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CHAPTER 1

INTRODUCTION

1.1 Brain Imaging
This dissertation aims to expand the understanding of the human brain via the

application of modern statistical techniques for the analysis of existing image acqui-
sition methods. Here we begin with a broad overview of neuroimaging as it relates
to the work presented in this dissertation. This chapter concludes with an outline of
the work proposed in Chapters 2-5.

1.1.1 Structural vs. functional imaging
Brain imaging can be separated into two broad areas: structural brain imag-

ing and functional brain imaging. This dissertation addresses statistical problems
in both. Modalities for structural brain imaging include computed axial tomogra-
phy (CAT), magnetic resonance imaging (MRI) and positron emission tomography
(PET), all of which allow for the discernment of brain structure that can be later used
in disease diagnosis and other clinical applications. Modalities for functional brain
imaging include PET, functional MRI (fMRI), electroencephalography (EEG) and
magnetoencephalography (MEG), all of which can be used to study brain activity. In
this dissertation, we will be focusing on two MRI modalities: diffusion-weighted MRI
(DW-MRI) to study brain structure and fMRI to study brain function.

DW-MRI and fMRI differ in terms of the spatial and temporal resolution of each.
All imaging modalities exhibit a unique balance between spatial resolution, temporal
resolution, and degree of invasiveness. The spatial resolution of an image is what
determines the clarity of the image, and thus, the ability of the experiment to distin-
guish changes between two spatial locations. The temporal resolution of an image is
dependent on the speed at which images are acquired, and thus determines our ability
to separate signal changes as a function of time. fMRI has high temporal resolution,
which tends to come at the cost of lower spatial resolution due to the rapid succes-
sion of image acquisitions. DW-MRI acquisitions, however, are taken one image at a
time, allowing for longer scan times, and resulting in higher spatial resolution. Both
DW-MRI and fMRI are non-invasive, making them ideal modalities for both research
and clinical applications.

Both structural and functional MRI images are acquired using the same type of
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scanner. In terms of the data structure, MRI images are often acquired in axial
(horizontal) slices, which are stacked together to make up a 3D brain volume. This
3D volume is comprised of equally sized voxels (the 3D analog to a pixel), each of
which corresponds to a unique spatial location within the volume. The size of these
voxels is described by the spatial resolution of the scan. Voxels are the fundamental
unit of both fMRI and DW-MRI.

1.1.2 MR physics
This section contains a very brief introduction to MR physics. This description

is far from comprehensive, but aims to give the reader enough context to understand
the proposed statistical techniques and their importance to the field.

The signal obtained in MRI is commonly derived from hydrogen atoms consisting
of a single proton, which are found in water within the body tissues. These protons
are positively charged and are always spinning, hence why they are often referred to
as ‘spins’, which together generate a magnetic field. MRI measures the net magneti-
zation of all hydrogen atoms within the volume of interest and exploits the magnetic
properties of these protons in order to obtain signal from body tissues.

Each proton has an orientation in space, and, at rest, the orientations of each pro-
ton in a group will be completely random, thus cancelling one another out and leaving
no net magnetization. The first step in MRI acquisition requires the application of a
constant external magnetic field (B0). This field causes the spins within the tissue to
align in the direction of the applied field, resulting in a net longitudinal magnetization
parallel to the field. At this point, each spin has a longitudinal component (Mz) that
is aligned with the magnet, and a transverse component (Mxy) that rotates around
the longitudinal component. The transverse components of the group of spins cancel
each other out, while the longitudinal components exhibit a net magnetization in the
opposite direction of the applied magnetic field.

In order to detect the signal, we need to be able to enhance the transverse signal,
as any signal in the longitudinal direction will be drowned out by the strong magnetic
field, B0. To do this, we must apply an oscillating radio frequency (RF) pulse that
serves to disrupt (or perturb) the aligned spins. The application of a 90◦ pulse will
rotate the entire system of spins, resulting in a net transverse magnetization. At this
point, the spins of the protons become in sync with one another, a state called phase
coherence.

When the RF pulse is turned off, the system will return to its lowest energy
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(resting) state. In order for this to happen, energy must be transferred out of the
system. The loss of transverse magnetization is referred to as transverse relaxation,
and the regrowth of the longitudinal magnetization is referred to as longitudinal
relaxation. During relaxation, the protons emit energy which makes up the signal,
which is detected by a receiver coil.

The two types of relaxation are described by different time constants. Longitudinal
relaxation is the restoration of magnetization along the longitudinal axis as the spins
return to their resting state. This restoration is exhibited as exponential growth, and
that exponential growth can be described by a time constant termed T1. T1 is the
time it takes for the longitudinal magnetization to return to approximately 63% of
the original net magnetization. Transverse relaxation is the loss of net transverse
magnetization due to the loss of phase coherence. This loss is shown as exponential
decay and is described by a time constant termed T2. T2 is the time it takes for the
transverse magnetization to fall to 37% of its peak net magnetization.

Different tissue types have different T1 and T2 relaxation times. For example,
CSF has a much longer T1 relaxation time than white matter. Image contrast allows
for the control of which tissue characteristics are emphasized. This can be done by
altering how often we excite the nuclei (relaxation time, or TR) and how soon after
excitation we begin data collection (echo time, or TE). Long TR and short TE gives
an idea of the proton density, long TR and long TE is a T2-weighted contrast, and
short TR and short TE is a T1-weighted contrast. An additional contrast, T2*, is
sensitive to flow and oxygenation and will be discussed further in Section 1.3.

1.2 Diffusion-weighted MRI
Diffusion-weighted MRI relies on the natural motion of water molecules within

tissues. While not visible to the human eye, each molecule is in constant random
motion as a result of thermal energy within the tissue, a phenomenon known as
Brownian motion. Though the molecules are moving in a completely random manner,
the diffusion of these molecules within tissues is impacted by the microstructure of
the surrounding tissue. In the extracellular space, the water molecules are allowed to
diffuse freely, however, the diffusion becomes restricted in intracellular space.

Thus, the water will diffuse along the path of least resistance, for example, around
a cell rather than through the cell. This nature of water diffusion is the motivating
factor for diffusion-weighted MRI, where we can exploit the natural motion of water
molecules to infer the structure of the tissue on a microscopic scale. The result
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of a diffusion scan can also give indications of the structural changes of tissues of
interest. For example, if the tissue is experiencing a great deal of cellular breakdown
(necrosis), a scan may reveal an increased amount of diffusion in that area, as the
diffusion becomes less hindered by cells.

Diffusion anisotropy describes the degree to which diffusion is hindered in one
direction relative to another within a tissue. Unrestricted fluids which are allowed
free diffusion in any direction are described as isotropic. Diffusion anisotropy appears
when the microstructure is strongly aligned, as is the case in fibrous tissues. In this
case, the diffusion of water within the tissue changes depending on the direction in
which it is measured. In a fibrous tissue, such as a white matter, the diffusion is more
restricted in the direction perpendicular to the tract than in the direction along the
tract. This anisotropy provides a contrast mechanism for detecting the alignment of
the material microstructure.

Diffusion-weighted image acquisition is most commonly performed using a pulsed-
gradient spin echo (PGSE) sequence (Stejskal and Tanner (1965)). The pulsed field
gradient allows for the measurement of the diffusion coefficient rather than the trans-
verse relaxation. The first gradient dephases the magnetization and the second
rephases it. If the molecules have diffused in the time between the pulses, they
cannot be rephased and show up as a peak intensity decrease. The change in signal
intensity depends on the rate of diffusion, the time of observation, and the strength
of the gradient magnetic field.

1.2.1 Diffusion Tensor Imaging (DTI)
Diffusion tensor imaging (DTI) is a method for characterizing the microstructure

of the brain for use in tracking changes due to disease or treatment. The diffusion
tensor model was introduced by Basser et al. (1994b) and provided a systematic
analytical framework for describing diffusion anisotropy in tissue. The diffusion tensor
characterizes the magnitude, anisotropy and orientation of diffusion within the tissue.
DTI estimates a diffusion tensor, and the eigenstructure of this tensor reveals the
orientation of the diffusion compartments within the voxel. The major eigenvector is
in the direction of the fiber orientation (Basser et al. (1994b)).

Once the diffusion tensor has been fit, several scalar measures can be calculated,
each of which explains some property of the tensor. Of particular interest in this dis-
sertation is the measure of fractional anisotropy (FA). FA is a dimensionless measure
of the degree of anisotropy in diffusion (Basser and Pierpaoli (1996)). An FA of 0
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represents unrestricted diffusion, while an FA of 1 implies that all of the diffusion
occurs in a single direction, and that all other directions are restricted.

1.2.2 High Angular Resolution Diffusion Imaging (HARDI)
DTI assumes a 3-dimensional multi-variate Gaussian diffusion within each voxel

(Alexander et al. (2007)). This assumption, however, may not apply in cases of re-
stricted diffusion or partial volume effects, as is the case with multiple crossing or
diverging fibers within a single voxel. To remedy this, Tuch et al. (2002) developed a
diffusion imaging method that is able to measure the microscopic diffusion function
within each voxel without requiring restrictive assumptions on the underlying diffu-
sion function. High angular resolution diffusion imaging (HARDI) is able to discern
crossing fibers via a high b-value diffusion gradient sampling scheme. High b-values
are more effective in distinguishing between differing rates of diffusion of two fibers
within the same voxel. HARDI obtains higher angular resolutions in order to re-
veal non-Gaussian diffusion. In HARDI, the diffusion gradient sampling is performed
uniformly in 3 dimensions.

1.2.3 Q-ball
In this dissertation, we focus on a single model for reconstructing the HARDI

signal: Q-ball imaging. Q-ball imaging was introduced by Tuch (2004) and utilizes
the Funk-Radon transform to resolve multiple fibers within a single voxel without
assuming a Gaussian diffusion process. Q-ball imaging allows for reconstruction of
the diffusion orientation distribution function (ODF), which describes the probability
density function of water diffusion along any direction.

In this dissertation, we use a regularized implementation of the Q-ball imaging
approach proposed by Descoteaux et al. (2007) which uses a spherical harmonic basis
along with a regularization term to simplify the Funk-Radon transform used in the
original Q-ball fit. This regularized approach was shown to reduce ODF estimation
errors and improve fiber detection while also providing a faster and more robust fit.

Without the diffusion tensor, we cannot calculate the fractional anisotropy within
an MR acquisition. However, Tuch (2004) defines an extension of FA which uses the
ODF to calculate a unitless, normalized measure of anisotropy, generalized fractional
anisotropy (GFA).The methods proposed in Chapters 2-4 refer specifically to GFA as
the metric of interest, though the theory should extend to other metrics calculated
from the ODF.
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1.3 Functional MRI
fMRI is a tool for uncovering brain function via an understanding of the dynamic

changes in brain tissue that result from changes in neural metabolism and correspond-
ing changes in blood flow dynamics (Chen and Glover (2016)). fMRI was introduced
by three independent labs in 1992 (Bandettini et al. (1992); Ogawa et al. (1992);
Kwong et al. (1992)). Nearly all fMRI experiments today rely on blood oxygen level-
dependent (BOLD) changes in brain tissue.

BOLD imaging utilizes the different magnetic properties of oxygenated and de-
oxygenated hemoglobin in the blood in order to create a contrast that reveals changes
in blood flow to brain regions. The blood in any region of the body has a local ratio
of oxygenated hemoglobin (oxyhemoglobin) and deoxygenated hemoglobin (deoxy-
hemoglobin). Deoxyhemoglobin is paramagnetic, or weakly attracted to a magnetic
field, while oxyhemoglobin is diamagnetic, or repelled by a magnetic field. These two
different states of hemoglobin produce different local magnetic fields which impact
the resulting signal in measurable ways.

In Section 1.1.2 we discussed T1 and T2 contrasts and how they relate different
characteristics of tissue types. BOLD fMRI exploits an aspect of the T2 contrast
called T2*. T2* is often referred to as the ‘observed’ T2. It turns out that in an
MRI experiment, the transverse magnetization can decay faster than predicted as
a result of local inhomogeneities in the surrounding tissue. Thus, the actual rate
of transverse magnetization decay is referred to as T2*. In BOLD fMRI the local
inhomogeneities that impact T2* are the magnetic properties of hemoglobin in its
oxygenated or deoxygenated state. At rest, the blood flows at a normal rate and the
T2*-weighted signal is normal. However, when the blood flow increases as a result of
higher metabolic demands of the surrounding tissue, we see a decrease in the amount
of deoxyhemoglobin, resulting in an increased T2*-weighted signal. This is due to
the paramagnetic nature of deoxygenated hemoglobin, which distorts the magnetic
field, causing a faster decay of the transverse magnetization, and thus a decrease
in the time constant T2*. Deoxyhemoglobin suppresses the MR signal, thus as the
concentration of deoxyhemoglobin decreases, the T2* signal increases. Alternatively,
areas of the brain that have a higher concentration of oxyhemoglobin show a higher
signal than those with more deoxyhemoglobin.

It is important to note that BOLD fMRI does not directly measure brain acti-
vation, but instead measures the metabolic demands (i.e. oxygen consumption) of
active neurons. As the brain areas are activated, fresh (i.e. oxygenated) blood is sent
to the area, resulting in a higher concentration of oxyhemoglobin, and thus, a higher
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signal. While the modality is not perfect, simultaneous fMRI and electrophysiolog-
ical studies have confirmed that the BOLD contrast mechanism does reflect neural
response to a stimulus. However, much more research is yet to be done to truly
understand how much of the neuronal response can truly be understood via BOLD
contrast (Logothetis and Wandell (2004)).

1.3.1 Resting-state fMRI
The methodology proposed in Chapter 5 of this dissertation pertains exclusively

to resting-state fMRI. Correlated fluctuations in a resting brain were described by
Biswal et al. (1995). In this work, the authors concluded that the correlation of these
fMRI signals was evidence of brain activity even in the absence of an experimen-
tal task. Since then, resting-state fMRI (rs-fMRI) has been used to identify resting
state networks (RSNs), which define networks of brain regions that demonstrate syn-
chronous activation without a task or stimulus, the most popular of which is the
default mode network (DMN) (Lee et al. (2013)).

By definition, all resting-state data sets are acquired at a baseline state, i.e. sub-
jects are instructed to do nothing but lay still in the scanner. With the exception
of the lack of specific tasks, resting-state fMRI data are acquired in the same way
as task-induced fMRI, as described in Section 1.3. rs-fMRI is generally focused on
identifying low-frequency BOLD fluctuations (between 0.01 and 0.08 Hz), in contrast
to task-induced fMRI which tends to focus on higher frequency signals.

Clinically, rs-fMRI has been used to distinguish between the resting brain patterns
in a variety of psychiatric and neurological disorders, such as Alzheimer’s (Li et al.
(2002); Wang et al. (2006)), multiple sclerosis (Lowe et al. (2008, 2002)), schizophrenia
(Zhou et al. (2008)).

1.3.2 Analysis
The analysis of fMRI data poses many statistical challenges due to the very large

nature of the data. Because each brain volume has approximately 100,000 voxels, all
of which have been measured across a range of time periods, for multiple subjects,
any voxel-based analysis becomes a challenging statistical problem. Considering the
weak nature of the signal of interest along with a complicated temporal and spatial
noise structure, makes it clear that this type of data analysis requires a specific set
of techniques tailored to these characteristics.
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1.3.2.1 Preprocessing
Before we can begin analyzing the data, several preprocessing steps must be per-

formed. The exact preprocessing techniques can vary widely from study to study,
but most include a selection of the same common steps: slice-time correction, motion
correction, co-registration, normalization, spatial smoothing and low-pass filtering.
These steps aim to decrease or eliminate any contamination in the data that is not
related to spontaneous neural activity, i.e. subject motion, respiratory and cardiac
effects, and hardware artifacts (Weissenbacher et al. (2009)). Specific approaches for
each preprocessing step are reviewed in detail by Chen and Glover (2016).

The pre-processing steps of rs-fMRI data follows the same general steps as in task-
related fMRI with the addition of a low-pass filter that retains frequencies less than
0.08 Hz. This filtering helps separate out cardiac and respiratory effects that occur
at higher frequencies, and to improve the signal-to-noise ratio (Lee et al. (2013)).

1.3.2.2 Functional connectivity
Functional connectivity (FC) is defined as the undirected association between two

or more fMRI time series. FC relates brain regions to one another functionally, but
makes no assumptions about the structural connection between the brain regions.

In this dissertation, we focus on bivariate connectivity, which provides informa-
tion about relationships between pairs of regions. To learn about bivariate connec-
tivity, we first calculate the cross-correlation between the time series taken from two
brain regions of interest. This correlation is often transformed into z-scores using
Fisher’s z-transformation. The correlations can be calculated for each subject indi-
vidually, followed by a group analysis of all subjects. In this dissertation, the group
analysis is performed by first calculating the pairwise correlations, applying Fisher’s
z-transformation and conducting a t-test for each pair of brain regions.

1.3.2.3 Multiple comparisons
Due to the number of pairwise comparisons that are made for an ROI-based rs-

fMRI analysis, the concept of multiple comparisons correction becomes extremely
important. Multiple comparisons corrections come in two major categories: family-
wise error rate corrections and false discovery rate corrections.

The family-wise error rate (FWER) is the probability of making at least one type
I error across the entire “family” of hypothesis tests performed. Methods that control
the family-wise error rate include Bonferroni, random field theory, and permutation
tests. These methods provide strong control over the number of false positives, but
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can tend to be conservative, leading to decrease in power.
The Bonferroni correction aims to control the FWER by directly manipulating

the significance threshold. If Pi is the p-value from a test of hypothesis Hi, then
we reject Hi if Pi ≤ α

m
, where m is the total number of hypotheses, and α is the

significance level. This method assumes that individual p-values are independent,
which is violated in fMRI data with spatial correlation.

Another popular method for FWER correction is a permutation testing technique.
Permutation tests are nonparametric tests that rely on the assumption that, under
the null hypothesis, the data labels are exchangeable. To perform a permutation test,
first create permutations of the original observed data and calculate a t-statistic for
each permuted data set. Together, these t-statistics make up an empirical cumulative
distribution function (CDF) of the test statistic under the null. The p-value is then
calculated by finding the probability of observing a test statistic that is at least as
extreme as the test statistic calculated from the observed data (Nichols and Holmes
(2001)).

The low power of FWER correction methods when errors are correlated leads many
researchers to utilize a different technique for multiple testing: false discovery rate
correction. The false discovery rate (FDR) is the expected value of the proportion
of false positives among the total number of positive test results. Controlling the
FDR ensures that, on average, the FDR is no larger than some pre-specified rate,
q. The Benjamini-Hochberg procedure is one of the most popular for FDR control
and involves specifying the FDR q and ranking the p-values from the family of tests
from smallest to largest. For m comparisons, we define k as the largest i such that
P(i) ≤ i

m
q and reject all P(1), P(2), . . . , P(k) (Benjamini and Hochberg (1995)). This

method is particularly useful since it can be applied to any valid statistical test, as it
works on the p-values, rather than the test statistics themselves.

The analysis described in Chapter 5 demonstrates both permutation testing and
FDR correction as baseline techniques to compare performance with the proposed
method.

1.4 Dissertation Focus
As neuroimaging studies become more numerous and data are increasingly avail-

able, the need for improved understanding of the statistical properties of such data
increases as well. There is room for specific techniques for understanding these statis-
tical properties as well as for utilizing them to allow for proper statistical inference.
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The dimensionality of both DW-MRI and rs-fMRI data complicates the analysis and
forces researchers to develop new techniques to account for it. In particular, the rs-
fMRI community needs improved approaches for dealing with multiple comparisons
in such a way that maintains high power while not compromising on Type I error
control.

1.4.1 Open problems
The field of medical imaging is progressing very rapidly, but gaps remain partic-

ularly in the area of statistical analysis of such images. Image processing involves
the calculation of several voxel-wise metrics from data acquisitions. However, these
metrics are often considered absolutes, rather than as statistics with their own dis-
tributional properties. This is likely because well known ways of calculating these
distributions are not accessible. Further, publicly available data sets are widely avail-
able, encouraging the combination of seemingly similar studies in an effort to increase
statistical power. However, very little research has been done in understanding the
impact of such data combination. There exists no agreed-upon way for assessing each
data set in terms of its statistical and noise properties and thus ensuring increased
power as a result of increased sample size. Finally, frequentist methods in fMRI data
analysis tend to fall in one of two extremes: either the analyses end up being far too
conservative or they fail to correct for multiple comparisons and have the opposite
problem.

1.4.2 Contributions
• We propose statistical approaches for estimating bias and variance from a single

HARDI acquisition that are useful for bias-correction, data quality assurance,
and data combination and meta-analysis (Chapter 2).

• We provide an application of the bias and variance estimation methods from
Chapter 2 to an evaluation of inter-site bias and variance in traveling subjects.
This includes a workflow with advice for utilizing our methods in evaluating
data quality (Chapter 3).

• In order to speed up the bias and variance estimation process, we develop a
deep learning extension of the aforementioned statistical approach that allows
for the estimation to be performed up to 200× faster (Chapter 4).
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• We introduce a novel inferential method for functional magnetic resonance imag-
ing (fMRI) studies via an application of the Likelihood paradigm that allows
for simultaneous control of type I and type II error rates and shows superior
performance to popular frequentist analysis techniques (Chapter 5).
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CHAPTER 2

EMPIRICAL SINGLE SAMPLE QUANTIFICATION OF BIAS AND VARIANCE
IN Q-BALL IMAGING

2.1 Introduction
Diffusion-weighted magnetic resonance imaging (DW-MRI) is an image acquisition

technique that utilizes the natural diffusion of water within the human body to non-
invasively study tissue microstructure. High angular resolution diffusion imaging
(HARDI) is able to identify crossing fiber orientations, while diffusion tensor imaging
(DTI) is unable to discern fibers in more than a single direction.

The accuracy, precision, and sensitivity of DTI have been studied and noise has
been shown to have an impact on the bias and variance of DTI-derived metrics, such
as FA (Lauzon et al. (2011, 2013); Basser (1997); Bastin et al. (1998); Skare et al.
(2000); Basser and Pajevic (2000); Anderson (2001); Chang et al. (2007); Farrell et al.
(2007); Hutchinson et al. (2017)). Previous work has applied the statistical concept of
simulation extrapolation (SIMEX) (Carroll et al. (1996); Cook and Stefanski (1994))
in an effort to quantify the bias in an observed data acquisition (Lauzon et al. (2011,
2013)). This work extends the application of SIMEX to a single, empirical HARDI
acquisition fit with a Q-ball model.

Bias and variance play a critical role in any statistical analysis. The appropri-
ate balance between bias and variance allows for optimal information gain. It is not
enough to have an unbiased estimator (i.e., an estimator that estimates the correct
quantity, on average) if the variance is comparatively large (i.e., the estimate is im-
precise). Similarly, an estimate with very small variance but large bias is very precise,
but will not converge to the correct value as the sample size increases. Each situation
can be useful, depending on the goals of the study, but a balance between the two
is considered optimal. Thus, it is important to evaluate the methods that we use in
terms of the bias and variance of the estimates we produce. The ability to quantify the
bias and variance between different imaging and analysis methods quickly and easily
allows the researcher to make informed design decisions at every step. Currently,
there are no methods available for bias correction in HARDI acquisitions. This chap-
ter provides approaches for the quantification of both bias and variance that can be
performed with a single data acquisition, allowing for the comparison across methods
without requiring repeated data acquisitions.

In addition to the simple quantification of bias for better understanding of the
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quality of a variety of imaging acquisition parameters and model fitting strategies,
this method may also prove useful as a tool for bias correction. Several acquisition
parameters are set during the image acquisition process, all of which can affect scan
quality and the resulting analysis. Of particular interest is the situation where two
scans are taken at different acquisition settings on the same subject. In theory, scans
should be comparable within subjects, but in practice, they can be extremely variable.
The SIMEX process aims to provide a method for bias-correction while the bootstrap
procedure allows for an empirical estimate of the variance of Q-ball metrics, such as
generalized fractional anisotropy (GFA), which is a measure of anisotropy calculated
from the orientation distribution function (ODF).

This work appeared in Hainline, Nath, Parvathaneni, Blaber, Schilling, Anderson,
Kang and Landman (2018).

2.2 Theory
This analysis focuses on Q-ball imaging reconstruction of the ODF of HARDI data

acquisitions. We evaluate methods detailed by (Hess et al. (2006)) and (Descoteaux
et al. (2007)) that use a spherical harmonic basis in the reconstruction of the ODF,
which describes the patterns of diffusion within the tissue.

The regularized Q-ball reconstruction introduced in (Descoteaux et al. (2007))
requires the m × 1 vector of diffusion weighted signals at each voxel, as well as a
2 × m matrix of gradient directions in spherical coordinate space, where m is the
number of gradient directions. Details on the calculation of the ODF are found in
(Descoteaux et al. (2007)).

Following calculation of the ODF, a variety of metrics can be calculated. The
metric used in this analysis is GFA, which is given by,

GFA = std(ψ)
rms(ψ) =

√√√√m
∑m
i=1(ψi − ψ)2

(m− 1)∑m
i=1 ψ

2
i

where ψ is the ODF vector, and ψ is its mean (Tuch (2004)).

2.2.1 SIMEX applied to empirical data
The SIMEX approach detailed herein estimates the bias present in metrics gener-

ated by a Q-ball model. SIMEX was introduced as a method for performing inference
in models where measurement error was a concern. This method is unique in that it
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does not require fitting a complicated parametric measurement error model, yet still
provides unbiased estimates of the object of interest. In short, bias estimates can be
calculated by adding increasing amounts of synthetic noise to the data and computing
the desired metrics at each noise level. The resulting measures can be extrapolated
to the hypothetical case where no noise is present (Cook and Stefanski (1994)).

In the case where the measurement error variance can be well estimated, SIMEX is
able to estimate the bias without requiring any model fitting, as is generally the case
in typical measurement error estimation and correction procedures. SIMEX requires
that the measurement error variance is well estimated and that the metric of interest
changes monotonically as a function of noise added.

In this section, we adopt the notation established by Lauzon et al. (2011). We
assume Xtruth to be a truth dataset with zero noise. This dataset can be used to cal-
culate the ground truth metric, GFAtruth, via a Q-ball fit. Now, assume an observed
dataset with experimental noise where σE represents the standard deviation of the
noise at each voxel. This observed dataset is given by,

Xobs = Xtruth + ησE

which represents the addition of stacked Rician noise with standard deviation σE as
in Lauzon et al. (2013). While the original SIMEX approach assumes a normally
distributed noise term, we are able to substitute the Rician distribution due to its
approximation of a Gaussian distribution at SNR greater than 3 (Gudbjartsson and
Patz (1995)). The metrics resulting from a Q-ball fit of this observed data are given
by GFAobs.

The “simulation” portion of the SIMEX procedure begins with the simulation of
noisy GFA observations. These noisy observations cannot be simulated directly, thus
a series of Monte Carlo simulations are performed via the addition of stacked Rician
noise with the standard deviation of ω 1

2σE, given by,

XM.C.(ω) = Xobs + η
ω

1
2 σE

where M.C. represents a Monte Carlo replication and metrics derived from XM.C.(ω)
are given by GFAM.C.(ω). The average value within each set of replications within a
given ω value is given by GFAM.C.(ω).

Once a trend is established in the sequence of GFAM.C.(ω) values, a quadratic
equation is fit.

GFA = β0 + β1ω + β2ω
2; ω = 0, 1, 2, . . .
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The variance of the simulated, noisy data can be viewed as a function of ω,

var(XM.C.(ω)) = var
(
ησE

+ ω
1
2ησE

)
= σ2

E(1 + ω)

Thus, the variance goes to zero when ω = −1 and the value of GFA at this value
is considered noiseless. The value at ω = −1 is referred to as GFASIMEX .

Finally, the bias can be estimated by subtracting the SIMEX metrics from those
calculated from the observed data:

B̂ias = GFAobs −GFASIMEX (2.1)

The true bias can be calculated, given truth data, by

Biastrue = GFAobs −GFAtruth (2.2)

2.2.2 Bootstrap estimation of variance
The bootstrap is a popular method for estimation of variance in models where a

parametric solution is either not available or not assumed. The family of bootstrap
procedures involves the resampling of data with replacement, where each resampled
dataset is viewed as a surrogate for an independently sampled dataset. The metric of
interest is computed for each resampled dataset. Through repeated sampling, we can
create a bootstrap distribution of the metric, which approximates the true sampling
distribution of the metric (Efron (1992)).

In a case where multiple acquisitions were obtained for each gradient direction,
a classic bootstrap approach works well. In a classic bootstrap, data points are re-
sampled across the acquisitions, but within each voxel. The requirement for repeated
acquisitions, however, is unreasonable for larger numbers of gradient diffusion direc-
tions. The residual bootstrap, in which residuals are resampled at random across data
points, cannot be used with a single DW-MRI acquisition due to the heteroscedas-
ticity (i.e. non-constant variance across gradient directions) that is introduced upon
permutation (Basser et al. (1994a); Whitcher et al. (2008)). While the signal used
for Q-ball does not use a log-transform (as in DTI), we may still observe some het-
eroscedasticity as a result of differences in the variance of the Rician distribution as
a function of the mean.

In cases where the errors are heteroscedastic, the wild bootstrap has proven effec-
tive at characterizing the variance without assuming constant variance (Liu (1988)).
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This method was applied to DTI in (Whitcher et al. (2008)) and was shown to out-
perform the regular bootstrap for a variety of settings. The wild bootstrap has since
been applied in probabilistic fiber tracking with positive results (Jones (2008)). For
these reasons, we chose to employ the wild bootstrap for our variance estimation
procedure as follows.

A wild bootstrap technique gives empirical estimates of the variance of popular
metrics from a Q-ball fit. Continuing the notation established above, we begin with
the truth data, Xtruth with zero experimental noise. n datasets are simulated via
the addition of Rician noise with standard deviation σE. These datasets are seen as
hypothetical independent acquisitions from a single subject. These datasets are fit
using the Q-ball and GFA for each voxel is calculated. The standard deviation of the
resulting calculations gives σtrue.

Next, variance is estimated via the wild bootstrap procedure. First, residuals
must be calculated at each voxel,

ε = Xtruth −Xobs (2.3)

In order to create the bootstrapped datasets, the signs of the residuals are flipped
randomly and added back to the observed data (Jones (2008)). The signs of the
residuals are determined by a vector of random Bernoulli draws of the same length
as the residual vector:

Xboot = Xobs + εB (2.4)

where Xobs is the m×1 vector of observed data at a single voxel and B is an m×1
vector of random Bernoulli draws. This process is repeated n times, resulting in n

simulated datasets. GFA is calculated for each simulated dataset and the standard
deviation of GFA across the n datasets gives σ̂.

2.3 Methods
A flowchart detailing the steps of the SIMEX process on GFA as well as the

calculation of bootstrap variance is given in Figure 2.1. The SIMEX procedure is
performed on a voxel-by-voxel basis, where each voxel is evaluated independently.
All calculations were performed in Matlab version R2016a (MATLAB (2016)) and
the Camino Diffusion MRI toolkit (Cook et al. (2006)).
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Figure 2.1: Flowchart detailing the SIMEX and bootstrap procedures. The flowchart begins with
the creation of the true data via a spherical harmonic fit of the empirical data as detailed in the
text. The top two sections refer to the calculation of the estimated and true standard deviation for
GFA. The calculation of true standard deviation is based on the true data while the calculation of
the estimated standard deviation is based on the noise-added simulated observed data. The SIMEX
procedure begins with the simulated observed data, iterates through a series of noise values and
concludes with the extrapolation to estimate GFA. True bias requires the calculation of GFA based
on the truth data and comparison with the observed GFA as calculated from the simulated observed
data.

2.3.1 Empirical data
The empirical data used in this experiment were obtained from a healthy vol-

unteer using a 3T Philips Scanner with a 32-channel head coil. The session con-
sisted of 96 gradient directions at a b-value of 3000 s/mm2. The voxel resolution is
2.5mm x 2.5mm x 2.5mm with 38 slices. The scan parameters were: Multi-Band=2;
SENSE=2.2; TR= 2650 ms; TE=94 ms; partial Fourier=0.7. Fold over direction was
A-P with a P (posterior) fat shift. For each shell, an additional diffusion scan was
acquired with reverse phase encoded volumes (i.e., fold over direction A-P with A
fat shift) with a minimally weighted volume and 3 diffusion weighting directions with
a b-value of 1000 s/mm2 along the imaging frame cardinal directions, and all other
parameters were kept constant. All data were acquired in accordance with the Van-
derbilt University Institutional Review Board (IRB) guidelines and with the signed
consent of the volunteer.
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2.3.2 Creating ground truth data
To create the ground truth data used in this experiment, the 6th degree spherical

harmonic basis function was selected. This basis function was generated using the b-
vectors used in the original data acquisition. Regularized linear least squares fitting
was used to estimate the spherical harmonic coefficients of the diffusion-weighted
signal for each voxel. The resulting spherical harmonic series representation is a
smoothed version of the original data; thus the resulting brain volume is assumed to
be noiseless and is used as the ground truth dataset for the entirety of this analysis.
Note that this method depends heavily on the appropriateness of the Q-ball model.
Any deviation from the model may result in a systematic bias that cannot be corrected
via the SIMEX procedure. Care must be taken when fitting the truth model to avoid
such bias. This dataset, along with the b-values and b-vectors can be found here:
www.nitrc.org/projects/masimatlab under “SIMEX on HARDI.”

2.3.3 Creating observed data
The observed data, Xobs, were created via the addition of random Rician noise to

the ground truth data. The standard deviation of the Rician noise is the standard
deviation of the residuals, σE, thus this observed dataset approximates an empirically
observed HARDI data acquisition at the given SNR.

2.3.4 SIMEX
2.3.4.1 Calculating estimated bias

The first step of the SIMEX process is to calculate GFAM.C.(ω). 100 Monte
Carlo simulations were performed for each ω = 1, 2, . . . , 10, and the average was
taken for each ω to obtain GFAM.C.(ω). A quadratic equation was fit in order to
extrapolate to the GFA value that results when ω = −1. The resulting value is
known as GFASIMEX . GFAobs was obtained directly from a Q-ball fit of the observed
data, Xobs. Estimated bias was calculated as the difference between GFASIMEX and
GFAobs (Eq. 2.1).

2.3.4.2 Calculating true bias
In order to calculate the true bias, the GFA of Xobs was calculated via a Q-ball

fit. GFAtruth was calculated by fitting Xtruth with no additional noise. True bias
was calculated by taking the difference between GFAobs and GFAtruth (Eq. 2.2). An
example of the SIMEX procedure on 3 voxels from different brain regions is shown in
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Figure 2.2. A successful SIMEX procedure is one where the SIMEX estimated GFA
value is closer to the true GFA value than the observed GFA value, i.e., the estimated
bias is close to the true bias.

This procedure was performed independently for each voxel in the brain volume.
GF

A	

ω	

Figure 2.2: The SIMEX procedure demonstrated on 3 distinct voxels within the brain. These three
voxels show the three possible results of the SIMEX procedure: when the SIMEX estimate improves
the observed estimate, when the SIMEX estimate is approximately equal to the observed estimate,
and when the SIMEX estimate is worse than the observed estimate. ω is the multiplier on the
amount of noise added to each voxel (note that ω = 0 is the observed data and ω = −1 is the
noiseless true data). Each • indicates the mean of the 100 Monte Carlo iterations at that ω value.
The × indicates the observed GFA value for that voxel. The triangles indicate the true GFA value
for each voxel. The asterisks indicate the SIMEX estimated GFA value for each voxel. The error
bars represent the 5th and 95th percentiles of the M.C. iterations for each ω.

2.3.5 Bootstrap
2.3.5.1 Obtaining residuals

To obtain the necessary residuals for the residual wild bootstrap, we calculate the
difference in signal between the ground truth data and the observed data (Eq. 2.3).
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2.3.5.2 Calculating estimated variance
We obtain an estimate of the bootstrap variance for GFA. Residual wild bootstrap

is performed using Xboot and ε (Eq. 2.4). We obtain 100 GFA estimates by repeating
the bootstrap procedure and calculating GFA for each residual bootstrap sample.
The standard deviation of the 100 metrics is taken to obtain the estimated standard
deviation of the procedure, σ̂.

2.3.5.3 Calculating true variance
Starting with the true data, Xtruth, we add random Rician noise with standard

deviation, σE, to obtain an observed dataset, Xobs. The Q-ball model is fit and
GFAobs is obtained. This process is repeated 100 times, resulting in 100 GFA values.
The standard deviation of the 100 GFA values is considered to be the true standard
deviation of the procedure, σtrue.

2.3.6 Characterization on independent datasets
We have applied the methods described above on two additional datasets to evalu-

ate the generalizability of the approach. The second dataset is from the 2017 ISMRM
TraCED challenge (https://my.vanderbilt.edu/ismrmtraced2017/). These data were
acquired on a 3T Philips scanner and consisted of 64 gradient directions at a b-
value of 3000 s/mm2 with a voxel resolution of 2.5mm x 2.5mm x 2.5mm with 44
slices. The scan parameters were: Multi-Band=2; SENSE=2.2; TE=99 ms; partial
Fourier=0.755. Fold over direction was A-P with a P (posterior) fat shift.

The third dataset we used is from the 2015 ISMRM Tractography challenge
(Maier-Hein et al. (2017)). These data were obtained from an artificial phantom
that was generated using the Fiberfox software. The anatomy was based on bun-
dles segmented from a Human Connectome Project subject. These data are a 2mm
isotropic diffusion acquisition with 32 gradient directions at a b-value of 1000 s/mm2.
An artifact-free ground truth dataset was also provided and was used as the truth
dataset in this analysis.

These two additional datasets were analyzed in the same fashion as the first, as
detailed in the Methods section, with one exception for the 2015 ISMRM Tractogra-
phy challenge data. Since the 2015 ISMRM Tractography challenge included a truth
dataset, we opted to use it rather than the Q-ball fitted model as Xtruth.
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2.4 Results
2.4.1 Simulation results

Figure 2.3 displays the results of the SIMEX and bootstrap procedures and their
ability to estimate the true bias and standard deviation of the empirical data. Per-
formance was evaluated on white matter and gray matter separately. The SIMEX
procedure tends to underestimate the true bias of GFA in cases where the true bias
is larger. The bootstrap procedure is successful at estimating the true standard de-
viation of GFA in both white matter and gray matter.

Figure 2.4 provides a qualitative look at the performance of SIMEX and the
wild bootstrap on GFA. In this figure, we compare the true GFA values with their
estimated values and compute the difference between the two, or the residual bias of
our methods. Also included for reference are maps of the observed GFA and a B0
image as a structural reference. In both cases, the procedures appear to estimate
their targets well. These qualitative results are in line with the quantitative results
shown in Figure 2.3.

2.4.2 Sensitivity to noise
We have also provided the error of the SIMEX procedure as a function of SNR in

Figure 5a. The root mean squared error (RMSE) decreases as the SNR increases for
both white matter and gray matter. We have identified a typical clinical SNR range
between 20:1 and 40:1 and find that the SIMEX method works well within this range.

The SIMEX procedure (Figure 2.5 (panel a)) shows a 5-7% improvement over
the uncorrected estimates of GFA in white matter and a 5-8% improvement over the
uncorrected estimates of GFA in gray matter, within the SNR range. At lower SNR,
the bias-correction procedure shows minimal improvement due to the noisy nature
of the data. The largest improvements are seen in the meaningful range, though the
procedure continues to result in lower RMSE at SNR up to 70:1.

To evaluate the performance of the bootstrap variance estimation procedure as a
function of SNR, we examined the ratio of the estimated standard deviation and the
true standard deviation for white matter and gray matter (Figure 2.5 (panel b)). We
find that within the SNR range, the wild bootstrap procedure is able to capture 97%
of the true standard deviation for white matter and 86% for gray matter.
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Figure 2.3: Bootstrap approximations of the variance of GFA. a) True bias (blue) and estimated bias
(red) in white matter. b) True bias and estimated bias in gray matter. c) True standard deviation and
estimated standard deviation in white matter. d) True standard deviation and estimated standard
deviation in gray matter. The SIMEX procedure appears to overestimate the true bias in white
matter and underestimate the true bias in gray matter. The bootstrap procedure well characterizes
the variance.

2.4.3 Performance on independent datasets
For the 2017 ISMRM TraCED challenge dataset, the SIMEX procedure (Figure

6a) shows 5-6% improvement over the uncorrected estimates of GFA in white matter
and a 5-7% improvement over the uncorrected estimates of GFA in gray matter,
within the SNR range. We also find that within the SNR range, the wild bootstrap
procedure is able to capture about 95% of the true standard deviation for both white
matter and gray matter (Figure 6b).

For the 2015 ISMRM Tractography challenge dataset, the SIMEX procedure (Fig-
ure 6c) shows 3-11% improvement over the uncorrected estimates of GFA in white
matter and 5-8% improvement over the uncorrected estimates of GFA in gray matter,
within the SNR range. The wild bootstrap procedure performs poorly on the 2015
ISMRM Tractography challenge dataset, overestimating the true standard deviation
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Figure 2.4: Qualitative results demonstrate the performance of SIMEX bias-correction as well as the
wild bootstrap standard deviation estimation on GFA measures at an SNR of 20:1. The approaches
described here can closely estimate the true bias and standard deviation from single acquisition data
with no repeated volumes. In both cases, the magnitude of the difference between the estimated and
true values is several times smaller than that of the original measures (note the scales of the color
bars for the difference images), thus we are able to accurately estimate both the bias and variance
with these techniques. The B0 image is provided as a structural reference for the variance estimation
results.

by 20-40% in white matter and 10-12% in gray matter (Figure 6d). The use of the
provided truth data as the Xtruth rather than the Q-ball model as we did for the other
two datasets negatively impacts the performance of the wild bootstrap.

2.5 Discussion
The interpretation of DW-MRI imaging is highly dependent on the conditions

and parameters involved in the image acquisition. In addition, systematic bias has
the potential to mislead the results of a statistical analysis of imaging data. Biased
measurements in a diagnostic setting can have a negative impact on treatment deci-
sions, while bias in a research setting may mislead methodological comparisons and
imply false hierarchies among analysis methods. The ability to correct the bias of
an empirical sample without requiring a parametric model fit is valuable. With the
methods described here, we can evaluate each acquisition independently, allowing for
the identification of imaging artifacts and other data quality issues on a case-by-case
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Figure 2.5: Performance of SIMEX and bootstrap across a range of SNR. (a) The root mean squared
error (RMSE) of the SIMEX GFA estimation (log-scale) after bias-correction shows improvement
over the RMSE without bias-correction. Within the meaningful SNR range (shown in the gray box),
the bias-corrected estimates show a 5-7% improvement over the uncorrected estimates in white
matter and a 5-8% improvement over the uncorrected estimates in gray matter. Within the range,
lower SNR shows greater improvements. (b) The ratios of mean estimated standard deviation of
GFA and mean true standard deviation of GFA within white matter and gray matter are shown
across a range of SNR values. We find that the wild bootstrap procedure slightly underestimates
the standard deviation in white matter, where the estimates are about 97% of the true values in
our specified meaningful SNR range. In gray matter, the underestimation is larger, though the
bootstrap procedure still captures 86% of the true variation. Within the typical clinical SNR range,
the methods estimate the standard deviation well. Below this range, we see lower performance and
above this range, we see small improvements.

basis.
Bias correction is an important factor for single scans as well as for repeated scans

as part of a longitudinal study of a single patient, however, there is no accepted
method available for bias estimation in HARDI data. The application of the SIMEX
bias-correction technique can prove useful in such studies, where changes within sub-
ject are of interest. In addition, the ability to quantify the bias and variance of
a single scan proves useful for the comparison of different scan settings or analysis
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methods. Comparison of bias and variance among analysis methods allows for a more
comprehensive summary of the usefulness of each and may better inform the choice
of method for future studies.

The methods described in this chapter are conceptually simple and computation-
ally feasible, making them excellent candidates for inclusion in standard data pro-
cessing procedures. The speed of these procedures is dependent on the time taken to
add random noise to the data as well as the time taken to fit the model and compute
the metric of interest. The SIMEX methodology is flexible in terms of the number
of ω values as well as the extrapolation function. These design considerations should
be made based on the behavior of the metric of interest. The number of ω values is
chosen depending on the metric and should be large enough to capture the trend of
the noise-added metrics, but not so large that variation from one value to the next
is lost. The user may also choose the degree of the polynomial fit to the noise-added
metrics, though we have found that a quadratic fit tends to work well for most cases
and reduces the possibility of overfitting.

The SIMEX method detailed herein assumes that the noise has a Rician distribu-
tion with mean zero. While data acquisitions are unlikely to have a truly zero mean
noise distribution, the bias is small in high SNR data leading us to maintain this as-
sumption for simplicity. A possible limitation of this technique lies in the assumption
that the Q-ball model is correct and does not introduce any systematic bias to the
procedure. The reliance on a model is not unique to this procedure and care should
always be taken in fitting an appropriate model in order to limit the amount of bias
introduced to the analysis. Additionally, potential issues for the application to human
data include increased noise levels or imaging artifacts. The SIMEX and bootstrap
approaches are not guaranteed to work well in the presence of extreme imaging ar-
tifacts and such artifacts may have negative impacts on the resulting analysis. Care
should be taken in the preprocessing steps to eliminate any sources of imaging noise
that may affect the analysis. Due to the procedure’s dependence on noise for bias es-
timation, we have found that the performance requires a relatively high SNR in order
to perform optimally. Extensions to this method that may improve the performance
at lower SNR will be the focus of our future work.

Perhaps the most interesting results are those seen in Figure 6. In validating our
work with additional datasets, we found that the use of the spherical harmonic Q-ball
model as Xtruth is crucial to the ability of the wild bootstrap to accurately estimate
the true standard deviation of the GFA estimates. The wild bootstrap relies on the
residuals between Xtruth and Xobs and when the two come from different models,
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this model mismatch dominates the Monte Carlo procedure’s performance, leading to
inaccurate estimates of the standard deviation of GFA. It is encouraging to note that
the SIMEX procedure is unaffected by the choice of truth model and thus proves itself
to be a general-purpose technique for bias estimation in HARDI data acquisitions.
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Figure 2.6: Performance of SIMEX and bootstrap across a range of SNR for two additional datasets,
2017 TraCED challenge and 2015 Tractography challenge. (a) For the TraCED challenge, the root
mean squared error (RMSE) of the SIMEX GFA estimation (log-scale) after bias-correction shows
improvement over the RMSE without bias-correction. Within the meaningful SNR range (shown in
the gray box), the bias-corrected estimates show a 5-6% improvement over the uncorrected estimates
in white matter and a 5-7% improvement over the uncorrected estimates in gray matter. Within
the range, lower SNR shows greater improvements. (b) For the TraCED challenge, the ratios of
mean estimated standard deviation of GFA and mean true standard deviation of GFA are shown
across a range of SNR values. We find that the wild bootstrap procedure slightly underestimates
the standard deviation in both white matter and gray matter, where the estimates are about 95% of
the true values in our specified meaningful SNR range. Within the typical clinical SNR range, the
methods estimate the standard deviation well. (c) For the 2015 Tractography challenge, the root
mean squared error (RMSE) of the SIMEX GFA estimation (log-scale) after bias-correction shows
improvement over the RMSE without bias-correction. Within the meaningful SNR range (shown
in the gray box), the bias-corrected estimates show a 3-11% improvement over the uncorrected
estimates in white matter and a 5-8% improvement over the uncorrected estimates in gray matter.
(d) For the 2015 Tractography challenge, the ratios of mean estimated standard deviation of GFA
and mean true standard deviation of GFA are shown across a range of SNR values. We find that
the wild bootstrap procedure overestimates the standard deviation in both white matter and gray
matter, where the estimates are 20-40% higher than the true values in our specified meaningful SNR
range for white matter, and 10-11% higher in gray matter. We find that when there is a model
mismatch, as is the case with our use of the Tractography dataset, the wild bootstrap technique
cannot accurately estimate the true standard deviation.
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CHAPTER 3

EVALUATION OF INTER-SITE BIAS AND VARIANCE IN
DIFFUSION-WEIGHTED MRI

3.1 Introduction
Given pragmatic considerations of study design and magnetic resonance imaging

(MRI) data acquisition, many clinical studies combine data from several different
sources in order to increase the sample size and improve the power (Di Martino
et al. (2014); Jack et al. (2014)). Traditional techniques for evaluating contrasts
and testing differences across time assume that the bias and variance are constant
across all acquisitions (e.g., Basser and Jones (2002)). However, there is no universal
technique for evaluating sources of bias and variance in MRI on individual subjects.
Violation of statistical assumptions has the potential to invalidate inferences. Thus,
the addition of new data has the potential to decrease the statistical power as a
result of the introduction of bias. Significant amounts of bias and variance can result
even within a single site due to patient factors, hardware differences, and signal
processing/software.

Here, we focus on the context of high angular resolution diffusion imaging (HARDI),
with a specific focus on Q-ball imaging (QBI). To illustrate the problem, Figure 3.1
presents the variation that can be observed within a single subject scanned across
5 separate scans (3 independent scanners and 2 re-scans). Each of these scans was
taken under comparable acquisition parameters and should reveal the same brain
structure; however, the figure shows variation in B0, DWI, and vector-mapped im-
ages. These differences are clearly visually appreciated from the images themselves,
but the extent of the variation’s impact on HARDI analysis is difficult to quantify
visually. In diffusion tensor imaging (DTI), bias and variance haven been assessed for
single subjects with simulation extrapolation (SIMEX) and Monte Carlo methods,
respectively (Lauzon et al. (2013)). Recently, these methods have been adapted to
HARDI (Hainline, Nath, Parvathaneni, Blaber, Schilling, Anderson, Kang and Land-
man (2018)), but have not been evaluated on multi-site traveling data. This chapter
presents an analysis of 3 sites using harmonized HARDI acquisition protocols. The
focus of this work is to consider tools for estimating the bias and variance, as well as
to present a decision tree to guide the researcher as to how such data could be used.
The process described herein can be used for quality assurance within a single site to
ensure optimal statistical power and results.
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Figure 3.1: Illustration of the variation that may be seen across scan sites within a single subject
with each scan processed in the acquired space. B0, DWI, and the principal eigenvectors for the
same mid-axial slice across different scans within the same subject. The color intensity maps are
constant across all sites for each (arbitrary units).

This work appeared in Hainline, Nath, Parvathaneni, Blaber, Rogers, Newton,
Luci, Edmonson, Kang and Landman (2018).

3.2 Methods
3.2.1 Data acquisition

Subjects were imaged at 3 independent study sites. Five subjects were imaged at
Site A on a 3.0T system using a full body transmit coil with a 32-channel head only
receive coil. Non-diffusion weighted imaging sequences consisted of 3D T1 weighted
MPRAGE, resting state fMRI, and B0 mapping. Diffusion weighted imaging se-
quences consisted of a 96 direction DTI (b=1000, 1500, 2000, 2500 s/mm2; SENSE
= 2.5; partial Fourier factor = 0.77; voxel dim. = 1.9x1.9mm2; FOV = 112x112; #
of slices = 48, slice thickness = 2.5mm), as well as regularly interspersed acquisitions
of a three direction DWI acquisition acquired with reversed phase encoding gradi-
ents, and finally a vendor standard 30 direction DTI (b=1000 s/mm2) acquisition.
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Scans from this site were resampled to 2.5x2.5mm2 for comparison with the other two
study sites. 4 subjects were re-scanned with the same protocol. Five subjects were
imaged at Site B on a 3.0T system using a full body transmit coil with a 32-channel
head only receive coil. Non-diffusion weighted imaging sequences consisted of 3D T1
weighted MPRAGE, resting state fMRI, and B0 mapping. Diffusion weighted imaging
sequences consisted of a 96 direction DTI (b=1000, 1500, 2000, 2500 s/mm2; SENSE
= 2.5; partial Fourier factor = 0.77; voxel dim. = 2.5x2.5mm2; FOV = 96x96; # of
slices = 48, slice thickness = 2.5mm), as well as regularly interspersed acquisitions of
a three direction DWI acquisition acquired with reversed phase encoding gradients,
and finally a vendor standard 30 direction DTI (b=1000 s/mm2) acquisition. 4 sub-
jects were re-scanned with the same protocol. Four subjects were imaged at Site C on
a 3.0T system using a full body transmit coil with a 32-channel head only receive coil.
Non-diffusion weighted imaging sequences consisted of 3D T1 weighted MPRAGE,
resting state fMRI, and B0 mapping. Diffusion weighted imaging sequences consisted
of a 96 direction DTI (b=1000, 1500, 2000, 2465 s/mm2; GRAPPA = 2; voxel dim.
= 2.5x2.5mm2; FOV = 96x96; # of slices = 50, slice thickness = 2.5mm), as well as
regularly interspersed acquisitions of a three direction DWI acquisition acquired with
reversed phase encoding gradients, and finally a vendor standard 30 direction DTI
(b=1000 s/mm2) acquisition.

3.2.2 Model fitting
We fit all data with a Q-ball imaging with a model order 6 reconstruction of the

orientation distribution function (ODF) of the HARDI data acquisitions. As detailed
in Hess et al. (2006) and Descoteaux et al. (2007), we use a regularized spherical
harmonic reconstruction of the ODF and calculate generalized fractional anisotropy
(GFA),

GFA = std(ψ)
rms(ψ) =

√√√√m
∑m
i=1(ψi − ψ)2

(m− 1)∑m
i=1 ψ

2
i

where ψ is the ODF vector, and ψ is its mean (Tuch (2004)).
Note that we have chosen to use GFA as the metric of interest for this analysis.

However, the theory behind these methods allows for calculations based on any scalar
metric, with the only requirements being that it is continuous and monotonic with
respect to the addition of noise (Cook and Stefanski (1994)).
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3.2.3 GFA bias estimation
We used the SIMEX approach to estimate the bias of GFA. This approach was

adapted from modern statistical methods (Cook and Stefanski (1994)) and has been
described in Lauzon et al. (2013) for use in DTI, and for HARDI in Hainline, Nath,
Parvathaneni, Blaber, Schilling, Anderson, Kang and Landman (2018). When mea-
surement error is present, the true data are unable to be observed, i.e., we instead
observe

Xobs = Xtruth + ησE

which represents the addition of stacked Rician noise (R) with standard deviation σE
as in Lauzon et al. (2013).

In short, the SIMEX procedure relies on the behavior of the metric of interest as
a function of the addition of random noise. As noise is added to the observed data in
increasing amounts, a trend is observed in the metric of interest calculated at each
level of noise. We can use this trend to extrapolate backward to the case with no
measurement error (or noise) and obtain a function of Cook and Stefanski (1994).

SIMEX does not require the fitting of parametric measurement error models in
order to estimate the bias (Carroll et al. (1996)). The only requirements for the
application of SIMEX are that the measurement error variance can be estimated and
that the metric of interest is smooth and monotonic as a function of noise.

3.2.4 GFA variance estimation
The wild bootstrap was used to estimate the variance of GFA. The wild bootstrap,

as detailed in Jones (2008), is a method for estimating the variance of an MRI-derived
metric, without requiring the use of several repeated data acquisitions. We use the
wild bootstrap rather than a traditional bootstrap resampling with replacement due
to the heteroscedasticity of the errors in a diffusion model (Basser et al. (1994a);
Whitcher et al. (2008)).

3.2.5 Analysis
For this analysis, we have data acquired from two shells, b=1000 and b=2500

s/mm2. These shells will be analyzed separately and results are compared. The
SIMEX and bootstrap procedures are performed on a voxel-by-voxel basis, where
each voxel is evaluated independently. All calculations were performed in Matlab
version R2016a (MATLAB (2016)) and the Camino Diffusion MRI toolkit (Cook
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et al. (2006)).
The first step in the analysis is the estimation of both the bias and variance (as

detailed in sections 2.3 and 2.4) for each voxel within each data acquisition. For
evaluation, all data was registered to the ICBM 2009a Nonlinear Symmetric template
(Fonov et al. (2009, 2011)). We chose to do our analysis on the ROI level; thus, we
used manually delineated five white matter ROIs: centrum semiovale, splenium of the
corpus callosum, internal capsule, putamen, and globus pallidus. The average bias
and variance values were taken within ROIs, resulting in a value for each subject,
scanner, b-shell, and ROI combination.

When the average values for the bias and standard deviation of GFA are calculated
for each ROI, the decision tree found in Figure 3.2 can be used to guide the model
selection process. First, we create quantile-quantile (Q-Q) plots and histograms for
both the average bias and average standard deviation of GFA values within each ROI.
Q-Q plots compare the quantiles of the observed distribution to that of a Gaussian
distribution. Ideally, the points on the Q-Q plots fall directly on the line, though
slight deviations are often not cause for alarm. Often, deviations that occur in the
tails of the distribution may be due to small sample sizes and are expected to stabilize
with larger samples. Note that formal tests of normality are available; however, these
tests can be misleading (Mason and Schuenemeyer (1983)). Thus, we recommend
visually checking for normality via the Q-Q plots and histograms. Bimodality or
other signs of asymmetry will be evident in both types of plots. If the plots reveal
non-normality, the recommendation is to closely examine the raw data for artifacts
and correct them, if found. If no artifacts are found, non-parametric methods that
do not assume normality should be used.

Next, boxplots are made for the mean values of the bias and standard deviation
of GFA for each ROI with the points overlaid. Each point represents the average
value within the ROI for either the estimated bias of GFA or the estimated standard
deviation of GFA. The boxplot allows for the visual identification of outliers and gives
a clear picture of the differences across sites and subjects. This boxplot is the main
tool for determining what modeling strategy is optimal for the data distributions.

3.3 Results
This analysis consisted of 5 subjects who were scanned at up to 3 independent scan

sites with re-scans. Our first step was to create bias and standard deviation maps,
shown in Figure 3.3 for subject 01. These maps help reveal the spatial distributions
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Figure 3.2: Recommended decision-making process for model selection. The procedure begins with
a simple histogram or density plot to identify any severe distributional issues that would interfere
with inference. For the purpose of this decision tree, the “data” refers to the averaged values within
each ROI for either the estimated bias of the metric of interest or the estimated standard deviation
of the metric of interest. Once the distribution has been checked, a boxplot is recommended to
get an idea of what outliers exist and where they came from. Any patterns in outliers that can be
attributed to site- or subject-specific artifacts should be accounted for with a random effect. Finally,
one should look at the standard deviation of the metric as well as the magnitude of the bias. If
either of these is larger than the expected effect size, this should be accounted for in the modeling
through the inclusion of a covariate

of both the bias and the variance across the brain structures. In particular, we see
higher bias and standard deviations in the gray matter in comparison to white matter.

Following the decision tree in Figure 3.2, we made Q-Q plots and histograms
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Figure 3.3: Spatial maps for the bias of GFA and the standard deviation of GFA for subject 01 are
shown across all sites for (a) b=1000 and (b) b=2500. With these maps, the spatially dependent
nature of the bias and variance estimates is evident. We can also see the variation in both estimates
across the different scans. All images are shown on the scale of the unitless GFA measure.

of the ROI-averaged data (Figure 3.4) and found that the bias measurements were
reasonably close to a Gaussian distribution. The plots reveal slight departures from
normality due to heavier tails, though the distributions maintain a level of symmetry.
In particular, we see a larger negative bias in the internal capsule of a single scan as
well as larger standard deviations for the splenium of the corpus callosum for several
scans. Note that the standard deviation of GFA is not expected to have a normal
distribution, thus the departures seen in the Q-Q plot (pane c) are not worrisome.
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These plots should be used as a visual check of the data for any major departures
from the majority. A look into the raw data revealed that faulty segmentation was at
fault and should be fixed for future analyses. Non-parametric methods may be useful
for analyses with these slight departures from normality coupled with small sample
sizes, though they are not required.
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Figure 3.4: Checking for normality. For b=1000, Q-Q plot for bias of GFA (a) and histogram for bias
of GFA (b) as well as the Q-Q plot for the standard deviation of GFA (c) and the histogram of the
standard deviation of GFA (d) reveal distributions with deviations from the normal distributions,
though normality is not expected for the standard deviation. The bias histogram reveals an outlier
in the internal capsule, while the splenium of the corpus callosum appears to have higher than
expected standard deviation. These deviations from expectation prompt a deeper look into the
images to determine if there are issues in the data, such as artifacts or faulty segmentation.

We then created a scatterplot with the bias across the x-axis and the variance
across the y-axis to assess the spread of the data and identify outliers (Figure 3.5).
This scatterplot shows deviations of subject 00 at Scanner A from the other data
points in terms of average bias for b=1000 s/mm2 as well as several subjects and sites
for b=2500 s/mm2. In addition, two scans from Site B show larger than expected
standard deviations. These outlying data points should be examined thoroughly
before continuing the analysis.
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Figure 3.5: Scatterplots of average bias and average standard deviation for b=1000 s/mm2 (left) and
b=2500 s/mm2 (right). Each data point is the average value within an ROI for each subject/scanner
pair. In this plot, it is clear that one ROI from subject 00 at Site A has a larger negative bias than
the rest of the scans at b=1000 s/mm2. We also find several ROIs from a variety of subjects and
sites have larger negative biases than the rest of the scans at b=2500 s/mm2, as well as two scans
from Site B which have larger than expected standard deviations. These data should be examined to
ensure that these values are correct and that the quality is compatible with the remaining scans in
this set. All bias and standard deviation values are shown on the scale of the unitless GFA measure.

Finally, we made boxplots for both bias and standard deviation of GFA. Figure 3.6
shows these boxplots for both b=1000 s/mm2 and b=2500 s/mm2. Each data point
represents an averaged value across a single ROI for one subject at one site. This
figure helps reveal patterns in bias and variance that may be due to either subject-
specific variation or differences in acquisition protocols. According to our proposed
rule of thumb, subject 00 at site A has larger than average bias in the internal capsule
(b=1000 s/mm2). For b=2500 s/mm2, several scans appear to be outliers in terms
of bias in the internal capsule. These results prompt the inclusion of a random effect
for subject.

3.4 Discussion
This chapter demonstrates the importance of a review of scan quality when com-

bining data from several study sites. With our method of scanning the same subject at
multiple scan sites, we are able to estimate biases and variances that can be attributed
only to differences in scan conditions, rather than subject-to-subject heterogeneity.
The methods described in this chapter may be used to analyze the data quality of
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Figure 3.6: Additional exploratory box plots for (a) average bias for b=1000 s/mm2 (b) average bias
for b=2500 s/mm2 (c) average standard deviation for b=1000 s/mm2 (d) average standard deviation
for b=2500 s/mm2. Each point represents the value averaged across all voxels within the ROI. Scan
sites are identified by the shape of the data point and each subject is identified by a different color.
The whiskers of the boxplot represent 1.5 times the inter-quartile range (IQR). Any points falling
outside this range are considered outliers and should be investigated further. We find that subject 00
had a larger than expected negative bias value in the internal capsule for b=1000 s/mm2 which was
the result of a segmentation error. In addition, several scans fell outside the IQR for the internal
capsule on the b=2500 s/mm2 scans. Each scan identified as an outlier should be examined for
artifacts or other errors that could impact the analysis and corrected before continuing. All bias
and standard deviation values are shown on the scale of the unitless GFA measure.

any study where heterogeneity between sites, scanners, or subjects is a concern. The
decision tree in Figure 3.2 may be used to help guide the model selection process for
analyses that combine data from different sources or where there is thought to be
differences in the quality between different acquisitions.
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CHAPTER 4

A DEEP LEARNING APPROACH TO ESTIMATION OF BIAS AND
VARIANCE IN HIGH ANGULAR RESOLUTION DIFFUSION IMAGING

4.1 Introduction
Diffusion-weighted magnetic resonance imaging (DW-MRI) harnesses the diffusion

of water for use as a proxy for underlying tissue microstructure. Diffusion tensor
imaging (DTI) characterizes this microstructure, but cannot discern fibers in more
than one direction per voxel, while high angular resolution diffusion imaging (HARDI)
is able to discern crossing fibers. Harmonization of DW-MRI acquisitions remains
an important, yet largely misunderstood area of re-search. DTI-derived metrics are
known to have bias as a result of imaging noise (Basser (1997); Bastin et al. (1998);
Skare et al. (2000); Basser and Pajevic (2000); Farrell et al. (2007); Hutchinson et al.
(2017)).

Here we focus on a particular HARDI metric, generalized fractional anisotropy
(GFA). The previous chapter provided methods for both bias correction and variance
estimation of GFA from a single, empirical HARDI scan (Hainline, Nath, Parvatha-
neni, Blaber, Schilling, Anderson, Kang and Landman (2018)). Simulation Extrapo-
lation (SIMEX) was used to estimate bias of GFA, while a wild bootstrap technique
was used to estimate the standard deviation of GFA. While these methods work well,
they tend to be computationally intensive due to the Monte Carlo simulations required
for each estimate. In this work, we demonstrate a deep neural network approach for
learning GFA itself, in addition to the bias and variance of GFA from the ob-served
data. We find that we can take observed data, put it into our network and estimate
a GFA value that is closer to the truth than what would result from calculating GFA
from the diffusion orientation distribution function (ODF) of the original data via a
regularized Q-ball fit.

Figure 4.1 maps out the relationship between the traditional statistical modeling
techniques (SIMEX and wild bootstrap) and the deep learning approximations pro-
posed herein. The former are relatively computationally intensive, while the latter are
much faster to apply to new datasets, though they involve extensive training initially.

This work appears in Hainline, Nath, Parvathaneni, Schilling, Blaber, Anderson,
Kang and Landman (2018).
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Figure 4.1: Broad overview of methodology presented. The true GFA is obscured by noise and
artifacts in the imaging process. We previously used traditional statistical modeling to recover the
true values through SIMEX and the wild bootstrap. In this chapter, we extend this idea and replace
the statistical modeling techniques with deep learning approximations for bias and variance.

4.2 Methods
4.2.1 Data acquisition and preprocessing

The empirical data used in this experiment were obtained from a healthy volunteer
3T Phillips Scanner with a 32-channel head coil after informed consent (Nath et al.
(2017, 2018)). The session consisted of 96 gradient directions at a b-value of 3000
s/mm2. The voxel resolution is 2.5mm x 2.5mm x 2.5mm with 38 slices. The scan
parameters were: Multi-Band=2; SENSE=2.2; TR= 2650 ms; TE=94 ms; partial
Fourier=0.7. Fold over direction was A-P with a P fat shift. For each shell, an
additional diffusion scan was acquired with reverse phase encoded volumes (i.e., fold
over direction A-P with A fat shift) with a minimally weighted volume and 3 diffusion
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weighting directions with a b-value of 1000 s/mm2 along the imaging frame cardinal
directions, and all other parameters were kept constant.

A truth model is considered as the ‘ground truth’ data in this experiment. This
model is generated from the spherical harmonic coefficients of the DW signal. This
truth model is assumed noiseless and used as the basis for comparison of the methods.

To represent data from a typical DW acquisition, random Rician noise was added
in quadrature to the ground truth data. The resulting ‘observed’ dataset, Xobs, rep-
resents an empirically observed HARDI acquisition, as the noise value is the standard
deviation of the residuals, σE. The value of σE impacts the signal-to-noise ratio (SNR)
of the observed data.

4.2.2 Preparation for analysis: calculation of true GFA, bias, variance
4.2.2.1 Calculating true GFA

The true GFA value is calculated via a regularized Q-ball imaging fit (Descoteaux
et al. (2007)) to the true data model. For this work, a spherical harmonic basis was
used in the reconstruction of the fiber orientation distribution function (ODF). GFA
is given by

GFA = std(ψ)
rms(ψ) =

√√√√m
∑m
i=1(ψi − ψ)2

(m− 1)∑m
i=1 ψ

2
i

where ψ is the ODF vector, and ψ is its mean (Tuch (2004)).

4.2.2.2 Calculating true bias
We used a Monte Carlo approach to determine the true bias of an observed GFA

value. This method involves simulating an observed voxel, calculating the GFA value
for that voxel, subtracting the true GFA to determine the error for that observed
voxel. This process is then repeated 100 times, after which the 100 errors are averaged,
resulting in the true, voxel-wise bias of GFA.

4.2.2.3 Calculating true standard deviation
A similar approach is used for determining the true standard deviation of an

observed GFA value per voxel. We simply take the 100 simulated GFA values from
the same Monte Carlo procedure used for calculating true bias. Taking the standard
deviation of these observed GFA values gives the true, voxel-wise standard deviation
of GFA.
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4.2.2.4 SIMEX bias estimation
The SIMEX was developed by Cook and Stefanski (1994) to correct for measure-

ment error induced bias. In statistics, it is often used for the analysis of electronic
medical records to correct human errors, but here we apply it to help correct errors
induced by the imaging machinery itself. This method applies as long as the metric
of interest changes monotonically as a function of noise and the noise distribution can
be estimated (Cook and Stefanski (1994)). SIMEX utilizes the relationship between
the noise level and the metric to estimate the potential, noise- (or error-) free value of
the metric of interest. The method is simple and worked sufficiently well to quantify
the bias and variance of GFA in an empirical HARDI acquisition. This method was
first applied to DTI acquisitions (Lauzon et al. (2011)) and was recently expanded
to apply to HARDI acquisitions in Hainline, Nath, Parvathaneni, Blaber, Schilling,
Anderson, Kang and Landman (2018).

A brief explanation of the SIMEX procedure follows and full details of the algo-
rithm can be found in Chapter 2 (Hainline, Nath, Parvathaneni, Blaber, Schilling,
Anderson, Kang and Landman (2018)). SIMEX is built upon the idea that our ob-
served data are a function of the true underlying data and random noise. For our
application, all calculations are done per voxel, and the observed data are the result
of adding stacked Rician noise with standard deviation σE to our noiseless truth data
(Lauzon et al. (2013)):

Xobs = Xtruth + ησE

In order to estimate the bias of our metric, we must discern the relationship
between the metric and the noise level. Thus, we generate data values with increasing
amounts of noise (indexed by ω), calculate the metric, and observe the relationship
between the ω and the metric. Once enough data points have been generated to
establish a pattern, we can fit a quadratic curve and find our bias-corrected value
by extrapolating backward. Note that other fits may be appropriate (i.e. linear or
cubic), but we have found the best and most consistent results using a quadratic fit.
The value of the noiseless metric can be found by extrapolating this curve to the
point where ω = −1, i.e. the point where there is no imaging noise.

Once we calculate the SIMEX-extrapolated GFA value, we can estimate the error
of GFA by subtracting it from the observed GFA value:

B̂ias = GFAobs −GFASIMEX
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4.2.2.5 Bootstrap estimation of variance
The previously used statistical method for estimating the variance of GFA in

HARDI acquisitions was the wild bootstrap. A bootstrap method is ideal, as they
do not require the use of several repeated data acquisitions to estimate variance. In
particular, the wild bootstrap is chosen due to its ability to estimate variances even
when the model has heteroscedastic errors, as is the case with DTI data (Basser et al.
(1994a); Whitcher et al. (2008)).

The wild bootstrap procedure is a modified residual bootstrap, where the first
step is to compute the residuals between the model and the observed data. The signs
of the residuals are then flipped randomly and added back to the observed data,
resulting in a new, bootstrapped data set. This step is then repeated n times and
the GFA is calculated for each of the n bootstrapped acquisitions. The standard
deviation is then taken across all n simulated datasets as an estimate of the true
standard deviation (Jones (2008)). Please refer to Chapter 2 for full details on the
wild bootstrap procedure for HARDI data acquisitions.

4.2.3 Data processing for deep network
The data require further processing for input to our deep learning networks. The

inputs for the deep neural networks are 6th order spherical harmonic (SH) coefficients
for each voxel. These coefficients were calculated as described in (Descoteaux et al.
(2007)). The input for a single voxel is thus a 28×1 vector. The outputs for the deep
neural networks are the true values of GFA, bias of GFA, and standard deviation of
GFA as defined in section 4.2.2. The outputs are thus single values for each of the 3
networks.

The HARDI truth data consists of a single brain volume with 75 slices. First, we
separated the training data from the validation data. Training data were defined as
the first 41 axial slices of the volume, and the validation data were defined as the
remaining 34 slices. The training and validation data sets were handled separately
from this point on. Note that the partition is anatomically distinct, leaving no spatial
consistency between training and validation sets. Separation of the training and
validation data sets in this fashion yields results that are the worst-case scenario for
our models.

The next step was to remove any background voxels, as our data was not masked
prior to separation of training and validation data. This was done by removing all
voxels with no diffusion information. After removal of these background voxels, the
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data are ready for fitting.

4.2.4 Network design
We train three distinct fully connected deep neural networks to predict (1) GFA,

(2) the bias of GFA and (3) the variance of GFA. Each of the three networks takes
6th order spherical harmonic (SH) coefficients as input. The GFA network uses the
true GFA as the output, the bias network uses the true bias as the output, and the
variance network uses the true standard deviation as the output. Each network uses a
mean squared error loss and Adam optimizer (Kingma and Ba (2017)). Training data
were voxels from the observed data, Xobs. The first 41 slices of our observed data were
used as training data and the remaining 34 slices were reserved as a validation set. For
each network, 40,942 voxels were included for the network training and 27,798 voxels
were included for network validation. For training, 5-fold cross-validation was used
to assess performance with 20% validation in each set. Root mean squared error was
used to evaluate network performance for each. The validation error was computed
at the empirically chosen epoch where the testing error was the smallest.

4.2.4.1 GFA network
The output of the GFA network is the voxel-wise true GFA. This network consists

of 5 fully connected layers with 1200, 400, 200, 100, 66 neurons, respectively, with a
single output neuron. The first three layers use a ‘ReLU’ activation function. The
first two layers are followed by a 30% dropout layer to help prevent overfitting. A
batch size of 1,000 was used.

4.2.4.2 Bias network
The output of the bias network is the voxel-wise true bias of GFA. This network

consists of 5 fully connected layers with 400, 300, 200, 100, 66 neurons, respectively,
with a single output neuron. The first two layers use a ‘ReLU’ activation function.
The activation function is not used in the later layers to avoid constraint to positive
values. The first two layers are followed by a 30% dropout layer to help prevent
overfitting. A batch size of 1,000 was used.

4.2.4.3 Variance network
The output of the variance network is the voxel-wise true standard deviation of

GFA. This network consists of 5 fully connected layers with 1200, 400, 200, 100, 66
neurons, respectively, with a single output neuron. The first three layers use a ‘ReLU’
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activation function. The first two layers are followed by a 30% dropout layer to help
prevent overfitting. A batch size of 1,000 was used.

4.2.5 Statistical analysis
Statistical significance of the proposed method is determined via a comparison of

the squared errors of each method. For the GFA network, a two-way ANOVA was fit
for the squared errors of the observed GFA, SIMEX-corrected GFA, and the DNN-
predicted GFA. Following a significant result for the ANOVA, pairwise two-sample
t-tests were conducted to determine pairwise significance after a Bonferroni correction.
For both the bias and variance networks, two-sample t-tests were conducted between
the statistical techniques and their DNN counterparts. All tests were conducted at a
5% significance level.

4.3 Results
Full details of the algorithm used in this analysis are shown in Figure 4.2. The

results of the neural networks are compared to the results from the single obser-
vation as well as the statistical approaches (SIMEX and wild bootstrap). All cal-
culations for the traditional statistical approaches were performed in Matlab ver-
sion R2016a (MATLAB (2016)) and with the Camino Diffusion MRI toolkit (Cook
et al. (2006)). The deep learning networks were trained using Python version 3.6.4
(Python Software Foundation) Python Core Team (2015) and the Keras deep learn-
ing library (Chollet et al. (2015)). All code, data, and trained models are available
here: www.nitrc.org/projects/masimatlab under “Deep learning bias and variance
(HARDI).”

The deep learning results are compared to the observed values as well as the
SIMEX-corrected values for both GFA and bias, while the deep learning variance
estimation is only compared to our SIMEX estimate.

Figure 4.3 plots the true values for GFA, bias of GFA and standard deviation
of GFA against the observed, estimated, and predicted values. The observed GFA
plot (A.1) shows a small amount of error, though only referring to a single scan,
not an average across all possible scans. We found that our deep learning approach
more effectively approximated the true GFA in comparison to the observed GFA
(RMSE 0.0078 vs. 0.0082, p<0.001). The deep learning approach approximates
the SIMEX estimate of GFA very well (RMSE 0.0078 vs 0.0078, p=0.987). Finally,
the SIMEX estimate showed statistically significant improvement over the observed
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Figure 4.2: Overview of the algorithm used in this analysis. Data processing steps and statistical
modeling procedures are located within the gray box. The results of the statistical procedures are
com-pared to the deep learning approximations that are shown on the bottom half of the algorithm.
In this algorithm outline, the shapes refer to data types, shape colors refer to result metrics and the
arrow colors refer to the methodology employed.

estimate (RMSE 0.0078 vs. 0.0082, p<0.001).
The second column of Figure 4.3 refers to the performance of SIMEX and the

deep learning network on the bias of GFA. The observed error of GFA is plotted
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against the true bias of GFA in B.1. We find that the neural network predicted bias
is superior to the estimated bias of SIMEX (RMSE 0.0071 vs. 0.01, p<0.001).

The third column of Figure 4.3 demonstrates the performance of the wild boot-
strap and the deep learning network on the standard deviation of GFA. The RMSE of
the wild bootstrap is 12% lower than that of the deep neural network (RMSE 0.0011
vs. 0.00097, p<0.001).
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Figure 4.3: Quantitative results of the deep learning approximation in comparison to observed results
as well as statistical results (SIMEX and bootstrap). The deep learning approach outperforms the
Q-ball calculation of GFA from the observed data (A.1 and A.2) and has similar performance to the
SIMEX-corrected GFA values (A.2, and A.3). The deep learning technique for bias prediction (B.3)
results in a smaller RMSE in comparison to the SIMEX error estimation technique (B.2). The deep
learning approach shows larger RMSE for standard deviation prediction (C.2) in com-parison to the
wild bootstrap technique (C.1).

Figure 4.4 provides a qualitative look at the comparative performance of each
method for GFA, bias of GFA and standard deviation of GFA. The true GFA, bias,
and standard deviation are shown in the first row, with subsequent rows demonstrat-
ing the fitted values along with difference images. We find that our deep learning
networks return appropriate values for GFA, bias, and variance in compliance with
tissue microstructural differences. The gray box shows the error between the observed
GFA and the true GFA as well as the difference between this ob-served error and the
true bias of GFA.
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Figure 4.4: Qualitative results demonstrate the performance of the GFA, bias, and standard devia-
tion estimation methods when compared to the ground truth values of each. We see that the DNN
maintains the structural qualities of the brain and maintains comparable error when compared to
the statistical techniques. Note that each column of images maintains the same color scale.

Figure 4.5 shows the training and cross-validation error curves for each of the
three networks. The GFA network required 147 epochs of training and showed the
least amount of overfitting. The bias network required much less training, reaching a
minimum error before 100 epochs and demonstrated a significant amount of overfitting
in later epochs. Finally, the standard deviation network trained very quickly and saw
similar overfitting to the bias network as it trained for more epochs.

4.4 Discussion
Our previous work using SIMEX and the wild bootstrap to characterize HARDI

data acquisitions have a variety of important applications to harmonization and data
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A. GFA B. Bias C. Standard Deviation

Figure 4.5: Training and cross-validation error curves for each of the three deep neural networks.
The GFA network (A) shows no overfitting, while the other two networks demonstrate increasing
overfitting with a larger number of epochs. All three networks train within 100 epochs. The final
model is taken from the epoch with the lowest cross-validation error.

quality analyses. However, these methods can be time consuming and complicated
for the casual user. The ability to evaluate and correct imaging metrics can allow for
better inference and more replicable results. These methods can be especially useful
in cases where brain changes are of interest, as the changes in brain microstructure
are often very small and can be either diminished or magnified by bias.

In this chapter we have demonstrated the potential of a deep neural network to
predict the true GFA value of a voxel more accurately than a regularized Q-ball fit on
the observed data without a considerable increase in computation time. The SIMEX
and wild bootstrap method can take up to ten hours per acquisition, where the
trained neural networks provide results in 2-3 seconds. The neural networks explored
herein are excellent candidates for inclusion in standard data processing procedures,
as monitoring bias and variance of well-known metrics such as GFA is valuable for
understanding data quality. While the networks demonstrated here are not perfect,
these results are encouraging and reveal the potential of similar networks to enhance
and support the traditional methods in diffusion imaging.

Future work will be to train networks for various noise levels and b-values, as this
work was done with a single noise level at b=3000 s/mm2. The ability to incorporate
SNR information can only improve the performance and usefulness of these networks.
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CHAPTER 5

EVIDENCE-BASED INFERENCE ON RESTING STATE FUNCTIONAL
CONNECTIVITY

5.1 Introduction
Resting-state functional magnetic resonance imaging (rs-fMRI) techniques mea-

sure the blood oxygen level-dependent (BOLD) signal in the brain while at rest.
Though it is traditionally believed that brain regions that have correlated activation
patterns are likely part of the same functional network, it can be unclear whether
temporally correlated signals are indeed functionally connected, or if that signal is
the result of some combination of imaging noise and random chance (Logothetis and
Wandell (2004)). In such cases where the signals are noisy, methodologies that can
distinguish between these truly correlated signals and imaging artifacts are essential.

The two most common analysis methods for resting state fMRI data are cor-
relation analysis and independent component analysis (ICA). This work focuses on
correlation analysis, where the correlation coefficient is calculated for pairs of voxels
or regions of interest (ROI) and that correlation is determined to be significant or not
based on statistical inferential techniques (Lee et al. (2013)). Analyses often use pair-
wise t-tests in which t-statistics are calculated for each pair of voxels or ROIs and a
significance threshold is determined for the entire brain. However, this threshold must
be chosen very carefully in order to avoid an inflated family-wise Type I error (false
positive) rate due to the large number of simultaneous comparisons. One approach
for addressing the Type I error inflation is to instead focus on controlling the false
discovery rate (FDR) (Benjamini and Hochberg (1995)). Controlling the FDR is a
less conservative approach than a Bonferroni correction controlling family-wise Type
I error rate and thus may be more favorable for use with many comparisons, such
as brain activation studies. In addition to FDR control, another common method
is to use a permutation testing technique, which utilizes resampling of the observed
data to create a sampling distribution which is then used to determine statistical
significance (Holmes et al. (1996); Nichols and Holmes (2001); Hayasaka and Nichols
(2004); Nichols and Hayasaka (2003)). Both of these methods, however, can often
result in an inflated Type II error (false negative) rate.

An inflated global Type I error can be prevented via the likelihood paradigm
(Royall (1997); Blume (2002)), which minimizes the weighted average of false positive
and false negative error rates, rather than fixing the Type I error and maximizing
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the power as in traditional frequentist hypothesis testing. Previous work by Kang
et al. (2015) has shown promise in the likelihood paradigm in task-induced fMRI, and
herein we venture to extend the procedure to an evaluation of resting-state functional
connectivity.

This work appears in Hainline and Kang (2018).

5.2 Likelihood Paradigm
The evidential framework aims to explain what the data themselves say about the

proposed hypotheses. The likelihood principle states that under a probability model,
all of the evidence contained in the data is summarized in the likelihood function.
Further, the Law of Likelihood (See Section 5.6) implies that the better supported of
the pair of hypotheses is the one that assigns the higher probability to the observed
data. This is measured via the likelihood function and the likelihood ratio (LR).

Let X be a random variable that follows the distribution X ∼ f(X; θ) where θ
is the parameter of interest. If we observe X = x, the likelihood function is given
by L(θ|x). The likelihood function is the probability density function for a fixed
parameter, θ, and is used after the data are observed.

Consider two hypotheses, HA : θ = θA and HB : θ = θB. P (x|HA) is the probabil-
ity of observing x given that HA is true, and P (x|HB) is the probability of observing
x given HB is true. The ratio of these two probabilities is the likelihood ratio. The
likelihood ratio measures the strength of the evidence supporting one hypothesis over
another.

LR = P (x|HA)
P (x|HB) = L(θA|x)

L(θB|x)
Likelihood ratios require the explicit definition of two competing hypothesis be-

cause, by definition, evidence under the likelihood paradigm is relative. The LR can
only show support for one hypothesis over another or show a neutral result when the
data do not favor a single hypothesis. In summary, a LR = 1 is neutral evidence, a
LR > 1 shows support for HA over HB, and a LR < 1 shows support for HB over
HA.

A key result of the likelihood paradigm is the convergence of both global Type
I and Type II error analogs to zero as the information in the sample, i.e., sample
size, increases, whereas traditional methods may never reach a Type I error below
the pre-specified size of the test. Since the LR is only the measures of the strength
of evidence, rather than the size of the test, the LR does not need to be adjusted for
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simultaneous comparisons. The global error rate converges to zero rather than being
inflated by simultaneous comparisons (Kang et al. (2015)).

Finally, the likelihood paradigm is unique in that it divides evidence into three
distinct regions. These regions are defined by a parameter, k, which represents a
guidepost for the definitions of strong and weak evidence. Further, the probability
of observing misleading evidence is bounded above by the value 1/k (Royall (1997);
Blume (2002)). A likelihood ratio less than 1/k falls in the strong evidence region
supporting the null, while a likelihood ratio greater than k falls in the strong evidence
region supporting the alternative. Any LR between 1/k and k falls in the weak
evidence region, which corresponds to inconclusive evidence. This weak evidence
region is what allows the likelihood paradigm to maintain lower error rates even
under multiple simultaneous tests.

As the statistical information in the sample increases (i.e. increased sample size
or time series length), the error rate in this region will shrink to zero and all LR will
be classified in the strong evidence categories (Kang et al. (2015)).

For a more detailed discussion of the likelihood paradigm along with derivations
see Section 5.6.

5.3 Methods
5.3.1 Data
5.3.1.1 Simulated data

To evaluate the performance of the proposed methodology in comparison to tradi-
tional methods, we have conducted a simulation study. The simulated data consisted
of 6 ROIs in addition to an additional region to represent cerebrospinal fluid (CSF).
Pairs of ROI were given true temporal correlation values of either 0 (to represent
truly null ROI pairs) or a value between 0.45 and 0.57 (to represent truly functionally
connected ROI pairs). The data were generated to be both spatially and temporally
correlated. The spatial correlation was applied via an exponential covariance function
with a unit decaying parameter. The data were simulated using an AR(1) temporal
correlation with φ = 0.6, which controls the correlation between observations sepa-
rated in time. Data were generated across a range of time series lengths: T=64, 128,
256, 320 scans. 300 simulations repetitions were conducted for each combination of
parameters.

Before analysis, spatial smoothing was performed with a Gaussian filter with
σ = 1.5 as in Kang et al. (2015). Each ROI consisted of 100 voxels (10 × 10) and the
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time series were normalized and averaged across all 100 voxels for analysis.

5.3.1.2 Clinical data
For the real data application, we used a sample of 29 healthy volunteers between

the ages of 20 and 50 years old. These subjects had no history of psychiatric disorders
or psychotropic medication use. After informed consent, each participant was scanned
on a Siemens 3.0 Tesla Trio Tim scanner with an 8 channel head coil. Each received a
T1-weighted 3D Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) sequence
with a repetition time of 2300 ms, echo time of 3.46 ms, a flip angle of 9 degrees with
a voxel size of 0.9 x 0.9 x 1.2 mm as well as an Echoplanar Blood Oxygen Level
Dependent (EpiBOLD) functional resting-state scan with repetition time of 2000 ms,
echo time of 27 ms with a voxel size of 4.0 x 4.0 x 4.0 mm.

Preprocessing included slice timing correction, head motion correction across all
scans, co-registration, and normalization to the standard Montreal Neurological In-
stitute (MNI) template. All preprocessing was performed using the FSL software
package (Smith et al. (2004)). Additionally, the scans were segmented into a CSF
region and 14 ROIs chosen from the Default Mode Network (DMN) and defined using
Automatic Anatomical Labeling (AAL) (Tzourio-Mazoyer et al. (2002); Raichle et al.
(2001)).

5.3.2 Null distribution
This methodology relies on the definition of a null distribution to define the alter-

native hypothesis for the Likelihood technique. Here we operate under the assumption
that any correlation that an ROI has with the CSF region is the result of noise, rather
than actual functional connectivity (FC) signal. The correlations present between the
CSF region and the ROIs is assumed to consist of all noise, either physiological or
random, that has not been fully taken care of in the preprocessing of the data.

We create the null CSF distribution by computing the correlation coefficient be-
tween the average time series signal in each ROI and each voxel within the CSF
region. These correlations form the null CSF distribution that will be used to define
the alternative hypothesis.

5.3.3 Hypotheses
Since the likelihood approach defines evidence to be relative, we must have two

well-defined hypotheses for comparison. A value must be chosen to represent the
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cutoff between null and functionally connected ROI and serve as a basis for the null
and alternative hypotheses. fMRI literature supports 0.3 as an acceptable value that
is large enough to not be the result of physiological or imaging artifacts (Cordes et al.
(2002)). Thus, we have chosen to use 0.3 as the correlation coefficient value for our
null hypothesis.

For the alternative hypothesis, we must choose a value that is able to consistently
differentiate between unconnected and functionally connected ROI pairs. We use
the null CSF distribution described in Section 5.3.2 as a guide for determining this
value. Since this distribution is a good indicator of the noise in the data, we use
the interquartile range (IQR) of the null distribution to help define the alternative
hypothesis as follows:

H0 : FCj,k = 0.3

H1 : FCj,k = 0.3 + 3× IQR

where IQR is the interquartile range of the null CSF distribution. The use of the null
CSF distribution in defining the alternative hypothesis allows for the hypothesis to
change in relation to the quality of the data. Noisy data will result in a wide null
CSF distribution, leading our alternative hypothesis to be more extreme.

5.3.4 Statistical analysis
5.3.4.1 Simulated data

Performance is assessed in terms of Type I and Type II error rates for the proposed
method as well as a traditional t-test controlling for a false discovery rate of 5% and
a permutation test.

For the likelihood technique, the likelihood ratio, L(H1)/L(H0), was used to de-
termine if the observed correlation between each pair of ROIs showed strong evidence
for the null, strong evidence for the alternative, or inconclusive evidence. We chose
to use seta cutoff of k = 20, which controls the probability of observing misleading
evidence at 1/20 (0.05) (Royall (1997); Blume (2002)). Thus, a LR < 1/20 indicated
strong evidence supporting the null, 1/20 < LR < 20 indicated the inconclusive
(or weak) evidence region, and LR > 20 indicated strong evidence supporting the
alternative.

The t-test results were controlled at a false discovery rate of 5% in an effort to
maintain a fair comparison between methods. In addition, a permutation test was
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applied to the correlations to test if they differed from zero.
In addition, the same analysis was also conducted using the dichotomous likelihood

paradigm (DLP), which better mimics the accepted statistical hypothesis testing tech-
niques in that it eliminates the weak evidence region in favor of two regions: evidence
in favor of the null hypothesis and evidence in favor of the alternative hypothesis.
Under the DLP, we adopt k = 20, so any LR > 20 is considered evidence supporting
the alternative hypothesis and any LR < 20 indicates evidence supporting the null
hypothesis.

5.3.4.2 Clinical application
A data decimation approach is used to assess the performance of the proposed

method on clinical data. According to each testing strategy, each ROI pair was cate-
gorized as ‘significant’ or ‘not significant’ in terms of functional connectivity using the
full sample of 29 subjects. These results are considered the “truth” for the decimation
procedure. The analysis is repeated for increasingly reduced sample sizes, and, for
each sample size, the results with the smaller sample are compared to the “truth”
results in order to determine error rates. In this procedure, the ability to reproduce
the “true” results is tested.

While this method relies on the accuracy of the initial full sample results and may
not give any indication to the true error rates, it does allow for the examination of
each strategy’s behavior as the sample size decreases. Generally, a method that can
maintain the results of a larger sample with a smaller sample is more favorable.

5.4 Results
5.4.1 Simulation study

The results of the simulation study are shown in Figure 5.1 and Table 5.1. The
t-test and the permutation test show very similar behavior, as expected. We find
that, across the range of sample sizes and time series lengths, the likelihood method
maintains a much lower false positive rate than the remaining two methods (first
column). For example, at the moderate sample size of 30 subjects, the likelihood
method results in a 69% decrease in false positive rate compared to the t-test for a
time series length of 64 seconds and a 98% decrease for T=320 seconds. The results
are very similar when comparing the likelihood method to the permutation test.

Note that the false positive rates for both the FDR-corrected t-test and the per-
mutation test are much higher than expected. This is due to the ROIs being averaged
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Table 5.1: Average error rates for the T-test, Permutation test, likelihood paradigm, and dichotomous
likelihood paradigm approaches in simulation. The results are presented as functions of both time
series length (T) and sample size(N).

T N T-test Permutation test LP DLP
64 10 0.339 0.343 0.203 0.312

20 0.368 0.374 0.236 0.297
30 0.382 0.387 0.247 0.286
40 0.388 0.393 0.254 0.281
50 0.394 0.398 0.255 0.282

128 10 0.313 0.321 0.100 0.189
20 0.347 0.355 0.117 0.167
30 0.364 0.369 0.126 0.161
40 0.375 0.378 0.130 0.159
50 0.378 0.381 0.134 0.158

256 10 0.269 0.277 0.021 0.066
20 0.303 0.310 0.023 0.044
30 0.321 0.326 0.026 0.039
40 0.332 0.338 0.026 0.038
50 0.340 0.344 0.026 0.034

320 10 0.261 0.268 0.006 0.031
20 0.299 0.305 0.006 0.017
30 0.316 0.323 0.006 0.010
40 0.330 0.335 0.006 0.009
50 0.338 0.346 0.005 0.007

across the individual voxels. While the time series for individual voxels follows an
AR(1) temporal correlation process, the averaging tends to result in systematic bias.
The correlations resulting from these averaged values will exhibit both biased point
estimates and variances. The t-test and permutation test rely on assumptions re-
garding the distribution of the correlations, and with an averaged time series, these
assumptions are not upheld. The likelihood technique, however, takes these biases
into account via the CSF null distribution, resulting in much lower false positive rates.

We also see that the likelihood method results in higher false negative rates for
T=64 and T=128 (across all n), though this rate drops dramatically for T=256 and
T=320 (second column). The averages of the false positive and false negative rates
are shown in the third column, where the superiority of the likelihood method is
quite clear. The T-test and permutation tests maintain average error rates greater
than 20% across all sample sizes and time series lengths, while the likelihood method
shows dramatic decreases in the average error as the time series length increases.
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Figure 5.1: Results of the simulation study. Rows represent different time series lengths and columns
represent the different errors. The first column shows the error rate among truly null ROIs (false
positive). The second column shows the error rate among truly connected ROIs (false negative).
The third column is the average of the first two columns. The LP approach maintains a much
smaller false positive rate than the traditional methods (which show very similar behavior across
all simulations. For T=64 and T=128, we see an increased false negative rate for the LP approach,
where the other two have extremely small errors. However, the LP technique demonstrates a lower
average error for all simulation settings. Note that the errors remain relatively constant across
sample sizes and decrease substantially as the time series length increases.
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Specifically, at n=30, the likelihood method shows a 35% lower error than both the
t-test and the permutation test at T=64 seconds, which rises to 98% lower at T=320
seconds. The average errors for the likelihood method drop to 0.026 at T=256 seconds
and 0.005 at T=320 seconds.

Further, Figure 5.2 demonstrates the error rate that occurred in the inconclusive
region for the simulation study. The number of simulations that result in an incon-
clusive result drop as a function of sample size for all time series lengths. The longer
the time series, the more information present in the data, leading to smaller errors
and a faster convergence to zero than the shorter lengths, though even the shorter
time series length show a decreasing pattern.

False Positive Rate False Negative Rate Average Error Rate

Figure 5.2: Error rates within the inconclusive region. The error decreases uniformly as the time
series length increases and as the sample size increases. If the sample size were allowed to increase
to infinity, the errors for each time series length would converge to zero.

Results from the DLP approach are very similar to those of the LP and are shown
in Section 5.8.

5.4.2 Clinical application
The average error rates of each of the three methods for data decimation proce-

dure are shown in Figure 5.3. The proposed likelihood method demonstrates increased
robustness against reduced sample size than both the traditional T-test and the per-
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mutation test. The likelihood method maintains the results of the full sample until
the sample size decreases to n=11, when the false negative rate begins to rise. This
is due to a larger number of simulations being deemed inconclusive. Average error
rates for the t-test rise from 12% (n=26) to 34% (n=5). The permutation test shows
slightly higher average error rates, from 13% (n=26) to 50% (n=5).

For the t-test and permutation test we see a decrease in false positives and an
increase in false negatives as the sample size decreases. We see slight increases in
both error rates for the likelihood method, but neither error rises above 20% for any
sample size.
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Figure 5.3: Data decimation results. The likelihood paradigm approach maintains very low Type I
and Type II error rates down to a sample size of 8 subjects. The t-test and permutation test results,
however, show higher Type I and Type II error rates across all sample sizes. As the sample size
decreases, the frequentist approaches become less likely to reject a truly null pair of ROIs and more
likely to fail to reject a truly connected pair.
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5.5 Discussion
Brain functional connectivity studies require a large number of simultaneous com-

parisons in order to determine functionally connected pairs of brain regions. Due to
these multiple comparisons, it is extremely important to choose statistical methods
that are able to control Type I and Type II errors under these conditions. In both
a simulation study and a data decimation example using clinical data, the LP ap-
proach proposed herein has shown better behavior in terms of these errors than both
an FDR-corrected t-test and a permutation test. The likelihood method resulted in
up to a 98% decrease in false positive rate and average error rates as low as 0.005,
in simulation. Further, we have shown that the likelihood methods are more robust
to decreases in sample size than the conventional approaches via a data decimation
study. Thus, the use of the likelihood approach will allow for researchers to identify
more regions of true functional connectivity while not risking a similar increase in
false identifications.

Future work in this area will aim to incorporate spatial information in an effort to
improve the results. Due to the spatially dependent nature of fMRI data, it is likely
that taking into account any spatial correlation will allow for improved accuracy with
a smaller sample due to the amount of information gained by using of neighboring
voxel information to inform the cross-correlation of each. Further, we chose to average
our voxel-wise information across ROI in order to get an ROI-level result. The next
step for the likelihood method would be an application to voxel-level data. This will
likely improve results, as well, as ROI-averaging tends to result in a loss of statistical
power.

In addition, one of the strengths of the likelihood technique is the ability to choose
the weighting of Type I and Type II errors via the choice of the null and alternative
hypotheses. The hypothesis definitions provided herein should serve as guides, not
absolutes. The definition of these hypotheses can be adjusted based on prior knowl-
edge of the data behavior and noise patterns in order to allow for optimal performance
depending on the needs of the specific analysis. Further, depending on the goals of
the analysis, the researcher may wish to adjust the study design in order to control
the amount of misleading evidence. For example, when determining active brain ar-
eas in preparation for surgery, an inconclusive result is of little use. The Likelihood
method differs from hypothesis testing in that it can distinguish between three areas,
those that are active, inactive, and inconclusive, whereas hypothesis testing can only
distinguish between active areas and inconclusive areas. Thus, the solution when cor-
rect results are imperative would be to obtain a longer time series in order to shrink
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the weak evidence region and ensure that any activity can be detected. Likelihood
methods provide a different approach than hypothesis testing, and must be tailored
to the needs of the individual study in order to secure the highest benefit.

5.6 Review of the Law of Likelihood
The Law of Likelihood was first presented by Hacking (1965) and later popularized

by Royall (1997):
The Law of Likelihood: If hypothesis A implies that the probability that a random

variable X takes the value of x is pA(x), while hypothesis B implies that the probability
of pB(x), then the observation X = x is evidence supporting A over B if and only if
pA(x) > pB(x), and the likelihood ratio, pA(x)/pB(x), measures the strength of that
evidence.

To further demonstrate the law, consider the following example. We have a ran-
dom variable X that follows a probability distribution with parameter θ, thus obser-
vation x provides a likelihood function, L(θ;x). Consider the simple null hypothesis
H0 : θ = θ0 and simple alternative hypothesis H1 : θ = θ1. According to the Law
of Likelihood, observation X = x provides evidence supporting the alternative hy-
pothesis if and only if L(θ1;x) > L(θ0;x) and the ratio L(θ1;x)/L(θ0;x) measures the
strength of that evidence.

In short, the Law of Likelihood concludes that the hypothesis with the higher
likelihood given the observed data is the better supported of the two.

5.7 Review of the Probability of Observing Misleading Evidence
Under the likelihood paradigm, misleading evidence is defined as the conclusion

of strong evidence in favor of the wrong hypothesis over the correct hypothesis. The
probability of observing misleading evidence is a property of the study design and
does not apply to any specific set of observed data (Blume (2002)). For any fixed
sample size, the probability of observing misleading evidence of strength k or greater
is always bounded above by 1/k.

Following the notation from Blume (2002), assume f(X) and g(X) are both prob-
ability density functions, and that X ∼ f(X), then

Pf

(
g(X)
f(X) ≥ k

)
≤ 1
k

Please refer to Blume (2002) and Kang et al. (2015) for a full discussion of this re-
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lationship and derivation of the asymptotic properties of the probability of misleading
evidence.

5.8 Results of a Dichotomous Likelihood Paradigm (DLP) approach
This section contains the results of a dichotomous likelihood paradigm (DLP)

approach to the same simulation study detailed in Section 5.3.4.1. We have provided
these results in Figure 5.4.

Note that the false positive rates (first column) are identical to those from the
original likelihood paradigm. This is because the DLP changes the way we conclude
in favor of the null, but not the way we conclude in favor of the alternative. In both
techniques, we conclude in favor of the alternative if the LR > 20. However, for the
DLP, we collapse the weak evidence region with the strong evidence region in favor
of the null, resulting in slightly different values for the second and third columns of
Figure 5.4.
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Figure 5.4: Results of the simulation study using the DLP. Rows represent different time series
lengths and columns represent the different errors. The first column shows the error rate among
truly null ROIs (false positive). The second column shows the error rate among truly connected
ROIs (false negative). The third column is the average of the first two columns. The DLP approach
maintains a much smaller false positive rate than the traditional methods (which show very similar
behavior across all simulations. For T=64 and T=128, we see an increased false negative rate for
the DLP approach, where the other two have extremely small errors. The DLP results are extremely
similar to the LP approach (Figure 1) due to the rapid shrinking of the inconclusive region as the
statistical information increases.
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Figure 5.5: Data decimation results. The likelihood paradigm approach maintains very low Type I
and Type II error rates down to a sample size of 8 subjects. The t-test and permutation test results,
however, show higher Type I and Type II error rates across all sample sizes. As the sample size
decreases, the frequentist approaches become less likely to reject a truly null pair of ROIs and more
likely to fail to reject a truly connected pair.
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CHAPTER 6

CONCLUSION

6.1 Summary
This dissertation aims to narrow the gap between the modern statistical analysis

and medical image analysis. We focus on methods that improve inference and allow
for researchers to get the most out of their data. In Chapter 2 we proposed the use
of simulation extrapolation (SIMEX) and the wild bootstrap to estimate the bias
and variance, respectively, of generalized fractional anisotropy (GFA) in high angular
resolution diffusion imaging (HARDI) data. Chapter 3 provided an application of
the methodology detailed in Chapter 2 to a study in which traveling subjects were
imaged multiple times on multiple independent scanners. We calculated the bias and
variance of GFA for each scan and used these values to learn about the quality of
our data. We also provided an example workflow to instruct researchers on the use
of these methods for measuring data quality and choosing an appropriate model for
inference. While the methods proposed in Chapter 2 work well, they tend to be
computationally intensive and time consuming. In order to speed up this process, we
introduced a deep learning approach to bias and variance estimation in Chapter 4.
In Chapter 5 we changed gears and switched from DW-MRI to fMRI. We introduced
novel methodology for the identification of functionally connected regions of interest
via an application of the likelihood paradigm to resting-state fMRI data. This tech-
nique is shown to outperform traditional frequentist techniques in terms of average
error rates.

These contributions focused on improving inference through understanding of the
statistical properties of medical image data. Several chapters address the statistical
properties of DW-MRI metrics and provide two distinct methods for estimating such
properties. The final chapter details an inferential technique for analysis of resting-
state fMRI data.

6.2 Bias and Variance Estimation on HARDI
Section I (Chapters 2-4) of this dissertation focused on the estimation of the bias

and variance of generalized fractional anisotropy (GFA) in high angular resolution
diffusion imaging (HARDI). First, we presented a method for the estimation of bias
through an extension of the simulation extrapolation (SIMEX) technique and variance
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via a wild bootstrap technique. These methods proved to be quite useful in estimat-
ing these values for single acquisitions of HARDI data. Before this dissertation, the
estimation of bias and variance had only previously been shown for diffusion tensor
imaging (DTI) (Lauzon et al. (2013)). These bias and variance estimates can be used
for data quality assurance as shown in Chapter 3. Chapter 3 provided a real-world
application of these techniques to a study involving multiple repeated image acqui-
sitions across several subjects. The results of the study demonstrate the importance
of a review of scan quality before combining data from several studies, thus ensuring
that the bias and variance are compatible across the entire study. The statistical
techniques provided in Chapter 2 rely on Monte Carlo simulations, which work well
for small samples of scans, but do not generalize well to large studies or pipeline
inclusion due to the time required for each dataset. Thus, we created deep learning
models that can effectively estimate these bias and variance values without requiring
lengthy simulations (Chapter 4). These deep networks are perfect for inclusion in
quality assurance pipelines as a way to determine scan quality both quantitatively
and quickly.

Together, these methods can be used for the quantitative comparison of scanners,
processing techniques, and analysis methods that would not have been possible previ-
ously. This would allow for better informed choices of methodology for future studies,
resulting in better research and increased innovation.

6.3 rs-fMRI Data Analysis via the Likelihood Paradigm
Section II (Chapter 5) of this dissertation shifted the focus from DW-MRI to

resting-state functional MRI. In this chapter we introduced a technique for the iden-
tification of functionally connected areas of the brain via an application of the like-
lihood paradigm to rs-fMRI data. The proposed technique allows for the control of
both Type I and Type II error, resulting in improved inference when compared to
traditional frequentist techniques.

6.4 Summary of Contributions
The final contributions of this dissertation to the fields of statistics and medical

image processing are summarized below.

• We extended the use of SIMEX and the wild bootstrap for bias and variance
estimation of GFA for HARDI data. These techniques can be used for bias-
correction, or for quantitative comparisons across subjects, sites, or scanners.
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• We provided a sample workflow for the evaluation of inter-site bias and vari-
ance of GFA in HARDI. This workflow can be used to understand the statistical
properties of the acquired data and to inform model selection for research con-
trasts. The workflow is easy to use and provides clear steps that any researcher
can follow.

• We developed a collection of deep learning networks to allow for estimation of
bias and variance of GFA for HARDI data approximately 200x faster than the
statistical techniques introduced in Chapter 2. The speed of these techniques
allows for their inclusion in pipelines, which will allow for their use in real-time
scan environments.

• We provided methodology for the detection of functionally connected brain
areas using the likelihood paradigm applied to rs-fMRI data. The use of our
methodology allows for lower average error rates in identifying these areas as
demonstrated on simulated data and clinical data.
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