5ugy), C05 
(magenta, 4fp8), and F045-092 (blue, 4o58), targeting the receptor-binding site. Shown below 
are antibodies FI6 (yellow, 3ztn), CR8020 (tan, 3sdy), and CR6261 (salmon, 3gbm), targeting 
the stem domain. 
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vaccination or infection with a newly emerging virus, it has been shown that the anti-stem response 

predominates, as they are the only class of pre-existing antibodies with any recognition of the 

novel virus (Ellebedy et al., 2014; Wrammert et al., 2011). Characteristics of anti-influenza bnAbs 

discussed in this section are summarized in Figure I.5. 

 
 

Introduction to HIV 

The HIV/AIDS crisis has been an unprecedented global health threat since the first 

observation of AIDS in 1981 and discovery of human immunodeficiency virus (HIV) as the 

causative agent in 1983 (Hemelaar, 2012). It is estimated that since the beginning of the HIV/AIDS 

epidemic 76.1 million people have been infected with HIV and 35 million have died from AIDS-

related illnesses (UNAIDS, 2017). In 2016 it was estimated that 36.7 million people were living 

with HIV worldwide (UNAIDS, 2017). The pandemic began with at least 7 individual 

transmissions of simian immunodeficiency virus (SIV) to humans in Africa, most likely through 

consumption of bush meat (Hahn et al., 2000). The separate transmissions led to a wide variety of 

HIV lineages, divided most broadly into HIV type 1 (HIV-1) and type 2 (HIV-2) (Hemelaar, 2012). 

All references to HIV in this thesis are referring to HIV-1, unless otherwise noted, as HIV-2 is less 

virulent and is not distributed globally (Gilbert et al., 2003; Reeves and Doms, 2002). HIV-1 can 

be further subdivided into four groups, referred to as M, N, O and P, of which group M is 

responsible for the majority (>90%) of infections worldwide. Group M viruses can then be divided 

into subtypes (or clades) A-K (Hemelaar, 2012).  

HIV is an enveloped virus with a positive strand single-stranded RNA genome, member of 

the Retroviridae family (Acheson, 2011). It infects human immune cells by recognition of the CD4 

receptor and either the CCR5 or CXCR4 co-receptor. As a retrovirus it uses the enzyme reverse 
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transcriptase to create a double stranded DNA copy of its RNA genome, which is later integrated 

into the host genome. In addition to reverse transcriptase, HIV expresses a variety of structural and 

nonstructural proteins that play key roles in the viral replication cycle. Among these are integrase, 

which catalyzes insertion of the viral genome into the host genome; protease, which cleaves pro-

protein products; and a variety of accessory proteins that interact with host restriction factors (Vif, 

Vpu, Tat, Rev, and Nef) (Strebel, 2013). The most relevant viral protein to the work discussed in 

this thesis is the Env glycoprotein. The Env protein is the viral spike protein on the surface of the 

virion that mediates host cell recognition and entry. As the vast majority of known antibodies are 

directed against Env, the work in this thesis primarily focuses on this protein. 

The Env glycoprotein is a trimeric complex synthesized as a single precursor protein 

known as gp160, that later undergoes proteolytic cleavage by furin into two subunits known as 

gp120 and gp41 (Ward and Wilson, 2015). The gp120 subunit is composed of five highly 

glycosylated variable loops (V1 – V5) that are highly mutated and mask the CD4 binding site core. 

The gp41 subunit contains the transmembrane domain, as well as the membrane-proximal external 

region (MPER), two heptad repeat domains (HR1 and 2), and an intra-membrane C-terminal 

domain (CTD). Gp41 houses the fusion machinery that is responsible for fusing the viral and 

cellular membranes (Wilen et al., 2012).  

 

Broadly neutralizing antibodies to HIV 

The antibody response to HIV is dominated by non-neutralizing antibodies targeting glycan 

epitopes or hypervariable antigenic loops on the trimeric Env protein (Horwitz et al., 2017). This 

is especially true of the early antibody response, which is primarily directed towards the gp41 

domain of Env (Liao et al., 2011; Tomaras et al., 2008). However, advances in B cell 
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immortalization and screening technologies have made it possible to isolate bnAbs from human 

donors. Up to 20% of infected patients developed a bnAb response, which is typically occurs 2-4 

years post-infection (Mikell et al., 2011; Sather et al., 2009). The first generation of bnAbs against 

HIV consisted of antibodies such as b12, which targets the CD4 binding site of gp120 (Saphire et 

al., 2001); 2G12, which targets the glycan face on gp120 (Calarese et al., 2003); and antibodies 

2F5, 4E10, and Z13 targeting the membrane-proximal external region (MPER) of gp41 (Bryson 

et al., 2009; Conley et al., 1994; Zwick et al., 2001). Discovery of these bnAbs represented an 

advance in identifying the vulnerable epitopes on the Env protein. The CD4 binding site is highly 

conserved due to its role in recognition of the host cell receptor CD4 to initiate viral entry. 

Antibodies targeting this site are highly potent due to direct competition for CD4 binding and can 

mimic CD4 recognition. The MPER is also highly conserved based on its role in viral fusion, 

which can be blocked by bnAb binding. 

Although discovery of these bnAbs was promising, each had its limitations, either limited 

breadth of neutralization, limitation to clade B neutralization, or low potency (Binley et al., 2004; 

Zwick et al., 2001). The second generation of bnAbs included antibodies with much greater 

breadth (up to 98% of a viral panel) and potency against highly conserved Env epitopes (Huang et 

al., 2012). The second generation identified more broad and potent bnAbs targeting the previously 

defined vulnerable epitopes, such as VRC01, NIH45-46, 3BNC117, and 3BNC60 targeting the 

CD4 binding site, and 10E8 targeting the gp41 MPER (Huang et al., 2012; Scheid et al., 2011; Wu 

et al., 2010). In addition a new vulnerable epitope, the V1/V2 apex, was discovered through 

isolation of the PG9 and PG16 bnAbs (Walker et al., 2009), and further defined by isolation of the 

CH01-04 bnAbs (Bonsignori et al., 2011). The characteristics of broadly neutralizing antibodies 

against HIV are summarized in Figure I.6. 
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Figure I.6. Epitopes of broadly neutralizing antibodies targeting HIV. Left: architecture of the 
Env trimer, with glycans shown in red and vulnerable epitopes specified by name. Model is from 
Electron Microscopy Data Bank code EM-5019. The cellular membrane is shown below in 
yellow. Right: Binding poses of three bnAbs, PG9 (PDB ID 3u2s), PGT128 (3tyg), and VRC01 
(3ngb) overlaid onto a model of the trimer. Bottom: binding footprint of CD4 (1gc1) and CD4 
binding site antibodies PGV04 (3se9), NIH45-46 (3u7y), b12 (3dnl), and VRC01 (3ngb) on the 
gp120 subunit. Glycans are shown in red. Figure adapted from (Corti and Lanzavecchia, 2013). 
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Structure-based reverse vaccinology  

One of the primary applications of highly potent anti-viral bnAbs is the identification of 

vulnerable epitopes on the antigenic surface that can be exploited to formulate an effective vaccine. 

Antibody-based therapeutics used as passive immunotherapy have been very successful in 

treatment of certain cancers and autoimmune disorders (Carter and Lazar, 2018). However, to this 

point there are only two therapeutic monoclonal antibodies approved by the FDA for anti-viral use 

(American Academy of Pediatrics Bronchiolitis Guidelines Committee, 2014; Markham, 2018). 

Although bnAbs have shown promise in suppressing viremia in treatment of HIV (Barouch et al., 

2013; Caskey et al., 2015; Shingai et al., 2013) they are still far from being an ideal anti-retroviral 

treatment. Therefore, the power of bnAbs in treating disease lies not in direct administration, but 

in using these bnAbs to engineer vaccines, a paradigm known as structure-based reverse 

vaccinology.  

Structure-based reverse vaccinology involves determining the three-dimensional structure 

of an antibody in complex with its antigen and designing a vaccine immunogen based on the 

precise epitope. This concept was first applied to designing a vaccine for HIV, due to the failure 

of traditional vaccines to prevent HIV infection (Flynn et al., 2005; Pitisuttithum et al., 2006). The 

first proof-of-principle experiments targeted bnAbs 2F5 and 4E10, which bind continuous epitopes 

in the HIV MPER. These experiments showed that it was possible to transplant the epitope onto 

an acceptor protein scaffold, and that these constructs maintain high-affinity binding to bnAbs 

(Correia et al., 2010; Ofek et al., 2010). Later experiments extended this work onto the 

discontinuous epitope of bnAb b12 (Azoitei et al., 2011), which is significant since most antibodies 

bind discontinuous epitopes (Rubinstein et al., 2008). In addition to HIV this strategy has also been 
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used to design a vaccine immunogen for respiratory syncytial virus, which was shown to induce 

neutralizing antibodies from macaques after immunization (Correia et al., 2015). 

Although structure-based reverse vaccinology has been validated as a feasible strategy, 

many challenges remain for designing an effective HIV vaccine. BnAbs targeting HIV typically 

have a very high load of somatic hypermutation, in some cases up to 44% mutation at the amino 

acid level (Corti and Lanzavecchia, 2013). These somatic mutations are required for potent and 

broad neutralization (Klein et al., 2013; Mouquet et al., 2010; Scheid et al., 2011). In addition it 

was found that the majority of HIV bnAbs do not bind to Env when reverted to the germline amino 

acid sequence (Hoot et al., 2013; McGuire et al., 2014; Xiao et al., 2009). Therefore, a vaccine 

strategy using immunogens based on fully matured bnAbs is unlikely to work if these immunogens 

are unable to stimulate the germline precursors. This observation gave rise to a new strategy of 

germline-targeting immunogen design, where immunogens are designed not to bind to the mature 

bnAbs but rather to their germline forms. Germline-targeting immunogens have shown promise in 

inducing CD4 binding site bnAbs in mice, not only targeting the germline but inducing a gradient 

of bnAbs along the affinity maturation pathway (Briney et al., 2016; Jardine et al., 2016; 2015; 

2013). 

Recently, the same strategy of structure-based vaccinology has been applied to influenza. 

Traditionally influenza vaccines have been much more effective than HIV, therefore the need for 

a structure-based vaccine has not been as great. However, with seasonal influenza vaccination 

efficacy between roughly 30-60% (Belongia et al., 2016), there is clearly room for improvement. 

Influenza A virus subtypes H1 and H3 and two type B virus lineages currently circulate among 

human populations (Hannoun, 2013). However, subtypes H5, H7, and H9 circulate among 

livestock and periodically emerge into human populations and cause epidemics (Kumar et al., 
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2018). Ideally a “universal influenza vaccine” would induce protective immunity for all known 

subtypes of influenza to prevent new viruses from emerging. 

One approach has been to create an influenza antigen reactive to bnAbs targeting all 

different antigenic variants within a given subtype. Giles et al. created a broadly reactive antigen 

through a genetics-based approach of making a consensus HA incorporating amino acids of 

different clades within the H5 subtype, which was shown to elicit a pan-H5 response (Giles and 

Ross, 2011; Giles et al., 2012a; 2012b). This approach has also been shown to elicit a pan-subtypic 

response in influenza viruses of the H1 and H3 subtypes (Carter et al., 2016; Wong et al., 2017).  

Another approach has been to extend the structure-based design methods developed in the 

HIV field to elicit bnAbs against influenza. Antibodies targeting the stem domain of influenza HA 

are a fitting application of these methods, as the stem domain tends to be the most broadly reactive 

epitope on HA but is poorly immunogenic in the context of whole virus (Ellebedy et al., 2014; 

Krammer and Palese, 2013; Sui et al., 2011). Two separate groups engineered stable HA stem 

domains that can recognize anti-stem bnAbs. These immunogens were shown to adopt a similar 

conformation as the native stem domain and could protect mice and ferrets from challenge with 

heterosubtypic influenza viruses (Impagliazzo et al., 2015; Yassine et al., 2015). Similar 

approaches have engineered full-length HA molecules with hyperglycosylated head domains to 

increase the immunogenicity of the stem domain (Eggink et al., 2014). 

 

Computational protein modeling  

Overview of protein modeling techniques 

Computational modeling is a powerful method for modulating the activity of proteins and 

other macromolecules. The number of possible protein sequences is orders of magnitude larger 
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than the number of proteins with determined structure, with ~105 protein structures currently in 

the Protein Data Bank (PDB) and ~108 protein sequences in the UniProt database (Berman et al., 

2000; The UniProt Consortium, 2017). Given this disparity there will always be a need to make 

predictions about the structure and function of a given amino acid sequence using molecular 

modeling. Protein modeling can be characterized into two major tasks. The first is the folding 

problem, which involves predicting the 3-dimensional structure of a protein based on its amino 

acid sequence. Solving the folding problem has long been a holy grail of structural biology (Dill 

and MacCallum, 2012). The difficulty of this problem is explained by Levinthal’s paradox, which 

states that the total conformational space of a small protein is at least 10300, impossible to 

completely sample in the timescale in which proteins are known to fold (Levinthal, 1969). 

Therefore, protein folding algorithms must approximate the biased sampling pattern used by 

nature, the parameters of which are still undefined. Early attempts at solving the folding problem 

used physics-based force fields and coarse-grained representations of the amino acid side chains 

to simplify sampling (Levitt, 1976; Levitt and Warshel, 1975). As computing power has increased 

the capabilities of physics-based approaches have also increased, eventually simulating the 

dynamics and folding of proteins on a timescale of milliseconds (Shaw et al., 2010). However, 

with the increase in the number of experimentally determined structures, it has become possible to 

speed up simulations using knowledge-based rather than physics-based energy potentials. These 

knowledge-based, or statistical, potentials use conformational statistics of known structures in the 

PDB to approximate the free energy of a given protein structure (Simons et al., 1999; Sippl, 1990). 

The ROSETTA modeling software was one of the first to use statistical potentials in protein 

modeling, which allowed simulation of much larger macromolecules than previously possible 

(Kuhlman et al., 2003; Simons et al., 1999).  
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The second major task in protein modeling is known as protein design, or the inverse 

folding problem. This asks the question, given a protein conformation, what amino acid sequences 

can fold into that conformation? This task shares many similarities to the protein folding problem, 

such as use of both physics-based and knowledge-based potentials, and an intractable search space 

to fully explore. The first applications of protein design showed that it was possible to redesign a 

protein sequence while maintaining the same 3-dimensional fold (Dahiyat and Mayo, 1997; 

Desjarlais and Handel, 1995; Harbury et al., 1998). Once it became clear that modeling software 

could recapitulate an existing protein fold, the goal shifted to designing an amino acid sequence 

that could adopt a new fold, which was accomplished in a seminal paper by Kuhlman et al. 

(Kuhlman et al., 2003). This work designed a new protein fold that had not been seen in any protein 

in the PDB up to that point. Since development of this new fold, there have been many successes 

in the protein design field, including design of small proteins to bind influenza hemagglutinin 

(Fleishman et al., 2011b; Strauch et al., 2017), design of proteins that self-assemble into nanocages 

(King et al., 2012), and HIV immunogens targeting broadly neutralizing antibodies (Jardine et al., 

2013). 

Challenges in modeling antibody structure and function 

Although there are applications of protein modeling in many disciplines, this thesis will 

specifically focus on modeling and design of antibodies. The large number of theoretically possible 

antibodies and the large number of antibodies actually present in humans prohibit a comprehensive 

experimental characterization of antibody structure and dynamics. While great progress has been 

made in antibody structure determination by X-ray crystallography – currently around 2,000 

depositions in the PDB contain the phrase “antibody” – the number of experimental structures 

available in the PDB will always be small compared to the total immune repertoire, leaving room 
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for structure prediction of important antibodies with unknown structure. As antibody structures in 

the PDB have increased exponentially in recent years (Figure I.7), computational biologists have 

gained a greater understanding of the molecular determinants of proper loop folding and antigen 

binding, ultimately allowing high-throughput, accurate structural modeling on a scale unavailable 

to experimental methods alone. Understanding the structural determinants of the antibody-antigen 

interaction – i.e. how the paratope engages the epitope – is critical for understanding antibody 

function and processes such as affinity maturation.  

  

 

 
Figure I.7. Exponential growth of antibody structures in the PDB. Advances in antibody 
isolation and characterization technologies have led to an explosion in available antibody 
structures. This abundance of structural information can be used to improve computational 
modeling technologies. Figure is adapted from (Sevy and Meiler, 2014). 
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In silico affinity maturation 

The computational design of antibodies is not only the most stringent test of our 

understanding of the rules that govern antibody structure and interaction, it also has exciting 

applications in designing an antibody optimized for a given epitope (affinity maturation) or an 

antibody that recognizes multiple similar target epitopes (broad neutralization). Through this 

approach the relation between sequence, structure, and activity of antibodies can be better 

understood, as the sequence and structural space can be explored in a more comprehensive manner 

than possible by analysis of naturally occurring antibodies only. For this paradigm to reach its full 

potential, knowledge of the optimal antibodies to engage an epitope and the relation between 

sequence, structure, and activity inferred from computational design must be integrated. 

Affinity maturation, as previously described in detail, is a process by which the variable 

region of an antibody undergoes high levels of mutation to select for a variant with increased 

binding affinity for its target. As affinity maturation is a stochastic process, it can be simulated by 

computational algorithms that generate random mutations and measure their fitness by an energy 

function. In an early example of in silico affinity maturation, Clark et al. were able to use 

computational design to mature an antibody and generate candidate sequences with higher 

predicted affinity (Clark et al., 2006). Using a combination of side chain repacking and 

electrostatic optimization, a triple mutant was created with 10x higher affinity. A comparable 

increase in affinity was achieved by Lippow et al. by redesigning an anti-lysozyme antibody along 

with the therapeutic antibody cetuximab (Lippow et al., 2007). The design protocol was also able 

to predict mutations in bevacizumab that had been previously shown to increase affinity. The 

designed mutations affected primarily the electrostatic nature of the binding interface, either by 

removing a poorly satisfied polar residue at the interface or adding a polar residue at the solvent-
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facing periphery of the interface. A similar approach was used to increase the species cross-

reactivity of an antibody, rather than increasing affinity for a previously targeted antigen. By 

analyzing sequence differences between two serine protease orthologs, Farady et al. created novel 

antibody designs by restricting the search space to positions that contact points of difference 

between orthologs (Farady et al., 2009). In this manner they were able to target positions that 

would be most likely to establish new contacts across the binding interface to enable interaction at 

a reasonable affinity. This method was able to create antibody mutants with increases in affinity 

of over two orders of magnitude.  

One significant limitation of most computational design protocols is that they require a 

high-resolution crystal structure of the antibody-antigen complex, or alternatively high-resolution 

structures of each component separately. However, several antibody designs have been made for 

complexes that do not have a solved structure available, using a combination of comparative 

modeling, protein-protein docking, and design. Barderas et al. used experimental epitope mapping 

data to dock a comparative model of an anti-gastrin antibody onto the surface of its target (Barderas 

et al., 2008). They then used the docked models to estimate regions of antibody-antigen interaction, 

and created mutants using both phage display and in silico affinity maturation to mutagenize 

antibody residues in contact with the antigen and produce designs with high predicted affinity. In 

several cases the in silico suggested mutations matched the mutations seen by directed evolution, 

and overall the designs were able to increase affinity to nanomolar levels. Another case used 

docking of an anti-dengue antibody with an NMR-mapped epitope to identify and rationally design 

mutations in the antibody CDR loops (Simonelli et al., 2013). The authors used this information 

to create several types of antibody mutations, including those that abolish binding, those that 

increase affinity for a single target, and those that increase breadth of binding to multiple serotypes. 
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Design of antibody breadth 

 In certain cases, it is desirable to design an antibody for increased affinity against not only 

one target, but multiple targets. As a naturally evolved antibody will typically undergo affinity 

maturation against a single antigen, designing an antibody in silico against a variety of antigens 

can surpass the biological limitations of antibody evolution. This approach of designing a protein 

against multiple targets is known as multistate design, for the multiple protein states included in 

the simulation. Computational approaches to multistate design are capable of determining the 

protein sequence optimal for binding an arbitrary number of binding partners (Havranek and 

Harbury, 2003; Leaver-Fay et al., 2011a). This technique has been applied to explore the changes 

in antibody sequence and conformation responsible for the shift from a polyspecific, germline 

antibody to one with higher affinity for a single target. In complementary works, Babor et al. and 

Willis et al. used multistate design to show that antibody germline sequences are optimal for 

conformational flexibility of both CDR loops and framework residues, allowing binding of 

multiple targets, whereas affinity matured antibodies have decreased flexibility (Babor and 

Kortemme, 2009; Willis et al., 2013). They also identified the key residues responsible for either 

mono- or multi-specificity for several commonly seen germline genes. These studies validate the 

biological relevance of design algorithms, since sequences can be both computationally matured 

and reverted to germline by using different sets of antigens as inputs.  

 

Significance and Innovation 

In this thesis I describe my work using molecular modeling to engineer cross-reactivity 

into antibodies targeting influenza and HIV. As previously described, there are a number of 

broadly neutralizing antibodies against both influenza and HIV that have been identified by 
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experimental methods. Many of these antibodies have structural data as well, providing a precise 

description of the molecular details of the antibody-antigen interaction. However, none of these 

antibodies are universally effective. Due to the high level of sequence variability of both HIV Env 

and influenza HA, it has to this point been impossible to identify a “silver bullet” antibody that 

can potently neutralize all potential variants of either virus. In my work I used molecular modeling 

and design to define the limitations of antibody potency and breadth.  

As previously discussed there have been many reports of using computational design to 

improve antibody affinity (Barderas et al., 2008; Clark et al., 2006; Lippow et al., 2007; Marvin 

and Lowman, 2003; Willis et al., 2015). In addition there are experimental methods that can 

simulate affinity maturation in vitro to generate antibodies with greater affinity against a single 

target (Boder et al., 2000; Daugherty et al., 2000; Nelson et al., 2007; Wu et al., 2017). However, 

it remains challenging to not only improve the affinity of an antibody against a single target, but 

to increase its breadth by considering a diverse panel of viral variants. Computational methods for 

this task, known as multistate design, have been described, but are all very computationally 

expensive and limited in both the number of antigens, or states, that can be considered, and the 

size of the binding site to be redesigned (Leaver-Fay et al., 2011a; Yanover et al., 2007). In this 

thesis I describe new methods for multistate design that can be applied on a much larger scale than 

previously feasible. Although the focus in this thesis is on antibody design, these methods were 

developed to be sufficiently general to be applied to any protein multistate design problem.  

This work is significant on both a basic science and translational level. As the therapeutic 

market for monoclonal antibodies increases, the importance of methods for antibody engineering 

also increases. Many antibody therapeutics have been engineered by computational and 

experimental methods to improve their therapeutic properties (Bostrom et al., 2009; Lehmann et 
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al., 2015; Wang et al., 2014; Wu et al., 2007). Antibody engineering in a multistate context has 

great implications for modulating the behavior of these antibody therapeutics. In addition, 

knowledge of broadly neutralizing anti-viral antibodies can be used to formulate an effective 

vaccine. By applying multistate design to existing antibodies, it is possible to improve antibody 

breadth beyond natural evolution and devise vaccines to elicit antibodies with these characteristics. 

It is also clear that multi-specific antibodies play a significant role in the antibody response to HIV 

and in the development of broadly neutralizing antibodies (Liao et al., 2011; Liu et al., 2015; 

Mouquet et al., 2010; Williams et al., 2015). I use multistate design to analyze how bnAb 

precursors may mature against different viral targets and how they could be targeted by a 

vaccination strategy. I also apply the algorithm to influenza antibodies to learn about the molecular 

details of the tradeoff between breadth and affinity.  
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CHAPTER II.  

Design of protein multi-specificity using an independent sequence 

search reduces the barrier to low energy sequences 

 

Adapted from Sevy, A. M., Jacobs, T. M., Crowe, J. E. & Meiler, J. Design of Protein Multi-

specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy 

Sequences. PLoS Comput. Biol. 11, e1004300 (2015). 

 

Author contributions: I wrote the algorithm described in this chapter and ran all computational 

benchmarks, under the mentorship of Jens Meiler and James Crowe. I designed all experiments, 

analyzed data with my co-mentors, and created all figures in this chapter. All figures are 

reprinted with permission from the publisher. 

 

Abstract 

Computational protein design has found great success in engineering proteins for 

thermodynamic stability, binding specificity, or enzymatic activity in a ‘single-state’ design (SSD) 

paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of 

a protein in multiple conformations recognizing multiple binding partners, i.e. to stabilize multiple 

protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as 

REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state 

to adopt its own sequence throughout the design process rather than enforcing a single sequence 

on all states. Convergence to a single sequence is encouraged through an incrementally increasing 
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convergence restraint for corresponding positions. Compared to MSD algorithms that enforce 

(constrain) an identical sequence on all states the energy landscape is simplified, which accelerates 

the search drastically. As a result, RECON can readily be used in simulations with a flexible 

protein backbone. We have benchmarked RECON on two design tasks. First, we designed 

antibodies derived from the same germline gene against their diverse targets to assess recovery of 

the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins 

against all binding partners and measure recovery of the native sequence. We show that RECON 

is able to efficiently recover native-like, biologically relevant sequences in this diverse set of 

protein complexes.  

 

Introduction 

Computational protein design is an invaluable tool for protein engineers seeking to create 

a protein with novel properties. Protein design, also known as the inverse folding problem, 

involves searching for a sequence that stabilizes a desired, given conformation. Besides the 

obvious goal – to give the protein increased thermodynamic stability (Kuhlman et al., 2003; Miklos 

et al., 2012; Yang et al., 2014a) – protein design often pursues the goal of creating new function. 

This can include for example redesigning an antibody to recognize a new variant of a target protein 

(Farady et al., 2009), designing an enzyme to bind the transition state for a new chemical reaction 

(Siegel et al., 2010), or redesigning a DNA-binding protein to recognize a different DNA sequence 

(Ashworth et al., 2010). Most success in protein design has been achieved through a single-state 

design (SSD) task, i.e. the free energy minimization of a single protein conformation to increase 

its stability (Harbury et al., 1998; Kortemme et al., 2004; Kuhlman et al., 2003).  
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Multistate design approaches 

In contrast to SSD, multistate design (MSD) minimizes the free energy of multiple protein 

conformations (“states”) simultaneously. This enables negative design, which involves 

destabilizing a certain conformation to shift relative occupancy to alternate conformations, which 

is useful in designing proteins with binding selectivity. MSD has been applied successfully in a 

number of cases, including the design of a protein conformational switch (Ambroggio and 

Kuhlman, 2006), design of selective b-ZIP binding peptides (Grigoryan et al., 2009), and design 

of an enzyme with DNA cleavage specificity (Ashworth et al., 2006), among others (Allen et al., 

2010; Havranek and Harbury, 2003).  

Algorithmic requirements for multistate design 

All MSD algorithms have at their core a fitness function that defines the favorability of a 

given sequence based on its corresponding energy in each state. The major challenge in fixed 

backbone MSD is efficient optimization of side chain rotational isomer (“rotamer”) placement, 

using the fitness function as the objective function. As more states are considered it becomes 

increasingly difficult to find the minimum energy sequence on a fixed backbone. As the same 

sequence on all states is constrained, extensive sampling in sequence and rotamer space is required. 

This is often accomplished via thorough but slow genetic algorithms (Havranek and Harbury, 

2003; Humphris and Kortemme, 2007; Leaver-Fay et al., 2011a). 

Challenges in expanding the scope of multistate design  

This difficulty in reaching the global minimum in a basic fixed backbone design problem 

precludes the possibility of using alternate sampling strategies, such as iterating between backbone 

minimization and rotamer optimization. However, these techniques have been used in SSD to great 

effect and are often critical to find the lowest energy conformation and sequence (Harbury et al., 
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1998; Kuhlman et al., 2003). In result, MSD algorithms can arrive at an incorrect solution even 

after successful sequence optimization just because the fixed backbone precludes the lowest 

energy sequence and conformation from being sampled. This issue can be partially resolved by the 

inclusion of multiple backbone conformations as separate states (Davey and Chica, 2014). 

However, there is a need for a method that can more efficiently reach the optimal MSD solution 

for an arbitrary number of input states without relying on the commonly held “fixed backbone 

assumption”. 

Multi-specificity design as single-state design with restraints 

To this end, we have developed a novel MSD algorithm, referred to as REstrained 

CONvergence in multi-specificity design (RECON). The algorithm is based on a different 

conception of MSD, wherein each state independently explores sequence space to reach its 

energetic minimum. A step-wise increasing convergence restraint is applied such that 

corresponding positions in different states converge on the same amino acid. By encouraging 

sequence convergence between different states rather than enforcing a single sequence, we 

hypothesize that energetic barriers to the fittest solution collapse, reducing the ruggedness of the 

energetic landscape in a MSD problem to SSD-like complexity. In result the search efficiency and 

speed are substantially increased allowing for the sampling of additional degrees of freedom. 

Further, we hypothesize that including backbone conformational sampling reduces the chance that 

the low energy and possibly correct solutions are excluded from the search space. 

 

Results 

The restrained convergence algorithm 

 The RECON algorithm allows separate states to explore their own local sequence and 
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conformational space to optimize free energy, while restraining corresponding residues in different 

states with a convergence restraint to encourage sequence convergence. Convergence restraints 

are kept small in early rounds, to allow each state to explore its own lowest energy sequence, and 

ramped up in later rounds to encourage sequence convergence between different states. This is 

followed by a greedy selection step, which evaluates all candidate amino acids at positions that 

fail to converge, and selects the one that results in the lowest fitness when applied over all states. 

This greedy selection is included in order to ensure that one multi-specific sequence is generated 

from each design trajectory. Backbone minimization steps can be included between design rounds 

to relieve slight clashes between side chains. Pseudocode describing the implementation of the 

algorithm is shown in Figure II.1. Individual states optimize rotamer placement using a simulated 

annealing Monte Carlo search, sampling from a predefined rotamer library (Dunbrack, 2002; 

Leaver-Fay et al., 2011b). However, we emphasize that this method can be applied to any multi-

specificity problem using an arbitrary optimization method and scoring function.  

Reduction of energy barriers in restrained multi-specificity design 

 By allowing each state to determine its optimal sequence independently, we can collapse 

the energy barrier to reaching a “compromised” sequence that results in low energy in all states. 

We propose a scenario in which encouraging sequencing convergence in this way can reduce the 

energetic barrier and enable convergence on a low energy solution (Figure II.2). In this scenario, 

two separate mutations from residue identity A to B are needed for the lowest fitness over both 

states. Each single mutation will encounter a high energy penalty and rarely selected by a genetic 

algorithm – only when both mutations are stochastically placed together will the solution emerge, 

which may take a large number of evaluations. However, when sequence convergence is 

encouraged rather than enforced, each state will identify an intermediate solution in early rounds,  



 32 

  

 

Figure II.1. Pseudocode describing the implementation of the RECON algorithm. 



 33 

and in later rounds the most favorable solution will be selected from the differing states. This 

collapses the barrier on the pathway to a favorable solution and reduces the steps necessary to find 

that solution.  

Germline gene reversion benchmark 

To benchmark RECON, we considered two types of design problems. In the first, mature 

antibodies derived from a common germline gene were entered into MSD in complex with their 

target antigens. It has been shown that MSD of mature antibodies results in a higher rate of 

germline sequence reversion than SSD, implying that the germline sequence is near-optimal for 

polyspecificity (Babor and Kortemme, 2009; Willis et al., 2013). Therefore, we designed each 

 
Figure II.2. Schematic showing proposed energy landscape of forced vs. encouraged sequence 
convergence in MSD. By allowing each state to maintain its own sequence and explore sequence 
space independently, RECON is able to provide an intermediate solution in an MSD problem, 
enabling more rapid determination of a low energy solution. Dashed lines represent forced 
convergence, where both states must adopt the same sequence (either AB or BA), whereas the 
solid line represents encouraged convergence, where state 1 can adopt sequence AB while state 
2 adopts BA. This creates a lower energy intermediate state leading to more rapid adoption of 
the optimal solution, sequence BB. 
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antibody against its respective targets and used germline sequence recovery as an indirect measure 

of the rate of recovery of an optimal solution. We used antibodies derived from three different 

germline genes - VH1-69, VH3-23, and VH5-51. The number of antibody-antigen complexes per 

germline gene ranged from 3 to 6 (Table II.1).  

 

Promiscuous protein design benchmark 

The second task was to design a set of “promiscuous” proteins, proteins that have been 

crystallized in complex with multiple binding partners, against each of these partners. Similar to 

polyspecific germline antibodies, promiscuous proteins have been shown to have a native sequence 

that is near-optimal for binding to all of the partners (Fromer and Shifman, 2009; Humphris and 

Kortemme, 2007). Therefore an effective MSD protocol would result in a high rate of native 

sequence recovery. A set of five promiscuous proteins derived from a study done by Humphris et 

Table II.1. Complexes used in common germline antibody benchmark. 

VH germline 
gene 

Variable positionsa Antibody Ligand PDB ID 

VH1-69 40 D5 gp41 2CMR 
  F10 H5/Vietnam/1203/2004 3FKU 
  CR6261 H5/Vietnam/1203/2004 3GBM 
  8066 gp41 3MA9 
  8062 gp120 3MAC 
  1281 gp41 3P30 
VH3-23 31 Pertuzumab ErbB2 1S78 
  G6 VEGF 2FJG 
  Apu2.16 Ubiquitin 3DVN 
  E2 MT-SP1 3BN9 
VH5-51 30 2219 UG1033 2B1A 
  K1-70 TSHR 2XWT 
  Ustekinumab IL-12 3HMX 

RECON was benchmarked on three sets of mature antibodies derived from the same VH gene. 
Effective MSD should result in reversion of mature antibodies to the polyspecific germline 
sequence.  
aGermline sequence and positions varying from germline are inferred from IMGT/3D Structure-
DB (Kaas et al., 2004). 
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al. was used (Humphris and Kortemme, 2007), in addition to two broadly neutralizing anti-

influenza hemagglutinin antibodies (Table II.2) (Corti et al., 2011; Ekiert et al., 2009). 

Design algorithms included in benchmark 

Benchmark cases were designed using three separate design methods. First, design was 

performed using RECON with a fixed backbone. Fixed backbone design has to this point been the 

standard in MSD due to the complexity involved in recalculating rotamer interactions for each 

backbone movement. However, using fixed backbone design alone is prone to false negatives, as 

sequences that may be highly favorable with a small shift in backbone conformation are discarded. 

One of the unique advantages of RECON is its ability to incorporate iterative rounds of rotamer 

packing and backbone minimization. Therefore, we included such an iterative protocol as the 

Table II.2. Complexes used in promiscuous protein benchmark. 
Promiscuous protein Binding partner PDB ID Designable positionsa 
CR6261 H5/Vietnam/1203/2004 3GBM 19 
 H1/BrevigMission/1/1918 3GBN  
FI6v3 H1/California/04/2009 3ZTN 21 
 H3/Aichi/2/1968 3ZTJ  
CheY FLiM 1F4V 15 
 CheA 1FFG  
 CheZ 1KMI  
Elastase Elastase Inhibitor 1EAI 25 
 Elafin 1FLE  
 Hybrid Squash Inhibitor 1MCV  
FYN SH3 Domain HIV-1 NEF Protein 1AVZ 7 
 SAP 1M27  
PapD Chaperone PapE 1N0L 28 
 PapK 1PDK  
 PapD Homodimer 1QPP  
Ran Importin beta 1IBR 24 
 Exportin CSE1P/KAP60P 1WA5  

RECON was benchmarked on a set of promiscuous proteins that have been crystallized in 
complex with multiple partners. As the native sequence is near optimal for binding of all 
partners, MSD should recover the native sequence at a high rate. 
aResidues determined to be at the interface with all binding partners. See methods for details on 
interface residue calculations. 
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second approach in our benchmark. For comparison purposes, all complexes were also designed 

using the existing MSD application in ROSETTA (MPI_MSD), which operates on a fixed backbone 

(Leaver-Fay et al., 2011a). MPI_MSD differs from RECON in that it uses a genetic algorithm to 

create and advance mutations and a user-defined fitness function to assess fitness of each sequence. 

However, as both methods are built into the ROSETTA framework, they sample from the same 

rotamer library and use the same scoring function and are therefore suitable for comparison. In 

addition to native sequence recovery, we used the fitness of the top ten designs, defined as the sum 

of ROSETTA energies of all complexes, to analyze how effectively each protocol reached an 

energetic minimum. This fitness function has been previously used in studies of design of protein 

multi-specificity (Humphris and Kortemme, 2007). We use the term “design” to refer to sequence 

optimization of existing protein-protein complexes - however, it is important to note that these 

sequences were not experimentally characterized, and results reported are purely in silico. 

Common germline derived antibodies 

For common germline gene-derived antibodies, RECON was consistently able to recover 

the germline sequence at a higher rate than MPI_MSD (Figure II.3). Germline sequence recovery 

for RECON ranged from 55 – 94% using fixed backbone and 51 – 95% using backbone 

minimization, while recovery for designs using MPI_MSD ranged from 32 – 64%. When 

comparing RECON fixed backbone to MPI_MSD, it appeared that designs created by RECON, 

although higher in native sequence content, were also energetically less favorable. We therefore 

subjected all fixed backbone designs to a single round of ROSETTA relax energy minimization to 

relieve frustrations and allow for direct comparison of fitness of RECON incorporating backbone 

minimization to fixed backbone designs (Supplementary Table II.1). These post-minimization 

fitness values show that the energetic gap between RECON- and MPI_MSD-generated designs 
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was substantially closed, and that designs generated by any method occupied similar ranges of 

fitness. We observed that MPI_MSD tended to produce designs with the lowest fitness - however, 

it is important to note that rotamer optimization within ROSETTA is a stochastic process, with no 

guarantee of reaching the global minimum. Therefore, a protocol that performs hundreds of rounds 

of rotamer optimization, such as MPI_MSD, would be expected to produce better energies than 

one performing four rounds of optimization, such as RECON, independent of the sequence identity 

of structures being optimized.  

 

 

  

 
Figure II.3. Native/germline sequence recovery of designed complexes. 100 designs were 
generated using RECON, with both fixed backbone (FBB) and backbone minimized (BBM) 
protocols, and MPI_MSD. Sequences of the top 10% of models were compared to either the 
native sequence or, in the case of common germline-derived antibodies, to the germline 
sequence. See methods for details of native sequence recovery calculations. 
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Promiscuous protein complexes 

RECON was able to recover the native sequence at a very high level for all promiscuous 

protein complexes – native sequence recovery ranged from 57 – 100% and 58 – 100%, using fixed 

backbone and backbone minimization, respectively. MPI_MSD generated designs with native 

sequence recovery ranging from 56 – 94% (Figure II.3). In most cases fitness of designs generated 

by RECON fixed backbone and MPI_MSD were very similar, suggesting that both methods have 

reached the energetic minimum (Supplementary Table II.1). Even though all methods reached a 

similar level of native sequence recovery and energetic fitness in a majority of these benchmark 

cases, RECON was able to reach these minima by searching a compressed sequence space, 

allowing for increased computational efficiency. 

Importance of ramping convergence restraints on algorithm performance 

We hypothesized that gradually ramping the convergence restraints will allow for sequence 

divergence in early rounds of design and enforce convergence in later rounds, leading to an 

improved result as it smoothens the energy landscape. To confirm the effects of gradually 

increasing the weight of the convergence restraint, we performed a control in which sequences 

were designed independently for each state with no convergence restraint, followed by sequence 

selection by the greedy selection used at the end of RECON (Supplementary Table II.2). This 

greedy selection algorithm performed significantly worse than RECON with gradual ramping 

convergence restraints, with worse native sequence recovery in all benchmark cases but one. In 

addition, in many benchmark cases fitness was significantly worsened for designs generated by 

this greedy selection protocol. These results indicate that ramping convergence restraints 

throughout the design protocol is critical for the increased performance of RECON. 



 39 

Sequence recovery at positions that fail to converge 

Based on the decreased performance of this greedy selection algorithm, it would be 

expected that RECON works best at positions where amino acids converge between different states 

by the end of the protocol and are not greedily selected. We therefore evaluated the convergence 

of amino acids at each position for the VH5-51 benchmark set. We report the number of times a 

position failed to converge in 100 design trajectories for the 30 designed positions in this 

benchmark set (Supplementary Table II.3). The results suggest that most positions tend to be 

consistent in their patterns of convergence, and that the majority (21 out of 30) reach a common 

amino acid solution by the end of the protocol. The results of the greedy selection protocol suggest 

that failure to converge leads to a decrease in performance of the algorithm and selection of non-

native amino acids. We therefore compared germline sequence recovery for positions that failed 

to converge in at least half of the design trajectories, as compared to those that converged in more 

than half of the trajectories, to determine whether these positions are substantially decreasing 

overall germline sequence recovery (Supplementary Table II.3). Surprisingly, positions that failed 

to converge actually showed a higher rate of germline sequence recovery than those that were able 

to converge through the application of convergence restraints (Supplementary Table II.3). These 

results indicate that, although the greedy selection algorithm should not be applied without first 

ramping convergence restraints to encourage convergence, the use of greedy selection for positions 

that fail to converge is not a limiting factor for obtaining high native sequence recovery. 

RECON is able to circumvent high-energy intermediates 

 In the scenario proposed in Figure II.2, we hypothesize that RECON is able to circumvent 

high-energy intermediate sequences by encouraging rather than enforcing sequence convergence. 

We therefore analyzed the sequence trajectory of an example from the FI6v3 benchmark to support 
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this scenario (Figure II.4A). In early rounds, the two states diverge in sequence to explore their 

own energy landscapes. As restraints are increased in later rounds the two states converge on a 

compromised sequence that is the multi-specific solution for both, only adopting mutations when 

they are beneficial to both states. Although fitness values continue to decrease after encountering 

the compromised sequence, this is primarily due to the stochastic nature of rotamer optimization, 

such that increased optimization will result in a lower score. We focused on a set of complementary 

mutations that diverged in early rounds with a low convergence restraint, to test the hypothesis 

that the sequence preference of one state results in a high energy on the other state, and vice versa 

(Figure II.4A, highlighted in red). We found that the sequences preferred by state 1 (TSY) and 

state 2 (QQW) indeed resulted in higher energy when forcing one state to adopt both sequences 

than when each state was allowed to adopt its own sequence (Figure II.4B). This lowers the barrier 

to reaching the “compromised” sequence, adopting residues favorable to both state 1 and state 2, 

which in this case is the sequence QQY. Although this barrier is not as large as proposed in Figure 

II.2, we expect that this barrier will be lower in cases where two binding partners have highly 

similar binding surfaces, as is the case in our benchmark sets. However, when binding surfaces are 

more dissimilar, and therefore finding compromise residues is more critical to a favorable binding 

energy, we expect this barrier to be larger, and the benefit of an independent sequence search to 

be even greater. 

Computational efficiency of design methods 

In addition to measuring the sequence recovery and energetic fitness, we compared the 

computational efficiency of these three design protocols. We argue that, although in certain cases 

all methods were able to reach the same energetic minimum, RECON provides an added benefit 

in that it reached this minimum in a fraction of the time required to run MPI_MSD. To this end 
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we compared CPU hours of runtime for generating the previously discussed designs (Table II.3). 

As expected, RECON using a fixed backbone was the most efficient of the three protocols, 

followed by RECON incorporating backbone minimization, and MPI_MSD. This increase in 

efficiency is due to the reduction in search space by allowing each state to adopt its own sequence. 

Generation of evolutionary sequence profiles 

We hypothesize that RECON is able to operate at higher efficiency by restricting sampled 

sequences to more relevant sequence space. We further believe that our conception of “relevant” 

sequence space is reflected in an ensemble of biologically observed sequences, and that RECON 

should recover not only a native protein sequence, but also biologically tolerated mutations. To 

address this question we generated a position-specific scoring matrix (PSSM) of amino acid 

frequencies in evolutionarily related proteins to each benchmark protein using a PSI-Blast query 

(Altschul et al., 1997). Among the promiscuous proteins we restricted this analysis to non-

antibodies, since the full-length sequence of a mature antibody is unlikely to have a large number 

of meaningful evolutionary counterparts. However, since antibodies in the common germline-

encoded benchmark set were only designed in positions deriving from the VH gene, we were able 

to derive a PSSM from other common VH-encoded antibodies in the database. We then compared 

the PSSM to the amino acid frequency in corresponding positions in designed sequences to 

estimate how well the design protocol mimicked evolution. We measured agreement of sequence 

profiles using a modified Sandelin-Wasserman similarity to yield a percent similarity for each 

designed position that could then be averaged over the protein (Sandelin and Wasserman, 2004). 

Figure II.5A shows a comparison of positions in the VH5-51 benchmark where designs either 

agreed or disagreed with evolutionary sequence profiles - the degree of agreement could then be 

quantitated by the percent similarity calculated over each position. 
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Figure II.4. Encouraging sequence convergence in RECON can avoid high-energy sequence 
intermediates. A. An example design trajectory of RECON in the FI6v3 benchmark through four 
design rounds is shown. Sequences tend to diverge in early rounds when convergence restraints 
are kept low, whereas in later rounds when restraints are increased states are encouraged to adopt 
a single solution. The figure displays one example from the fixed backbone design protocol, with 
convergence restraints removed before reporting fitness. The two states showed different 
preferences for residues highlighted in red. B. Residues highlighted in panel A were applied to 
the opposing state to analyze the energetic barrier of forced sequence convergence. The energy 
of these three residues was analyzed when the sequence favored by state 1 (TSY) was applied to 
state 2, and vice versa with the sequence QQW (intermediate sequence, black/red lines). This 
was compared to the three-residue fitness when each state was allowed to adopt its own preferred 
sequence (intermediate sequence, blue line). Energies were compared to the final, 
“compromised” sequence (QQY). These three amino acids occurred at positions 28, 30, and 53, 
respectively. 

 

Table II.3. Comparison of CPU runtimes for multi-specificity design using different algorithms. 
 CPU Hours 
Benchmark case RECON FBB RECON BBM MPI_MSD  

CheY 12.0 24.0 61.1 
CR6261 20.8 66.0 137.5 
Elastase 24.2 47.7 198.9 
FI6v3 21.2 80.2 46.1 
FYN 0.8 12.8 21.2 
PAPD 37.9 99.5 129.1 
Ran 23.1 153.3 276.9 
VH1-69 48.7 171.1 487.1 
VH3-23 43.7 98.1 167.5 
VH5-51 19.5 71.7 95.7 
Average 25.2 82.4 162.1 

Runtimes in CPU hours for generation of 100 designs using RECON, both by fixed backbone 
(FBB) and backbone minimized (BBM) methods, and MPI_MSD algorithms.  
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Comparison of designs to observed sequence profiles 

We found that RECON was able to create sequences that more closely mirrored natural 

sequence variation than MPI_MSD (Table II.4, Figure II.5B). Averaging over the benchmark 

cases, we observed 69, 73, and 57% similarity to evolutionary sequence profiles using RECON 

fixed backbone, backbone minimized, and MPI_MSD, respectively. This pattern was especially 

strong in benchmark cases with large numbers of designable residues, as the number of designed 

residues correlated positively with the improvement of RECON over MPI_MSD in recapitulating 

evolutionary sequence profiles (Figure II.5C). When comparing the four largest benchmark cases 

by number of designable residues (three common germline-derived antibodies and the PAPD 

complex), RECON shows a marked improvement over MPI_MSD in recovery of evolutionary 

sequence profile (Figure II.5D). Although this result is not significant due to a small sample size, 

it is suggestive of the additional benefit provided by RECON when applied to large, 

computationally intensive design problems. We hypothesize that this is due to compressed 

sequence space explored by RECON. When design problems are relatively small, the genetic 

algorithm employed by MPI_MSD is able to efficiently search through sequence space for a low-

energy solution. However, when the sequence space increases in a large design problem the 

compressed sequence search is more advantageous. 

RECON searches a compressed, more relevant sequence space 

We have shown that designs generated by RECON tend to more closely represent the 

evolutionary sequence profiles of our benchmark proteins when compared with MPI_MSD. We 

propose that this is accomplished via a more focused sequence search within the biologically 

relevant space. To further support this claim, we have analyzed the sequence space searched by 

RECON and MPI_MSD and compared it to the final output sequences of the top ten designs for 
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the VH5-51 benchmark set (Supplementary Figure II.1). We generated the sequence space profile 

by including any residue that was sampled at any step of the design protocol at each position, and 

then compared this profile to the final sequences among the top ten designs. Presumably the most 

efficient algorithm would only sample the sequences that are eventually selected as low energy 

solutions, resulting in a similarity of 100% between sequence space explored and output designed 

sequences. Therefore, we used this similarity as an indicator of the degree of “wasted” sequence 

space, which is explored but never part of a low energy solution. Comparison of the profiles 

generated by RECON on a fixed backbone and MPI_MSD show that RECON explores space much 

more closely constrained to the final low energy sequences, with a similarity score of 92.3%, as 

compared to 79.5% for MPI_MSD. This further supports the claim that RECON searches a 

compressed search space to encounter a low energy multi-specific solution. 

 

 

Table II.4. Comparison of design-generated sequences to evolutionary sequence profiles of 
input proteins. 

 Evolutionary sequence similarity (%)a 
Benchmark case RECON FBB RECON BBM MPI_MSD  
CheY 56.3 70.5 57.5 
Elastase 60.3 70.7 65.9 
FYN 87.0 87.0 96.0 
PAPD 61.7 65.3 52.4 
Ran 76.6 79.3 82.5 
VH1-69 90.6 91.7 32.0 
VH3-23 50.7 50.7 36.4 
VH5-51 69.0 67.0 30.4 
Average 69.0 72.8 56.6 

Designs produced by MPI_MSD or fixed backbone (FBB) or backbone minimized (BBM) 
RECON algorithms were compared to sequence profiles of evolutionarily related proteins at 
designed positions.  
aSequence similarity is computed as the Sandelin-Wasserman similarity, normalized as a 
percentage. See methods for details. 
 



 45 

 

 
Figure II.5. Recapitulation of evolutionary sequence profiles by multi-specificity design. A. For 
each protein in the benchmark set, an evolutionary sequence profile (top) was calculated and 
compared to the sequences generated by MSD (bottom). A similarity score was calculated for 
each position and averaged over designed positions to measure how well design searches 
biologically relevant sequence space. Highlighted are example positions where designed 
sequences either agreed (blue) or disagreed (red) with naturally occurring sequences. The figure 
displays the designed amino acid profile for a subset of positions in the VH5-51 benchmark set. 
See methods for details on percent similarity calculation. Amino acids are colored according to 
chemical properties. B. RECON-generated designs were more similar to observed evolutionary 
sequence profiles than those produced by MPI_MSD. Percent similarity was averaged over 
designed positions that had been mutated by any design method. Plotted are mean and SEM 
values. Design protocols are colored as in panel D. C. Improvement in recapitulating 
evolutionary sequence profiles of RECON increases with the number of designed positions. For 
each benchmark set, the number of designed positions is plotted against the difference in 
evolutionary sequence similarity between RECON backbone minimized and MPI_MSD. Least-
squares linear fit is shown, with an R-value of 0.61 and p value of 0.02. D. Difference in 
recapitulation of evolutionary sequence profile for the four largest benchmark sets by designs 
generated by RECON using fixed backbone (FBB) or backbone minimization (BBM) protocols, 
or MPI_MSD. P values were calculated using a paired two-tailed t test. 
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Structural differences in residues preferred by different algorithms 

The algorithms RECON and MPI_MSD feature substantial differences in sequence and 

structure at many positions of the output design models, particularly in the common germline 

antibody benchmark sets. We hypothesized that this difference in preference may be due to a 

failure by MPI_MSD to exhaustively search through sequence space in a large design problem. 

Concurrently we expect that the sequences selected for by RECON are actually lower in overall 

fitness. We present structural analysis of three positions, residues 32, 33, and 74 in the VH3-23 

benchmark, to support this claim. Position 32 showed a preference for tyrosine in RECON-

generated designs, whereas MPI_MSD prefers glycine. Tyrosine is able to fill a cross-interface 

gap in the 1S78 complex, and can establish hydrogen bonding to an amide nitrogen across the 

interface (Figure II.6A). This additional hydrogen bonding produces a large drop in fitness for this 

residue across all states (-1.85 versus -5.97 REU). Interestingly, tyrosine is the germline residue at 

this position, and was only recovered using RECON with backbone minimization - both RECON 

fixed backbone and MPI_MSD favor glycine at this position. Position 33 also showed difference 

preferences between design methods - alanine was favored by MPI_MSD, whereas RECON 

favored serine. Serine results in a lower overall fitness due to additional hydrogen bonding with a 

glutamine residue on the heavy chain CDR3 loop of the antibody (Figure II.6B). At this position, 

alanine is the germline residue - however the per-residue fitness values indicate that serine is able 

to stabilize this loop in the 3BN9 complex without compromising stability of the other states 

(Figure II.6B, fitness shown in parenthesis). Lastly, position 74 showed a preference for threonine 

in RECON-generated designs, as opposed to serine in MPI_MSD-generated designs. Threonine is 

able to establish cross-interface hydrogen bonding in the 1S78 complex without causing clashes 

in other states, whereas serine is somewhat surprisingly not positioned to create this interaction 
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(Figure II.6C). This is partially due to backbone movements in the RECON-generated structure 

that position the hydroxyl group for optimal hydrogen bond geometry. In addition to hydrogen 

 
Figure II.6. Structural analysis of sequence preferences of RECON and MPI_MSD. At positions 
32 (A), 33 (B), and 74 (C), RECON and MPI_MSD showed consistent difference in sequence 
preference in the VH3-23 benchmark. Circled in red are positions that differ between the two 
structures. Shown in parenthesis are per-residue energy scores in REU summed across all post-
minimization states. Shown above are post-minimization structures from designs generated by 
RECON and MPI_MSD. Structures shown in panels A and C are from the 1S78 complex, and 
those in panel B are from the 3BN9 complex. 
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bonding, threonine scores more favorably on the basis of increased van der Waals attractive forces 

of the additional methyl group with surrounding atoms. At this position, asparagine is the germline 

amino acid, which was recovered by neither RECON nor MPI_MSD.  

Incorporating backbone motion results in increased recapitulation of evolutionary 

sequence profile 

From our initial benchmark results, we did not observe a difference in evolutionary 

sequence similarity for designs created with fixed backbone versus backbone minimization 

protocols (Figure II.5D). However, as previous reports have shown the utility of incorporating 

backbone motion into a design protocol (Harbury et al., 1998; Hu et al., 2007; Humphris and 

Kortemme, 2008; Mandell and Kortemme, 2009), we hypothesized that the initial minimization of 

structures before entering them into multi-specificity design reduced the impact of alternating 

backbone minimization with design. We hypothesize that backbone movement should have a 

larger impact on design of structures that have not been pre-minimized. To test this hypothesis, we 

repeated the benchmark with structures that had not been pre-minimized, and performed multi-

specificity design with three protocols: 1) fixed backbone design, 2) alternating design with 

minimization of φ, ψ, and χ angles, and 3) alternating design with backrub movements. The 

backrub motion involves rotation of a rigid backbone around axes between nearby Cα atoms, and 

has been shown to recapitulate alternative backbone conformations in high-resolution crystal 

structures (Davis et al., 2006) as well as improving prediction of the conformation of point mutant 

side chains (Smith and Kortemme, 2008). We predicted that a design protocol including backrub 

motions between design rounds should result in the highest agreement to evolutionary sequence 

profiles, given the sampling of more biologically relevant conformational space than simple 

minimization. We therefore analyzed the similarity to evolutionary sequence profiles for the top 
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ten designs produced by the three methods and compared to evaluate whether backbone motion in 

this context confers any additional benefit. As expected, incorporating backrub movements results 

in a statistically significant increase in similarity to evolutionary profiles as compared to a fixed 

backbone protocol or one involving minimization (Figure II.7). This agrees with previous studies 

indicated that backrub motions are able to sample biologically relevant conformational space, and 

shows that backrub motions can be incorporated in a multi-specificity context to provide more 

robust results in terms of evolutionary sequence recovery.  

  

 
Figure II.7. Incorporation of backbone motion into RECON recapitulates evolutionary 
sequence profiles in un-minimized structures. Multi-specificity design using RECON was 
repeated on structures that had not been previously energy minimized to evaluate the 
benefit of incorporating backbone movements. Designs were generated using either a fixed 
backbone protocol (Fixed BB), alternating rounds of φ, ψ, and χ angle minimization 
(Minimize), or using backrub motions (Backrub). P values were generated by a paired two-
tailed t test. 
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Advantage of multi-specificity vs. single-state design 

In previous works involving both germline antibodies and promiscuous proteins, the 

difference in sequence recovery between sequences generated by single-state and multi-specificity 

design has been analyzed (Humphris and Kortemme, 2007; Willis et al., 2013). Multi-specificity 

design in both cases was shown to recover the native or germline sequence at a higher rate than 

single-state design, supporting the proposition that the increased performance of multistate design 

justifies the increased computational complexity. Given the increased performance of RECON in 

native sequence recovery, we hypothesized that multi-specificity design performed by RECON 

would result in a larger difference in germline vs. mature sequence recovery in the germline 

antibody dataset. We therefore performed fixed backbone single-state design for each complex in 

this dataset and calculated recovery of the germline sequence and the mature antibody sequences. 

We can recover the difference in germline and mature sequence recovery as observed in (Willis et 

al., 2013), and show that design performed by RECON results in a larger difference between 

germline and mature sequence recovery compared to MPI_MSD (Supplementary Figure II.2). We 

can therefore conclude that in these cases RECON is more robust at generating germline-like, 

multi-specific sequences compared to MPI_MSD.  

 

Discussion 

Summary of results 

We have developed and benchmarked a new method for multi-specificity design, 

REstrained CONvergence in multi-specificity design (RECON). This algorithm operates by 

allowing each state to search sequence space independently with a restraint system that gradually 

encourages convergence between different states on a common sequence. Allowing each state to 
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adopt a unique sequence reduces the number of sequences required to search in order to find a 

native-like low energy solution. In two separate benchmark sets consisting of ten total cases, we 

were able to show that RECON, both with and without iterative backbone minimization cycles, 

was able to more accurately recapitulate the native, multi-specific sequence of input proteins than 

the existing MSD application in ROSETTA, MPI_MSD. In addition, we analyzed agreement of 

designed sequences with observed evolutionary sequence profiles to measure how well MSD 

simulates natural sequence tolerance. In large design problems with many residues being 

optimized simultaneously, RECON was able to create sequences that more closely mirrored the 

natural distribution of sequences seen in evolutionary profiles.  

Diversity in predicted sequence tolerance 

In this study we analyzed the degree of convergence of a designed protein sequence profiles 

with the natural sequence variation seen in evolutionary homologs. It is well known that many 

proteins tolerate a wider variety of sequences than simply the native sequence (Allen et al., 2010; 

Howell et al., 2014; Humphris and Kortemme, 2008; Smith and Kortemme, 2011) - therefore a 

major goal of multi-specificity design is to recover not only the native sequence of a protein, but 

also sequence variations that are tolerated by all binding partners. We found that RECON is able 

to recover evolutionary sequence profiles more effectively in large complexes - however, it is clear 

from analysis of sequences sampled by each method (Supplementary Figure II.1) that MPI_MSD 

is exploring a much larger sequence space. In certain cases, this diversity of sampling may be 

desired, especially in cases where the interface with both binding partners is compatible with a 

large number of sequence polymorphisms. Our benchmark cases suggest that sampling near the 

energy minimum for each individual state is sufficient to recovery the sequence space compatible 

with all states. However, in cases where generating sequence diversity is at a premium, for example 
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to explore the tolerated sequence space of a given backbone, it may be advantageous to use 

RECON and MPI_MSD as complementary approaches. 

Comparison of rotamer packing algorithms 

RECON in the current study was used with the standard ROSETTA simulated annealing 

rotamer optimization protocol (Kuhlman and Baker, 2000) – however, other rotamer optimization 

methods have shown superior performance in certain instances. For example, MPI_MSD uses a 

modified form of the FASTER algorithm (Allen and Mayo, 2010), referred to as backbone-

minimum-energy conformation followed by single-residue perturbation/relaxation (BMEC-sPR)  

(Leaver-Fay et al., 2011a). Leaver-Fay et al. compared the effectiveness of these two algorithms 

and found that BMEC-sPR consistently reached the global minimum solution in a higher 

proportion of cases (Leaver-Fay et al., 2011a). Additional rotamer optimization algorithms have 

been adapted for use in MSD, such as dead-end elimination (Yanover et al., 2007), probabilistic 

graphical models (Fromer et al., 2010), and iterative batch relaxation/single perturbation and 

relaxation (Allen and Mayo, 2010). The benefit of RECON is that it can be adapted to work with 

any single-state-compatible rotamer optimization method, as communication between different 

states is conducted solely by the restraint system. This opens up the possibility of adapting many 

more optimization methods for MSD. 

Discussion of fixed backbone versus backbone flexibility in restrained multi-state design 

One important benefit of RECON is the ability to incorporate backbone motion into an 

MSD protocol. Traditionally protein flexibility in MSD has been modeled by including multiple 

backbone conformations as input states (Allen et al., 2010; Ambroggio and Kuhlman, 2006; Davey 

and Chica, 2014; Howell et al., 2014; Kapp et al., 2012). This is a reasonable strategy for running 

MSD using RECON. However, RECON offers the benefit that each state can be subject to 
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additional backbone minimization between design rounds. When incorporating backbone motion 

into design the conformational and sequence space explodes, making it difficult to reach a global 

minimum. However the fact that RECON reduces the sampling needed to reach the optimal 

sequence allows for more search space to be explored. We have shown that incorporating backbone 

flexibility in the form of backrub motions can improve accuracy of sequences when applied to un-

minimized structures. Single-state design protocols have successfully incorporated backbone 

movement, allowing the introduction of mutations that would have been unfavorable on the 

original backbone (Harbury et al., 1998; Kuhlman et al., 2003; Mandell and Kortemme, 2009). 

The ideal protocol for flexible backbone design remains elusive, considering the different methods 

of backbone perturbation (Davis et al., 2006; Hu et al., 2007). In addition it remains unclear how 

to best alternate fixed backbone sequence optimization with backbone motion (Fung et al., 2008). 

RECON opens up the possibility of incorporating these backbone design methods into an MSD 

context. 

Negative design capabilities 

One of the most challenging aspects of MSD is the inclusion of unfavorable states to 

destabilize. The current implementation of RECON is limited in scope compared to approaches 

such as MPI_MSD due to the inability to perform negative design to disfavor certain states. This 

limitation is not fundamental as in principle unfavorable states could be designed against with an 

energy penalty. However, it is outside the scope of the current work to benchmark such an 

approach. MSD has been successful in engineering proteins when both including (Ashworth et al., 

2010; Grigoryan et al., 2009; Havranek and Harbury, 2003; Kortemme et al., 2004) and ignoring 

(Allen et al., 2010; Ambroggio and Kuhlman, 2006; Kapp et al., 2012) these negative design states. 

Bolon et al. have shown that including negative states produces designs that exhibit better 
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specificity between competing states (Bolon et al., 2005) – however, this comes at the cost of 

specificity for the target protein (Bolon et al., 2005; Fromer and Shifman, 2009), and therefore 

may not be ideal for every design problem. In addition, negative design states result in a 

significantly more complicated computational protocol – differences between backbone 

conformations can cause failures in rotamer placement that lead to artificially high energies 

(Leaver-Fay et al., 2011a). This complicates the inclusion of multiple backbone states in an MSD 

problem, which mimics the natural flexibility of a protein in solution and results in higher quality 

designs (Allen et al., 2010; Ambroggio and Kuhlman, 2006; Davey and Chica, 2014; Kapp et al., 

2012). Explicit negative design is not currently supported using RECON – the lack of an explicit 

fitness function makes it difficult to reconcile energies of positive states with negative ones. 

Grigoryan et al. used an intriguing “specificity sweep” protocol that alternates design rounds 

optimizing stability of positive states with specificity rounds, accepting mutations that destabilize 

the negative states without a negative effect on the positive ones (Grigoryan et al., 2009). A similar 

strategy could incorporate RECON to optimize stability and specificity without explicitly 

designing against a negative state. 

Integration of restrained multi-state design into ROSETTA code base 

RECON was designed with the intent to be easily integrated into the ROSETTASCRIPTS 

computational framework (Fleishman et al., 2011a). To this end we emphasize that RECON is 

compatible with any other protocol that is available within ROSETTASCRIPTS, which is not 

available for MPI_MSD. This makes it easier for users with experience running SSD protocols in 

ROSETTASCRIPTS to expand their capabilities by including RECON. This can be used to include 

additional conformational states, explicitly model bound and unbound conformations, or 

simultaneously design against multiple partners.   
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Methods 

Selection of databases for benchmarks 

Common germline gene-derived antibody complexes were selected and processed as in 

(Willis et al., 2013) – briefly, candidate complexes were selected by querying the Immunogenetics 

Information System (IMGT) 3D structural query system for antibodies derived from either VH1-

69, VH3-23, or VH5-51 germline genes (Kaas et al., 2004). Only complexes containing protein or 

peptide ligands were considered. Common germline antibodies were only considered for multi-

specificity design when derived from the same allele. Promiscuous proteins used were derived 

from the multi-specificity design study described in Humphris et al. (Humphris and Kortemme, 

2007). Complexes were selected to maximize diversity of structure and function, as well as to 

select proteins with diverse ligands. 

Preparation of structures for design simulations 

Structures were downloaded from the Protein Data Bank (PDB; www.rcsb.org), and 

manually processed to remove water and non-proteinogenic molecules. Any chain breaks were 

closed using kinematic loop closure (Stein and Kortemme, 2013). Due to extensive chain breaks 

in CDR loops, chains H and L in structure 3GBM were replaced by the same chains in 3GBN. 

Structures were subject to energy minimization in ROSETTA using the talaris 2013 score function 

(Leaver-Fay et al., 2011b). The lowest energy model of 50 energy-minimized models for each 

complex was selected for design. 

Multi-specificity design 

For common germline antibody multi-specificity design, amino acid sequences deriving 

from the VH gene were aligned using ClustalW sequence alignment (Larkin et al., 2007), and 

positions that varied in any one of the antibodies were specified for design. Germline sequences 
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were inferred from IMGT/3D Structure DB (Kaas et al., 2004). Designable residues in 

promiscuous proteins were selected as those present in the interface of all binding partners. To 

define interface residues, a set of filters was applied to select residues that are likely to engage in 

interactions with the opposing chain. The first filter eliminates any residue with a Cβ distance 

larger than 10 Å from the closest residue in the opposing chain. Residues were then selected that 

either had a heavy atom within 5.5 Å of a heavy atom across the interface, or those with an angle 

of less than 75° between two vectors, Ca-Cβ of the residue and Cβ-Cβ to the closest residue Cβ 

on the opposing chain. This vector angle filter allows inclusion of residues where the sidechain is 

oriented to face the opposing chain. In addition, any residues at the interface on the side of the 

binding partner were specified for repacking. Identical residues for design and repacking were 

used for both RECON and MPI_MSD. For RECON benchmarking, fixed backbone design was 

used with 4 rounds of rotamer packing. RECON constraints were ramped through the 4 rounds of 

design using convergence restraints of 0.5, 1.0, 1.5, and 2.0 REU. Sequence convergence was 

enforced at the end of the protocol using a greedy selection algorithm. RECON was also 

benchmarked with backbone minimization – this protocol was identical to the fixed backbone 

protocol with the addition of a cycle of minimization of φ, ψ, and χ angles after each design round. 

At the end of the backbone minimization protocol we performed one full round of a ROSETTA relax 

protocol, which involves rotamer packing and minimization using a gradually increasing repulsive 

force (Combs et al., 2013). In designs performed with backrub motions, all backbone atoms on the 

protein chain being designed were specified as pivot residues - the backrub motion as implemented 

in ROSETTA is described in detail in (Smith and Kortemme, 2008). MPI_MSD was run with default 

parameters, with the number of rounds defined as 15 times the number of designable residues 

(Leaver-Fay et al., 2011a).  For MPI_MSD, the fitness function was defined as the sum of energy 
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of the complexes. Single-state design was run as four rounds of fixed backbone rotamer 

optimization, using the same designable and repackable residues as previously specified. The 

talaris 2013 scoring function was used for all methods of design.  

Quantitative measures for analysis of resulting sequences  

For each complex, 100 designs were created as described using both RECON and 

MPI_MSD applications. Sequence logos were created using the Berkeley web logo server 

(http://weblogo.berkeley.edu). Bitscore was computed for each design trajectory, defined as the 

Shannon entropy of each amino acid occurring at each designed position, described in (Schneider 

and Stephens, 1990; Willis et al., 2013). Bitscore was calculated using the following equation: Ii 

= pi x log2(20 x pi), where i represents the amino acid and pi is the frequency in the top ten designs. 

When pi is 100% the bitscore becomes 4.32, which was used as the maximum possible bitscore in 

our calculations. To calculate native sequence recovery, the summed bitscore of the native amino 

acid at each position was divided by the sum of the bitscore of all amino acids at all positions. 

Designs were analyzed on the basis of the fitness of the top ten designs, with fitness defined as the 

sum of ROSETTA energy of all states, and native sequence recovery. ROSETTA energy was reported 

in all cases with convergence restraints subtracted from the total. 

To generate an evolutionary sequence profile we used PSI-Blast with default parameters, 

querying a non-redundant protein database (Altschul et al., 1997; Pruitt et al., 2005). This position-

specific scoring matrix (PSSM) of amino acid frequencies was then compared to a PSSM 

constructed from observed frequencies in the top ten designs by fitness resulting from RECON or 

MPI_MSD. To compare PSSMs we used a modified Sandelin-Wasserman similarity score 

(Sandelin and Wasserman, 2004). This score was calculated by computing the squared difference 

for each amino acid frequency at each position. The squared difference was summed for all amino 
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acids at a given position(Willis et al., 2013) and subtracted from two to yield a similarity score 

from 0 (no similarity) to 2 (identical). This value was then normalized by a factor of two to yield 

a percent similarity for each position and summed over all designed positions to give an overall 

similarity score. To reduce background noise when comparing PSSMs we only compared positions 

that had any observed mutations in the top ten designs produced by any design method. Inclusion 

of positions where no mutations are observed would inflate evolutionary similarity values for all 

methods. This reduced the total number of positions considered from 200 among eight benchmark 

sets to 97. In the benchmark cases of un-minimized structures, eliminating positions with no 

variation by any method left 151 of 200 possible positions. 
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Supplemental Information 

 

Supplementary Figure II.1. Sequence space explored by RECON and MPI_MSD. The sequence 
space explored by RECON and MPI_MSD is compared to the sequence profiles of the top ten 
designs for the VH5-51 benchmark case. Sequence space was determined as any amino acid that 
was sampled at any point throughout the design protocol. A similarity score was calculated 
between the sequence space explored by an algorithm and the top ten designs produced by the 
same algorithm. 

  

WebLogo 3.3

0.0

1.0

2.0

3.0

4.0

bi
ts VVAPEQ

5
TGALFRKSTTD

10
H
Y
L
I
E
MDEIM

15
M
IF
T
A
F
Y
S
T
V
G
I
Y
TQ

20
M
I
S
IASKITN

25
V
YNSPWIVA

30
M
T
G
R

WebLogo 3.3

0.0

1.0

2.0

3.0

4.0

bi
ts VVPEQ

5
TGFSKTD

10
YIMEI

15
TASGTQ

20
IASKITN

25
YNSPIA

30
T
R

WebLogo 3.3

0.0

1.0

2.0

3.0

4.0

bi
ts

L
S
N
T
V
M
K
D
IF
V
R

S
M
H
E
A
Y

C
R
E
Q

5

A
E
T
A
G
T

H
Q
V
S
A
M

Q
Y
N
V
T
K
S
Q

C
F
L
D
T

10
M
A
F
C
Y
H
A

T
E
M
C
Q
V
T

M
D
A
Q
E
R

N
G
D
E
Q
E
L
V

15

Q

E
M
G
H
A
C
S
Q
R
G
T
E
F
Y
C

D
Q
Y
E

20
G

N
V
I
C
D
A
K

N

R
D
G
S
Q

T
H
N
R
G
N

25
Y
T
K
V
H
F
N
S
E
T
H
D
N
S
R
IP
N

K
G
Q
A
R
V
C
G
S
D
A

30
C
M
A
G

WebLogo 3.3

0.0

1.0

2.0

3.0

4.0

bi
ts VVAQ

5
TGAHSKD

10
YVRQEV

15
CAGVEQ

20
ICASTNN

25
H
F
D
TPRA

30
G

Similarity score: 92.3% 

Similarity score: 79.5% 

RECON sequence space

MPI_MSD sequence space

RECON top ten designs

MPI_MSD top ten designs



 60 

 

 

Supplementary Figure II.2. Germline and mature sequence recovery from multi-specificity and 
single-state design. Sequence recovery compared to mature and germline sequences is compared 
for designs generated by RECON and MPI_MSD multi-specificity design, compared to those 
generated by single-state design. 
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Supplementary Table II.1. Post-minimization fitnesses of benchmark sets. 
 

 Post-minimization fitness (REU) 
Protein/Germline gene RECON FBB RECON BBM MPI_MSD 

CheY -1113.5 -1119.7 -1119.2 
CR6261 -2532.6 -2537.7 -2532.0 
Elastase -1445.4 -1445.1 -1447.9 
FI6v3 -2506.0 -2515.2 -2506.2 
FYN -777.2 -780.3 -778.3 
PapD  -1903.5 -1891.4 -1908.8 
Ran -3675.2 -3716.4 -3755.8 

VH1-69 -5299.1 -5306.7 -5343.5 
VH3-23 -3410.0 -3427.1 -3479.9 
VH5-51 -2329.4 -2348.3 -2360.5 

 
Structures generated by design were energy minimized to relieve small clashes. Fitnesses reported 
are the sum of energy of all states. Best values in each row are shown in bold. 
 

 

Supplementary Table II.2. Performance of a control greedy selection algorithm. 

 Native sequence recovery (%) Fitness (REU) 
Protein/Germline 

gene 
RECON 

FBB 
Greedy 
selection  

RECON 
FBB 

Greedy 
selection 

CheY 80.6 60.0 -1093.1 -825.1 
CR6261 79.0 69.2 -2499.5 -1531.7 
Elastase 84.8 80.0 -1383.8 -767.5 
FI6v3 57.8 44.1 -2459.1 -1912.4 
FYN 100.0 100.0 -758.3 -712.3 
PapD  92.5 65.7 -1685.5 -1241.4 
Ran 87.1 73.9 -2682.3 -2637.4 

VH1-69 94.2 59.0 -3015.9 -2314.6 
VH3-23 55.3 27.2 -911.7 939.2 
VH5-51 65.9 40.1 -840.5 50.6 
Average 79.7 61.9 -1733.0 -1095.3 

 
Design of benchmark cases was repeated for a greedy selection algorithm, which lacks the ramping 
convergence restraints of RECON. This algorithm performs a single round of unrestrained design 
followed by a greedy selection of amino acids that maximize fitness over all states. 
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Supplementary Table II.3. Non-converging positions in the VH5-51 benchmark set. 

Position Converging 
count 

Non-converging 
count 

2 100 0 
5 100 0 
14 0 100 
16 100 0 
23 100 0 
24 0 100 
29 0 100 
30 100 0 
31 100 0 
32 52 48 
34 100 0 
40 100 0 
46 100 0 
48 0 100 
51 1 99 
52 0 100 
54 100 0 
58 1 99 
65 100 0 
70 100 0 
72 100 0 
74 100 0 
76 96 4 
77 100 0 
80 0 100 
84 100 0 
88 100 0 
93 100 0 
97 100 0 
98 0 100 

Number of positions 21 9 
Germline sequence 

recovery (%) 
66.1 74.0 

 
Failure to converge by the end of the RECON convergence restraint protocol was counted for each 
designed residue in the VH5-51 benchmark set, over 100 design trajectories.  
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CHAPTER III.  

Multistate design of influenza antibodies improves affinity and 

breadth against seasonal viruses 

 

Sevy, A. M., Wu N.C., Gilchuk I.M., Parrish E.H., Burger S., Yousif D., Nagel M.B.M., Schey 

K.L., Wilson I.A., Crowe J.E. Jr., Meiler J. Multistate design of influenza antibodies improves 

affinity and breadth against seasonal viruses. Manuscript submitted. 
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and created all figures in this chapter. I collaborated with N.C.W. and I.A.W. for crystallography 

and I.M.G. for hemagglutination inhibition assays. E.H.P. and D.Y. assisted in protein 

expression and purification. S.B. assisted with homology modeling experiments. M.B.M.N. and 

K.L.S. performed hydrogen-deuterium exchange experiments. 

 

Abstract 

Influenza is a yearly threat to global public health. Rapid changes in influenza surface 

proteins resulting from antigenic drift and shift events make it difficult to readily identify 

antibodies with broadly neutralizing activity against different influenza subtypes with high 

frequency, specifically antibodies targeting the receptor binding domain on influenza 
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hemagglutinin (HA) protein. We developed a new computational design method that is able to 

optimize an antibody for recognition of large panels of antigens. To demonstrate the utility of this 

multistate design method, we used it to redesign an anti-influenza antibody against a large panel 

of over 500 seasonal hemagglutinin antigens of the H1 subtype. As a proof of concept, we tested 

this method on a variety of known anti-influenza antibodies and identified those which could be 

improved computationally. We generated redesigned variants of antibody C05 to the HA receptor 

binding site and experimentally characterized variants that exhibited improved breadth and affinity 

against our panel. C05 mutants exhibited improved affinity across the entire H1 subtype HA panel 

by stabilizing the CDRH3 loop and creating favorable electrostatic interactions with the antigen. 

These mutants possess increased breadth and affinity of binding without sacrificing potency 

against existing targets, surpassing a major limitation up to this point.  

 

Introduction 

Influenza is a yearly threat to global public health. As many as 56,000 deaths and 710,000 

hospitalizations annually can be attributed to influenza infection in the U.S. (Rolfes et al., 2016). 

In addition, commonly used influenza therapeutics have been only modestly effective (Jefferson 

et al., 2014), and vaccine efficacy has been variable depending on the year (Belongia et al., 2016). 

The inability to formulate a consistently effective vaccine has been a major hindrance to 

developing sustained, effective influenza immunity on the population level. 

A major factor that limits influenza vaccine efficacy is the fact that pre-existing antibodies 

frequently lack the ability to react with current circulating strains. Of particular interest are 

antibodies that target the receptor-binding site (RBS) of the HA protein, the site at which the viral 

protein interacts with the host cell receptor, sialic acid. These antibodies typically neutralize virus 
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very potently (Ekiert et al., 2012; Krause et al., 2012; 2011; Lee et al., 2014; Schmidt et al., 2015; 

Whittle et al., 2011), as they directly inhibit binding of virus to the host cell receptor, and are very 

prevalent in the immune response (Schmidt et al., 2015). However, as the region of HA around the 

RBS is highly variable, antibodies to this domain tend to have restricted specificity to strains within 

a single subtype (Krause et al., 2011; 2012; Lee et al., 2014; Whittle et al., 2011).   

Recently, many antibodies have been described that mimic the chemical interactions of the 

sialic acid receptor with HA (Ekiert et al., 2012; Krause and Crowe, 2014; Krause et al., 2011; 

2012; Lee et al., 2014; Schmidt et al., 2015; Whittle et al., 2011). These antibodies tend to be 

broader in their recognition of influenza than others targeting the RBS since they primarily interact 

with conserved residues required for viral infectivity. The existence of such antibodies has 

suggested that broad, RBS-specific antibodies elicited by vaccination may be sufficient to protect 

against future strains, and could become one of the primary components of a proposed “universal 

flu vaccine” (Krause and Crowe, 2014; Wu and Wilson, 2017). One such antibody, C05, has 

remarkable breadth of recognition of HAs from certain strains within both group 1 and group 2 

viruses, and interacts with the HA molecule using a single antibody hypervariable loop (Ekiert et 

al., 2011). However, this antibody still has incomplete breadth against HAs within a particular 

subtype – for example, it is unable to recognize H1 strains circulating in humans after the 2009 

H1N1 pandemic, primarily due to a lysine insertion at position 133a (Ekiert et al., 2012; Wu et al., 

2017).  

Given the limitations of naturally occurring human antibodies, we sought in this study to 

use computational design to increase the breadth of existing anti-influenza antibodies. 

Computational design has been successful in redesigning a single antibody-antigen interaction 

(Lapidoth et al., 2015; Lippow et al., 2007; Willis et al., 2015); however, until recently, it has been 
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challenging to include multiple antibody-antigen interactions in a single design simulation to 

optimize the antibody sequence for recognition of multiple antigens simultaneously. We developed 

a method that significantly improves the computational efficiency of such multi-specificity design 

(Sevy et al., 2015). To further improve the utility of this method, we re-configured the method to 

run in parallel on multiple computing nodes, enabling much larger scale simulations, and validated 

this method on redesign of anti-influenza antibodies.  

As a proof of principle of the utility of this computational method, we applied the method 

to the redesign of existing human antibodies against viruses of the influenza A H1 subtype. We 

expressed and tested a panel of computationally generated variants of antibody C05 and identified 

mutant antibodies that bound one influenza strain not recognized by C05 and increased affinity 

against a strain that is recognized with low affinity by C05. 

 

Results 

Experimental workflow 

We sought to use RECON multistate design to increase the breadth of certain anti-influenza 

monoclonal antibodies. The RECON multistate design method was written originally to process 

states serially, which limited both the number of states that could be included and the number of 

designed residues in each state (Sevy et al., 2015). To address this limitation, we refactored the 

RECON algorithm to run in parallel, by handling each state on a separate processor and 

implementing Message Passing Interface (MPI) communication between the different processors 

(Supplementary Figure III.1). The improved parallel RECON protocol therefore is able to handle 

much larger ensembles of input states. We decided to test application of the parallel RECON 

protocol on redesign of influenza antibodies against a set of seasonal virus variants (Figure III.1). 
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As a proof of principle for this method, we computationally redesigned existing antibodies against 

an antigenic panel, then expressed and tested antibody variants for improvement in both breadth 

and affinity across the panel. 

Benchmark of large-scale design 

To test the utility of the parallel RECON protocol, we first sought to redesign an anti-

influenza antibody for increased breadth of binding to diverse hemagglutinin (HA) antigens from 

a large panel of seasonal influenza virus strains. We created homology models of HA proteins 

from the sequences of 524 viruses in the Influenza Research Database (FluDB) using the 

RosettaCM multi-template comparative modeling protocol (Bender et al., 2016; Song et al., 2013; 

Zhang et al., 2017). We paired each of the 524 modeled viral proteins with antibody C05 (Ekiert 

et al., 2012) and redesigned the antibody sequence for broad recognition of antigens in the viral 

 

 

Figure III.1. Experimental workflow of multistate design experiment. Influenza antibodies 
were modeled against a panel of seasonal influenza hemagglutinin (HA) targets and designed 
for affinity and breadth (A). The optimized sequences for each antibody were analyzed (B), 
and mutants with favorable properties were expressed and the binding kinetics were measured 
using biolayer interferometry (C). Shown are binding kinetics to the HA of the A/Puerto 
Rico/8/1934 strain.  
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panel. We successfully ran multistate design against this large seasonal virus HA panel overnight 

on a computing cluster, running 50 independent design simulations in 13.2 hours, distributed over 

524 processors (Supplementary Figure III.2). The design simulations scaled well with additional 

states, and the only limitation on number of states was the number of available processors on our 

computing cluster. The designed models showed significant variability in sequence, specifically 

in the antibody CDRH3 region, suggesting that this antibody could be improved for breadth of 

binding to diverse HA antigens in a larger panel. 

Design of H1 subtype breadth in influenza HA antibodies 

Next, we sought to design antibodies with increased breadth among the H1 subtype of 

influenza. We first identified all H1 subtype HA proteins with crystal structures in the Protein Data 

Bank (PDB) with a resolution better than 3.5 Å (Cho et al., 2013; DuBois et al., 2011; Gamblin et 

al., 2004; Lin et al., 2009; Liu et al., 2009; Schmidt et al., 2013; Xu et al., 2011; 2010; 2012; Yang 

et al., 2010; 2014b) (Supplementary Table III.1). This search yielded 13 unique antigens to include 

in the design panel. Next, we identified seven antibodies that are known to bind at least one H1 

HA protein in the panel, and that have high-resolution (better than 3.5 Å) co-crystal structures in 

the PDB (Ekiert et al., 2012; Hong et al., 2013; Lee et al., 2014; Schmidt et al., 2013; 2015; Whittle 

et al., 2011). We then created complexes of each antibody with all 13 viral proteins in the panel 

and ran RECON multistate design to generate antibody variants with increased breadth among the 

panel (Figure III.2).  

Some antibodies, such as mAb 5J8, showed a modest improvement across all targets in the 

panel, but not a drastic improvement for any target (Figure III.2A). Other antibodies, such as mAbs 

CH65, CH67, and 641 I9, showed a strong energetic improvement for some targets, with a 

deleterious effect on other targets. These designs were considered unsuitable for testing due to the 
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fact that they were predicted to have a decrease in breadth, albeit with an increase in affinity for 

certain targets. The antibody in this study with the strongest improvement for several targets 

 

Figure III.2. Fitness and optimized sequences of influenza antibody multistate designs. A. 
Seven anti-influenza antibodies (x-axis) were designed against the 13 H1 targets in the panel 
(right legend). 100 designs were generated and the change in fitness from the wild-type to the 
best design is shown in a heat map. For each design, the fitness was calculated as a normalized 
sum of the ROSETTA score of the antibody-antigen complex and binding energy and expressed 
as a Z score. B. The optimized sequences from multistate design of antibody C05 are shown as 
a sequence logo. Amino acids are colored based on chemical properties. The sequence of wild-
type C05 is shown below. 
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without sacrificing affinity for others was C05. We decided to validate C05 variants 

experimentally in order to test the effects of multistate design mutations on affinity and breadth.  

Experimental validation of C05 mutants 

We next sought to validate the predicted increases in breadth and affinity of binding for 

C05 variant antibodies. We observed many suggested mutations in the CDRH1 and CDRH3 loops 

of C05 (Figure III.2B). The majority of these mutations were focused in the distal end of the 

CDRH3 loop, which is in close contact with the antigen. We modeled the effects of each suggested 

mutation as a single or double amino-acid substitution and measured the effect on the energy of 

the antibody-antigen complex (Supplementary Figure III.3). Of the mutations introduced, only a 

small number appeared to contribute the majority of the energetic improvement. We focused our 

subsequent experimental efforts on mutations that were predicted to have the largest impact on 

energy of binding. Out of 71 single or double amino acid mutants introduced by multistate design, 

27 passed a quantitative and qualitative evaluation for experimental characterization 

(Supplementary Table III.2). The quantitative filter allowed mutations with an improvement in 

fitness of greater than 0.5 standard deviations. The qualitative filter consisted of visual inspection 

and accounting for known pathologies in the ROSETTA score function. 

We next synthesized a group of cDNAs for antibody variable genes encoding 33 C05 

variant antibodies, comprising 27 single or double amino acid mutants that passed the previously 

discussed filters and 6 combinations of mutations that were predicted to result in the greatest 

improvement in stability and binding affinity (Supplementary Table III.2). We expressed and 

purified the variant antibodies as IgG molecules and measured their activity and binding kinetics 

using the FortéBio Octet system.  

We observed two mutants that exhibited increased affinity and breadth across the panel 
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(Figure III.3). The majority of the effect on affinity was focused on strains that were recognized 

by C05 with low affinity, namely the avian strain A/mallard/Alberta/35/1976 and the human strain 

A/Puerto Rico/8/1934. Full binding data of C05 mutants over all strains tested in this study are 

shown in Figure III.3 and Supplementary Figure III.4. Mutations V110P and A117E in the CDRH3 

loop both increased affinity for A/mallard/Alberta/35/1976 by roughly 4- and 3-fold respectively, 

with the combination of both mutations improving affinity by roughly a factor of 4-5. Interestingly, 

the single mutations each increased the on-rate of the antibody-antigen interaction, with a slight 

decrease in off-rate. The double mutant showed a great increase in on-rate with a concomitant 

increase in off-rate which limited the total effect on affinity. The V110P mutation also increased 

breadth by facilitating binding to a new strain that was not recognized by wild-type C05, A/Puerto 

Rico/8/1934. C05 V110P recognized A/Puerto Rico/8/1934 with a modest but observable affinity 

 
Figure III.3. C05 mutants show increased affinity against low affinity strains. Binding kinetics 
were measured on a FortéBio Octet Red system with four dilutions of antibody. Data were fit 
to a 2:1 binding model. 
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in the µM range, whereas the wild-type antibody did not show any binding activity, even when 

tested at high concentrations. We estimate that this mutation contributed to an increase of affinity 

by a factor of at least 4.8 for this antigen. These mutants were also tested for binding to the 

remaining members of the panel; however, apart from the two previously discussed strains and 

two high affinity strains (A/Solomon Islands/03/2006 and A/Thailand/CU44/2006), no binding 

was observed for either the wild-type or variant antibodies (data not shown).  

Therefore, C05 variant antibodies possessed increased affinity for two weakly bound 

strains; however, we were interested in whether these variant antibodies lost affinity for strains 

that were recognized previously. Several groups have reported a tradeoff between affinity and 

breadth, in which mutated antibodies that have gained affinity for several targets lose affinity for 

other targets (Babor and Kortemme, 2009; Willis et al., 2013; Wu et al., 2017). This pattern has 

been observed for antibody C05 in experiments designed to improve affinity for H1 and H3 viruses 

(Wu et al., 2017). We observed that the mutants in this study maintained high affinity for strains 

in the panel that were previously recognized by C05 (Figure III.4 and Supplementary Figure III.4). 

We compared the binding activity of the mutant from this study, V110P-A117E, to an 

experimentally derived mutant from a study done by Wu et al., referred to as VVSSGW (Figure 

III.4) (Wu et al., 2017). While the VVSSGW variant possessed increased H1 affinity by a greater 

magnitude, this improvement came at the cost of H3 affinity, which was reduced. The V110P-

A117E mutation increased affinity by a more moderate factor, but did not reduce affinity for either 

of these two strains (Figure III.4). In addition, we compared the binding activity to a panel of 

strains of different subtypes (Supplementary Figure III.4). In general, the V110P-A117E mutation 

is able to maintain high affinity binding to these heterosubtypic strains. Notably, all strains which 

were accounted for in the computational panel displayed an increase or no effect on binding. In 
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the case of the H2N2 strain A/Japan/305+/1957, we do see a roughly 2 fold decrease in binding; 

however, it is worthwhile to note that the VVSSGW variant has no detectable binding to this strain 

(Wu et al., 2017). Therefore, the computational approach appears to have an advantage in 

preserving high affinity binding across a panel, at least in this analysis. 

To investigate whether the newly observed binding activity translated to an increase in 

biological activity of this antibody variant, we performed a hemagglutination inhibition (HAI) 

assay with A/Puerto Rico/8/1934 and A/Solomon Islands/03/2006 viruses (Table III.1). 

Surprisingly, both the wild-type and redesigned antibody were highly potent in inhibiting A/Puerto 

Rico/8/1934 virus, despite undetectable affinity for the wild-type antibody and low affinity for the 

variant. This finding is consistent with previously reported data on antibody C05, where 

neutralizing activity was observed even for viruses with undetectable binding (Ekiert et al., 2012).  

 

Figure III.4. C05 double mutant does not lose affinity for high affinity strains. Affinity is shown 
for two high affinity strains, A/Solomon Islands/03/2006 (H1 SI06) and A/Hong Kong/1/68 
(H3 HK68). Affinities are compared to an experimentally derived mutant from Wu et al., 
referred to as VVSSGW. Relative KD was determined by ELISA for V110P-A117E, and by 
Octet for VVSSGW.  
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Structural characterization of a redesigned C05 variant 

We next sought to confirm the accuracy of our models of the C05 double mutant V110P-

A117E. Therefore, we determined the crystal structure of the HA1 subunit from A/Hong 

Kong/1/1968 (H3N2) in complex with the V110P-A117E C05 variant at a resolution of 3.25 Å 

(Supplementary Table III.3). Four antibody-antigen complexes were observed in the asymmetric 

unit. Overall the CDRH3 loop was predicted well by the ROSETTA models, with an RMSD of 1.09 

Å over all atoms and 0.43 Å over Ca atoms. The mutation V110P points towards the framework 

of the antibody and has few contacts with the antigen, similar to the positioning of the wild-type 

valine (Figure III.5A). This residue has a φ angle of -57.9° in the mutant structure and -61.5° in 

the wild-type structure, both of which agree with the preferred φ of proline of -65° that limits its 

conformational freedom.  This explains why a proline at this turn in the CDRH3 loop stabilizes 

the active conformation (Morris et al., 1992). This finding is consistent with observations made by 

Wu et al. in their study of in vitro C05 mutagenesis (Wu et al., 2017). We predicted that the 

mutation A117E improves electrostatic interactions between the antibody and the antigen, 

interacting with a lysine at position 125a (H3 numbering) of the antigen (Figure III.5B). The crystal 

structure was obtained in complex with an HA protein (A/Hong Kong/1/1968) that does not have 

a lysine at this position (Figure III.5A), so the presence of this interaction could not be confirmed. 

However, E117 appears to be in position to make the electrostatic contact and occupy a similar 

space as in the model (Figure III.5). This hypothesized mechanism is also consistent with the 

observation that A117E is not universally favorable for all antigens – it confers an increase in 

Table III.1. Hemagglutination inhibition activity of both wild-type and mutant C05. 
Virus C05 WT C05 V110P 
A/Puerto Rico/8/1934 1.5 0.8 
A/Solomon Islands/03/2006 0.2 0.4 

Shown is the end titer point in µg/mL.  
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affinity for A/mallard/Alberta/35/1976 with a slight decrease in affinity for A/Puerto Rico/8/1934 

(Figure III.3), as evidenced by the fact that the double mutant is unable to recognize A/Puerto 

Rico/8/1934 whereas V110P can. 

As a complementary approach, we characterized the interaction of C05 V110P-A117E with 

the head domain of A/Solomon Islands/03/2006 HA using hydrogen-deuterium exchange mass 

spectrometry. We mapped the perturbation of hydrogen-deuterium exchange upon antibody-

antigen binding on both the epitope and paratope (Supplementary Figure III.5). We observed 

peptides originating from the CDRH3 loop to be most solvent occluded in the antibody-antigen 

complex, most notably at short time points (<1 min). This is in accordance with the predicted 

binding mode from the ROSETTA models. In addition, the epitope peptides shielded upon binding 

are located along the rim of the receptor-binding domain, which agrees with the models and crystal 

structure. 

 

Figure III.5. Crystal structure of the C05 V110P-A117E double mutant in complex with A/Hong 
Kong/1/68 head domain confirms the accuracy of the computational models. A. Structure of 
V110P-A117E is shown in complex with A/Hong Kong/1/68, with the 2Fo-Fc electron density 
contoured at 1.0 σ. B. Model of C05 V110P-A117E in complex with 
A/mallard/Alberta/35/1976, with predicted hydrogen bonding shown in dashed lines. RMSDs 
in Å over all atoms and Ca atoms are shown below.  
 

 

 



 76 

To test the effect of mutations on the thermodynamic stability of the antibody, we measured 

the melting temperature of variants using differential scanning fluorimetry (DSF). The variants 

mostly exhibited two melting transitions, one at approximately 62 °C and another at approximately 

69 °C, corresponding to the Fc and Fab domains, respectively (Supplementary Figure III.6). This 

finding agrees with previous data on IgG melting transitions (Ionescu et al., 2008; Vermeer and 

Norde, 2000). To confirm these domain assignments, we repeated the experiment with a cleaved 

Fab protein and observed the transition at ~70 °C (Supplementary Table III.4). As predicted, 

mutation V110P did increase the antibody stability by roughly 0.5 °C, although addition of A117E 

reduced stability by 0.6 °C (Table III.2). Notably, several other mutations also increased the 

melting temperature by a significant margin, including mutations that had a neutral or negative 

impact on binding affinity (Table III.2). Previous studies suggested that an increase of 1 °C is 

sufficient to increase affinity 10-fold (Willis et al., 2015). However, these results suggest that an 

increase in stability does not necessarily confer an increase in binding affinity.  

 

Table III.2. Thermodynamic stability of C05 mutants as measured by differential scanning 
fluorimetry (DSF). 

Variant Transition 2 (°C) Change from WT (°C) Significance 
C05 WT 69.8   
S27G F28P V110P 70.8 1.0 ** 
F28E 70.4 0.6 * 
Y35H V110P 70.8 0.9 ** 
V110P 70.3 0.5 * 
V110P A117E 69.2 -0.6 * 
A117E 69.2 -0.6 * 
D118R 70.6 0.8 ** 
D120R 70.3 0.5 * 
6 aa mutant 71.9 2.1 ** 

Statistical significance was assessed using a two-tailed T test. **p<0.005, *p<0.05 
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Tradeoff in breadth and affinity 

A common theme in design of antibody breadth is a tradeoff between breadth and affinity. 

This relationship has been shown both theoretically (Babor and Kortemme, 2009; Willis et al., 

2013) and in practice (Wu et al., 2017), and is a major motivation for computational methods that 

can account for hundreds of antigens during design, such as the RECON algorithm. To test if an 

antibody must sacrifice affinity for an individual target in order to acquire breadth, we repeated 

design of C05 against each of the antigens in the panel, using single-state design against each of 

the targets individually, instead of RECON multistate design. The results showed a tradeoff 

between breadth and affinity, as the single-state designed antibody was consistently better against 

each target than the multistate solution (Supplementary Figure III.7). For each of the antigens, the 

redesigned C05 for single-state optimized binding had lower total score than the optimal multistate 

C05, and 10 out of 13 had lower predicted binding affinity for single-state design than multistate 

design. This finding supports the idea that multistate design achieves a compromise between the 

optimal sequence for each individual target.  

 

Discussion  

Summary of results 

In this study, we report a novel protocol for multistate design of large, parallelized panels 

of influenza virus strains. We adapted a previously reported protocol for multistate design to run 

in parallel on a computing cluster and showed that this protocol can scale to very large (>500) 

panels of antigens. As a proof of principle, we applied this methodology to designing anti-

influenza antibodies for increased breadth against panels of seasonal H1 viruses. We report 

redesigned antibodies that have roughly a 5-fold increased affinity against one strain and now 
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detectable binding to another strain in the panel, without sacrificing affinity for any members of 

the panel. 

Large-scale panels in multistate design 

Multistate design has been successful in a number of different applications; however, it is 

generally applied to modulating specificity in protein-protein binding partners (Grigoryan et al., 

2009; Havranek and Harbury, 2003; Lewis et al., 2014), or modeling conformational ensembles 

of a single protein (Davey and Chica, 2014). We instead focused here on design of an antibody 

against a large ensemble of targets. In typical computational antibody design approaches, a single 

antigen or a small panel of representative antigens is modeled and assumed to represent the scope 

of antigenic variability (Fleishman et al., 2011b; Willis et al., 2015). However, using the protocol 

reported here, it should be possible to include a much larger panel of targets, easily making an 

antibody robust to antigenic variation. In this work, the affinity increases that we report (~5-fold) 

are modest compared to the increases reported in other reports that use experimental approaches 

(Wu et al., 2017) or computational approaches with single antigens (Willis et al., 2015). We expect 

that, as the size of the target panel increases, it will become increasingly difficult to find mutations 

that can improve affinity for some targets in the panel without sacrificing affinity for any other 

targets. Therefore, a modest increase in affinity may be more realistic when designing against large 

and diverse antigenic panels, especially when considering already high affinity complexes. 

However, the advantage of this approach is that the affinity-enhancing mutations can be selected 

to be compatible with all targets, which is often not the case with experimental approaches that do 

not account for multiple states (Wu et al., 2017). 
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Mechanisms of action 

We hypothesize that the V110P mutant reported in this work enhances affinity by 

increasing the thermodynamic stability of the antibody. It is common that affinity-enhancing 

mutations are located in positions that do not directly contact antigen and function by increasing 

antibody stability and rigidifying CDR loops (Wang et al., 2013; Xu et al., 2015). This 

phenomenon is seen in in silico engineered antibodies, mutations introduced by directed evolution, 

and naturally occurring somatic mutations from mature antibodies. We also generated several 

mutants that increased thermodynamic stability but failed to improve binding affinity, showing 

that increased stability is not sufficient by itself for increase of binding to a target. A mutant with 

increased affinity but decreased thermodynamic stability, A117E, is predicted to do so by 

establishing electrostatic contacts on the antigen, which has traditionally been a difficult task in 

ROSETTA protein interface design (Stranges and Kuhlman, 2013). This mutation is also more 

selective than V110P, only improving affinity for strains that have the correct electrostatic partner 

in position to make contact. The difference in mechanism between these two mutations illustrates 

the balance between breadth and affinity in antibody evolution. Mutations that improve only 

antibody stability without directly contacting the antigen are more likely to be beneficial across a 

panel of targets, whereas mutations that require specific electrostatic partners are likely to be more 

selective. 

Implications for influenza studies 

The antibody highlighted in this work, C05, is a clinically relevant antibody of interest for 

therapeutic and vaccine development. Since it targets a very small epitope on the receptor binding 

domain of influenza, it potently neutralizes certain viruses from both H1 and H3 subtypes (Ekiert 

et al., 2012). Using ROSETTA design and a trimeric linker, Strauch et al. were able to engineer a 



 80 

protein binder targeting the influenza receptor binding domain that was based on the C05 epitope 

(Strauch et al., 2017). Our work suggests that C05 can be optimized further for affinity and breadth. 

One limitation to C05 binding is that it is susceptible to the 133a insertion that emerged after the 

2009 H1 pandemic (Ekiert et al., 2012). Interestingly, one of the strains that was bound more 

tightly by C05 variants, A/mallard/Alberta/35/1976, is an avian virus that contains the lysine 

insertion at 133a characteristic of C05 escape (Wu et al., 2017). This finding suggests that C05 

recognition of K133a strains may be possible with further optimization, improving this already 

potent antibody further. 

Methods 

Structure preparation 

To generate templates for multistate design, we downloaded structures of the influenza 

hemagglutinin (HA) proteins and co-complex structures of influenza-binding antibodies from the 

Protein Data Bank (PDB). The structures were processed manually to remove waters and non-

protein residues. The heavy chain constant region 1 (CH1) and light chain constant region (CL) 

domains of antibody structures were removed from the structure manually, and the structure was 

renumbered starting from residue 1. The HA structures were truncated to the head domain based 

on the start and end residues of the structure in PDB ID 4yk4. To generate mock complexes of 

antibody and antigen, the antigens in the panel were aligned to the antigen in the co-crystal 

structure of each antibody using the structural alignment feature in PyMOL (Schrodinger, LLC, 

2015). To increase diversity of designed sequences, we performed replicates of multistate design 

using all copies of antibodies included in the asymmetric unit of the co-crystal structure and 

included all output models in our analysis. All HA sequences are denoted in H3 numbering. 
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Homology modeling 

For modeling of large panels of HA structures, we first downloaded all unique H1 HA 

sequences from the Influenza Research Database (Zhang et al., 2017), which yielded 8,725 

sequences. To reduce this panel to a size that could be processed on our computing hardware, we 

clustered these sequences at 95% homology using the CD-HIT software (Fu et al., 2012) to yield 

524 sequences for homology modeling. We used RosettaCM to generate homology models based 

on 13 H1 HA template structures (Song et al., 2013). The top 5 templates in sequence homology 

were used with the multi-template RosettaCM protocol. 250 models were generated for each HA 

target, and the lowest energy model was moved forward for multistate design. 

RECON multistate design 

For inclusion in design, we considered any residue on the antibody with a heavy atom 

within 7 Å of a heavy atom on the HA. Residues on the HA that fulfilled the same distance cutoff 

were included as residues available for repacking. We ran RECON multistate design with four 

rounds of a ramping sequence constraint (Sevy et al., 2015). Backrub movements were performed 

on the backbone of the designable region of the antibody in between rounds of sequence design, 

to increase diversity (Smith and Kortemme, 2008). Designed models were refined by ROSETTA 

relax, with constraints to the starting coordinates to prevent the backbone from making substantial 

movements. Constraints were placed on all Ca atoms with a standard deviation of 1.0 Å. 

Sequences generated by multistate design were visualized using the WebLogo tool (Crooks et al., 

2004). For RECON multistate design benchmarking, we included an ensemble of 524 antibody-

antigen pairs, where the antigens were homology models made by RosettaCM, each paired with 

antibody C05. For production runs of multistate design, 7 different antibodies were paired with a 

panel of 13 H1 HAs with available structures. Each multistate design run was distributed on a 
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computing cluster such that each state (i.e., each antibody-antigen pair) was handled on its own 

processor. This approach resulted in distribution over 524 processors for benchmarking and 13 

processors for production. 

Design validation 

To validate the designs introduced by multistate design, we remodeled the mutations as 

isolated point mutations, either with each mutation separately, or with two or three mutant 

combinations in the case that the mutations appeared to be complementary. Multistate design 

models were evaluated visually to determine which mutations were complementary. The point 

mutants were refined with the same protocol as previously described, using ROSETTA relax with a 

1.0 Å backbone constraint to the starting coordinates. We evaluated the effect of these mutations 

by normalizing the total score of the antibody-antigen complex and the binding energy (DDG) to 

a single metric of fitness, expressed as a Z score. DDG was defined as below: 

DDG = Ecomplex – (EAb + EAg) 

where EAb and EAg are the energies of the antibody and antigen alone, respectively. A cutoff of 0.5 

standard deviations was applied to identify candidates for expression and testing.  

Recombinant antibody expression 

33 variants of antibody C05 were identified from the computational screen and prioritized 

for experimental characterization. Point mutants were generated using site-directed mutagenesis 

with the QuikChange II kit (Agilent Technologies), using the recommended protocol. Variants that 

incorporated multiple mutants were synthesized (Synthetic Genomics) and cloned into an Ig 

expression vector (McLean et al., 2000) using the Gibson Assembly Master Mix reagent (New 

England BioLabs). Antibody variants were expressed by transient transfection of small scale (3 

mL) cultures of Expi293F human embryonic kidney cells in serum-free medium (ThermoFisher 
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Scientific). The supernatants were harvested after 7 days, filter-sterilized with a 0.2-µm filter, and 

IgG concentration in supernatant was measured using the FortéBio Octet system for quantitation 

using anti-IgG AHQ sensors. Variants were screened for activity by loading variant IgG onto Octet 

anti-IgG biosensors and testing for binding to recombinant HA protein. Variants that showed 

increased association in screening were expressed in Expi293F cells in a larger scale. Supernatant 

was harvested as described above and purified using a 5 mL HiTrap MabSelectSure protein A 

column (GE Healthcare). 

Recombinant HA expression 

Sequences encoding the HA genes of interest were optimized for expression in human cells 

and synthesized (Genscript). Genes were constructed as soluble trimer constructs by replacing the 

transmembrane and cytoplasmic domain sequences with a GCN4 trimerization domain and a 6x-

His tag at the C-terminus. Synthesized genes were cloned into the pcDNA3.1(+) mammalian 

expression vector (Invitrogen). HA protein was expressed by transient transfection of Expi293F 

cells (ThermoFisher Scientific). Supernatants were harvested after 7 days, filter-sterilized with a 

0.2-µm filter, and purified using affinity chromatography with a 5 mL HisTrap excel column (GE 

Healthcare). HA head domain used for hydrogen-deuterium exchange was synthesized as a 

maltose-binding protein (MBP) fusion in pMAL-c5x vector (New England BioLabs). Head 

domain was expressed in SHuffle T7 Express competent E. coli (New England BioLabs) to enable 

disulfide formation in the cytoplasm, induced by the addition of 1 mM IPTG overnight at 18 °C, 

and purified using amylose resin (New England BioLabs). 

Biolayer interferometry assay 

Binding kinetics were determined using biolayer interferometry (BLI) with an Octet Red 

instrument (FortéBio, Menlo Park, CA). Recombinant HA proteins were labeled with biotin using 
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an EZ-Link Sulfo-NHS-Biotin labeling kit (ThermoFisher Scientific), at a molar ratio of 1:100 

protein to biotin. HAs were loaded onto streptavidin biosensors at 10 µg/mL in kinetics buffer 

(PBS + 1% BSA, 0.05% Tween 20). The binding experiments were performed with the following 

steps: 1) baseline in kinetics buffer for 60 s, 2) loading of HA for 120-150 s, in order to achieve a 

response of 0.5 – 1.0 nm, 3) baseline for 60 s, 4) association of antibody for 300 s, and 5) 

dissociation of antibody into kinetics buffer for either 3 or 20 min. A reference well with antigen 

loaded onto the biosensor but no antibody was run in all experiments subtracted from sample wells 

to correct for drift and buffer evaporation. Four dilutions of antibody were used for each binding 

assay. Curves were fit to a 2:1 binding model using the FortéBio software and accepted if they 

fulfilled an R2 of > 0.9. 

ELISA binding assay 

Recombinant HA was coated onto an ELISA plate (Nunc MaxiSorp flat-bottom plate, 

ThermoFisher Scientific) at 1 µg/mL and incubated overnight at 4 °C or for 1 hour at 37 °C. To 

reduce nonspecific binding, uncoated sites on wells were blocked with 5% milk powder (Bio-Rad) 

in PBS for 2 hours at room temperature. Antibodies were diluted serially 2-fold in blocking buffer 

starting at 1-20 µg/mL, for a total of 12 dilutions. Antibody dilutions were incubated with the 

coated plate for 1 hour at 37 °C. To detect binding, plates were incubated with mouse anti-human 

IgG Fc-HRP secondary antibodies (Southern Biotech) for 1 hour at 37° C. Binding was detected 

by addition of 100 µL of TMB substrate (ThermoFisher Scientific) and incubated for 5-10 min 

before quenching the reaction with 100 µL of 1 N HCl. Plates were read at 450 nm using a BioTek 

plate reader. After plate coating and primary and secondary antibody incubation, plates were 

washed 3x with wash buffer (PBS +0.05% Tween 20, Cell Signaling Technologies). EC50 values 

were calculated in GraphPad Prism using robust nonlinear regression.   
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Viruses and hemagglutination inhibition assay 

Influenza virus strain A/Puerto Rico/8/1934 H1N1 was obtained from BEI Resources. 

A/Solomon Island/3/2006 H1N1 strain was provided by Influenza Reagent Resource of US CDC. 

The working stocks used for hemagglutination inhibition assay (HAI) were made in MDCK cell 

culture. For HAI, 25 µL of four hemagglutination units of virus were incubated for 1 hour at room 

temperature with 2 µL two-fold serial dilutions of antibodies starting at 100 µg/mL in PBS. The 

50 µL of antibody-virus mixture was incubated for 45 minutes at 4 °C with 50 µL of turkey red 

blood cells (Rockland) diluted in PBS. The HAI titer was defined as the highest dilution of 

antibody that inhibited hemagglutination of red blood cells. 

Differential scanning fluorimetry 

Differential scanning fluorimetry was performed with 50 µg/mL IgG and SYPRO orange 

dye (ThermoFisher Scientific) at a 1:5,000 dilution, in a total reaction volume of 25 µL. 

Temperature cycling was done in a BioRad CFX96 real-time PCR system (BioRad), with a 

temperature gradient from 25 °C to 95 °C. The temperature was ramped in increments of 0.1 °C 

with a hold time of 3 s, and a two-minute hold at the first and last steps. Fluorescence was detected 

in FRET mode. The data were imported to Prism (GraphPad Software) and, to determine the 

apparent melting temperatures, the peaks in the first derivative plot were calculated. All melting 

curves were performed with four replicates and the average value is reported. 

Crystallization and structural determination 

HA1 (H3 numbering: residues 43–309) from A/Hong Kong/1/1968 (HK68/H3) was 

expressed in insect cells as described (Ekiert et al., 2012) and purified by Ni-NTA Superflow 

(Qiagen) and subsequently by size exclusion chromatography on a Hiload 16/90 Superdex 200 

column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM NaCl, and 0.02% NaN3. The C05 
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V110P/A117E mutant was incubated with HK68/H3 HA1 in a molar ratio of 1.5:1 overnight at 

4 °C. The C05 V110P/A117E -HK68/H3 HA1 complex was purified by size exclusion 

chromatography on a Hiload 16/90 Superdex 200 column (GE Healthcare) in 20 mM Tris pH 8.0, 

150 mM NaCl, and 0.02% NaN3 and concentrated to 10 mg ml−1 in 10 mM Tris pH 8.0, 50 mM 

NaCl, and 0.02% NaN3. Crystal screening was carried out using our high-throughput, robotic 

CrystalMation system (Rigaku, Carlsbad, CA) at The Scripps Research Institute, which was based 

on sitting drop vapor diffusion method with 35 µL reservoir solution and each drop consisting 0.1 

µL protein + 0.1 µL precipitant. Diffraction quality crystals were obtained with reservoir solution 

containing 20% PEG 3000 and 0.1 M sodium citrate pH 5.5. The resulting crystals were 

cryoprotected by soaking in well solution supplemented with 20% ethylene glycol, flash cooled, 

and stored in liquid nitrogen until data collection. 

Diffraction data were collected at the Stanford Synchrotron Radiation Lightsource 

beamline 12–2. The data were indexed, integrated and scaled using HKL2000 (HKL Research, 

Charlottesville, VA) (Otwinowski and Minor, 1997). The structure was solved by molecular 

replacement using Phaser (McCoy et al., 2007) with PDB 4FP8 (Ekiert et al., 2012) as the 

molecular replacement model, modeled using Coot (Emsley et al., 2010), and refined using 

Refmac5 (Murshudov et al., 2011). Ramachandran statistics were calculated using MolProbity 

(Chen et al., 2010). 

Hydrogen-deuterium exchange mass spectrometry 

C05 variant V110P-A117E and A/Solomon Islands/03/2006 head domain were prepared 

at a protein concentration of 3 mg/mL individually and in complex before incubation for 2 h at 0 

°C. A 20-fold dilution in 10 mM phosphate buffered saline, pH 7.5 in H2O (no labelling) or D2O 

(labelling), was performed. Diluted samples were incubated for 0 s, 5 s, 60 s, 30 min or 12 h at 20 
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°C. The labelling reaction was quenched by pH reduction to 2.5, by addition of 50 µL 4 M 

guanidinium/HCl, 100 mM tris(2-carboxyethyl)phosphine in 10 mM phosphate buffer saline, pH 

2, at 0 °C. Samples were immediately injected into a nano-ACQUITY UPLC system with HDX 

technology (Waters Corporation, Milford, MA, USA). Online digest was performed at 20 °C and 

4700 psi at a flow of 100 µL/min of 0.1 % formic acid in H2O, using an immobilised-pepsin 

column. Peptides were trapped for 6 min at 0 °C, using a Waters VanGuard™ BEH C18 1.7 µm 

guard column, followed by separation using a 5-35 % acetonitrile gradient over 6 min, a flow of 

40 µL/min at 0 °C on a Waters ACQUITY UPLC BEH C18 1.7 µm, 1 mm × 100 mm column. 

Online-coupled MSE was performed with a Waters Xevo G2-XS with electrospray ionization and 

lock-mass acquisition (Leucine enkephalin, m/z=556.2771) of 3 scans every 60 s. The capillary 

was set to 2.8 kV, source-temperature to 80 °C, desolvation temperature to 175 °C, desolvation 

gas to 400 L/h and the instrument was set to scan over a m/z-range of 50-2000. A blank injection 

was performed between samples to avoid carry-over and all experiments were carried out in 

quadruplicate.  

Peptides were identified in un-deuterated samples using Waters ProteinLynx Global Server 

3.0.3 software with non-specific protease, min fragment ion matches per peptide of three, FDR 4% 

and oxidation of methionine as a variable modification. Deuterium uptake was calculated and 

compared to the non-deuterated sample using DynamX 3.0 software. Criteria were set to minimum 

intensity of 500, minimum products 3, minimum products per amino acid 0.2, mass error < 20 ppm 

and file threshold 3.  The deuterium incorporation result is reported as the difference of the centroid 

values across the backbone amide population compared to the 0 s time point. Results were 

averaged across replicate analyses at a given time point and the standard deviation determined. For 
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this series of experiments, the average error for a single data point was ±0.8 Da or less within a 

single replicate. 
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Supplemental Information 

 

 

Supplementary Figure III.1. Schematic of RECON parallelization protocol. 
 

 

 
Supplementary Figure III.2. Results of multistate design of anti-influenza antibody C05 against a 
panel of 524 viral proteins. The parallel RECON protocol was used to generate 50 independent 
design simulations of antibodies with predicted increased breadth against viruses in the panel. 
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Figure S1. Schematic of RECON parallelization protocol
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Figure S2. Results of multistate design of anti-influenza antibody C05 against a panel of 524 viral proteins. 
The parallel RECON protocol was used to generate 50 independent design simulations of antibodies with 
predicted increased breadth against viruses in the panel.
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Supplementary Figure III.3. Breakdown of single and double amino acid mutations in antibody 
C05. All mutations introduced by multistate design of antibody C05 were modeled as single point 
mutants, or double mutants in the case that there were complementary mutations. In addition, two 
sets of mutation combinations were modeled (7mut and 8mut). Mutations are shown on the X axis. 
Y axis shows mutant fitness subtracted from wild-type fitness. Fitness is calculated as a normalized 
sum of antibody stability and antigen binding, expressed as a Z score.  
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Supplementary Figure III.4. ELISA binding data of C05 mutants. ELISA binding curves are shown 
for 7 strains previously bound by C05 with high affinity (top). EC50 values were calculated for 
each binding curve and the EC50 and 95% confidence intervals are shown below. Also shown is 
the strain name, subtype, and whether the strain was included in the computational design panel.  

  

   EC50 (ng/mL) EC50 95% CI (ng/mL) 
Strain Subtype Included in 

design? 
C05 WT  V110P-

A117E 
C05 WT  V110P-A117E 

A/Solomon 
Islands/03/2006 

H1 Yes 105 58 87-126 47-73 

A/Thailand/CU44/2006 H1 Yes 59 99 37-94 58-170 
A/New 
Caledonia/20/1999 

H1 No 19 54 12-28 33-88 

A/Japan/305+/1957 H2 No 199 483 159-250 369-632 
A/HongKong/1/1968  H3 No 327 214 273-390 107-431 
A/Brisbane/10/2007 H3 No 647 1771 492-851 1274-2482 
A/Perth/16/2009 H3 No 8 17 6-10 14-20 

Figure S5. ELISA binding data of C05 mutants. ELISA binding curves are shown for 7 
strains previously bound by C05 with high affinity (top). EC50 values were calculated for 
each binding curve and the EC50 and 95% confidence intervals are shown below. Also 
shown is the strain name, subtype, and whether the strain was included in the computation-
al design panel.
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Supplementary Figure III.5. Hydrogen-deuterium exchange (HDX) data of C05 V110P-A117E 
binding to the head domain of A/Solomon Islands/03/2006 (SI06). We measured the difference in 
deuterium uptake in the bound vs unbound states of both the antibody and antigen to map peptides 
comprising the paratope and epitope of the interaction. Peptides that were blocked from deuterium 
uptake upon binding mapped primarily to the CDRH3 loop of the antibody and the rim of the 
receptor binding domain on the antigen, in agreement with the modeling data and the co-crystal 
structure. Color code: yellow-green indicates no difference in deuterium uptake in bound vs. 
unbound state. Blue indicates less deuterium uptake in bound state compared to unbound state. 
Blank spaces are peptides not observed in experiment.  

  

 
C05 V110P-A117E HDX peptide map
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Figure S6. Hydrogen-deuterium exchange (HDX) data of C05 V110P-A117E binding to the head domain of 
A/Solomon Islands/03/2006 (SI06). We measured the difference in deuterium uptake in the bound vs 
unbound states of both the antibody and antigen to map peptides comprising the paratope and epitope of 
the interaction. Peptides that were blocked from deuterium uptake upon binding mapped primarily to the 
CDRH3 loop of the antibody and the rim of the receptor binding domain on the antigen, in agreement with 
the modeling data and the co-crystal structure. Color code: yellow-green indicates no difference in deuteri-
um uptake in bound vs unbound state. Blue indicates less deuterium uptake in bound state compared to 
unbound state. Blank spaces are peptides not observed in experiment.
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Supplementary Figure III.6. Melting curves from differential scanning fluorimetry (DSF). Curves 
are shown for all C05 mutants measured. The first derivative in the melting curve was calculated 
(right) to assign melting transitions for domain 1 (Fc) and domain 2 (Fab).   
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Figure S7. Melting curves from differential scanning fluorimetry (DSF) are shown for all C05 mutants mea-
sured. The first derivative in the melting curve was calculated (right) to assign melting transitions for domain 
1 (Fc) and domain 2 (Fab).
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Supplementary Figure III.7. Tradeoff of affinity and breadth in design against H1 strains. For each 
of the 13 targets in the panel, C05 was redesigned using single state design (SSD) to increase 
affinity, as well as multi-state design (MSD) to increase breadth. We calculated the average score 
and binding energy for the ten best models resulting from both MSD and SSD. The points are 
connected by antigen, i.e. the SSD models against target PDB ID 1rvx are connected to the MSD 
models against target PDB ID 1rvx. The SSD models had significantly lower score (left) and 
binding energy (right) than the MSD models. Statistical significance was calculated using a 
Wilcoxon matched signed rank test in GraphPad Prism. 
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Figure S8. Tradeoff of affinity and breadth in design against H1 strains. For each of the 13 targets in 
the panel, C05 was redesigned using single state design (SSD) to increase affinity, as well as multi-
state design (MSD) to increase breadth. We calculated the average score and binding energy for the 
ten best models resulting from both MSD and SSD. The points are connected by antigen, i.e. the SSD 
models against target PDB ID 1rvx are connected to the MSD models against target PDB ID 1rvx. The 
SSD models had significantly lower score (left) and binding energy (right) than the MSD models. Statis-
tical significance was calculated using a Wilcoxon matched signed rank test in Graphpad Prism
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Supplementary Table III.1. H1 antigens used for multistate design. These antigens comprised all 
of the H1 structures in the Protein Data Bank (PDB) at high resolution (< 3.5 Å). 

Strain PDB ID Resolution Species 
A/mallard/Alberta/35/1976 2wrh 3.0 Avian 
A/WDK/JX/12416/2005 3hto 2.95 Avian 
A/Thailand/CU44/2006 4edb 2.5 Human 
A/Swine/Indiana/P12439/00 4f3z 3.2 Swine 
A/Tottori/YK012/2011 4lxv 3.0 Human 
A/Swine/Iowa/15/1930 1ruy 2.7 Swine 
A/Puerto Rico/8/1934 1rvx 2.2 Human 
A/Brevig Mission/1/1918 3lzf 2.8 Human 
A/Darwin/2001/2009 3m6s 2.8 Swine/Human 
A/Mexico/4603/2009 3mlh 2.1 Swine/Human 
A/California/04/2009 3ubq 2.0 Swine/Human 
A/Korea/01/2009 4eda 2.7 Swine/Human 
A/Solomon Islands/03/2006 4hkx 2.5 Human 
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Supplementary Table III.2. Explanation of the energetic contributions of mutated residues.  

  

Table S2. Explanation of the energetic contributions of mutated residues

Multiple mutants expressed:
8mut    E28,Y105,F107,E109,P110,R111,A116,D120
7mut    E28,Q105,P110,S116,E117,R118,D120
6mut    E28,P110,R111,A116,E117,R118

5mut    E28,P110,R111,A116,E117
4mut1    P110,R111,A116,E117
4mut2    E28,P110,R111,A116

Mutant HAs with positive effect Description
G27 P28 4edb,4f3z Stabilizes the CDRH1 loop

E28 4f3z Makes an H bond with R56 on the light chain, also with N159 on 
antigen

S28 3lzf,4f3z S28 can make a H bond with Q192 on the antigen
H35 3m6s,4edb Makes an H bond with T32 on the CDRH1

Y105 3m6s,4lxv Y packs well against the antigen, makes an H bond to D131 on the 
antigen

Q105 1ruy, 1rvx Makes an H bond with E107 MC on the antigen

F107 1rvx Favorable packing against the CDRH2 up into the antibody - 
minimal effect though

T108 1rvx Makes an H bond with W114 main chain in the CDRH3
E109 1rvx Makes an H bond with N193 on the antigen

D109 4f3z D109 makes an H bond with S193 on the antigen. May be 
redundant with N109.

E109-R111 1ruy,1rvx,3ubq
In some cases E and R can interact with each other in addition to 
the 190 helix - in others E interacts with helix and R interacts with 
E219 further down the antigen

P110 1rvx, 4f3z Increased VDW interactions, phi-psi angle stabilization and pi-pi 
stacking with Y35 on the CDRH1

R111 3hto,3lzf Makes H bonds with S189 and E190 side chains on the antigen
E112 4f3z Makes favorable H bonds with H183 and S186

F114 1ruy,3hto,4eda,4lxv F can stack slightly better with W153 at RBD base. Lets some 
neighboring residues adopt more favorable rotamers

H114 1ruy,3hto,3m6s,4lxv H can stack slightly better with W153 at RBD base. Lets some 
neighboring residues adopt more favorable rotamers

Y115 1rvx,3m6s Y can make nice VDW interactions with K145 on the antigen. May 
be redundant with F115

A116 1ruy, 3hto, 3lzf, 3m6s, 4eda, 4f3z, 
4lxv

Relieves clash with K133a insertion on RBD rim

S116 1ruy, 1rvx, 3hto, 3lzf, 3m6s, 4eda, 
4f3z, 4lxv

Relieves clash with K133a insertion on RBD rim

S116-D120 1ruy, 3hto, 3lzf, 3m6s, 4eda, 4f3z, 
4lxv

D120 can interact with K133a once S116 relieves the clash

E117 1rvx, 2wrh, 3hto, 3lzf, 4edb E can interact with K125a on the antigen
R118 1rvx, 3hto, 3lzf, 4hkx R can interact with E131 on the antigen surface
S118 3lzf Makes an H bond with T133 on the antigen
D120 3hto, 4f3z, 4lxv D can interact with S105 and Q107 via H bonding
T120 4f3z, 4lxv T can interact with S105 and Q107 via H bonding
H120 3ubq,4f3z Three way H bond between H120, S105 and D122 on the CDRH3

R120 1rvx,4f3z Electrostatic interactions and H bonds between R120 and D50 
(LC), Y91 (LC), and E158 (Ag)
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Supplementary Table III.3. X-ray collection statistics of C05 V110P-A117E double amino acid 
mutant in complex with HA of H3 A/Hong Kong/1/68. 

 
  

X-ray data collection and refinement statistics

Data collection

Beamline SSRL 12-2

Wavelength (Å) 1.0332

Space group

Resolution (Å)

Unique Reflections

Redundancy

Completeness (%)

4

Refinement statistics

Resolution (Å) 50-3.25

Reflections (work) 61,178

Reflections (test) 3,065

25.4 / 26.8

No. of atoms

HA1 8,292

Fab 13,644

Glycan 28

HA1 112

Fab 119

Glycan 95

63

RMSD from ideal geometry

Bond length (Å) 0.012

1.39

Ramachandran statistics (%)

Favored 96

Outliers 0.3

PDB code Pending

P21

Unit cell parameters (Å and o) a=91.6, b=258.4, c=91.9, β=90.5

50-3.25 (3.35-3.25)a

64,646 (5,630)a

4.3 (3.9)a

96.0 (93.0)a

<I/σI> 8.9 (1.1)a

Rsym
b 0.16 (0.78)a

Rpim
b 0.09 (0.43)a

CC1/2
c 0.99 (0.50)a

Za
d

Rcryst(%)e / Rfree(%)f

Average B-value (Å2)

Wilson B-value (Å2)

Bond angle (o)

a Numbers in parentheses refer to the highest resolution shell.
b Rsym = Σhkl Σi | Ihkl,i - <Ihkl> | / Σhkl Σi Ihkl,i and Rpim = Σhkl (1/(n-1))1/2 Σi | Ihkl,i - <Ihkl> | / Σhkl Σi Ihkl,i, where Ihkl,i is the scaled intensity of the ith 
measurement of reflection h, k, l, <Ihkl> is the average intensity for that reflection, and n is the redundancy.
c CC1/2 = Pearson correlation coefficient between two random half datasets.
d Za is the number of HA1-Fab complexes per crystallographic asymmetric unit.
e Rcryst = Σhkl | Fo - Fc | / Σhkl | Fo | x 100, where Fo and Fc are the observed and calculated structure factors, respectively.
f Rfree was calculated as for Rcryst, but on a test set comprising 5% of the data excluded from refinement.
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Supplementary Table III.4. Melting temperatures of all C05 mutants measured.  

Variant Transition 1 (°C) Transition 2 (°C) Significance 
C05 WT 62.0 69.8  
S27G F28P V110P 61.8 70.8 ** 
F28E 62.7 70.4 * 
F28S 62.1 70.1  
Y35H V110P 61.3 70.8 ** 
S105Q 61.8 68.8 ** 
Q107F 61.6 68.9 ** 
V110P 61.6 70.3 * 
V110P A117E 61.5 69.2 * 
V110P A117E Fab  70.7  
R116A 62.0 69.1 * 
R116S 61.8 68.9 ** 
A117E 61.7 69.2 * 
D118R  70.6 ** 
D120R 61.8 70.3 * 
6 aa mutant 61.8 71.9 ** 
5 aa mutant  69.9 * 
4 aa mutant 1  69.7  
4 aa mutant 2  69.7  

**p<0.005 
*p<0.05 
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CHAPTER IV.  

Integrating linear optimization with structural modeling to increase 

HIV neutralization breadth 

 

Adapted from Sevy, A. M., Panda, S., Crowe, J. E., Meiler, J. & Vorobeychik, Y. Integrating 

linear optimization with structural modeling to increase HIV neutralization breadth. PLoS 

Comput. Biol. 14, e1005999 (2018). 
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Eugene Vorobeychik. I came up with hypotheses, designed experiments, and conducted all 

ROSETTA modeling experiments described in this work. All figures are reprinted with permission 

from the publisher. 

 

Abstract  

Computational protein design has been successful in modeling fixed backbone proteins in 

a single conformation. However, when modeling large ensembles of flexible proteins, current 

methods in protein design have been insufficient. Large barriers in the energy landscape are 

difficult to traverse while redesigning a protein sequence, and as a result, current design methods 

only sample a fraction of available sequence space. We propose a new computational approach 

that combines traditional structure-based modeling using the ROSETTA software suite with machine 
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learning and integer linear programming to overcome limitations in the ROSETTA sampling 

methods. We demonstrate the effectiveness of this method, which we call BROAD, by 

benchmarking the performance on increasing predicted breadth of anti-HIV antibodies. We use 

this novel method to increase predicted breadth of naturally-occurring antibody VRC23 against a 

panel of 180 divergent HIV viral strains and achieve 100% predicted binding against the panel. In 

addition, we compare the performance of this method to state-of-the-art multistate design in 

ROSETTA and show that we can outperform the existing method significantly. We further 

demonstrate that sequences recovered by this method recover known binding motifs of broadly 

neutralizing anti-HIV antibodies. Finally, our approach is general and can be extended easily to 

other protein systems. Although our modeled antibodies were not tested in vitro, we predict that 

these variants would have greatly increased breadth compared to the wild-type antibody. 

 

Introduction 

Computational design has been used successfully by protein engineers for many years to 

alter the physicochemical properties of proteins (Dahiyat and Mayo, 1997; Kuhlman et al., 2003). 

In the simplest case, protein design involves optimizing the amino acid sequence of a protein to 

accommodate a desired 3-D conformation. This approach has been extended to related tasks such 

as protein-protein interface design, de novo design of protein binding molecules, design of self-

assembling protein nano-cages, etc. (Fleishman et al., 2011b; King et al., 2012; Strauch et al., 

2017; Willis et al., 2015). Each of these examples involves the straightforward application of 

design methodologies to a single, static protein conformation. However, there is a need to extend 

protein design to apply to several conformations simultaneously. These approaches, referred to as 

multistate design (MSD), can be used to modulate protein specificity, model protein flexibility, 
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and engineer proteins to undergo conformational changes (Davey and Chica, 2014; Guntas et al., 

2015; Havranek and Harbury, 2003; Howell et al., 2014; Lewis et al., 2014; Shifman and Mayo, 

2002; Willis et al., 2013). Several methods have been developed to enable computationally 

expensive multistate design (Leaver-Fay et al., 2011a; Sevy et al., 2015). However, these methods 

all suffer from large energetic barriers that limit sampling in sequence space, resulting in sub-

optimal designs (Sevy et al., 2015). In addition, these methods are severely limited in scale by the 

size and number of states that can be included. To address these limitations, we have developed a 

method that integrates structural modeling with integer linear programming to enable a fast global 

search through large ensembles of target states. 

 

Results 

Experimental workflow 

Our design algorithm, which we call BROAD (BReadth Optimization for Antibody 

Design) incorporates ROSETTA-based structural modeling with integer linear programming to more 

easily traverse boundaries in the energy function (Figure IV.1). The experimental workflow 

involves generating a large training set of randomly mutated proteins, fitting a linear model 

(described below) to predict binding, and using integer linear programming to find an optimal 

antibody sequence balancing stability and binding with respect to a collection of target virus 

epitopes. We applied this method to the problem of designing broadly binding anti-HIV antibodies. 

We modeled anti-HIV antibody VRC23 (Georgiev et al., 2013) against a set of 180 diverse viral 

proteins, creating antibody variants that were mutated randomly in the paratope region. The viral 

panel used was derived from Chuang et al. (Chuang et al., 2013). Based on known binding patterns 

of VRC23 we calculated the predicted binding energy that corresponds to observable binding, and 
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searched antibody space using integer linear programming to optimize stability of the unbound 

antibody while achieving predicted 100% binding breadth to the 180 target viral proteins. We then 

used a non-linear Support Vector Machine classifier, trained on the entire dataset produced by 

ROSETTA, to identify top sequences.  Finally, we entered the top scoring sequences back into 

ROSETTA structural modeling to measure the predicted breadth of antibody variants. 

Sequence-based Linear Classification and Regression Models to Predict Binding and 

Stability 

Our end goal is to design broadly binding and stable antibodies by searching the sequence 

space, i.e., to optimize the amino acids at each binding position of the antibody. The key challenge 

for this approach is that an exhaustive search in the combinatorial sequence space is intractable. 

 

Figure IV.1. Experimental workflow of the BROAD design method. The method uses ROSETTA 
structural modeling to generate a large set of mutated antibodies, support vector machines (SVM) 
to predict ROSETTA energy from amino acid sequence, and integer linear programming to 
optimize breadth of binding across a set of viral proteins. 
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To address this issue, we first propose to learn sequence-based linear classification and regression 

models to predict binding and stability from data. Building on these models, we formulate an 

integer program to accomplish global search in the antibody sequence space.  

To generate our training set, we determined three contiguous stretches on the antibody that 

are in contact with the viral protein. These positions were determined to be residues 46-62, 

spanning FR2-CDR2-FR3; residues 71-74 in FR3; and residues 98-100b in CDR3 (Supplementary 

Figure IV.1). We then created randomly mutated antibody variants, modeled their binding poses 

using ROSETTA, and used this data to train a binding classifier to predict ROSETTA score and 

binding energy from amino acid composition.  

The binding classifier is based on the assumption that the amino acids at the binding 

positions of the antibody interact with those on the binding positions of the virus. In particular, 

this model assumes that binding between an antibody and a viral protein is determined by two 

factors: a) the individual amino acids in each binding position of the antibody and the virus 

respectively and b) the effects of the pairwise amino acid interactions between the antibody and 

the virus respectively. To capture these, we construct a sequence-based binary feature vector from 

the input antibody and virus pair, which explicitly represents the individual and pairwise amino 

acid contributions. Let the input antibody-virus pair represented as vectors of amino acids, be 

denoted by (𝐚, 𝐯). Let 𝑏(𝐚, 𝐯) denote the ROSETTA predicted binding energy for (𝐚, 𝐯) and let 

Φ(𝐚, 𝐯) denote the binary binding decision. We chose a threshold 𝜃 such that Φ(𝐚, 𝐯) = 	+1 if 

𝑏(𝐚, 𝐯) ≤ 𝜃 (i.e., 𝐚	𝐚𝐧𝐝 𝐯 bind) and Φ(𝐚, 𝐯) = 	−1 otherwise. For evaluation of our approach, we 

choose the value of θ based on experimental neutralization data. This data is available as the 

experimental neutralization IC50 (in units of µg/ml) of VRC23 with the 180 virus sequences in the 

panel (Chuang et al., 2013). Lower values represent better neutralization potency and values that 
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have ‘>50’ concentration represent a virus that is not neutralized by VRC23. Accordingly, VRC23 

has a neutralization breadth of 63.5% on this panel. We set θ = -28.5 such that the VRC23 breadth 

of binding computed on the ROSETTA generated data (sequences and the corresponding ROSETTA 

binding scores) is consistent with the above experimental neutralization data. 

We learn the classifier Φ(𝐚, 𝐯)	as a linear Support Vector Machine (SVM) (Cortes and 

Vapnik, 1995) using the binary feature set comprised of actual antibody and virus sequences along 

the corresponding binding sites, as well as all pairwise interactions of antibody and virus amino 

acids. The SVM classifier uses the ROSETTA binding energy as the ground truth, and allows more 

efficient sampling by approximating the ROSETTA score function by sequence alone. To optimize 

the L2 regularization parameter of the SVM, we performed 10-fold cross-validation on the full 

dataset, using 80% of the data for training and 20% for testing.  Smaller parameter	values enforce 

higher regularization and higher values lead to overfitting. The average prediction accuracy is 

shown in Figure IV.2A for different values of the L2 regularization parameter. We also plot the 

prediction error on the two classes: binders (+1) and non-binders (-1). The prediction accuracy is 

67% on the test set using the optimized parameter (a random predictor would be at 50%). We 

observe that even if the prediction accuracy is relatively low, it provides reasonable signal within 

the subsequent breadth optimization step (discussed in the results section). Since the final decision 

is determined by solving the breadth optimizing integer linear program, our approach does not rely 

on a highly accurate classification model. In previous research (Kamisetty et al., 2015), a similar 

model was introduced to predict ∆𝐺 values for interaction between PDZ domains and peptide 

ligands. The result was a 0.69 correlation coefficient in 10-fold cross validation. This model can 

also be interpreted to identify the important binding position pairs that contribute significantly to 

the final prediction. We plot this interaction strength for each pairwise interaction in Figure IV.2C 
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(please refer to the methods section for details).  

Next, we learned a linear regression model to predict the thermodynamic stability, using 

only the antibody amino acids as features. The prediction of thermodynamic stability is necessary 

to ensure that our designed antibodies can be expressed stably. To simplify the approach, we 

predicted the stability of the antibody-virus complex as a function of the antibody sequence only 

(note that we do not make this assumption during evaluation). Specifically, we constructed a binary 

feature vector restricted to amino acids in the antibody binding positions. Let 𝑠(𝐚, 𝐯) denote the 

ROSETTA stability for the pair (𝐚, 𝐯). We learn a linear model Ψ(𝐚) to predict 𝑠(𝐚, 𝐯) for an 

antibody 𝐚 (i.e., independent of the virus). To measure the accuracy of prediction, we computed 

the correlation coefficient between the true scores and the predicted scores. Interestingly, our 

assumption that stability scores are only weakly dependent on the virus protein sequence is borne 

out: we found a correlation of 0.85 between the predicted and actual stability energy score on the 

test set (Figure IV.2B).  

Algorithm 

Given the classification and regression model learned from data, we formulate an integer 

linear program (ILP) to optimize the amino acids in the antibody sequence space to achieve both 

breadth and stability. The variables are the amino acids in the antibody binding positions. The 

objective function optimizes the predicted stability score (i.e., minimizes Ψ(𝐚)). The constraints 

represent the condition that the designed antibody should bind to all the viruses in the panel, using 

binding predictions from Φ(𝐚, 𝐯). This algorithm is outlined in Supplementary Figure IV.2. 

Armed with these tools, we used the following protocol to generate a collection of 

candidate antibodies to be evaluated using ROSETTA.  First, we took a random subsample of the 

full training data corresponding to 100 out of the 180 virus sequences.  Using only this subsample, 
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we trained the binding and stability models, Φ(𝐚, 𝐯) and Ψ(𝐚) respectively.  We then solved the 

ILP described above to compute a stable, broadly-binding antibody sequence, considering only the 

100 out of 180 selected virus sequences (that is, we only constrain the ILP to bind to these 100 

virus proteins, rather than the full set of 180).  We repeated this procedure 50 times, to obtain 50 

candidate antibody sequences. To validate these optimized antibody candidates, we predicted 

binding and stability scores using a model trained on all the data. In case of stability prediction, 

we used a linear model as described above (since the model is reasonably accurate). For binding 

prediction however, we trained a non-linear (radial basis function kernel) SVM for improved 

prediction accuracy. Each of the 50 candidate antibodies were scored using these models trained 

 
Figure IV.2. Training results for the linear classification. A. 10-fold cross validation results. B. 
Correlation between predicted score and ROSETTA energy score in linear regression. C. 
Interaction strength of each pairwise interaction between antibody and virus binding positions 
are also shown. 
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on all data, in terms of predicted binding breadth and stability, and 10 best candidates were then 

chosen for ROSETTA evaluation using the full panel of 180 virus proteins. This procedure is 

outlined in Supplementary Figure IV.3. 

Redesign of VRC23 improves predicted breadth 

After generating redesigned antibody sequences with predicted increases in breadth, we 

threaded these sequences onto the VRC23-gp120 complexes and subjected them to structural 

modeling to measure the change in predicted breadth. We refined the complexes using the 

ROSETTA relax protocol – to test the accuracy of the ROSETTA relaxed models, we compared the 

relaxed models to solved structures of gp120 viral variants and computed the root mean squared 

deviation (RMSD) over Cα atoms on gp120. We observed that the relax protocol recapitulates the 

gp120 conformations with an average RMSD of 2.2 Å, whereas the pairwise RMSD between 

gp120 conformations, representing the intrinsic flexibility of these molecules, is 1.8 Å 

(Supplementary Table IV.1). Considering that we substituted only residues at the binding site of 

the gp120 variants, and not the entire gp120 sequence, we consider that the variant gp120 

conformations are recapitulated with sufficient accuracy for this experiment. As a control, we 

generated sequences using structure-based multistate design with the RECON method (Sevy et al., 

2015). The RECON method uses ROSETTA design combined with coordination between differing 

states to generate an antibody sequence with increased affinity for all target states. Using RECON 

to redesign antibody-antigen complexes has been benchmarked and been shown to generate 

germline-like, broadly binding antibodies (Sevy et al., 2015). We compared the 10 sequences 

created by BROAD to 10 sequences generated by RECON multistate design to compare the 

change in breadth to alternate approaches. We found that the BROAD method resulted in a 

significant increase in predicted breadth over the RECON multistate design method (Figure 
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IV.3A). The BROAD-designed antibodies were able to achieve predicted breadth ranging from 

86.1 – 100% of viruses, whereas multistate designed antibodies reached a predicted breadth of 

62.8 – 85.6% of viruses. Notably, both methods were able to increase predicted breadth from the 

starting value of 53.3% for wild-type VRC23. This finding suggests that the wild-type VRC23 

sequence is sub-optimal for breadth, which is supported by the observation that other known 

broadly neutralizing antibodies bind in a similar mode to VRC23 but with breadths exceeding 85% 

(Diskin et al., 2011; Klein et al., 2013; Scheid et al., 2011; Zhou et al., 2010). In addition, we 

observed that the BROAD method samples sequence space that is not sampled in multistate design 

(Figure IV.3B). We hypothesize that the BROAD method is able to cross energetic barriers that 

restrict sampling in traditional structure-based design methods, and is thereby able to generate 

antibodies with greater predicted breadth and lower energy. To support this hypothesis, we 

analyzed the difference in score and binding energy for antibodies designed by BROAD and 

multistate design over the panel of viral proteins (Figure IV.4). BROAD was consistently able to 

generate lower energy antibody-antigen complexes, with a marked decrease in binding energy. 

This finding supports the hypothesis that BROAD is able to search sequences that are unavailable 

to multistate design, and that these new sequences have favorable score and binding energy. 
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Figure IV.3. Redesign of VRC23 using integer linear programming increases predicted breadth 
over HIV viral strains. A. Predicted breadth of 10 redesigned antibodies generated either by 
BROAD or multistate design. Bars show mean and standard deviation of 10 sequences. Dotted 
line shows the predicted breadth of the native VRC23 antibody. B. Sequence logos of designed 
antibodies generated by BROAD or multistate design. Amino acids are colored based on 
chemical properties. The native VRC23 sequence is shown below. 
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Designed residues recapitulate known binding motifs  

 A frequent problem in computational protein design is false positives – that is, 

sequences that are predicted to be favorable according to the score function, but are unable to 

recapitulate that activity in vitro. The ROSETTA score function uses many approximations of 

energetic terms to enable faster simulations, and these approximations can introduce inaccuracies 

(Bender et al., 2016; Leaver-Fay et al., 2013). To reduce the possibility that the redesigned VRC23 

variants are scored favorably due to inaccuracies in the score function, we compared the designed 

residues introduced by BROAD to structural motifs of known broadly neutralizing antibodies 

(Figure IV.5). In several cases, the residues introduced by BROAD mimicked a known interaction 

of an existing antibody. For example, position 61 was mutated from proline in VRC23 to arginine 

(Figure IV.5, top left). The broadly neutralizing antibody VRC01 has an arginine that occupies 

similar space to the designed arginine (Zhou et al., 2010). This phenomenon can be observed for 

 
Figure IV.4. Score comparison of redesigned antibodies. The ROSETTA score (A) and binding 
energy (DDG) (B) are shown for ten redesigned antibodies made either by BROAD or multistate 
design, paired with 180 viruses. Bar plots shown mean and standard deviation. Shown on the Y 
axis is difference between score/DDG between the redesigned antibody and wild-type. 
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several different broadly neutralizing antibodies, such as VRC-CH31, 3BNC117, and NIH45-46, 

all of which target the CD4 binding site, but at slightly different orientations (Diskin et al., 2011; 

Klein et al., 2013; Zhou et al., 2010; 2013). We observed several examples of this type of 

recapitulation. Mutation Q62R on VRC23 placed an arginine residue to fill space that is occupied 

by a tyrosine on VRC-CH31 (Figure IV.5, top right) - this mutation fills a void at the interface to 

improve antibody-antigen packing. Mutation L73Y places an aromatic group overlapping with the 

position of a tyrosine in antibody 3BNC117, which also improves packing with the antigen (Figure 

 

Figure IV.5. BROAD design recapitulates structural motifs of known broadly neutralizing 
antibodies. Residues that were mutated from the native VRC23 sequence were compared to 
known antibodies. Proteins shown are VRC23 (PDB ID: 4j6r); VRC01 (3ngb); VRC-CH31 
(4lsp); 3BNC117 (4jpv); and NIH45-46 (3u7y). 
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IV.5, bottom left). Lastly, the D102E mutant on the CDRH3 places a carboxylic acid group in the 

same position as a glutamic acid on NIH45-46, improving electrostatic interactions with the 

antigen (Figure IV.5, bottom right). This observation is remarkable due to the fact that the antibody 

loops occupy different space, but redesigned residues are able to mimic the interactions of the 

broadly neutralizing antibody side chains. In addition, it is worthwhile to note that out of these 

four mutants that recapitulate known broad motifs, three were unobserved in the sequences 

sampled by multistate design (Figure IV.3B). 

As an additional comparison, we identified 1,041 sibling sequences of known broadly 

neutralizing antibody VRC01, that were isolated in a previous study (Wu et al., 2015). These 

siblings presumably represent the sequence space accessible to VRC01, and are a good test case 

to compare how well our design algorithms are capturing natural sequence variation in a broad 

HIV antibody. Since these sequences have CDRH3 loops of different lengths we were not able to 

include the portion of the binding site corresponding to the CDRH3 loop – however we compared 

the rest of the binding site to the sequences seen in the VRC01 lineage (Figure 6). We observe that 

at several positions, BROAD samples sequences that are present in the VRC01 lineage but absent 

from MSD-sampled sequences (Figure 6, blue boxes). For example, at the third position in the 

binding site isoleucine is sampled at a high frequency in BROAD and VRC01 lineage sequences, 

but is never sampled by MSD (Figure 6). We highlight a total of five positions where BROAD is 

outperforming MSD in sampling sequences that are seen in the VRC01 lineage. To quantify the 

sequence similarity we computed a sum of squared difference between the two matrices and 

normalized the values to 100% (Sandelin and Wasserman, 2004; Sevy et al., 2015). According to 

this metric the sequences sampled by BROAD are 79.5% similar to those from the VRC01 lineage, 

whereas those sampled by MSD are only 76.3% similar. We conclude that BROAD more 
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accurately recapitulates motifs known in broadly neutralizing antibodies. 

 

 

 

  

 

Figure IV.6. Sequences from BROAD design recapitulate sequences observed in the lineage of 
broadly neutralizing antibody VRC01. For BROAD and MSD sequences a percentage similarity 
to the VRC01 lineage was computed (similarity shown in parenthesis). Blue boxes highlight 
positions where BROAD samples an amino acid that is present in the VRC01 lineage but was not 
sampled by MSD. The VRC23 native sequence is shown below. 
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Discussion 

Summary of results 

In this chapter we describe the development of a new protein design method that we call 

BROAD. This method uses structural modeling with ROSETTA combined with integer linear 

programming optimization techniques to rapidly search through sequence space for broadly 

binding antibodies. We validated this method by computationally optimizing the amino acid 

sequence of the broadly neutralizing anti-HIV antibody VRC23. After modeling VRC23 variants 

in silico we were able to generate VRC23 variants with a predicted breadth of 100% over the 

simulated viral panel, compared to a predicted 53% breadth for the wild-type antibody. This 

outcome represents a substantial step forward in protein design, and our methodologies can be 

used to address a wide variety of protein design problems in which traditional structural models 

are insufficient. 

Although we did not test antibody variants in vitro in this study, we predict that the 

computationally designed variants will have greater breadth against the HIV viral panel. However, 

we note several caveats with respect to experimental validation of these antibodies. Since this 

experiment was designed as a computational proof of principle, we modeled only the amino acids 

at the antibody binding interface of gp120, and not the entire gp120 sequence. This led to gp120 

models with ~2 Å accuracy (Supplementary Table IV.1), which we consider sufficient for 

validating our design principles but not necessarily for experimental validation. Future directions 

in this work include optimize protocols for gp120 homology modeling to reduce this discrepancy 

and enable experimental validation. 
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Backbone optimization in protein design 

A distinct advantage of the BROAD method is the ability to truly incorporate backbone 

movement into protein design. Many protein design methods have been developed that incorporate 

backbone ensembles to some degree (Allen et al., 2010; Davey and Chica, 2014; Leaver-Fay et 

al., 2016; Sevy et al., 2015) – however, this work typically involves either pre-generating large 

backbone ensembles, many of which may be redundant, or introducing backbone movement 

iteratively after steps of sequence design. In our approach, since we are relaxing the backbone of 

all mutants before fitting the sequence-based predictor, we were able to design sequences that may 

be slightly sub-optimal on the starting backbone coordinates, but can be highly favorable when a 

slight backbone relaxation is applied. This approach allows us to search sequence space that is not 

accessible to other methods, which are highly constrained to the initial backbone coordinates. We 

observed that the BROAD-generated sequences are not sampled by ROSETTA design using the 

RECON method, and indeed are more favorable according to the ROSETTA energy function. 

Therefore, we conclude that we are searching a “blind spot” in the sequence space that is missed 

by traditional design. 

Application to HIV immunology 

This approach to research could be of great utility to the field of HIV immunology. A 

longstanding goal of the field is discovering broadly neutralizing antibodies as the basis of a 

rational structure-based vaccine strategy (Huang et al., 2012; Walker et al., 2009; Wu et al., 2010). 

Much work has gone into redesigning existing antibodies to increase their breadth and potency 

(Diskin et al., 2011; Willis et al., 2015). However, HIV is known for its variability, and with this 

variability comes a difficulty in generating a single antibody with potent neutralization against all 

possible variants. The BROAD method addresses this problem by enabling rapid redesign of 
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known antibodies against viral panels of arbitrary size. This technology can be used in the future 

as part of the antibody discovery and characterization process, by rapidly searching sequence space 

for variants for greater breadth. In addition, protein design also has been used on the reverse side 

of the vaccination problem, namely, to design a vaccine with high affinity for antibodies of interest 

(Correia et al., 2015; Jardine et al., 2013; Ofek et al., 2010). We can foresee the application of the 

BROAD method to this problem as well, by optimizing immunogens for recognition of germline 

precursors of known broadly neutralizing antibodies. 

 

Methods  

Structural modeling 

The VRC23-gp120 complex used for modeling was from the Protein Data Bank (PDB ID: 

4j6r). The structure was downloaded from the PDB (www.rcsb.org) and processed manually to 

remove water and non-protein residues. The CH1 and CL1 domains of the antibody structure were 

removed from the structure manually, and the structure was renumbered starting from residue 1. 

To select binding sites on the antibody and virus, we applied a distance cutoff of 4 Å from the 

opposing protein chain, where any residue with a heavy atom within 4 Å of a heavy atom on the 

opposing protein was considered to be at the binding site. Distance calculations were done using 

PyMol visualization software (Schrodinger, LLC, 2015). We expanded this binding site to several 

neighboring residues to include contiguous stretches of at least four residues to constitute a binding 

site. A total of 27 residues on the antibody were included in the binding site. We similarly 

determined a viral binding site to use for structural modeling. This site included 5 contiguous 

stretches that were determined to be in contact with VRC23 (32 positions total). These positions 

were 276-282; 365-371; 425-430; 455-462; and 473-476 (HXB2 numbering). To model gp120 



 117 

variants, we performed a multiple sequence alignment using ClustalW (Larkin et al., 2007) of the 

variant sequences with the gp120 in the crystal structure (Q23.17), and substituted the 

corresponding amino acids at the binding site using ROSETTA side chain optimization (Leaver-Fay 

et al., 2013).  

Training set 

To generate a training set of structural models, we made random antibody substitutions in 

the previously defined binding site. Each antibody variant had five randomly selected amino acid 

mutations. Viral variants were taken from a set of 180 known HIV gp120 sequences (Chuang et 

al., 2013). We chose random combinations of antibody variants and viruses, as well as the native 

antibody sequence with all 180 viruses, for a total of 2200 antibody-virus pairs to serve as the 

training set. All antibody-virus pairs were subjected to an energy minimization via the ROSETTA 

relax protocol, which involves iterative rounds of side chain repacking and backbone minimization 

with an increasing repulsive force (Combs et al., 2013). 50 models of each antibody-virus pair 

were generated by ROSETTA relax, and the lowest scoring model was used for further evaluation. 

The talaris2013 score function was used for all ROSETTA simulations.  

Linear classification and regression.  

Our data-driven sequence-based model to learn amino acid contributions to binding and 

stability is similar to the graphical model approach proposed in (Kamisetty et al., 2015). Let 𝑁6 

and 𝑁7 denote the number of binding positions on the antibody and the virus respectively. Let 𝐀 =

9𝐴;, 𝐴< …𝐴𝑵𝒂@ be a set of discrete variables representing the amino acids in the binding positions 

of the antibody. Each 𝐴A takes values in the set of 𝑀 = 20 amino acids. Similarly, let 𝐕 =

9𝑉;, 𝑉< …	𝑉𝑵𝒗@ represent the variables for the virus-binding positions. The inputs for binding 
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prediction are the antibody sequence 𝐚 = 9𝑎;, 𝑎< …𝑎IJ@	and virus sequence 𝐯 =

9𝑣;, 𝑣< …𝑣IL@	where 𝑎A and 𝑣M are the amino acid values for the variables 𝐴A	and 𝑉M. Amino acid 

contributions to binding can be modeled as a bipartite graph in which nodes for 𝐀 and 𝐕 represent 

the amino acids and the edges Ω ⊆ 𝐀	 × 𝐕 represent the pairwise amino acid interactions. Each 

node 𝑎A and 𝑣M has associated weight vector 𝐱A and 𝑦M ∈ 	ℝU. The edge (𝑖, 𝑗)	between nodes 𝑎A 

and 𝑣M has an associated weight matrix 𝑄AM ∈ ℝU	×U to represent the position-specific contribution 

to binding for each amino acid pair, where 𝑞Z[\] is the 𝑢𝑚th entry of matrix 𝑄AM . Consequently, 

given 𝐚 and 𝐯, the binding score varies as the sum of individual amino acids and pairwise 

interaction effects. Given this setting, 𝐚 and 𝐯 are predicted to bind, i.e., Φ(𝑎, 𝑣) =

	+1	(𝑏(𝑎, 𝑣) ≤ 𝜃),	if  

``𝑥AM𝑎AM +	``𝑦AM𝑣AM +``` ` 𝑎Z\𝑞Z[\]	𝑣[] + 𝑐 ≤ 0	
U

]c;

U

\c;

IL

[c;

IJ

Zc;

U

Mc;

IL

Ac;

U

Mc;

IJ

Ac;

																																		 (1) 

where 𝑐 is the intercept term and 𝑎AM and 𝑣AM are binary indicator variables that take the value 1 if 

amino acid 𝑗 is present at position 𝑖 (∑ 𝑎AM = 1, ∑ 𝑣AMMM = 1	∀	𝑖). The  𝑞Z[\] term represents 

𝑄Z[(𝑢,𝑚). These weights can be learned efficiently using a linear support vector machine (SVM) 

classifier. The feature vector 𝐟	consists of 𝑁6 × 	𝑀 binary antibody features, 𝑁7 	× 	𝑀	binary virus 

features and 𝑁6 ×	𝑁7 	× 	𝑀	 × 𝑀	binary pairwise interaction features corresponding to 𝐱, 𝐲 and 

𝑄	respectively. Given a set of 𝑑 training instance-label pairs (𝐟𝐢, 𝑙A), 𝑖 = 1…𝑑, 𝑙A = {+1,−1},	a 

L2-regularized linear SVM generates a weight vector 𝐰 by solving the following unconstrained 

optimization: min
𝐰

;
<
𝐰q𝐰 + 𝜆∑ (max(1 − 𝑙A𝐰q𝐟A, 0))<,u

Ac;  where 𝜆 > 0 is the L2 regularization 

parameter. Smaller 𝜆	values enforce higher regularization. The second term is the squared hinge 

loss function. The decision function is given by sign (𝐰q𝐟). We used the LIBLINEAR SVM 
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implementation (Fan et al., 2008) to learn the classifier. Finally, the weights 𝐱, 𝐲	and Q	are 

retrieved from the combined weight vector 𝐰.  

On each training set of the viruses, we trained this classifier and saved the weights and the 

intercepts for future use in optimization. In our example, 𝑁6 = 27	and 𝑁7 = 32. To tune the 

regularization parameter 𝜆 of SVM, we performed 10-fold cross-validation on the full dataset, 

using 80% of the data for training and 20% for testing.  The average prediction accuracy is shown 

in Figure IV.2 for different values of the L2 regularization parameter 𝜆. As expected, higher 

𝜆	values lead to overfitting. We simultaneously plot the prediction error on the two classes: binders 

(+1) and non-binders (-1). We chose 𝜆 = 0.001 for our experiments based on the bias-variance 

trade-off (corresponding to 33% test error).  

The above model can be interpreted to identify the important binding positions on the 

antibody and the virus side, i.e., the pairs that contribute significantly to the final prediction. 

Specifically, we denote the Euclidean norm of the coefficient matrix of interactions 𝑄AM , for each 

position pair as the strength of interaction between those positions. We plot this interaction strength 

for each pairwise interaction in Figure IV.2C.  

The linear regression model Ψ(𝐚) predicts the stability scores as a function of the antibody 

sequence features:  

Ψ(𝐚) =``𝑥AMz 𝑎AM + 𝑐z																		(2)
U

Mc;

IJ

Ac;

 

where 𝐱z ∈ 	ℝU  is the weight vector in regression and cz is the intercept. Given a set of 𝑑 training 

instance-score pairs (𝐚A, 𝑠A)	𝑖 = 1…𝑑, (𝑠A = 𝑠(𝐚A, 𝐯A),	so there are multiple scores for the same 

antibody feature vector), the regression objective with l1 (sparse) regularization is given by: 
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min
𝐱|

;
<u
(∥ (𝑥z)q𝐚A + 𝑐z − 𝑠A ∥<)< + 𝛼 ∥ 𝐱z ∥;, where the first term is the least squares penalty, 𝛼 

is the regularization parameter and ∥ 𝐱z ∥; is the l1-norm of the weight vector. We used the Lasso 

implementation in scikit-learn (Pedregosa et al., 2011) to learn this model. To measure the 

effectiveness of the prediction, we computed the correlation coefficient between the ROSETTA 

calculated stability scores (in ROSETTA energy units, or REU) and the scores predicted by 

regression. We performed a 10-fold cross validation experiment similar to linear classification, 

with 80% of the data for training and 20% for testing. Based on this parameter tuning, we chose 

𝛼 = 0.01 with an average correlation of 0.85 between predicted and actual stability energy score. 

Again, for each training set of viruses, we learn this model and save the weights and the intercept 

for the optimization in the next step.  

Breadth maximization integer program 

We leverage the weights in the binding and stability prediction models Φ(𝐚, 𝐯)	and Ψ(𝐚)	to 

formulate an ILP for optimization in the antibody sequence space. The objective is to minimize 

stability score. The constraints enforce the condition that the designed antibody should bind to 

each virus sequence in the training set. Finally, we add the constraint that the binary variables at 

each antibody binding position should sum to 1, i.e., each position admits one amino acid. The ILP 

is given by the following:  

minimize			``(𝑥Z\z )𝑎Z\

U

\c;

IJ

Zc;

 

subject	to	 

``�`` 𝑞\]Z[
U

]c;

IL

[c;

𝑣[]� + 𝑥Z\	�𝑎Z\

U

\c;

+``𝑦AM𝑣AM�
U

Mc;

+ 𝑐 ≤ 	−𝜖
IL

Ac;

	,									∀	𝑛 ∈ 1, … , 𝑡
IJ

Zc;

 



 121 

`𝑎Z\

U

\c;

= 1,													∀𝑘, 	𝑎Z\ ∈ {0,1} 

where 𝜖 = 0.0001 (which constrains that the antibody binds to all virus variants in the dataset, with 

a slight margin to ensure that binding is strictly below the 0 threshold). We used CPLEX version 

12.51 to solve the above ILP.  We solve this optimization problem for each binding and stability 

model learned for data obtained from randomly chosen 100 virus variants (from the dataset in 

which all 180 are represented).  

Non-linear classification for binding prediction 

Our final step is to take 50 antibodies generated using the integer program above from 50 

random subsets of data, and choose the top 10 candidates to evaluate with ROSETTA.  This decision 

is based on a non-linear model of binding learned on the full dataset which includes all 180 viral 

variants, combined with a full-dataset linear model of stability.  The top 10 most stable antibodies 

from all which are predicted to have 100% binding breadth are then chosen for evaluation.  The 

linear model of stability is identical to what we had described above.   

For the non-linear model of binding we use a kernel support vector machine with the radial 

basis function (RBF) kernel.  This model uses the same feature set as the linear model. The kernel 

function enables learning in a high-dimensional, implicit feature space without explicitly 

computing the coordinates of the data in that space. The RBF kernel of two feature vectors 𝐟 and 𝐟′ 

is defined as: 

 

𝑲(𝐟, 𝐟�) = exp�−
∥ 𝐟 − 𝐟� ∥<

2𝜎< �, 

where ∥ 𝐟 − 𝐟� ∥< is the squared Euclidean distance between the two feature vectors, and 𝜎 is a 
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free tunable parameter. Consequently, we have two free parameters to tune: the regularization 

parameter 𝜆, and the RBF kernel parameter 𝜎. Similar to the earlier set-up, we used 80% data for 

training and 20% for testing in a 10-fold cross validation experiment to tune these. We performed 

a grid-search over all pairwise combinations of 𝜎 and 𝜆 values in 10-2 to 102. The LIBSVM 

implementation in scikit-learn was used to train the RBF SVM. We chose the model with 𝜎 = 

0.01 and 𝜆 = 1 corresponding to the prediction accuracy of 68%. All learning and ILP experiments 

were performed on a 2.4GHz hyper threaded 8-core Ubuntu Linux machine with 16 GB RAM.  

RECON multistate design 

VRC23 was placed in complex with all 180 viruses and designed via RECON multistate 

design to increase predicted breadth across the panel. Models of viral variants were created as 

previously described, by substituting amino acids at the binding site. All VRC23-gp120 pairs were 

refined by ROSETTA relax with constraints to the starting coordinates to prevent the backbone from 

making substantial movements. Constraints were placed on all Cα atoms with a standard deviation 

of 0.5 Å. All residues at the binding site of VRC23 were included in design, for a total of 27 

residues. The RECON protocol was run in parallel over 180 processors (manuscript describing 

parallelization in preparation), with four rounds of design and a ramping convergence constraint 

(Sevy et al., 2015). The binding sites on both the antibody and gp120 chain was subjected to 

backrub movements between rounds of design to increase sequence diversity (Smith and 

Kortemme, 2008). A total of 100 designs were generated. Sequences generated by both BROAD 

and RECON methods were visualized using the WebLogo tool (Crooks et al., 2004). 

Sequence validation 

To compare sequences generated by BROAD optimization and RECON multistate design, 

we threaded the optimized antibody sequences over the unprocessed VRC23-gp120 complexes, 
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and subjected these complexes to ROSETTA relax to determine the score and binding energy of 

optimized antibodies vs. wild-type. 50 models were generated for each complex, and the lowest 

scoring model was used for evaluation. To compare native and optimized VRC23 sequences, we 

compared the total energy of the VRC23-gp120 complex as well as the binding energy (DDG), 

defined below: 

DDG = Ecomplex – (EAb + EAg) 

where EAb and EAg are the energies of the antibody and antigen alone, respectively. Structures of 

modeled VRC23-gp120 complexes were visualized using Chimera software (Pettersen et al., 

2004).  

Comparison to VRC01 lineage sequences 

VRC01 lineage sequences were derived from a previous study (Wu et al., 2015). The 1,041 

curated heavy chain sequences we used in this analysis are available in GenBank with accession 

numbers KP840719–KP841751. To compare sequence profiles we used a modified Sandelin-

Wasserman similarity score, as described in (Sandelin and Wasserman, 2004; Sevy et al., 2015). 

Briefly, this score was calculated by computing the sum of squared difference for each amino acid 

frequency at each position, which was then subtracted from two and normalized to yield a percent 

similarity for each position and summed over all designed positions to give an overall similarity 

score. 

  



 124 

Supplemental Information 

 

Supplementary Figure IV.1. Binding site of VRC23 shown in context of the antibody-antigen 
complex. The binding site encompasses FR2, CDR2, FR3 and CDR3 regions of the antibody heavy 
chain. 
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Supplementary Figure IV.2. Pseudocode describing the Integer Linear Program. 

 

 
 

 

Supplementary Figure IV.3. Pseudocode describing the BROAD algorithm for design of broadly 
binding antibodies. 

 

  

function SolveILP
Input: linear binding and stability models
Output: optimized antibody sequence
Variables: amino acids at the antibody binding sites
Objective: maximize stability
Constraints: the antibody should bind to each virus sequence in the

training set
end function

Generate Data: Rosetta(virus panel,antibody variants)
Learn Models: binding � and stability  on all data
Choose 50 random subsamples of 100 viruses
for each random subsample of 100 viruses do

Learn linear binding and stability models
SolveILP
Evaluate breadth (against full panel) using � and  

end for
Choose top optimized antibody candidates
Evaluate: Rosetta structure modeling on full panel
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Supplementary Table IV.1. Deviation of ROSETTA relaxed gp120 models from the starting crystal 
structures. 

gp120 for 
indicated HIV 

strain 
PDB ID RMSD between relaxed model 

and crystal structure 

Q23-17 4j6r 1.4 
YU2-DG 3tgq 2.1 
Du172-17 5te7 2.8 
RHPA-7 5t33 2.2 

X2088-c9 5te4 2.5 
ZM109-4 3tih 1.9 
JRCSF-JB 4r2g 2.4 
HXB2-DG 1g9m 2.5 
Q842-d12 4xmp 2.4 
Average  2.2 

 
ROSETTA relaxed models used in BROAD optimization were compared to solved structures of 
gp120 viral variants and the root mean squared deviation (RMSD) was computed over Cα atoms 
on gp120. The relax protocol recapitulates the gp120 conformations with an average RMSD of 2.2 
Å. 
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CHAPTER V.  

Engineering cross-reactivity to influenza and HIV antigens 

 

Sevy A.M., Parrish E.H., Chapman N., Bombardi R., Soto C., Meiler J., Crowe J.E. Jr. 

Unpublished. 

 

Author contributions: I proposed the model of cross-reactivity discussed in this chapter, and 

performed all computational modeling experiments, under the mentorship of Jens Meiler and 

James Crowe. Next-generation sequencing was performed in collaboration with R.B. for data 

collection and C.S. for data processing. E.H.P. and N.C. assisted with experimental design and 

testing. 

    

Introduction 

Influenza and human immunodeficiency virus (HIV) are two pathogens that create an 

enormous public health burden worldwide. Although very different in their viral characteristics 

and replication cycles, they share similarities in that they both undergo rapid cycles of evolution 

and antigenic shift to evade the host immune response. This rapid shift challenges the immune 

response by generating many viral variants that evade recognition by circulating antibodies, 

creating difficulty in effective neutralization of multiple strains simultaneously. In spite of this 

variability, broadly neutralizing antibodies recognizing diverse viral variants can be generated by 

adaptation of strain-specific antibodies via somatic hypermutation, conferring broad recognition 

and neutralization. 



 128 

Multiple neutralizing human antibodies targeting the receptor-binding site (RBS) of 

influenza hemagglutinin (HA) and the membrane-proximal external region (MPER) of HIV 

envelope protein gp41 have been characterized and structurally determined. Antibodies targeting 

the influenza RBS neutralize their targets by mimicking the binding position of the cellular 

receptor, sialic acid, preventing host cell recognition and entry (Hong et al., 2013; Schmidt et al., 

2013; 2015). MPER-targeting antibodies recognize a conserved region of HIV gp41, in many cases 

neutralizing large swaths (98%) of viral isolates, and are thought to neutralize by interfering with 

membrane fusion (Huang et al., 2012; Song et al., 2009). Both of these sites are susceptible to 

targeting by broadly neutralizing antibodies, as they both perform functions critical to the viral 

replication cycles (recognition of host cell receptor and membrane fusion, respectively). 

Antibodies recognizing either of these two antigenic sites have surprisingly homologous 

conformations of the heavy chain complementarity determining region 3 (CDRH3) loop, with root 

mean square deviation (RMSD) as low as 3.3 Å between disparate antibodies (Pejchal et al., 2009; 

Schmidt et al., 2013; Stanfield et al., 2011). Since the CDRH3 loop is the principal mediator of 

binding to influenza RBS, anti-HIV antibodies with a homologous loop conformation could, in 

theory, also accommodate binding to influenza RBS.  

In light of the structural similarity observed between antibodies targeting influenza HA and 

HIV gp41, I propose an immune mechanism wherein previously mutated influenza antibodies are 

stimulated by HIV gp41 upon infection and “repurposed” to potently neutralize HIV. I hypothesize 

that influenza HA can serve as an intermediate stimulating antigen in the development of an anti-

gp41 response, implying that antibodies isolated against influenza HA can be mutated through 

affinity maturation to recognize HIV gp41, and vice versa. To test this hypothesis, I used 

computational modeling and design using the ROSETTA software suite to simulate affinity 
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maturation and reconstruct hypothetical intermediates in this maturation process, using existing 

mature antibodies as templates and developing variants with altered specificity. 

 

Results 

Rationale 

Based on structural similarities between mature HIV and influenza antibodies, I 

hypothesize that naïve B cells undergo limited maturation in response to influenza HA, and are 

later matured to bind gp41 upon HIV infection (Figure V.1). In this model naïve B cells are 

stimulated by exposure to influenza early in life, inducing somatic hypermutation which stabilizes 

the CDRH3 loop into a conformation capable of binding both HIV and influenza antigens. These 

partially mutated intermediate antibodies can then be recruited to respond to subsequent exposure 

influenza, or can be mobilized to target HIV antigens upon infection.  

To date there are 13 antibodies deposited in the Protein Data Bank (PDB) that target the 

influenza HA RBS, which function by interfering with recognition of the host cell receptor sialic 

acid (Ekiert et al., 2009; 2012; Hong et al., 2013; Lee et al., 2014; 2012; Schmidt et al., 2013; 

2015; Thornburg et al., 2013; Whittle et al., 2011; Xu et al., 2013). Since binding by many such 

antibodies is primarily mediated by insertion of the CDRH3 loop, an antibody with a stable 

CDRH3 conformation similar to that of the known anti-RBS antibodies should be compatible with 

binding to the RBS. Several anti-HIV MPER antibodies bind their target peptides with similar 

CDRH3 conformations as anti-influenza RBS antibodies. I identified a cluster consisting of 

CDRH3 loops from five anti-RBS and three anti-MPER antibodies that assume similar bound 

conformations (Allcorn and Martin, 2002) (Table V.1). The loop RMSD of length-matched pairs 

of anti-RBS and anti-MPER antibodies ranged from 3.3-5.2 Å, whereas the same measurement 
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between pairs of anti-RBS antibodies ranged from 0.5-3.5 Å, suggesting that these deviations are 

within range for antibodies targeting a common epitope. Additionally, all of the CDRH3 loops are 

accommodated within the recessed binding pocket of HA without creating excessive clashes with 

HA residues. The structural similarity between these two CDRH3 conformations coincides with 

an approximate co-localization of helical motifs on the surface of influenza HA and HIV MPER 

when superimposing the antibody-antigen co-crystal structures, suggesting that this CDRH3 

conformation may be a common structural solution to binding short helical motifs. 

 

 

Figure V.1. Proposed model of cross-reactivity in the antibody response to HIV and influenza. 
Structural similarities between mature HIV (3) and influenza (4) antibodies combined with the 
lack of recognition of HIV Env by germline-reverted HIV antibody ancestors (1) lead to the 
hypothesis that an intermediate antibody undergoes limited maturation in response to influenza 
(2) and is later stimulated in response to HIV infection.  
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Experimental workflow 

 To test this hypothesis, we took an approach of next-generation sequencing combined with 

computational modeling to identify human B cells predicted to cross-react with both HIV and 

influenza antigens (Figure V.2). We first sequenced antibody heavy chain variable genes from 

HIV-infected donors after influenza vaccination. After obtaining these sequences, we used a 

computational protocol in ROSETTA known as a position-specific structural scoring matrix (P3SM) 

to predict the interaction of an antibody sequence with either influenza HA or HIV MPER peptide. 

The P3SM protocol uses ROSETTA modeling of a small subset of antibody sequences to extrapolate 

for rapid scoring of large numbers of sequences (Willis et al., 2016). After predicting the activity 

of over 140,000 human sequences, we identified those with the highest predicted likelihood of 

cross-reactivity between influenza and HIV and subjected them to multistate design using the 

RECON algorithm to increase affinity for both targets.  

 
Figure V.2. Experimental workflow of identifying antibodies cross-reactive to influenza and 
HIV. We first collected B cells from HIV-infected human donors after seasonal influenza 
vaccination. We then used a computational protocol called a P3SM to predict whether a given 
sequenced antibody would bind to either influenza or HIV. After predicting the binding activity, 
we used multistate design to further increase affinity of sequenced antibodies for both influenza 
and HIV. 

 

Sequence B cells from HIV-infected 
donors after influenza vaccination

Predict binding of sequenced antibodies 
to influenza, HIV using P3SM

Use multistate design to improve 
binding to influenza, HIV
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Computational modeling using ROSETTA  

To perform P3SM prediction of influenza- or HIV-binding activity, I first identified 

templates for modeling, which would serve as a framework for threading the human sequences. I 

chose two antibodies with previously determined structures, anti-influenza mAb 641 I-9 and anti-

HIV mAb Z13e1, both encoded by IGHV gene VH4-59 with 19 amino acid CDRH3 loops (Nelson 

et al., 2007; Schmidt et al., 2015; Zwick et al., 2001). Both of these antibodies neutralize their 

targets (influenza or HIV, respectively) with high potency and breadth. To predict the likelihood 

of an antibody sequence interacting with either influenza or HIV, I threaded the CDRH3 sequence 

of a given antibody sequence onto the CDRH3 conformation of either 641 I-9 or Z13e1 and 

measured the ROSETTA energy score after structural refinement. This energy score gives a measure 

of the likelihood of a new antibody sequence adopting the active, antigen-binding conformation as 

observed in the template structure. The P3SM is a useful heuristic because it uses a training set of 

ROSETTA-modeled sequences to learn a simplified energy function that can rapidly predict 

ROSETTA score from sequence alone. As a training set, I generated models of 500 randomly 

selected CDRH3s from human donors threaded over either the 641 I-9 or Z13e1 co-crystal 

structure. I then fit a linear regression model to predict the ROSETTA score from sequence with 

high accuracy.  

Next-generation sequencing 

We collected peripheral blood mononuclear cells (PBMCs) from five HIV-infected donors 

seven days after seasonal influenza vaccination to validate our hypothesis. We reasoned that these 

donors would have the highest frequency of cross-reactive B cells, as they have memory B cells 

specific for HIV that could potentially be recruited to respond to influenza vaccination. 

Temporally, this is the opposite of the hypothetical scenario proposed earlier in this chapter, where 
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individuals with previous exposure to influenza use this antibody response to target HIV. We 

sequenced the antibody heavy chain of plasmablasts from these donors, obtaining a total of 

2,241,196 unique clonotypes (Table V.2). We filtered the sequences to those which use the same 

IGHV gene (VH4-59) and have the same CDRH3 length (19 amino acids) as the template mAbs, 

which yielded 142,716 sequences for P3SM analysis. I scored each of these sequences for 

likelihood to bind influenza based on the 641 I-9 structure and likelihood to bind HIV based on 

the Z13e1 structure and plotted the two scores to identify potential cross-reactive sequences 

(Figure V.3). As a control, I also modeled the wild-type CDRH3 sequences of the template mAbs 

Z13e1 and 641 I-9. Each of these template sequences scored favorably in their cognate structures, 

but not the opposing complex. This reflects the known behavior of these antibodies, which is 

specific to one antigen with no cross-reactivity to the other. The donor sequences show a range of 

P3SM scores between the native complexes of each of the two antigens. No donor sequence was 

predicted to bind to both antigens with comparable affinity to the wild-type template mAbs, but 

several sequences are comparable to the templates in P3SM score for one antigen or the other. The 

P3SM score distributions suggest that when transitioning from one antigen to the other an affinity 

tradeoff is necessary, and a cross-reactive antibody capable of recognizing both targets would do 

so with low affinity.  

Structural analysis of models 

I next analyzed the distribution of P3SM scores of human sequences against both antigens 

to identify those which are Pareto-optimal. Pareto analysis is used to find the optimal combination 

of two or more variables (Nivón et al., 2013). The Pareto-optimal frontier is the set of data points 

where one variable cannot be improved without a sacrifice in the other variables. In this case, I 

wanted to identify the optimal set of HIV or influenza binding antibodies, where improvement in 
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HIV affinity can only be achieved with a loss in influenza affinity, or vice versa. I calculated this 

set of Pareto-optimal sequences within an error of 5 ROSETTA energy units (REU), which yielded 

a total of 367 sequences, and analyzed the characteristics of these clones (Figure V.4A). These 

sequences were very degenerate in their CDRH3 sequences, with the only consistent pattern an 

abundance of tyrosine at the C-terminal end of the loop, likely due to use of the IGHJ6 gene. I then 

generated ROSETTA models of these Pareto optimal sequences to test the accuracy of the P3SM 

prediction (Figure V.5). The ROSETTA score was well predicted by P3SM and most clones 

remained in the range of affinities between the wild-type antibodies. From analysis of models of 

individual sequences, I observed recapitulation of the binding modes of wild-type 641 I-9 and 

Z13e1 (Figure V.4B). Sequence 12827-37812 was able to mimic the 641 I-9 binding mode by 

placing an aspartic acid next to a hydrophobic residue at the tip of the CDRH3, a common dipeptide 

motif in RBS which mimics sialic acid (Schmidt et al., 2015). In addition, sequence 3610-63118 

is able to recapitulate the binding mode of Z13e1 to its HIV epitope by placing a hydrophobic 

patch in the groove corresponding to HIV MPER binding. 

These computational results suggest that naturally occurring human antibodies are able to 

recognize HIV and influenza antigens with a gradient of affinities, with some presumably binding 

both targets with low affinity. I next asked whether these sequences could be improved by 

computational design for binding to both targets. I applied the RECON multistate design method 

to these sequences and measured their predicted affinity for HIV and influenza after redesign (Sevy 

et al., 2015). These sequences are predicted to be improved in affinity both for HIV and influenza 

antigens after redesign (Figure V.5). The wild-type 641 I-9 antibody was greatly improved for 

predicted HIV affinity after RECON redesign without any loss in influenza affinity. The wild-type 

Z13e1 antibody could be improved substantially for influenza affinity with a slight improvement 
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for HIV affinity. These computational experiments suggest that it is possible to engineer an 

antibody which binds both HIV and influenza antigens by redesign of existing human antibodies. 

In addition, this analysis suggests that circulating human antibodies in HIV-infected donors may 

have low to moderate affinity for influenza as well as HIV.  

 

Table V.1. Anti-influenza HA and HIV MPER antibodies identified with similar CDRH3 
conformations. 

Antibody Antigen VH gene JH gene CDRH3 length 

5J8 HA 4-38-2 4 17 
CH65 HA 1-2 6 19 
CH67 HA 1-2 1 19 
H5.3 HA 4-4 5 16 

641 I-9 HA 4-59 3 19 
Z13e1 MPER 4-59 6 19 
3D6 MPER 3-9 3 19 
10e8 MPER 3-15 1 22 

 

Table V.2. Primary blood mononuclear cells (PBMCs) were collected from five HIV-infected 
donors after influenza vaccination for next-generation sequencing. 
 

Donor ID Gender Race Ethnicity Age 
(years) 

Site of 
collection 

# unique 
clonotypes 

24407 M Caucasian Non-
Hispanic 

51 

Nashville, 
TN 

402,925 

24408 M Caucasian Non-
Hispanic 

57 419,370 

24409 M Caucasian Hispanic 32 652,153 
24410 M African-

American 
Non-
Hispanic 

51 450,526 

24411 M Caucasian Non-
Hispanic 

49 316,222 

Clonotypes are defined as antibody clones that share IGHV and IGHJ genes and 100% amino 
acid identity in the CDRH3 region. Antibody sequences were filtered for quality and grouped 
into clonotypes before de-duplication. For more details on quality filtering see Methods. 
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Figure V.3. Cross-reactive sequences evaluated by position-specific structural scoring matrix 
(P3SM). Human antibody sequences from HIV-infected donors after seasonal influenza 
vaccination were predicted by P3SM for likelihood to adopt the CDRH3 conformation of anti-
HIV mAb Z13e1 (X-axis) or anti-influenza mAb 641 I-9 (Y-axis). P3SM score is expressed in 
ROSETTA energy units (REU). Also shown are the wild-type (WT) CDRH3 sequences of Z13e1 
and 641 I-9 subjected to the same protocol. 
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Figure V.4. Properties of putative HIV/influenza reactive antibodies identified by P3SM 
approach. A. Sequence logo of 367 CDRH3 sequences with Pareto optimality for 641 I-9 and 
Z13e1-like CDRH3 conformations. Amino acids are colored according to chemical composition. 
Wild-type sequences of 641 I-9 and Z13e1 CDRH3 loops are shown below. B. Example donor 
sequences that are predicted to mimic activity of wild-type antibodies. 
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Figure V.5. CDRH3 sequences from infected donors can be improved by multistate design for 
binding to both HIV and influenza. Donor CDRH3 loops identified by the P3SM protocol were 
homology modeled in ROSETTA and assessed for favorability in Z13e1 HIV-binding complex 
(X-axis) or 641 I-9 HA-binding complex (Y-axis). These sequences were redesigned by RECON 
multistate design and the scores are plotted (red). Also shown are the wild-type Z13e1 and 641 
I-9 CDRH3 loops, subjected to the same protocol of homology modeling (black and magenta, 
respectively) or multistate design (gray and pink, respectively). Scores are expressed in ROSETTA 
energy units (REU). 
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Discussion 

In this chapter, I proposed an immune mechanism in which antibodies are first raised in 

response to influenza, undergo limited maturation to rigidify the combining site, and later respond 

to HIV infection by undergoing somatic hypermutation to gain high affinity for the HIV MPER 

epitope. I approached this hypothesis from a structural perspective, first identifying clusters of 

antibodies targeting influenza RBS or HIV MPER with homologous CDRH3 conformations, then 

using computational modeling to predict their tendency for cross-reactivity between antigens. I 

used next-generation sequencing to identify heavy chain antibody sequences of memory B cells 

from HIV-infected donors after seasonal influenza vaccination, and used a modeling heuristic 

known as a P3SM to identify sequences predicted to have cross-reactive activity against HIV and 

influenza. Lastly, I used RECON multistate design in ROSETTA to optimize the CDRH3 loops of 

these human sequences against both antigens simultaneously and engineer antibodies with 

predicted high affinity against both of these targets. 

Although the work presented in this chapter is promising, several caveats should be noted. 

The antibody sequences described were only evaluated in silico and were never tested 

experimentally to verify their binding activity. This is due to limitations in high-throughput 

antibody synthesis, expression, and testing necessary to validate a large number of recombinant 

antibodies. However, as high-throughput gene synthesis and recombinant antibody expression 

becomes more routine, in the future it will be possible to test a large number of these sequences 

and verify their binding activity. 

Another caveat is based on the format of the sequences modeled in this work. Using the 

P3SM method, only the predicted binding of variant CDRH3s presented on the backbone of known 

wild-type antibodies (641 I-9 and Z13e1) was measured. However, it would be more biologically 
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relevant to test whether a CDRH3 loop in the context of its native antibody framework sequence 

is capable of binding a given antigen. Since the CDRH3 is the primary mediator of antigen 

recognition in the case of influenza HA, and a key contributor in the case of HIV MPER, I argue 

that modeling the CDRH3 is an adequate proxy for predicting activity of a given sequence. In 

addition, the fact that the antibodies are both encoded by VH4-59 implies that the framework 

regions will be mostly similar in sequence, making the CDRH3 the main differentiator between 

influenza and HA binding. However, the difference between modeling chimeric antibodies with a 

mutated CDRH3 and full-length sequences is an important distinction and something that should 

be addressed in future work. In addition, all donor sequences were modeled with the light chain 

from one of the two wild-type antibodies previously mentioned. As the next-generation sequencing 

only gathered heavy chain sequences, we are unable to model native heavy-light chain pairs. 

However, recent work has shown it possible to perform high-throughput next-generation 

sequencing with heavy-light chain pairs (Wang et al., 2018), and we expect these advances to 

greatly benefit antibody modeling process. 

In the immunological model presented here, I hypothesized that an intermediate antibody 

would have low affinity for both HIV and influenza, and after undergoing further maturation it 

would gain affinity for one antigen at the cost of the other. The P3SM screening of donor sequences 

fits this model by showing that, among circulating, 641 I-9 and Z13e1 are optimized for binding 

to their antigens, and cannot be substantially improved for the other antigen without sacrificing 

affinity to its own antigen (Figure V.3). The implications of this hypothesis are that such low 

affinity intermediates could be targeted in an HIV vaccination strategy. If the intermediates are 

induced by exposure to influenza, they should be common in the population and should be present 

at an early age. They could be targeted by an HIV vaccine that spurs their development towards 



 141 

HIV recognition, such that upon HIV infection there is already a potent response in memory. This 

would extend on work done by other groups targeting precursors of broadly neutralizing HIV 

antibodies for a more effective vaccine response (Jardine et al., 2013; 2015). However, a key detail 

of the mechanism proposed in this chapter is whether or not these intermediate antibodies have 

potent neutralizing activity. If targeting these intermediates leads to a high affinity but 

nonneutralizing response, targeting them would be counter-productive since it would drive the 

immune response towards nonneutralizing antibodies. In this case it would be desirable to avoid 

these intermediates to avoid the nonneutralizing response. However, since Z13e1 neutralizes HIV 

potently and with relatively high breadth (Nelson et al., 2007; Zwick et al., 2001), I hypothesize 

that the intermediate antibodies induced by this mechanism would also be neutralizing after 

affinity maturation. 

 

Methods 

Sample preparation and sequencing 

Peripheral blood was obtained from healthy adult donors following informed consent, 

under a protocol approved by the Vanderbilt Institutional Review Board. B cells from 

approximately 1 x 107 PBMCs per donor sample were enriched using EasySep Human Pan-B Cell 

Enrichment Kit on the RoboSepTM-S according to the manufacturer’s protocol (Stemcell 

Technologies). After the enrichment, cells were washed and pelleted for total RNA extraction 

using the RNeasy Mini Kit (Qiagen). First-strand cDNA synthesis was performed by using 

PrimeScript Reverse Transcriptase (Clontech), following the manufacturer’s instructions (with 

optional steps), using 20 pmol of J gene-specific primers (van Dongen et al., 2003)with unique 

molecular identifiers incorporated into the 5’ end of the primers (Khan et al., 2016). After cDNA 
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synthesis, samples were purified using the AmpureXP Size Select Bead Kit (Beckman Coulter). 

Immediately following bead clean up, 30 µL of PCR mixture containing 2.5 pmol of each V gene-

specific region primer (van Dongen et al., 2003) and 2X Kapa Hifi Hotstart Ready Mix (Kapa 

Biosystems) was added directly to the 20 µL purified first-strand synthesis product. PCR reaction 

conditions were 95°C for 3 min, 9 cycles of 98°C for 20 s, 65°C for 15 s, and 72°C for 30 s, and a 

final extension step of 72°C for 5 min. The first-round PCR reaction was purified using the Ampure 

Size Select Bead Kit (Beckman Coulter). Second-round PCR mixture containing 25 pmols of each 

Illumina adapter extension primer and 2X Kapa Hifi Hotstart Ready Mix (Kapa Biosystems) was 

added directly to 20 µL of the purified first-round PCR reaction product. PCR reaction conditions 

were 95°C for 3 min, 23 cycles of 98°C for 20 s, 65°C for 15 s, and 72°C for 20 s, and a final 

extension step of 72°C for 5 min. The second-round PCR products were purified using the Ampure 

Size Select Bead Kit (Beckman Coulter). Illumina-ready amplicon libraries were quantified using 

the Real-time Library Amplification Kit (Kapa Biosystems) and pooled at equimolar amounts. 

Samples were loaded onto 2X flow cells for sequencing on the HiSeq 2500 next-generation 

sequencer with PE-250 V2 chemistry (Illumina).   

Data processing and analysis 

The processing pipeline consisted of the following steps. First, the FASTQC toolkit was 

used to make a visual inspection of the quality of the run (Andrews). Next full-length reads were 

generated from Illumina paired end reads using the software package USEARCHV9.1 (Edgar and 

Flyvbjerg, 2015); 3) The BIOMEDII primers, as in (Soto et al., 2018a), were removed using the 

software package FLEXBARV3.0 (Roehr et al., 2017). Data was then processed using PyIR 

software to assign germline V and J genes (Soto et al., 2018b). Sequences were filtered by the 

following criteria: 1) productive sequences, 2) V and J gene E value less than 10-6, 3) in-frame 
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sequence, and 4) no unknown amino acids in protein sequence. Sequences were then reduced to 

clonotypes, where a clonotype is defined as a set of sequences with a common V and J gene and 

an identical CDRH3 amino acid sequence. Clonotypes were de-duplicated and the frequency of 

each V-J gene pair was computed for each individual donor.  

ROSETTA modeling 

The co-crystal structures of 641 I-9 and Z13e1 in complex with their antigens were 

downloaded from the Protein Data Bank (PDB IDs 4yk4 and 3fn0, respectively). The structures 

were processed manually to remove waters and non-protein residues. The heavy chain constant 

region 1 (CH1) and light chain constant region (CL) domains of the antibodies were removed from 

the structures manually, and the structures were renumbered starting from residue 1. To generate 

a P3SM, 500 CDRH3 sequences from the previously described donors were randomly selected 

and threaded over the CDRH3 loop of either the Z13e1 or 641 I-9 complex, along with the wild-

type sequence of each antibody. The chimeric structure was then refined with ROSETTA relax using 

constraints to the starting coordinates to prevent the backbone from making substantial 

movements. Constraints were placed on all Ca atoms with a standard deviation of 1.0 Å. Ten 

models were generated for each modeled sequence and a total of 5,020 models were used to 

generate each P3SM. To generate a P3SM ridge regression was used to fit a coefficient to each of 

the 20 amino acids at 19 positions of the CDRH3 loop, with an l2 penalty to enforce sparsity. The 

coefficients were fit to optimize prediction of ROSETTA score of the CDRH3 loop from the 

sequence. The Python package scikit-learn was used to perform ridge regression (Pedregosa et al., 

2011).  
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CHAPTER VI.  

Computationally designed cyclic peptides derived from an antibody 

loop increase breadth of binding for influenza variants 

 

Sevy, A. M., Gilchuk I.M., Nargi R., Jensen M., Meiler J., Crowe J.E. Jr. Computationally 

designed cyclic peptides derived from an antibody loop increase breadth of binding for influenza 

variants. Manuscript in preparation. 
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Abstract 

The influenza hemagglutinin (HA) glycoprotein is the target of many known broadly 

neutralizing antibodies. However, influenza viruses can rapidly escape antibody recognition by 

mutation of hypervariable regions of HA that overlap with the antibody binding epitope. In this 

work, we hypothesized that by designing peptides to mimic antibody loops, we could enhance 

breadth of binding to HA antigenic variants by reducing contact with hypervariable residues on 

HA that mediate escape. We designed cyclic peptides that mimic the heavy chain 

complementarity-determining region 3 (CDRH3) of anti-influenza broadly neutralizing 



 145 

monoclonal antibody C05 and show that these cyclic peptides bound to HA molecules with < 100 

nM affinity, comparable to that of the full-length parental C05 IgG. In addition, these peptides 

exhibited increased breadth of recognition to influenza H4 and H7 subtypes by eliminating clashes 

between the hypervariable antigenic regions and the antibody CDRH1 loop.  

 

Introduction 

Since the mid-1990s, the role of monoclonal antibodies (mAbs) as therapeutic agents has 

been growing rapidly. MAbs have many favorable properties as therapeutics, as they can be 

generated quickly by a number of different discovery strategies, and it is possible to isolate mAbs 

that bind to virtually any target of interest. To date, over 60 antibody-based drugs have been 

approved for therapeutic use, and over 550 antibodies are currently being developed as 

therapeutics (Carter and Lazar, 2018). Part of the appeal of antibodies as drugs is the fact that they 

bind targets with both high affinity and remarkable specificity.  

However, antibody therapeutics also face major limitations. As large (~ 150 kDa) 

biological molecules, they can be difficult to produce and store compared to small molecules. 

MAbs are susceptible to degradation and modification over time, and the cost of production is high 

(Elgundi et al., 2017). Antibodies typically are effective only against targets accessible on the 

surface of microorganisms or cells, as they cannot cross cell membranes efficiently (Carter and 

Lazar, 2018). In addition, in cases where antibodies are needed to recognize multiple related 

proteins with sequence polymorphisms, such as viral surface proteins, the specificity that is a 

cardinal feature of the antibody-antigen interaction can be viewed as a limitation. 

To address these limitations, we developed a new method of generation of mini-antibodies 

using computational design of cyclic peptides based on the structure of an antibody hypervariable 
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loop. Antibodies bind their targets with a surface comprising six complementarity-determining 

regions (CDRs), the most diverse of which is the third loop on the heavy chain (CDRH3) (Murphy 

et al., 2012). Potent and cross-reactive antiviral antibodies commonly have long CDRH3 loops 

that mediate antigen recognition (Corti and Lanzavecchia, 2013), a trend that is also evident for 

other non-viral targets (Bonsignori et al., 2014; Shih et al., 2012; Thomas, 1993). Long CDRH3 

loops typically contact a conserved portion of the antigen and can mediate broad recognition. 

However, the large overall footprint of such antibodies often includes contacts made by CDRH1 

and CDRH2 and by light chain CDRs. If antigen residues in the periphery of the contact area are 

hypervariable (i.e., vary among viral field strains), minor structural variations in those strains result 

in loss of binding and thus prevent broad reactivity for that mAb. We hypothesized that we could 

enhance the breadth of activity of a neutralizing antibody against a hypervariable viral protein by 

designing a peptide that adopts the conformation of the antibody CDRH3 loop but eliminates 

interactions with variable antigenic residues. As a proof-of-principle exercise, we used 

computational modeling to design a peptide derived from anti-influenza human mAb C05 whose 

CDRH3 binds to the highly conserved receptor-binding site on hemagglutinin (HA) (Ekiert et al., 

2012). We show that this peptide binds with high affinity to influenza HA and exhibits increased 

breadth, as it binds to viral subtypes not recognized by the parental antibody, due to the highly 

conserved footprint of the peptide. 

 

Results 

Experimental workflow 

To design antibody loop-based peptides, we performed computational modeling 

simulations using the  ROSETTA software suite (Alford et al., 2017) (Figure VI.1). We focused our 
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efforts on anti-influenza mAb C05, as this mAb binds its antigen primarily with a long (26 amino 

acid) CDRH3 loop. We first removed the CDRH3 loop from the structure of C05 in the unbound 

state (PDB ID 4fnl) and added cysteines to the N- and C-termini in silico (Figure VI.1A). We 

reasoned that a disulfide-stabilized cyclic peptide would have reduced conformational entropy 

compared to a linear peptide and would more readily adopt the correct conformation 

(Bogdanowich-Knipp et al., 1999). We used ROSETTA to fold these peptides 1,000 times, modeling 

either the full peptide or a truncated version of the tip of the loop, and analyzed the folding energy 

landscape of the peptides, where a peptide likely to fold into its active conformation had low 

scoring decoys with low Ca RMSD (Figure VI.1B, lower left quadrant). After folding the wild-

type peptide sequence, we used ROSETTADESIGN to optimize the peptide sequence to increase 

stability in the active conformation. We then refolded the sequence-optimized peptides to assess 

the likelihood that these spontaneously fold into the bioactive conformation and cannot adopt low 

energy alternative conformations. Based on the computational analysis we selected eight 

redesigned peptides for synthesis and experimental characterization (Figure VI.1C). 

Peptide folding simulations 

Starting with the full-length and truncated CDRH3 peptides, we folded these peptides in 

silico to predict their low energy conformations (Figure VI.1B). The peptides failed to converge 

on the active conformation, suggesting that alternative low energy conformations exist that would 

presumably not function. Notably, this finding agrees with previous experiments showing that the 

C05 CDRH3 peptide is not active in cyclized or linear formats (Ekiert et al., 2012), effectively 

serving as a negative control for our computational protocol. Next, we redesigned the group of 

peptide models within 2 Å of the native conformation, consisting of 36 full-length and 49 truncated 

models, and refolded the top 10 and 23 scoring designs, respectively. Out of these models, three 
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full-length and five truncated peptides displayed an improved folding profile (Supplementary 

Figure VI.1). These variants featured a decreased overall ROSETTA score compared to the wild-

type peptides, suggesting a stabilization of the active conformation. The variants also exhibited a 

characteristic “funnel” shape in the ROSETTA score plots, where a decrease in energy is correlated 

with low RMSD models, suggesting that they primarily fold into the active conformations and not 

into alternative, competing conformations. In addition, we modeled these peptide variants in the 

context of the antibody-antigen interaction, eliminated any mutations that negatively affected the 

antigen binding interface in the simulations, and refolded all variants to ensure they retained 

desirable folding energies and landscapes (Supplementary Figure VI.2). This analysis prioritized 

eight redesigned peptides for further characterization. 

Molecular dynamics simulations 

To further assess the expected stability of these peptides in solution, we used molecular 

dynamics (MD) simulation as a complementary modeling approach. We modeled the behavior of 

two wild-type peptides and eight redesigned peptides in explicit solvent over a time scale of 50 ns 

and measured the fluctuation in Ca RMSD (Supplementary Figure VI.3). The MD simulations of 

full-length peptides differed from the ROSETTA folding data, suggesting that the wild-type peptide 

was relatively stable and that peptides d1 and d7 would not adopt the active conformation. In 

contrast, the MD simulations of truncated peptides matched well with the ROSETTA simulations. 

The wild-type truncated peptide appeared to adopt an alternate conformation after roughly 40 ns. 

Several of the redesigned truncated peptides (d2, d4, d5) remained stable in the active 

conformation after 50 ns, and others (d8, d10) adopted an alternate conformation similar to the 

wild-type peptide.  
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Experimental characterization of redesigned peptides 

Based on the in silico modeling of these peptides by two complementary approaches, we 

synthesized and characterized eight redesigned and two wild-type peptides, four of the full-length 

and six of the truncated form, cyclized by a disulfide linkage between the N- and C-termini. We 

then tested binding of these peptides to recombinant influenza HA by biolayer interferometry 

 
 
 

 
Figure VI.1. Experimental workflow of designing CDRH3-derived cyclic peptides. A. 
Influenza antibody C05 was chosen due to its long CDRH3 loop involved in antigen 
recognition. The CDRH3 loop was removed from the antibody and cyclized with a disulfide 
bond in silico. B. Folding simulations of the full-length and truncated C05 cyclic peptide were 
performed using Rosetta loop modeling. The wild-type (WT) CDRH3 sequence (blue) was 
redesigned to stabilize the peptide and improve the energy landscape (red). Favorable energy 
landscapes have native-like models (low Ca RMSD) with low Rosetta score (lower left 
quadrant). Score is expressed in Rosetta energy units (REU). C. WT (blue) and redesigned (red) 
cyclic peptides were synthesized and characterized for binding kinetics to recombinant 
influenza HA using biolayer interferometry (BLI). 
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(BLI). We found that while binding of the wild-type peptides to HA was not detected, two 

redesigned peptides (one full-length and one truncated) displayed high-affinity binding (Figure 

VI.2). These peptides bound to HA proteins of both the H1 and H3 antigenic subtype with an 

affinity better than 100 nM. To verify that this binding activity was not an artifact of the BLI 

system, we repeated the binding assay using ELISA on streptavidin-coated plates (Supplementary 

Figure VI.4). We observed a clear binding signal for C05 d1 on this system, albeit at lower apparent 

affinity. C05 truncated d4 showed low but observable binding in ELISA, however the EC50 could 

not be calculated due to lack of saturation. We attribute this finding to the fact that the truncated 

peptide lacks the torso of the CDRH3 loop, reducing the total linker distance between the biotin 

tag and functional portion of the peptide. Therefore, we conclude that peptides C05 d1 and C05 

truncated d4 bind with high affinity to influenza HA.   

To verify specificity of binding to the receptor-binding site on influenza HA, we performed 

competition binding on a biosensor using BLI. We first immobilized peptides to the biosensor, 

then bound recombinant HA followed by either a receptor-binding site antibody (mAb C05) or 

stem binding antibody (mAb CR6261, Figure VI.2D and H). We observed that, while CR6261 

bound the HA tethered to peptide, binding of C05 was not detected, indicating that peptides bind 

specifically to the receptor-binding site as predicted.  

To directly compare the affinity of the redesigned peptides to the affinity of C05 IgG, we 

measured binding to a monomeric head domain of HA from the H1 influenza virus strain 

A/Solomon Islands/03/2006. We observed an avidity effect from using a trimeric HA that 

depended on the density of the immobilized molecule (either peptide or IgG), suggesting monomer 

binding is the most unbiased method to directly compare affinities. The peptides bound monomeric 

HA head domain with an affinity comparable to that of C05 IgG (Supplementary Figure VI.5). 
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C05 IgG bound with an affinity of 88 nM, while the peptide affinities were 124 nM or 506 nM for 

full-length or truncated peptides, respectively. Notably the C05 IgG bound with high on and off 

rates, consistent with previous work on monovalent binding of C05 (Ekiert et al., 2012), whereas 

the peptides bound with slower on and off rates.  

We repeated binding assays with a linear peptide of the same sequence to test our 

hypothesis that cyclization increases affinity by stabilization of proper conformation. We reduced 

the disulfide bond in the peptides before coupling to the biosensor and repeated binding to HA. 

Although we could still observe low levels of binding with the linear peptides, the affinity was 

reduced significantly (Supplementary Figure VI.6), suggesting that cyclization does improve 

peptide activity.  

To investigate the biological activity of these peptides, we performed hemagglutination 

inhibition (HAI) assays with influenza H1 virus. Neither of the peptides showed HAI activity when 

tested in concentrations up to 50 µM (data not shown). In an effort to improve the avidity of the 

peptides we preloaded peptides onto streptavidin tetramers and repeated HAI, which also did not 

show activity when tested in concentrations up to 2.5 µM (data not shown). 

Peptides have increased breadth compared to IgG 

C05 IgG is known to have unusual breadth for an antibody to the influenza receptor-

binding site, binding to both group 1 and 2 HA molecules (Ekiert et al., 2012). After confirming 

the binding activity of two redesigned peptides, we tested binding to a diverse panel of influenza 

HA, including strains known to bind or not bind C05 IgG. Remarkably, we found that the 

redesigned peptides not only maintained the breadth of C05 IgG, but they exhibited increased 

breadth (Table VI.1). The peptides recognized new strains within the H1 subtype, increasing 

breadth to A/Puerto Rico/8/1934 for peptides d1 and d4 and A/California/04/2009 for peptide d4. 
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The binding to A/Puerto Rico/8/1934 is consistent with previous work showing that a 

computationally redesigned C05 mutant antibody gains binding to this strain (manuscript 

submitted). In addition, HAs from two new influenza virus A subtypes, H4 and H7, were bound 

by peptides but not by IgG. As a control we performed binding to an irrelevant antigen from HIV 

(Supplementary Figure VI.7). We did observe a low level of binding to the irrelevant antigen that 

was above background signal, indicating that there is a weak nonspecific component to the peptide 

interaction. However, the signal from specific binding to HA was clearly distinct from the 

nonspecific signal (Supplementary Figure VI.7). Therefore, we only considered binding to variant 

HAs if the signal was at least twice as strong as that to the irrelevant antigens. 

 

  

 
Figure VI.2. Redesigned cyclic peptides bind with high affinity to group 1 and 2 HAs. 
Redesigned cyclic peptides C05 d1 (upper panels) and C05 truncated d4 (lower panels) bind to 
H1 (B, F) or H3 (C, G) HAs with high (<100 nM) affinity. The wild-type CDRH3 sequence 
does not bind to H1 HA in either full-length (A) or truncated (E) formats. To identify the peptide 
epitope, peptides were loaded onto a biosensor, which then was treated with recombinant HA 
from H1 A/Solomon Islands/03/2006 virus followed by a receptor-binding site (C05) or stem 
(CR6261) antibody (D, H). 
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Table VI.1. C05-based cyclic peptides have increased breadth of recognition of diverse influenza 
HA molecules compared to the parental IgG molecule.  
 
Group Subtype Strain C05 d1 C05 d4 C05 IgG 
 
 
 
 
 

1 

H1N1 A/Solomon Islands/03/2006 +++ +++ ++++ 
A/Solomon Islands/03/2006 
head domain 

++ ++ +++ 

A/Brevig Mission/1/1918 - - - 
A/Tottori/YK012/2011 - - - 
A/mallard/Alberta/35/1976 - - ++ 
A/Puerto Rico/8/1934 +++ +++ - 
A/Texas/36/1991 - - - 
A/New Caledonia/20/1999 +++ +++ ++ 
A/California/04/2009 - ++++ - 

H2N2 A/Japan/305/1957 +++ ++ ++++ 
A/Singapore/1/1957 +++ +++ ++++ 

H5N1 A/Vietnam/1203/2005 - - - 
A/Indonesia/5/2005 - - - 

H9N2 A/turkey/Wisconsin/1/1966 ++++ +++ ++ 
H16N3 A/black-headed 

gull/Sweden/4/1999 
- - - 

 
 
 

2 

H3N2 A/Hong Kong/1/68 +++ +++ ++++ 
A/Brisbane/10/2007 +++ +++ ++++ 
A/Perth/16/2009 +++ - ++++ 
A/Panama/2007/1999 - - ++++ 
A/Bangkok/1/1979 - - - 

H4N6 A/duck/Czechoslovakia/1956 +++ +++ - 
H7N9 A/Shanghai/02/2013 +++ +++ - 

A/Netherlands/219/2003 - - - 
H15N8 A/shearwater/Western 

Australia/2576/1979 
- - - 

 
 
Legend      
++++ <10 nM    No change in breadth compared to IgG 
+++ 10-100 nM    Gain of breadth compared to IgG 
++ 100-1,000 nM    Loss of breadth compared to IgG 
- Specific binding not detected     
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Structural analysis of peptides 

Peptides that showed binding activity, d1 and d4, were highly mutated compared to the 

wild-type CDRH3 sequence (Figure VI.3A), with 11/28 or 10/18 amino acids mutated, 

respectively. Interestingly, the designed mutations in these peptides converged on the same amino 

acid at three positions, converging on hydrophobic residues (Figure VI.3A). A structural analysis 

of the peptide models suggests that the ROSETTA-designed mutations function by creating 

hydrophobic patches on the peptide to induce proper folding. Mutations in d1 are predicted to 

create a patch between Y9, P11, and Y16, and another patch involving L8, Y19, V20, and I21, 

which both cross opposing strands of the loop and encourage proper loop closure (Figure VI.3B). 

In addition, mutation Q3 is predicted to create a hydrogen bond with the neighboring main chain, 

and mutations to E24 and R26 are predicted to create an electrostatic interaction in the torso region 

of the loop (Figure VI.3B). In peptide d4, two hydrophobic patches are predicted to form, 

consisting of residues Y5 and L7, and residues L4, Y12, L15, P16, and L17 (Figure VI.3C). Both 

of these peptides are predicted to fold into conformations similar to that of the C05 CDRH3 loop, 

with Ca RMSDs of 1.6 and 1.8 Å for d1 and d4, respectively. 

Evasion of HA hypervariable elements by peptides 

To compare the predicted binding poses of peptides d1 and d4 to that of C05 IgG, we used 

ROSETTADOCK to model the bound conformation of the peptides in the receptor-binding site of the 

HA from nine different subtypes (Supplementary Figure VI.8). The peptides docked to H3 A/Hong 

Kong/1/1968 are predicted to adopt very similar conformations to C05 IgG (Figure VI.4A). 

Peptides d1 and d4 have a Ca RMSD of 1.7 and 2.4 Å, respectively, when aligning the HA 

component and calculating RMSD of the peptide to the C05 CDRH3 loop. These docked poses 
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therefore agree well with the experimental binding data and suggest that the redesigned peptides 

mimic C05 in their recognition of HA.  

 
Figure VI.3. Structural analysis of redesigned cyclic peptides. A. Sequence alignment of 
redesigned peptides compared to the wild-type C05 CDRH3 sequence. Residues with the same 
identity as wild-type are shown as dashes. The total number of mutations in each peptide is also 
shown. B-C. Models of redesigned cyclic peptides (tan) are compared to the C05 CDRH3 
structure (gray), and Ca RMSD over all residues in the peptide is shown below. The mutations 
introduced into the peptide sequence in their structural contexts are highlighted.   
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To explain the enhanced breadth of the peptides, we compared the conformation of 

hypervariable antigenic elements in strains H4 A/duck/Czechoslovakia/1956 and H7 

A/Shanghai/02/2013 to the binding pose of C05. We identified two antigenic elements, the loop at 

position 150 of the HA (150-loop) and the helix at position 190 (190-helix), which are known to 

influence binding of receptor-binding site antibodies (Lee et al., 2014; Wu et al., 2017; 2018). H7 

A/Shanghai/02/2013 has an insertion in the 150-loop compared to H3 A/Hong Kong/1/1968 that 

directly clashes with the CDRH1 of C05 (Supplementary Figure VI.9). In H4 

A/duck/Czechoslovakia/1956, the 150-loop has amino acid substitutions that clash with the 

CDRH3 of C05, and the 190-helix has substitutions clashing with the CDRH1. By removing the 

CDRH1 and introducing mutations into the CDRH3 of the redesigned peptides, we reduced the 

binding footprint to avoid these antigenic elements. 

Based on our hypothesis that the peptides achieve increased breadth by reducing the 

binding footprint on the HA surface, we compared the footprint of C05 IgG and peptides d1 and 

d4 docked to nine HAs of the H1, H2, H3, H4, and H7 subtypes (Table VI.2). The IgG tended to 

contact a larger surface area than the peptides as predicted, with average buried surface areas of 

730, 627, or 618 Å2 for IgG, d1, or d4, respectively. We then compared the buried surface area of 

peptides docked into the subtypes with increased binding breadth, H4 and H7 (Figure VI.4B, C). 

In the docked models the peptides have a greatly reduced footprint compared to IgG, primarily 

due to reduced contacts on the 150-loop and 190-helix. The binding footprint of these peptides in 

the docked conformations therefore represents the minimal binding epitope of HA that is 

conserved across H1, H2, H3, H4, and H7 subtypes. 
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Figure VI.4. Cyclic peptides contact a minimal epitope on the surface of influenza HA. A. Models 
of peptides d1 and d4 (tan) were docked into the receptor-binding site of influenza HA (blue) from 
H3 A/Hong Kong/1/1968 (PDB ID 4fnk) and compared to the co-crystal structure of C05 IgG 
(PDB ID 4fp8). Ca RMSD was calculated by superimposing the HA and measuring RMSD over 
all residues on the peptide compared to the IgG co-crystal structure. B, C. The binding footprint 
(orange) of either C05 IgG or peptides d1 and d4 was calculated for two antigens for which the 
peptides have increased breadth, H7 A/Shanghai/02/2013 (B) and H4 
A/duck/Czechoslovakia/1956 (C). Buried surface area on the HA surface was calculated and is 
shown below each structure. 
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Discussion 

Summary of results 

In this chapter, we show that computational design can be used to engineer antibody 

CDRH3-based peptides with high affinity and enhanced breadth of recognition for antigenic 

variants. We designed variants of the full-length and truncated CDRH3 loop of anti-influenza 

antibody C05 and identified two variants with potent activity. These peptides bound specifically 

to the influenza receptor-binding site and gained recognition for two HA subtypes, H4 and H7, not 

bound by the IgG molecule. Models of these two peptides suggest that they bind in a similar 

orientation to the C05 CDRH3 loop and achieve increased breadth of recognition by avoiding 

contact with the HA 150-loop and 190-helix hypervariable antigenic elements. 

Table VI.2. Buried surface area on the HA of various subtypes.  
 

Buried surface area on the HA (Å2) 
Strain C05 IgG C05 d1 C05 truncated d4 
H1 A/Solomon Islands/03/2006 639 638 586 
H1 A/California/04/2009 777 580 569 
H1 A/Puerto Rico/8/1934 734 720 593 
H2 A/Japan/305/1957 753 596 800 
H2 A/Singapore/1/1957 731 666 634 
H3 A/Perth/16/2009 780 686 614 
H3 A/Hong Kong/1/1968 651 568 609 
H4 A/duck/Czechoslovakia/1956 760 597 628 
H7 A/Shanghai/02/2013 742 588 534 
Average 730 627 618 

 
Mock co-complexes of C05 IgG with each subtype were created by aligning the HA structure to 
antigen in the co-crystal structure of C05 (PDB ID 4fp8). Peptides C05 d1 and C05 truncated d4 
were docked into the receptor-binding site of each HA and the buried surface area of the lowest 
energy model was calculated. 
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Although the peptides exhibited high-affinity binding on BLI they were not able to inhibit 

viral hemagglutination. We attribute this lack of activity to several factors. First, BLI may 

overestimate affinity compared to other kinetic platforms (Yang et al., 2016), therefore the 

peptides may have lower affinity than reported here. Second, antibodies targeting the influenza 

receptor-binding site are well known to rely on avidity for their neutralization activity, as many 

potently neutralizing antibodies show weak binding as monovalent antibody fragments (Fab) 

(Ekiert et al., 2012; Lee et al., 2014; Schmidt et al., 2013; Whittle et al., 2011). The peptides in 

this study were monomeric and therefore suffer from the same lack of avidity as a Fab. We repeated 

HAI assays with peptide loaded onto streptavidin tetramers in an attempt to increase avidity, which 

also failed to show activity, presumably due to incorrect geometry compared to the HA trimer. In 

future work, we plan to optimize the trimeric geometry of our peptides using scaffold proteins, 

which has been shown to impart neutralizing activity to computationally designed proteins 

(Strauch et al., 2017). 

Cyclic peptide implications 

Cyclic peptides have long been pursued as inhibitors of protein-protein interactions (Crook 

et al., 2017; Owens et al., 2017), modulators of antibody activity (van Rosmalen et al., 2017), 

mimics of viral antigenic loops (Bird et al., 2014), and antibody mimics (Casset et al., 2003; 

Kadam et al., 2017; Levi et al., 1993). However, cyclic peptide design has been met with many 

challenges. Most protein loops do not readily assume their active conformations as peptides, 

severely limiting the scope of which antibodies can be mimicked by peptides. The work in this 

study surpasses this limitation using structure-based computational design, by showing that the 

C05 CDRH3 peptide has no activity when using the wild-type sequence and only functions after 

introducing designed variations. Instead of limiting the mimicry of antibodies by use of the 
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naturally occurring CDRH3 peptide, we introduce a more systematic approach to create stable 

peptides from loops based on structure-based design principles. This technology has the potential 

to be applied to a wide variety of projects involving antibody therapeutics.   

Minimal epitope for influenza HA receptor-binding site recognition 

We identified a minimal epitope that is conserved across many influenza A subtypes, 

including H1, H2, H3, H4, H7, and H9. Influenza antibodies, especially those that target the highly 

conserved receptor-binding site, typically have restricted breadth to a single subtype (Lee et al., 

2014; Schmidt et al., 2015; Whittle et al., 2011; Winarski et al., 2015) or to a subset of strains 

within a subtype (Ekiert et al., 2012; Krause et al., 2012; Lee et al., 2012). This restriction of 

breadth is due to contacts outside of the receptor-binding site that clash with hypervariable 

antigenic elements. The peptides designed in this study are of significant interest since they avoid 

contact with these variable antigenic elements and target a minimal epitope capable of achieving 

high-affinity binding against a variety of diverse HA antigens. Identification of this highly 

conserved epitope can be applied to the design of highly potent small molecule and protein 

inhibitors (Kadam and Wilson, 2018). The computational methods used to engineer these peptides 

also can be applied to other systems to identify minimal epitopes required for broad and potent 

activity. 

 

Methods 

Structure preparation 

To generate templates for peptide modeling, we first extracted the CDRH3 loop from the 

crystal structure of antibody C05 from the Protein Data Bank (PDB, ID 4fnl) using PyMol 

(Schrodinger, LLC, 2015). The loop was renumbered starting from residue 1. For the truncated 
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form, the CDRH3 was truncated based on visual inspection. Cysteines were added to the N and C 

termini using the PeptideStubMover functionality in ROSETTA (see Appendix E for details). 

Cyclic peptide closure and redesign 

Once peptides were processed, they were subjected to loop closure simulations using the 

ROSETTA Generalized Kinematic Closure (GeneralizedKIC) protocol (Bhardwaj et al., 2016; Stein 

and Kortemme, 2013). Peptides were closed using a residue at the tip of the CDRH3 as the anchor 

point and perturbed using random perturbations of φ and ψ angles along the loop. Full details of 

the loop modeling protocol can be found in the Protocol Capture in Appendix E. 1,000 decoys 

were generated for each peptide, and the score and Ca RMSD compared to the wild-type loop 

were calculated. 

After modeling wild-type peptides, we redesigned the sequence to increase convergence 

on the active conformation. We identified all folded loops from the previous simulation that were 

within 2 Å of the native loop and subjected the top ten by score to ROSETTA fixed backbone design 

(Leaver-Fay et al., 2013). We then simulated folding of the redesigned peptides and calculated 

score and Ca RMSD compared to the wild-type loop. To identify sequences that converged more 

readily on the active conformation, we used the funnel discrimination metric described in Conway 

et al. (Conway et al., 2014). 

Binding energy calculations 

To ensure the redesign of peptides did not introduce residues that would clash with the 

antigen, we modeled the designed sequence in the context of the antibody-antigen interface. We 

modeled the isolated CDRH3 loop (PDB ID 4fnl) in complex with H1 A/Solomon Islands/03/2006 

(PDB ID 4hkx). We created the mock complex of these proteins by aligning to the co-crystal 

structure of C05 in complex with an H3 antigen (PDB ID 4fp8). We then threaded the mutated 
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residues and refined the structure using ROSETTA relax with a 1.0 Å backbone constraint to the 

starting coordinates. Binding energy (DDG) was calculated as below: 

 

DDG = Ecomplex – (EAb + EAg) 

 

where EAb and EAg are the energies of the antibody and antigen alone, respectively. When mutated 

residues affected the binding energy of the complex, we reverted these mutants individually and 

determined which contributed most to the increase in binding energy. We then modeled revertants 

with the same loop modeling protocol, and mutants that were favorable in both convergence on 

the active conformation and binding energy were selected for experimental characterization. 

Molecular dynamics simulations 

To test whether the cyclic peptides would remain stable in solution, we subjected them to 

molecular dynamics (MD) simulation. Input files and structure were prepared using the VMD 

software (Humphrey et al., 1996) with the QwikMD plugin. As input structures, we used the lowest 

energy models from the ROSETTA loop closure simulations. The system was solvated a using cubic 

water box with a 7.5 Å buffer with a salt concentration of 0.15 mol/L. MD simulations were 

performed using the NAMD package (Phillips et al., 2005) with the CHARMM36 force field 

(Feller et al., 1995; Jorgensen et al., 1983). The MD simulation without constraints was performed 

with explicit solvent using the TIP3 water model (Jorgensen et al., 1983) in the NpT ensemble. 

The temperature was maintained at 300.00 K using Langevin dynamics. The pressure was 

maintained at 1 atm using Nosé-Hoover Langevin piston (Feller et al., 1995; Martyna et al., 1994). 

A distance cut-off of 12.0 Å was applied to short-range, non-bonded interactions, and 10.0 Å for 

the smothering functions.  Long-range electrostatic interactions were treated using the particle-
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mesh Ewald (PME) (Darden et al., 1993) method. The equations of motion were integrated using 

the r-RESPA multiple time step scheme (Phillips et al., 2005) to update the short-range interactions 

every 1 steps and long-range electrostatics interactions every 2 steps. The time step of integration 

was chosen to be 2 fs for all simulations. In this step consisting of 10.0 ns of simulation, no atoms 

were constrained. All peptides were simulated for a total of 50 ns. 

Docking 

To generate models of the bound peptides the lowest energy peptide models were aligned 

to the CDRH3 loop position of C05 in PDB ID 4fp8 and saved in complex with the HA from nine 

different subtypes (PDB IDs 4hkx, 3ubq, 1rvx, 3ku3, 2wr7, 4fnk, 4kvn, 5xl3, and 4ln3). 1,000 

decoys were generated of the two peptides docked into the five antigens using ROSETTADOCK 

(Gray et al., 2003). The protein-peptide interface then was refined using the ROSETTA relax 

protocol (Combs et al., 2013). The ROSETTA score and Ca RMSD was calculated for each decoy 

compared to the wild-type C05 CDRH3 loop. Buried surface area calculations were performed 

using PyMol (Schrodinger, LLC, 2015). 

Experimental characterization 

Eight redesigned peptide candidates were selected for characterization based on the 

previously described criteria, along with two control peptides with the wild-type C05 sequence. 

Peptides were synthesized by Genscript with a disulfide linkage between residues at the N and C 

termini, and a C-terminal polyethylene glycol (PEG) 6 linker connected to a lysine-linked biotin 

group.  

Recombinant HA expression 

Sequences encoding the HA genes of interest were optimized for expression in human cells 

and synthesized (Genscript). Genes were constructed as soluble trimer constructs by replacing the 



 164 

transmembrane and cytoplasmic domain sequences with a GCN4 trimerization domain and a 6x-

His tag at the C-terminus. Synthesized genes were cloned into the pcDNA3.1(+) mammalian 

expression vector (Invitrogen). HA protein was expressed by transient transfection of Expi293F 

cells (ThermoFisher Scientific). Supernatants were harvested after 7 days, filter-sterilized with a 

0.2-µm filter, and purified using affinity chromatography with a 5 mL HisTrap excel column (GE 

Healthcare). HA head domain was synthesized as a maltose-binding protein (MBP) fusion in 

pMAL-c5x vector (New England BioLabs). Head domain was expressed in SHuffle T7 Express 

competent E. coli (New England BioLabs) to enable disulfide formation in the cytoplasm, induced 

by the addition of 1 mM IPTG overnight at 18 °C, and purified using amylose resin (New England 

BioLabs). 

Biolayer interferometry assay 

Binding kinetics were determined using biolayer interferometry (BLI) with an Octet Red 

instrument (FortéBio, Menlo Park, CA). Peptides were loaded onto streptavidin biosensors at 5 

µM in kinetics buffer (PBS + 1% BSA, 0.05% Tween 20). The binding experiments were 

performed with the following steps: 1) baseline in kinetics buffer for 60 s, 2) loading of peptide 

for 30 s, 3) baseline for 60 s, 4) association of HA for 120 s, and 5) dissociation of HA into kinetics 

buffer for 300 s. A reference well was run in all experiments, where peptide was loaded onto the 

biosensor, but antigen was not present, and was subtracted from all sample wells to correct for 

drift and buffer evaporation. Trimeric HAs were diluted two-fold starting from a concentration of 

1.25 µM, and monomeric HA was diluted two-fold from a starting concentration of 20 µM. At 

least four dilutions of HA were used to fit kinetic curves. To eliminate nonspecific effects, the 

binding curves were compared to binding to an irrelevant antigen (HIV gp120), and binding was 

only considered significant if the signal was >2x as strong as the irrelevant signal. To test the effect 
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of cyclization on peptide affinity, the peptides were reduced using 2.5 mM TCEP before loading 

onto the biosensor. Curves were fit to a 1:1 or 2:1 binding model using the FortéBio software. 

Curve fits were accepted only if they fulfilled an R2 of > 0.9. To perform competition binding, the 

peptide was loaded to streptavidin tips as previously described, and HA was bound at a 

concentration of 50 µg/mL followed by baseline and binding of either C05 or CR6261 IgG at a 

concentration of 50 µg/mL.  

ELISA binding assay 

Biotin-labeled cyclic peptides were bound to a pre-coated streptavidin ELISA plate 

(Streptavidin Coated High Capacity Plates, ThermoFisher Scientific) at 1 µM and incubated for 1 

hour at 37 °C. The plates then were blocked with 10% goat serum (Gibco) in PBS for 1 hour at 37 

°C. HA monomeric head domain protein was diluted serially 2-fold in blocking buffer at a starting 

concentration of 14 µM. To detect binding, plates were incubated with a mouse anti-His mAb 

coupled to HRP (ThermoFisher Scientific). Binding was detected by addition of 100 µL of TMB 

substrate (ThermoFisher Scientific) and incubated for 5-10 min before quenching the reaction with 

100 µL of 1 N HCl. Plates were read at 450 nm using a BioTek plate reader. After plate coating 

and primary and secondary antibody incubation, plates were washed 3x with wash buffer (PBS 

+0.05% Tween 20, Cell Signaling Technologies). EC50 values were calculated in GraphPad Prism 

using robust nonlinear regression. All ELISAs were performed in triplicate. 

Viruses and hemagglutination assay 

Influenza virus strain A/Solomon Island/3/2006 H1N1 strain was provided by Influenza 

Reagent Resource of US CDC. The working stocks used for hemagglutination inhibition assay 

(HAI) were made in MDCK cell culture. For HAI, 25 µL of four hemagglutination units of virus 

were incubated for 1 hour at room temperature with 25 µL two-fold serial dilutions of peptides 
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starting at 50 µM in PBS. The 50 µL of antibody-virus mixture was incubated for 45 minutes at 4 

°C with 50 µL of turkey red blood cells (Rockland) diluted in PBS. The HAI titer was defined as 

the highest dilution of antibody that inhibited hemagglutination of red blood cells. 
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Supplemental Information 

 
Supplementary Figure VI.1. Folding energy landscapes for C05-derived cyclic peptides. The wild-
type (WT) C05 CDRH3 loop was folded using ROSETTA loop modeling and redesigned to 
improve stability and folding funnel, in both full-length (A) and truncated (B) formats. In 
parenthesis is the decoy discrimination score from Conway et al. 2014, with more negative values 
representing more desirable energy landscapes. 
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Supplementary Figure 1. Folding energy landscapes for C05-derived cyclic peptides. The wild-type (WT) 
C05 CDRH3 loop was folded using ROSETTA loop modeling and redesigned to improve stability and folding funnel, 
in both full- length (A) and truncated (B) formats. In parenthesis is the decoy discrimination score from Conway 
et al. 2014, with more negative values representing more desirable energy landscapes.   
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Supplementary Figure VI.2. Redesigned peptides modeled in the context of the antibody-antigen 
complex. Either full-length (A) or truncated (B) peptides were modeled in the context of the 
antibody-antigen complex to retain antigen binding. Mutations were reverted back to wild-type 
(WT) sequentially (v1, v2, etc.) and the total complex score, binding energy (ΔΔG) and funnel 
discrimination statistic were calculated. Funnel discrimination score is calculated as in Conway et 
al. 2014, with more negative values representing more desirable energy landscapes. Highlighted 
are the sequences with the best folding profile and binding energy that were selected for 
experimental characterization.  

Supplementary Figure 2. Redesigned peptides, either full length (A) or truncated (B) were modeled 
in the context of the antibody-antigen complex to retain antigen binding. Mutations were reverted 
back to wild-type (WT) sequentially (v1, v2, etc.) and the total complex score, binding energy (ΔΔG) and 
funnel discrimination statistic were calculated. Funnel discrimination score is calculated as in Conway et 
al. 2014, with more negative values representing more desirable energy landscapes. Highlighted are the 
sequences with the best folding profile and binding energy that were selected for experimental characteri-

 Score ΔΔG Funnel statistic Amino acid sequence 
WT -332.9 -10.2 -0.14 CAKHMSMQQVVSAGWERADLVGDAFDVC 

d1 -312.6 5.0 -0.37 --Q-L-TLYIPVL--Y-PYVI—-E-RK- 

d1v1 -339.4 -11.1 -0.54 --Q---TLY-P----Y--YVI—-E-R-- 

d1v2 -340.1 -11.4 -0.27 --Q---TLY-P----Y--YV-—-E-R-- 

d1v3 -339.8 -11.4 -0.22 --Q----LY-P----Y--YV-—-E-R-- 

d3 -307.4 5.9 -0.18 -ST-QDSLKDEDK-LETDLEK-GP--N- 

d3v1 -333.7 -10.2 -0.11 -ST-QD-LK-ED---ET-LEK-GP--N- 

d3v2 -332.8 -10.0 -0.31 -ST-QD--K-ED---ET-LEK-GP--N- 

d3v3 -335.4 -10.8 -0.06 -ST-Q---K-ED---ET-LEK-GP--N- 

d7 -316.2 5.1 -0.16 --V-EKT-H-PDE-NY-T-EE--Q-KR- 

d7v1 -339.3 -10.6 -0.23 --V-E-T-H-PD---Y---EE--Q-KR- 

d7v2 -337.8 -10.9 -0.08 --V-E---H-P----Y---EE--Q-KR- 

     

 Score Funnel statistic Amino acid sequence 
WT -331.2 -9.9 -0.14 CSMQQVVSAGWERADLVC 

d2 -309.6 7.9 -0.22 -KLTHIPNK---D-VP- 

d2v1 -335.4 -10.1 -0.13 --LTH-PN------VP- 

d2v2 -335.7 -10.1 -0.16 --LTH-P-------VP- 

d2v3 -334.9 -10.1 -0.23 ---TH-P--------P- 

d2v4 -335.4 -10.1 -0.12 ------P--------P- 

d4 -319.9 2.1 -0.20 -TDLYRLDE--YQDLPL- 

d4v1 -332.2 -9.5 -0.27 -TDLY-LD---YQ-LPL- 

d4v2 -332.8 -9.9 -0.28 -T-LY-LD---YQ-LPL- 

d4v3 -333.8 -10.3 -0.21 -TDLY-LD---Y--LPL- 

d5 -311.3 3.5 -0.23 -GLTSIPDK--YSQTKP- 

d5v1 -337.7 -11.9 -0.19 -GLTS-PD---YS-TKP- 

d5v2 -337.0 -11.7 -0.17 -G-TS-PD---YS-TKP- 

d8 -314.3 4.8 -0.55 -TK--DP-E--D-E-KR- 

d8v1 -329.9 -10.1 -0.36 -T----P----D---KR- 

d10 -313.1 6.3 -0.31 -TDKKDP-Q--S-EKDE- 

d10v1 -335.0 -8.8 -0.31 -TDKK-P----S--KDE- 

d10v2 -336.0 -9.2 -0.31 -T-KK-P----S--KDE- 

d10v3 -336.3 -10.9 -0.24 -TDKK-P-------KDE- 

A

B
ΔΔG 
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Supplementary Figure VI.3. Molecular dynamics simulations of cyclic peptides. Two wild-type 
(WT; blue) and eight redesigned peptides (red) were simulated in explicit solvent for 50 ns. Plotted 
is the fluctuation in Cα RMSD for each peptide over the simulation. Histograms of RMSD over 
the course of the simulation are shown on the right of the plots for each peptide. 
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Supplementary Figure 3. Molecular dynamics simulations of cyclic peptides. Two wild-type 
(WT; blue) and eight redesigned peptides (red) were simulated in explicit solvent for 50 ns. Plot-
ted is the fluctuation in Cα RMSD for each peptide over the simulation. Histograms of RMSD over 
the course of the simulation are shown on the right of the plots for each peptide.
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Supplementary Figure VI.4. Binding of peptides or IgG was repeated in ELISA format. Either 
peptides or biotinylated IgG were loaded onto a streptavidin-coated ELISA plate, which then 
bound to recombinant H1 HA. Binding was detected by an anti-His HRP-conjugated secondary. 
EC50 values and 95% confidence intervals are shown below. 

 

 

 

 
Supplementary Figure VI.5. Binding assays of C05 IgG and redesigned peptides to monomeric 
HA from H1 A/Solomon Islands/03/2006. Monomeric HA was used to eliminate avidity effects 
on the instrument and provide a direct comparison for affinity between peptides and IgG. 
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Supplementary Figure 4. Binding of peptides or IgG was repeated in ELISA format. Either 
peptides or biotinylated IgG were loaded onto a streptavidin-coated ELISA plate, which then 
bound to recombinant H1 HA. Binding was detected by an anti-His HRP-conjugated secondary. 
EC50 values and 95% confidence intervals are shown below.

 EC50 (nM) 95% CI 
C05 d1 5,483 4,540 - 6,677 
C05 truncated d4 Ambiguous 
C05 IgG 299 268-333 
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Supplementary Figure 5. Binding assays of C05 IgG and redesigned peptides to monomeric HA from H1 
A/Solomon Islands/03/2006. Monomeric HA was used to eliminate avidity effects on the instrument and provide 
a direct comparison for affinity between peptides and IgG. 
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Supplementary Figure VI.6. Binding of redesigned peptides was repeated in the presence of a 
reducing agent to test affinity of linear peptides. Reduction was performed by addition of  2.5 mM 
TCEP. Nonreduced or reduced peptides are shown in black or red, respectively, with KD values 
shown in the legend. Binding was performed with trimeric HA from H1 A/Solomon 
Islands/03/2006. 

 

Supplementary Figure VI.7. Nonspecific binding was tested by binding to an irrelevant antigen. 
Binding of C05 designed peptides was tested with H1 A/Solomon Islands/03/2006 (H1 SI06) or 
HIV gp120, both at 1.25 µM. The level of binding to variant HAs was compared to gp120 binding 
to correct for the nonspecific component of binding. 

  

Supplementary Figure 6. Binding of redesigned peptides was repeated in the presence of a reducing 
agent (2.5 mM TCEP) to test affinity of linear peptides. Nonreduced or reduced peptides are shown in black 
or red, respectively, with KD values shown in the legend. Binding was perfomed with trimeric HA from H1 A/Solo-
mon Islands/03/2006.
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Supplementary Figure 7. Nonspecific binding was tested by binding to an irrelevant antigen (HIV gp120).  
Binding of C05 designed peptides was tested with H1 A/Solomon Islands/03/2006 (H1 SI06) or HIV gp120, both 
at 1.25 μM. The level of binding to variant HAs was compared to gp120 binding to correct for the nonspecific com-
ponent of binding.
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Supplementary Figure 9. Docking funnels from peptide models docked into the receptor binding site of 
HA antigens from different subtypes. Docking funnels for C05 d1 (left column) and C05 truncated d4 (right 
column) are shown for docking to antigens in the panel. Only peptide-antigen pairs that bind are shown. Pictured 
below: H1 A/Solomon Islands/03/2006 (PDB ID 4hkx), H1 A/California/04/2009 (3ubq), H1 A/Puerto Rico/8/1934 
(1rvx), H2 A/Japan/305/1957 (3ku3), and H2 A/Singapore/1/1957 (2wr7). Cα RMSD compared to the CDRH3 
from C05 is shown on the X axis, and ROSETTA score is shown on the Y axis in ROSETTA energy units (REU). 
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Supplementary Figure VI.8. Docking funnels from peptide models docked into the receptor 
binding site of HA antigens from different subtypes. Docking funnels for C05 d1 (left column) 
and C05 truncated d4 (right column) are shown for docking to antigens in the panel. Only peptide-
antigen pairs that bind are shown. Pictured: H1 A/Solomon Islands/03/2006 (PDB ID 4hkx), H1 
A/California/04/2009 (3ubq), H1 A/Puerto Rico/8/1934 (1rvx), H2 A/Japan/305/1957 (3ku3), H2 
A/Singapore/1/1957 (2wr7), H3 A/Hong Kong/1/68 (PDB ID 4fnk), H3 A/Perth/16/2009 (4kvn), 
H4 A/duck/Czechoslovakia/1956 (5xl3), and H7 A/Shanghai/02/2013 (4ln3). Cα RMSD 
compared to the CDRH3 from C05 is shown on the X axis, and ROSETTA score is shown on the Y 
axis in ROSETTA energy units (REU).  
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Supplementary Figure 9 cont’d. Docking funnels from peptide models docked into the receptor binding 
site of HA antigens from different subtypes. Docking funnels for C05 d1 (left column) and C05 truncated d4 
(right column) are shown for docking to antigens in the panel. Only peptide-antigen pairs that bind are shown. 
Pictured below: H3 A/Hong Kong/1/68 (PDB ID 4fnk), H3 A/Perth/16/2009 (4kvn), H4 A/duck/Czechoslova-
kia/1956 (5xl3), and H7 A/Shanghai/02/2013 (4ln3). Cα RMSD compared to the CDRH3 from C05 is shown on 
the X axis, and ROSETTA score is shown on the Y axis in ROSETTA energy units (REU). 
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Supplementary Figure VI.9. Comparison of the structures of variant HAs. Top: Comparison of the 
structures of HA from H3 A/Hong Kong/1/1968 (orange) and H7 A/Shanghai/02/2013 (blue). The 
binding pose of C05 IgG is shown in tan, and clashes between C05 CDRH1 loop and H7 are 
highlighted in red. PDB IDs used for H3 and H7 structures are 4fp8 and 4ln3, respectively. Bottom: 
Comparison of the structures of HA from H3 A/Hong Kong/1/1968 (orange) and H4 
A/duck/Czechoslovakia/1956 (yellow). Binding pose of C05 IgG is shown in tan, and clashes 
between C05 and H4 are highlighted in red. Antigenic elements 150 loop and 190 helix on the HA 
are labeled. PDB IDs used for H3 and H4 structures are 4fp8 and 5xl3, respectively.  

  

CDRH1
150 loop

H3 H7Influenza HA
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Supplementary Figure 10. Comparison of the structures of HA from H3 A/Hong Kong/1/1968 (orange) and 
H7 A/Shanghai/02/2013 (blue). The binding pose of C05 IgG is shown in tan, and clashes between C05 CDRH1 
loop and H7 are highlighted in red. PDB IDs used for H3 and H7 structures are 4fp8 and 4ln3, respectively. 
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Supplementary Figure 10 cont’d. Comparison of the structures of HA from H3 A/Hong Kong/1/1968 
(orange) and H4 A/duck/Czechoslovakia/1956 (yellow). Binding pose of C05 IgG is shown in tan, and clashes 
between C05 and H4 are highlighted in red. Antigenic elements 150 loop and 190 helix on the HA are labeled. 
PDB IDs used for H3 and H4 structures are 4fp8 and 5xl3, respectively. 
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CHAPTER VII.  

Conclusions and Future Directions 

 

Summary of results 

In this thesis I describe my work in engineering cross-reactivity into antibodies with a focus 

on computational techniques. Computational antibody design has long been possible, and in fact 

has achieved success in several cases in the past (Clark et al., 2006; Lippow et al., 2007; Marvin 

and Lowman, 2003; Midelfort et al., 2004; Willis et al., 2015). However, there was a great need 

for a method to design antibodies to not only achieve binding to a single target, but to incorporate 

multiple targets to impart cross-reactivity to the starting antibody, a paradigm known as multistate 

design. In Chapter II, I developed a computational method for multistate design within the 

ROSETTA software suite, called the RECON method, that reduced the amount of sampling needed 

to achieve a low energy multistate solution. Through two benchmark cases I show that the RECON 

method increased the computational efficiency of multistate design while also improving the 

biological relevance of designed sequences, compared to an existing multistate design method in 

ROSETTA. I then applied this method to a test case of improving breadth of anti-influenza 

antibodies to recognize a large panel of seasonal variants, as described in Chapter III. I showed 

that redesigned variants of anti-influenza antibody C05 exhibit increased breadth for an additional 

viral strain, as well as improved affinity for another strain, while maintaining high-affinity binding 

to several strains of the H1, H2, and H3 subtypes. Chapter IV describes a complementary approach, 

known as BROAD, for performing multistate design against large viral panels, by creating a large 

number of structural models and using machine learning and integer linear programming to 
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optimize breadth and affinity. I benchmark this approach by redesigning an anti-HIV antibody, 

VRC23, against a panel of viral variants of HIV. The BROAD method was able to search more 

exhaustively through sequence space and generate low energy solutions that were never 

encountered by structure-based multistate design using RECON. In Chapter V I address an 

immunological hypothesis based on antibody structural data, that anti-HIV antibodies may have 

precursors that are able to recognize influenza HA, and that HA may have been the original 

stimulating antigen for such anti-HIV antibodies. I performed next-generation sequencing to 

identify antibody sequences potentially capable of recognizing both influenza and HIV antigens 

and use a computational protocol known as a position-specific structural scoring matrix to identify 

many sequences with influenza-HIV cross-reactive potential. Lastly, in Chapter VI I describe a 

different way of achieving cross-reactivity with an antibody, by isolating the CDRH3 loop and 

redesigning the sequence for stability in the format of a cyclized peptide. Two antibody-based 

cyclic peptides showed increased binding breadth to novel influenza HA subtypes by reducing 

contact with hypervariable loops on the HA surface. 

Energy functions in ROSETTA design 

 The work in this thesis highlighted several strengths and limitations of the energy functions 

used in ROSETTA protein modeling and design. Ultimately the predictive value of the energy 

function was suboptimal, as many antibody variants modeled in silico failed to exhibit their 

predicted behavior in vitro. Of the 27 variants of antibody C05 generated in Chapter II, only 2 

showed a significant increase in affinity for any of the antigens tested, and 7 variants had an 

increase in either affinity or thermostability, a hit rate of 7-25% depending on the metric. Although 

this hit rate is low, it is in line with previous studies using ROSETTA and other software packages 

reporting a hit rate of ~ 10% (Adolf-Bryfogle et al., 2018; Baran et al., 2017; Chevalier et al., 2017; 
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Correia et al., 2010; Entzminger et al., 2017; Rocklin et al., 2017; Strauch et al., 2017). Therefore, 

it is clear that the ROSETTA energy function can be substantially improved. Although the work I 

described in Chapters II and IV improve the sampling algorithms during multistate design, they 

are ultimately limited by the accuracy of the energy function. I did observe that some energetic 

terms tended to have more predictive power than others. For example, successful mutations tended 

to improve van der Waals interactions and φ – ψ angle favorability in loops. Many mutations were 

predicted to improve hydrogen bonding or electrostatic interactions at the antibody-antigen 

interface, and all but one of these mutants failed experimentally. Many in the ROSETTA community 

have reported similar results about the reliability of hydrogen bonding terms, which are more 

difficult to model than short-range van der Waals interactions (Alford et al., 2017; Rocklin et al., 

2017; Stranges and Kuhlman, 2013). However, there have been improvements in these energetic 

terms, including work on improving hydrogen bonding terms (O'Meara et al., 2015), 

Boyken:2016ib, Maguire:2018gr} that have led to improvements. In addition, a longtime 

challenge in the ROSETTA score function has been accurate representation of water molecules at a 

protein-protein interface. Existing iterations of the ROSETTA score function rely on an implicit 

model of protein solvation rather than explicitly placing water molecules (Lazaridis and Karplus, 

1999). There has recently been work to both improve the implicit solvation model (Bazzoli and 

Karanicolas, 2017) and add explicit water to simulations (Marze et al., 2016). Given that there 

have been substantial improvements in energetic terms since this work began, it would be 

worthwhile to predict the activity of the mutants reported in this thesis with the improved energetic 

terms to see if they improve accuracy. 
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High-throughput assays for experimental validation 

 In future work, the computational approaches described in this thesis could be greatly 

strengthened by incorporating high-throughput experimental validation. As previously discussed, 

the success rate of ROSETTA-designed mutations is relatively low, historically around 10%. 

Therefore, to improve the odds of obtaining a successful mutant it is necessary to express and test 

mutants at a larger scale. In this work, mutants were made by synthesizing and cloning individual 

genes in Chapter II and by solid-phase peptide synthesis in Chapter VI, and testing was done by 

ELISA or biolayer interferometry binding assays. This led to a low overall throughput of testing, 

with 27 mutants tested in Chapter II and 8 mutants in Chapter VI. Recently there have been 

advances in gene synthesis that can synthesize 10,000 individually specified genes (Kosuri and 

Church, 2014), allowing expression and testing of designed proteins on a much larger scale 

(Rocklin et al., 2017; Sun et al., 2016). These variants can then be cloned into a yeast or phage 

display vector and the library can be screened for improved thermostability or binding to a given 

target. In future multistate design experiments, it would be very useful to take advantage of high-

throughput synthesis to create libraries of ROSETTA-designed mutations and screen against large 

panels of antigen variants. One of the principal benefits of multistate design over experimental 

screening is the ability to incorporate many more targets during in silico simulations. The ability 

to simulate large viral panels was one of the main motivations for the algorithms developed in 

Chapters II and IV. However, multistate design and experimental screening are complementary 

approaches that should be combined in a workflow to maximize success of designed proteins. 

 The inability to test antibody mutants in a high-throughput assay was one of the main 

limitations of the work done in Chapter V. Many of the antibody sequences obtained from human 

donors in Chapter V were predicted to be cross-reactive to HIV and influenza based on ROSETTA 
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modeling. However, I did not express these antibodies to verify their binding activity. This was 

based on several factors. The computational binding predictions were based on modeling the 

CDRH3 of sequenced antibodies chimerized onto the backbone of either anti-influenza mAb 641 

I-9 or anti-HIV mAb Z13e1. To identify a single cross-reactive antibody, it would be necessary to 

model a given CDRH3 loop in the context of both mAb backbones and use RECON multistate 

design to optimize the compatibility with the two backbones. Another factor, as previously 

discussed, was low throughput of experimental validation. To guarantee success of identifying 

several cross-reactive clones, the scale of antibody expression and testing would have to be 

significantly increased to the range of 100-500 variants. I expect testing these predictions on a 

large scale would identify antibodies cross-reactive to HIV and influenza.  

Affinity vs. breadth in antibody recognition 

 The work in this thesis supports the idea that there is a tradeoff between affinity and breadth 

in antibody recognition of viral variants. Previous computational work has suggested that multi-

specific proteins need to achieve a compromise between affinity for one target and recognition of 

multiple targets (Fromer and Shifman, 2009; Shifman and Mayo, 2002; Willis et al., 2013). The 

computational multistate design methods developed in Chapter II and Chapter IV made it possible 

to directly test this hypothesis in the context of antibody-antigen complexes. In Chapter III the 

experimentally validated C05 mutants were able to increase both breadth and affinity across a 

seasonal influenza panel. However, the magnitude of the affinity increase was relatively modest, 

which we attribute to the need to restrict mutations to those which are compatible with all viral 

strains. When we repeated the design simulations with a single target rather than a panel, we 

observed that the single-state designs achieved a lower energy than multistate designs. This 

indicates that there was a tradeoff at play, and that mutants with a greater improvement in affinity 
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could be achieved, but at the expense of the other viral targets. In addition, using multistate design 

we were able to identify specific antigenic residues that were accessible to the antibody CDRH3 

loop, and were either conserved over a large panel, or when not conserved would not clash with 

the antibody. An example of such a residue is K125a on the HA surface. Wu et al. presented an 

elegant study using complementary experimental approaches to affinity mature the same mAb, 

C05 (Wu et al., 2017). They observed that the affinity could be increased for H1 strains only at the 

cost of affinity for H3 strains, and they identified the specific amino acids responsible for this 

tradeoff. Taken together, this work indicates that when performing antibody design, multiple viral 

proteins should be included as target states to ensure that mutations do not negatively impact any 

of the target panel.  

The work in Chapter V supports the same supposition regarding affinity and breadth. When 

measuring the predicted proclivity of antibody sequences for binding either HIV or influenza, it 

was clear that increasing breadth for one antigen came at the expense of affinity for the other. We 

could clearly visualize the tradeoff frontier between affinity for either antigen. In future work it 

would be interesting to measure the experimental binding affinity of the sequences at this tradeoff 

frontier to assess whether the binding tradeoff adheres to the anticipated pattern. Although the 

sequences from human donors tended to adhere to the binding tradeoff frontier, when these 

sequences were subjected to multistate design they could be improved substantially. This result 

suggests that naturally evolved antibodies may encounter an affinity-breadth tradeoff prematurely, 

that can then be further improved by computational design. However, it is also possible that 

antibodies which are further matured for binding to both targets gain too much breadth, to the point 

where they are autoreactive against self-antigens and are eliminated by negative selection. In future 

work the affinity and autoreactivity of computationally designed sequences should be tested. 
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In Chapter VI, although the computational methods were different I observed a similar 

affinity-breadth tradeoff.  The CDRH3-based cyclic peptides achieved increased breadth for 

several HAs, notably of the H3 and H7 subtype. I show through computational docking 

experiments that this increased breadth was achieved through contact of a minimal binding surface 

on the HA. However, these peptides also exhibited reduced affinity for several HA targets, and in 

fact lost breadth to three HA strains. This loss of affinity and breadth occurs when chemical 

interactions at the periphery of the antibody-antigen interface are eliminated to achieve a minimal 

binding surface. In future work, these cyclic peptides could be redesigned using multistate design 

to maintain a minimal binding surface while potentially introducing new side chain interactions to 

increase affinity. As previously mentioned, when a molecule is engineered for increased breadth 

it is possible that at some point it becomes autoreactive to self-antigens. The peptides described in 

Chapter VI did exhibit a degree of nonspecific binding to irrelevant viral targets, suggesting they 

may have off-target effects. However, a direct measurement of binding to human self-antigens was 

never performed. In future work the binding of cyclic peptides to common self-antigens should be 

assessed. 

Implications for reverse vaccinology 

 A major motivation for computational design of antibodies is to better understand the 

principles governing antibody-antigen interactions to enable design of more effective vaccines. 

The work performed in this thesis aids in this understanding in several respects. In Chapter II I 

engineered a mutant antibody with increased affinity and breadth. The co-crystal structure of this 

mutant reveals the amino acids on the antigen that are necessary for binding to this engineered 

variant. An influenza HA immunogen could be designed that specifically incorporates the residues 

necessary for C05 variant recognition, with the goal of inducing antibodies similar to the C05 
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variant. These antibodies would in theory recognize many circulating strains, and a vaccine 

capable of inducing them at high titer would be very effective. In Chapter VI, the minimal epitope 

on the surface of influenza HA was identified. The footprint of the cyclic peptides is presumably 

close to the smallest epitope that can be contacted by an antibody while still maintaining high 

affinity. An HA immunogen consisting of only this minimal epitope would be a logical candidate 

to induce cross-reactive antibodies mimicking the activity of the engineered cyclic peptides. 
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APPENDIX A.  

Protocol Capture for Chapter II 

Introduction 

The following is a detailed description of how to run and analyze the results from restrained 

convergence in multi-specificity design (RECON). RECON is used for multi-specificity design, 

to minimize the energy of multiple protein complexes simultaneously. This is useful in many 

different contexts, for example to design a single sequence that can bind multiple proteins with 

high affinity, or a sequence that stabilizes a protein in multiple conformations. In the benchmark 

cases we selected, the goal was to optimize the sequence of proteins with multiple binding partners 

to increase affinity for all binding partners. Below is a description of how to perform multi-

specificity design of a protein, FYN kinase, which has been crystallized with two binding partners, 

and optimize the sequence to have low energy in complex with its two partners.  

 

RECON is run completely within ROSETTASCRIPTS, as a combination of movers written 

specifically for the purpose of multistate design. This offers the benefit of making all other movers 

available within ROSETTASCRIPTS compatible with a multi-specificity protocol, i.e. backbone 

minimization, rigid body docking, atom pair constraints, etc. All ROSETTA commands were run 

with version 8641cc1735a37dff08c3f1857bbe3035908f7f04. All analysis scripts are available for 

download at https://github.com/sevya/msd_analysis_scripts. Note: scripts provided in the analysis 

directory are dependent upon each other, and when moved from this directory may not function 

properly. 
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PDB Preparation 

First, the PDB structures were downloaded from the RCSB and manually inspected to remove all 

but one asymmetric unit. In this case, the PDB IDs of the FYN kinase structure of interest are 

1AVZ and 1M27. Structures can be processed manually or with the clean_pdbs.py script, located 

in /path/to/Rosetta/tools/protein_tools/scripts/clean_pdb.py. This script will download the specific 

chains of your structure and remove all non-proteinogenic molecules, which makes the structure 

compatible with ROSETTA. The syntax for this command is: 

 

clean_pdb.py 1avz ABC 

clean_pdb.py 1m27 ABC 

 

In this case chain C in both 1avz and 1m27 is the FYN kinase that will be designed. However 

1m27 has an extra leading valine residue at the N-terminus that is not present in 1avz. To simplify 

the protocol this residue was removed in PyMol before proceeding - this residue can also be 

removed using a text editor. Next, the chains in each structure were reordered to put the one protein 

common to both structures, FYN, as the first chain, chains were renamed to A, B, and C, and each 

chain was renumbered starting from one. This simplifies the protocol by giving the input structure 

a common format. The renumbering can be done manually or with the script 

reorder_pdb_chains.py, which takes as input your desired chain order, desired chain ids, and the 

input and output PDBs. This script simply moves the order of the chains to the desired order and 

renames the chains, while also renumbering residues from 1 to N. Note that this does not change 

the coordinates of any atoms, only the order in the PDB file and the chain identifier. The command 

for this is: 
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reorder_pdb_chains.py --new_chain_order C,A,B --new_chain_ids 

A,B,C 1avz.pdb 1avz_renum.pdb 

reorder_pdb_chains.py --new_chain_order C,A,B --new_chain_ids 

A,B,C 1m27.pdb 1m27_renum.pdb 

 

Next 50 relaxed models were created from each of the two starting PDBs, using the following 

commands, XML scripts and flags. Of the 50 relaxed models I selected the lowest energy model 

for the design process. The flags I use control the memory usage when ROSETTA is building side 

chain rotamers (linmem_ig), the number of extra rotamers to include in the library (ex1/2, 

use_input_sc), the number of models to make (nstruct), and a designation to include all side chain 

atoms (fullatom). For more information on ROSETTA relax and available options see 

https://www.rosettacommons.org/docs/latest/prepare-pdb-for-rosetta-with-relax.html. Below are 

the commands used to create relaxed models. 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @relax.flags -s 1avz_renum.pdb -parser:protocol 

relax.xml 

relax.xml: 

<ROSETTASCRIPTS> 

  <SCOREFXNS> 

    </SCOREFXNS> 

    <TASKOPERATIONS> 

        <InitializeFromCommandline name=ifcl /> 

        <RestrictToRepacking name=rtr /> 

    </TASKOPERATIONS> 
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    <FILTERS> 

    </FILTERS> 

    <MOVERS> 

        <FastRelax name=relax repeats=8 task_operations=ifcl,rtr 

min_type=lbfgs_armijo_nonmonotone/> 

    </MOVERS> 

    <APPLY_TO_POSE> 

    </APPLY_TO_POSE> 

    <PROTOCOLS> 

<Add mover=relax /> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

relax.flags: 

-database /path/to/Rosetta/main/database 

-linmem_ig 10 

-ex1 

-ex2 

-in:file:fullatom 

-out:file:fullatom 

-use_input_sc 

-nstruct 50 

 

Input files 

Once the input structures have been processed, the input files needed for RECON can be generated. 

First residue files (resfiles) are needed that specify the designable and repackable residues for both 
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of my complexes. Residues that are designable can be substituted with any other amino acid, 

whereas ones that are repackable can only be substituted with different rotational isomers 

(rotamers) of the same amino acid. For more information on resfile syntax and logic see: 

https://www.rosettacommons.org/manuals/archive/rosetta3.5_user_guide/d1/d97/resfiles.html. In 

this case all residues on chain A that are at the interface of chain A and chains B+C were chosen 

for design. Since the two complexes have different binding partners they may have overlapping 

but not identical interface residues – in this case I selected only interface residues common to both 

complexes. In addition I want to repack any residues on chains B+C that are at the interface. A 

residue file is needed for each complex that specifies which residues are to be designed and 

repacked. The number of designable residues must be the same between copmlexes, but repackable 

residues can be unique to each complex. The following script and flags will generate these files: 

 

generate_interface_files.py --side1 A --side2 BC --design-side 1 

--repack --output 1avz 1avz_relaxed.pdb 

generate_interface_files.py --side1 A --side2 BC --design-side 1 

--repack --output 1m27 1m27_relaxed.pdb 

 

This identifies all residues at the interface between chains A and B+C, specifies side 1 as the one 

with designable residues, and signals to repack any residues at the opposing side of the interface. 

It also specifies a name for the output file, which will be followed by the extension .resfile. After 

generating residue files, to ensure that both complexes are designing the same number of residues 

it’s important to manually remove residues on the A chain that are at the interface of one complex 

but not the other. The resfiles used in the benchmark are shown below for reference: 
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1avz.resfile: 

NATRO 

start 

12 A ALLAA EX 1 EX 2 

13 A ALLAA EX 1 EX 2 

14 A ALLAA EX 1 EX 2 

15 A ALLAA EX 1 EX 2 

16 A ALLAA EX 1 EX 2 

35 A ALLAA EX 1 EX 2 

48 A ALLAA EX 1 EX 2 

1 C NATAA EX 1 EX 2 

2 C NATAA EX 1 EX 2 

3 C NATAA EX 1 EX 2 

4 C NATAA EX 1 EX 2 

5 C NATAA EX 1 EX 2 

6 C NATAA EX 1 EX 2 

7 C NATAA EX 1 EX 2 

10 C NATAA EX 1 EX 2 

12 C NATAA EX 1 EX 2 

13 C NATAA EX 1 EX 2 

16 C NATAA EX 1 EX 2 

17 C NATAA EX 1 EX 2 

20 C NATAA EX 1 EX 2 

47 C NATAA EX 1 EX 2 

48 C NATAA EX 1 EX 2 

49 C NATAA EX 1 EX 2 

50 C NATAA EX 1 EX 2 
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1m27.resfile: 

NATRO  

start 

12 A ALLAA EX 1 EX 2 

13 A ALLAA EX 1 EX 2 

14 A ALLAA EX 1 EX 2 

15 A ALLAA EX 1 EX 2 

16 A ALLAA EX 1 EX 2 

35 A ALLAA EX 1 EX 2 

48 A ALLAA EX 1 EX 2 

61 B NATAA EX 1 EX 2 

63 B NATAA EX 1 EX 2 

75 B NATAA EX 1 EX 2 

76 B NATAA EX 1 EX 2 

77 B NATAA EX 1 EX 2 

78 B NATAA EX 1 EX 2 

79 B NATAA EX 1 EX 2 

82 B NATAA EX 1 EX 2 

83 B NATAA EX 1 EX 2 

85 B NATAA EX 1 EX 2 

86 B NATAA EX 1 EX 2 

 

RECON Script 

The following script contains the RECON fixed backbone protocol: 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 
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                <tal weights=talaris2013.wts > 

                        <Reweight scoretype=res_type_constraint 

weight=1.0 /> 

                </tal> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

                <InitializeFromCommandline name=ifcl /> 

                <RestrictToRepacking name=rtr /> 

        </TASKOPERATIONS> 

        <MOVERS> 

                <PackRotamersMover name=design scorefxn=tal 

task_operations=ifcl /> 

                <MSDMover name=msd1 design_mover=design 

constraint_weight=0.5 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

                <MSDMover name=msd2 design_mover=design 

constraint_weight=1 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

                <MSDMover name=msd3 design_mover=design 

constraint_weight=1.5 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

                <MSDMover name=msd4 design_mover=design 

constraint_weight=2 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

                <FindConsensusSequence name=finish scorefxn=tal 

resfiles=1avz.resfile,1m27.resfile /> 

        </MOVERS> 
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        <FILTERS> 

        </FILTERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

                <Add mover=msd1 /> 

                <Add mover=msd2 /> 

                <Add mover=msd3 /> 

                <Add mover=msd4 /> 

                <Add mover=finish /> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

In this case the design mover used is a PackRotamersMover, which is given to each MSDMover 

as a submover. Note that the design mover is never actually called – it is called within the 

MSDMover. The four MSDMovers also specify a weight for residue constraints, which are ramped 

throughout the protocol, and a debug flag for extra output messages. The resfiles tag uses the files 

generated in the previous step to tell the MSDMover which residues should be linked together in 

multistate design. The resfiles don’t need to have designable residues at the same positions (i.e. 

position 1 on protein 1 can correspond to a position 10 on protein 2), but they must have the same 

number of total designable residues. Note: RECON matches resfiles to structures by input 

order. It is critical that PDBs are specified on the command line in the same order as resfiles 

in the XML file. FindConsensusSequence is the greedy selection protocol to ensure that a single 

multi-specific sequence results from RECON. It checks at each position specified in the resfiles if 

the two input PDBs have a different amino acid, and if they do it places each of the candidate 
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amino acids onto all states, packs rotamers and checks the sum of energy across states. Whichever 

of the candidates results in the lowest energy across all states is accepted as the final identity. 

A flags file is also needed to specify ROSETTA options – the following are the flags used in the 

benchmark: 

 

-in:file:fullatom 

-out:file:fullatom 

-database /path/to/Rosetta/main/database/ 

-linmem_ig 10 

-ex1 

-ex2 

-nstruct 100 

-run:msd_job_dist 

-run:msd_randomize 

 

The only flags specific to the RECON protocol are the last two. Run:msd_job_dist is needed for 

the JobDistributor to be able to give multiple input poses to a mover at the same time, which is 

needed for multi-specificity design. This protocol will fail and throw an error message without this 

flag. Run:msd_randomize randomizes the order of input poses before applying each mover. This 

is not completely necessary for multi-specificity design but is recommended, the reason being that 

there is slightly different behavior depending on the order in which PDBs are input. By 

randomizing the order before you keep this from biasing your results. More information on the 

other flags can be found at https://www.rosettacommons.org/docs/wiki/full-options-list. 
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Running RECON 

Now that the setup is complete RECON can be performed with the following command line: 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @msd.flags -s 1avz.pdb 1m27.pdb -parser:protocol 

fix_bb.xml -scorefile fix_bb.fasc 

 

This will generate 100 fixed backbone designs using RECON. For my backbone minimized 

designs the same options, input files, and commands were used, with the only difference being my 

xml: 

 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <tal weights=talaris2013.wts > 

   <Reweight scoretype=res_type_constraint 

weight=1.0 /> 

  </tal> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name=ifcl /> 

  <RestrictToRepacking name=rtr /> 

  <RestrictToInterfaceVector name=rtiv chain1_num=1 

chain2_num=2,3 CB_dist_cutoff=10.0 nearby_atom_cutoff=5.5 

vector_angle_cutoff=75 vector_dist_cutoff=9.0 /> 

 </TASKOPERATIONS> 

 <MOVERS> 
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  <PackRotamersMover name=design scorefxn=tal 

task_operations=ifcl /> 

  <MSDMover name=msd1 design_mover=design 

constraint_weight=0.5 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

  <MSDMover name=msd2 design_mover=design 

constraint_weight=1 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

  <MSDMover name=msd3 design_mover=design 

constraint_weight=1.5 resfiles=1avz.resfile,1m27.resfile debug=1 

/> 

  <MSDMover name=msd4 design_mover=design 

constraint_weight=2 resfiles=1avz.resfile,1m27.resfile debug=1/> 

  <FindConsensusSequence name=finish scorefxn=tal 

resfiles=1avz.resfile,1m27.resfile /> 

  <TaskAwareMinMover name=min tolerance=0.001 

task_operations=rtiv type=lbfgs_armijo_nonmonotone chi=1 bb=1 

jump=1 scorefxn=talaris2013 /> 

  <FastRelax name=relax scorefxn=talaris2013 

task_operations=ifcl,rtr,rtiv repeats=1 /> 

 </MOVERS> 

 <FILTERS> 

 </FILTERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

  <Add mover=msd1 /> 
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  <Add mover=min /> 

  <Add mover=msd2 /> 

  <Add mover=min /> 

  <Add mover=msd3 /> 

  <Add mover=min /> 

  <Add mover=msd4 /> 

  <Add mover=min /> 

  <Add mover=finish /> 

  <Add mover=relax /> 

 </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

In addition structures generated using backrub motions were generated using the same options, 

input files, and commands, with the following XML: 

 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <tal weights=talaris2013.wts > 

   <Reweight scoretype=res_type_constraint 

weight=1.0 /> 

  </tal> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name=ifcl /> 

 </TASKOPERATIONS> 

 <MOVERS> 
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  <PackRotamersMover name=design scorefxn=tal 

task_operations=ifcl /> 

  <MSDMover name=msd1 design_mover=design 

constraint_weight=0.5 resfiles=%%resfiles%% debug=1 /> 

  <MSDMover name=msd2 design_mover=design 

constraint_weight=1 resfiles=%%resfiles%% debug=1 /> 

  <MSDMover name=msd3 design_mover=design 

constraint_weight=1.5 resfiles=%%resfiles%% debug=1 /> 

  <MSDMover name=msd4 design_mover=design 

constraint_weight=2 resfiles=%%resfiles%% debug=1/> 

  <FindConsensusSequence name=finish scorefxn=tal 

resfiles=%%resfiles%% /> 

  <BackrubDD name=brub moves=5000 > 

   <span begin=1 end=57 /> 

  </BackrubDD> 

 </MOVERS> 

 <FILTERS> 

 </FILTERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

  <Add mover=msd1 /> 

  <Add mover=brub /> 

  <Add mover=msd2 /> 

  <Add mover=brub /> 

  <Add mover=msd3 /> 

  <Add mover=brub /> 
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  <Add mover=msd4 /> 

  <Add mover=brub /> 

 </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

MPI_MSD File Preparation 

To run MPI_MSD the same designable and repackable residues were used, and files were 

reformatted for this application. Full documentation on the MPI_MSD application is available at 

https://www.rosettacommons.org/docs/latest/mpi-msd.html. Briefly, the necessary input files are 

described below. An entity resfile is needed that specifies the residues to be designed (FYN.entres), 

a correspondence file that maps designable residues to an index (FYN.corr), and secondary resfiles 

that specify which additional residues are to be repacked (1avz.2res, 1m27.2res). The residues 

included in these files are derived from the interface residues I used in RECON. In addition a 

fitness file is needed that specifies the fitness function used (fitness.daf), and state files for each 

input pdb (1avz.state, 1m27.state).  

The contents of the input files used in the benchmark are shown below: 

 

FYN.entres: 

7 

ALLAA EX 1 EX 2 

start 

1 A ALLAA EX 1 EX 2 

2 A ALLAA EX 1 EX 2 

3 A ALLAA EX 1 EX 2 

4 A ALLAA EX 1 EX 2 
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5 A ALLAA EX 1 EX 2 

6 A ALLAA EX 1 EX 2 

7 A ALLAA EX 1 EX 2 

 

FYN.corr: 

1 12 A 

2 13 A 

3 14 A 

4 15 A 

5 16 A 

6 35 A 

7 48 A 

 

1avz.2res: 

NATRO EX 1 EX 2 

start 

1 C NATAA EX 1 EX 2 

2 C NATAA EX 1 EX 2 

3 C NATAA EX 1 EX 2 

4 C NATAA EX 1 EX 2 

5 C NATAA EX 1 EX 2 

6 C NATAA EX 1 EX 2 

7 C NATAA EX 1 EX 2 

10 C NATAA EX 1 EX 2 

12 C NATAA EX 1 EX 2 

13 C NATAA EX 1 EX 2 

16 C NATAA EX 1 EX 2 
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17 C NATAA EX 1 EX 2 

20 C NATAA EX 1 EX 2 

47 C NATAA EX 1 EX 2 

48 C NATAA EX 1 EX 2 

49 C NATAA EX 1 EX 2 

50 C NATAA EX 1 EX 2 

 

1m27.2res: 

NATRO EX 1 EX 2 

start 

61 B NATAA EX 1 EX 2 

63 B NATAA EX 1 EX 2 

75 B NATAA EX 1 EX 2 

76 B NATAA EX 1 EX 2 

77 B NATAA EX 1 EX 2 

78 B NATAA EX 1 EX 2 

79 B NATAA EX 1 EX 2 

82 B NATAA EX 1 EX 2 

83 B NATAA EX 1 EX 2 

85 B NATAA EX 1 EX 2 

86 B NATAA EX 1 EX 2 

 

fitness.daf: 

STATE_VECTOR avz 1avz.state 

STATE_VECTOR m27 1m27.state 

FITNESS vmin(avz) + vmin(m27) 
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1avz.state: 

1avz_relax_2_0010.pdb FYN_min.corr 1avz.2res 

 

1m27.state:  

1m27_relax_2_0003.pdb FYN_min.corr 1m27.2res 

 

Running MPI_MSD 

MPI_MSD can be run with the following command: 

 

mpiexec -n 12 

/path/to/Rosetta/main/source/bin/mpi_msd.mpi.linuxgccrelease -

database /path/to/Rosetta/main/database/ -entity_resfile 

FYN.entres -fitness_file fitness.daf -ms::pop_size 100 -

ms::generations 105 -ms::numresults 100 -no_his_his_pairE -

ms::fraction_by_recombination .02 -msd::double_lazy_ig_mem_limit 

100 -ex1 -ex2  

 

This runs the application on 12 processors and generates 100 output files. 

 

Design analysis 

To perform design analysis structures are first sorted by the fitness of all designs, which is the sum 

of energy of my input proteins. I analyzed the top ten designs for each of these three methods for 

fitness, sequence recovery, and similarity to evolutionary sequence profile. After identifying the 

top ten designs I used the Weblogo server to generate sequence logos, and the deep_analysis script 

as a wrapper to calculate amino acid frequencies at each position and make my sequence logo. 
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Deep analysis takes as input a resfile to identify which residues should be compared - however, 

note that a separate resfile should be made for only designable residues for this purpose 

(FYN_analysis.resfile), otherwise it will output a sequence logo for all designable and repackable 

residues. The contents of this resfile are shown below: 

 

FYN_analysis.resfile: 

start 

12 A ALLAA EX 1 EX 2 

13 A ALLAA EX 1 EX 2 

14 A ALLAA EX 1 EX 2 

15 A ALLAA EX 1 EX 2 

16 A ALLAA EX 1 EX 2 

35 A ALLAA EX 1 EX 2 

48 A ALLAA EX 1 EX 2 

 

Note: deep analysis does not link residues between complexes like RECON. It’s most useful to 

analyze each input complex separately. However, since the result of my design run will be two 

complexes with exactly the same sequence at all designable positions, it’s only strictly necessary 

to analyze sequences from one of the complexes. An example command for this script is the 

following: 

 

deep_analysis --prefix 1avz_fixbb_ --native 1avz_renum.pdb --

stack_width 30 --seq --format png --labels sequence_numbers --

res FYN_analysis.resfile -s d *pdb --path /path/to/weblogo 
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This will output a sequence logo, as well as a .tab file that contains all amino acid frequencies at 

all positions. From this file you can convert amino acid frequencies into a bitscore (which is equal 

to pi x log2(20 x pi)) and calculate the native sequence recovery (defined as the bitscore of the 

native amino acid divided by total bitscore at a position). 

Evolutionary Sequence Profiles 

To generate an evolutionary sequence profile for each protein PSIBlast was run with the following 

command: 

 

psiblast -query fyn.fasta -db non_redundant_database.db -

num_iterations 2 -out out.txt -out_pssm fyn_pssm.txt -

out_ascii_pssm fyn_ascii_pssm.txt 

 

The ASCII PSSM contains amino acid frequencies for all positions in the FASTA file. I filtered 

by 1) residues that were specified in my resfile, and 2) residues that were mutated in the top ten 

models produced by any of the three design protocols. This evolutionary PSSM was then compared 

to the design PSSM for each design method. To do this I calculated a squared difference matrix 

between the two PSSMs, and summed the difference over all amino acids at a given position. At 

each position, I subtracted this value from 2 and normalized by a factor of 2 to yield a percent 

similarity score. I then averaged the percent similarity over all positions to generate an overall 

percent similarity score. 
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APPENDIX B.  

Protocol Capture for Chapter III 

Introduction 

The following is a protocol capture of how to run the parallelized RECON multistate design 

method. It will review an example of designing the influenza antibody C05 against a panel of 

influenza antigens and evaluating the models. For simplicity’s sake we have condensed the 

protocol to a set of five antigens rather than the 13 discussed in the chapter. 

 

All Rosetta commands for this publication were run with version 

3e41de71be009712db5ba0f3b0cd1080a1603181, from March 2016. Note that all analysis scripts 

will only function properly if they are in the correct directory as provided. 

 

All materials from this protocol capture can be downloaded from 

https://github.com/sevya/parallelized_RECON_protocol_capture 

 

Dependencies: 

Several scripts require the use of Python 2.7 as well as the Biopython package 

(https://github.com/biopython/biopython.github.io/). We recommend installing all necessary 

packages before beginning this protocol. 

 

Structure preparation 

First, the C05 Fab structure (PDB ID 4fnl) was downloaded from the Protein Data Bank (PDB; 

www.rcsb.org) and manually processed in PyMol. All waters were removed from the structure and 
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non-protein residues were also removed, and all chains but H and L were deleted. The antibody 

was processed to remove the constant domain of the Fab fragment – this was done to reduce the 

total size of the system and simulation time. In this case, residues 114 – 214 on chain H and 

residues 108 – 213 on chain L were removed. The complex was then saved to a PDB file. Next the 

structures of the antigenic proteins of interest were downloaded from the PDB. In this example we 

will use five H1 structures as a test case – PDB IDs 1rvx, 1ruy, 4hkx, 3ubq, and 4lxv. These five 

structures were downloaded from the PDB and waters and non-protein residues were removed. In 

addition for each antigen all chains except for one HA1 monomer were deleted. The HA1 subunit 

was also truncated to the head domain, based on the start and end points of structure 4hkx. The 

HA1 subunits were renamed so that the chain ID is A, so that the chain IDs would be uniform 

between different complexes, using the following command: 

 

alter 1rvx, chain=’A’ 

 

This command was repeater for all five HAs. Mock co-complexes of C05 in complex with each of 

these antigens were created by aligning to the known co-crystal structure of C05 in complex with 

an H3 antigen from PDB ID 4fp8. After downloading the 4fp8 structure and deleting all but one 

copy in the asymmetric unit, the C05 Fab structure was aligned to the antibody in the 4fp8 co-

complex and the antigens were aligned to the antigen in the 4fp8 co-complex. Alignments were 

done using the following commands: 

 

super 4fnl, 4fp8  

super 1rvx, 4fp8  

super 1ruy, 4fp8  
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super 4hkx, 4fp8  

super 3ubq, 4fp8 

super 4lxv, 4fp8  

  

Next, mock co-complexes were created and saved to use in multistate design. We used the create 

command in PyMol to create an object for each complex, which then can be save and processed 

in ROSETTA. An example command is shown below: 

 

create C05_1rvx, 4fnl or 1rvx  

save C05_1rvx.pdb, C05_1rvx 

 

This command was repeated for all antigens and the new complexes were saved. Also save the 

C05 Fab structure for use later using the command: 

 

save C05.pdb, 4fnl 

 

These complexes were renumbered using a python script. The following script both renumbers the 

PDB chains and reorders the chains, so that chains H and L come first in the file. Note that this 

does not change any of the atomic coordinates in the structure, only reorders them. Run this 

command for all antigens used in the panel, as well as for the C05 apo structure. 

 

python reorder_pdb_chains.py --new_chain_order H,L,A C05_1rvx.pdb 

C05_1rvx_renum.pdb 
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python reorder_pdb_chains.py --new_chain_order H,L C05.pdb 

C05_renum.pdb 

 

 

Refinement of input structures 

After preparing and saving the complexes to be used for design, we first want to refine them to 

prevent small clashes from introducing artifacts into the score function. We will use Rosetta relax 

with restraints to the backbone coordinates to do a subtle refinement. The restraints are placed on 

all Ca atoms with a standard deviation of 1 Å. We use the following command, XML and options 

file to run the restrained relax. We must also make the output folder for our models to go in. 

 

mkdir C05_templates_relaxed 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @relax.options -s C05_1rvx_renum.pdb C05_1ruy_renum.pdb 

C05_4hkx_renum.pdb C05_3ubq_renum.pdb C05_4lxv_renum.pdb 

 

relax.options: 

-in:file:fullatom 

-out:file:fullatom 

-database /path/to/Rosetta/main/database 

-out:pdb_gz 

-ex1 

-use_input_sc 

-nstruct 1 
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-out:path:pdb C05_templates_relaxed/ 

-parser:protocol relax_cst.xml 

 

relax_cst.xml: 

<ROSETTASCRIPTS> 

    <SCOREFXNS> 

        <ScoreFunction name="talaris_rwt" 

weights="talaris2013.wts" > 

   <Reweight scoretype="coordinate_constraint" 

weight="1.0" /> 

  </ScoreFunction> 

 </SCOREFXNS> 

 <FILTERS> 

 </FILTERS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name="ifcl"/> 

  <RestrictToInterfaceVector name="rtiv" 

chain1_num="1,2" chain2_num="3" CB_dist_cutoff="10.0" 

nearby_atom_cutoff="5.5" vector_angle_cutoff="75" 

vector_dist_cutoff="9.0" /> 

  <RestrictToRepacking name="rtr"/> 

 </TASKOPERATIONS> 

 <MOVERS> 

  <FastRelax name="relax" task_operations="ifcl,rtr" 

scorefxn="talaris_rwt" /> 
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  <ddG name="ddg" per_residue_ddg="0" repack_unbound="1" 

chain_num="3" task_operations="rtiv,ifcl,rtr" 

scorefxn="talaris2013" /> 

  <AtomCoordinateCstMover name="cst" /> 

  <VirtualRoot name="root" /> 

 </MOVERS> 

 <APPLY_TO_POSE> 

 </APPLY_TO_POSE> 

 <PROTOCOLS> 

  <Add mover_name="root" /> 

  <Add mover_name="cst" /> 

  <Add mover_name="relax"/> 

  <Add mover_name="ddg" /> 

 </PROTOCOLS> 

 <OUTPUT scorefxn="talaris2013" /> 

</ROSETTASCRIPTS> 

 

Multistate design 

After refining the structure we are ready to run multistate design. To define the residues which will 

be included in design, we used a script to calculate residues within a 5 Å cutoff of the antigen. This 

script calculates residues in contact with the antigen using the 4hkx complex as a template. In 

addition it will calculate residues on the antigen which are in contact with the antibody and 

designate these residues for repacking. Note that we use the original mock co-complex to calculate 

contact residues, not the refined structure. The script is shown below: 
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python define_interface.py --side1 HL --side2 A --design-side 1 -

-repack --output C05 C05_4hkx_renum.pdb 

 

In addition we will generate a repacking only resfile that will identify the same residues as the 

previous resfile, but will designate all residues as repack only. 

 

python define_interface.py --side1 HL --side2 A --design-side 1 -

-repack --native --output C05_repack C05_4hkx_renum.pdb 

 

At this point the files are prepared for multistate design of the five complexes. First we will make 

an output folder for the models to go into. Then we will run multistate design with the following 

command. 

 

mkdir models/ 

 

mpiexec -n 5 \ 

/path/to/Rosetta/main/source/bin/rosetta_scripts.mpi.linuxgccrel

ease @msd.options -l templates.list  

 

templates.list: 

C05_templates_relaxed/C05_1rvx_renum_0001.pdb.gz 

C05_templates_relaxed/C05_1ruy_renum_0001.pdb.gz 

C05_templates_relaxed/C05_4hkx_renum_0001.pdb.gz 

C05_templates_relaxed/C05_3ubq_renum_0001.pdb.gz 

C05_templates_relaxed/C05_4lxv_renum_0001.pdb.gz 
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msd.options: 

-in:file:fullatom 

-out:file:fullatom 

-database /path/to/Rosetta/main/database/ 

-out:pdb_gz 

-use_input_sc 

-ex1 

-run:msd_job_dist 

-nstruct 50 

-mute protocols.simple_moves.GenericMonteCarloMover 

-parser:protocol msd_brub.xml 

-scorefile msd.fasc 

-out:path:pdb models 

-nstruct 100 

-out:suffix _msd_rlx 

 

msd_brub.xml 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <ScoreFunction name="talaris_rwt" 

weights="talaris2013_cst.wts" /> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name="ifcl" /> 

  <RestrictToRepacking name="rtr" /> 
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  <RestrictToInterfaceVector name="rtiv" 

chain1_num="1,2" chain2_num="3" CB_dist_cutoff="10.0" 

nearby_atom_cutoff="9.0" vector_angle_cutoff="75" 

vector_dist_cutoff="9.0" /> 

  <ReadResfile name="repackable" 

filename="C05_repack.resfile" /> 

 </TASKOPERATIONS> 

 <MOVERS> 

  <Backrub name="backrub_man" pivot_residues="106-118" 

/> 

  <GenericMonteCarlo name="backrub" 

mover_name="backrub_man" scorefxn_name="talaris2013" 

trials="500" temperature="0.8" recover_low="1" /> 

 

  <PackRotamersMover name="design" 

scorefxn="talaris_rwt" task_operations="ifcl" /> 

 

  <MSDMover name="msd1" design_mover="design" 

post_mover="backrub" constraint_weight="0.5" 

resfiles="C05.resfile" debug="0" /> 

  <MSDMover name="msd2" design_mover="design" 

post_mover="backrub" constraint_weight="1" 

resfiles="C05.resfile" debug="0" /> 

  <MSDMover name="msd3" design_mover="design" 

post_mover="backrub" constraint_weight="1.5" 

resfiles="C05.resfile" debug="0" /> 
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  <MSDMover name="msd4" design_mover="design" 

post_mover="backrub" constraint_weight="2" 

resfiles="C05.resfile" debug="0" /> 

 

  <FindConsensusSequence name="finish" 

scorefxn="talaris2013" resfiles="C05.resfile" debug="1" 

task_operations="ifcl,repackable" repack_one_res="1" /> 

 

  <FastRelax name="rlx" task_operations="ifcl,rtr,rtiv" 

scorefxn="talaris_rwt" /> 

 

  <FavorSequenceProfile name="fnr" pdbname="C05_H.pdb" 

weight="0.25" scaling="prob" matrix="IDENTITY" /> 

  <ClearConstraintsMover name="clear_cst" /> 

 

  <InterfaceAnalyzerMover name="ddg" 

scorefxn="talaris2013" packstat="0" pack_input="0" 

pack_separated="1" fixedchains="H,L" /> 

 

  <AtomCoordinateCstMover name="cst" coord_dev="1.0" /> 

  <VirtualRoot name="root" removable="1" /> 

  <VirtualRoot name="rmroot" remove="1" /> 

 </MOVERS> 

 <FILTERS> 

  <FitnessFilter name="fitness" output_to_scorefile="1" 

/> 

 </FILTERS> 



 241 

 <PROTOCOLS> 

  <Add mover="fnr" /> 

  <Add mover="msd1" /> 

  <Add mover="msd2" /> 

 

  <Add mover="msd3" /> 

  <Add mover="msd4" /> 

  <Add mover="finish" /> 

 

  <Add mover="root" /> 

  <Add mover="cst" /> 

  <Add mover="rlx" /> 

  <Add mover="rmroot" /> 

 

  <Add mover="ddg" /> 

 

  <Add filter="fitness" /> 

 

 </PROTOCOLS> 

 <OUTPUT scorefxn="talaris2013" /> 

</ROSETTASCRIPTS> 

 

This protocol will run in parallel over 5 processors and generate 100 output decoys. The protocol 

will run multistate design followed by a restrained relax to refine the designed complexes, and a 

step to calculate the fitness, which is calculated as the sum of energy over all input states. 
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To analyze the sequence profile of designs we used the WebLogo tool. The following script will 

create a fasta file with the sequences of all designs, as well as a sequence logo summarizing the 

results. Note that we only need to analyze the designs from one state, since analyzing the designs 

from each state would be redundant. For example, the designed sequences from trajectory 1 will 

be identical in the 1rvx complex, 1ruy complex, etc. Here we will only analyze sequences in the 

1rvx complex. 

 

design_analysis.py --native C05_renum.pdb --format eps --resfile 

C05.resfile --multiproc --units probability 

models/C05_1rvx*pdb.gz 

 

RosettaCM comparative modeling 

In addition, in this chapter we describe design against a panel of modeled HAs generated by 

RosettaCM comparative modeling. To do this we first downloaded HA sequences from the 

Influenza Research Database (www.fludb.org). We curated these sequences to identify those that 

comprised full-length HA sequences, aligned them to the truncated head domain from PDB ID 

4hkx and truncated the sequences to the same start and end residue. We also removed redundant 

sequences to create a unique set of seuqences. We clustered these sequences at 95% to reduce the 

panel to a more tractable size using the CD-HIT software with the following command: 

 

cd-hit -i all_H1_unique_head_unique_clean.fasta -o 

95_pct_cluster -c 0.95 
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To illustrate the homology modeling protocol we will use the strain H1 A_Uruguay_23_2009 as 

an example. We used the 13 H1 antigens from the original panel as template sequences – these can 

be found in H1_templates.fasta. We used the following python script to generate files for 

RosettaCM in an automated fashion. 

 

python generate_files.py A_Uruguay_23_2009 

 

This file will generate Grishin alignments for the top five templates by sequence identity, plus a 

file called template_identity.txt identifying these templates. You must thread your target sequence 

over the template structure for each of the top five templates. Use the following command to do 

so: 

 

/path/to/Rosetta/main/source/bin/partial_thread.default.linuxgcc

release -in:file:fasta A_Uruguay_23_2009.fasta -in:file:alignment 

A_Uruguay_23_2009_3m6s.grishin -in:file:template_pdb 3m6s.pdb 

 

mv 3m6s.pdb.pdb A_Uruguay_23_2009_on_3m6s.pdb 

 

Repeat this command for all five templates. Next we recommend using the Robetta server to 

generate fragments for use in RosettaCM modeling. After downloading 3mer and 9mer fragment 

files you are ready to run RosettaCM. Run the following command to generate your models. They 

will be saved to a silent file format to save space – you can easily extract the top scoring models 

after homology modeling. 
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/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @rosetta_cm.options -scorefile A_Uruguay_23_2009.fasc -

out:file:silent A_Uruguay_23_2009.silent 
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APPENDIX C.  

Protocol Capture for Chapter IV 

Introduction 

The following is a protocol capture of how to run the BROAD multistate design method. It will 

go through an example of making models of an antibody-antigen complex of VRC23 in complex 

with HIV gp120, generating a training set of randomly mutated antibodies, fitting the structural 

models to a classifier, and using integer linear programming to search in sequence space for a 

broadly binding antibody. 

 

All ROSETTA commands for this publication were run with version 

52d173bb0f823b30c009662efb2eb7e635176fc4, from Jan 2016. Note that all analysis scripts will 

only function properly if they are in the correct directory as provided. 

 

All materials from this protocol capture can be downloaded from 

https://github.com/sevya/broad_protocol_capture 

 

Dependencies: 

Several scripts require the use of Python 2.7 as well as the Biopython package 

(https://github.com/biopython/biopython.github.io/). The scikit learn package is also required to 

fit the classification model (https://github.com/scikit-learn/scikit-learn). Lastly IBM cplex is 

required for solving the integer linear program (https://www.ibm.com/analytics/data-

science/prescriptive-analytics/cplex-optimizer). We recommend installing all necessary packages 

before beginning this protocol. 
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PDB preparation 

First, PDB structure 4j6r was downloaded from the RCSB and manually processed in PyMol. All 

waters were removed from the structure and non-protein residues were also removed. The antibody 

was processed to remove the constant domain of the Fab fragment – this was done to reduce the 

total size of the system and simulation time. In this case, residues 114 – 214 on chain H and 

residues 108 – 214 on chain L were removed. The complex was then saved and renumbered using 

a python script. The following script both renumbers the PDB chains and reorders the chains, so 

that chains H and L come first in the file. Note that this does not change any of the atomic 

coordinates in the structure, only reorders them. 

 

python reorder_pdb_chains.py --new_chain_order H,L,G 4j6r.pdb 

4j6r_renum.pdb 

 

To select binding sites for the antibody and antigen, we selected residues within a 4 Å cutoff of 

the opposing chain using PyMol. We used the following commands to do so: 

 

select ab_binding_site, byres( chain H+L within 4 of chain G ) 

select ag_binding_site, byres( chain G within 4 of chain H+L ) 

 

After expanding the selection to several neighboring residues to allow for contiguous stretches of 

residues and exclude single residue stretches, we used the following specifications for binding sites 

(in PDB numbering, from 1-N): 
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Antibody site: 

45-62 EWMGWIKPERGAVSYAPQ 

71-74 RDLY 

101-105 RDASW 

 

Antigen site: 

160-167 NITNNAKI  

222-228 SGGDLEI     

276-281 NMWQRA       

306-313 TRDGGKDN    

324-327 GDMR 

 

Generating input files  

Next, we used a python script to generate ROSETTA residue files (resfiles) for each virus that will 

be modeled. This script uses the provided multiple sequence alignment of the viral panel, titled 

180_viruses_plus_4j6r.aln, to make a resfile to create each virus. The usage is shown below: 

 

python2.7 make_viruses.py  

 

This will create a directory called virus_resfiles, and within it a set of 180 resfiles. It will also 

create a file called viral_variants.fasta, with the concatenated binding sites of all viruses in the set. 

 

Next, we used a similar script to make randomly mutated antibodies. The default setting is to make 

5 random substitutions and 500 total antibody variants, but these can be specified in the script: 
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python2.7 make_antibody_variants.py 5 500  

 

Generating a training set with ROSETTA 

At this point the files are prepared for ROSETTA modeling of the complexes to generate a training 

set for SVM training and integer linear programming optimization. The input ROSETTA XML file, 

options file, and command are provided in the protocol capture folder. The following command 

will generate 50 models for one antibody-antigen pair: 

 

/path_to_rosetta/Rosetta/main/source/bin/rosetta_scripts.default

.linuxgccrelease @relax_training.options -s 4j6r_renum.pdb -

parser:protocol relax_training.xml -out:suffix _$abres"_"$virres 

-parser:script_vars abres=$abres -parser:script_vars 

virres=$virres 

 

where abres has been set to an antibody variant resfile (e.g. ab-001) and virres has been set to a 

virus resfile (e.g. CAAN-A2). 

 

Training the Model  

Training involves a) classification to predict binding and b) regression to predict stability  scores. 

To perform training, we attach the following data: the set of the 30 virus sequences is in the file 

v_30.txt, the training set antibody and virus pairs and the corresponding scores are in 

train_set_ab_30.txt, train_set_v_30.txt, train_set_scores_binding_30.txt and 

train_set_scores_stability_30.txt respectively.  
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The following program creates feature sets from the training antibody and virus files for a given 

training size and then trains the machine learning models to predict binding and stability.  

 

python train_models.py trainsize 

 

The program outputs the coefficient and intercept terms for each machine learning model 

(classification and regression) and saves them to file. The variable ‘trainsize’ denotes the number 

of virus sequences chosen for training (on the corresponding antibody-virus pairwise datapoints). 

To execute the above program, scikit-learn needs to be installed on the system.  

 

The following command learns prediction models on all the data: 

 

python train_models.py 30 

 

The above program learns a linear model in the default setting. To learn a non-linear model, the 

function scikit_programs_classification can be modified to choose the rbf kernel parameter. The 

parameters are set to the values mentioned in the chapter. However, a 10-fold cross validation can 

be performed to optimize the parameter settings for a specific dataset.  

 

The subset of 20 sequences is in v_20.txt. The training set antibody and virus pairs and the 

corresponding scores are in train_set_ab_20.txt, train_set_v_20.txt, 

train_set_scores_binding_20.txt and train_set_scores_stability_20.txt respectively.  The following 

command learns prediction models on the subset of the data: 
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python train_models.py 20 

 

The features used for training are saved in classification_features_trainsize.txt and 

regression_features_trainsize.txt. The parameters are saved in the format 

coefficients_trainsize_model.txt and intercept_trainsize_model.txt. Model maps to 1 for 

classification and 2 for regression.  

 

Integer Linear Program   

The following program reads the saved coefficients and intercepts, writes the integer linear 

program using cplex, solves it and writes the optimized antibody sequence to file. It needs IBM 

cplex to be installed on the system.  

 

python solve_ILP.py trainsize 

 

This writes the optimized antibody in BM_trainsize.txt (breadth maximized). 

 

Evaluating Optimized Antibodies   

Finally, the optimized antibodies can be evaluated using the saved model trained on all data. The 

following program computes the predicted breadth and the predicted stability score of the 

optimized antibody, and writes these numbers to file as predicted_breadth.txt and 

predicted_stability.txt.  

 

python evaluate_optimized_antibody.py trainsize 



 251 

Running RECON multistate design  

To run RECON multistate design, you must first create an antibody-antigen complex for all the 

viral variants in the panel, using the crystal structure of VRC23 in PDB ID 4j6r as a template. 

Before running multistate design, we first threaded over the sequence of each viral variant and 

refined the complexes using a relax protocol with constraints to the starting backbone coordinates, 

to prevent too much movement of the protein backbone. We generated one relaxed model for each 

co-complex to use for design. Using the resfiles generated earlier, we use the following command 

to create the co-complexes: 

 

/path_to_rosetta/Rosetta/main/source/bin/rosetta_scripts.default

.linuxgccrelease @make_templates.options -s 4j6r_renum.pdb -

parser:protocol make_templates.xml -out:suffix _$virres -

parser:script_vars virres=$virres 

 

where virres has been set to a virus resfile (e.g. CAAN-A2). 

 

After generating the refined co-complexes we then performed RECON multistate design. The 

following command was used to run multistate design: 

 

mpiexec -n 180 

/path_to_rosetta/Rosetta/main/source/bin/rosetta_scripts.mpi.lin

uxgccrelease @msd.options -parser:protocol msd_brub.xml 
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The multistate design was run on a computing cluster with 180 processors allocated to the job. The 

residues allowed to design were the same residues in the paratope binding site as described 

previously, and the residues in the epitope binding site were allowed to repack. Backrub 

movements of the residues in the binding site of both the antibody and virus were performed in 

between rounds of design.  

 

After generating multistate design models the top ten designs by overall fitness were selected and 

used to move forward to re-modeling in ROSETTA to enable a direct comparison with the BROAD 

generated sequences. Overall fitness is defined as the sum of the ROSETTA energy of all complexes 

included in multistate design. The following command was used to identify the top ten models in 

overall fitness, and to make a sequence logo for the top ten models: 

 

grep CAAN msd.fasc | sort -nk19 | awk '{print $NF.pdb.gz}' | 

head -10 > msd_top10.list 

python2.7 design_analysis.py --prefix msd_top10.list --res 

4j6r.resfile --native 4j6r_renum.pdb `cat msd_top10.list` 

 

Evaluating breadth from ROSETTA models 

After determining the best ten sequences predicted by both BROAD and multistate design, we 

subjected them to a more thorough modeling protocol to see if the sequences retain the predicted 

increases in breadth.  
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/path_to_rosetta/Rosetta/main/source/bin/rosetta_scripts.default

.linuxgccrelease @relax_test.options -s 4j6r_renum.pdb –

parser:protocol relax_test.xml -out:suffix _$abres"_"$virres -

parser:script_vars abres=$abres -parser:script_vars 

virres=$virres 

 

We next calculated the predicted breadth over the entire viral panel to determine which had greater 

predicted breadth. To do this we used the output of the testing set relaxation and measured the 

binding energy and score of the lowest scoring model for each antibody-antigen pair. We used the 

following script to do this analysis: 

 

python2.7 compile_results.py relax_test.fasc 

 

This script will calculate breadth over the whole panel for the native antibody and designed 

antibodies, and will output scatter plots showing the binding energy for each gp120 viral variant, 

before and after design, to see if design improved binding energy for this viral protein. A similar 

plot is also output showing the change in score instead of binding energy. 
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APPENDIX D.  

Protocol Capture for Chapter V 

Introduction 

The following is a protocol capture of how to run the P3SM modeling protocol discussed in 

Chapter V of this thesis. The sequences used in this study as well as all scripts needed for analysis 

are deposited along with this thesis. 

 

All Rosetta commands for this publication were run with ROSETTA 3.8, version 

816aebf79eac0fd4f103e61e017905d8d234fa4d, from May 2017. Note that all analysis scripts will 

only function properly if they are in the correct directory as provided. 

 

Dependencies: 

Several scripts require the use of Python 2.7 as well as the Biopython package 

(https://github.com/biopython/biopython.github.io/). We recommend installing all necessary 

packages before beginning this protocol. 

 

Structure preparation 

First, the co-crystal structures of both Z13e1 and 641 I-9 (PDB IDs 3fn0 and 4yk4, respectively) 

were downloaded from the Protein Data Bank (PDB; www.rcsb.org) and manually processed in 

PyMol. All waters were removed from the structure and non-protein residues were also removed. 

For structure 4yk4 all chains but A, B and C were deleted. The chains were changed to A, H, and 

L, using the following command in PyMol: 
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alter 4yk4 and chain B, chain=’L’ 

alter 4yk4 and chain C, chain=’H’ 

 

For structure 3fn0 the antigen chain was renamed to chain A, with the following command: 

 

alter 3fn0 and chain P, chain=’H’ 

 

The antibody was then processed to remove the constant domain of the Fab fragment – this was 

done to reduce the total size of the system and simulation time. In the case of 4yk4, residues 126 

– 225 on chain H and residues 108 – 211 on chain L were removed. In the case of 3fn0, residues 

114 – 225 on chain H and residues 108 – 211 on chain L were removed. The complex was then 

saved to a PDB file. Next a Python script was used to reorder and renumber the antibody chains to 

simplify the modeling protocol. The reordering script was run as below: 

 

python reorder_pdb_chains.py –new_chain_order H,L,A 4yk4.pdb 

4yk4_renum.pdb 

python reorder_pdb_chains.py –new_chain_order H,L,A 3fn0.pdb 

3fn0_renum.pdb 

 

Generating training set for P3SM 

After preparing and saving the complexes to be used for modeling, we next need to thread the 500 

random sequences over the CDRH3 loops and model them to in order to train the P3SM. I used 

the following script to randomly select 500 sequences and generate resfiles for threading and 

modeling: 
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python Scripts/make_resfiles.py Run115+RID_VH459_19_clean.csv 

 

We next need to thread each of the 500 sequences over both the Z13e1 and 641 I-9 complex and 

refine using ROSETTA relax. Also included in the input files are resfiles encoding the wild-type 

sequence of both of these templates. 

 

Now that the resfiles are prepared we will run the threading step. Below are the input files and 

XML scripts to run the protocol, and a ROSETTA command to thread the sequences over both 

complexes and generate relaxed models: 

 

thread_relax.xml: 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <ScoreFunction name="talaris2014_cst" 

weights="talaris2014_cst.wts" /> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name="ifcl" /> 

  <RestrictToRepacking name="rtr" /> 

  <ReadResfile name="mutate" 

filename="resfiles/%%resfile%%.resfile" /> 

 </TASKOPERATIONS> 

 <MOVERS> 

  <PackRotamersMover name="thread" 

scorefxn="talaris2014_cst" task_operations="ifcl,mutate" /> 
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  <FastRelax name="rlx" task_operations="ifcl,rtr" 

scorefxn="talaris2014_cst" /> 

  <AtomCoordinateCstMover name="cst" coord_dev="1.0" /> 

  <VirtualRoot name="root" removable="1" /> 

  <VirtualRoot name="rmroot" remove="1" /> 

  <InterfaceAnalyzerMover name="ddg" 

scorefxn="talaris2014" packstat="0" pack_input="0" 

pack_separated="1" fixedchains="H,L" /> 

 </MOVERS> 

 <FILTERS> 

 </FILTERS> 

 <PROTOCOLS> 

  <Add mover="thread" /> 

   

  <Add mover="root" /> 

  <Add mover="cst" /> 

  <Add mover="rlx" /> 

  <Add mover="rmroot" />   

  <Add mover="ddg" /> 

   

 </PROTOCOLS> 

 <OUTPUT scorefxn="talaris2014" /> 

</ROSETTASCRIPTS> 

 

thread_relax.flags: 

-in:file:fullatom 

-out:file:fullatom 
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-database /path/to/Rosetta/main/database 

-out:pdb_gz 

-ex1 

-use_input_sc 

-nstruct 10 

-out:path:pdb models/ 

-parser:protocol thread_relax.xml 

-scorefile thread_relax.fasc 

 

Commands to run ROSETTA relax: 

mkdir models 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxcl

angrelease @thread_relax.flags -out:suffix _thread_rlx_$resfile 

-parser:script_vars resfile=$resfile -s 3fn0_renum.pdb 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxcl

angrelease @thread_relax.flags -out:suffix _thread_rlx_$resfile 

-parser:script_vars resfile=$resfile -s 4yk4_renum.pdb 

 

This command will use variable substitution to substitute $resfile for the resfile you are 

currently modeling. You will have to loop through all 502 resfiles (500 randomly selected + two 

native sequences) and generate models for each of these resfiles separately. I recommend doing 

this step in parallel on a computing cluster to expedite the simulations. 
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After the modeling simulations have finished you need to fit the ridge regression model to generate 

P3SM weights for each amino acid at each position. Below is a Python script that will generate 

these weights. This script requires a list of amino acids to fit the coefficients and a list of models, 

examples of which are shown below. 

 

cdr3.res: 

96 H 

97 H 

98 H 

99 H 

100 H 

101 H 

102 H 

103 H 

104 H 

105 H 

106 H 

107 H 

108 H 

109 H 

110 H 

111 H 

112 H 

113 H 

114 H 
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ls models/3fn0* > 3fn0_models.txt  

ls models/4yk4* > 4yk4_models.txt  

 

python REU_to_pssm_linear.py --targets 3fn0_models.txt --res 

cdr3.res --multi --out 3fn0.pssm 

 

python REU_to_pssm_linear.py --targets 4yk4_models.txt –-res 

cdr3.res --multi --out 4yk4.pssm 

 

Multistate design 

The last part of this protocol capture will address how to run RECON multistate design on these 

modeled sequences. Once I have identified which of the modeled sequences I’m interested in 

redesigning, I can redesign them to increase affinity for both antigenic targets. I will use the 

following scripts and flags files to run RECON design: 

 

multistate_design.xml: 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <talaris_cst weights="talaris2014_cst.wts" /> 

 </SCOREFXNS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name="ifcl" /> 

  <RestrictToRepacking name="rtr" /> 

  <RestrictToInterfaceVector name="rtiv" 

chain1_num="1,2" chain2_num="3" CB_dist_cutoff="10.0" 
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nearby_atom_cutoff="9.0" vector_angle_cutoff="75" 

vector_dist_cutoff="9.0" /> 

 </TASKOPERATIONS> 

 <MOVERS> 

  <Backrub name="backrub_man" pivot_residues="96-114" /> 

  <GenericMonteCarlo name="backrub" 

mover_name="backrub_man" scorefxn_name="talaris2014" 

trials="500" temperature="0.8" recover_low="1" /> 

 

  <PackRotamersMover name="design" 

scorefxn="talaris_cst" task_operations="ifcl" /> 

 

  <MSDMover name="msd1" design_mover="design" 

post_mover="backrub" constraint_weight="0.5" 

resfiles="4yk4.resfile,3fn0.resfile" /> 

  <MSDMover name="msd2" design_mover="design" 

post_mover="backrub" constraint_weight="1" 

resfiles="4yk4.resfile,3fn0.resfile" /> 

  <MSDMover name="msd3" design_mover="design" 

post_mover="backrub" constraint_weight="1.5" 

resfiles="4yk4.resfile,3fn0.resfile" /> 

  <MSDMover name="msd4" design_mover="design" 

post_mover="backrub" constraint_weight="2" 

resfiles="4yk4.resfile,3fn0.resfile" /> 
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  <FindConsensusSequence name="finish" 

scorefxn="talaris2014" resfiles="4yk4.resfile,3fn0.resfile" 

debug="0" task_operations="ifcl" repack_one_res="0" /> 

 

  <FastRelax name="rlx" task_operations="ifcl,rtr,rtiv" 

scorefxn="talaris_cst" /> 

 

  <FavorSequenceProfile name="fnr" use_starting="1" 

weight="0.25" scaling="prob" matrix="IDENTITY" /> 

  <ClearConstraintsMover name="clear_cst" /> 

 

  <InterfaceAnalyzerMover name="ddg" 

scorefxn="talaris2014" packstat="0" pack_input="0" 

pack_separated="1" fixedchains="H,L" /> 

  

  <AtomCoordinateCstMover name="cst" coord_dev="1.0" /> 

  <VirtualRoot name="root" removable="1" /> 

  <VirtualRoot name="rmroot" remove="1" /> 

 </MOVERS> 

 <FILTERS> 

  <EnergyPerResidue name="per_res_filter" 

scorefxn="talaris2014" resnums="96-114" energy_cutoff="50"/> 

  <CalculatorFilter name="cdrh3_filter" equation="19 * 

x" > 

   <Var name="x" filter="per_res_filter" /> 

  </CalculatorFilter> 

 </FILTERS> 



 263 

 <PROTOCOLS> 

  <Add mover="fnr" /> 

  <Add mover="msd1" /> 

  <Add mover="msd2" /> 

 

  <Add mover="msd3" /> 

  <Add mover="msd4" /> 

  <Add mover="finish" /> 

    

  <Add mover="root" /> 

  <Add mover="cst" /> 

  <Add mover="rlx" /> 

  <Add mover="rmroot" />   

  <Add mover="ddg" /> 

   

  <Add filter="cdrh3_filter" /> 

 </PROTOCOLS> 

 <OUTPUT scorefxn="talaris2014" /> 

</ROSETTASCRIPTS> 

 

multistate_design.flags: 

-in:file:fullatom 

-out:file:fullatom 

-database /path/to/Rosetta/main/database/ 

-use_input_sc 

-ex1 

-run:msd_job_dist 
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-nstruct 10 

-mute protocols.simple_moves.GenericMonteCarloMover 

-parser:protocol multistate_design.xml 

-out:path:pdb models 

 

multistate_design command: 

mpiexec -n 2 

/path/to/Rosetta/main/source/bin/rosetta_scripts.mpi.linuxgccrel

ease @msd.flags -out:suffix _msd -scorefile 

multistate_design.fasc -s $4YK4PDB $3FN0PDB 

 

This command also uses variable substitution, where you will need to define variables 4YK4PDB 

and 3FN0PDB with the names of the PDBs you want to design. 
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APPENDIX E.  

Protocol Capture for Chapter VI 

Introduction 

The following is a protocol capture of designing cyclic peptides based on antibody CDRH3 loops. 

It will review the design of CDRH3 loop from anti-influenza antibody C05. 

 

All Rosetta commands for this publication were run with version 

3e41de71be009712db5ba0f3b0cd1080a1603181, from March 2016.  

 

All materials from this protocol capture can be downloaded from 

https://github.com/sevya/cyclic_peptide_protocol_capture 

 

Dependencies: 

Several scripts require the use of Python 2.7 as well as the Biopython package 

(https://github.com/biopython/biopython.github.io/). We recommend installing all necessary 

packages before beginning this protocol. Note that all analysis scripts will only function properly 

if they are in the correct directory as provided. 

 

Structure preparation 

First, the C05 Fab structure (PDB ID 4fnl) was downloaded from the Protein Data Bank (PDB; 

www.rcsb.org) and manually processed in PyMol. All waters were removed from the structure and 

non-protein residues were also removed. All residues except for one copy of the CDRH3 from 
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chain H (residues 93-102, sequence AKHMSMQQVVSAGWERADLVGDAFDV) were deleted. 

The loop was then saved to a PDB file with the following command: 

 

save C05_H3.pdb  

 

The CDRH3 peptide was then renumbered using a python script to convert the numbering to start 

from 1 and ignore insertion codes. The renumbering script was run with the following command:  

 

/path/to/Rosetta/tools/protein_tools/scripts/pdb_renumber.py 

C05_H3.pdb C05_H3_renum.pdb 

 

Next the PeptideStubMover functionality in Rosetta was used to add a cysteine to the N- and C-

termini of the CDRH3 peptide. The following command will add these cysteines: 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease -parser:protocol add_disulfide.xml -s C05_H3_renum.pdb -

out:prefix disulfide_ -out:no_nstruct_label -extra_res_fa 

CYD.params 

 

GeneralizedKIC Loop Closure 

Now the peptide is ready for loop modeling simulations. We used Generalized Kinematic Closure 

(GeneralizedKIC) to close the loop and perturb the φ and ψ angles. Full documentation of the 

GeneralizedKIC protocol can be found at: 
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https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/composite_

protocols/generalized_kic/GeneralizedKIC. Briefly, we first declare a bond between the cysteines 

at residues 1 and 28, and set the degrees of freedom to be used in loop modeling. We set residue 

13 at the tip of the CDRH3 loop to be the anchor point of loop modeling, and the remaining residue 

to be mobile degrees of freedom. We next add a perturber that will modify the closed loop by 

perturbing the φ and ψ angles of all residues in the loop by a value drawn from Gaussian 

distribution centered at 15 degrees. Finally we add a single round of ROSETTA relax to add side 

chains and refine the structure before evaluating the energy. The GeneralizedKIC protocol will 

generate 20 solutions after loop closure, perturbation, and relaxation, and the lowest energy 

solution is reported as the final decoy. This entire protocol is repeated to generate 1,000 final 

output decoys. To create the models output directory and run the GeneralizedKIC protocol use the 

following command: 

 

mkdir models  

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @close_relax.flags -s disulfide_C05_H3_renum.pdb 

 

 

Analysis 

We will use a python script to analyze the folded peptide models by calculating ROSETTA score 

and Ca RMSD for each of the models. To do so we will run the following command: 

 



 268 

python 

/path/to/Rosetta/tools/protein_tools/scripts/score_vs_rmsd.py --

table native_sc_vs_rmsd.tsv --native disulfide_C05_H3_renum.pdb -

-CA –-term total models/disulfide*pdb 

 

python plot_score_vs_rmsd.py native_sc_vs_rmsd.tsv 

 

This will make a plot of score vs RMSD for all models. In addition it will give a funnel 

discrimination score that is used to assess how well models converge on the native conformation. 

This score is derived from Conway et al.1 Overall a lower score (more negative) indicates that the 

structures are converging well.  

 

Peptide sequence redesign 

Next we want to see if we can redesign the peptide for greater stability and convergence on the 

active conformation. As an example we will take the lowest RMSD structure and run fixed 

backbone ROSETTADESIGN to optimize the sequence. In a production run we recommend to design 

more than one structure – in the manuscript we redesigned all peptides under 2 Å.  

 

mkdir redesign/ 

sort -nk3 native_sc_vs_rmsd.tsv | head -2 

 

                                                

1 Patrick Conway et al., “Relaxation of Backbone Bond Geometry Improves Protein Energy 
Landscape Modeling.,” Protein Science 23, no. 1 (January 2014): 47–55, doi:10.1002/pro.2389. 
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Next copy the lowest energy model into the redesign folder. We provide an example structure for 

the purpose of this protocol capture. We will run 10 iterations of fixed backbone design and use 

the lowest scoring design. The resfile we use to guide design will allow all residues to be mutated 

to anything except for cysteine (ALLAAxC) and will disallow design on the N- and C-termini 

cysteines. 

 

cp models/disulfide_C05_H3_renum_close_relax_0050.pdb redesign/  

 

/path/to/Rosetta/main/source/bin/fixbb.default.linuxgccrelease -

s disulfide_C05_H3_renum_close_relax_0050.pdb -nstruct 10 -

out:prefix redesign_ -ex1 -use_input_sc -resfile redesign.resfile 

 

redesign.resfile: 

NATAA 

start 

2 - 27 A ALLAAxC 

 

After making the peptide designs we will analyze the lowest scoring design to see if it improves 

the folding funnel. We will first use python scripts to convert the sequence from the PDB into a 

fasta file, then create a resfile from the fasta file to mutate our folding template.  

 

/path/to/Rosetta/tools/protein_tools/scripts/get_fasta_from_pdb.

py redesign_disulfide_C05_H3_renum_close_relax_0050_0009.pdb A 

redesign.fasta 
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python fasta_to_resfile.py redesign.fasta 

 

This will create a resfile called 

redesign_disulfide_C05_H3_renum_close_relax_0050_0009.resfile that 

we will use to mutate our peptide template. Navigate back to the starting directory, create the 

template for folding and run the folding simulations: 

 

cd .. 

 

/path/to/Rosetta/main/source/bin/fixbb.default.linuxgccrelease -

s disulfide_C05_H3_renum.pdb -out:prefix d1_ -resfile 

redesign/redesign_disulfide_C05_H3_renum_close_relax_0050_0009.r

esfile -out:no_nstruct_label -use_input_sc 

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @close_relax.flags -s d1_disulfide_C05_H3_renum.pdb 

 

After the design folding decoys are finished we can analyze the score and RMSD and compare to 

the native sequence: 

 

python 

/path/to/Rosetta/tools/protein_tools/scripts/score_vs_rmsd.py --

table d1_sc_vs_rmsd.tsv --native disulfide_C05_H3_renum.pdb --CA 

--term total models/d1*pdb 
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python plot_score_vs_rmsd.py native_sc_vs_rmsd.tsv 

d1_sc_vs_rmsd.tsv 

 

Binding affinity measurement 

In the design process to this point we haven’t accounted for the effect that a mutation may have on 

binding to the antigen. After we have identified a candidate peptide we next want to make sure 

that the mutations that stabilize the peptide do not interfere with an interaction hotspot. To do this 

we will model the redesigned sequence in the context of the antibody-antigen interface. We will 

thread the redesigned sequence over the co-crystal structure, perform a subtle refinement using 

ROSETTA relax with backbone constraints, and measure the binding energy.  

First make a new subdirectory called ddg_measure to place all the new files and navigate to 

this directory. Next we need to download and prepare the structure of the C05 co-crystal structure 

(PDB ID 4fp8). Download the structure and use PyMol to delete all chains except for A+H. 

Remove all waters and non-protein residues from the structure. Then remove all residues on the 

antibody except for the CDRH3 (residues 93-102, sequence 

AKHMSMQQVVSAGWERADLVGDAFDV). Save this structure as C05_H3_Ag.pdb 

 

Next we will renumber the structure to make sure the numbering is uniform. Repeat the same 

command from earlier in the protocol to renumber the structure: 

 

/path/to/Rosetta/tools/protein_tools/scripts/pdb_renumber.py 

C05_H3_Ag.pdb C05_H3_Ag_renum.pdb 
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Once the structure is prepared we will run the relaxation on both the native sequence and 

redesigned sequence. As an example the sequence of one of the peptides provided in this chapter 

(d1) is provided, along with a native resfile to measure the binding energy of the wild-type loop. 

Run the constrained relaxation with these two resfiles to create the models: 

 

mkdir models  

 

/path/to/Rosetta/main/source/bin/rosetta_scripts.default.linuxgc

crelease @relax.flags -out:suffix _rlx_d1 -parser:script_vars 

resfile=d1 

 

NOTE: the XML format was updated for Rosetta version 3.8, released in February 2017. It is not 

backwards compatible, so if you are running a version ≥ 3.8, you will need to convert the script 

with the following command: 

 

/path/to/rosetta-

3.8/Rosetta/tools/xsd_xrw/rewrite_rosetta_script.py --input 

relax_cst.xml –output relax_cst.xml 

 

This will generate ten models for each of the sequences. To analyze the results use the following 

command to output the score and binding energy in the bound state: 

sort -nk2 relax.fasc | grep rlx_native | head -1 | awk '{print $2"  

"$6}' 

sort -nk2 relax.fasc | grep rlx_d1 | head -1 | awk '{print $2"  

"$6}' 


