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ABSTRACT

The U.S. healthcare data has undergone significant transformations as computerized

technologies have evolved in recent decades. Data trends in healthcare have transitioned

from less frequent, higher-fidelity provider-documented electronic health records (EHR)

to more frequent, lower-fidelity patient and device-generated data. In particular, prevalent

Internet of Things (IoT) devices and apps collect enormous amounts of information asso-

ciated with individuals health statuses, physical activities, and environmental triggers to

chronic conditions. As a result, health-related data generated from IoT devices today is

now exceeding EHR data in terms of volume and frequency. It is important, however, to

integrate these data into healthcare decisions since they reflect various aspects of citizens

lifestyles and well-being in a comprehensive and continuous manner. Given these trends, a

key problem facing heathcare researchers and practitioners is how to successfully migrate

towards the use of the high-frequency, low-fidelity (HFQ) data in the healthcare domain.

Addressing this problem requires research that focuses on the following issues: (1)

how to scalably extract insights from large volumes of health data, (2) how to integrate

and share HFQ data along with learned insights from those data, and (3) after an integrated

health system is created, what methods and techniques are needed to evolve it to adopt

more efficient technology or perform upgrades and updates as needed. This dissertation

presents software architectures and patterns targeting these issues. First, we propose a ma-

chine learning based filtering architecture for drawing insights from HFQ data at scale.

Second, we describe a data sharing framework based on distributed ledger technologies

(DLT) to address technical requirements defined by the Office of the National Coordina-

tor for Health IT (ONC). Lastly, we document a design pattern sequence for effectively

designing and maintaining a DLT-enabled healthcare data sharing system in a secure and

evolvable manner.
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Chapter 1

INTRODUCTION

1.1 Emerging Trends in Healthcare Data

The U.S. healthcare data has undergone significant transformations as computerized

technologies advanced over the last several decades. Prior to the adoption of computerized

medical records systems in the early 1990s [1], health data predominantly took shape of

paper-based records and charts, which were often poorly legible and potentially contribut-

ing to medical errors [2]. Later with computers and the Internet introduced in hospitals and

other healthcare facilities in the 1990s [3], medical records largely transitioned from paper-

based to electronic health records (EHR). As native EHR systems in large medical centers

matured, physicians were able to directly interact with them in early 2000s, which pro-

moted widespread adoptions of EHRs among hospitals and physician offices. More health

data became electronically documented, with many EHRs becoming commercialized to

provide more advanced features and enhanced experience for providers [3]. However, due

to the lack of common standards and nomenclature for representing data and identifying

individuals, many EHR systems became too custom-crafted for different practices to inter-

operate and exchange clinical messages from one medical setting to another. In 2009, the

The American Reinvestment & Recovery Act (ARRA) provisioned the Health Information

Technology for Economic and Clinical Health (HITECH) Act [4] to incentivize the ”mean-

ingful use” of EHRs, promoting the use of certified EHRs with more consistent clinical

exchange standards. The goal was to improve care coordination by enforcing more effi-

cient standards and thus to bridge the apparent interoperability gaps [5]. By 2014, 96.9%

of non-federal acute care hospitals adopted a certified EHR system [6], incorporating a

variety of data, such as lab results, billing information, allergies, and radiology images, etc.

Meanwhile, the Internet of Things (IoT) has permeated through daily functions and ac-
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tivities of both communities and individuals today, with embedded sensors, smartphones,

and wearables being the most prevalent. These devices continuously collect data in real-

time, and many contain pertinent information regarding individuals’ lifestyle and wellbe-

ing. For instance, given that 77% of Americans own a smartphone [7] and that more than

165,000 apps were available on Apple iTunes that target health and wellness alone [8],

smartphone and wearable users are contributing to an enormous amount of patient-generated

health data (PGHD). Some examples of PGHD include heart rate, weight, sleep and fitness

data, carbohydrates intake, so on and so forth. Moreover, sensors that are used for mon-

itoring the environment, like air quality and humidity, can also be used to understand the

effect of environmental stressors on certain chronic conditions, such as asthma, which is a

very common respiratory disease [9].

Today, health data generated from IoT devices has far exceeded EHR data both in terms

of volume and frequency. Nevertheless, the fidelity of these high-frequency data, in general,

is much lower compared to EHR data that is documented by licensed healthcare profession-

als based on expert knowledge or obtained from certified medical equipment used in lab

tests. As a general trend, health data has shifted from provider-documented low-frequency,

high-fidelity (LFQ) data towards device/patient-generated high-frequency, low-fidelity data

(HFQ) that is easily accessible today. Notably, HFQ data can contain very rich information

regarding a community and/or an individual, and thus should be leveraged in healthcare de-

cision making. According to a recent study, the use of PGHD data could potentially reduce

the length of hospital stays by 64% and the associated costs by 72% [10]. Furthermore, be-

cause of the recognizable impact of PGHD, in 2015 the Office of the National Coordinator

for Health Information Technology (ONC) began drafting a policy framework to integrate

PGHD as part of the patient-centered outcomes research [11].
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1.2 Key Research Problem

Given the emerging data trends in healthcare, a key problem facing heathcare researchers

and practitioners today is thus how to successfully migrate towards the use of the high-

frequency, low-fidelity (HFQ) data in the healthcare domain [12]. In this section, we

describe the three dimensions to this key problem in detail. As alluded to previously in Sec-

tion 1.1, HFQ data is becoming substantial for helping providers make better care decisions

for patients. Patient-generated health data in particular (1) discloses important information

about the wellbeing of patients in between medical visits, (2) gathers data on an ongoing

basis rather than at each episodic provider visit, and (3) provides insightful information

relevant to preventive care and long-term care management [13].

1.2.1 Challenge Overview

To better illustrate the scale of HFQ data, we provide the following example scenario.

Suppose that a patient uses a smart watch to track her heart rate 10 times a day and her

phone to track physical activities and sleep patterns throughout the 24-hour day. If each

data entry requires 20 bytes of storage (which includes only a timestamp and some ob-

served value) and fitness and sleep data are generated at every 10 seconds, then in a year

63MB (= 6records/min∗20B/record ∗525600min/year+10records/day∗20B/record ∗

365days/year ≈ 63 ∗ 106B = 63MB) of data will be generated for that single patient. For

a primary care provider who on average sees approximately 2500 patients in a year [14],

the raw data available to a single provider could potentially be as large as 160GB per year.

Understandably, it is impractical for a provider to examine and analyze such enormous

amounts of raw HFQ device data in real-time during each patient’s in-office visit, but the

data may contain important information regarding that patient’s continuous health status.

Furthermore, compared to medical and lab tests, many health conditions can be cap-

tured much more quickly and cheaply via IoT-based devices. For instance, one basic
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metabolic lab test for blood glucose at a care setting could cost between $35 to $7300 [15].

While drug store blood glucose meters and test strips that provide at-home self-tests have a

one-time cost between $20 to $80 on average [16]. When treating chronic conditions, clin-

icians may also prescribe mobile apps to patients as a more accessible and cost-effective

tool to monitor continuous health behavior [17, 18].

As shown in Figure 1.1, HFQ data (such as diet, sleep/activity, environmental data,

and photograph diaries) should be integrated with LFQ EHR data (including but are not

limited to provider notes, allergies, lab results, and prescriptions) when available to provide

clinicians with more comprehensive knowledge about patient health. Unfortunately, the

technical infrastructures in healthcare today lack the support for utilizing HFQ data. An

important research question to answer is thus: what are the architectures, techniques,

and tools that can help providers move towards the use and integration of HFQ health

data at scale? In the following subsections, we investigate three dimensions to this key

research question.

Figure 1.1: Example Types of HFQ and LFQ Data that Should be Integrated to Provide a
Comprehensive View of Patient Health.
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1.2.2 Challenge Dimension 1: How to scalably extract insights from large volumes of

HFQ data

Electronic health record (EHR) systems present patient data to providers in a structured

and readable manner that they have been trained to understand. On the contrary, the new

generation of HFQ health data originating from IoT devices or mobile apps either exists

in raw signal forms or in forms that are vendor-specific. Patients can often access these

data through with months or years of history records. However, because each patient has

limited face-time with a provider during each visit, it is impractical for providers to ex-

amine those heterogeneously formatted high-volume data generated by patients, much less

to extract any clinical insights directly from those data in real-time. As such, a technical

architecture is needed to convert insights obtained from the HFQ data into similarly struc-

tured and readable formats as the EHRs that providers are accustomed to. In particular, the

architecture must also meet the following expectations: (1) it should leverage traditional

LFQ data as ground truth to help improve the reliability of HFQ data, (2) it needs to allow

clinicians or researchers to answer questions or validate inferences about HFQ data, upon

which insights may be learned from the data, and (3) it reduces the dimensionality of HFQ

data if/when necessary by intelligently filtering out impertinent data to a specific condition

under observation.

1.2.3 Challenge Dimension 2: How to Create a Scalable HFQ Data Integration/Sharing

System

In cases where HFQ data may be converted to readable records or succinct insights, all

newly procured information should be integrated with existing EHR records to maintain

a more complete and meaningful picture of patient health history. However, healthcare

today faces interoperability challenges even across EHR systems provided by different

vendors [19, 20], which makes the secure sharing/integration of HFQ data much harder
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to achieve. Several major hurdles are barring the systems from interoperating at their full

potential. First, EHRs (the most common LFQ data) and filtered HFQ data alike remain

siloed and fragmented within the security settings of their data owners. Second, it is hard

to identify and authenticate healthcare participants (e.g., clinicians, healthcare app, and pa-

tients) to initiate the data sharing process between them. Third, the lack of governance

makes it challenging to establish necessary trust relationships particularly between health

app providers and certified healthcare providers, which also creates a barrier to enabling

direct clinical communications [21]. Fourth, inconsistencies in the adoptions of health data

standards prevent shared data from being interpretable by entities that do not employ the

same data representation. Finally, there is incompatibility in existing health management

software systems across different vendors that impedes the direct exchange of clinical mes-

sages [20].

These barriers to healthcare interoperability have spurred a lot of interest in the use of

blockchain technology, which is an emerging infrastructure with properties of decentral-

ization, trustless exchange, and replicated storage. These unique properties of blockchain

technology make it a potential solution to mitigate many of the aforementioned prob-

lems [22]. Although, the most popular (and successful) type of blockchain use cases is

the trustless exchange of cryptocurrency tokens [23, 24], which is much less complex than

the data sharing problem facing healthcare. Existing blockchain solutions cannot be em-

ployed out of the box to support clinical data sharing needs. Important design decisions

must be made in the context of technical requirements defined by healthcare specialists.

Therefore, a blockchain-based architecture that accounts for healthcare-focused data shar-

ing is therefore needed to integrate health data, including the traditional LFQ EHR data as

well as the increasing HFQ data (and insights learned from it).
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1.2.4 Challenge Dimension 3: How to Effectively Design Blockchain-Based Healthcare

Data Integration/Sharing System in a Secure and Evolvable Manner

Unlike conventionally centralized systems, a blockchain-based data integration and

sharing system requires much more precise decisions to be made during the design phase.

Because of the decentralized nature of blockchain, data and operations stored and encoded

on it (i.e., via smart contracts, which are programmable and executable code) are avail-

able to all participants of the blockchain network and are much harder to modify if at all

possible [23, 24]. This is by design, as it provides an important property of blockchains–

immutability–that ensures integrity and non-repudiation of the data along with transactions

of data on-chain.

These properties make blockchains feasible for performing data exchange operations

without a centralized intermediary but can also introduce additional domain-specific chal-

lenges for healthcare. First, immutability may render a blockchain-based system vulnerable

to attacks without an extra careful design. Previous infamous attacks on several blockchain

apps revealed that even the most subtle bug or mistake concealed in a smart contract code

could lead to the most severe security breach (e.g., health data compromise with serious

financial and legal consequences). One example is the bug exploited from a crowdfunding

app (i.e., DAO) built in the Ethereum blockchain that caused then worth $50 million dollars

of the Ethereum cryptocurrency to be siphoned in 2016 [25].

Second, due to healthcare user or regulation requirements, system updates may be man-

dated to meet user expectation or reach compliance. In consequence, historic versions of

any system components implemented or legacy data stored on-chain may be completely

unusable, if logic for referencing updated components or methods for retrieving previous

data were not carefully crafted in the first place. This results in a strong tension between

components implemented on-chain (via smart contracts) being permanent and the fact that

the system design has to accommodate changes.

Just like good design practice helps maximize modularity and separation of concerns in
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a centralized system design, it is especially critical in designing a blockchain-based system

to protect sensitive health information by minimizing security vulnerabilities while provid-

ing capabilities to support future upgrades to the system. Repeatable design patterns and

anti-patterns must both be identified and well-documented to serve as guiding principles

for designing blockchain-based health data sharing systems.

1.3 Overview of the Research Goals

In this section, we present an overview of our research goals to facilitate the use and

integration of high-frequency, low-fidelity data in healthcare by solving the challenges dis-

cussed in Section 1.2. Specifically, we describe the construction of key architectures related

to HFQ data and data sharing and then provide blockchain-based design recommendations

based on our research and design experience. A summary of identified research goals and

corresponding research approaches appears in Table 1.1, with references to their respective

sections.

Table 1.1: Summary of research goals and respective approaches with references to the
respective sections

Research Goal Research Approach Section
Extracting scalable insights
from HFQ data

Learned filtering architecture in the self-
management behavior of adolescents with
type 1 diabetes case study

Section
2.3

Learned filtering architecture in the hand hy-
giene compliance monitoring case study

Section
3.8

Secure and scalable data shar-
ing and integration

FHIRChain using a remote tumor board case
study

Section
4.5

Evolving the decentralized
data sharing system

A pattern language for implementing
blockchain-based healthcare systems

Section
5.5

Figure 1.2 presents an integrated view of this research that provides three main con-

tributions: (1) a learned filtering architecture that uses data science methods to scalably

extract clinical insights from HFQ data, (2) a blockchain-based decentralized architec-

ture called ”FHIRChain” that enables the secure sharing and integration of healthcare data
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(HFQ and/or LFQ) using FHIR, which is an existing clinical data exchange standard, and

(3) a pattern language describing well-documented design practice for software engineers

to implement blockchain-based health systems that meet technical requirements defined by

healthcare experts while avoiding fatal mistakes in the design.

Figure 1.2: The integrated view of the research approach

Contribution 1: The Design of a Learned Filtering Architecture for Drawing Scalable

Insights from HFQ Data

To facilitate the process of drawing scalable insights from HFQ data, we designed a

learned filtering architecture (LFA) using data science approaches. The goals for LFA are:

(1) to leverage existing LFQ data as ground truth (i.e., labeled target variable to learn) to

help gauge the overall accuracy of collected HFQ data via one or more machine learning

models, (2) to help understand the connection between LFQ and HFQ data by testing and

validating relevant hypotheses on various HFQ data subsets, and (3) to reduce the dimen-

sionality of HFQ data for future data collection if/when necessary.

LFA eases the transition from using LFQ to HFQ data with iterative training meth-

ods from machine learning to obtain insights from HFQ data as closely resembling LFQ

data as possible. LFA requires an initial observation period to obtain both the LFQ data

(e.g. human-observed outcomes or provider-documented clinical outcomes) and HFQ data

(e.g. device- or patient-generated data that could be used to produce the same observed

outcomes). Using LFQ data as ground truth labels and preprocessed HFQ data as training
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features, the combined dataset is then fed into several machine learning models to learn

to predict ground truth-like outcomes using any subset of HFQ-extracted features. The

preliminary results from the learning models serve two purposes: (1) to demonstrate the

overall accuracy of HFQ data against the ground truth and (2) to filter out one or more best-

fit learning models using which HFQ data can learn to produce similar insights as ground

truth LFQ data.

This architecture also supports posing and verifying hypotheses regarding correlations

between the training features and ground truth. Features that can be classified into the

same category (such as time of day and day of week, both of which are a class of ”time

variables”) are, by default, segmented as a subset to train various machine learning models.

Similarly, automatically or manually selected feature subsets are also fed into the learning

model component. The aggregated results from all machine learning models involved are

then combined to create a learned filter with a set of commonly used performance metrics

in evaluating predictive models, such as accuracy, recall, and precision [26]. The filter

component then temporarily stores learned results during the iterative training process of

evaluating different hypotheses. When the evaluation process completes, the filter’s thresh-

old tolerance values can be configured to produce feature subsets meeting the thresholds.

This is a key feature used to reduce the dimensionality of the HFQ data input by eliminating

portions of the original data that did not satisfy the thresholds.

We will demonstrate the use of the learned filtering architecture with two specific case

studies: self-management behavior in adolescents with type 1 diabetes and hand hygiene

compliance monitoring. The details of these two case studies are presented in Chapter 2

and 3.

Contribution 2: The Design of FHIRChain–a Blockchain-Based Decentralized Archi-

tecture for the Secure and Scalable Health Data Integration/Sharing

As discussed previously in Section 1.2.3, secure and scalable integration/sharing of

HFQ data is essential for presenting patient health condition in a comprehensive manner
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and also for collaborative clinical decision making. Conventional clinical data efforts are

often siloed, creating barriers to efficient information exchange and thus impeding effec-

tive care. To ensure that health-related data (both LFQ data and learned insights or the

entirety of HFQ data) can appropriately flow across various healthcare entities, we created

a blockchain-based decentralized architecture, called FHIRChain [21], to enable the secure

and scalable data integration and sharing. In particular, we studied the feasibility of apply-

ing blockchain technology to clinical data sharing in the context of technical requirements

defined in the ”Shared Nationwide Interoperability Roadmap” by the Office of the National

Coordinator for Health Information Technology (ONC) [27].

To deliver a reusable conceptual framework, we employed a multi-phase approach.

First, we provided an in-depth analyses of five key ONC requirements and their impli-

cations for blockchain-based systems (Section 4.4), including: (1) verifying identity and

authenticating all participants, (2) storing and exchanging data securely, (3) ensuring per-

missioned access to data sources, (4) applying consistent data formats, and (5) maintaining

modularity. Second, we created FHIRChain as a blockchain-based architecture designed

to meet each of the five ONC requirements via: (1) the use of public key infrastructure

(PKI) based digital health identities for authenticating healthcare participants (e.g., certi-

fied providers and mobile health app providers), (2) hybrid on-chain/off-chain data store

and exchange via reference pointers, (3) a token-based permission model, (4) enforcing

HL7’s Fast Healthcare Interoperability Resources (FHIR) [28] standard for exchanging

clinical data, and (5) applying the model-view-controller (MVC) pattern in the design.

Third, we demonstrated a FHIRChain-based decentralized app (DApp) by walking through

a remote tumor board case study. Fourth, we applied the principles learned in designing

FHIRChain to another case study in the context of opioid prescription tracking [29].

Contribution 3: A Key Pattern Sequence for Effectively Designing Blockchain-Based

Health Data Sharing Systems in a Secure and Evolvable Manner

To address the healthcare-specific requirements for a data sharing system that is secure
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and upgradeable, we propose and provide detailed documentations of a key pattern se-

quence for effectively designing a blockchain-based system for healthcare. Widely known

in the software engineering discipline, a design pattern is a general, repeatable solution

to a problem that commonly occurs in software designs [30]. Unlike certain software de-

sign techniques that developers may understand how to apply to specific problems, design

patterns can apply to a broader range of problems. They are typically documented in a

format that allows software engineers to communicate design choices using well-known,

well-understood names without requiring specifics tied to a particular problem [31].

For designing an end-to-end system targeting the specific data sharing problem in

healthcare, a pattern sequence that details the order and combination of essential patterns

can provide more guidance to developers than standalone design patterns. The applica-

tion of the pattern sequence would help create a basic template or reference architecture

that take into account domain-specific requirements, i.e., a blockchain-based data shar-

ing system that is secure and upgradeable. The patterns discussed in our sequence were

(1) implemented based on our understanding of the healthcare technique requirements and

our experience in designing various blockchain-based healthcare systems, (2) mined using

commonality and variability analysis [32] by examining code from 7̃,000 Ethereum smart

contracts written in Solidity, available on Etherscan.io [33], and analyzing the applicabil-

ity of repeatable patterns in the healthcare space, or (3) selected from traditional software

patterns which we deemed relevant to the healthcare domain. Overall, we identified and

integrated a sequence of eight patterns for creating a system design that would meet the

ONC requirements. Despite the pattern sequence being presented using the Ethereum [24]

blockchain (the most popular blockchain environment for writing smart contract today) as

an example infrastructure for a data sharing system, the core concepts are generally appli-

cable to other blockchains that support smart contract development.

Dissertation Outline. The remainder of this dissertation is organized as follows: Chap-

ter 2 presents the learned filtering architecture and its application in a case study of self-
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management behavior in adolescents with type 1 diabetes; Chapter 3 describes another case

study of the learned filtering architecture applied in the context of hand hygiene compliance

monitoring; Chapter 4 describes the FHIRChain architecture that is a general solution to

data sharing and a FHIRChain-based decentralized app applied to a case study of a remote

tumor board in telemedicine; Chapter 5 proposes a pattern sequence that summarizes rec-

ommended design practice for software engineers to develop evolvable and scalable health

IT systems based on blockchain technology; Chapter 6 presents concluding remarks and

future directions of this research.
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Chapter 2

LEARNED FILTERING ARCHITECTURE AND ITS APPLICATION IN

UNDERSTANDING THE SELF-MANAGEMENT BEHAVIOR OF ADOLESCENTS

WITH TYPES 1 DIABETES

Despite the availability of high-frequency, low-fidelity (HFQ) data capturing health

related activities, it has been underutilized in clinical settings. In this chapter, we describe

a learned filtering architecture (LFA) using a case study focused on understanding the self-

management behavior of adolescents with type 1 diabetes (T1D) to demonstrate how to

scalably leverage the use of HFQ data for improving quality of care.

T1D a prevalent pediatric chronic disorder with worldwide economic and social impact.

It requires patients to perform many daily self-management tasks for survival, which is par-

ticularly challenging for young people with T1D due to developmental, psychosocial, and

contextual barriers. Technologically-assisted ecological momentary assessment methods

can be used to assist patients with identifying potential barriers that interfere with appro-

priate T1D self-management where and when they occur. Key contribution of this chapter

is a generalized learned filtering architecture based on advanced machine learning methods

to better utilize HFQ data. We also provide the following two contributions specifically

to the research on self-management of T1D in adolescents: (1) we demonstrate how EMA

data are used in the LFA to construct machine learning classifiers that predict two T1D

self-management behaviors: insulin administration and self-monitoring of blood glucose

(SMBG) and (2) we investigate and discover significant impact of novel data capturing

contextual, psychosocial and time-varying factors on patient self-management behavior.
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2.1 Problem Overview

Type 1 diabetes (T1D) is a prevalent chronic illness with increasing incidence rates re-

ported worldwide [34, 35]. It is an autoimmune disorder where the body produces little or

no insulin and requires patients to perform critical self-management tasks multiple times

per day [36]. Self-management in T1D involves frequent monitoring of blood glucose, es-

timating carbohydrate intake, and administering insulin amongst other regular tasks related

to maintenance of devices, supplies, and attention to factors that influence blood glucose

variability and patterns.

Inadequate self-management and poor glycemic control is related to serious short- and

long-term consequences, including retinopathy, neuropathy, and mortality [37, 38, 39].

Adolescents and young adults have the worst glycemic control of any age groups [37].

For young people with diabetes, living successfully with T1D is particularly hard due to

developmental, psychosocial, and contextual barriers to self-management [40, 41, 42].

A common approach used to improve self-management of diabetes involves promot-

ing and supporting problem solving skills [43]. To identify problems related to self-

management, patients, caregivers, and clinicians must rely on the review of blood glucose

and insulin data from devices along with a patient-generated recall of potentially relevant

behavioral, emotional, and/or situational events. This method of utilizing retrospective

memory or recall, however, has been identified as generally unreliable and potentially bi-

ased in nature [44].

To address the limitations of recall in health behavior research, ecological momen-

tary assessment (EMA) methods have been developed and successfully utilized in a range

of health conditions. EMA methods provide a more proximal (and often more accurate)

technology-mediated method to monitor and assess the contexts, subjective experiences,

and processes that surround health decisions in daily life [45, 46]. Furthermore, with more

relevant, proximal, and frequent observations per patient, EMA methods generate rich data

from which to more accurately relate previously identified correlates of health behavior and
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identify novel correlates for interventional targets [47].

The data generated from EMA systems is particularly suited to analytic techniques

that identify patterns. In particular, machine learning methods have been employed to

detect type 2 diabetes and identify targets for improvement in diabetes management and

outcomes [48, 49, 50]. These advanced methods have been used less frequently, however, to

examine patient-generated data, behavioral patterns, and self-management in diabetes. We

believe that machine learning methods will ultimately become more effective at identifying

meaningful sub-groups of self-management styles and self-management phenotypes upon

which to base personalized behavioral treatments [51].

In this chapter, we present research on leveraging machine learning methods to help

investigate how novel data focused on contextual, psychosocial, and time-varying factors

relate to patient self-management. In particular, we provide the following contributions to

this study:

• We describe a generalized learned filtering architecture (LFA) that is used to extract

clinical insights from data generated by patients

• We demonstrate the application of LFA with a Random Forest [52] classifier in

this case study to extract groups of similar features that are predictive of two self-

management behaviors in adolescents with T1D: insulin administration (IA) and self-

monitoring of blood glucose (SMBG)

• Using results from the predictive models, we investigate whether novel EMA data

focused on contextual, psychosocial and time-varying factors relate to patient self-

management behavior

2.2 Background and Related Work

This section summarizes the background of our work and related research, focusing on

the barriers to maintaining treatment adherence, the importance of problem solving skills
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for adolescents with T1D, and use of ecological momentary assessment (EMA) methods

and machine learning applications in other diabetes studies. We then present gaps in exist-

ing research that we target in this chapter.

2.2.1 Overview of Type 1 Diabetes

T1D is an autoimmune disease where the body produces little or no insulin, necessi-

tating multiple daily injections of insulin or insulin pump therapy for survival. A key is-

sue for individuals with T1D is glycemic control, where T1D patients monitor their blood

glucose (BG) levels multiple times per day using BG meters and (less frequently) with

the addition of continuous glucose monitoring devices. A 2-3-month average of glycosy-

lated hemoglobin is assessed in clinics via the HbA1c test, which is indicative of overall

BG control. In-target glycemic control is critical in delaying or avoiding complications,

both short-term (e.g., hypo- or hyperglycemia, diabetic ketoacidosis) and long-term (e.g.,

retinopathy, kidney disease, neuropathy, cardiovascular disease) [53].

In addition to monitoring BG, other related tasks performed daily by individuals with

T1D include counting carbohydrates and insulin self-dosing and administration. Support

of self-management behaviors that increase in-target BG values is especially important in

adolescents with T1D. These behaviors are important not only because of the long-term

health impacts of inadequate glycemic control, but also because this population is at high

risk of struggling with adherence to their diabetes treatment regimen [54].

Barriers to adherence. Diabetes adherence is hard due to the frequency and complex-

ity of self-management, e.g., tasks must be performed around meals, snacks, and exercise.

Psychosocial and environmental factors, such as location, emotional state, social context,

and other activities, can thwart diabetes treatment adherence. Moreover, disrupted self-

management may be associated with daily living patterns, such as time pressures during

certain times of day, social context, or specific activities like sports practice [55]. Adoles-

cents with T1D are also susceptible to negative emotions and difficulties in dealing with
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society and interacting with others, which could also result in poorly controlled symp-

toms [56].

Importance of problem solving skills. Problem solving interventions have shown suc-

cess in helping adolescents with T1D improve their self-management practices and health

outcomes through reducing barriers to adherence [55, 57]. Successful problem solving is

predicated upon accurately identifying those barriers and patterns of behavior. Based on

previous research [57, 58, 59, 60], improved recognition of how self-management is related

to situational, contextual, and psychosocial factors should provide a data-based means to

address the first step in problem solving, known as problem orientation, problem identifi-

cation, and/or problem awareness.

By guiding pattern recognition and problem awareness, MyDay was designed to im-

prove diabetes self-management skills. In particular, it provides IoT-enabled personalized

real-time feedback and behavioral problem solving support. Behavioral pattern recognition

and problem awareness are cognitively hard for adolescents due to their normative devel-

opmental stage of higher-order executive functions, the multifactorial nature of causation,

and the repetitiveness of self-management.

Ecological Momentary Assessment (EMA). EMA is a method for providing more

accurate problem solving data by systematically studying an individual in (or near) real-

time to assess and relate the individual’s experiences and environment to health behaviors

and outcomes [61]. EMA helps identify novel behavior patterns through data collection at

either random or specified critical points over time [61, 62, 63, 64]. By collecting assess-

ments close in time or at the time of events of interest, EMA helps minimize response bias

that may otherwise occur using retrospective methods [61].

Given the pervasiveness of smartphone adoption in adolescents and emerging adults,

momentary assessment can be feasibly implemented via mobile and wireless technologies

and then streamed to researchers. Adolescents with T1D perform virtually all their self-

management practices outside of a medical setting (e.g., they are expected to check their
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BG, count carbohydrates, and dose insulin while at home, school, or out with friends).

To discern and address factors interfering with appropriate diabetes self-management, po-

tential barriers must be identified where and when they occur. EMA is an ideal tool for

studying the interaction between person variables and the natural environment of health

behaviors [65] and has been successfully used to study diseases like asthma, cancer, eating

disorders, and diabetes [66, 67, 68, 69].

2.2.2 Related Work

Prior research [42] has focused on identifying psychosocial correlates and predictors

of self-management in chronic illness in general and specifically in diabetes. Our study

focuses on factors that were previously associated with self-management, but were also

amenable to EMA methods. Factors most appropriately assessed through these methods

are those that are

• thought to vary more frequently and/or occur relatively more frequently and

• hard to identify in daily experience to associate them to medical events, health decision-

making, and/or symptoms.

Our EMA pilot study [70] assessed a broad sampling of factors that influence diabetes

self-management. These factors included stress [71], fatigue [72], mood [73, 74], loca-

tion [75], and social context [41]. We also collected other factors, including contextual

barriers, such as rushing, lack of diabetes supplies (such as blood glucose test strips), and

stigma [42, 76]. As a continuation of the pilot study, our research described in this chap-

ter leverages the EMA data to determine if psychosocial factors impact self-management

behavior. If so, we aim to identify the type(s) of features which have relatively greater

impact. Understanding the potential connections between psychosocial phenotypes and

self-management behavior can help focus behavioral interventions tailored to individual

patients.
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Machine learning (ML) methods have been applied in various studies focusing on the

improvement of diabetes management and control. The following subsections present re-

cent research using ML in clinical intervention of diabetes and also self-management of

diabetes.

2.2.2.1 Machine Learning Approaches in Clinical Interventions.

Many efforts have been associated with clinical interventions that study the effect of

therapy and overall patient’s lifestyle on glucose metabolism. Philip et al. [77] surveyed

various types of sensors used in real-time continuous glucose monitoring (RT-CGM) in

youth with T1D across different clinical studies. They observed that RT-CGM can poten-

tially help patients improve in metabolic control of T1D, provided that there is adequate

education and support on sensor therapy and the devices used. Studies in [78, 79, 80] con-

structed and fine-tuned different ML models to predict future blood glucose levels based on

historical physiological data, such as readings from continuous glucose monitoring (CGM)

systems. Bondia et al. [81] used Support Vector Machines to detect incorrect blood glucose

measurements in CGM systems.

Artificial neural networks were applied in [82] to create a controller for potentially man-

aging insulin dosage. Biester et al. [83] applied ML methods to predict low blood glucose

levels for triggering an automatic stop of insulin delivery in a sensor-augmented insulin

pump. Their study documented reduced risk for hypoglycemia in pediatric T1D patients

without increasing HbA1c. Prototype portable artificial pancreas (AP) [84, 85] have been

developed using glucose sensors, insulin pumps, and radio-bluetooth connections. More

advanced AP systems, such as presented by Kovatchev et al. [86], also integrated smart

phones with a wireless network for data transmission and remote monitoring. Short-term

clinical studies of these new systems conducted safety of use in young people with T1D,

but longer-term studies are needed to monitor their full functionality.
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2.2.2.2 Machine Learning Approaches to Improve Self-Management.

Another category of related T1D research focuses on health monitoring systems to pro-

vide patients with effective means for tracking, displaying, or predicting important T1D

self-management variables, such as BG, food intake, and physical activity, as seen in

[87, 88, 89]. Sudharsan et al. [90] trained and compared various prediction models to

identify hypoglycemia for patients with type 2 diabetes using self-monitored blood glucose

(SMBG) readings. More recent work has involved more personalized approaches, such

as individually-tailored notifications and educational support. Li et. al. [91] proposed a

predictive model by capturing patient similarities of pooled population data to personalize

blood glucose prediction for an individual. Using a mobile-based approach, they collected

pertinent daily events including insulin, meals, exercise, and sleep, and implemented the

proposed prediction model as a prototype mobile application to create personalized notifi-

cations.

Machine learning has also been applied to provide lifestyle support, such as the smartphone-

based food recognition system described in [92] and the prediction of energy expenditure

and type of physical activity using accelerometers [93]. Boulos et al. [94] presented a

class of digital intervention in diabetes that gamifies disease management using the Inter-

net and affordable mobile and tablet devices. Digital games utilize social cognitive theory

to increase healthy behaviors and psychological outcomes, promoting better self-care.

2.2.3 Gaps in Existing Research

Existing machine learning approaches in clinical interventions reply heavily on sensor

therapy, which may not be easily accessible to many adolescents with T1D. Furthermore,

patients must be educated against extra carbohydrate intake in response to an alarm asso-

ciated with low BG prediction to avoid rebound hyperglycemia. Existing ML approaches

targeting the improvement of self-management have not seen the integration of important
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aspects of behavior data into the study. One common thread of existing research is the

primary focus on predictability, i.e., how accurately a model can predict a specific outcome

such as glucose values and hypothermia. What is missing in research is the understanding

of what phenotypes, conditions, or group(s) of those factors truly influence the outcome

vectors of interest–what type(s) of data that a clinician or patient should pay special atten-

tion to in order to make a better care decision or perform more effective self-care.

2.3 Our Research Design and Methods

This section describes the design of LFA and methods we employed to apply the LFA in

this case study. We analyzed data from subjects enrolled in a feasibility trial of the mobile

EMA and feedback MyDay app using a 30-day assessment period [95]. Subjects were

randomized on a 2:1 ratio to the Myday app group + Bluetooth meter (n=31) and a control

group (n=15) who provided blood glucose (BG) data only using Bluetooth BG meters.

Figure 2.1 presents the workflow of our learned filtering architecture (LFA) for process-

ing, analyzing, and extracting insights from the data collection.

Figure 2.1: Iterative Process of Our Learned Filtering Architecture (LFA).

As shown in the workflow diagram, we first integrate BG meter data and the EMA data

collected from the MyDay app as a complete dataset fed into the LFA (steps 1 and 2).
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Next, the LFA performs necessary pre-processing and data sanitation, such as normalizing

numeric values and removing empty entries (step 3). After this step, we begin the data

filtering process where subsets of features are extracted from the cleaned data (either based

on configurable human input or automatic selection, and in this particular study, the features

are grouped together based on similar types) to create multiple data subsets that are then

split for training and testing (steps 4a and 4b).

The training set is used to train a machine learning classifier i.e., Random Forest in our

study (step 5), and the test set is used to evaluate the trained model (step 6). The classifica-

tion results obtained from the current feature subset are then sent to the Filter component

to be later compared with other feature subsets (step 7). The filter component has a con-

figurable tolerance value, which is used to select feature subset(s) that have relatively good

classification results compared to the most performant model(s) or other benchmark(s).

Next, the LFA checks whether other feature subsets are available for processing (step 8).

If so, the Feature Selection process is repeated to create the next subset (step 9). Otherwise,

the filtering process terminates and ouputs the filtered results, i.e., feature subsets with

relatively strong predictive power of the target outcomes (step 10).

After feature selection, a large portion (e.g., 75%) of the input data forms a structured

training set. This training set is used to construct a machine learning classifier. The remain-

ing data becomes a hold-out test set, which is used to evaluate and enhance the classifier.

The classification results then go through a filter component that extracts the most im-

pactful predictor group(s) of the target class variable. For example, if the performance met-

rics exceed their threshold values, the predictor group is added to the final output queue.

When all feature subsets have been evaluated, LFA returns the final insights learned from

the input data.
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2.3.1 Subjects

A total of 49 patients were recruited from an academic pediatric diabetes center. Youth

who were patients in the clinic were invited to participate if they were between the age of

13 and 19, had been diagnosed of type 1 diabetes for at least 6 months, owned a smart

phone, understood and spoke English, and were willing to use a Bluetooth meter during the

study. Three subjects dropped out of the study noting competing demands, leaving 46 for

our analyses (n=31 in the app + meter group; n=15 in the meter-only group).

2.3.2 Momentary Assessments and Glucose Meter Data

The goal of our study was to examine associations between self-management (SMBG,

self-monitored blood glucose and IA, insulin administration) and other relevant collected

data, including participant demographics and momentary assessment variables. All blood

glucose data for both groups was unobtrusively obtained using iHealth [96] Bluetooth me-

ters. The app group was instructed to use the MyDay mobile app at each mealtime and

bedtime to answer questions focused on factors likely to impact self-management of dia-

betes, including stress, fatigue, mood, social context, location, and contextual barriers to

self-care [95]. Mealtime insulin administration was also self-reported into the app.

Blood glucose monitoring was objectively assessed via data transfer from the Bluetooth

meters. The MyDay app provided notifications personalized to meal-times identified by

participants each day as a reminder to complete EMA. Timestamps were associated with

all data entries. Bedtime EMA was not included in analyses since self-management tasks

could not be expected at that specific time point as they are with mealtimes. A subset of

only mealtime EMA were used in analyses for the app group. At the initial recruitment

session, parents of minors and adult participants provided consent, assent, demographic

information.

24



2.3.3 Statistical Analyses

We were interested in studying the factors associated with the following

• All daily SMBG frequency in terms of the following two observations for all study

participants: (1) if a subject monitored more than 4 times a day (4 being the clinically

recommended minimum number of daily BG measurements [97]) and (2) if a subject

monitored fewer than 4 times a day,

• Whether SMBG was missed or not at mealtimes, and

• Whether insulin was administered or not at mealtimes.

2.3.4 Feature Categories

Based on our hypothesis that different feature types may have varying impact on the

self-management outcomes, we configured the LFA to produce data subsets of the follow-

ing categories (wherever there were data present): demographics, time variables (time of

day, weekday/weekend), context (social context and location associated with each meal-

time app entry), stress/fatigue/mood values, and situational barriers such as without sup-

plies (dichotomous behavioral questions). By grouping features into categories, we poten-

tially eliminate variables that are less relevant to the outcomes. In turn, we significantly

reduce the amount of information requested from MyDay app users in future studies.

Although the number of observations per participant was substantial, the overall num-

ber of participants was relatively small. Naturally, because performing self- management

tasks is critical for patients with T1D, adolescents are expected to adhere to the daily regi-

men. As a result, the collected data encountered some imbalance in the distribution of the

outcomes, with failure to perform these tasks (particularly missed mealtime insulin) being

the minority instances.

It is well-known in the machine learning community that classification models con-
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structed using imbalanced datasets may result in the minority class being neglected [98].

To avoid this problem, we applied an imbalanced learning algorithm that combined the

Synthetic Minority Oversampling Technique (SMOTE) [99] and Tomek link [100]. Both

SMOTE and Tomek link have been used effectively for training imbalanced data, especially

for small datasets [101, 102, 103]. Our combined algorithm oversampled the minority class

and cleaned noisy data, but only in the training set.

We employed SMOTE to enrich the minority class by creating artificial examples in

the minority class, rather than replicating the existing examples to avoid the problem of

overfitting. Specifically, SMOTE creates new samples from linear combinations of two

or more similar samples selected from the minority class using a distance measure. Each

instance is created by perturbing the original sample’s attributes one at a time by a random

amount within the difference to the neighboring instances.

We employed Tomek link to remove noisy data from the majority class that may have

been introduced from oversampling. Noisy data is detected by comparing the distances

between any two samples from different classes and the distances between an arbitrary

sample and one of the two samples [100]. If the distance between the former pair is smaller,

then either one of the samples in that pair is a noise or both are border-line instances [104].

2.4 Results

This section analyzes the results obtained from the LFA we constructed using the

method described in Section 2.3.

2.4.1 Descriptive Statistics of the Sample

Table 2.1 shows the demographic and clinical characteristics of the study sample.
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Table 2.1: Characteristics of the Sample (n=46)

Variable Mean (SD) or %
Age 13.33 (1.67)
Female 53.33%
Race/ethnicity

White 84.44%
African American 10.20%
Asian 2.22%
Hispanic 2.22%
Other 0.00%

Father education
Less than high school 2.22%
High school/GED 28.89%
2-year college 15.56%
4-year college 33.33%
Master’s degree 11.11%
Doctoral degree 0.00%
N/A 8.89%

Mother education
Less than high school 0.00%
High school/GED 22.22%
2-year college 26.67%
4-year college 37.78%
Master’s degree 4.44%
Doctoral degree 0.00%
N/A 26.67%

Income
Less than $25,000 4.44%
25,001−35,000 6.67%
35,001−75,000 15.56%
75,001−100,000 31.11%
100,001−100,000 26.67%
More than $70,000 6.67%
N/A 8.89%

Duration of diabetes (years) 5.47 (3.59)
HbA1c 9.03 (1.91)
Use insulin pump (yes) 57.46%
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2.4.1.1 Descriptive Statistics

From all 46 participants, we obtained a total of 6,524 blood glucose measurements from

their Bluetooth glucose meters. After aggregating each individual’s SMBG counts by day

and combining their demographic data, we produced a new dataset with 1,779 daily SMBG

entries with the following schema:

1. Feature Category: Demographics, including gender, age, father’s education, mother’s

education, family income, and race

2. Feature Category: Time Variables, including weekday, weekend, and time of day.

After analyzing the target outcome variables, we observed the distribution as follows:

Below 4 class contains 794 True (count < 4) outcomes and 839 False (count≥ 4) outcomes,

which is a fairly evenly distributed set. For Above 4, however, the True (count > 4) outcome

had 475 entries, while False (count ≤ 4) had 1158 entries, a fairly imbalanced class.

To minimize the potential imbalance in the training set and maximize learning perfor-

mance, we first split the dataset into 75% for training and 25% for testing and then applied

an automatic imbalanced learning algorithm to the training set for a more even distribution

for Above 4. As discussed in Section 2.3, our imbalanced learning algorithm combines the

SMOTE and Tomek Link methods.

2.4.1.2 Classification of Daily SMBG Occurrences

We trained the dataset using a Random Forest classifier with a 10-fold cross valida-

tion and obtained the classification results against the test data. The results are shown in

Table 2.2 for SMBG below 4 and Table 2.3 for SMBG above 4.

As a benchmark for the learned filter component, we used all features for predicting

the target variables and recorded the results. The filter then compared the benchmark value

with the classification results obtained from each data subset. We configured a tolerance

value of 15% for the filter to select subsets of significant predictive power.
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Table 2.2: SMBG Below 4 Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score
Demographics 72.6% 0.73 0.73 0.73
Time variables 49.1% 0.51 0.49 0.47

All 71.2% 0.71 0.71 0.71

Table 2.3: SMBG Above 4 Classification Results

Feature Group Accuracy Precision Recall F1 Score
Demographics 76.5% 0.78 0.77 0.77
Time Variables 55.6% 0.54 0.56 0.55

All 76.5% 0.77 0.77 0.77

2.4.2 Missing Mealtime SMBG and Insulin Administration

2.4.2.1 Descriptive Statistics of the Sample

From the app group with 31 subjects (n=31), we collected a total of 2,535 entries.

From this data we extracted 1,855 valid entries that are associated with breakfast, lunch,

and dinner records to analyze factor(s) that could impact SMBG and IA at mealtimes.

The target class Insulin Administration had a distribution of 1:6 for True (insulin

missed) vs False (insulin administered) outcomes; whereas target class Missing SMBG had

a class distribution of 1:5 for True (SMBG missed) vs False (SMBG taken). The dataset

used to analyze both target classes was divided into the following subsets of features based

on our hypothesis regarding features’ relativeness:

1. Feature Category: Demographics, including gender, age, father’s education, mother’s

education, family income, and race

2. Feature Category: Time Variables, including weekday, weekend, and time point

(breakfast, lunch, dinner)

3. Feature Category: Social Context, who was the teen with at time of self-management

as indicated through EMA (including parent, sibling, alone, casual friend, close
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friend, other family, other person, strangers, and boyfriend/girlfriend), and location,

including home, school, work, restaurant, friends house, or on the road

4. Feature Category: Stress, Energy, Mood, continuous values within range 0-100

5. Feature Category: Barriers, psychosocial indicators (including rushing, tired of dia-

betes, sick, on the road, hungry, wanting privacy, busy, without supplies, low, high,

having fun)

After transforming the input data into various smaller subsets, the LFA created clas-

sification models for each predictor group using the same 75%/25% split for creating the

training and test sets. Due to the imbalance of the dataset in this experiment, we employed

the SMOTE and Tomek Link techniques to create artificial samples for the minority class

and perform undersampling to remove noise that may have been introduced, both in the

training data to ensure the integrity of the actual test data.

The final class distribution of all datasets had a majority-minority ratio between 1:1

and 1.2:1. After comparing the initial results of three classifiers (random forest, logistic

regression, and support vector machine) on the training data, we chose the random forest

classifier with a 10-fold cross validation that outperformed other models.

2.4.2.2 Classification Results

Tables 2.4 and 2.5 present the classification performance metrics of missing SMBG

and missing mealtime IA against their respective tests, using our trained Random Forest

classifier.

We configured the filter using the same approach to obtain the benchmark values and

tolerance. As a result, the filter selected demographic data as the most predictive group of

missing SMBG, while psychosocial barriers and the combination of stress, fatigue, mood

values are stronger predictors in the missing IA analyses. We also identified stress, fa-

tigue, mood group and social contexts as the next best predictor subsets for missing SMBG
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Table 2.4: Missing Mealtime Blood Glucose Measurement Classification Performance
Metrics

Feature Group Accuracy Precision Recall F1 Score
Demographics 85.5% 0.85 0.85 0.85
Time Variables 71.8% 0.61 0.72 0.64
Social Context 71.3% 0.73 0.71 0.72

Stress, Fatigue, Mood 73.1% 0.71 0.73 0.71
Barriers 75.4% 0.70 0.75 0.68

All 86.7% 0.87 0.87 0.87

Table 2.5: Missing Mealtime Insulin Administration Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score
Demographics 65.9% 0.84 0.66 0.71
Time Variables 56.7% 0.79 0.57 0.63
Social Context 62.1% 0.78 0.62 0.67

Stress, Fatigue, Mood 72.5% 0.78 0.73 0.75
Barriers 75.6% 0.77 0.76 0.76

All 80.1% 0.84 0.80 0.82

because those values only marginally fell below the tolerance values for the performance

metrics that we have configured for the filter.

2.5 Discussion

This section discusses our main findings and analyzes limitations regarding our work.

2.5.1 Main Findings

To gain a better understanding of the factors impacting self-management behavior of

adolescents with T1DM, our study applied machine learning methods to construct a learn-

ing filter architecture (LFA) for novel momentary psychosocial data and other relevant

demographic and physiological data. Based on feature similarities, we configured the LFA

into meaningful subsets of variables: demographics; social context; stress, mood, fatigue

levels; time variables; and psychosocial barriers.

As a benchmark, we compared the predictability of different subsets of data against the
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general predictability of the behavior using all the features combined. The LFA applied

a 15% threshold to evaluate the performance metrics of all subsets, and the preliminary

results indicated that (1) stress, fatigue, and mood levels were stronger predictors of both

missed SMBG and IA and (2) demographics factors (such as parents education, family

income, and race) was best at predicting average daily SMBG outcomes.

Our methods show promise to quantify the impact of psychosocial factors on self-

management on a population level. We also employed a similar research approach in

previous case studies [105, 106] in the context of identifying patterns of hand hygiene com-

pliance monitoring, from which we obtained very useful initial insights into which type of

features had the most impact on compliance behavior. Based on these promising findings,

similar experiments are needed with larger samples to advance the assessment and analytic

approaches utilized here.

2.5.2 Limitations

For small datasets that have disparities in the frequencies of observed classes or out-

comes, applying an oversampling technique is a strategy to mitigate the negative impact

this imbalance has on model fitting. Nevertheless, synthetic sampling (undersampling or

oversampling) methods have the following drawbacks:

• Overestimation of performance. The trained model with synthetic samples may

not reflect the class imbalance future studies may encounter, potentially leading to

overly optimistic estimates performance.

• Model uncertainty. Synthetic samples could induce model uncertainty. Depending

on how accurately the synthesized samples represent the actual samples, the pre-

diction outcomes may be better or worse, so the model could appear more or less

effective than it actually is.

With the above drawbacks notwithstanding, we did not consider these threats to validity
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crucial to our goals since we were relatively less focused on absolute levels of predictability

for this pilot study compared to relative value of predictor groups. General patterns are

harder to obscure by adding artificial samples using the algorithms we had chosen.

2.6 Conclusion

This chapter reports the results of a study that applied machine learning methods to

better understand what triggers poor self-management behavior in adolescents with T1D

through. We learned the following lessons from our study:

• LFA can reduce the scale of EMA data collection. By employing the learned

filtering architecture (LFA), we systematically selected the more relevant information

by filtering out data fields that had relatively less impact on the outcomes. As we

collect larger-scale data, the filtering capability will be useful to reduce information

yet guarantee relatively accurate clinical insights.

• Combining EMA data with machine learning methods may result in enhanced

clinical decision-making and just-in-time patient support. The collection of pri-

marily passive psychosocial and behavioral data streams combined with machine

learning methods provides a population-based monitoring systems that can help guide

clinical management and just-in-time guidance for self-management problem solv-

ing [107].

• EMA data may be used to create personalized behavioral medicine targeting

T1D. Data from homogeneous sub-groups or even individuals can be used to tailor

behavioral treatments and prevent blood glucose excursions and long-term conse-

quences of poor glycemic control for personalized behavioral medicine.
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Chapter 3

APPLYING LEARNED FILTERING ARCHITECTURE TO HAND HYGIENE

COMPLIANCE MONITORING CASE STUDY

Hospital Acquired Infections (HAIs) are a global concern as they impose significant

economic consequences on the healthcare systems. In the U.S. alone, HAIs have cost hos-

pitals an estimated $9.8 billion a year. An effective measure to reduce the spread of HAIs

is for Health Care Workers (HCWs) to comply with recommended hand hygiene (HH)

guidelines. Unfortunately, HH guideline compliance is currently poor, forcing hospitals to

implement controls. The current standard for monitoring compliance is overt direct obser-

vation of hand sanitation of HCWs by trained observers, which can be time-consuming,

costly, biased, and sporadic. This chapter provides three contributions to research on hand

hygiene compliance monitoring: (1) we describe the acquisition and analyses of 60-day

real-time location data and handwashing dispenser activation events for the care providers

in a 30-bed intensive care unit (ICU), (2) we pose five hypotheses that help identify key

characteristics and predictablity of handwashing compliance and validate the hypotheses

using the learned filtering architecture presented in Chapter 2, (3) we construct a hand hy-

giene compliance monitoring app, Hygiene Police (HyPo), based on the insights learned

from our empirical studies that can be deployed as a service to alleviate the manual effort,

reduce errors, and improve existing compliance monitoring practice.

3.1 Problem Overview

Emerging concerns in healthcare. The World Health Organization defines Hospi-

tal Acquired Infections (HAIs) to be either infections acquired by a patient in a hospital

or other healthcare facilities that appear after patient discharge or occupational infections

acquired by medical workers [108]. HAIs represent significant health problems, with a
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considerable economic impact on patients and hospitals worldwide, contributing to an in-

creasing hospital re-admission rate. Hospital caregivers are often blamed for patient re-

admissions because of their constant exposures to bacteria and diseases, and without good

sanitary practices, their contaminated hands can become the primary carriers of infections

which are often transmitted to patients or other staff through physical contact.

To prevent the spread of HAIs in healthcare facilities and reduce re-admission rates,

healthcare professionals are expected to comply with recommended hand hygiene (HH)

guidelines. The current standard practice for compliance monitoring has become employ-

ing trained secret shoppers, or covert human auditors, to directly observe and record hand

hygiene compliance of medical workers unobstrusively. Unfortunately, this approach is

costly and subject to bias [109] due to evidence of Hawthorne effect [110] (the process

where human subjects of an experiment alter their behavior due to their awareness of being

studied). An alternative approach is to use a real-time location system and smart dispensers

to autonomously monitor handwashing compliance by tracking provider location and acti-

vation of dispensers.

Contribution. This paper analyzes two months of real-time location data and hand-

washing dispenser activation events for the care providers in a 30-bed intensive care unit

(ICU). The goal of this study is to use machine learning to assess if there are location, time-

based, or other behavioral characteristics that predict handwashing non-compliance events

in advance. For example, having observed a provider with a non-compliant room entry, we

can predict if the same provider will also be non-compliant when exiting the room. Using

possible correlating factors to handwashing, we can predict at least one handwashing action

ahead of time. We then leverage learned information to construct a hand hygiene compli-

ance monitoring app, Hygiene Police (HyPo), which can be deployed as a service. The goal

of this app is to mitigate the laborious and error-prone effort of direct observation and im-

prove compliance by: (1) assisting the direct observation approach by deciding when and

where to station manual auditors and (2) improving compliance by providing just-in-time
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Figure 3.1: The Overall System Flow: from Data Collection to Post-prediction Analysis
and Feedback Service.

alerts or potentially recommending training materials to predicted non-compliant staff.

App workflow overview. HyPo is implemented as a Java-based desktop app that com-

municates to and from Bluetooth Low-Energy (BLE) devices equipped at the facility from

our previous study [111]. The schematic in Figure 3.1 depicts the overall app workflow,

which is divided into the following three stages (the last two are the core components of

HyPo):

1. Data Acquisition, where raw data is acquired from the BLE devices.

2. Data Mining, where the raw data undergoes a data mining process provisioned by

HyPo to produce a set of features that is fed to Feature Selection algorithms to obtain

a Sanitized Dataset. The Feature Selection is done to improve the execution perfor-

mance of the Machine Learning (ML) methods that will follow by determining the

most relevant features and removing the others from the Sanitized Dataset.

3. Feedback Service, where the ML models are run over the Sanitized Dataset to pro-

duce feature set that can be used to provide timely feedback to healthcare providers.

Chapter organization. The remainder of this chapter is organized as follows: Sec-

tion 3.2 defines key terms frequently referenced throughout the chapter; Section 3.4 poses
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five hypotheses regarding compliance characteristics we investigated; Section 3.5 describes

the data collection instrumentation setup; Section 3.6 details the data preparation and min-

ing process; Section 3.7 evaluates the hypotheses with machine learning predictions and

analyses of the preliminary classification results; Section 3.8 describes the construction of

HyPo using learned results and how it complements the direct observation approach; and

Section 3.9 presents concluding remarks and outlines future extensions of this work.

3.2 Hand Hygiene Compliance Overview

This section defines the following terms that are used frequently in the chapter:

1. Hand hygiene opportunity: an opportunity for hand cleaning is presented before

each care provider’s entry/exit of a patient room.

2. Hand hygiene/handwashing compliance: each hand hygiene opportunity requires

one hand hygiene action, which should be a corresponding positive (compliance) or

negative (non-compliance) action [112].

3. Entry compliance: hand hygiene compliance observed at staff’s entry to a patient

room, determined by wash on entry.

4. Exit compliance: hand hygiene compliance observed at staff’s exit from a patient

room, determined by wash on exit.

5. Wash on entry: hand hygiene action at patient room entry that determines entry

compliance, true if performed and false otherwise.

6. Wash on exit: hand hygiene action at patient room exit that determines exit compli-

ance, true if performed and false otherwise.

Our previous study collected 60 days of care providers’ real-time location and hand-

washing data, from an intensive care unit (ICU) equipped with 30 beds, and observed two
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major correlating factors to compliance: (1) entry compliance has an 89% accuracy on

predicting exit compliance and (2) exit compliance can predict entry compliance at the

next visit (for the same staff) at an accuracy as high as 77%. Likewise, location data was

observed to have a minor impact on predicting exit compliance [111].

Based on this previous study, in the HyPo app we compiled the following rules of hand

hygiene compliance that ICU staff should abide by:

1. All on-duty staff at the ICU were required to wear a BLE badge.

2. All staff were required to sanitize their hands within a short interval of 2 minutes

upon entering a patient room and before exiting the same room.

3. Each compliant action should be associated with an activation of a specific soap

dispenser with disinfectant solution against Clostridium difficile, a common HAI

spread through physical contact [113]. These dispensers are located both inside and

outside each patient room.

These rules only apply to this ICU but can be configured to work with other caregiving

settings. The rest of this chapter describes the application of HyPo using the same device-

equipped 30-bed ICU from our previous study [111] as an example.

3.3 Related Work

3.3.1 Overview

Due to worldwide high demands of HAI prevention, a number of other researchers

have studied approaches to improve hand hygiene compliance. Although the gold stan-

dard monitoring method is human-centric [108], [114], a wide rage of studies propose

electronic or electronically assisted hand hygiene compliance monitoring and intervention

systems [115], [116]. This section compares our work on the HyPo app with common elec-

tronic intervention systems including (1) technology-assisted direct human observation, (2)
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counting systems, and (3) automated monitoring systems.

3.3.1.1 Technology-Assisted Human Observation

Direct observation is the most precise way of controlling compliance. Several studies

use technologies such as handheld devices and cameras to aid human observation, aiming

at reducing input errors, costs, and time consumption. Handheld devices are used for data

entry, and video cameras provide opportunities to reduce the Hawthorne effect and observe

locations that are remote or hard to access.

Chen et al [117], used wireless data entry devices and a website to allow human ob-

servers to audit compliance. University of North Carolina Hospitals implemented a “clean-

in, clean-out” system that allowed covert observers and designated nurses to track compli-

ance using a mobile app and a web portal [118].

Cameras have been used by Armellino [119] to increase compliance in an ICU. The

study connected motion sensors near the sinks that would activate cameras being monitored

by remote auditors. The study by Davis [120] placed a discreet camera at the entrance of a

ward and assessed compliance before and after a sink was placed pointing to the dispenser.

3.3.1.2 Counting Systems

Installing counting devices to measure the remaining sanitation product volume or the

number of dispenser activation times is a quiet method that is not subject to the Hawthorne

effect. A counter may detect usage patterns and frequency changes.

Marras [121] used dispenser counters along with direct observation to assess whether

positive deviance in hand hygiene behaviors could have an impact on reducing HAIs. A

downside to this approach, however, is that counter systems cannot tell who used the dis-

pensers and therefore are unable to evaluate compliance by itself. Morgan et al [122]

provided evidence to support the claim that dispenser usage data could be more reliable

than direct human observation to estimate hand hygiene compliance.
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3.3.1.3 Automated monitoring systems using wearables

Many automated monitoring systems are capable of producing feedback or reminders

in real or near real time without human intervention, similar to our approach.

Fakhry used a motion-triggered system with audible hand washing reminders at each

medical department entrance [123]. Sahud and Bhanot developed an electronic hand hy-

giene feedback device that reports real-time compliance rate on a liquid-crystal display

visible to all staff in the intervention unit [124]. Edmond et al installed a sensor network

using a credit-card sized sensor badge on each alcohol dispenser, which when not activated

on room entry or exit beeped with a red indicating light [125]. Similarly, Marra et al em-

ployed a wireless network with sensors on the alcohol dispensers that provide real-time

flashing light feedback to HCWs for hygiene activity detection [126]. Most recently, Elli-

son et al proposed a prospective electronic hand hygiene room entry/exit audible reminder

system [127] that provides a combination of 24-hour-a-day recording of hand hygiene ac-

tivities and real-time computer monitor performance feedback.

3.3.2 Gaps in Existing Research

All prior research we reviewed collected data to propose strategies that increased hand

hygiene performance or gather conclusions regarding the efficacy of a specific approach.

Technology-assisted human observation methods and counting systems still require human

interaction and can bias the results, as the medical workers know they are being directly ob-

served. Moreover, audits require trained personnel who are regularly monitored to ensure

quality control. Although automated monitoring systems using wearables are able to pro-

vide reminders to providers, these approaches respond to already detected non-compliance

behavior by notifying appropriate caregivers aftermath, which may improve compliance

overall but does not prevent non-compliant behavior.
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3.4 Summary of Hypotheses

This section poses five hypotheses that leverages the Learned Filtering Architecture

described in Section 2.3 to identify key characteristics and predictablity of handwashing

compliance Entry/Exit compliance is hand hygiene compliance observed at each caregiver’s

entry or exit to a patient room, determined by wash on entry/exit. To predict compliance we

perform a binary classification of handwashing actions using features of the movement and

handwashing history of a provider. Below we postulate how to evaluate these handwashing

classifiers based on different features of a provider’s movements and compliance history.

Hypothesis 1: Handwashing on room entry is indicative of washing on exit. Most

auditing approaches evaluate handwashing behavior observed outside of a patient room,

which may only show an entry or exit wash (e.g., a provider may wash their hands inside

the room on entry and outside the room on exit). An important question is how predictive

observing one of the washing events is in predicting the other (e.g., if a human auditor only

sees a wash on exit, what does this tell us about wash on entry?). We hypothesize that

handwashing on entry is indicative of washing on exit. Handwashing can be a habitual—

and thus predictable—behavior for hospital caregivers, depending on whether they abide

by hand hygiene guidelines.

Hypothesis 2: Time-related features may be indicative of handwashing. For instance,

compliance may decrease when patients are asleep between midnight and 5am due to these

likely reasons: (1) care providers have limited physical contact with patients, hence less

need to sanitize, (2) to reduce noise from activating the dispensers that may disturb patients,

and (3) reduced Hawthorne effect since patients are not awake to observe hand hygiene

compliance.

Hypothesis 3: Location may affect handwashing behavior. We hypothesize that care-

givers’ compliance may be affected by which patient room they visit. The study in [110]

recognizes the Hawthrone effect with the standard direct compliance observation approach.

Likewise, care providers may perform better sanitation under observation when visiting lo-
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cations that are clearly in view of other staff or supervisors, such as rooms closest to the

nurses’ stations.

Hypothesis 4: Staff’s recent wash in/out behavior may affect entry/exit compliance.

We speculate that if previously visited patients were infectious, then it is highly likely

that the staff would wash their hands more frequently. Conversely, if these patients were

not infectious, they may feel there is less need for hand hygiene. Previous handwashing

behavior may therefore indicate current compliance.

Hypothesis 5: There may be other features that are possibly predictive of compli-

ance. We postulate that the features selected based on our intuition may have excluded

other correlating factors of compliance. To find other possible predictors, we therefore use

feature selection, which is the process of selecting the most relevant subset of predictors

for constructing classifiers.

3.5 Data Acquisition

This section describes the data acquisition process, where real-time location data and

handwashing station activation data is recorded, and then provides an overview of the es-

sential data fields extracted from the collection. The process described in this section is one

approach of obtaining the hand hygiene compliance data to provide input for our app, but

it is by no means the only option to acquire this type of data.

3.5.1 Instrumentation Configurations

The ICU with HyPo deployment was equipped with a Bluetooth Low-Energy (BLE)

indoor positioning system that provides room-level accuracy for reporting staff locations in

real-time. The system produced the location data for all staff with BLE badges.

The ICU also deployed Gojo Active Monitoring handwashing stations, which record

each dispenser activation. These activation events were then combined with real-time loca-

tion data to track individual staff handwashing compliance. The system expected to receive
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at least one handwashing event from either a sanitation station inside of the room or a sta-

tion immediately outside the room within two minutes prior to entry, abiding the facility

rules described in Section 3.2. Similarly, two minutes before or after room exit, the system

expected one handwashing event from either sanitation stations.

Overall, the dataset collected at the studied ICU contains 8 weeks of events recording

activities from 180+ soap dispensers activated by 60 badged nurses 24 hours a day. All

raw event data was streamed to a data storage on Amazon Web Services (AWS), which

was post processed and output to a SQL database. We then extrapolated the data fields of

interest for compliance predictions and analyses.

3.5.2 Dataset Limitations

Although real-time location data was acquired and handwashing station activations

recorded at the ICU, the dataset was still an estimate rather than a ground truth of hand

hygiene compliance. The dataset collected has a number of key threats to validity as de-

scribed next

Not all staff wore their BLE badges at all times. The main threat to validity of our work

is that we based our findings upon some assumptions made about the data. For instance,

we performed analyses on the data assuming that all on duty staff were using their badges

at all time. In practice, however, some of staff were sporadically observed without badges.

To minimize the impact of this behavior in our findings, we used location data to filter out

dispenser activation events not associated with nearby caregivers, retaining all events that

were associated with only badged staff.

The system could not differentiate activations from badged vs. non-badged visitors/staff.

Unfortunately, there is also the possibility that a staff member without a badge activated the

handwashing station while staying in the same room with another badged staff, making the

system wrongly assign the event to the staff wearing the badge. Nevertheless, in our anal-

ysis of the data, we found it was uncommon for two (or more) caregivers to remain in the
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same room at the same time. We therefore believe these cases would only marginally skew

our findings.

Subsets of the monitoring equipment went offline. Finally, we observed that some mon-

itoring equipment were offline at some intervals. Although, the offline devices only pre-

vented data capturing in certain rooms and did not affect our compliance observations in

other patient rooms.

Nonetheless, we did not consider these limitations as fatal to our study results because

we could either easily eliminate the data entries associated with these threats or discard the

marginal impact that the threats had on our findings.

3.5.3 Dataset Schema

From the SQL database we obtained an initial dataset by omitting certain data fields

with extraneous information, such as device IDs of the wearable badges, internally-used

identifiers of the patient rooms, etc. The data fields associated to each patient room visit

event that we deemed essential thus extracted from the database include:

1. Staff ID - ID of badge worn by the staff who has been associated with a patient room

visit

2. Location - patient room number visited by the badged staff

3. Entry time - timestamp (in CDT) at which the badged nurse entered the patient room

4. Exit time - timestamp (in CDT) at which the badged nurse exited the patient room

5. Wash on entry - a boolean value indicating whether the staff properly performed hand

hygiene on patient room entry

6. Wash on exit - a boolean value indicating if the staff properly performed handwashing

on patient room exit

7. Duration - for how long (in milliseconds) the staff was in the patient room
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3.6 Data Preparation

This section discusses how we prepared the collected data to maximize the utilization

of our machine learning classifiers, which is an important capability offered by HyPo. This

process employed to assist the analyses and characterization of hand hygiene compliance.

Other influencing factors of hand hygiene compliance may be discovered as more relevant

data becomes available, such as patient admittance details, medical records of admitted

patients, facility regulations of compliance, etc.

Despite the specificity of the dataset used throughout this chapter, the data mining pro-

cess provided by HyPo as described below can be generalized to support transformations

of different forms of data collected in other facilities.

Most machine learning (ML) classifiers yield better results when the input dataset is

structured in certain ways. For example, suppose we want to know if the day of week

(Monday to Sunday) influences compliance, some ML classifiers will yield better results

if we express date as a set of integers ranging from 1 to 7, as opposed to a real continuous

stream of timestamps expressed in milliseconds.

As another example, our location data consists of room numbers, which provides lit-

tle information regarding spatial distribution of the rooms. If we want to know whether

compliance decreases in nearby locations, we must first transform the room numbers into

coordinates on the facility’s floor plan, for instance.

To obtain a transformed schema that can be better handled by our classifiers, we took

the collected dataset and performed the following transformations over it:

1. We converted all event data from the original timestamp format into an integer field

with range 1 to 7 to represent day of week, an integer field with range 1 to 4 to

represent time of day in morning, afternoon, evening, bedtime, and another integer

data field of 0-23 to represent hour of day. The numeric representations of the original

nominal time stamp data will allow our classifiers to achieve higher classification
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accuracy.

2. We mapped each patient room on the ICU floor plan to a set of x and y coordinates

to identify the spacial location. We then extended each entry in the dataset to include

these corresponding coordinates of the patient room.

3. For each data point we added new fields to include the previous record of the corre-

sponding badged staff’s handwashing data, i.e., duration, location, washed on entry,

and washed on exit. To ensure data integrity, we removed all entries that did not have

previous handwashing records.

As a result of these transformations, we obtained a new schema consisting of a minimal

set of features that our application expects to receive for best accuracy:

1. staff ID - integer

2. location (room number) - integer

3. washed on entry - TRUE/FALSE

4. washed on exit - TRUE/FALSE

5. duration (s) - length of patient room visit in seconds, integer

6. entry hour - hour of day on room entry, 0-23

7. exit hour - hour of day on room exit, 0-23

8. entry time - time of day on recorded room entry in Morning (1), Afternoon (2),

Evening (3), and Bedtime (4)

9. exit time - time of day on recorded patient room exit, 1-4

10. entry day of week - day of week on recorded patient room entry, 1-7

11. exit day of week - day of week on room exit, 1-7
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12. location X coordinate - x coordinate of patient room on the ICU floor plan

13. location Y coordinate - y coordinate of patient room on the ICU floor plan

14. previous duration (s) - duration of the same staff’s previous patient room visit in

seconds

15. previous washed on entry - dispenser activation on previous room entry TRUE/-

FALSE

16. previous washed on exit - dispenser activation on previous room exit TRUE/FALSE

17. previous location - previously visited patient room number

3.7 Hypotheses Evaluation

In this section we first describe the machine learning models employed and then eval-

uate each of the hypotheses by setting up machine learning experiments and analyzing the

results. The same machine learning models are also used to construct our HyPo app.

3.7.1 Overview of Machine Learning Models

After restructuring and sanitizing the data collected, we split the data to 65% for train-

ing, 10% for cross validation, and the remaining 25% for testing the ML models. Based

on the compliance prediction observations from the previous study in [111], we employed

the top three classifiers, one from Weka [128] and two deep nets from DeepLearning4J

(DL4J) [129] to serve as our models for classifying washed on entry and washed on exit.

HyPo then uses the results with highest accuracy.

• The Sequential Minimal Optimization (SMO) implementation of the Support Vec-

tor Machine (SVM), which uses heuristics to partition the training problem into

smaller sub-problems and uses pairwise linear regression to classify. This method

is usually resilient to data overfitting and by default normalizes the input data [130].
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• The Feed-Forward Neural Network (FFNN), which is a one direction (from input

to output) artificial neural network that performs classifications based on weight cal-

culations of the network nodes [131]. Using the DL4J Java library, we developed a

3-layer FFNN with a random seed of 6, 1000 iterations, a learning rate of 0.1, and

the Stochastic gradient descent optimization algorithm [132].

• The Recurrent Neural Network (RNN), which has a feedback loop whereby the

immediately previous step’s output is fed back to the net to affect the outcome of the

current step. We used a 3-layer RNN with two Graves’ Long Short-Term Memory

(LSTM) layers [133] (input and hidden) and an output layer along with the same

parameters as the FFNN.

Training models with all features. As a first step we examined how well handwashing

can be predicted at least one step in advance (e.g., if a care provider washed in on entry to a

patient room, can we predict their wash out behavior). We therefore trained the ML models

with all features in the dataset. The classification results are shown in Table 3.1 with a

consistently high accuracy at 80%+ and other metrics above 0.8. These results indicate that

some factors can be predictive of compliance. To identify the specifics, we conducted the

following experiments to evaluate the hypotheses described in Section 3.4.

3.7.2 Hypotheses Evaluations

3.7.2.1 Evaluating Hypothesis 1: Handwashing on room entry is indicative of wash-

ing on exit.

Experiment setup. We prepared two datasets for each class variable with one set in-

cluding the counterpart class variable (i.e., dataset with 16 features) and the other excluding

it (i.e., data with 15 features). To obtain the second set of training and test data, we applied

an unsupervised remove attribute filter from the Weka library to remove the class variable

not being predicted.
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Table 3.1: Entry and Exit Compliance Classification Results Using All Features in the
Dataset

Class: Washed on Entry
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 89.20% 0.896 0.892 0.893 0.927
SMO 89.35% 0.895 0.893 0.894 0.878

NaiveBayes 82.25% 0.858 0.822 0.829 0.907
FFNN 90.00% 0.879 0.878 0.877 0.869
RNN 91.20% 0.893 0.908 0.901 0.9

Class: Washed on Exit
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 88.83% 0.889 0.888 0.889 0.922
SMO 89.35% 0.893 0.893 0.893 0.869

NaiveBayes 79.88% 0.838 0.799 0.806 0.898
FFNN 88.80% 0.858 0.875 0.866 0.86
RNN 88.40% 0.861 0.864 0.862 0.853

Results. Fig. 3.1 shows the classification results produced using the dataset with 16

features, with a consistently high accuracy across classifiers at an average of 89% for wash

on entry and 87% for wash on exit. Results in Table 3.2 correspond to the dataset with 15

features with an average wash on entry prediction accuracy of 75% and wash on exit of

73.5%.

Analysis of results. The overall classification accuracy of wash on entry is much higher

when its counterpart, wash on exit, is taken into account and vice versa, meaning that wash

on entry is highly predictive of wash on exit. With a provider’s entry compliance, therefore,

if they are predicted non-compliant on room exit, we can provide a hand hygiene reminder

to the provider.

3.7.2.2 Evaluating Hypothesis 2: Time-related features may be indicative of hand-

washing.

Experiment setup. For this study, we applied Weka’s remove attribute filter to remove

all features unrelated to time from the dataset and fed the generated dataset to the ML
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Table 3.2: Compliance Prediction Results excluding the Counterpart Class Variable.

Class: Washed on Entry
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 69.08% 0.743 0.691 0.704 0.743
SMO 75.74% 0.76 0.757 0.759 0.713

NaiveBayes 69.38% 0.763 0.694 0.707 0.794
FFNN 79.20% 0.733 0.708 0.72 0.789
RNN 76.80% 0.706 0.721 0.713 0.782

Class: Washed on Exit
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 67.75% 0.72 0.678 0.689 0.709
SMO 74.56% 0.746 0.746 0.746 0.7

NaiveBayes 68.42% 0.76 0.684 0.697 0.786
FFNN 78.40% 0.726 0.734 0.73 0.699
RNN 76.00% 0.72 0.7 0.71 0.722

classifiers.

Results. The results shown in Table 3.3 have 60%+ accuracy in most cases for both

class variables. Specifically, deep nets and SMO models achieved prediction accuracies

around 71% for wash on entry and 69% for wash on exit.

Analysis of results. A closer analysis of the classification result metrics indicates that

despite the classification accuracy being acceptable, the AUC (a valuable metric for evaluat-

ing classification) is around 0.5, meaning that the results are no better than random guesses.

This result suggests that time factors have little impact on determining handwashing and

cannot be used to forecast handwashing.

3.7.2.3 Evaluating Hypothesis 3: Location may affect handwashing behavior.

Experiment setup. Similar to the setup when evaluating Hypothesis 2, we altered the

original dataset using Weka’s remove attribute filter to exclude data unrelated to location

information.

Results. The results shown in Table 3.4 have accuracies above 65% in all cases for both

class variables. In particular, deep net ML models achieved an average prediction accuracy
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Table 3.3: Compliance Classification Results Based on Time-related Features.

Class: Washed on Entry
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 61.46% 0.617 0.615 0.616 0.539
SMO 70.64% 0.499 0.706 0.585 0.5

NaiveBayes 66.12% 0.628 0.661 0.639 0.572
FFNN 70.80% 0.616 0.552 0.583 0.563
RNN 72.00% 0.609 0.542 0.574 0.551

Class: Washed on Exit
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 59.76% 0.597 0.598 0.597 0.524
SMO 69.45% 0.482 0.695 0.569 0.5

NaiveBayes 64.79% 0.622 0.648 0.631 0.587
FFNN 68.40% 0.59 0.532 0.559 0.52
RNN 70.00% 0.62 0.54 0.577 0.523

of 75% for wash on entry and 73% for wash on exit.

Analysis of results. The classification results output by the deep net ML models are

more optimistic and consistent with medium accuracy. We therefore infer that location,

unlike time-related factors, has more of an impact on predicting handwashing on entry and

exit, although not as indicative as the class variables of each other.

Table 3.4: Compliance Classification Results Based on Location-related Features.

Class: Washed on Entry
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 68.57% 0.746 0.686 0.699 0.746
SMO 65.16% 0.78 0.652 0.665 0.717

NaiveBayes 65.90% 0.774 0.659 0.673 0.707
FFNN 75.20% 0.769 0.591 0.669 0.723
RNN 74.80% 0.766 0.569 0.653 0.71

Class: Washed on Exit
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 68.71% 0.739 0.687 0.699 0.733
SMO 65.01% 0.766 0.65 0.662 0.709

NaiveBayes 65.75% 0.762 0.658 0.67 0.704
FFNN 74.80% 0.662 0.55 0.601 0.642
RNN 71.60% 0.682 0.576 0.625 0.65
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3.7.2.4 Evaluating Hypothesis 4: Staff’s recent wash in/out behavior may affect en-

try/exit compliance.

Experiment setup. To include the previous wash in/out event, we sorted the dataset

by staff ID and then timestamp. For each data entry we then added the immediate previous

wash on entry/exit associated with the same staff and discarded all entries without any

previous data.

Results. The classification results are shown in Table 3.5. Most classifiers produced an

accuracy of 74%+ for both class variables.

Analysis of results. Most ML classifiers produced consistently optimistic prediction

results of both class variables, and all performance metrics are above a confident value of

0.7. This result suggests that a provider’s most recent handwashing behavior can be useful

for predicting wash on entry/exit of the next visit.

Table 3.5: Predictions of Compliance Using Previous Handwashing Data

Class: Washed on Entry
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 64.05% 0.692 0.641 0.655 0.692
SMO 75.74% 0.76 0.757 0.759 0.713

NaiveBayes 75.07% 0.757 0.751 0.753 0.795
FFNN 77.60% 0.709 0.721 0.715 0.781
RNN 77.20% 0.74 0.729 0.734 0.774

Class: Washed on Exit
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 63.54% 0.681 0.635 0.648 0.682
SMO 74.56% 0.746 0.746 0.746 0.7

NaiveBayes 74.04% 0.745 0.74 0.742 0.784
FFNN 77.20% 0.735 0.706 0.72 0.763
RNN 78.80% 0.725 0.732 0.729 0.78
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3.7.2.5 Evaluating Hypothesis 5: There may be other features that are possibly pre-

dictive of compliance.

Experiment setup. In this experiment we executed a feature selection process to au-

tomatically select feature subsets in our transformed data that best (1) reduced overfitting

of data, (2) improved classification accuracy, and (3) decreased model training time [134].

Although we do not have a significantly large feature list produced for this ICU, it is still

useful to apply this technique to select the most relevant subsets of features to help produce

the most accurate feedback in the next step.

To automatically select features from the transformed dataset, HyPo applies a super-

vised attribute selection filter from the open source Weka Java library [128]. The filter is

composed of two pieces: (1) a feature Evaluator to determine how features are evaluated

and (2) a Search Method to navigate the feature’s search space. Our app runs feature selec-

tion using the following pairs of Evaluators and Search Methods, as shown in Table 3.6:

1. Evaluator: CfsSubsetEval that evaluates a subset of features by considering each

feature’s predictive ability and the degree of redundancy between them.

Search Method: GreedyStepwise with a backward search through the space of at-

tribute subsets.

2. Evaluator: InfoGainAttributeEval that evaluates an attribute’s worth by measuring

the information gain with respect to the class variable to classify.

Search Method: Ranker that ranks features by their individual evaluations with an

optional parameter of 6 features in the output subset

3. Evaluator: WrapperSubsetEval [135] with NaiveBayes [136] as the basic learning

scheme and a 10-fold cross validation to use for estimating accuracy.

Search Method: GeneticSearch that performs a search using the simple genetic algo-

rithm [137]
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Table 3.6: Evaluator and Search Method Pairs Used in Feature Selection

Evaluator Search Method
CfsSubsetEval GreedyStepwise

InfoGainAttributeEval Ranker
WrapperSubsetEval GeneticSearch

Results. The features selected for class wash on entry are wash on exit, previous wash

on exit, and location x coordinate and wash on entry for class wash on exit. The classifica-

tion results are shown in Table 3.7 outputting an average accuracy of 88.5% and 87% for

both classes.

Analysis of results. The results validated our previous observations made in Hypothe-

ses 1, 2, 4 of wash on entry with a specific location factor being location x coordinate and

Hypothesis 1 of wash on exit. They also indicate that no other feature can characterize

compliance behavior.

Table 3.7: Compliance Predicted with Automatically Selected Features

Class: Washed on Entry
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 89.05% 0.891 0.892 0.925 0.692
SMO 89.35% 0.893 0.894 0.878 0.713

NaiveBayes 82.25% 0.822 0.829 0.907 0.795
FFNN 90.00% 0.878 0.877 0.869 0.781
RNN 91.20% 0.908 0.901 0.9 0.774

Class: Washed on Exit
Classifier Accuracy Precision Recall F-Score AUC

RandomForest 89.05% 0.891 0.891 0.922 0.682
SMO 89.35% 0.893 0.893 0.869 0.7

NaiveBayes 79.88% 0.799 0.806 0.898 0.784
FFNN 88.80% 0.875 0.866 0.86 0.763
RNN 88.40% 0.864 0.862 0.853 0.78
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3.8 Our Contribution: Feedback Service

This section presents HyPo’s feedback service built upon learned results from the hy-

potheses evaluations in Section 3.7. Specifically, we demonstrate HyPo’s capability to

provide timely feedback, complement the direct observation approach, and provide appro-

priate training materials when necessary.

3.8.1 Just-in-Time Alerting

HyPo can provide just-in-time alerting to remind HCWs to perform hand hygiene when

they are predicted not to comply, using either a singular prediction or a chain-prediction

scheme, depending on if there is adequate time to provide such notifications between each

hand hygiene opportunity.

Suppose that HyPo has just observed a staff nurse’s compliance on a patient room entry,

then the ML classifiers will predict the same staff’s exit compliance. For instance, if the

staff is predicted to be non-compliant, an alert of red flashing light can be sent to either the

wearable badge or the device at the appropriate dispenser activation station as a reminder

to the staff; otherwise, no alert is necessary.

If duration of the visit is too short of an interval to send the notification signal to the

devices, then we can use the probability chain rule [138] to provide a backup alert to the

same staff if necessary. In this case, the ML models will use the predicted entry compliance

for the current visit (from the staff’s exit compliance of the previous visit) to determine exit

compliance of the current visit at a probability of 89% * 77% = 69%. It is less ideal, but

the likelihood of the visit interval being too short is minimal because the grace period for

compliance is set at two minutes, and if a room visit is within two minutes, hand hygiene

compliance is not required.
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3.8.2 Assist Direct Observation

The compliance prediction results can also be used to assist the current standard practice

of direct observation. With predicted non-compliance reoccurring at a certain location

(i.e., a patient room), HyPo can deploy a human auditor (e.g., by sending a notification) to

observe compliance at the location that should be given most attention.

3.8.3 Recommend Training Material

If a staff member is frequently predicted as non-compliant over a long observation

period, HyPo (with integrated email capabilities) can recommend hand hygiene guidelines

or appropriate training materials to the staff via email. The goal is to improve compliance

on an individual basis.

3.9 Conclusion

This chapter presented a hand hygiene monitoring app called Hygiene Police (HyPo)

that can be deployed as a service to complement the current monitoring approach and im-

prove compliance. We showed an example data collection process taken place at a 30-bed

ICU where we acquired the handwashing compliance data. We also described the data

transformation process HyPo employs to maximize the utilization of the selected machine

learning (ML) classifiers.

Combining the results of real-time compliance predictions using the correlations iden-

tified from evaluating our hypotheses, HyPo can provide three types of services: (1) just-

in-time alerting to remind predicted non-compliant staff to perform hand hygiene, (2) rec-

ommending training materials to habitually non-compliant staff via email, and (3) assisting

the direct observation approach by deploying human auditors at the opportune time and

place when and where non-compliance is frequently predicted to occur. We also compared

our app to related research work and found that our approach predicted future compliance
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behavior instead of reacted to non-compliance as in other approaches. Our methodology

using ML algorithms is unique and is the only work that evaluates ML prediction capabili-

ties in this domain.
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Chapter 4

FHIRCHAIN: APPLYING BLOCKCHAIN TO SECURELY AND SCALABLY SHARE

CLINICAL DATA

Secure and scalable data sharing is essential for integrating the new generation of high-

frequency and also for collaborative clinical decision making. Conventional clinical data

efforts are often siloed, however, which creates barriers to efficient information exchange

and impedes effective treatment decision made for patients. This chapter describes our

study of applying blockchain technology to clinical data sharing in the context of technical

requirements defined in the “Shared Nationwide Interoperability Roadmap” from the Office

of the National Coordinator for Health Information Technology (ONC). Specifically, we

provide four contribution to this research: (1) we analyze the ONC technical requirements

and their implications for blockchain-based health IT systems, (2) we present FHIRChain,

which is a blockchain-based architecture designed to meet ONC requirements by encapsu-

lating the HL7 Fast Healthcare Interoperability Resources (FHIR) standard for clinical data

exchange, (3) we demonstrate a FHIRChain-based decentralized app using digital health

identities to authenticate participants in a case study of collaborative decision making in a

remote tumor board, and (4) we highlight key lessons learned from our case study using

decentralized blockchain technology.

4.1 Problem Overview

The importance of data sharing in collaborative decision making. Secure and scal-

able data sharing is essential to provide effective collaborative treatment and care decisions

for patients. Patients visit many different care providers’ offices during their lifetime. These

providers should be able to exchange health information about their patients in a timely and

privacy-sensitive manner to ensure they have the most up-to-date knowledge about patient
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health conditions.

As another example, in telemedicine practice [139]—where patients are remotely di-

agnosed and treated—the ability to exchange data securely and scalably is particularly

important for enabling clinical communications regarding remote patient cases. Data shar-

ing helps improve diagnostic accuracy [140] by gathering confirmations or recommenda-

tions from a group of medical experts, as well as preventing inadequacies [141] and errors

in treatment plan and medication [142, 143]. Likewise, aggregated intelligence and in-

sights [144, 145, 146] helps clinicians understand patient needs and in turn apply more

effective in-person and remote treatments.

Data sharing is also essential in cancer care, where groups of physicians with differ-

ent specialties form tumor boards. These boards meet on a regular basis to analyze can-

cer cases, exchange knowledge, and collaboratively create effective treatment and care

plans for each patient [147]. Regional virtual tumor boards are also being implemented via

telemedicine [148, 149] for institutions that lack inter-specialty cancer care due to limited

oncology expertise and resources [150].

Administrative support for coordinating health IT efforts. The Office of the Na-

tional Coordinator for Health Information Technology (ONC) is a division of the Office of

the Secretary within the United States Department of Health and Human Services. ONC

is the principal federal entity to oversee and coordinate health IT efforts, including the de-

velopment of interoperable, privacy-preserving, and secure nationwide health information

systems and the promotion of widespread, meaningful use of health IT to improve health-

care.

Data sharing barriers to collaborative decision making. In practice, many barriers

exist in the technical infrastructure of health IT systems today that impede the secure and

scalable data sharing across institutions, thereby limiting support for collaborative clinical

decision making. Examples of such barriers include the following:

• Security and privacy concerns. Despite the need for data sharing, concerns remain
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regarding protection of patient identity and confidentiality [151]. For instance, virtual

medical interactions may increase the risk of clinical data breaches due to electronic

transmission of data without highly secure infrastructures in place, which can result

in severe financial and legal consequences [152]. Likewise, medical identity theft

may occur more frequently, especially in telemedicine [151], where virtual (i.e., net-

worked) interactions are replacing face-to-face interactions between providers and

patients.

• Lack of trust relationships between healthcare entities. Trust relationships be-

tween healthcare entities [153] (e.g., care providers and/or healthcare institutions)

are an important precondition to digital communications [154] and data sharing in

the absence of custody over shared data. Larger healthcare facilities (such as en-

terprise hospital systems) may be networked [155], but communications between

private or smaller practices may not be established.

• Scalability concerns. Large-scale datasets may be hard to transmit electronically

due to restrictive firewall settings or limitations in bandwidth (which is still common

in rural areas [156]). Lack of scalability can also impact overall system response

time and data transaction speed [157].

• Lack of interoperable data standards enforcement. Without the enforcement of

existing interoperable data standards (such as HL7’s Fast Healthcare Interoperability

Resources (FHIR)[28] for shared data), health data can vary in formats and structures

that are hard to interpret and integrate into other systems [158].

What is needed, therefore, is a standards-based architecture that can integrate with ex-

isting health IT systems (and related mobile apps) to enable secure and scalable clinical

data sharing for improving continuous, collaborative decision support.

Research focus and contributions → Architectural considerations for secure and

scalable blockchain-based clinical data sharing systems. Blockchain technologies have
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recently been touted [159, 160, 161] as a technical infrastructure to support clinical data

sharing that promotes care coordination. A key property of blockchains is their support for

”trustless disintermediation.” This property enables multiple parties who do not fully trust

each other to exchange digital assets (such as the Bitcoin cryptocurrency [23]), while still

protecting their sensitive, personal data from each other.

Our prior work [162] provided evaluation recommendations for blockchain-based health

IT solutions on a high-level, focusing on common software patterns [106] that can be ap-

plied to improve the design of blockchain-based health apps. This chapter examines previ-

ously unexplored research topics related to alleviating the data sharing barriers described

above, namely: what are the architectural consideration associated with properly leverag-

ing blockchain technologies to securely and scalably share healthcare data for improving

collaborative clinical decision support?

This chapter provides the following contributions to using blockchain technologies in

clinical data sharing to improve collaborative decision support:

• We summarize key technical requirements defined in the “Shared Nationwide In-

teroperability Roadmap” [27] drafted by the Office of the National Coordinator for

Health Information Technology (ONC) for creating an interoperable health IT system

and analyze the implications for blockchain-based system design.

• We present the structure and funcationality of a blockchain-based architecture called

FHIRChain that meets the ONC technical requirements for sharing clinical data be-

tween distributed providers. FHIRChain uses HL7’s FHIR data elements (which have

uniquely identifying tags) in conjunction with a token-based design to exchange data

resources in a decentralized and verifiable manner without requiring duplicated ef-

forts of uploading data to a centralized repository.

• We demonstrate a FHIRChain-based decentralized app (DApp) that uses digital health

identities to more readily authenticate participants and manage data access autho-
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rizations in a case study of clinical data sharing in remote cancer care. This DApp

enables users to share specific and structured pieces of information (rather than an

entire document), thereby increasing the readability of data and flexibility of sharing

options.

• We highlight key lessons learned from our case study and discuss how our FHIRChain-

based DApp can be further extended to support other technical requirements for im-

proving advanced healthcare interoperability issues, such as coordinating other stake-

holders (e.g., insurance companies and pharmacies) across the industry and providing

patients with direct and secure access to their own medical records. We also explore

the data exchange issues that blockchains cannot yet address effectively, including se-

mantic interoperability, healthcare malpractice, and unethical use of the data, which

remain as future research problems in this space.

4.2 Overview of Blockchain

The most popular application of blockchain is the Bitcoin blockchain [23], which is

a public distributed ledger designed to support financial transactions via the Bitcoin cryp-

tocurrency. This blockchain operates in a peer-to-peer fashion with all transactions dis-

tributed to each network maintainer node (called a “miner”) for verification and admit-

tance onto the blockchain. These miners validate available transactions and group them

into blocks, as shown in Figure 4.1. Miners then compete in solving a computationally

expensive cryptographic puzzle, known as “proof-of-work,” where a targeted hash value

associated with the last valid block in the chain is calculated. The first miner to solve this

puzzle receives a reward (i.e., an amount of Bitcoin) and appends their block of validated

transactions to the blockchain sequence.

The Bitcoin blockchain uses the proof-of-work process outlined above to achieve con-

sensus (agreement on the shared state and order of transactions) by
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Figure 4.1: The Blockchain Structure: a Continuously Growing and Immutable List of
Ordered and Validated Transactions

• incentivizing miners to contribute powerful hardware and electricity to the network

with small amounts of cryptocurrency as rewards and

• discouraging rogue actors from attempting to manipulate or maliciously control the

system.

After a block is added to the blockchain, its transaction history is secured from tampering

via cryptography.

The Bitcoin blockchain is the most widely deployed example of this distributed ledger

technology. In recent years, however, other types of blockchain technologies have emerged.

For example, the Ethereum blockchain [24] provides a more generalized framework via

“smart contracts” [163] that allow programs to run on the blockchain and store/retrieve

information.

Smart contracts enable code to execute autonomously when certain conditions are met.

They can also store information as internal state variables and define custom functions to

manipulate or update this state. Operations in smart contracts are published as transactions

and thus occur in a globally sequential order, in a similar fashion as shown in Figure 4.1.

These operations are deterministic and verifiable by miners in the Ethereum blockchain to

ensure their validity.
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The mechanisms described above make a blockchain decentralized and immutable,

thereby removing the need for a trusted central authority. These properties make blockchain

technologies attractive to certain communities of health IT researchers and practitioners as

means to improve clinical communications while protecting the privacy of healthcare par-

ticipants. The remainder of this chapter examines how to effectively leverage blockchains

for securely and scalably sharing clinical data that enables collaborative decision support.

4.3 Related Work

4.3.1 Overview

Due to the growing interest in using distribute ledger technologies for health IT systems,

related work has explored various blockchain-based design considerations and prototypes.

This section summarizes this related work and compares it with our research on FHIRChain

and DApps that provide collaborative clinical decision support for remote patients.

4.3.1.1 Conceptual Blockchain-Based Design Considerations

Krawiec et al. [164] presented several existing pain points in current health information

exchange systems and the corresponding opportunities provided by blockchain technolo-

gies. They also discussed how blockchain can be leveraged in the health IT systems so that

patients, health providers, and/or health organisations can collaborate. Nichol et al [165]

presented an analysis that assembles concepts in blockchain-related technologies and spec-

ulates on how blockchain can be used to solve common interoperability problems facing

healthcare.

A team at IBM [166] took a broader approach by highlighting the challenges in the

healthcare industry and providing concrete use cases to showcase potential applications of

blockchain technologies. Our prior work also provided software design recommendations

for creating general blockchain-based health IT systems [106] and proposed assessment
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metrics for blockchain-based health systems [162], which include a subset of the technical

requirements defined in the ONC roadmap. This prior work of ours focused on provid-

ing more general or high-level recommendations for developers creating blockchain-based

health IT systems.

The review paper by Kuo et al. [167] presented several blockchain applications in

healthcare, such as improved medical record management and advanced healthcare data

ledger, and their benefits for each described application. They then analyzed key chal-

lenges associated with using blockchain technology for healthcare, including issues like

confidentiality, scalability, and treat of a 51% attack on the blockchain network. According

to the authors, some example implementation techniques that may mitigate the challenges

are (1) encryption of sensitive data or dissemination of only meta data and storing sen-

sitive data off-chain to protect confidentiality, (2) keeping only partial, ongoing verified

transactions on-chain rather than the entire transaction history to increase scalability of the

blockchain network, and (3) the adoption of a virtual private network or HIPAA-compliant

components to prevent the 51% attack.

4.3.1.2 Blockchain Prototype Designs

Azaria et al. [161] created a decentralized record management platform that enables

patients to access their medical history across multiple providers. This platform used a

so-called “permissioned” blockchain (which is only accessible by authorized users, rather

than one that is open to the public) to manage authentication, data sharing, and other se-

curity properties in the medical domain. Their blockchain design integrated with exist-

ing provider data storage to enable interoperability by curating a representation of patient

medical records. Medical researchers were incentivized to contribute to mining of the

blockchain by collecting aggregated metadata as mining rewards.

Peterson et al. [168] presented a healthcare blockchain also considers the integration

with FHIR standards. They proposed a merkle-tree based blockchain system that intro-
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duces ”Proof of Interoperability” as the consensus mechanism during block mining. Proof

of interoperability is based on conformance to the FHIR protocol, meaning that miners

must verify the clinical messages sent to their blockchain to ensure they are interoperable

with known structural and semantic standards.

Dubovitskaya et al. [169] also proposed a permissioned blockchain framework on man-

aging and sharing medical records for cancer patient care. Their design employed a mem-

bership service to authenticate registered users using a username/password scheme. Patient

identity was created via a combination of personally identifying information (including so-

cial security number, date of birth, names, and zip code) and encrypted for security. Med-

ical data files were uploaded to a secure cloud server, with their access managed by the

blockchain logic.

Unlike other blockchain designs, Gropper’s ”HIE of One” system [170] focused on

the creation and use of blockchain-based identities to credential physicians and address

the patient matching challenge facing health IT systems. Patients are expected to install a

digital wallet on their personal devices to create their blockchain-based IDs, which can then

be used to communicate with the rest of the network. Instead of storing patient information,

Gropper’s system would consume only the blockchain-based ID and use it to secure and

manage access to patient data located in EHR systems.

4.3.2 Gaps in Existing Research

Existing evaluations and prototypes of blockchain-based healthcare architectures have

not been analyzed against the technical requirements defined by health experts from the fed-

eral government. Traditional methods for identifying healthcare participants do not work

well for blockchain-based approaches as they may position sensitive information at higher

risks of being stolen due to the openness of data stored on the blockchain. In addition, there

has been very limited discussion on potential remedies for lost or stolen identities.

Our goal with FHIRChain is to present a generalized architecture for healthcare data
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exchange that addresses the gaps in prior research. Particularly, we describe how our

FHIRChain-based DApp demonstrates the use of digital health identities that do not di-

rectly encode private information and can thus be replaced for lost or stolen identities, even

in a blockchain-based system. While our approach is similar to the use of digital IDs in the

HIE of One[170] system, FHIRChain provides a more streamlined solution. In addition, we

incorporate a token-based access exchange mechanism in FHIRChain that conforms with

the FHIR clinical data standards. We also leverage public key cryptography to simplify

secure authentication and permission authorizations, while simultaneously preventing at-

tackers from obtaining unauthorized data access. FHIRChain differs from related work on

blockchain infrastructures and associated consensus mechanisms because it is decoupled

from any particular blockchain framework and instead focuses on design decisions of smart

contract and other blockchain-interfacing components. The architecture is thus compatible

with any existing blockchains that support the execution of smart contracts.

4.4 Technical Requirements for Blockchain-Based Clinical Data Sharing

The “Shared Nationwide Interoperability Roadmap” defines technical requirements and

guiding principles for creating interoperable health IT systems [27]. Based on our experi-

ences to date, we contend that crafting a blockchain architecture to meet these requirements

necessitates overcoming significant challenges to utilize blockchain technology in health-

care most effectively.

This section first analyzes five key technical requirements fundamental to clinical data

sharing systems and then discusses the implications of these requirements on blockchain-

based architectures. Sections 4.5 and 4.6 subsequently describe how we developed and

applied our FHIRChain blockchain-based architecture to create a decentralized app (DApp)

that meets the ONC requirements in the context of collaborative clinical decision making.
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4.4.1 Requirement 1: Verifying Identity and Authenticating All Participants

4.4.1.1 ONC requirement summary

The ONC requirements state that an identity ecosystem should be employed to mini-

mize identity theft and provide redress in case of medical identity fraud, while complying

with individual privacy regulations. Providers, hospitals, and their health IT systems should

be easily identity-proofed and authenticated when exchanging electronic health informa-

tion. Healthcare systems today, however, lack “consistently applied methods and criteria”

for identity proofing and authentication across organizations [27]. For example, different

network service providers have different policies or requirements and may not acknowledge

the methods applied by other network service providers.

One of the most popular—and least complex—approaches to exchange data is through

direct secure messaging [27]. For example, the Direct project [171] was launched to create

a standard way for participants to send authenticated, encrypted health information directly

to known, trusted recipients over the Internet. Providers or care centers using EHR systems

without Direct integration, however, cannot benefit from the direct exchange capability.

4.4.1.2 Implications for blockchain-based system design

For a blockchain-based system, storing identification information (such as personal

email) directly on-chain is problematic [172]. In particular, a property of blockchains is

information “openness,” i.e., all data and associated modification records are immutably

recorded and publicly available to all network participants. In the case of Bitcoin, data

is open to everyone with Internet access [23], whereas in a non-public blockchain (such

as a consortium blockchain [24]) data access is limited only to authenticated blockchain

participants.

To meet the requirement of openness while complying to health privacy regulations [173],

a blockchain-based system should thus support user identity-proofing and authentication
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while encapsulating sensitive personal information. Section 4.5.2.1 shows how FHIR-

Chain addresses this identifiability and authorization requirement via digital health identi-

ties based on public key cryptography [174].

4.4.2 Requirement 2: Storing and Exchanging Data Securely

4.4.2.1 ONC requirement summary

The ONC requirements state that data should be shared securely and privately without

unauthorized or unintended alteration, while making the information available to autho-

rized parties. Data encryption is a recommended both when data is sent over networks

(data-in-motion) and when it is stored (data-at-rest). Management and distribution of en-

cryption keys must be ”secure and tightly controlled” [27].

4.4.2.2 Implications for blockchain-based system design

There has been recent interest [175, 176] in using blockchain technologies as decen-

tralized storage for encrypted health data. As discussed in Section 4.2, however, the open

and transparent nature of blockchain raises privacy concerns when attempting to integrate

blockchain into the health IT domain. Although sensitive data can be encrypted, flaws in

encryption algorithms or software implementations may expose the data contents in the

future. To ensure long-term data security, therefore, a data storage design should be “sim-

ple” to minimize software bugs [177], e.g., by not storing sensitive data (encrypted or not)

on-chain, yet still enable data flow from one user to another [162].

Another implication of storing data on a blockchain is scalability. All blockchain trans-

actions (such as storing data in a smart contract and modifying the data) and data records

are distributed as an entire copy to all blockchain nodes. In a public blockchain, more-

over, transaction fees are paid to miners to reward their validation efforts , as described

in Section 4.2. As new data is added or modified, each change must be propagated to all

nodes, raising scalability challenges and potentially incurring significant long-term opera-
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tional costs. Section 4.5.2.2 shows how FHIRChain addresses this requirement via a hybrid

on-chain/off-chain storage model.

4.4.3 Requirement 3: Consistent Permissioned Access to Data Sources

4.4.3.1 ONC requirement summary

The ONC advocates “computable privacy” that represents and communicates the per-

mission to share and use identifiable health information [27]. Individuals should be able

to document their permissions electronically, which are then honored as needed. Permis-

sion authorizations to receive or access an individual’s clinical data should be accurate and

trustworthy, requiring both the data requestor and holder to have a common understanding

of what is authorized.

4.4.3.2 Implications for blockchain-based system design

Unfortunately, smart contract operations only occur in the blockchain space to ensure

deterministic outcomes. Services (such as OAuth [178]) that exist off the blockchain

therefore cannot be used. Given this constraint, incorporating other alternatives to pro-

vide data access permissioning should be a key component of a blockchain-based design.

Section 4.5.2.3 shows how FHIRChain addresses this requirement via a token-based per-

mission model.

4.4.4 Requirement 4: Applying Consistent Data Formats

4.4.4.1 ONC requirement summary

To satisfy interoperability needs, the ONC requirements state that health IT systems

should be implemented with an “intentional movement and bias” [27] toward a clini-

cal data standard identified by ONCs recently finalized Interoperability Standards Advi-

sory [179]. The data exchanged should be structured, standardized, and contain discrete
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(granular [180]) information. Likewise, standards should use metadata to communicate

their context along with pieces of structured data.

4.4.4.2 Implications for blockchain-based system design

To provide collaborative clinical decision support, health IT systems must present shared

data to clinicians in a structured and readable format [181]. This requirement implies the

enforcement of existing, commonly accepted clinical data standard(s), rather than intro-

ducing new data exchange formats. Section 4.5.2.4 shows how FHIRChain addresses this

requirement by enforcing the FHIR standard.

4.4.5 Requirement 5: Maintaining Modularity

4.4.5.1 ONC requirement summary

The ONC requirements state that since technology inevitably changes over time, health

IT system designs should be capable of evolving by maintaining modularity. When divided

into connected, modular components, health IT systems become more resilient to change

with increased flexibility. In turn, these properties enable the adoption of newer, more

efficient technologies over time without rebuilding the entire system.

4.4.5.2 Implications for blockchain-based system design

Modularity requires a carefully crafted design to avoid “information lock-in” due to the

immutability of smart contracts. Every change to a smart contract code creates a new con-

tract instance on the blockchain, nullifying previous versions and their data. To minimize

dependencies and the need to upgrade, therefore, smart contracts should be loosely coupled

with other components in the system. Section 4.5.2.5 shows how FHIRChain addresses this

requirement by applying the model-view-controller (MVC) pattern [182].
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4.5 FHIRChain: a Blockchain-Based Architecture for Clinical Data Sharing

This section first presents an overview of FHIRChain, which is a blockchain-based

architecture we designed to meet the ONC requirements for secure and scalable sharing of

clinical data described in Section 4.4. We then explain why we made specific architectural

decisions in FHIRChain to address each requirement and how they solve the five challenges

facing blockchain technology described in Section 4.4.

4.5.1 FHIRChain Overview

Figure 4.2 shows the FHIRChain architecture we devised to address key ONC technical

requirements. This architecture provides a general data sharing solution applicable to a

Figure 4.2: Architectural Components in FHIRChain

wide range of health IT systems. It also serves as the basis for our decentralized app (DApp)

prototype describe in Section 4.6, which customizes FHIRChain to support collaborative

clinical decision making using a case study of cancer care in telemedicine.

The dashed ellipse in Figure 4.2 represents a blockchain component that mediates data

sharing between collaborating medical professionals (represented by providers with green

check marks). Clinical data silos are represented by heterogeneous database symbols,

which we normalized with the FHIR standards to enforce a common structure of shared

data. Secure database connectors (represented as small circles) connect siloed data sources

72



to the blockchain by exposing secure access tokens to data references that can be obtained

only by authorized entities. The secure tokens are recorded in a smart contract (represented

by linked documents) for decentralized access and also traceability.

In addition to storing secure access tokens, the smart contract also maintains an im-

mutable timestamped transaction log (represented as a keyed file symbol) of all events

related to exchanging and actually consuming these tokens. These logs include specific

information regarding what access has been granted to which user by whom, who has con-

sumed which token to access what resource, etc. To ensure the validity of shared data,

FHIRChain can be configured to only approve participation from certified clinicians and

healthcare organizations with a membership registry.

4.5.2 FHIRChain Architectural Decisions that Address Key ONC Technical Require-

ments

Below we explain why specific architectural decisions were made to address each ONC

requirement presented in Section 4.4.

4.5.2.1 Addressing Requirement 1: Verifying Identity and Authenticating All Par-

ticipants

Context Blockchains—such as Ethereum and Bitcoin—provide pseudo-anonymous

personal accounts (i.e., public addresses composed of random hash values) for users to

transact cryptocurrencies. These native identities, however, do not address healthcare re-

quirement for identifiability or authentication of all participants.

Problem By design, public blockchains are globally accessible to anyone with Inter-

net access and allow users to hold any number of blockchain accounts to minimize the

identifiability of account holders. This ONC requirement, however, specifies that all U.S.

healthcare participants should be identifiable, implying the need for an entirely separate,

traceable user base from blockchains’ native identities. A key problem is thus how to
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properly define identities for healthcare users participating in clinical data sharing, while

protecting sensitive personal information on the blockchain.

Design choice→ use of a digital health identity Inspired by the success of secure shell

(SSH) [183] and blockchain address generation mechanism, FHIRChain employs public

key cryptography [174] to create and manage health identities. In public key cryptography,

a pair of mathematically related public and private keys is used to create digital signatures

and encrypt data. Since it is computationally infeasible to obtain the private key given its

paired public key, these public keys can be shared freely, thereby allowing users to encrypt

content and verify digital signatures. In contrast, private keys are kept secret to ensure only

their owners can decrypt content and create digital signatures.

FHIRChain generates a cryptographic public/private key pair (also used for encryption,

as described in Section 4.5.2.3) for each participating provider, e.g., in-house providers

and remote physicians in telemedicine clinics. The public keys represent users’ digital

health identities. These identities are recorded in the blockchain for both identity- and

tamper-proofing, thereby ensuring that users holding the corresponding private keys can be

authenticated to use FHIRChain’s data sharing service.

FHIRChain’s design applies a smart contract to maintain health users’ identifiability

without exposing personal information on the blockchain. It also replaces the need for a

traditional username/password authentication scheme with the use of a public/private cryp-

tographic key pair for authentication. In a general clinical setting, these digital health iden-

tities (i.e., their private keys) would be hard to manage for patients. FHIRChain, however,

only creates these identities for clinicians to facilitate data sharing, which enables more

effective collaborative decision making for patients.

4.5.2.2 Addressing Requirement 2: Storing and Exchanging Data Securely

Context A key capability offered by blockchains is their support for “trustless transac-

tions between parties who lack trust relationships established between them. Bitcoin is the
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most common example of this trustless exchange via its native cryptocurrency. Blockchains

are peer-to-peer by nature and thus contribute to the ubiquitousness of digital assets being

transacted.

Problem Health data represented via digital assets are more complex and harder to

share en masse. There are also privacy and security concerns associated with its storage

in an “open” peer-to-peer system (i.e., public blockchains), such as encryption algorithms

applied to protect data being decryptable in the future [162]. A key problem is thus how to

design a blockchain-based health IT system so that it balances the need for ubiquitous store

and exchange and the concerns regarding privacy of the data and scalability of the system.

Design choice→ keeping sensitive data off-chain and exchanging reference point-

ers on-chain Rather than storing encrypted health data in the blockchain, a more scalable

and secure alternative is to store and exchange encrypted metadata referencing protected

data (i.e., a reference pointer to a data set), which can be combined with an expiration

configuration for short-term data sharing. Exchanging encrypted reference pointers allows

providers to maintain their data ownership and choose to share data at will. This technique

also prevents an attacker who intercepts the encrypted pointers from obtaining unauthorized

data access.

FHIRChain attaches a secure connector to each database, as shown in Figure 4.2. Each

connector generates appropriate reference pointers that grant access to the data. These

reference pointers are digital health assets that can be transacted ubiquitously with reduced

risks of exposing the data.

An added benefit of exchanging metadata en masse is more scalability compared to

exchanging the original data source. As discussed in Section 4.4.2, each transaction or

operation on the blockchain (e.g., querying a smart contract state variable value or updat-

ing it) is associated with a small fee paid to the miner for verification and then included

onto the blockchain. Transacting these lightweight reference pointers is more efficient in

terms of time and cost in production because small changes to data generally require no
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modifications to reference pointers.

4.5.2.3 Addressing Requirement 3: Permission to Access Data Sources

Context Data references can be stored on the blockchain for ubiquitous access via a

smart contract. Access rights, however, must be granted only to authorized providers for

viewing the data. As discussed in Section 4.4.3, OAuth is a popular platform for commu-

nicating permissions in web-based apps that are not based on blockchain.

Problem Smart contracts cannot directly use external services like OAuth since they do

not produce deterministic outcomes that can be verified by blockchain miners. A key prob-

lem is thus how to design a mechanism that balances the need of permission authorization

for clinical data and blockchain requirements for deterministic outcomes.

Design choice → token-based permission model To overcome the limitation with

public blockchains, FHIRChain protects the shared content via a secure cryptographic

mechanism called “sign then encrypt” [184]. This design employs the users’ digital health

identities to encrypt content so that only users holding the correct digital identity private

keys can decrypt the content. FHIRChain also generates a new pair of signing keys for

each participant and registers the public portion of signing keys alongside users’ digital

identities.

To concretely demonstrate this workflow, Figure 4.3 provides an example of using

FHIRChain to create and retrieve an access token. Suppose provider Alice would like

to initiate sharing of her patient’s data, denoted as DAlice (with a reference pointer, denoted

as RPAlice) with another provider Bob. FHIRChain creates a digital signature on the shared

content RPAlice, with Alice’s private signing key SKSAlice for tamper-proofing as a first step.

With Bob’s public encryption key, PKBob, FHIRChain encrypts the signed RPSAlice to ob-

tain an encrypted token EncRPSAlice, and then stores EncRPSAlice in a smart contract for

ubiquitous access.

When Bob wants to obtain the content Alice sent, he must use his corresponding pri-
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Figure 4.3: Example of the Creation and Retrieval of an Access Token Using FHIRChain.

vate encryption key SKBob to decipher the real content of EncRPSAlice. Bob also verifies

that this content was indeed provided by Alice with her public signing key PKSAlice. This

authentication process is automated by the DApp server component interfacing the smart

contract, as discussed in Section 4.5.2.5.

Digital signing ensures that a resource is indeed shared by the sender and is not tam-

pered with. Likewise, encryption protects the information against unauthorized access and

spoofing. The data requestor’s access to a resource can be approved or revoked at any time

via a state update in the smart contract by the data holder where all permissions are logged.

Role-based or attribute-based permissions can also be implemented off-chain in the

same manner as in a traditional centralized system (e.g., via Active Directory). In this

case, a meta-cryptographic key pair would be created for each role or type of attribute and

securely stored within the systems database. The system can then be configured so that

only allows users meeting certain permission criteria to use the key for data access, while

shielding users from unessential details.
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4.5.2.4 Addressing Requirement 4: Consistent Data Formats

Context Clinical research data can exist in various formats and structures, which may

or may not be meaningful when shared with other providers from different organizations.

Problem Blockchain-based health IT systems should facilitate data sharing, while ad-

hering to some existing standard(s) for representing the clinical data. A key problem is

thus how to design a blockchain-based architecture to enforce the application of existing

clinical data standard(s).

Design choice→ enforcing FHIR standards FHIR, a proposed interoperability stan-

dard developed by HL7, is based on modern web services (i.e., HTTP-based RESTful

protocol) and supports the use of JSON [185], which is a popular format for exchanging

information on the web. JSON is more compact and readable compared to the XML for-

mat used by other data formatting standards, thereby enabling more efficient transmission

of JSON-encoded data. It is also compatible with many software libraries and packages.

As more health IT systems upgrade their data exchange protocols to comply to FHIR stan-

dards, FHIRChain enforces the use of FHIR to shared clinical data by validating whether

the generated reference pointers follow the FHIR API standards [28].

4.5.2.5 Addressing Requirement 5: Maintaining Modularity

Context Health IT system updates and/or upgrades are necessary to adopt more effi-

cient, secure, or prevalent technology as it advances.

Problem If functions in a smart contract have too many dependencies on the rest of

a health IT system, then each upgrade to the system must deploy a new contract, which

requires restoring data from previous versions to prevent loss. A key problem is thus how

to design a modular data sharing system that minimizes the need to create new versions

of existing contracts when the system is upgraded. For example, when more user friendly

features are needed, a good design should separate those updates from the underlying back-

end services so that a change in the user interface does not require modifications of the
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server or blockchain component.

Design choice→ applying the model-view-controller (MVC) pattern The MVC pat-

tern [182] separates a system into three components: (1) the model, which manages the

behavior and data of a system and responds to requests for information about its state and

instructions to change state, (2) the view, which manages the display of information, and

(3) the controller, which interprets user inputs into appropriate messages to pass onto the

view or model.

The FHIRChain architecture applies the MVC pattern to separate concerns with indi-

vidually testable modules as follows: (1) a model in the form of an immutable blockchain

component is used to store necessary meta data via smart contracts; (2) a view provides

a front-end user interface that accepts user inputs and presents data; (3) a controller is a

server component with control logic that facilitates interactions with data between the user

interface and blockchain component, such as queries, updates, encrypting and decrypting

contents; and (4) a controller-invoked data connector service is used to validate the im-

plementation of FHIR standards and create reference pointers for the data sources upon

requests from the server.

Figure 4.4: Composition and Structure of the FHIRChain Architecture with Modular Com-
ponents.

The workflow for updating data access is shown in Figure 4.4 by the following steps

1-4:
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1. A user first authenticates through the user interface (UI), and when successfully au-

thenticated, data access permission request can be input to the system;

2. The UI forwards user’s request to the server;

3. The server logs permissioned or revoked access in the blockchain component (BC);

and

4. The server updates UI with proper response to notify the user.

Likewise, the workflow for accessing a data source is outlined in the following steps

a-e:

a) The user first authenticates via the UI, and when successfully authenticated data ac-

cess request can be input to the system;

b) UI forwards users request to the server;

c) The server queries BC for current user’s access token(s);

d) When permission is valid, the server decodes the access token(s) with correct keys

supplied by user and uses the decrypted reference pointer to obtain actual data from

the DB connector to the proper database;

e) When data has been retrieved from the data source via DB connector, the server

updates UI to display data in a readable format.

FHIRChain stores all relevant information in smart contracts, decoupling data store

from the rest of the system. This decoupling enables future upgrades to all other compo-

nents without losing access to—or locking out—existing users or their permission infor-

mation.
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4.6 Case Study: Applying FHIRChain to Create a Prototype DApp

This section first describes the structure and functionality of a decentralized app (DApp)

that customizes the FHIRChain architecture described in Section 4.5 to support collabora-

tive clinical decision making via a remote tumor board case study. We then analyze the

benefits and limitations of our DApp case study.

4.6.1 Overview of the FHIRChain DApp Case Study

The FHIRChain DApp is written in Javascript. It consists of ∼1,000 lines of core app

code that interacts with a private testnet of the Ethereum blockchain and three Solidity

smart contracts, each containing ∼50 lines of code. Our DApp customizes the FHIRChain

architecture in a private Ethereum testnet to address the various ONC requirements de-

scribed in Section 4.4.

This DApp has an intuitive user interfacing portal that facilitates the sharing and view-

ing of patient cancer data for a remote tumor board to collaboratively create treatment plan

for cancer patients. In addition, the DApp implements a notification service [106] that

broadcasts events to appropriate event subscribers. The FHIRChain DApp notification ser-

vice is used to alert collaborative tumor board members when new data access is available

for review.

Verifying identity and authenticating participants with digital identities, as dis-

cussed in Section 4.5.2.1. Our DApp contains a Registry smart contract that maintains

the digital health identities of providers who registered with our app. The registry maps

provider email addresses (or phone numbers) from a public provider directory to both their

public encryption (used as digital identity) and signing keys, which are generated automat-

ically at user registration time. Figure 4.5 demonstrates the user registration and authenti-

cation workflow.

Storing and exchanging data securely with FHIR-based reference pointers, as dis-
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Figure 4.5: Workflow of the User Registration and Authentication Process in the FHIR-
Chain DApp.

cussed in Sections 4.5.2.2 and 4.5.2.4. Our DApp defines two cancer patient databases and

referencing paths to patient data entries using the open-source HapiFHIR [186] public test

server. Validation of the FHIR implementation is performed via regular expression parsing

of the paths against the FHIR APIs [28].

Permissioning data access with token-based exchange, as discussed in Section 4.5.2.3.

Our DApp also contains an Access smart contract that logs all user interactions and requests

on the portal, e.g., what resource is shared or no longer shared with which provider by

whom and when. These access logs are structured as a mapping between user digital health

identities (public encryption keys) and authorizations to custom-named access tokens (rep-
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Figure 4.6: Workflow of Access Authorization in the FHIRChain DApp.

resented as a nested object associated with a true/false boolean value indicating if an access

token access is granted for a provider). If an access revocation occurs, authorization is set

to false and the associated token is set to an empty value. The workflow of this process is

shown in Figure 4.6.

Maintaining modularity with the MVC pattern, as discussed in Section 4.5.2.5.

The view component is a user interfacing portal that accepts provider user input, including

registration and authentication credentials (corresponding keys) and data access informa-

tion (e.g., tumor board member email to query, a reference pointer to securely access data,

and approval/revocation of access). Figure 4.7 is a screenshot of our DApp, presenting the

following features (1) display recent sharing events related to the user, (2) display reference

pointer APIs created by logged in user and available actions, and (3) display all references
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Figure 4.7: Screenshot of Our FHIRChain-based DApp User Interface.

shared with logged in user and the option to view data.

The portal then forwards the user requests along with data input to the sever component,

where all the complex logic is encapsulated.

Our FHIRChain DApp server performs all functions and control logic, including verify-

ing provider user email account, generating cryptographic keys, token creation via signing

and encryption, token retrieval via decryption and signature verification, forwarding re-

quests and delegating tasks between the portal and blockchain. The blockchain component

is an independent model component containing two smart contracts for ubiquitous storing

and persisting event logs of data access.

4.6.2 Benefits of Our FHIRChain DApp Case Study

Our FHIRChain Dapp case study achieved the following benefits:

• Increased modularity. To increase modularity, we applied the “separation of con-
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cerns” principle [187] to decompose our DApp into independent components. FHIR-

Chain employs a peer-to-peer API exchange protocol that references data pointers

stored in a smart contract on the blockchain. In this design, exchanged information

becomes lightweight, which increases scalability since system performance remains

the same regardless of the original size of the data. Likewise, data is not transmitted

electronically across institutional boundaries, thereby reducing the risk of data being

compromised.

• Scalable data integrity. To ensure scalable data integrity, our design maintains a

hash of the original data to exchange in addition to the reference pointer of the data.

Suppose that the original data being exchanged is of size N and that the size of its

reference pointer is ε . The total amount of data stored on-chain in terms of space

complexity is then O(hash(N) + ε). Since the hashed output of a variable-length

input can be a fixed value, it consumes a constant amount of space. The size of

a data reference pointer would be scalably smaller than the actual data size. This

design therefore enhances scalability by using constant-sized representations of the

data, rather than using the actual data.

• Fine-grained access control. To enable fine-grained access control, permissions to

access a data source can be given or revoked at will by providers across various insti-

tutions regardless of their trust relationships. By implementing the FHIR standards,

more granular access can be granted to selected pieces of data rather than an entire

document, which also increases data readability. Moreover, all events related to data

sharing and data access are logged in a transparent history for auditability.

• Enhanced trust. The DApp applies public key cryptography, which enhances trust

to participants in the following ways:

– Identifiability and authentication. Given the computation power today, it is

infeasible to impersonate a user without knowing their private key, and the only
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way a user can be authenticated to use our service is to provide the correct pri-

vate key paired with their public key registered on the blockchain. On the other

hand, it is trivial to create a new public/private key pair in case of a user’s private

key being lost or stolen. This “digital identity” approach has been successfully

adopted in Estonias government and healthcare infrastructure [188].

– Permission authorization. With public key encryption securing their data ref-

erence pointers, users can trust that none other than the intended data recipient

can view what they have shared. FHIRChain never shares the reference pointer

with any user. Instead, RP is used to display the data content when it is de-

crypted with an authorized user’s private key. In addition, users can approve or

revoke data access at any time, and the request takes effect immediately.

4.6.3 Limitations of Our FHIRChain DApp Case Study

Since our FHIRChain DApp was designed based on several assumptions it incurs the

following limitations:

• Does not address semantic interoperability. FHIRChain cannot address data ex-

change challenges related to semantic interoperability that are not yet fully captured

by the FHIR standards. To provide semantics to clinical data, therefore, manual in-

spection and mapping of predefined ontologies from medical and health data experts

are required, which remain the focus of our future research in this space.

• May not be compatible with legacy systems not supporting FHIR. Many legacy

systems may use other messaging standards, such as the more prevalent HL7 v2 stan-

dards [189], and do not support FHIR protocols. The goal of this chapter, however, is

to present the underlying representations and theories of our blockchain-based sys-

tem. Although we advocate FHIR in this research because it has been used quite

frequently and it supports fine-grained data exchange, the principles behind the sys-
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tem described here can also be used with other standards like HL7 v2 [189].

• Cannot control clinical malpractice. The intended users of FHIRChain are clin-

icians interested in collaboratively providing clinical decision support for remote

patients. Our current design trusts that the data being exchanged using our DApp

is not abused, misused, or unethically redistributed by users. Our future work will

explore options to minimize these risks, such as tracking data credibility using cryp-

tographic hashing or zero knowledge proofs [190] (ability to demonstrate the truth

of a statement without revealing additional information beyond what it is trying to

prove [191]) along with each reference pointer. Naturally, clinical malpractice may

still occur (as in any other health IT system) since we cannot fully control these

human behaviors.

• DApp deployment costs. Unlike existing public blockchain, such as Ethereum, our

DApp is developed using a private testnet that imposes no interaction costs (e.g.,

transaction fees). Our DApp would thus not be free of charge if deployed on a public

blockchain. The convenience provided by a public blockchain, however, may justify

the cost of usage versus the costs of licensing, running, and maintaining a private

clinical data exchange infrastructure.

To overcome these limitations in future work, we will deploy our DApp in a permis-

sioned consortium blockchain platform with trusted parties to ensure consensus through

a variation of proof-of-work that incentivizes mining with cryptocurrency rewards. For

instance, [161] proposes to use aggregated data as mining rewards in their system, while

MultiChain [192] enforces a round-robin mining protocol in their blockchain. With the

ability to replace monetary incentives to maintain consensus on the blockchain, the cost to

use this blockchain-based service will be lower in the long run, although the initial deploy-

ment may still be expensive.

Although permissioned systems may be prone to collusion due to the 51% attack prob-
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lem [24], the permissioned system used for healthcare would be maintained and managed

by relatively large-scale entities/stakeholders within the healthcare industry. Unless major-

ity of them (major hospitals, insurance companies, etc.) collude, therefore, the chance of

experiencing this type of attack is quite low. Moreover, legal actions would most likely

occur immediately upon the attack.

4.7 Conclusion

This chapter described the FHIRChain prototype we designed to provide patients with

more collaborative clinical decision support using blockchain technology and the FHIR

data standards. Complemented by the adoption of public key cryptography, our FHIRChain

design addressed five key requirements provided by the ONC interoperability roadmap,

including user identifiability and authentication, secure data exchange, permissioned data

access, consistent data formats, and system modularity.

The following are the key lessons we learned from designing and implementing our

DApp based on FHIRChain:

• FHIRChain can provide trustless, decentralized storage for necessary meta in-

formation and audit logs. FHIRChain alleviates proprietary vendor-lock found in

conventional health IT systems by leveraging its blockchain component as a decen-

tralized storage of necessary reference information as secure access points into those

databases. It enables the sharing of clinical data without established trusts, providing

clinicians with secure and scalable collaborative care decision support. In addition,

each public key generated for a user is stored in the blockchain via a smart contract

used to associate healthcare participants with their digital identities. Similarly, per-

mission authorizations established between those participants are recorded in a smart

contract as well, creating a traceable permission database with an audit log of data

exchange history (i.e., meta information involved during the data exchange and not

the actual data). Storing these data on the blockchain ensures that our app is not sub-
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ject to a single point of failure or corruption of records so that it is always accessible

by healthcare participants.

• FHIRChain facilitates data exchange without the need to upload/download data

thus maintains data ownership. The FHIR standards provide resource APIs to ref-

erence specific pieces of structured data while maintaining original data ownership.

By adopting FHIR and combining it with blockchain technologies, FHIRChain cre-

ates lightweight reference pointers to siloed databases and exchange these pointers

via the blockchain component instead of actual data. For telemedicine clinics or

clinics in rural areas in particular, this approach can overcome network limitations

by enabling scalable data sharing without requiring data to be uploaded to some other

centralized repository, through which data can be shared and downloaded by other

parties. In addition, this approach reduces risks of compromised data and ensures that

original data ownership is respected. The reference pointers are encrypted with the

intended recipients public key, i.e., digital identity to permission data access. When

successfully authenticated (i.e., reference pointers are correctly decrypted) the data

will be downloaded directly from the source and present properly formatted data to

the user.

• Public key cryptography can be effective for managing digital health identity

in data sharing. FHIRChain creates public keys as digital health identities asso-

ciated with each collaborating care entity (provider or organization administrator).

The benefits to this strategy include: (1) easy authentication since a clinician only

needs to provide their private key associated with their identity, (2) integrity since

by signing the exchanged reference pointers FHIRChain can easily verify that it was

provided by the signed provider and has not been modified, and (3) remedy to lost

or stolen keys since a new key can be created easily to replace the old key and as-

sociate with the same user. There is a drawback, however, to using digital identities
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for patients in a general clinical setting. Managing these identities—private keys—is

hard because private keys are harder to remember than conventional passwords and

require technical training for patients to manage their own keys. Nevertheless, there

are approaches for managing private keys for larger populations, such as using key

wallets [193, 23] or embedding private keys to physical medical ID cards [194].

In summary, our FHIRChain-based DApp demonstrates the potential of blockchain

to foster effective healthcare data sharing while maintaining the security of original data

sources. FHIRChain can be further extended to address other healthcare interoperability

issues, such as coordinating other stakeholders (e.g., insurance companies) across the in-

dustry and providing patients with easier (and secure) access to their own medical records.
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Chapter 5

A PATTERN LANGUAGE FOR DESIGNING BLOCKCHAIN-BASED HEALTH IT

SYSTEMS

The decentralization, transparency, and immutability properties make blockchains suit-

able for apps that require disintermediation through trustless exchange, consistent and in-

corruptible transaction records, and operational models beyond cryptocurrency. In par-

ticular, there has been growing interest in using blockchain and its programmable “smart

contracts” to address healthcare interoperability challenges, such as enabling effective in-

teractions between users and medical applications, delivering patient data securely across

healthcare facilities, and improving the overall efficiency of medical communications. De-

spite the interest in applying blockchain technology to healthcare, little information is avail-

able on the concrete architectural styles and recommendations for designing blockchain-

based apps with a healthcare focus.

The key contribution of this chapter is the introduction of a pattern sequence, using both

traditional software patterns and novel patterns targeting blockchain-based apps, applicable

in the design of blockchain-based healthcare systems focused on clinical communication

and health data exchange. The application of this pattern sequence takes into account both

the technical requirements specific to healthcare systems and the implications of these re-

quirements on naive blockchain-based solutions. It provides a pattern-oriented reference

architecture for software developers to create an interoperable (on the technical level) health

IT system atop any blockchain infrastructure while minimizing storage requirements on the

blockchain, preserving the privacy of sensitive information, facilitating scalable communi-

cation and maximizing evolvability of the system.
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5.1 Problem Overview

Over the past several years, blockchain technology has attracted interest from com-

puter scientists and domain experts in various industries, including finance, real estate,

healthcare, and transactive energy. This interest initially stemmed from the popularity

of Bitcoin [23], which is a cryptographic currency framework that was the first appli-

cation of blockchain. Blockchain possesses certain properties, such as decentralization,

transparency, and immutability, that have allowed Bitcoin to become a viable platform for

”trustless” transactions [195], which can occur directly between any parties without the

intervention of a trusted intermediary.

Another blockchain platform, Ethereum, extended the capabilities of the Bitcoin blockchain

by adding support for ”smart contracts” [24]. Smart contracts are code that directly con-

trols the exchanges or redistributions of digital assets between two or more parties accord-

ing to certain rules or agreements established between involved parties. Ethereum’s pro-

grammable “smart contracts” enable the development of decentralized apps (DApps) [163],

which are autonomously operated services with data and records of operations cryptograph-

ically stored on the blockchain. DApps also enable direct interactions between end users

and data on the blockchain.

Blockchain and its programmable smart contracts are being explored as a potential so-

lution to address healthcare interoperability issues [27, 159]. Interoperability is defined as

the ability for different information technology systems and software apps to communi-

cate, exchange data, and effectively use the exchanged information [196]. In the healthcare

domain, it is necessary to achieve both syntactic and semantic interoperability, such as en-

abling effective interactions between users and medical applications, delivering patient data

securely across healthcare facilities, and improving the overall efficiency of medical com-

munications [197]. Despite the interest in using blockchain technology for healthcare, how-

ever, little information is available on the concrete approaches for designing blockchain-

based apps targeting healthcare-specific challenges.
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This chapter focuses on addressing this unexplored research topic: providing software

patterns for designing blockchain-based healthcare DApps to help mitigate healthcare

challenges. The target audience of this chapter is thus health IT system developers inter-

ested in applying blockchain technologies in the design. Design patterns provide general

solutions without tying specifics to a particular problem, allowing developers to commu-

nicate using well-known and well-understood names for software interactions [31]. By

identifying these recurring patterns applicable to healthcare, this work intends to help the

target audience more quickly adapt to this technology and create robust healthcare solutions

with it.

5.2 Key Concepts of Blockchain and Its Role in Healthcare Apps

This section gives a general overview of blockchain and the open-source Ethereum

implementation that provides additional support for smart contracts, which are computer

protocols that enable different types of decentralized apps beyond cryptocurrencies. The

general blockchain overview is followed by a discussion of Solidity, which is a program-

ming language used to write Ethereum smart contracts.

5.2.1 Key Concepts of Blockchain

A blockchain is a decentralized computing architecture that maintains a growing list of

ordered transactions grouped into blocks that are continually reconciled to keep information

up-to-date, as shown in Figure 5.1. All transaction records are kept in the blockchain

Figure 5.1: Blockchain Structure: a Continuously Growing List of Ordered and Validated
Transactions
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and are shared with all network nodes. Only one block can be added to the blockchain

at a time. Each block is mathematically verified (using cryptography) to ensure that it

follows in sequence from the previous block. The verification process is called ”mining”

or Proof of Work [23], which allows network nodes (also called ”miners”) to compete to

have their block be the next one added to the blockchain by solving a computationally

expensive puzzle. The winner then announces the solution to the entire network to gain a

mining reward paid via cryptocurrency. The mining process combines cryptography, game

theory, and incentive engineering to ensure that the network reaches consensus regarding

each block in the blockchain and that no tampering occurs in the transaction history. This

process ensures properties of transparency, immutability, and decentralization (resilient to

a single point of failure due to replicated storage) [198].

In the Bitcoin application, blockchain serves as a public ledger for all cryptocurrency

transactions in bitcoins to promote trustless financial exchanges between individual users,

securing all their interactions with cryptography. The Bitcoin blockchain has limitations,

however, when supporting different types of applications involving contracts, equity, or

other information, such as crowdfunding, identity management, and democratic voting reg-

istry [24]. To address the needs for a more flexible framework, Ethereum was created as

an alternative blockchain, giving users a generalized trustless platform that can run smart

contracts.

The Ethereum blockchain is a distributed state transition system, where state consists

of accounts and state transitions are direct transfers of value and information between ac-

counts. Two types of accounts exist in Ethereum: (1) externally owned accounts (EOAs),

which are controlled via private keys and only store Ethereum’s native value-token ”ether”

and (2) smart contract accounts (SCAs) that are associated with contract code and can be

triggered by transactions or function calls from other contracts [24].

To protect the blockchain from malicious attacks and abuse (such as distributed denial

of service attacks in the network or hostile infinite loops in smart contract code), Ethereum
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also enforces a payment protocol, whereby a fee (in terms of “gas” in the Ethereum lex-

icon) is charged for data storage and each data operation executed in a contract. These

fees are collected by miners who verify, execute, propagate transactions, and then group

transactions into blocks.

As in the Bitcoin network, the mining rewards provide an economic incentive for users

to devote powerful hardware and electricity to the public Ethereum network. In addition,

transactions have a gas limit field to specify the maximum amount of gas that the sender is

willing to pay for. If gas used during transaction execution exceeds this limit, computation

is stopped, but the sender still has to pay for the performed computation. This protocol also

protects senders from completely running out of funds.

5.2.2 Overview of Solidity

Ethereum smart contracts can be built in a Turing-complete programming language,

called Solidity [199]. This contract language is compiled by the Ethereum Virtual Machine

(EVM), which enables the Ethereum blockchain to become a platform for creating DApps

that provide potential solutions to certain healthcare interoperability challenges. Solidity

has an object-oriented flavor and is intended primarily for writing contracts in Ethereum.

A ”class” in Solidity is realized through a ”contract,” which is a prototype of an object

that lives on the blockchain. Just like an object-oriented class can be instantiated into a

concrete object at runtime, a contract may be instantiated into a concrete SCA by a transac-

tion or a function call from another contract. At instantiation, a contract is given a uniquely

identifying address, similar to a reference or pointer in C/C++-like languages, with which

it can then be called.

Contracts may contain persistent state variables that can be used as data storage and

functions that interact with the states. Although one contract can be instantiated into many

SCAs, it should be treated as a singleton to avoid storage overhead. After a contract is

created, its associated SCA address is typically stored at some place (e.g., a configura-

95



tion file or a database) and used as a parameter by an app to access its internal states and

functions [200].

Solidity supports multiple inheritance and polymorphism [201]. When a contract in-

herits from one or more other contracts, a single contract is created by copying all the base

contracts code into the created contract instance. Abstract contracts in Solidity allow func-

tion declaration headers without concrete implementations. They cannot be compiled into

an SCA but can be used as base contracts. Due to Solidity contracts’ similarity to C++/Java

classes, certain software patterns can be directly applied to smart contracts as well, as we

describe in Section 4.

5.3 Related Work

5.3.1 Overview

Although relatively few papers focus on realizing software patterns in blockchains,

some relate to healthcare blockchain solutions and design principles in this space. This

section gives an overview of related research on (1) the challenges of applying blockchain-

based technology in the healthcare space and innovative implementations of blockchain-

based healthcare systems and (2) design principles and recommended practice for blockchain

application implementations.

5.3.1.1 Challenges of healthcare blockchain and proposed solutions.

Azaria et al. [161] proposed MedRec as an innovative, working healthcare blockchain

implementation for handling EHRs, based on principles of existing blockchains and Ethereum

smart contracts. The MedRec system uses database ”Gatekeepers” for accessing a node’s

local database governed by permissions stored on the MedRec blockchain. Peterson et

al. [168] presented a healthcare blockchain with a single centralized source of trust for

sharing patient data, introducing Proof of Interoperability based on conformance to the
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FHIR protocol as a means to ensure network consensus.

5.3.1.2 Prior efforts focused on software design practice for developing blockchain

apps.

Porru et al. [202] highlighted evident challenges in state-of-the-art blockchain-oriented

software development by analyzing open-source software repositories and addressed future

directions for developing blockchain-based software. Their work focused on macro-level

design principles such as improving collaboration, integrating effective testing, and evalua-

tions of adopting the most appropriate software architecture. Bartoletti et al. [203] surveyed

the usage of smart contracts and identified nine common software patterns shared by the

studied contracts, e.g., using ”oracles” to interface between contracts and external services

and creating ”polls” to vote on some question. These patterns summarize the most fre-

quent solutions to handle some repeated scenarios. More recently, a number of attacks

on Ethereum smart contracts have been reported, including the infamous DAO attack [25]

where $50 million worth of Ether was stolen and the critical Parity wallet hack [204] that

incurred in $30 million worth of Ether being exploited. Atzei et al. surveyed existing at-

tacks on Solidity smart contracts with code snippets showing related vulnerabilities [205].

Meanwhile, the blockchain community also compiled a number of software patterns and

anti-patterns targeting Solidity programming around cryptocurrency transactions in order

to maximize the security of Ethereum smart contract design [206].

5.3.2 Gaps in Existing Research

Many research and engineering ideas have been proposed to apply blockchain technol-

ogy in healthcare, and implementation attempts are underway [161, 168, 202, 203]. As

discussed in Section 5.3.1, prior research efforts have provided a number of design rec-

ommendations for implementing Solidity smart contracts involving cryptocurrency trans-

actions. Few published studies, however, have addressed software design considerations
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needed to implement blockchain-based healthcare apps effectively. While it is crucial to

understand the fundamental properties of blockchains and the smart contract programming

language, it is also important to apply them properly so that healthcare-specific challenges

are addressed. Even though a subset of principles from prior work may be relevant to

the healthcare space, a systematic approach to document appropriate design practice that

specifically target technical challenges in healthcare is still essential.

5.4 Healthcare Interoperability Challenges Faced by Blockchain-Based Apps

The US Office of the National Coordination for Health Information Technology (ONC)

has outlined basic technical requirements for achieving interoperability [207]. Based on

these requirements, this section summarizes key interoperability challenges faced by blockchain-

based apps, focusing on four aspects: system evolvability, blockchain storage, information

privacy, and scalability.

5.4.1 Evolvability Challenge: Maintaining Evolvability While Minimizing Integration

Complexity

Many traditionally centralized apps are written with the assumption that data is easy

to change. This assumption does not hold true for blockchain-based apps. Once stored

on-chain, data is difficult to modify en masse. Not only is code manipulating the data is

immutable, but data change history also persists on-chain and can be replayed due to the

nature of blockchain. Healthcare data contains sensitive personal information protected

by law [173], which, if compromised, would create severe legal, financial, and also so-

cial consequences. The vulnerability in smart contract code leading to the infamous DAO

attack [25] must be avoided in a healthcare app.

At the same time, healthcare systems may be subject to updates or upgrades required by

clinical workflow or healthcare regulations. This need for potential system evolution cre-

ates a tension for a blockchain-based design. As such, a critical design consideration when
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building blockchain apps for healthcare is to ensure that the data written into blockchain

via smart contracts are designed to facilitate evolution where mandated.

Although evolution must be supported, healthcare data must often be accessible from a

variety of deployed systems that cannot easily be changed over time. Apps should there-

fore be designed in a way that is loosely coupled and minimizes the usability impact of

evolution on the clients, i.e., user services that interact with data in the blockchain. Sec-

tions 5.5.1, 5.5.3, and 5.5.2 shows how using LAYERED RING, CONTRACT MANAGER,

and GUARDED UPDATE patterns from the pattern sequence, respectively, can help avoid

serious attacks like the DAO [25] and facilitate necessary system evolution, while mini-

mizing the impact on dependent clients, focusing on the separation of concerns between

data and logic and a type of attack called reentrancy, which will be described further in

Section 5.5.2.

5.4.2 On-Chain Storage Challenge: Minimizing Data Storage Requirements on the Blockchain

Healthcare apps can serve thousands to millions of participants, which may incur enor-

mous overhead when large volumes of data are stored in a blockchain–particularly if data

normalization and denormalization techniques are not carefully considered. Considering

storage scalability, not only is it costly to store data, such as the HFQ data we discussed

earlier in Section 1.1, but data modifications and access operations may also fail if/when the

cost of storage or execution exceeds the allowance in a blockchain, e.g., gas limit defined

for the Ethereum blockchain as discussed in Section 5.2.1. An important design consider-

ation for blockchain-based healthcare apps is thus to minimize data storage requirements

in addition to provide sufficient flexibility to manage individual health concerns. Sec-

tions 5.5.4 and 5.5.6 show how to design smart contracts with DATABASE CONNECTOR

and ENTITY REGISTRY patterns from the pattern sequence, respectively, to improve inter-

operability by standardizing interfaces to storage access and maximizes on-chain scalabil-

ity by capturing common intrinsic data sharing across entities while still allowing extrinsic
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data to vary in specific entity contracts.

5.4.3 On-Chain Privacy Challenge: Balancing Data Storage with Privacy Concerns

Blockchains and smart contracts can offer trustless digital health asset sharing, audit

trails of data access, and decentralized and replicated storage, which are essential for im-

proving healthcare interoperability by providing ubiquitous data store. Although there are

substantial potential benefits to the availability of information if data is stored on-chain,

there are also significant risks due to the transparency of blockchain. In particular, even

when encryption is applied to sensitive data on-chain, it is still possible that the current

encryption techniques may be broken in the future [208] or that vulnerabilities in the en-

cryption implementations may later be exploited, rendering private information potentially

decryptable in the future. To protect health information privacy, in Sections 5.5.5 and 5.5.7

we discuss how designing a blockchain-based app using the DATABASE PROXY and TO-

KENIZED EXCHANGE patterns from the pattern sequence, respectively, can facilitate data

sharing while keeping sensitive patient data from being directly encoded in the blockchain.

5.4.4 Scalable Communication Challenge: Tracking Relevant Health Changes Scalably

Across Large Patient Populations

Communication gaps and information sharing challenges are serious impediments to

healthcare innovation and the quality of patient care. Providers, hospitals, insurance com-

panies, and departments within health organizations experience disconnectedness caused

by delayed or lack of information flow. Patients are commonly cared for by various sources,

such as private clinics, regional urgent care centers, and enterprise hospitals. A provider

may have hundreds or more patients whose associated health data must be tracked. Sec-

tion 5.5.8 shows how a blockchain-based app design using the PUBLISHER-SUBSCRIBER

pattern from our pattern sequence can be aid in scalably detecting and communicating rel-

evant health changes.
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5.5 A Key Pattern Sequence for Designing Blockchain-Based Health Apps

This section presents a key pattern sequence for creating blockchain-based health sys-

tem designs that address the major challenges described earlier in Section 5.4. Our re-

search approach that developed this sequence has three folds. First, because the topic of

design patterns focused on using blockchain technology for healthcare has received lim-

ited attention in literature, we had extracted a subset of the patterns using commonality

and variability analysis [32]. Specifically, we obtained a number of verified smart contract

source code from Etherscan.io [33] to capture common portions repeatedly used across

various contracts and/or supporting library contracts, which we codified into patterns of

this sequence, such as LAYERED RING and CONTRACT MANAGER Second, based on our

experience from previous work on researching healthcare data sharing solutions [106, 21]

and our understanding of the healthcare domain and the technical requirements for its sys-

tems [162, 22], we codified the design practice we learned from prior research into sev-

eral patterns in the key sequence, such as DATABASE CONNECTOR and TOKENIZED EX-

CHANGE. Third, given the extensiveness and maturity of existing research on centralized

and distributed software engineering design practice, we have applied, wherever necessary

for a blockchain-based healthcare system, design principles widely accepted to our pat-

tern sequence with blockchain-focused design considerations, such as DATABASE PROXY,

ENTITY REGISTRY, AND PUBLISHER-SUBSCRIBER. Additionally, due to the growing

popularity of Solidity (which is the primary programming language for creating smart con-

tracts) and attacks that have occurred to public smart contracts, the Ethereum community

has captured a number of Solidity code patterns for preventing similar attacks. Although

those code patterns were almost exclusively targeting cryptocurrency or other apps with

financial incentives, we identified one code pattern that would be particularly critical in a

healthcare system, namely, GUARDED UPDATE.

The remainder of this section applies a pattern form variant to motivate and show how

our pattern sequence aids in designing blockchain-based healthcare apps. In particular,
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we present eight software patterns—LAYERED RING, GUARDED UPDATE, CONTRACT

MANAGER, DATABASE CONNECTOR, DATABASE PROXY, ENTITY REGISTRY, TOK-

ENIZED EXCHANGE, and PUBLISHER-SUBSCRIBER [209, 210]. We describe key health-

care challenges that they resolve in the blockchain platform and detail their structure and

composition. 1.

Table 5.1 provides an overview of the pattern sequence, showing how the patterns relate

to healthcare-specific challenges described previously in Section 5.4 and what specific sub-

challenge each pattern aims to solve.

Table 5.1: Overview of Proposed Pattern Sequence for Designing Blockchain-Based
Healthcare Apps

Pattern Targeted Category Specific Challenge to Solve

Layered Ring Evolvability
Defining the data sharing systems base
architecture

Guarded Update Evolvability
Preventing unexpected reentrancy attacks
that occurred in the DAO

Contract Manager Evolvability
Separating data from logic to ensure data
availability via clean separation of concerns

Database Connector On-Chain Storage
Ensuring on-chain storage scalability and
interoperability via standardized and minimal
interfaces to off-chain storage

Database Proxy On-Chain Privacy
Providing an additional layer of security by
performing lightweight tasks before permitting
access to database connectors

Entity Registry On-Chain Storage
Managing healthcare entities on-chain and other
types of common data at scale

Tokenized Exchange On-Chain Privacy
Authorizing access to data storage and
maintaining verifiable access logs

Publisher-Subscriber
Scalable
Communication

Providing user notifications when events of
interest occur across the decentralized network

Each of the patterns in this sequence is discussed in depth below.

1Naturally, there are other patterns relevant in this domain, which can be the focus of future work.
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5.5.1 A Blockchain-Based Architecture for Health Data Sharing Systems

Design problem faced by blockchain-based apps. Healthcare data, as we saw earlier

in Chapter 1 (Section 1.2), exists in siloed data warehouses across different healthcare or-

ganizations, private practices, and, more recently, mobile health app providers [211, 21].

Despite the adoption of certified EHRs or other data exchange solutions that can provide

direct data exchange between providers within the same network (e.g., using an EHR sys-

tem provided by the same vendor), impediments for healthcare providers and researchers

to access those heterogeneous data silos still exist.

Solution → Apply the LAYERED RING pattern to define the base architecture of

the health data sharing system. The emerging blockchain technology that supports de-

centralized data storage and executable code via smart contracts, with Ethereum [24] be-

ing the most popular, has presented itself as a potential infrastructure to connect existing

healthcare data silos [165, 212, 213] with its success in maintaining tamper-proof cryp-

tocurrency transactions between worldwide Internet users [23, 214] and managing verifi-

able collectibles or rewards from cryptogaming like CryptoKitties [215].

At the architectural level, the healthcare data sharing problem is not too different from

those successful use cases of blockchain. Figure 5.2 compares the high-level architecture of

data sharing in healthcare with that of blockchain-based cryptocurrency exchange and cryp-

togaming. In this figure, the bottom level in both architectures 1 and 2 contains a number

of heterogeneously represented objects, i.e., siloed healthcare data sources in Architecture

1 and geographically dispersed Internet users in Architecture 2. Data sources generated by

healthcare professionals via from diverse, centralized EHR systems on the left may or may

not inter-operate, depending on if an authorized exchange service is available between the

data sources. Whereas on the right, data (like identifiers of users/gamers) and data requests

flow into and out of the same service implemented on the blockchain that is decentralized

and widely accessible, with or without a user interface.

Consequently, a blockchain-based healthcare data sharing can apply the same basic
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pattern of Architecture 2 in Figure 5.2, except that a user interface is needed for normal

healthcare users who typically do not have advanced knowledge about how to execute smart

contract functions. In fact, most blockchain apps, such as CryptoKitties (a cryptogame for

collecting and breeding digial cats) [215], Fomo3D (a gambling game for winning cryp-

tocurrency lotteries) [216], and IDEX (a cryptocurrency trading platform) [217], implement

a user-friendly interface that encapsulates the blockchain component, providing users with

familiar experience as if interacting with any other centralized web app.

Figure 5.2: Comparing the Current State of Traditionally Centralized Healthcare Architec-
ture with that of Popular Blockchain-Based Use Cases

In Figure 5.3 we present the first pattern in the sequence, LAYERED RING, generalized

from Architecture 2 above with a bird’s eye view to better illustrate the scale of involved

entities in each layer. The outermost layer is a Storage Layer, which contains a large

number of data sources, each maintained by its owner (e.g., a private practitioner or a

healthcare organization). The middle Blockchain Layer connects data sources from the

outer layer and would be maintained by key stakeholders or mid- to large-size healthcare

organizations in a consortium environment. The innermost Web App Layer provides a

convenient interface for interacting with data and operations defined in the blockchain. It

is also the most centralized piece of the system because a web app is usually hosted in a

centralized server. Nevertheless, with a careful design of the web app server, this layer
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would not introduce additional dependency to the rest of the system and thus maximize the

separation of concerns across the overall system.

Figure 5.3: Structure of the LAYERED RING Pattern that Defines the Base Architecture of
the Data Sharing System

After defining the base-line architecture for a blockchain-based data sharing system,

we will present other patterns in the sequence applied in each layer to address healthcare-

specific challenges described previously in Section 5.4. The resulting app provides a fun-

damental reference architecture for a health data sharing system, as well as other types of

systems within the healthcare domain or other domains where similar design requirements

apply.

5.5.2 Preventing Reentrancy Attack in the Blockchain

Design problem faced by blockchain-based apps. Despite the growing interest in

using blockchain technology for healthcare, a lot of recent attacks on some of the major

blockchain-based apps have raised security concerns regarding the use of this technology

in especially the healthcare industry that requires compliance to strict security and privacy
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regulations. An infamous example of such attacks is the DAO attack [25] in which a reen-

trancy bug was discovered and exploited that causes then worth $30 million of Ethereum

being stolen. Even though the immutability and decentralization properties of blockchain

technology can provide tremendous value to the direct exchange of digital information,

without proper design decisions made prior to deploying a system on-chain could yield

destructive consequences.

Solution → Apply the GUARDED UPDATED pattern to prevent unexpected reen-

trancy attacks. We deem attack prevention as the utmost important design consideration

in the development cycle of a blockchain-based healthcare system and therefore introduce

GUARDED UPDATED as the second pattern in our pattern sequence after defining a base

layer with the LAYERED RING. The goal of this pattern is to provide software engineers

with a pattern that prevents the serious reentrancy bug early on during the development

cycle in order to help design the rest of the system wherever this pattern may apply.

Figure 5.4: Example Vulnerable Solidity Code of the Simplified Reentrancy Bug and its
Exploitation
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A simplified reentrancy bug that affected the DAO app appears in the code snippet

shown in Figure 5.4. Function withdraw in the VulnerableContract sets the caller’s balance

after checking if the asset transfer to the caller (msg.sender) is successful. The attack in

ExploitVulnerableContract exploits this vulnerability by calling the withdraw function in a

fallback function that is executed by the call.value method, creating recursions that bypass

the statement on line that sets the user balance supposedly after the vulnerable statement

returns [206].

Although the reentrancy bug primarily targets cryptocurrencies in the interest of gain-

ing financial returns, this bug could also plague systems designs for healthcare functions

if prevention is not implemented in advance. As a key pattern in the sequence, GUARDED

UPDATE aims to prevent reentrancy attack by ensuring atomic update to critical data in

the blockchain-based healthcare system. The structure and code examples of this pattern

appears in Figure 5.52. As shown in the figure, a boolean guarding condition (i.e., reen-

trancyMutex) is used to control operations on protected state variable(s) (i.e., conditions).

Once the variable(s) has been modified, the guarding condition can be reset to the initial

state to permit other memory contexts to act upon the guarded data. Another, more system-

atic way to achieve this is to create a modifier in a Solidity interface contract, which can

then be included in the declaration header of functions in other contracts.

Protecting atomic updates to state variables in the smart contracts prevents serious reen-

trancy attacks to occur, however, one major drawback is that atomic executions may slow

down runtime performance of the system, particularly in a decentralized environment.

5.5.3 Separating Data from Logic to Ensure Data Availability via a Manager Contract

Design problem faced by blockchain-based apps. The immutability property of

blockchains can ensure non-repudiation of data operations and/or transactions of data but

can also become a major hurdle to data flow. On the one hand, immutability is important for

2The code examples are based on https://github.com/o0ragman0o/ReentryProtected
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Figure 5.5: Structure and Example Solidity Code Snippet of GUARDED UPDATE Pattern
to Prevent Reentrancy Attacks on-Chain

achieving interoperability in a healthcare environment as it makes data objects (whether it

is a reference pointer to a data store or an authorization request that grants a provider access

to healthcare data) on the blockchain always available, even when one of the key maintain-

ers of the network becomes unavailable. On the other hand, without a loosely-coupled

design that focuses on clean separation of data and logic, immutability makes any upgrade

to a blockchain-based health system hard to perform. Data, in such a system, does not only

include information being exchanged across various network participants but also needs to

contain meta data regarding the system that provides users with the most up-to-date knowl-

edge regarding the system; whereas, logic refers to any operation or event that acts upon

the data, typically implemented to read, update, or remove a data object.

Solution→Apply the CONTRACT MANAGER to separate data from logic to ensure

data availability via clean separation of concerns . The CONTRACT MANAGER pattern

aims to address the separation of data and logic via a permanent storage structure, which
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has been captured in [206]. Figure 5.6 presents the composition of this pattern.

Figure 5.6: Structure and Example Solidity Code of CONTRACT MANAGER Pattern for
Maintaining Key Meta-Data on-Chain

Permanent storage maintains one or more data fields used throughout the system and

provides permanent access to data with getter and setter functions for each one of the data

fields. This ensures that all data used by the system remains readable even when logic

contracts are outdated. Additionally, contract manager stores a Contract Repository of

meta data that describes versions of the system (including but is not limited to addresses

of the latest logic contract components and history contract addresses). To better ensure

upgradeability of the system, CONTRACT MANAGER also defines access privilege of smart

contracts by allowing the original owner of the storage contract to configure an access group

for delegating or revoking certain or all rights of accessing or manipulating the data to other

members to prevent data locking.
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One disadvantage to the introduction of CONTRACT MANAGER is that all other logic

contracts must execute additional calls to this contract for versioning checks and data

queries.

5.5.4 Standardized On-Chain Interfaces to Off-Chain Storage Access

Design problem faced by blockchain-based apps. EHR systems have served the U.S.

healthcare for decades and, unavoidably, have accumulated enormous amounts of valu-

able medical records that either exist in legacy systems or in more modern certified EHRs.

Health data sharing today is only possible between healthcare professionals using the same

EHR systems or compatible health information exchange services, which are exactly the

third-party reliance that blockchain technology helps eliminate with its decentralized, trust-

less infrastructure. The direct exchange of digital information on the blockchain is only

possible if such information or its representation is encoded on the blockchain with some

degree of verifiable integrity. Due to the scale and privacy of healthcare data, it is unrealis-

tic to store encrypted or hashed version of the actual data on the blockchain. Furthermore,

it is impractical to create a blockchain-based system that completely replaces existing EHR

systems or duplicates their functionality. The design of a scalable and standardized compo-

nent that connects existing EHR data to a decentralized system offering interoperable data

sharing is therefore needed.

Solution→Apply the DATABASE CONNECTOR pattern to ensure on-chain storage

scalability and interoperability via standardized and minimal interfaces to off-chain

storage. Figure 5.7 presents the composition of the DATABASE CONNECTOR pattern. The

Database Connector component defines a standardized interface between the blockchain

and storage layers. The interface provides an abstraction of the heterogeneous health data

silos (e.g., EHR or other LFQ databases and HFQ data) to expose only minimal amount of

information regarding each data source to the blockchain layer. As shown in Figure 5.7, the

interface may only need to capture the name or description of a data source, some ”meta
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data” providing reference pointers to the data source, and a verifiable digital signature of

the data source owner that provides some level of integrity. Database Connector is also

closely associated with the DATABASE PROXY pattern (discussed next in Section 5.5.5)

that uses a Connector Handler component in the blockchain layer to provide data access to

the connector.

Figure 5.7: Structure of the DATABASE CONNECTOR Pattern Used to Standardize on-
Chain Interfaces to off-Chain Storage Access

The main benefits of DATABASE CONNECTOR are (1) the storage scalability it provides

on the blockchain that allows efficient sharing of connectors and (2) a standardized inter-

face that unifies the on-chain representation of off-chain databases. The drawback is the

additional implementations that are required for creating connectors to existing databases.

5.5.5 Sanity Checking before Accessing Off-Chain Storage

Design problem faced by blockchain-based apps. If a blockchain-based healthcare

app must expose sensitive data or metadata (such as patient identifying information) on the

blockchain, it must be designed to maximize health data privacy while facilitating health

information exchange. In particular, a fundamental aspect of a blockchain is that data and
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all change history stored on-chain are public, immutable, and verifiable. For financial trans-

actions focused on proving that transfer of an asset occurred, these properties are critical.

When the goal is to store data in the blockchain, however, it is important to understand how

these properties will impact the use case.

For example, storing patient data in the blockchain can be problematic since it requires

that data be public and immutable. Although data can be encrypted before being stored,

should all patient data be publicly distributed to all blockchain nodes? Even if encryption is

used, the encryption technique may be broken in the future or defects in the implementation

of the encryption algorithms or protocols used may make the data decryptable in the future.

Immutability, on the other hand, prevents owners of the data from removing the data change

history from the blockchain if a security flaw is found. Many other scenarios, ranging from

discovery of medical mistakes in the data to changing data standards may necessitate the

need to change the data over time.

In scenarios where the data may need to be changed, the public and immutable nature

of the blockchain creates a fundamental tension that must be resolved. On the one hand,

healthcare providers would like incorruptible data so its integrity is preserved. At the same

time, providers want the data changeable and secure to protect patient privacy and account

for possible errors. An interoperable app should protect patient privacy and also ensure

data integrity.

Solution→ Apply the DATABASE PROXY pattern to provide an additional layer of

security by performing lightweight tasks before permitting access to database connec-

tors. DATABASE PROXY is akin to the traditional PROXY pattern [209] with a slightly dif-

ferent focus unique to a blockchain-based design. To reduce computational costs on-chain,

the Database Proxy interface defines some lightweight representation or placeholder for

the real data object and encodes some lightweight security checks or auditing tasks until

retrieval of the original data object is required.

Figure 5.8 illustrates the structure of DATABASE PROXY pattern and its interaction with
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the Database Connector object described previously in Section 5.5.4.

Figure 5.8: Composition of DATABASE PROXY Pattern for Performing Additional Security
Checks before Accessing off-Chain Data Store

The Database Proxy interface maintains a reference to a Connector Handler object

that forwards the read and write access to the appropriate Database Connector for access

databases in the storage layer of the system. Each read request and modification operation

through the Connector Handler can be logged in an immutable audit trail that is transparent

to the entire blockchain network for verification against data corruption. In the case of a

proxified contract (i.e., Database Connector that has somewhat heavyweight implementa-

tion) being updated with a new storage configuration (e.g., when a data source has been

introduced a new management system that requires some change in its Database Connec-

tor abstraction), the interface to the proxy contract can remain unchanged, encapsulating

lower-level implementation variations.

As with the traditional PROXY pattern [209], a proxy object can perform lightweight

housekeeping operations, such as security checks of administrative access and auditing
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tasks that log existing data requests, by storing some commonly used metadata in its in-

ternal states before retrieving the actual data. This component follows the same interface

as the real object and can execute the original data object’s function implementations as

needed. It provides an additional layer for securing access to the real data object. However,

Database Proxy may cause disparate behavior when the real object is accessed directly by

some other component in the system while the proxy surrogate is accessed by others. It

also creates an additional level of indirection for accessing actual data objects.

5.5.6 Managing Healthcare Entities and Other Types of Common Data on-Chain at Scale

Design problem faced by blockchain-based apps. All data and transaction records

maintained in the blockchain are replicated and distributed to every node in the network. In

a public blockchain, to compensate blockchain miners for contributing expensive hardware

to store and maintain on-chain data, fees are charged based on the storage requirement

of an application. Although a fee is not necessarily charged in a consortium blockchain

with like-minded parties, other forms of compensation may exist to provide some incen-

tives for the decentralized network maintainers. To minimize on-chain storage burden, a

blockchain-based healthcare app that requires storage of some data on-chain must maxi-

mize data sharing among entities thus limit the amount of information stored.

In a large-scale healthcare setting, if a blockchain is used to store patient billing data,

there will be millions of records replicated on all blockchain miner nodes. Moreover, billing

data could include detailed patient insurance information, such as their ID#, insurance

contact information, coverage details, and other aspects that the provider needs to bill for

services. Capturing all this information for every patient can generate excessive amounts

of data in the blockchain.

Suppose it is necessary to store a patient’s insurance and billing information (encrypted)

in the blockchain. Most patients are covered by one of a relatively small subset of insur-

ers (in comparison to the total number of patients, e.g., each insurance policy may cover
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10,000s or 100,000s of patients). Therefore, a substantial amount of intrinsic, non-varying

information is common across patients that can be reused and shared, such as details on

what procedures are covered by an insurance policy. To bill for a service, however, this

common intrinsic information must be combined with extrinsic information (such as the

patient’s ID#) that is specific to each patient.

A good design should maximize sharing of such common data to reduce on-chain stor-

age cost and meanwhile have the capability to provide complete data objects on demand.

Solution → Apply the ENTITY REGISTRY pattern for managing healthcare en-

tities on-chain at scale. As shown in Figure 5.9, the ENTITY REGISTRY mimics the

traditional FLYWEIGHT pattern [209] with a factory [30] object to help manage healthcare

entities on-chain at scale. In particular, getEntity uses a factory to create entity objects and

maintain references (addresses) to created Entity objects in a common smart contract (i.e.,

Entity Registry). It internalizes common data across a number of Entity’s data field while

externalizing varying data storage in entity-specific contracts (such as Patient or Provider

entity). Using references (i.e., addresses) to entity-specific contracts stored in the registry,

combined extrinsic and intrinsic data can be retrieved upon request to return a complete

dataset.

Applying this pattern to the earlier scenario, shared patient insurance information is

stored only once in the registry, avoiding an exorbitant amount of memory usage from

saving repeated data in all patient accounts. Varying, patient-specific billing information is

stored in corresponding patient-specific entity contracts.

The registry can also maintain a mapping between unique entity identifiers and the

referencing addresses of already deployed entity contracts to prevent account duplication.

At account creation, only if no account with the specified entity identifier exists in the

registry does it deploy a new entity contract; otherwise the registry retrieves the address

associated with the existing entity contract. To retrieve complete insurance and billing

information of a particular patient, clients need only invoke a function call from the registry
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Figure 5.9: ENTITY REGISTRY Pattern Used with a Factory to Manage Entities and Other
Types of Common Data while Minimizing on-Chain Storage Requirements

with the patient identifier to obtain the combined intrinsic and extrinsic data object.

ENTITY REGISTRY provides better management for the large pool of objects (such

as user accounts in the example above). It minimizes redundancy in similar objects by

maximizing data and operation sharing. Particularly in the insurance example, if common

insurance policy details are not extracted from each patient’s contract, the cost to change

a policy detail will be immense–it will require rewriting a huge number of impacted con-

tracts. Data sharing with flyweight registry helps minimize the cost to change the common

state in objects stored on-chain.

Although applying the ENTITY REGISTRY pattern creates an additional transaction to

verify and include in the blockchain (i.e., the flyweight object instantiation) before it can

be used, this extra step can be outweighed by the resulted efficiency in data management.
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5.5.7 Securing and Recording Data Access

Design problem faced by blockchain-based apps. Smart contracts are powerful for

automating executions of predefined agreements directly between involved entities espe-

cially when the entities are registered on the blockchain using its native cryptographic keys

and agreed terms are simple updates to cryptocurrency wallets/balances that are easy to

update. The direct exchange of healthcare data unfortunately cannot easily be achieved

on-chain due to the complexity and variability in the warehouses and management systems

data resides in. Even when data sharing is made possible in such a decentralized environ-

ment, the shared information should not be available to the entire network, unlike an app

that involves cryptocurrency. Instead, proper authorizations of sensitive health data access

must be safeguarded.

Solution→ Apply the TOKENIZED EXCHANGE pattern to authorize access to off-

chain data storage and maintain a verifiable data access history. Variability of off-chain

data sources can be encapsulated with a standardized interface that encodes a set of at-

tributes describing the sources and some basic operations acting upon them (i.e., functions

to retrieve the original data source and verify the digital signature to ensure data is orig-

inated from the expected sender.). Figure 5.5.7 presents the structure of the TOKENIZED

EXCHANGE pattern in the sequence that defines a Token interface off-chain to represent

each data source in a more consistent manner. With this interface, the Database Con-

nector Object from the DATABASE CONNECTOR pattern discussed in Section 5.5.4 that

references an off-chain data source can be ”tokenized” off-chain with access authoriza-

tions being encoded to a standard format using secure encryption and signing algorithms.

Types of algorithms employed along with public keys used to generate the tokens are cap-

tured by the attributes defined in the interface. Tokens generated are then stored on-chain

in a shared Token Registry smart contract. Token Registry builds an audit trail of the cre-

ation, update, deletion, and access requests to each of the tokens. To retrieve the Database

Connector Object, the recipient must possess the authorized party’s secret key in order to
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decrypt and retrieve the original data source via the DATABASE PROXY pattern presented

in Section 5.5.5.

Figure 5.10: Structure of TOKENIZED EXCHANGE Pattern for Authorizing off-Chain Data
Access and Recording Verifiable Data Access Logs

This approach ensure that even when tokens carrying actual information of a particular

data source are shared with a wide network, they can only be consumed by the intended

recipient(s) with proper cryptographically paired keys. One drawback to this pattern is that

there could be tokens that are not generalizable, in which case, implementations of other

interfaces may be required.

5.5.8 Providing Notifications of Relevant Healthcare Activities at Scale

Design problem faced by blockchain-based apps. A blockchain-based healthcare

system that needs to track relevant health changes across large patient populations must

be designed to filter out useful health-related information from communication traffic (i.e.
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transaction records) in the blockchain. For example, the Ethereum blockchain maintains an

immutable record of contract creations and operation executions along with regular cryp-

tocurrency transactions. The availability of this information makes blockchain a more au-

tonomous approach to improve the coordination of patient care across different participants

(e.g., physicians, pharmacists, insurance agents, etc) who would normally communicate

through various channels with a lot of manual effort, such as through telephoning or fax-

ing. Due to the continually growing list of records on the blockchain, however, directly

capturing any specific health-related topic from occurred events implies exhaustive trans-

action receipt lookups and topic filtering, which requires non-trivial computation and may

result in delayed responses.

A good model should facilitate coordinated care and support relevant health information

relays. For instance, health-related activities should be seamless communicated from the

point when a patient self-reports illness (through a health DApp interface) to the point

when they receive prescriptions created by their primary care provider; clinical reports and

follow-up procedure should be relayed to and from the associated care provider offices in

a timely manner.

Solution → Apply the Publisher-Subscriber pattern to manage user notifications

at scale when events of interest occur across the decentralized network. Incorporat-

ing a notification service using the Publisher-Subscriber pattern [210] can facilitate scal-

able information filtering. In this design, changes in health activities are only broadcast to

providers that subscribe to events relating to their patients. It alleviates tedious filtering of

which care provider should be notified about patient activities as large volumes of transac-

tions take place. It also helps maintain an interoperable environment that allows providers

across various organizations to participate.

Due to the deterministic nature of blockchain that supports smart contracts, communi-

cations between the on-chain address space and off-chain services can only occur in two

ways. The first way is a regular or constant poll, in which an off-chain server delegates
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a Messenger component to monitor changes and new events in the system. The second

way pushes data out to an Oracle service, which is a trusted third-party that performs some

computation off-chain and then forwards the results back to the blockchain address space

via a callback function3, such as in [218]. An Oracle service often charges a fee associ-

ated with its service provided to the blockchain and at its current stage today, it is not yet

ideal for supporting large and sensitive data operations that are commonly experienced in

a healthcare system.

The first variant avoids computation overhead on the blockchain because an off-chain

server is responsible for querying and processing health events recorded on-chain. Specif-

ically, when the publisher sends an update, its subscribers only need to do a simple update

to an internal state variable that records the publisher’s address, which the DApp server

delegates a Messenger to actively monitor changes. When a change occurs, the responsi-

bility for the heavy computational content filtering task (e.g., retrieving the change activity

from the publisher using the address) is delegated to the DApp server from the blockchain.

The DApp server is context-aware at this point because each subscriber has an associated

contract address accessible by the server. The Messenger can then filter the content based

on subscribed topics and update the contract states of appropriate subscribers as needed.

The second variant shifts the responsibility of topic subscriptions and updates to the

smart contract component on-chain. When a topic, such as a patient their provider wishes

to be notified of any health-related activities, experiences a new event or has a value update,

the smart contract logic that notifies the subscribers pushes the updated topic to an Oracle

service, which executes some task related to the topic (e.g., sending a secure message to

the subscriber regarding the updated event) and sends the result back to the smart contract

caller upon task completion.

Figure 5.11 shows the two variants of PUBLISHER-SUBSCRIBER to provide the notifi-

cation service.
3https://blockchainhub.net/blockchain-oracles/
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Figure 5.11: Two Variants of the PUBLISHER-SUBSCRIBER Pattern for Providing Clinical
Notifications of Relevant Healthcare Activities at Scale

Implementing a notification service in a blockchain-based healthcare app is useful when

a state change in the shared environment must be reported to interested parties without

unmanaged many-to-many communications. The disadvantage to the ”poll” approach is the

complexity in actual implementation of the messenger component that regularly monitors

smart contract events, but it is much more efficient to unload the on-chain burden of topic

filtering to off-chain services. The drawbacks to the ”push-to-oracle” approach are on-

chain computation overhead and potential costs of Oracle services despite this approach

being relatively easier to implement.
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5.6 Conclusion

Blockchain and its programmable smart contracts provide a platform for creating de-

centralized apps that have the potential to improve healthcare interoperability. Leveraging

this platform in a decentralized and transparent manner, however, requires that key design

concerns be addressed. These concerns include—but are not limited to—system evolv-

ability, storage requirements minimization, patient data privacy protection, and application

scalability across large number of users. This chapter described these concerns and pre-

sented a key pattern sequence–LAYERED RING, GUARDED UPDATE, CONTRACT MAN-

AGER, DATABASE CONNECTOR, DATABASE PROXY, ENTITY REGISTRY, TOKENIZED

EXCHANGE, and PUBLISHER-SUBSCRIBER–that is designed to address these challenges.

Based on our experience developing the key pattern sequence, we learned the following

lessons:

• The public, immutable, and verifiable properties of the blockchain enable a more

interoperable environment that is not easily achieved using traditional approaches,

which mostly rely on a centralized server or data storage.

• Each time a smart contract is modified, a new contract object is created on the

blockchain. Important design decisions must therefore be made in advance to avoid

the cost and storage overhead from contract interface change.

• To best leverage these properties of blockchain in the healthcare context, concerns

regarding system evolvability, storage costs, sensitive information privacy, and appli-

cation scalability must be taken into account.

• Combining time-proven design practices with domain-knowledge that focus on better

leveraging properties of blockchain technology enables the creation of systems that

are more modular, easier to integrate and maintain, and less susceptible to change.
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Chapter 6

CONCLUDING REMARKS

6.1 Summary of Key Research Contributions

The design and applications of a learned filtering architecture (LFA) for extracting

scalable insights from high-frequency, low-fidelity healthcare data:

• Proposed the generalized learned filter architecture based on advanced data science

methods.

• Described the application of LFA in a case study focused on understanding the self-

management behavior of adolescents with type 1 diabetes using novel data collected

via the ecological momentary assessment methods.

• Showed that the LFA can help understand key psychosocial factors impacting self-

management behavior in adolescents and at the same time, reduce the scale of EMA

data collection.

• Demonstrated the potential value of EMA data in improving clinical decision-making

and just-in-time patient support with positive results from the pilot study.

• Presented the application of LFA in the case study of hand hygiene compliance moni-

toring to characterize hand hygiene behavior in healthcare workers and move towards

an intelligent compliance monitoring process.

• Detailed the process of data acquisition, data preprocessing, experiment setup, and

posing then validating hypotheses regarding the hand hygiene compliance data lever-

aging the LFA.

• Proposed a hand hygiene compliance monitoring app (called ”HyPo”), based on in-

sights learned from the empirical studies, as a service to alleviate the manual moni-
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toring effort, reduce errors, and complement the compliance advocacy within a health

organization.

The design of FHIRChain, a decentralized architecture enabling the secure and scal-

able sharing of healthcare data to improve collaborative clinical decision support us-

ing blockchain technology and the FHIR data standards:

• Provided an in-depth analysis of key ONC technical requirements and their implica-

tions for blockchain-based health IT systems

• Detailed the technical components of FHIRChain, a blockchain-based architecture

designed to meet ONC requirements by encapsulating the HL7 FHIR standard for

clinical data exchange

• Described a FHIRChain-based decentralized app using digital health identities to

authenticate participants for a case study of collaborative decision making in a remote

tumor board

• Demonstrated the potential of blockchain to foster effective healthcare data sharing

while maintaining the security of original data sources

Well-documented software engineering practice via blockchain-focused design pat-

terns and anti patterns to guide software developers in their design and implementa-

tion of evolvable and secure health IT systems:

• Presented and analyzed limitations of using naive blockchain solutions for health-

care.

• Demonstrated an end-to-end case study of a blockchain-based health IT system pro-

totype as a motivating example before applying the software patterns we recommend.

• Provided detailed documentation of design patterns targeting blockchain-based health-

care apps.
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• Illustrated how our proposed software patterns can help design blockchain-based

apps to address specific challenges targeting healthcare and to avoid breaches to sen-

sitive health data, using the same case study.

6.2 Future Work

6.2.1 Towards precision behavior medicine for adolescents with type 1 diabetes

Applying the learned filtering architecture to the pilot study of this research, we demon-

strated the potential value of novel psychosocial data (collected via the MyDay mobile app)

in understanding self-management behavior of adolescents with type 1 diabetes. As future

work, these results can be extended to help enhance the MyDay system’s ability to uti-

lize unobtrusive indicators as much as possible. For example, experimental unobtrusive

indicators of mealtimes are in development and if successful would greatly enhance our

methodological approach [219]. In addition, the LFA machine learning methods employed

in this research should be applied to a large diverse sample of patients to confirm and ex-

pand results reported in this chapter.

6.2.2 Towards autonomous monitoring of hand hygiene compliance in healthcare facili-

ties

With the application of LFA, we were able to preliminarily characterize the hand hy-

giene behavior of healthcare workers. To expand upon these results, more compliance data

should be collected, ideally, using the same process as detailed in Chapter 3. Additional

data can be fed into the LFA to fine tune the parameters and also filter thresholds for vari-

ous ML classifiers to increase classification accuracy and potentially further reduce the data

size. Simulations of the HyPo app in other clinical environment(s) can also help observe

compliance improvement rate and validate whether the improvement can be sustained over

time in a range of caregiving settings.
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6.2.3 Comparative analysis of FHIRChain implemented with different blockchain con-

figurations

In our research, the initial FHIRChain prototype is implemented in the Ethereum blockchain,

which is designed for apps and services open to the public. The limitation with the cur-

rent version of the Ethereum blockchain for a healthcare system is transaction speed due

to its underlying consensus mechanism (i.e., Proof of Work) employed. In future work,

simulations can be refined to evaluate and compare the performance of FHIRChain design

implemented under a wide range of blockchain configurations beyond Ethereum. These

simulations can be easily deployed to a testbed environment. For example, Amazon Web

Services [220] may be used for such deployments following the blockchain template it

provides.

6.2.4 More generalized and robust blockchain-focused software patterns for healthcare

systems

The blockchain technology is still at its early stage with enhancements and new smart

contract programmable features being introduced constantly. Despite new changes in de-

signing blockchain-based apps, the fundamental property of a truly decentralized blockchain

will remain, which means newer vulnerabilities may surface. Although the software pat-

terns we proposed would theoretically be applicable to any blockchain infrastructure, we

focused our discussions of the recommendations around the Ethereum implementation.

One direction of future work may therefore be extracting more generalized patterns from

ones proposed in this research to provide principles that are agnostic to specific blockchain

infrastructure(s). Another future research direction is to evaluate the efficacy of applying

these software patterns (e.g., via performance metrics related to time and cost of computa-

tions or assessment metrics related to its feasibility) compared to other alternative designs

(such as designs without using software patterns). Finally, generalized software patterns
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for creating healthcare-specific blockchains may also be worth investigating.

6.3 Summary of Publications

• Journal and Book Chapter Publications:

1. Peng Zhang, Jules White, Douglas C. Schmidt, Gunther Lenz, S. Trent Rosen-

bloom, FHIRChain: Applying Blockchain to Securely and Scalably Share Clin-

ical Data, submitted to the Elsevier Computational and Structural Biotechnol-

ogy Journal – Blockchain and Distributed Ledger Technologies in Biology,

Medicine, and eHealth Special Issue, 2018 (to appear) [21].

2. Peng Zhang, Douglas C. Schmidt, Jules White, and Gunther Lenz, Blockchain

Technology Use Cases in Healthcare, Blockchain Technology: Platforms, Tools,

and Use Cases, edited by Ganesh Deka, 2018 [22].

3. Peng Zhang, Breck Stodghill, Cory Pitt, Cavan Briody, Douglas C. Schmidt,

Jules White, Alan Pitt, and Kelly Aldrich, OpTrak: Tracking Opioid Prescrip-

tions via Distributed Ledger Technology, submitted to the International Jour-

nal of Information Systems and Social Change (IJISSC), Special Issue On:

Blockchain Technology: Platforms, Tools, and Use Cases, IGI Global, 2018

(to appear) [29].

• Conference Publications:

1. Zhongwei Teng, Peng Zhang, Xiao Li, William Nock, Marcelino Rodriguez-

Cancio, Denis Gilmore, Jules White, Douglas C. Schmidt, and Jonathan C. Nes-

bitt, Authentication and Usability in mHealth Apps, 2018 IEEE International

Conference on E-health Networking, Application & Services (Healthcom), 17-

20 September 2018, Ostrava, Czech Republic (to appear) [221].

2. Peng Zhang, Douglas C. Schmidt, Jules White, and Shelagh A. Mulvaney,
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Towards Precision Behavioral Medicine with IoT: Iterative Design and Opti-

mization of a Self-Management Tool for Type 1 Diabetes, proceedings of the

2018 IEEE International Conference on Healthcare Informatics (ICHI 2018),

New York, NY, USA, June 4-7, 2018 [70].

3. Peng Zhang, Douglas C. Schmidt, Jules White, Gunther Lenz, and Mike Walker,

Metrics for Assessing Blockchain-based Healthcare Decentralized Apps, Pro-

ceedings of the IEEE Healthcom 2017, October 12-15, 2017, Dalian, China [162].

4. Peng Zhang, Jules White, Douglas C. Schmidt, and Gunther Lenz, Design of

Blockchain-Based Apps Using Familiar Software Patterns to Address Interop-

erability Challenges in Healthcare, the 24th Pattern Languages of Programming

conference, October 22-25, 2017, Vancouver, Canada [106].

5. Fangzhou Sun, Peng Zhang, Jules White, Douglas C. Schmidt, Jacob Staples,

and Lee Krause, A Feasibility Study of Autonomically Detecting In-process

Cyber-Attacks, Proceedings of the 3rd IEEE International Conference on Cy-

bernetics (CYBCONF-2017), Special Session on Cyber Security [222].

6. Peng Zhang, Jules White, Douglas C. Schmidt, and Tom Dennis, Discus-

sions of a Preliminary Hand Hygiene Compliance Monitoring Application-as-

a-Service, 10th International Conference on Health Informatics - HEALTHINF

2017, 21 - 23 February, 2017, Porto, Portugal [105].

7. Peng Zhang, Jules White, Douglas C. Schmidt, and Tom Dennis, Applying

Machine Learning Methods to Predict Hand Hygiene Compliance Character-

istics, Proceedings of the Biomedical and Health Informatics Conference, Or-

lando, Florida, February 16-19, 2017 [111].

8. Peng Zhang, Sandeep Neema, and Ted Bapty, A Study of Collaborative Efforts

and Proposed Visualizations in Domain-Specific Modeling Environment, 8th

International Conference on Cyber-Enabled Distributed Computing and Knowl-
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edge Discovery, Chengdu, China, October 13-15, 2016 [223]

9. Peng Zhang, Jules White, and Douglas C. Schmidt, HoliCoW: Automatically

Breaking Team-based Software Projects to Motivate Student Testing, Proceed-

ings to the Software Engineering Education and Training track at the 38th

International Conference on Software Engineering Austin, TX, May 14 - 22,

2016 [224]

10. Peng Zhang, Z. Lattmann, J. Klingler, S. Neema, and T. Bapty, Visualization

Techniques in Collaborative Domain-Specific Modeling Environment, Proceed-

ings of SoutheastCon in Fort Lauderdale, FL, 9-12 April 2015 [225]

• Doctoral Consortium and Poster Publications:

1. Peng Zhang, Jules White, Douglas C. Schmidt, Architectures and Patterns for

Leveraging High-Frequency Low-Fidelity Data in Healthcare, Doctoral Con-

sortium: Proceedings of the Sixth IEEE International Conference on Healthcare

Informatics (ICHI 2018), New York, NY, USA, June 4-7, 2018 (Long talk) [12].

2. Peng Zhang, Douglas C. Schmidt, Jules White, and Shelagh A. Mulvaney,

Machine Learning Techniques Predict Diabetes Self-Care Behaviors in Ado-

lescents: Precision Behavioral Medicine, Vanderbilt Diabetes Day Thursday,

November 16, 2017.

3. Peng Zhang, Jules White, Tom Dennis, Preliminary Experiment with Using

Deep Learning to Characterize Hand Hygiene Compliance, Invited to Present

at Stanford Medicine X 2017 Research Track Poster Session, Palo Alto, Cali-

fornia, September 15-17, 2017

4. Peng Zhang, Jules White, Ted Bapty, Tom Dennis, Logan Buchanan, Jeff Kim-

ble, and Priscilla Knolle, An Initial Feasibility Study on Algorithmically Influ-

encing Hand Washing Behavior by Characterizing Hand Hygiene Compliance

Related Data, Poster session presented at the Tennessee Emerging Infections
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Program 17th Annual Scientific Presentation Day, Nashville, TN, USA, Octo-

ber 6, 2016.
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[134] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selec-

tion. Journal of machine learning research, 3(Mar):1157–1182, 2003.

148



[135] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial

Intelligence, 97(1-2):273–324, 1997. Special issue on relevance.

[136] George H. John and Pat Langley. Estimating continuous distributions in bayesian

classifiers. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages

338–345, San Mateo, 1995. Morgan Kaufmann.

[137] David E. Goldberg. Genetic algorithms in search, optimization and machine learn-

ing. Addison-Wesley, 1989.

[138] David A Schum. The evidential foundations of probabilistic reasoning. Northwest-

ern University Press, 1994.

[139] Matthew Berman and Andrea Fenaughty. Technology and managed care: pa-

tient benefits of telemedicine in a rural health care network. Health economics,

14(6):559–573, 2005.

[140] Christian Castaneda, Kip Nalley, Ciaran Mannion, Pritish Bhattacharyya, Patrick

Blake, Andrew Pecora, Andre Goy, and K Stephen Suh. Clinical decision support

systems for improving diagnostic accuracy and achieving precision medicine. Jour-

nal of clinical bioinformatics, 5(1):4, 2015.

[141] Hardeep Singh, Traber Davis Giardina, Ashley ND Meyer, Samuel N Forjuoh,

Michael D Reis, and Eric J Thomas. Types and origins of diagnostic errors in pri-

mary care settings. JAMA internal medicine, 173(6):418–425, 2013.

[142] Rainu Kaushal, Kaveh G Shojania, and David W Bates. Effects of computerized

physician order entry and clinical decision support systems on medication safety: a

systematic review. Archives of internal medicine, 163(12):1409–1416, 2003.

[143] Gordon D Schiff, Omar Hasan, Seijeoung Kim, Richard Abrams, Karen Cosby,

Bruce L Lambert, Arthur S Elstein, Scott Hasler, Martin L Kabongo, Nela Kros-

149



njar, et al. Diagnostic error in medicine: analysis of 583 physician-reported errors.

Archives of internal medicine, 169(20):1881–1887, 2009.

[144] Darren B Taichman, Joyce Backus, Christopher Baethge, Howard Bauchner, Pe-

ter W De Leeuw, Jeffrey M Drazen, John Fletcher, Frank A Frizelle, Trish Groves,

Abraham Haileamlak, et al. Sharing clinical trial data: A proposal from the inter-

national committee of medical journal editorssharing clinical trial data. Annals of

internal medicine, 164(7):505–506, 2016.

[145] Elizabeth Warren. Strengthening research through data sharing. New England Jour-

nal of Medicine, 375(5):401–403, 2016.

[146] Nophar Geifman, Jennifer Bollyky, Sanchita Bhattacharya, and Atul J Butte. Open-

ing clinical trial data: are the voluntary data-sharing portals enough? BMC medicine,

13(1):280, 2015.

[147] Gary Edward Gross. The role of the tumor board in a community hospital. CA: a

cancer journal for clinicians, 37(2):88–92, 1987.

[148] J Ricke and H Bartelink. Telemedicine and its impact on cancer management. Eu-

ropean Journal of Cancer, 36(7):826–833, 2000.

[149] Christy L Marshall, Nancy J Petersen, Aanand D Naik, Nancy Vander Velde, Avo

Artinyan, Daniel Albo, David H Berger, and Daniel A Anaya. Implementation of a

regional virtual tumor board: a prospective study evaluating feasibility and provider

acceptance. Telemedicine and e-Health, 20(8):705–711, 2014.

[150] Laura Levit, Alison P Smith, Edward J Benz Jr, and Betty Ferrell. Ensuring quality

cancer care through the oncology workforce. Journal of Oncology Practice, 6(1):7–

11, 2010.

150



[151] Mark Terry. Medical identity theft and telemedicine security. Telemedicine and

e-Health, 15(10):1–5, 2009.

[152] Autumn S Downey, Steve Olson, et al. Sharing clinical research data: workshop

summary. National Academies Press, 2013.

[153] George Hripcsak, Meryl Bloomrosen, Patti FlatelyBrennan, Christopher G Chute,

Jim Cimino, Don E Detmer, Margo Edmunds, Peter J Embi, Melissa M Goldstein,

William Ed Hammond, et al. Health data use, stewardship, and governance: ongoing

gaps and challenges: a report from amia’s 2012 health policy meeting. Journal of

the American Medical Informatics Association, 21(2):204–211, 2014.

[154] Gunnar Hartvigsen, Monika A Johansen, Per Hasvold, Johan Gustav Bellika, Eirik

Arsand, Eli Arild, Deede Gammon, Sture Pettersen, Steinar Pedersen, et al. Chal-

lenges in telemedicine and ehealth: lessons learned from 20 years with telemedicine

in tromso. Studies in health technology and informatics, 129(1):82, 2007.

[155] Marlene Maheu, Pamela Whitten, and Ace Allen. E-Health, Telehealth, and

Telemedicine: a guide to startup and success. John Wiley & Sons, 2002.

[156] Robert LaRose, Sharon Strover, Jennifer L Gregg, and Joseph Straubhaar. The im-

pact of rural broadband development: Lessons from a natural field experiment. Gov-

ernment Information Quarterly, 28(1):91–100, 2011.
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