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CHAPTER I 

 

BACKGROUND AND RESEARCH OBJECTIVES 

 

A Brief History of B cells 

 Between 1956 and 1966, Bruce Glick, Max Cooper, and Robert Good discovered 

and confirmed that, in birds, the bursa of Fabricius was responsible for antibody (Ab) and B 

cell production.  It wasn’t until the 1970s that B cell generation was pinpointed to the bone 

marrow in mammals (1).  Many diverse immune system roles for B cells have been 

discovered since that time.  Indeed, this class of lymphocytes has functions in both the 

innate and adaptive branches of the immune system and interacts with many other cell types.  

An overview of many of these functions will be covered in this chapter to establish how 

integral B lymphocytes are to mammalian host defense. 

 

B Lymphocyte Development 

 

Developmental Stages and Surface Phenotypes of B cells in the Bone Marrow  

In mammals, B lymphocytes begin their development in the bone marrow (figure 1-

1) and complete their maturation in the spleen.  This developmental progression is marked 

by changes in surface phenotype, gene expression, and immunoglobulin (Ig) rearrangement.  

Hematopoietic stem cells (HSC) differentiate into common lymphoid progenitors (CLP) and 

then into a B lineage progenitor that is referred to as either fraction A, CLP2, pre-pro B cell, 

or germline pro B cell [reviewed in (2)].  That progenitor, is pluripotent in vivo and vitro (3, 4), 

and gives rise to the earliest identifiable B cell, the pro B cell (fraction B).   This marks the 
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Figure 1-1.  B cell development proceeds in continuous developmental stages in the 
bone marrow and is dictated by immunoglobulin gene rearrangement status.  B 
lymphopoiesis begins with HSC and completes when newly formed B cells aggress from the 
bone marrow into circulation.  Pertinent surface proteins are listed under each 
developmental stage.  The relevant status of IgH or IgL recombination is noted in the early 
pro through small pre B cell stages.  Receptor editing occurs between the late pro and small 
pre B cell stages [compiled from (5-8)]. 
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point in B cell development when the stages are classified in terms of B cell receptor (BCR 

or surface Ig) rearrangement and surface protein expression.  Early pro B cells initiate 

rearrangement of their heavy chain (IgH) diversity (D) and joining (JH) segments.  The IgH 

variable (VH) and all Ig light chain (IgL) gene segments remain germline (unrearranged) in 

configuration.  Late pro B cells undergo rearrangement of their VH gene segments to the 

previously rearranged DJH gene segments to form a functional IgH gene.  At this point, they 

are considered large pre B cells and express, at their surface, the rearranged IgH paired with 

two transiently expressed proteins, λ5 and VpreB, which compose the surrogate light chain.  

This complex is known as the pre-BCR and signals large, pre B cells to undergo several 

rounds of replication.  Proliferation at the large pre B cell stage aids in diversification of the 

repertoire as each daughter, small pre B cell will independently rearrange its own IgL.  Small 

pre B cells (preB-II) begin to rearrange V and J segments to form a functional IgL while 

internalizing their pre-BCR.  The surrogate light chain is replaced by the newly rearranged 

IgL, and the complete Ig-expressing immature, or newly formed, B cell emigrates from the 

bone marrow to the periphery. 

 

B cell Receptor Editing in the Bone Marrow 

It is between the late pro B and small pre B cell stages (circular arrows, figure 1-1) 

that a process termed “receptor editing” (RE) occurs (6, 9-15).  In its broadest definition, RE 

refers to the replacement of rearranged IgH or IgL chains by novel rearrangements.  For 

example, if a newly rearranged IgH (VHDJH) is either out of frame or unable to pair 

effectively with surrogate light chain, the B cell will pause at the pro to pre B cell transition 

and will continue to rearrange its IgH genes.  If the new rearrangement takes place on the 

same allele, the previously used VH must contain a cryptic recombination signal sequence so 



 4

that the new VH may join the old DJH – as the intervening D segments were deleted upon 

rearrangement of the first VH.  Otherwise, VHDJH recombination will occur on the second 

allele.   

Later, at the pre B cell stage, IgL which are either untranslatable, pair poorly with 

IgH, or are autoreactive may also be replaced by RE (12, 16, 17).  The inappropriate IgL 

(IgL-κ or IgL-λ) is deleted or inverted when a new VκJκ join is made using an upstream, 5’, 

Vκ and a downstream, 3’, Jκ.  This process will continue on the same allele until all available 

Vκ and Jκ gene segments are used and then proceeds on the other allele until those gene 

segments are also spent.  After both Igκ alleles are exhausted, the process repeats on the 

IgL-λ alleles.  In mice, IgL-κ alleles generally rearrange before IgL-λ alleles, but it is possible 

that IgL-λ may rearrange concurrently.  During the course of IgL RE, the generation of a 

productive (translatable) rearrangement that is not overtly autoreactive and pairs well with 

IgH will cease this process.   

To summarize, RE allows B cell clones to eliminate Ig that are either untranslatable, 

ineffective, or autoreactive.  It is important to note that an estimated 50-75% of B cells that 

emerge in the periphery have undergone RE (9-11).  Thus, this process is important in 

reclaiming otherwise ineffectual or dangerous B cells that the organism has spent energy 

producing.  The relevance of RE to the generation of marginal zone B cells will be discussed 

later in this chapter.   
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Developmental Stages and Surface Phenotypes of B cells in the Spleen 

Once immature B cells enter the spleen, they progress through a series of transitional 

stages before they are considered mature (summarized in figure 1-2) (18-20).  Transitional 

type 1 (T1) B cells are the new émigrés from circulation.  If challenged with antigen at this 

juncture, they will either undergo apoptosis (21) or become functionally silenced (anergized) 

(22).   Apoptosis or anergy induction is generally regarded as a function of strength of 

antigen binding by the BCR.  Transitional type 2 (T2) B cells are a heterogeneous population 

which, contrary to their predecessors, will proliferate when challenged with antigen (18).  T2 

B cells further subdivide into – follicular precursors (T2-FP or T3 in some nomenclatures) 

and marginal zone precursors (T2-MZP) (23).  Both are generally considered the immediate 

antecedents of their respective mature counterparts.  At this point, two mature B cell 

populations are generated, marginal zone (MZ) or follicular (FO).  Another mature subset, 

B1 B cells, develop from precursors in the fetal liver or bone marrow and may represent a 

separate lineage from MZ and FO B cells (24, 25).  The functional characteristics of all three 

mature B cell subsets will be covered in depth later in this chapter. 

 

Transcriptional Control of B cell Development 

A major part of the work presented herein deals with the role of transcription factors 

(TF) and transcriptional cofactors in MZ B cell development.  Thus, an overview of how 

different TF govern B cell development from bone marrow to periphery will be given here.  

These are important paradigms for understanding lineage restriction and binomial cell fate 

determination.  For clarity’s sake, I will consider them chronologically in terms of 

development.  All TF classifications are from the most current version of the TransFac  
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Figure 1-2.  Splenic B cell development is characterized by unique surface 
phenotypes and localization.  Newly formed B cells enter the spleen through the central 
arteriole as T1 B cells.  Immature B cells pass through a series of developmental stages in 
different areas of the spleen on their way to becoming mature MZ or FO B cells.  The 
surface proteins that characterize each stage are listed [compiled from (18-20)]. 
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β2hi, LFA-1hi, α4β1hi, CD80+

CD86+, AA4.1lo/neg, CD24hi

transitional 3 (T3)
T2-Follicular Precursor (T2-FP)

IgMlo, IgDhi, CD23hi

CD21mid, CD1dlo, AA4.1hi

follicular (FO)
IgMlo, IgDhi, CD23hi

CD21mid, CD1dlo

CD24lo, AA4.1neg

marginal zone 
macrophages

metallophilic 
macrophages

marginal 
zone

central 
arteriole

T cell zone 
(PALS)

follicle transitional 2 (T2)
IgMhi, IgDmid, CD23hi, CD21mid

CD1dlo, CD24hi, AA4.1hi

T1T1

T2T2

T2T2--MZPMZPT3T3

FOFO MZMZ

newly formed (NF)
transitional 1 (T1)
IgMhi, IgDlo, CD23neg CD21lo

CD1dlo, CD24hi, AA4.1hi

T2-Marginal Zone Precursor (T2-MZP)
IgMhi, IgDhi, CD23hi, CD21hi

CD1dhi, CD24lo, AA4.1lo/neg

marginal zone (MZ)
IgMhi, IgDlo, CD23lo, CD21hi

CD1dhi, CD38hi, CD9hi, CD25hi

β2hi, LFA-1hi, α4β1hi, CD80+

CD86+, AA4.1lo/neg, CD24hi

transitional 3 (T3)
T2-Follicular Precursor (T2-FP)

IgMlo, IgDhi, CD23hi

CD21mid, CD1dlo, AA4.1hi

follicular (FO)
IgMlo, IgDhi, CD23hi

CD21mid, CD1dlo

CD24lo, AA4.1neg

marginal zone 
macrophages

metallophilic 
macrophages

marginal 
zone

central 
arteriole

T cell zone 
(PALS)

follicle transitional 2 (T2)
IgMhi, IgDmid, CD23hi, CD21mid

CD1dlo, CD24hi, AA4.1hi
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Database (www.gene-regulation.com/pub/databases/transfac).  Aliases are noted in 

parentheses and the official gene symbol of each TF is in italics. 

 

Transcription Factors Involved in Central B cell Development 

 PU.1.  PU.1 (Spi-1, sfpi-1) is an Ets family TF that is required for the earliest stages 

of B cell development (Superclass: helix-turn-helix, Class: tryptophan clusters, Family: Ets-

type).  Its effects are concentration dependent as high levels of PU.1 expression potentiate 

myeloid development whereas low levels favor B cell development (26).  PU.1 null (sfpi-1-/-) 

mice either completely lack B, T, and myeloid cells (27, 28) or develop B-like cells that are 

unable to form Ig rearrangements (29).  This indicates that PU.1 functions upstream of 

lineage commitment.  Indeed, the most critical function of PU.1 in B cell development is up-

regulation of IL-7Rα.  IL-7 signaling increases pro B cell survival and is responsible for the 

up-regulation of two other TF, paired box gene 5 (Pax5) and early B cell factor (EBF) that 

are required for B cell development (30, 31).  It is the coordinated efforts of E2A, Pax5, and 

EBF that mediate changes in B cell specific gene transcription. 

 E Proteins.  Early B lineage commitment requires E2A, a heterodimer of two 

differentially spliced Tcfe2a gene products, E12 and E47, that bind promoters containing E-

box consensus sequences (Superclass: Basic domains, Class: helix-loop-helix, Family: 

Ubiquitous, class A, factors) (32).  E2A is expressed in HSC and CLP progenitors, and it is 

at these stages that Rag (recombinase activating gene) expression can first be detected.  A 

loss of Rag expression in Tcfe2a-/- mice results in a block in B cell development at the 

germline pro to pro B cell transition (33-36).  These data highlight the importance of Ig gene 

recombination in B cell development.  Other E proteins such as E2-2 and HEB are also 

involved in B cell development but are most likely redundant to E2A as deletions of these 
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genes exhibit less severe phenotypes (37).  In addition to controlling Rag expression, E2A 

(E12) up-regulates the expression of another TF, EBF (38). 

Early B cell Factor.  One of the most important target genes of E2A is EBF (Ebf1, 

Olf-1, or COE – Superclass: Basic Domains, Class: helix-loop-helix, Family: HLH domain 

only, Subfamily: Olf-1) (31, 39).  While PU.1 and E2A null mice both lack mature B cells, 

enforced expression of EBF in progenitors from either of these models will restore B cell 

development (40).  This implies that a main goal of PU.1 and E2A expression is the up-

regulation of EBF which may be able to mediate B cell specific gene transcription on its 

own.  Additionally, E2A works coordinately with EBF to control Rag1/2, VpreB, λ5, and mb-

1 (Igα) gene expression (41-43). 

Pax5.  The cascade continues with up-regulation of Pax5 by EBF (Pax5, B cell 

specific activator protein/BSAP, EBB-1, or KLP – Superclass: helix-turn-helix, Class: Paired 

box, Family: Paired domain only) (33).  True B lineage commitment at the pro to pre B cell 

transition requires the coordinated efforts of E2A, EBF, and Pax5.  These proteins 

synergistically activate the transcription of several B cell specific genes including, but not 

limited to, those involved in preBCR assembly – λ5 and VpreB, BCR signaling – CD19 and 

Igα, and Ig rearrangement – Rag1/2 (32, 44, 45).  Pax5 is also responsible for repressing 

other lymphoid and myeloid lineages (3, 4).  Pax5 expression continues through all B cell 

stages until terminal differentiation into Ig secreting plasma cells.  This continued expression 

is critical to the maintenance of B cell identity (46, 47).   

After the formation of a complete surface Ig protein, immature B cells maintain high 

E2A (E47) expression facilitating RE in autoreactive clones (41, 43, 48).  This function is 

consistent with E2A’s ability to increase chromatin accessibility around Ig gene segments 
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facilitate Rag1/2 expression.  The process of RE as well as its role in MZ B cell formation 

will be discussed later.    

 

Notch Family Members are Critical to Peripheral B cell Development   

The Notch-Notch Ligand Superfamily.  Nine members of the Notch-Notch 

ligand system have been identified in mammals.  There are four Notch receptor genes 

(Notch1-4) and five Notch ligands [reviewed in (49, 50)].  The ligands include three homologs 

of the Drosophila Delta gene (delta-like 1, 3, and 4) and two homologs of the Drosophila Serrate 

gene (jagged 1 and 2).  These ligands are collectively referred to as DSL proteins (delta-serrate 

like ligands).  The distribution of Notch receptors and DSL ligands is highly regulated at 

many different levels.  Expression of these genes is controlled temporally and by cell type 

(51-64) although the specific transcription factors that control Notch expression are not well 

characterized.  Notch transcript stability is regulated by endogenous micro RNAs in vivo (65) 

and translation can be repressed or promoted in C. elegans by two distinct elements in the 3’ 

untranslated region of the mRNA (66).  The presence of Notch and DSL at the cell’s surface 

is also regulated at the protein level by proteolytic processing in the secretory pathway (67, 

68) as well as endocytosis and degradation (69-78).  Because Notch mRNA can be degraded 

or remain untranslated and surface display of protein is dependent on prior processing, 

determination of cell surface Notch protein level provides more biologically useful 

information than assessing Notch transcripts alone.  This reasoning is employed in chapter 

III where I determine surface Notch protein levels on splenic B cell subsets by FACS 

(fluorescence activated cell sorting).              

Notch Signal Transduction.  Upon interaction with one of the DSL proteins, two 

cleavage events occur in the Notch receptor.  Proteolysis at the S2 cleavage site by ADAM 
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family metalloproteinases (Kuzbanian/ADAM10 or TNFα converting enzyme/ADAM17) 

(79, 80) releases the extracellular domain which may be internalized by the ligand bearing cell 

(81-84).  The intracellular portion (ICN) is then cleaved from the plasma membrane at the 

S3 site by presenilins in a γ-secretase complex (81, 85-87).  Once liberated into the 

cytoplasm,  ICN may interact with Numb (Numb) (88) or Deltex (Dtx1-4) (89) which 

function as negative and positive regulators respectively.  Reports of Deltex suppressing 

Notch activity also exist, and its function is most likely cell type specific (90, 91).  ICN 

translocates to the nucleus where it activates the transcription of various target genes.  

Transcriptional activation occurs at genes that are constitutively repressed by RBP-Jκ 

(recombination signal sequence binding protein of Jκ, Rbpsuh, SUH, CBF-1, CSL, Lag-1 – 

Superclass: basic domains, Class: helix-loop-helix factors, Family: other bHLH factors) (92, 

93).  ICN interacts directly with RBP-Jκ and displaces a repressor complex that contains 

SMRT and HDAC-1 (67, 94).  ICN also recruits co-activators such as Mastermind-like 

(Maml1-3), pCAF, and p300 which aid in activating transcription (95-99).  Activation of 

transcription by ICN is self-limiting owing to its PEST domain and degradation via SEL-10 

(Fbxw7) family proteins (100).  Clearly, the regulation of Notch and DSL ligands and the 

signaling that proceeds from Notch receptors is highly complex.  Several of these proteins 

exhibit cell type specific effects, and thus conclusions drawn from one model system cannot 

necessarily be applied to another.  Collectively, these data demonstrate the need of studying 

Notch and DSL proteins in context.  It is for this reason that chapter III focuses on the 

relationship of Notch to the BCR in the context of MZ B cell development in vivo.   

Co-regulators of Notch Signaling.  Notch signaling is modulated even further by 

additional proteins.  There is extensive evidence that despite structural homology, the four 



 11

Notch receptors deliver different signals and activate the transcription of different target 

genes (101-109).  Furthermore, ligation of the same Notch receptor by different ligands in 

some cases perpetuates divergent signals (104-108, 110-114).  Indeed the presentation of the 

ligand (soluble versus membrane-bound) can also alter the outcome of Notch signaling (112, 

115).  The family of fringe glucosyltransferases can modify the Notch receptors themselves 

to limit their interaction with certain DSL proteins (116).  Of relevance to the data presented 

in chapter III, expression of the ligand, Delta-like1 (Dll-1) is required on a non-B cell 

population for the development of MZ B cells (117).  Dendritic cells in the marginal sinus 

commonly express Dll-1 and therefore may be the instructive cell type.    

Deletions of Notch Genes Pertinent to B cell Development.  Of the four 

receptors, only Notch1 and 2 are involved in B cell development.  Notch1 functions early in 

HSC maintenance (118) and later potentiates T cell development while inhibiting that of B 

cells (119, 120).  Notch2 is expressed by all mature B cells and functions in the periphery 

during the binary fate decision between FO and MZ B cells (121, 122).  Two groups have 

generated specific deletions of the Notch2 gene.  In 1999, Hamada et al. replaced the 

intracellular ankyrin repeats with β-galactosidase (123).  In the homozygous condition     

(N2-/-), this mutation is embryonic lethal at E11.5.  Later analysis of heterozygous mice 

(N2+/-) revealed a specific defect in MZ B cell development (122).  These mice are used in 

chapter III.  Later, Saito et al. generated a B cell specific Notch2 deletion (N2-/cre) which 

removes the sequences encoding the extracellular domains via cre recombinase under the 

control of the CD19 promoter (121).  The phenotypes of the N2+/- (heterozygous) and    

N2-/cre (null in B cells) mice are virtually identical – both lacking MZ B cells with little 

alteration in other lymphocyte populations.  Thus, a particular quantity of Notch2 protein, or 

more likely of Notch2 signal, must be attained to generate the MZ population.  In a 
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polyclonal B cell repertoire, only the homozygous wild type Notch2 locus is sufficient to 

mediate MZ B cell generation.  In chapter III, I demonstrate that a monoclonal, autoreactive 

BCR repertoire can partially overcome a heterozygous Notch2 locus.   

Importantly, RBP-Jκ itself is necessary for MZ B cell differentiation indicating the 

importance of the interaction between RBP-Jκ and ICN (124).  In the absence of ICN, 

RBP-Jκ is repressive so one might assume that a lack of this repressor would facilitate MZ B 

cell production.  However, it is only the action of ICN that recruits chromatin modifying 

complexes to RBP-Jκ-bound loci, and ICN itself does not bind DNA.  Thus, RBP-Jκ may 

merely be a docking site or genomic “flag” and thus repressive by default.  In this scenario, 

absence of RBP-Jκ would confer a constitutively repressed chromatin structure which the 

presence of ICN alone could not alleviate.   

 

Other Transcription Factors Critical to Peripheral B cell Development   

E2A.  The roles of E2A are not limited to bone marrow development but extend to 

peripheral B cell differentiation as well.  High concentrations of E2A promote the FO rather 

than MZ B cell fate decision (48).  Stimulation with various mitogens – LPS, anti-IgM, or 

anti-CD40 and IL-4 – increase E2A transcript levels (125) leading to class switch 

recombination (CSR) and somatic hypermutation (SHM) via the E2A target gene, AID 

(activation induced cytidine deaminase) (126).  These functions again take advantage of 

E2A’s role in enhancing Ig gene accessibility via the recruitment of chromatin modifying 

proteins and augmenting Rag1/2 expression. 

Aiolos.  C2H2 (Krueppel-like) zinc finger (ZF) TF are common players in cell fate 

determination throughout the mammalian system.  Members of the Ikaros (Zfpn1a1) family 
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include Ikaros, Aiolos, Helios, Eos, Pegasus, and Daedalus (Superclass: zinc-coordinating 

DNA binding domains, Class: Cys2His2 zinc finger domains, Family: developmental/cell 

cycle regulators, Subfamily: Krueppel-like).  These C2H2 TF exemplify how ZF proteins 

control cell fate decisions (127).  All family members encode multiple isoforms via 

alternative splicing, and all isoforms are capable of homo- and heterodimerizing with one 

another to generate a very complex transcriptional control system.  In early B cell 

development, it is clear that Ikaros gene products are essential for B, T, and NK cell 

development.  However, because the Ikaros gene is capable of eleven alternative splice 

forms, the direct role(s) of Ikaros have not been determined (128).  Data regarding the 

functions of Helios, Eos, Pegasus, and Daedalus are limiting.  These genes appear highly 

redundant with Ikaros and Aiolos gene products. 

In peripheral B cell ontogeny, the most important member of this family is Aiolos 

(Zfpn1a3) (127, 129-131).  Aiolos null (Zfpn1a3-/-) mice lack MZ B cells and exhibit decreased 

CD21 expression on FO B cells (132).  Later analysis indicated that this phenotype is 

dependent upon Btk (Bruton’s agammaglobulinemia tyrosine kinase) as Btk-/-/Zfpn1a3-/- 

(double deficient) mice exhibit a phenotype similar to Btk-/- mice (133).  In that study, 

Cariappa et al. conclude that Aiolos is epistatic to Btk and that Zfpn1a3-/- B cells display 

unfettered Btk signaling that predisposes their differentiation into FO B cells.  However, 

caution must be exercised when interpreting these data because the seven isoforms of Aiolos 

control the expression of multiple target genes by either activating or repressing 

transcription (127).  Thus, it may be that a lack of gene products downstream of Aiolos is 

responsible for the phenotype of Zfpn1a3-/- mice.  Interestingly, Btk-/- animals are capable of 

generating MZ B cells (134-137) while FO B cell survival is markedly reduced (138-143).  

Thus, Btk signaling is most likely required for enhancement of MZ populations instead of 
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initial recruitment into the MZ (144, 145).  Clearly, further research as to how the target 

genes of Aiolos interact with the Btk signaling axis is needed. 

NF-κB.  Nuclear factor of κ IgL gene enhancer in B cells, NF-κB, is a 5-member 

(RelA/p65, Rel/cRel, RelB, NF-κB1/p50, NF-κB2/p52) TF family homologous to the 

Relish proteins discovered in Drosophila (Superclass: β-scaffold factors with minor groove 

contacts, Class: rel homology region, Family: Rel/ankyrin) (146).  These proteins can homo- 

and heterodimerize with one another to activate and repress a wide array of target genes.  

The functions of some family members are redundant, necessitating analysis of double 

knockout models in some cases.  Each of the five Rel proteins have functions in B cell 

development, differentiation, function and survival [reviewed in (147)].  The Rela-/- mutation 

is embryonic lethal and must be analyzed in bone marrow chimera experiments (148).  Both 

Rela-/-/Nfkb1-/- (149) and Rela-/-/Rel-/- mice (150) have no lymphocytes due most likely to 

excessive TNF production and apoptosis.  As indicated by their name, NF-κB subunits have 

roles in Igκ rearrangement and germline transcription and are thus important for immature 

B cell development (151).  Nfkb1-/-/Nfkb2-/- mice exhibit a block at the T1 stage in the 

spleen whereas Rela-/-/Rel-/- mice are capable of forming T2 cells in vitro (152).   

The most relevant models to this dissertation are the single knockouts, all of which 

impact MZ B cell generation in some manner.  Nfkb1-/-, Nfkb2-/-, and Relb-/- mice specifically 

lack MZ B cells, while Rel-/- and Rela-/- mice demonstrate decreases in this population (153-

155).  NF-κB activation is downstream of receptors other than the BCR such as BAFF-R 

(153, 156-160) and Notch (161).  Since MZ B cells are particularly long lived and dependent 

on survival signals delivered through BAFF-R and differentiation signals delivered through 

Notch, it is not surprising that NF-κB members figure heavily in MZ B cell differentiation.  
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Interestingly, by 12-15 weeks of age, Nfkb1-/- mice do accumulate MZ B cells [(162) and my 

unpublished observations].  In this model, other NF-κB subunits may compensate for the 

loss of p50.  Further investigation into the nature of aged Nfkb1-/- MZ B cells is needed to 

clarify this discrepancy. 

BOB.1.  The Pou2af1 gene encodes two translational isoforms, p34 and p35, which 

are known as BOB.1 (OBF.1, OCA-B) (163).  BOB.1 is a transcriptional co-activator which 

interacts with the POU domain of the ubiquitous, Oct-1 and B cell specific, Oct-2 TF 

(Superclass: helix-turn-helix, Class: homeo domain, Family: POU domain factors, Subfamily: 

II) (164, 165).  BOB.1 protein is induced by anti-IgM, CD40L/IL-4 and TLR4 stimulation 

(166-170).  Initially, B cell development in Pou2af1-/- mice seemed overtly normal, however 

these mice do exhibit reduced numbers of transitional (T1) B cells in the spleen (171, 172).  

Samardzic et al. (173) analyzed developing and mature B cell compartments in Pou2af1-/- mice 

and found that these animals generate FO and B1 B cells normally but almost entirely lack 

MZ B cells.  The role of BOB.1 in B1 development is controversial.  Different groups report 

either no changes (173, 174), elevated (175), or reduced (176) B1 numbers.  It is interesting 

to note that BCR repertoire skewing occurs in Pou2af1-/- B cells via the IgL-κ locus (177) 

because changes in BCR specificity may influence B cell selection into B1 and MZ 

compartments.  Pou2af1-/- B cells exhibit decreased tyrosine phosphorylation and calcium 

mobilization, a phenotype concomitant with increased CD22 expression (178, 179).  The 

interplay between BCR specificity, signal strength, and B cell differentiation into mature 

subsets will be discussed below. 

BOB.1 is also critical for germinal center (GC) formation and the expression of 

isotype switched Ig (174, 180, 181).  To date, the target genes of BOB.1 important to GC 

formation are unknown (182) which likely indicates a complex control system.   
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Plasma Cell Differentiation.  B lymphocyte induced maturation protein 1 (Blimp1, 

ZNFPR1A1, Prdm1, unclassified) is a zinc finger transcriptional repressor responsible for 

plasma cell differentiation (183-185).  In addition to potentiating the transcription of several 

target genes, Blimp1 inhibits Pax5 expression.  This effectively ceases the mature B cell 

transcription profile allowing terminal differentiation into Ig secreting plasma cells.  X box 

binding protein 1 (Xbp1, TREB5 – Superclass: basic domains, Class: leucine zipper factors 

(bZIP), Family: AP-1-like components, Subfamily: Jun), a potential target gene of Blimp1 

(184), is also required for plasma cell differentiation and Ig secretion (186). 

 

Peripheral, Mature B cell Populations 

 Three mature B cell populations exist in higher mammals – B1, conventional 

follicular (FO or B2), and marginal zone (MZ) (7, 19, 20, 25, 187-189).  A major focus of the 

research presented here focuses on the generation of MZ B cells, and thus a significant 

portion of this section will be devoted to characterizing that population.  For completeness, 

B1 and FO B cells are also covered.  Figure 1-2 and table 1-1 [compiled from (19, 20, 189, 

190)] detail the surface immunophenotypes of each population. 

 

B1 B cells   

B1 B cells can be divided into two subpopulations based on surface expression of 

the glycosylated scavenger receptor, CD5 (24).  B1a B cells are CD5+ and are derived from 

precursors in the fetal liver.  B1b B cells are generated from bone marrow precursors and 

lack CD5 [reviewed in (7)].  Whereas B1a B cells represent a separate lineage, it is unclear 

whether B1b cells are separate as well or instead pass through the same developmental 

program as MZ and FO B cells (191).  Both B1a and b cells reside primarily in the peritoneal  



 17

Table 1-1.  Surface Immunophenotypes of Mature Peripheral B Cell Populations

marker FO MZ B1

IgM low high high

IgD high low low/negative

AA4.1 (493) negative negative negative

CD21 (CR1/2) intermediate high low

CD23 (FcεRII) high low positive or negative

CD22 high high unknown

CD24 (HSA) low high high

CD1d low high negative

CD9 low high negative

CD5 negative negative positive or negative

CD11b (Mac-1) negative negative positive
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and pleural cavities but are also found in the spleen.  B1 differentiation is dependent upon 

positive selection by antigen (189, 192, 193).  These cells are commonly autoreactive and 

exhibit a restricted BCR repertoire (24).  The Ig genes encoding their BCR are generally 

unmutated and recognize repetitive epitopes such as lipopolysaccharide (LPS), 

phosphocholine (PC), and self certain antigens (194, 195).  In conjunction with MZ B cells, 

they are responsible for the majority of “natural” IgM, a polyreactive, low affinity IgM 

present in serum that is involved in the opsinization and neutralization of pathogens.  B1 

and MZ B cells share other characteristics such as a pre-activated phenotype and certain 

BCR specificities that suggest similar developmental requirements (24, 25, 196). 

 

Follicular B cells   

The major B cell population in circulation and secondary lymphoid organs – spleen 

and lymph nodes – is composed of follicular (FO) B cells.  After emigrating from the bone 

marrow as immature (T1) cells and completing their maturation in the spleen (figure 1-2), 

FO B cells recirculate through the blood and home to the B cell follicles for which they are 

named.  The most important function of these cells is to generate the highly somatically 

mutated and class switched Ig characteristic of GC reactions.  Their antigen receptors are 

highly diverse, and they are attuned to antigen stimulation via the BCR and to T cell help.  

Many of the functions classically attributed to B cells in general are hallmarks of FO B cells 

in particular – the anti-IgM response, SHM, CSR, and memory B cell formation.  But other 

characteristics, such as stimulation by LPS and the early wave of IgM secretion during an 

immune response, are more accurately attributable to MZ and B1 B cells.  Thus, 

canonical/historical B cell functions are actually an amalgamation of the independent and 

somewhat unique functions of different B cell subsets (7, 19, 20, 25, 187-189).  
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Marginal Zone B cells 

Localization.   Marginal zone (MZ) B cells are unique in several respects.  Once 

differentiated in the spleen, they do not recirculate but are localized to the marginal sinus 

which borders the white and red pulps (197, 198).  By immunohistochemistry, MZ B cells 

can be identified as a ring between the MZ macrophages (SIGN-R1+, MARCO+, and  

ERTR-9+) and metallophilic macrophages (CD169+ and MOMA-1+) (199, 200).  Being 

proximal to the marginal sinus, an area of sluggish blood flow, brings MZ B cells into close 

association with antigens circulating in the blood.  MZ B cells only leave this area upon 

activation, as discussed below. 

Antigen Receptor Specificity.  MZ B cells exhibit a somewhat restricted repertoire 

in terms of Ig gene usage and specificity.  The IgH and IgL genes that encode their BCR are 

often germline in configuration indicating that they have not undergone SHM or GC 

reactions.  Indeed, it is generally thought that MZ B cells do not enter into GC reactions, 

although evidence to the contrary has been suggested (201).  Their Ig genes are either 

characteristic of those found in fetal B cells (24, 196), a quality similar to B1 B cells, or 

exhibit evidence of RE due to autoreactivity (194, 202-207).  In some cases, a single MZ B 

cell expresses two IgL paired with the same IgH at its surface.  This effectively results in two 

BCR, each having a different antigen specificity.  This phenomenon is referred to as receptor 

inclusion or dilution and is usually the result of the cell’s attempt to abrogate an autoreactive 

receptor via RE (194, 205-209).  This is also evidence of a lack of allelic exclusion at the IgL 

locus – a phenomenon that also occurs in some T cell receptor alpha genes.  Often, MZ 

BCR are polyreactive, or cross-reactive, recognizing multiple antigens with a low affinity 

often including self proteins.  This may be a result of more than one BCR at the surface (as 

described above) or the same BCR exhibiting low affinity for multiple antigens that share 
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physiochemical properties.  For example, the PO4 groups of dsDNA and cardiolipin are 

similarly spaced, and B cells exhibiting this dual specificity are commonplace (210).  A 

propensity toward autoreactivity in MZ B cells is evidenced by many transgenic (Tg) Ig 

murine models (table 1-2, compiled from (144, 203, 207, 211-217) as noted in table) as well 

as naturally occurring autoimmune mouse strains – NOD (218, 219) and NZB/WF1 (220-

224) – which demonstrate an enlarged MZ B cell population when compared to non-Tg or 

non-autoimmune controls respectively.   

Immune Functions.   MZ B cells are a lymphocytic bridge between the innate and 

adaptive immune systems.  They are one of the earliest lines of defense against blood-borne 

pathogens and serve several functions during the course of a host response (25, 196, 225-

228).  Due to their anatomical location, MZ B cells are one of the first cell types to 

encounter antigen and pathogens in circulation.  Stimulation can result in at least two 

divergent outcomes.  MZ B cells that encounter a combination of antigen and complement 

via dual engagement of BCR and CD21/CD35 (CR2/CR1) will travel to the T-B border of 

the lymphoid follicle.  Here, the captured antigen is transferred to follicular dendritic cells 

(FDC) via a proteolytic cleavage of CD21/CD35.  The FDC will then participate in 

downstream T cell activation (229).  Alternatively, MZ B cells that are stimulated through a 

combination of BCR and toll like receptors (TLR) or TLR alone migrate to the T-B border 

where they can present antigen to CD4+ T cells (230).  Afterwards, these MZ B cells will 

migrate into the red pulp via the bridging channels where they differentiate into plasma cells 

and secrete large amounts of IgM (196).  This activity is largely responsible for the initial 

wave of low affinity IgM during the first few days of an immune challenge.  

Autoreactivity and Autoimmune Disease.  Low-level autoreactivity is likely  

concomitant with the ability to recognize a wide range of bacterial and viral antigens due to 



 

Table 1-2.  Immunoglobulin Transgenic Murine Models Exhibiting an Enhanced Marginal Zone B Cell Population

model Heavy Chain Light Chain (5) background specificity idiotypic Ab %id+ (6) % MZ (7) % MZ of id+ (8) reference(s)

81X VH7183/DFL16.1/JH1 endogenous Vκ1c/Jκ5 (1) C57BL/6 or BALB/c undefined cytoplasmic Ag, PC 35-1 7.2% 40% 94% 144, 207

M167 VHS107/DFL16.1/JH1 endogenous Vκ24 (2) C57BL/6 phosphorylcholine M167 3.1% 28% 83% 144

3-32 VHQ52/DSP2.5/JH1 endogenous Vκfl12/Jκ1 (3) C57BL/6 ss and dsDNA U33 8-10% 13% 40% 211

3-32 VHQ52/DSP2.5/JH1 endogenous Vκfl12/Jκ1 NZB/W F1 ss and dsDNA U33 4-6% 24% 78% 211

MD2 VH36-60/DQ52/JH3 endogenous Vκ23 (4) C57BL/6 hen egg lysozyme none (labeled HEL) 0.35% 30% 17% 144

VH125Tg VH9-2-1/DFL16.1/JH1 endogenous various C57BL/6 or NOD insulin none (labeled insulin) 1-2% 30% 71% 216 and EJW

125Tg VH9-2-1/DFL16.1/JH1 Tg - Vκ4-74/Jκ5 C57BL/6 or NOD insulin none (labeled insulin) >98% 30-50% 30-50% ch. III

HK171 J558/D?/JH? (IgH included) (9) endogenous various C57BL/6 arsonate none (IgMa+) 11.60% 40% 40% 212

M54 ? Vλ C57BL/6 nitrophenyl-acetyl 17.2.25 28% <15% ? 213

3H9 J558/D?/JH? Vκ3, 4, 8, 9, 12/13, 21,  23 and Vλ1 BALB/c ss, dsDNA, and cardiolipin none (antigen) various various various 203, 217

3H9/56R J558/D?/JH? Vκ/Vλ allelically included (10) BALB/c or MRL/lpr ssDNA 1.209 19% 13-35% 6-26% 214, 215

(1) Vκ1C = Vk1-117
(2) Vκ24 = Vk2-112
(3) Vκfl12 = Vk12-89
(4) Vκ23 = ?
(5) conferring antigen specificity or idiotype positivity
(6) % of total B cells that are either idiotype positive or bind the antigen in question
(7) % of total B cells that bear the MZ phenotype
(8) % of idiotype positive or antigen binding cells that bear the MZ phenotype
(9) B cells of interest express two IgH - Tg and endogenous

(10) B cells of interest express two IgL - one Vκ and one Vλ
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overlap in structural or chemical properties (231-233).  Thus, reactivity with self-antigen may 

aid the selection of B cells with a MZ phenotype because these specificities are highly 

favorable to survival of the species.  Maintaining the benefits of this potentially harmful 

subset is accomplished by physically segregating them in the MZ of the spleen.  In this 

location, MZ B cells are spatially separated from T cells that could provide help in generating 

high affinity Ig via GC reactions and cytokine stimulation.  This high-risk strategy appears to 

break down in autoimmune disorders.  In both the NZB/WF1 model of lupus and the NOD 

model of type 1 diabetes mellitus (T1DM), expansion of the MZ subset precedes 

proliferation of pathogenic T cells, insulitis, and nephritis respectively (234-236).  In murine 

models of lupus and T1DM, B cells play a key role in priming pathogenic T cells.  The 

enhanced antigen presenting function of the MZ B cell subset may help trigger overt T-cell 

dependent disease (227, 230).  Consistent with this postulate is the observation that autoAb 

producing B cells in lupus mice do not arise in GC, rather they are observed in the bridging 

channels between the white and red pulps and at the T-B interface (237).  MZ B cell-derived 

plasma cells normally migrate to the T-B border and then expand through the bridging 

channels into the red pulp (196).  Thus, MZ B cells may fuel breaches in tolerance either by 

driving autoaggressive T cells or by differentiation into autoAb producing plasma cells.  MZ 

B cells also govern the response of iNKT cells, an important regulatory subset in several 

autoimmune disorders (238).  The relative contribution of MZ B cells likely differs 

depending on the underlying disorder.  In lupus, Ig mediated tissue damage is significant 

while in T1DM, MZ B cells may amplify T cell responses.  In autoimmune diseases, MZ B 

cells are not limited to the spleen as exemplified by ectopic MZ B cell development in a 

model of Sjögren’s Syndrome that accompanies BAFF over expression (239).  To 

summarize, multiple characteristics make MZ B cells a liability for the development of 
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autoimmune disease.  1) Localization in the marginal sinuses facilitates exposure to 

circulating autoantigen.  2) Heightened responses to innate immune receptors (e.g. TLR and 

CR) drive rapid relocalization and differentiation.  3) Efficient antigen presentation to naïve 

CD4+ T cells could promote autoaggressive T cell responses.  4) High CD1d expression can 

promote iNKT cell responses. 

Targeted Gene Deletions Impacting MZ B cell Development.  The TF and 

cofactors critical to MZ B cell development (Aiolos, NF-κB members, Notch2, and BOB.1) 

are covered above.  Table 1-3 details other knockout models that impact the MZ B cell 

population [compiled from (133, 144, 225, 240-254), as noted in table].  These can be 

divided into the following broad categories: survival, localization, and signaling.  In 

summary, MZ B cells are long lived and are particularly susceptible to alterations in genes 

governing lymphocyte survival.  Intrinsic to the phenotype of MZ B cells is their splenic 

localization.  Correct positioning requires input from certain chemokines and other 

receptors.  Finally, differentiation into FO, MZ, or B1 subsets is dictated by BCR mediated 

signals.  Therefore, deletions in genes that either augment or deplete BCR signals 

concomitantly alter mature B cell fate.  This last feature will be discussed below and in 

chapter V.   

 

Mature, Peripheral B Cell Phenotype is Dictated by BCR Signals 

 Several lines of experimentation have clearly demonstrated that BCR signals, 

mediated by Igα and Igβ, are not only required for B cell development but are also required 

for the maintenance of B cell populations in the periphery (242, 255-258).  Conditional 

ablation of these proteins in mature B cells causes them to gradually die.  Thus, BCR signals 

of some sort are required.  The question remains, what manner of signals are required?  



 

Table 1-3.  Targeted Gene Deletions Resulting in an Altered MZ B Cell Population

Process Gene Phenotype references

Development

λ5-/- increased MZ proportion of B cells that are produced (225)

IL-7-/- and IL-7Rα-/- increased MZ proportion of B cells that are produced (240)

conditional Rag-/- Rag deletion at birth causes increased MZ B cell population (241)

Signaling

CD79a-/- ITAM MZ B cells are reduced to < 1% of B cells (242)

CD19-/- reduced MZ B cells and TI responses (243, 144)

CD21-/-  small increase in MZ (133)

Btk-/- or Xid impaired MZ B cell enrichment (144)

Survival

BAFFTg increased MZ numbers, autoimmune manifestations (244-246)

Localization and Microenvironment

LTα-/-, LTβ-/-, LT-R-/-  disorganized spleen, decreased MZ B cells (247-250)

Pyk2-/- no MZ and decreased responsiveness to chemokines (251)

Lsc-/- decreased MZ due to mislocalization (252)

Dock2-/-  decreased MZ B cells (253)

vav1/2/3-/- decreased MZ B cells (254)
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Additionally, what is the impact of signals delivered through other surface proteins including 

cytokine receptors, TLR, integrins, and other micro-environmental receptors (Edg1-3/S1P-

R, scavenger receptors, etc.) (259-263)?  For the moment, I will focus on the BCR and its co-

receptors as this complex is generally regarded as the master regulator of B cell maturation. 

 

Basal BCR Signaling   

As the plasma membrane is fluid and dynamic, the molecules housed therein are in 

constant motion.  This random shuffling may lead to the transient association and 

subsequent phosphorylation of BCR signaling components (Igα/β).  This is generally 

referred to as “tonic” or “basal” signaling and should be considered the lowest level of 

stimulation a B cell might experience (256).  It is important to note that B cells likely never 

experience a complete lack of signal because even if the ITAM of all the Igα/β molecules 

were separated, the other receptors mentioned above would still be in place.  It is basal 

signaling that is required for progression past the pre B cell stage as well as for survival in the 

periphery (257, 258, 264-266). 

 

Antigen Characteristics Impact Signaling 

BCR stimulation via antigen must take into account several different parameters.  

Affinity is defined as the sum of the attractive and repulsive forces at work between the 

antigen and the surface Ig.  While the strength of binding, or affinity, is important in Ig 

specificity for antigen, most antigens are multivalent – exhibiting the same epitope many 

times.  As there are many Ig molecules per B cell, this means a single B cell can bind a 

multivalent antigen with more than one Ig molecule.  The total of these interactions is 

avidity.  Efficient stimulation of a B cell requires BCR cross-linking to allow cross-
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phosphorylation of Igα/β tyrosines (267).  Thus, the avidity of an antigen-Ig interaction is 

likely more important than the affinity of that reaction.  This being said, an Ig with a high 

affinity for cognate antigen will retain that antigen at its surface longer, thus potentiating 

more phosphorylation downstream.  Therefore avidity and affinity are inextricable factors 

impacting BCR signal strength. 

While some antigens are composed only of protein, others are not.  For example, 

dsDNA can is often wrapped around histones and bacteria often display LPS as well as 

organism-specific surface proteins.  In these instances, B cells which express BCRs specific 

for the proteinaceous component of these antigens can also simultaneously engage them 

with receptors that recognize repetitive patterns such as TLR.  dsDNA may interact with 

TLR9 (268-271) while LPS binds TLR4 (272-275).  An entire family of pattern recognition 

receptors exists that can bind a range of non-protein antigen. 

Another factor that may augment BCR signaling is complement (260).  Three 

pathways lead to the activation of complement proteins in the serum – classical, lectin, and 

alternative (276-278).  Classical complement activation is accomplished when immune 

complexes are formed between antigen and secreted IgM or IgG.  The Fc domain of these 

Ig binds the complement component C1q.  Through a cascade of proteolytic events, C3b 

and C3d complement fragments are generated which bind CD35 (CR1) and CD21 (CR2) 

respectively (279-286).  In mice, CD21 and CD35 exist as a fusion protein and thus, immune 

complexes decorated with C3 components will bind these receptors as well.  CD21 

comprises, with CD81 and CD19, a co-receptor complex that lowers the activation 

threshold for B cells (287, 288).  The lectin pathway comes into play when serum lectins 

bind carbohydrates on bacteria and viruses.  This also leads to the deposition of C3b on the 

pathogen’s surface again recruiting CD35 and the co-receptor complex.  Finally, the 
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alternative pathway directly deposits activated C3 fragments again recruiting CD21/35.  

Thus, whole pathogens or simple antigen can augment B cell responses via complement 

proteins.  This is particularly important for MZ B cells which exhibit increased CD21/CD35 

at their surface. 

 

Signaling Throughout B cell Development   

In the bone marrow, basal signals delivered through the pre-BCR (IgH with 

surrogate light chain) and newly formed BCR are required for the appropriate progression of 

developing B cells.  Insufficient signals inform the cell that a functioning IgH or BCR has 

not been formed properly and too strong signals – specifically self antigen ligation at the 

immature stage – induce RE or apoptosis.  A similar situation occurs in the peripheral 

splenic stages of development.  If T1 B cells encounter antigen, they will be removed from 

the repertoire by apoptosis (21) or become anergized (22).  Conversely, T2 B cells proliferate 

and mature when they encounter antigen (21).  What happens after this stage is a point of 

controversy.  

It is generally accepted that strong signals delivered through the BCR mediate the 

development of B1 B cells as this population depends on antigen for its differentiation (24, 

289).  But, whether all B1 B cells are generated from the same precursors as MZ and FO B 

cells is up for debate.  Additionally, there is some dispute over whether stronger or weaker 

signals are needed for MZ B cell differentiation over that of FO B cells.  Pillai and colleagues 

favor a model wherein stronger signals dictate FO cell fate (133, 189, 290).  Evidence for this 

schema is derived from studies of knockout models that lack FO B cells when BCR signaling 

is negatively impacted.  Conversely, I and others favor the opposite model, specifically that 

stronger signals favor MZ B cell fate (19, 242, 291, 292).  Evidence stems from many 
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different lines of investigation primarily hinging on BCR specificity.  Specifically, 

autoreactive specificities augment the MZ B cell population (refer to table 1-2) whereas naïve 

specificities favor the FO compartment.  These data suggest that some BCR engagement is 

necessary for MZ B cell commitment.  Further discussion of these models and the evidence 

for and against will be covered in the discussion as chapter III deals with these issues. 

 

B cell Tolerance 

 As B cells express antigen specific receptors (BCR or surface Ig) that may recognize 

self proteins, a system must be in place to keep them in check.  There are three main 

processes that keep autoreactive B cells at bay, and they are collectively referred to as 

tolerance mechanisms (293-297).  The first, and most frequently employed, mechanism is 

RE (covered in depth in the section concerning B cell development in the bone marrow).  

The majority of B cells that emerge in the periphery are thought to have undergone RE (9).  

As this process can be stimulated by ineffective BCR assembly as well as autoreactivity, it 

cannot be determined how many clones were at first autoreactive (6, 9, 11, 13-15, 298).  B 

cells which cannot effectively rearrange a new IgL to ameliorate their self reactive nature and 

are sufficiently autoreactive to deliver a strong signal via that BCR may be removed from the 

repertoire via apoptosis.  This mechanism of tolerance is known as clonal deletion.  Finally, 

some autoreactive clones that are not deleted are maintained in a state known as anergy (22, 

218, 299-303).  The common feature of all anergic B cells is a functional quiescence wherein 

the B cells are refractory to stimulation via their BCR.  This typically results in a lack of 

plasma cell differentiation and secreted Ig.  Apart from being a narrowly defined state, 

anergic phenotypes exist in a range.  Some anergic cells, e.g. anti-HEL, are arrested in their 
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development at a relatively immature stage (22) while others, e.g. anti-insulin, fully 

differentiate into mature MZ and FO B cell subsets (218).   

 

The Controversial T3 B cell Subset   

At this point, I will consider the splenic T3 developmental subset.  Debate exists 

over whether T3 cells are a normal developmental stage or represent an anergized 

population.  If the surface marker profile is carefully considered (IgMlo, IgDhi, CD23hi, 

CD21mid, CD1dlo, AA4.1hi), it appears that this subset most closely resembles mature FO B 

cells (IgMlo, IgDhi, CD23hi, CD21mid, CD1dlo, AA4.1neg).  The persistence of the surface 

marker AA4.1 indicates that T3 cells are most likely a FO B cell precursor (more accurately 

T2-FP) (23).  That is, the AA4.1 mAb identifies C1q-R, a complement receptor (304-308) 

that is associated with immature B cell stages [figure 1-2 and (135, 309, 310)].  Taking into 

account that a state of anergy could theoretically be induced at any developing B cell stage, it 

is reasonable to conclude that some cells at the T3 stage may become anergized.  The T3 

subset may be a bona fide maturational stage, but for an anergized cell to maintain the 

expression of AA4.1, the state of anergy would have to be implemented at an AA4.1+ stage.  

125Tg, anti-insulin, B cells are anergic and AA4.1neg (J. Cambier, personal communication).  

Therefore, not all anergic B cells necessarily express this surface marker.  

 

The 125Tg, Anti-insulin, Models 

 To study B cell development in the context of a physiological autoantigen, Hulbert 

and Thomas developed a murine model that encodes BCR IgH and IgL Tg which are 

reactive to insulin, 125Tg (311).  The B cells in these mice are functionally unresponsive 

(anergic) to signals delivered through BCR and TLR4 but are capable of proliferating to a 
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combination of TH-mimicking signals, anti-CD40 and IL4 (218, 299).  Unlike other models 

of anergy (22), anti-insulin B cells are not developmentally arrested and generate mature MZ 

and FO B cell populations.  These B cells also retain some antigen presentation capabilities 

(P. Kendall and H. K. Huston, unpublished results).  Thus, anti-insulin B cells maintain 

some critical features of anergy while bypassing others.   

125Tg mice embody an ideal system in which to study MZ B cell development as 

they have a greatly augmented MZ B cell compartment.  However, as described above, these 

cells do not response to BCR or TLR4 stimulation.  Therefore, conclusions drawn from this 

model may be indicative of MZ B cells in general or anergic MZ B cells in particular.  This 

feature is not a hindrance but instead provides at least two unique opportunities.  First, the 

MZ population in 125Tg mice is more easily managed as it attains 30-50% of total splenic B 

cells as compared to a mere 5-10% in wild type C57BL/6 mice.  Furthermore, these MZ B 

cells exhibit a consistent specificity making them a homogenous population for investigation.  

Second, no other experimental model has demonstrated anergic MZ B cells.  Most 

autoreactive Tg impose early developmental arrest or allelic inclusion as a result of RE.  It is 

likely that anergized MZ B cells are a part of normal polyclonal repertoires.  Understanding 

whether anergy in the MZ compartment limits an individual’s ability to clear bacterial and 

viral infections is an important undertaking.  Implications for studying anergic MZ B cells 

will be discussed further in chapters IV and V. 

A second line of mice that only express the IgH Tg (VH125Tg) are used in 

experiments detailed in chapter II.  The IgH Tg alone allows the generation of a pauciclonal 

B cell repertoire via the usage of endogenous IgL.  This repertoire contains a subpopulation 

(1-2% of B220+ lymphocytes) of insulin reactive B cells that can be tracked by FACS and 

isolated by magnetic sorting or binding to immobilized insulin.  When this Tg is expressed 
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on the non-obese diabetic (NOD) background, the penetrance and kinetics of diabetes 

progression are accelerated compared to wild type NOD (311).  Understanding how 

repertoire influences autoimmune disease progression is important for both early diagnosis 

and therapy.  The IgL identity of the anti-insulin B cells in VH125Tg/NOD mice is the 

subject of chapter II (216). 

 

Research Objectives 

 The overall goal of the research reported in this dissertation is to understand how 

autoreactivity influences B cell maturation in the periphery.  These projects are all concerned 

with different aspects anti-insulin B cell development.  As mature B cell phenotype – MZ, 

FO, and B1 – is ultimately governed by BCR mediated signals that are a consequence of 

antigen specificity, lines of investigation which seem divergent are, in reality, related.     

In chapter II, I sought to define the IgL repertoire that governs insulin binding when 

paired with a Tg IgH (VH125Tg).  There exists an accelerated disease phenotype in 

VH125Tg/NOD (IgH Tg only) as compared to WT or 125Tg/NOD (IgH and IgL Tg).  

Only a subset of splenic B cells in VH125Tg/NOD is capable of binding insulin.  Thus, in 

this model, the IgH does not dictate insulin specificity.  Therefore, determination of the total 

endogenous IgL repertoire that paired with the IgH Tg as well as which IgL facilitated 

insulin binding was an important next step in elucidating how the VH125Tg could accelerate 

diabetes.  Accessory goals of this project included defining the extent of clonality or 

individuality present in the anti-insulin B cell sub-repertoire and delineation of whether 

insulin specific B cells were generated in both NOD and C57BL/6 bone marrow (216). 

The goal of chapter III was to determine whether the 125Tg could generate a MZ B 

cell phenotype in the absence of a Notch2 allele.  The phenotype of anti-insulin 125Tg B 
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cells is exceptional in several respects including overpopulation of the MZ.  Two strong lines 

of evidence demonstrate that heterozygosity or deletion of the Notch2 gene is sufficient to 

inhibit MZ B cell development.  Reasoning that BCR signals can activate and repress 

particular TF and that BCR signals interconnect with other signaling pathways, the question 

of whether the 125Tg BCR could override or rescue the Notch2 defect arose.  

The experiments reported in chapter IV began the ambitious task of characterizing 

125Tg MZ B cells in contrast to their FO B cell counterparts.  These studies were initiated 

with a global perspective using microarrays.  Known expression profiles for certain MZ and 

FO specific genes were confirmed, and a panel of differentially expressed known TF was 

established for each B cell population.  One novel gene stood out among the microarray 

data, zinc finger protein 532 (ZFP532).  ZFP532 was over expressed twelve fold in the MZ 

B cell population.  The remaining data in chapter IV aim to characterize the transcript 

structure and tissue distribution of this novel gene. 

Taken together, these studies expand our understanding of how autoreactivity 

impacts B lymphocyte maturation and maintenance.  Anti-insulin B cells are not removed 

from the repertoire by deletion or receptor editing.  They are instead maintained in a state of 

incomplete anergy in the periphery and are capable of allowing the progression of T1DM.  

How autoreactivity, anergy, and the functions of MZ B cells intersect are important lines of 

study for the future. 
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CHAPTER II 

 

MULTIPLE GERMLINE KAPPA LIGHT CHAINS GENERATE ANTI-
INSULIN B CELLS IN NON-OBESE DIABETIC MICE 

 

Abstract 

The highly selective nature of organ specific autoimmune disease is consistent with a critical 

role for adaptive immune responses against specific autoantigens.  In type 1 diabetes mellitus 

(T1DM), autoantibodies to insulin are important markers of the disease process in humans 

and non-obese diabetic (NOD) mice; however the antigen specific receptors responsible for 

these autoantibodies (autoAb) are obscured by the polyclonal repertoire.  NOD mice that 

harbor an anti-insulin transgene (Tg) (VH125Tg/NOD) circumvent this problem by 

generating a tractable population of insulin binding B cells.  The nucleotide structure and 

genetic origin of the endogenous kappa light chain (Vκ or IgL) repertoire that pairs with the 

VH125Tg was analyzed.   In contrast to oligoclonal expansion observed in systemic 

autoimmune disease models, insulin binding B cells from VH125Tg/NOD mice employ 

specific Vκ genes that are clonally independent and germline encoded.  When compared to 

homologous IgL genes from non-autoimmune strains, Vκ genes from NOD mice are 

polymorphic.  Analysis of the most frequently expressed Vκ1 and Vκ9 genes indicates these 

are shared with lupus-prone NZB/BINJ mice (e.g. Vκ1-110*02 and 9-124) and suggests that 

NOD mice use the infrequent b haplotype.  These findings show that a diverse repertoire of 

anti-insulin B cells is part of the autoimmune process in NOD mice and structural or 

regulatory elements within the kappa locus maybe shared with a systemic autoimmune 

disease. 
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Introduction 

T1DM is an organ specific autoimmune disease in which T cells mediate the 

destruction of insulin producing pancreatic beta cells.  Directly, T cell involvement is well 

established by adoptive transfer experiments in animal models (312-317) and indirectly in 

humans by strong genetic linkage to specific class II MHC alleles (318-324).  The role of B 

cells in this disease is both necessary (325, 326) and complex.  Experiments in the NOD 

murine model of autoimmune diabetes indicate that B cells function in an antigen 

presentation capacity that is essential for disease progression (327-330).  In this model, B 

cells specific for islet antigen capture and process autoantigen resulting in presentation of 

peptides to cognate T cells.  These T-B interactions likely result in two outcomes.  One, 

autoaggressive T cells would undergo clonal expansion and ultimately target pancreatic islets, 

and two, activated B cells would produce class-switched (IgG), islet specific autoAb.  

Consistent with this process, islet specific autoAb, particularly ones reactive with insulin, are 

recognized as sensitive indicators of disease (331-337).  To date, tolerance inducing therapies 

initiated after the appearance of IgG anti-insulin autoAb fail to halt disease progression (338, 

339).  Thus, earlier predictive methods are required to maintain or restore lymphocyte 

tolerance prior to beta cell destruction. 

 The presence of IgG autoAb to insulin and other islet antigen in the prodrome of 

T1DM are assumed to be the product of clonal expansion via interaction with autoreactive T 

cells (340).  However, this has not been definitively shown.  Additionally, initial interaction 

of the B cell antigen receptor (surface Ig or BCR) with islet antigen necessitates the existence 

of identifiable molecular characteristics inherent in that receptor that promote antigen 

binding.  To address these gaps, we generated NOD mice harboring an Ig heavy chain Tg 

(VH125Tg/NOD) derived from an anti-insulin mAb.  These mice are unique among Ig 
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transgenic NOD, in that not only do they support the development of diabetes, but it may 

be accelerated (311).  Other Ig transgenic NOD mice which harbor specificities for non-islet 

antigen (329, 341) exhibit protection from diabetes further supporting the importance of 

BCR specificity to diabetogenesis.  VH125Tg/NOD mice generate a polyclonal B cell 

repertoire by utilizing endogenous IgL.  This polyclonal repertoire contains a subset (1-2%) 

of highly insulin reactive B cells that are not observed in   VH125Tg/C57BL/6 mice.  By 

analyzing the nucleotide sequences of the IgL that pair with the VH125Tg, we are able to 

draw conclusions about a model B cell population that recognizes a key diabetes-associated 

antigen, insulin.  In contrast to expectations, our data demonstrate that anti-insulin B cells 

are not the product of oligoclonal expansion.  Instead, they are independently seeded into 

the peripheral repertoire.  Additionally they exhibit no evidence of antigen driven selection 

or hypermutation.  In addition, IgL genes from NOD encode multiple germline 

polymorphisms distinct from non-autoimmune prone mouse strains such as C57BL/6, C3H, 

and BALB/c.  Rather, certain NOD Vκ genes, such as Vκ1-110*02 and Vκ9-124, are 

identical to those present in autoimmune-prone NZB/BINJ mice which are of the rare Vκ b 

haplotype.  Thus, the polymorphic residues in structural, coding regions and intervening 

regulatory elements characteristic of the b haplotype of NZB/BINJ may contribute to 

autoimmune features in both systemic and organ specific autoimmune disease. 

 

Materials and Methods 

 

Animals   

VH125Tg/NOD mice were described previously (311).  Lines were maintained as 

heterozygotes by backcrosses to wild type (WT) NOD (>20 generations).   All mice were 
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housed under pathogen-free conditions and all experiments were approved by the 

Institutional Animal Care and Use Committee of Vanderbilt University. 

 

Flow Cytometry 

Splenocytes and bone marrow cells were analyzed on a FACSCaliburTM flow 

cytometer (BD Biosciences, Mountain View, CA).  mAb (BD Pharmingen) used were 

reactive with: IgMa (DS-1), IgMb (AF6-78), CD23 (B3B4), and B220 (RA3-6B2).  

Biotinylated insulin (50ng/mL – NOVO, Copenhagen, Denmark) was used to detect insulin 

binding B cells with PerCP-streptavidin.  Specificity was confirmed by inhibition with excess 

human insulin (299).  WinMDI 2.8 software (Dr. J. Trotter, Scripps Institute, San Diego, 

CA) was used for data analysis. 

 

Selection of Anti-insulin B cells   

VH125Tg/NOD spleens were depleted of T cells via anti-thy1.1 and complement.  

Insulin binding B cells were selected by MACS or adherence to insulin coated plates.  

MACS:  T cell-depleted splenocytes (107 cells/90 μl) were incubated with biotinylated insulin 

(50 ng/mL/106 cells) in buffer (2 mM EDTA, 0.5% BSA in 1X PBS) for 10 min at 4 oC, 

washed and incubated with streptavidin conjugated magnetic beads (20 μl beads/107 cells – 

Miltenyi Biotec, Auburn, CA) for 15 min at 4 oC.  Cells were resuspended (108 cells/500 μl) 

and passed over an LS column (Miltenyi Biotec).  Insulin-binding cells were eluted from the 

column and lysed in TRI Reagent (Molecular Research Center, Inc, Cincinnati, OH).  Plate 

Binding: Dishes (Corning Incorporated, Corning, NY) were pre-coated with human insulin 

(1 μg/ml in PBS overnight at 4 oC) and blocked with BSA.  Unbound cells were thoroughly 

washed from the plate with PBS.  Cells were removed by scraping in TRI reagent. 
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Vκ Amplification and Analysis 

To analyze expressed Vκ genes, RNA was isolated from T cell-depleted splenocytes 

(total Vκ) or from insulin selected B cells.   First strand cDNA was generated from total 

RNA using Superscript II RT (Invitrogen, Carlsbad, CA) and 0.67 μg oligo-dT primer 

(Amersham Biosciences, Piscataway, NJ) in a standard cDNA synthesis protocol.  Vκ 

sequences were amplified from first strand cDNA using the following primers: murine κ 

constant region primer - 5’ GGA TAC AGT TGG TGC AGC ATC 3’, murine VκA - 5’ 

ATT GTK MTS ACM CAR TCT CCA 3’, murine VκB - 5’ GAT RTT KTG RTR ACB 

CAR RM 3’, murine VκC - 5’ AYA TYN WGM TGA CHC ARW CTM M 3’.  Vκ 

sequences were amplified using AmpliTAQ DNA Polymerase (2U/reaction) (Applied 

Biosystems, Foster City, CA) and the following: 200 nM dNTP, 1.25 mM MgCl2, 13.35 mM 

constant primer and 13.35 mM of one of the three Vκ primers.  The PCR protocol was     

94 oC/1 min, 42 oC/1 min, and 72 oC/2 min for 35 cycles.  PCR product was ligated into 

pGEM-T easy plasmid (pGEM-T Easy Vector System I, Promega, Madison, WI).  Positive 

clones were sequenced using an Applied Biosystems 3730xl DNA Analyzer (Vanderbilt-

Ingram Cancer Center).  Analysis, homologies, and germline gene segment assignment were 

accomplished with blastn (www.ncbi.nlm.nih.gov/BLAST), the ImMunoGeneTics (IMGT) 

database (imgt.cines.fr:8104/), and BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html).  

Statistical significance for Vκ families and individual genes in the insulin selected and 

unselected groups (Figures 2 and 3) are derived from a Chi Square (χ2) test of independence.  
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NOD Germline Vκ Genes   

Germline Vκ gene segments were amplified from NOD tail DNA.  Primers were 

designed based on known C57BL/6 germline genes.  Vκ9-120/4FWD 5’ ATG GAC ATG 

AGG GYT CCT GC 3’, Vκ9-120FWD2 5’ GGG CTC CTG CAC AGA TTT TTG 3’, 

Vκ9-120iFWD 5’ GGG GGA TGT CCT CTT TTC TC 3’, Vκ9-120/4REV 5’ CAC TGT 

GGG AGG AKA ACT AG 3’, Vκ1-132/3FWD 5’ ATG ATG AGT CCT GTC CAG TTC 

C 3’, Vκ1-110FWD 5’ ATG AAG TTG CCT GTT AGG CTG TTG G 3’, Vκ1-132/3REV 

5’ CAC TGT GTG AGG AWA ATR TGT ACC 3’, and Vκ1-110REV 5’ CAC TGT GGG 

AGG AAC ATG TGT AC 3’.  Germline Vκ sequences were amplified using AmpliTAQ 

DNA Polymerase (2 U/reaction) and the following: 500 ng genomic DNA, 2.5 mM MgCl2, 

250 nM each primer, and 200 nM dNTP. Reactions were cycled at 94 oC/1min, 53 oC (Vκ9) 

55 oC (Vκ1-132/3) 58 oC (Vκ1-110)/1 min, 72 oC/1 min for 40 cycles.  PCR products were 

cloned, sequenced and analyzed as described above. 

 

GenBank Accession Numbers   

Accession numbers for novel sequences presented in this paper: AY675526 through 

AY675540 and AY731701 through AY731709. 

 

Results 

 

VH125Tg/NOD mice generate a detectable population of anti-insulin B cells.   

VH125Tg/NOD mice develop diabetes at an accelerated rate compared to their WT 

littermates (311).  In these mice, 1-2% of B cells bind biotinylated insulin with a mean 
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fluorescence intensity (MFI) >200 (Figure 2-1, panel B).  The specificity of this population is 

confirmed by inhibition with soluble, unlabeled insulin (299).  Insulin specific B cells are 

undetectable in C57BL/6 mice expressing VH125Tg (Figure 2-1, panel D) as well as in WT 

NOD and C57BL/6 (Figure 2-1, panels A and C respectively) by this method.  These 

findings are consistent with the low frequency (10-5) of anti-insulin B cells predicted by T cell 

independent responses to insulin (342).  The presence of insulin autoAb in WT NOD 

indicates that anti-insulin B cells are present in these animals, and the VH125Tg increases the 

frequency of this population. 

 

The Vκ gene families expressed by insulin binding B cells in VH125Tg/NOD mice 
are heterogeneous.   

 
To understand their molecular origins, we isolated insulin binding B cells from 

VH125Tg/NOD mice and examined their expressed Vκ genes.  Vκ genes were cloned and 

sequenced from B cells either selected for insulin binding or unselected (total).  Vκ identity 

was assigned based on nucleotide homology to germline reference sequences in the IMGT 

database.  The findings do not differ for B cells captured on insulin-coated plates or MACS 

columns, and the results of six independent experiments are pooled.  Histograms show the 

frequency of Vκ families used by anti-insulin VH125Tg/NOD B cells (Figure 2-2, panel A) 

compared to unselected VH125Tg/NOD B cells (Figure 2-2, panel B).  The most frequently 

used family in this repertoire was Vκ1, representing 45% of isolates from insulin binding 

VH125Tg/NOD B cells and 31% of the unselected population.  The high frequency of Vκ1 

here is consistent with the representation of this family in other primary repertoires (343).  

In addition to Vκ1, insulin binding B cells also use genes from Vκ families 9, 10 and 19 

while unselected B cells also use Vκ2, 3, and 6 (compare Figure 2-2, panel A to B).   
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Figure 2-1.  Identification of splenic anti-insulin B cells in VH125Tg/NOD mice.  
Flow cytometry on splenic B cells (B220+) that bind insulin (biotin-insulin/streptavidin-
PerCP) from WT NOD (A), VH125TgNOD (B), WT B6 (C), and VH125Tg/B6 (D).  Insulin 
specific B cells bind insulin with a MFI ≥ 200 (B, ellipse). 
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Figure 2-2.  The Vκ gene families expressed by insulin binding B cells from 
VH125Tg/NOD are heterogeneous.  Vκ genes isolated from VH125Tg/NOD B cells 
were assigned to a Vκ family based on nucleotide sequence.  The frequency of Vκ family use 
by insulin selected B cells (A) is compared to that of the unselected repertoire (B).  For 
comparison, the Vκ repertoire paired with VH9 IgH homologous (>95%) to VH125Tg is 
also shown (C).  The distributions in A and B do not differ from those expected by a χ2 test. 
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Surprisingly, Vκ4 usage was not dramatically increased in the insulin binding population 

even though the original partner of VH125 is Vκ4-74*01 (344).  These findings demonstrate 

that multiple IgL families contribute to the insulin binding repertoire.  The distribution of 

Vκ families used by the insulin selected and unselected groups did not differ from those 

expected based on a Chi Square test for independence. To corroborate the IgL heterogeneity 

exhibited by VH125Tg/NOD B cells, we surveyed Vκ gene usage in a panel of VH9-

containing mAb collected from GenBank.  The variety of IgL used by these VH9 heavy 

chains, as shown in Figure 2-2, panel C, suggests that the heterogeneity exhibited by the 

VH125Tg is representative of similar IgH. 

 

Specific Vκ genes are expressed by insulin binding B cells in VH125Tg/NOD mice. 

The previous analysis demonstrates that a variety of Vκ families can pair with the 

VH125Tg to generate anti-insulin BCR but does not indicate how any single gene is utilized.  

Therefore, we examined the frequency of specific Vκ genes.  Using this approach, marked 

differences in Vκ gene usage between insulin binding and unselected B cells were revealed 

(Figure 2-3).  For example, within the Vκ1 family, the Vκ1-110*02 gene is significantly 

overrepresented in sequences derived from insulin selected B cells (p=0.0044 by χ2) while 

Vκ1-135 is preferred by the unselected population (NS, p=0.086).  Likewise, the Vκ9-120 

gene is more frequently associated with insulin selected B cells than the Vκ9-124 gene.  

Thus, within the diverse family repertoire, a subset of Vκ genes preferentially generates anti-

insulin BCR.  Therefore, insulin binding is not governed by a single Vκ family but is 

determined by unique features of individual genes from different families. 
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Figure 2-3.  Specific Vκ gene segments are expressed by insulin binding B cells from 
VH125Tg/NOD mice.  Histograms show the frequency of individual Vκ genes used by B 
cells selected for insulin binding or unselected.  Specific Vκ gene identity is based on 
nucleotide sequences from the IMGT database.  Only the Vκ1-110*02 gene is statistically 
overrepresented (p=0.0044). 



 44

Anti-insulin Vκ1 genes expressed in VH125Tg/NOD mice are germline encoded, 
clonally independent, and polymorphic to non-autoimmune strains.   
 

As shown in Figure 2-3, Vκ1-110*02 (“V1B”) is exclusively expressed by insulin 

binding VH125Tg/NOD B cells (p=0.0044).  To investigate the roles of antigen driven 

clonal expansion and somatic mutation in the generation of anti-insulin B cells, we compared 

the nucleotide sequences of expressed anti-insulin   genes to known   germline   Vκ1 genes 

(Figure 2-4).  The *02 allele from lupus prone NZB mice (345), haplotype b, (346) is allelic 

to Vκ1-110*01 germline genes from C57BL/6 and BALB/c mice (haplotype c).  

Polymorphic residues associated with the *02 allele are located principally in the 

complementarity determining regions (CDR) and account for most of the structural 

differences exhibited by NOD Vκ1-110.  The frequency of the other nucleotide differences 

does not exceed that which is anticipated from errors in amplification and sequencing.  

Because VH125Tg/C57BL/6 mice do not exhibit anti-insulin B cells in the periphery, this 

suggests that the Vκ1-110*02 allele may favor insulin binding.  Additionally, Vκ1 genes 

expressed by anti-insulin VH125Tg/NOD B cells are germline encoded and clonally 

independent.  Lack of clonality is deduced from the nucleotide sequence of each VκJκ 

joining site in CDR3 (Figure 2-4).  Clones 39 and 92 use the same joining sequence but were 

derived from different donor mice.  These data demonstrate that anti-insulin Vκ1 genes in 

VH125Tg/NOD mice are principally derived from independent clones rather than recurrent 

expansion of the same clone.  In 58 independently derived isolates, only one pair exhibited 

evidence of potential clonality. 

 
 
 
 
 



 

 10 20 30 40 50 60 70 80 90 100
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Vk1-110*01(bb1-C57BL/6) G C C T C C A T C T C T T G C A G A T C T A G T C A G A G C C T T G T A C A C A G T A A T G G A A A C A C C T A T T T A C A T T G G T A C C T G C A G A A G C C A G G C C A G T C T C C A A A G C T C C
Vk1-110*01(K5.1-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(V1A-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84-insulin selected . . T . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
92-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*02(V1B-NZB/BINJ) . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

110 120 130 140 150 160 170 180 190 200
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Vk1-110*01(bb1-C57BL/6) T G A T C T A C A A A G T T T C C A A C C G A T T T T C T G G G G T C C C A G A C A G G T T C A G T G G C A G T G G A T C A G G G A C A G A T T T C A C A C T C A A G A T C A G C A G A G T G G A G G C
Vk1-110*01(K5.1-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(V1A-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
92-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . .
Vk1-110*02(V1B-NZB/BINJ) . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

210 220 230 240 250
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Vk1-110*01(bb1-C57BL/6) T G A G G A T C T G G G A G T T T A T T T C T G C T C T C A A A G T A C A C A T G T T C C T C C C A C A G T G
Vk1-110*01(K5.1-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(V1A-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39-insulin selected . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . G . . . . . . . . . . . . . A G . T C A C . . T
73-insulin selected . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . G . . . . . . . . . . . . . . . T . . . G T .  
83-insulin selected . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . G . . . . . . . . . . . . . A G T G G A C . . T
84-insulin selected . . . . . . . . . . . . . . . . . . . . A . . . . . T . . . . G . . T . . . . . . . . . . . . G G . . G T .  
87-insulin selected . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . G . . . . . . . . . . . . . A G T G G A C . . T
92-insulin selected . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . G . . . . . . . . . . . . . A G . T C A C . . T
Vk1-110*02(V1B-NZB/BINJ) . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . G . . . . . . . . . . . . . . . A . . . . . . .

CDR3

CDR2

CDR1

Jk5*01
Jk5*01
Jk1*01
Jk1*01
Jk1*01
Jk5*01

10 20 30 40 50 60 70 80 90 100
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Vk1-110*01(bb1-C57BL/6) G C C T C C A T C T C T T G C A G A T C T A G T C A G A G C C T T G T A C A C A G T A A T G G A A A C A C C T A T T T A C A T T G G T A C C T G C A G A A G C C A G G C C A G T C T C C A A A G C T C C
Vk1-110*01(K5.1-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(V1A-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84-insulin selected . . T . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
92-insulin selected . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*02(V1B-NZB/BINJ) . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

110 120 130 140 150 160 170 180 190 200
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Vk1-110*01(bb1-C57BL/6) T G A T C T A C A A A G T T T C C A A C C G A T T T T C T G G G G T C C C A G A C A G G T T C A G T G G C A G T G G A T C A G G G A C A G A T T T C A C A C T C A A G A T C A G C A G A G T G G A G G C
Vk1-110*01(K5.1-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(V1A-BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk1-110*01(BALB/c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83-insulin selected . . . . . . . . . G G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 2-4.  Anti-insulin Vκ1 genes expressed in VH125Tg/NOD mice are germline encoded, clonally independent, and 
polymorphic to non-autoimmune strains. Nucleotide sequences of anti-insulin, expressed Vκ genes from VH125Tg/NOD B cells 
(sequences 73, 83, 84, 87, 92, and 39) were compared to homologous reference sequences (Vκ1-110*01 – C57BL/6 and BALB/c) and a 
germline gene from NZB mice (Vκ1-110*02).  Boxes indicate CDR.  The recombination signal sequence heptamer (CACAGTG) is 
underlined.  The Jκ gene used by each expressed IgL is indicated.
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Vκ9 genes expressed in VH125Tg/NOD mice are also polymorphic and germline 
encoded.   
 

The preceding data on Vκ1 genes suggest that polymorphisms in the IgL locus may 

contribute to B cell autoreactivity in NOD mice.  Therefore, we extended our analysis to 

Vκ9 genes (Figure 2-5).  A subset of Vκ9 sequences from VH125Tg/NOD are most closely 

related to Vκ9-120*01 (C3H and C57BL/6 strains).  Vκ9-120 clones from NOD differ at 11 

nucleotides from the reference sequences (*01).  To confirm these polymorphisms, we 

amplified genomic DNA from NOD mice (Materials and Methods).  Ten independent 

isolates from four separate experiments identified a Vκ9 gene that is polymorphic to the 

known Vκ9-120*01 germline sequences.  When compared to the Vκ9-120 genes expressed 

in VH125Tg/NOD B cells, the germline polymorphisms account for all the nucleotide 

differences between expressed NOD Vκ9-120 and the reference Vκ9-120*01 sequence.  

Thus, the Vκ9 gene used in VH125Tg/NOD mice is a novel Vκ9-120 allele.  These data 

support the conclusion that germline NOD Vκ are highly polymorphic when compared to 

those in other strains.  

 

Polymorphisms are not limited to insulin binding Vκ genes.   

As shown in Figure 2-3, Vκ9-124 is highly expressed in the unselected 

VH125Tg/NOD B cell population.  The sequences in Figure 2-5 suggest that numerous 

polymorphisms occur in genes used by the unselected population.  To further cement this 

observation, we analyzed the nucleotide sequence of expressed and germline Vκ9-124 genes 

(Figure 2-6).  The six isolates (A4 – genomic DNA; 17, 59, 226, 227, and 244 – expressed) 

exhibit limited polymorphisms in CDR 2 and 3.  The A4 group represents allelic  
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Figure 2-5.  NOD Vκ9 genes exhibit germline polymorphisms. Nucleotide sequence from NOD Vκ9-120 genes (expressed, 
insulin selected: 31, 48, 68, 74, 75; expressed unselected: 201, 202, 209, 210, and 228; genomic: B1, C3, E1, F3) are compared to the 
reference Vκ9-120*01 (C57BL/6 and C3H).  CDR, recombination signal sequence heptamer, and Jκ partners are indicated as in Figure 
2-4.
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59-insulin selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . A G T A T . . . . . T
226-unselected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . G T G G A C G T T   
227-unselected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . G G . . G T .  
244-unselected . . . . . . . . . . G . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . G G A C G T T   
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Figure 2-6.  Polymorphisms are not limited to insulin binding Vκ genes. Nucleotide sequence of five expressed Vκ genes (17, 59, 
226, 227, and 244) from VH125Tg/NOD is compared with the cognate NOD germline sequences (A4) and the reference Vκ9-124*01 
gene.  These clones identify a novel Vκ9-124 allele (A4, 17, 59, 226, 227, and 244). CDR, recombination signal sequence heptamer, and 
Jκ partners are indicated as in Figure 2-4. 
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homologues of Vκ9-124*01, and further exhibits germline polymorphisms in both the 

insulin specific and nonspecific repertoires.  A search of the public database has revealed 

that germline NOD Vκ9-124 is identical to two expressed mAb IgL from NZB (gb: 

AF321948 and Z22118). 

 

Germline nucleotide polymorphisms in NOD Vκ confer amino acid changes.   

To determine if the polymorphic nucleotide residues seen in NOD expressed and 

germline Vκ genes could have functional implications, their predicted amino acid sequences 

were analyzed (Table 2-1).  Polymorphisms conferring no amino acid change are not 

detailed.  The total number of polymorphisms and their segregation into CDR and FWR are 

indicated.  Only half the amino acid changes are conservative while the rest constitute 

alterations in size and/or charge.  These unique NOD polymorphisms could thus influence 

antigen specificity and BCR assembly consequently governing the primary B cell repertoire.   

 

Anti-insulin B cells are generated in the bone marrow of VH125Tg/NOD mice.   

The presence of anti-insulin B cells in the spleens of VH125Tg/NOD but not in 

VH125Tg/C57BL/6 mice could result from two processes.  First, anti-insulin B cells could 

be generated on both backgrounds but only be removed (by deletion or receptor editing) 

from the repertoire of C57BL/6 mice.  Alternatively, germline polymorphisms unique to 

NOD could favor the production of B cells that recognize insulin.  To address these 

possibilities, we analyzed the bone marrow of VH125Tg/C57BL/6 and VH125Tg/NOD for 

insulin binding B cells.  As shown in Figure 2-7, anti-insulin B cells (indicated by M1) are 

only detected in the bone marrow of VH125Tg/NOD mice.  The cells shown are B220+, 

IgMa+, and CD23neg representing immature and newly formed bone marrow B cells and not  
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Table 2-1.  Amino acid changes are due to polymorphic residues in NOD mice.

NOD Vκ Gene Non-silent changes*
Vκ1-110 total 7

CDR 5 K110/111R, S227F, S232G
FWR 2 H61Y

Vκ9-120 total 11
CDR 4 G37/38Y, S40G, A98G
FWR 7 V4I, L55F, E64K, R86L, V200A

Vκ9-124 total 4
CDR 4 A130/131S, A133T, Y263S
FWR 0

*Silent amino acid changes are not detailed.  Numbers indicate nucleotide 
positions (not amino acids) as indicated in Figures 2-4, 2-5, and 2-6.

Polymorphisms
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Figure 2-7.  Identification of anti-insulin B cells in the bone marrow of 
VH125Tg/NOD mice.  Flow cytometry of bone marrow cells shown are immature and 
newly formed B cells (IgMa+/B220+/CD23neg) from VH125Tg/C57BL/6 (grey line) and 
VH125Tg/NOD (heavy black line) mice.  The M1 marker denotes insulin specific B cells. 
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mature recirculating B cells from the spleen.  The specificity of this population was 

confirmed by inhibition with excess unlabeled insulin (for VH125Tg/NOD B cells in the M1 

gate: uninhibited MFI = 293, inhibited MFI = 151 – data not shown).  These data 

demonstrate that germline Ig polymorphisms in NOD mice favor the production of 

autoantigen specific B cells.  Anti-insulin B cells are generated in the bone marrow of NOD 

mice in the absence of peripheral positive selection.  Additionally, anti-insulin B cells are not 

generated in VH125Tg/C57BL/6 bone marrow and then negatively selected.  

 

Discussion 

NOD mice that carry the IgH chain of anti-insulin mAb125 (VH125Tg/NOD) 

generate a small population of insulin binding B cells that are not observed in VH125Tg/B6 

mice.  In this study, we have isolated these anti-insulin B cells from VH125Tg/NOD and 

demonstrate that their BCRs are independently generated by the recombination of several 

different Vκ and Jκ gene families.  Genes from the Vκ1 and Vκ9 families are found in the 

majority of anti-insulin B cells and their nucleotide sequences do not show evidence of 

somatic hypermutation.  In depth analysis of germline and expressed Vκ genes isolated from 

NOD mice demonstrates germline encoded polymorphisms that are allelic (e.g. Vκ1-110*02) 

to non-autoimmune prone strains of the c haplotype (C57BL/6, C3H, and BALB/c).  Since 

anti-insulin B cells are not observed in the bone marrow or spleen of VH125Tg/C57BL/6 

(Figures 2-1 and 2-7), these data support the hypothesis that the kappa locus of the NOD 

strain facilitates skewing of the primary repertoire toward this autoantigen.   

 In systemic autoimmune disease, such as lupus, oligoclonal expansion and somatic 

mutation typify the anti-DNA response even when IgH Tg are present (237, 347-349).   

Because IgG insulin autoAb are documented in the prodrome of autoimmune diabetes 
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(333), we anticipated that anti-insulin B cells in adult NOD mice would reflect oligoclonal 

expansion and somatic mutation as a consequence of T cell help.  However, the data 

advocate that anti-insulin B cells in adult VH125Tg/NOD mice are not derived from this 

process.  Rather, seeding of a diverse group of anti-insulin B cells into the repertoire may 

provide an important source of antigen presenting cells that capture insulin-related antigen 

and contribute to expansion of the autoreactive T cell pool.  An important issue for future 

studies is to understand the relationship between the primary repertoire of anti-insulin B 

cells and that which differentiates to produce IgG autoAb.  This will require the production 

of NOD mice in which fully functional Tg are targeted into the IgH locus.  

In NOD mice, multiple genes, particularly from the Vκ1 and Vκ9 families, are 

capable of forming anti-insulin BCRs (Figures 2-2 and 2-3).  Although multiple families 

contribute to insulin binding, specific genes within each family preferentially segregate into 

the insulin binding pool.  For example, Vκ1-110 segregates exclusively with insulin binding 

whereas Vκ1-135 is associated with the unselected population.  Comparison of Vκ1-110 to 

published germline counterparts clearly demonstrates that the NOD and NZB/BINJ strains 

share this allele (Figure 2-4).  To our knowledge, Vκ1-110*02 (345) is the only germline 

NZB Vκ gene published in the database.  We therefore compared our germline NOD Vκ9-

120 and Vκ9-124 genes to NZB Vκ from published mAb.  NOD Vκ9-124 (clone A4) is 

identical to an anti-peptide Vκ (gb: AF321948) and differs by 1 nucleotide from an anti-

DNA Vκ (gb: Z22118) both from NZB x NZWF1 mice.  Earlier work in our lab has 

demonstrated substantial (>99%) identity between spontaneous mAb generated from NOD 

and NZB hybridomas (350).  In 1988, D’Hoostelaere and coworkers (346) used RFLP 

analysis to deduce that NZB/BINJ mice have the Igκ b haplotype whereas C3H, BALB/c, 
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and C57BL/6 all share the c haplotype.  Although NOD was not included in that study, our 

data strongly support the hypothesis that NOD and NZB share the Igκ b haplotype.  This is 

not the case for IgH, as studies clearly indicate that the IgH loci of NOD and C57BL/6 

mice are highly similar if not identical (351, 352).  Interestingly, in the D’Hoostelaere study, 

NZB was the only strain of the 55 investigated that exhibited the b haplotype.  This 

observation raises the possibility that the Igκ b allelic group may predispose susceptible 

strains to autoreactivity.  A number of genetic features are shared by systemic and organ 

specific autoimmune diseases (353) and our findings suggest that the Igκ b haplotype may be 

included among these.  It is of note that two diabetes susceptibility loci, Idd6 and Idd19, map 

to chromosome 6 distal to the Igκ locus, but the relationship of these loci to the b haplotype 

is not known. 

The finding that VH125Tg/NOD, and not VH125Tg/C57BL/6 mice, have anti-

insulin B cell populations in both their immature bone marrow and splenic repertoires 

suggests intrinsic differences in B cell generation between NOD and C57BL/6 strains.  Since 

the polymorphisms observed in NOD Vκ alleles encode alterations in primary structure, it is 

possible that these structures may skew the repertoire of antigen recognized by NOD B 

cells.  However, the original partner of VH125 is a member of the largest family, Vκ4, 

recombined with Jκ5 (344).  The Vκ4-Jκ5 configuration is considered an indicator of 

receptor editing (354, 355).  It is possible that Vκ1 and Vκ9 genes are rapidly edited in 

VH125Tg/C57BL/6 mice and that this process is less efficient in NOD.  Since antigen 

driven receptor editing takes place chiefly at the IgL loci, it is also possible that 

polymorphisms in NOD Vκ alleles extend to regulatory elements that impact IgL 

replacement.  Recent studies using fixed Ig Tg also reveal a selection defect in NOD mice 
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that permits autoreactive B cells to enter the peripheral repertoire (329).  Thus, the Vκ 

haplotype may synergize with other defects in NOD B cell generation (356, 357) resulting in 

the maintenance of autoreactive specificities in the repertoire.  Further studies confirming 

the Vκ haplotype of NOD as well as directly assessing the role of the b haplotype in 

predisposition to autoimmunity are clearly required. 
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CHAPTER III 

 
MARGINAL ZONE B CELL DEFECTS IMPOSED BY NOTCH2 

HAPLOINSUFFICIENCY ARE AMELIORATED BY AN AUTOREACTIVE B 
CELL RECEPTOR 

 
 

Abstract 

The marginal zone subset of splenic B cells plays an important role in innate and adaptive 

immunity.  In addition, the marginal zone may contribute to autoimmune disease by serving 

as a reservoir for autoreactive B cells.  This characteristic is exemplified by anti-insulin 

transgenic (125Tg) B cells which preferentially populate the marginal zone compartment.  

The Notch family of receptors regulates cell fate decisions in many lineages, and 

haploinsufficiency of the Notch2 gene (Notch2+/-) results in specific marginal zone B cell 

defects.  In this study, we have investigated how B cell specificity impacts marginal zone B 

cell development in the context of Notch2 haploinsufficiency using mice that harbor anti-hel 

(naïve) or anti-insulin (autoreactive) B cell receptor transgenes.  We find that the anti-insulin 

B cell receptor is capable of generating marginal zone B cells despite a mutant Notch2 allele 

whereas the naïve, anti-hel receptor (MD4) fails to restore the marginal zone compartment.  

The anti-insulin transgene is also associated with increased surface expression of Notch2 and 

CD9 but not CD1d on rescued marginal zone B cells.  Collectively, these data provide in 

vivo evidence that an anti-insulin B cell receptor can affect marginal zone B cell 

differentiation despite Notch2 deficiency. 
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Introduction 

The spleen is populated by three mature B cell subsets, follicular (FO), B1, and 

marginal zone (MZ).  In normal C57BL/6 (B6) mice, the MZ subset displays a specific 

surface phenotype (IgMhi, IgDlo, CD21hi, CD23lo, CD1dhi, CD9hi) and  represents 5-10% of 

mature, splenic B cells (18, 225, 358).  They reside at the border of the B cell follicle and red 

pulp between MZ macrophages and metallophilic macrophages (MOMA-1+) (199, 200).  

The B cell receptor (BCR or surface Ig) repertoire of MZ B cells is prone to recognizing 

bacterial epitopes but is often reactive to autoantigens as well (207, 359-361).  Multiple lines 

of evidence support the segregation of autoreactive B cells into the MZ.  Murine models of 

autoimmune diseases have  specific increases in the MZ B cell population including systemic 

lupus (220-224), type 1 diabetes (218, 219), and Sjögren’s Syndrome (239, 244, 245, 362).  

Some autoreactive BCR Tg models undergo receptor editing and allelic inclusion with 

affected B cells preferentially populating the MZ (194, 215).  In these models, the 

autoreactive BCR is diluted by a second light (L) chain that allows the B cell to survive in the 

peripheral repertoire (209, 363, 364).  Combined with the observation that certain BCR 

specificities are preferentially selected into the MZ B cell population (e.g. 81X and M167 

(207, 215)), these findings indicate that the BCR contributes to the genesis of MZ B cells.  

Deletion of the transcriptional co-activator, Notch2, results in specific defects in MZ 

B cell maturation.  Hamada et al. generated Notch2 mutant mice (Notch2+/- or N2+/-) in 

which the cytoplasmic ankyrin repeats are replaced with β-galactosidase (123).  The targeted 

allele encodes an intact extracellular portion, but cannot signal due to the disrupted 

intracellular domain.  In the homozygous state (Notch2-/-), this mutation is embryonic lethal.  

However, heterozygous, Notch2+/-, mice exhibit specific defects in MZ B cell generation 

(122).  Conditional Notch2 deletion, specific to the B cell lineage, recapitulates the findings 
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of the mutant model and illustrates that the requirement for Notch2 in MZ B cell 

development is B cell intrinsic (121).  In both models, B cell maturation is halted at the 

transitional 2–marginal zone precursor stage.  Real time PCR analysis illustrates that the 

differential requirement for Notch2 by MZ B cells is likely post-transcriptional as follicular 

(FO) and MZ B cells exhibit similar levels of Notch2 mRNA (121).  Additionally, studies in 

C. elegans demonstrate translational control of Notch mRNA by specific RNA binding 

proteins that interact with the 3’ untranslated region (66).  Studies such as these illustrate the 

complexity of the Notch-Notch ligand system. 

Mice bearing heavy (H) and L chain Ig transgenes (Tg) reactive to the protein 

hormone, insulin (125Tg), provide a unique opportunity to investigate several aspects of MZ 

B cells. While other Tg models also augment the MZ compartment, those models express 

only an Ig H chain Tg that combines with endogenous Ig L chains to generate a diverse 

repertoire.  In contrast to these, the 125Tg BCR encodes both Ig H and L chains generating 

a monospecific B cell population with a uniform affinity for cognate antigen.  Unlike other 

commonly studied antigens recognized by MZ B cells, such as DNA and phosphorylcholine, 

insulin is a small globular protein that lacks nucleotide, lipid, and carbohydrate moieties 

(365-367).  Thus, there should be no interaction with toll-like receptors, and single insulin 

molecules are not expected to extensively crosslink BCR.  The concentration of insulin in 

the serum is metabolically regulated such that the presence of the Tg does alter antigen 

availability.  Additionally, insulin is recognized as a tissue-specific autoantigen involved in 

type 1 diabetes pathogenesis (368-372), and MZ B cells play an important role in the non-

obese diabetic (NOD) murine model of this disease (234).  All of these factors emphasize 

the uniqueness of the 125Tg, anti-insulin BCR model. 
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Autoreactive specificities are selected into the MZ compartment, but can they bypass 

the block to MZ B cell differentiation in Notch2+/- mice?  In this report, we have investigated 

whether the anti-insulin BCR can generate MZ B cells in Notch2+/- mice.  We report that the 

anti-insulin, 125Tg, BCR can ameliorate MZ B cell deficiency in Notch2+/- animals.  In 

contrast, the naïve, anti-hel, BCR is not capable of generating MZ B cells in Notch2+/- mice.  

Furthermore, only MZ B cells from 125Tg/Notch2+/- mice exhibit a specific increase of 

surface Notch2 protein.  These data support the hypothesis that in vivo BCR engagement is 

vital during MZ B cell differentiation despite Notch2 haploinsufficiency that would 

otherwise impair MZ B cell development. 

 

Materials and Methods 

 

Mice 

All mice have been backcrossed onto the B6 background for >20 generations.  Anti-

insulin, 125Tg, mice were generated in our lab as described previously (299).  Notch2+/- 

(Notch2+/- or N2+/-) mice were a gift of C. Klug, University of Alabama at Birmingham 

(generated by Hamada et al. (123)).  MD4 (anti-hel Tg) mice (22) were obtained from The 

Jackson Laboratory (Bar Harbor, ME).  Anti-insulin 125Tg, anti-hel Tg, and Notch2+/- 

genotyping was performed on tail biopsy DNA as previously described.  The six genotypes 

of mice used in this paper are abbreviated as follows.  C57BL/6 mice are non-transgenic 

(nonTg B6), anti-hel (helTg/B6), or anti-insulin (125Tg/B6).  Notch2 haploinsufficient mice 

(Notch2+/- or N2+/-) are either non-transgenic (nonTg Notch2+/-), anti-hel (helTg/Notch2+/-), 

or anti-insulin (125Tg/Notch2+/-).  All procedures were approved by the Institutional Animal 

Care and Use Committee of Vanderbilt University. 
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Flow Cytometry 

Single cell suspensions were made from spleens using a 70 μm screen (Fisher 

Scientific) and tris ammonium chloride to lyse red blood cells.  Cells were stained with 

antibodies reactive to the following molecules: B220 (RA3-6B2), CD19 (1D3), IgMa (DS-1), 

IgMb (AF6-78), CD21 (7G6), CD23 (B3B4), CD24 (M1/69), CD9 (KMC8), CD1d (1B1) 

(BD PharMingen, San Diego, CA), Notch2 (extracellular sc-5545, Santa Cruz Biotechnology, 

Santa Cruz, CA), and donkey-anti-rabbit-PE (Jackson ImmunoResearch Laboratories, Inc, 

West Grove, PA).  Insulin specificity was assessed by binding to biotinylated human insulin 

(50ng/ml, NOVO) (299).  Antibodies that were conjugated to biotin were revealed by 

counter staining with streptavidin-PerCP or streptavidin-APC (BD PharMingen).  Data was 

collected on a 4-color FACSCalibur flow cytometer (BD Biosciences).  All plots were gated 

for live, B220+ lymphocytes.  In figure 3-6, CD1d and CD9 levels were normalized to the 

MFI of B220 in the same fluorochrome on aliquots of the same cells.  Post analysis was 

conducted with WinMDI2.8 (J. Trotter, Scripps Institute, San Diego, CA).   

 

Statistical Analysis 

All pair wise comparisons were made using Student’s t-test accommodating 2-tailed 

outcomes and heteroscedastic variance using SPSS software (Systat Software Inc., Point 

Richmond, CA).  p values of  ≤ 0.05 were considered statistically significant.  

 

Immunohistochemistry 

Spleens were perfused with 30% sucrose for ≥ 24 h prior to immobilization in OCT 

Compound (Sakura, Torrance, CA) on dry ice.  Eight μm sections were cut on a Leica 

CM1850 cyrostat (Leica Microsystems, Nussloch, Germany) and adhered to Superfrost/Plus 
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slides (Fisher Scientific, Pittsburgh, PA).  After fixation in 1% paraformaldehyde for 5 min, 

slides were blocked with 5% normal goat serum in 1% BSA for ≥ 30 min.  Slides were 

serially stained with anti-MOMA-1 (CL89149 Cedarlane Laboratories Ltd., Hornby, Ontario, 

Canada) and goat-anti-rat IgG-Texas Red (Southern Biotechnology Associates, Birmingham, 

AL) for 1 h each followed by another fixation step in 1% paraformaldehyde.  B cells were 

stained with anti-B220-FITC (RA3-6B2) for 1 h.  Finished slides were mounted with Dako 

Cytomation Fluorescent Mounting Medium (Dako Cytomation Inc., Carpinteria, CA) and 

premium cover glasses (Fisher Scientific) and visualized on an Olympus BX60 (Olympus 

America Inc., Melville, NY).  All pictures were taken on a 10X objective (100X total 

magnification) using Magnafire Software (Optronics, Goleta, CA). 

 

Results and Discussion 

 

Anti-insulin, 125Tg, B cells are preferentially diverted into the marginal zone. 

Anti-insulin, 125Tg mice (299) were used to investigate the development of MZ B 

cells specific for a physiologically regulated protein.  Splenocytes from nonTg and 125Tg 

C57BL/6 (B6) mice were analyzed by FACS using Ab specific for CD21, CD23, and B220 

to define three B cell (B220+) populations: MZ (CD21hi, CD23lo/neg), FO (CD21lo, CD23hi), 

and T1 (CD21neg, CD23neg).  Adult nonTg B6 mice exhibit a normal MZ B cell compartment 

as expected (figure 3-1, panel A, 15 wk B6 – 10.8%).  In contrast, adult 125Tg/B6 mice 

exhibit a markedly increased MZ B cell population at the same age (figure 3-1, panel B, 15 

wk 125Tg/B6 – 36.7%).   

The anti-insulin specificity also accelerates MZ B cell maturation at 4 wk of age, a 

time at which the MZ B cell compartment is not fully developed (figure 3-1, panel C, 4 wk  
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Figure 3-1.  The MZ B cell population is augmented in anti-insulin, 125Tg, mice.  
Splenocytes from 15 wk old (A and B) and 4 wk old (C and D) mice with (B and D) and 
without (A and C) 125Tgs were stained with Ab to B220, CD21, and CD23 and analyzed by 
FACS.  Dot plots are gated on live, B220+ lymphocytes.  B cells subsets are gated as MZ 
(CD21hi, CD23lo – R2), FO (CD21lo, CD23hi – R3) and T1 (CD21neg, CD23neg – R4).  (E) 
NonTg B6 (circle, dashed line) and 125Tg/B6 (squares, solid line) mice from 3 wk to 20 wk 
of age were analyzed as in A-D to determine the percentage MZ B cells of the total live, 
B220+ lymphocyte population.  Error bars represent SD from the mean (n = 2-15 mice per 
time point). 
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nonTg B6 – 3.1% vs. panel D, 4 wk 125Tg/B6 – 11.6%).  In light of this acceleration, we 

assessed the extent of MZ B cell development at various ages post-partum beginning at 3 

wk.  Panel E of figure 3-1 illustrates the accumulation of MZ B cells over time in both 

nonTg B6 and 125Tg/B6 mice.  In both genotypes, the MZ compartment stabilizes at 12-13 

wk of age.  When aged further (25-35 wk), MZ B cell percentages can reach up to 50% of 

B220+ lymphocytes in 125Tg/B6 (data not shown).  The appearance of MZ B cells as early 

as 3 wk in 125Tg/B6 mice suggests that mice of this age are not incapable of producing MZ 

B cells.  In a wild type animal, MZ colonization may be the result of a gradual accumulation 

of appropriate specificities over time.  This anti-insulin BCR is one such appropriate 

specificity. 

 

The anti-insulin BCR restores MZ B cell development in Notch2+/- mice. 

In Notch2 haploinsufficient mice (Notch2+/- or N2+/-), the intracellular ankyrin 

repeats of one allele are replaced with the β-galactosidase gene rendering that allele non-

functional (123).  The extracellular domain remains intact, but the mutant protein cannot 

signal via its intracellular domain.  This murine model exhibits specific defects in MZ B cell 

differentiation (122).  As shown in figure 3-1, the MZ B cell compartment is amplified in 

125Tg/B6 B cells.  This observation led us to question whether the 125Tg could generate 

MZ B cells in Notch2+/- mice.  Accordingly, we intercrossed the 125Tg onto the Notch2+/- 

background (125Tg/N2+/-, figure 3-2).  At 12 wk of age, nonTg Notch2+/- mice exhibit the 

expected, profound reduction in MZ B cells (figure 3-2, panel B, 1.08% and panel G, 1.49 ± 

0.47%, n = 10) as compared to nonTg B6 mice (figure 3-2, panel A, 6.01% and panel G, 6.14 

± 1.64%, n = 13).  Surprisingly, 125Tg/Notch2+/- mice produce a significant population of 

MZ B cells (figure 3-2, panel D, 11.55% and panel G, 9.28 ± 5.32%, n = 9).  The MZ  
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Figure 3-2.  The anti-insulin 125Tg potentiates MZ B cell development in Notch2+/- 
mice.  Splenocytes from 12-13 wk old mice were analyzed by FACS as in figure 3-1.  Panels 
A, C, and E are representative of B6 mice whereas B, D, and E are Notch2+/-.  NonTg (A and 
B), anti-insulin (125Tg, C and D), and hel specific B cells (helTg, E and F) are shown.  Dot 
plots and percentages are of live, B220+ lymphocytes.  The mean percentage of MZ B cells 
from each genotype ± SD is summarized in panel G (n ≥ 7 for each genotype, refer to table 
3-1). 
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population in 125Tg/Notch2+/- is significantly increased compared to nonTg Notch2+/- (p = 

0.0023) and does not differ statistically from that of nonTg B6 (p = 0.120, NS).  However, 

the proportion of MZ B cells in 125Tg/Notch2+/- mice does not reach that which is seen in 

125Tg/B6 (figure 3-2, panel C, 38.27% and panel G, 37.09 ± 7.32%, n = 7).  These data 

demonstrate that the 125Tg specificity can generate MZ B cells in Notch2+/- mice but that 

this BCR cannot fully overcome the haploinsufficiency of Notch2.  However, the fact that 

125Tg/Notch2+/- mice are capable of generating MZ B cells at all suggests that the BCR may 

be able to modulate the requirement for Notch2.  Absolute numbers of each B cell subset 

are discussed below and shown in Table 3-1.   

The accumulation of the MZ compartment in 125Tg/B6 and 125Tg/Notch2+/- 

peripheral B cells could be attributable to non-specific Tg effects such as enforced Ig 

expression.  To address this issue, we introgressed the anti-hen egg lysozyme BCR Tg (anti-

hel or helTg) onto the Notch2+/- background.  In a non-hel expressing environment, anti-hel 

B cells are naïve (22).  B6 mice expressing the helTg (helTg/B6 – figure 3-2, panel E, 

11.53% and panel G, 11.09 ± 1.78%, n = 10) do not accumulate MZ B cells above the range 

that is seen in nonTg B6 mice (panel A).  HelTg/Notch2+/- mice (figure 3-2, panel F, 1.64%, 

and panel G, 2.10 ± 1.42%) are indistinguishable from nonTg Notch2+/-.  HelTg/Notch2+/- B 

cells do not encounter antigen in this model and are not capable of generating MZ B cells.  

In 125Tg/Notch2+/- B cells, in vivo BCR engagement by insulin may enable the generation of 

a B cell subset which otherwise would not develop.  To date, no other studies demonstrate 

the development of MZ B cells in Notch2+/- mice.  Together, these data suggest that the anti-

insulin BCR is capable of facilitating MZ B cell development despite a specific genetic 

defect.     
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The anti-insulin, 125Tg, BCR enhances Notch2 expression on MZ B cells. 

The Notch2 model used in these studies is heterozygous, maintaining one intact 

allele.  This enables the study of Notch2 protein levels in vivo.  Accordingly, we analyzed 

Notch2 surface levels by FACS on splenocytes from both nonTg and 125Tg Notch2+/- and 

B6 mice.  Initially, we compared only gated MZ B cells from nonTg and 125Tg B6 and 

Notch2+/- mice.  Cells falling into the MZ B cell gate from nonTg Notch2+/- (1.49 ± 0.47%) 

express very low levels of Notch2 surface protein (figure 3-3, panel A, nonTg Notch2+/- MFI 

(mean fluorescence intensity) – 9.98).  Alternatively, MZ B cells from nonTg B6 (MFI – 

25.94), 125Tg/B6 (MFI – 23.12), and 125Tg/Notch2+/- (MFI – 26.70) exhibit similar, 

elevated, surface levels of Notch2 (figure 3-3, panel A).  Thus, the 125Tg BCR is associated 

with increased Notch2 protein on the Notch2+/- background in MZ B cells.   

We next compared surface levels of Notch2 on MZ, FO, and T1 subsets of each 

genotype.  In nonTg B6 (figure 3-3, panel B) and 125Tg/Notch2+/- (panel D) B cells, only the 

MZ subset exhibits increased surface Notch2.  Conversely, all B cell populations, from 

nonTg Notch2+/- mice exhibit similar, decreased levels of Notch2 (figure 3-3, panel C).  

Collectively, these results demonstrate that Notch2 is preferentially expressed by MZ B cells 

and that the 125Tg is associated with increased Notch2 levels specifically on rescued MZ B 

cells in 125Tg/Notch2+/- mice.  An important feature of Notch2+/- mice is that extracellular 

measures of Notch2 protein do not differentiate between wild type and mutant (intracellular 

β-galactosidase) receptors.  Accordingly, the increased levels of Notch2 likely represent a 

mixed population of functional and nonfunctional molecules.  This situation potentially 

explains why the number of MZ B cells in 125Tg/Notch2+/- mice does not reach that seen in 

125Tg/B6 mice.   



 67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-3.  The anti-insulin, 125Tg, BCR increases Notch2 expression on MZ B 
cells from 125Tg/Notch2+/- mice.  Splenocytes from nonTg and 125Tg B6 and Notch2+/- 
(N2+/-) mice were analyzed by FACS using Ab to CD21, CD23, B220, and Notch2 (sc-
5545).  The MFI of Notch2 on gated MZ B cells is shown in A.  MZ, FO, and T1 B cell 
fractions from nonTg B6 mice (B), nonTg Notch2+/- (C), and 125Tg/Notch2+/- mice (D) are 
also shown.  The MFI of each population is given in parentheses.   
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Very little is known about the transcriptional control of the Notch2 gene itself.  Previous 

studies illustrate that wild type MZ and FO B cells possess roughly equivalent levels of 

Notch2 mRNA (121) and that Notch translation is tightly regulated (66).  Thus, differences 

in Notch2 protein levels at the MZ B cell’s surface may be the result of a complex post 

transcriptional mechanism that may be related to the BCR.  Further studies are needed to 

clarify the mechanisms responsible for Notch2 protein regulation. 

 

MZ B cells generated in 125Tg mice localize to the appropriate splenic 
microenvironments. 

Homing to the splenic marginal sinus is characteristic of mature MZ B cells.  This 

area is demarcated by metallophilic macrophages (MOMA-1+) on the FO side and MZ 

macrophages (ERTR-9+) on the red pulp face (199, 200).  To assess whether MZ B cells, as 

defined by FACS analysis (figures 3-1 and 3-2), were in fact populating the MZ, we stained 

spleen cryosections with Ab specific to B cells (B220, green) and metallophilic macrophages 

(MOMA-1, red – figure 3-4).  In this assay, MZ B cells are identified as B220+ staining 

outside the MOMA-1 ring (figure 3-4, arrows – panel A and D, brackets – panel B).  As 

expected, the MZ B cell area is only 1-2 cell layers thick in genotypes exhibiting a normal 

complement (5-10%) of MZ B cells (arrows – panel A, nonTg B6 and panel D, 

125Tg/Notch2+/-).  Patches of B220+ cells dispersed among the MOMA-1+ cells in the red 

pulp can also be seen (arrowheads – panel D, 125Tg/Notch2+/-).  These may represent 

ectopic patches of MZ B cells that mislocalize due to widespread MOMA-1 expression.  

125Tg/B6 mice which exhibit 37.09 ± 7.32% MZ B cells by FACS have an observable 

accumulation of B220+ cells in the MZ (brackets – panel B, 125Tg/B6).  Finally, nonTg 

Notch2+/- mice having greatly impaired MZ B cell production (panel C, Notch2+/-) exhibit no 

discernable B220+ population in the MZ.  Further FACS analyses of additional markers  
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Figure 3-4.  Anti-insulin, 125Tg, MZ B cells localize to the appropriate areas in the 
spleen.  Eight μm splenic cryosections were stained with Ab to B220 (green) and MOMA-1 
antigen (red).  The MZ (arrows – A and D, brackets – B) is represented by the B220+ area 
outside the MOMA-1 ring.  The T cell zone (T) and B cell follicle (FO) are representatively 
labeled in A.  Ectopic patches of B cells are indicated by arrowheads in D.  total 
magnification = 100X 
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including AA4.1, CD24 (data not shown), CD1d, and CD9 (figure 3-6) confirmed that 

125Tg B cells from B6 and Notch2+/- mice are bona fide, mature MZ B cells and not T2-MZ 

precursors.   

The deregulated MOMA-1 expression in the red pulp of Notch2+/- spleens (panels C 

and D) is consistent with an earlier report (122).  Organization of the MZ requires input 

from both B cell and macrophage populations (373-376).  Thus, widespread MOMA-1 

staining in Notch2+/- spleens could be due to misplaced MOMA-1+ macrophages.  However, 

deregulated MOMA-1 expression is observed in 125Tg/Notch2+/- (figure 3-4, panel D) 

despite MZ B cell production.  Therefore, Notch2 itself may regulate, either directly or 

indirectly, the Antigen recognized by the MOMA-1 mAb and this model may reveal 

additional roles for the MOMA-1 Antigen in MZ organization.  

 

The 125Tgs efficiently allelically exclude and maintain insulin reactivity on the 
Notch2+/- background. 
 

Many BCR Tg models exhibit a lack of allelic exclusion, particularly in the case of 

autoreactive specificities.  This may result from Ig L chain gene replacement (receptor 

editing) or inclusion (receptor dilution), Ig H chain gene replacement, or expansion of 

endogenous B cells in the periphery concomitant with Tg B cell deletion.  Edited or 

allelically included B cells typically accumulate in the MZ (194, 215).  To determine if these 

events were occurring in 125Tg B cells, we stained splenocytes from anti-insulin mice with 

reagents specific for IgMa (125Tg allotype), IgMb (endogenous, B6 allotype) and insulin.  

Figure 3-5 illustrates that in nonTg B6 mice, ≥ 97.45% of the B cells are IgMb
+ and do not 

cross react with insulin (figure 3-5, panels A and B).  In 125Tg mice (B6 – C and D or 

Notch2+/- – E and F), < 5% are endogenous (IgMb
+) B cells (figure 3-5, panels C and E).  

Whereas, > 96% of the B cells are IgMa
+ and bind insulin (figure 3-5, panels D and F –  
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Figure 3-5.  The 125Tg enforces allelic exclusion in B6 and Notch2+/- B cells.  
Splenocytes from 12-13 wk old mice were stained with Ab to IgMa (Tg allotype), IgMb 
(endogenous allotype), B220, and biotinylated insulin.  Histograms and dot plots are gated 
on live, B220+ lymphocytes.  Panels A, C, and E illustrate the percentage of B cells 
expressing the endogenous IgMb allele.  Panels B, D, and F depict the percentage of B cells 
that express the 125Tg (IgMa) and bind insulin. 
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diagonal, 1:1 relationship).  These data confirm that expression of the 125Tg are maintained 

in peripheral, mature B cells and that Notch2 haploinsufficiency does not alter allelic 

exclusion or B cell specificity. 

 

Lymphopenia is not a direct cause of MZ B cell accumulation in 125Tg animals. 

A B cell lymphopenic environment has been proposed to cause a preferential accumulation 

of MZ B cells (225).  As most BCR Tg models exhibit some degree of lymphopenia, we 

analyzed the absolute numbers of total B cells in nonTg, 125Tg and helTg B6 and Notch2+/- 

mice.  At 12 wk of age, both 125Tg and helTg mice, are B lymphopenic compared to their 

nonTg counterparts (Table 3-1).  Either Tg results in decreased total B cell numbers to 30-

39% of the nonTg controls.  These findings are consistent with observations of reduced B 

cell production in Tg models in general.  Absolute numbers of MZ, FO and T1 B cells from 

nonTg, helTg, and 125Tg mice are detailed in Table 3-1.  The number of MZ B cells is either 

unchanged or significantly decreased in helTg mice compared to nonTg controls (nonTg B6, 

2.16 x 106 ± 0.76 vs. helTg/B6, 1.72 x 106 ± 0.83 – p = 0.215; nonTg Notch2+/-, 0.55 x 106 ± 

0.23 vs. helTg/Notch2+/-, 0.30 x 106 ± 0.13 – p = 0.011) indicating that a lack of antigen 

engagement does not favor MZ B cell differentiation.  Despite overall lymphopenia, MZ B 

cell augmentation only occurs in 125Tg mice (nonTg B6, 2.16 x 106 ± 0.76 vs. 125Tg/B6, 

4.86 x 106 ± 0.78 – p = 0.018; nonTg Notch2+/-, 0.55 x 106 ± 0.23 vs. 125Tg/Notch2+/-, 1.12 x 

106 ± 0.60 – p = 0.022).  Thus, lymphopenia alone does not account for the specific increase 

in MZ B cells in 125Tg mice.   
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Table 3-1.  Absolute Numbers of Total B Cells and B Cell Subsets

genotype n total B cells MZ B cells FO B cells   T1 B cells

B6 13 36.45 ± 13.21 2.16 ± 0.76 28.65 ± 10.38   2.91 ± 1.38

Notch2+/- 10 36.33 ± 13.10 0.55 ± 0.23 30.50 ± 10.67   3.27 ± 1.73

helTg/B6 10 13.50 ± 7.16 1.72 ± 0.83 9.19 ± 4.76   1.48 ± 0.87

helTg/Notch2+/- 10 13.95 ± 3.76 0.30 ± 0.13 11.12 ± 3.12   1.70 ± 0.54

125Tg/B6 7 14.09 ± 4.66 4.86 ± 0.78 6.38 ± 1.65   1.08 ± 0.49

125Tg/Notch2+/- 9 12.69 ± 4.14 1.12 ± 0.60 9.71 ± 3.68   0.62 ± 0.34

absolute number of cells (x 106 ± SD)
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CD9 and CD1d are differentially regulated by the 125Tg and Notch2. 

Fully mature MZ B cells express other surface proteins that mediate their functions 

and anatomical location.  These include CD1d and CD9.  CD1d is a non-classical MHC class 

I-like molecule which presents lipid Antigen to iNKT cells (377-379).  CD9 is a tetraspanin 

glycoprotein that organizes cell surface proteins for multiple purposes (380-383).  As both 

proteins are specifically up regulated by MZ B cells (134, 384-386), we analyzed their 

expression by FACS on splenocytes isolated from helTg, 125Tg, and nonTg mice.  In all 

cases, the levels of CD1d and CD9 were higher on MZ B cells than on FO and T1 B cells 

from the same spleen, consistent with their status as MZ B cell markers (data not shown).  

Therefore, we examined CD1d and CD9 levels specifically on MZ B cell populations (figure 

3-6, Methods).  B cells falling into the MZ gate from nonTg Notch2+/- mice (1.49 ± 0.47% of 

B220+ lymphocytes) exhibit lower levels of CD1d (figure 3-6, panel A, Notch2+/- MFI = 

34.12) upon comparison with nonTg B6 MZ B cells (figure 3-6, panel A, B6 MFI = 70.60).  

While the level of CD1d is slightly increased on 125Tg/Notch2+/- MZ B cells (figure 3-6, 

panel A, 125Tg/Notch2+/- MFI = 57.41), it does not reach the level expressed on 125Tg/B6 

MZ B cells (figure 3-6, panel A, 125Tg/B6 MFI = 105.51).  When the raw MFI of CD1d on 

each MZ B cell population is normalized to the level of B220 on the same cells, neither the 

anti-insulin nor anti-hel Tg significantly alters CD1d expression (figure 3-6, panel B).  

Additionally, MZ B cells from all lines of Notch2+/- mice expressed significantly decreased 

levels of CD1d as compared to all lines of B6 mice (p ≤ 0.037).  This suggests that CD1d 

expression is influenced, at least in part, by events downstream of Notch2 activation and 

that these BCR Tg have little effect on CD1d expression.   

The regulation of CD9 appeared more complex.  The anti-insulin specificity was 

consistently associated with increased expression of CD9 on MZ B cells (figure 3-6, panel C,  
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Figure 3-6.  CD1d and CD9 are differentially regulated by BCR and Notch2.  
Splenocytes were analyzed as in figure 3-1 with the addition of either CD1d or CD9 mAb.  
The MFI of CD1d and CD9 on MZ B cells is depicted in raw form (histograms, A and C, 
MFI in parentheses) or as a normalized mean (B and D – normalized MFI = MFI CD1d or 
CD9/MFI B220).  Sample size for each group is noted in table 3-1.  Significantly different 
population means (B and D) were determined using Student’s t-test (2-tailed, heteroscedastic 
variance). 
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125Tg/B6 MFI = 83.27 and panel D, nonTg B6 vs. 125Tg/B6 p = 0.011) while the anti-hel 

BCR was associated with decreased CD9 expression (figure 3-6, panel C, helTg/B6 MFI = 

21.26 and panel D, nonTg B6 vs. helTg/B6 p = 0.013).  A similar trend is observed in 

Notch2+/- mice even though all Notch2+/- animals exhibit lower CD9 levels.  These data 

suggest that CD9 expression is influenced by BCR but only when Notch2 signaling is intact.   

 

Concluding Remarks 

This study reveals potential interactions between the BCR and Notch2 pathways.  

The anti-insulin BCR is capable of generating a significant population of MZ B cells, despite 

a mutant Notch2 allele, whereas the naïve, anti-hel BCR cannot.  The impact of the mutant 

Notch2 protein is still evident because the number and percentage of MZ B cells in 

125Tg/Notch2+/- spleens does not equal that which is seen in 125Tg/B6.  At least two issues 

potentially explain this incomplete rescue.  First, insulin concentrations fluctuate in response 

to physiologic demands such that antigen encounter by individual B cells is variable.  Second, 

Notch2+/- animals possess one mutant (intracellular β-galactosidase) and one wild type allele.  

Therefore, despite similar surface levels of Notch2 protein in 125Tg/Notch2+/- and control 

MZ B cells, the intracellular portion of the molecule may be defective.  Thus, these studies 

reiterate the importance of Notch2 in MZ B cell development and establish the potential for 

certain BCR specificities to partially correct Notch2 deficiency.  Data showing differential 

expression of CD1d and CD9 support a paradigm in which MZ B cell phenotype is 

modulated by inputs from multiple receptors.  That is, in Notch2+/- mice, the 125Tg BCR 

cannot rescue CD1d expression but does affect CD9 levels.  Clearly, a balance of signals 

delivered through the BCR and Notch2 exists.  In this study, the 125Tg tips that balance in 

favor of MZ B cell production.  Further studies are required to define the molecular contacts 
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between the BCR and Notch2 pathways to thoroughly define how B cell specificity can 

ameliorate Notch2 deficiency. 
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CHAPTER IV 

 

THE TRANSCRIPTIONAL PROFILE OF 125Tg MARGINAL ZONE B CELLS:  
ZINC FINGER PROTEIN 532 

 

Abstract 

Marginal zone (MZ) B cells are a unique subset that is phenotypically and anatomically 

positioned to initiate rapid immune responses to blood borne pathogens.  This population is 

also recognized as a reservoir for autoreactive B cells that survive negative selection and are 

maintained in the peripheral repertoire.  While an absence of the MZ subset in gene targeted 

models infers a specific requirement for the ablated genes in question, little data exist on 

gene usage in extant MZ B cells.  Previously we have demonstrated that anti-insulin, 125Tg, 

B cells are targeted to the MZ in increased numbers.  These B cells are unique in that they 

are globally anergic to stimulation through the B cell receptor (anti-IgM or insulin), TLR4 

(LPS) and CD40.  Thus, mature autoreactive MZ B cells can be subjected to mechanisms of 

functional inactivation.  To identify known and novel genes important to MZ B cell 

maintenance and anergy, we have explored global gene expression in anti-insulin, 125Tg, B 

cells using microarray technology.  Collectively, these experiments 1) confirm the differential 

expression of mRNA encoding proteins known to be regulated in MZ B cells, 2) describe 

the transcriptome of intact anergic MZ B cells, and 3) identify a novel gene (ZFP532) that is 

highly over-expressed by these cells.  The data presented here lay the groundwork for further 

investigations into MZ B cell development and anergy maintenance.     
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Introduction 

Marginal zone (MZ) B cells are a long lived subset of splenic B lymphocytes that 

exhibit unique phenotypic and functional characteristics.  They are distinguished from 

follicular (FO) B cells by their proximal location to the splenic marginal sinuses and a unique 

constellation of surface molecules including high levels of complement receptors (CR1/2 or 

CD21/CD35) and the non-classical MHC-like molecule, CD1d [reviewed in (225) and table 

1-1].  Most splenic blood flow empties into the marginal sinuses continuously exposing MZ 

B cells to blood-borne antigens.  This subset of B cells displays a partially activated 

phenotype that allows them to differentiate rapidly into plasma cells.  Additionally, they are 

highly effective at antigen presentation to CD4+ T cells in vitro (230).   

MZ B cells develop late in ontogeny (4 weeks in rodents and 2 years in humans).  

This developmental hiatus corresponds to an infant’s inability to mount humoral responses 

to bacterial and viral pathogens.  In addition to microbial defense, the MZ is also a reservoir 

for B cells displaying autoimmune antigen receptor specificities.  MZ B cell autoreactivity 

comes in two varieties.  First, weakly cross-reactive specificities that recognize both self and 

heterologous antigens select cells into the MZ compartment (207, 225).  Second, strongly 

autoreactive specificities that recognize pathological autoantigens are also housed in the MZ.  

These include cells specific for dsDNA that have undergone receptor editing (214, 215), 

rheumatoid factors from RA patients (387), precursors of plasma cells in murine lupus (388), 

and anti-insulin B cells that are permissive of T1DM (218, 311).  These observations imply 

that the MZ compartment integrates rapid immune responses to common pathogens with 

autoreactivity.  Data on how these two seemingly conflicting processes are regulated will fill 

important gaps in our understanding of the relationship between infection and autoimmune 

disease progression. 
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Mechanisms that generate and maintain the MZ B cell phenotype include genetic 

programs that govern development, such as transcription factor (TF) induction (50, 91, 127, 

130, 389, 390), and signals from the microenvironment mediated by integrins, chemokines 

(391-393), and sphingolipids (394, 395).  Among these various inputs, BCR signaling is the 

major determinant of MZ B cell differentiation [chapter III, (18, 189, 396)].  Signal 

transduction from most receptors culminates in the induction of certain TF and hence 

transcriptional profiles (397-400).  Thus, we have chosen to focus on these genes as opposed 

to others required for MZ B cell development.  As detailed in chapter III, BCR specificity 

can partly overcome Notch2 deficiency, which is itself a complex transcriptional regulator.  

Therefore, the question as to which TF are activated or themselves up-regulated downstream 

of an autoreactive BCR arises.  While gene ablation studies have identified several TF and 

transcriptional co-activators that control MZ B cell differentiation – Notch2, Aiolos, BOB.1, 

and NF-κB1 – these models have limited utility in describing the transcriptional cohorts 

present in intact MZ B cells (reviewed in chapter I).  Additionally, autoreactive MZ B cells 

which are also anergic (125Tg) may utilize different TF than fully functioning MZ B cells 

(401).  It is important to note that, prior to studies conducted on 125Tg anti-insulin B cells, 

the concept of “anergic MZ B cells” was never discussed because in most models of anergy, 

B cells are developmentally arrested.  Thus, 125Tg MZ B cells uniquely permit the study of 

differentiation and anergy in this compartment. 

Some gene knockout models have proven useful in demonstrating specific 

transcriptional requirements in MZ B cell maturation.  A prime example of this process is 

Notch2 (reviewed in chapter I).  After interaction with the ligands, Delta and Serrate/Jagged 

(50, 402, 403) the cleaved, intracellular portion of Notch translocates to the nucleus and 

displaces repressor complexes from RBP-Jκ to activate transcription.  Both conditional (121) 
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and traditional (122) knockouts of Notch2 demonstrate its requirement in MZ B cell 

development.  Other proteins in the Notch2 signaling axis regulate MZ B cell differentiation.  

Deltex-1 and Numb are cytoplasmic proteins which potentiate and repress Notch2 signaling 

respectively (72, 76).  In the nucleus, another RBP-Jκ binding protein, MINT (Msx2-

interacting nuclear target protein), suppresses Notch2 transcriptional activity thereby 

favoring the development of FO B cells (404).  Deltex-1 is specifically up-regulated at the 

mRNA level in MZ B cells while MINT is decreased (121, 404).  There appears to be no 

statistical difference in Notch2 transcripts between MZ and FO B cells (121).  Thus, gene 

ablation models can generate useful information, but transcriptional profiling of intact MZ B 

cells may also be a useful starting point for determining which genes are important to MZ B 

cell development. 

Our studies (chapter III) demonstrate that MZ B cells develop in anti-insulin, 125Tg 

Notch2 heterozygous (Notch2+/-) mice.  These data suggest that BCR mediated signals can 

compensate for the developmental defect characteristic of Notch2+/- mice.  Evidence for an 

altered signaling program in 125Tg B cells has been previously demonstrated (218, 299, 405).  

Western blots reveal levels of tyrosine phosphorylation higher than that seen in controls, and 

as previously mentioned, 125Tg/B6 B cells are functionally anergic to exogenous stimulation 

through the BCR or TLR4 (218).  Anti-insulin B cells also demonstrate altered Ca2+ and NF-

ATc1 mobilization (405).  These phenotypic changes may be due to continual stimulation via 

insulin in vivo (299).  Collectively, these data demonstrate that signaling events downstream 

of the 125Tg antigen receptor are altered when compared to non-transgenic C57BL/6.  The 

effects of antigen receptor signaling are transduced to the nucleus by a specific cohort of TF 

which mediate gene expression and thus effector function (397-400).  We hypothesize that 
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the TF cohort of autoreactive MZ B cells will be fundamentally different from autoreactive 

FO B cells as well as WT MZ B cells.   

 

Materials and Methods 

 

Mice 

Anti-insulin, 125Tg/C57BL/6 mice have been described previously (311).  These 

mice have been maintained in a heterozygous state by backcrossing to the C57BL/6 

background for > 20 generations.  All experiments were approved by the Institutional 

Animal Care and Use Committee of Vanderbilt University.   

 

B Cell Sorting by Flow Cytometry 

Splenocytes from 125Tg/C57BL/6 mice were isolated and pooled.  Erythrocytes 

were lysed by incubation with tris-ammonium chloride and T cells were lysed by incubation 

with anti-Thy1.1 mAb and rabbit complement.  The resulting suspension was centrifuged 

over a Ficoll cushion and the resulting B cell enriched population was stained with mAb 

specific for B220, CD21, CD23, and CD5.  Cells were left unfixed for sorting as 

paraformaldehyde will crosslink cellular proteins to RNA thereby destroying it for the 

purposes of microarray (406).  Stained cells are sorted in the VAMC Flow Cytometry facility 

on a FACSaria flow cytometer (Beckton-Dickson).  B220+ cells exhibiting the characteristic 

CD21/CD23 profile for MZ (CD21hi, CD23lo/neg) or FO (CD21lo, CD23hi) B cells were 

collected for the microarray.  B220neg, CD5+ lymphocytes (T cells) and B220+, CD21neg, 

CD23neg lymphocytes (T1 B cells) were also collected for real time PCR analysis.  Samples of 

the collected cells were re-analyzed for purity by flow cytometry.   
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Microarray 

Total RNA was isolated in a standard protocol using tri-reagent (Molecular Research 

Center, Inc.).  5μg of total RNA from each population was supplied to the Vanderbilt 

Microarray Shared Resource (VMSR - Shawn Levy, Director).  This core facility carried out 

labeling, hybridization, and preliminary analysis of the samples according to the protocols 

available on their website (array.mc.vanderbilt.edu).  Labeled RNA samples were hybridized 

to the Affymetrix, Mouse Genome 430 plus 2.0 array (Santa Clara, CA).  Data were analyzed 

by GCOS software as well as publicly available programs (www.ncbi.nlm.nih.gov, 

genome.ucsc.edu, smart.embl-heidelberg.de, elm.eu.org, and www.informatics.jax.org). A 

summary of the microarray data is available at 

http://array.mc.vanderbilt.edu/project/project_info.vmsr?project_id=vmsr04JWT61.  

 

Generation of First Strand cDNA   

For real time and RT-PCR protocols, first strand cDNA was generated from 1-5μg 

total RNA using Superscript II RT (Invitrogen, Carlsbad, CA) and 0.67 μg oligo-dT primer 

(Amersham Biosciences, Piscataway, NJ) in a standard cDNA synthesis protocol. 

 

cDNA Cloning and Real Time PCR   

All oligonucleotides listed below have Tm between 59-62 oC (Integrated DNA 

Technologies, Coralville, IA).  Unless otherwise noted, primers were used at a final 

concentration of 250 nM in a 50 μl total volume containing 5 μl NaCl.  PCR reactions were 

cycled at 94 oC/1 min, 60 oC/1 min, and 72 oC/1 min 35-40 times.  PCR products of the 

appropriate size were gel purified and T/A cloned into pGEM-T easy vectors (pGEM-T 

Easy Vector System I, Promega, Madison, WI) and sequenced using an Applied Biosystems 
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3730xl DNA Analyzer (Vanderbilt-Ingram Cancer Center).  For real time PCR, 200 ng 

cDNA per well was combined with the appropriate primers and SYBR green I dye (Applied 

Biosystems – Molecular Probes, Foster City, CA) according to the manufacturer’s 

instructions (Platinum qPCR Supermix-UDG – Invitrogen, Carlsbad, CA).   

HPRT fwd (#240): 5’ AGG TTG CAA GCT TGC TGG T 3’ 

HPRT rev (#241): 5’ TGA AGT ACT CAT TAT AGT CAA GGG CA 3’  

ZnF BAC 1 fwd (#213): 5’ AGG ACG CCA AGG TCA GAC ATC TC 3’ 

ZnF cDNA 1 fwd (#212): 5’ CAG AGC TGA CCC CCA AAC AGG 3’ 

ZnF cDNA 2 rev (#219): 5’ GGT AAC GTG ATC CCT GCG TTG G 3’ 

ZnF cDNA 2 fwd (#214): 5’ CCA ACG CAG GGA TCA CGT TAC C 3’ 

ZnF BAC 2 rev (#220): 5’ TTG AGA AAC TGT GTC AGC CTC TTC TAG AC 3’ 

ZnF BAC 2 fwd (#215): 5’ GTC TAG AAG AGG CTG ACA CAG TTT CTC AA 3’ 

ZnF BAC/cDNA4 rev (#221): 5’ GGC TCC TCC AAC TTC CGC TT 3’ 

ZnF BAC/cDNA4 fwd (#216): 5’ AAG CGG AAG TTG GAG GAG CC 3’ 

ZnF BAC/cDNA6 rev (#222): 5’ GGT TCG AAT TCA GGA ACT GCC GC 3’ 

ZnF BAC/cDNA6 fwd (#217): 5’ GCG GCA GTT CCT GAA TTC GAA CC 3’ 

ZnFBAC/cDNA7rev (#223): 5’CCA ACT GTG TAG ACA GCA AAG GGT TAA GTC3’ 

ZnF BAC/cDNA7fwd (#218): 5’GAC TTA ACC CTT TGC TGT CTA CAC AGT TGG3’ 

ZnF BAC/cDNA8rev (#224): 5’ TTG AAT ACA GTC GCG GCG GTG 3’ 

MZnFox12 10fwd (#248): 5’ AAG CTC TCC TCG TGC ATA GCG G 3’ 

MZnFox12 10 rev (#249): 5’ CCG CTA TGC ACG AGG AGA GCT T 3’ 

MZnFox12 5’UTR fwd (#250): 5’ TTG GCT TCA AGA TCC TGG GTA GAG AGG3’ 

ZFP532 ATG fwd (#264): 5’ ATG ACC ATG GGG GAT ATG AAG ACC C 3’ 

ZFP532 5’ATG fwd (#263): 5’ GCA ACT GTG TGA CAG TAA CTG AAC ACT GG 3’ 
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ZFP532 212 rev (#265): 5’ CCT GTT TGG GGG TCA GCT CTG 3’ 

ZFP532 exon 6 rev (#293): 5’ TCCTCA GGG CTG GGC TTG T 3’ 

 

5’ RACE PCR 

5’ race PCR was accomplished according to the manufacturer’s instructions using the 

GeneRacer PCR kit and the primers listed below (Invitrogen, Carlsbad, CA). 

GeneRacer 5’ (#231): 5’ CGA CTG GAG CAC GGAG GAC ACT GA 3’ 

REV 5’ ZnF Race (#232): 5’ TGT GGC GGC ACA GGC TGT GGG AGG AGC TG 3’ 

FWD 3’ ZnF Race (#233): 5’ CAG CTC CTC CCA CAG CCT GTG CCG CCA CA 3’ 

 

In situ Hybridization 

In situ hybridization on spleen sections from WT and 125Tg/C57BL/6 mice was 

accomplished using either the oligonucleotides detailed below and/or a PCR-generated 

(primers 218 and 224, above) probe that was either biotinylated (EZ-link Photoactivatable 

Biotin kit – Pierce, Rockford, IL) or digoxigenin labeled according to the manufacturer’s 

instructions.  Hybridization was carried out overnight at 42 oC.  Biotinylated probes were 

counterstained with streptavidin conjugated digoxigenin and all were developed with BCP 

substrate.  

5’biotin MZnFox12C (#255): 5’/5Bio/GCA CCT TAC ACC GCC GCG ACT GTA TTC3’ 

5’biotin MZnFox12B (#254): 5’/5Bio/CCC TCT CAA GGT CAC CTG ACT GGA GC 3’ 

5’biotin MZnFox12A (#253): 5’/5Bio/GGG TTC CTG TTC TGG GTG CTA CTG CC 3’ 
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Targeted ES Cell Validation 

Southern Blotting.  Genomic DNA from WT and targeted (RRS823) ES clones 

was prepared by standard phenol-chloroform extraction (S. Pierce) and digested overnight 

with a combination of SacII and XhoI or SacII and AvrII (5.3 units/μg DNA for each 

enzyme – New England Biolabs, Beverly, MA).  20 μg of each digest were electrophoresed 

for 36 h on a 0.8% agarose gel at 35 volts.  Blots were hybridized (R. Henry) to a 32P-labeled 

1122 bp β-geo specific probe digested from pGTφLFX (targeting vector from MMRRC) 

using SacI and XmaI. 

RT-PCR of fusion mRNA.  Integration of the targeting vector into an intron 

results in a fusion mRNA consisting of the 5’ exon of the targeted gene, the splice acceptor 

sequence of engrailed 2 and β-galactosidase-neomycin coding sequence.  Thus, validation of 

successful targeting at the RNA level can be accomplished by RT-PCR using a 5’ primer 

specific to the gene of interest (#263, above) and a 3’ primer specific to β-geo (#289, 

below).  The expected size of the appropriate PCR product is 501 bp. 

β-geo rev (#289): 5’ GGA TTC TCC GTG GGA ACA AAC GG 3’ 

 

Expression Vector 

 The complete coding sequence of ZFP532 was T/A cloned from the original 

sequencing vector into pGEM-T easy using a highly processive and error-proof polymerase 

(Herculase – Stratagene, La Jolla, CA) and primers 277 and 278 (below).  Primer 277 adds a 

Kozac consensus sequence (underlined, below) 5’ of the start codon (bold, below) and 

primer 278 terminate just 5’ of the endogenous stop codon.  This insert was subcloned into 

pcDNA3.1-C-myc/his using the EcoRI and NotI sites from the pGEM-T easy multiple 



 87

cloning cassette.  The final construct was sequenced and two point mutations were fixed 

using primers 302-304 detailed below. 

Kozac fwd (#277): 5’ GCC ACC ATG ACC ATG GGG GAT ATG AAG A 3’ 

no stop codon rev (#278): 5’ TTT TTC AGC TGA ACT CAT TCT TTT GGA TTT 3’ 

EcoRV rev (#304): 5’ GTG CTG GAT ATC TGC AGA ATT GCC GCG TG 3’ 

BbsI fwd (#302): 5’ CGG GGC TGG GGA AGA CAG CCA GCA GG 3’ 

BbsI rev (#303): 5’ CCT GCT GGC TGT CTT CCC CAG CCC CG 3’ 

 

Retroviral Vector 

The coding sequence of ZFP532 and the in-frame myc and his tags were subcloned 

from the pcDNA3.1 construct into the MSCV-ires-GFP retrovector (gift of M. Boothby, 

Vanderbilt University) using PmeI and BglII. 

 

Results 

 

125Tg/B6 splenocytes can be sorted by flow cytometry to generate phenotypically 
homogenous B cell populations. 
 
 The microarray and real time PCR data presented in this chapter depend upon highly 

purified MZ and FO B cell populations.  For the microarray, a combination of B cell 

enrichment and flow cytometry was used (flow cytometric sorting only for real time 

samples).  Briefly, single cell suspensions of splenocytes from 125Tg/B6 animals were made 

and enriched for B cells by complement mediated T cell lysis (anti-Thy1.1 and guinea pig 

complement).  The resulting sample was centrifuged over a ficoll cushion to remove cell 

debris, dead cells, and residual erythrocytes.  Cells were stained with fluorochrome-

conjugated antibodies to B220, CD21, CD23, and CD5.  For the microarray, B220+ 
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lymphocytes matching the CD21/CD23 profile of MZ (CD21hi, CD23lo) or FO (CD21lo, 

CD23hi) B cells were collected and re-analyzed for purity.  For real time PCR, T1 B cells (live 

lymphocyte gate, CD21neg, CD23neg, B220+) and T cells (live lymphocyte gate, CD5+, 

B220neg) were also collected.  As shown in figure 4-1, this protocol generates T1, MZ, FO, 

and T cell populations of high purity (> 98%).  Cells from multiple sorts were combined for 

the microarray (17.5 x 106 MZ cells and 14.2 x 106 FO cells) and individual sorts (1-5 x 106 

cells each) were used for real time analysis.   For the microarray, RNA from combined, 

sorted cells was extracted and DNAse treated (6.4 μg of MZ RNA and 5.0 μg of FO) and 

transferred to the VMSR microarray core facility for labeling and hybridization to an 

Affymetrix 430 2.0 mouse gene chip.  For the purposes of data analysis, the FO B cell RNA 

was used as baseline.  Thus, all statements noting over expression of a gene by the MZ B cell 

population are in comparison to the FO sample.    

 
Two cohorts of differentially expressed genes are maintained by 125Tg MZ and FO 
B cells. 
 

To determine the global gene expression profile of anti-insulin MZ and FO B cells, I 

used an Affymetrix 430 2.0A/B gene chip that analyzes 45,101 murine genes.  Analysis of 

the hybridization signal of the fluorescently labeled RNA to each probeset allows the user to 

determine if a particular RNA is present, absent, increased or decreased.  “Present” indicates 

that a particular transcript was detectable in the sample and thus expressed by the cells in 

question.  Present transcripts may be either unchanged, increased or decreased compared to 

the baseline sample (FO B cells).  Probesets that exhibit no hybridization to the labeled 

transcripts are deemed “absent”.  It is important to note that absent transcripts may either be 

undetectable or unexpressed by the cells of interest.  In the MZ B cell sample, 16,333 genes 

(36% of total) were “present” and 1,619 (3.6% of total) of these were increased relative to  



 89

 

Figure 4-1.  125Tg splenocytes can be sorted by flow cytometry to generate 
phenotypically homogenous B cell populations.  Splenocytes from 125Tg mice were 
stained with antibodies to CD21, CD23, CD5, and B220 and sorted by flow cytometry.  
Single, live cells matching the immunophenotypic properties of each population were 
collected and reanalyzed for purity.  All samples exhibited > 94% purity at the time of RNA 
isolation.  These results are typical of those obtained from WT C57BL/6 splenocytes that 
were used in real time PCR. 
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the FO B cell sample.  Of those, 554 genes (1.2% of total) were increased ≥ 2 fold.  

Conversely, 17,114 genes (38%) were present in the FO B cell sample and 2,397 (5.3%) of 

these were over expressed compared to the MZ B cell sample.  574 genes (1.3%) were 

increased ≥ 2 fold.  The study of differentially expressed genes is facilitated by at least a two 

fold difference between the populations of interest.  The expression levels of the 554 and 

574 genes meeting this criterion were broken down into fold over expression categories as 

depicted in figure 4-2.  Of the genes differentially expressed at least 2 fold or more, most 

were in the 2-3.8 fold range for both cell types.  Only a very small number of genes (19 in 

MZ and 5 in FO) were differentially expressed 8 fold or more.  It is important to note that a 

difference less than two fold is difficult to study but may be very biologically important as in 

the case of Notch2.  Collectively, these data indicate that the phenotypic differences between 

MZ and FO B cells are governed by two sets of differentially expressed genes.  The first is a 

large cohort that exhibits small differences in expression.  The second is small group of 

genes that are greatly differentially expressed.   

 

The microarray data confirm the differential expression of genes known to be 
regulated in WT C57BL/6 MZ and FO B cells. 
 

The gene expression pattern of anergic MZ B cells likely differs from that of fully 

functional MZ B cells.  Thus, it was important to confirm that certain genes were regulated 

in 125Tg MZ B cells as would be expected from WT MZ B cells (table 4-1).  Several genes 

that are specific to MZ B cells at the protein level in WT C57BL/6 MZ B cells (CD21 and 

CD1d) are upregulated at the RNA level.  Conversely, genes that are characteristic of FO B 

cells such as CD62L and CD23 are decreased in the MZ B cell population.  While not all 

differentially expressed proteins can be explained by modulated RNA expression, these data 

nevertheless serve as a reliable internal control for the microarray itself.  Also, these data  
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Figure 4-2.  A small cohort of genes is over-expressed greater than two fold by 125Tg 
MZ and FO B cells.  554 and 574 genes were over-expressed at least two fold or greater by 
the MZ and FO B cell populations, respectively.  These genes were delimited into 2 fold 
increment categories.  The majority of over expressed genes fall into the 2-3.8 fold range.  
The genes over-expressed eight fold or greater (19 MZ and 5 FO) are largely unidentified 
transcripts.   
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Table 4-1.  Known Marginal Zone B Cell Gene Expression Patterns Confirmed by Microarray Analysis

FOLD GENE FOLD GENE 

2.6 CD86 2 CD62L (LN homing R) 

3.4 CD21 (CR2) 2.2 IL4Rα 

5.8 Deltex (Notch2 signaling) 5.2 CD93 (Ly68, AA4.1, C1qR) 

6.4 CD1d 6.2 CD23 (FcεRII) 

9.6 Edg3 (S1P3-R) 

Increased Decreased 
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suggest that information gained from 125Tg MZ B cells may provide useful in the study of 

WT MZ B cells. 

 

Different transcription factors are up-regulated at the RNA level by MZ and FO B 
cells.   
 
 A central hypothesis in the field of mature B cell fate determination centers on BCR 

signaling as the determining factor of mature B cell phenotype.  One major outcome of 

different receptor signaling pathways is to activate certain TF that ultimately alter gene 

expression (401, 407, 408).  Thus, the microarray data were specifically analyzed for known 

and putative TF expression levels.  Putative TF were defined as having sufficient sequence 

homology to known TF or specific domains characteristic of TF.  As transcriptional co-

activators are often as important as the TF itself in determining cell specificity, these were 

also included.  Sixteen TF or transcriptional co-activators were identified as over expressed 

by MZ B cells and 20 by FO B cells ≥ 2 fold.  Tables 4-2 and 4-3 detail these factors as well 

as their classification and the specific fold expression.  Many genes on this array are 

represented by more than one probeset.  Accordingly, some genes were identified multiple 

times and this is noted under the fold expression column where applicable.  This finding also 

serves as internal validation for the efficacy of the array.  Many zinc finger (ZF) containing 

proteins were identified in both populations.  These types of TF are often involved in 

lineage restriction.  Specifically, GKLF, IKLF, and Egr1 are known to regulate fate decisions 

in other tissues (401, 409-416).  Another TF, HES1 is itself a transcriptional target of Notch 

activation and was specifically up-regulated by MZ B cells (417).  The B cell specific 

functions of most of the TF identified are not known and may be implicated in either cell 

fate determination and/or anergy maintenance.  These data are a useful starting point for  



Table 4-2.  Known and Putative Transcription Factors and Transcriptional Cofactors Increased in Marginal Zone B Cells

FOLD GENE Subfamily Family Class Superclass

2 HES1 Hairy bHLH Basic Domains

2 GKLF (KLF4) Krueppel-like Developmental and Cell Cycle C2H2 ZnF Zn Coordinating

2.2 Mlf1 cofactor

2.2 Ddit3 leucine zipper (bzip) Basic Domains

2.2, 2.4 Egr1 (Krox20) Egr/Krox Developmental and Cell Cycle C2H2 ZnF Zn Coordinating

2.4 Trps1 GATA factors diverse cys4 ZnF Zn Coordinating

2.4 ZFP40 (NTfin12) Developmental and Cell Cycle C2H2 ZnF Zn Coordinating

2.4 ZFP73 C2H2 ZnF (KRAB) Zn Coordinating

2.4, 2.6 SpiC Ets-type Tryptophan Cluster Helix-Turn-Helix

2.6 FosB Fos AP1-like components leucine zipper (bzip) Basic Domains

2.8 Cbfa2t3h Heteromeric CCAAT factors Heteromeric CCAAT factors β-scaffold with minor groove contacts

3.4 Atf3 CRE-BP/ATF AP1-like components leucine zipper (bzip) Basic Domains

3.6 IKLF (KLF5) Krueppel-like Developmental and Cell Cycle C2H2 ZnF Zn Coordinating

4.8 Trim27 ZnF (cofactor) Zn Coordinating

5.8 Dtx1 ZnF (intermediate) Zn Coordinating

12 ZFP532 C2H2 ZnF Zn Coordinating

batesj
Text Box
94



Table 4-3.  Known and Putative Transcription Factors and Transcriptional Cofactors Increased in Follicular B Cells

FOLD GENE Subfamily Family Class Superclass

2 C/EBP C/EBP-like factors leucine zipper (bzip) Basic Domains

2 ZFP207 C2H2 ZnF Zn Coordinating

2 Mynn (SBBIZ1) C2H2 ZnF (BTB/POZ) Zn Coordinating

2, 3.4 Crem  CREB leucine zipper (bzip)  Basic Domains 

2.2 Rnf2 (Ring1b) ZnF (ring) Zn Coordinating

2.2 ZFP58 (Mfg1) C2H2 ZnF Zn Coordinating

2.2 Bcl6 C2H2 ZnF (BTB/POZ) Zn Coordinating

2.2 Runx1 Runt Runt β-scaffold with minor groove contacts

2.4 Fkh Developmental Regulators Forkhead/Winged helix Helix-Turn-Helix

2.6 Mrg1 Homeo Domain Helix-Turn-Helix

2.8 Pbx1 PBC Homeo Domain Only Homeo Domain Helix-Turn-Helix

2.8 Mxi1 Mad/Max Cell-Cycle Controlling factors Helix loop helix/leucine zipper factors Basic Domains

2.8 ZFP218 ZnF Zn Coordinating

3 Fli1 Ets-type Tryptophan Cluster Helix-Turn-Helix

3.2, 5 ZFP318 (TZF-L) C2H2 ZnF Zn Coordinating

3.2 ZFP118 (ZFP53) C2H2 ZnF (KRAB) Zn Coordinating

3.6 ZFP36l2 C3H Zn Coordinating

3.6 Pknox1 Homeo Domain Helix-Turn-Helix

3.6, 6.4 Maf2 Maf AP1-like components leucine zipper (bzip) Basic Domains

5.4 Bach2 Jun AP1-like components leucine zipper (bzip) Basic Domains

batesj
Text Box
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further investigations into the transcriptional regulation of mature B cell development and 

anergy.  

 

A novel transcription factor is over-expressed 12 fold by 125Tg MZ B cells. 
 

Of striking note in the MZ B cell cohort of genes was a transcript identified as a 

RIKEN cDNA, C530030I18Rik, which was over-expressed 12 fold when compared to the 

FO cohort (later termed ZFP532, gene ID: 328977, MGI: 3036282).  Three published 

transcripts were identical to this cDNA – IMAGE: 30618961 (gb: BC094671), IMAGE: 

6841127 (gb: BC067032), and IMAGE: 4012958 (gb: BC046409).  When analyzed, the 

cDNA predicted a protein structure encoding ZF domains of the C2H2 type.   Domains of 

this kind are typical of TF of the Krueppel ZF family.  As Krueppel-like factors are common 

in binary cell fate decisions, this gene necessitated further characterization. 

ZFP532: In silico data – Genomic, Transcript, and Predicted Protein 

Structures.  The entire gene encoding ZFP532 spans 108,703 bp on murine chromosome 

18E1 (gb: NT_039674) (figure 4-3, panel A).  Comparison of the published cDNA to the 

genomic sequence indicates eight exons (exon 1: 282 bp, 2: 109 bp, 3: 2352 bp, 4: 113 bp, 5: 

167 bp, 6: 777 bp, 7: 112 bp, and 8: 1006 bp).  The bulk of the gene is made up of seven 

introns of greatly divergent sizes (intron 1: 2,776 bp, 2: 40,085 bp, 3: undetermined, 4: 2,517 

bp, 5: 1,267 bp, 6: 55 bp, 7: 24 bp).  The full length cDNA is 5,028 bp (figure 4-3, panel B).  

Interestingly, this gene encodes a 405 bp 5’ untranslated region (UTR) and a very long 3’ 

UTR of 1,512 bp.  A 3’ UTR of this size is most likely involved in transcript regulation 

(stability or degradation) and data regarding this region will be discussed below (418, 419).  

The remaining 3,111 bp is predicted to encode a protein of 1,036 amino acids or 110.9 KDa.  

No post-translational modifications are predicted by the primary amino acid structure.   
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Figure 4-3.  ZFP532 is a large gene that likely encodes a zinc finger transcription 
factor.  The position of ZFP532 on murine chromosome 18 and the intron/exon structure 
of the gene (108,703 bp) are depicted in A.  The full length mRNA including 5’ and 3’ UTR 
(green) is 5,028 bp (B).  The contributions of the eight exons are shown in proportion to the 
mRNA and predicted protein structure (C).  Exons 2-6 contribute to the final protein.  Low 
complexity domains are in pink, and C2H2 zinc finger domains are in blue (C). 

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8

A.  Genomic Organization

B.  mRNA – 5,028bp

coding region – 3,111 bp 3’ UTR – 1,512 bp5’ UTR – 405 bp

C.

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8

A.  Genomic Organization

B.  mRNA – 5,028bp

coding region – 3,111 bp 3’ UTR – 1,512 bp5’ UTR – 405 bp

C.

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8

A.  Genomic Organization

B.  mRNA – 5,028bp

coding region – 3,111 bp 3’ UTR – 1,512 bp5’ UTR – 405 bp

B.  mRNA – 5,028bp

coding region – 3,111 bp 3’ UTR – 1,512 bp5’ UTR – 405 bp

C.
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ZFP532 is expected to have eight C2H2 ZF domains and several regions of low complexity 

(figure 4-3, panel C).  No traditional transactivation domains are noted, and thus, ZFP532 

might be itself, intrinsically inhibitory.  No nuclear localization sequence is indicated.  As ZF 

domains are commonly employed in nucleic acid (DNA and RNA) binding as well as 

protein-protein interactions, ZFP532 likely homodimerizes with itself or heterodimerizes 

with other ZF proteins.  This is a common characteristic of Krueppel-like TF.  Such an 

interaction could also allow entrance into the nucleus. 

An Evolutionary Perspective on ZFP532.  Based on sequence homologies to 

predicted proteins in other species, ZFP532 is conserved in Class Amniota only.  There are 

two orthologs – ZNF532  in  H. sapiens  (gb:  NM_018181,  protein:  Q7L7Z7 –  figure 4-4)  

located  on chromosome 18q21.32 and ZNF532 in R. norvegicus (gb: NM_225923, protein 

1311719) located on chromosome 18q12.1.  Only one homolog is predicted in G. gallus (gb: 

XP_424459, locus: 426851) encoded on an undetermined chromosome.  A lack of 

conservation in lower order animals (e.g. D. melanogaster and C. elegans) likely indicates a 

specialized function for ZFP532 in higher order organisms.  Regulating the differentiation of 

mature B cell subsets or maintaining anergy maintenance would fit with this evolutionary 

perspective.     

Validation of ZFP532 Expression in Lymphocytes.  Before delving further into 

the biology of ZFP532, I aimed to validate it’s over expression by MZ B cells.  Primers were 

designed that spanned the entire published cDNA sequence (see Materials and Methods).  

These primers were used in a standard semi-quantitative RT-PCR assay on RNA from sorted 

125Tg MZ and FO B cells (figure 4-5, panel A).  Serial 2-fold dilutions of the cDNA were 

used as template, such that by this method, ZFP532 appears to be over expressed 8-10 fold 

by 125Tg MZ B cells.  ZFP532 expression was also analyzed by real time PCR on RNA  
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Figure 4-4.  Murine ZFP532 has one human ortholog, ZNF532.  The predicted protein 
structures of ZNF532 (human, above) and ZFP532 (murine, below) are shown in 
proportion to one another.  The human protein encodes seven additional C2H2 zinc finger 
domains (blue).  The areas not shaded in green exhibit > 80% amino acid identity. 

ZNF532 - human ortholog (Q7L7Z7)
1301 aa
15 - C2H2 ZnF

ZFP532 - murine (NP_997138)
1036 aa
8 - C2H2 ZnF



 100

 

Figure 4-5.  ZFP532 over-expression is validated by semi-quantitative RT-PCR and 
real time PCR.  RNA from sorted 125Tg/C57BL/6 MZ and FO B cells was used as 
template for semi-quantitative RT-PCR employing 2 fold serial dilutions (A).  Data are 
representative of three FACS sorts and four RT-PCR experiments.  RNA from sorted MZ, 
FO, and T1 B cells as well as T cells from 125Tg and WT C57BL/6 mice was used as 
template in real time PCR (B).  Data are representative of four FACS sorts (distinct from 
those in A) and five to seven individual real time experiments.  T1 B cells and T cells do not 
express ZFP532 transcript above background levels (not shown).  Absolute amounts of PCR 
product vary between experiments such that ZFP532 expression is normalized to a 
housekeeping gene (HPRT) in each experiment.  The values are reported as relative fold 
over-expression = [cell 1 (pg ZFP532/input)/(pg HPRT/input)]/[cell 2 (pg 
ZFP532/input)/(pg HPRT/input)]. 
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samples derived from WT and 125Tg MZ, FO, and T1 B cells and T cells.  By both RT-PCR 

and real time PCR, neither T cells nor T1 B cells expressed ZFP532 above background levels 

(data not shown).  The relative levels of ZFP532 transcript among WT and 125Tg MZ and 

FO B cells are depicted in panel B of figure 4-5.  WT FO B cells express the least ZFP532 

while 125Tg MZ B cell express the most.  Surprisingly, the level of ZFP532 is increased in 

125Tg MZ and FO B cells over their WT counterparts, but is always highest in the MZ 

subset.  Expression can be summarized thusly: 125Tg MZ > WT MZ > 125Tg FO > WT 

FO.  This data supports three conclusions.  ZFP532 is not expressed by T cells, increases 

with maturation in B cells (MZ and FO > T1), and increases in anergic cells (125Tg > WT).   

ZFP532 Expression Profiling in Other Cell Types.  The expression of ZFP532 in 

other tissues, both primary cells and cell lines, was established using RT-PCR (primary data 

not shown).  The results of these experiments are summarized in table 4-4.  Expressed 

sequence tag (EST) data from the national database (NCBI) have also been compiled and 

demonstrate a very wide tissue distribution outside the lymphoid lineage.  In figure 4-6, 

relative transcript abundance is indicated by the intensity of the dot.  Prior to these studies, 

ZFP532 transcripts had not been demonstrated in the spleen or in B or T cells.  This 

observation tangentially supports the hypothesis that ZFP532 is upregulated by anergic B 

cells which would be infrequent in a normal polyclonal repertoire. 

 

Primary, murine B Cells express the full length ZFP532 transcript typical of neuronal 
tissue.    
 
 At the beginning of this study, the only published full length cDNA sequences for 

ZFP532 were from whole brain (C57BL/6, BC094671) and embryonic spinal cord 

(C57BL/6, AK083001).  A second, shorter transcript had been isolated from a metastasized  
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Table 4-4.  ZFP532 Expression by RT-PCR and Real Time PCR Analysis in Cell Lines

 and Primary Tissues 

cell line cell type ZFP532 real time RT-PCR

WEHI-231 murine immature B cell lymphoma high 6 12

EL4 mature T cell lymphoma high 0 1

jurkat human T cell lymphoma negative 6 3

38-B9 murine pro-B cell negative 2 3

RAW macrophage negative 0 3

S107 plasma cell negative 0 2

S194 plasma cell negative 0 2

J558L plasma cell negative 0 2

P5424 pro T cell negative 0 2

LN-EBV human peripheral B cell, immortalized negative 0 3

M12 mature B cell lymphoma negative 0 2

RRS823 ZFP532 targeted ES cells (heterozygous) positive 4 1

TTS wild type ES cells positive 4 1

tissue source ZFP532 real time RT-PCR

whole brain WT/C57BL/6 high 0 6

splenic B cells WT/C57BL/6 positive 0 7

     T1 WT/C57BL/6 negative 7 0

     FO WT/C57BL/6 low 7 0

     MZ WT/C57BL/6 high 7 0

total B cells NF-κB1-/- C57BL/6 positive 0 3

splenic B cells 125Tg/C57BL/6 positive 1 8

     T1 125Tg/C57BL/6 negative 5 0

     FO 125Tg/C57BL/6 low 5 5

     MZ 125Tg/C57BL/6 high 5 6

total B cells NF-κB1-/- 125Tg/C57BL/6 positive 0 2

lymph node WT/C57BL/6 positive 0 2

bone marrow WT/C57BL/6 positive 0 2

thymus WT/C57BL/6 positive 0 2

splenic T cells WT/C57BL/6 negative 7 3

splenic T cells NF-κB1-/- C57BL/6 positive 0 3

splenic T cells 125Tg/C57BL/6 negative 0 3

splenic T cells NF-κB1-/- 125Tg/C57BL/6 positive 0 3

# of experiments

Primary Cells

Cell Lines

# of experiments
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Figure 4-6.  Expressed sequence tag (EST) analysis demonstrates wide tissue 
distribution for ZFP532 transcripts.  These data are summarized from GenBank 
accessions.  Each tissue (“pool name”) has a total number of EST associated with it (“total 
EST”).  Of these, a certain number were identical to portions of the full length ZFP532 
mRNA (“gene EST”).  The proportion of ZFP532 transcripts out of the total for each tissue 
is indicated graphically by the opacity of the dot.  The number of ZFP532 transcripts per 
million in each tissue is also given. 

Pool name transcripts per 10^6 gene EST total EST
bone 77 3 / 38907

bone marrow 26 1 / 37513
brain 126 62 / 488469
colon 0 0 / 52042
eye 158 27 / 170141

heart 0 0 / 53201
kidney 17 2 / 117081
liver 38 4 / 104513
lung 0 0 / 43546

lymph node 39 1 / 25585
mammary gland 54 19 / 348702

muscle 0 0 / 19385
ovary 0 0 / 14892

pancreas 123 10 / 81176
placenta 0 0 / 32705

pituitary g... 22 1 / 44225
skin 35 3 / 83617

spleen 0 0 / 69426
stomach 63 2 / 31521

testis 9 1 / 103166
thymus 20 2 / 99751
uterus 0 0 / 6585

egg 41 1 / 23867
pre-implantation 166 26 / 155959
post-implantation 32 2 / 61174

mid-gestation 153 65 / 424206
late-gestation 99 22 / 220025

neonate 0 0 / 57255
post natal 43 3 / 68716

adult 42 36 / 850802

Breakdown by Developmental Stage

Breakdown by Tissue
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mammary tumor in another mouse strain (Czech II, BC046409).  As depicted in figure 4-6, 

there was no EST data from whole spleen or purified B cells in the public database.  To rule 

out alternative splicing and determine the transcript structure in B lymphocytes, the entire 

ZFP532 transcript from both WT/C57BL/6 and 125Tg/C57BL/6 purified B cells was 

cloned and sequenced.  Primers were designed according to the published full-length cDNA 

(see Materials and Methods) and used to sequence the cDNA from first strand, oligo-dT-

primed mRNA.  The coding sequence matched the two full length clones previously 

described in neuronal tissue.  However, differences in the 3’ UTR of ZFP532 transcript from 

125Tg B cells were discovered (figure 4-7).  A 35 bp repeat and a GG dinucleotide were 

found in the 125Tg B cells that matched the previously published mammary tumor sequence 

but were absent from the WT B cell, brain, and embryonic stem cell sequences.  These 

differences were confirmed in three subsequent cloning experiments.  The 35 bp repeat and 

GG dinucleotide were analyzed by UTRscan (www.ba.itb.cnr.it/BIG/UTRScan).  No 

significant homologies to known regulatory sequences were found.  The 3’ UTR of many 

transcripts serves to regulate RNA stability and efficiency of translation.  The observation 

that the anergic, 125Tg, ZFP532 sequence shares 3’ UTR motifs with one isolated from a 

tumor is very intriguing and may require further investigation once the biological role of 

ZFP532 is determined. 

 

Expression cloning defines the subcellular localization of ZFP532 in fibroblasts. 

 As ZFP532 is a novel gene, no anti-sera or mAb exist that recognize this protein.  To 

study the subcellular localization of ZFP532, the coding region was cloned by PCR from a 

previously generated sequencing vector (BC094671, Open Biosystems, Birmingham, AL).  A 

consensus Kozac sequence was added 5’ of the ATG start codon and the entire coding  
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Figure 4-7.  The 3’ UTR of ZFP532 encoded by 125Tg/C57BL/6 B cells is distinct 
from other full-length transcripts.  RNA was isolated from 125Tg and WT C57BL/6 
purified B cells.  The full length mRNA were cloned by PCR and subsequently sequenced.  
Those sequences were compared to published sequences from brain (NM_207255), 
embryonic stem cells (BC067032), and a mammary tumor (BC046409).  The 3’ UTR 
(shown) from the 125Tg B cells shares a 35 bp repeat and GG dinucleotide with the 
mammary tumor sequence but not with ES, brain, or WT B cell sequences.  The last 
nucleotide shown (#399) is approximately 700 bp 5’ of the polyA tail. 

10 20 30 40 50 60 70 80 90 100
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

brain - NM_207255.1 ACAAAAGAGGTCAGGAGTTCAGTAGGGTGTCCTTCAGTCCATCTGGGAGAGTGA------------------------------------GGAAGAAGAG
ES - BC067032.1 ......................................................------------------------------------..........
WT B cell - clone_2-1 ......................................................------------------------------------..........
WT B cell - clone_2-3 ......................................................------------------------------------..........
125Tg B cell - clone_9-2 ......................................................TAGGGTGGGTGTCCTTCAGTCCATCTGGGAGAGTGA..........
125 Tg B cell - clone_9-3 ......................................................TAGGGTGGGTGTCCTTCAGTCCATCTGGGAGAGTGA..........
125 Tg B cell - clone B10-1 ......................................................TAGGGTGGGTGTCCTTCAGTCCATCTGGGAGAGTGA..........
mammary tumor - BC046409 ......................................................TAGGGTGGGTGTCCTTCAGTCCATCTGGGAGAGTGA..........

110 120 130 140 150 160 170 180 190 200
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

brain - NM_207255.1 ATTCAAAAAGTGGAGACAGTGGAGCTGGCGAGTTTTCTAGGTTAGTTCACAGGCTGACTTACAGGGCACTAGGAGGCAGGCTAGGAAAAGGGCAGCCTGT
ES - BC067032.1 ....................................................................................................
WT B cell - clone_2-1 ....................................................................................................
WT B cell - clone_2-3 ....................................................................................................
125Tg B cell - clone_9-2 ....................................................................................................
125 Tg B cell - clone_9-3 ....................................................................................................
125 Tg B cell - clone B10-1 ....................................................................................................
mammary tumor - BC046409 ....................................................................................................

210 220 230 240 250 260 270 280 290 300
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

brain - NM_207255.1 GGTCAGAGTTGAAAGTCATAATTAGACCTATAGCTCTCTATTGTCAGGTTTTGTCATAGAACTCACCAACTATTCCGAAGACATATATATACTTCAAGGG
ES - BC067032.1 ....................................................................................................
WT B cell - clone_2-1 ....................................................................................................
WT B cell - clone_2-3 ....................................................................................................
125Tg B cell - clone_9-2 ....................................................................................................
125 Tg B cell - clone_9-3 ....................................................................................................
125 Tg B cell - clone B10-1 ....................................................................................................
mammary tumor - BC046409 ....................................................................................................

310 320 330 340 350 360 370 380 390
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

brain - NM_207255.1 TATCAAGTATATCTCTGGTTCTTGATAGGGACAAAAGGGCAGGTTTGACTTAACCCTTTGCTGTCTACACAGTTGGG--TTCCTGTTCTGGGTGCTACT
ES - BC067032.1 .............................................................................--....................
WT B cell - clone_2-1 .............................................................................--....................
WT B cell - clone_2-3 .............................................................................--....................
125Tg B cell - clone_9-2 .............................................................................GG....................
125 Tg B cell - clone_9-3 .............................................................................GG....................
125 Tg B cell - clone B10-1 .............................................................................GG....................
mammary tumor - BC046409 .............................................................................GG....................
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sequence was inserted into pcDNA3.1 encoding in-frame myc and 6X-histadine epitope 

tags.  This vector was transfected into NIH-3T3 fibroblasts and ZFP532 expression was 

monitored by staining with anti-myc mAb (9E10).  Confocal microscopy (figure 4-8) depicts 

ZFP532-myc/his protein (green) in the cytoplasm and nuclei (red by propidium iodide, 

panel A) of transfected NIH-3T3 cells but not in NIH-3T3 transfected with an empty, 

control vector (panel B).  An alternate counter-stain that outlines the actin cytoskeleton (red 

by phalloidin-TRITC) is shown in panel C.  From these data, it is apparent that ZFP532 can 

be found in the nucleus.  However, the majority of the protein localizes in a perinuclear 

pattern.  This could be due to over-expression of ZFP532 by the vector or a lack of an 

appropriate dimerization partner in NIH-3T3 cells.  As mentioned previously, ZFP532 does 

not encode a canonical nuclear localization sequence and likely needs to pair with another 

TF which has this domain to efficiently enter the nucleus.  As C2H2 ZF proteins can also 

bind dsRNA, ZFP532 might interact with rRNA molecules.  This hypothesis correlates well 

with the observed localization pattern in NIH-3T3 cells.  Clearly, further experiments using 

different cell types as well as a ZFP532 specific mAb are required. 

 

ZFP532 has been targeted for germline disruption in embryonic stem cells. 

 Gene trapping strategies (targeting by randomly integrated retroviral vectors) have 

progressed in leaps over the last few years.  The Mutant Mouse Regional Resource Center 

(MMRC, www.mmrrc.org) is an NCRR-NIH funded foundation that provides targeted ES 

cells at a minimal cost to researches in academia.  Their database of targeted ES clones was 

searched for homologies to ZFP532, and two appropriate clones were obtained (special 

thanks to E. Oltz, S. Pierce, and The Functional Genomics of Inflammation program project 

grant).  Sequence analysis of clone RRS823 indicated that the trapping vector had integrated  
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Figure 4-8.  ZFP532 protein exhibits a predominantly perinuclear pattern in 
transfected NIH-3T3 fibroblasts.  The entire coding region of ZFP532 was cloned into a 
eukaryotic expression vector (pcDNA3.1) encoding in-frame 3’ myc and 6XHIS epitope 
tags.  This vector was transfected into NIH-3T3 fibroblasts and ZFP532 expression was 
revealed by anti-myc mAb (green, A-C) and confocal microscopy.  In A (ZFP532 vector) 
and B (empty vector), propidium iodide was used to stain nucleic acids (red).  In C, TRITC 
conjugated phalloidin was used to stain the cytoskeleton (red).  total magnification = 400X  

pcDNA-ZFP532-myc/his pcDNA-empty-myc/his

pcDNA-ZFP532-myc/his

A B

C

pcDNA-ZFP532-myc/his pcDNA-empty-myc/his

pcDNA-ZFP532-myc/his

A B

C
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into intron 2 which is 40,085 bp in length (figure 4-9).  Preliminary Southern blots using a 

probe specific to the β-galactosidase-neomycin insertion sequence confirm that the vector 

has recombined into the 3’ region of intron 2 (figure 4-9, panel A and B).  RT-PCR analysis 

of targeted, RRS823, and parental stem cells confirms that a fusion transcript is being 

generated from the targeted locus (figure 4-9, panel C).  These stem cells have been injected 

into blastocysts and the resulting agouti pups are currently being backcrossed onto the 

C57BL/6 background. 

  

Discussion 

 MZ B cells are critical for host defense and represent a reservoir for autoreactivity, 

thus the mechanisms that contribute to their maturation and maintenance in the periphery 

are a compelling topic for investigation.  As BCR signaling is critical for mature B 

lymphocyte differentiation likely via the induction of a particular set of TF, I have 

investigated the TF profiles of autoreactive, anergic MZ and FO B cells isolated from 

125Tg/C57BL/6 mice.  These studies are unique in at least two ways.  First, intact 

lymphocytes are used as the starting point.  Second, the cells are autoreactive and 

functionally unresponsive to BCR and TLR stimulation.  In other models, anergized cells do 

not mature into MZ and FO B cell subsets, and thus singular information can be garnered 

from this model.  Despite a lack of proliferation to LPS challenge, 125Tg, anti-insulin, MZ B 

cells exhibit the appropriate surface markers and reside proximal to the marginal sinus 

(chapter III).  Thus, I feel that these cells are best described as bona fide MZ B cells that 

have been anergized.  Furthermore, microarray analysis demonstrates that known gene 

expression patterns are appropriately maintained in 125Tg MZ B cells as is expected from 

WT MZ B cells (table 4-1).  While protein levels do not always correlate with transcript  
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Figure 4-9.  ZFP532 has been targeted for germline disruption in embryonic stem 
cells.  Strategic digests of genomic DNA focusing on intron 2 (A) allowed pinpointing of 
the retroviral integration site to the 3’ end of that intron by Southern blot analysis (B) using a 
β-geo specific probe.  ZFP532-β-geo fusion RNA was detected by RT-PCR using ZFP532 
and β-geo specific primer pairs (C). 
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levels, these data nonetheless serve as a sensible internal control that authenticates the MZ 

phenotype.  

 Microarray data is useful in several respects.  In the widest, most general sense, it 

allows the researcher to obtain a synopsis of gene expression in a particular cell type.  On the 

whole, more genes are being actively transcribed (“present”) in the FO population than in 

the MZ – 17,114 (38%) vs. 16,333 (36%), respectively.  Thus, far from being quiescent, 

mature, anergized FO and MZ B cells are actively maintaining their phenotype and anergic 

state.  Interestingly, of the genes present in each sample, only a small percentage are 

increased in either subset relative to the other (FO – 2,397 genes or 14% of present/5.3% of 

total array vs. MZ – 1,619 genes or 9.9% of present/3.6% of total array).  One might infer 

that the majority of genes transcribed are responsible for general B cell characteristics and 

that the 10-15% that are differentially expressed are responsible for the differences in 

phenotype.  While small changes in gene expression are almost certainly biologically 

significant, they are typically hard to assay by normal laboratory methods.  Thus, the genes 

that are upregulated at least 2 fold or greater are, in actuality, the only ones amenable to 

study (figure 4-2).  In both populations, this is a very small percentage of the total array (FO 

– 574 genes/1.3% vs. MZ – 554 genes 1.2%).  Taken together, these data imply that 

relatively large differences in phenotype (MZ vs. FO) are maintained by a few genes that 

exhibit minimal differences in expression.  Thus, while gene targeted models are sometimes 

useful in elucidating gene function, global gene profiling will be more valuable to define how 

developmental programs are ultimately executed.              

Among genes that are up-regulated in either MZ or FO B cells at least two fold or 

greater exists a particular contingent of TF.  As transcription is often controlled by large 

multimolecular complexes, it is useful to look at these profiles as a whole.  Inferences can be 
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made about some of the known genes returned by the microarray.  For example, Hes1 (hairy 

enhancer of split 1, increased 2 fold) is a target gene of Notch family members.  As Notch 

signaling is required by MZ B cells, it is reasonable to assume that Notch target genes would 

be up-regulated by this population.  Deltex1 (increased 5.8 fold), while not a TF itself, is a 

critical facilitator of Notch2 signaling.  Preferential expression of Deltex1 by MZ B cells has 

been reported earlier (121).  Both findings are consistent with the known requirement for 

Notch2 in MZ B cell generation.  Interestingly, Notch2 itself was not up-regulated two fold 

or more.  This may indicate that facilitators of Notch2 signaling are more critical to MZ B 

cell development than the gene itself.  Alternatively, the regulation of Notch protein may be 

more highly regulated than Notch transcripts (68, 72, 74, 78).  In both cell types many ZF 

containing known and putative TF are up-regulated.  TF of this type are common in binary 

cell fate decisions (e.g. Klf4/GKLF, Zfpn1a1/Ikaros, Zfpn1a3/Aiolos, and Gata3)(409-416).  

A function for GKLF and IKLF in B cells has not been reported previously and require 

further investigation. 

The most striking observation in this microarray is that a novel gene, Zfp532, is up-

regulated 12 fold by the MZ B cell population.  The abundant transcript levels were validated 

independently by semi-quantitative RT-PCR and real time PCR on sorted MZ, FO, and T1 

B cells as well as in T cells.  Intensive molecular characterization of this gene was done using 

traditional laboratory techniques and resources available through public databases 

(www.ncbi.nlm.nih.gov).  Zfp532 encodes a predicted protein of 110 KDa.  The structural 

features of this protein are consistent with eight C2H2 ZF domains, no nuclear localization 

sequence, and no traditional transactivation domains.  Thus, ZFP532 may dimerize with 

other TF and is most likely repressive.  The function of the ZF domains could be in protein-

protein interactions, nucleic acid binding, or both.  As consensus sequence binding sites are 
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often dictated by both subunits in a TF complex, the physical spacing and overall charge of 

the ZF domains in ZFP532 could alter the target genes recognized by its binding partner(s) 

(127, 129, 130, 146, 420).  Alternatively, ZFP532 could be an RNA binding protein.  This 

would be consistent with its subcellular localization (perinuclear) observed in preliminary 

expression experiments (figure 4-8). However, these experiments were done in NIH-3T3 

cells, a fibroblast line, which may lack the appropriate binding partner(s) to shuttle ZFP532 

into the nucleus.  Unfortunately, rationalizing the role of an RNA binding protein in MZ B 

cell differentiation is somewhat more difficult than doing so for a TF.  However, the wide 

transcript distribution of ZFP532 observed in non-immune system tissues (figure 4-6) is 

consistent with RNA binding activity or some other more generalized function.  This too is 

not definite.  For example, targeted deletions of Notch2, which is necessary for MZ B cell 

development, are embryonic lethal (121).  Thus, a specific function in a particular cell type 

does not exclude the possibility of different functions in other tissues. 

A common feature of ZF TF families (e.g. Ikaros, Aiolos, Helios, Eos, and Pegasus) 

is extensive alternative splicing to generate protein isoforms performing different functions 

(127, 128, 130, 131).  In ZFP532, the majority of the protein, and four of the eight ZF 

domains, are encoded by exon 3.  Exon 4 encodes one ZF; exon 5 encodes none; and exon 

6 encodes the remaining three ZF (figure 4-3).  Thus, differential splicing could be a 

mechanism employed by Zfp532 to generate at least four functioning isoforms.  As Northern 

blotting experiments have been unsatisfying, we cannot establish how many transcript 

isoforms are expressed by B lymphocytes, at this time. 

Sequence homologies indicate that Zfp532 is only conserved in higher order animals 

(Class Amniota and above).  Genes required for basic cellular functions and even 

rudimentary immune systems are typically conserved across classes.  A lack of conservation 
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may imply a specialized function.  The differentiation of MZ B cells and/or the maintenance 

of anergy are two possible roles which comply with this evolutionary perspective.  The 

maintenance of anergy only in MZ B cells would constitute an even more specific function.  

As animals evolve more sophisticated immune systems, with more subsets of uniquely 

functioning cells, it becomes ever more critical to regulate those elements.  This speculation 

is, in part, supported by the real time PCR data which compared WT and anergic (125Tg) 

MZ and FO B cells.  Zfp532 expression is greatest in anergic MZ B cells and least in WT FO 

cells.  Hence, its expression level is directly proportional to the MZ and anergic phenotypes.  

Furthermore, prior to these studies, Zfp532 expression had not been demonstrated in splenic 

tissue (figure 4-6).  Collectively, these observations imply that the unique characteristics of 

125Tg MZ B cells are correlated with ZFP532 expression.  As mentioned earlier, anergic MZ 

B cells had not been described prior to studies on 125Tg mice.  In a broader context, one 

could hypothesize that “normal” MZ B cells in a polyclonal repertoire are partially anergic.  

That is, they do not proliferate in response to BCR stimulation (anti-IgM) as FO B cells do 

but maintain a vigorous response to LPS (226).  Perhaps the anti-insulin specificity augments 

an already partially anergic MZ B cell state to include unresponsiveness to other forms of 

stimulation (LPS)?  Clearly, further investigations as to the nature of anergy in mature B cell 

subsets are needed.    

MZ B cells are a developmentally regulated subset that occupies a critical and 

somewhat unique interface between the adaptive and innate immune responses.  This B cell 

subset is challenged by the dangerous task of maintaining active host defense while holding 

autoimmunity in check.  The ontogenetic delay in MZ B cell development has serious 

consequences for susceptibility of neonates to infections, yet this developmental hiatus is 

evolutionarily conserved across species.  The association of different autoimmune diseases 
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with an expanding MZ suggests that postponement of MZ B cell development is important 

for immune tolerance.  However, there are no studies that directly address how tolerance is 

maintained for this key B cell subset.  Conversely, enhanced tolerance, or functional anergy, 

in the MZ compartment may impair host defense and thwart attempts at vaccination.  

Enhancing immune function without increasing the risk of autoimmune disease is an 

important benefit gained from understanding the mechanisms of tolerance in MZ B cells.  

Identifying genetic elements that reside downstream of common signaling pathways in MZ 

B cells will provide viable targets for modifying their fate and function in the future.  

Infections are recognized as an essential component in the progression of certain 

autoimmune diseases.  MZ B cells are uniquely responsive to bacterial and viral challenges.  

Thus, understanding how the autoimmune potential of MZ B cells is held in check is critical 

to understanding how environmental signals or infections trigger autoimmunity.   
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CHAPTER V 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

The research summarized in this dissertation focus on two major questions.  How is 

an autoreactive B cell preserved in the peripheral repertoire and what effect does specificity 

have on gene expression and mature fate determination?  BCR specificity is inexorably 

linked with BCR signal strength and quality.  The characteristics of an antigen, dictate the 

extent of BCR cross-linking, the duration of interaction, and whether co-receptors are 

engaged.  The sum of all these inputs determines the type of signal delivered to the nucleus 

which in turn controls gene expression profiles and ultimately phenotype.  

 

BCR specificity can be fine-tuned by IgL structure and further impacted by 
polymorphisms. 

 
BCR specificity is determined by the unique three dimensional structure of the 

combined CDRs of the IgH and IgL chains.  In some cases, the majority of antigen binding 

is imposed by the IgH alone allowing the usage of several IgL (421, 422).  In other instances, 

the IgH and IgL chains both contribute to the specificity, and only a few IgL with a 

particular amino acid structure will mediate binding to a particular antigen (144, 211).  In the 

case of VH125, insulin binding is dominated by members of both the Vκ1 and Vκ9 families; 

however, only certain IgL genes from each of these families can interact with insulin.  This is 

intriguing given that families of IgL genes share a certain amount of amino acid homology.  

One might expect an entire Vκ family to mediate binding to an antigen when paired with a 

particular IgH.  Clearly, this is not the case for insulin.  Thus, antigen specificity can be fine-
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tuned within a Vκ family by using different gene segments. 

Of particular interest is the generation of anti-insulin B cells in the bone marrow of 

autoimmune, VH125Tg/NOD mice but not normal, VH125Tg/C57BL/6 mice.  Absence of 

anti-insulin B cells in the spleen of VH125Tg/C57BL/6 mice could be explained by effective 

negative selection of these specificities early in development.  However, because they do not 

appear in VH125Tg/C57BL/6 mice at any stage, it can be surmised that C57BL/6 mice are 

not capable of generating anti-insulin B cells using this IgH Tg.  As suggested by the data in 

chapter II, the NOD mouse strain shares the IgL-b haplotype (group of related alleles 

polymorphic to another set of the same alleles) with the NZB strain.  This strain is also a 

naturally occurring autoimmune disease model, but develops systemic lupus instead of 

T1DM.  Of 56 strains surveyed, only NOD and NZB exhibit the IgL b haplotype (423).  

Indeed, the IgL that VH125Tg/NOD B cells use for insulin the most frequently, Vκ1-

110*02, is the same one that NZB mice use for anti-dsDNA Ig.  Collectively, these data 

suggest an intriguing model wherein IgL haplotype may predispose an individual to 

producing autoreactive B lymphocytes.  In a normal, non-autoimmune, individual, these cells 

would be eliminated via negative selection.  However, if a patient exhibited the correct Ig 

haplotype as well as an autoimmune-permissive background (i.e. a group of genes that 

predisposed that individual to the development of autoimmune disease), autoreactive B cells 

may not be eliminated and might instead emerge into the periphery.  These cells might then 

contribute to the development of disease.   

Several lines of investigation could be followed to better define the role of Ig 

haplotype in autoimmune disease progression.  First, does exchange of the IgL haplotypes 

confer reduced disease penetrance in VH125Tg/NOD mice?  This experiment would require 

generating NOD mice bearing the IgL-c locus and C57BL/6 mice bearing the IgL-b locus 
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either by successive intercrosses or artificial chromosome Tg.  If haplotype is indeed 

important for the generation of anti-insulin B cells by VH125Tg/NOD mice, then IgL-

c/NOD mice should be incapable of producing insulin binding B cells.  Conversely, IgL-

b/C57BL/6 mice may acquire the ability to generate anti-insulin B cells.  Likely these would 

be confined to the bone marrow due to negative selection.  The long-term experiment would 

monitor IgL-c/NOD mice for the appearance of T1DM.  Since B cell specificity is known to 

be important in diabetes progression, IgL-c/NOD mice would not be expected to develop 

diabetes at a rate similar to IgL-b (WT) NOD mice. 

Second, do NZB mice carrying the VH125Tg develop an anti-insulin B cell 

population similar to that seen in VH125Tg/NOD mice?  As NZB mice share the same 

haplotype as NOD mice, simply introgressing the VH125Tg onto the NZB background 

would allow assessment of insulin specificity.  While this approach carries with it the caveats 

of strain differences impacting B cell generation, it would be a preliminary way to assess 

whether all IgL-b haplotypes are capable of generating anti-insulin B cells in combination 

with the VH125Tg. 

Third, does IgL haplotype impact MZ B cell development?  One common 

characteristic of the NOD and NZB strains is an augmentation of the MZ B cell 

compartment (218-224).  The association between autoreactive BCR specificities, 

autoimmune disease, and the MZ B cell population makes it tempting to draw a relationship 

between IgL haplotype and MZ B cell generation.  Reviewing the current data, it is difficult 

to ascertain whether MZ enlargement is a general strain characteristic or due to a particular 

gene(s).  Using congenic IgL-b/C57BL/6 mice, one could begin to examine this question.  If 

haplotype did impact BCR specificity, could it also alter mature B cell differentiation?  

Conversely, IgL-c/NOD mice would be expected to generate a more normal (~10%) MZ B 
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cell population. 

Fourth, are all anti-insulin B cells from VH125Tg/NOD mice capable of antigen 

presentation to T cells and Ig secretion?  Anti-insulin IgG in the serum is a hallmark of the 

pre-diabetic state (335, 368, 424-426).  This presupposes that B cells have been in contact 

with cognate T cells to facilitate CSR prior to the development of overt diabetes.  While T 

cells are the end state mediator of diabetes (β cell destruction), the early stages of the disease 

are thought to involve cross-talk between antigen-specific B cells and potentially pathogenic 

T cells (427, 428).  VH125Tg/NOD mice exhibit an accelerated disease phenotype compared 

to WT/NOD (311).  Accumulated evidence suggests that this alteration is due to changes in 

the B cell repertoire mediated by the IgH Tg.  In chapter II, I demonstrate that the 

proportion of anti-insulin B cells is increased in VH125Tg/NOD mice and that these BCRs 

are encoded by a somewhat heterogeneous group of IgL genes (216).  Thus, it becomes 

important to understand whether all VH125Tg/NOD B cells are capable of interacting with 

diabetogenic T cells, or only a subset.  Others in our lab are currently working on antigen 

presentation using anti-insulin B cells from 125Tg/NOD.  These mice carry IgH and IgL 

Tg.  The IgL Tg, Vκ125, is a member of the Vκ4 family and not representative of the 

majority of anti-insulin B cells isolated from VH125Tg/NOD mice (216).  Thus, potentially 

more pathogenic specificities may exist in this repertoire.  Similar antigen presentation 

experiments need to be conducted using VH125Tg/NOD B cells.  I expect VH125Tg/NOD 

B cells to be more capable of T cell stimulation than either WT/NOD or 125Tg/NOD B 

cells as the IgH Tg only mice exhibit the most severe disease.  As mentioned earlier, one 

outcome of these T-B cell interactions is CSR and IgG secretion.  The Ig itself is not deemed 

pathogenic, but is instead an indicator of the emerging disease process (335, 368, 424-426).  

While the current VH125Tg is fixed (IgM only), it will become increasingly important to 
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generate VH125Tg/NOD mice that are class switch competent by targeting the VH125Tg to 

the endogenous IgH locus.  In these mice, secreted VH125Tg IgG would serve as a measure 

of and further corroborate T-B cell communication.  VH125Tg knock-in mice would also 

allow assessment of how important anti-insulin Ig is to the disease process. 

 

BCR specificity impacts B cell differentiation into MZ or FO subsets. 

 The studies in chapter II allude to a connection between BCR specificity and mature 

B cell phenotype.  Some authors speculate that BCR specificity per se does not influence 

differentiation but that it is only signal strength which determines fate (18, 189, 396).  I 

believe this is an artificial distinction because BCR specificity inherently determines BCR 

signal strength due to the character of the antigen.  This hypothesis is supported by the data 

presented in chapter III.  B cells specific for insulin, which bind insulin in vivo continually, 

and thus are subject to continual stimulation, are preferentially diverted into the MZ B cell 

compartment.  Conversely, B cells specific for hen egg lysozyme – a protein not present in 

mice – receive no antigen ligation or signal, and populate all mature subsets in normal 

proportions.   

If mature B cell phenotype is ultimately dictated by BCR specificity and signaling, a 

conundrum arises.  Why aren’t all anti-insulin B cells diverted into the MZ?  Three 

possibilities exist.  First, antigen concentration – insulin is a physiologically regulated 

hormone, the levels of which fluctuate throughout a 24 h period concomitant with feeding.  

Thus, newly formed B cells (T1) emerging from the bone marrow into circulation will 

encounter different levels of insulin at different times of the day.  Second, co-receptor 

ligation – low level anti-insulin Ig is a normal component of serum and these Ab may form 

immune complexes that would co-engage BCR and FcR altering the quality of signal 
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delivered to the 125Tg B cell.  Alternatively, some B cells may encounter bacterial antigen 

(e.g. nucleic acids) during their development leading to TLR engagement subsequent to or 

concurrent with insulin ligation.  Can insulin or anti-insulin Ig bind complement proteins?  If 

so, these would co-engage CD21/CD35 with BCR ligation.  Third, space filling – while the 

width of the MZ can vary in parallel to the proportion of MZ B cells observed by FACS, no 

murine models demonstrate a splenic enlargement over that which is seen in 125Tg mice.  

Thus, there may be a physical limit to the capacity of the MZ.  As microenvironment is 

critical to phenotype in this context (signals delivered via chemokines, integrins, S1P, 

Notch2, etc.), a B cell that has the capacity to develop a MZ phenotype – due to specificity – 

but is excluded from this locality may not be able to upregulate the surface markers 

characteristic of mature MZ B cells.  This hypothesis is supported by two lines of data 

presented in chapter III.  First, MZ B cell production in 125Tg/C57BL/6 mice begins earlier 

than in WT (figure 3-1).  Thus, the MZ may “fill up” earlier in these mice than in WT 

animals in which MZ B cell development is delayed.  Second, CD1d and CD9 expression is 

diminished in 125Tg/N2+/- mice (figure 3-6).  MZ B cells are present but cannot upregulate 

accessory surface markers appropriately due in part to decreased Notch2 signals.  Thus, BCR 

signals are likely the impetus for MZ B cell differentiation but are not capable of maintaining 

that phenotype in the absence of microenvironmental signals. 

 Various lines of experimentation are suggested by the observations made in chapter 

III.  First, can insulin deprived 125Tg/C57BL/6 mice produce MZ B cells similar to insulin 

replete 125Tg/C57BL/6?  Unfortunately, mice which were engineered to not express insulin 

from birth would exhibit severe diabetes and reduced survival to an acceptable experimental 

age.  So alternatives to insulin knock-outs have to be conceived.  The 125Tgs have the 

highest affinity for human insulin and reduced affinities for other species, including mouse 
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(344).  Knock-in mice could be generated where the murine insulin loci are replaced by 

human or bovine insulin.  These insulins are still hormonally active but would not impact the 

125Tg BCR as murine insulin does.  One may expect altered mature B cell populations in 

this type of model.  Similar approaches using siRNA Tg to knock down insulin expression 

levels could also be used.   

Second, are co-receptors involved in MZ B cell maturation?  Crossing the 

125Tg/C57BL/6 mice onto preexisting FcR (immune complex), TLR (microbial co-

infection), and CD21 (complement deposition) knock-outs would permit the dissection of 

co-receptor input into MZ B cell development.  If these co-receptors did exhibit an impact, 

then altered MZ B cell production would be expected from co-receptor knock-out, 125Tg 

mice. 

 

BCR specificity can override Notch2 haploinsufficiency to generate MZ B cells. 

 Generation of MZ B cells requires input from many different sources, and lacking 

any one of these often leads to a diminished if not absent MZ B cell population 

(introduction and table 1-3).  In chapter III, I demonstrate that MZ B cell deficiency 

imposed by heterozygosity of the Notch2 gene (Notch2+/-) can be overcome by an 

autoreactive BCR specificity (anti-insulin) but not by a naïve BCR (anti-hel).  The ability of 

the 125Tg to override the Notch2 defect is complex.  Prior to the studies in chapter III, a 

link between BCR signals and Notch2 signals had not been made.  There was evidence that 

both pathways are required in conjunction for MZ B cell development (291), but interaction 

between the two pathways had not been demonstrated.  A possible mechanism is suggested 

by figure 3-3.  I show that B cells in nonTg/N2+/- mice are not capable of modulating 

Notch2 surface expression.  However, MZ B cells from nonTg/C57BL/6, 125Tg/C57BL/6, 
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and 125Tg/N2+/- mice display higher levels of Notch2 than their FO or T1 counterparts.  

These data strongly support the concept that the quality of signal delivered by the 

autoreactive BCR causes accumulation of Notch2 at the cell’s surface.  Whether this effect is 

mediated at the transcriptional or post-transcriptional levels is unknown and the subject of 

future research.  As reviewed in chapter I, Notch protein is regulated by transcript stability 

(65), translation efficiency (66), protein processing (82, 84, 87, 429), and turnover (70-72, 76, 

100, 430, 431).  Signals derived from the BCR could impact any of these regulatory points.  

For example, BCR mediated signals could down-regulate the endogenous microRNAs that 

degrade Notch transcripts or could alter the efficiency with which surface Notch is 

ubiquitinated and recycled.  The level of complexity involved in Notch and DSL protein 

regulation necessitates an in depth investigation as to how BCR signals interact with the 

Notch pathway.  The 125Tg versus helTg/Notch2+/- model system is ideal for these types of 

experiments.  As there are many candidates for BCR-Notch interaction, it may be advisable 

to begin with a transcriptome or proteome-wide scan of differences between 125Tg and 

helTg/Notch2+/- B cells.  Studies such as these would yield insight into how the adaptive 

immune system (BCR) coordinates with a developmental regulator (Notch2) to alter B cell 

fate.     

Extending the findings of chapter III to other MZ (table 1-2) or B1 enriched 

specificities would be useful in determining the level of BCR engagement required for MZ B 

cell maturation.  That is, while B1 and MZ repertoires exhibit some overlapping specificities 

(24, 25, 291), certain others are more specific to one lineage or the other (218, 311, 432, 433).  

It may be that a certain level of BCR signaling neither too strong (B1) nor too weak (FO) is 

required for MZ B cell generation in Notch2+/- mice.   

Extending the observations of chapter II suggests other experiments.  That is, if the 
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IgL-b haplotype characteristic of the NOD and NZB strains is responsible for altering the B 

cell repertoire (towards autoreactivity) and expanding the MZ, then NOD and NZB mice 

heterozygous for Notch2 should be capable of generating minor MZ B cell populations in 

the absence of any Tg.  As NOD and NZB mice exhibit greater MZ B cells populations than 

IgL-c haplotype strains (e.g. C57BL/6, BALB/c, and C3H), one might expect the N2+/- 

phenotype to be less severe in these mice. 

In a polyclonal (WT) repertoire, why do only the MZ B cells up-regulate Notch2 on 

their surface?  This is the phenotype I see at steady state and doesn’t illustrate what happens 

in transitional (T1 and T2) stages.  It is likely that all 125Tg B cells destined to become MZ 

transiently up-regulate Notch2.  However, it may be that sustained up-regulation requires 

orientation in the MZ itself.  This could be explained by an autoregulatory loop wherein 

intracellular, activated Notch2 causes its own transcription, translation, or surface stability.  

Thus, being located in the MZ where Notch2 ligands are more prevalent would facilitate this 

proposed mechanism.  Alternatively, input from other receptors such as integrins or S1P-R 

(Egr1/3) may control Notch2 expression.  All of these possibilities are material for future 

experimentation. 

 

Mature B cell phenotypes are maintained by global gene expression programs. 

 Ligation of BCR by antigen causes an intracellular cascade of events which ultimately 

culminates in the mobilization of TF in the nucleus (397-400).  Different degrees of BCR 

interaction and co-receptor involvement modify which TF are recruited and silenced.  The 

sum total of these inputs results in mature B cell phenotype.  As MZ and FO B cells exhibit 

different surface proteins and mediate different functions in the immune system, it is 

expected that they would present differing gene expression profiles.  As demonstrated in 
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chapter IV, the phenotypes of these two populations are maintained by a large group of 

genes that are only minimally differentially expressed and a smaller group of genes whose 

expression levels are markedly altered (figure 4-2).  All of these genes could be investigated 

in future studies, however, the most intriguing, ZFP532, undoubtedly requires further 

consideration. 

 There are several characteristics that make ZFP532 an attractive candidate for future 

studies.  An increased expression level of 12 times that which is seen in FO B cells should 

simplify its examination.  Its predicted amino acid sequence encodes eight potential zinc 

coordinating domains (ZF).  These domains are common in nucleic acid binding to RNA 

and DNA (434-436), and ZF containing TF are commonly utilized in binary cell fate 

decisions (127, 129, 130, 132, 409, 411, 437, 438).  Thus, it is logical that ZFP532 might 

direct MZ fate determination.  As 125Tg B cells are anergic, it may also impose functional 

quiescence in the MZ subset.   

 The initial stages of ZFP532 characterization proved difficult.  The transcript is over 

5 Kb in length, which complicates cloning and sequencing.  However, now that the coding 

region is cloned into a tagged expression vector, subsequent biochemical studies are on the 

horizon.  Determining how ZFP532 interacts with DNA (or RNA) and at what consensus 

sequence, what the binding partner(s) are, and whether it is inhibitory or activating are all 

important questions.  Identifying potential target genes is also a worthy endeavor.  Currently, 

in conjunction with the Oltz laboratory, we are developing a ZFP532 null mouse.  If these 

mice are fertile and not embryonic lethal, they will be very useful in determining the function 

of ZFP532.  However, this gene seems to be expressed at most stages of embryonic 

development (figure 4-6) and expectations for ZFP532-/- survival are not high.  As 

mentioned previously, the function of ZFP532 may be in maintaining anergy and not simply 
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in MZ B cell development.  Thus, ZFP532-/- B cells may not exhibit much of a phenotype 

unless challenged with antigen.  In this case, crossing the ZFP532-/- line onto the 125Tg line 

may result in anti-insulin B cells that are not functionally silenced.  These cells would be 

capable of reacting to insulin in vivo and may exhibit autoimmune manifestations such as Ig 

secretion, hyperglycemia, and immune complex formation.  I have also constructed a 

ZFP532 containing retroviral vector (MiG, see Materials and Methods, chapter IV).  This 

vector could be used to generate bone marrow chimeras that over-express ZFP532.  I would 

expect ZFP532 over-expressing cells to exhibit either a MZ B cell phenotype, be anergic, or 

both.  Currently, we are optimizing the use of this vector to initiate these types of 

experiments.   

 

Concluding Remarks 

B cells differentiate into B1, MZ and FO phenotypes as a result of BCR signal 

strength, quality and timing.  In this context, BCR signaling is dependent on several features 

of the antigen – developmental stage at which antigen is first encountered, binding strength 

(affinity), antigen character (soluble vs. membrane-bound, monomeric vs. multimeric, 

opsonized vs. naked, co-receptor engagement vs. BCR alone), and duration.  The sum of 

these factors induces a particular signal that causes B cells to differentiate into mature 

subsets and determines whether they are anergized.  Thus, considering the maintenance of 

anergy in terms of the MZ/FO fate decision is a unique and valuable endeavor which may 

be approached from several angles.  Understanding how autoreactivity, anergy and 

differentiation are manifest in terms of one another may enable the manipulation of B cell 

populations to diminish the impact of autoimmune disorders and enhance the ability of the 

immune system in combating microbial infections.   
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APPENDIX A 

 

NUCLEOTIDE SEQUENCES OF ZFP532 

 

KEY: 
bold and underlined – PRIMERS(###fwd OR rev) 
putative start codon – ATG  
putative stop codon – TAG  
5’ and 3’ untranslated regions – YELLOW HIGHLIGHT  
polyA tail, bold and blue – AAA 
sequences not in chromosomal clone, but present in cDNAs – RED BOLD 

 
 
>NM_207255 (full length mRNA from C57BL/6 brain and ES cells) 
(exon1 )TTCTCCCCACCCCAGGGGTGTCTTCCATTCTTTTGTGGCTCAGTTTAA
GGCGAAAAGGGCTCCAAACCACTAACTAACAGAAGGGAGCCCTTTCTTCCACC
TCCTGGGAGAATCTCAGATTGAATTTATCTGAAGATAGCGTGCTCTCTTCTTAC
TTATTGCCACCATTACGAGGAGGACAGCACAACCACCACCTTGGCTTCAAGAT
CCTGGGTAGAGAGG(250fwd)CTCACGGGCATTTTTTTTTCAACCATCTTTGGCG
AGGCCTTGCATCCTTCCACTCCAG(exon2 )CCTGGTGACTGGGGCTGCTTTTA
ACCCTTTCCTATTTGCAGAGAATGCAACTGTGTGACAGTAACTGAACACTGG(2
63fwd)GCCAAAGTCTTTTCAAAAGGTCAAGGTTCACAAG(exon3 )AACTGATCA
AATTCATGACCATGGGGGATATGAAGACCC(264fwd)CAGACTTTGATGACCTC
TTGGCAGCATTTGACATACCAGATATGGTCGATCCCAAAGCAGCGATTGAGTC
CGGACACGATGACCATGAGAGCCACATTAAGCAGAATGCTCACGTGGATGAC
GACTCTCACACCCCATCATCCTCAGACGTCGGCGTCAGTGTGATTGTGAAGAA
TGTCCGCAACATCGACTCCTCCGAGGGGGTGGAAAAAGATGGCCACAATCCC
ACAGGCAATGGTTTGCATAATGGGTTCCTCACGGCATCCTCTCTTGACAGCTA
TGGTAAGGATGGAGCCAAGTCCTTAAAAGGAGACACACCTGCCTCGGAGGTG
ACTCTTAAGGACCCGGCATTCAGCCAGTTCAGCCCCATCTCCAGCGCCGAGGA
GTTTGAGGACGATGAGAAGATAGAGGTGGACGACCCGCCTGATAAGGAGGA
GGCGCGGGCCGGTTTCAGATCGAATGTGCTGACGGGCTCAGCACCCCAGCAG
GACTTCGACAAACTGAAGGCACTTGGAGGGGAAAACTCCAGCAAGACTGGAG
TCTCTACATCAGGCCACACGGATAAAAACAAGGTCAAGAGGGAGGCAGAAAG
CAATTCTATAACCCTGAGTGTTTATGAGCCATTTAAGGTCAGAAAAGCAGAGG
ATAAGTTGAAGGAGAACTCTGAGAAGATGCTTGAGAGCAGGGTCCTTGACGG
GAAGCCGAGCTCCGAGAAGAGCGACTCCGGCATCGCTGCTGCCGCATCTTCC
AAAACGAAGCCGTCCTCCAAGCTCTCCTCGTGCATAGCGG(248fwd/249rev)CC
ATTGCGGCGCTCAGCGCTAAAAAGGCTGCGTCCGACTCCTGCAAAGAGCCTG
TGGCCAACTCCAGGGAAGCCTCCCCGTTACCAAAAGAAGTGAATGACAGTCCC
AAAGCTGCCGACAAGTCTCCCGAGTCCCAGAATCTCATCGATGGCACCAAGAA
GGCCTCCCTGAAGCCATCAGACAGTCCCAGGAGCGTATCCAGTGAGAACAGC
AGCAAAGGGTCACCATCCTCACCCGTGGGCTCTACCCCAGCCATCCCCAAAGT
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CCGCATCAAGACCATCAAGACATCGTCTGGGGAGATCAAGAGGACTGTGACC
AGAGTGCTGCCAGAAGTGGACCTGGACTCTGGAAAGAAGCCTTCTGAGCAGG
CAGCGTCCGTGATGGCGTCTGTGACATCACTCCTGTCATCTTCAGCATCAGCC
ACGGTCCTCTCCTCCCCGCCCAGGGCACCTCTGCAGACGGCCATGGTTACAAG
TGCAGTTTCCTCTGCAGAGCTGACCCCCAAACAGG(212fwd/265rev)TCACCATC
AAGCCCGTGGCGACAGCTTTTCTTCCCGTGTCTGCCGTCAAGACGGCAGGGTC
TCAAGTCATCAATCTGAAGCTCGCCAACAACACAACGGTGAAAGCCACGGTCA
TATCCGCCGCCTCTGTTCAGAGTGCCAGTAGCGCCATCATCAAAGCTGCCAAT
GCCATCCAGCAGCAAACCGTTGTGGTGCCGGCATCCAGCCTGGCCAATGCCAA
ACTCGTGCCAAAGACTGTGCACCTTGCCAACCTTAACCTTCTGCCTCAGGGTGC
CCAGGCCACCTCTGAACTCCGCCAAGTGCTCACCAAACCTCAGCAGCAAATAA
AGCAGGCAATAATCAATGCAGCGGCCTCGCAGCCACCTAAGAAGGTGTCTCG
GGTCCAGGTGGTGTCGTCCTTGCAGAGTTCTGTGGTGGAAGCTTTCAACAAG
GTGCTGAGCAGCGTCAACCCAGTCCCGGTTTACACCCCCAACCTCAGTCCTCCT
GCCAACGCAGGGATCACGTTACC(214fwd/219rev)GATGCGTGGGTACAAGTGC
TTGGAGTGCGGGGACGCCTTTGCCCTGGAGAAGAGCCTGAGCCAGCACTACG
ACAGGCGAAGCGTGCGCATCGAAGTGACGTGCAACCACTGTACCAAGAACCT
TGTTTTTTACAACAAATGCAGCCTCCTTTCTCACGCCCGCGGGCATAAGGAGA
AAGGCGTGGTGATGCAGTGCTCCCACCTGATCCTAAAGCCGGTCCCGGCAGA
CCAGATGATAGTTCCTCCATCCAGCAATACTGCTGCTTCCACTCTGCAGAGCTC
TGTGGGAGCTGCCACACACACTGTCCCAAAAGTCCAGCCTGGCATAGCCGGG
GCAGTTATCTCAGCTCCGGCAAGCACACCCATGAGCCCAGCCATGCCCCTAGA
CGAAGACCCCTCCAAGCTCTGTAGACACAGTCTCAAGTGTTTGGAGTGTAATG
AAGTCTTCCAGGATGAGCCGTCCCTGGCCACACATTTCCAGCACGCTGCAGAC
ACCAGTGGACAA(exon4 )CAAATGAAGAAGCACCCGTGCCGCCAGTGTGACA
AGTCTTTCAGCTCCTCCCACAGCCTGTGCCGCC(233fwd/232rev)ACAATCGCAT
CAAGCACAAAGGCATCAGGAAAGTTTACGCCTGCTCG(exon5 )CACTGCCCAG
ACTCCCGGCGGACCTTCACCAAGCGGCTGATGCTGGAGAGGCACATACAGCT
GATGCACGGGATCAAGGACCCTGATGTAAAAGAGCTGAGTGATGACGCTGGT
GATGTTACCAACGATGAGGAGGAGGAGGCGGAGATAAAGGAGGACGCCAAG
GT(exon6 )TCCCAGTCCCAAGCGGAAGTTGGAGGAGCC(216fwd/221rev)GGTT
TTAGAGTTCAGGCCTCCCAGAGGAGCCATCACTCAGCCACTGAAGAAACTGAA
AATCAATGTCTTTAAGGTCCACAAGTGTGCCGTGTGTGGCTTCACCACCGAGA
ACCTGCTGCAGTTCCACGAACACATCCCACAGCACAGGTCGGACGGCTCCTCC
CACCAGTGCCGGGAGTGTGGCCTGTGCTACACGTCCCACGGCTCCCTGGCCA
GGCACCTCTTCATCGTGCACAAGCTGAAGGAGCCTCAGCCCGTGTCCAAGCAG
AACGGGGCTGGGGAAGACAGCCAGCAGGAGAACAAGCCCAGCCCTGAGGAC
GAGGCCGCCGAGGGGGCAGCATCAGACAGGAAGTGCAAAGTGTGCGCCAAG
ACTTTTGAAACGGAAGCTGCCTTAAACACACACATGCGGACACATGGCATGGC
CTTCATCAAATCCAAAAGAATGAGTTCAGCTGAAAAATAGCCACAGAACTTCC
AGGAGGACAACCCCTATCCACATAGGAATGGAGAATAAGACGTTTTTGTTACC
AAAAGTTGGCAGTATAACAAGAGTTACCAGTACCGTCTAGGCTGTCGCCACAG
ACTCCCTGTCCTGCCCTCTCACCTCTGCAGATGTGTCCCTTCCCATAAGTGTTA
AGGCAGTATTTGAGTTTTAAAGAGTTTTGTATATATTTAAATAACGTTTTATAC
TCTTTGTTACATGTTTGTATCAGTATTTGGTGGAAAATGTTTTGAGGTTTCTTT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGATTAGGATTCTCTTTTTT
TT(exon7 )GTACTGTTTCTTTAAAATGGAGTTCTTAGTAACAGCGGCAGTTCC
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TGAATTCGAACC(217fwd/222rev)AACCATTTTGTATGTTACAAATTTGAATGAG
TTCAATAATAACAGGCTATCATGCCTTTTTTTAGTGTTTTTTAATTTTT(exon8

)AGAACTCGCCACATAAATTGTAAGTGATTGTGGGTCTCACAACACTAGCAA
CTTTTAAGTGTCTTAGCACCACACGCAGCGTGCCTGCTCCTAGCAACCGAGGG
CTCCAAGGACAACATCACCCAGGTGAGGATGTGGCCTGAGCCACCCCAGACA
GCGTCAGCCTTCCAGGCCCTACCTCTGTCCACAGTGGACAAAAGAGGTCAGGA
GTTCAGTAGGGTGTCCTTCAGTCCATCTGGGAGAGTGAGGAAGAAGAGATTC
AAAAAGTGGAGACAGTGGAGCTGGCGAGTTTTCTAGGTTAGTTCACAGGCTG
ACTTACAGGGCACTAGGAGGCAGGCTAGGAAAAGGGCAGCCTGTGGTCAGA
GTTGAAAGTCATAATTAGACCTATAGCTCTCTATTGTCAGGTTTTGTCATAGAA
CTCACCAACTATTCCGAAGACATATATATACTTCAAGGGTATCAAGTATATCTC
TGGTTCTTGATAGGGACAAAAGGGCAGGTTTGACTTAACCCTTTGCTGTCTA
CACAGTTGG(218fwd/223rev)GTTCCTGTTCTGGGTGCTACTGCCAAATGTTCTG
GTACTTAAGTGTCGAGACGCCCAGCCTCACCACCGACTTAGCACTGCAGCAGC
CTGTACTCTGCAACTGGCCATAGACGAGCCACCAGGCTTCTAGAGTCGTCTCA
GCACCCTCTCAAGGTCACCTGACTGGAGCACTGCCGACGACGTGCTCTTGGTC
ACATCCCTGTATAGTTCTCTGGGAAAGCTATAAATATATATATTTTGGTTATTG
TTTTGTGTTTTCCGTTACATTTTATATCTTGTATTTATCGCCCGATATGTTTTGT
ACTTTTGTTTTCCTAAAACAAAGAAATCCATGTGTGTGTATATAGAGACTTGCA
TGCTAGACTGTAGTCAATGTTCAGTTCCTTGAAAAGTCTTGCTGCTGTCGGGT
GTGCACCTTACACCGCCGCGACTGTATTCAA(224rev)CCCATTTCACATGTAAA
TAAATGAGGAACGTCTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

 
 

KEY: 
pcDNA3.1 vector sequence – UNDERLINED 
CMV promoter – BLUE BOLD 
T7 promoter and primer for sequencing – RED BOLD 
remaining pGEM-t easy sequences – BOLD, GREY HIGHLIGHT 
added Kozac sequence – GREEN BOLD 
putative start codon – ATG  
nucleotides (“g” and stop codons) fixed from earlier clone – lowercase green highlight 
new point mutation – lowercase yellow highlight 
last codon of ZFP532 – AAA  
3’ PCR added nucleotide – A 
myc and his epitope tags – RED BOLD 

 
 
>fixed pcDNA3.1C-ZFP532 (eukaryotic expression vector) 
GACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGC
TCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTGTGTTGGAGGT
CGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACC
GACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGA
TGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAATAG
TAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTA
CATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCC
ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTC
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CATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAA
ATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACT
TGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTT
GGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAA
GTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACG
GGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGT
AGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAG
AACCCACTGCTTACTGGCTTATCGAAATT(CMV.promoter)AATACGACTCACT
ATAGGG(T7.promoter/primer)AGACCCAAGCTGGCTAGTTAAGCTTGGTACCG
AGCTCGGATCCACTAGTCCAGTGTGGTGGAATTCGATTGCCACC(added.kozac)
ATGACCATGGGGGATATGAAGACCCCAGACTTTGATGACCTCTTGGCAGCATT
TGACATACCAGATATGGTCGATCCCAAAGCAGCGATTGAGTCCGGACACGAT
GACCATGAGAGCCACATTAAGCAGAATGCTCACGTGGATGACGACTCTCACAC
CCCATCATCCTCAGACGTCGGCGTCAGTGTGATTGTGAAGAATGTCCGCAACA
TCGACTCCTCCGAGGGGGTGGAAAAAGATGGCCACAATCCCACAGGCAATGG
TTTGCATAATGGGTTCCTCACGGCATCCTCTCTTGACAGCTATGGTAAGGATG
GAGCCAAGTCCTTAAAAGGAGACACACCTGCCTCGGAGGTGACTCTTAAGGA
CCCGGCATTCAGCCAGTTCAGCCCCATCTCCAGCGCCGAGGAGTTTGAGGACG
ATGAGAAGATAGAGGTGGACGACCCGCCTGATAAGGAGGAGGCGCGGGCCG
GTTTCAGATCGAATGTGCTGACGGGCTCAGCACCCCAGCAGGACTTCGACAAA
CTGAAGGCACTTGGAGGGGAAAACTCCAGCAAGACTGGAGTCTCTACATCAG
GCCACACGGATAAAAACAAGGTCAAGAGGGAGGCAGAAAGCAATTCTATAAC
CCTGAGTGTTTATGAGCCATTTAAGGTCAGAAAAGCAGAGGATAAGTTGAAG
GAGAACTCTGAGAAGATGCTTGAGAGCAGGGTCCTTGACGGGAAGCCGAGC
TCCGAGAAGAGCGACTCCGGCATCGCTGCTGCCGCATCTTCCAAAACGAAGCC
GTCCTCCAAGCTCTCCTCGTGCATAGCGGCCATTGCGGCGCTCAGCGCTAAAA
AGGCTGCGTCCGACTCCTGCAAAGAGCCTGTGGCCAACTCCAGGGAAGCCTC
CCCGTTACCAAAAGAAGTGAATGACAGTCCCAAAGCTGCCGACAAGTCTCCCG
AGTCCCAGAATCTCATCGATGGCACCAAGAAGGCCTCCCTGAAGCCATCAGAC
AGTCCCAGGAGCGTATCCAGTGAGAACAGCAGCAAAGGGTCACCATCCTCACC
CGTGGGCTCTACCCCAGCCATCCCCAAAGTCCGCATCAAGACCATCAAGACATC
GTCTGGGGAGATCAAGAGGACTGTGACCAGAGTGCTGCCAGAAGTGGACCT
GGACTCTGGAAAGAAGCCTTCTGAGCAGGCAGCGTCCGTGATGGCGTCTGTG
ACATCACTCCTGTCATCTTCAGCATCAGCCACGGTCCTCTCCTCCCCGCCCAGG
GCACCTCTGCAGACGGCCATGGTTACAAGTGCAGTTTCCTCTGCAGAGCTGAC
CCCCAAACAGGTCACCATCAAGCCCGTGGCGACAGCTTTTCTTCCCGTGTCTGC
CGTCAAGACGGCAGGGTCTCAAGTCATCAATCTGAAGCTCGCCAACAACACAA
CGGTGAAAGCCACGGTCATATCCGCCGCCTCTGTTCAGAGTGCCAGTAGCGCC
ATCATCAAAGCTGCCAATGCCATCCAGCAGCAAACCGTTGTGGTGCCGGCATC
CAGCCTGGCCAATGCCAAACTCGTGCCAAAGACTGTGCACCTTGCCAACCTTA
ACCTTCTGCCTCAGGGTGCCCAGGCCACCTCTGAACTCCGCCAAGTGCTCACC
AAACCTCAGCAGCAAATAAAGCAGGCAATAATCAATGCAGCGGCCTCGCAGCC
ACCTAAGAAGGTGTCTCGGGTCCAGGTGGTGTCGTCCTTGCAGAGTTCTGTG
GTGGAAGCTTTCAACAAGGTGCTGAGCAGCGTCAACCCAGTCCCGGTTTACAC
CCCCAACCTCAGTCCTCCTGCCAACGCAGGGATCACGTTACCGATGCGTGGGT
ACAAGTGCTTGGAGTGCGGGGACGCCTTTGCCCTGGAGAAGAGCCTGAGCCA
GCACTACGACAGGCGAAGCGTGCGCATCGAAGTGACGTGCAACCACTGTACC
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AAGAACCTTGTTTTTTACAACAAATGCAGCCTCCTTTCTCACGCCCGCGGGCAT
AAGGAGAAAGGCGTGGTGATGCAGTGCTCCCACCTGATCCTAAAGCCGGTCC
CGGCAGACCAGATGATAGTTCCTCCATCCAGCAATACTGCTGCTTCCACTCTGC
AGAGCTCTGTGGGAGCTGCCACACACACTGTCCCAAAAGTCCAGCCTGGCATA
GCCGGGGCAGTTATCTCAGCTCCGGCAAGCACACCCATGAGCCCAGCCATGCC
CCTAGACGAAGACCCCTCCAAGCTCTGTAGACACAGTCTCAAGTGTTTGGAGT
GTAATGAAGTCTTCCAGGATGAGCCGTCCCTGGCCACACATTTCCAGCACGCT
GCAGACACCAGTGGACAACAAATGAAGAAGCACCCGTGCCGCCAGTGTGACA
AGTCTTTCAGCTCCTCCCACAGCCTGTGCCGCCACAATCGCATCAAGCACAAAG
GCATCAGGAAAGTTTACGCCTGCTCGCACTGCCCAGACTCCCGGCGGACCTTC
ACCAAGCGGCTGATGCTGGAGAGGCACATACAGCTGATGCACGGGATCAAGG
ACCCTGATGTAAAAGAGCTGAGTGATGACGCTGGTGATGTTACCAACGATGA
GGAGGAGGAGGCGGAGATAAAGGAGGACGCCAAGGTTCCCAGTCCCAAGCG
GAAGTTGGAGGAGCCGGTTTTAGAGTTCAGGCCTCCCAGAGGAGCCATCACT
CAGCCACTGAAGAAACTGAAAATCAATGTCTTTAAGGTCCACAAGTGTGCCGT
GTGTGGCTTCACCACCGAGAACCTGCTGCAGTTCCACGAACACATCCCACAGC
ACAGGTCGGACGGCTCCTCCCACCAGTGCCGGGAGTGTGGCCTGTGCTACAC
GTCCCACGGCTCCCTGGCCAGGCACCTCTTCATCGTGCACAAGCTGAAGGAGC
CTCAGCCCGTGTCCAAGCAGAACGGGgCTGGGGAAGACAGCCAGCAGGAGAA
CAAGCCCAGCCCTGAGGACGAGGCCGCCGAGGGGGCAGCATCAGACAGGAA
GTGCAAAGTGTGCGCCAAGACTTTTGAAACGGAAGCTGCCTTAAACACACACA
TGCGGACACATGGCATGGCCTTCATCAAATCCAAAAGAATGAGcTCAGCTGAA
AAAAATCACgcGgcAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGG
TCACCCATTCGAACAAAAACTCATCTCAGAAGAGGATCTG(MYC.tag)AATATGC
ATACCGGTCATCATCACCATCACCAT(6X.HIS.tag)TGAGTTTAAACCCGCTGAT
CAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCG
TGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATG
AGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGG
GGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATG
CTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGG
GCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGG
TGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCC
GCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTC
AAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCAC
CTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCC
CTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTG
GACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTG
ATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATT
TAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGT
GGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCA
ATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAG
TATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCC
GCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTG
ACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATT
CCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTC
CCGGGAGCTTGTATATCCATTTTCGGATCTGATCAAGAGACAGGATGAGGAT
CGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGG
GTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTG
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ATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAA
GACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTA
TCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCA
CTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATC
TCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAA
TGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCG
AAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATC
AGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGC
CAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGC
GATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCAT
CGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCT
ACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCG
TGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTC
TTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGCGAAATGACCGACCAAG
CGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAA
GGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCG
CGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTA
TAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTT
TTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGT
CTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCATGGTCATAGCTGT
TTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAA
GCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATT
GCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA
TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCT
TCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGC
GGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGAT
AACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTA
AAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT
CACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAA
GATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCC
TGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTT
TCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA
GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCG
GTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCA
GCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACA
GAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTG
GTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCT
TGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA
GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTA
CGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCAT
GAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTT
TAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTT
AATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGC
CTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCC
CCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCA
GCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTT
TATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGT
TCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGT
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GTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAA
GGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGT
CCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTAT
GGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGT
GACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCG
AGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAAC
TTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGA
TCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGAT
CTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGG
CAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCA
TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGA
GCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGC
ACATTTCCCCGAAAAGTGCCACCTGACGTC 
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