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      Chapter I 

 Introduction 

Focus 

Circadian clocks are endogenous timing mechanisms that allow 

organisms to anticipate daily changes in the environment, and they are found in a 

wide range of organisms including prokaryotic cyanobacteria.  Cyanobacterial 

circadian clock is the simplest circadian machinery that has been discovered and 

comprehensively studied. To answer the question why circadian clocks are 

important, studies from Johnson lab conducted competition experiments between 

cyanobacterial strains with a functioning clock and strains with a disrupted clock 

or a clock with non-24-hour free running periods (Ouyang et al, 1998; Woelfle et 

al., 2004). When these strains were co-cultured under light-dark cycles, the one 

with a functioning clock rapidly out-competed the others, which clearly 

demonstrates the adaptive significance of circadian clocks. The underlying 

mechanism of the clock-mediated fitness enhancement, however, is still unclear. 

In the first part of this dissertation, experiments designed to uncover the potential 

mechanisms are described (Chapter II). Additionally, we unexpectedly found that 

the fitness of cyanobacteria was reduced at low temperatures when its circadian 

rhythms were enhanced by optimizing the codon of kaiBC genes, indicating that 

the “conditional” suppression of circadian clocks can be another way to enhance 

fitness (Xu et al., 2013).  
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Chapter III is an extension of Chapter II, where a novel hypothesis about 

the relationship between metabolism and circadian clocks is proposed and 

tested. I propose that the disruption of circadian clocks alters the metabolism 

under light-dark cycles, and that this altered metabolism contributes to the 

competition results. To test this hypothesis, the metabolic profiles of the wild-type 

cyanobacterium and the arrhythmic mutants were established and compared, 

and this hypothesis is supported by preliminary results (Chapter III).  

Following the work done in cyanobacteria, Chapter IV focuses on 

answering another question: are there any other bacteria possessing a circadian 

clock?  To address this question, a purple non-sulfur bacterium containing 

cyanobacterial circadian clock genes is investigated. This study revealed that this 

purple bacterium has a timing mechanism, and that this timing mechanism 

confers adaptive value under light-dark cycles.   

Circadian rhythms 

Circadian rhythms are found in a wide range of organisms from bacteria to 

mammals. They are usually defined by three criteria. First, they are endogenous, 

self-sustainable oscillations with the free running period (FRP) of around 24 

hours, which means circadian rhythms persist even under constant conditions; 

second, they can be entrained by environmental cues; third, circadian rhythms 

are temperature-compensated within the physiological temperature ranges 

(Edmunds, 1983; Pittendrigh, 1981; Dunlap et al., 2004; Koukkari and Southern, 

2006).  
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It was believed for a long time that prokaryotic organisms were incapable 

of generating circadian rhythms due to the short doubling time and lack of 

nuclear structures (Edmunds, 1983; Kippert, 1987). However, in 1986, 

endogenous rhythms of nitrogen fixation and photosynthesis were discovered in 

the cyanobacterial species Synechococcus RF-1 (Grobbelaar et al., 1986; Mitsui, 

1986), which showed the existence of circadian rhythms in prokaryotes for the 

first time. Later on, benefiting from the available genetic tools, another 

cyanobacterial species, Synechococcus elongatus PCC 7942 (S. elongatus), 

was comprehensively studied as the model organism for circadian research 

(Golden, 1988; Golden et al., 1987; Kondo et al., 1993; Kondo et al., 1994). By 

introducing luminescence reporters to the genome, scientists monitored the gene 

expressions in S. elongatus and isolated several mutants that display altered 

circadian rhythms (Kondo et al., 1994), leading to the identification of core clock 

genes in S. elongatus (Ishiura, 1998). These pioneer studies established the 

foundation for circadian research in prokaryotic organisms, and they also opened 

the window for scientists to experimentally test the adaptive value of circadian 

clocks.  

Cyanobacterial circadian clock 

Circadian clocks are the endogenous timing mechanisms generating 
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circadian rhythms. At the molecular level, a circadian system is composed of 

three basic elements: a central clock, an input pathway and an output pathway. 

The central clock is the core machinery connecting to the input and the output 

pathway. By receiving environmental signals from the input pathway, it can be 

entrained and then transmits the temporal information to the output pathway. The 

output pathway acts like a “hand” by which the downstream activities are 

regulated temporally (Ditty and Mackey, 2009).   

In S. elongatus, the central clock is built up on the activities of three 

proteins, KaiA, KaiB and KaiC (Ishiura, 1998) (Fig.1.1). Deletions or mutations of 

any of these kai genes render the cells to be arrhythmic or alter their FRPs 

(Kondo et al., 1993; Ishiura, 1998). Among the Kai proteins, KaiC is the central 

Figure 1.1 Simplified model for the S. elongatus PCC 7942 circadian clock. It includes 

the three conceptual designations for the circadian clock (the input pathway, the central 

clock, the output pathway), along with known S. elongatus genes involved in each pathway.  
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component with autokinase, autophosphatase and ATPase activities (Iwasaki et 

al., 2002; Kitayama et al., 2003; Nishiwaki, 2000; Xu et al., 2003; Terauchi et al., 

2007). KaiA promotes the phosphorylation of KaiC, while KaiB antagonizes the 

action of KaiA (Johnson et al., 2008). For a long time the phosphorylation 

rhythms of KaiC are thought to be the basis of the circadian clock of S. 

elongatus, whereas some recent studies revealed that the ATPase activity of 

KaiC also plays an essential role in determining the timing for circadian clocks 

(Terauchi et al., 2007; Kitayama et al, 2013).  

In the input pathway, three genes have been identified (Fig.1.1). LdpA 

senses the changes in the redox state of the cell as changes in light quantity 

(Ivleva et al., 2005), and Pex binds to the negative regulator sequence in the 

promoter of kaiA and is likely to repress the expression of kaiA (Arita et al., 

2007). CikA is involved in the phase resetting in response to light or dark pulses 

(Schmitz et al., 2000). Recently, Gutu et al. (2013) reported that CikA 

dephosphorylates an output pathway protein, RpaA, indicating that cikA also 

plays a role in the output pathway. In the output pathway, sasA, rpaA and labA 

have been identified (Fig.1.1). SasA interacts with KaiC and then transfers its 

phosphoryl group to RpaA which regulates the global gene expressions (Smith 

and Williams, 2006; Takai et al., 2006; Markson et al., 2013). LabA is likely to 

function as a repressor of the activity of KaiC and RpaA (Taniguchi et al., 2007). 

In addition to these genes, it is likely that there are more genes participating in 

the circadian system. Identification of novel clock genes will help us understand 

the circadian mechanism and its evolutionary significance better. 
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The adaptive value of circadian clocks 

It is believed that circadian clocks are evolved as an adaptation to the 

daily cycles of light and temperature driven by the rotation of the earth. To 

understand the adaptive value of circadian clocks, two questions have to be 

answered. First, what is the advantage of having a circadian clock? Second, is 

the circadian clock still adaptive under constant conditions or under non-24-hour 

cycles (Woelfle and Johnson, 2009)? 

The most popular approach used by chronobiologists to address these 

questions is experimental manipulation of traits and/or ecology (Vaze and 

Sharma, 2013). By this approach, fitness is often measured by survival rates, 

longevity and growth rates. For instance, when the circadian system of 

chipmunks was disrupted by suprachiasmatic nucleus (SCN) lesion, their survival 

rates in the wild were significantly decreased, comparing to the chipmunks with 

intact circadian systems (DeCoursey et al., 2000). Studies of Drosophila 

melanogaster showed that the life span of the flies with altered circadian period 

was significantly reduced by up to 15% (Klarsfeld and Rouyer, 1998) and that the 

disruption of the circadian system also affected sperm production in males 

(Beaver et al., 2002). Besides manipulating circadian phenotypes, the adaptive 

value of circadian clocks was also confirmed by changing the light-dark (LD) 

cycles. Hillman (1960) reported that the growth rates of plants were reduced 

when they were grown under constant light (LL) conditions instead of under LD 

conditions. Moreover, when plants were reared under non-24-hour LD cycles, 
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their growth rates were also decreased, comparing to the growth rates under 24-

hour LD cycles (Highkin and Hanson, 1954; Went, 1960).  

In addition, many other approaches were employed to demonstrate the 

adaptive significance of circadian systems. For instance, some scientists study 

the correlation between trait and ecological/environmental variables (Vaze and 

Sharma, 2013), which mainly involves in investigations in constant environments, 

e.g., caves where it is constantly dark and arctic areas. In these environments, 

organisms that do not display circadian rhythms are found (Vaze and Sharma, 

2013), indicating that circadian clocks may be not needed in these conditions. 

Moreover, by comparative analysis, researchers found that circadian clocks are 

not only present in numerous unrelated organisms, but also encoded by different 

genes (Bell-Pedersen et al., 2005; Vaze and Sharma, 2013), indicating that 

circadian clocks in different species are evolved convergently. Convergent 

evolution is a strong evidence of natural selection (Endler, 1986; Larson and 

Losos, 1996), thus supporting the idea that circadian clocks are adaptive.  

Examples described here are only a small portion of the numerous studies 

targeted to illustrate the adaptive value of circadian clocks. However, among all 

of these studies, few of them have directly tested the relationship of the circadian 

clock and fitness. In evolutionary theory, “fitness” is defined as the capability that 

a genotype can be passed to the next generation, in other words, the ability of 

reproducing (Futuyma, 1998). Neither the surviving rates of the chipmunks nor 

the growth rates of plants can be considered as the measure of “fitness.” To 
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compare the fitness, multiple generations have to be tested and the productive 

ability has to be assessed, which is time-consuming and difficult to do in higher 

organisms. Fortunately, this problem was solved by studying the cyanobacterial 

circadian clock. Cyanobacteria reproduce asexually, and their doubling time is 

relatively shorter, thus allowing us to measure their reproduction in relatively 

short period. Since 1998, the Johnson group has conducted a series of 

competition experiments (Ouyang et al, 1998; Woelfle et al., 2004) to directly test 

the adaptive significance of circadian clocks in cyanobacteria. We will discuss 

them with more detail in the next section and Chapter II.  

Testing the adaptive value of circadian clocks in cyanobacteria 

The work done by Johnson’s group has proved that S. elongatus can be 

used as a practical model system to test the adaptive value of circadian clocks 

(Ouyang et al, 1998; Woelfle et al., 2004).  In 1998, Ouyang et al. addressed the 

adaptive significance of the circadian clock by competing the wild-type strain with 

period-altered mutants. When the period-altered mutants and the wild type were 

cultured separately under either LL conditions or LD cycles, no significant 

difference in their growth rates was observed. However, when the short-period 

mutant (C22a) was co-cultured with the wild type under LD 11:11, the wild type 

was defeated by C22a. Similarly, when the long-period mutant (C28a) and wild 

type were co-cultured under LD15:15, the wild type was out-competed by C28a. 

Moreover, when C22a and C28a were co-cultured, C22a won under LD11:11 and 

C28a won under LD15:15. In contrast, the fraction of each strain in the co-
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cultures remained the same as the initial fraction when they were grown under a 

non-selective LL condition. This result indicated that the strain whose FRP was 

nearest to the environmental period was the most fit under selective conditions 

(co-culture and LD cycles) (Ouyang et al, 1998). In 2004, Woelfle et al. did 

another series of competition experiments between the clock-knockout strains 

and the wild type.  This work showed that the wild-type strain out-competed the 

clock mutants when they were co-cultured under LD 12:12 cycles (selective 

condition), but not under LL conditions or in pure cultures, suggesting that the 

circadian clock confers adaptive value in cyanobacteria under cyclic conditions. 

Interestingly, when the clock mutant (CLAb) was co-cultured with the wild type 

under LL, the proportion of CLAb increased significantly from its starting 

proportion, suggesting that the clock might be a liability for cyanobacteria under 

constant conditions (Woelfle et al., 2004).   

These two studies clearly demonstrated that the circadian clock confers 

an adaptive value in cyanobacteria when the period of the biological rhythms 

“resonate” with the period of environmental rhythms, nevertheless, the 

mechanism of the clock-mediated fitness enhancement remains elusive. Ouyang 

et al. proposed that the potential mechanisms might be either the competition for 

limiting resources, or some secreted inhibitors regulated by the circadian clock 

(Ouyang et al, 1998). Besides, a cell-to-cell communication model was also 

proposed by Woelfle et al. (Woelfle and Johnson, 2009). Although there are a 

number of hypotheses proposed, none of them has been tested rigorously. In 

Chapter II, I will report experiments that have been done to test these models 
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and their significance for future studies.  

Circadian clocks and metabolism 

In the last decade, many studies have been done to describe the 

relationship between circadian clocks and metabolism, mainly because of the 

increasing population with metabolic disorders. On one hand, circadian clocks 

regulate metabolism. For instance, in mice and humans, the blood pressure, 

body temperatures and many other metabolic events are regulated by circadian 

clocks. In plants, circadian clocks control the secretion of selected hormones 

involved in the defense against herbivores (Goodspeed et al., 2012). On the 

other hand, metabolism can also affect circadian clocks. For example, Stokkan et 

al. (2001) reported that circadian clocks in rat liver can be entrained by feeding at 

different times. Taken together, these studies suggest that the circadian clock and 

metabolism can form an autoregulatory feedback network. 

For cyanobacteria, light plays an essential role in many of their 

physiological activities, including photosynthesis and the entrainment of circadian 

clocks, therefore we would expect the link between metabolism and circadian 

clocks to be particularly important in cyanobacteria. Unlike plants or many other 

organisms in which the light is sensed through photoreceptors (Liu, 2003; Millar, 

2003), the cyanobacterial circadian clock appears to receive the entraining 

information directly from its metabolic processes (Rust et al., 2011; Ivleva et al., 

2006; Kim et al., 2013; Pattanayak and Rust, 2014). In S. elongatus, the clock 

gene cikA is a key factor bridging the metabolic status and the circadian clock 
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(Ivleva et al., 2006). It senses the redox state of the plastoquinone pools which 

are the molecules involved in the electron transport chain in light reactions of 

photosynthesis, and through this process CikA is able to reset the phase of 

circadian rhythms by affecting the phosphorylation status of KaiC (Ivleva et al., 

2006). In addition, the ATP/ADP ratio, which is one of fundamental factors 

determining the timing of the circadian clock, can also be altered by changing the 

light conditions, indicating the regulation of metabolism on the circadian clock 

(Rust et al., 2011). Kim et al. (2012) proposed that the redox state of quinone and 

the ATP/ADP ratio in the cell could work together to reset the phase of the clock, 

suggesting the importance of the coupling of circadian clocks and metabolism. 

With these lines of evidence, it is clear that circadian clocks and 

metabolism are associated. However, several questions need to be answered.  

First, what is the global picture of metabolism under LD cycles and under LL 

conditions? Previous studies showed that gene expression of S. elongatus 

oscillate under both LD cycles and constant conditions (Liu et al., 1995; Ito et al., 

2009). Will the level of metabolites also oscillate under these conditions? Given 

the fact that light plays a dominant role for photosynthesis, we would expect that 

metabolites show oscillations under LD cycles. But what about the metabolism 

under constant conditions? Second, will altering the clock phenotypes change 

the global picture of metabolism? For example, we would like to know if the 

metabolites of arrhythmic mutants oscillate the same way as the wild type under 

LD cycles. If not, do these different metabolic profiles contribute to the results of 

the competition experiments that we used to test the adaptive value of circadian 
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clocks? Some preliminary results addressing these questions will be described in 

Chapter III, which will provide direct evidence illustrating the connection between 

circadian clocks and metabolism. 

KaiC in other prokaryotic organisms 

As the circadian clock of S. elongatus is comprehensively investigated, 

another question arises: is this KaiABC-driven circadian clock a universal timing 

mechanism for prokaryotic organisms? To answer this question, we should first 

examine the prevalence of kaiABC genes in the eubacterial and archaeal 

domains. A bioinformatics study suggested that homologs of kaiC not only exist 

in almost all of the cyanobacteria, but also are present in archaea and many 

eubacteria (Dvornyk et al., 2003). In contrast, kaiA is only identified among 

cyanobacteria, whereas the distribution of kaiB is similar to kaiC (Dvornyk et al., 

2003). A few studies have shown that some other cyanobacterial species 

possess kai clock genes that are homologous to those found in S. elongatus. For 

instance, Synechocystis sp. PCC 6803 is a freshwater cyanobacterium 

containing three kaiC, two kaiB and one kaiA, and 2-9% of the genes are 

regulated by its circadian clock (Kucho et al., 2005). In addition, circadian 

regulation by kaiABC genes is also reported in the filamentous cyanobacterium 

Anabaena sp. Strain PCC 7120, and this regulation happens in both vegetative 

cells and heterocysts (Kushige et al., 2013). On the other hand, not all of the 

cyanobacteria have all three kai genes. The marine cyanobacterium 

Prochlorococcus, for example, is thought to possesses an hour glass instead of a 
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circadian clock (Holtzendorff et al., 2008; Axmann et al., 2009). This might not be 

surprising because no kaiA is found in this cyanobacterium, and some features of 

the secondary structure of proKaiC may also prevent the formation of a self-

sustainable timing mechanism in Prochlorococcus (Holtzendorff et al., 2008; 

Axmann et al., 2009; Axmann et al., 2014). 

Although the study of circadian clocks has been intensively conducted in 

cyanobacteria, little is known about the timing mechanisms, if any, in other 

bacteria and archaea. Among the bacteria possessing kaiC homologs, the KaiC 

of some purple non-sulfur bacteria (PNSB) share a high similarity with one of the 

KaiC in Synechocystis sp. PCC 6803 (Dvornyk et al., 2003), suggesting the 

possibility that PNSB are able to generate circadian rhythms. Indeed, it was 

reported that one of the PNSB, Rhodospirillum rubrum, displayed 12-h rhythms in 

its uptake hydrogenase activity (Praag et al., 2000), and another PNSB, 

Rhodobacter sphaeroides, was also reported to show some oscillations in its 

luminescence reporter activity (Min et al., 2005). However, the authors in these 

two studies could not prove whether these oscillations were circadian or not. 

Furthermore, none of these two studies provided any evidence showing that 

these observed oscillations were under the control of kaiC or some other timing 

mechanisms. Therefore the function of kaiC and putative timing mechanisms are 

still a puzzle in these bacteria.  

KaiC in the purple non-sulfur bacterium Rhodopseudomonas palustris 

To understand the role of kaiC in other bacteria and to explore the 
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possible timing mechanisms driven by kaiC, the first step would be to find a 

suitable candidate for this study. This candidate should fulfill several criteria: first, 

it must have kaiC homologs in the genome; second, genetic tools must be 

available in order to construct loss-of-function mutants; third, it must perform 

some physiological activities that are easy to measure (or it can be transformed 

with reporters); fourth, it should be able to survive when isolated from a cyclic 

environment.  

One candidate that satisfies all of these criteria is Rhodopseudomonas 

palustris (R. palustris). As a member of the PNSB group, R. palustris was 

recently considered as a model organism for bacterial communication study 

(Schaefer et al., 2008) as well as for bioenergy production (McKinlay et al., 

2010). It is an anoxygenic photosynthetic bacterium that belongs to the alpha 

proteobacteria (Larimer et al., 2004). Although it performs photosynthesis, it has 

a much more complicated metabolism than cyanobacteria (Fig. 1.2). R.palustris 

adapts to different environments by switching among four different metabolic 

modes: photoautotrophic, photoheterotrophic, chemoheterotrophic and 

chemoautotrophic. In the absence of O2, R.palustris can grow 

photoautotrophically by using CO2 as the carbon source, or grow 

photoheterotrophically by using organic carbon sources. When it is exposed to 

O2, it can rapidly shut down photosynthetic systems and switch its energy and 

carbon source to organic compounds (chemoheterotrophical), or to inorganic 

compounds and CO2 (chemoautotrophical) (Larimer et al., 2004). Apparently the 

highly versatile metabolic system provides R.palustris a huge advantage that 
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allows it to adapt to various conditions. Most importantly to a chronobiologist, R. 

palustris harbors kaiB and kaiC homologs (kaiBRp and kaiCRp, respectively). 

Studies in cyanobacteria show that the kaiABC-driven circadian clocks confers 

adaptive value under cyclic conditions (Ouyang et al., 1998; Woelfle et al., 2004), 

so it would be interesting to know how kaiBRp and kaiCRp function in R. palustris, 

and how their function contributes to its fitness. Moreover, R. palustris fixes 

nitrogen, which is easy to measure by well-established methods, and lots of 

genetic tools can be applied to it to perform DNA manipulation. The strain that I 

used in this study (Chapter IV) is Rhodopseduomonas palustris strain TIE-1, and 

it is recently isolated from a fresh water mat at Woods Hole, MA (Jiao et al., 

Figure 1.2 Overview of the physiology of R. palustris (Larimer et al., 2004). Schematic 

representations of the four types of metabolism that support its growth are shown. The 

multicolored circle in each cell represents the enzymatic reactions of central metabolism. 

Figure is from Larimer et al., 2004.  
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2005). In chapter IV, I will report the first study focusing on understanding the 

role of kaiC in R. palustris.  

Nitrogen fixation  

Nitrogen is an essential element for almost all of the organisms on the 

earth to build biomass and conduct biological activities. However, nitrogen gas in 

the air, the main source of nitrogen, is relatively inert. Organisms cannot utilize it 

until it is converted into ammonia, and the conversion from nitrogen to ammonia 

is known as nitrogen fixation (Wagner, 2011). Cyanobacteria and purple bacteria 

are among the major organisms that can perform nitrogen fixation. These small 

organisms express nitrogenases in their cells to catalyze the nitrogen fixation 

reaction, which initiates nitrogen cycles in the global ecosystem. And then the 

fixed nitrogen is available to plants and other organisms in the ecosystem as 

ammonium (Wagner, 2011).  

For chronobiology researchers, nitrogen fixation is not only an essential 

biological activity, but was also the key that opened the door of circadian 

research in cyanobacteria. For a long time, scientists believed that prokaryotes 

are unlikely to have circadian clocks because of the short doubling time and lack 

of nuclear structures (Edmunds, 1983; Kippert, 1987). However, daily rhythms of 

nitrogen fixation was discovered when researchers studied the nitrogenase 

activities in cyanobacterium Synechococcus RF-1 (Grobbelaar et al., 1986), 

which soon brought attention from chronobiologists and led to the discovery of 

the first circadian clock in prokaryotic cyanobacteria.  
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Because of the important role that nitrogen fixation plays in agriculture and 

ecosystems, scientists have dedicated a lot of their effort to establish an accurate 

and convenient method to monitor nitrogen fixation activities. Previously, isotopes 

were mainly involved in the measurements of nitrogen fixation (Hardy et al., 

1968). These measurements, however, are either relatively insensitive or limited 

by the short half-life of 13N (~10min) (Hardy et al., 1968). After carefully studying 

the biochemical properties of nitrogenase, scientists found that nitrogenase is 

actually a versatile reductase (Hardy and Burns, 1968; Hardy and Knight, 1967), 

and that its activity can be measured by a parallel reaction catalyzed by 

nitrogenase (Dilworth, 1966; Hardy and Knight, 1967; Hardy et al., 1968). This 

parallel reaction is the well-known acetylene reduction assay.  

The principle of measuring nitrogen fixation activity by the acetylene 

reduction assay is based on these two reactions catalyzed by nitrogenase: 

N2 + 8H+ + 8e- -> 2NH3 + H2 

C2H2 (acetylene) + 2H+ + 2e- -> C2H4 (ethylene) 

In the natural environment, bacteria express nitrogenase to fix nitrogen 

absorbed in the cells. Researchers found that acetylene can also be reduced to 

ethylene by nitrogenase when acetylene was incubated with the cell extracts of 

Clostridium pasteurianum (Dilworth, 1966), and that these two reactions are 

analogous, thus suggesting that the activity of nitrogenase can be represented by 

the reduction rates of acetylene (Dilworth, 1966; Hardy and Knight, 1967; Hardy 
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et al., 1968). In 1967, Hardy and Knight proposed that the amount of C2H2 and 

C2H4 could be quantified by hydrogen flame ionization after gas chromatography 

(Hardy and Knight, 1967; Hardy et al., 1968), which established the first sensitive 

assay for nitrogen fixation.  

After so many years, the acetylene reduction assay has been tested by 

numerous studies and is widely applied to scientific research. When nitrogen 

fixation was tested in cyanobacterium Synechococcus RF-1 in 1986, acetylene 

was added to the headspace of the cell cultures and the reduction rates were 

quantified by gas-chromatography mass-spectrometry (GC-MS) with a flame 

ionization detector (Grobbelaar et al., 1986). Circadian rhythms of this 

cyanobacterium were discovered for the first time. In Chapter IV, the same 

protocol was used to test if the nitrogen fixation of R. palustris shows circadian 

rhythms or not.  

As introduced in the first paragraph of this chapter, my thesis work has 

focused upon exploring the underlying mechanism of the clock-mediated fitness 

enhancement and investigating the occurrence of clocks or other putative timing 

mechanisms in prokaryotes. Currently, our knowledge of timing keeping 

mechanisms in prokaryotes is only limited in cyanobacteria, and little is known 

about the function of kai genes in other bacteria. By studying the function of kaiC 

in R. palustris and comparing cyanobacterial timing system with the timing 

system of purple bacteria, I hope my work can bring some insights and more 

attention to this field.  
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Chapter II * 

An Evolutionary Fitness Enhancement Conferred by the Circadian 

System in Cyanobacteria 

Abstract 

Circadian clocks are found in a wide variety of organisms from 

cyanobacteria to mammals. Many believe that the circadian clock system 

evolved as an adaption to the daily cycles in light and temperature driven by the 

rotation of the earth. Studies on the cyanobacterium, Synechococcus elongatus 

PCC 7942, have confirmed that the circadian clock in resonance with 

environmental cycles confers an adaptive advantage to cyanobacterial strains 

with different clock properties when grown in competition under light-dark cycles. 

The results thus far suggest that in a cyclic environment, the cyanobacterial 

strains whose free running periods are closest to the environmental period are 

the most fit and the strains lacking a functional circadian clock are at a 

competitive disadvantage relative to strains with a functional clock. In contrast, 

the circadian system provides little or no advantage to cyanobacteria grown in 

competition in constant light. In addition, a recent study further confirmed the 

adaptive value of circadian clock in cyanobacteria under some-but not the all- 

envrionmental conditions by studying the non-optimal codon usage of clock 

genes. 

*This chapter is modified from Ma et al., 2013. 
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To explain the potential mechanism of this clock-mediated enhancement 

in fitness in cyanobacteria, several models have been proposed; these include 

the limiting resource model, the diffusible inhibitor model and the cell-to-cell 

communication model. None of these models have been excluded by the 

currently available experimental data and the mechanistic basis of clock-

mediated fitness enhancement remains elusive. 

Introduction 

Circadian clocks are endogenous timing mechanisms that function to 

regulate a variety of cellular, metabolic and behavioral activities over the course 

of the day-night cycle. Circadian systems allow organisms to anticipate daily 

changes in environmental signals such as light and temperature. Regulated by 

circadian clocks, organisms sustain roughly 24-hour rhythms even in the 

absence of environmental timing cues, and these clock-driven rhythms sustain 

stable free-running periods (FRPs) within the physiologically optimal temperature 

range (Johnson, 2004; Edmunds, 1983). 

Circadian clocks have been found in a broad range of organisms from 

cyanobacteria to mammals. Given their ubiquity, circadian clocks are considered 

to be an evolutionary adaptation that enhances the fitness of organisms 

possessing them (Woelfle and Johnson, 2009). For instance, chipmunks with 

disrupted circadian clocks were more susceptible to predation in the wild than 

those with intact circadian systems. Ecological observations suggested that the 

nighttime restlessness of the arrhythmic chipmunks resulted in elevated detection 
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rates by predators (DeCoursey et al., 2000). Studies of Drosophila melanogaster 

showed that the life span of flies with altered circadian periods was significantly 

reduced by up to 15% (Klarsfeld and Rouyer, 1998), and that the disruption of 

the circadian clock also reduced sperm production in males (Beaver et al., 2002). 

Furthermore, Arabidopsis strains lacking a circadian clock showed lower viability, 

less carbon fixation and slower photosynthesis rates than wild-type strains (Dodd 

et al., 2005; Green et al., 2002). Moreover, Arabidopsis is more resistant to 

herbivory when plants were entrained in the same phase as the herbivores, 

indicating that the circadian system in Arabidopsis assists in defending against 

herbivory (Goodspeed et al., 2012). 

Although these studies demonstrate that circadian regulation of cellular, 

metabolic and behavioral events is beneficial, few studies have rigorously tested 

the adaptive value of circadian clocks in terms of their contribution to fitness and 

adaptation. Fitness primarily describes reproductive success (Futuyma, 1998), 

whereas longevity, growth and development are secondary factors affecting the 

fitness of an organism. An adaptation is an acquired feature as a result of natural 

selection that enhances the fitness of an organism under certain selective 

pressures (Futuyma, 1998). An adaptation can only be presumed to be adaptive 

when it first emerges (Johnson, 2005). In the process of evolution, the adaptation 

may retain an “extrinsic” value only if the selective pressure remains. 

Alternatively, the adaptation may acquire an “intrinsic” value by becoming 

integrated with other processes. In this case, even if the original adaptation 

persists in the absence of the selective pressures, it is no longer considered to 
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be an adaptation (Futuyma, 1998). In order to fully test the adaptive value of 

circadian clocks, two questions must be addressed. Does the presence of a 

circadian clock (i) enhance the fitness and (ii) if so, is the adaptive value 

conferred by the circadian clock intrinsic or extrinsic (Woelfle and Johnson, 

2009)? To date, most studies have only partially or indirectly addressed these 

questions. Furthermore, little if any research has addressed the potential 

mechanisms by which circadian clocks mediate fitness enhancement.  

The cyanobacterium, Synechococcus elongatus PCC 7942 (S. elongatus) 

is an ideal model system to address these questions for several reasons (Woelfle 

and Johnson, 2009; Woelfle et al., 2004; Ouyang et al., 1998). First, the central 

clock mechanism is relatively simple; the core circadian clock in S. elongatus is 

composed of three proteins (KaiA, KaiB, and KaiC) that are encoded by the 

genes, kaiA, kaiB and kaiC (Ishiura et al., 1998) and a number of clock mutants 

have been generated (Kondo et al., 1994). Among these mutants are those with 

short and long periods as well as arrhythmic mutants. These mutant strains allow 

us to test the adaptive value of the cyanobacterial circadian clock by directly 

comparing them to the wild-type strain under different growth conditions. Second, 

S. elongatus reproduces asexually by binary fission and therefore growth rates 

are a direct measurement of fitness (Johnson, 2005). Third, the growth 

conditions of S. elongatus are relatively simple and therefore laboratory 

conditions can approximate the relevant features of natural conditions. Fourth, 

S.elongatus can grow in either constant light or in light/dark cycles, thus the 

extrinsic versus intrinsic adaptive value can be determined by artificially 
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introducing or removing selective pressures (Woelfle and Johnson, 2009). 

Finally, S. elongatus represents one of the most evolutionarily ancient organisms 

possessing a circadian system; therefore, elucidating the mechanisms of clock-

mediated adaptation in this species could help us understand the selective 

pressures that may have led to the evolution of circadian clocks.  

Although there are many advantages of S. elongatus for testing the 

adaptive value of circadian clocks, some limitations are unavoidable. On the one 

hand, cyanobacteria are the only prokaryotic organisms in which circadian clocks 

have been conclusively identified, so that whether circadian clocks are prevalent 

in bacterial and archaea domains is still a question. Therefore, even if its 

circadian clock confers an adaptive value for cyanobacteria, this is not sufficient 

to prove the adaptive significance of circadian clocks in other eukaryotic 

organisms. On the other hand, for organisms that propagate by sexual 

reproduction, the fitness enhancement by clocks is probably much more 

complicated, and many other physiological processes may be involved. Studying 

the clock-mediated fitness enhancement in S. elongatus may not be able to 

provide many insights to these organisms.  Regardless of these limitations, S. 

elongatus is still one of the best model organisms that can be used for circadian 

research and for testing the adaptive significance of circadian clocks, as has 

already been proved in some pioneer studies (Ouyang et al., 1998; Woelfle et al., 

2004).  
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In this chapter, the work that has been done to test the adaptive value of 

the circadian clock in S. elongatus will be described and the possible 

mechanisms that might explain how the cyanobacterial circadian system exerts 

its influence on overall fitness will be discussed.  

Testing the Adaptive Value of the Circadian Clock in Cyanobacteria 

The adaptive value of circadian clocks in cyanobacteria was tested by 

using growth in competition between the wild-type S. elongatus and several 

different clock mutant strains (Woelfle and Johnson, 2009; Woelfle et al., 2004; 

Ouyang et al., 1998). These clock mutants are due to point mutations in the kaiA, 

kaiB or kaiC genes respectively, resulting in altered clock properties such as 

arrhythmicity, or rhythmicity that exhibits FRPs that are longer or shorter than the 

wild-type value of ~24.5 hours (Kondo et al, 1994). In pure cultures, neither these 

mutant strains nor the wild-type strain have growth rates that are significantly 

different from each other in constant light (LL) or in light/dark (LD) cycles (Woelfle 

et al., 2004; Ouyang et al., 1998). This observation does not exclude the 

possibility that the circadian clock system enhances fitness in cyanobacteria; 

however the adaptive value may only be detectable under some selective 

circumstances such as competition. For this reason, competition experiments 

were designed to assess the reproductive fitness of the wild-type strain (WT) and 

the clock mutant strains under controlled environmental conditions (Fig.2.1) 

(Woelfle and Johnson, 2009; Woelfle et al., 2004; Ouyang et al., 1998). In these 
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Figure 2.1 Competition experiment between S.elongatus strains with different 
clock phenotypes. The clock phenotypes of two strains, A and B, are shown as 
luminescence rhythms that report the promoter activity of psbAI. Strains A and B are 
resistant to different antibiotics such that their fractions in mixed cultures can be tracked 
by plating on selective media. Pure cultures of A and B were set up under LL, and when 
they reached log phase, equal numbers of A and B cells were mixed and cultured under 
different LD cycles or LL condition. Aliquots were taken from the mixed cultures every ~8 
generations in LD and every ~16 generations in LL, and they were plated on selective 
media to count the number of colony-forming units (CFU) of each strain. Meanwhile, the 
mixed culture was diluted into fresh medium and grown for another ~8 generations (LD) 
and ~16 generations (LL). This process was repeated for 4 cycles to allow cells to grow 
for 40-50 generations. The fraction of each strain in the mixed culture was calculated by 
the number of colonies of each strain growing on selective media. Circadian phenotypes 
were confirmed by monitoring the luminescence rhythms of colonies of each strain at 
different sampling times. Figure modified from Woelfle and Johnson, 2009. 
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experiments, two cyanobacterial strains with different clock phenotypes were 

mixed and grown together in either constant light or in light/dark cycles and the 

composition of these mixed cultures was assayed over time as a test of 

reproductive fitness.  

       For example, to test whether the circadian clock enhances reproductive 

fitness in cyanobacteria, competition experiments were conducted between the 

WT strain with a FRP of approximately 24-25 hours and an arrhythmic mutant 

(CLAb) whose circadian clock was disrupted by a point mutation (G460E) in the 

kaiC gene (Fig.2.2A) (Woelfle et al., 2004; Ishiura et al., 1998; Kondo et al., 

1994). In LD 12:12 (12 hours of light followed by 12 hours of darkness) cycles, 

the WT strain quickly (within 20 generations) became the predominant strain in 

mixed cultures (Fig.2.2B). As a control, the point mutation in CLAb was rescued 

by introducing a wild-type copy of the kaiC gene into the genome. When the 

rescued CLAb strain was grown in competition with the WT strain, the 

proportions of the WT and mutant strain remained approximately equal in the 

mixed cultures over many generations indicating that the reduction in fitness of 

CLAb was due to altered clock properties rather than some other difference in 

the genetic background of the two strains in competition (Woelfle et al., 2004).  

This experiment confirmed that the circadian clock in cyanobacteria 

confers adaptive value in light/dark cycles, but it does not reveal whether this 

adaptive value is an intrinsic or extrinsic property of the clock. If the value is an 

intrinsic property of the clock, one would expect that the WT strain would also
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defeat CLAb when grown in mixed cultures in constant conditions as well as 

when grown together in light/dark cycles. To address this question, the WT and 

arrhythmic strains were co-cultured and grown in constant light condition 

removing the presumed selective pressure of the day-night cycles. Surprisingly 

(at least, to some chronobiologists who favor the intrinsic adaptiveness of 

circadian timekeeping!), the CLAb strain was not only able to successfully 

maintain itself in mixed cultures with WT, but the proportion of CLAb significantly 

increased in these mixed population (p-value=0.01; Fig.2.2B). Additionally, 

competition experiments using the WT strain and a second kaiC mutant CLAc 

(T495A; which expresses a rapidly damped circadian oscillation (Ishiura et al., 

1998; Kondo et al., 1994) yielded similar results. The WT strain once again 

became the predominant strain in mixed cultures in LD cycles, but when grown in 

constant light both strains maintained approximately equal proportions over many 

generations. Interestingly, the CLAc strain was able to remain as a small fraction 

of the mixed-culture even after 30 generations in light/dark cycles, while the 

fraction of the arhythmic CLAb mutant decreased rapidly within 20 generations 

(Fig.2.2B). Because CLAc is able to oscillate for one or two cycles in constant 

conditions (Fig.2.2A), the discrepancy in the competition kinetics may be due to 

the difference in their clock phenotypes, supporting the idea that even limited 

rhythmicity is of benefit to cyanobacteria in LD cycles. Based on these 

observations, it seems that the adaptive value of the circadian clock is of extrinsic 

value to S. elongatus cells rather than intrinsic, and additionally, the data in 
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constant light conditions implies that having a functional clock may not always be 

adaptive under non-selective conditions (e.g., constant light condition). 

 We wanted to determine if a circadian clock that is resonating with the 

environmental cycle confers higher fitness than a clock that is functional, but is 

entrained to the environmental cycle in a non-ideal phase relationship. The 

reproductive fitness for this scenario was tested by competition experiments 

between the WT strain and several mutants with altered FRPs (Ouyang et al., 

1998). In one set of competition experiments, either a kaiB (B22a; R74W) or a 

kaiC mutant (C22a; A87V), both with a FRP of approximately 22 hours (Ishiura et 

al., 1998; Kondo et al., 1994), was grown in mixed cultures with the WT strain. In 

a second set of competition experiments, either a kaiA (A30a; R249H) or a 

different kaiC mutant (C28a; P236S), both with a FRP of 28-30 hours (Ishiura et 

al., 1998; Kondo et al., 1994), was grown in mixed culture with the WT strain 

(Fig.2.3). Neither of these mutants in pure cultures shows a significant difference 

in growth rate as compared to the WT strain either in constant light or in 

light/dark cycles (Woelfle et al., 2004; Ouyang et al., 1998). When the short 

period mutants, B22a or C22a, were grown in mixed cultures with the WT strain 

in LD 11:11 cycles (11 hours of light followed by 11 hours of darkness), the short 

period mutant (either B22a or C22a) out-competed the WT strain (Fig.2.3B, top 

panel). Similarly, both of the long period mutants, A30a and C28a were able to 
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Figure 2.2 Competition of the WT strain with arhythmic strains (Woelfle et al., 
2004). A, phenotypes of three strains used in the competition experiments. The WT 
strain (top) shows circadian rhythms with a ~25 h FRP. CLAb (middle), a clock-disrupted 
kaiC mutant, is arhythmic. Another kaiC mutant, CLAc (bottom), is also ultimately 
arhythmic but initially shows a rapidly damped oscillation. B, competitions between the 
WT strain and arhythmic mutants under LD 12:12 (upper) or LL conditions (lower). Data 
are plotted as the fraction of the mutant strain in mixed cultures (ordinate) versus the 
estimated number of generations (abscissa). Figure modified from Woelfle et al., 2004 
and Woelfle and Johnson, 2009. 
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defeat the WT strain when these strains were co-cultured in LD 15:15 cycles (15 

hours of light followed by 15 hours of darkness) (Fig. 2.3B, bottom panel). 

Conversely, the WT strain was the predominant strain in mixed cultures with 

short period mutants when grown in LD15:15 (Fig.2.3B, bottom panel) or when 

grown in mixed cultures with long period mutants in LD11:11 cycles (Fig. 2.3B, 

upper panel). Our analyses suggested that all of these mutants entrained to the 

LD cycles, but they entrained with different phase relationships relative to WT 

that were based on the difference between their FRP and the period of the LD 

cycle (Ouyang et al., 1998). It appears to be clear from these results that the 

cyanobacterial strain whose circadian clock was optimally entrained to the 

environmental cycle was more fit than the strains whose clock was entrained to 

the LD cycles in non-ideal phase relationships.  

Furthermore, this fitness advantage is not dependent on which clock gene is 

mutated, i.e., kaiA vs. kaiB vs. kaiC (Woelfle et al., 2004). This result indicates 

that the difference in reproductive fitness is due to the clock phenotype itself, 

rather than to a mutation in a particular clock gene. One of the most persuasive 

features of these competition results is that mutants are able to out-compete WT 

when the period of the LD cycle dovetailed better with the mutants’ FRP than 

with WT’s FRP. When the period mutant were competed against the WT strain in 

constant light, the proportions of the WT and clock mutant in the mixed culture 

remained relatively constant, providing additional evidence that the adaptive 

value of the circadian clock is extrinsic rather than intrinsic. In many other cases 
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Figure 2.3 Competition of the WT strain with period-altered mutants under LD 
11:11 and LD 15:15 cycles (Ouyang et al., 1998). A, circadian phenotypes of the WT 
strain and period-altered mutants used in these competition experiments. The short 
period mutants (FRP ~ 22 h) include the kaiB mutant B22a and the kaiC mutant C22a, 
and the long period mutants (FRP ~ 30 h) include the kaiA mutant A30a and the kaiC 
mutant C28a. All strains have a luciferase construct that reports the clock-regulated 
promoter activity of the psbA1 gene by time-dependent luminescence intensity. B, 
competitions between the WT strain and the period-altered mutants under LD 11:11 
cycles (upper) or LD 15:15 cycles (lower). Data are plotted as the fraction of the mutant 
strain in the mixed culture versus the estimated number of generations. Symbols for 
each strain are identified under the abscissa. Figure modified from Ouyang et al., 1998. 
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of tests of adaptive significance, mutant strains are uniformly out-competed by 

WT strains. But these studies of the cyanobacterial clock provide an example 

where mutants can out-compete the WT strain if their particular properties (e.g., 

FRP) resonant better than WT’s with an imposed environmental condition (e.g., 

the period of the environmental light/dark cycle). 

Taken together, the competition experiments between cyanobacteria with 

a normally functioning circadian clock and strains carrying mutations in clock 

genes have demonstrated (i) that the circadian clock enhances the reproductive 

fitness of cyanobacteria in cyclic environments but not in non-cyclic 

environments, and (ii) that this enhancement is the greatest when the period of 

the internal clock closely matches the period of the external cycle so that an ideal 

phase angle is achieved under entrainment (Woelfle et al., 2004; Ouyang et al., 

1998).  

Testing the adaptive value of cyanobacterial circadian clock in continuous 

cultures and on solid medium 

The competition experiments have clearly demonstrated the adaptive value 

of circadian clocks in liquid batch cultures. Cyanobacteria, however, grow under 

many other conditions in its natural environments, e.g., the solid surfaces in soil, 

or in constantly mixed environments such as rivers. To test if circadian clocks 

enhance fitness under these conditions, competition experiments were 

performed on solid agar medium as well as in continuous cultures. As shown in 
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Figure 2.4 Competition experiments on solid agar medium and in continuous 
cultures. A, the competition experiment between the WT and ClAb on BG-11 agar 
plates. The WT cells was mixed with CLAb cells in the ratio of 1:1 and then plated on 
BG-11 agar plates. Cultures were incubated under LD 12:12 cycles or LL conditions. 
The fraction of each strain was quantified on 5th day. B, cell densities monitored in the 
continuous cultures. Red, 50ml cultures; Black, 100ml cultures. C, the fraction of CLAb 
in continuous co-cultures with the WT strain.  
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Fig.2.4A, after the WT was co-cultured with CLAb on agar medium for 5 days, 

the WT dominated the cultures under LD condition but not under LL condition, 

which is consistent with the results in batch cultures. Similarly, in continuous 

cultures where cell densities were relatively low and stable (Fig. 2.4B), CLAb 

was always out-competed by the WT under LD 12:12 cycles, regardless of the 

volume of the cultures (Fig. 2.4C). Altogether, these results suggest that the 

clock-mediated fitness enhancement can be extended to other growth conditions 

and that it is not limited to batch cultures. 

Some cell physiological properties under the competition conditions 

From the competition experiments we conclude that strains with a 

functioning clock out-compete strains without a functioning clock or with non-

ideally entrained clocks in cyclic environments. Nevertheless, some details are 

missing. For instance, the decreasing proportion of the “loser” in mixed cultures 

could be due to much slower growth rates than the “winner,” or it can be the 

consequence of cell death. Understanding these details would help us uncover 

the mechanism of the competition. To address the question if the “loser” is still 

growing, a Yellow Fluorescence Protein (YFP) reporter (Chabot et al., 2007) was 

transformed into the WT such that two strains in mixed cultures can be 

distinguished by fluorescent microscopy and flow cytometry. The YFP strain 

shows yellow fluorescence upon excitation, while strains without YFP display red  
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Figure 2.5 Competition experiments between the WTYFP strain and CLAb. A, flow 
cytometry plot used to quantify the ratio of WTYFP and CLAb in mixed cultures. The x-
axis represents the fluorescence intensity around 650nm (red fluorescence), and the y-
axis represents the fluorescence intensity around 540 nm (yellow fluorescence). Due to 
different fluorescence spectra, WTYFP and CLAb cells were located at different regions 
on the graph. By count the cell numbers through flow cytometer, the ratio of WTYFP and 
CLAb can be quantified in mixed cultures. B, image taken by a fluorescent microscope. 
WTFYP cells show yellow fluorescence due to the expression of yfp, and CLAb cells 
show red fluorescence due to chlorophyll.  C, growth curves of the WT and WTYFP 
strains under LL conditions. D, growth curves of the WT and WTYFP strains under LD 
12:12 cycles. E, fraction of the WTYFP (red) and CLAb (black) in co-cultures under LD 
12:12 cycles quantified by flow cytometry.  
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fluorescence coming from the chlorophyll. These different fluorescence spectra 

can be separated by flow cytometry, which is used for cell counting, as shown in 

Fig. 2.5A. The cell morphology was measured and visualized by using 

fluorescent microscopy, as shown in Fig. 2.5B. No growth defect was observed 

in the YFP strain (Fig. 2.5C&D), and the WTYFP out-competed CLAb under LD 

12:12 cycles (Fig. 2.5E), suggesting that the YFP reporter has no effect on the 

fitness of the WT. The WTYFP was then co-cultured with CLAb under LD 12:12 

condition, and the growth rates of each strain in the mixed cultures were 

measured. As shown in Fig. 2.6A, CLAb kept growing in the first 5 days, but it 

grew significantly slower than the WT. The overall growth of the mixed cultures 

showed no significant difference from the pure cultures (Fig. 2.6B), suggesting 

that only CLAb was impaired by the competition.  

Following the growth experiments, cell lengths of each strain and cell division 

rates were examined in pure and mixed cultures (Fig. 2.6C&D). Interestingly, in 

mixed cultures, the lengths of CLAb cells decreased during the process of 

culturing, and they are significantly shorter than cells in pure cultures after the 5th 

day. Consistently, cell division rates of CLAb were also reduced in mixed 

cultures, whereas in pure cultures both WTYFP and CLAb showed increasing 

division rates on the 3rd day (the exponential phase). Overall, the cell length and 

division rates of WTYFP were not influenced by co-culturing under LD 12:12 

condition, whereas CLAb was weakened by co-culturing. Taken together, these 

results indicate that some of the physiological properties of CLAb  
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Figure 2.6 Dynamics of the competition experiments between WTYFP and CLAb. 
A, growth curves of WTYFP (red) and CLAb (black) in co-cultures under LD 12:12 
cycles. B, growth curves of pure cultures and mixed-cultures under LD 12:12 cycles. 
Red, pure cultures of WTYFP; black, pure cultures of CLAb; green, co-cultures of 
WTYFP and CLAb. C, cell length of each strain in pure cultures or mixed-cultures. D, cell 
division events of each strain in pure cultures or mixed-cultures.  
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were adversely affected by co-culturing with the WT. However, no clear evidence 

showed that CLAb cells were undergoing cell death. Although with a significantly 

slower growth rate, these “losers” could still grow, indicating that the competition 

may be mediated by some growth inhibitors or limiting nutrients.  

Another example: cyanobacterial circadian clock enhances fitness by non-

optimal codon usage 

The competition experiments have clearly demonstrated that the circadian 

clock enhances fitness of cyanobacteria in cyclic environments. Recently, 

another study confirmed the adaptive value of cyanobacterial circadian clock 

from a different perspective by studying the non-optimal codon usage of kaiBC 

genes (Xu et al., 2013). The circadian system regulates nearly all expression of 

the cyanobacterial genome (Liu et al, 1995; Ito et al., 2009), indicating the 

importance of kai genes in these organisms. A general observation from many 

organisms is that genes with high expression levels and functional importance 

are usually encoded by optimized codons (Ikemura, 1981) that have higher 

usage frequencies than other synonymous codons. Thus we might predict that 

kai genes should be encoded by optimized codons. An examination of the codon 

usage of kaiBC genes, however, revealed that the codon usage of kaiBC genes 

is not as translationally efficient as genes with high functional importance, e.g., 

ribosomal genes (Xu et al., 2013). To understand why kaiBC is not encoded by 

optimized codons, cyanobacterial strains expressing optimized codon kaiBC 

(OptkaiBC) were generated by Dr. Yao Xu in the Johnson lab. As predicted, the 



39 
 

expression levels of kaiB and kaiC genes are increased in OptkaiBC due to the 

optimization of codon usage. Interestingly, OptkaiBC showed no difference from 

the WT in its circadian rhythms at warm temperatures, while it displayed robust 

circadian rhythms at low temperatures where the wild-type strain tends to be 

arrhythmic or highly damped (Xu et al., 2013).  

This result is quite surprising since we expected that better rhythms 

provide better fitness under rhythmic conditions, based on the conclusion of the 

previous competition experiments. From this line of reasoning, natural selection 

should prefer the OptkaiBC strain rather than the non-optimized codon strain. To 

address this question, I measured the growth rates of the WT, OptkaiBC and two 

arrhythmic strains (CLAb and CLAc) at different constant temperatures within the 

physiological range of temperatures (18 °C to 37°C) for this cyanobacterial 

species under LD 12:12 cycles. As shown in Fig.2.7 and Table2. 1, at warm 

temperatures where both the WT and OptkaiBC show robust circadian rhythms, 

no significant difference was observed among their growth rates, including the 

two arrhythmic strains. However, as the temperature is reduced to 20 °C and 

18 °C, OptkaiBC grew significantly slower than the other strains. Moreover, the 

two arrhythmic strains grew even slightly better than the WT (Fig.2.7 and Table 

2.1). From Fig.2.8 we can see that the warm temperatures around 30 °C allow 

our cyanobacterial strains, both the WT and OptkaiBC, to grow at the fastest 

rates, while at cooler temperatures the growth rates were significantly reduced 

(Fig. 2.8C). Therefore we consider ~ 30 °C to be the optimal growth  
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Figure 2.7 Growth curves of cyanobacterial strains at different temperatures. WT, 
optKaiBC, CLAb (arrhythmic) and CLAc (damped oscillation) strains were grown in LD 
12:12 cycles at 37°C, 30°C, 25°C, 20°C, or 18°C with constant air bubbling and shaking. 
Cell densities were monitored by measuring OD750 every two days. Data are averages 
± SEM from 2 to 6 independent experiments for each strain and condition. For a better 
comparison at 18°C, 20°C, and 25°C, the insets are a magnified portion for the specified 
times. 
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Table 2.1 Doubling time of WT, optkaiBC, CLAb and CLAc strains at different 
temperatures under LD 12:12 cycles.  
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Figure 2.8 Growth of the WT and OptkaiBC strains at different temperatures under 
LD12:12 cycles. A, growth curves of WT at 37°C, 30°C, 25°C, 20°C, or 18°C . B, growth 
curves of OptkaiBC at 37°C, 30°C, 25°C, 20°C, or 18°C . C, growth rates of the WT 
(black) and OptkaiBC (red) strains was plotted as the function of temperatures.   
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Figure 2.9 Competition experiments between the WT and OptkaiBC strains at 30 
oC or 20 oC under LD 12:12 cycles. The WT strains either with Cb resistance (left) or 
Kn resistance (right) was competed against the OptkaiBC strains with the opposite 
resistance at 30 oC (upper panels) or 20 oC (lower panels).   
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Figure 2.10  Same strains with different antibiotic resistances do not compete 
with each other.  
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temperatures for this particular species. These results indicate that a robust 

circadian rhythm at cool temperatures actually impacts the fitness, and that 

circadian rhythms provide an advantage only within a range of growth 

temperatures.  

Although the OptkaiBC strain showed reduced growth rates in pure 

cultures at cool temperatures, perhaps the robust rhythms that it confers might 

be an advantage under competition conditions. To test this hypothesis, 

competition experiments between the WT and OptkaiBC strains were conducted 

at 30 oC and 20 oC under LD 12:12 cycles. As shown in Fig.2.9, the results were 

consistent with the observations of pure cultures (Fig.2.7): the OptkaiBC 

displayed a slight advantage over the WT at 30 oC (Fig. 2.9 A&B), while it was 

out-competed by the WT at 20 oC (Fig. 2.9C&D). To exclude the possibility that 

the competition results were compromised by the different antibiotic resistance 

genes incorporated in the genome of each strain, two sets of competition 

experiments, WT(Cb) vs. OptkaiBC(Kn) and WT(Kn) vs. OptkaiBC(Cb), were 

conducted, as shown in Fig. 2.9. No significant difference was observed between 

these two experiments. Furthermore, when strains with the same genotype but 

different antibiotic resistances {i.e., WT(Cb) vs. WT(Kn) and OptkaiBC (Kn) vs. 

OptkaiBC (Cb)} were competed against each other (Fig. 2.10), no competition 

was detected, thus indicating the competition resulted from the kai genotypes 

and not the antibiotic markers.  
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Results from this study suggest that having a robust circadian rhythm is 

not always an advantage. Under cold temperatures, cyanobacteria may face 

more challenges from the environment and simply surviving these environmental 

stresses might be a priority. Therefore, it is possible that running a robust timing 

mechanism is burdensome. By adapting the non-optimal codons to kaiBC genes, 

the circadian clock obtained the flexibility to guarantee the best fitness at different 

temperatures, suggesting another way whereby circadian clock enhances fitness, 

namely “conditionality” (Njus et al., 1977).  

Potential Mechanisms of Clock-mediated Fitness Enhancement 

While competition experiments have clearly demonstrated a clock-

mediated fitness enhancement in cyanobacteria, the cellular mechanism remains 

unknown. Cyanobacterial strains with different clock properties all showed a 

similar growth rate when cultured alone; however, the reproductive fitness was 

negatively affected in mixed cultures in a way that is dependent on the light/dark 

cycles (Woelfle et al., 2004; Ouyang et al., 1998). To explain these observations, 

three models have been proposed: the “limiting resource model,” the “diffusible 

inhibitor model” and the “cell-to-cell communication model” (Woelfle and 

Johnson, 2009). 

The Limiting Resource Model 

The limiting resource model proposes that the circadian system enables 

individual cyanobacterial cells to maximally utilize some limiting environmental 
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resource by phasing their metabolism to the environmental cycle (Woelfle and 

Johnson, 2009). For instance, transcription of genes that encode components of 

the photosynthetic machinery in cyanobacteria is up-regulated during the day 

and down-regulated at night (Tomita et al., 2005), and this rhythmic gene 

expression may facilitate cyanobacterial cells to perform photosynthesis more 

efficiently and to consume less energy at night by limiting unnecessary 

transcription and translation. In contrast, cyanobacterial cells without a 

functioning circadian clock or with a non-optimally entrained clock may be less 

efficient metabolically, thereby having an inherent disadvantage when competing 

for a limited resource with cells that have a clock that is favorably entrained to the 

environmental cycle.  

Our published results that the growth rates of the various pure cultures 

(WT and mutants) were experimentally indistinguishable led us to believe that the 

Limiting Resource Model was incorrect (Woelfle et al., 2004; Ouyang et al., 

1998), but a more recent modeling paper from Hellweger has forced us to re-

evaluate the experimental evidence for and against this model (Hellweger, 2010) 

(see below). 

To show that the limiting resource model could be hypothetically true, 

Hellweger’s mathematical modeling of the competition experiments attributed 

small differences in the growth rates between the cyanobacterial strains as a key 

determining factor in predicting the outcome of the competition (Hellweger, 

2010). This model simulated the growth of the WT strain and period-altered 
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mutants in both pure and mixed cultures and was able to successfully reproduce 

the experimental outcomes (Hellweger, 2010). After examining parameters in the 

simulation, it was found that a circadian clock will have a higher amplitude when 

its FRP matches the period of the LD cycle, and this higher amplitude leads to 

greater expression of photosynthesis genes and ultimately to higher growth 

rates. The difference in predicted gene expression and growth rates was 

therefore suggested by this model to be the mechanism of the clock-mediated 

fitness enhancement. Although our experimental measurements of overall growth 

rates had detected no differences in pure cultures of the strains used in 

competition (Woelfle et al., 2004; Ouyang et al., 1998), Hellweger’s model 

suggested that small differences may exist between the strains which are difficult 

to detect in the batch cultures used for the competition experiments; however, 

these hypothetically small differences in growth rates between the strains might 

be detectable when cyanobacteria are cultured using chemostats (Hellweger, 

2010). Using a chemostat culturing method, cells can be grown in a physiological 

steady state where they grow at a constant rate, and all culture parameters 

remain constant (Harder and Kuenen, 1977). Previously, competition 

experiments between the WT strain and the long period mutant, C28a, 

conducted in chemostats produced results that are quite similar to the 

competition results using the batch culture method (Ouyang et al., 1998), but a 

re-evaluation of this approach was warranted based upon the modeling study of 

Hellweger (Hellweger, 2010).  
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Another way to reconcile the Limiting Resource Model with our 

experimental data is to consider the impact of transfers/dilutions in the 

competition assay. In our previous studies, we did not detect any significant 

differences in the growth rates between strains with different circadian 

phenotypes during exponential growth (Woelfle et al., 2004; Ouyang et al., 1998). 

We therefore considered the possibility that there could be small differences in 

the latency of these strains to start growing at the time of each transfer to new 

culture medium. If so, the initial growth rates might be different among the strains 

and these differences might accumulate over successive transfers. Therefore, to 

test the Limiting Resource Model experimentally, we focused on testing a 

hypothesis that small differences in initial growth rates may be cumulative over 

repeated dilutions of cell cultures and therefore are responsible for the result of 

the competition studies (Dr. Tetsuya Mori, personal communication). By analogy 

to a race, it is as if one runner gets started “off the blocks” from the starting line a 

little earlier than the other runners. If one strain has the innate ability to adapt to 

the new medium more quickly than the other such that it enters the exponential 

phase of growth in a shorter period of time after each transfer to new medium, 

small differences in this period of adaptation between strains with different 

circadian phenotypes could give rise to large differences in the composition of 

the mixed cultures after several generations (Woelfle and Johnson, 2009).  

To test this hypothesis, we examined whether there were small 

differences in initial growth rates over several serial dilutions/transfers of pure 

cultures of the WT strain and of the arrhythmic mutant, CLAb. In previous 
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studies, the WT strain and clock mutants did not show any significant difference 

in their overall growth rates in pure cultures (Woelfle et al., 2004; Ouyang et al., 

1998), however, the difference might have been too subtle to be observed with 

the sampling techniques that were used. If there were small differences in the 

ability of cells to adapt to new medium, we would expect that this difference could 

be enhanced by a series of dilutions to new medium over many generations. To 

experimentally test this version of the Limiting Resource Model, stationary phase 

cultures of the WT strain and CLAb cells were diluted one thousand fold every 8 

days, and the growth in constant light or in a light/dark cycle of each of the two 

strains was monitored by measuring the optical density. As shown in Fig.2.11, 

during a series of four dilutions, no obvious differences were observed by eye in 

the growth curves of the WT and arrhythmic strains in pure cultures in either 

constant light or in LD 12:12 cycles. However, some small differences were 

detected when the initial growth rates were calculated (Table 2.2; the initial 

growth rates were calculated as the doubling time in the first 24 hours after 

dilution). In constant light, even though the initial doubling time of CLAb was 

significantly greater (i.e., slower) than that of the WT strain after the second 

dilution, no significant difference was observed after the third dilution, and after 

the fourth dilution, the direction of the difference was the opposite to that in the  
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Figure 2.11 Growth curves of the WT strain and the clock mutant (CLAb) in pure 
cultures that were serially diluted four times. A, pure cultures of the WT strain (blue 
diamond) and CLAb (red squares) were set up under LL conditions. B, pure cultures of 
the WT strain and CLAb were set up under LD conditions. After the cells reached the 
stationary phase, they were diluted 1:1000 into fresh BG-11 medium. When the diluted 
cultures reached the stationary phase, they were diluted again. The cultures were 
serially diluted four times. Cell density was measured as OD750 value.  
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Table 2.2 Initial doubling time of the WT and CLAb under LL conditions or LD 
12:12 cycles.  
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second dilution. Therefore, the end result was that there is no difference in the 

initial growth rates between the WT and CLAb strains. In LD 12:12 cycles, the 

CLAb strain grew significantly faster than the WT strain in the lag phase after the 

first transfer to fresh medium, whereas in the subsequent dilutions, CLAb showed 

slower initial growth rates than the WT strain (and the difference was not 

significant after the fourth dilution).  

Although these results indicate that the WT strain and the CLAb strain 

may have different abilities to adapt to new medium, the different initial growth 

rates in pure cultures were not amplified in a straightforward way by subsequent 

dilutions (Fig.2.11). Therefore, whether the outcome of these competition 

experiments is caused by small differences in the initial growth rates between 

strains remains unclear, and indicates that a better experimental design is 

needed to more rigorously test this model. Previous work utilizing chemostats to 

culture cyanbacterial cells in competition yielded results that were substantially 

the same as those obtained when competition is conducted in batch cultures 

(Ouyang et al., 1998). This culture method may allow us to more accurately 

determine whether there are differences between cyanobacterial strains in their 

ability to adapt to the introduction of new medium.   

The Limiting Resource Model is supported by mathematical modeling that 

predicts there are differences in the physiological states between WT and clock 

mutants when grown in pure cultures versus mixed cultures. However, the clock 

mutants used in the competition experiments have not yet been found to differ 
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significantly from the WT strain in physiological properties that have been 

measured experimentally (Woelfle and Johnson, 2009). Further research is 

needed to address these questions.  

The Diffusible Inhibitor Model 

The Diffusible Inhibitor Model proposes that cyanobacterial cells 

rhythmically secrete a diffusible molecule that acts to inhibit the growth of other 

cells (i.e., cells of the same strain/species or cells of another strain/species) in 

the same environment (Woelfle and Johnson, 2009). If cyanobacteria are 

sensitive to their own inhibitory molecule, it would be advantageous for them to 

possess some mechanism to be insensitive to or to inactivate this inhibitor. For 

example, cyanobacterial cells could avoid inhibition by regulating both the timing 

of secretion of the inhibitor and their own sensitivity to the inhibitor. This model 

has two underlying assumptions: 1) the secretion of the inhibitor is light-

dependent and is therefore limited to the light phase and the subjective day in 

constant conditions (clock and light dependent); 2) cyanobacterial cells are only 

sensitive to the inhibitor during the dark phase and in the subjective night (clock 

dependent) as depicted in Fig. 2.12A (Woelfle and Johnson, 2009). This 

hypothetical phenomenon could allow cyanobacterial cells that are entrained with 

the best phase angle to produce an inhibitor that retards the growth of 

competitors (inter- or intra-species competitors) without inhibiting themselves. 

The subjective day of the cyanobacterial strain whose clock is entrained to a 

cycling environment in the most appropriate phase angle will coincide with the  
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Figure 2.12 Test of the Diffusible Inhibitor Model. A, Depiction of the Diffusible 
Inhibitor Model. Entrained phases of two strains are modeled in terms of their entrained 
phase relationship to an LD 12:12 cycle. For the optimally-phased cells, the subjective 
day overlaps with the daytime (white box), and the subjective night phase overlaps with 
the nighttime (black box). Therefore, their secretion phase (yellow box) coincides with 
the daytime, and the sensitive phase (red box) coincides with the nighttime. For non-
optimally-phased cells, their subjective day starts from middle of the daytime, and their 
subjective night starts from the middle of the night and ends in the middle of the daytime. 
Therefore, the secretion phase (yellow box) of the non-optimal-phased cells is only from 
the middle of the day to the end of the day, while the secretion-competent phase that 
overlaps with the dark phase (yellow-black box) does not result in secretion because the 
secretion is postulated to be light-dependent. The sensitive phase (red box) of the non-
optimally-phased cells starts in the middle of the night and ends in the middle of the day. 
B, the semi-co-culture apparatus used to test the existence of a diffusible inhibitor. Two 

chambers (left and right) were separated by a membrane with 0.2 m pores. Cells of 
different strains could be cultured separately in these two chambers, but their media 
passes freely through this membrane such that the putative inhibitor could diffuse to the 
other side. The cultures were illuminated by white fluorescent light from the top, and the 
light intensity was 50 uE*m-2*s-1. C, the WT strain and CLAb were semi-co-cultured in 
this apparatus under LD 12:12 cycles. Cell densities (OD750) were measured on the fifth 
day. Bars which share the same color represent cultures in the same apparatus. Panel A 
modified from Woelfle and Johnson, 2009.  
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light phase,but strains that are entrained to a non-optimal phase relationship 

would have their subjective day in a different temporal regime (e.g., one 

hypothetical non-optimal phase relationship could be the subjective day starting 

in the middle of the light phase and ending in the middle of dark phase). In this 

scenario, the secretion of the inhibitor from these poorly entrained cells occurs 

during only part of the light phase and the secretion phase that overlaps with the 

dark phase does not result in active secretion (because the secretion is light-

dependent, see underlying assumption # 1 above). However, the sensitive phase 

spans part of the subjective night starting in the middle of the night and ending 

during the middle of the day (Fig.2.12A) (Woelfle and Johnson, 2009).  

Using this line of reasoning, in a mixed culture of an optimally entrained 

strain with a non-optimally entrained strain, one would expect the growth of the 

poorly entrained cells to be inhibited because their sensitive phase overlaps with 

the secretion phase of the optimally entrained strain. Therefore, the growth of the 

poorly entrained cells would be inhibited by the secretions from the optimally 

entrained cells (but not vice versa). Similarly, if an arrhythmic strain is grown in 

mixed culture with the WT cells in a LD 12:12 cycle, arrhythmic cells might be 

sensitive to the inhibitor all the time due to the lack of a functioning clock. There 

have been reports suggesting that cyanobacteria secrete secondary metabolites 

that are toxic to other species (Gleason and Paulson, 1984; Zaccaro et al., 2006) 

(and even to themselves). For example, a secreted secondary metabolite of the 

cyanobacterium Scytonema hofmanni, cyanobacterin, inhibits the growth of 

several other cyanobacterial species (Gleason and Paulson, 1984). A proteomic 
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study demonstrates that some proteins in S. elongatus are secreted into medium, 

but the function of these secreted proteins remains unknown (Koksharova et al., 

2005). Therefore, it is possible that the competition between the WT and clock 

mutants could be mediated by secreted metabolites or proteins.  

In contrast to Hellweger’s mathematical modeling that best supports the 

Limiting Resource Model, an earlier modeling of the competition experiments 

provided support for the Diffusible Inhibitor Model (Roussel et al., 2000; Gonze et 

al., 2002). By postulating the existence of a diffusible inhibitor, Roussel et al. 

successfully reproduced all the experimental observations, whereas the 

theoretical model based on differences in resource exploitation did not lead to a 

satisfactory result (Roussel et al., 2000). Gonze et al. proposed and tested a 

more sophisticated model that supported the Diffusible Inhibitor Model and 

predicted that the outcome of the competition depends on the initial proportions 

of cells and on the FRPs of the different cyanobacterial strains (Gonze et al., 

2002). However, this prediction was not supported by experimental testing–in 

contrast to the model predictions, competition experiments between the WT and 

CLAb strains found that CLAb was defeated by the WT strain even though the 

starting proportion of CLAb was as high as 90% of the whole culture (Woelfle et 

al., 2004).  

As a different strategy to test the Diffusible Inhibitor Model experimentally, 

we designed a growth chamber in which two cyanobacterial strains are 

separated by a permeable membrane that allows the exchange of medium and 
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small molecules, but prevents the two strains from directly contacting each other 

(Fig.2.12B). Thus, if a diffusible inhibitor is secreted by one strain, it could pass 

through the membrane and affect the growth of the strain on the other side of the 

membrane. As discussed earlier, the WT strain rapidly becomes the predominant 

strain in mixed cultures with the arhythmic strain CLAb in LD 12:12 cycles 

(Woelfle et al., 2004); therefore, we conducted a series of experiments by using 

these two strains separated by a membrane. The pore size of the membrane was 

0.2 m that allows most molecules and small proteins to pass through but not the 

cyanobacterial cells themselves. If the Diffusible Inhibitor Model is correct, we 

would expect that the arhythmic strain would show a significantly slower growth 

rate; however, CLAb displayed the same growth rate as WT in LD 12:12 cycles 

(Fig.2.12C). One possible explanation for this result is that the putative diffusing 

molecule is too large to pass through the pores of the membrane; therefore, 

membranes with varying pore sizes could be tested (a pore size of 0.2 m was 

used in the experiments whose results are depicted in Fig. 2.12C). Alternatively, 

the inhibitor could be a cell-surface molecule rather than a diffusible factor. 

Contact-dependent inhibition (CDI) has been reported in E.coli (Aoki et al., 2008; 

Aoki et al., 2005) and interestingly, a few potential homologs of genes involved in 

CDI in E.coli have been identified in S. elongatus. Knock-out mutants of these 

potential homologs could be constructed in order to address whether a contact-

dependent inhibition mechanism is involved in the competitions between 

cyanobacterial strains.  
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      The Cell-to-Cell Communication Model 

The Cell-to-Cell Communication Model, which is a combination of the two 

hypotheses discussed above, postulates that circadian clocks regulate some 

pathways involved in cell to cell communication in cyanobacteria such that 

individual cells can cooperate as a group in order to adapt to the environment 

and/or best utilize a limiting resource (Woelfle and Johnson, 2009). This 

hypothesis postulates that when the circadian clock is disrupted or is not ideally 

entrained to the environment, cells do not effectively communicate due to the 

absence of proper circadian regulation. Under these conditions, cells with 

mutations in the circadian clock compete as individuals with WT cells that can act 

as a group, and thus are at a competitive disadvantage in utilizing a limited 

resource.  

Quorum sensing is recognized as a mechanism by which many bacterial 

species communicate and cooperate (Ng and Bassler, 2009). Bacterial species 

that engage in quorum sensing secrete signaling molecules called autoinducers 

(AI), and the detection of the AI allows cells to switch between two distinct 

patterns of gene expression, depending upon cell density. When the cell density 

is high and AI reaches a threshold concentration, individual cells cooperate with 

others such that the entire population turns on a gene expression mode that 

triggers biological activity, for example the formation of a biofilm or virulence 

factor production (Ng and Bassler, 2009).  
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To date, there are only a few cyanobacterial species in which quorum-

sensing has been reported (Sharif et al., 2008; Mooy et al., 2012). One of the 

AIs, N-octanoyl homoserine lactone (C8-AHL), was found in Gloeothece sp. 

PCC6909 cultures, and 43 genes were expressed differently in response to C8-

AHL treatment. It was suggested that this quorum sensing may mediate the 

formation of a biofilm (Mooy et al., 2012). Another cyanobacterium, 

Trichodesmium consortia, was reported to respond to quorum-sensing molecules 

called acylated homoserine lactones (AHLs) that are produced by epibionts 

attached to its surface, and colonies of Trichodesmium that were treated by 

AHLs doubled their activity of alkaline phosphatases, which are enzymes used 

by epibionts in the acquisition of phosphate from dissolved-organic phosphorus 

molecules (Mooy et al., 2012). Homologs of luxO and luxU, genes that encode 

components of the quorum sensing pathway, are present in the cyanobacterial 

species Synechocystis sp. PCC 6803 (Sun et al., 2004). When quorum sensing 

genes from Vibrio harveyi (Ng and Bassler, 2009) were used to search the 

genome sequence of S. elongatus, potential homologs were identified; the 

homologs identified included the AI receptor cqsS (Ng et al., 2011), and cqsA (an 

enzyme involved in AI synthesis), as well as the signal transduction pathway 

component, luxO (Ng and Bassler, 2009) (Table 2.3). In addition, a homolog of 

aphA, the gene that encodes the transcription factor that is a master regulator of 

the quorum sensing pathway and is active at low cell density (LCD) in V. harveyi 

(Rutherford et al., 2011), is also present in the S. elongatus genome. Taken  
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Table 2.3 Homologs of quorum sensing genes of V. harveyi in S. elongatus.  
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together, the data from this bioinformatics approach suggest that S. elongatus 

may be capable of quorum sensing with clock-enhanced reproductive fitness 

mediated by this form of cell-to-cell communication. This possibility could be 

tested by knocking out these potential homologs.  

Future Directions 

Competition experiments have demonstrated the adaptive value of the 

circadian clock in cyanobacteria. It is clear that the circadian clock enhances the 

fitness of cyanobacterial cells in light/dark cycles, and that this enhancement in 

reproductive fitness is greatest when the circadian clock resonates with the 

environmental cycle. In contrast, the circadian clock in cyanobacteria provides 

little or no reproductive advantage under constant conditions, indicating that the 

adaptive value conferred by circadian clock is an extrinsic rather than intrinsic 

property (Woelfle et al., 2004; Ouyang et al., 1998).  

To date, the underlying mechanism by which the circadian clock enhances 

reproductive fitness remains elusive. Although several models have been 

proposed and tested, each has some evidence that supports it and none can be 

excluded at this time. Each of the models discussed here will be examined 

further using a complementary approach. These include alternative culture 

methods aimed at accurately detecting small (but significant) differences in 

growth rates between wild-type and clock mutant strains. These small differences 

in growth rate could explain the competition outcomes. In addition, a genetic 

approach guided by bioinformatics and mathematical modeling could also be 
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used to identify genes involved in the pathway and define the mechanism of 

fitness enhancement. 

Experimental Procedures 

Bacterial strains and culture conditions 

All cyanobacterial strains used in this study is listed in Table 2.4 The 

cyanobacterial strains were grown in BG-11 medium (Bustos and Golden, 1991) 

at 30 °C, and illuminated by cool-white fluorescence bulbs (40-50 µE m−2 s−1)  

with air bubbling. Spectinomycin (25µg/ml) and/or kanamycin (25µl/ml) were 

supplemented to the medium when necessary. For growth on solidified agar 

plates, BG-11 medium was supplemented with 1.5% agar and appropriate 

antibiotics.  

Competition experiment  

The clock phenotypes of cyanobacterial strains were determined by their 

luminescence rhythms that report the promoter activity of psbAI. Strains with 

different clock phenotypes and different antibiotic resistance, e.g., wild type vs. 

arhythmic, were selected for the competition experiments. Different antibiotics 

enable us to track their fractions in mixed cultures by plating on selective media.  
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Table 2.4 Cyanobacterial strains used in this chapter. 
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Pure cultures of two strains were set up under LL condition, and when they 

reached log phase (OD750 ~ 0.6), equal numbers of cells were mixed and 

cultured under different LD cycles or LL condition. Aliquots were taken from the 

mixed cultures every ~8 generations in LD and every ~16 generations in LL, and 

they were plated on selective media to count the number of colony-forming units 

(CFU) of each strain. Meanwhile, the mixed culture was diluted into fresh 

medium and grown for another ~8 generations (LD) and ~16 generations (LL). 

This process was repeated for 4 cycles to allow cells to grow for 40-50 

generations. The fraction of each strain in the mixed culture was calculated by 

the number of colonies of each strain growing on selective media. Circadian 

phenotypes were confirmed by monitoring the luminescence rhythms of colonies 

of each strain at different sampling times. Similar procedure was applied in 

competition experiments on solid agar medium and in continuous cultures, and 

the continuous cultures were conducted in home-made apparatus with lamination 

and air bubbling.  

Growth curves and calculation of doubling time 

To generate growth curves, seed cultures of cyanobacterial strains were 

grown under LL conditions at 30°C until exponential phase before inoculation. To 

measure the initial growth rates of WT and CLAb, pure cultures of WT and CLAb 

strains were grown under either LD 12:12 cycles or LL conditions at 30°C with air 

bubbling. When cells reached stationary phase, cultures were diluted at the ratio 

of 1:1000 to fresh BG-11 medium, and this process was repeated for 4 times. To 
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compare the growth rates of WT, OptkaiBC, CLAb and CLAc strains at different 

temperatures, pure cultures of these strains were grown under LD 12:12 cycles 

at 37°C, 30°C, 25°C, 20°C and 18°C with air bubbling and shaking. Cell densities 

were monitored by measuring the optical density at 750nm (OD750). OD750 was 

then plotted against time for a comparison of growth among strains. The growth 

constant k was generated by fitting exponential curves to the growth curves at 

log scale, and doubling time was calculated using this equation: doubling time (h) 

= (ln(2)/k) × 24. For initial growth rates calculation, the same equation was 

applied to the first 2-3 days of the data.  

Membrane experiment 

A semi-co-culture apparatus was used to test the existence of a diffusible 

inhibitor. Two chambers (left and right) were separated by a polyethersulfone 

membrane (Sterlitech, WA; Cat. # PES022005) with 0.2 m pores. Cells of 

different strains can be cultured separately in these two chambers, but the 

medium passes freely through this membrane such that the putative inhibitor 

could diffuse to the other side. The cultures were illuminated by white fluorescent 

light from the top, and the light intensity was 50 uE*m-2*s-1. The WT strain and 

CLAb were semi-co-cultured in this apparatus under LD 12:12 cycles. Cell 

densities (OD750) were measured on the fifth day.  
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Dynamics of the competition 

A copy of the yfp gene (Chabot et al., 2007) driven by the ptrc promoter 

was incorporated into the Neutral Site II of the WT strain, generating an YFP 

reporter strain WTYFP. No effect was observed in the growth rates and FRP of 

the WTYFP, comparing to the wild-type strain, thus suggesting that WTYFP can 

be used to monitor the dynamic of the competition experiments. WTYFP was co-

cultured with CLAb under LD12:12 cycles, and aliquots of cells was taken every 

two days. The growth of pure and mixed cultures was recorded by monitoring 

OD750. Cell lengths and cell division rates were observed and quantified by using 

fluorescence microscopy. Fractions of each strain in mixed cultures were 

quantified by flow cytometry (Fig. 2.5A), and the OD750 value of the mixed 

cultures was converted to cell numbers by fitting to a standard curve. Cell 

numbers of each strain in mixed cultures were calculated by multiplying the 

fraction by the total cell numbers in the mixed cultures.  

Bioinformatics analysis 

Amino acid sequences of quorum sensing genes in V. harveyi were 

retrieved from the NCBI database 

(http://www.ncbi.nlm.nih.gov/bioproject/?term=19857). Homology search of these 

protein sequences was performed against the S. elongatus genome by using the 

BLASTP program (Altschul et al., 1997). The threshold of expected value is set 

up at 1e-10, and BLOSUM80 matrix and Low Complexity Filter were applied. 
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Chapter III 

The global metabolic profiles of the wild-type cyanobacterium  
Synechococcus elongatus PCC 7942 and adaptive-fitness mutants 

Abstract 

Although numerous experiments have been done to test the potential 

mechanisms of the clock-mediated fitness enhancement, it is difficult to draw 

conclusions from these results. Recently, several studies have reported 

connections between metabolism and the circadian clock in Synechococcus 

elongatus PCC 7942. In addition, some of my preliminary results also revealed 

that the steady-state levels of metabolites in the clock mutant are different from 

the metabolite levels in WT. Therefore, in this study, I hypothesize that the clock-

mediated fitness enhancement results from altered metabolism in the mutant 

strains. To test this hypothesis, I took advantage of the rapid development of 

metabolomics techniques and established the metabolic profiles for the WT strain 

and two clock mutant strains under light-dark cycles and in constant light. My 

results demonstrated that the global metabolic profiles were altered in the clock 

mutants, and that the metabolism of WT is dramatically different in light-dark 

cycles vs. constant light condition.  

Introduction 

Circadian clocks are endogenous timing mechanisms that regulate many 

physiological activities of organisms. The regulation of metabolic processes by 
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circadian clocks has been reported in a broad range of organisms ranging from 

bacteria to mammals (Bailey et al., 2014). In mice and humans, the blood 

pressure, body temperatures and many other metabolic events are regulated by 

circadian clocks. In plants, circadian clocks control the secretion of selected 

hormones involved in the defense against herbivores (Goodspeed et al., 2012). 

In the prokaryotic cyanobacteria, nitrogen fixation activities are separated from 

photosynthesis by circadian regulation to avoid the toxicity of oxygen to 

nitrogenase (Grobbelaar et al., 1986; Mitsui et al., 1986). On one hand, circadian 

clocks regulate metabolism; on the other hand, metabolism can also affect 

circadian clocks. This relationship implies that clocks and metabolism could form 

an autoregulatory feedback network. Recently, researchers proposed that the 

coupling of cyanobacterial circadian clocks and metabolism might be the 

mechanism through which circadian clocks receive entraining information from 

the environment (Rust et al., 2011; Kim et al., 2012). Kim et al. (2012) proposed 

that the redox state of quinone and the ATP/ADP ratio in the cell could work 

together to reset the phase of the clock, suggesting the importance of the 

coupling of circadian clocks and metabolism. 

As one of the simplest circadian machineries, the cyanobacteria circadian 

clock confers adaptive significance in rhythmic environments, as indicated by a 

series of competition experiments in the cyanobacterium Synechococcus 

elongatus PCC 7942 (S. elongatus) (Ouyang, et al., 1998; Woelfle et al., 2004). 

We have been trying to understand for long time the mechanism by which the 

circadian clock enhances fitness under the competition conditions. Although 
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several models have been proposed and numerous experiments have been done 

to test these models, no definite answer is known at this time (Ma et al., 2013). 

However, because there is increasing evidence showing that the connection 

between circadian clocks and metabolism is important, I wish to test if 

metabolism can be altered by the disruption of the circadian clock, and whether 

the metabolic status under the competition conditions can help us to understand 

clock-conferred fitness. Answering these questions will not only help us to further 

understand the coupling of metabolism and circadian clocks, but may also 

provide clues to the underlying mechanism of the competition results. In 

particular, an experiment to study the metabolites in the cyanobacterial culture 

medium revealed differences between the wild type (WT) and the clock mutants, 

leading us to hypothesize that the metabolic profiles of clock mutants are altered, 

which could be the potential mechanism of the clock-mediated fitness 

enhancement. In this chapter, global metabolic profiles of the WT and two clock 

mutants, CLAb and CLAc, were examined by metabolomics techniques. From 

this study I demonstrated that metabolism varies in these three strains under 

light-dark (LD) conditions, while the regulation of metabolism by circadian clock is 

dominated by light conditions {LD vs. constant light (LL)}. 

Results 

The metabolic profiling is influenced by both clock phenotypes and light 

conditions 

The clock phenotypes of three strains used in this study, WT, CLAb and 
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CLAc, are shown in Fig. 3.1. To establish the global metabolic profiles, cells of 

these three strains were collected every 6 hours under LD 12:12 cycles from 

Zeitgeber Time (ZT) 0 to ZT24. For the WT, cells under LL condition were also 

collected every 6 hours from Circadian Time (CT) 12 to CT36. After sample 

collection, cells were immediately frozen by liquid nitrogen and sent to 

Metabolon, Inc., which is a biotech company specialized in metabolomics, for 

metabolomics analysis. At Metabolon, samples were prepared by using a 

proprietary series of organic and aqueous extractions to remove the protein 

fraction while allowing maximum recovery of small molecules. Then intracellular 

metabolites were identified and quantified by liquid chromatography–mass 

spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS). 

Raw and normalized data was obtained from Metabolon after sample processing. 

I then analyzed these data by using R programming language (http://www.R-

project.org). After removing metabolites with missing values during the 24-hour 

time course, 173 metabolites were included to build the metabolic profiles. These 

173 metabolites are categorized into 6 super pathways and 37 sub pathways 

(Fig. 3.2). 

To test if the metabolic profiles from the 4 groups (WTLD, CLAbLD, 

CLAcLD and WTLL) are statistically different from each other, the whole dataset 

was transformedg by natural logarithm and principal component analysis (PCA) 

was applied. PCA is a statistical procedure that reduces the dimensionality of the 
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Figure 3.1 Clock phenotypes of three strains used in this study. Upper panel, WT 
whose FRP is about 25 hours; middle panel, the arrhythmic strain CLAb; bottom panel, 
CLAc with a damped rhythm.  
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Figure 3.2 173 metabolites were included to establish the metabolic profiles. And 
they are categorized to 6 super pathways (A), and 37 sub pathways (B). 
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Figure 3.3 Principal component analysis (PCA) indicates that the metabolic 
profiling is associated with genotypes and light conditions. Green circle, WT 
samples under LL condition; orange circle, WT samples under LD condition; blue circle, 
CLAb samples under LD condition; purple circle, CLAc samples under LD condition.   
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data but the variations among samples can be preserved (Ringner, 2008). The 

first principal component (PC1) represents the direction that samples shows the 

largest variation of those metabolites levels. The second component (PC2) is 

uncorrelated with PC1, and it is the direction that samples show the second 

largest variation (Ringner, 2008). PCA enables the visualization of multi-

dimensional data.  

Our whole data set contains 40 samples, and each of these samples has 

173 variables (173 metabolites) that define the property of this particular sample. 

By PCA, the property of one sample can be simply represented by two principal 

components with the largest variations among samples, and visualized by a two-

dimensional plot, as shown in Fig. 3.3. For each strain and each condition, five 

data points are plotted to represent the five time points. As can be seen in Fig. 

3.3, the clustering indicates that the metabolic profile is determined by both clock 

phenotypes and the light/dark conditions. For instance, samples from the WT 

under LD condition (orange circle) were clustered together, while samples from 

the WT under LL condition (green circle) were grouped together in another 

coordinate, suggesting that there are significant differences in their metabolic 

profiles when light conditions are different. When the samples were collected 

from different strains but under the same light condition, two situations were 

observed. The WT and CLAb displayed significant differences, as can be seen 

from Fig. 3.3. Interestingly, the five time points of CLAb (blue circle) did not show 

large variations among each other, while the five time points from other samples 

were spread out on the PCA plot, suggesting that the metabolic profile of CLAb 
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did not vary significantly at different time points. In contrast, samples from CLAc 

(purple circle) were not separated with the WT samples, but more variations were 

observed among the five time points of CLAc, indicating some small temporal 

differences between these two groups.  

Global metabolic profiling was altered in CLAb and CLAc under LD 12:12 

cycles 

To visualize the metabolic profiles of these four groups, a heatmap was 

generated by hierarchical clustering, which shows the temporal patterns and the 

production levels of each metabolite in each group (Fig. 3.4). As can be seen in 

Fig. 3.4, the metabolic profiling was dramatically altered in the arrhythmic mutant 

CLAb. On one hand, production of most of the metabolites was down-regulated 

in CLAb (Fig. 3.4); on the other hand, it is apparent that some of the metabolites 

that display daily oscillation in the WT strain do not cycle in CLAb (Fig. 3.4).  

       I then quantified the number of cycling metabolites in these strains by 

using the modified cosiner method (Kucho et al., 2005; see methods). By fitting 

the detrended data to a 24-h cosine curve, an error factor (Ef) and the amplitude 

(Amp) was calculated to evaluate the fitting quality. For each metabolite, if its Ef 

is less than 0.2 and its Amp is greater than 1.2, it will be considered as a cycling 

metabolites (Kucho et al., 2005). As shown in Fig. 3.4, in WT, almost 40% of the 

metabolites were cycling in LD 12:12. In CLAb, however, only about 5% of the 

metabolites were oscillating under the same conditions. Besides the reduced 

numbers of cycling metabolites in CLAb, the peak time of these cycling 
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metabolites also differed from the WT (Fig. 3.6 A&C). In WT, about 70% of the 

cycling metabolites peaked around dusk (ZT12), whereas only 30% of the cycling 

metabolites peaked at this time in CLAb. In contrast, the majority of metabolites 

of CLAb peaked in the dark phase or near dawn, as shown in Fig. 3.6A&C. 

Interestingly, some of the cycling metabolites of CLAb are different from those in 

WT (Table 3.1). For instance, I did not observe glycerol oscillating in the WT, 

whereas it was cycling with the peak time at ZT22 in CLAb. In addition, although 

the majority of metabolites were down-regulated in CLAb, I detected a group of 

metabolites that were up-regulated and peaked in the dark phase (Fig. 3.4 and 

Table 3.2). These up-regulated metabolites were highlighted in Table 3.2, and 

they belong to the free fatty acid pathway, indicating that the free fatty acid 

pathway was perturbed in CLAb.  

In CLAc, which shows a damped rhythm under LL conditions and is also 

outcompeted by WT in LD but more slowly than is CLAb (Woelfle et al., 2004), 

the global metabolic profile was also affected. Unlike CLAb, I did not observe 

significant down-regulation of metabolite levels in CLAc (Fig. 3.4). However, 

some metabolites showed higher production levels during the dark phase in 

CLAc and were practically in antiphase to their pattern in WT, (i.e., at higher 

concentrations during the light phase in WT), as shown in the orange box in Fig. 
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Figure 3.4 Global metabolic profiling of 173 metabolites in WT and arrhythmic 
mutants strains under LD 12:12 conditions and LL condition (only for WT) for 24 
hours. The white bars under the heatmap represent 12-hour light conditions, and the 
black bars represent 12-hour dark conditions. Metabolites are sorted by hierarchical 
clustering. The yellow and orange boxes highlight differences between the WT and 
CLAb (yellow) or CLAc (orange).   
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3.4. Furthermore, 15% of the metabolites displayed a 24-hour oscillation in CLAc,  

which is lower than the WT (40%), but is higher than CLAb (5%) (Fig. 3.5). 

Interestingly, almost all of the cycling metabolites of CLAc were also oscillating in 

the WT (Table 3.1), suggesting that the metabolic profile of CLAc preserved 

features of the WT profile. Even though the number of cycling metabolites was 

decreased in CLAc (Fig. 3.5), their peak time was not dramatically altered. As 

can be seen in Fig. 3.6A &D, the distribution of peak time in CLAc is quite similar 

to that of the WT, further confirming that CLAc is more similar to the WT than 

CLAb. These patterns are consistent with the observation that the “damped” 

strain CLAc is out-competed by WT more slowly than CLAb in the competition 

experiment (Woelfle et al., 2004). The probable explanation for that result is that 

the daily regulation of metabolism in CLAc is more “WT-like” than is that of CLAb, 

and therefore is able to compete more efficiently against WT than is the 

arrhythmic CLAb strain.  

Taken together, the global profiles of these three strains, WT, CLAb and 

CLAc, revealed that their metabolic “signatures” are altered under LD 12:12 

conditions when the clock phenotypes are changed, suggesting that the circadian 

clock plays a critical role for regulating metabolism of cyanobacteria over the 

daily cycle to enhance adaptation to the environment. It is likely that the altered 

metabolism may be a potential explanation for the results of the competition 

experiments (Woelfle et al., 2004). 
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Table 3.1 Metabolites that showed 24-hour rhythms in at least one group. 

Metabolites WTLD WTLL CLAbLD CLAcLD 

1,3-dihydroxyacetone + _ _ _ 

1-oleoylglycerophosphoglycerol* + _ _ _ 

1-palmitoylglycerol (1-
monopalmitin) _ _ _ + 

1-palmitoylglycerophosphoglycerol* + _ _ _ 

2,3-dihydroxyisovalerate + _ + _ 

2'-deoxyadenosine _ _ _ + 

2-palmitoylglycerophosphoglycerol* + _ _ _ 

2-phenoxyethanol + _ _ + 

3-dehydrocarnitine* _ _ + _ 

3-hydroxymyristate + _ _ _ 

3-hydroxypalmitic acid methyl ester + _ _ _ 

3-methyl-2-oxovalerate + _ _ _ 

4-methyl-2-oxopentanoate + _ _ _ 

5-methylthioadenosine (MTA) + _ _ _ 

5-oxoproline + _ _ _ 

7-methylguanosine + _ _ + 

8-hydroxyguanine  + _ _ _ 

acisoga + + _ + 

adenosine _ _ _ + 

alanine + _ _ _ 

alpha-ketoglutarate + _ _ + 

asparagine + _ _ _ 

benzoate _ + + _ 

biopterin _ _ _ + 

citrulline + _ + _ 

cytidine + _ _ + 

cytidine 5'-monophosphate (5'-CMP) _ _ _ + 
dihydroxyacetone phosphate 
(DHAP) + _ _ _ 

erythronate* + _ _ + 

flavin mononucleotide (FMN) + _ _ _ 

fructose + _ _ _ 

fumarate _ + _ _ 

gamma-glutamylalanine + _ _ _ 

gamma-glutamylglutamine _ + _ _ 

gamma-glutamylisoleucine* + _ _ + 
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gamma-glutamylmethionine + _ _ _ 

gamma-glutamylphenylalanine _ + _ _ 

gamma-glutamylthreonine* + _ _ _ 

gamma-glutamyltyrosine _ + _ _ 

glucose-6-phosphate (G6P) _ _ + _ 

glutamate + _ + _ 

glutathione, oxidized (GSSG) + _ _ _ 

glycerol _ _ + _ 

glycolate (hydroxyacetate) + _ _ _ 

guanidine + _ _ _ 

guanine + + _ + 

guanosine + _ _ _ 

histidine + _ _ _ 

hypoxanthine _ _ _ + 

inosine + _ _ _ 
Isobar: UDP-acetylglucosamine, UDP-
acetylgalactosamine _ + _ _ 

isoleucine + _ _ _ 

leucine + _ _ _ 

malate + _ _ _ 

maltose + _ _ + 

maltotetraose _ _ _ + 

margarate (17:0) _ _ _ + 

methionine + _ + _ 

methionine sulfoxide _ _ _ + 

myristate (14:0) + _ _ _ 

N2-acetyllysine + _ _ _ 

N6,N6-dimethyladenosine + _ + _ 

N6-acetyllysine + + + + 

N6-carbamoylthreonyladenosine + _ _ + 

N-6-trimethyllysine _ _ _ + 

N-acetylaspartate (NAA) + _ _ + 

N-acetylglucosamine + _ _ _ 

N-acetylglutamate + _ _ _ 

N-formylmethionine + _ _ _ 

nicotinamide + _ _ _ 

nicotinamide riboside* + _ _ _ 

norophthalmate* + _ _ _ 

ophthalmate + _ _ _ 

palmitate, methyl ester + _ _ _ 
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palmitic amide _ _ _ + 

pentadecanoate (15:0) + _ _ _ 

phenylpyruvate _ _ _ + 

pheophorbide A + _ _ _ 

phosphate + _ _ _ 

proline + _ _ _ 

S-adenosylhomocysteine (SAH) + _ _ + 

serine + _ _ + 

succinate + _ _ _ 

symmetric dimethylarginine (SDMA) + _ + _ 

threonate + _ _ + 

threonine + _ _ _ 

thymidine 5'-monophosphate + _ _ _ 

uracil + _ _ _ 

uridine + + _ _ 

valine + _ _ _ 

xanthine _ + _ _ 

xanthosine + + _ _ 

Total cycling metabolites 70 12 11 27 

 
 

 

 

 



85 
 

 

 

Figure 3.5 Percentage of cycling metabolites in total 173 metabolites detected. 
Criteria for distinguishing cycling vs. non-cycling metabolites are explained in the text 
and methods section.  
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Figure 3.6 Peak time of cycling metabolites. A, WT under LD 12:12 cycles; B, WT 
under LL condition; C, CLAb under LD 12:12 cycles; D, CLAc under LD 12:12 cycles. 
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The metabolic profiles of WT are significantly different in LD vs. LL 

For photosynthetic cyanobacteria, light plays an essential role in 

regulating metabolism through photosynthesis. My results from the clock mutants 

CLAb and CLAc suggest that circadian clock also regulates metabolic patterns 

beyond simple lights-on and light-off switches. Therefore I would like to know if 

circadian clock cycling is able to dominate the regulation of metabolism. If yes, I 

would expect that many metabolites that oscillate under LD cycles should also 

show circadian rhythms under LL conditions. In S. elongatus, the global gene 

expression continues oscillating under LL conditions (Liu et al., 1995; Ito et al., 

2009). To investigate if the metabolism shows similar patterns as the gene 

expression under LD and LL conditions, I collected cells from the WT cultures 

every 6 hours in LL from CT12 to CT36. As shown in Fig. 3.4, some differences 

were observed when the metabolic profile of the WT under LL condition was 

compared with it under LD condition. For instance, some of the cycling 

metabolites under LD condition exhibited constant high levels under LL condition 

(blue boxes in Fig. 3.4). Moreover, the number of metabolites that cycle in LD 

was reduced to only 5% under LL conditions (Fig. 3.5), indicating that constant 

light over-rides the circadian control of gene expression as far as metabolite 

levels are concerned. In addition, under LL conditions, nearly 70% of the cycling 

metabolites reached the peak around CT0 or CT24, whereas under LD condition 

most of the cycling metabolites peaked around dusk (Fig. 3.6 A&B), once again 

demonstrating that environmental light conditions (i.e., cyclic vs. constant) 

mediate the production of cycling metabolites.  
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In summary, by comparing the metabolic profiles of the WT strain under LL 

conditions and LD conditions, I demonstrated that most of the metabolites were 

not oscillating when the cells were grown under LL conditions. This result is not 

totally unexpected. On one hand, photosynthesis is always activated when light 

is present, and the persistence of photosynthesis may not require simultaneous 

gene expression. On the other hand, the production of metabolites reflects 

enzyme activities, while microarray and promoter activity assays only detect 

gene expression. The metabolic profiles revealed in this study is more likely to 

predict the proteomics, therefore it is reasonable that the production of 

metabolites exhibits different daily patterns from the global gene expression.  

In the competition experiments, the WT was only able to defeat CLAb and 

CLAc under LD conditions but not under LL conditions. Based on the metabolic 

profiles of the WT, it is likely that light also plays an important role on the 

metabolism of CLAb and CLAc under LL conditions. In this case, the defects of 

the circadian clocks in these two mutant strains might not be sufficient to cause 

any disadvantage to the growth of these two strains under LL conditions, which 

could be the possible reason that the competition was only observed under LD 

conditions. In particular, I hypothesize that the metabolic patterns of WT, CLAb, 

and CLAc are very similar in LL. 
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Metabolites of CLAb and CLAc that show significant differences from the 

WT are from a broad range of pathways 

One of the aims of this study is to test the hypothesis that some changes 

in the metabolism of the clock mutants caused the competition results. My results 

have demonstrated that metabolism is altered in these clock mutants, providing 

preliminary evidence to support this hypothesis. By tracking the production levels 

and daily patterns of these metabolites, I expect to identify pathways that involve 

the majority of these altered metabolites. In this ideal situation, I would be able to 

target these pathways and eventually uncover the mechanism of the competition 

experiments. From this line of reasoning, I identified some metabolites that 

mainly contribute to the differences between the WT and CLAb or CLAc by 

examining their principal component scores. As presented in Fig. 3.7 and Fig. 

3.8, the PCA loading plots plot every metabolite according to their principal 

component scores, and metabolites with high scores were selected and listed in 

Table 3.2 (CLAb) and Table 3.3 (CLAc). For CLAb, 17 candidates from 5 super 

pathways and 9 sub-pathways were identified (Fig. 3.9A and Table 3.2), and for 

CLAc, 28 candidates were identified from 6 super pathways and 10 sub-

pathways (Fig. 3.9B and Table 3.3).  

       As shown in Fig. 3.9A, nearly 30% of the candidates of CLAb are from 

the free fatty acid pathway. As I mentioned previously, these free fatty acids 

exhibited elevated concentrations in the dark phase in CLAb, whereas they were 

only produced in moderate levels and mostly in the light phase in WT (Fig. 3.4).
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WT vs. CLAb under LD 12:12 
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Figure 3.7 Loading plot of PCA based on the comparison between samples of WT 
and CLAb under LD 12:12 condition. Each dot represents a metabolite and the 
position of each metabolite is determined by the values of 5 time points of the 
metabolites.  
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WT vs. CLAc under LD 12:12 
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Figure 3.8 Loading plot of PCA based on the comparison between samples of WT 
and CLAc under LD 12:12 condition. Each dot represents a metabolite and the 
position of each metabolite is determined by the values of 5 time points of the 
metabolites.  
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Figure 3.9 Metabolic candidates that showed significant difference from the WT. A, 
Percentage of metabolic candidates from CLAb. 17 metabolites were identified from 10 
sub pathways. B, Percentage of metabolic candidates from CLAc. 28 metabolites were 
identified from 11 sub pathways.  
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Table 3.2. PCA loading plot revealed metabolites that show significant differences 
between samples from WT and CLAb under LD 12:12 condition.  

Metabolites Super Pathway Sub Pathway 

aspartate Amino acid 
Aspartate family (OAA 
derived) 

glutathione, oxidized (GSSG) Amino acid Glutathione metabolism 

histidine Amino acid 
Glutamate family (alpha-
ketoglutarate derived) 

fucose-1-phosphate Carbohydrate 
Amino sugar and nucleotide 
sugar 

glycerate Carbohydrate Glycolysis 

Isobar: UDP-acetylglucosamine, 
UDP-acetylgalactosamine Carbohydrate 

Amino sugar and nucleotide 
sugar 

10-heptadecenoate (17:1n7) Lipids Free fatty acid 

1-palmitoylglycerol (1-
monopalmitin) Lipids Glycerolipids 

eicosenoate (20:1n9 or 11) Lipids Free fatty acid 

oleate (18:1n9) Lipids Free fatty acid 

palmitoleate (16:1n7) Lipids Free fatty acid 

pentadecanoate (15:0) Lipids Free fatty acid 

cytidine Nucleotide Pyrimidine metabolism 

guanine Nucleotide Purine metabolism 

uracil Nucleotide Pyrimidine metabolism 

xanthosine Nucleotide Purine metabolism 

gamma-glutamylalanine Peptide gamma-glutamyl 
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Table 3.3 PCA loading plot revealed metabolites that show significant differences 
between samples from WT and CLAc under LD 12:12 condition.  

Metabolites Super Pathway Sub Pathway 

asparagine Amino acid 
Aspartate family (OAA 
derived) 

aspartate Amino acid 
Aspartate family (OAA 
derived) 

gamma-glutamyl-2-aminobutyrate Amino acid Glutathione metabolism 

glutamate Amino acid 
Glutamate family (alpha-
ketoglutarate derived) 

glycine Amino acid 
Serine family 
(phosphoglycerate derived) 

alpha-ketoglutarate Carbohydrate TCA cycle 

fructose Carbohydrate 
Sucrose, glucose,fructose 
metabolism 

phytol 
Cofactors, Prosthetic 
Groups, Electron Carriers 

Chlorophyll and heme 
metabolism 

cis-vaccenate (18:1n7) Lipids Free fatty acid 

heptanoate (7:0) Lipids Free fatty acid 

margarate (17:0) Lipids Free fatty acid 

palmitate (16:0) Lipids Free fatty acid 
palmitate, methyl ester Lipids Free fatty acid 

adenosine Nucleotide Purine metabolism 

guanine Nucleotide Purine metabolism 

inosine Nucleotide Purine metabolism 

N6-carbamoylthreonyladenosine Nucleotide Purine metabolism 

uracil Nucleotide Pyrimidine metabolism 

xanthosine Nucleotide Purine metabolism 

gamma-glutamylglutamine Peptide gamma-glutamyl 

gamma-glutamylisoleucine* Peptide gamma-glutamyl 

gamma-glutamylleucine Peptide gamma-glutamyl 

gamma-glutamylmethionine Peptide gamma-glutamyl 
gamma-glutamylphenylalanine Peptide gamma-glutamyl 

gamma-glutamylthreonine* Peptide gamma-glutamyl 

gamma-glutamyltryptophan Peptide gamma-glutamyl 

gamma-glutamyltyrosine Peptide gamma-glutamyl 

gamma-glutamylvaline Peptide gamma-glutamyl 
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In cyanobacteria, free fatty acids are mainly involved in lipid and membrane 

synthesis (Ruffing and Jones, 2012). Ruffing and coworkers reported that extra 

free fatty acids could damage the cell physiology in S. elongatus (Ruffing and 

Jones, 2012; Ruffing, 2013). For example, when S. elongatus was engineered to 

produce more free fatty acids, the permeability of cell membrane was increased, 

and photosynthesis was impaired (Ruffing and Jones, 2012). Furthermore, 

Ruffing also found that the level of reactive oxygen species (ROS) was 

significantly increased in strains that over-produced free fatty acids, indicating 

that these cells were under stress conditions (Ruffing, 2013). Although the 

production level of free fatty acids in CLAb may not be as high as that in the 

engineered strains, these over-produced molecules may still result in a stressful 

environment for CLAb cells.  

Similarly to CLAb, some metabolites in the free fatty acid pathway were 

also over-expressed in CLAc (Table 3.3 and Fig. 3.9B). In addition, 30% of the 

“aberrantly expressed” candidates of CLAc are gamma-glutamyl amino acids that 

belong to the peptide super pathway. Gamma-glutamyl amino acids are the 

products of amino acid gamma-glutamylation which is a process catalyzed by 

gamma-glutamyltranspeptidase (GGT). GGT is involved in glutathione (GSH) 

synthesis, and its function is conserved in a wide range of organisms from 

bacteria to mammals (Suzuki et al., 2007). GSH is an important antioxidant which 

prevents damages from ROS. Consistently, some metabolites involved in GSH 

metabolism were also among the candidates in both CLAb and CLAc (Fig. 3.9), 

indicating that GSH metabolism is affected by the disruption of the circadian 
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clock.  

Besides the metabolites identified from the free fatty acid pathway and 

pathways involved in glutathione metabolism, candidates were also identified 

from many other pathways, but in relatively smaller degrees of difference (Table 

3.2, Table 3.3 and Fig. 3.9). It is possible that these pathways also contribute to 

the competition results, either directly or indirectly. Because the global 

metabolism is composed of numerous pathways and these pathways are all 

inter-connected, it is difficult to conclude whether or not specific pathways are 

critical for the competition at this moment. Experiments targeted to these 

pathways are in the planning stage.  

Discussion 

In this study, two questions are addressed. First, the two clock mutants, 

CLAb and CLAc that were out-competed by the WT under LD conditions, 

displayed different metabolic profiles from the WT, suggesting that the disruption 

of circadian clocks affected the metabolism, and that maladaptive metabolism of 

the clock mutants could be the potential mechanism of the competition. Second, 

the WT showed different metabolic profiles under LD vs. LL, indicating that 

constant light can over-ride the regulation of metabolism that is normally 

controlled by the circadian clock entrained to LD.  

It has been more than a decade since scientists discovered that circadian 

clocks enhance the fitness of cyanobacteria in cyclic environments. The 
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underlying mechanism, however, remains elusive. Although several hypotheses 

have been proposed, none of them has been experimentally proven (Ma et al., 

2013). Considering the fact that the cyanobacterial circadian clock regulates the 

transcription of almost all of the genes in the genome (Liu et al., 1995; Ito et al., 

2009), we gradually realize that this competition phenomenon may be a global 

effect of the disruption of the circadian clock. In addition, an experiment designed 

to identify metabolites in the cyanobacterial culture medium discovered some 

differences between the WT and a clock mutant (data not shown), leading us to 

consider the global metabolic profiles of these strains. 

As an ongoing project, results presented in this chapter open the window 

for us to reveal the mystery of the competition experiments. However, more work 

needs to done to fully address this question. For instance, in CLAb, the free fatty 

acid pathway displayed some abnormal production. Based on this observation, I 

hypothesize that the malfunction of the free fatty acid pathway in CLAb affects 

the metabolism of CLAb and reduces its fitness in under LD conditions. To test 

this hypothesis, first, I need to do a more specific experiment to confirm that this 

pathway is not functioning properly. An experiment targeted to specifically 

measure the metabolites in this pathway should be designed and conducted. 

Second, I would like to find a way to restore the normal metabolism back to the 

clock mutants, and then test if the competition effect can be eliminated or 

reversed. While the first step is relatively easy to conduct, the second step is 

challenging. Alternatively, I can test if the WT strain can display CLAb-like 

phenotypes when free fatty acid pathways are over-expressed. 
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In addition, studying period mutants could be another option. In the 

competition experiments, the WT out-competed not only the arrhythmic mutants, 

but also a long period mutant, (C28a, free running period ~ 30 hours) under LD 

12:12 cycles. But when C28a was co-cultured with the WT under LD 15:15 

cycles, it defeated the WT (Ouyang et al., 1998). Therefore, comparing to the 

arrhythmic mutants (CLAb and CLAc), it might be easier to manipulate the 

metabolism of WT vs. C28a by changing the light conditions between LD 12:12 

(optimal for WT, non-optimal for C28a) and LD 15:15 (optimal for C28a, non-

optimal for WT) to compare their metabolic profiles.   

Methods 

Sample collection 

Samples were collected from the WT strain and two arrhythmic mutants 

CLAb (arrhythmic in LL from LL onset) and CLAc (damps in LL to arrhythmicity in 

2-3 days). Cells were grown at LD 12:12 cycles for 4 days or until the OD750 

value reached 0.5, then cultures were either kept in LD12:12 or released into LL 

conditions. 100ml cultures were collected at ZT0, ZT6, ZT12, ZT18 and ZT24 

under LD 12:12 conditions or at CT12, CT18, CT24, CT30 and CT36 under LL 

conditions (only for WT). For each strain, samples from two parallel cultures were 

collected as duplicates. After sample collection, cells were immediately 

centrifuged at 4 oC in darkness for 15 mins at 4000 rpm, and cell pellets were 

immediately frozen by using liquid nitrogen and kept at -80 oC until the samples 

were processed.  
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Metabolomics measurement 

Metabolites were measured in 40 samples including the WT strain, CLAb 

and CLAc by Metabolon, Inc. (Durham, NC, USA). To identify metabolites from 

samples, LC/MS and GC/MS were used by Metabolon. A total number of 182 

metabolites were identified. Among these metabolites, 9 were excluded for 

further analysis due to missing values for more than 20% of the time points.  

Statistical analysis and clustering 

Raw and normalized LC/MS and GC/MS data was obtained from 

Metabolon. Statistical analysis and data visualization was performed by using R 

programming language with the packages “metabolomics” (De Livera and 

Bowne, 2013) and “gplots” (Warnes et al., 2014). ANOVA was applied to assess 

the statistical significance between duplicates or among samples from different 

genotypes and/or light conditions. To establish the metabolic profiling, PCA and 

hierarchical clustering were performed.  

Identification of cycling metabolites 

Cycling metabolites were identified by using the modified cosiner method 

(Kucho et al., 2005). In short, the normalized and natural log transformed LC/MS 

and GC/MS data was detrended linearly as described by Kucho et al.. Because I 

only have data in 24 hours, only metabolites cycling with a 24-hmy period were 

identified by fitting to the 24-hour cosine curve. Along with curve fitting, the peak 

time and amplitude were calculated as described (Kucho et al., 2005). I then 
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filtered the metabolites by two criteria: first, the cycling metabolites should have 

an error factor less than 0.2; second, the amplitude should be greater than 1.2.  
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Chapter IV   

A New Kind of KaiC-based Biological Time Keeping Machanism in the 
Purple Bacterium Rhodopseudomonas palustris Strain TIE-1 

Introduction 

Circadian clocks are internal timing mechanisms that allow organisms to 

anticipate daily changes in the environment. In the cyanobacterium 

Synechococcus elongatus PCC 7942 (S. elongatus), the circadian clock is 

composed of three proteins, KaiA, KaiB and KaiC (Kondo et al., 1994), and it 

persists under constant conditions with a free-running period of about 24 hours. 

Although circadian clocks are ubiquitous among eukaryotes, in the domain of 

bacteria, cyanobacteria are the only phylum in which circadian clocks have been 

conclusively demonstrated (Kondo et al., 1993; Kondo et al., 1994; Liu et al., 

1995; Johnson et al., 1996; Ito et al., 2009; Johnson et al., 2011; Kitayama et al., 

2013). Homologs of kaiB and kaiC genes have been identified in many other 

bacteria and archaea (Dvornyk et al., 2003), thus suggesting that circadian 

clocks or similar timing mechanisms might exist in these microorganisms. In 

addition, studies in S. elongatus have clearly demonstrated that the circadian 

clock confers an adaptive value under light-dark (LD) cycles (Ouyang et al., 

1998; Woelfle et al., 2004; Ma et al., 2013). One would expect that not only 

cyanobacteria, but other bacteria and archaea living under daily cycles, 

especially those performing photosynthesis, would also benefit from a timing 

mechanism to adapt to these daily changes. Therefore, it is reasonable to predict 
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that there should be other bacteria and/or archaea possessing a timing 

mechanism besides cyanobacteria.  

Among non-cyanobacteria prokaryotes whose genome include kaiB and 

kaiC homologs, the purple non-sulfur bacterium Rhodopseudomonas palustris 

(R. palustris) attracted our attention due to its ability to perform photosynthesis. 

Unlike cyanobacteria, R. palustris is an anoxygenic phototrophic bacterium that 

belongs to alpha-proteobacteria, and it uses different electron donors during 

photosynthesis (Larimer et al., 2004; Jiao et al., 2005). Oxygen actually inhibits 

its growth and many other activities such as photosynthesis and nitrogen fixation 

(Larimer et al., 2004; Jiao et al., 2005). Despite this difference, R. palustris 

shares many similarities with cyanobacteria. First, it is as widely distributed as 

cyanobacteria, and in nature, it frequently shares the same locations with some 

cyanobacteria, but at a different depth of water or sand (Proctor, 1997; Larimer et 

al., 2004). A case where purple bacteria are located together with cyanobacteria 

is the photosynthetic mats near coastal areas, as can be seen in Fig.4.1A. 

Cyanobacteria reside in the top layer of the mat underneath a layer of sands to 

avoid high light intensities. Purple bacteria can be found under the cyanobacteria 

where concentrations of oxygen are relatively low (Stal, 1995). Second, R. 

palustris uses sunlight as the energy source, indicating that some of its 

physiological activities are regulated by light. Therefore, being able to anticipate 

light/dark changes could be adaptive.  

Along with the presence of kaiB and kaiC homologs in R. palustris (kaiBRp 
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and kaiCRp thereafter) (Dvornyk et al., 2003; Larimer et al., 2004; Jiao et al., 

2005), these lines of evidence suggest that R. palustris might have evolved a 

timing mechanism. In this study, I explored this possibility by measuring the 

nitrogen fixation activities of R. palustris under LD cycles and in constant light 

(LL) conditions. Furthermore, the function of kaiCRp was investigated in both S. 

elongatus and R. palustris. I report here that R. palustris possesses a timing 

mechanism regulated by kaiCRp, and that this timing mechanism might be an 

“hour glass” timer rather than a circadian clock. Consistent with the results in S. 

elongatus, this timing mechanism enhances the fitness of R. palustris under LD 

cycles but not LL conditions.   

Results 

Homologs of kaiB and kaiC were identified in R. palustris  

The three clock genes of S. elongatus, kaiA, kaiB and kaiC, (kaiASe, kaiBSe 

and kaiCSe thereafter) are essential for generating circadian rhythms in 

cyanobacteria (Kondo et al., 1994). In R. palustris, however, only kaiBRp and kaiCRp 

were identified, as depicted in Fig.4.1B. Instead of kaiA, a histindine kinase (hkRp) 

containing a PAS domain is closely located downstream of kaiBRp (Fig. 4.1B). It is 

not surprising that no kaiA exists in R. palustris; although kaiC and kaiB have been 

found across the bacteria and archaea domains, kaiA has only been identified in 

cyanobacteria (Dvornyk et al., 2003). The presence of hkRp 
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Figure 4.1 Homologs of kaiC and kaiB are identified in R. palustris. A, comparison of 
the kaiABC locus in S. elongatus with the kaiBC locus in R. palustris. In S. elongatus, kaiB 
and kaiC are co-transcribed by the same promoter. KaiA is located upstream of kaiB and 
is separately transcribed by another promoter (Ishiura et al., 1998). No kaiA was identified 
in R. palustris. Instead of kaiA, a histidine kinase containing PAS domain is located 
downstream of kaiB. Sequences for the primary sigma factor RpoD binding (rpoD 
promoter) were predicted to be the upstream of kaiC in R. palustris. B, comparison of 
predicted secondary structures of S. elongatus KaiC and R. palustris KaiC. Both of the 
KaiC proteins contain two RecA-like NTPase superfamily domains. In each of these 
domains, a Walker A and a Walker B motif is included as well as the EE residues that are 
the ATPase activity sites. In the first RecA-like NTPase superfamily domain (CI domain for 
S. elongatus), two DXXG motifs are present. Phosphorylation sites are located in the 
second RecA-like NTPase superfamily domain (CII for S. elongatus). In S. elongatus, 
these three phosphorylation sites are present as TST, while in R. palustris they are TSS. 
The C-terminus of R. palustris KaiC is about 50 amino acids longer than the S. elongatus 
KaiC.  
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suggests the possibility that kaiCRp functions through interactions with kaiBRp and 

hkRp. Promoter prediction suggested that a binding site of the primary sigma 

factor RpoD (Gruber and Gross, 2003) is present 17 bp upstream of kaiCRp (Fig. 

4.1B), while no promoter was predicted upstream of kaiBRp or hkRp, indicating 

that these three genes might be coordinately transcribed.  

      The KaiC protein of S. elongatus (KaiCSe) contains two RecA-like NTPase 

superfamily domains that are named the CI domain and the CII domain (Johnson 

et al, 2011). Each of these domains has an ATP/GTP-binding site known as the 

Walker motif, as well as catalytic carboxylates (EE) that are recognized to be the 

basis of autokinase and ATPase activity (Egli, et al., 2012). In addition, the CI 

domain possesses two DXXG motifs for GTP binding (Nishiwaki, et al., 2000). 

The sequence of the KaiC protein of R. palustris (KaiCRp) preserves all of the 

conserved domains of S. elongatus KaiC, as illustrated in Fig.4.1C and Fig.4.2. 

The C-terminus of KaiCRp, however, is about 50 amino acids longer than the 

KaiCSe, and one of the phosphorylation sites of KaiCSe, Thr432 (Xu et al., 2004), 

is present as a serine (Fig. 4.1C & Fig.4.2). Previous studies in cyanobacteria 

have shown that the C-terminal region of KaiC is essential for KaiA binding 

(Pattanayek et al., 2006; Vakonakis and LiWang, 2004). Given the fact that there 

is no kaiA identified in R. palustris, it is not surprising that the C-terminus is not 

conserved between KaiCSe and KaiCRp.  
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Figure 4.2 Alignment of KaiC proteins in some cyanobacteria species and two 
purple bacteria species. The Walker motifs are highlighted with black boxes. The DXXG 
motifs are highlighted with blue boxes. Red arrows indicate the phosphorylation sites, and 
the EE sites are labeled with red stars.  
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In addition to S. elongatus, kaiABC - driven timing mechanisms have also been 

described in other cyanobacteria (Kucho et al., 2005; Wiegard et al., 2013; 

Axmann et al., 2009; Holtzendorff et al., 2008; Gaudana et al., 2013; Cerveny et 

al., 2013). Synechocystis sp. Strain PCC 6803 (Synechocystis), for instance, has 

a circadian clock that regulates 2-9% of the genes in the genome under both 

cyclic and constant conditions (Kucho et al., 2005).Unlike S. elongatus, 

Synechocystis possesses three kaiC, two kaiB and one kaiA genes (Kucho et al., 

2005; Wiegard et al., 2013). Interestingly, as shown in Fig.4.2 and Fig.4.3, 

protein sequence alignment and phylogenetic analysis of KaiC showed that the 

KaiC (Synechocystis1) located together with KaiB and KaiA is grouped with KaiC 

of S. elongatus, and that the KaiC (Synechocystis3) located with KaiB alone is 

phylogenetically closer to KaiCRp than any other cyanobacterial KaiC. Moreover, 

this KaiC (Synechocystis3) shares similar sequence and length with KaiCRp in the 

C-terminus as well as the same phosphorylation sites (Fig. 4.2), indicating that 

this version of kaiC experienced horizontal gene transfer events and that it may 

contribute to the timing mechanism in a similar way to KaiCRp. In contrast, 

Prochlorococcus, a marine cyanobacterium with only kaiB and kaiC, and 

Cyanothece sp. ATCC 51142 with two kaiC, two kaiB and one kaiA, are clustered 

within the cyanobacteria group (Fig.4.3). The PAS domain histidine kinase is only 

identified in the R. palustris group (Fig.4.3), suggesting that hkRp may have a 

specific function in purple bacteria.  
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Figure 4.3 Phylogenetic tree of KaiC proteins in some cyanobacteria species and 
two purple bacteria species. Among these KaiC proteins, three copies are from 
Synechocystis sp. PCC 6803 (Synechocystis 1, 2 & 3), and two copies are from 
Cyanothece sp. ATCC 51142 (Cyanothece 1 & 2). The others have only one copy of kaiC. 
Along with kaiC, kaiB, kaiA or hk genes are illustrated in the blue arrows to compare the 
difference among these species. The hk genes are only identified in the purple bacteria, 
while kaiA are only present among cyanobacteria.  
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KaiCRp can influence the circadian clock of S. elongatus, but it is not 

sufficient to compensate the function of KaiC of S. elongatus 

To investigate the function of KaiCRp, I first tested whether KaiCRp can 

influence the molecular clock of S. elongatus by expressing kaiCRp in the wild-

type S. elongatus strain (AMC149) as well as the kaiC-deletion strain (DeltaC). 

AMC149 and DeltaC harbor luminescence reporters that allow clock-controlled 

promoter activities to be represented by luminescence levels (Kondo et al., 1993; 

Xu et al., 2000). AMC149 displays roughly 24-hour circadian rhythms under LL 

conditions, while DeltaC is arrhythmic due to the lack of kaiC (Kondo et al., 1993; 

Xu et al., 2000). When kaiCRp was expressed in AMC149 under the control of the 

trc promoter (Xu et al., 2003) by IPTG induction, the free running period of the 

luminescence rhythm was lengthened by about 1 hour, and the amplitude was 

reduced(Fig. 4.4A & B), suggesting some interference to the cyanobacterial 

circadian clock by KaiCRp. The over-expressing strain exhibited a slightly longer 

free running period even without IPTG induction, probably due to leaky 

expression from the trc promoter.  

Moreover, an interesting phenomenon was observed when kaiCRp was 

overexpressed in the DeltaC strain. As can be seen in Fig. 4.4C, a transient peak 

was elicited in DeltaC by expressing kaiCRp, whereas DeltaC alone only showed 

declining luminescence over time. This peak was not observed in the absence of 

IPTG, even though a stronger reporter activity was detected (Fig. 4.4C), possibly 

due to leaky expression of kaiCRp.  
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As reported previously, overexpression of kaiCSe in S. elongatus abolished 

the circadian rhythms of AMC149, and reestablished circadian rhythms in DeltaC 

at a critical concentration of IPTG (Xu et al., 2000). Overexpression of kaiCRp, 

however, only moderately influenced the circadian clock of S. elongatus, 

indicating that some differences between these two KaiC proteins are critical for 

functions in their corresponding species. Given the fact that no kaiA exists in R. 

palustris, the phenotypes observed here are reasonable. On one hand, KaiCRp is 

presumably not competent to interact with KaiASe; on the other hand, other 

factors in R. palustris, such as HkRp, may be essential for KaiCRp function. Taken 

together, these results indicate that KaiCRp can partially interact with clock 

components (in AMC149) and thereby disrupt the normal system. Moreover, in 

DeltaC, KaiCRp can partially rescue the clock, but cannot fully restore clock 

function in S. elongatus.  

Nitrogen fixation rhythms of R. palustris are regulated by kaiCRp under LD 

conditions 

If KaiCRp drives a timing mechanism in R. palustris, we would expect that 

some physiological rhythms could be observed under either LD or LL conditions. 

The first circadian rhythm observed in cyanobacteria was that of nitrogen fixation 

(Grobbelaar et al., 1986). The methods to measure it, i.e., the acetylene 

reduction assay, are well-established and broadly applied (Hardy and Knight, 

1967; Hardy et al., 1968). To test if there is a daily timing mechanism in R. 

palustris, nitrogen fixation activities of R. palustris were characterized under 12- 
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Figure 4.4 Luminescence rhythms of S.elongatus strains overexpressing of kaiCRp. 
A, kaiCRp was expressed in the wild type AMC149. Upper panel, no IPTG induction; lower 
panel, IPTG was applied to the cultures after entrainment. Comparing to the rhythms of 
AMC149 (blue dots), the luminescence rhythm was suppressed and the FRP was 
lengthened when kaiCRp was overexpressed (red dots). B, the quantification of FRPs in 
AMC149 (blue) and AMC149oxkaiCRp (red) strains with and without IPTG induction. C, 
kaiCRp was overexpressed in the arrhythmic strain DeltaC. Upper panel, no IPTG induction; 
lower panel, IPTG was applied to the cultures after entrainment. Red arrows indicate the 
time that IPTG was applied to the cultures.  
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hour-light-12-hour-dark cycles (LD 12:12). As shown in Fig. 4.5A, nitrogen 

fixation of the wild-type R. palustris (WT) exhibited an oscillating pattern under 

LD cycles at 30 °C. Each trace represents an individual culture. Nitrogen was 

mainly fixed during the day time, and this activity was shut down at night. At 

around Zeitgeber Time (ZT) 8, all of the individual wild-type cultures reached their 

maximal nitrogen fixation rates.  

       The observed oscillation could be one of the physiological activities 

controlled by a timing mechanism, whereas it is also possible that it is merely a 

response to light-dark signals. To distinguish between these two possibilities, a 

kaiCRp-deletion strain of R. palustris (RCKO) was generated. Surprisingly, the 

nitrogen fixation of RCKO showed similar fluctuations as the WT under LD 

condition except that the timing of the peaks varied dramatically among individual 

cultures (Fig. 4.5B). Quantitative RT-PCR further confirmed that no mRNA of 

kaiCRp was detected in the RCKO strain, and kaiBRp was transcribed normally as 

in WT (Fig. 4.6A). Furthermore, restoring a FLAG –tagged kaiCRp back to the 

RCKO genome rescued the wild-type phenotype (Fig. 4.6B&C). Taken together, 

these results indicate that deletion of kaiCRp resulted in a large increase in the 

variability of the nitrogen fixation peak of RCKO.  

      While R. palustris is usually cultured at 30 °C under laboratory conditions, 

it sometimes lives at lower temperatures in its natural environment (Jiao et al., 

2005). To test if nitrogen fixation rhythms can be observed at lower temperatures, 

nitrogen fixation assays of the WT and RCKO strains were performed at 23°C 
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Figure 4.5 Nitrogen fixation rhythms of R. palustris under LD cycles. Samples were 
taken every 3 hours and incubated for 3 hours with acetylene under the same culture 
conditions. After 3 hours incubation, they were injected into GC to measure the acetylene 
reduction rates. A and C, nitrogen fixation rhythms of the wild-type R. palustris (WT) at 30 
oC and 23 oC. Three traces represent three individual cultures. B and D, nitrogen fixation 
rhythms of the kaiCRp-deletion strain (RCKO) at 30 oC. The black and white bars 
underneath represent the light conditions.  
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Figure 4.6 A, Quantitative PRC to confirm the deletion of kaiCRp and the expression of 
kaiBRp. The mRNA levels of clpX were included as the internal control. The mRNA levels 
of kaiBRp and kaiCRp were quantified in the WT (red) and RCKO (black) strains. B, western 
blot by anti-FLAG antibody to confirm the expression of KaiCRp in the rescue strain 
(RCKO+ kaiCRp). C, nitrogen fixation of the kaiCRp rescue strain under LD 12:12 cycles 
at 30 oC. Three traces represent three individual cultures.  
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under LD 12:12 conditions. Similar to the results obtained at 30°C, at 23°C 

nitrogen fixation rhythms of several WT cultures were in-phase with each other 

(Fig. 4.5C), whereas the individual RCKO cultures differed from each other(Fig. 

4.5D). Furthermore, the total nitrogen fixation activities of the WT strain were two 

times higher than that of the RCKO strain at 23°C, suggesting some overall 

impact to the physiology of RCKO at low temperatures.  

One of the fundamental properties of circadian clocks is that they can be 

entrained by environmental cues, whereby physiological processes adjust their 

periods and phases according to the external cycles (Dunlap et al., 2004). The 

stable phase angle observed in the WT strain suggests that WT is entrained to 

the environmental cycles, thus indicating that a timing mechanism exists in R. 

palustris, and that kaiCRp plays an important role in it.  

Nitrogen fixation of R. palustris does not show clear rhythms under LL 

conditions 

A timing mechanism could be a sophisticated circadian clock that 

persistently oscillates under constant conditions, or it could be an hour glass 

operating only under cyclic environments and which damps rapidly in constant 

conditions. As a continuation of the assays performed under LD cycles, the 

nitrogen fixation rates were measured from cells cultured under LL conditions to 

test if the rhythm persists without environmental signals. As shown in Fig. 4.7A, 

at 30°C, the apparent nitrogen fixation rhythm of the WT continued for two short-

period cycles and then it damped out. The modified cosiner method (Kucho et al., 
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2005) was applied to the data to statistically evaluate whether they conform to 

being an oscillation. Usually two criteria have to be satisfied for a rhythm: first, 

the error factor (Ef) of the curve fitting needs to be less than 0.2; second, the 

relative amplitude should be greater than 1.2. As can been seen in Table 4.1, the 

best fitting curve with the smallest Ef value (Kucho et al., 2005; see methods) of 

the WT data was the curve with a 19-hour cycle and the relative amplitude is 

15.33. However, this Ef value is significantly greater than 0.2, suggesting that 

these data may not fit the criteria to qualify as a rhythm.  

For the RCKO strain, possible oscillations with large variations were also 

observed at 30 °C. Similar to the WT, these data do not fulfill both of the two 

criteria, suggesting that no rhythm was detected in the RCKO strain at 30 °C. At 

23°C, apparently no rhythm was detected in the RCKO strain (Fig. 4.7B and 

Table 4.1). In the WT strain, the nitrogen was fixed cyclically, but these data also 

failed the statistical test (Fig. 4.7B and Table 4.1).  

Circadian rhythms usually exhibit periods that are nearly 24 hours in 

constant conditions. The nitrogen fixation rhythm of the WT strain, however, is 

not only significantly shorter than 24 hours, but also damped out after two cycles. 

These results indicate that the timing mechanism of R. palustris could be a highly 

damped circadian oscillator or possibly an hour glass that does not keep the 

rhythms running under constant conditions. However, it is also possible that the  
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Figure 4.7 Nitrogen fixation activities of R. palustris under LL conditions. The WT 
strain and the RCKO strain were cultured under LD 12:12 cycles for 3 to 4 days, then they 
were released to LL condition. Under LL condition, samples were taken every 3 hours and 
incubated for 3 hours with acetylene under the same culture conditions before they were 
injected into GC to measure the acetylene reduction rates. A, nitrogen fixation activities of 
the WT (red) and RCKO (green) strains at 30 oC. B, nitrogen fixation activities of the WT 
(red) and RCKO (green) strains at 23 oC. Error bars were plotted as the standard deviation 
from three individual cultures (n=3).  
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Table 4.1 Statistical analysis of the nitrogen fixation data under LL conditions. Ef, 
error factor of the cosine curve fitting; Amp, relative amplitude; Peak, peak time calculated 
by curve fitting. The number after each category, e.g, Ef (24h), means the period of the 
cosine curve used for the fitting.   

 Ef 

(24h) 

Ef (22h) Ef (20h) Ef (19h) Ef (18h) Ef (17h) Ef (16h) Ef (14h) Ef (12h) 

WT(30 

oC) 

4.19 3.45 2.85 2.69 2.75 3.11 3.74 4.99 4.54 

RCKO(3

0 oC) 

0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 

WT(23 

oC) 

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 

RCKO(2

3 oC) 

0.13 0.12 0.11 0.11 0.10 0.09 0.09 0.08 0.07 

 Amp 

(24h) 

Amp 

(22h) 

Amp 

(20h) 

Amp 

(19h) 

Amp 

(18h) 

Amp 

(17h) 

Amp 

(16h) 

Amp 

(14h) 

Amp 

(12h) 

WT(30 

oC) 

16.00 15.84 15.91 15.33 14.08 12.29 10.37 8.36 9.19 

RCKO(3

0 oC) 

1.06 1.06 1.05 1.04 1.04 1.04 1.04 1.04 1.05 

WT(23 

oC) 

1.06 1.06 1.07 1.06 1.06 1.06 1.05 1.05 1.04 

RCKO(2

3 oC) 

1.11 1.07 1.06 1.09 1.12 1.15 1.18 1.12 1.12 

 Peak 

(24h) 

Peak 

(22h) 

Peak 

(20h) 

Peak 

(19h) 

Peak 

(18h) 

Peak 

(17h) 

Peak 

(16h) 

Peak 

(14h) 

Peak 

(12h) 

WT(30 

oC) 

21.54 0.09 2.43 3.54 4.65 5.78 6.97 19.58 24.00 

RCKO(3

0 oC) 

13.43 14.49 15.38 15.72 15.98 16.17 16.33 6.91 6.00 

WT(23 

oC) 

15.65 17.56 19.56 20.62 21.72 22.88 0.12 2.90 6.00 

RCKO(2

3 oC) 

14.78 14.69 9.07 7.91 7.32 7.00 6.82 6.51 6.00 
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damping rhythms are caused by some technical issues. The exponentially 

growing cells, for instance, may be entering the stationary phase where only a 

small amount of nitrogen is required, or the nitrogenase could be inhibited after 

fixing adequate nitrogen to the medium. Additionally, no clear patterns were 

observed in the RCKO strain, although some fluctuations were detected. These 

uncertainties leave this question unsolved.   

The timing mechanism driven by KaiCRp enhances fitness of R. palustris 

under LD cycles. 

Several studies in cyanobacteria have demonstrated that the kaiC-driven 

circadian clock enhances fitness under cyclic environments (Ouyang et al., 1998; 

Woelfle et al., 2004; Ma et al., 2013). To test whether this adaptive value of kaiC 

extends to R. palustris, growth rates of the WT and RCKO strains were 

measured under LD 12:12 cycles and LL conditions at 30°C and 23°C. As shown 

in Fig. 4.8A&C, at both temperatures, the RCKO strain grew in LL at about the 

same rate as did WT. However, a dramatic difference in their growth rates was 

observed when they were cultured under LD conditions (Fig.4.8B&D); the WT 

strain grew significantly faster than the RCKO strain. Furthermore, when a FLAG-

tagged kaiCRp was restored into the RCKO genome, the rescued strain showed 

similar growth rates as the WT strain under both LL and LD conditions (Fig. 4.8), 

confirming that the reduced growth rate of RCKO is caused by the absence of 

kaiCRp. Taken together, these results suggest that a KaiCRp-dependent timing  
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Figure 4.8 Growth curves of R. palustris under LL or LD 12:12 conditions. A, cell 
densities (OD600) of the WT (red), RCKO (black) and the kaiCRp rescue strain (green) were 
measured every two days under LL condition at 30 oC. B, cell densities of the WT (red), 
RCKO (black) and the kaiCRp rescue strain (green) were measured every two days under 
LD 12:12 cycles at 30 oC. The OD600 value was plotted as the function of time (days).   
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Figure 4.9 ATPase activity of KaiCRp in vitro. Purified KaiCRp was incubated with ATP 
at 0 oC, 23 oC, 30 oC and 37 oC for 24 hours. Then the amount of ATP/ADP/AMP was 
quantified by HPLC. Blue, ATP; red, ADP; green, AMP.  
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mechanism confers an adaptive value under cyclic conditions but not constant 

conditions.  

KaiCRp displays ATPase activity in vitro 

It is believed that the phosphorylation rhythm of KaiC along with the 

interactions of KaiA and KaiB is the basic mechanism of circadian clock in S. 

elongatus (Nakajima et al., 2005; Kageyama et al., 2006). Additionally, the 

ATPase acitivities of KaiCSe was reported (Terauchi et al., 2007), and several 

studies suggested that three activities of KaiCSe (ATPase, autokinase and 

autophosphatase) are coupled and that they are essential for generating 

circadian rhythms in S. elongatus (Kitayama et al, 2013).  

The protein sequence alignment of KaiC suggested that the ATPase sites 

are highly conserved among different species (Fig. 4.2), indicating that the 

ATPase activity may also play an essential role for the function of KaiC in other 

bacteria. My results have demonstrated that KaiCRp drives a timing mechanism in 

R. palustris, but the biochemical basis of this timing mechanism remains elusive. 

Considering the importance of ATPase activity for KaiC function in S. elongatus, I 

hypothesize that KaiCRp has ATPase activity.  

To test this hypothesis, kaiCRp was expressed in E. coli and the protein 

was purified.  The purified KaiCRp was incubated with ATP at 0 oC, 23 oC, 30 oC 

and 37 oC for 24 hours, and then the reaction was terminated and measured by 

High-performance liquid chromatography (HPLC). As shown in Fig. 4.9, time 0 



128 
 

represents the initial composition of the reaction. After a 24-hour incubation at 

0oC, no ADP/AMP production was detected, while at 23 oC , 30 oC and 37 oC, all 

of the ATP was converted to ADP/AMP, suggesting that KaiCRp confers ATPase 

activities at these temperatures. Interestingly, compared to KaiCSe, the ATPase 

activity of KaiCRp is at least 10 times higher (Terauchi et al., 2007). Taken 

together, these results indicate that KaiCRp is also an ATPase with a relatively 

high activity. Whether or not this ATPase activity plays a role in KaiRp function 

needs to be confirmed in future experiments  

Discussion 

Circadian clock vs. hour glass 

A circadian clock is a sophisticated biochemical machinery whose 

oscillations persist even without external cues (Dunlap et al., 2004). An hour 

glass, on the contrary, is dependent on regular environmental stimulations to 

restart it every day, and it will not cycle without daily stimulation. Both a circadian 

clock and an hour glass need to be entrained by environmental signals to 

establish a stable phase angle (Rensing et al., 2001). In this study, the nitrogen 

fixation rhythms with a stable phase angle under LD12:12 cycles provide 

evidence for the presence of a timing mechanism in R. palustris, but it damped 

out under LL conditions after oscillating for two 18-hour cycles, indicating that this 

timing mechanism is more likely to be an hour glass that can trigger a second 

cycle or a highly damped oscillator rather than a persisting circadian clock. In S. 

elongatus, KaiA is essential for a functioning clock (Kondo et al., 1994), therefore 
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the lack of kaiA may prohibit R. palustris to form a self-sustained circadian clock. 

Similar to R. palustris, the marine cyanobacterium Prochlorococcus only 

harbors kaiB and kaiC homologs, and possibly it possesses only an hour glass 

as the timing mechanism instead of a circadian clock (Holtzendoff et al., 2008; 

Axmann et al., 2009). Prochlorococcus cells are mainly found in the open ocean 

from the surface to depths of 100 to 200 meters, and they have not been found at 

high latitudes (Mullineaux and Stanewsky, 2009; Partensky et al., 1999). In 

contrast, S. elongatus inhabits fresh water where environmental changes such as 

shading due to vegetation or shifting sediments may be more dramatic and 

unpredictable than in the ocean areas (Mullineaux and Stanewsky, 2009). One 

can imagine that having a robust circadian clock will be beneficial when the 

environmental signals are not stable. In other words, a circadian clock will keep 

the physiological activities and gene expressions running normally when the 

environmental conditions are inconsistent. Therefore, for freshwater 

cyanobacterium S. elongatus an hour glass may be not sufficient. Although R. 

palustris is a freshwater bacterium, it is usually found at the bottom of ponds or 

under the cyanobacteria in mats to avoid stresses from oxygen and high light 

intensities(Proctor, 1997; Jiao et al., 2005). In these two conditions, 

environmental changes may be relatively consistant as compared with shallow 

areas, thus suggesting that an hour glass might be capable of maintaining 

normally phased daily activities of R. palustris.  

Nevertheless, we still cannot exclude the possibility that a circadian clock 
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exists in R. palustris. First, the damping rhythms may be due to the culture 

conditions. For instance, I entrained these cells for at least 3 days and then 

monitored the nitrogen fixation activities for another 3 days under constant 

conditions. After being cultured for 6 days, cells may have grown to the stationary 

phase where the nitrogen fixation activity is not as robust as it in the exponential 

phase. To solve this problem and keep cells in the exponential stage, continuous 

cultures may be required for this experiment. Second, nitrogen fixation may not 

oscillate under constant conditions, but there may be other physiological 

activities or gene expressions that do oscillate persistently under constant 

conditions. To solve this problem, another assay needs to be developed. For 

example, microarrays could be applied to measure gene expressions in R. 

palustris under LD and LL conditions. Additionally, in S. elongatus, luminescence 

reporters are applied to track the circadian rhythms, allowing frequent sampling 

without interrupting the cell growth (Kondo et al., 1993). But neither this reporter 

nor other fluorescence reporters can be applied to R. palustris cultures because 

luminescence assays use luciferase, whose activity is dependent upon oxygen 

and no oxygen is present in our cultures. Recently, some luminescence reporters 

that do not require oxygen were published (Mukherjee et al., 2013). If we could 

apply these reporters to R. palustris cultures, we would be able to better test if 

this timing mechanism is a circadian clock or not. 

Adaptive significance of timing mechanisms 

In this study, we found that deletion of kaiCRp reduced the fitness of R. 
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palustris under LD cycles, suggesting that a kaiC-mediated timing mechanism 

confers adaptive value to the purple bacterium R. palustris. This discovery is 

consistent with the studies done in cyanobacteria (Ouyang et al., 1998; Woelfle 

et al., 2004), therefore indicating that the adaptive significance of timing 

mechanisms may be a universal property among different organisms. 

Interestingly, the timing mechanisms of R. palustris and S. elongatus are only 

adaptive under cyclic conditions. Under constant conditions, the wild type strains 

and the mutant strains grew equivalently in both S. elongatus and R. palustris, 

indicating that timing mechanisms are “extrinsic” adaptations rather than 

“intrinsic” adaptations in these two species (Woelfle and Johnson, 2009; Ma et 

al., 2013).  

Diversity of KaiC  

Bioinformatics studies showed that kaiC is widely distributed across the 

bacterial and archaeal domains (Dvornyk et al., 2003). Based on the sequence 

alignment (Fig. 4.2), most of the important domains are conserved among these 

KaiC, while some small differences are present (Fig. 4.2). I am curious how 

these small differences contribute to the discrepancies between their timing 

mechanisms. For instance, in my study, I found that the KaiCRp has a longer C-

terminus. In S. elongatus, the C-terminus of KaiCSe is critical for interacting with 

KaiA. Given the fact that there is no KaiA present in R. palustris, we would expect 

that this long tail of KaiCRp may interact with other proteins or prevent KaiCRp 

from interacting with other proteins. In addition, it is still a puzzle that some 
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organisms possess multiple kaiC genes. For example, the freshwater 

cyanobacterium Synechocystis sp. PCC 6803 has three copies of kaiC and one 

of its KaiC versions shares a similar long C-terminus structure with KaiCRp. For 

almost 20 years, comprehensive studies focused on the S. elongatus circadian 

system have been conducted, providing valuable knowledge about the S. 

elongatus KaiC (Johnson et al., 2011). However, little is known about KaiC in 

other bacteria and archaea.  Along with some work done in other cyanobacteria 

(Kucho et al., 2005; Wiegard et al., 2013; Axmann et al., 2009; Holtzendorff et al., 

2008; Gaudana et al., 2013; Cerveny et al., 2013), my study will help us to 

understand the diversity of KaiC as well as the diversity of microbial timing 

mechanisms, which will hopefully reveal the evolution of timing systems in 

bacteria and archaea.  

Methods 

Bacterial strains and culture conditions 

All bacterial strains used in this study are listed in Table 4.2. E.coli was 

grown in Luria-Bertani (LB) broth at 37°C with shaking, and if necessary, 

gentamicin (50µg/ml) was supplemented. For photoheterotrophic growth, R. 

palustris strains were grown in Freshwater-Base (FW) medium (Jiao et al., 2005) 

supplied with 20mM sodium acetate, 50mM sodium bicarbonate, 20mM MOPS 

(PH7.2), 1mM potassium phosphate, 1mM sodium sulfate, multivitamin solution 

and trace elements solution. The medium was aliquoted into sealed serum 

bottles and the headspace was flushed with N2 gas for 20 min before inoculating 
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cells. N2 gas is used as the sole nitrogen source to ensure nitrogenase 

expression. The cultures were maintained at 30 °C (or 23 °C as specified) and 

illuminated by a cool-white fluorescent lamps (40-50 µE m−2 s−1) with shaking at 

120 rpm. For aerobic chemoheterotrophic growth, R. palustris strains were grown 

in YP medium containing 0.3% yeast extract and 0.3% peptone (Jiao et al., 2005) 

at 30 °C with shaking at 120 rpm, and if necessary, gentamicin (400µg/ml) was 

supplemented. The cyanobacterial strains were grown in BG-11 medium (Bustos 

and Golden, 1991) at 30 °C, and illuminated by cool-white fluorescence bulbs 

(40-50 µE m−2 s−1) with air bubbling. The medium of AMC149 and DeltaC was 

supplemented with spectinomycin (25µg/ml), and the medium of the kaiCRp 

overexpressing strains was supplemented with spectinomycin (25µg/ml) and 

kanamycin (25µl/ml). For growth on solidified media, LB, FW or BG-11 medium 

was supplemented with 1.5% agar and appropriate antibiotics.  

Construction of the kaiCRp deletion strain 

All plasmids and primers used in strain constructions are listed in Table 4.3 

and Table 4.4. The kaiCRp deletion strain (RCKO) was constructed in R. palustris 

TIE-1 strain by overlap extension PCR and conjugation (Hirakawa et al., 2011, 

Bose and Newman, 2011). To delete the kaiCRp gene, the 1 kb upstream region 

and the 1 kb downstream region of the kaiCRp ORF were cloned from the 

genomic DNA of R. palustris TIE-1 strain and fused by overlap extension PCR. 

The 2-kb DNA fragment was ligated with the suicide vector pJQ-200KS (Quandt 

and Hynes, 1993). The resultant plasmid, pJQ-200KS-RCKO, was transformed 
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into R. palustris TIE-1 strain by conjugation with E. coli S17-1 (Simon et al., 1983; 

Hirakawa et al., 2011; Bose and Newman, 2011). The integration of the plasmid 

in either the upstream or the downstream regions of the kaiCRp locus was 

selected by gentamicin resistance and screened by PCR. Following the 

selection, the integrants were grown in non-selective YP medium for several 

generations and then plated on YP agar medium with 10% sucrose (Hirakawa et 

al., 2011) to induce double recombination. Among the survivors of the sucrose-

YP medium, the double recombinants were selected by PCR screening. The 

deletion of the kaiCRp gene was confirmed by sequencing and Q-RT-PCR.  

Construction of the FLAG-kaiCRp strain 

To complement the kaiCRp gene deletion, a FLAG-tagged kaiCRp gene was 

restored to the genome of RCKO strain in the region surrounding the glmUSX-

recG locus (Bose and Newman, 2011). The FLAG tag allows me to confirm the 

expression of KaiCRp in the rescued strain with an anti-FLAG antibody. To 

construct the insertion plasmid pJQ200KS-Insert, the 1 kb upstream and the 1 kb 

downstream regions of glmUSX-recG locus of R. palustris TIE-1 were cloned and 

fused by overlap extension PCR. A NcoI site was incorporated in the middle to 

allow the insertion of genes of interest (Bose and Newman, 2011). The resulting 

DNA fragment was ligated with pJQ200KS by SphI and SmaI, as described by 
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Table 4.2 Bacterial strains used in this study. 

Strain Genotype and use Reference 

E.Coli S17-1 A conjugative donor strain [thi pro hdsR 
hdsM+ recA; chromosomal insertion of RP4-
2 (Tc::Mu Km::Tn7)]. 

(Simon et al., 
1983; Hirakawa et 
al., 2011) 

R. palustris TIE-1 Served as the wild type strain of R. palustris 
TIE-1. 

(Jiao et al., 2005) 

RCKO kaiCRp knockout strain (1674bp deleted from 
kaiCRp gene in R. palustris TIE-1) 

This study 

RCKO-FLAGkaiCRp A FLAG-tagged kaiCRp restored into the 
genome of RCKO.  

This study 

RCKO-HAkaiCRp A HA-tagged kaiCRp restored into the 
genome of RCKO.  

This study 

AMC149 Wild- type cyanobacterium S. elongatus with 
a luminescence reporter( psbAIp::luxAB ). 

(Kondo et al., 
1993) 

DeltaC S.elongatus with an in-frame deletion in kaiC 
gene and a luminescence 
reporter( psbAIp::luxAB ). Arhythmic strain. 

(Xu et al., 2000) 

AMC149oxkaiCRp AMC149 overexpressing kaiCRp. This study 

DeltaCoxkaiCRp DeltaC overexpressing kaiCRp. This study 
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Table 4.3 Plasmids used in this study. 

Plasmid  Description  Reference 

pJQ200KS Mobilizable suicide vector; sacB, Gm
r

 (Quandt and Hynes, 
1993; Hirakawa et 
al., 2011) 

pJQ200KS - RCKO Overlap extension PCR was used to amplify homologous regions of 

1-kb upstream and 1-kb downstream of  kaiC
Rp 

 locus, then the 2-
kb fragment was ligated with Pjq200ks by BamHI and XbaI. This 

plasmid was used to delete kaiC
Rp  

gene in the wild-type R. 

palustris. Gm
r

 

This study 

pJQ200KS -Insert Overlap extention PCR was used to amplify the 2 kb region 
surrounding the glmUSX-recG locus of R. palustris TIE-1, a NcoI 
site was incorporated into the middle of this PCR fragment which 
was ligated to pJQ- 200KS by SphI and SmaI, as described by Bose 

and Newman. This plasmid was used to restore tagged kaiC
Rp 

gene 

into the RCKO strain. Gm
r

 

(Bose and Newman, 
2011) 
This study 

pJQ200KS – Insert-

PkaiC
Rp

 
A 469-bp region upstream of kaiC

Rp 

gene locus in R. palustris was 

amplified as the promoter region of kaiC
Rp 

gene. This PCR fragment 
was ligated to the NcoI site of pJQ200KS – Insert.  A NdeI and a 
XbaI sites were incorporated to the downstream of the promoter 

region. Gm
r

 

This study 

pJQ200KS – Insert - 

PkaiC
Rp 

   

- FLAGkaiC
Rp 

 

kaiC
Rp 

 gene was amplified from the wild type R. palustris. A FLAG 
tag was incorporated into the N-terminus or the C-terminus.  This 
PCR fragment was ligated to the downstream of promoter retion of 

kaiC
Rp  

gene in pJQ200KS – Insert-PkaiC
Rp

. This construct was 

used to restore FLAG-tagged kaiC
Rp  

gene to the RCKO strain. Gm
r

 

This study 

pJQ200KS – Insert - 

PkaiC
Rp 

   

- HAkaiC
Rp 

 

kaiC
Rp 

 gene was amplified from the wild type R. palustris. A HA tag 
was incorporated into the N-terminus or the C-terminus.  This PCR 

fragment was ligated to the downstream of promoter retion of kaiC
Rp  

gene in pJQ200KS – Insert-PkaiC
Rp

. This construct was used to 

restore HA-tagged kaiC
Rp  

gene to the RCKO strain. Gm
r

 

This study 

Ptrc NSII A vector containing homologous regions of the neutral site II of S. 

elongatus and an IPTG- inducible Trc promoter. Kan
r

 

(Xu et al., 2013) 

Ptric NSII-kaiC
Rp

 kaiC
Rp 

gene was amplified from the wild-type R. palustris and ligated 
to Ptric NSII by NdeI under the control of  IPTG- inducible Trc 
promoter. This plasmid was transformed into the cyanobacterial 

strains AMC149 and DeltaC to overexpress kaiC
Rp 

gene in S. 

elongatus. Kan
r

 

This study 
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Table 4.4 Primers used in this study. 

Primer Sequence Description/ 
Reference 

CupF ATAGGATCCACAGCTCGCCTCGCGGACCGGAA 1-kb upstream of 
kaiCRp gene 

CupR56 TATGGCAATCGTGTGGATGGAGTCCGCCATCGCACCACAGG 1-kb upstream of 
kaiCRp gene 

CdownF56 TCCATCCACACGATTGCCATAACGGACTAGGGGACGACGAT 1-kb downstream 
of kaiCRp gene 

CdownR AAATCTAGACGCGCTGCGACAGATCGACCAGG 1-kb downstream 
of kaiCRp gene 

TIE-1upfor GGCGCGCCGCATGCCACACCGGCAGGTTGTTGATGGCTG (Bose and 
Newman, 2011) 

TIE-1fusionrev(new) CGGGTTAGTTACCACGCGTCATTACTAGTTCGCGACCATGGCTACCCGACCT
TGTCCGGCGCCTTTTC 

(Bose and 
Newman, 2011) 

TIE-1dnrev ACTAGTCCCGGGCGAGATCGATTTTCTGGTCGGCAC (Bose and 
Newman, 2011) 

TIE-1fusionfor(new)  GAAAAGGCGCCGGACAAGGTCGGGTAGCCATGGTCGCGAACTAGTAATGAC
GCGTGGTAACTAACCCG 

(Bose and 
Newman, 2011) 

R10(PkaiF) GCGGCTAGCCCATGGCGTCACGTCGCGCTTTGC promoter region of 
kaiCRp gene 

R30(PrkaicR2) CTGACCATGGTCTAGACATATGCGCACCACAGGTCGTTTTCTGA Promoter region 
of kaiCRp gene 

RCup ATGCAACATATGGCGGACGGCATATC Forward primer of 
kaiCRp gene 

RCdown ATGCAATCTAGACTAGTCCGTGTCATCGGC Reverse primer of 
kaiCRp gene 

FlagCup ATGCAACATATGGACTATAAGGACGACGACGACAAGGCGGACGGCATATC Forward primer of 
kaiCRp gene 

FlagCdown ATGCAATCTAGACTACTTGTCGTCGTCGTCCTTATAGTCGTCCGTGTCATCG
GC 

Reverse primer of 
kaiCRp gene 

HACup ATGCAACATATGTATCCCTATGACGTGCCCGACTATGCGGCGGACGGCATAT
C 

Forward primer of 
kaiCRp gene 

HACdown ATGCAATCTAGACTACGCATAGTCGGGCACGTCATAGGGATAGTCCGTGTCA
TCGGC 

Reverse primer of 
kaiCRp gene 

RCNdeF ATACATATGagcATGGCGGACGGCATATC Forward primer of 
kaiCRp gene 

RCNdeR ATACATATGagCTAGTCCGTGTCATCGGCCG Reverse primer of 
kaiCRp gene 
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Bose and Newman (Quandt and Hynes, 1993; Bose and Newman, 2011). To 

include the native promoter region of the kaiCRp gene in the insertion plasmid, a 

469-bp region upstream of the kaiCRp gene was cloned and ligated to the NcoI 

site of pJQ-200KS-Insert, resulting in pJQ200KS-Insert-PkaiCRp. A NdeI-XbaI site 

was incorporated downstream of the promoter region to allow the insertion of 

genes of interest. The KaiCRp gene was cloned from genomic DNA of the R. 

palustris TIE-1 strain, while a FLAG tag was fused to its N-terminus. This DNA 

fragment was ligated with the plasmid pJQ200KS-Insert-PkaiCRp by NdeI and 

XbaI where the FLAG- kaiCRp gene is under the control of the kaiCRp promoter. 

The resultant plasmid, pJQ200KS-Insert-PkaiCRp-FLAGkaiCRp, was then 

transformed into RCKO strain by conjugation with E.coli S17-1 (Simon et al., 

1983; Hirakawa et al., 2011; Bose and Newman, 2011). The following selection 

procedures are similar to the construction of kaiCRp deletion strain. The 

integration of FLAG-kaiCRp was confirmed by sequencing and western blot.  

Construction of kaiCRp overexpression strains in cyanobacterium S. 

elongatus 

The kaiCRp gene was cloned from genomic DNA of R. palustris TIE-1 

strain and ligated with the plasmid Ptrc-NSII by NdeI (Xu et al., 2013). The 

resulting plasmid, Ptrc-NSII-kaiCRp, was transformed into cyanobacterial strains 

including the wild-type AMC149 (Kondo et al., 1993) and an arhythmic strain 

DeltaC (Xu et al., 2000). By transformation, the kaiCRp gene was incorporated 

into the Neutral Site II of the genome of AMC149 and DeltaC under the control of 
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an IPTG-inducible promoter trc (Xu et al., 2013), resulting in two corresponding 

kaiCRp overexpression strains AMC149oxkaiCRp and DeltaCoxkaiCRp. The kaiCRp 

overexpression strains inherit the psbAIp::luxAB luminescence reporter located 

on the Neutral Site I of AMC149 and DeltaC (Kondo et al., 1993; Xu et al., 2000).   

Growth curve experiment 

Batch liquid cultures of R. palustris strains including the wild-type R. 

palustris TIE-1, the kaiCRp knockout strain RCKO, and the kaiCRp 

complementation strain RCKO-FLAGkaiCRp were grown anaerobically in FW or 

YP medium. For growth curve experiments and doubling time calculations, 

cultures were grown at 30 °C or 23 °C with shaking under either LL conditions or 

LD 12:12 conditions. Seed cultures of these strains were grown anaerobically in 

FW medium under LL before inoculation. Growth was monitored by measuring 

the optical density (OD) at 600nm. OD600 was then plotted against time for a 

comparison of growth among strains. The growth constant k was generated by 

fitting exponential curves to the growth curves at log scale, and doubling time 

was calculated as this equation: doubling time (h) = (ln(2)/k) × 24. 

Nitrogenase activity measurement 

Nitrogenase activity of R. palustris was measured by acetylene reduction 

assay as described elsewhere (Hardy et al., 1973). Assays were carried out in 

sealed serum bottles containing the anaerobic cultures under LL or LD 12:12 

conditions. 10% Acetylene (final concentration) was injected into the headspace 
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and incubated with cells under light (40-50 µE m−2 s−1). For time-course 

experiments, samples were taken every 3 hours for 1 LD 12:12 cycle and/or 2 

days (48 hours) in LL. 500µl gas in the headspace was analyzed by a gas 

chromatograph (Shimadzu GC-2010 Plus) fitted with a flame ionization detector 

and a Rt-Alumina BOND/MAPD PLOT column (Restech, PA). The temperatures 

of the injector, detector, and oven were 200°C, 200°C, and 130°C, respectively.  

Phylogenetic analysis 

The amino acid sequences of KaiC proteins of selected cyanobacterial 

species and purple non-sulfur bacterial species were retrieved from the NCBI 

GenBank. The phylogenetic tree for KaiC was constructed using Phylogeny.fr 

web service integrated MUSCLE alignment, Gblocks curation and PhyML method 

(Dereeper et al., 2010; Dereeper et al., 2008; Edgar, 2004; Castresana, 2000; 

Guindon and Gascuel, 2003; Anisimova and Gascuel, 2006; Chevenet et al., 

2006). The KaiC sequences were aligned using PRALINE multiple sequence 

alignment program with Homology-extended alignment strategy (Simossis et al., 

2005; Heringa, 2000; Heringa, 2002; heringa, 1999; Simossis and Heringa, 2003; 

Simossis and Heringa, 2005). 

Measuring luminescence rhythms in cyanobacterial strains 

Cyanobacterial kaiCRp overexpressing strains, AMC149oxkaiCRp and 

DeltaCoxkaiCRp , were cultured on BG-11 solid medium supplemented with 

appropriate antibiotics. Before measuring luminescence rhythms, toothpick 
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colonies of these strains were grown at 30 °C for two LD-cycles. After the cells 

were released to LL, the trc promoter inducer IPTG was added to the final 

concentrations of 0, 5, 10, 100, 250, 500 and 1000 µM to induce the expression 

of kaiCRp. Then the agar plates containing these strains were placed on a home-

made luminescence monitoring machine to measure the luminescence rhythms 

for 5-7 days at 30 °C and constant light conditions (40-50 µE m−2 s−1). The wild-

type cyanobacterium AMC149 and the kaiC-deletion strain DeltaC were also 

included on the agar plates as controls.  

Quantitative reverse-transcription PCR 

RNA was isolated from 3-5 ml exponential growing cells with a NucleoSpin 

RNA II kit (Clontech). 300 ng of RNA was then used to synthesize cDNA by using 

the iScript cDNA synthesis kit (Bio-Rad). With 1ul of the synthesized cDNA as 

template, quantitative reverse-transcription PRC was conducted on a CFX96 

Touch™ Real-Time PCR Detection System (Bio-Rad) by using iTaq SYBR green 

supermix (Bio-Rad). The program was running at 95 oC for 30s, followed by 40 

cycles of 95 oC for 5s and 60 oC for 30s. A final melting curve was performed for 

each reaction to ensure that only a single peak was amplified. The primers were 

designed by using Primer3 web service 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi).  

Immunoblot assay for FLAG-KaiCRp  

The FLAG-kaiCRp strain was cultured under LD 12:12 cycles. When cell 
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density (OD600) reached 0.4 in the exponential growth phase, 5 ml cells were 

collected every 3 hours for 1 LD 12:12 cycle and then the culture was released to 

LL where cell collection was continued for another 48 hours. After collection, cells 

were centrifuged at 4 oC, and cell pellets were immediately frozen by liquid 

nitrogen. Total protein was extracted from cell pellets resuspended in KaiC 

extraction buffer (Xu et al., 2000) by sonication, and the amount of total protein 

was quantified by the Lowry protein assay (Lowry et al., 1951). The extract was 

then separated by SDS-polyacrylamide gel electrophoresis (PAGE) (10%) and 

transferred onto nitrocellulose membranes. The immunoblot was treated with 

FLAG antibody at 1:1000 dilutions and detected by using Pierce ECL Western 

Blotting Substrate (Thermo Scientific). The signal was captured by an Alpha 

Innotech gel image system (Alpha Innotech). Equal loadings were confirmed by 

Coomassie Brilliant Blue (CBB) staining in the gel, Ponceau Red staining on the 

membrane, and/or by the density of nonspecific bands on the immunoblots. 

ATPase activity assay 

The GST-tagged KaiCRp protein was expressed and purified in DH5a 

E.coli cells following the protocol of expressing and purifying S. elongatus KaiC 

(Mori et al., 2007; Egli et al., 2012). GST fusion proteins were purified by affinity 

chromatography on glutathione-agarose resin (Pierce/Thermo Scientific) and 

cleaved from GST using human rhinovirus 3C protease. The proteins were 

further purified by ion-exchange chromatography on Q Sepharose with a gradient 

of NaCl. 1mM ATP was incubated with the purified protein (3.5uM) at 0 oC, 4 oC, 
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23 oC, 30 oC and 37 oC for about 24 hours. The hydrolysis of ATP by KaiCRp was 

quantified by using High-performance liquid chromatography (HPLC) as 

described (Sudo et al., 2000) by using a … HPLC column.  

Statistical analysis 

The modified cosiner method (Kucho et la., 2005) was used to determine 

if the data can be an oscillation/rhythm, or alternatively if they show non-cyclic 

variation. The nitrogen fixation data was first detrended linearly as described by 

Kucho et al.. And the detrended data was then fitted to a series of cosine curves 

with different periods ranging from 12 hours to 24 hours. Along with curve fitting, 

the peak time and amplitude were calculated as described (Kucho et al., 2005). 

An oscillation or rhythm was determined by two criteria: first, a true circadian 

rhythm should have an error factor (Ef) less than 0.2; second, the amplitude 

should be greater than 1.2. 
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Chapter V 

Conclusions and Future directions 

Conclusions 

It was believed for a long time that prokaryotic organisms were not able to 

generate circadian rhythms due to the short doubling time and relatively simple 

cell structures (Edmunds, 1983; Kippert, 1987; Johnson et al., 1996). However, 

research from several groups have not only discovered that cyanobacteria (the 

most abundant prokaryotes on the earth) have circadian clocks, but also 

comprehensively demonstrated the molecular basis and the adaptive significance 

of cyanobacterial circadian clocks (Grobbelaar et al., 1986; Mitsui, 1986; Kondo 

et al., 1993; Kondo et al., 1994; Ishiura, 1998; Ouyang et al., 1998; Iwasaki et al., 

2002; Woelfle et al., 2004; Johnson et al., 2008; Kitayama et al., 2013). Following 

these pioneer works, my dissertation mainly involves two studies: first, the 

potential mechanism by which the cyanobacteria circadian clock enhances 

fitness; second, the function of kaiCRp in the purple bacterium 

Rhodopseudomonas palustris (R. palustris) (to test if circadian clocks exist in 

another prokaryotic organism).  
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The mechanism by which the circadian clock system enhances fitness in 

cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus) cannot 

be explained by existing hypotheses  

Circadian clocks are considered to be an adaptation to the daily cycles on 

the earth, and this theory has been rigorously tested in the cyanobacterium S. 

elongatus (Ouyang et al., 1998; Woelfle et al., 2004; Chapter II). Ouyang et al. 

(1998) reported that cyanobacterial strains whose free running periods (FRPs) 

were close to the environmental cycles were the most fit, as compared with 

strains whose FRPs were significantly longer or shorter than the environmental 

periods. Later, Woelfle et al. (2004) demonstrated the circadian clock-mediated 

fitness enhancement by competing the wild-type strain with arrhythmic mutants. 

In Chapter II, the clock-mediated fitness enhancement was tested in a variety of 

conditions, including on solid agar, in continuous cultures, and in a codon-

optimized strain (OptkaiBC) (Xu et al., 2013). All of the results support the idea 

that cyanobacterial circadian clock confers adaptive significance under light-dark 

(LD) cycles within a physiological range of environmental conditions.  

To explain the underlying mechanism of the clock-mediated fitness 

enhancement, several models have been proposed, including the “limiting 

resource model”, “diffusible inhibitor model” and “cell-cell communication model” 

(Woelfle and Johnson, 2009; Ma et al., 2013; Chapter II). Although numerous 

experiments have been done to test these models, none of them has been 

conclusively established. For example, when the WT strain and CLAb were 
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cultured and separated by a membrane which allows the diffusion of small 

molecules, no growth defect was observed in the CLAb culture under the 

competition conditions, as would have been predicted by the “diffusible inhibitor 

model.” In addition, no significant difference was observed in the initial growth 

rates between WT and CLAb, leaving the “limiting resource model” unconfirmed. 

Taken together, results in Chapter II suggested that the mechanism of the clock-

mediated fitness enhancement cannot be explained by the existing hypotheses.  

Metabolic profiles of the clock mutants are affected under LD cycles 

In cyanobacteria, circadian clocks and metabolism form an autoregulatory 

feedback network. On one hand, circadian clocks regulate many metabolic 

processes; on the other hand, some metabolic processes may provide entraining 

information to the circadian clock (Rust et al., 2011; Kim et al., 2013). This 

relationship indicates that the coupling between circadian clock and metabolism 

may play an important role in cyanobacterial physiology. In Chapter III, I tested if 

the disruption of the circadian clock could alter metabolism in S. elongatus, and 

whether the metabolic status under the competition conditions can help us to 

understand the clock-conferred fitness. 

As predicted, metabolic profiles of two clock mutants, CLAb and CLAc, 

displayed significant differences from the WT strain under LD cycles. Not only 

was the number of cycling metabolites largely reduced in these two mutants,  

but also abnormal production of metabolites were observed in some pathways, 

suggesting that the metabolic profiles were affected when the circadian clock is 
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disrupted. Especially in CLAb, some free fatty acids were over-expressed during 

the night, which might damage the cells and make this strain vulnerable. 

Although more work needs to be done to confirm that the altered metabolism 

contributes to the reduced fitness during the competition, these results definitely 

open a window for us to uncover the underlying mechanism of the clock-

mediated fitness enhancement.  

Metabolic profiles of the wild-type S. elongatus show dramatic difference in 

light-dark cycles vs. constant light (LL) condition. 

For photosynthetic cyanobacteria, light is an essential factor that regulates 

their metabolism. Results in Chapter III demonstrated that ~40% of the 

metabolites in the WT strain were produced cyclically under LD cycles. Another 

question that I wanted to address was to test if constant light could over-ride the 

circadian regulation of the metabolism. To answer this question, the metabolic 

profiles of the WT strain were compared under different light conditions (LD vs. 

LL). Results in Chapter III showed that under LL conditions, the number of 

cycling metabolites was reduced, and that the global metabolic profiles was 

significantly different from that in LD cycles, indicating that the regulation by 

constant light exposure can over-ride the regulation by the circadian clock. Based 

on the results in the WT strain, it is possible that light also plays a dominant role 

in the regulation of metabolism in the arrhythmic mutants, which could be the 

reason that the WT strain only outcompetes CLAb or CLAc under LD cycles.  
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A new kind of timing mechanism driven by kaiCRp was discovered in the 

purple bacterium R. palustris  

Although cyanobacteria are the only prokaryotic phylum in which circadian 

clocks have been conclusively demonstrated, one of the central clock genes, 

kaiC, has been identified in many other bacteria and archaea (Dvornyk et al., 

2003). Little is known about the function of kaiC in these organisms. Considering 

the adaptive fitness conferred by the cyanobacterial circadian clock, it is 

reasonable to predict that other bacteria and/or archaea that inhabit cyclic 

environments, especially those performing photosynthesis, would also benefit 

from a daily timing mechanism. Therefore, in Chapter IV, I tested the hypothesis 

that the purple bacterium R. palustris, which possesses kaiC in its genome and 

also performs photosynthesis, has a timing mechanism driven by kaiCRp.  

To test this hypothesis, a kaiCRp deletion strain (RCKO) was generated 

and nitrogen fixation activities were measured under LD cycles and in LL 

conditions. Under LD cycles, the nitrogen fixation activities of the wild-type strain 

(WT) were entrained to the environmental cycles and displayed a stable phase 

angle, while the RCKO strain did not exhibit a stable phase angle under LD 

cycles in its nitrogen fixation activity, indicating that a timing mechanism driven 

by kaiCRp might be present in R. palustris. However, in LL conditions, although 

some oscillations of nitrogen fixation activities were observed in both WT and 

RCKO, the rhythm was not confirmed to be a circadian rhythm by statistical 
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analysis, suggesting that this timekeeping mechanism is likely to be an “hour 

glass” timer or damped oscillator instead of a self-sustained circadian clock. 

Moreover, consistent with the results in S. elongatus, data reported in 

Chapter IV confirmed that this kaiCRp-driven timing mechanism of R. palustris 

confers an adaptive value under LD cycles, indicating that the adaptive value of 

timing systems may be a universal feature.  

Future Directions 

Uncover the mechanism of the clock-mediated fitness enhancement by 

metabolic approaches 

In Chapter III, I demonstrated that the metabolic profiles were affected 

when the circadian clock is disrupted, suggesting that circadian clocks regulate 

metabolism under LD conditions. While the altered metabolism may be the 

reason that these clock mutants were defeated by the WT strain during 

competition, more work needs to done to confirm this idea. First, targeted mass-

spectrometry should be applied to confirm the identity of the metabolites that 

were produced abnormally. Second, once some pathways or specific metabolites 

are confirmed, they can be genetically manipulated in the WT strain to test if the 

competition could be affected. For example, some free fatty acids were over-

expressed in CLAb. A competition experiment can be conducted between CLAb 

and an engineered WT strain that over-expresses the same free fatty acids. If the 

engineered “WT” strain no longer outcompetes CLAb, this result could indicate 
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that the over-production of free fatty acids could be involved in the mechanism of 

the competition experiment.  

Besides focusing on these arrhythmic mutants (i.e., CLAb and CLAc), an 

alternative approach could use a long period mutant such that the metabolism 

can be manipulated by changing light conditions. Ouyang et al. (1998) reported 

that when the long period mutant C28a whose free running period is about 30 

hours was co-cultured with the WT strain under LD 12:12 conditions, it was 

defeated by the WT strain. However, the WT strain was out-competed by C28a 

when the two strains were co-cultured under LD 15:15 conditions (Ouyang et al., 

1998), indicating that both the WT and C28a have different metabolic profiles 

under different LD cycles. Therefore, if the metabolic profiles of C28a and WT 

can be characterized under LD 12:12 and LD 15:15 conditions, a clearer picture 

might be obtained to help us to understand how the circadian regulation of 

metabolism enhances the fitness of cyanobacteria.  

The molecular basis of the timing system in R. palustris  

The study in Chapter IV demonstrated that R. palustris has a timing 

mechanism driven by KaiCRp. The molecular basis of this timing system, 

however, remains elusive. In S. elongatus, both the phosphorylation status and 

the ATPase activity play essential roles in KaiC function (Kitayama et al., 2013). 

My preliminary result has shown that KaiCRp has ATPase activity, while the 

phosphorylation status of KaiCRp is unclear. Therefore, to further characterize this 
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new type of timing mechanism in R. palustris, the phosphorylation status of 

KaiCRp should be studied.  

Besides kaiCRp, a homolog of kaiB is also present in R. palustris. Based 

on the essential role of kaiB in S. elongatus, I would predict that kaiBRp is also 

essential for this timing system. Because there is no kaiA present in R. palustris, 

the way that KaiBRp interacts with KaiCRp might be different from that in S. 

elongatus. In vivo and in vitro characterization of KaiBRp will be a critical step to 

fully understand the timing mechanism of R. palustris.  

A functional timing system should be composed of three components: an 

input pathway, a pacemaker and an output pathway. In S. elongatus, each of 

these parts contains several genes and these genes work together to generate 

circadian rhythms (Ditty and Mackey, 2009). As the first step to study this new 

kind of timing mechanism in R. palustris, my work revealed only a small piece of 

information about the pacemaker. For future directions in the long term, more 

genes involved in this timing mechanism should be identified, which will hopefully 

help us to understand the evolution of microbial timing systems.  

The diversity and evolution of microbial timing systems 

After Dvornyk et al. (2003) reported that kaiC exists throughout eubacterial 

and archaeal species, many questions arose. What are the functions of kaiC in 

other bacteria? Is the kaiC-driven timing system ubiquitous among prokaryotic 

organisms? Why do some species have multiple copies of kaiC? My study in R. 
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palustris suggests that kaiCRp drives a new type of timing mechanism in R. 

palustris, but there are still numerous questions waiting to be answered.  

Studies in the marine cyanobacterium Prochlorococcus indicates that this 

species may have only an “hour glass” timer, possibly due to the lack of kaiA 

(Holtzendorff et al., 2008; Axmann et al., 2009; Axmann et al., 2013). Together 

with the results in R. palustris, it is possible that kaiA is essential for a circadian 

clock but not for other kinds of timing systems. However, it is likely that the timing 

systems of R. palustris and Prochlorococcus are also quite different from each 

other. There is evidence showing that Prochlorococcus used to have a kaiA gene 

but lost it recently in the process of genome reduction (Axmann et al., 2009). In 

contrast, R. palustris possibly acquired kaiB and kaiC before the origin of kaiA in 

cyanobacteria (Mullineaux and Stanewsky, 2009). 

Another interesting observation is that some organisms possess multiple 

copies of kaiC. In particular, the cyanobacterium Synechocystis sp. PCC 6803 

(Synechocystis) possess three kaiC genes and one of them is phylogenetically 

closer to KaiCRp than any other cyanobacterial KaiC (Chapter IV). Kucho et al. 

(2005) reported that Synechocystis has a circadian clock that regulates 2-9% of 

the genes in its genome. However, little is known about the individual role that 

each KaiC plays in Synechocystis. Similar to R. palustris, Synechocystis is a 

metabolically versatile organism and they can both directly utilize some organic 

carbon sources from the environment (Anderson and McIntosh, 1991; Larimer et 

al., 2004). Therefore, it is possible that the KaiCRp-like KaiC in Synechocystis 
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functions under metabolic conditions that are different from S. elongatus while 

the KaiCSe-like KaiC in Synechocystis functions similarly to KaiC in S. elongatus.   
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