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Chapter 1. Introduction 
Ever since the invention of the transistor, the semiconductor industry has seen tremendous 

progress by following Moore’s law, which states that the number of transistors per integrated 

circuit doubles approximately every 24 months. For example, Fig. 1.1 shows that the transistor 

count in microprocessors has been increasing for over 40 years [1]. The key to sustain Moore’s 

law is the miniaturization of single transistors. However, conventional scaling has hit a power wall, 

so that it is now limited by the power consumption [2]. Therefore, low power and high performance 

logic devices are currently actively investigated to maintain the scaling trends.   

 

Fig. 1.1. 40 years of microprocessor trend data [1]. 

However, it is becoming more and more challenging to continue transistor scaling. Technology 

innovations are necessary to extend Moore’s law. Several transformative changes have been 

implemented and explored to maintain the scaling, as shown in Fig. 1.2 [3]. For example, strain 

engineering was first introduced in the 90 nm node to increase both electron and hole mobility [4], 

[5]. Metal-gate/high-k gate stacks were introduced in the 45 nm node to reduce the gate leakage 

and eliminate poly-silicon depletion [6], [7]. The most dramatic change was the transition from 

planar transistor to FinFET technology in the 22 nm node for combating short channel effects [8], 

[9], [10]. However, as scaling continues, current techniques are reaching their limits and new 

technologies are needed. Some of the leading candidates for sub-10 nm nodes are alternative 
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channel materials which have superior transport properties. Currently III-V/Ge materials are 

promising NMOS/PMOS channel materials due to their high carrier mobility and injection velocity 

[11], [12], [13], [14]. 

 
Fig. 1.2. Trend in state-of-the-art high performance (HP) CMOS transistor innovation. Transformative changes in 

materials (high-k dielectric, Ge, III-V channel) and the transistor architecture (3D, Tunnel FET) being implemented 

and explored to maintain historical rate of performance, density and power scaling [3]. 

1.1. III-V MOSFET 

The low field carrier mobilities of typical semiconductor materials are shown in Fig. 1.3(a) [15]. 

The electron mobility in III-V materials, especially InGaAs, is about 10x higher than Si. This is 

due to the low effective mass of electrons in InGaAs compared with Si. Similarly, the hole mobility 

in Ge is significantly higher than Si. As a result, heterogeneous integration of InGaAs and Ge as 

channel materials on silicon substrates is under consideration for the next generation logic devices 

[11], [12], [13].  

For sub-10 nm technology, transistors are operating in the quasi-ballistic region, where the 

electrons traveling from source to drain experience no or few scattering events [16]. In this 

circumstance, low field mobility is no longer a physically meaningful parameter. Instead, the 

injection velocity ninj at the ‘virtual source’, where the conduction band barrier is the highest, is 

the right parameter to characterize the transport properties [17]. The transistor ballistic current can 

be expressed as [18]:  
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                                    (1.1) 

where Qi is the charge density at the top of conduction band and Fi is the Fermi-Dirac integral of 

order i.  The other parameters are defined as: 

  

                      (1.2) 

This model shows that the smaller the effective mass, the higher the injection velocity. Fig. 1.3(b) 

shows the injection velocity of InGaAs of different composition compared with silicon obtained 

from experiments and simulations. The injection velocity in InGaAs is at least 2x higher than that 

in strained Si. Therefore, it can be concluded that InGaAs has better transport properties than Si 

for ballistic transport.  

There have been concerns over the low effective mass of InGaAs, which results in a low density 

of states (DOS), known as the ‘density of states bottleneck’ [19]. This is because the DOS is given 

by: 

            (1.3) 

Smaller effective mass, such as that in InGaAs, will lead to smaller density of states. For extremely 

scaled device with thin gate dielectrics, the gate capacitance is dominated by the quantum 

capacitance, not the insulator capacitance [20], [21]. The quantum capacitance includes two 

components, one due to the finite DOS CDOS, and the other one due to the finite distance between 

the charge centroid and the interface Ccent. Both terms are proportional to the effective mass [20], 

[21]. The low gate capacitance corresponds to low carrier densities at a certain gate voltage. 

Therefore, the performance of III-V MOSFETs needs to be studied carefully, considering both 

mobility and DOS together.  

ID =Qivinj
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πm*

F1/2 ηF1( )
F0 ηF1( )
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2π 2

2m*
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Fig. 1.3 (a) Electron and hole mobility of group III-V compound semiconductors. Electron mobility is marked red and 

hole mobility is in blue. The arrow indicates the increase of biaxial compressive strain. (b) Electron injection velocity 

in III-V materials [15]. 

However, studies have shown that the strong non-parabolicity of the band structure of InGaAs 

boosts the carrier concentration effectively compared with the simple parabolic approximation 

[19]. Moreover, techniques, such as use of (111) surface orientation to take advantage of large out-

of-plane quantization mass and low in-plane transport mass of the L valley, have been proposed 

to overcome the DOS bottleneck [22], [23]. Table 1.1 shows the effective mass at different energy 

valleys for some typical semiconductor materials [24]. For all the III-V materials listed, the L 

valley is close to the G valley and the transverse effective mass is also very small, close to the G 

valley effective mass, suggesting superior transport properties. In addition, the longitudinal 

effective mass of the L valley is large. By proper design of the quantum well channel, the G valley 

and L valley will be almost at the same energy level so that both valleys participate in the carrier 

transport, which can boost the density of states and increase drive current. Taking all these effects 
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into consideration, III-V MOSFETs still outperform Si, as shown in various simulation studies 

[25], [26].  

Table 1.1. Electron effective mass and energy separations for different valleys of different materials [24]. 

 G valley X valley L valley 

material m*/mo ml/mo mt/mo EX - EG ml/mo mt/mo EL - EG 

In0.53Ga0.47As 0.045 1.29 0.19 0.83 eV 1.23 0.062 0.47 eV 

InAs 0.026 1.13 0.16 0.87 eV 0.65 0.05 0.57 eV 

GaAs 0.067 1.30 0.22 0.47 eV 1.90 0.075 0.28 eV 

Si - 0.92 0.19 negative - - - 

The initial attempt to fabricate III-V MOSFETs started in 1965 [27]. It was quickly realized 

that a low-defect thermo-dynamically stable gate dielectric was the key to III-V MOSFETs. Unlike 

the nearly perfect interface between Si and SiO2, there are no ideal native oxides for III-V materials. 

The oxides are not stable, generally leaky and have low dielectric breakdown strength [28]. These 

highly defective states will pin the Fermi-level, which prevents the formation of an inversion layer. 

Since then, there are decades of research on suitable dielectrics for III-V MOSFETs. But limited 

success has been achieved until in-situ molecular beam epitaxy (MBE) deposition of Ga2O3(Gd2O3) 

as a gate dielectric [29] and ex-situ atomic layer deposition (ALD) of high k dielectric on III-V 

materials were discovered [30]. Since the ALD process was used to deposit high k dielectric 

materials on Si in commercial technology and record-high performance III-V MOSFETs were 

reported [31], [32], the ALD process is now most widely used.  

In parallel with the surface channel III-V MOSFET development, quantum-well III-V 

MOSFETs, which use an InGaAs or InAs channel sandwiched between barriers, were also heavily 

investigated [14], [33]-[39]. Because of the good interface between the channel and barrier, the 

interface-related scattering is eliminated, which boosts the carrier mobility. With this structure, 

record high performance III-V MOSFETs were reported [40].  

To control the short channel effects in the sub-10 nm node, multi-gate architecture is necessary 

to enhance the gate control over the channel [12], [41]. In accordance with this, multi-gate III-V 

MOSFETs are developed. For example, InGaAs FinFETs have been demonstrated in [42], [43], 

[44]. In addition, InGaAs gate-all-around nanowire transistors have also been demonstrated 

through both top-down and bottom-up fabrication methods [45]-[49]. To fully understand the 
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radiation effects in III-V MOSFETs, different device architectures are investigated, including 

surface channel, quantum-well channel, and FinFET.  

1.2. Radiation Effects Overview 

For space applications, devices or ICs have to withstand radiation exposure. The radiation 

comes from high energy particles, including protons, electrons, solar heavy ions, and galactic 

cosmic rays [50]. Radiation can have different effects on devices or ICs. In this thesis, two kinds 

of effects, total ionizing dose (TID) effects and single event effects (SEE), are studied.  

1.2.1. Total Ionizing Dose Effects Introduction 
Total ionizing dose (TID) effects refer to parametric degradation and possible functional 

failures in electronic devices caused by the cumulative effects of ionizing radiation [51]. Usually 

insulators are the most sensitive parts in MOS systems. Fig. 1.4 shows the physical processes that 

happen in MOS systems following ionizing radiation [51]. When radiation passes through an oxide, 

electron/hole pairs are created by the deposited energy. Electrons are quickly swept out of the 

oxide due to high mobility, while holes surviving from initial recombination remain in the oxide. 

The fractional yield of holes is dependent on the electric field and the generated electron/hole pair 

densities [51]. The remaining holes are trapped in oxide defects or transported to the 

oxide/semiconductor interface through hopping. Some of the holes are trapped close to the 

interface. Protons are liberated during hole transport and further move to the interface and create 

interface traps. The oxide traps and interface traps cause reliability issues. 
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Fig. 1.4. Schematic diagram illustrating physical processes in MOS system after ionizing radiation [51]. 
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The charges trapped in the gate oxide will cause threshold voltage shifts. The positive charge 

reduces threshold voltage while the negative charge increases threshold voltage. The relationship 

is given by: 

         (1.4) 

where Qi is the interface charge, rox is the volumetric oxide charge density, xo is the oxide thickness 

and eox is the oxide dielectric constant.  

For relatively thick oxides, the threshold-voltage shift caused by trapped holes in the oxide is 

described by: 

           (1.5) 

This square law dependence is due to the capacitance of the gate oxide on the one hand, as 

illustrated in (1.4), and the number of generated electron/hole pairs [52]. This suggests that TID 

effects on gate oxides are becoming less significant for advanced technology nodes with the 

CMOS scaling. The gate oxide thickness is now approximately 1.0 nm, which is too thin to cause 

noticeable TID effects. Instead, the thick oxides in the device structure, for example the shallow 

trench isolation (STI) and the buried oxide in the silicon-on-insulator (SOI), cause reliability 

problems, for example leakage current increases [52].  

1.2.2. Single Event Effects Introduction 
SEE refers to events caused by high energy particles (protons, neutrons, electrons, heavy ions, 

etc.) hitting sensitive regions of a device or circuit [53]. When a particle hits a device, it may cause 

nondestructive effects such as single event upset (SEU) in a memory cell where the memory cell 

flips [54] or potentially destructive effects such as single event latchup (SEL) where parasitic pnpn 

junctions are triggered and form a low resistance path between the power supply and ground [55]. 

The physical origin of all these phenomena comes from the charge deposition by high energy 

particles through either direct ionization or indirect ionization, and then charge collection through 

carrier transport in the device [53]. Fig. 1.5 (A) shows the charge deposition by the ion and 

subsequent charge collection by drift and diffusion [54]. For example, for a reverse-biased pn 

junction, which is usually the most sensitive region in a device due to the high electric field, 

particle-induced electron/hole pairs in the depletion region are separated and collected efficiently 

by the terminal, known as drift collection.  

ΔVTH = −
Qi
Cox

− 1
εox

x ⋅ρox x( )
0

xo∫ dx

ΔVot ∝ xo
2
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For those carriers generated close to the depletion region, they can diffuse back to the depletion 

region, where they are collected by the drift process. This process is known as the diffusion process 

since the carriers generated outside the high-field region diffuse to the depletion region. The charge 

collection processes are extensively investigated through TCAD simulations [56], [57]. A 

representative current pulse, shown in Fig. 1.5 (B), illustrates a prompt drift and a slow diffusion 

component. 
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Fig. 1.5. (A) Charge generation and collection processes in a reverse biased pn junction and (B) the resultant current 

transient caused by the passage of a high-energy ion [54]. 

Different from the impact of scaling on TID effects, devices/ICs are more sensitive to SEE 

effects due to scaling. This is because the node capacitance and supply voltage decrease, which 

lead to the reduction of critical charge [59], [60]. The critical charge is defined as a threshold above 



 9 

which soft errors occur when the collected charge is over the threshold. The soft error rate (SER) 

is approximately represented as [59], [60], 

         (1.6) 

where Adiff is the diffusion area and on average decreases 2x every technology generation as 

illustrated in Moore’s law, Qcrit is the critical charge, and Qcoll is the collected charge. The critical 

charge Qcrit of SRAM cell for different Intel technology nodes is shown in Fig. 1.6 [59]. It shows 

that the Qcrit decreases 30% in older technology and 15% in more advanced technologies (starting 

from 45 nm). The decrease of Qcrit leads to enhanced soft error rate when it is considered 

independently of other factors, such as changes in the size of the transistors.  
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Fig. 1.6. Neutron-induced critical charges for SRAM devices at different technology nodes. Minimum critical charge 

refers to the minimum value of all state nodes and state transitions [59].  

The overall impact of scaling on SER depends on all three factors in Eq. (1.6). For example, 

with the introduction of FinFET technology, the SER of a single SRAM cell decreases significantly 

[59]. This is because the Qcoll significantly decreases due to the smaller geometrical footprint of 

the FinFET while the Qcrit remains almost the same. In addition, different circuits have different 

dependence on scaling. For example, SRAM/latch SER decreases with scaling while the 

combinational logic SER exponentially increases [61]. Since III-V MOSFETs are expected to 

continue the scaling, it is necessary to understand the SEE effects in these devices.  

To understand the device vulnerability to SEE, and further to harden the device or IC against 

SEE, it is very important to understand the charge collection processes, especially for new 

SER ∝ Adiff exp −
Qcrit
Qcoll

⎛
⎝⎜

⎞
⎠⎟
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technologies that are very different from traditional Si technology. Usually new technologies have 

new charge collection mechanisms. For example, CMOS scaling makes the transistor inside a well 

more sensitive to SEE due to the bipolar amplification mechanism caused by slow holes staying 

in the well, which reduces the source to substrate barrier [58]. Similar effects are also observed in 

silicon on insulator (SOI) technology [62]. Thus, understanding the charge collection processes in 

emerging III-V MOSFETs with different structures, such as surface channel, quantum-well 

channel, and FinFET, is important and can provide insights for their applications in radiation 

environments. 

1.3. Radiation Effects in III-V Materials and Devices 

Since the early search for suitable dielectrics on III-V materials was not successful, other types 

of field effect transistors that did not need an insulator were developed, such as junction gate field-

effect transistors (JFETs) [63], metal-semiconductor field effect transistors (MESFETs) in 1966 

[64], and high electron mobility transistor (HEMTs) in 1980 [65]. Applications of these devices 

included early digital IC and RF/Microwave ICs for communication [66]. Radiation effects on 

these devices have been investigated thoroughly from the 1970s to the 1990s because of the strong 

motivation of applying them in space due to their high speed and high performance [67]. Since the 

emergence of III-V MOSFETs, several radiation studies have also been performed [68], [69], [70], 

[71]. In this section, the radiation effects in III-V materials and devices are reviewed. 

1.3.1. Total Ionizing Dose Effects in III-V FETs: An Overview 
In early III-V FETs, including JFETs, MESFETs, and HEMTs, there is no gate dielectric in the 

device. This makes these devices hard against TID effects. This is because the gate oxide is usually 

the most critical in determining TID response since it causes charge trapping when exposed to 

ionizing irradiation. Therefore, for III-V FETs without gate insulators, TID effects on the threshold 

voltage are not a concern [72]. 

With the advent of III-V MOSFETs, TID effects have been studied in AlGaN/GaN MOS-

HEMTs [68], InGaAs quantum-well MOSFETs [69], and InGaAs nanowire gate-all-around (GAA) 

MOSFETs [70]. Fig. 1.7 (a) and (b) show the threshold voltage shift as a function of irradiation 

dose for InGaAs quantum-well MOSFETs and GAA MOSFETs, respectively. The threshold 

voltage shifts about -0.35 V and shows interesting turn-around behavior for the quantum-well 

MOSFET, which has an equivalent oxide thickness (EOT) of 7.5 nm. However, for multi-gate 
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architectures, the threshold voltage shift is much smaller, less than -0.1 V, as presented in Fig. 1.7 

(b). Moreover, the GAA structure shows smaller threshold voltage shift than the FinFET device. 

This is because the electrons are closer to the surface in FinFETs than GAA devices, which leads 

to higher electric field in the oxide in FinFET [70]. The large electric field means high hole yield, 

and hence higher hole trapping [51]. These studies show an interesting device architecture 

dependence of TID effects. However, all these studies focus on thick gate oxide, around 8 nm, 

which is impractical for advanced technology nodes. Therefore, it is necessary to study the TID 

response with more relevant gate oxides.    
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Fig. 1.7.Threshold voltage shift as a function of irradiation dose for (a) InGaAs planar quantum-well MOSFETs [69] 

and (b) InGaAs FinFET and nanowire GAA MOSFETs [70].   
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1.3.2. Single Event Effects in III-V FETs: An Overview 
Since the early III-V FETs are found to be hard against TID effects, most of the research efforts 

have been directed toward understanding SEE in III-V FETs [67], [72]-[75]. It is found that III-V 

FETs are more sensitive to SEE compared with Si FETs, due to material property and device 

architecture differences. For example, Fig. 1.8 shows a typical cross section vs. LET for a GaAs 

MESFET-based direct coupled FET logic (DCFL) latch [76]. The threshold LET is low, less than 

1 MeV•cm2/mg and the saturation cross section is much higher than the sensitive area of the latch, 

suggesting enhancement effects in these devices and circuits. These two factors imply that III-V 

FETs may be relatively sensitive to SEE. In this section, the SEE in III-V FETs are briefly 

overviewed and the sensitivity is explained through the charge deposition, non-insulating gate, 

charge enhancement mechanisms, and semi-insulating substrate, which could provide insights into 

the SEE in III-V MOSFETs. 
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Fig. 1.8. SEU cross section vs. LET for GaAs MESFET based DCFL latch circuit [76]. 

1.3.2.1. Charge Deposition in III-V Materials 
To understand the SEE vulnerability of III-V FETs, it is important to understand the charge 

deposition in III-V materials. The ionizing energy loss by an ion to the target material is 

characterized by linear energy transfer (LET), which is a measure of energy transfer per unit length 

of the material. It is defined as energy loss per unit length divided by the material density 

               (1.7) 
LET = dE

dx
1
ρ
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To calculate the number of electron-hole pairs generated by an ion, another important parameter 

is the creation energy eI [77], which is the energy required to create an electron-hole pair. Then the 

number of electron-hole pairs generated per unit length is 

         (1.8) 

where the unit of each parameter is shown in the parentheses. So for a given material, there is a 

conversion factor from LET in units of MeV•cm2/mg to LET in units of ehp/µm. Table 1.2 lists the 

conversion factor, eI, and r. Also listed in column four is the ionized charge per unit length for an 

ion having LET of 1 MeV•cm2/mg.  

From the results, it could be concluded that the higher the creation energy and the smaller the 

mass density, the smaller the generated electron-hole pair density. Even though GaAs has higher 

creation energy than Si, the higher density of GaAs causes 70% more carriers generated compared 

with Si for the same LET. The situation is even worse for In0.53Ga0.47As, which has lower creation 

energy and higher density than GaAs. The charge generated in In0.53Ga0.47As is 3x that in Si. So 

for III-V FETs, such as GaAs MESFETs or InGaAs MOSFETs, more charge will be generated by 

an ion compared with Si FETs if the ion penetrates the same thickness of Si and III-V materials 

and has the same LET in the materials.  

Table 1.2. Ionized charge per unit length for an ion having a LET of 1MeV•cm2/mg [75]	

Target 

Semiconductor 
eI (eV) 

Density 

(g/cm3) 

fC/µm for an LET=1 

MeV•cm2/mg 

Divide LET by X for 

pC/µm deposited 

Si 3.6 2.32 10.4 97 

GaAs 4.8 5.32 17.8 56 

InP 4.5 4.81 17.1 58 

InAs 1.8 5.68 50.5 20 

In0.53Ga0.47As 2.9 5.49 30.3 33 

In0.52Al0.48As 4.6 4.74 16.5 61 

SiC 8.7 3.21 5.9 169 

GaN 10.3 6.11 9.5 105 

LET ehp
µm

⎛
⎝⎜

⎞
⎠⎟
= LET MeV i cm2

mg
⎛
⎝⎜

⎞
⎠⎟
÷ ε I

eV
ehp

⎛
⎝⎜

⎞
⎠⎟
× ρ g

cm3
⎛
⎝⎜

⎞
⎠⎟
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1.3.2.2.Non-insulating Gates 
For III-V FETs that have wide application, most of them have non-insulating gates, such as the 

pn depletion region used in JFETs, the Schottky barrier used in MESFETs, and the barrier layer in 

high electron mobility transistors (HEMTs) to isolate the gate from the channel. These devices are 

robust against TID-induced degradation, however, the high field in the depletion region under the 

gate or low barrier layer will cause radiation-generated carriers to be collected in the gate, causing 

gate transients [78]. The gate transient-induced upset is a new upset mechanism, different from the 

traditional drain transient-induced upset. Fig. 1.9 shows the current path for gate to drain current 

transients [79]. This can discharge the stored charge on the left side and cause the upset of the 

SRAM cell.  

IDG
1 0

 

Fig. 1.9. Current path for gate to drain charge collection in a SRAM cell [79]. 

Different from SEUs in CMOS technology, gate transient-induced SEU is a new upset 

mechanism and has a lower critical charge compared with the traditional upset mechanism [80]. 

Besides, it is found that the gate transient biases the device and causes additional drain current 

[73], [81]. Furthermore, it is observed that traditional hardening techniques, such as decoupling 

feedback resistors, used in CMOS technology will store the collected charges in the gate node, 

making the circuit more susceptible to single events [67], [80]. Therefore, the non-insulating gate 

represents a tradeoff between TID and SEE effects.  

1.3.2.3. Charge Enhancement 
Another reason why III-V FETs are vulnerable to SEE is charge enhancement, which means 

that the charge collected at a node, usually the drain node, is higher than that deposited by an ion 
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[82], [83]. Charge enhancement has been observed in all different kinds of III-V FETs when 

exposed to ions, lasers, and e-beams, such as GaAs MESFETs [82], [83], AlGaAs/GaAs HEMTs 

[84], InAs HEMTs [86], InGaAs HEMTs [86], etc. The main mechanisms are illustrated in Fig. 

1.10 for GaAs MESFETs [73]. The enhancement mechanisms are very similar in other types of 

III-V FETs.  

During an ion strike, a high density of electron hole pairs is generated along the ion track. Due 

to highly asymmetric carrier motilities in III-V materials (electron mobility is at least 10x hole 

mobility), electrons are quickly collected, while the holes remain in the device, perturbing the local 

potential. Fig. 1.10(a) shows the parasitic bipolar mechanism. The holes in the substrate near the 

source reduce the potential barrier from source to substrate, causing electron injection from source 

to substrate, which are further collected by the drain. Fig. 1.10(b) shows the channel modulation, 

or backgating mechanism. The holes in the substrate act like a floating back gate and modulate the 

channel conductivity, causing current flow between source and drain. 
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Fig. 1.10 Schematic diagram illustrating (a) the bipolar gain and (b) channel-modulation charge enhancement 

mechanisms that contribute to the charge collection processes of GaAs FETs [73]. 

The charge enhancement mechanisms contribute most of the charge collected and are the main 
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reason why III-V FETs are relatively vulnerable to SEE. Charge enhancement factors are typically 

less than 5 [83]-[89], but factors up to 60 also have been reported [74]. Therefore, the collected 

excess charge makes III-V FET SEU performance a serious concern for applications in radiation 

environments.  

1.3.2.4. Semi-insulating Substrate 
High resistivity semi-insulating substrates are widely used in III-V FET technology because 

they are ideal for isolation between transistors and also eliminate additional isolation structures. 

These substrates are usually made through a compensation mechanism, where the high density 

deep donor native defect, EL2, related to the As antisite, compensates shallow acceptors [90]. The 

depletion region in the semi-insulating substrate will be much larger than that in a p-type substrate. 

Therefore, the sensitive volume of III-V FETs on a semi-insulating substrate is very large. One 

related effect is the gate-edge effect [91]. At the gate edge, the gate is directly in contact with the 

semi-insulating substrate, creating a large depletion region underneath the gate, as shown in Fig. 

1.11. The charge collection efficiency has a peak around the gate edge, about 3X of the active 

region of the device.    
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Fig. 1.11. Schematic of an ion hitting the gate edge of a GaAs MESFET device and the charge collection 

efficiency/effective collection length along the transistor width direction [91]. The efficiency is normalized to the 

maximum efficiency.  
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The other phenomenon related to semi-insulating substrates are the long-term transients after 

irradiation [92]-[96]. Recovery time on the order of 1s is observed in all kinds of devices after 

irradiation. It is ascribed to charge trapping in deep traps in the substrate and its subsequent thermal 

release. Negatively-charged traps deplete the channel and decrease the channel current, while 

positively-charged traps increase the channel current. Further studies show that a buried p-layer 

under the active region could effectively shield the channel from the charges in the substrate, and 

reduce the long-term transients significantly [95]. 

1.3.2.5. Transistor Hardening Techniques 
Several transistor-level hardening techniques have been proposed against SEE and they have 

achieved various degrees of success. The idea behind hardening is to reduce the gain enhancement 

mechanisms. For example, a buried p layer under the active region, as shown in Fig. 1.12 (a), 

increases the source to substrate barrier and could reduce the charge collection [97]. It does not 

eliminate the charge enhancement completely, however.  
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Fig. 1.12.Proposed hardening techniques. (a) Buried p layer under the active region and (b) low-temperature GaAs 

buffer layer.   

Another effective hardening method is to reduce the hole lifetime in the substrate so that 
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generated holes quickly recombine before they can induce source to drain current flow [98]-[100]. 

A low temperature (LT) GaAs buffer layer inserted between the substrate and the active layer, as 

shown in Fig. 1.12 (b), could effectively reduce carrier lifetime, even down to 150 fs [73]. The LT 

GaAs buffer layer is grown at around 200 oC to 350 oC in an As-rich environment via molecular 

beam epitaxy (MBE). It contains high densities of As antisites and Ga vacancies, which increase 

the electron/hole trapping and recombination significantly. The generated holes are quickly 

recombined, so the charge enhancement is largely eliminated. Fig. 1.13 (a) and (b) show the 

comparison between HFETs with and without an LT buffer layer in terms of charge collection 

transients and collected charge, respectively, when exposed to a particles [100]. It is clear that the 

LT buffer layer effectively reduces the transients and collected charge.  
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Fig. 1.13 (a) Charge collection transients and (b) collected charge measured for n-channel HFET devices with and 

without LT GaAs buffer layer exposed to 3 MeV a particle irradiation [100].  

The aforementioned factors which lead to sensitivity of III-V FETs to SEE may or may not 

apply for III-V MOSFETs, depending on the device materials and architectures. The charge 
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deposition and charge enhancement are likely to be effective in III-V MOSFETs, since the III-V 

materials are present in the device. However, the effects related to non-insulating gates will 

disappear due to the gate insulator in III-V MOSFETs. The issues with semi-insulating substrates 

are complicated. For the early demonstration of III-V MOSFETs, semi-insulating GaAs or InP 

substrates are used. The aforementioned issues will likely be present in these substrates. However, 

III-V MOSFETs will eventually be integrated on Si substrates [15], [101], [102], [103]. Whether 

substrate-related issues exist needs further investigation. In this dissertation, these effects are 

discussed in III-V MOSFETs.   

1.4. Overview of Dissertation 

This Ph.D. dissertation focuses on the characterization and understanding of radiation effects 

in emerging III-V MOSFETs with different architectures, such as surface channel, quantum-well 

channel, and FinFET. This dissertation is organized as follows: 

1. Chapter 1 introduces the background and motivation of this work. The history and 

advantages of III-V nMOSFETs are discussed. Moreover, the radiation effects in III-V 

FETs are overviewed. 

2. Chapter 2 describes the transient characterization and charge collection mechanisms in 

GaAs surface channel MOSFETs. Similar experiments are performed as those in Chapter 2. 

Comparisons of charge collection mechanisms are made between surface channel and 

quantum-well channel devices.  

3. Chapter 3 describes the single event transients in InGaAs quantum-well MOSFETs induced 

by heavy ion and two-photon-absorption (TPA) laser irradiation. Technology computer 

aided design (TCAD) simulations are applied to understand the charge collection 

mechanisms. 

4. Chapter 4 studies the charge collection mechanisms in InGaAs FinFET devices through 

tunable wavelength laser irradiation and TCAD simulation. The new laser setup allows 

charge injection into channel layer and new insights can be obtained. 

5. Chapter 5 investigates the gate bias and geometry dependence of TID effect in InGaAs 

quantum-well MOSFETs. Combined electrical stress and X-ray experiments are designed 

to understand the TID effects in these devices. 

6. The last chapter is the conclusion of the dissertation and future work is described that is 

interesting and worth further investigation.  
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7. The appendix includes the tunable wavelength laser setup and several TCAD scripts that I 

developed during my Ph.D.  
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Chapter 2. Charge Collection Mechanisms in GaAs MOSFETs 
2.1. Introduction 

Charge collection mechanisms are investigated in surface channel GaAs MOSFETs under 

broadbeam heavy ion irradiation and pulsed two-photon-absorption laser irradiation. The large 

barrier between the gate dielectric and GaAs eliminates gate conduction current, but there is 

significant gate displacement current. Charge enhancement occurs because radiation-generated 

holes accumulate in the substrate, which increases the local electrostatic potential. The increased 

potential enhances the source-to-drain current, resulting in excess collected charge. The collected 

charge increases significantly with gate bias, due to the long tails of the charge waveforms that 

occur for higher gate bias. The collected charge increases with increasing drain bias. 

2.2. Device Description 
The devices under test are surface channel GaAs nMOSFETs with gate lengths of 2 and 4 µm; 

the schematic cross-section is shown in Fig. 2.1(a). Also shown is the TEM picture around the gate 

stack. The gate dielectric is composed of 4 nm of single crystalline La2O3 grown on top of a 350 

µm thick semi-insulating (SI) GaAs substrate by atomic layer epitaxy (ALE), with 4 nm of Al2O3 

on top of the La2O3 for protection. The distance between electrodes varies with the gate length and 

is given for devices with LG = 4 µm in Fig. 1(a). The detailed process information is found in [116]. 

The band diagrams along a vertical cutline through the gate oxide at zero bias applied to all 

terminals are shown in Fig. 2.1(b). The electron and hole quasi-Fermi levels are the same in this 

case because zero bias is applied to all terminals. The conduction band and valence band offsets 

between La2O3 and GaAs are 2.4 eV and 2.1 eV, respectively [117]. 

The ID-VG transfer characteristic is shown in Fig. 2.2. The experimental data and simulation 

data agree well. To simulate the semi-insulating GaAs substrate, carbon acceptor doping and deep 

donor traps are included [118]. Devices with gate lengths of 2 µm and 4 µm and gate widths of 20 

µm and 33 µm were tested (W/L = 20/4, 20/2, and 33/4). For both heavy ion experiments and laser 

experiments, at least three devices were tested. For transient capture, all the devices are mounted 

in custom milled high-speed packages [107]. For the laser experiments, the backsides of the DUTs 

were polished before mounting in high-speed packages. 
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Fig. 2.1. (a) Schematic cross section of the device with LG = 4 µm; (b) band diagram along a vertical cutline through 

the gate oxide at VG=VD=VS=0 V. The band diagram is generated from Sentaurus TCAD simulation. 
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Fig. 2.2. Measured and simulated ID-VG transfer characteristics. VD = 50 mV during measurement. Simulation is done 

with Sentaurus TCAD tools. 



 23 

2D TCAD simulations, performed with Sentaurus TCAD tools, were used to understand the 

charge collection process during heavy ion strikes. The models used include drift and diffusion 

transport, inversion and accumulation layer mobility models, and electron velocity saturation 

models [119]. In addition, the SRH, radiative and Auger recombination models are used. Events 

produced by oxygen ions are simulated. The center of the strike is at 1.0 ns, and the strike center 

is at x = -6 µm, as shown in Fig. 2.3. The radius of the strike is 50 nm. During the simulation, VD 

= 2.0 V and VG was varied to study the gate bias dependence. 
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Fig. 2.3. Device model used in 2D TCAD simulation. Here the drain is in the negative x direction and source is in the 

positive x direction. The red arrow indicates the strike location, x = -6 µm. For the simulation, Sentaurus TCAD tools 

are used. 

2.3. Experimental and Simulation Details 
Broadbeam heavy ion irradiation was performed using 14.3 MeV oxygen ions in Vanderbilt’s 

Pelletron electrostatic accelerator. LET of Oxygen ion in GaAs is 4.3 MeV•cm2/mg. The range is 

7.5 µm. The experimental setup is the same as that shown in Fig. 3.3. TPA laser irradiation was 

performed at Vanderbilt University. All devices were irradiated from the backside by high peak 

power femtosecond laser pulses. A similar experimental setup is used as described in section 3.3. 

The laser photon energy is 0.98 eV, which is less than the GaAs band gap of 1.42 eV. As a result, 

the carriers are generated primarily through two-photon absorption [109]. 

Quantitative understanding of TPA laser experiments is challenging and remains an active area 

of research [120]. In this chapter, TPA laser experiments are used to map the sensitive areas of the 

devices by scanning the laser beam across the active areas with varying gate and drain biases. The 

transients were captured using a Tektronix TDS6124C oscilloscope with 12 GHz front-end 

bandwidth and 20 GS/s sampling rate. Each oscilloscope channel has 50 Ω input impedance, which 



 24 

is used to convert the transient current to a measurable voltage. During these tests, the source was 

grounded and the gate bias and the drain bias were varied. A semiconductor parameter analyzer, 

HP 4156B, supplied the dc biases through Picosecond Model 5542 bias tees with 50 GHz 

bandwidth. 

2.4. Results and Discussion 
2.4.1. Broadbeam Heavy Ion Results 

Fig. 2.4 (a) and (b) show the transients for a device with LG = 4 µm for OFF and ON gate biases 

under oxygen ion irradiation. For all transients, the DC current is filtered out and only AC current 

transients are shown. Under both bias conditions, there are strong gate transients. Positive and 

negative gate transients correspond to charging and discharging of the gate capacitance, 

respectively. 
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Fig. 2.4. Representative transients under oxygen ion irradiation at (a) OFF, VG = -0.9 V; (b) ON bias conditions; VG = 

0.9 V for a device with LG = 4 µm. For this device, VTH = 0.4 V. The inset of the figure shows the zoom into the 

magenta box region. 
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After an initial positive transient, the gate current polarity changes for devices biased in the ON 

state (see inset in the top panel of Fig. 2.4 (b)), which is a strong indication of displacement current 

through the gate dielectric [121], [122]. This polarity change is not observed for devices in the 

OFF state (see inset of Fig. 2.4 (a)). If there is any negative gate current in the OFF state, it is 

obscured by the oscilloscope noise. 
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Fig. 2.5. Displacement gate current and electric field in La2O3 as a function of time at (a) VG = -0.9 V; (b) VG = 0.9 V. 

Fig. 2.5 (a) and (b) show the simulated gate displacement current and electric field in the La2O3 

as functions of time at VG = -0.9 V and VG = 0.9 V, respectively. The gate transient at VG = -0.9 V 

is displayed on a log scale to show the polarity change more clearly. When the device is biased in 

the OFF state, there is a large initial positive gate transient, followed by a polarity change. The 

electric field in the gate dielectric increases up to 20 ns, and after that it slowly decreases. The 

moment the electric field reaches a peak is when the gate transient changes polarity. The negative 
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gate current is orders of magnitude smaller than the positive peak gate current, which explains why 

only positive gate transients are observed in Fig. 2.5 (a). The negative portion of the gate transient 

is small and likely obscured by the instrument noise. 

Also, as shown in Fig. 2.5 (b), when the device is ON, there is a clear polarity change in the 

gate transient, consistent with the heavy ion data in Fig. 2.4. The polarity change happens quickly, 

at approximately 3 ns. The electric field in the gate dielectric decreases up to 3 ns, and then 

increases to the steady state value. Although there are large barriers between the gate oxide and 

semiconductor, there are displacement current in the gate, which is different from InGaAs 

quantum-well MOSFETs in chapter Chapter 3 and other III-V FETs introduced in section 1.3.2. 

The reason is likely related to the large dimensions of the tested devices, which leads to large gate 

capacitance and hence large displacement current. However, with the technology scaling, this 

phenomenon will likely disappear, like that shown in InGaAs quantum-well MOSFETs.  

The source transients differ significantly between the ON and OFF states. During the OFF state, 

source transients are small, with peak current less than 0.1 mA, which is smaller than the gate 

transients. When the devices are irradiated in the ON state, the drain and the source transients are 

approximately equal. This is because the channel resistance is much higher in the OFF state and 

the source and drain are electrically isolated, which suppresses the source to drain current [123]. 

However, when the device is biased in the ON state, the source and drain are electrically connected, 

resulting in large source to drain current. This can be further confirmed with the heavy ion test 

results with shorter gate length, LG = 2 µm, as shown in Fig. 2.6 (a). Even at strongly OFF gate 

bias, the source and drain current transients are approximately equal and have opposite polarity. 

This is because the channel resistance is smaller for shorter gate length device. This also suggests 

that with technology scaling to smaller gate length, the channel contribution will become stronger.  

It is also interesting to compare the GaAs surface-channel MOSFET with the Si counterparts. 

Fig. 2.6 (b) shows the current transients for a Si device with dimension of W/L=20/0.25 µm, 

irradiated by 35 MeV Chlorine ion [124]. It has a LET of approximately 16 MeV●cm2/mg. Even 

though the Si device has a much smaller gate length and is exposed to ions with higher LET, the 

current transients is less than half that of GaAs MOSFET. Moreover, the source current is smaller 

than the drain current for Si device. This is because that the parasitic bipolar amplification is much 

smaller in Si device, so that the drain junction collection dominates the transient response. 

Amplification factor of around 2 is found for this device [124]. Therefore, it can be concluded that 
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the GaAs surface-channel MOSFET is much more sensitive to the ionizing radiation compared 

with the Si counterparts. 
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Fig. 2.6. Current transients for (a) GaAs surface channel MOSFET with W/L=20/2 μm due to oxygen ion irradiation 

and (b) planar Si bulk NMOS with W/L=20/0.25 μm due to Cl ion irradiation [124]. 

The simulated transients are shown in Fig. 2.7 biased at VG = 0.9 V. The gate transient, showing 

the polarity change, is displacement current as discussed in Fig. 2.5(b). The source and drain 

transients are approximately equal and opposite, meaning the current comes from the electrons 

traveling from source to drain. The simulated transients also illustrate charge enhancement, since 

the charge deposition is 0.58 pC while the drain collected charge is about 8.5 pC. These simulations 

are not quantitative, however, primarily because they are conducted with 2D rectangular 

coordinates. In addition, the parasitic capacitance and inductance of the device and the 
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experimental setup are not included. While the simulation results are qualitative, they do illustrate 

the key characteristics. 
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Fig. 2.7. Simulated current transients at VG = 0.9 V, VD = 2.0 V when striking at x = - 6 µm. The current is scaled by 

the width of 33 µm.   

The OFF state bias allows radiation-generated holes to stay under the gate dielectric because 

the electric field attracts the holes. In the ON state, however, holes are repelled from the gate. 

Consequently, the ON state has a stronger restoring force, restoring the pre-strike steady state 

quickly, and leading to larger displacement current. For the OFF state, in contrast, it takes a longer 

time to remove radiation-generated holes to recover the pre-strike steady state, so the displacement 

current lasts for a longer time. The high resistivity and deep traps in the semi-insulating GaAs 

inhibit hole transport to the substrate contact. Such long-lasting displacement current is typically 

not observed in Si nMOSFETs because the substrate is quite conductive. 

For irradiation in the ON state, source and drain transients have long tails that may last 

microseconds. This behavior is repeatable both in heavy ion and laser irradiation. The collected 

charge is obtained by integrating the recorded transient. For transients without long tails, the 

integration time window used is the region where the transient is larger than 1% of the peak current 

value, which reduces the noise contribution. For transients with long tails, the end of the integration 

time is selected to be 200 ns, which is the sampling window during the experiment. The collected 

charge is shown as a function of gate bias in Fig. 2.8. Again when the device is ON, there is a long 

tail in the transient, which contributes a large amount of collected charge. As a result, the collected 

charge increases with the gate bias. As the oxygen ion generates about 0.58 pC of charge, 
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approximately 3 pC of collected charge corresponds to a charge enhancement factor of 5. This is 

consistent with the results reported in other types of GaAs FETs [73], [84]. 

-1.2 -0.8 -0.4 0.0 0.4 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
lle
ct
ed

	ch
ar
ge
	(p

C)

VGS	(V)

VTH=0.4	V
W/L=14/4	µm

 
Fig. 2.8. Drain collected charge as a function of gate bias under oxygen ion irradiation. VD = 2 V during irradiation. 

Both positive and negative long-tail transients (compared with the DC terminal current) have 

been observed in irradiated GaAs FETs [92]-[96], [125]-[127]. Deep traps in the substrate close to 

the channel are responsible for the long transients. Negatively-charged traps deplete the channel 

and decrease the channel current, while positively-charged traps increase the channel current. This 

process lasts until the trapped electrons/holes are emitted from the deep traps, which may require 

microseconds or even seconds. For the GaAs MOSFETs examined here, the effects appear to be 

due to holes trapped in deep traps in the substrate, which backgate the channel and induce long 

term transients, similar to the results described in [125]-[127]. 

The properties of the traps depend on the device structure, material, and process. Electron traps 

with activation energy in the range of 0.7 to 0.9 eV have been reported in previous work, which 

are related to Cr impurities or EL2 traps in the GaAs substrate [92], [93], [95], [96]. Similar energy 

levels are reported for hole traps. Shallower traps with activation energies of 0.57 eV, 0.37 eV and 

0.14 eV also have been reported in GaAs MESFETs/MODFETs [95], [96]. The specific type of 

trap responsible for the long tail in the GaAs MOSFETs evaluated here remains to be determined, 

but the traps likely are also deep levels in the substrate. Hardening techniques to reduce the long-

term transients, such as including a buried p-layer under the active region and AlGaAs buffer [95], 

[96], may therefore also be applicable to these GaAs MOSFETs. 
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To understand the charge enhancement process, Fig. 2.9 (a) shows the simulated electrostatic 

potential (colors) and hole density difference between post-strike (4.0 ns) and pre-strike conditions 

(contour lines). Holes accumulate in the substrate and the channel, due to their long lifetime in the 

substrate [98], [99], which leads to an increase in the local electrostatic potential. This potential 

increase backgates the channel and also produces bipolar amplification, which leads to source to 

drain current [82], [83]. Fig. 2.9 (b) shows the conduction band along a horizontal cutline in the 

channel located 50 nm below the gate dielectric. The conduction band energy drops about 0.37 eV 

at 4.0 ns, which is the peak of the transient, due to an increase in the electrostatic potential. 

Although the source to channel barrier remains high, about 0.7 eV, the source to drain current 

flows outside the depletion region, where the gate has little control, as shown later.  
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Fig. 2.9. (a) The color map shows the electrostatic potential difference and the contour plot shows the hole density 

difference between post-strike (4.0 ns) and pre-strike at VG = -0.9 V. (b) The conduction band energy is plotted along 

a horizontal cutline at z = 50 nm at different times. 
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Devices were also tested at LBNL for different heavy ions. The ion details, LET and range in 

GaAs, are given in Table 2.1.  
Table 2.1. Details of heavy ions used to test GaAs surface channel MOSFETs. 

Ions 
Energy 

(MeV) 

LET (GaAs) 

(MeV•cm2/mg) 
Range 

(GaAs)(µm) 

Oxygen 14.30 4.3 7.5 

Neon 89.95 3.9 35.6 

Krypton 387.08 26.6 32.8 

Xeon 602.90 47.0 33.0 

The cross section as a function of LET is shown in Fig. 2.10. Here two different kinds of cross 

sections are shown. The first is the event cross section, which is the total number of recorded events 

divided by total fluence. An event is triggered and recorded in the oscilloscope when the current 

is higher than 0.12 mA. However not all the recorded events would cause an upset in real 

applications. To illustrate the effects that may occur in a particular application, a cross section 

based on the number of recorded events with a peak drain current over 2 mA is also plotted (called 

the over-threshold cross section).  
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Fig. 2.10. The event cross section and the over threshold cross section at VG = -0.9 V and VG = 0 V as a function of 

LET. VD = 2 V during irradiation.  

The over-threshold cross section is plotted for two different gate biases. The event cross section 

is the largest, as it considers every event that is recorded. All cross sections increase with LET. 
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Moreover, the over-threshold cross section at VG = 0 V is slightly larger than the cross section at 

VG = -0.9 V. This is because the peak drain current increases slightly with the gate bias, as 

discussed below. 

2.4.2. TPA Laser Results 
A line scan from drain to source, parallel to the channel, was performed at different bias 

conditions, shown as the white and red dots in the inset of Fig. 2.11. Fig. 2.11 (a) and (b) show the 

transients at x = -22 µm (red dot located in the drain and referenced to x-axis scale in Fig. 2.9 (a)) 

of a line scan for devices in the OFF and ON bias conditions, respectively.  
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Fig. 2.11. Transients during pulsed laser irradiation for biases (a) VG = -0.6 V; (b) VG = 0.6 V. VTH = 0.3 V, VD = 2.0 V. 

The inset shows the line scan across the device during the laser irradiation. The white circles represent the possible 

scan points. The red circle represents the current strike point. For this transient, the strike location is x = -22 µm. The 

center of the gate is taken as the origin, and the drain is in the negative x direction. The laser pulse energy is 0.51 nJ. 
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In the OFF state, there is no source transient, and only the gate and the drain transients are 

present. However, when the device is ON, at the same strike location, there are source transients 

that are approximately equal to the drain transients. This behavior is consistent with the heavy ion 

results in which it was seen that in the OFF state, the source transients are quite small. 

Two peaks are observed for drain transients in the ON state, similar to those shown in [73], [84]. 

Following the strike, there is charge collection at very short times that relaxes so fast that it is 

limited by the instrument resolution. This is due to collection of the generated electrons close to 

the drain. The peak in the gate transients corresponds to the change of electric field in the gate 

dielectric during carrier generation, as shown in the simulated results in Fig. 2.5. This peak is due 

to displacement current, consistent with the heavy ion data and accompanying simulations. The 

second peak is due to the generated holes moving toward the source, which backgate the channel 

and/or induce the bipolar amplification. The time difference between the two peaks is related to 

the time required for holes to move toward the gate.  

-26-24-22-20-18-16-14-12-10 -8 -6
0
2
4
6
8
10
12
14
16

10 15 20 25
1

10

lo
g(

t 12
) (

ns
)

log(|x|) (µm)

slope=2

t 1
2	(
ns
)

x	(µm)

VG=-0.6	V
W/L=20/4	µm

 
Fig. 2.12. The time difference between the first peak and second peak of the drain transients versus the strike location. 

Here the center of the gate is taken as the origin and the drain is in the negative x direction. The error bar represents 

one standard deviation of the transients taken at a single location. The inset plots the same data on a log-log scale. 

Fig. 2.12 shows the time difference between the two peaks as a function of strike location. The 

farther the strike location is from the gate, the longer it takes for the second peak to show up. The 

inset shows the data in a log-log plot, in which the slope is very close to 2, which suggests that the 

time it takes for holes to move toward the gate is the diffusion time. 
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The source and drain collected charge and peak drain current along a line scan at different gate 

biases are shown in Fig. 2.13 (a) and (b), respectively. On the drain side, the peak drain current 

increases with gate bias, indicating the sensitive area moves deeper into the drain with higher gate 

bias. This is consistent with the results shown in Fig. 2.11. The source and drain collected charge 

are approximately equal and increase with the gate bias. The region between the gate and the drain 

has the largest collected charge. This spatial dependence is similar to that shown in planar Si bulk 

technology [124]. However, the drain collected charge is more than the source collected charge 

for Si technology, different from the GaAs MOSFET studied here. 
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Fig. 2.13. (a) Collected charge; (b) peak drain current along a line scan at different gate biases. VTH=0.3 V, VD=2.0 V. 

In (a), the positive collected charge corresponds to the source and the negative collected charge corresponds to the 

drain. The arrows in both figures show the increase direction with the gate bias. 
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The increase of the collected charge with gate bias is partially due to the increase of the peak 

current with the gate bias. The greater contribution to the collected charge comes from the long 

tails in the ON state, as shown in Fig. 2.14. The peak drain current has little gate bias dependence; 

however, the tail current increases with the gate bias, also observed in GaAs MESFETs [125]. 

From VG = -0.6 V to VG = 0.9 V, the tail current increases by almost 0.05 mA, which can contribute 

as much as 3 pC to the total collected charge in a time window of 60 ns. 
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Fig. 2.14. Drain transients at different gate biases at a location of x=-9 µm. VTH = 0.3 V, VD = 2.0 V. 

The peak drain current in these GaAs MOSFETs does not vary significantly with gate bias, 

which contrasts with results reported for several other types of devices. The peak drain current in 

InGaAs quantum-well MOSFETs shown in chapter Chapter 3, and AlSb/InAs HEMTs [88] 

reached a maximum around the threshold or pinch-off voltage. For GaAs HFETs [84] and InP 

HEMTs [128], due to the limited bias range reported, such roll-off behavior at higher gate biases 

was not observed. In both devices, however, the peak drain current varied strongly with the gate 

bias. The peak drain current in these surface channel GaAs MOSFETs is relatively insensitive to 

gate bias because of the vertical band-structure of the device. Devices that are sensitive to gate 

bias usually have quantum-well channels, which confine the radiation-generated carriers. The gate 

has control over the quantum-well, which in turn controls the charge collection. However, for 

surface channel GaAs MOSFETs, significant current flows outside the gate control region, as 

shown below. 

To study the gate bias dependence of the charge collection, simulated electron current density 

differences between post-ion-strike (4.0 ns) and pre-ion-strike at VG = -0.9 V and VG = 0.9 V are 
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shown in Fig. 2.15 (a) and (b), respectively, like that shown in [129]. In the OFF state, the current 

flows outside the depletion region, where the gate has little influence. The current is due to the 

source to substrate barrier lowering, as shown in Fig. 2.9 [129], [130]. In the ON state, the current 

density is higher compared with the OFF state, which explains the increase of the peak drain 

current with gate bias at the same strike location, as shown in Fig. 2.13 (b). The current flows 

closer to the channel because there is no depletion region in the ON state. The current density is 

higher in the ON state because the depletion region in the OFF state pushes the current flow farther 

away from the channel. In the ON state, the current flows in the channel in addition to those regions 

away from the channel. 
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Fig. 2.15. Electron current density difference between post-strike (4.0 ns) and pre-strike at (a) VG = -0.9 V; (b) VG = 

0.9 V. 

To understand the spatial dependence of the charge collection, a horizontal line scan similar to 

the TPA laser experiment is also simulated in TCAD. Fig. 2.16 shows the simulated peak drain 

current along a horizontal cutline at VG = -0.9 V and VG = 0.9 V. The peak drain current increases 

with gate bias. The simulation results are qualitatively consistent with the TPA laser results of Fig. 
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2.13. These results show that the area between the gate and drain has the highest sensitivity, due 

to higher electric field in those regions. 
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Fig. 2.16. Simulated peak drain current along a horizontal cut line at two different gate biases. 

Fig. 2.17 shows the peak drain current along a line scan at three different drain biases. The 

collected charge follows the same behavior as the peak drain current. The drain side is the most 

sensitive to the drain bias, while the areas below the gate and the source do not show drain bias 

dependence. The peak drain current increases with drain bias, similar to results in [84], [85], due 

to the higher electric field on the drain side when the drain bias is higher. The higher electric field 

leads to higher electron velocity, which means higher drain current for the same amount of charge 

generation. These results suggest that the sensitive volume increases with both drain and gate bias. 
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Fig. 2.17. Peak drain current along a line scan vs. drain biases. VTH = 0.3 V. 
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TPA laser irradiation also allows the three dimensional mapping of the sensitivity of the device. 

Fig. 2.18 shows the peak drain current and drain collected charge at two different laser pulse 

energies. When the carriers are generated away from the active region, the peak current and the 

collected charge drop, indicating that charge collection efficiency decreases with depth. When the 

laser pulse energy increases so that high level injection conditions exist, the charge collection 

efficiency is constant in the sensitive volume and is reduced outside of the sensitive volume. 

However, in this case, 0.75 nJ is still in low level injection, so the collection efficiency keeps 

decreasing and follows approximately linear behavior. 
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Fig. 2.18. Normalized drain collected charge and normalized peak drain current as a function of depth of the device 

at two different laser pulse energies. Z = 0 µm represents the front surface of the device. The normalization is based 

on the collected charge and peak current from the front surface strike. The white circles in the inset represent the strike 

location during the depth scan. VTH = 0.3 V. 

Fig. 2.19 shows the peak gate current obtained during an XZ area scan. The scan area is 

indicated in the inset of the figure. The gate current is most significant in the area between the gate 

and the drain. When the carriers are generated 10 µm away from the front surface, the gate current 

is approximately the same as when they are generated at the front surface. The carrier density in 

the channel is orders of magnitude smaller when the carriers are generated 10 µm away from the 

front surface compared with generation on the front surface. The currents are approximately the 

same in the two cases, however, which is consistent with gate displacement current, but not carrier 

transport through the gate dielectric. 
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Fig. 2.19. Peak gate current under the XZ area scan. The origin of the XZ plane is at the center of the gate and the 

front surface of the device. For this scan, VG = -0.6 V, VD = 2.0 V, VTH = 0.3 V. Laser pulse energy is 0.75 nJ. The 

white block in the center of the figure is due to loss of the data during experiment. The red box in the inset shows the 

scan area. 

2.5. Conclusion 
The single event transient response of surface channel GaAs MOSFETs is investigated through 

broadbeam heavy ion irradiation and TPA laser irradiation. 2D TCAD simulations are used to 

understand the charge collection mechanisms. There are significant gate transients, even though 

the barriers between the gate dielectric and GaAs are large enough and the gate dielectric is thick 

enough to remove the possible conduction current through tunneling. Experimental results and 

TCAD simulations confirm that the transients come from displacement current. The presence of 

deep traps in the semi-insulating substrate lead to long-lasting tails in the displacement current.  

For long channel device, the channel resistance is large enough to suppress the source transients 

in the OFF state. With the increase of the gate bias, the source transients becomes equal to the 

drain transients since the source and drain region are not isolated anymore. The source transients 

are associated with the charge enhancement processes, such as backgating and bipolar 

amplification. These processes occur because the radiation-generated holes accumulate in the 

substrate and increase the local electrostatic potential, which backgates the channel and causes 

bipolar amplification. The long tails in the source/drain transients in the ON state are likely due to 

holes trapped in deep levels in the semi-insulating GaAs substrate, which can modulate the channel. 

In addition, experimental results suggest that the sensitive volume increases with the drain bias. 
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Because of charge enhancement effects, the soft error rate of GaAs MOSFET circuits may be 

higher than that of their silicon counterparts. For example, critical LET values lower than 1 

MeV/mg/cm2 [73] have been reported for GaAs MESFET logic. Hardening techniques mentioned 

in section 1.3.2.5 could be used to reduce the charge enhancement effect by reducing the hole 

lifetime in the substrate. Since GaAs MOSFET grows on the semi-insulating substrate and the 

holes in the substrate is the reason for charge enhancement, similar methods are also likely to be 

successful for these devices.  
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Chapter 3. Single Event Transient Response of InGaAs Quantum-Well MOSFETs 
3.1. Introduction 

In this chapter, the single-event-transient response of InGaAs MOSFETs exposed to heavy-ion 

and laser irradiations is investigated. The large barrier between the gate oxide and semiconductor 

regions effectively suppresses the gate transients compared with other types of III-V FETs. After 

the initial radiation-induced pulse, electrons and holes flood into the channel region at short time. 

The electrons are collected efficiently at the drain. The slower moving holes accumulate in the 

channel and source access region and modulate the source-channel barrier, which provides a 

pathway for transient source-to-drain current lasting for a few nanoseconds. The peak drain 

transient current reaches its maximum when the gate bias is near threshold and decreases 

considerably toward inversion and slightly toward depletion and accumulation. 2D TCAD 

simulations are used to understand the charge collection mechanisms. 

3.2. Device Description 

The device under test (DUT) is a self-aligned InGaAs quantum-well MOSFET. Detailed device 

information is described in [40]. Fig. 3.1 shows the schematic cross section of the device (not 

drawn to scale) and TEM cross section of the device. A 0.4 µm In0.52Al0.48As buffer layer is grown 

on a 600 µm semi-insulating InP substrate. An 8 nm high-mobility In0.7Ga0.3As quantum-well 

channel enhances the device conductance. A HfO2 gate dielectric sits directly on top of the channel. 

The inverted Si delta doping in the buffer layer is used to reduce source/drain access resistance 

and increase the channel carrier density [104]. 

The band diagram cut through the gate vertically is shown in Fig. 2. For this band diagram, all 

the terminals of the device are biased at 0 V. The device has a type-I heterostructure, which means 

that both the electrons and holes are confined in the channel region. This has a significant impact 

on the charge collection mechanisms. For the devices examined here, the In0.7Ga0.3As/HfO2 

conduction band offset is 2.2 eV and the valence band offset is 2.9 eV [105]. This band alignment 

is similar to SOI technology. However the carriers deposited in the buffer and substrate can flow 

back to the quantum-well, unlike the SOI technology. Therefore, the sensitive volume of this type 

of device is larger compared with the SOI technology.  
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Fig. 3.1. Schematic cross section (Not drawn to scale) of devices under test (left) and TEM cross section of the device 

(right). 
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Fig. 3.2. Vertical band diagram of the device (all terminals are biased at 0 V for this band diagram). 
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3.3. Experimental Details 

For transient capture, all the devices are mounted in custom-milled metal packages with 

microstrip transmission lines and Precision 2.92 mm K connectors [106], [107]. The transients 

were captured using a Tektronix TDS6124C oscilloscope with 12 GHz front-end bandwidth and 

20GS/s-sampling rate. Each oscilloscope channel has 50 Ω input impedance, which is used to 

convert the transient current to a measurable voltage. During these tests, the source and substrate 

were grounded, the drain bias was 0.5 V, and the gate bias was varied. A semiconductor parameter 

analyzer, HP 4156B, supplied the DC biases through Picosecond Model 5542 bias tees with 

50 GHz bandwidth. 

A. Broadbeam Ion Tests 
For the broadbeam test, the devices were irradiated with 14.3 MeV oxygen ions in Vanderbilt’s 

Pelletron electrostatic accelerator. Fig. 3.3 shows the schematic diagram of the experiment setup. 

From SRIM calculations, the ions have LETs of 3.9 MeV-cm2/mg, 4.1 MeV-cm2/mg, and 4.2 

MeV-cm2/mg, respectively, in In0.7Ga0.3As, In0.52Al0.48As, and InP. The corresponding ion ranges 

are 6.9 µm, 7.4 µm, and 8.5 µm. Considering that the channel and buffer layer thicknesses are 

much smaller than the ion range, carriers are generated primarily in the InP substrate. In addition, 

the overlayer thickness is about 0.4 µm, which is much smaller than the ion range, about 3.6 µm, 

indicating very small energy loss in those materials. 

 

Fig. 3.3. Schematic diagram of the broadbeam heavy ion experiment setup. 
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femtosecond laser pulses at sub-bandgap optical wavelengths have been used as a viable 

alternative to conventional single-photon excitation to investigate the single event transient 

response of various devices based on two-photon absorption (TPA) [109]-[111]. In two-photon 

absorption, the laser wavelength is chosen to be less than the bandgap of the semiconductor 

material such that no carriers are generated at low light intensities and at sufficiently high 

intensities, however, the material can absorb two photons simultaneously to generate a single 

electron–hole pair [109]. This allows the carriers to be generated only in the high field intensity 

focal region. As a result, charge can be injected at any depth, allowing 3D mapping of the sensitive 

volume of the device [109]. Since laser irradiation avoids the radiation damage introduced by 

heavy ion irradiation and is easy to operate, it is becoming a valuable method to investigate charge 

collection mechanisms.  

Laser irradiations were performed at Vanderbilt University. The experimental setup is the same 

as Fig. 3.3 except that the laser pulse irradiation is from the backside. The detailed experimental 

setup is described in [111]. The laser wavelength is 1.26 µm and the nominal pulse width is 

approximately 150 fs. The DUT was fixed on an automated precision linear stage with a resolution 

of 0.1 µm. The stage jitter is about 0.2 µm. The optical pulses were focused onto the DUT using a 

100� (NA 0.5) microscope objective with a charge generation spot size of approximately 1.2 µm 

in InGaAs. 

The photon energy of the laser is 0.98 eV, which is greater than the bandgap of the channel 

material, In0.7Ga0.3As (0.58 eV) [112]. For the laser experiment, the irradiance is approximately 2

�108 W/cm2 . Considering that the linear absorption coefficient (~ 104 cm-1) is much larger than 

the TPA coefficient (~ 50 cm/GW [113]), the two-photon absorption in the channel region of these 

devices is much smaller than the single-photon absorption. This means that single-photon 

absorption dominates in the channel region. However, the photon energy is less than the band gap 

of the other materials, InP (1.35 eV) and In0.52Al0.48As (1.45 eV) [112]. In these materials, TPA 

occurs, but the density of generated carriers is much smaller than that in the channel. Because both 

InP and In0.52Al0.48As have a TPA coefficient of ~ 30 cm/GW [114], the depth at which the beam 

intensity decays to half of the original value is ~ 3000 µm, which is larger than the buffer and 

substrate thickness. Considering the Gaussian beam profile, the high irradiance region extends ~ 

10 µm [109]. This is about a thousand times larger than the channel thickness, which compensates 

for the difference between the linear absorption coefficient in the channel and the TPA coefficient 
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in the buffer and substrate. As a result, the buffer and substrate together have a comparable number 

of generated carriers with the channel layer. 

3.4. Results and Discussions 

3.4.1. Heavy Ion Results 
A typical current transient is shown in Fig. 3.4. The source and drain transients have nearly the 

same magnitude but opposite polarity, which suggests that the transient current comes from the 

channel conduction. This is different from the traditional junction collection in Si devices [54]. 

The gate transients, if any, are indistinguishable from the background noise. 
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Fig. 3.4. Current transient for a device biased at VGS-VTH = -0.2 V, VDS = 0.5 V with source grounded. W/L=10 µm/0.07 

µm.  

Since the barrier between semiconductor and HfO2 for both types of carriers (2.2 eV for electron 

and 2.9 eV for hole) in these devices is much larger than that for the AlGaN/GaN MOS HEMTs 

studied in [106], the gate oxide effectively suppresses the gate transients. This is different from 

the previously investigated III-V FETs, which have significant gate transients, as described in 

section 1.3.2.2. 

The shapes of the source and drain transients are similar to those reported in [86]. Following 

the strike, the source and drain currents increase sharply. After reaching the peak, they start to 

decay. The relaxation is related to processes with two distinct time constants. The fast collection 

is fairly rapid, with a time constant of approximately 300 ps or less. This fast collection is caused 

by the generated electrons that are collected by the drain. The longer-time portion of the transient 

comes from a source-to-drain current pathway, which extends for about 3-5 ns. This results from 

the more slowly transporting holes. Following the ion strike, the generated electrons and holes 
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under the channel layer flood into the channel region, because of the type-I band alignment. The 

electrons are rapidly swept toward the drain, but the slower holes (the electron mobility is around 

50 times greater than the hole mobility) pile up in the channel and the source access region, 

lowering the source-channel barrier. As a result, electrons are injected from the source into the 

channel, and subsequently collected by the drain. This is illustrated in the following TCAD 

simulations. This bipolar enhancement is similar to that shown in other III-V FETs, as mentioned 

in section 1.3.2.3. 

The gate-bias dependence of peak drain current was also investigated. In these tests, the drain 

bias voltage was 0.5 V, while the gate voltage was varied according to the pseudo-random 

sequence of 0 V, -0.4 V, 0.4 V, -0.8 V, 0.2 V, -1 V, -0.2 V, -0.6 V. This special sequence was 

selected to reduce any potential effects of device degradation on the measurement trends. Fig. 3.5 

shows the peak drain current versus gate bias of one of the devices. The smooth curve is a spline 

fit to aid the eye. 
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Fig. 3.5. Peak drain current vs. gate bias of at VDS = 0.5 V. The average flux is 1×108 particles/s•cm2. The error bars 

indicate the standard error of the mean. W/L=10 µm/0.07 µm. 

The peak drain current of the device decreases slightly in depletion and accumulation. 

Transients occur in inversion because the carrier density generated by radiation is higher than the 

carrier density induced by the applied gate bias. Moreover, the peak drain current decreases 

considerably in inversion. This gate bias dependence is similar to that reported in III-V HEMTs 

[88]. This strong gate bias dependence is different from the GaAs surface-channel MOSFET. This 

is mainly because the transient current flows through the quantum-well, instead of the bulk region 

outside the depletion region in GaAs MOSFET. The quantum-well is in close proximity to the gate, 
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so that the gate has a good control over the current flow. The mechanisms are illustrated by TCAD 

simulations in section IV. 

Heavy ion tests were also conducted at Lawrence Berkeley National Laboratory (LBNL) with 

different heavy ions. Table 3.1 shows the ion LETs and ranges in the channel material, InGaAs, 

and substrate, InP. Since the channel layer is very thin, only 8 nm, most of the charges are 

generated in the InP substrate. Fig. 3.6 (a) and (b) show the transients due to Ar ion strikes biased 

at VG = -0.6 V, VG = 0.0 V, and VG = 0.6 V, respectively. The peak drain current dependence on 

the gate bias is consistent with the oxygen ion data, as shown in Fig. 3.5. It decreases significantly 

in the inversion region, and reaches a maximum around the threshold voltage. Another feature 

shown in the transients of Fig. 3.6 (b) is the long tails. The tail current is about 0.05 mA and lasts 

for µs. Such tails become evident when the device turns ON. It is probably related to the semi-

insulating substrate, as described in section 1.3.2.4.    

Table 3.1. Details of ions used in experiment 

Ions Energy 
(MeV) 

LET (InGaAs) 
(MeV•cm2/mg) 

Range 
(InGaAs)(µm) 

LET (InP) 
(MeV•cm2/mg) 

Range 
(InP)(µm) 

Oxygen 14.30 3.9 6.9 4.16 8.53 

Neon 89.95 3.73 32.57 3.80 42.45 

Argon 180.00 9.28 29.95 9.45 38.90 

Krypton 387.08 25.34 29.99 25.70 28.81 

Xeon 602.90 44.54 30.14 45.31 38.95 
 

Comparison can also be made between the InGaAs quantum-well MOSFET with the Si device. 

Due to the limited report of Si device in literature, direct side by side comparison with Si device 

at the same experimental conditions is difficult. But meaningful comparison can still be made. Fig. 

3.6 (c) shows the drain current transients of FDSOI and Si planar device with similar or larger size. 

The ion LET for these devices are much larger compared with the Ar ion in InGaAs quantum-well 

MOSFET. However, it shows that the drain current is much smaller in FDSOI technology, due to 

small sensitive volume. The current is much larger in Si bulk device, but it is still smaller than 

InGaAs quantum-well MOSFET. This suggests that the InGaAs quantum-well MOSFET is more 

sensitive compared with both the Si SOI and planar technology. 
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Fig. 3.6. Transients due to Ar ion strike for device biased at (a) VG = -0.6 V and VG = 0.0 V, and (b) VG = 0.6 V. VT = 

0.1 V. (c) Drain current transients of Si FDSOI with size of W/L=20 μm/50 nm and body thickness of 11 nm, exposed 

to 808 MeV Kr ion with LET=30 MeV●cm2/mg [131] and Si planar bulk device with size of W/L=10 μm/50 nm 

exposed to 35 MeV Cl ion with LET=16 MeV●cm2/mg [132]. 
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The peak drain current and drain collected charge as a function of LET are shown in Fig. 3.7 

(a) and (b), respectively. Both the peak current and the collected charge increase with the LET, as 

expected, irrespective of the applied gate bias. The peak drain current gate bias dependence is the 

same among all the ions tested. Besides, the collected charge is one order of magnitude higher at 

VG = 0.6 V compared with OFF state gate biases, similar to that shown in Fig. 1.13. This is due to 

the tail current at VG = 0.6 V, which contributes most of the collected charge.  
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Fig. 3.7. (a) Peak drain current and (b) drain collected charge as a function of LET. Each data point represents an 

average of 100 transients recorded. The error bar represents the standard deviation of the mean. The drain collected 

charge is obtained by integrating the drain current transients within a time window of 30 ns. This is to restrict the tail 

current contribution at VG = 0.6 V.  
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3.4.2. TPA Laser Results 
For the laser test, line scans were performed, so the position dependence of the induced 

transients could be evaluated. Fig. 3.8 inset shows the schematic diagram of the experiment used 

to obtain the line scan of the devices. The line scan XX’ was from -2 µm to 2 µm horizontally. 

The center of the device is regarded as the origin. 
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Fig. 3.8. Peak drain current along the line scan XX’ at bias VGS-VTH=0 V, VDS=0.5 V. The laser pulse energy is around 

0.55 pJ. The source side has a negative x coordinate while the drain side is positive.  

The drain side strike has a higher peak current compared with the source side strike. This is 

consistent with the applied bias between the drain and source contact, VDS = 0.5 V. Consequently, 

the electric field on the drain side is larger than the source side. The carriers generated by the laser 

pulses move at a higher velocity in the drain side, which leads to larger peak current. Thus the 

drain side has a higher sensitivity to the irradiation. 

The transients were investigated under different gate biases. Fig. 3.9 shows the peak drain 

current under different gate biases. Each data point is taken by averaging the drain peak current 

along a line scan XX’, as shown in Fig. 3.8. The statistical standard error of the mean for each bias 

point is less than 5%. The peak drain current reaches a maximum around the threshold voltage. 

Furthermore, the current decreases considerably in inversion and decreases slightly in depletion 

and accumulation. This result is consistent with the broadbeam heavy ion data. 
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Fig. 3.9. Drain peak current vs. gate bias at VDS=0.5 V (each data point is taken as the average of a line scan). The 

small error bar is neglected. 

3.4.3. 2D TCAD Simulation Results 
In this section, 2D TCAD simulations are used to illustrate the mechanisms of charge collection 

in these devices. Fig. 3.10 shows the structure used for the TCAD simulations. The gate length is 

70 nm. The ion strikes are defined to be Gaussian both in time and space. The Gaussian heavy ion 

model has a characteristic width of 10 nm in space and 2 ps in time.  

 

Fig. 3.10. Device model that is used in the 2D TCAD simulation (red arrow indicates the center of strike location). 

Synopsys Sentaurus TCAD tools are used here for simulation. 

The linear energy transfer (LET) used to illustrate the mechanisms corresponds to charge 
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deposition of 0.1 pC/µm, approximately the LET used in the broadbeam heavy ion experiment. 

The red arrow indicates the center of the strike location for the simulation (between the gate and 

drain), which is x = 0.2 µm. The time center of the strike is t = 1.0 ns.  

 

 

 
Fig. 3.11. Hole density and electrical potential plotted at 1.0 ps (pre-strike), 1.0 ns and 1.2 ns. The hole density is 

shown as color map and the electrical potential is shown as the equipotential line. The device is biased at VGS-VTH=-

0.2 V, VDS=0.5 V. Only the region around the channel is shown for clarity. 
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1.0 ns (center of strike) and 1.2 ns (post-strike), respectively. At the time of the strike, a large 

number of electron hole pairs are created around the strike location. As a result, the electric 

potential is strongly distorted compared with the pre-strike condition (t = 1.0 ps). At 1.2 ns, the 

potential in the thick buffer layer has almost recovered and the holes in the buffer are mostly 

collected, especially at the drain side. This confirms that the generated electrons and holes soon 

move into the channel layer because of the type-I heterostructure. 

After 1.2 ns, only the channel region is strongly perturbed as a large number of electrons and 

holes are collected there. The process of collecting these carriers lasts for a few nanoseconds as 

illustrated in Fig. 3.4. To understand this process, Fig. 3.12 shows the time evolution of the 

conduction band along the horizontal cut, YY’. At 1.0 ns, the electrostatic potential around the 

strike location is strongly distorted by the generated carriers. Soon after the strike, the conduction 

band recovers on the drain side at 1.2 ns. This confirms that the generated electrons are collected 

quickly by the drain. Following the strike, the source channel barrier is lowered from 0.52 eV to 

0.03 eV at 1.2 ns as holes pile up in the channel layer right under the gate and the source access 

region. The barrier keeping the electrons from being injected from the source to channel is quite 

small. The transistor turns ON and current flows between source and drain. As holes reach the 

source where they recombine, the electric potential recovers to the pre-strike value. Eventually, 

the source channel barrier returns to 0.52 eV. 
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Fig. 3.12. Conduction band along the horizontal cut,YY’, shown in Fig. 3.10, at different time. The bias condition is 

the same as shown in Fig. 3.11. 
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Fig. 3.13 (a) shows the conduction band along the horizontal cut YY’ under different gate biases 

at 1.2 ns. The source channel barriers preventing carriers from being injected from the source are 

small under all gate biases. The potential drop along the channel region is reduced with increasing 

gate bias. This leads to a smaller horizontal electric field along the channel, which translates into 

smaller electron velocity at higher gate bias. 
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Fig. 3.13. (a) Conduction band along the horizontal cut YY’ in the channel layer and (b) Electron density along the 

vertical cut XX’ under different gate biases at 1.2 ns (200 ps after the center of the strike). Here for clarity, only the 

electron density in the channel layer is shown. 

Fig. 3.13 (b) presents the excess electron density, the absolute electron density difference 

between the post-strike and pre-strike conditions, along the vertical cut XX’ under different gate 

biases at 1.2 ns. As the gate bias increases, the excess electron density in the channel reaches a 

maximum for gate voltages near the threshold, and decreases slightly in depletion and considerably 
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in inversion. Although there is a slight increase in the post-strike electron density with the gate 

bias, the increase with gate bias is small. This is because for a given amount of generated carriers, 

most of them will be collected in the channel layer, irrespective of the gate bias. The gate bias does 

not have a large effect on the post-strike electron density in the channel due to the electric potential 

distortion caused by the large number of carriers. As a result, the higher the pre-strike electron 

density, the smaller the excess electron density will be. Thus, for gate biases in inversion, the 

reduced excess electron density and the reduced electron velocity cause a significant decrease in 

peak drain current. For gate biases in depletion and accumulation, the excess electron density is 

slightly smaller than the density in threshold, which causes a slight decrease of the peak current. 

The normalized peak drain current for the heavy ion experiment, the laser experiment, and the 

2D TCAD simulations is shown in Fig. 3.14. Each set is normalized by its own maximum peak 

current, which occurs near VGS - VTH = 0 V. The TCAD simulations describe trends in the gate bias 

dependence of the peak drain current quite well, showing that the peak drain current decreases 

considerably in inversion and decreases slightly in depletion and accumulation. 
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Fig. 3.14. Normalized peak drain current of heavy ion experiment, laser experiment and 2D TCAD simulation. The 

maximum peak drain currents are 2.4 mA, 0.34 mA, and 48 mA for laser, heavy ion, and TCAD simulation 

respectively. The quantitative differences in peak current result from parasitic capacitance and inductance that exist 

in the experimental configuration that are not replicated in the simulations. But the trends in peak current are replicated 

well via simulation.   
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3.5. Conclusion 

The single-event-transient response of InGaAs MOSFETs is investigated through broadbeam 

heavy ion and laser irradiation. The large conduction band offset and valence band offset between 

the gate dielectric and semiconductor regions effectively suppress the gate transients. The deep 

type-I heterostructure strongly affects the charge collection process. The generated carriers are 

collected in the quantum well (channel layer). The slow holes pile up under the gate and the source 

access region, which reduces the source channel barrier height. More electrons are injected from 

the source to the drain, enhancing the collected charge. The peak drain current reaches a maximum 

near the threshold voltage and decreases considerably in inversion and slightly in depletion and 

accumulation. These results, coupled with previous work, show that the charge collection in 

MOSFETs can vary strongly with channel technology and gate stack materials. Depending on the 

application and the opportunities for remediation, these transient responses may impose limitations 

on the use of some types of alternative-channel materials in space applications.  
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Chapter 4. Understanding Charge Collection Mechanisms in InGaAs FinFETs Using 
High-Speed Pulsed-Laser Transient Testing with Tunable Wavelength 

4.1. Introduction 
A tunable wavelength laser system and high resolution transient capture system are introduced 

to characterize transients in high mobility MOSFETs. The experimental configuration enables 

resolution of fast transient signals and new understanding of charge collection mechanisms. The 

channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. 

The transient current mainly comes from the channel current, due to shunt effects and parasitic 

bipolar effects, instead of the junction collection. The charge amplification factor is found to be as 

high as 14, which makes this technology relatively sensitive to transient radiation. The peak current 

is inversely proportional to the device gate length. Simulations show that the parasitic bipolar 

effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and 

channel. Charge deposited in the channel causes prompt current, while charge deposited below the 

channel causes delayed and slow current.  

Pulsed-laser testing has become a valuable testing method to study SEE in devices and circuits 

[133], [134]. Although the charge generation mechanisms and charge profile induced by laser 

irradiation are different from heavy ion irradiation, laser testing provides a complementary 

nondestructive, convenient, and low-cost method to identify mechanisms responsible for SEE. 

Pulsed laser testing is generally divided into two categories: single-photon absorption (SPA) and 

two-photon absorption (TPA), depending on the electron-hole pair generation mechanism [109].  

SPA refers to above-band gap optical excitation, where each absorbed photon generates an 

electron-hole pair. Due to the exponential decay of light intensity traveling through the material, 

the penetration depth of the laser is limited. To generate charge tracks with various depths, usually 

the laser wavelength is varied [135]. For SPA irradiation, however, it is often difficult or 

impossible to inject charge into a device, due to the presence of metal over-layers. This challenge 

is addressed by TPA, which is produced by irradiation with high peak power femtosecond laser 

pulses at sub-band gap wavelength. Electron-hole pairs are only generated in the focal region of 

the laser beam, where the optical field intensity is high enough to stimulate the absorption of two 

photons simultaneously. This enables backside irradiation, thus addressing the problem of metal 

over-layers [110].  

Typically, the TPA laser wavelength is set to be around 1260 nm for conventional CMOS, at 

which the photon energy is slightly smaller than the Si band gap. However, with CMOS scaling 
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continuing to sub-10 nm nodes, high mobility channel materials, such as InGaAs and Ge, are likely 

to be introduced [12], [15]. The integration of these new materials will also necessitate other 

relevant materials, creating a complex multi-layer structure. There are multiple band gaps in these 

advanced devices compared with Si. Therefore, a single laser wavelength tuned for Si is not 

sufficient for characterizing SEE in these new materials. Charge generation at a wavelength of 

1260 nm will lead to mixed SPA and TPA in different layers, depending on material band gaps, 

such as shown in [123], [136]. In studying the charge collection mechanisms in these multi-layer 

structure devices, it is both necessary and difficult to identify the roles of different layers. Thus a 

laser with tunable wavelength is helpful to inject charge primarily into a specific layer, e.g., the 

channel.  

Time-resolved measurements are usually conducted with digital sampling oscilloscopes. For 

fast transients or fast edges characterization, it is desirable to have enough time resolution to 

resolve signals on the same timescale as the device response. The highest bandwidth oscilloscope 

reported is a 70 GHz superconducting sampling oscilloscope, which has sub-10 ps resolution [137]. 

However, this oscilloscope needs additional cooling and can only capture limited time window 

transients, so it is not practical for most testing. Almost all the other transient capture experiments 

that have been reported are conducted with oscilloscopes with bandwidths less than or 

approximately equal to 20 GHz [123], [136], [138]. These have limited capability to resolve fast 

transient signals.  

In this chapter, we describe a tunable wavelength laser system that can inject charge into a 

specific layer in the device and capture transients with a 36 GHz bandwidth oscilloscope. We show 

that these new capabilities lead to enhanced insight into charge collection mechanisms in advanced 

devices. 

4.2. Device Description 
The device under test is a double-gate InGaAs FinFET. The cross-sectional and side-view 

schematic diagrams of the device are shown in Fig. 4.1(a) and (b), respectively. The detailed 

fabrication process is presented in [44]. A 0.4 µm thick In0.52Al0.48As buffer layer is grown on a 

600 µm thick semi-insulating InP substrate. A 40 nm thick In0.53Ga0.47As channel is grown on top 

of the buffer layer. The fin height is 220 nm. On top of the fin, there is a SiO2 hard mask about 40 

nm thick. A 5 nm Al2O3 gate dielectric is deposited by atomic layer deposition. The thick hard 
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mask electrostatically decouples the top gate from the channel. As a result, this device is only 

controlled by the two side gates.  
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Fig. 4.1. (a) Cross-sectional and (b) side-view schematic diagrams of InGaAs double-gate FinFETs. 

Fig. 4.2 (a) and (b) shows the band diagram cut through the fin along fin width and fin height 

direction, respectively. Along the fin width direction, the InGaAs channel and Al2O3 gate dielectric 

form a deep type I quantum-well. The barrier height is more than 2.0 eV for both electron and hole. 

Along the fin height direction, the InGaAs channel, InAlAs buffer and SiO2 also form a type I 

quantum-well, similar to planar InGaAs quantum-well MOSFETs. Thus, carriers are effectively 

confined in the channel layer, making the channel layer critical to the charge collection process. 

In this chapter, devices with different gate lengths and fin widths are studied with a pulsed-laser 

at different wavelengths. There are 11 parallel fins in each tested device. For transient capture, all 

the devices are mounted in custom-milled metal packages with microstrip transmission lines and 

Precision 2.92 mm K connectors [123]. 
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Fig. 4.2. Band diagram cut through the fin structure along (a) fin width direction and (b) fin height direction. For the 

band diagram, VG=VD=VS=0 V. 

4.3. Experimental Setup 
Pulsed-laser testing experiments were performed at Vanderbilt University. The laser system 

setup is shown schematically in Fig. 4.3 [139]. It utilizes a titanium-sapphire (Ti/S) pumped 

Optical Parametric Generator (OPG). The OPG is pumped at a 1 kHz repetition rate with 1 mJ, 

150 fs pulses centered at 800 nm from a chirped-pulse amplifier. The amplifier is seeded with a 

passively mode-locked Ti/S oscillator. The OPG uses non-linear parametric frequency conversion 

in a Beta Barium Borate (BBO) crystal to generate and amplify signal and idler wavelengths that 

are continuously tunable from ~1200 nm to ~2400 nm. Using harmonic, sum, and difference 

frequency-generating crystals outside the OPG, wavelengths from ~200 nm to ~10 µm can be 
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generated with average pulse energies varying from 1µJ/pulse to 100µJ/pulse, depending on the 

wavelength. A prism is used to isolate the desired wavelength from the output of the laser system. 

Optics currently installed on the beam line allow for component testing at wavelengths from 300 

nm to 2600 nm.  
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Fig. 4.3. A simplified block diagram of TPA test setup. In the figure, ‘L’ stands for lens, ‘M’ stands for mirror, ‘S’ 

stands for shutter, ‘P’ stands for polarizer, ‘BS’ stands for beam splitter, ‘PD’ stands for photodiode, and “BB” 

represents the broadband light source. The red line indicates the optical path traveled by the laser beam. The blue line 

indicates the reflected light that is imaged by the near infrared camera. 

The selected wavelength is spatially filtered and variably attenuated using holographic wire-

grid polarizers before reaching the test bench. The laser beam passes through a series of beam 

splitters before reaching the target. The first beam splitter diverts a fraction of the beam to a 

calibrated photodiode. Each pulse from the detector is captured and measured individually. 

Another beam splitter sends light reflected from the target to an infrared (IR) camera for imaging 

and positioning of the laser spot. A third splitter couples a broadband near-IR light source onto the 

beam axis for illuminating the target. Finally, the laser is focused through the back-side of the 

target using either a 50X or 100X microscope objective mounted to a customized high-precision 

z-stage used to change the depth at which the laser focuses inside the die.  

The laser wavelengths used in this experiment are 1260 nm and 2200 nm. The photon energy 

and carrier generation mechanisms are listed in Table 4.1 for different materials in the device. For 

a wavelength of 1260 nm, charge will be generated in all of the semiconductor materials, either 

through SPA or TPA. In contrast, for a wavelength of 2200 nm, charge can only be generated in 
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the In0.53Ga0.47As channel. No charge will be generated in In0.52Al0.48As or InP, since the photon 

energy is less than half of the material band gap so that neither SPA nor TPA can take place. 

Therefore, charge can be generated in a specific layer, allowing the response of that specific layer 

to be isolated from all the surrounding layers.  

Transients are captured using a Teledyne Lecroy LabMaster 10-36Zi-A oscilloscope with 36 

GHz front-end bandwidth and 80 GS/s sampling rate. As mentioned above, transients of planar 

InGaAs quantum-well MOSFETs are also shown as captured by a Tektronix TDS6124C 

oscilloscope with 12 GHz front-end bandwidth and 20 GS/s sampling rate for comparison. During 

these tests, the source was grounded, and the drain and gate biases were varied. A semiconductor 

parameter analyzer, HP 4156B, supplied the dc biases through Picosecond Model 5542 bias tees 

with 50 GHz bandwidth. 

Table 4.1. Materials parameters and carrier generation mechanism at two different wavelengths 

Material Bandgap (eV) 
l=1260 nm 

(E=0.98 eV) 

l=2200 nm 

(E=0.56 eV) 

In0.53Ga0.47As 0.75 eV SPA/TPA TPA 

In0.52Al0.48As 1.46 eV TPA NONE 

InP 1.35 eV TPA NONE 
(For materials where both SPA and TPA happen, the dominant mechanism is marked as bold.) 

4.4. Results and Discussions 
4.4.1. System Validation 

Fig. 4.4 (a) and (b) show the transients captured by the TDS6124C and LabMaster 10-36Zi-A 

oscilloscopes, respectively. Transients were generated by a 1260 nm laser. The rise time of the 

transients is very short, on the order of 100 ps. As a result, only a single data point is recorded on 

the rising edge for the TDS6124C oscilloscope, which has 50 ps resolution. It is hard to predict 

the rising edge shape based on such limited data. However, for the LabMaster 10-36Zi-A 

oscilloscope, the time resolution is 12.5 ps, which is short enough to resolve the rising edge. By 

fitting the rising edge with an exponential curve, the rise time constant is estimated to be around 

39 ps. This illustrates both the benefit and the need to use a higher bandwidth system to 

characterize fast signals with more accuracy and precision. 
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Fig. 4.4. Typical transients captured by (a) Tektronix TDS6124C oscilloscope and (b) Teledyne Lecroy LabMaster 

10-36Zi-A oscilloscope. The strike point is at the center of the device, on top of the gate. The laser wavelength used 

is 1260 nm. Peak currents differ as a result of different laser energies. VD=0.5 V. 

Another feature of the transients shown in Fig. 4.4 (b) is the oscillation signal appearing in the 

transients. The oscillation period is 0.2 ns. There are many possible reasons for this oscillation, 

including impedance mismatch and extrinsic RLC oscillation associated with bond wires [126]. 

Since the bond wire used for this device is relatively long, a few mm, here the oscillation is likely 

related to circuit RLC parameters [126].  

Charge collection in InGaAs FinFET devices is compared with two different wavelengths, 1260 

nm and 2200 nm, in Fig. 4.5 (a) and (b). Two typical transients are shown, for a device biased in 

the ON state. The difference in the transient magnitude is due to the laser energy difference at the 

two wavelengths. The rising edge is well resolved and the relevant time constant is about 40 ps, 
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similar to the planar device. The oscillation is still present in the gate transients, with a period of 

0.15 ns. This likely results from the shorter bond wires used in the FinFET, as compared with the 

planar device.  
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Fig. 4.5. Typical transients captured by Teledyne Lecroy LabMaster 10-36Zi-A oscilloscope at (a) l=1260 nm and 

(b) l=2200 nm at VG-VTH=0.8 V, VD=0.5 V. The laser strike is at the center of the gate. WFIN=20 nm. 

4.4.2. Charge collection in InGaAs FinFETs 
The transient shapes at the two wavelengths are very similar, indicating that the channel layer 

is critical to the charge collection process. The transient fall times are faster at a wavelength of 

2200 nm than at 1260 nm. The time constants obtained by fitting the transients with double 

exponentials at 2200 nm, 0.14 ns and 0.66 ns are less than half of those at 1260 nm, 0.28 ns and 
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1.50 ns. This is probably because charges are only generated in the channel at 2200 nm, so they 

can quickly get collected. 

Fig. 4.6 (a) and (b) show the drain current transients at different gate biases and drain biases, 

respectively. The transient peak does not vary with the gate bias, in contrast to the planar III-V 

MOSFETs, shown in chapter Chapter 3 and Chapter 2. This is because the device is controlled by 

the two side gates, which has little effect on the substrate below the fin. The tail current increases 

53% (evaluated at 2.0 ns) with the gate bias, which is consistent with the response of planar III-V 

MOSFETs. In contrast, the drain current is significantly dependent on the applied drain bias. The 

peak drain current increases approximately 5X when VD changes from 0.1 V to 0.5 V. This is 

consistent with the increase of the channel electric field with increasing drain bias. 
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Fig. 4.6. Drain current transients at different (a) gate bias, and (b) drain bias. The laser strike is at the center of the 

gate. WFIN=20 nm. 
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Fig. 4.7 (a) shows the source and drain current transients at different laser strike points along a 

line scan. The source transients are approximately the inverse of the drain transients (similar 

magnitude, opposite polarity), no matter whether the strike point is on the source side or drain side. 

This suggests that the transient current mainly comes from the channel current. 

There is little contribution from the junction collection, which is different from traditional Si 

devices [54]. In addition, the transient current decreases more rapidly in the source side than the 

drain side, which is related to the higher electric field in the drain region than the source region. 

This is also observed in the planar III-V MOSFETs, as shown in chapter Chapter 3 and Chapter 2.  

The comparison between the channel current and junction current can also be seen in Fig. 4.7 

(b), which shows the peak drain current along a line scan at different gate biases. Two groups of 

curves are shown, which correspond to two bias conditions VS= 0 V and VS = VD. The case with 

equal source and drain bias represents junction collection, since there is no electric field along the 

channel, while the grounded source represents the situation where the channel current makes a 

significant contribution. The drain current is almost zero on the source side with VS = VD. This is 

because the source collects most of the charge at the source side. With the junction collection, the 

peak drain current is very small, less than 0.3 mA. However, the channel current is much higher, 

suggesting that the channel current contributes the most significant charge. 

The mechanisms of channel current are also investigated. At the center of the gate, the peak 

drain current is maximum. This is similar to the ion-shunt mechanism observed in Si devices [140], 

[141]. When an ion track size is comparable to the device gate length, the high density of electron-

hole pairs will short the source and drain, contributing to a large prompt current. Similarly, in our 

laser system, the laser spot size is approximately 1.2 µm, much larger than the gate length. 

Therefore, it should be expected that the peak drain current is maximum around the gate center. 

The shunt mechanism alone, however, cannot explain the channel current when the laser strikes 

away from the gate, for example x = ±5 µm. This increase is due to parasitic bipolar effects, as 

illustrated in section 1.3.2.3, which become active when radiation-induced holes accumulate 

beneath the gate, perturbing the local electrostatic potential, lowering the source to channel barrier, 

and inducing a source-to-drain current pathway. This will be further illustrated below by TCAD 

simulations. 
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Fig. 4.7. (a) Source and drain current transients at different laser strike positions along a line scan. (b) and (c) show 

the peak drain current and drain collected charge, respectively, along a line scan at different gate biases. Here the 

center of the gate is taken as x=0 µm. The negative x coordinate represents the drain side and the positive x coordinate 

represents the source side. The laser wavelength l=1260 nm. The shadow in (b) and (c) represents the standard 

deviation among the 50 transients recorded at each position. WFIN=20 nm. 
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The collected charge along a line scan is shown in Fig. 4.7 (c). The charge is obtained by 

integrating the captured transients within a time window of 30 ns. The collected charge increases 

with the gate bias when the source is grounded. This is because the tail current increases with gate 

bias, as shown in Fig. 4.6 (a). When integrated, the tail current contributes a significant amount of 

charge. In comparison, the junction-collected charge is much smaller, around 10 fC. However, 

there is no clear evidence that the deposited charge correlates with the junction collected charge, 

when the deposited charges are distributed in the channel, buffer, and substrate, as shown in Table 

I. Therefore, no quantitative conclusions can be drawn. The spatial dependence of the collected 

charge is very different from the Si bulk FinFET [142]. For Si bulk FinFET, the collected charge 

increases toward the drain region and saturates as the strike location moves deep into the drain 

[142]. This is because that most of the collected charge is due to the drain junction collection for 

the Si bulk FinFET. There is very small contribution from the channel conduction. However, for 

the InGaAs FinFET device, most of the collected charge comes from the channel current, as 

illustrated in Fig. 4.7. The most sensitive region is the gate for the InGaAs FinFET.  

However, for the laser wavelength l=2200 nm, charge is generated only in the channel layer, 

similar to SOI technology. It has been shown in Si SOI technology that the deposited charge can 

be empirically estimated from the source/drain transients with the source and drain at the same 

bias [143]. In our case, this methodology is also applicable at l=2200 nm. 

Fig. 4.8 (a) and (b) show the peak drain current and drain collected charge, similar to Fig. 4.7 

(b) and (c), at different drain biases for l=2200 nm. Both the peak drain current and the drain 

collected charge increase with the drain bias, as illustrated also in Fig. 4.6 (b). The current gain is 

approximately 6 for VD=0.5 V at x=0 µm. In addition, the deposited charge is twice the drain 

collected charge at equal source and drain bias, about 60 fC at x=0 µm. This corresponds to charge 

enhancement factors of 14, 10, and 4 for VD = 0.5, 0.3, and 0.1 V, respectively. Similar charge 

enhancement factors have also been reported in other types of III-V FETs [84], [85]. These results 

demonstrate the advantage of a tunable wavelength laser system, which allows quantitative 

analysis of these important device responses. 
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Fig. 4.8. (a) and (b) show the peak drain current and drain collected charge, respectively, along a line scan at different 

drain biases. The negative x coordinate represents the drain side and the positive x coordinate represents the source 

side. The laser wavelength l=2200 nm. The shadow represents the standard deviation among the 50 transients 

recorded at each position. VG-VTH=0.5 V. WFIN=20 nm. 

Parasitic bipolar effects are also observed in the excess OFF-state leakage current in InGaAs 

quantum-well MOSFETs; the gain is typically inversely proportional to the gate length [144]. Fig. 

4.9 shows the peak drain current along a line scan for different gate lengths. Two groups of curves 

are shown, one with source grounded and the other with equal source and drain voltages. The peak 

drain current decreases with gate length, as expected. For LG = 420 nm, the peak drain currents are 

approximately equal in the drain side for the two bias conditions, suggesting that the parasitic 

bipolar action is fully suppressed in the longer channel device. In addition, the sensitive area 
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broadens with decreasing gate length. These results imply that sensitivity to transient radiation 

effects may increase in these types of devices with technology scaling, which is important to 

understand for space applications. 
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Fig. 4.9. Peak drain current along a line scan for different gate lengths. The laser wavelength l=1260 nm. The shadow 

represents the standard deviation among the 50 transients recorded at each position. VG-VTH=0 V. WFIN=30 nm. 

The peak drain current dependence on laser energy is investigated in Fig. 4.10. The peak drain 

current increases with the laser pulse energy, with a relationship of approximately IDP µ E0.5, where 

E is the laser pulse energy and IDP is the peak drain current. This sublinear dependence may be 

related to the complex charge injection profile at l = 1260 nm on the one hand, but may also be 

related with the parasitic bipolar effect which induces the channel current. Further experiments are 

needed, for example laser energy dependence at l = 2220 nm, to elucidate the dependence.  

An area mapping of the sensitive region is also performed. The results are shown in Fig. 4.11 

(a) and (b) for LG = 600 nm and LG = 50 nm, respectively. There is amplification only around the 

gate region for LG = 600 nm, consistent with Fig. 4.9. In the drain region, only the drain junction 

collects charge; while in the source region, the charge collection is greatly suppressed. However, 

for LG = 50 nm, the sensitive region is much larger, extending deep into the source and drain 

regions. 
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Fig. 4.10. Peak drain current along a line scan for different laser pulse energies. The shadow represents the standard 

deviation among the 50 transients recorded at each position. WFIN=20 nm. 

Drain Source

(a)

Drain	current

Source	current

 

Drain Source

(b) Drain	current

Source	current

 

Fig. 4.11. Peak source and drain current area map for (a) LG=600 nm and (b) LG=50 nm. The source current is the top 

and the drain current is at the bottom. For the area scan, the origin is chosen to be the center of the gate. WFIN=20 nm. 
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4.4.3. TCAD Simulations 
To gain more understanding of the above charge collection processes, 3D TCAD simulations 

are performed with Sentaurus TCAD tools. Fig. 4.12 shows the TCAD model of the device. The 

simulated device has a gate length of 50 nm. For the simulation, charges caused by an oxygen ion 

strike are introduced into the device at different locations. The injected charge has a Gaussian 

distribution in both space and time. The center of the strike is 1.0 ns and the characteristic length 

of the Gaussian distribution is 50 nm. The amount of deposited charge is 76 fC/µm for 8 µm. 

Although the charge distribution used in simulation is different from the laser irradiation, these 

results provide qualitative understanding of the charge collection process. 
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Fig. 4.12. 3D TCAD model of InGaAs double-gate FinFET device. LG=50 nm, WFIN=20 nm. 

Fig. 4.13 shows the electron density evolution as a function of time due to an ion strike at a cut 

plane of x=0 µm. It shows that a very high density of electron/hole pairs is generated around the 

strike location. After the strike, the electron/hole pairs quickly diffuse away and spread out. The 

carriers in the substrate do not directly lead to transient currents, however, as shown in the 

simulation below, they can move to the channel layer and induce source-to-drain current. The 

deeper the charge generation in the substrate, the longer it takes for the carriers to move into the 

channel. Therefore, most of the carriers generated in the substrate contribute to the transient tails. 
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Fig. 4.13. Electron density evolution as a function of time at a cut plane of x=0 µm after an ion strike. 1.0 ps represents 

the pre-strike condition and 1.0 ns represents the center of the strike. 

To illustrate the parasitic bipolar effect, Fig. 4.14 (a) shows the hole density inside the fin at 

different times for charge injection at z = 0.63 µm, in the drain side. Following the charge injection 

at 1.0 ns, a large number of electrons and holes are collected in the InGaAs channel within 100 ps, 

due to the type I heterostructure quantum-well. The hole density remains high for a long time and 

does not recover to the steady state value even at 30 ns. The accumulated holes close to the source 

and channel reduce the barrier between source and channel, which can cause additional electrons 

to be injected from the source and collected by the drain [84], [86]. 

This is further illustrated in Fig. 4.14 (b), which shows the conduction-band time-evolution 

along a horizontal cut line, XX’, as defined in Fig. 4.1 (a), from the source to drain. The barrier 

between the source and channel is as high as 0.6 eV before charge injection. However, 200 ps after 

the strike, the barrier is temporarily removed so that electrons can flow from source to drain. This 

causes the channel current observed in the experiment. The barrier only partially recovers to 0.1 

eV after 28 ns, implying that the perturbation can last for a long time, probably due to the highly 

confined FinFET structure. This long lasting transient can increase the sensitivity to radiation. 
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Fig. 4.14. (a) Hole density inside the fin structure at different times. Shown is a cut plane of the device at z=0 µm, the 

center of the gate. There are three layers in the fin structure, the top SiO2, the middle InGaAs channel and the bottom 

InAlAs buffer. (b) Conduction band along a horizontal cut line, XX’ shown in Fig. 4.1 (a), from source to drain. VG=-

0.6 V, VD=0.5 V, VS=0 V. The red arrow indicates the location of charge injection. 

To understand the role of different layers in the charge collection process, Fig. 4.15 (b) shows 

the simulated drain current transients for different charge injection volumes, as schematically 

shown in Fig. 4.15 (a). The current is maximum for the ‘full’ case (defined in the figure caption), 

where the charge is injected from the top surface of the device and extends 8 µm. This result is as 

expected since the charge injection for the other cases is only a segment of the ‘full’ condition. For 
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charge injection only in the channel layer, the current increases promptly but also decays quickly. 

Thus, the charge deposited in the channel layer will mainly be promptly collected. 
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Fig. 4.15. (a) Different charge injection volumes in the simulation. (b) Drain current transients as a function of time 

for these areas. Here ‘full’ represents charge injection from the top surface of the device and extends 8 µm, ‘channel’ 

represents charge injection in the channel layer only, ‘buffer’ represents charge injection starting from the buffer layer 

and extending 7.9 µm, and ‘substrate’ represents charge injection starting from the substrate. The charge injection 

profiles in the other three conditions are just segments of the ‘full’ condition. Here different charge injection cases are 

displaced from each other for clear demonstration. In the simulation they overlap; that is, the charge is injected at the 

same point when projected into the horizontal plane. 

For the charge injection starting from the buffer layer, the transient peak is delayed 0.3 ns 

compared with the ‘channel’ case. This delay is caused by the time required for the generated 

electrons and holes to move to the channel. The current almost overlaps with the ‘full’ case after 
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2.0 ns, suggesting that the slow portion comes from the deposited charge below the channel layer. 

This is different from the diffusion process observed in Si devices [54], since the current comes 

from the channel current caused by parasitic bipolar effects. The current for the ‘full’ case is 

approximately equal to the sum of the ‘channel’ and ‘buffer’ cases. For the charge injection in the 

substrate, the transient rises slowly and the peak is delayed 1 ns compared with the ‘buffer’ case 

because of the larger distance for carriers to diffuse into the channel layer. After 6.0 ns, the current 

overlaps with the ‘full’ case, indicating that the charge deposited in the substrate mainly 

contributes to the tail currents.  

Drain current transients due to strikes at different locations from source to drain are shown in 

Fig. 4.16. The position dependence is similar to Fig. 4.7 (a); the current decreases as the strike 

location moves away from the center of the gate. 
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Fig. 4.16. Drain current transients as a function of time for different strike locations. Here z=0 is at the center of the 

gate, the positive z coordinate is at the drain side, and the negative z coordinate is at the source side. The solid curves 

represent strikes in the drain side while the dashed curves represent strikes in the source side.  

4.5. Conclusion 
A tunable wavelength laser system and high resolution transient capture system are introduced 

for high mobility MOSFETs. The system has high time resolution, and transient features such as 

fast edges and oscillations are well resolved. The tunable wavelength laser provides a method to 

generate charge only in a specific layer of interest, usually the channel layer, since the lowest band 

gap typically occurs in the channel of high mobility MOSFETs. This enables the response of the 
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channel layer to be distinguished from that of the surrounding layers, providing a valuable tool to 

understand charge collection mechanisms in advanced devices. 

The transient current in InGaAs double-gate FinFET device mostly comes from the channel 

current, instead of junction collection. The channel current is attributed to the shunt effect around 

the gate and parasitic bipolar effects. Charge amplification factors as high as 14 are found. The 

tunable wavelength laser system allows empirically quantitative analysis of the results. In addition, 

parasitic bipolar effects are shown to be inversely proportional to the device gate length, making 

scaled devices highly sensitive to radiation.  

From TCAD simulations, it is found that the parasitic bipolar effect in these devices is due 

primarily to radiation-generated holes accumulating in the source and channel, which reduce the 

source to channel barrier and cause additional electrons to be injected from the source and collected 

by the drain. Further simulations also show that the charge deposited in the channel layer 

contributes to the prompt current, while the charge deposited in the buffer layer contributes to a 

delayed and longer-lasting current. The channel layer is critical in determining the charge 

collection. Therefore, considering both the geometrical footprint and the charge amplification, the 

two factors compete with each other in determining the sensitivity of InGaAs FinFETs to single 

event effects. Hence, this chapter presents important and early insights into charge collection 

mechanisms in InGaAs FinFETs. Further circuit level analysis will be needed to determine the 

ultimate sensitivity of this technology, for eventual space application. 
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Chapter 5. Gate Bias and Geometry Dependence of Total-Ionizing-Dose Effects in 
InGaAs Quantum-Well MOSFETs 

5.1. Introduction 
 The effects of total-ionizing-dose irradiation are investigated in HfO2/InGaAs quantum-well 

MOSFETs. Radiation-induced hole trapping is higher for irradiation under positive gate bias than 

under negative gate bias. Electrical stress-induced electron trapping compensates radiation-

induced hole trapping during positive gate-bias irradiation. Stress-induced hole trapping adds to 

the effects of radiation-induced hole trapping under negative gate bias. Radiation-induced charge 

trapping increases with the channel length. 

As mentioned in section 1.1, the oxide/III-V interface is far from perfect. There is a high density 

of defect states at the interface and in the bulk of the oxide. These defects will cause positive bias 

temperature instability, especially in InGaAs MOSFETs, when electrically stressed with positive 

gate bias [145], [146]. For example, Fig. 5.1 (a) and (b) show the threshold voltage shift and 

degradation of peak transconductance, respectively, when stressed at different gate biases [145]. 

These results show significant degradation of device performance. Hence, it is important to 

separate the TID response from effects produced by electrical bias in these structures. On the other 

hand, TID effects in III-V MOSFETs have been introduced in section 1.3.1. But those studies 

focus on devices with thick gate oxide, around 8 nm, which is impractical for advanced technology 

nodes. In this work, we investigate total-ionizing-dose (TID) effects in InGaAs quantum-well 

MOSFETs with a thin (physical thickness of 2.5 nm) HfO2 gate dielectric, which is more relevant 

for future CMOS applications. 

5.2. Device Description and Experimental Setup 
The devices tested are very similar to those tested in chapter 3, except for the difference of 

oxide thickness and InGaAs channel thickness. The schematic is shown in Fig. 5.2 (a) (not drawn 

to scale). A 0.4 μm thick In0.52Al0.48As buffer layer is grown on a 600 μm thick semi-insulating InP 

substrate. A 5 nm thick In0.7Ga0.3As channel is grown on top of the buffer layer. A silicon delta 

doping layer (n-type) in the buffer just below the channel is used to enhance the channel electron 

density. 2.5 nm HfO2 is deposited by atomic layer deposition on top of the channel. The device is 

mesa isolated instead of using oxide isolation, which means that there should not be a leakage 

current increase caused by hole trapping in the field oxide. Fig. 5.2 (b) shows the measured 

capacitance from 300 kHz to 5 MHz. The capacitance equivalent thickness (CET) in these devices 
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is approximately 1.7 nm. The vertical energy band alignment through the gate is shown in Fig. 3.2. 

The channel, the buffer, and the gate dielectric form a type-I heterostructure. 
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Fig. 5.1. Time evolution of threshold voltage shift and peak transconductance degradation for different VG,str [145]. 

The irradiation is performed in a 10-keV ARACOR X-ray source at a dose rate of 31.5 

krad(SiO2)/min at room temperature. Irradiations and stresses were performed with gate voltages 

(VGS) of +1.0 V or -1.0 V, with all the other terminals grounded. All the tested devices have an 

initial threshold voltage of approximately 0.1 V. There is a relatively high density of pre-existing 

traps in the gate oxide of these devices, which cause charge trapping due to electrical stress. To 

account for this, the electrical stress-induced degradation without irradiation is also measured at 

biases and times comparable to those used in the irradiation experiments. Current-voltage (I-V) 

characteristics are measured using an Agilent 4156 parameter analyzer. Devices with three 

different channel lengths are studied. At least three devices of each channel length are tested for 
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each bias condition with and without exposure to X-ray irradiation. After irradiation, the devices 

are annealed with all terminals grounded at room temperature and I-V characteristics are re-

measured after different annealing times. 
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Fig. 5.2. (a) Schematic cross section of the device under test (not drawn to scale); (b) measured capacitance as a 

function of frequency from 300 kHz to 5 MHz. The arrow indicates the direction of increasing frequency. The tested 

device has a dimension of W/L = 10 µm/2 µm. 

5.3. Results and Discussions 
Fig. 5.3 (a) and (b) show ID (drain current) vs. VGS and gm (transconductance) vs. VGS measured 

with VDS = 50 mV as a function of dose for devices biased at VGS = +1.0 V and VGS =   -1.0 V, 

respectively, during irradiation. The threshold voltage shifts positively for VGS = +1.0 V, indicating 

net electron trapping during positive-bias irradiation. But for VGS = -1.0 V, the threshold voltage 

shifts negatively, suggesting net hole trapping. For both conditions, the devices have an excellent 
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ON/OFF ratio, above 104 after a total dose of 2 Mrad(SiO2), indicating excellent gate control. Due 

to variations among devices, the leakage currents are at different levels for different devices. The 

leakage current mechanisms have been illustrated in [144].  
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Fig. 5.3. ID versus VGS (left) and gm versus VGS (right) at different irradiation doses for a device with dimensions of 

W/L = 10 µm/2 µm at (a) VGS = +1.0 V and (b) VGS = -1.0 V during irradiation. Measurements are made with VDS = 

50 mV. The red arrow indicates the direction of increasing dose. 

Fig. 5.4 (a) and (b) shows the subthreshold swing (SS) and normalized peak transconductance, 

extracted from Fig. 5.3, as a function of total dose and anneal time for VGS = +1.0 V and VGS = -

1.0 V irradiation bias conditions, respectively. The average SS increases approximately 40 

mV/decade at VGS = +1.0 V, which would correspond to the generation of 2.5 × 1013 cm-2eV-1 

interface traps, if interface traps were solely responsible for the increase of SS. The SS increase at 
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VGS = -1.0 V is half that of positive biased irradiation. Similarly, the peak-gm degradation at VGS = 

-1.0 V (10%) is less than half of VGS = +1.0 V (30%). Fig. 5.5 (a) and (b) show the correlation 

between peak-transconductance degradation and threshold voltage shift and subthreshold swing 

degradation, respectively. That the peak-gm degradation correlates well with the subthreshold 

swing increase suggests that there are interface and/or near interface oxide (border) traps generated 

during irradiation [146]. The partial recovery in SS and peak-gm during annealing is likely related 

to electron/hole detrapping from the border traps. Some of the remaining degradation may be due 

to interface traps, but a significant percentage may also be due to border traps. 
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Fig. 5.4. Subthreshold swing (left) and normalized peak transconductance (right) as a function of irradiation dose and 

annealing time for (a) VGS = +1.0 V and (b) VGS = -1.0 V. The normalization is based on the pre-irradiation peak 

transconductance. The error bars represent standard deviations among different devices tested. Measurements are 

made with VDS = 50 mV. All the tested devices have dimensions of W/L = 10 µm/2 µm. 
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Fig. 5.5. Peak transconductance degradation correlation with (a) threshold voltage shift and (b) subthreshold swing 

degradation. The approximately linear relationship suggests good correlation among all the degradations of device 

characteristics.  

The degradation under the two bias conditions in Fig. 5.3 is quite different. At VGS = +1.0 V, 

the ON current (at VGS -VTH = 0.5 V) decreases by 26% after 2 Mrad(SiO2) exposure, and the 

subthreshold current increases 6% (at VGS = -0.2 V). However, for VGS = -1.0 V, the ON current 

decreases 4% and the subthreshold current increases by 2x. These differences occur because 

devices irradiated under positive bias capture tunneling electrons very near the interface during 

irradiation. These more than offset the trapped positive charge, and efficiently scatter the channel 

carriers [147], [148], [149], [150]. In contrast, the irradiation- and tunnel-injected holes captured 

under negative-bias irradiation do not scatter the channel electrons as efficiently. 
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To separate the pure TID response from the combined response, the bias-induced degradation 

was separately measured at biases and times comparable to those used during irradiation. Fig. 5.6 

(a) and (b) show the threshold voltage shift as a function of equivalent dose for (1) TID irradiation, 

(2) bias only, and (3) the pure TID response, adjusted for charge trapping due to the simultaneous 

bias-stress at VGS = +1.0 V and VGS = -1.0 V, respectively. The adjustment is made by subtracting 

(2) bias only results from (1) TID irradiation results. For the bias-only condition at VGS = +1.0 V, 

there is a positive threshold-voltage shift of about 200 mV, indicating an areal density of 7.5 × 1012 

cm-2 trapped electrons when projected to the interface. These trapped charges cause Coulomb 

scattering to channel carriers and decrease the carrier mobility, as discussed above. However, for 

VGS = -1.0 V, there is a negligible negative threshold voltage shift (less than -10 mV) due to bias 

only. This suggests that InGaAs MOSFETs are more sensitive to positive bias stress than negative 

bias stress. 

Subtracting the bias-induced threshold-voltage shift from the biased irradiation-induced 

threshold-voltage shift in Fig. 5.6 (a), there is a negative threshold voltage shift of about 100 mV 

at VGS = +1.0 V, which corresponds to an areal density of 3.6 × 1012 cm-2 trapped holes when 

projected to the interface. That net electron trapping is observed shows that less TID-induced hole 

trapping occurs than bias-induced electron trapping under the selected irradiation and bias 

conditions, consistent with the response of some Si-gate devices with HfO2 gate dielectrics [151]. 

Hence, the combined positive-bias response of the devices biased at VGS = +1.0 V during irradiation 

is dominated by electron trapping due to the applied bias alone, i.e., positive-bias instability [145].  

Similar analysis shows that the threshold voltage shift is approximately -60 mV for the VGS = -

1.0 V gate-bias irradiation in Fig. 5.6 (b), corresponding to 2.2 × 1012 cm-2 hole trapping in the 

HfO2. The threshold voltage shifts under both bias conditions are larger than silicon devices with 

similar gate dielectric [151]. This is related to the high density of interface defects between the 

high k dielectric and InGaAs, such as Ga or As dangling bonds, as well as Ga-Ga or As-As like-

atom bonds, which leads to enhanced hole and electron trapping [152]. 
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Fig. 5.6. Threshold voltage as a function of irradiation dose and annealing time for irradiation, bias only, and bias-

stress-adjusted irradiation conditions for (a) VGS = +1.0 V and (b) VGS = -1.0 V during irradiation; (c) threshold voltage 

shift as a function of dose and annealing time for bias-stress-adjusted irradiation at two bias conditions. The error bars 

represent the standard deviations among different devices tested. Measurements are made with VDS = 50 mV. All the 

tested devices have dimensions of W/L = 10 µm/2 µm. 
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Fig. 5.6 (c) shows the pure TID-induced threshold-voltage shift at irradiation bias of VGS = +1.0 

V and VGS = -1.0 V. These results show that the threshold voltage shift due to irradiation alone is 

greater under positive gate bias during irradiation than negative gate bias, similar to what is 

observed in Si MOSFETs with HfO2 gate oxides [153], and contrary to what is observed in InGaAs 

gate-all-around MOSFETs [70].  

TCAD simulations were also performed. Fig. 5.7 shows the simulated and measured ID vs. VG 

for a device with dimension of W/L=10 µm/2 µm. It shows that the simulation is well calibrated 

to the measurement. Simulation shows that the electric fields in the HfO2 at VGS = +1.0 V and 

VGS = -1.0 V are approximately 0.8 MV/cm and -0.8 MV/cm, respectively. Hence, the charge yield 

in both bias conditions should be approximately equal, which suggests that the charge yield cannot 

explain this bias dependence.  
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Fig. 5.7. Simulated and measured ID vs. VGS on the log scale (left) and linear scale (right) for device with dimension 

of W/L=10 µm/2 µm. 

One plausible explanation for the difference in threshold voltage shift under the two bias 

conditions is that the trapped hole centroid at VGS = +1.0 V is closer to the HfO2/InGaAs interface 

than at VGS = -1.0 V, due to the electric field polarity difference between the two bias conditions, 

as illustrated in Fig. 5.8. The closer to the interface the charge centroid, the charge would cause 
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larger threshold voltage shift, as shown in equation (1.4). This result is similar to what is typically 

observed for charge trapping in SiO2 [154]. 
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Fig. 5.8. Schematic illustrating charge trapping during biased irradiation at (a) VGS = +1.0 V and (b) VGS = -1.0 V. The 

blue circle represents electrical stress induced electron trapping; the red circle represents radiation induced hole 

trapping; and the dark red circle represents electrical stress induced hole trapping. The red dash line in the figure 

represents the hole centroid. The label dh+ and dh- represents the distance between the hole centroid and the 

HfO2/InGaAs interface at VGS = +1.0 V and VGS = -1.0 V, respectively. dh- > dh+. 

Fig. 5.9 (a) shows the transfer characteristics before irradiation and after 2 Mrad(SiO2) 

exposure for devices with different gate lengths. The device is biased with VGS = +1.0 V during 

irradiation. Devices with different gate lengths have similar irradiation response, namely positive 

threshold-voltage shift, negligible leakage-current increase, and ON-current degradation. After 2  
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Fig. 5.9. (a) ID versus VGS before and after 2 Mrad(SiO2) irradiation for devices with different gate lengths. During 

irradiation, VGS = +1.0 V. The bias-stress-adjusted TID-induced threshold voltage shift is shown as a function of dose 

and anneal time for different gate lengths for bias at (b) VGS = +1.0 V, and (c) VGS = -1.0 V. The error bars represent 

standard deviations among different devices tested. Measurements are made with VDS = 50 mV. 
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Mrad(SiO2) exposure, the devices still have ON/OFF ratios over 105, even for the devices with LG 

= 80 nm. The bias-stress-adjusted TID response as a function of dose and annealing time for 

different gate lengths are shown in Fig. 5.9 (b) and (c) under irradiation bias of VGS = +1.0 V and 

VGS = -1.0 V, respectively. The results indicate that larger threshold-voltage shifts are observed for 

devices with longer channels, for both positive and negative gate bias during irradiation. This 

suggests there is more hole trapping for the longer devices than the shorter devices. 

A typical cause of length and width variation in TID response is electric field variation in the 

gate dielectric as a function of channel length, which can strongly influence the amount of hole 

trapping [155], [156]. Fig. 5.10 (a) and (b) show the vertical electric field in the gate oxide along 

a horizontal cut line for devices with different gate lengths biased at VGS = +1.0 V and VGS = -1.0 

V, respectively. The electric field is higher for device with shorter gate length, due to the corner 

effect. However, the results show that the electric field in the HfO2 differs by less than 1% among 

all these devices and gate lengths. Therefore, electric field variations cannot explain the large TID-

induced threshold voltage shift difference at different gate lengths. 

Another possibility is that the mechanical strain in the gate oxide may vary with gate length, 

which in turn can impact the hole trapping in the oxide significantly. This has been evaluated for 

SiO2/Si devices [157], [158], [159], [160], but not for devices with high-K gate stacks. In previous 

work, it has been shown that radiation-induced hole trapping tends to decrease if the interfacial Si 

tensile stress decreases. As a result, the radiation-induced hole trapping is larger for narrow width 

[157], and thick gate metal devices [158], due to more compressive stress. This is consistent with 

the trends we observe, but more work is required to evaluate the effects of stress on charge trapping 

in devices with high-k gate stacks. 

5.4. Conclusion 
The gate bias and geometry dependence of TID effects on InGaAs quantum-well MOSFETs 

with thin HfO2 gate oxide have been evaluated. Positive gate bias during irradiation leads primarily 

to bias-stress-induced electron trapping that exceeds radiation-induced hole trapping, leading to a 

net positive threshold-voltage shift under the conditions of this study. Negative gate bias during 

irradiation results in additive hole trapping from irradiation and bias-stress. The shift produced by 

the irradiation alone is negative and larger with positive gate bias than that observed under negative 

gate bias. In addition, the bias-stress-adjusted radiation-induced hole trapping increases with the 

channel length for both positive and negative bias irradiations. These results provide important, 
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early insight into the mechanisms and magnitude of the combined bias-stress and TID responses 

of InGaAs quantum-well MOSFETs with thin HfO2 gate oxides.  
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Fig. 5.10. (a) and (b) show the vertical electric field in the gate oxide along a horizontal cut line from source side to 

the drain side for different gate lengths biased at VGS = +1.0 V and VGS= -1.0 V, respectively.  
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Chapter 6. Conclusions and Future Work 
This dissertation focuses on the understanding, characterization, and modeling of single-event-

transients and total-ionizing-dose effects in emerging III-V MOSFETs for sub-10 nm node CMOS. 

Chapter Chapter 2, Chapter 3, Chapter 4 study the transients characterization and mechanisms in 

GaAs surface channel, InGaAs quantum-well, and InGaAs FinFET MOSFETs, respectively. 

Charge collection mechanisms are investigated and compared with those III-V FETs with non-

insulating gates, such as JFET, MESFET, and HEMT devices, in terms of their similarities and 

differences. Combined electrical stress and X-ray irradiation are performed to characterize the TID 

response of InGaAs quantum-well channel MOSFETs. The main results obtained from these 

studies are summarized in Table 6.1.  

Table 6.1.  Charge collection characteristics of the III-V MOSFETs with different architectures 

 Surface 
channel 

Quantum-well 
channel FinFET … 

Peak current gate 
bias dependence Medium High High … 

Parasitic bipolar 
amplification (PBA) Medium High High … 

Charge 
enhancement factor ~5 N/A ~14 … 

PBA current flow Bulk Quantum-well 
channel 

Quantum-well 
channel … 

PBA gate length 
dependence High High High … 

Long transient tails 
at ON state √ √ √ … 

Comparison with Si 
MOSFET 

More 
enhancement 
than 0.25 µm 

bulk 
MOSFET 

SOI like 
confinement, but 
larger sensitive 

volume 

PBA 
dominated, not 
drain junction 

dominated 
collection 

… 

 

Chapter 2 studies the charge collection in GaAs surface channel MOSFETs with thick high-k 

gate dielectric. This device is very similar to Si MOSFETs except that the semiconductor material 

changes to GaAs. So direct comparison can be made between III-V MOSFETs and Si MOSFETs. 
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The key difference is that the significant contribution of channel current to the transient current in 

GaAs MOSFETs, instead of simply drain junction collection, as often observed in most Si 

MOSFETs. When the radiation strikes the drain side not far away from the gate, the generated 

holes diffuse towards the source. These holes modulate the source to channel barrier, which causes 

electrons injected from the source and collected by the drain, contributing to channel current. This 

effect is also observed in III-V non-insulating gate FETs. The charge collection process is weakly 

dependent on the gate bias because the current flow away from the surface channel.  

Chapter 3 investigates the charge collection mechanism in InGaAs quantum-well channel 

MOSFETs. The device structure is different from the surface channel MOSFETs. It is more like a 

SOI device, since both the electrons and holes are confined in the quantum-well channel. This 

device has better scalability, compared with the surface channel, because gate can have control 

over the quantum-well channel. After the irradiation, this quantum-well efficiently collects the 

generated electrons and holes. The local electrostatic potential is strongly modified by the 

accumulated holes, such that there is almost no barrier between the source and channel. As a result, 

significant channel current flows. This is very similar to the Si SOI technology, where the bipolar 

amplification effect is active. Since the quantum-well channel is the place where most the charge 

collection takes place and it is controlled by the gate, the charge collection is highly gate bias 

dependent, different from the GaAs surface channel MOSFETs. 

Chapter 4 presents a tunable wavelength laser system for studying charge collection in high 

mobility MOSFETs with multiple layers in the device. This laser is applied to study the InGaAs 

double gate FinFET device. For sub-10 nm node, multiple gates architecture is necessary to combat 

the short-channel effects. The bipolar amplification gain is semi-empirically measured with the 

new laser system. It is found that with technology scaling, the bipolar amplification is getting more 

and more serious. Therefore, single event transient investigation in III-V MOSFETs suggests they 

are highly sensitive to ionizing radiation, compared with Si counterparts.  

Chapter 5 studies the TID effects in InGaAs quantum-well MOSFETs. Due to large amount of 

pre-existing traps in the oxide and the poor interface between oxide and InGaAs, the electrical 

stress alone can cause significant degradation when the device is biased during irradiation. 

Therefore, combined electrical stress and X-ray testing are performed to characterize the TID 

response of the device. It is found that electrical stress-induced electron trapping compensates 

radiation-induced hole trapping during positive gate-bias irradiation. Stress-induced hole trapping 
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adds to the effects of radiation-induced hole trapping under negative gate bias. Therefore, electrical 

stress plays an important role in determining the biased irradiation response of III-V MOSFETs. 

For the future commercial applications, the bias instability has to be addressed and reduced, it can 

be expected that the electrical stress induced degradation will be reduced, which necessitates 

combined electrical stress and X-ray testing. 

In this dissertation, single event transients and total ionizing dose effects are investigated on a 

device level. The next step moving forward would be to study the radiation effects in a single 

device fabricated on a Si substrate and to consider effects in circuits, such as SRAM cells and flip-

flops. However, heterogeneous integration of NMOS and PMOS devices on Si substrates has not 

been demonstrated and CMOS circuits based on these device technologies are still not 

implemented. However, NMOS based circuits could be tested for early study and insight. 

Meanwhile, TCAD simulations could be applied to study the CMOS based circuits without much 

difficulties.  

A preliminary charge sharing study between devices has been performed. In that study, the 

device spacing is 30 µm and fabricated on semi-insulating InP substrate, the devices are well 

isolated from each other. In practical applications, devices will be much closer to each other. So 

the next step is to place devices much closer and study the charge sharing behavior. Another 

interesting topic would be to compare the effect of substrate on charge sharing behavior. Since Si 

substrate conductivity is much higher than the semi-insulating substrate, it should be expected that 

the charge sharing behavior would be different. 

Another topic that is under consideration is compact modeling of TID effects in InGaAs 

quantum-well MOSFETs. This work is in collaboration with MIT. The idea is to include the TID 

effects in the MIT virtual source (MVS) model [161]. So far, the only bias condition that has been 

considered is all-terminals grounded and very small degradation was observed. For the next step, 

irradiation  with negative gate bias is planned and more degradation is expected. From the results 

described above, InGaAs quantum-well MOSFETs exhibit little or no degradation due to negative 

gate bias electrical stress. Therefore, the TID response could be easily studied.   
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Appendix A.   Tunable Wavelength Laser System 
Introduction 

The tunable wavelength laser system is based on the TPA laser system developed at Vanderbilt, 

with a wavelength of 1.26 µm, which is optimized for Si based devices. Fig. 4.3 is repeated here 

for illustration. Many of the optical components are the same as that shown in [139], but several 

new components are introduced to be able to adjust the wavelength. To be complete, the 

introduction to some components are copied from [139] . 

System Components 
Components Description 

Laser Source 

A titanium-sapphire (Ti/S) pumped Optical Parametric Generator (OPG). 

The OPG is pumped at a 1 kHz repetition rate with 1 mJ, 150 fs pulses 

centered at 800 nm from a chirped-pulse amplifier. The amplifier is seeded 

with a passively mode-locked Ti/S oscillator. The OPG uses non-linear 

parametric frequency conversion in a Beta Barium Borate (BBO) crystal to 

generate and amplify signal and idler wavelengths that are continuously 

tunable from ~1200 nm to ~2400 nm. Using harmonic, sum, and difference 

frequency-generating crystals outside the OPG, wavelengths from ~200 nm 

to ~10 µm can be 60 generated with average pulse energies varying from 

1µJ/pulse to 100µJ/pulse, depending on the wavelength 

Prism 

A prism is used to isolate the desired wavelength from the output of the 

laser system. Since the light output from the laser source has mixed and 

discrete wavelengths, it will be separated by a prism, due to dispersion 

effect. The distance between the prism and mirror M1 is large enough so 

that different wavelength is well separated. 

Aperture 

An aperture is used to select desired wavelength. Other undesired 

wavelengths are out of the aperture, so that they are not included in the 

optical system. 

Spatial Filter 
A rail-mounted section of the optical path consisting of various 

components (irises, lens, pinhole) used to direct, align, and shape the beam. 
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Polarizer 

Adjusts the beam polarization following the Half-Wave plate. A means 

of controlling the incident pulse energy that is not intended to be adjusted 

during measurements 

Photodiode 

The primary means by which the pulse energy is measured during 

experiments. The photodiode peak current response has been calibrated to 

the incident laser pulse energy at the DUT location. For the experiment, 

InGaAs and PbS photodiodes are used for 1.26 µm and 2.2 µm wavelength, 

respectively. However, calibration is needed for 2.2 µm wavelength.  

Black Box 

A light-tight box responsible for directing the beam to the focusing 

objective, photodiode, and infrared camera. A focusing lens is included in 

front of the photodiode to ensure that the entire beam is incident on the 

detector. 

Near IR 

Camera 

A near-infrared camera whose purpose is to image the DUT and the laser 

spot of the focused laser beam. 

BB Source 
A broad spectrum light source provides background illumination through 

the focusing objective for imaging devices under test. 

Computer 

A Windows-based PC that runs software for controlling the X, Y, and Z 

stages. Also interfaces with various pieces of measurement equipment for 

capturing and analyzing experimental data. 

XY-Stages 

Modified probe station for mounting DUTs and probes (if needed). The 

probe station was manufactured by Creative Devices and modified in-house 

at Vanderbilt. The XYstages are mounted beneath probe station platen to 

move the entire probe station surface. 

Z-Stage Z-stage controls the Z-location of the focused laser spot. 

Focusing 

Objective 

Focuses the incoming laser light to a small spot size. Two objectives are 

common on this setup, the Mitutoyo Plan Apo NIR 50X and the Mitutoyo 

Plan Apo NIR 100X. Of the two, the 100X version is the most commonly 

used for SEE experimental work. 
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Laser	Source
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M2
M3

M4

Prism

L1L2 Pinhole

S1 P1 P2 BS1 BS2

L3

PD1

Camera

BS3
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DUTFocusing	
Objective

XY-stages

XY-stages	
Controller

Z-stage	
Controller

Aperture

BB	Source

Spatial	Filter

Black	Box

Oscilloscope PC

Fig. 4.3. A simplified block diagram of TPA test setup. The red line indicates the laser beam propagation path and the 
blue line indicates reflected light, which is imaged by the near-infrared camera. 
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Appendix B.   TCAD Scripts 
Introduction 

In this appendix, some useful TCAD simulation scripts are attached, in case they will be helpful 

for students who are interested. Two sets of scripts are attached here; one is the 16 nm Si FinFET 

based SRAM mixed circuit simulation and the other one is the InGaAs FinFET device. The details 

of the SRAM circuits are presented in [162]. Some necessary comments are provided to help 

understanding. For the mixed SRAM simulation, only the irradiated NMOS is modeled in TCAD, 

and all the rest transistors are modeled by 16 nm predictive technology model (PTM) from ASU. 

Those models are copied from the PTM website to local directory and converted to models used 

in the TCAD tools by command “spice2sdevice”.  

16 nm Si FinFET SRAM mixed-circuit simulation 
****************************************************************************** 
finfet_dvs.cmd ;file name for the structure generation file 
****************************************************************************** 
(sde:clear) 
;============================================================================ 
;lateral length 
(define Ltot 2) ;total length of the simulation domain 
(define Lg   0.016) ;gate length 
(define Lsd  0.014) ;source/drain contact length 
(define Lsp  0.010) ;the spacer length 
(define Lfin (+ (+ Lg (* Lsd 2.0))) (* Lsp 2.0)) ;fin length 
 
(define Hsub  10) ;substrate thickness 
(define Hsti 0.01) ;STI oxide thickness 
(define Hfin 0.026) ;fin height 
(define Hoxi 0.00538) ;the oxide thickness, EOT=1nm 
(define Wsub 2) ;Substrate width 
(define Wfin 0.012) ;fin thickness/width 
 
;doping definition 
(define Dopingsub 1e15) ;body doping 
(define Dopingsd 3e20) ;source/drain doping 
 
(define Zstrike 0.018) ;the strike location 
;============================================================================ 
;derived quantities 
;X is along fin width, Y is along the fin height, Z is along the channel length 
(define Xmaxr (/ Wsub 2.0)) ;the maximum X coordinate of substrate 
(define Xmaxl  (* Xmaxr -1.0)) ;the minimum X coordinate of substrate 
(define Xfinr (/ Wfin 2.0)) ;the maximum X coordinate of fin 
(define Xfinl (* Xfinr -1.0)) ;the minimum X coordinate of fin 
(define Xoxir (+ Xfinr Hoxi)) ;the maximum X coordinate of the side oxide 
(define Xoxil (* Xoxir -1.0)) ;the minimum X coordinate of the side oxide 
 
(define Ysti (* Hsti 1.0)) ;the y coordinate of STI oxide 
(define Ysub (+ Ysti Hsub)) ;the y coordinate of substrate 
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(define Yfin (* Hfin -1.0)) ;the y coordinate of Fin 
(define Yoxi (- Yfin Hoxi)) ;the y coorinate of the oxide 
 
(define Zmaxr (/ Ltot 2.0)) ;the maximum z coordinate of the substrate 
(define Zmaxl (* Zmaxr -1.0)) ;the minimum z coordinate of the substrate 
(define Zgr  (/ Lg 2.0)) ;the maximum z coordinate of the gate 
(define Zgl  (* Zgr -1.0)) ;the minimum z coordinate of the gate  
(define Zspr (+ Zgr Lsp)) ;the maximum z coordinate of the spacer 
(define Zspl (* Zspr -1.0));the minimum z coordinate of the spacer 
(define Zsdr (+ Zspr Lsd));the maximum z coordinate of the s/d contact 
(define Zsdl (* Zsdr -1.0));the minimum z coordinate of the s/d contact 
 
(sdegeo:set-default-boolean "ABA") ;the new replaces old 
(define GATE (sdegeo:create-cuboid (position 0.0 0.0 0.0) (position (+ 
Xoxir 0.01) (- Yfin 0.01) (+ Zgr 0.00)) "Gold" "Gate")) 
(sdegeo:create-cuboid (position 0.0 Ysti 0.0) (position Xmaxr Ysub Zmaxr)
 "Silicon" "Substrate") 
(sdegeo:create-cuboid (position 0.0 0.0 0.0)   (position Xmaxr Ysti
 Zmaxr) "Oxide"  "STI") 
(sdegeo:create-cuboid (position 0.0 0.0 0.0)   (position Xoxir Yoxi
 Zgr) "HfO2"  "Gateoxide") 
(sdegeo:create-cuboid (position 0.0 Ysti 0.0)  (position Xfinr Yfin Zsdr)
 "Silicon" "Fin") 
(sdegeo:mirror-selected (get-body-list) (transform:reflection (position 0 0 0) 
(gvector 0 0 -1)) #t) 
(sdegeo:fillet (find-edge-id (position Xfinr Yfin 0)) 0.002) ;round the 
corners 
 
(sdegeo:set-default-boolean "BAB") 
(define DRAIN  (sdegeo:create-cuboid (position 0.0 (+ Yfin 0.01) Zspr) 
(position Xfinr (- Yfin 0.01) Zsdr) "Gold" "Drain")) 
(define SOURCE  (sdegeo:create-cuboid (position 0.0 (+ Yfin 0.01) Zspl) 
(position Xfinr (- Yfin 0.01) Zsdl) "Gold" "Source")) 
 
;============================================================================ 
;defining contact 
(sdegeo:define-contact-set "substrate" 4.0(color:rgb 0.0 1.0 0.0) "%%") 
(sdegeo:define-contact-set "drain" 4.0  (color:rgb 0.0 1.0 0.0) "**") 
(sdegeo:define-contact-set "gate" 4.0   (color:rgb 1.0 0.0 0.0) "++") 
(sdegeo:define-contact-set "source" 4.0  (color:rgb 1.0 1.0 0.0) "@@") 
 
(sdegeo:set-current-contact-set "gate") 
(sdegeo:set-contact-boundary-faces GATE) 
(sdegeo:delete-region GATE) 
(sdegeo:set-current-contact-set "drain") 
(sdegeo:set-contact-boundary-faces DRAIN) 
(sdegeo:delete-region DRAIN) 
(sdegeo:set-current-contact-set "source") 
(sdegeo:set-contact-boundary-faces SOURCE) 
(sdegeo:delete-region SOURCE) 
(sdegeo:define-3d-contact (find-face-id (position 0.005 Ysub 0)) "substrate") 
 
;============================================================================ 
;defining doping profile 
(sdedr:define-constant-profile "Const.Substrate"  "BoronActiveConcentration" 
Dopingsub ) 
(sdedr:define-constant-profile-region "Sub.Place" "Const.Substrate" 
"Substrate") 
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(sdedr:define-constant-profile-region "Fin.Place" "Const.Substrate" "Fin") 
 
;drain doping 
(sdedr:define-refinement-window "DrainWin" "Cuboid" (position 0.0 Yfin (+ (/ (+ 
Zspr Zgr) 2.0) 0.001) ) (position Xfinr -0.005 Zsdr)) 
(sdedr:define-constant-profile "Const.Drain" "ArsenicActiveConcentration" 
Dopingsd) 
(sdedr:define-constant-profile-placement "Drain.place" "Const.Drain" 
"DrainWin" 0.002) 
 
;source doping 
(sdedr:define-refinement-window "SourceWin" "Cuboid" (position 0.0 Yfin (- (/ 
(+ Zspl Zgl) 2.0) 0.001) ) (position Xfinr -0.005 Zsdl)) 
(sdedr:define-constant-profile "Const.Source" "ArsenicActiveConcentration" 
Dopingsd) 
(sdedr:define-constant-profile-placement "Source.place" "Const.Source" 
"SourceWin" 0.002) 
 
;============================================================================ 
;defining mesh 
;substrate multibox 
(sdedr:define-multibox-size "Multi.Substrate" (/ Wsub 10) (/ Hsub 10) (/ Ltot 
10) (/ Wsub 30) (/ Hsub 30) (/ Ltot 30) 1 1.2 1 ) 
(sdedr:define-refeval-window "Ref.Substrate" "Cuboid" (position 0.0 Ysti
 Zmaxl) (position Xmaxr Ysub Zmaxr)) 
(sdedr:define-multibox-placement "Multi.Substrate.Place" "Multi.Substrate" 
"Ref.Substrate") 
 
;Fin structure 
(sdedr:define-refeval-window "Ref.fin" "Cuboid" (position 0.0 (+ Ysti 
0.005) Zsdl) (position Xfinr Yfin Zsdr)) 
(sdedr:define-refinement-size "Size.fin" (/ Wfin 10.0) (/ Hfin 15.0) (/ Lfin 
10.0) (/ Wfin 15.0) (/ Hfin 30.0) (/ Lfin 20.0)) 
(sdedr:define-refinement-function "Size.fin" "DopingConcentration" 
"MaxTransDiff" 0.5) 
(sdedr:define-refinement-placement "Size.fin.Place" "Size.fin" "Ref.fin") 
 
;Fin under gate 
(sdedr:define-refeval-window "Ref.fin.Gater" "Cuboid" (position 0.0 Ysti
 0) (position Xfinr Yfin (+ Zgr 0.00))) 
(sdedr:define-multibox-size "Multi.fin.Gater" (/ Wfin 10.0) (/ Hfin 15.0) (/ Lg 
10.0) (/ Wfin 15.0) (/ Hfin 30.0) (/ Lg 15.0) 1.0 1.1 -1.2) 
(sdedr:define-refinement-function "Multi.fin.Gater" "MaxLenInt" "Silicon" 
"HfO2" 1e-4 1.05) 
(sdedr:define-multibox-placement "Multi.fin.Gater.Place" "Multi.fin.Gater" 
"Ref.fin.Gater") 
 
(sdedr:define-refeval-window "Ref.fin.Gatel" "Cuboid" (position 0.0 Ysti
 0) (position Xfinr Yfin (- Zgl 0.00))) 
(sdedr:define-multibox-size "Multi.fin.Gatel" (/ Wfin 10.0) (/ Hfin 15.0) (/ Lg 
10.0) (/ Wfin 15.0) (/ Hfin 30.0) (/ Lg 15.0) 1.0 1.1 1.2) 
(sdedr:define-refinement-function "Multi.fin.Gatel" "MaxLenInt" "Silicon" 
"HfO2" 1e-4 1.05) 
(sdedr:define-multibox-placement "Multi.fin.Gatel.Place" "Multi.fin.Gatel" 
"Ref.fin.Gatel") 
 
;the top of the fin 
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;(sdedr:define-refeval-window "Ref.fin.Corner" "Cuboid" (position 0.0 (- 
Yfin 0.0004) Zgl) (position Xfinr (+ Yfin 0.0004) (+ Zgr 0.00))) 
;(sdedr:define-refinement-size "Size.fin.Corner" 5e-4 1e-4 5e-4 1e-4 5e-5 1e-
4) 
;(sdedr:define-refinement-placement "Size.fin.Corner.Place" "Size.fin.Corner" 
"Ref.fin.Corner") 
 
;Gate oxide 
(sdedr:define-refinement-size "Size.oxide" (/ Hoxi 2) (/ Hoxi 2) (/ Lg 4) (/ 
Hoxi 4) (/ Hoxi 4) (/ Lg 8)) 
(sdedr:define-refinement-function "Size.oxide" "MaxLenInt" "Silicon" "HfO2" 5e-
4 1.2) 
(sdedr:define-refinement-region "Size.oxide.Place" "Size.oxide" "Gateoxide") 
 
;the ion strike path 
(sdedr:define-refeval-window "Ref.ion" "Cuboid" (position 0 Yfin (- Zstrike 
0.005)) (position 0.005 Ysub (+ Zstrike 0.005))) 
(sdedr:define-refinement-size "Size.ion" 0.0025 0.05 0.0025 1e-4 0.005 1e-4) 
(sdedr:define-refinement-placement "Size.ion.Place" "Size.ion" "Ref.ion" ) 
 
(sde:build-mesh "snmesh" "" "finfet_half") 
(system:command "tdx -mtt -x -M 0 -S 0 finfet_half_msh  finfet_msh") 
****************************************************************************** 
finfet_des.cmd ;file name for the transient simulation 
****************************************************************************** 
Device NMOS{ 
 File { 
  Grid="finfet_msh.tdr" 
 } 
 Electrode { 
  {Name="source" Voltage=0} 
  {Name="drain" Voltage=0} 
  {Name="gate" Voltage=0 Workfunction=4.6} 
  {Name="substrate" Voltage=0} 
 } 
 Physics { 
  EffectiveIntrinsicDensity(NoBandGapNarrowing) 
  Mobility( 
   DopingDependence 
   Enormal(Lombardi) 
   eHighFieldsaturation) 
  Fermi 
  Recombination( 
   SRH 
   Auger 
   Radiative) 
  HeavyIon( 
   PicoCoulomb 
   Direction=(0,1,0) 
   Location=(0,-0.025,0.018) 
   Time=1e-9 
   Length=5 
   Wt_hi=0.05 
   LET_f=0.1 
   Gaussian) 
 } 
* Physics(Region="Fin") { 
*  eQuantumPotential  
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* } 
 Plot{ 
  *carrier densities 
   eDensity hDensity EffectiveIntrinsicDensity IntrinsicDensity 
  *currents and current components 
   eCurrentDensity hCurrentDensity 
   TotalCurrent/Vector  eCurrent/Vector  hCurrent/Vector 
   eMobility hMobility eVelocity hVelocity 
   DisplacementCurrent  
   DisplacementCurrent/Vector 
  *fields, potentials and charge distribution 
   ElectricField/Vector 
   Potential 
   eQuasiFermi hQuasiFermi eQuantumPotential 
   SpaceCharge 
  *Doping Profiles 
   Doping 
  *Band Structure 
   BandGap 
   ElectronAffinity 
   ConductionBandEnergy ValanceBandEnergy 
 } 
} 
Math{ 
 Number_Of_Threads=4  
 Extrapolate 
 Derivativites 
 Iterations=20 
 RelErrControl 
 Digits=5  
 NotDamped=20 
 CNormPrint 
 Spice_gmin=1e-15 
} 
File{ 
 Current="finfet_see" 
 Plot="finfet_see" 
 Output="finfet_see" 
 SPICEPath="." 
} 
System{ 
 nfet mn1("source"=0 "gate"=nq "drain"=n2 "bulk"=0 "temp"=300)  
 NMOS mn2( "source"=n2 "gate"=nq "drain"=nd "substrate"=0) 
 pfet mp1 ("drain"=n1 "gate"=nq "source"=n3 "bulk"=n3 "temp"=300) 
 pfet mp2 ("drain"=nd "gate"=nq "source"=n1 "bulk"=n3 "temp"=300) 
 pfet mp3 ("drain"=nqb "gate"=nphi "source"=n2 "bulk"=n3 "temp"=300) 
 nfet mn3 ("source"=n1 "gate"=nphib "drain"=nqb "bulk"=0 "temp"=300) 
 pfet mp4 ("drain"=n4 "gate"=nd "source"=n3 "bulk"=n3 "temp"=300) 
 pfet mp5 ("drain"=nq "gate"=nphi "source"=n4 "bulk"=n3 "temp"=300) 
 nfet mn5 ("source"=n5 "gate"=nphib "drain"=nq "bulk"=0 "temp"=300) 
 nfet mn4 ("source"=0 "gate"=nd "drain"=n5 "bulk"=0 "temp"=300) 
 *pfet mp6 ("drain"=n3 "gate"=nqb "source"=n5 "bulk"=n3 "temp"=300) 
 *nfet mn6 ("source"=n4 "gate"=nqb "drain"=0 "bulk"=0 "temp"=300) 
 pfet2 mp7 ("drain"=nqb "gate"=nq "source"=n3 "bulk"=n3 "temp"=300) 
 nfet2 mn7 ("source"=0 "gate"=nq "drain"=nqb "bulk"=0 "temp"=300) 
 Vsource_pset vdd (n3 0) {dc=0.8 } 
 Vsource_pset vphi (nphi 0) {dc=0} 
 Vsource_pset vphib (nphib 0) {dc=0.8} 
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 Initialize (nq = 0) 
 Initialize (nd = 0.8) 
 Initialize (nqb = 0.8) 
 Initialize (n2 = 0.8)  
 Plot "DC_initial" (n1 n2 n3 n4 n5 nq nqb nd i(mp1,n1)) 
 Plot "SEE_tran" (time() n1 n2 n4 n5 nq nqb nd i(mp1 n1) i(mn1 n2) i(mn2 
d) i(mp2 d) i(mp1 n1) i(mp5 nq) i(mn5 nq) i(mn4 n5) i(mp4 n4)) 
} 
Solve{ 
 Coupled (Iterations=20) {Poisson } 
 Coupled (Iterations=20) {Poisson Electron Hole} 
 Coupled (Iterations=20) {Poisson Circuit Contact Electron Hole} 
 Save(FilePrefix="Bias") *can be separated into different files and then 
load the Bias 
 
 Load(FilePrefix="Bias") 
 Transient(  
  InitialTime=0  
  FinalTime=0.9e-9  
  InitialStep=1e-12  
  MaxStep=1e-10  
  Increment=1.2)  
  { 
   Coupled{mn2.poisson mn2.electron mn2.hole mn2.contact 
circuit}  
   Plot (Time=(0.001e-9; 0.9e-9) FilePrefix="SE_DataA" 
NoOverwrite)} 
 Transient(  
  InitialTime=0.9e-9  
  FinalTime=1.0e-9  
  InitialStep=1e-12  
  MaxStep=5e-12  
  Increment=1.2)  
  { 
   Coupled{mn2.poisson mn2.electron mn2.hole mn2.contact 
circuit} 
   Plot (Time=(0.98e-9;1.0e-9) FilePrefix="SE_DataB" 
NoOverwrite)}  
 Transient(  
  InitialTime=1.0e-9  
  FinalTime=2e-9  
  InitialStep=1e-13  
  MaxStep=5e-11  
  Increment=1.2)  
  { 
   Coupled{mn2.poisson mn2.electron mn2.hole mn2.contact 
circuit} 
   Plot (Time=(1.001e-9;1.005e-9;1.1e-9;1.2e-9;1.5e-9;1.8e-9) 
FilePrefix="SE_DataC" NoOverwrite)} 
} 
 
InGaAs FinFET 

****************************************************************************** 
InGaAs_finfet_dvs.cmd ;file name for the structure generation file 
****************************************************************************** 
(sde:clear) 
;============================================================================ 
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;lateral length 
(define Ltot 5) ;total length of the device 
(define Lg  0.05) ;gate length 
(define Lsd  0.014) ;source/drain length 
(define Lsp  0.010) ;the space length 
(define Lfin 2) ;the total length of the fin structure 
(define Hsub  20) ;Substrate thickness 
(define Hbuf 0.4) ;InAlAs buffer thickness 
(define Hoxi 0.005) ;the oxide thickness 
(define Hchannel  0.04) ;InGaAs channel thicknesss 
(define Hcap 0.03) ;Cap thickness 
(define Hfin 0.22) ;fin height, including channel and etched buffer 
thickness 
(define Hfinbuf (- Hfin Hchannel)) ;the thickness of the etched buffer 
(define Hbufrem (- Hbuf Hfinbuf)) ;the thickness of the remained buffer 
(define Hhard 0.04) ;thickness of the hardmask on the top 
(define Wsub 5) ;Substrate width 
(define Wfin 0.020) ;fin thickness/width 
(define Delthick 0.002) ;Delta doping thickness 
(define Deldist  0.005) ;Delta doping distance to the bottom of channel 
layer 
 
;doping definition 
(define Deltadoping 2e19) ;delta doping 
(define Capdoping 3e19) ;cap doping 
 
(define Zstrike 0.63) 
;============================================================================ 
;derived quantities 
;x direction is along the width direction 
(define Xmaxr  (/ Wsub 2.0)) ;the maximum X coordinate of substrate 
(define Xmaxl  (* Xmaxr -1.0)) ;the minimum X coordinate of substrate 
(define Xfinr (/ Wfin 2.0)) ;the maximum X coordinate of fin 
(define Xfinl (* Xfinr -1.0)) ;the minimum X coordinate of fin 
(define Xoxir (+ Xfinr Hoxi)) ;the maximum X coordinate of the side oxide 
(define Xoxil (* Xoxir -1.0)) ;the minimum X coordinate of the side oxide 
 
;y direction is along the thickness direction, perpendicular to the plane 
;y=0 is defined at the bottom of the fin 
(define Ybuf (* Hbufrem 1.0)) ;the y coordinate of buffer bottom 
(define Ysub (+ Ybuf Hsub)) ;the y coordinate of substrate 
(define Yfinbuf (* Hfinbuf -1.0)) ;the y coordinate of buffer in the fin 
(define Yfincha (- Yfinbuf Hchannel)) ;the y coordinate of the channel in 
the fin 
(define Yhard (- Yfincha Hhard)) ;the y coorinate of the hard mask 
(define Ycap (- Yfincha Hcap)) ;the y coordinate of the cap layer 
(define Ydel (+ Deldist Yfinbuf)) ;the y coordinate of delta doping 
 
(define Zmaxr (/ Ltot 2.0)) ;the maximum z coordinate of the substrate 
(define Zmaxl (* Zmaxr -1.0)) ;the minimum z coordinate of the substrate 
(define Zgr  (/ Lg 2.0)) ;the maximum z coordinate of the gate 
(define Zgl  (* Zgr -1.0)) ;the minimum z coordinate of the gate  
(define Zspr (+ Zgr Lsp)) ;the maximum z coordinate of the spacer 
(define Zspl (* Zspr -1.0)) ;the minimum z coordinate of the spacer 
(define Zfinr (/ Lfin 2.0)) ;the maximum z coordinate of the fin 
(define Zfinl (* Zfinr -1.0)) ;the minimum z coordinate of the fin 
 
;============================================================================ 
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 (sdegeo:set-default-boolean "ABA") ;the new replaces old 
(define GATE (sdegeo:create-cuboid (position 0.0 -0.001 0.0) 
(position (+ Xoxir 0.01) (- Yhard 0.01) (+ Zgr 0.00)) "Gold" "Gate")) 
(define OXIDE (sdegeo:create-cuboid (position 0.0 0.0 0.0) (position (+ 
Xoxir 0.00) (- Yhard Hoxi) (+ Zgr 0.00)) "Al2O3" "Oxide")) 
(sdegeo:create-cuboid (position 0.0 Ybuf 0.0) (position Xmaxr Ysub
 Zmaxr) "InP"  "Substrate") 
(sdegeo:create-cuboid (position 0.0 0.0 0.0) (position Xmaxr Ybuf
 Zmaxr) "InAlAs" "Buffer") 
(sdegeo:create-cuboid (position 0.0 0.0 0.0) (position Xfinr Yfinbuf
 Zgr) "InAlAs" "Finbuffer") 
(sdegeo:create-cuboid (position 0.0 Yfinbuf 0.0) (position Xfinr
 Yfincha Zgr) "InGaAs" "Finchannel") 
(sdegeo:create-cuboid (position 0.0 0.0 Zgr) (position Xfinr Yfinbuf
 Zfinr) "InAlAs" "Finbufferd") 
(sdegeo:create-cuboid (position 0.0 Yfinbuf Zgr) (position Xfinr
 Yfincha Zfinr) "InGaAs" "Finchanneld") 
 
(define A (sdegeo:create-cuboid (position 0.0 (+ Yfincha 0.000) 0.0) 
(position Xfinr Yhard Zgr) "SiO2"  "Hardmask")) 
(sdegeo:create-cuboid (position 0.0 (+ Yfincha 0.0) Zgr) (position Xfinr
 Ycap Zfinr) "InGaAs" "Capd") 
(sdegeo:mirror-selected (get-body-list) (transform:reflection (position 0 0 
0) (gvector 0 0 -1)) #t) 
 
;renaming of the duplicated regions 
(sde:add-material (find-body-id (position (/ Xfinr 2.0) (/ (+ Yfinbuf 
Yfincha) 2.0) (/ (+ Zgl Zfinl) 2.0))) "InGaAs" "Finchannels") 
(sde:add-material (find-body-id (position (/ Xfinr 2.0) (/ (+ 0.0 Yfinbuf) 
2.0)  (/ (+ Zgl Zfinl) 2.0))) "InAlAs" "Finbuffers") 
(sde:add-material (find-body-id (position (/ Xfinr 2.0) (/ (+ Ycap Yfincha) 
2.0)  (/ (+ Zgl Zfinl) 2.0))) "InGaAs" "Caps") 
 
;============================================================================ 
 (sdegeo:set-default-boolean "BAB") 
(define DRAIN  (sdegeo:create-cuboid (position 0.0 (+ Ycap 0.00) (+ 
Zgr 0.0001)) (position Xmaxr (- Ycap 0.01) Zmaxr) "Gold" "Drain")) 
(define SOURCE  (sdegeo:create-cuboid (position 0.0 (+ Ycap 0.00) (- 
Zgl 0.0001)) (position Xmaxr (- Ycap 0.01) Zmaxl) "Gold" "Source")) 
 
;defining contact 
(sdegeo:define-contact-set "substrate" 4.0 (color:rgb 0.0 1.0 0.0) "%%") 
(sdegeo:define-contact-set "drain"  4.0  (color:rgb 0.0 1.0 0.0) "**") 
(sdegeo:define-contact-set "gate"  4.0   (color:rgb 1.0 0.0 0.0) "++") 
(sdegeo:define-contact-set "source"  4.0  (color:rgb 1.0 1.0 0.0) "@@") 
 
(sdegeo:set-current-contact-set "gate") 
(sdegeo:set-contact-boundary-faces GATE) 
(sdegeo:delete-region GATE) 
(sdegeo:set-current-contact-set "drain") 
(sdegeo:set-contact-boundary-faces DRAIN) 
(sdegeo:delete-region DRAIN) 
(sdegeo:set-current-contact-set "source") 
(sdegeo:set-contact-boundary-faces SOURCE) 
(sdegeo:delete-region SOURCE) 
 
;============================================================================ 
;defining doping profile 
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;cap doping 
(sdedr:define-constant-profile "Capdoping" "ArsenicActiveConcentration" 
Capdoping) 
(sdedr:define-constant-profile-region "Capdopingplacements" "Capdoping" 
"Caps") 
(sdedr:define-constant-profile-region "Capdopingplacementd" "Capdoping" 
"Capd") 
(sdedr:define-constant-profile-region "Capdopingplacementcons" "Capdoping" 
"Concaps") 
(sdedr:define-constant-profile-region "Capdopingplacementcond" "Capdoping" 
"Concapd") 
 
;buffer delta doping 
;(sdedr:define-refinement-window "Deltadopingwin" "Cuboid" (position 0.0 Ydel 
Zfinl) (position Xfinr (+ Ydel Delthick) Zfinr)) 
(sdedr:define-refinement-window "Deltadopingwin" "Cuboid" (position 0.0 Ydel 
Zmaxl) (position Xmaxr (+ Ydel Delthick) Zmaxr)) 
(sdedr:define-constant-profile "Deltadoping" "ArsenicActiveConcentration" 
Deltadoping) 
(sdedr:define-constant-profile-placement "Deltadopingplacement" "Deltadoping" 
"Deltadopingwin") 
 
;============================================================================ 
;defining mesh 
;substrate multibox 
(sdedr:define-multibox-size "Multi.Substrate" (/ Wsub 10.0) (/ Hsub 10.0) (/ 
Ltot 10.0) (/ Wsub 15.0) (/ Hsub 30.0) (/ Ltot 15.0) 1 1.5 1 ) 
(sdedr:define-refeval-window "Ref.Substrate" "Cuboid" (position 0.0 Ybuf
 Zmaxl) (position Xmaxr Ysub Zmaxr)) 
(sdedr:define-multibox-placement "Multi.Substrate.Place" "Multi.Substrate" 
"Ref.Substrate") 
 
;buffer multibox 
(sdedr:define-refeval-window "Ref.Bufferl" "Cuboid" (position 0 Yfinbuf 
Zmaxl) (position Xmaxr Ybuf 0) ) 
(sdedr:define-multibox-size "Multi.Bufl" (/ Wsub 10.0) (/ Hbuf 5.0) (/ Ltot 
10.0) (/ Wsub 15.0) (/ Hbuf 10.0) (/ Lfin 50.0) 1 1 -1.5 ) 
(sdedr:define-multibox-placement "Multi.Bufl.Place" "Multi.Bufl" 
"Ref.Bufferl") 
 
(sdedr:define-refeval-window "Ref.Bufferr" "Cuboid" (position 0 Yfinbuf 
Zmaxr) (position Xmaxr Ybuf 0) ) 
(sdedr:define-multibox-size "Multi.Bufr" (/ Wsub 10.0) (/ Hbuf 5.0) (/ Ltot 
10.0) (/ Wsub 15.0) (/ Hbuf 10.0) (/ Lfin 50.0) 1 1 1.5 ) 
(sdedr:define-multibox-placement "Multi.Bufr.Place" "Multi.Bufr" 
"Ref.Bufferr") 
 
(sdedr:define-refeval-window "Ref.Buf.Win" "Cuboid" (position 0 Yfinbuf 
Zmaxl) (position Xmaxr Ybuf Zmaxr) ) 
(sdedr:define-refinement-size "Ref.Buf" (/ Wsub 1) (/ Hsub 1) (/ Ltot 1.0) (/ 
Wsub 1) (/ Hsub 1) (/ Ltot 1.0)) 
(sdedr:define-refinement-function "Ref.Buf" "MaxLenInt" "InAlAs" "Al2O3" 1e-3 
1.5) 
(sdedr:define-refinement-placement "Ref.Buf.Place" "Ref.Buf" "Ref.Buf.Win") 
 
;delta doping 
(sdedr:define-refinement-size "Refdelta" (/ Wsub 1.0) (/ Delthick 2.0) (/ 
Ltot 1.0) (/ Wsub 1.0) (/ Delthick 4.0) (/ Ltot 1.0)) 
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(sdedr:define-refinement-placement "Refdeltapla" "Refdelta" "Deltadopingwin") 
 
;channel multibox 
(sdedr:define-refeval-window "Ref.Channell" "Cuboid" (position 0 Yfinbuf 
Zmaxl) (position Xmaxr Ycap 0) ) 
(sdedr:define-multibox-size "Multi.Channell" (/ Wsub 10.0) (/ Hchannel 5.0) 
(/ Ltot 20.0) (/ Wsub 15.0) (/ Hchannel 10.0) (/ Lfin 80.0) 1 1 -1.5 ) 
(sdedr:define-multibox-placement "Multi.Channell.Place" "Multi.Channell" 
"Ref.Channell") 
 
(sdedr:define-refeval-window "Ref.Channelr" "Cuboid" (position 0 Yfinbuf 
Zmaxr) (position Xmaxr Ycap 0) ) 
(sdedr:define-multibox-size "Multi.Channelr" (/ Wsub 10.0) (/ Hchannel 5.0) 
(/ Ltot 20.0) (/ Wsub 15.0) (/ Hchannel 10.0) (/ Lfin 80.0) 1 1 1.5 ) 
(sdedr:define-multibox-placement "Multi.Channelr.Place" "Multi.Channelr" 
"Ref.Channelr") 
 
(sdedr:define-refeval-window "Ref.Channel.Win" "Cuboid" (position 0 Yfinbuf 
Zmaxl) (position Xmaxr Ycap Zmaxr) ) 
(sdedr:define-refinement-size "Ref.FinChannel" (/ Wsub 1) (/ Hsub 1.0) (/ 
Ltot 1.0) (/ Wsub 1) (/ Hsub 1.0) (/ Ltot 1.0)) 
(sdedr:define-refinement-function "Ref.FinChannel" "MaxLenInt" "InGaAs" 
"SiO2" 1e-3 1.5) 
(sdedr:define-refinement-placement "Ref.FinChannel.Place" "Ref.FinChannel" 
"Ref.Channel.Win") 
 
;fin buffer 
(sdedr:define-refeval-window "Ref.FinBufWin" "Cuboid" (position 0 0.005 
Zfinl) (position Xfinr Ydel Zfinr)) 
(sdedr:define-refinement-size "Ref.FinBuf" (/ Wfin 5.0) (/ Hchannel 2.0) (/ 
Lfin 5.0) (/ Wfin 10.0) (/ Hchannel 10.0) (/ Lfin 5.0)) 
(sdedr:define-refinement-function "Ref.FinBuf" "MaxLenInt" "InAlAs" "Al2O3" 
5e-4 1.5) 
;(sdedr:define-refinement-function "Ref.FinBuf" "MaxLenInt" "InAlAs" "InGaAs" 
1e-3 1.5) 
(sdedr:define-refinement-placement "Ref.FinBuf.Place" "Ref.FinBuf" 
"Ref.FinBufWin") 
 
;fin channel 
(sdedr:define-refeval-window "Ref.FinChaWin" "Cuboid" (position 0 Yfinbuf 
Zfinl) (position Xfinr Yfincha Zfinr)) 
(sdedr:define-refinement-size "Ref.FinCha" (/ Wfin 5.0) (/ Hchannel 5.0) (/ 
Lfin 5.0) (/ Wfin 10.0) (/ Hchannel 20.0) (/ Lfin 5.0)) 
(sdedr:define-refinement-function "Ref.FinCha" "MaxLenInt" "InGaAs" "SiO2" 
1e-3 1.5) 
(sdedr:define-refinement-function "Ref.FinCha" "MaxLenInt" "InGaAs" "Al2O3" 
5e-4 1.5) 
;(sdedr:define-refinement-function "Ref.FinCha" "MaxLenInt" "InGaAs" "InAlAs" 
1e-3 1.5) 
(sdedr:define-refinement-placement "Ref.FinCha.Place" "Ref.FinCha" 
"Ref.FinChaWin") 
 
;along the channel direction, under the gate 
(sdedr:define-refeval-window "Ref.FinGateWin" "Cuboid" (position 0 0 (- Zgl 
0.001)) (position Xfinr Yfincha (+ Zgr 0.001))) 
(sdedr:define-refinement-size "Ref.FinGate" (/ Wfin 5.0) (/ Hchannel 1.0) (/ 
Lg 10.0) (/ Wfin 5.0) (/ Hchannel 1.0) (/ Lg 15.0)) 
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(sdedr:define-refinement-placement "Ref.FinGate.Place" "Ref.FinGate" 
"Ref.FinGateWin") 
 
;ion strike 
(sdedr:define-refeval-window "Ref.Ion.Win" "Cuboid" (position -0.05 Ycap (- 
Zstrike 0.05)) (position 0.05 Ysub (+ Zstrike 0.05)) ) 
(sdedr:define-refinement-size "Ref.Ion" 0.01 0.5 0.01 0.002 0.05 0.002) 
(sdedr:define-refinement-placement "Ref.Ion.Place" "Ref.Ion" "Ref.Ion.Win") 
(sdeaxisaligned:set-parameters "minEdgeLength" 1e-3 ) 
(sdedelaunizer:set-parameters "minEdgeLength" 1e-3 "edgeProximity" 0.3) 
 
(sde:build-mesh "snmesh" "" "finfet_half") 
(system:command "tdx -mtt -x -M 0 -S 0 finfet_half_msh  InGaAs_finfet_msh") 
****************************************************************************** 
InGaAs_finfet_des.cmd ;file name for the single event file 
****************************************************************************** 
File { 
 Grid="InGaAs_finfet_msh.tdr" 
 Current="InGaAs_finfet_see" 
 Plot="InGaAs_finfet_see" 
 Parameter="materials.par"} 
Electrode { 
 {Name="source" Voltage=0} 
 {Name="drain" Voltage=0} 
 {Name="gate" Voltage=-0.6 Workfunction=4.65 }} 
Physics (Region="Buffer") { 
 MoleFraction(xFraction=0.48 Grading=0)} 
Physics (Region="Finbuffer") { 
 MoleFraction(xFraction=0.48 Grading=0)} 
Physics (Region="Finbuffers") { 
 MoleFraction(xFraction=0.48 Grading=0)} 
Physics (Region="Finbufferd") { 
 MoleFraction(xFraction=0.48 Grading=0)} 
Physics (Region="Caps") { 
     MoleFraction(xFraction=0.47 Grading=0)} 
Physics (Region="Capd") { 
  MoleFraction(xFraction=0.47 Grading=0)} 
Physics (Region="Finchannel"){ 
 MoleFraction(xFraction=0.47 Grading=0)} 
Physics (Region="Finchannels"){ 
 MoleFraction(xFraction=0.47 Grading=0)} 
Physics (Region="Finchanneld"){ 
 MoleFraction(xFraction=0.47 Grading=0)} 
Physics { 
 EffectiveIntrinsicDensity(NoBandGapNarrowing) 
 Mobility( 
  ConstantMobility 
       Enormal(Lombardi) 
  eHighFieldSaturation) 
 Fermi 
 Recombination( 
  SRH 
  Auger 
  Radiative) 
 HeavyIon( 
  PicoCoulomb 
  Direction=(0,1,0) 
  Location=(0,-0.25,0.63) 
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  Time=1e-9 
  Length=8 
  Wt_hi=0.05 
  LET_f=0.076 
  Gaussian)} 
Plot{ 
 *carrier densities 
  eDensity hDensity EffectiveIntrinsicDensity IntrinsicDensity 
 *currents and current components 
  eCurrentDensity hCurrentDensity 
  eCurrentDensity/Vector hCurrentDensity/Vector 
  eMobility hMobility eVelocity hVelocity 
 *fields, potentials and charge distribution 
  ElectricField/Vector 
  Potential 
  eQuasiFermi hQuasiFermi 
  SpaceCharge 
 *Temperatures 
  LatticeTemperature 
  eTemperature hTemperature 
 *Doping Profiles 
  Doping 
 *Band Structure 
  BandGap 
  ElectronAffinity 
  ConductionBandEnergy ValanceBandEnergy 
 *Recombination 
  SRH Auger 
} 
Math{ 
 Number_Of_Threads=4  
 Extrapolate 
 Derivativites 
 Iterations=20 
 RelErrControl 
 Digits=5  
 NotDamped=20 
 CNormPrint 
 ExitOnFailure 
} 
Solve{ 
 Coupled (Iterations=20) {Poisson } 
 Coupled (Iterations=20) {Poisson Electron Hole} 
 Quasistationary( InitialStep=0.01 Increment=1.5 MinStep=1e-4 
MaxStep=0.1 Goal{Name="drain" Voltage=0.5} ){ Coupled{ Poisson Electron 
Hole}} 
 Save(FilePrefix="Bias") 
 
 Load(FilePrefix="Bias") 
 Transient(  
  InitialTime=0  
  FinalTime=0.95e-9  
  InitialStep=1e-13  
  MaxStep=1e-10  
  Increment=1.2)  
  { 
   Coupled{Poisson Electron Hole}  
   Plot (Time=(0.001e-9) FilePrefix="SE_DataA" NoOverwrite) 
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  } 
 Transient(  
  InitialTime=0.95e-9  
  FinalTime=2.0e-9  
  InitialStep=1e-13  
  MaxStep=1e-10  
  Increment=1.2)  
  { 
   Coupled{Poisson Electron Hole}  
   Plot (Time=(0.999e-9;1.0e-9;1.05e-9;1.1e-9;1.15e-9;1.2e-
9;1.3e-9;1.4e-9;1.5e-9;1.6e-9;1.7e-9;1.8e-9) FilePrefix="SE_DataB" 
NoOverwrite) 
  }  
 Transient(  
  InitialTime=2.0e-9  
  FinalTime=30e-9  
  InitialStep=1e-12  
  MaxStep=2e-10  
  Increment=1.2)  
  { 
   Coupled{Poisson Electron Hole} 
   Plot (Time=(2.1e-9;3.0e-9;4.0e-9;5.0e-9;6e-9;7e-9;8e-9;9e-
9;10e-9;12e-9;14e-9;16e-9;20e-9) FilePrefix="SE_DataC" NoOverwrite) 
  } 
} 
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