
Modeling Students’ Learning Behaviors in Open Ended Learning Environments

By

Yi Dong

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

September 30, 2018

Nashville, Tennessee

Approved:

Gautam Biswas, Ph.D.

Akos Ledeczi, Ph.D.

Maithilee Kunda, Ph.D.

Douglas Fisher, Ph.D.

Enxia Zhang, Ph.D.

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor Professor Gautam Biswas,

who is also the committee chair of my dissertation. He has continuously supported my work

and provided valuable suggestion and feedback about the research as well as my writing of

the dissertation. Without his guidance and persistent help, this dissertation would not have

been possible.

I would like to also thank my committee members, Professor Akos Ledeczi, Professor

Douglas Fisher, Professor Maithilee Kunda, and Professor Enxia Zhang, for their help

as well as the insightful comments about the research work of this dissertation. Their

questions and suggestions about my work have encouraged me to reinforce the research

and performed more robust analyses from various perspectives.

I thank all my fellows in our group who helped me in solving various challenging

problems I encountered during my research. Also, I thank the Vanderbilt University for

admitting and providing me the opportunity for pursuing my degree.

Last but not the least, I would like to thank all my family members for supporting me

spiritually throughout my research work and my life abroad.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Problem Statement . 3

1.2 Challenges in Data-Driven Learner Modeling 6

1.3 Contributions of the Dissertation . 9

1.4 Organization of the Dissertation . 10

2 Background . 11

2.1 Purposes of Learner Modeling . 11

2.2 Learner Modeling Methods . 13

2.3 How to Apply Learner Models . 20

2.4 Summary . 21

3 Approach . 23

3.1 An Example of Learning in OELEs . 23

3.2 Learner Modeling Approach . 27

3.3 Challenges and Solutions . 28

3.4 Summary . 30

4 Details of the Approach . 31

4.1 Background Techniques . 31

4.1.1 The Action-View Representation and Coherence Relations 31

4.2 Coherence Relations . 34

4.2.1 Hidden Markov Model . 36

iii

4.2.2 Deriving Hidden Markov Models . 39

4.2.3 Sequence Clustering using HMMs 41

4.3 Applying Reinforcement Learning to Generate Updated HMMs 45

4.3.1 Reinforcement Learning . 48

4.3.2 Monte Carlo Tree Search . 51

4.3.3 Reinforcement Learning using MCTS for generating action sequences 52

4.4 Summary . 57

5 Experiments . 58

5.1 Experiments with the Betty’s Brain study 58

5.1.1 HMM Clustering Results . 59

5.1.2 Analysis of Reinforced Classification Model 69

5.1.3 Analysis of Reinforced Scaffolding Model 74

5.1.4 Example scaffolds . 80

5.2 Experiments with the CTSiM study . 82

5.2.1 Analysis of HMMs for the Original Data 87

5.2.1.1 HMM Clustering Results for the “Rollercoaster” Unit 87

5.2.1.2 HMM Clustering Results for the “Macroscopic” Unit 102

5.2.1.3 Comparison of the HMM Clustering results between the

“Rollercoaster” and “Macroscopic” units 113

5.2.2 Analysis of Reinforced Classification Model 118

5.2.3 Analysis of Reinforced Scaffolding Model 124

5.2.4 Example scaffolds . 139

5.3 Summary . 141

6 Conclusions and Future Work . 143

6.1 Accomplishment I - The Learner Modeling Approach 143

6.2 Accomplishment II - Verification of the Learner Modeling Approach . . . 144

6.3 Future Work . 146

iv

BIBLIOGRAPHY . 148

v

LIST OF TABLES

Table Page

2.1 Summary of Existing Learner Modeling Methods 19

3.1 The list of all meaningful actions students can perform in Betty’s Brain . . . 26

5.1 Comparison of the three clusters of original data from Betty’s Brain. Re-

sults for each measure are presented as mean (standard deviation). 65

5.2 Pairwise MannWhitney U-Test result (p-value) for each pair of the sam-

ples from the three clusters. The bolded p-values are those less than 0.05,

showing the corresponding difference between the two clusters is significant. 66

5.3 Comparison of the three clusters for the reinforced classification models

in the Betty’s Brain study. Results for each measure is presented as mean

(standard deviation). The bolded entries are those with significant change

pre- and post-reinforcement learning (p-values < 0.05). 73

5.4 Comparison of the three clusters of the reinforced scaffolding models for

Betty’s Brain. Values in the parenthesis are the measures of the original

model. 76

5.5 Pairwise MannWhitney U-Test result (p-value) for each pair of the sam-

ples from the three clusters. The bolded p-values are those less than 0.05,

showing the corresponding difference between the two clusters is significant. 78

5.6 The list of all meaningful actions students can perform in CTSiM 85

5.7 Comparison of the four Clusters for the rollercoaster unit in CTSiM 97

vi

5.8 Pairwise MannWhitney U-Test result (p-value) for each pair of the samples

from the three clusters. The bolded p-values are less than 0.05, showing

the corresponding differences between the two clusters are significant. For

example, the p-value of the IA effort measure between cluster 0 and 1 is

0.001, which indicates the difference of the IA effort measure is significant

between cluster 0 and 1 . 98

5.9 Comparison of the four Clusters for the macroscopic fish tank unit in CT-

SiM. Results are presented as mean (standard deviation). 109

5.10 Pairwise MannWhitney U-Test result (p-value) for each pair of the samples

from the three clusters. The bolded p-values are less than 0.05, showing

the corresponding differences between the two clusters is significant. 110

5.11 Cluster transitions from rollercoaster unit to macroscopic fish tank unit . . 114

5.12 Comparison of the four Clusters post-reinforcement classification learning

for the rollercoaster unit in CTSiM. The bolded entries are those with

significant change pre- and post-reinforcement learning (p-values < 0.05). . 123

5.13 Comparison of the four Clusters post-reinforcement scaffolding learning

for the rollercoaster unit in CTSiM. Results are presented as mean (stan-

dard deviation). 129

5.14 Comparison of the four Clusters post-reinforcement scaffolding learning

for the macroscopic fish tank unit in CTSiM. Results are presented as mean

(standard deviation). 136

vii

LIST OF FIGURES

Figure Page

3.1 Interface for Reading Science Book in Betty’s Brain 24

3.2 Interface for Solution Construction Actions in Betty’s Brain 25

3.3 Interface for Solution Assessment Actions in Betty’s Brain 25

3.4 Architecture of the overall learner modeling method 27

4.1 The view of the book page “An Earth in Trouble” 32

4.2 The view of the feedback for a quiz result 33

4.3 A sub-sequence of actions and the corresponding views in Betty’s Brain . . 33

4.4 Possible actions that can support DeleteCausalLinkAction action. 34

4.5 Determine supporting feature of DeleteCausalLinkAction action. 35

4.6 General Architecture of Hidden Markov Model 37

4.7 Simple HMM example. 38

4.8 Bayesian Information Criterion (BIC) values calculated for different num-

bers of hidden states. The BIC values were re-scaled to fit the window. . . . 40

4.9 Example HMM for the set of 28 students’ action sequences. The HMM

is represented by vector of initial probabilities π , matrix of state transition

probabilities A, and matrix of emission probabilities B. 41

4.10 Partition Mutual Information values calculated for the Betty’s Brain data . . 45

4.11 The HMM of Cluster 1 (22 students) derived for the Betty’s Brain study . . 45

4.12 The HMM of Cluster 2 (28 students) derived for the Betty’s Brain study . . 46

4.13 The HMM of Cluster 3 (48 students) derived for the Betty’s Brain study . . 46

4.14 HMMs for the three clusters . 47

4.15 The scheme of reinforcement learning using Betty’s Brain environment as

an example . 49

viii

4.16 Four steps for each iteration of MCTS algorithm 51

4.17 Simple example of applying RL and MCTS for generating action sequence.

ns is the number of simulations performed during MCTS. 53

5.1 Partition Mutual Information values calculated for the Betty’s Brain data . . 59

5.2 Bayesian Information Criterion (BIC) values calculated for the three clus-

ters derived from HMM clustering on data collected from a Betty’s Brain

study. The BIC values were re-scaled to fit the window. 60

5.3 The HMM of Cluster 1 (22 students) derived for the Betty’s Brain study . . 61

5.4 The HMM of Cluster 2 (28 students) derived for the Betty’s Brain study . . 61

5.5 The HMM of Cluster 3 (48 students) derived for the Betty’s Brain study . . 62

5.6 HMMs for the three clusters derived for the Betty’s Brain study 63

5.7 The reinforced classification HMM of Cluster 1 derived for the Betty’s

Brain study . 70

5.8 The reinforced classification HMM of Cluster 2 derived for the Betty’s

Brain study . 70

5.9 The reinforced classification HMM of Cluster 3 derived for the Betty’s

Brain study . 71

5.10 Reinforced classification HMMs for the three clusters derived for the Betty’s

Brain study . 72

5.11 The reinforced scaffolding HMM of Cluster 1 derived for the Betty’s Brain

study . 75

5.12 The reinforced scaffolding HMM of Cluster 2 derived for the Betty’s Brain

study . 75

5.13 The reinforced scaffolding HMM of Cluster 3 derived for the Betty’s Brain

study . 76

5.14 Reinforced Scaffolding HMMs for the three clusters 77

5.15 Interface for Reading Science Resource in CTSiM 83

ix

5.16 Interface for taking conceptual editing SC conc actions in CTSiM 83

5.17 Interface for taking computational editing SC comp actions in CTSiM . . . 84

5.18 Interface for taking SA run actions in CTSiM 84

5.19 Interface for taking SA compare actions in CTSiM 86

5.20 Partition Mutual Information values calculated for Data from the Roller-

coaster Unit in CTSiM . 88

5.21 Bayesian Information Criterion (BIC) values calculated for the four clusters

derived from HMM clustering on data collected from the rollercoaster unit

in CTSiM. The BIC values were re-scaled to fit the window. 88

5.22 The HMM of Cluster 0 (33 students) derived for the rollercoaster unit . . . 90

5.23 The HMM of Cluster 1 (23 students) derived for the rollercoaster unit . . . 91

5.24 The HMM of Cluster 2 (4 students) derived for the rollercoaster unit 92

5.25 The HMM of Cluster 3 (38 students) derived for the rollercoaster unit . . . 93

5.26 Partition Mutual Information values calculated for Data from the macro-

scopic fish tank unit in CTSiM . 103

5.27 Bayesian Information Criterion (BIC) values calculated for the four clusters

derived from HMM clustering on data collected from the macroscopic fish

tank unit in CTSiM. The BIC values were re-scaled to fit the window. . . . 103

5.28 The HMM of Cluster 0 (19 students) derived for the macroscopic unit . . . 105

5.29 The HMM of Cluster 1 (19 students) derived for the macroscopic unit . . . 106

5.30 The HMM of Cluster 2 (20 students) derived for the macroscopic unit . . . 107

5.31 The HMM of Cluster 3 (40 students) derived for the macroscopic unit . . . 108

5.32 Effective percentage of SC actions (a) and percentage of taking IA actions

(b) of all the students during their study in rollercoaster and the macro-

scopic fish tank (macro) units. X-axis is the number of actions taken during

the study. 117

5.33 The reinforced classification HMM of Cluster 0 for the rollercoaster unit . 119

x

5.34 The reinforced classification HMM of Cluster 1 for the rollercoaster unit . 120

5.35 The reinforced classification HMM of Cluster 2 for the rollercoaster unit . 121

5.36 The reinforced classification HMM of Cluster 3 for the rollercoaster unit . 122

5.37 The reinforced scaffolding HMM of Cluster 0 for the rollercoaster unit . . 125

5.38 The reinforced scaffolding HMM of Cluster 1 for the rollercoaster unit . . 126

5.39 The reinforced scaffolding HMM of Cluster 2 for the rollercoaster unit . . 127

5.40 The reinforced scaffolding HMM of Cluster 3 for the rollercoaster unit . . 128

5.41 The reinforced scaffolding HMM of Cluster 0 for the macroscopic unit . . 132

5.42 The reinforced scaffolding HMM of Cluster 1 for the macroscopic unit . . 133

5.43 The reinforced scaffolding HMM of Cluster 2 for the macroscopic unit . . 134

5.44 The reinforced scaffolding HMM of Cluster 3 for the macroscopic unit . . 135

xi

Chapter 1

Introduction

In recent work on computer-based learning environments, there has been a shift in fo-

cus from learning specific domain knowledge to systems that combine learning of domain

knowledge with thinking and problem-solving skills, learning strategies, metacognition,

and self-regulation [1, 2]. The goal of these environments is to help students learn the

broader and more transferable processes, such as how to learn and how to solve problems,

not just to become proficient in a single learning topic. Open-Ended Learning Environ-

ments (OELEs) [3, 4] are a class of environments developed with these goals in mind,

providing students with a learning goal, usually in the form of a complex problem or a

modeling task, and a set of tools that support the problem-solving task [5, 6, 7]. Students

are given freedom and choice with regard to how they combine the use of the tools to ac-

quire and review the required knowledge, how they use this knowledge to construct their

solutions, and how they monitor their progress by checking their evolving solutions to en-

sure their correctness [8, 9].

However, open-ended problem solving can present significant challenges for novice

learners [10, 11]. To succeed, learners need to make choices regarding how to structure

the solution process, explore alternative solution paths, develop awareness of their own

knowledge and problem-solving skills, apply strategies that support more effective learn-

ing and problem-solving, and monitor progress as they work toward a solution [12, 13].

Given the complexities involved in working with OELEs, students may need guidance and

support to help them progress in their learning and problem-solving tasks and to eventu-

ally achieve their learning goals. Researchers have suggested that guidance focused on

helping learners to develop good learning behaviors and strategies may be more effective,

especially as it pertains to supporting preparation for future learning [14, 15]. Therefore, a

1

very important component for the success of OELEs is the scaffolding they provide to help

students improve their learning behaviors and strategies and, as a result, their performance.

An important component of effective scaffolding is to deri learner models that can capture

learners’ cognitive and metacognitive processes from their interactions with the learning

environment. This motivates the design of sophisticated and appropriate methodologies for

the next generation of learner modeling.

Another important aspect of OELEs is that data regarding students’ learning activities

can be logged and stored, and this provides opportunities for developing data-driven mod-

eling methods for constructing rich and accurate learner models. Data mining and machine

learning techniques have been applied by the Educational Data Mining (EDM) community

to analyze students’ learning processes and behaviors in a data-driven manner. It is essential

to implement appropriate algorithms on data collected from OELEs and embed them into

learner modeling methods in such a way that the resulting learner model can capture learn-

ers’ cognitive and metacognitive processes. Depending on the purpose, various machine

learning algorithms can be applied to learner modeling, including categorizing learners into

groups (by unsupervised learning or clustering), differentiating between different types of

behaviors among learners (by supervised learning or classification), and predicting learning

outcomes (predictive modeling).

The goal of this thesis research is to develop data-driven learner modeling methods

using data mining and machine learning techniques that accurately model and assess stu-

dents’ learning behaviors. Typically, to attain accuracy, data-driven modeling methods re-

quire large volumes of data because of the complexities of learning and therefore, the wide

variety of behaviors learners can exhibit in OELEs. Many OELE-based studies collect stu-

dents’ data in small samples (e.g., data from a class of 100 or fewer students learning within

an OELE). This results in the data impoverishment problem, and mitigating this problem is

one of the primary contributions of this research. Much like computer programs developed

for finding useful moves or patterns in complex, adversarial game environments, we apply

2

reinforcement learning techniques to build and analyze models of learner behaviors [16].

Starting with “weak” learner models constructed from the originally collected data, rein-

forcement learning is employed to iteratively simulate a larger variety of students’ learning

behaviors. The learner model is then updated using the additional learning behaviors, and

the result is likely to be a more accurate and complete learner model.

In the rest of this chapter, we apply our understanding of student problem-solving in

this environment to generate a more formal problem statement in Section 1.1. We then

discuss the challenges associated with the learner modeling method in Section 1.2 and the

main contribution of this dissertation in Section 1.3.

1.1 Problem Statement

Since OELEs are learner-centered learning environments, actions and their correspond-

ing contexts vary among individuals. Some of the traditional learner modeling methods

derive learner models by representing students’ knowledge as a subset of the expert model

that is typically a representation of the domain knowledge to be learned. This expert-

centered methodology for learner modeling fails to better adapt to individual approaches to

learning and problem solving that may differ in significant ways from experts. In order to

develop good instructional strategies, empirical assessment and understanding of students’

learning behaviors are critical. This requires the instructor to assess and understand the

individual differences between learners, and thus, be able to provide adaptive scaffolding

to the learners.

Learner-centered data-driven approaches for learner modeling can overcome these lim-

itations as mentioned above. Experts can use information discovered from students’ data

to build learner models for different groups of students. These data-driven models are then

applied as the basis for providing feedback to different individuals. However, learner data

collected from OELEs can be complex and hard to interpret, and manual assessment of the

learner becomes intractable in many cases. Even for moderate amounts of OELE-collected

3

data, it is difficult for domain-experts to discover all the information that is important for

understanding learners’ behaviors and for developing analytic measures for characterizing

user behaviors.

Therefore, developing algorithms that are generally applicable to learner modeling, es-

pecially those that can utilize advanced data mining and machine learning techniques, plays

an important role in assisting researchers to assess and improve intelligent tutoring systems

so that users can learn more effectively and efficiently. These learner modeling methods

need to satisfy a number of requirements, that include:

1. The ability to discover implicit and useful information (e.g., determining students’

cognitive and metacognitive states from their activity data).

2. Adaptability to different OELEs and learning purposes.

3. The ability to help in making decisions on providing scaffolding (e.g., determining

the appropriate estimation to measure students’ status and performance and to predict

learning outcomes).

4. The ability to address the data impoverishment problem.

The effort made to develop and improve learner modeling can be regarded as an important

and useful step toward developing more effective OELEs.

To meet these requirements, a novel set of techniques that combine the use Hidden

Markov Modeling (HMM) [17], Coherence Relations (CR) [7], and Monte Carlo Tree

Search (MCTS) [18] coupled with a reinforcement learning methodology [19] is proposed

as the basis to form a data-driven learner modeling method that helps decision making

in OELEs for helping to identify under-performing students, assessing their cognitive and

metacognitive processes, and providing scaffolding to improve their overall learning per-

formance.

The core representation of the learner model in this research is the Hidden Markov

4

Model (HMM), which is a generative stochastic model for modeling students’ activity se-

quences. The reasons for choosing HMM are:

1. HMMs in learner modeling are known for their abilities to model learning patterns

and strategies that students employ [20, 21, 22]. They can form the basis for discov-

ering explicit and implicit cognitive and metacognitive processes.

2. HMMs are generally applicable for modeling learning behaviors in different OELEs

as long as the behavioral actions in OELE are well defined and logged as action

sequences.

3. The HMM representation can also be used for predictive purposes [23, 24].

4. The typical training algorithm of HMMs (i.e., Baum-Welch re-estimation) is known

to be polynomial in complexity [25], which means that it can be applied to process

data at scale.

In order to address heterogeneity among students’ learning behaviors, in previous work, we

have extended HMM learning to include an HMM-based clustering method to help charac-

terize students’ activity sequences into groups of similar behaviors [26]. HMM clustering

produces a set of clusters where each cluster, represented by a unique HMM, captures

similar behavior among students.

To improve the accuracy of the HMM-based learner model, as well as to handle the

potential data impoverishment problem, we propose a reinforcement learning approach to

iteratively improve the HMM model(s). For each iteration of the reinforcement learning

algorithm, we apply Monte Carlo Tree Search (MCTS) using the HMM and coherence

metrics to simulate students’ activities and measure the corresponding learning outcomes

as the basis for model refinement. The original activity data, combined with the simulation

results of the MCTS (i.e., sequences of simulated students’ actions) are used to re-learn

HMMs as refined learner model representations. The MCTS, which has been widely ap-

plied to design evaluation functions for complex game play (e.g., MCTS for AI design in

5

Go [16]), is a novel application for simulating learning behaviors for learner modeling.

In this thesis, the MCTS is configured to adapt the model representation (i.e., the HMM),

and the search policies within the MCTS are governed by the original HMM structure, as

well as coherence relations to capture students’ learning patterns. At each iteration of rein-

forcement learning, the simulation results combined with the original behavior sequences

form the basis for iterative refinement of HMMs and reconfiguration of the clusters. The

resulting learner model is expected to (1) better categorize students’ behaviors based on the

refined HMM-based clusters, (2) better assess learning behaviors, and (3) predict potential

performance outcomes based on HMMs within corresponding clusters to assist scaffolding.

1.2 Challenges in Data-Driven Learner Modeling

Recent developments of hardware (e.g., CPUs) and software (e.g., cloud computing)

have significantly increased computational power, which enables researchers to apply data

mining and machine learning algorithms to large volumes of data collected from OELEs.

However, this also creates the following challenges to data-driven learner modeling meth-

ods:

• Data collection challenges. Data-driven methods require large volumes of rich data

to support accurate and robust learner modeling. However, collecting such data from

OELE environments can be a complex and time-consuming process:

1. It is not easy to define a general data format that every OELE can follow to

log learners’ learning process data because of the differences between OELEs.

For example, information acquisition, solution construction, and solution as-

sessment actions can be defined differently depending on the different design

of the learning environments and learning goals. Moreover, there can be addon

tools allowing learners to take on additional actions that do not exist universally

across OELEs (e.g., starting a conversation with the virtual agent in Betty’s

6

Brain).

2. To design an OELE that successfully implements a specific learning purpose

is itself a big challenge. Resources and tools should be designed appropriately

for different purposes, and the tools developed must fit within the scope of K-

12 learning and problem-solving. OELE design should also have a robust and

highly reusable mechanism for data collection that ensures high data availability

for every individual and/or longitudinal study.

3. Finding instructors and a sufficient number of students to work in OELE-based

studies in short periods of time are hard. The OELE should be able not only to

collect learning data but also to help students acquire knowledge and develop or

improve their cognitive and metacognitive skills to attract and convince schools

to participate in OELE-based studies.

• Modeling challenges. To choose an appropriate modeling method among the vari-

ous modeling techniques available [27] is quite challenging as it requires expertise in

learning analytics. For example, to analyze action transitions of students in Betty’s

Brain, a Markov model is promising as it takes into consideration the student’s last

action and its subsequent status changes to determine the probability of the next ac-

tion. However, students can behave differently, which leads to the situation where a

single Markov model is insufficient to capture their action transitions in general. In

these situations, one may use a stereotypes modeling method [28] to characterize stu-

dents into different groups. In addition, a single Markov model in a sense shows how

a student reacts to the immediate prior action and its consequences, but it is unable to

capture action patterns that reflect students’ cognitive strategies made up of multiple

actions (e.g., a strategy where students apply acquired information to construct the

solution but on a subsequent solution assessment action discover an error and delete

the additions made to the causal map). On the other hand, student behaviors also

evolve over time, and the modeling representations must accommodate the temporal

7

evolution of learning behaviors.

• Machine learning challenges. Although many advanced machine learning techniques

have been developed and shown to be useful in practice, it is still challenging to apply

them to derive learning analytics measures. For example, in the stereotypes modeling

method [28], which applies a clustering algorithm to characterize learners into groups

based on their activity data, feature selection becomes a challenge. Unlike some

other applications, many different forms of features can be derived from OELE data.

Therefore, feature selection is not predefined but depends on the particular properties

and behaviors of the students that one wants to derive from the analysis. Besides,

relations between learning activities and final outcomes can be affected by learners’

psychological and mental status, which is not explicitly interpretable from the logged

data. In such situations, explicit assumptions about missing features should be made

before carrying out clustering analysis. Despite this, researchers may face the data

impoverishment problem (e.g., building learner models using data collected from

a class of students working in an OELE over a short period of time). Therefore,

it becomes interesting and challenging to apply machine learning algorithms (e.g.,

reinforcement learning) to solve the data impoverishment problem and generate good

enough modeling results.

• Verification and validation challenges. Verification and validation is an important

process for learner modeling. Learner modeling should be verified based on two

perspectives:

1. For different purposes and circumstances, the chosen modeling methods should

be verified as among the best methods for helping to achieve the modeling goals

and resolve the modeling difficulties.

2. Any data mining and/or machine learning algorithms applied in learner mod-

eling should be verified for their technical correctness and also robustness if

8

needed (e.g., the algorithms should be able to resist changes in the application

or data format).

Verification approaches require expertise in modeling algorithms and understanding

of the data collected from the corresponding learning environment. And, to ensure

the robustness of the machine learning methods, it is important to collect data from

multiple classrooms, which may be hard to achieve. Therefore, it becomes challeng-

ing to implement verification and/or validation methods, such as cross-validation and

predictive model validation.

1.3 Contributions of the Dissertation

The main contributions of this dissertation can be summarized as follows:

1. We introduce a novel data-driven learner modeling approach. This approach is gen-

eral and can be applied to different OELEs using Reinforcement Learning to generate

learner models that are more accurate than traditional methods.

2. The learner modeling approach combines the use of multiple modeling and machine

learning techniques, such as HMM, HMM clustering, Reinforcement Learning, and

Monte Carlo tree search. Some other techniques have also been applied to help

enhance the effectiveness of the modeling approach (e.g., Bayesian Information Cri-

terion for determining the best number of hidden states in HMM and coherence rela-

tions to help performing MCTS).

3. The learner modeling approach is generally applicable to different OELEs. We con-

vert data collected from different learning environments into a general action-view

representation, where actions capture students’ interactions with the learning envi-

ronments, and views capture the context in which students perform the actions.

9

1.4 Organization of the Dissertation

The next chapter reviews the state of the art in learner modeling as well as the data-

driven approaches for learner modeling. Chapter 3 presents the learner modeling approach

at a higher level. The details of the learner modeling methods and the reinforcement learn-

ing algorithm applied to enhance learner modeling are illustrated in Chapter 4. Chapter 5

presents experiments and analyses by applying the learner modeling methods to data col-

lected from two different OELEs. Chapter 6 presents the discussions and conclusions from

this work.

10

Chapter 2

Background

To derive effective and accurate learner models, it is essential to understand the current

state of the art in learner modeling. In this chapter, we review such learner modeling

methods and present a summary of the state of the art and use it to motivate the approach

that we will be developing in this thesis.

A learner model for Intelligent Learning Environments (ILEs) that includes OELEs is

typically, an inferred model of individual learners’ cognitive and metacognitive states. The

overall goal of the learner modeling is to help the systems adapt to the learners’ needs [29],

which is the basis for personalization in computer-based educational applications[27]. To

successfully construct learner models for OELEs, it is important to be clear about (1) the

purposes of the leaner models, (2) the learner modeling methods and (3) the applica-

tions of the learner models. These are discussed in detail in the following subsections.

2.1 Purposes of Learner Modeling

For learner modeling, people may want to ask what it is about the learner that we

want to model so we can (1) adapt to the learner’s state of knowledge, (2) track their

learning and problem-solving behaviors, and (3) provide feedback when they are unable

to progress in their learning and problem-solving tasks. For example, in addition to their

state of knowledge, we can model learners’ approaches to learning, i.e., their cognitive and

metacognitive processes that can include understanding domain content, critical thinking,

perception, problem-solving, and decision-making abilities. Additionally, researchers have

also established that learners’ affective states, motivation, and engagement that influence

their learning performance and behaviors [27]. Based on the various characteristics to be

modeled, we can establish six main purposes of learner modeling [30]:

11

1. Corrective. The learner model aims to identify learners’ errors and misconceptions

so that the feedback provided can help them to realize their errors and make cor-

rections. This requires an analysis of expert-provided or domain-related information

and learners’ understanding of the corresponding knowledge by deriving the differ-

ences between the information acquired by the learner and the expected information.

A challenge one faces in this approach is to determine to what extent the feedback

being provided helps the learner to understand their error or misconception rather

than just passively accepting the feedback. The corrective learner model is expected

to provide an immediate determination of errors so that feedback can be provided in

time for the user to reflect on the error and make the necessary corrections.

2. Elaborative. In this case, learner modeling is used to determine the nature of the

scaffolds or feedback that will help the learner extend their domain knowledge and

problem-solving skills. Elaborative scaffolding typically provides new materials to

support specific knowledge learning and to help learners improve their understand-

ing. The purpose is to re-introduce the knowledge or provide refinements of the

knowledge to help learners overcome their weaknesses and misconceptions. This

approach should have the ability to capture information for detecting learners’ un-

derstanding, especially when they demonstrate weaknesses. Unlike the analyses in

corrective model, more sophisticated techniques are needed to understand the level

of the learner’s understanding.

3. Strategic. The objective is to assist in decision making for switching instructional

strategies at a higher level than local tactics. This learner model should have the

ability to gather information about learners’ behaviors and performance for different

teaching strategies and contexts and to measure how successful each strategy is in

enabling learning gains for an individual. Based on the cumulative data from the

model, mechanisms are designed to decide the best teaching strategy in different

12

circumstances.

4. Diagnostic. This approach focuses on analyzing the state of learners, which is the

general purpose of many learner modeling methods. It can be used to analyze any

subset of a learner’s characteristics in order to help decision making in teaching. The

results of the analysis can also help in other modeling purposes in terms of providing

measurements for corresponding learning states.

5. Predictive. A predictive model predicts the outcomes of the actions taken by learn-

ers, where outcomes are often a measure of performance. The model derivation may

require large volumes of cumulative data and the use of appropriate data mining and

machine learning techniques to accurately simulate learning behaviors based on the

current states and previous actions of a learner group. Based on the association be-

tween actions related to solution construction and performance measures, the model

provides estimated outcomes for the prediction.

6. Evaluative. This approach is often used with other modeling techniques to evaluate

corresponding metrics for decision making and prediction. In addition, the evaluative

learner model should be able to gather aggregated information and provide assess-

ments of learners’ behavior and performance for different learning environments and

under different requirements.

An accurate learner model may include more than one of the modeling purposes dis-

cussed above. It can be a challenging task to design mechanisms for multi-purpose learner

models.

2.2 Learner Modeling Methods

Mark Elsom-Cook [30] characterizes most existing learner modeling methods into expert-

based modeling and learner-based modeling.

13

Expert-based modeling

In this modeling schema, the learner model is constructed from an expert model that

is typically a representation of domain knowledge. The learning objectives are a set or

subsets of the whole expert knowledge representation. Expert-based modeling is further

divided into two categories [30]:

1. Subset-based methods. The expert model is defined as a set of atomic knowledge

representation units where for each unit it is assumed that a learner either understands

or does not understand the unit. Therefore, the representation of student knowledge

is always a subset of the expert model. The expert model can be:

• A network representation: the knowledge is represented in a graph where the

nodes are entities that can be concepts and the edges indicate relations between

the concepts. The learner model is a subgraph of the network representation,

and the process of knowledge understanding can be simulated as a traversal of

the network from multiple starting points.

• Rule-based representation: the knowledge is represented as a set of constraints

that are usually in a logical format, and learners’ understanding of the knowl-

edge is represented by the subset of constraints that are not violated by them.

2. Perturbation-based methods. Unlike subset-based methods where the learner’s un-

derstanding toward each atomic knowledge unit is defined as either knowing or not

knowing that component of the expert model, perturbation-based methods assume

that the learner can have an understanding of the knowledge unit that is not covered

by the expert model. An example is the buggy model [30]. This methodology is more

comprehensive for capturing learners’ misconceptions but, on the other hand, results

in a more complex measure of understanding for each knowledge unit. For example,

the expert model can be a sub-graph or subset of a network representation or con-

straints that covers both correct and incorrect knowledge, while the learner model

14

is developed based on this broader knowledge representation and is not necessarily

subject to the expert model.

Learner-based modeling

In the expert-based modeling methods, learners succeed when their knowledge repre-

sentations clone the corresponding expert models. However, this methodology is incom-

plete because it does not take into consideration the many different ways learning and

problem-solving can occur. The wide range of possibilities can be attributed to individual

differences, incorrect paths chosen to solve a problem, and the alternative paths leading to

success that are not captured by expert models. In OELEs, learners are free to construct

solutions in various ways, and there can be a number of different correct solutions (e.g.,

different computational models in CTSiM [1]). This results in big behavioral differences

between individuals, which means that an expert model is insufficient for capturing the

learning behaviors of all learners. Therefore, learner-based modeling methods, which fo-

cus on individual differences, are more appropriate for deriving learner models in OELEs.

In expert-based modeling, the learner model (i.e., the domain representation of ex-

pert knowledge) is defined in advance of any learning process. However, learner-based

modeling is different in that the expert knowledge is used merely as the basis for assess-

ing learners’ performance while the learner model itself is built from learners’ behaviors.

The learner-based modeling methods focus on analyzing data collected from learning en-

vironments to discover implicit cognitive and metacognitive processes that represent the

mechanisms whereby individual learners approach knowledge understanding through var-

ious actions. Compared to expert-based modeling, this methodology is more amenable to

methods in exploratory data mining and machine learning techniques, and it better utilizes

modern computational mechanisms and capabilities. Thus, learner-based modeling meth-

ods, which are mostly considered to be data-driven approaches, have been drawing more

attention in recent times.

Existing Learner Modeling Methods Some of the most well-known learner modeling

15

methods within the last two decades are summarized in [27]. We briefly review the primary

methods below.

1. Overlay model (expert-based). This is a typical expert-based learner modeling method

that was first introduced in [31]. The learner model in this method is built as a sub-

set of the expert model. In the original version of the overlay model, a Boolean

value of True/False associated with a knowledge element indicates whether the stu-

dent knows or does not know the corresponding piece of knowledge. The knowledge

elements are generated by decomposing the expert model. In later developments of

this modeling method, qualitative measures such as level of understanding or prob-

ability of understanding were assigned to knowledge elements [32]. Basically, the

overlay model captures learners’ understanding with respect to independent knowl-

edge elements, and this requires a decomposition of the expert model and an accurate

estimation of the students’ knowledge at these levels. Although it has been used ex-

tensively [33, 34, 35], the overlay model is insufficient because its scope is limited

to expert concepts. It does not accommodate students’ alternate conceptions and

misconceptions; therefore, it may be hard to model students’ prior knowledge and

individual differences.

2. Constraint-based models (expert-based). First proposed in [36], constraint-based

models (CBM) capture aspects of both the domain and the student model. A con-

straint is characterized by a relevance condition and a satisfaction clause that each

constraint fails to hold when the satisfaction clause is false for the relevance con-

dition. For the expert model, CBMs represent the set of all constraints, while for

the student model, they represent the set of all violated constraints. This modeling

method provides a way to handle the variations from the expert model in a tractable

manner.

3. Perturbation models (expert-based). As another expert-based modeling method, this

16

is the extension of the original overlay model by including not only students’ un-

derstanding of the expert model but also their misconceptions. This allows a better

representation of students’ knowledge level. However, this approach may still have

the same problems as the overlay model.

4. Stereotypes (learner-based). First introduced in [28], stereotypes are generated by

clustering all possible users of a learning environment according to certain charac-

teristics, where the homogeneity of given characteristics for all students within each

cluster is maximized. In stereotypes modeling, there is no need for an explicit defini-

tion of the knowledge elements as in the overlay model. Applications of stereotypes

modeling can be found in [37]. However, stereotypes modeling suffers from the prob-

lem of inflexibility as stereotypes need to be pre-defined for all possible “students”

before actually being used.

5. Machine learning techniques (learner-based). Learner modeling using machine learn-

ing techniques can extend from the analysis of students’ learning performance given

their prior knowledge to more comprehensive approaches that study the relations

between students’ prior knowledge and behaviors in the system and their perfor-

mance on the learning task. According to [38], learner modeling using machine

learning techniques can be characterized into: (1) methods to induce a single, consis-

tent student model from multiple observed student behaviors; and (2) automatically

extending or constructing from scratch a library of student models. The versatility

of machine learning techniques allows for the development of a number of learner

modeling applications. For example, the k-nearest neighbor algorithm has been ap-

plied to determine the stereotypes in [39]. Machine learning techniques have also

been applied to detect students’ off-task behaviors in [40].

6. Cognitive theories (learner-based). In this modeling methodology, cognitive theories

are employed to model students’ learning behaviors drawing upon our understanding

17

of the processes of human thinking and understanding.

7. Fuzzy student modeling (learner-based). In intelligent tutoring systems, human in-

structors do not directly interact with the students, which cause uncertainty of data

collected from the systems. For example, the issues such as network congestion

or software crash can cause difficulties and problems in gathering information about

students mental state and learning behavior. To solve the uncertainty in this modeling

method, fuzzy logic methods can be applied to learner modeling [41, 42, 43].

8. Bayesian networks (learner-based). Bayesian networks (BN) can be another solu-

tion for capturing the uncertainty in the relations between the nodes that make up

the learner model [44]. The nodes in a Bayesian network can represent different

students’ states, such as learning phases and cognitive and affect states, while the

causal links between the nodes can represent the relations between the states. The

BN model can be (1) an expert-centric model built up by experts, (2) a data-centric

model statistically based on observable data collected from intelligent tutoring sys-

tems, or (3) an efficiency-centric model that incorporates from models (1) and (2)

to optimize efficiency. Examples that apply BN in learner modeling can be found

in [45, 46].

Each of these learner modeling methods can achieve one or more modeling purposes

(subsection 2.1), and they are summarized in Table 2.1. As we can see from the table:

• Overlay, Constraint-Based and Perturbation models are corrective due to their abil-

ity to identify error or misconceptions in different ways. They are also evaluative if

the designed system can ensure the aggregation of the corresponding information.

• The stereotypes method is strategic due to its ability to change teaching strategies so

that they adapt to pre-defined student groups with different characteristics.

• Because of the various algorithms developed for machine learning techniques, they

18

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
E

xi
st

in
g

L
ea

rn
er

M
od

el
in

g
M

et
ho

ds

M
od

el
in

g
M

et
ho

ds
co

rr
ec

tiv
e

el
ab

or
at

iv
e

st
ra

te
gi

c
di

ag
no

st
ic

pr
ed

ic
tiv

e
ev

al
ua

tiv
e

E
xp

er
t-

ba
se

d
M

od
el

in
g

O
ve

rl
ay

m
od

el
√

√

C
on

st
ra

in
t-

B
as

ed
M

od
el

√
√

Pe
rt

ur
ba

tio
n

√
√

L
ea

rn
er

-b
as

ed
M

od
el

in
g

St
er

eo
ty

pe
s

√

M
ac

hi
ne

le
ar

ni
ng

te
ch

ni
qu

es
√

√
√

√
√

√

C
og

ni
tiv

e
th

eo
ri

es
√

Fu
zz

y
m

od
el

in
g

√
√

B
ay

es
ia

n
ne

tw
or

ks
√

√

19

can be used for many different modeling purposes by choosing appropriate algo-

rithms. For example, we can run clustering algorithms similar to stereotypes, and

classification algorithms can be used to evaluate learners by comparing their behav-

iors in different groups.

• Cognitive theories focus on analyzing learners’ learning behavior, which is a good

way for diagnosing their learning states.

• Because fuzzy modeling and Bayesian networks are able to handle uncertainty in

learner modeling, they are able to detect weak understanding and make decisions on

providing extra resources. Therefore, they are useful for elaborative purposes. With

fuzzy techniques and diagnostic reasoning, respectively, they can also be used for

diagnosing learners’ characteristics.

These existing learner modeling methods have covered all the modeling purposes for

assessing learner behaviors. But it is also essential to solving practical problems by know-

ing how to apply learner models.

2.3 How to Apply Learner Models

This section discusses how to apply learner modeling given the categorizations of mod-

eling purposes and modeling methods presented in the previous sections. Besides the

“built-in” modeling challenges discussed in section 1.2, there are other challenges that

need to be resolved in order to construct an appropriate and accurate learner model:

• The composition of learner modeling purposes. We can choose a subset of the mod-

eling purposes described in section 2.1, as well as extensions of these purposes, to

form a general goal for the learner modeling method. For example, in a learner model

targeted at providing scaffolding to improve learning effectiveness, the learner model

needs to have predictive and evaluative abilities so as to identify under-performing

learners that need potential assistance. Also, depending on the way scaffolding is

20

provided, the learner model can be corrective in providing direct feedback on mis-

conceptions, elaborative in providing alternative reading resources, or strategic in

providing learning strategies that are considered more effective based on the col-

lected data in the study.

• The composition of learner modeling methods used. The modeling methods chosen

should serve to achieve the selected learning purposes and should be systematically

and consistently composed. For example, stereotypes methods that are based on

clustering can be evaluative in identifying under-performing learners if the features

selected are good differentiators of performance. But they are not predictive unless

other mechanisms have been added for doing prediction. Additional approaches may

need to be developed when methods are combined. For example, a clustering algo-

rithm that is combined with a Bayesian network model to represent uncertainty in

the learner model structures, can generate groups of students with similar Bayesian

network representations.

A good composition of modeling purposes and modeling methods serves as the basis

for accurate and robust learner models.

2.4 Summary

In this chapter, we have presented the state of the art in learner modeling by introduc-

ing modeling purposes, categorizing modeling methods, and presenting existing modeling

methods. The learner model to be developed in this thesis consists of multiple modeling

purposes (i.e., strategic, diagnostic, predictive and evaluative). Our goal in this thesis is to

develop an integration of machine learning and data mining techniques to construct learner

modeling methods that are relevant in OELEs. It is essentially a learner-based model,

which also adopts ideas from expert-based modeling for evaluating learners’ performance.

For example, we use a causal map created by experts as the basis to evaluate the learner-

21

created causal map in Betty’s Brain. The details of the proposed learner modeling approach

are discussed in Chapters 3 and 4.

22

Chapter 3

Approach

As discussed in the earlier chapters, the learner modeling approach should adapt to dif-

ferent OELEs and be able to generate accurate and robust learner models. In this chapter,

we present a higher level description of our learner modeling approach and discuss how it

can resolve the potential challenges for generating accurate learner models. The chapter

is organized as follows: we first introduce an example OELE system (i.e., Betty’s Brain

OELE) in section 3.1, and use it as the basis to illustrate the learner modeling approach

developed in this research (section 3.2). Section 3.3 discusses the challenges and the po-

tential solutions for generating accurate learn models. Section 3.4 presents a summary of

this chapter.

3.1 An Example of Learning in OELEs

We present the Betty’s Brain learning environment, developed by our lab at Vander-

bilt University, as an example OELE [47]. Betty’s Brain satisfies the two most important

aspects of OELEs: (1) it provides a set of tools to support students’ learning and problem-

solving (model building in this case) and (2) it provides learners with an “open-ended”

approach to problem-solving [48]. The “open-endedness” promotes exploratory learning,

which can lead to learning with understanding in contrast to rote learning that is known to

cause the inert knowledge problem [49].

In Betty’s Brain, students learn about a science topic (e.g., climate change) by construct-

ing a causal map, where the nodes represent scientific concepts (e.g., vehicle use, global

temperature) and the directed and labeled edges are the causal relations between concepts.

Such representations are known to support explanations and understanding of scientific

phenomena (e.g., an increase in vehicle use may increase global temperature) [47]. Learn-

23

ers can acquire information about each of the concepts and convert the information they

read into causal links (e.g., deforestation increases carbon dioxide) to build their causal

maps. They are also provided with tools to test the correctness of their evolving models.

They can do this by asking the virtual agent, Betty, to answer and explain answers to spe-

cific quiz questions using the causal map they built to teach Betty. These functionalities, as

well as the other tools (e.g., requesting a conversation with Betty or the mentor agent and

taking notes) that are available in Betty’s Brain, are all designed to support a user-centered

learning process, giving the students the ability to explore and learn by construction.

Based on the different tools and the task to solve, students’ activities in Betty’s Brain

are categorized into three broad classes of OELE-related tasks: (i) information seeking and

acquisition, (ii) solution construction and refinement, and (iii) solution assessment [7].

We describe each of these tasks in greater detail:

• Information acquisition (IA): This relates to actions such as reading to learn new

information (read) and using search methods to find specific knowledge. Taking

and viewing notes is also considered to be useful for information acquisition (notes).

Figure 3.1 shows the interface for reading the science book (a set of hypertext pages)

in Betty’s Brain.

Figure 3.1: Interface for Reading Science Book in Betty’s Brain

24

• Solution construction (SC): In Betty’s Brain, SC actions are causal map editing ac-

tions (mapedit), which consist of linkedit actions, such as add, change, or remove

causal links (linkadd, linkchg, linkrem) and concedit actions such as add or remove

concept entities (concadd, concrem). Besides, students can mark the correctness of

the causal links in their causal map to assist their solution construction (clmark) pro-

cess. Figure 3.2 shows the interface that students use to build their causal maps to

teach Betty.

Figure 3.2: Interface for Solution Construction Actions in Betty’s Brain

Figure 3.3: Interface for Solution Assessment Actions in Betty’s Brain

• Solution assessment (SA): This consists of asking Betty to take a quiz (quiz), answer

25

Table 3.1: The list of all meaningful actions students can perform in Betty’s Brain

Action category Action type Action name/description

IA

read ReadScienceBookAction
search SearchScienceResourceAction

notes

AddNoteAction
DeleteNoteAction
ChangeNoteAction
ViewNoteAction

SC

mapedit

AddConceptAction
RemoveConceptAction
AddCausalLinkAction
RemoveCausalLinkAction
ChangeCausalLinkAction

clmark
MarkCausalLinkCorrectAction
MarkCausalLinkWrongAction
ClearCausalLinkMarkAction

SA
quiz QuizTakenAction

QuizViewAction
quer AnswerQuestionAction
expl ExplainAnswerAction

questions (query), and explain how she derived her answers using qualitative reason-

ing methods (expl). Figure 3.3 shows the interface for taking solution assessment

actions in Betty’s Brain.

Table 3.1 summarizes all of the primary actions available to students in the Betty’s brain

environment.

As students work on the system, all of their actions, as well as the progression of the

causal model they build to teach Betty are logged. We use this information, in addition

to other information derived from querying the user, to construct data-driven models of

learner performance and behaviors. The next section provides a formal definition of the

learner modeling problem and outlines the general modeling methods we have developed

in this thesis.

26

Figure 3.4: Architecture of the overall learner modeling method

3.2 Learner Modeling Approach

Figure 3.4 illustrates the approach that we have developed for our learner modeling

method. As discussed earlier in section 1.1, we use HMMs to model students’ learning

behaviors because HMMs are able to capture explicit and implicit cognitive and metacog-

nitive processes students employ in their learning tasks [20, 21, 22]. The HMM technique

also allows researchers to go beyond simple frequency and sequence analyses, to using

exploratory methods to examine how students’ activities cohere in larger patterns over

time [50]. And since students may exhibit a variety of behaviors and strategies, a single

HMM is usually insufficient to model students’ learning behaviors comprehensively. As

a result, we first apply the HMM clustering method [26] to derive groups of students who

show similar learning behaviors as represented by their action sequences. Corresponding to

each group of students, we derive a HMM as the generative stochastic model of the group’s

27

behaviors, and simultaneously also derive the set of coherence relations, using a set of sup-

port and effectiveness measures related to information acquisition, solution construction,

and solution assessment that was developed in [7] and further expanded in [51].

To address the potential data impoverishment problem which causes inaccurate HMMs,

as a next step, we iteratively generate a more accurate HMM model corresponding to each

cluster. We propose a Monte Carlo Tree Search (MCTS) approach [18] and generate a

search tree of student activities, starting with the current HMM, and then combine a re-

inforcement learning scheme (as indicated in the dashed box) to extend students’ action

sequences or generate additional sequences with similar behaviors. We perform the MCTS

simulations to compute the rewards associated with the actions to be taken so that long-term

consequences are taken into consideration. These reward values are used in the reinforce-

ment learning scheme to generate new or to extend existing action sequences. These new

action sequences are combined with the original student data to generate a newer, more

complete and more robust HMM model.

The HMMs and the coherence relations are derived from students’ action sequences,

and are representative of their learning behaviors. On the other hand, MCTS which is

used for reinforcement learning, is based on both students’ behaviors and performance. In

MCTS, the expansion and simulation policy is constrained by the HMMs and coherence

relations while the selection policy takes students’ performance measures into account. We

discuss each component of the learner modeling method in the next chapter.

3.3 Challenges and Solutions

As discussed earlier in Chapter 1, the major focus of this dissertation is to develop algo-

rithms for deriving learner models that can be used to model students’ learning behaviors

in terms of the cognitive and strategic processes that they employ so as to provide adaptive

scaffolding to students as they learn in these environments. The learner modeling approach

needs to adapt to different OELEs and be able to handle potential data impoverishment

28

problems. To illustrate the effectiveness of the modeling approach, we list the following

problems and discuss how they are resolved at a higher level:

1. Data representation problem. Data collected from different OELEs can vary signifi-

cantly, which causes difficulties for applications of learner modeling methods. So we

propose to use an action-view representation, which provides a semantic framework

that is applicable to different OELEs and addresses the data heterogeneity problem.

This will be discussed in section 4.1.1.

2. Model Representation Problem. In general, the more effective model representations

are a function of the purpose for which they will be used. For example, as discussed

earlier, the overlay model, provides a convenient representation to compare the learn-

ers’ knowledge against a chosen expert subset. The Hidden Markov Model (HMM)

is our choice of representation to model the temporal characteristics of learners’ be-

haviors in a compact manner. The HMM has been applied to model the learning

patterns and strategies of students [20, 21, 22], which can be the basis for the inter-

pretation of students’ behaviors as well as their cognitive and metacognitive states.

Section 4.2.1 discusses the details of HMMs applied to our work.

3. Use of Machine Learning Approaches to support Data-Driven Modeling. To develop

a framework for adaptive scaffolding, the learner model should adapt to students

that exhibit different learning and problem-solving behavior patterns. We propose

to apply an HMM clustering algorithm [26] to divide students into groups of similar

behaviors to increase within-cluster homogeneity for HMM representation. This will

be discussed in Section 4.2.3.

4. Data impoverishment problem. Data collected from a single study with OELEs is

likely to be incomplete, and not cover all of the different aspects of learner behaviors.

This data impoverishment problem makes it difficult to derive accurate and robust

learner models. For example, the data collected from one of our studies on the Betty’s

29

Brain OELE included 98 sixth grade students. It is likely that the HMMs derived will

overfit the data, especially because they are complex and students depict a variety of

behaviors in the learning environments. So we propose to apply a combination of

the Monte Carlo Tree Search (MCTS) and Reinforcement Learning (RL) approaches

to generate simulated data to enrich an original sample of student performance and

behavior data (Section 4.3.3 and 4.3.3), and, therefore, derive more accurate and

more complete learner models.

5. Verification and validation problems. The verification and validation of our learner

modeling approach will be carried out by analyzing the original HMMs as well as

comparing them against the HMMs generated after reinforcement learning. During

the process, cross validations and sequence mining will be applied to support our

analysis and interpretations. We present some examples for adaptive scaffolding and

perform empirical analyses on them.

3.4 Summary

In this chapter, we introduced an OELE example, the Betty’s Brain system, and summa-

rized the students’ activities that can be logged during their learning process. After proper

data processing, we can derive the data set of action sequences corresponding to students’

learning behaviors in the OELE.

These data can then be used to generate learner model according to the approach pre-

sented in section 3.1. The approach applies reinforcement learning and MCTS to iteratively

learn more accurate and complete HMMs that are derived from the original data set. Be-

sides the learner modeling approach, we have also presented the challenges in data-driven

learner modeling and how the proposed learner modeling method can resolve each of them.

Details of each component of our learner modeling scheme derived using machine learning

methods are discussed in the next chapter.

30

Chapter 4

Details of the Approach

This chapter presents our approach to enhancing learner modeling using machine learn-

ing techniques. Chapter 4.1 discusses our initial work in pre-processing and structuring

the data in log files, and then applying a Hidden Markov Modeling (HMM) approach to

building learners’ behavior models from their activity sequences. We also discuss coher-

ence measures that we have developed to further characterize learner behaviors. Chapter

4.2 discusses the Reinforcement learning approaches along with Monte Carlo Tree Search

(MCTS) methods we have developed to enhance learner models. Chapter 4.3 provides a

summary of our overall approach.

4.1 Background Techniques

In this section, we first describe the pre-processing step that we apply for generating

initial learner behavior models from log data collected from classroom experiments. We

then describe the use of HMM clustering techniques to generate users learning behaviors

from their activity sequences.

4.1.1 The Action-View Representation and Coherence Relations

To resolve the data heterogeneity problem across different OELEs, we have developed

a data representation scheme called the action-view representation [7]. The action-view

representation captures information about the context in which users perform actions. The

representation helps us to better interpret how students may have performed different ac-

tions. Tracking and interpreting individual actions and relations between actions in this

manner provides cues to the cognitive, strategic, and metacognitive processes learners may

be employing to accomplish their learning goals.

31

The <action, view> has been developed in [52, 7, 53]. When applied to OELEs that

focus on learning by modeling, learner’s actions can be broadly classified into (1) actions

that help them to acquire the information they need to build, check, and verify their models

(information acquisition); (2) actions that are related to building and refining their models

(solution construction); and (3) actions that are related to checking and verifying their

models (solution assessment). On the other hand, the view captures the corresponding

context in which an action was performed.

Figure 4.1: The view of the book page “An Earth in Trouble”

Generating action-view representation

Consider the Betty’s Brain OELE that was introduced in Section 3.1. The system can

generate event logs that capture every action taken by the student. A logged action cor-

responds to an atomic expression of intent, such as deleting a causal link or reading the

science resources. The logs also contain information on every view that was displayed

when the system was running. A logged view captures the information visible to a user

32

Figure 4.2: The view of the feedback for a quiz result

during a specific time interval. Unlike actions, which are distinct and orderable, views can

overlap each other and span across multiple actions.

When an action is taken by the students, the system can log this action as well as the

corresponding view(s) that are associated with that action. For example, when a student

navigated a science book page named “An Earth in Trouble” and stayed on that page long

enough (e.g., stayed for more than 5 seconds) in Betty’s Brain, a “read” action is logged.

Meanwhile, the view corresponds to the material or information on this page that the student

can read is also logged (Figure 4.1). As another example, after letting Betty take a quiz and

getting feedback from Mr. Davis, an action named “quiz” is logged, and meanwhile, the

content of the feedback is logged as the view (Figure 4.2). Figure 4.3 shows an example

of a sub-sequence of actions along with the corresponding views that are generated by a

student who worked in Betty’s Brain. The description of these actions in Betty’s Brain can

be found in Section 3.1.

Figure 4.3: A sub-sequence of actions and the corresponding views in Betty’s Brain

33

Each action can be associated with one or more views. For example, the action to delete

the causal link “vehicle use increases garbage and landfills” can be supported by views that

contains relevant information such as the science resource with page id “earth trouble” and

the correctness feedback (i.e., “This link might be wrong”) on this causal link as shown in

Figure 4.4. On the other hand, actions that start these views are considered as potential

actions supporting this “DeleteCausalLinkAction” action (i.e., the two “ViewPageAction”

in Figure 4.4).

Figure 4.4: Possible actions that can support DeleteCausalLinkAction action.

4.2 Coherence Relations

The above discussion leads to the notion of action coherence which is formally defined

in [7] as:

Definition 1 (Coherence Relation). “Two ordered actions (x → y) taken by a student in

an OELE are action coherent if the second action, y is based on information generated by

34

the first action, x. In this case, x provides support for y and y is supported by x. Should a

learner execute x without subsequently executing y the learner has created unused potential

in relation to y. Note that actions x and y need not be consecutive.”

In practice, we use a time window to determine whether an action is supported. The

prior time window is chosen empirically (e.g., 2 minutes time window), and its represen-

tation is shown in Figure 4.5, where the two potential supporting actions as illustrated in

Figure 4.4 are not supporting the “DeleteCausalLinkAction” because they were taken more

than 2 minutes before.

Figure 4.5: Determine supporting feature of DeleteCausalLinkAction action.

In addition to the coherence relation, we also define the effectiveness of solution con-

struction actions as:

Definition 2 (Effectiveness). “In an OELE, a solution construction action A is effective

if the change made by the solution construction action is correct according to the expert

model predefined for the OELE.”

Examples of effective solution construction actions in Betty’s Brain are removing in-

correct concept entities and causal links from the causal map, or adding correct concept

entities and causal links to the causal map. In other words, effective solution construction

35

actions made by the students can improve their model to get closer to the expert model.

It is the criterion we used to derive the students’ modeling performance (e.g., causal map

score in Betty’s Brain) in OELEs [7, 54, 55].

In some of the previous work, the coherence relations are used to characterize self-

regulated Learning behaviors in OELEs [7], and are used as the basis to understand the

change of students’ problem-solving behaviors over time [56]. We’ve also applied the

coherence relations to perform unsupervised learning and separate out learners into groups

based on their overall learning behaviors [54].

The support/effectiveness features associated with solution construction actions are

very important if we want to track learning performance measure of any artificially generat-

ed/extended action sequences, that are used to learn the reinforced HMM models. However,

the HMM representation is defined at a level of abstraction that doesn’t take into considera-

tion these features. So we applied the coherence relations derived from the original data, to

determine the support/effectiveness features when generating/extending action sequences

using reinforcement learning.

We collect the coherence relations (i.e., support measure) using the method described

above from the original data set to include coherence relations between sets of actions (e.g.,

IA→ SC and SA→ SC in Betty’s Brain). The action coherence values are used to decide

the relations between pairs of actions that help to determine the rewards for actions selected

by the reinforcement learning algorithm. For example, actions that lead to more coherent

subsequent actions can be rewarded over other actions, and thus, be chosen for generating

new or extending existing action sequences.

4.2.1 Hidden Markov Model

Hidden Markov Models, which were initially introduced in the late 1960s, have been

widely used in temporal pattern recognition applications such as Speech recognition [57]

and DNA Motif Discovery [58]. The Hidden Markov Model (HMM) is a statistical model

36

which can be considered as a Markov process with hidden states. Formally, an HMM is

defined as a five-tuple [57]:

λ = {A,B,π,N,M}, (4.1)

where A and B represent the state transition probability distribution and emission probabil-

ity distribution matrices, respectively, π is the initial state probability distribution, N is the

number of hidden states, M is the number of distinct observations in the data set. Figure 4.6

shows a generic HMM model, where x(t) represents the hidden states with state transitions

represented as x(t) → x(t+1). Associated with each hidden state x(t), there is a random

variable y(t), that has an associated probability distribution over all distinct observation

symbols.

Figure 4.6: General Architecture of Hidden Markov Model

Figure 4.7 (a) presents a simple HMM example trained on two action sequences S1

and S2 with only 4 action types from Betty’s Brain system (described in section 3.1). The

HMM can also be represented by a state diagram [17] as shown in Figure 4.7 (b). Al-

though not explicitly shown in the action sequences, the hidden states h1 and h2 can be

interpreted, based on expert knowledge, as Information Acquisition state (searching for

and reading resources) and Solution Construction state (editing concept entities and causal

links), respectively.

For a more realistic example, such as the Betty’s Brain environment, the students’

model building tasks require about 26 action types, and the resulting HMM becomes very

complex and hard to interpret if we use each individual action as a separate observation.

37

Figure 4.7: Simple HMM example.

Therefore, we apply aggregation methods to combine sets of actions into a common de-

scriptor. For example, we aggregate linkedit actions and concedit actions into a single

mapedit action category.

Based on the different probability distributions for each observation (action), the hid-

den states are labeled by the primary actions associated with that state. The transitions

between states capture the evolution of learning activities across time, e.g., transitions from

information acquisition phase to solution construction and refinement phase.

Another approach that we have developed for characterizing learners’ behaviors, se-

quence mining algorithms [59, 60] find patterns represented as subsequences of frequently

occurring actions that capture snapshots of students’ learning behaviors. On the other hand,

the HMMs provide a generative and comprehensive model of the students learning behav-

38

iors across time. Furthermore, since students typically work on a modeling task for 3-4

days, it is reasonable to believe that students behaviors evolve as their learning improves,

and it may fluctuate under different circumstances (e.g., when students are confused and

stuck versus when they are making good progress). Therefore, HMMs, which capture stu-

dents learning behaviors across time, are a more expressive temporal model of students’

behaviors.

4.2.2 Deriving Hidden Markov Models

For deriving HMMs, the Baum-Welch re-estimation procedure [57] is applied to adjust

model parameters(A, B, π) to generate local maximal of the likelihood of action/obser-

vation sequences given the model λ . This re-estimation procedure implements the EM

(Expectation-Maximization) algorithm, which starts with random parameters(A, B, π) and

iteratively updates them based on training data. This procedure works only when the num-

ber of hidden states N is known. However, N is often unknown in learner modeling be-

cause the students’ behavior characteristics are unknown. In our work, we have adapted

the Bayesian Information Criterion (BIC) to determine the best number of hidden states for

HMM [61]. For different number of hidden states, the BIC value is computed by:

BIC = 2 · ln L̂− k · ln(n) (4.2)

where

• L̂ is the maximized value of the likelihood function of the model λ , i.e., L̂ = P(O|λ̂),

where λ̂ is the HMM model with maximized likelihood function.

• n is the number of observation sequences

• k is the number of free parameters to be estimated which we configured to be a

polynomial function of N and M as a measure of model complexity.

39

So the first term ln L̂ is likely to promote a larger and more detailed model, e.g., a model

with more hidden states, whereas the second term k · ln(n) adds a penalty to complex mod-

els. Essentially, the BIC measure provides a trade-off between accuracy and complexity of

the HMM model and tries to find models that are not overly complex while also maintain-

ing sufficient accuracy. The refined HMM learner can be described by algorithm 1 (ns is

the max number of hidden states allowed).

Algorithm 1 Refined HMM Learner
Given dataset D
for i := 1 to ns do

Ni← i
Generate λi = {Ni,M,A,B,π} with random A,B and π

λ̄i← Baum-Welch Learner(λi, D) [57]
bici← BIC Computation(λ̄i, D) use formula (4.2) [61]

end for
return λ̄i = {Ni,M, Ā, B̄, π̄} where bici is maxmized

In our work, we choose the number of hidden states where the BIC value starts to level

off. Because the Baum-Welch re-estimation procedure may converge to local optimal after

random parameters’ initialization, one can employ the Baum-Welch Learner multiple times

in order to get potentially better results.

Figure 4.8: Bayesian Information Criterion (BIC) values calculated for different numbers
of hidden states. The BIC values were re-scaled to fit the window.

For example, we can apply this algorithm on a set of 28 students’ action sequences from

40

a Betty’s Brain study and derive the plots of BIC values for different numbers of hidden

states as shown in Figure 4.8. According to the plot, we choose 3 as the best number of

hidden states because the BIC value reaches its max value with 3 hidden states. Using this

result, we can then apply the Baum-Welch Learner to generate a three-states HMM which

is shown in Figure 4.9.

Figure 4.9: Example HMM for the set of 28 students’ action sequences. The HMM is
represented by vector of initial probabilities π , matrix of state transition probabilities A,
and matrix of emission probabilities B.

4.2.3 Sequence Clustering using HMMs

As discussed earlier in Section 3.2, students exhibit a variety of behaviors, and their

behaviors evolve when they are learning in an OELE environment. So a single HMM is

insufficient to model students’ learning behaviors comprehensively. As a result, we apply

clustering method to derive groups of students who show similar learning behaviors as

represented by their action sequences. And in order to maintain the consistency between

41

the clustering results and the model representation, we apply the HMM clustering algorithm

which uses the differences in the HMMs as the basis for separation [26].

In this methods, a variation of the K-Means clustering algorithm is applied, which in-

stead of computing a traditional centroid, applies the Refined HMM Learner algorithm (il-

lustrated in Algorithm 1) and uses the resulting HMM model as the surrogate for the cluster

centroid. Then, we employ the log-likelihood function as a measure of the cohesiveness of

a cluster.

For each action sequence O in the data set, a sequence-to-HMM likelihood is given by

P(O|λ) which measures the probability of sequence O be generated by the HMM model

λ . P(O|λ) can be computed by using Forward-Backward Procedure [57]. In this pro-

cedure, however, the forward variable which stores the probability of the partial observa-

tion sequence is in a product form of state transition probabilities and emission probabil-

ities, where each probability term is less than or significantly less than 1. For sufficiently

long data sequences, the dynamic range of the forward variable will exceed the precision

range of any machine, resulting in an underflow in computing the sequence-to-HMM like-

lihood. A scaling method [57] is required to normalize the forward variable and computes

sequence-to-HMM log-likelihood.

We use the Partition Mutual Information(PMI) [62] to determine the optimal number

of clusters [26]. The clusters are most separated when the PMI value is maximized. And in

Baum-Welch learner, (A, B, π) is modified to maximize the likelihood function, which in

other words is maximizing homogeneity within each cluster. Thus, finding the number of

clusters, which results in highest PMI potentially gives an optimal clusters’ configuration.

Partition Mutual Information is given by:

PMI =
∑

J
j=1 ∑

n j
i=1 MIi, j

J
, (4.3)

where J is the number of clusters, n j is the number of data sequences in cluster j and MIi, j

42

the average mutual information between observation sequence Oi and a HMM models λ j

is the logarithmic value of the posterior probability of model λ j, trained on data Oi:

MIi, j = logP(λ j|Oi) = log
P(Oi|λ j)P(λ j)

P(Oi)

= log
P(Oi|λ j)P(λ j)

∑
J
j=1 P(Oi|λ j)P(λ j)

,
(4.4)

where P(λ j) is the prior probability. And as discussed above, the dynamic range of

the sequence-to-HMM likelihood P(Oi|λ j) may be intractable, we need to find alternative

ways to compute MIi, j. We apply the logarithmic identity:

logb

N

∑
i=0

ai = logb a0 + logb

(
1+

N

∑
i=1

b(logb ai−logb a0)

)
, (4.5)

where a0 > a1 > .. . > aN are sorted in descending order. We compute MIi, j as:

MIi, j = logP(Oi|λ j)P(λ j)− log
J

∑
j=1

P(Oi|λ j)P(λ j), (4.6)

and

log
J

∑
j=1

P(Oi|λ j)P(λ j) = logP(Oi|λ0)P(λ0)

+ log [1+
J

∑
j=1

elogP(Oi|λ j)P(λ j)−logP(Oi|λ0)P(λ0)],

(4.7)

where logP(Oi|λ0)P(λ0)> logP(Oi|λ1)P(λ1)> .. . > logP(Oi|λJ)P(λJ) are sorted in de-

scending order. The HMM clustering algorithm can be described by Algorithms 2 and

3.

43

Algorithm 2 HMM Clustering
Given dataset D
for i := 2 to nc do
{λ1,λ2, ...,λi}← Standalone HMM Clustering(D , i)
Compute PMIi according to formula (4.3)(4.6)(4.7)

end for
nbest ← i where PMIi is maxmized
return Standalone HMM Clustering(D , nbest)

Algorithm 3 Standalone HMM Clustering
Given dataset D and number of clusters n
Randomly distribute D into n clusters, C1,C2,...,Cn.
repeat

for each cluster Ci (i = 1,2, ...,n) do
λi← Rrefined HMM Learner(Ci)

end for
for each sequence O in D do

Redistribute O into cluster Ci where P(O|λi) is maximized
end for

until Convergence
return {λ1,λ2, ...,λn}

As we can see from the algorithms, the Refined HMM Learner will be performed mul-

tiple times till convergence. In our work, we had to carefully set the number of repetitions

for the Baum-Welch Learner to constrain the run time of the HMM clustering procedure.

To achieve this, we applied a convergence criterion that terminated when the likelihood in-

crement associated with the clusters in a new configuration was smaller than a pre-specified

threshold. Figure 4.10 shows an example of computing PMI values to determine the num-

ber of clusters for a data set consists of 98 students’ action sequences from a Betty’s Brain

study.

We then perform the HMM clustering algorithm on this data set, which produced three

HMMs shown in Figure 4.11 (cluster 1), Figure 4.12 (cluster 2), and Figure 4.13 (cluster

3). We can also represent the HMMs in state diagram as shown in Figure 4.14.

44

Figure 4.10: Partition Mutual Information values calculated for the Betty’s Brain data

Figure 4.11: The HMM of Cluster 1 (22 students) derived for the Betty’s Brain study

4.3 Applying Reinforcement Learning to Generate Updated HMMs

Generating HMMs that accurately represent students’ behaviors requires large amounts

of data (action sequences) to converge to their true behaviors. However, given that we can

45

Figure 4.12: The HMM of Cluster 2 (28 students) derived for the Betty’s Brain study

Figure 4.13: The HMM of Cluster 3 (48 students) derived for the Betty’s Brain study

46

Figure 4.14: HMMs for the three clusters

47

only collect limited amounts of student data from our classroom studies, we suffer from

the data impoverishment problem. To address this problem, we have adopted a novel rein-

forcement learning method combined with Monte Carlo Tree Search (MCTS) to generate

additional data that starting from initial HMM models of students’ learning behavior with

the goal of learning more robust and accurate models.

The extended data generates additional/extended action sequences that (1) better repre-

sent students’ learning behaviors, and (2) optimize the sequences based on specific learning

performance measures. Section 4.3.1 delves deeper into our approach for reinforcement

learning and how the two purposes are achieved. Section 4.3.2 presents the technical def-

inition and details of the MCTS approaches to derive reward functions for reinforcement

learning. Section 4.3.3 presents the application of these combined techniques in generat-

ing artificial action sequences. The generated action sequences are combined with original

students’ data to learn new HMMs.

4.3.1 Reinforcement Learning

The reinforcement learning procedure can be modeled as a Markov Decision Pro-

cess [19, 63], which consists of:

• A set of environment states, Se, and agent states, Sa.

• A set of available agent actions, A.

• Functions that define state transitions from s to snew under action a.

• The reward generated after the agent takes an action a.

Figure 4.15 shows the reinforcement learning scheme using the Betty’s Brain learning

environment as an example. As we can see from the figure, a virtual agent can interact with

the environment by taking actions. This agent corresponds to a student who interacts with

the Betty’s Brain System. At each time t, the expected reward of all available actions can

48

Figure 4.15: The scheme of reinforcement learning using Betty’s Brain environment as an
example

be derived by the interpreter (e.g., MCTS), and the RL approach is aimed to choose the

one that maximizes a long-term reward. So the agent should be able to take into consider-

ation the long-term consequences of the action to be chosen, so as to maximize the overall

reward.

This reinforcement learning scheme is suitable for generating additional or extending

existing action sequences of students learning behaviors in OELEs, in a way that the agent

can be equated to a virtual student whose action sequences may match the students on

the OELE system. Because we use HMMs to model agents’ learning behaviors, the agent

states Sa correspond to the hidden states in the corresponding HMM. And, the environment

states Se can be determined by a set of constraints defined in the OELE system. For ex-

ample, in the Betty’s Brain system, there are constraints such as “no linkadd action can be

taken before at least two concept entities exist in the causal map” (mark as constraint C1)

49

and “no linkrem or linkchg action, which is enforced till there are at least one causal link

has been added to the causal map” (mark as constraint C2). An environment state can be

determined by concatenating the binary values of all constraints’ conditional clauses, and

the size of environment states set equals to 2n where n is the number of binary constraints.

A conditional clause is assigned a value of 1 when it holds, and 0 otherwise. Suppose there

are only two constraints and the conditional clause of C1 holds (i.e., at least two concept en-

tities exist in the causal map) while the conditional clause of C2 does not hold (i.e., no link

exists in the causal map), the corresponding binary values are 1 and 0, respectively. Then,

the environment state is set to 10, and this state enables linkadd actions while linkchg and

linkrem are disabled.

So the available actions that the agent can take at time t are determined by both agent

states and environment states. The agent states which are represented by hidden states

in HMM, determine the available actions A1 according to learner’s behavior, while the

environment states determine available actions A2 that are enabled by the system. The set

of all available actions At at time t is the intersection of A1 and A2.

The reinforcement learning is applied to generate action sequences to satisfy two major

modeling purposes in this work. They are:

• (Purpose I): generate additional action sequences that simulate the real students’

learning behaviors so that the reinforced HMMs can have higher accuracy for classi-

fying students into the correct groups, and

• (Purpose II): extending existing action sequences to optimize specific learning per-

formance measure so that the reinforced HMMs can form the basis for generating

appropriate scaffolding .

The interpreter for reinforcement learning (Figure 4.15) should be designed to derive the

reward values for the virtual agent’s actions for the two different purposes (i.e., Purpose

I and Purpose II). For example, an action that is frequently taken by the students or an

50

action that may result in similar performance measure can be rewarded for purpose I; and

an action that results in an improvement of performance measure can have higher reward

compared to other available actions for purpose II. For deriving aggregated reward of long-

term consequences for taking actions, we apply Monte Carlo Tree Search (MCTS) as the

interpreter, which produces the projected reward after taking an action through the use of

simulations (i.e., multiple fast rollouts).

4.3.2 Monte Carlo Tree Search

As a heuristic search algorithm, MCTS has been applied widely to solve decision prob-

lems, e.g., in developing AI techniques to model game play. The recent success of AlphaGo

[16], which employed the MCTS algorithm and reinforcement learning further supports the

power of this technique in solving practical problems. Although learner modeling is differ-

ent from games, we can adopt the MCTS methodology for the decision making processes,

e.g., deciding the next best action(s) and studying the effectiveness of feedback provided

to students when they encounter problems in their learning in OELEs.

Figure 4.16: Four steps for each iteration of MCTS algorithm

Monte Carlo Tree Search basically performs a recursive search on a tree to make de-

cisions on what is the next best node to choose based on a pre-defined criterion. Each

iteration of its recursive search consists of four steps [64]:

51

1. Selection: Starting from root, recursively apply a selection policy until the algorithm

reaches the most promising expanded node.

2. Expansion: If a termination condition is not reached, generate a new node according

to an expansion policy.

3. Simulation: Apply a simulation policy that results in a fast “rollout” from current

node to a game’s end state.

4. Backpropagation: Use simulation results to update parent node statistics, e.g., the

likelihood of win for a parent node.

Figure 4.16 shows how the MCTS is applied in a general way. Most MCTS implemen-

tations apply selection policy by applying the Upper Confidence Bound applied to trees

(UCT) [65] criterion, which creates a balance between exploitation and exploration. Sim-

ulation policy in the original MCTS is implemented as a purely random sampling on all

possible nodes. After a number of simulations, we can determine the reward for actions

(children of the root) accordingly and apply it for extending action sequences in reinforce-

ment learning.

4.3.3 Reinforcement Learning using MCTS for generating action sequences

At each iteration of the reinforcement learning approach (shown in Figure 4.15), we

build the search tree and apply MCTS to pick the best node (that is generated by the largest

number of simulations). This corresponds to an action that is added to the tail of the current

action sequence. It can either start with an empty action sequence to generate additional

action sequences, or start with an existing student’s action sequence to generate an extended

action sequence.

Figure 4.17 shows a simple example for generating artificial action sequences by ap-

plying reinforcement learning and MCTS. The MCTS basically acts as the interpreter for

52

Figure 4.17: Simple example of applying RL and MCTS for generating action sequence.
ns is the number of simulations performed during MCTS.

the reinforcement learning algorithm, and does not derive immediate rewards for available

actions, but rather provides the long-term reward of taking specific actions. As we can see

from Figure 4.17, the read and the mapedit actions are chosen and appended to the current

action sequence for providing the highest reward (i.e., number of simulations) in the two

reinforcement learning iterations. In this example, the action sequence has been grown

from “search” to “search;read;mapedit”. If we continue this process, we can generate an

action sequence of required length (e.g., 500 actions) or an action sequence that achieves

expected performance (e.g., highest map score).

In the process as illustrated in Section 3.2, we repeatedly generate or extend action

sequences that maximize a specified reward function, and add them to the previously gen-

erated data. The reinforced data set is used to learn a refined version of the HMMs, and the

refined HMMs are called reinforced models. So, for the two different modeling purposes

(i.e., Purpose I and Purpose II), we can generate two reinforced models, namely a rein-

forced classification model and a reinforced scaffolding model. In order to satisfy these two

modeling purposes, the artificial action sequences are generated by configuring the three

search policies of MCTS shown in Figure 4.16 (i.e., selection policy, expansion policy and

simulation policy). They are summarized as follows:

Selection

53

In most MCTS implementations for designing AI systems, the Upper Confidence bounds

applied to Trees (UCT) is applied as the reward function for node selection:

UCT =
wi

ni
+ c

√
ln t
ni

, (4.8)

where ni is the number of simulations performed after adding the ith action; c is the

exploration parameter with a typically chosen empirical value of
√

2; t is the total number

of simulation runs for the parent node, which is equal to the sum of all the ni values; wi is

the sum of wins (1’s) for all simulations after adding the ith action.

The UCT criterion is known to balance exploitation and exploration for running sim-

ulations [66]. The left term wi
ni

, which calculates the win ratio of all simulations is the

exploitation measure for all the simulations performed. It is high for actions with high av-

erage win ratio. On the other hand, the right term c
√

ln t
ni

is the exploration term that is high

for actions with fewer simulations.

We adopt a similar reward function in this work. However, since students can be as-

signed partial points based on their performance in OELEs, wi can not be computed by

the sum of wins (1’s). Therefore, we derive the wi by the sum of a value vw which is in

the range of [0, 1]. The value of vw measures how successful a single simulation matches

the modeling goal we targeted. In this work, we have developed two different schemes for

computing the vw value for the UCT functions according to the two reinforcement learning

purposes. They are:

(1) Reinforced classification model. We compute vw by:

vw = avl +(1−a)vp (4.9)

where

54

• vl is the normalized log-likelihood value of the action sequence generated by the

corresponding HMM. This is essentially a homogeneity measure of generated action

sequences to the original HMM. For example, a simulation which generates an action

sequence with the highest log-likelihood value has its vl = 1.

• vp is the normalized value of the similarity between the simulation performance and

the expected performance measure. For example, a simulation has vp = 1 when

its resulting action sequence achieves the exact same performance measure with the

expected value.

• a is a bias factor in the range of [0, 1]. For this reinforced model, we set a = 0.5 so

that both terms are equally important.

So vw results in the range of [0, 1], and the sum of vw for all performed simulations

produces the value for wi. Using this measure, we can generate action sequences that are

aimed at simulating students’ behaviors based on existing HMMs and the corresponding

performance, measured by the model score achieved.

(2) Reinforced scaffolding model. We compute vw using the same equation as (4.9) but

configure the vp as the normalized value of the similarity between the simulation perfor-

mance and the maximum performance measure. So, a simulation has vp = 1 when the its

resulting action sequence achieves the best performance measure (e.g., a model score of 15

in a Betty’s Brain study about “climate change”). We set a = 0.2 to bias toward better per-

formance (i.e., lower distance from optimal performance measure) over the homogeneity

measure.

This allows MCTS to better utilize the coherence relations to generate action sequences

with more effective solution construction actions and the resulting HMMs can evolve and

favor the use of more coherent actions. Furthermore, this approach assumes the students

are learning, and, therefore, their map scores get better with time. However, we define

an upper limit on the length of the action sequences that, not all of them can achieve the

55

maximum map score.

Expansion and Simulation

Both expansion and simulation in MCTS are constrained by the available actions that

are determined by the environment state and the agent state of reinforcement learning as

described in Section 4.3.1. The MCTS will only expand to nodes that are in the set of cor-

responding available actions, and the simulation will be performed through the fast rollout

according to available actions at each step. With these simulation and expansion policies,

we can always generate action sequences that fit the HMM within a specified variance

range despite the different cases involved in the selection policy. Actions in the generated

sequences will never violate the system constraints.

Algorithm 4 outlines the sequence generating procedure. And the overall reinforcement

learning algorithm is summarized as Algorithm 5.

Algorithm 4 Reinforcement Learning for Sequence Generation
Given a HMM model λi and corresponding dataset Di
Sequence← {}
root ← {}
repeat

Perform MCTS (described in section 3 and 4)
nextBest ← root.child with most simulations
Sequence← Sequence∪nextBest
root ← nextBest;

until Reaching desired length
return Sequence

Algorithm 5 Learning Reinforced HMMs
Given dataset D , clustered HMM model {λ1,λ2, ...,λn} and corresponding data distri-
bution D1,D2, ...,Dn
for each cluster λi and Di (i = 1,2, ...,n) do

repeat
Di←Di∪Reinforcement Learning for Sequence Generation(λi, Di)
λi← Refined HMM Learner(Di)

until Sample size of Di is satisfiable
end for

56

4.4 Summary

In this chapter, we have presented details of our learner modeling approach. We started

by discussing the action-view representation, which can handle the data heterogeneity prob-

lem between different OELEs. We also presented coherence relations, which are used to

determine the effectiveness of actions when generating/extending action sequences. Then,

we demonstrate the learner modeling approach and described each component of the mod-

eling approach in detail. Specifically, we presented a definition and our implementation

for learning HMMs. In addition, we discussed the clustering algorithm based on the HMM

representation. The last section provided a detailed description of reinforcement learning

and MCTS for generating artificial action sequences to aid the learner modeling process.

We have now addressed aspects of the data collection challenges with the action-view

representation, and addressed the modeling and machine learning challenges in designing

our learner modeling approach that combines multiple techniques (i.e., HMM and HMM

clustering, MCTS, Reinforcement Learning, and coherence relations). Compared to many

other learner modeling approaches, the major contribution of our work is the combined

use of MCTS and reinforcement learning for generating simulated data that can enrich and

extend the initial data set, and help learn more complete and robust HMMs.

Our next task is to address the other challenge (i.e., verification and validation chal-

lenges). This is presented in detail in Chapter 5. We demonstrate the results of experi-

ments run with two different OELEs developed by our group: (1) the Betty’s Brain system,

and (2) the CTSiM environment. We perform cross-validations on reinforced classifica-

tion HMMs to show the improvements in classification accuracy. We also compare the

reinforced scaffolding HMMs against the original HMMs, and use them as the basis for

generating appropriate adaptive scaffolds.

57

Chapter 5

Experiments

In this chapter, we run experiments to demonstrate the effectiveness of our learner mod-

eling method using data collected from classroom studies with the Betty’s Brain and the

Computational Thinking using Simulation and Modeling (CTSiM) environments. As dis-

cussed earlier, Betty’s Brain is a learning-by-teaching environment, where students learn a

scientific phenomenon by creating a causal map to teach Betty [47]. On the other hand, stu-

dents learn about science topics by building simulation models in the CTSiM environment

using a visual domain-specific block-structured language [1]. Through the two experimen-

tal studies, we provide evidence that our learner modeling methods using reinforcement

learning are generalizable to different OELEs.

For each data set, we first briefly describe the learning environment and formally define

the format of the data. Then we derive the HMMs from the original data and refine the

model using the reinforcement learning methods discussed in Chapter 4, i.e., Reinforced

Classification and Reinforced Scaffolding. For the reinforced classification HMMs, we

run Leave-One-Out Cross Validation to show that the reinforced HMMs are better at cat-

egorizing students into correct groups. For the reinforced scaffolding HMMs, we perform

empirical analyses on the results generated and compare them with the original HMMs to

show the effectiveness of this method. Examples of adaptive scaffolds generated based on

the reinforced models are also discussed.

5.1 Experiments with the Betty’s Brain study

The first experiment uses the data collected from a Betty’ Brain study run with 98 6th

grade middle school students in a science classroom. The Betty’s Brain system and its

available actions are discussed in Section 3.1. As our first step, we applied the HMM

58

clustering algorithm to discover groups of students based on their action sequences.

5.1.1 HMM Clustering Results

As discussed earlier, we derived the optimum number of clusters by computing the

partition mutual information (PMI) for different numbers of clusters as illustrated in Sec-

tion 4.2.3. Figure 5.1 shows the plot of the PMI values for different numbers of clusters.

As we can see, the PMI value started to level off when the number of clusters reached

3. Considering the fact that the model can be over complex when the number of clusters

increases, we chose 3 as the number of clusters for this experiment.

Figure 5.1: Partition Mutual Information values calculated for the Betty’s Brain data

Then, the HMM clustering algorithm was run to generate three clusters of action se-

quences that maximizes the PMI value as described in Section 4.2.3. For each of the three

clusters, we generated an HMM that models the action sequences within the cluster. As

discussed earlier in Section 4.2.2, we compute the Bayesian Information Criterion (BIC) to

determine the best number of hidden states for learning the HMMs. Figures 5.2 shows the

plots of the BIC values computed for the three derived clusters. As we can see:

• Cluster 1 and 3 achieved best BIC value with 4 hidden states.

59

• Cluster 2 achieved best BIC value with 3 hidden states.

Figure 5.2: Bayesian Information Criterion (BIC) values calculated for the three clusters
derived from HMM clustering on data collected from a Betty’s Brain study. The BIC values
were re-scaled to fit the window.

Using these results, the final HMMs derived for the three clusters are shown in Fig-

ure 5.3 (cluster 1), Figure 5.4 (cluster 2), and Figure 5.5 (cluster 3). We also show the state

diagrams for the three clusters in Figure 5.6. For each of the three HMMs:

• The hidden states are denoted as h1,h2, ...,hn, where n is the number of hidden states.

• The initial states are denoted as π = {π1,π2, ...,πn}, where n is the number of hidden

states. The value of πi is shown in vector π .For example, the initial probability of h1

in the HMM for cluster 1 is 77%.

• The state transition probabilities are shown in matrix A. The value in an entry {i, j}

is the state transition probability from hidden state hi to h j. So the ith row shows the

60

Figure 5.3: The HMM of Cluster 1 (22 students) derived for the Betty’s Brain study

Figure 5.4: The HMM of Cluster 2 (28 students) derived for the Betty’s Brain study

61

Figure 5.5: The HMM of Cluster 3 (48 students) derived for the Betty’s Brain study

probabilities of transitioning out of hidden state hi, while the jth column shows the

probabilities of transitioning into hidden state h j. For example, the state transition

probability from h1 to h2 in the HMM for cluster 1 (Figure 5.3) is 35%.

• The emission probabilities B within each hidden state are shown by the correspond-

ing column in matrix B as the values of p(a), which is the probability of observing

action a in the corresponding hidden state. For example, the emission probability

of the observation/action read in h1 is 57% for cluster 1. In addition, all the ac-

tions are categorized into the three categories (i.e., Information Acquisition, Solution

Construction, and Solution Assessment) as described earlier in Section 3.1.

In order to compare the HMMs between different clusters, we use some of the measures

defined in our previous work [54, 60]. They are defined as:

• IA effort, which is the percentage of taking IA actions of all the actions performed

by a student.

62

Figure 5.6: HMMs for the three clusters derived for the Betty’s Brain study

63

• Search Rate , which is the average percentage of taking search actions of all the IA

actions.

• IA → SC transition, which is the average percentage of IA actions that support

later SC actions of all the IA actions performed by a student.

• IA→ SC effectiveness, which is the average percentage of effective SC actions that

are supported by IA actions.

• SA → SC transition, which is the average percentage of SA actions that support

later SC actions of all the SA actions performed by a student.

• SA→ SC effectiveness, which is the average percentage of effective SC actions that

are supported by SA actions.

• SC → IA transition, which is the average percentage of SC actions that support

later IA actions of all the SC actions performed by a student.

• SC → SA transition, which is the average percentage of SC actions that support

later SA actions of all the SC actions performed by a student.

• Sg, which is the average pre- and post-test score gain. It measures on average, how

much the students within in a cluster have learned after the study (the higher, the

better).

• Sm, which is the average final causal map score. It measures how good their final

causal maps are (the higher the better).

Note that all the transition measures correspond to the coherence framework that we

have defined by Definition 1 in Section 4.1.1. The effectiveness of SC actions are defined

by Definition 2 in Section 4.1.1. All the measures represent the percentage averaged across

all students within the same cluster.

64

Table 5.1: Comparison of the three clusters of original data from Betty’s Brain. Results for
each measure are presented as mean (standard deviation).

Cluster 1 Cluster 2 Cluster 3
IA effort % 42.5 (21.6) 20.8 (12.3) 24.4 (11.7)
Search rate % 5.6 (2.7) 0.3 (1.1) 3.1 (2.6)
IA→ SC transitions % 31.5 (21.8) 15.9 (6.4) 22.0 (13.5)
IA→ SC effectiveness % 69.5 (25.9) 63.8 (23.6) 66.7 (21.5)
SA→ SC transitions % 15.3 (8.7) 9.4 (6.3) 13.5 (6.9)
SA→ SC effectiveness % 82.1 (18.7) 76.6 (20.6) 75.6 (23.9)
SC→ IA transitions % 28.1 (15.5) 12.1 (7.1) 19.0 (11.6)
SC→ SA transitions % 13.3 (6.2) 21.3 (11.3) 18.7 (10.0)
Sg 6.22 (4.3) 2.85 (1.8) 5.61 (3.2)
Sm 7.50 (3.7) -2.25 (2.6) 3.79 (2.1)

Results of these measures for the three different clusters (i.e., Cluster 1, 2, and 3) are

shown in Table 5.1. In order to compare the differences of the measures between the

three clusters shown in Table 5.1, we perform the pairwise none-parametric test (i.e., the

MannWhitney U-Test) for each pair of the samples from the three clusters. The results are

shown in Table 5.2 (The difference is significant at p<0.05). The bolded p-values are less

than 0.05, showing the corresponding differences between the two clusters are significant.

For example, the p-value of the IA effort measure between cluster 1 and 2 is 0.002, which

indicates the difference of the IA effort measure is significant between cluster 1 and 2.

The results indicate that the students in cluster 1 achieved the best learning gains

(Sg = 6.22) as well as the best model building performance (Sm = 7.50), whereas students

in cluster 2 had the lowest performance measures (Sg = 2.85, Sm = −2.25). Students in

cluster 3 had a decent learning gain (Sg = 5.61), but unlike their learning gains, their model

building performance (Sg = 3.79) was not as good as the students in cluster 1. Overall,

we rank the learning performance of the three clusters in descending order as cluster 1 >

cluster 3 > cluster 2.

As we can see from Table 5.1 and Table 5.2, for the IA effort measure, students in clus-

ter 1 had higher percentage of their effort spent in information acquisition activities (42.5%)

65

Table 5.2: Pairwise MannWhitney U-Test result (p-value) for each pair of the samples from
the three clusters. The bolded p-values are those less than 0.05, showing the corresponding
difference between the two clusters is significant.

p-value
Cluster
1 and 2

p-value
Cluster
1 and 3

p-value
Cluster
2 and 3

IA effort 0.002 0.005 0.194
Search rate < 0.00001 < 0.00001 < 0.00001
IA→ SC transitions 0.00006 0.0012 0.006
IA→ SC effectiveness rate 0.267 0.407 0.483
SA→ SC transitions 0.037 0.047 0.033
SA→ SC effectiveness rate 0.415 0.405 0.431
SC→ IA transitions < 0.00001 0.00005 0.023
SC→ SA transitions 0.024 0.039 0.119
Sg < 0.00001 0.14 < 0.00001
Sm < 0.00001 0.038 < 0.00001

than students in cluster 2 (20.8%, p = 0.002) and cluster 3 (24.4%, p = 0.005). The infor-

mation acquisition activities helped them gain the information/knowledge from the science

resources to help them build their causal maps to teach Betty. According to the definition

of coherence relations in Section 4.1.1, information acquisition activities help create po-

tentials that can be used by the solution construction and solution assessment actions. Any

generated potential can provide support to subsequent solution construction actions, and

it has been shown in [7, 51, 60] that the supported solution construction actions are more

likely to be effective (Definition 2). We rank the results of this measure in descending or-

der as cluster 1 > cluster 3 > cluster 2, which matched up with the performance ranking

presented above.

Students in cluster 1 performed more search actions (5.6%) to aid their reading com-

pared to the students in cluster 2 (0.3%, p < 0.00001) and cluster 3 (3.1%, p < 0.00001).

Students with higher percentage of search actions are typically more efficient in looking for

targeted knowledge. So, we rank the results of this measure in descending order as cluster

1 > cluster 3 > cluster 2, which also matched up with the performance measures presented

above.

66

There were no significant differences of the “IA→ SC effectiveness” measure (cluster

1: 69.5%; cluster 2: 63.8%; cluster 3: 66.7%) and the “SA→ SC effectiveness” measure

(cluster 1: 82.1%; cluster 2: 76.6%; cluster 3: 79.6%) between the three clusters, where

all the differences were not significant (p-values > 0.05). So, the differences of students’

model building performance rely more on how many of the solution construction actions

are coherently supported by information acquired from prior IA and SA actions. For ex-

amples, students in cluster 1 applied significantly more IA→ SC transitions compared to

cluster 2 (31.5% versus 15.9%, p = 0.00006), and so did the SA→ SC transitions (15.3%

versus 9.4%, p = 0.037). So it was expected that students in cluster 1 could do better in

constructing the models than students in cluster 2 (Sg = 7.50 versus -2.25, p < 0.00001),

given that the differences of “IA → SC effectiveness” (69.5% versus 63.8%, p = 0.267)

and “SA→ SC effectiveness” (82.1% versus 76.6%, p = 0.415) measures between cluster

1 and 2 were not significant.

Students in cluster 1 had the highest average percentage measure of the IA→ SC tran-

sitions (cluster 1: 31.5%; cluster 2: 15.9%; cluster 3: 22.0%), where differences between

clusters were significant (p-values < 0.05). They also had the highest average percentage

measure of SA → SC transitions (cluster 1: 15.3%; cluster 2: 9.4%; cluster 3: 13.5%)

where the differences between clusters were significant except between cluster 1 and 3

(15.3% versus 13.5%, p = 0.469). These measures showed how frequently students were

using the information gained from the science resources or the feedback provided in solu-

tion assessment to help construct the causal model. During the model construction process,

students could get a better understanding of the previously acquired information. For both

measures, we rank the three clusters in descending order as cluster 1 > cluster 3 > cluster

2, which also matched up with the performance ranking.

Besides, students in cluster 1 had the highest average percentage measure of the SC

→ IA transitions (cluster 1: 28.1%; cluster 2: 12.1%; cluster 3: 19.0%), where all the

differences between clusters were significant (p < 0.05). This showed that they prefer

67

to divide their solution construction tasks into smaller sub-tasks and go back and forth

between information acquisition and solution construction actions to build the model. This

divide-and-conquer strategy is useful for constructing more accurate causal models. The

rank of this measure also matched up with the performance measures.

Interestingly, students in cluster 1 had the lowest percentage measure of the SC→ SA

transitions while students in cluster 2 had the highest percentage (cluster 1: 13.3%; cluster

2: 21.3%; cluster 3: 18.7%), where differences between clusters were significant (p-values

< 0.05). Although the SC→ SA transitions relate to a useful strategy that uses feedback

from solution assessment to correct mistakes in the causal map, it may also imply the use

of a trial-and-error approach, which may eventually result in low performance [67, 68].

Overall, students in cluster 1 used more IA and SA actions to support their SC ac-

tions, while students in cluster 2 applied less coherent transitions than the other 2 clus-

ters. The lower use of coherent transitions (e.g., students in cluster 2) may also increase

the chunk size of information acquisition, solution construction and solution assessment

actions which has been shown to have a negative impact on students’ learning perfor-

mance [55].

The measures of IA effort and transitions between action types provided empirical ev-

idence of the differences in students’ learning performance. According to the results, stu-

dents in cluster 1 had the highest usage of information acquisition actions, search actions,

and the coherent transitions. As expected, they achieved the best learning performance

(Sg = 6.22, Sm = 5.61).

Despite of not performing as good as students in cluster 1, students in cluster 3 achieved

better performance than students in cluster 2 (Sg = 5.61, Sm = 3.79). And their pre- and

post-learning gain was similar to students in cluster 1. According to the other measures,

we can see them having used more IA actions and applied more coherent transitions than

students in cluster 2, which matched up with their performance ranking.

On the other hand, the measures for students in cluster 2 have shown them not spending

68

enough time to read the resources, and the strategies they used are ineffective. For example,

they applied more “trial-and-error” strategies, where they repeatedly added causal links to

the model without sufficient reading of the resources or the use of SA actions to check the

correctness of the added links. Because of the complexity involved in Betty’s Brain (e.g.,

there are 210 possible causal links in the “climate change” learning unit), it is very likely

the causal links being added are incorrect in the first place, especially if the students don’t

understand the knowledge associated with the links. They repeatedly chose one causal link

out of all 210 possible links without enough information acquired from science resource

to support their choices, while expecting that the solution assessments would help them

find and correct all their mistakes. However, it is hard to check all the 210 possible causal

links to find out the 15 correct links within a given period of time, and students often get

confused after making mistakes repeatedly [68]. Therefore, the poor performance measures

(Sg = 2.85, Sm =−2.25) for students in cluster 2 were expected.

Next, we generate the two reinforced HMMs according to the algorithms described in

Section 4.3.1 and analyze the generated models.

5.1.2 Analysis of Reinforced Classification Model

We learn the reinforced classification HMMs by applying the reinforcement learning

algorithm that generates additional action sequences. This reinforcement learning im-

plies that we are adding more “users” with similar behaviors and then re-deriving a more

robust HMM model for that group. The idea here is to generate more accurate and robust

classifiers for the groups of students. The action sequences were generated according to the

algorithm described in Section 4.3.3. The generated action sequences were combined with

the original data set to learn updated HMMs as the reinforced classification models, which

are shown in Figure 5.7 (cluster 1), Figure 5.8 (cluster 2), and Figure 5.9 (cluster 3). We

also show the state diagrams for the three reinforced classification HMMs in Figure 5.10

(a) (cluster 1), Figure 5.10 (b) (cluster 1), and Figure 5.10 (c) (cluster 3), respectively.

69

Figure 5.7: The reinforced classification HMM of Cluster 1 derived for the Betty’s Brain
study

Figure 5.8: The reinforced classification HMM of Cluster 2 derived for the Betty’s Brain
study

70

Figure 5.9: The reinforced classification HMM of Cluster 3 derived for the Betty’s Brain
study

In the reinforced classification model, there were no significant structural changes com-

pared to the original HMMs. For example, the number of hidden states in the reinforced

HMMs for each of the groups were unchanged. However, the A, B and π matrices and

vector were updated in a way that improves classification accuracy for the group.

According to our modeling purpose for the Reinforced classification model discussed in

Section 4.3.3, the reinforcement learning algorithm is aimed to generate action sequences

that simulate students’ learning behaviors based on existing HMMs and the correspond-

ing performance, measured by the model score achieved. These newly derived action se-

quences increase the sample size while also expanding the space of behaviors to include

others that are similar in that their coherence measures are about the same, and retain the

same performance characteristics. This is because of the UCT criterion balances between

exploitation and exploration (Section 4.3.2), which also reduces the risk of overfitting and,

therefore, increase the accuracy of classifying students into the correct clusters that were

71

Figure 5.10: Reinforced classification HMMs for the three clusters derived for the Betty’s
Brain study

72

derived from HMM clustering.

For the classification, an action sequence, S, is classified into a cluster, whose HMM, λ ,

has the highest log-likelihood P(S|λ) of generating S. So when comparing the reinforced

classification models with the original models, we excluded the measures that have no

impact on the log-likelihood value, namely Sg, Sm, and the effectiveness measures. Results

of the measures are shown in Table 5.3, where the bolded entries are those with significant

change pre- and post-reinforcement learning (p-values < 0.05).

Table 5.3: Comparison of the three clusters for the reinforced classification models in the
Betty’s Brain study. Results for each measure is presented as mean (standard deviation).
The bolded entries are those with significant change pre- and post-reinforcement learning
(p-values < 0.05).

Cluster 1 Cluster 2 Cluster 3
IA effort % 43.1 (22.7) 23.6 (11.5) 24.9 (13.6)
Search rate % 8.9 (4.4) 0.5 (1.2) 4.9 (2.9)
IA→ SC transitions % 30.7 (19.8) 16.2 (7.2) 24.2 (11.9)
SA→ SC transitions % 16.8 (8.9) 8.9 (4.9) 14.1 (7.5)
SC→ IA transitions % 30.3 (13.6) 11.8 (6.6) 21.5 (10.8)
SC→ SA transitions % 12.6 (6.2) 22.1 (10.8) 18.4 (10.2)

As we can see from Table 5.3, the changes between pre- and post-reinforcement learn-

ing had slight differences (p > 0.05) for most measures, with only a few exceptions (i.e.,

Search rate in Cluster 1: 5.6→ 8.9, p = 0.007; Search rate in Cluster 3: 3.1→ 4.9, p =

0.032; and IA effort in Cluster 2: 23.6→ 20.8, p = 0.048). These significant changes were

made to reinforce the ground truth of some behavioral differences across the three clusters

(e.g., students in cluster 1 and 3 used more search actions, and students in cluster 2 made

the fewest IA actions), which on the other hand, increased the average between-cluster

variance. In order to verify the reinforced classification model, we ran the leave-one-out

cross validation (LOOCV) on the original data set, and the expanded data set used to learn

the updated HMMs. We then compare the results of LOOCVs performed on the two data

sets to show the improvements in classification accuracy.

In every iteration of the LOOCV, we take one action sequence sa from cluster Ci of the

73

original student data out and perform the reinforcement learning using the rest of the data

to generate three updated HMMs (i.e., HMMs for the three clusters discussed above). The

action sequence sa is assigned with classification label j if the reinforced HMM of cluster

C j has the highest log-likelihood value for sa. If j is the same as the original cluster label

(i.e., i) that sa belongs to, we say the classification is accurate. The average classification

accuracy of all students’ action sequences is computed for the LOOCVs.

Our experimental results showed that the average classification accuracy of LOOCV on

original data set is 0.68, and it was increased to 0.9 after using the reinforcement learning

which grew the data set to four times of its original size. This result showed significant

improvement in classifying students into the correct groups. More accurate classifications

can lead to better characterization of students’ behaviors, that can then provide the basis for

designing targeted scaffolds or feedback that will help this group of students. Scaffolds for

each group are then derived based on the reinforced scaffolding HMMs that are discussed

next.

5.1.3 Analysis of Reinforced Scaffolding Model

We learn the reinforced scaffolding HMMs by applying the reinforcement learning al-

gorithm to extend the existing action sequences according to the algorithm described in

Section 4.3.3. The extended action sequences are used to learn updated HMMs as the

reinforced scaffolding model. We show the generated HMMs in Figure 5.11 (cluster 1),

Figure 5.12 (cluster 2), and Figure 5.13 (cluster 3). We also show the state diagrams for the

three reinforced scaffolding HMMs in Figure 5.14 (a) (cluster 1), Figure 5.14 (b) (cluster

1), and Figure 5.14 (c) (cluster 3), respectively.

Compared to the original HMMs (Figures 5.3, 5.4, and 5.5), the HMMs for the three

clusters gradually converged to an isomorphic 3-state HMM structure. However, the evo-

lution of behavioral patterns for the three clusters was different. To show these evolving

behaviors, we presented the results of the measures that were used for analyses of the orig-

74

Figure 5.11: The reinforced scaffolding HMM of Cluster 1 derived for the Betty’s Brain
study

Figure 5.12: The reinforced scaffolding HMM of Cluster 2 derived for the Betty’s Brain
study

inal HMMs in Table 5.4. The learning performance measures (Sg and Sm) are excluded

here because there is no accurate way to compute the real learning performance using a

75

Figure 5.13: The reinforced scaffolding HMM of Cluster 3 derived for the Betty’s Brain
study

virtual agent that is informed by reinforcement learning. We also perform the pairwise

MannWhitney U-Test for each pair of samples from the three clusters and show the results

(p-values) in Table 5.5. The bolded p-values are less than 0.05, implying the correspond-

ing difference between the two clusters is significant. For example, the p-value of the IA

→ SC transitions measure between cluster 1 and 2 is 0.03, which indicates the difference

in the use of the IA→ SC transitions measure is significant between cluster 1 and 2.

Table 5.4: Comparison of the three clusters of the reinforced scaffolding models for Betty’s
Brain. Values in the parenthesis are the measures of the original model.

Cluster 1 Cluster 2 Cluster 3
IA effort % 38.3 (20.7) 35.8 (17.5) 37.7 (16.9)
Search rate % 10.7 (4.3) 9.3 (3.9) 9.5 (3.4)
IA→ SC transitions % 44.7 (19.5) 39.5 (16.7) 41.1 (18.3)
SA→ SC transitions % 36.9 (18.2) 27.5 (13.5) 26.7 (13.7)
SC→ IA transitions % 41.5 (19.6) 32.6 (15.1) 39.5 (16.4)
SC→ SA transitions % 17.3 (6.9) 20.3 (8.7) 22.4 (8.9)

As we can see from Tables 5.4 and 5.5, the differences between the three reinforced

76

Figure 5.14: Reinforced Scaffolding HMMs for the three clusters

77

Table 5.5: Pairwise MannWhitney U-Test result (p-value) for each pair of the samples from
the three clusters. The bolded p-values are those less than 0.05, showing the corresponding
difference between the two clusters is significant.

p-value
Cluster
1 and 2

p-value
Cluster
1 and 3

p-value
Cluster
2 and 3

IA effort 0.091 0.695 0.216
Search rate 0.069 0.164 0.739
IA→ SC transitions 0.03 0.11 0.338
SA→ SC transitions 0.053 0.117 0.272
SC→ IA transitions 0.109 0.704 0.048
SC→ SA transitions 0.072 0.004 0.095

scaffolding models for most measures were not significant (p-values > 0.05) compared to

the original models, which showed that the reinforced scaffolding models remain similar in

some measures (e.g., IA effort, Search rate). However, other measures showed significant

differences between the clusters (i.e., the IA → SC transitions measure between cluster

1 and 2, the SC → IA transitions measure between cluster 2 and 3, and the SC → SA

transitions measure between cluster 1 and 3). These differences can inform the design

of adaptive scaffolds that would most benefit each group, and help them become better

learners.

In addition, we can also study the differences that between the reinforced scaffolding

derived models as compared to the original models (Table 5.1). We summarize and interpret

the differences as follows:

• IA effort.The average percentage of effort spent in information acquisition for ac-

tion sequences in cluster 2 (20.8% → 35.8%, p = 0.0017) and cluster 3 (24.4%

→ 37.7%, p = 0.019) increased significantly so that sufficient information can be

gained to support their solution construction actions. On the other hand, the value

was slightly decreased for action sequences in cluster 1 (42.5%→ 38.5%, p= 0.091),

implying the students should redistribute their efforts to become better learners. Ba-

sically, students in cluster 1 were encouraged to translate the acquired information

78

into knowledge understanding by building the correct causal model.

• Search Rate. The average percentage of taking search actions for action sequences

in cluster 1 (5.6%→ 10.7%, p = 0.002), cluster 2 (0.3%→ 9.3%, p<0.00001), and

cluster 3 (3.1%→ 9.5%, p<0.00001) also increased. In other words, all three groups

may be guided to become more targeted information seekers.

• IA→ SC transition. This measure for cluster 1 (31.5%→ 44.7%, p = 0.032), clus-

ter 2 (15.9% → 39.5% p = 0.0002), and cluster 3 (22.0% → 41.1%, p = 0.0003)

increased significantly, which implied that students should be guided to use more of

the information acquired by reading for solution construction activities. This change

indicated more use of information acquired by reading science resources (IA) to sup-

port subsequent solution construction (SC) actions. The information is the content

that can relate to the part of the causal map (e.g., concept entities or causal links).

• SA→ SC transition. The average percentage measure of the SA→ SC transitions

for cluster 1 (15.3%→ 36.9%, p= 0.0006), cluster 2 (9.4%→ 27.5%, p= 0.00008),

and cluster 3 (13.5%→ 26.7%, p = 0.0007) also increased. This change indicated

more information acquired by taking quiz-related actions (SA) should be used to sup-

port subsequent subsequent solution construction actions. The information is usually

the feedback about their existing causal maps, which helps students to determine

whether existing causal links are correct.

• SC → IA transition. This measure for cluster 1 (28.1% → 41.5%, p = 0.033),

cluster 2 (12.1%→ 32.6%, p = 0.014), and cluster 3 (19.0%→ 39.5%, p = 0.002)

was increased to encourage going back to reading after building parts the of model.

• SC→ SA transition. The average percentage measure of the SA→ SC transitions

for cluster 1 (13.3% → 17.3%, p = 0.082), and cluster 3 (18.7% → 22.4%, p =

0.064) changed but with minor differences. Given these results and the change of

79

percentage measure of the SC→ IA transitions, the reinforcement learning slightly

favored using coherent transitions between IA and SC over the coherent transitions

between SA and SC. The primary reason was to prevent the frequent use of trial-and-

error approaches in building the causal model.

As we can see from the results, the data for training reinforced HMMs showed a sig-

nificantly higher use of coherently supported actions compared to the original dataset, es-

pecially for cluster 2 and 3. The students in cluster 1 were doing better in making sure

their strategies were coherent in the original model, which also showed why their learning

performance is better than the other two clusters (Table5.1).

We can explain these changes according to the reinforced scaffolding HMMs (Fig-

ure 5.11, 5.12, and 5.13) and the original HMMs (Figure 5.3, 5.4, and 5.5), that the ef-

forts spent in information acquisition, solution construction, and solution assessment were

redistributed so that more coherently supported actions can be taken. This redistribution

can lead to strategies that are similar to divide-and-conquer where IA, SC, and SA actions

are used coherently to build different parts of the causal map.

This strategy and the use of more coherently supported actions would increase the

chance of making correct SC actions (i.e., constructing more accurate causal maps in

Betty’s Brain), which can eventually lead to better performance. It is what we expected to

achieve for the purpose of extending existing action sequences to optimize specific learning

performance (i.e., the causal map score).

5.1.4 Example scaffolds

Based on these comparative and interpretive analyses, we can derive some example

scaffolds that we can experiment with in the future to improve students’ learning perfor-

mance in the Betty’s Brain system. An example for providing scaffolds to a student can be

done by the following process:

80

1. Use the student’s current action sequence sc to classify him/her into a group based

on the reinforced classification HMMs that are derived from earlier Betty’s Brain

studies. The student is classified into cluster i if the action sequence sc has the highest

log-likelihood to be generated by the reinforced classification HMM for cluster i.

For example, we may classify a student into cluster 2, whose action sequence A

has the highest log-likelihood to be generated by the HMM for cluster 2 shown in

Figure 5.8.

2. Monitor the student’s model building performance (i.e., the causal map score) when

he/she is working with the Betty’s Brain system. And for a period of time (e.g., 10

minutes), if the student’s causal map score keeps decreasing or oscillating without

improvements, we mark him/her as under-performing and in need for scaffolding.

3. Compare the behavior-related measures of the under-performing students to the mea-

sures derived from the corresponding reinforced scaffolding model and provide the

scaffolding that will help the students improve these behaviors. Use the reinforced

classification and scaffolding model we presented in previous sections as an exam-

ple, if the student is classified into cluster 2 and his/her IA→ SC transition measure

is 10% while the same measure for the reinforced scaffolding model is 39.5% (10%

<< 39.5%), we can provide scaffolds to encourage him/her to go back and forth

more between information acquisition and solution construction. On the other hand,

if the student’s IA→ SC transition measure is 80% (80% > > 39.5%), we can pro-

vide scaffolds to let him/her gain sufficient information by read more pages before

switching to do the solution constructions.

The scaffolds provided to the same students depends on which clusters they are classi-

fied into. For example, a student whose SA→ SC transition measure is 30% is encouraged

to take more of this transition if he/she has been classified into cluster 1, where the sug-

gested SA→ SC transition measure from the reinforced scaffolding model is 36.9% (30%

81

< 36.9%); but the student is encouraged to take less of the transition if he/she has been clas-

sified into cluster 2, where the suggested SA→ SC transition measure from the reinforced

scaffolding model is 27.5% (30% > 27.5%).

In fact, a lot more measures can be used as the basis for providing scaffolds besides

those we used for this experiment, such as the measure of average percentage for taking IA

→ SC→ SA or SC→ SA→ IA transitions. The reinforced classification and scaffolding

models should keep evolving by combining with newer collected data or by performing the

reinforcement learning again using original data combined with newer data.

5.2 Experiments with the CTSiM study

The CTSiM learning environment is an OELE developed by our research group, which

promotes synergistic learning of science and computational thinking (CT) concepts using

a “learning by modeling” approach [1]. In CTSiM, students use an agent-based, block-

structured visual language to build simulation models on different science topics, such as

kinematics, mechanics, diffusion, and ecological systems [1]. In addition to the model

building, the learning environment provides resources and tools to help students acquire

information and assess their evolving models.

Students’ primary learning activities in CTSiM can be categorized into the three broad

classes as [1, 54]:

• Information acquisition (IA): This relates to actions for viewing and acquiring in-

formation about domain content and CT-related concepts from hypertext resource

libraries (read). The search action is also categorized as an IA action. Figure 5.15

shows the interface for reading the science resources in CTSiM.

• Solution construction (SC). In CTSiM, there are two types of SC actions: (1) SC conc.

This refers to SC actions for constructing an abstract conceptual model of the sci-

ence scenario using an agent-based framework, which includes defining the relevant

82

Figure 5.15: Interface for Reading Science Resource in CTSiM

properties and behaviors associated with the agents (AgentEdit) and the environ-

ment element (EnvEdit) where the agents operate in. Figure 5.16 shows the interface

for taking SC conc actions in CTSiM; (2) SC comp. This refers to SC actions for

building computational models of agent behaviors using a block-structured visual

language (BlockEdit). Figure 5.17 shows the interface for taking SC comp actions

in CTSiM.

Figure 5.16: Interface for taking conceptual editing SC conc actions in CTSiM

• Solution assessment (SA): This consists of actions for executing their models to an-

alyze the behaviors generated as NetLogo simulations [69], and verifying the cor-

83

Figure 5.17: Interface for taking computational editing SC comp actions in CTSiM

rectness of their models by comparing them to the behaviors generated by an expert

model that runs synchronously with theirs. Students have choices to run the simula-

tion with (SA compare or Enactment Simulation Actions) or without (SA run or

Envisionment Simulation Actions) comparison with the expert model. Figure 5.18

and 5.19 show the interfaces for taking SA run and SA compare actions, respec-

tively.

Figure 5.18: Interface for taking SA run actions in CTSiM

Overall, we include 32 different actions that students can perform in the CTSiM OELE.

Table 5.6 shows the list of these actions in CTSiM.

84

Table 5.6: The list of all meaningful actions students can perform in CTSiM

Action category Action type Action name/description

IA
search

SearchLibraryAction
ClearLibrarySearchResultsAction
NavigateToSearchHitAction
FollowHyperlinkAction

read ReadResourceLibraryAction

SC conc

AgentEdit

AddAgentAction
RemoveAgentAction
AddAgentPropertyAction
RemoveAgentPropertyAction
AddAgentBehaviorAction
RemoveAgentBehaviorAction

EnvEdit

AddEnvironmentElementAction
RemoveEnvironmentElementAction
AddEnvironmentPropertyAction
RemoveEnvironmentPropertyAction

SC comp BlockEdit

InsertBlockAction
RemoveBlockAction
MoveBlockAction
MoveBlockParameterAction
RemoveBlockArgumentAction
InsertBlockParameterAction

SA run RunSim

ChangeTraceModeAction
SetupEnactmentSimulationAction
StartEnactmentSimulationAction
StopEnactmentSimulationAction
StartOverEnactmentSimulationAction

SA compare CompSim

SetupEnvisionmentSimulationAction
StartEnvisionmentSimulationAction
StopEnvisionmentSimulationAction
StartOverEnvisionmentSimulationAction
ChangeModelComparisonModeAction
SelectSimulationBehaviorAction

85

Figure 5.19: Interface for taking SA compare actions in CTSiM

The CTSiM OELE can (1) leverage the use of multiple linked representations to help

students become better learners [55], (2) measure effectiveness of adaptive scaffolds pro-

vided to students who worked in CTSiM [70], and (3) categorize students’ learning behav-

iors using data collected from CTSiM [54].

During the learning process in CTSiM, all students’ actions, as well as their model

revision history are logged in a raw data format. We applied the methods as discussed in

Section 4.1.1 using the raw data to generate the Action-View representations, which was

then used as the data set to support our learner modeling approach.

Specifically, we perform the learner modeling algorithm illustrated in Chapter 4 using

data collected from the CTSiM study conducted in a 6th grade classroom where students

worked on three units. For the first unit, students worked individually to build a roller-

coaster model in CTSiM. They then worked on building a macroscopic model of a fish

tank ecosystem (the second unit), which was followed by a microscopic model (the third

unit) for the fish tank ecosystem. We have used two types of measures to compute students’

learning performances:

1. The model distance from the student-built models to the canonical expert model in-

cluding the conceptual and the computational parts (Sm). This measure shows how

86

good the students perform in their model building tasks (the lower, the better).

2. The pre- and post-test learning gains in the corresponding domains (i.e., kinematics

for the rollercoaster unit and ecology for the macroscopic and the microscopic

units), as well as in computational thinking (CT) skills (Sg). These measures show

how much they learned as a result of the model building intervention (the higher, the

better).

We first derive and discuss the learner models (i.e., the HMMs) for the original data

set (Section 5.2.1) and then analyze the results derived by applying reinforcement learning

(Section 5.2.2 and Section 5.2.3) as we did for the Betty’s Brain data (Section 5.1).

5.2.1 Analysis of HMMs for the Original Data

Since the dataset collected from the CTSiM study consists of students’ activities on

different units, it is possible to observe their behavior evolution as they progress through

these units. So we first run the HMM clustering algorithm to discover groups of action

sequences for the first unit (i.e., rollercoaster). We compare these results with a later unit

(i.e., macroscopic) and discuss how students’ behaviors evolve over time. Description of

possible actions that can be taken in CTSiM can be found in Table 5.6.

5.2.1.1 HMM Clustering Results for the “Rollercoaster” Unit

Similar to the experiments with the Betty’s Brain data, we derive the optimum number

of clusters by computing the partition mutual information (PMI) for different numbers of

clusters as illustrated in Section 4.2.3. Figure 5.20 shows the plot of the PMI values for

different numbers of clusters. As we can see, the PMI value started to level off when the

number of clusters reached 4. To prevent the HMMs to be over-complex, we chose 4 as the

number of clusters for this experiment.

The students can be characterized into four different groups using the method described

87

Figure 5.20: Partition Mutual Information values calculated for Data from the Roller-
coaster Unit in CTSiM

Figure 5.21: Bayesian Information Criterion (BIC) values calculated for the four clusters
derived from HMM clustering on data collected from the rollercoaster unit in CTSiM. The
BIC values were re-scaled to fit the window.

88

in Section 4.2.3. And for each cluster, we learn an HMM that is representative of the

students’ behaviors for that group. As discussed in Section 4.2.2, we also compute the

Bayesian Information Criterion (BIC) to determine the best number of hidden states when

learning the HMMs. Figures 5.21 shows the plots of the BIC values computed for the four

derived clusters. As we can see from the figure, the BIC values for all four clusters started

to level off at around 5 hidden states. Therefore, we chose 5 as the number of hidden

states to generate HMMs for all four groups of students. The generated HMMs for the four

clusters are shown in Figure 5.22 (cluster 0), Figure 5.23 (cluster 1), Figure 5.24 (cluster

2), and Figure 5.25 (cluster 3), respectively.

In order to better understand the four HMMs, we use some measures to compare the

clustering results as we did for the Betty’s Brain experiment (Section 5.1.1). Since the

SC and SA actions in CTSiM are divided into further categories (i.e., SC to SC Conc and

SC Comp, SA to SA compare and SA run), we extend the measures used in our Betty’s

Brain study with additional behavioral measures derived from our previous work [54, 68].

The measures are listed as following (description of the actions can be found in Sec-

tion 5.2):

• IA effort, which is the average percentage of taking IA actions among all the actions

performed by a student.

• Search Rate, which is the average percentage of taking search actions among all the

IA actions.

• IA → SC transitions, which is the average percentage of IA actions that support

later SC actions among all the IA actions performed by a student. This transition

refers to a strategy that is described in the context of CTSiM system as “ the strat-

egy that involves acquiring information about an agent/environment behavior before

modeling it” [68].

• IA→ SC effectiveness, which is the average percentage of effective SC actions that

89

Figure 5.22: The HMM of Cluster 0 (33 students) derived for the rollercoaster unit

90

Figure 5.23: The HMM of Cluster 1 (23 students) derived for the rollercoaster unit

91

Figure 5.24: The HMM of Cluster 2 (4 students) derived for the rollercoaster unit

92

Figure 5.25: The HMM of Cluster 3 (38 students) derived for the rollercoaster unit

93

are supported by IA actions. We use this to measure how effective the IA → SC

transitions are in help building the model correctly.

• SA → SC transitions, which is the average percentage of SA actions that support

later SC actions among all the SA actions performed by a student. This is the strat-

egy discussed in [68], that uses information from the simulation results of solution

assessment actions to support model building actions.

• SA→ SC effectiveness, which is the average percentage of effective SC actions that

are supported by SA actions. We use this to measure how effective the SA → SC

transitions are in help building the model correctly.

• SC → IA transitions, which is the average percentage of SC actions that support

later IA actions among all the SC actions performed by a student. This relates the

strategy of seeking information relevant to the part of the model currently being con-

structed by the student, which can be specified as an SC action (e.g., conceptual edits

or computational model edits) temporally followed by a coherent IA action (e.g., read

science resource) [68].

• SC → SA transitions, which is the average percentage of SC actions that support

later SA actions among all the SC actions performed by a student. This relates to a

strategy of seeking information relevant to the current model built by a student by

taking solution assessment actions.

• Conceptual Model Edit effort, which is the average percentage of conceptual model

edits (SC conc) among all the actions performed by a student. In CTSiM, the con-

ceptual model edit actions are the SC actions for constructing an abstract conceptual

model of the science topic using an agent-based framework [1].

• Computational Model Edit effort, which is the average percentage of computa-

tional model edits (SC comp) among all the actions performed by a student. In

94

CTSiM, the computational model edit actions refer to SC actions for building com-

putational models of agent behaviors using a block-structured visual language [1].

• Model Testing effort, which is the average percentage of model test actions (SA run)

among all the actions performed by a student. In CTSiM, the model test actions are

the SA actions for verifying the correctness of students’ domain model by running

simulations [1].

• Model Comparison effort, which is the average percentage of model comparison

actions (SA compare) among all the actions performed by a student. In CTSiM,

the model test actions are the SA actions for verifying the correctness of students’

domain model by comparing them with an expert model that run synchronously with

theirs [1].

• Compare Model in Parts, which is the average percentage of model comparison

actions (SA compare) that explicitly choose a subset of the agents behavior(s) to all

the SA compare actions performed by a student. It has been shown that this Com-

pare Model in Parts action is a useful model verification and debugging strategy,

especially in complex units with multiple agents and multiple agent behaviors [68].

• Coherence of Model edits, which is the average number of transitions described by a

conceptual model edit action (SC conc) followed by a coherent computational model

edit action (SC comp). This is also a specific strategy measure for CTSiM, that

“involves maintaining the correspondence between the conceptual and computational

models for each agent/environment behavior” [68].

• Number of ModelEdit chunks, which is the average number of model-build chunks

that are described as consecutive conceptual model edit actions (SC conc) or coher-

ent computational model edit actions (SC comp).

• Size of ModelEdit chunks, which is the average size of model-build chunks that

95

are described as consecutive conceptual model edit actions (SC conc) or coherent

computational model edit actions (SC comp). The measures of Number of Model-

Edit chunks and Size of Model-Edit chunks are useful for comparing and analyzing

students’ behavior in different groups [68]. Generally speaking, a student who has

more but smaller model-build chunks, has applied more frequently the strategy to

divide the model building task into smaller sub-tasks, and worked on different parts

of the model separately.

• Number of Actions, which is the average number of actions taken by the students

within a cluster.

• Sg, which is average pre- and post-test score gain. It measures on average, how much

students learned as a result of the model building intervention, which is the sum of

domain gain and CT gain (the higher, the better).

• Sm, which is the average model distance from the student-built models to the canoni-

cal expert model including conceptual and computational parts. This measure shows

how good the students perform in their model building tasks (the lower, the better).

Table 5.7 shows the results of the measures defined above. We also perform the pairwise

MannWhitney U-Test for each pair of the samples from the three clusters and show the

results (p-values) in Table 5.8.

As we can see from Tables 5.7 and 5.8:

• Students in cluster 2 had the best learning gain (Sg = 9.5) as well as the model build-

ing performance (Sm = 22.5). According to the Sg row in Table 5.8, their learning gain

measure (Sg = 9.5) was significantly better than students in the other three clusters

(p-value < 0.05), while their model building performance (Sm = 22.5) was slightly

better than the other three clusters.

96

Table 5.7: Comparison of the four Clusters for the rollercoaster unit in CTSiM

Cluster 0
(n = 33)

Cluster 1
(n = 23)

Cluster 2
(n = 4)

Cluster 3
(n = 38)

IA effort % 1.4 (2.6) 1.7 (1.6) 7.6 (1.7) 3.7 (2.8)
Search Rate % 2.3 (2.9) 1.9 (1.6) 8.2 (2.3) 1.4 (0.7)
IA→SC transitions% 14.4 (12.2) 12.7 (9.6) 14.5 (4.3) 15.3 (11.6)
IA→ SC effectiveness % 61.7 (23.4) 59.6 (22.0) 64.5 (13.1) 65.6 (20.9)
SA→SC transitions% 7.6 (4.6) 10.0 (8.9) 11.0 (2.6) 12.9 (7.7)
SA→ SC effectiveness % 63.2 (23.5) 66.9 (21.6) 65.9 (15.3) 69.7 (21.2)
SC→IA transitions% 0.6 (0.5) 0.5 (0.4) 2.5 (1.1) 0.7 (0.2)
SC→SA transitions% 18.6 (8.6) 19.3 (13.5) 11.4 (7.2) 14.6 (12.8)
Conceptual Model Edit % 4.3 (3.7) 4.3 (3.2) 9.3 (2.6) 8.7 (3.8)
Computational Model Edit % 26.5 (21.0) 30.3 (15.6) 36.2 (16.2) 40.1 (25.6)
Model Testing effort % 34.1 (22.8) 42.5 (25.1) 27.6 (8.5) 34.4 (19.8)
Model Comparison effort % 33.4 (25.6) 20.9 (11.5) 12.7 (4.2) 13.2 (5.6)
Compare Model in Parts % 34.2 (18.6) 24.8 (16.3) 29.0 (11.0) 23.6 (17.2)
Coherence of Model Edits 1.1 (1.5) 1.3 (0.9) 4.2 (0.8) 2.9 (1.1)
Number of ModelEdit chunks 11.7 (4.8) 10.5 (5.1) 15.2 (3.1) 13.8 (5.3)
Size of ModelEdit chunks 15.2 (10.6) 16.5 (13.2) 5.6 (2.9) 10.9 (7.9)
Number of Actions 517 (176) 474 (144) 180 (63) 298 (119)
Sg 4.3 (5.1) 4.5 (4.8) 9.5 (5.1) 4.4 (5.2)
Sm 22.6 (11.6) 24.8 (14.7) 22.5 (10.6) 22.6 (11.3)

• Students in cluster 0 (Sg = 4.3), cluster 1 (Sg = 4.5), and cluster 3 (Sg = 4.4) had

similar learning gain measures, where differences were not significant (p-values >

0.5). But according to Tables 5.7 and 5.8, students in Cluster 1 performed worse in

building the domain model compared to students in Cluster 0 (Sm = 24.8 versus Sm =

22.6, p < 0.05) and cluster 3 (Sm = 24.8 versus Sm = 22.6, p < 0.05).

• Despite having similar learning gains and model building performance, students in

cluster 3 took less number of actions compared to students in cluster 0 (298 versus

517, p < 0.00001), showing that students in cluster 3 are more efficient.

Overall, we rank the students’ performance from different clusters in descending order

as cluster 2 > cluster 3 > cluster 0 > cluster 1. We analyze and summarize the differences

between the four clusters as following:

97

Table 5.8: Pairwise MannWhitney U-Test result (p-value) for each pair of the samples
from the three clusters. The bolded p-values are less than 0.05, showing the corresponding
differences between the two clusters are significant. For example, the p-value of the IA
effort measure between cluster 0 and 1 is 0.001, which indicates the difference of the IA
effort measure is significant between cluster 0 and 1

p-value
Cluster
0 and 1

p-value
Cluster
0 and 2

p-value
Cluster
0 and 3

p-value
Cluster
1 and 2

p-value
Cluster
1 and 3

p-value
Cluster
2 and 3

IA effort 0.136 0.001 0.009 0.003 0.008 0.029
Search Rate 0.094 0.002 0.001 0.002 0.09 0.001
IA→SC transitions 0.206 0.083 0.2 0.02 0.021 0.257
IA→SC effectiveness 0.548 0.351 0.58 0.525 0.315 0.494
SA→SC transitions 0.04 0.028 0.008 0.421 0.125 0.376
SA→SC effectiveness 0.489 0.446 0.512 0.628 0.359 0.525
SC→IA transitions 0.314 0.008 0.072 0.014 0.291 0.029
SC→SA transitions 0.5 0.039 0.106 0.02 0.012 0.04
Conceptual Model Edit 0.438 0.04 0.004 0.014 0.002 0.52
Computational Model Edit 0.115 0.014 0.001 0.006 0.009 0.168
Model Test Effort 0.043 0.011 0.256 0.008 0.031 0.009
Model Comparison Effort 0.001 0.005 <0.00001 0.006 0.002 0.599
Compare Model in Parts 0.0006 0.142 0.02 0.275 0.721 0.247
Coherence of Model Edits 0.358 0.002 0.004 0.0008 0.002 0.036
Number of ModelEdit chunks 0.439 0.002 0.211 0.002 0.041 0.01
Size of ModelEdit chunks 0.609 0.0003 0.016 0.00001 0.001 0.011
Number of Actions 0.29 0.0003 <0.00001 0.001 0.002 0.016
Sg 0.566 0.002 0.782 0.003 0.522 0.003
Sm 0.034 0.4 0.944 0.06 0.032 0.087

98

Measures of IA effort and Search rate. Students in cluster 2 had the highest IA effort

(7.6%) and search rate (8.2%) which were significantly higher than the other three clus-

ters (p > 0.05, as shown in row IA effort and Search rate in Table 5.8). IA and search

actions can help students acquire more information and be more adept in looking for tar-

geted information. On the other hand, students in cluster 0 and 1 had similar measures for

IA effort (1.4% versus 1.7%, p = 0.136) and search rate (2.3% versus 1.9%, p = 0.094),

while students in cluster 3 did better than cluster 0 (3.7 versus 1.4, p = 0.009) and cluster

1 (3.7 versus 1.7, p = 0.008) in the IA effort measure. These measures generated a good

match with the performance ranking of the four clusters (i.e., cluster 2 > cluster 3 > cluster

0 > cluster 1).

Measures of IA→SC and SA→SC effectiveness. For the IA→SC effectiveness and

SA→SC effectiveness in Tables 5.7 and 5.8, both of these two measures had close values

with differences that were not significant (all p-values > 0.05), which means that if taking

coherently supported SC actions, students from different groups would have similar per-

centage of building the model correctly. Therefore, it is more depending on applying better

strategy and taking coherently supported actions to make effective solution construction

actions, that result in the differences of learning performance across the four clusters.

Measures of IA→SC and SC→IA transitions. For the IA→SC transitions in Ta-

bles 5.7 and 5.8, students in cluster 0 (14.4%), 2 (14.5%), and 3 (15.3%) applied more

of the model building strategy (SC→IA transition) than students in cluster 1 (12.7%),

where they used the acquired information from the science resources to help building the

domain model. On the other hand, the SC→IA transitions, which implies the strategy of

seeking information relevant to the part of the model currently being constructed by the

student [68], was done significantly more by students in Cluster 2 (2.5%, p-values < 0.05).

These coherent transitions allow students to go back and forth between solution construc-

tion and information acquisition, and can help them understand the different parts to be

built in the domain model. In general, these results also matched the performance ranking

99

of the four clusters (i.e., cluster 2 > cluster 3 > cluster 0 > cluster 1).

Measures of SA→SC and SC→SA transitions. Compared to the coherent transitions

between IA and SC actions, these measures show how frequently students run simulations

to verify their models and use information gained from simulation results to edit the models.

However, taking this strategy too often implies the use of trial-and-error approaches. As

discussed in the experiment with Betty’s Brain in Section 5.1.4, the trial-and-error approach

can end up with bad model building performance if the modeling task is complex. In

CTSiM, the modeling tasks are also complex because they have to model behaviors of

individual agents and interactions between agents [68, 1]. According to Tables 5.7 and

5.8, students in cluster 0 and 1 took more SC→SA transitions (18.6% and 19.3%, p =

0.5) while the measure of their SC→IA transitions were extremely low (0.6% and 0.5%,

p = 0.314), which showed the higher use of trial-and-error approaches among students in

cluster 0 and 1. This also confirmed that the performance ranking of cluster 2 and 3 being

better than cluster 0 and 1.

Measures of solution construction and solution assessment efforts. Generally speak-

ing, these results show how much effort (measured by the percentage of the SC and SA

actions among all actions) the students have put in solution construction and solution as-

sessment. According to the results, we see that students in cluster 2 and 3 focused more on

solution construction (Conceptual and Computational Model Edits), while students in

cluster 0 and 1 took much more solution assessment actions to verify their models (Model

Test and Comparison). Overall, all students took too many SC and SA actions in compar-

ison to IA actions. However, students in cluster 2 and 3 did slightly better in reading their

science resources. So, these measures also matched the performance ranking of the four

clusters (i.e., cluster 2 > cluster 3 > cluster 0 > cluster 1).

The measure of Compare Model in Parts. The Compare Model in Parts strategy is

a very useful model verification and debugging strategy, especially in complex units with

multiple agents and multiple agent behaviors [68]. It allows students to verify smaller parts

100

of the model, so that they can get better understanding of what parts went wrong in their

models. Surprisingly, students in cluster 0 (34.2%) applied this strategy the most, followed

by clusters 2, 1, and 3. This was not a perfect match of the performance ranking (i.e.,

cluster 2 > cluster 3 > cluster 0 > cluster 1). However, given the fact that students in

cluster 0 took more Model Comparison actions (33.4%) than students in cluster 1 (20.9%,

p = 0.001), cluster 2 (12.7%, p = 0.005), and cluster 3 (13.2%, p < 0.00001), students in

cluster 1 got more chance to use and understand the usefulness of the Compare Model in

Parts strategy.

The measure of Coherence of Model Edits. This measure shows how good the stu-

dents maintain the correspondence between the conceptual and computational models for

each agent/environment behavior. According to the results of Coherence of Model Edits

measure shown in Tables 5.7 and 5.8, we can rank this measure for the four clusters as:

cluster 2 (4.2) > cluster 3 (2.9) > cluster 0 (1.1) ≈ cluster 1 (1.3). The p-values between

each pair of clusters were significant except between cluster 0 and 1 (p = 0.358). So, the re-

sults of this measure was a good match of the performance ranking (i.e., cluster 2 > cluster

3 > cluster 0 > cluster 1).

Measures of Number of ModelEdit chunks and Size of ModelEdit chunks. As dis-

cussed earlier, the use of more and smaller ModelEdit chunks indicate a better application

of divide-and-conquer strategy, where students apply the strategy to divide the model build-

ing task into smaller sub-tasks, and worked on different parts of the model separately. So

according the corresponding rows in Tables 5.7 and 5.8, we rank this measure for the four

clusters as: cluster 2 (number = 15.2, size = 5.6) > cluster 3 (number = 13.8, size = 10.9) >

cluster 0 (number = 11.7, size = 15.2) ≈ cluster 1 (number = 10.6, size = 16.5), where the

differences were not significant between cluster 0 and 1 for both Number of ModelEdit

chunks measure (p = 0.439) and Size of ModelEdit chunks measure (p = 0.609). This is

also a good match with the performance ranking (i.e., cluster 2 > cluster 3 > cluster 0 >

cluster 1).

101

Overall, the measures in Table 5.7 are good matches of the performance ranking for the

four clusters (i.e., cluster 2 > cluster 3 > cluster 0 > cluster 1). Among all the measure

differences, most of them are significant between pairs of clusters except for cluster 0 and

1. However, there are some measures with significant differences between cluster 0 and 1

such as measures of SA→SC transition (p = 0.04), Model Test Effort (p = 0.043) , Model

Comparison Effort (p = 0.001), and Compare Model in Parts (p = 0.0006). These differ-

ences indicate that students in clusters 0 and 1 had different behaviors but similar learning

gains Sg (4.3 versus 4.5, p = 0.566), and significant different model building performance

Sm (22.6 versus 24.8, p = 0.034).

Despite having the best learning gains and model building performance, students in

cluster 2 still showed deficiencies in learning with CTSiM. For example, their effort in in-

formation acquisition (7.6%) and the percentages of IA→SC (14.5%) and SC→IA (2.5%)

transitions were low; their “Compare Model in Part” percentage (29.0%) was not the best.

These results showed that the students in cluster 2 still had a lot of room to improve, not

to mention students from other groups. These improvements can be achieved either (1) by

going through more studies in CTSiM and (2) by getting help from appropriate scaffolding.

In the next section, we first take a look at how students’ behaviors evolve over time from

their work on a later unit (i.e., the macroscopic fish tank unit) in CTSiM.

5.2.1.2 HMM Clustering Results for the “Macroscopic” Unit

Similar to what we did for previous experiments, we derive the plot of Partition Mutual

Information (PMI, illustrated in Section 4.2.3) values with respect to different numbers

clusters, which is shown in Figure 5.26. The PMI value started to level off when it had 4

clusters. So we chose 4 as the number of clusters to prevent from getting over-complex

HMMs.

Next, we run the HMM clustering algorithm to generate four clusters of action se-

quences that maximizes the PMI value as described in Section 4.2.3. And for each cluster,

102

Figure 5.26: Partition Mutual Information values calculated for Data from the macroscopic
fish tank unit in CTSiM

Figure 5.27: Bayesian Information Criterion (BIC) values calculated for the four clusters
derived from HMM clustering on data collected from the macroscopic fish tank unit in
CTSiM. The BIC values were re-scaled to fit the window.

we compute the Bayesian Information Criterion (BIC) to determine the best number of

hidden states when learning the HMMs. Figures 5.27 shows the plots of the BIC values

103

computed for the four derived clusters. As we can see from the figure, the BIC values for

all four clusters started to level off with 5 hidden states. Therefore, we chose 5 as the num-

ber of hidden states to generate HMMs for the four clusters. Using the determined number

of hidden states, we generate the HMMs and present them in in Figure 5.28 (cluster 0),

Figure 5.29 (cluster 1), Figure 5.30 (cluster 2), and Figure 5.31 (cluster 3), respectively.

In order to compare HMMs between the macroscopic fish tank unit and the roller-

coaster unit, we use the measures presented in Section 5.2.1.1. The results are shown in

Table 5.9. We also perform the pairwise MannWhitney U-Test for each pair of the samples

from the four clusters and show the results (p-values) in Table 5.10. The bolded p-values

are less than 0.05, showing the corresponding differences between the two clusters are

significant. For example, the p-value of the IA effort measure between cluster 0 and 1 is

0.026, which indicates the difference of the IA effort measure is significant between cluster

0 and 1.

As we can see from the results in Tables 5.9 and 5.10:

• The performance measures for the four clusters were: cluster 0 (Sg = 13.4, Sm =

103.3), cluster 1 (Sg = 12.7, Sm = 106.9), Cluster 2 (Sg = 15.2, Sm = 87.0), cluster 3

(Sg = 13.5, Sm = 98.0).

• By comparing the differences of learning gains between clusters, we can see that

students of cluster 0, 1, and 3 improved significantly compared to the rollercoaster

unit (p-values < 0.05). Students in cluster 2 had the best learning gain (Sg = 15.2)

followed by cluster 3 (Sg = 13.5), cluster 1 (Sg = 13.4), and cluster 0 (Sg = 12.7). The

differences were not significant (p-values > 0.05) except between clusters 0 and 2

(13.4 versus 15.2, p = 0.031), as well as between clusters 1 and 2 (12.7 versus 15.2,

p = 0.011).

• On the other hand, students of cluster 2 who had the highest learning gain, also

improved their domain models and achieved the best average model score (Sm =

104

Figure 5.28: The HMM of Cluster 0 (19 students) derived for the macroscopic unit

105

Figure 5.29: The HMM of Cluster 1 (19 students) derived for the macroscopic unit

106

Figure 5.30: The HMM of Cluster 2 (20 students) derived for the macroscopic unit

107

Figure 5.31: The HMM of Cluster 3 (40 students) derived for the macroscopic unit

108

Table 5.9: Comparison of the four Clusters for the macroscopic fish tank unit in CTSiM.
Results are presented as mean (standard deviation).

Cluster 0
(n = 19)

Cluster 1
(n = 19)

Cluster 2
(n = 20)

Cluster 3
(n = 40)

Overall IA effort % 1.6 (0.7) 2.3 (1.6) 6.7 (2.1) 4.8 (1.8)
Search Rate % 5.3 (3.6) 10.6 (4.1) 13.2 (4.5) 5.2 (2.9)
IA→SC transitions% 15.7 (11.3) 14.8 (9.9) 30.1 (15.4) 25.1 (13.6)
IA→ SC effectiveness % 64.2 (19.8) 62.9 (21.3) 68.7 (24.3) 67.9 (23.6)
SA→SC transitions% 4.4 (2.8) 6.1 (3.6) 5.6 (3.2) 9.0 (4.7)
SA→ SC effectiveness % 71.5 (15.6) 70.6 (16.3) 73.2 (16.8) 74.8 (18.2)
SC→IA transitions% 0.8 (1.3) 1.1 (1.1) 1.9 (1.5) 0.7 (1.6)
SC→SA transitions% 11.7 (6.6) 12.6 (7.2) 9.3 (5.8) 9.8 (5.5)
Conceptual Model Edit % 5.8 (1.4) 6.5 (2.1) 9.3 (2.8) 11.7 (2.9)
Computational Model Edit % 23.0 (12.5) 25.2 (13.6) 30.2 (17.2) 36.8 (21.5)
Model Testing effort % 21.7 (19.5) 26.3 (21.0) 20.7 (20.6) 25.5 (22.6)
Model Compare effort % 47.9 (26.3) 37.2 (22.9) 33.1 (20.8) 23.6 (19.3)
Compare Model in Parts % 65.8 (13.6) 65.2 (10.9) 65.6 (12.9) 60.9 (10.4)
Coherence of Model Edits 3.6 (2.7) 3.1 (3.2) 6.6 (4.8) 4.8 (4.2)
Number of ModelEdit chunks 32.7 (6.9) 30.8 (6.1) 45.1 (10.3) 39.5 (8.8)
Size of ModelEdit chunks 9.6 (6.2) 13.1 (6.7) 7.6 (4.4) 7.3 (5.6)
Number of Actions 995 (233) 1128 (261) 795 (183) 600 (152)
Sg 13.4 (8.9) 12.7 (8.1) 15.2 (9.1) 13.5 (7.6)
Sm 103.3 (37.6) 106.9 (49.6) 87.0 (27.9) 98.0 (33.2)

87.0), which was significantly better than cluster 0 (Sm = 103.3, p = 0.003), cluster

1 (Sm = 106.9, p = 0.008), and cluster 3 (Sm = 98.0, p = 0.029).

• Students in clusters 2 and 3 were more effective than those in clusters 0 and 1 be-

cause they took less number of actions, but achieved better performance. Moreover,

students in cluster 0 were more efficient than students in cluster 1 in terms of overall

number of actions taken (995 versus 1128, p = 0.026).

Overall, based on the performance measures (Sg and Sm) as well as their total effort

(Number of Actions), we can rank the four clusters in descending order as Cluster 2 >

cluster 3 > cluster 0 > cluster 1, which corresponds to the ranking in the rollercoaster

unit. Next we analyze all the other measures that are used in the macroscopic fish tank

unit as following:

109

Table 5.10: Pairwise MannWhitney U-Test result (p-value) for each pair of the samples
from the three clusters. The bolded p-values are less than 0.05, showing the corresponding
differences between the two clusters is significant.

p-value
Cluster
0 and 1

p-value
Cluster
0 and 2

p-value
Cluster
0 and 3

p-value
Cluster
1 and 2

p-value
Cluster
1 and 3

p-value
Cluster
2 and 3

IA effort 0.026 0.00008 0.00001 0.002 0.002 0.058
Search Rate 0.0005 0.00007 0.355 0.082 0.00001 <0.00001
IA→SC transitions 0.736 0.0004 0.0008 0.0007 0.002 0.023
IA→SC effectiveness 0.53 0.536 0.603 0.555 0.33 0.246
SA→SC transitions 0.002 0.082 0.002 0.091 0.017 0.033
SA→SC effectiveness 0.357 0.6 0.364 0.465 0.027 0.259
SC→IA transitions 0.118 0.0003 0.635 0.0001 0.05 <0.00001
SC→SA transitions 0.349 0.177 0.163 0.049 0.022 0.751
Conceptual Model Edit 0.082 0.018 0.00001 0.025 0.0003 0.019
Computational Model Edit 0.14 0.005 0.00008 0.043 0.0004 0.24
Model Test Effort 0.022 0.122 0.127 0.039 0.277 0.021
Model Comparison Effort 0.034 0.025 0.00004 0.088 0.026 0.008
Compare Model in Parts 0.872 0.715 0.153 0.736 0.206 0.311
Coherence of Model Edits 0.311 0.0001 0.003 0.0002 0.006 0.016
Number of ModelEdit chunks 0.215 0.012 0.036 0.001 0.043 0.252
Size of ModelEdit chunks 0.009 0.031 0.034 0.001 0.0004 0.66
Number of Actions 0.026 0.129 0.003 0.008 0.00005 0.022
Sg 0.895 0.031 0.322 0.011 0.408 0.059
Sm 0.715 0.003 0.029 0.008 0.08 0.034

110

Measures of IA effort and Search rate. Students in cluster 2 had the highest IA effort

(6.7%) and search rate (13.2%), which were significantly higher than the other three clus-

ters (p-values < 0.05, as shown in row IA effort and Search rate in Table 5.8). The IA

effort, which measures the amount of time students spent on acquiring information from

science resource was ranked as: Cluster 2 (6.7%) > cluster 3 (4.8%) > cluster 1 (2.3%) >

cluster 0 (1.6%), where for each adjacently ranked clusters, the differences are significant

(p-values < 0.05) except between clusters 2 and 3 (p = 0.058). Generally speaking, this

was a good match with the performance measure, given that students in clusters 0 and 1

had similar performance measures on Sg (p = 0.895) and Sm (p = 0.715).

On the other hand, the search rate measure, which shows how frequently students

actively look for information from the science resource, was ranked as: Cluster 2 (13.2%)

> cluster 1 (10.6%) > cluster 0 (5.3%) > cluster 3 (5.2%). The differences were not

significant between clusters 2 and 1 (p = 0.082), and between clusters 0 and 3 (p = 0.355).

This did not match perfectly with the performance ranking. However, the search rate is the

percentage of taking “search” actions among all IA actions. So, with the higher IA effort

(4.8%), students in cluster 3 still took more numbers of “search” actions than students in

clusters 1 and 2, and therefore, still match the performance ranking.

Measures of IA→SC and SA→SC effectiveness. According to row IA→SC effective-

ness and SA→SC effectiveness in Tables 5.9 and 5.10, both of these measures had similar

values with differences that were not significant (p-values > 0.05) except the SA→SC ef-

fectiveness measure between clusters 1 and 3 (p = 0.027). This again means that when

taking coherently supported SC actions either by information acquisition or solution as-

sessment, students from different groups had similar percentage of correct model building

actions. Therefore, it depends more on applying better strategy and taking coherently sup-

ported actions, to achieve better learning performance.

Measures of IA→SC and SC→IA transitions. The measure of IA→SC transitions,

which relates the strategy of using information acquired from science resource to support

111

model building [68], can be ranked as: Cluster 2 (30.1%) > cluster 3 (25.1%) > cluster

0 (14.7%) ≈ cluster 1 (13.8%), where the differences between clusters 0 and 1 were not

significant (p = 0.736). This was a good match with the performance ranking. On the other

hand, the measure of SC→IA transitions, which implies the strategy of seeking information

relevant to the part of the model currently being constructed by the student [68], was ranked

as: Cluster 2 (1.9%) > cluster 1 (1.1%) > cluster 0 (0.8%) ≈ cluster 3 (0.7%), which was

not a good match with the performance ranking. On the other hand, because of the small

values (less than 2%), the weights for judging the performance ranking using this measure

is also low.

The measure of Compare Model in Parts. Surprisingly, the measure of Compare

Model in Parts, which is a very useful strategy for model verification and debugging,

especially in complex units with multiple agents and multiple agent behaviors [68], had

high values for all four clusters (65.8%, 65.2%, 65.6%, and 60.9%, respectively and p-

values > 0.05). This is a measure that students from all four clusters did well in applying

the strategy, and it did not violate the performance ranking. Higher use of this Compare

Model in Parts strategy helped students from all four clusters show proficiency in detecting

mistakes from their domain models.

The measure of Coherence of Model Edits. This measure shows the correspondence

between the students’ conceptual and computational models. According to the results in

Tables 5.7 and 5.8, we can rank this measure for the four clusters as: cluster 2 (4.2) >

cluster 3 (2.9) > cluster 0 (1.1) ≈ cluster 1 (1.3). The p-values between each pair of

clusters were significant except between clusters 0 and 1 (p = 0.358). So, the results of this

measure was a good match of the performance ranking (i.e., cluster 2 > cluster 3 > cluster

0 > cluster 1).

Measures of Number of ModelEdit chunks and Size of ModelEdit chunks. As dis-

cussed earlier, the use of more and smaller ModelEdit chunks indicate a better application

of divide-and-conquer strategy, where students apply the strategy to divide the model build-

112

ing task into smaller sub-tasks, and worked on different parts of the model separately. So

according the corresponding rows in Tables 5.9 and 5.10, we ranked this measure for the

four clusters as: cluster 2 (number = 45.1, size = 7.6) ≈ cluster 3 (number = 39.5, size

= 7.3) > cluster 0 (number = 32.7, size = 9.6) > cluster 1 (number = 30.8, size = 13.1),

where the differences were not significant between cluster 2 and 3, for both Number of

ModelEdit chunks measure (p = 0.252) and Size of ModelEdit chunks measure (p =

0.66). This was also a good match with the performance ranking (i.e., cluster 2 > cluster 3

> cluster 0 > cluster 1).

Overall, the measures for the macroscopic fish tank unit shown in Table 5.9, are good

matches of the performance ranking for the four clusters (i.e., cluster 2 > cluster 3 >

cluster 0 > cluster 1). Among all the measure differences, most of them were significantly

between each pair of clusters except for clusters 0 and 1. On the other hand, only some

measures had significant differences between cluster 0 and 1 such as measures of IA effort

(p = 0.026), Search Rate (p = 0.0005) , SA→SC transition (p = 0.002), Model test effort

(p = 0.022), Model comparison effort (p = 0.34), and Size of ModelEdit chunks (p =

0.009). As discussed earlier, these differences show the students in clusters 0 and 1 had

different behaviors, but similar learning gains Sg (13.4 versus 12.7, p = 0.895) and model

building performance Sm (103.3 versus 106.9, p = 0.715).

5.2.1.3 Comparison of the HMM Clustering results between the “Rollercoaster” and

“Macroscopic” units

Since the study for both rollercoaster and macroscopic fish tank units consists of the

same students and both data sets produced the same number of clusters, we checked if stu-

dents transitioned from lower ranking clusters (in the rollercoaster unit) to higher ranking

clusters (in the macroscopic fish tank unit), and vice versa.

Table 5.11 shows the number of students who transitioned across the four clusters. The

number in the entry (i, j) means the number of students transitioned from cluster i (in the

113

Table 5.11: Cluster transitions from rollercoaster unit to macroscopic fish tank unit

rollercoaster
macroscopic Cluster 0

(n = 19)
Cluster 1
(n = 19)

Cluster 2
(n = 20)

Cluster 0
(n = 40)

Cluster 0 (n = 33) 14 - 6 ↓ 9 ↑ 4 ↑
Cluster 1 (n = 23) 3 ↑ 7 - 2 ↑ 11 ↑
Cluster 2 (n = 4) 0 0 3 - 1 ↓
Cluster 3 (n = 38) 2 ↓ 6 ↓ 6 ↑ 24 -

rollercoaster unit) to cluster j (in the macroscopic fish tank unit). For example, 9 students

transitioned from cluster 0 (in the rollercoaster unit) to cluster 2 (in the macroscopic fish

tank unit). For both units, the performance ranking of the students is the same (i.e., cluster

2 > cluster 3 > cluster 0 > cluster 1). We use the “↑” / “↓” arrows to indicate the transitions

to higher / lower ranking clusters, while “-” means no transitions were made. Overall, 35

(35.7%) students transitioned to better clusters, 48 (50.0%) students stayed in the same

cluster, and 15 (15.3%) of them went into lower-ranking clusters. However, this doesn’t

necessarily mean that the 15 students showed worse behaviors in the macroscopic fish tank

unit, but they did not improve as much as other students.

We have compared the measures horizontally between clusters for both the roller-

coaster and the macroscopic fish tank units. We are also interested to see how students’

learning behaviors evolved over time. So we compared the measures vertically between

the “Rollercoaster” unit (Table 5.7) and the “Macroscopic” unit(Table 5.9). As we can see

from the tables:

• Although no significant improvements for the IA effort can be observed, students of

all clusters took a lot more search actions (cluster 0: 2.3%→ 5.3%, p = 0.001; cluster

1: 1.9%→ 10.6%, p < 0.00001; cluster 2: 8.2%→ 13.2% p = 0.013; cluster 3: 1.4%

→ 5.2%, p = 0.0008). This indicates that the students in the later unit, became more

active in looking for the information about the specific knowledge they were unsure

about or information that were needed for building the domain model.

• Students in all the clusters, especially for cluster 2 and 3, made more IA→SC transi-

114

tions (cluster 0: 14.4%→ 15.7%, p = 0.123; cluster 1: 12.7%→ 14.8% p = 0.044;

cluster 2: 14.5%→ 30.1%, p < 0.00001; cluster 3: 15.3%→ 25.1%, p < 0.00001).

This indicates that students in the later unit (macroscopic) applied more of the strat-

egy that uses the acquired information from science resources to support their model

building actions [68].

• The percentage of SA→SC transitions of all the clusters decreased significantly

(cluster 0: 7.6% → 4.4%, p = 0.004; cluster 1: 10.0% → 6.1%, p = 0.005; clus-

ter 2: 11.0% → 5.6% p = 0.001; cluster 3: 12.9% → 9.0%, p = 0.015). There are

two potential reasons: (1) the students applied less trial-and-error in building the do-

main models; and (2) the chunk size of SA actions increased due to the increment of

model complexity in macroscopic fish tank unit (there are more agents than in the

rollercoaster unit). Whenever a student want to verify their model, he/she need to

repeatedly run the simulation to compare different parts of the model with the expert

model, so as to know what part(s) went wrong.

• Another important improvement for all the students was that they performed signif-

icantly more Compare Model in Parts strategy when doing SA compare actions

(cluster 0: 34.2%→ 65.8%, p < 0.00001; cluster 1: 24.8%→ 65.2%, p < 0.00001;

cluster 2: 29.0%→ 65.6%, p < 0.00001; cluster 3: 23.6%→ 60.9%, p < 0.00001).

This divide-and-conquer strategy applied to solution assessment effectively helped

them detect the incorrect parts in their domain models. Some of the previous work

in our group have shown that using more of the “Compare Model in Parts” action can

help students perform better in building the domain model [70, 68, 54].

These improvements showed the actual learning progress that students achieved on dif-

ferent units over time. Despite having these improvements in the performance and the

coherent measures, however, certain deficiencies still existed for students from all the clus-

ters:

115

• Students in the later unit still performed very few IA actions (cluster 0: 1.4%→

1.6%, p = 0.245; cluster 1: 1.7% → 2.3% p = 0.038; cluster 2: 7.6% → 6.7%, p

= 0.125; cluster 3: 3.7% → 4.8%, p = 0.04). The information acquisition actions

helped them not only learn, but also build better domain models. This can be seen

by the performance outcome of the students in cluster 2, who took the most IA ac-

tions and achieved better learning gain and model building performance. Figure 5.32

illustrates the effectiveness percentage of SC actions with respect to the percentage

of taking IA actions in different learning stages (estimated by a scale of every 200

actions) for all the students. As we can see, there were improvements from the roller-

coaster unit to the macroscopic fish tank unit. However, these improvements were

insufficient to help them build completely correct domain models. Specifically, for

the SC effectiveness percentage of under 0.5, it is possible that some of the students’

performance on the domain model building became worse in later stages (may not

be true for all the scenarios because one effective SC action, e.g., the RemoveBlock

action, can correct multiple ineffective SC actions made before). Comparing this plot

with the change of usage percentage for IA actions, it is reasonable to believe that

the effectiveness percentage of SC actions is partially dependent on the use of IA

actions.

• The percentage of IA→SC transitions were still low for cluster 0 (14.4%→ 15.7%,

p = 0.123), cluster 1(12.7%→ 14.8% p = 0.044), cluster 2 (14.5%→ 30.1%, p <

0.00001), and cluster 3 (15.3% → 25.1%, p < 0.00001), even with significant im-

provements for most of them. It would be better if the students used more information

acquired from science resources to support their subsequent solution construction ac-

tions.

• In addition, the percentage of SC→IA transitions (cluster 0: 0.6% → 0.8%, p =

0.031; cluster 1: 0.5% → 1.1%, p = 0.0008; cluster 2: 2.5% → 1.9%, p = 0.013;

116

Figure 5.32: Effective percentage of SC actions (a) and percentage of taking IA actions
(b) of all the students during their study in rollercoaster and the macroscopic fish tank
(macro) units. X-axis is the number of actions taken during the study.

cluster 3: 0.7%→ 0.7%, p = 0.725) were still low for most of the students. Accord-

ing to the use of Compare Model in Parts in macroscopic fish tank unit, we can

see that the students have already figured it out that divide-and-conquer strategy can

help them detect mistakes. Therefore, it is important for them to apply the same strat-

egy more effectively for model building. This strategy should be applied to divide

the modeling task into smaller sub-tasks. And they should use a lot more coherent

actions, especially actions that are coherently supported by information acquisition

actions, to build different parts of the domain model.

• The overall effort for taking SA actions for all the students were too high. This

value is computed by the sum of Model Testing effort and Model Compare effort

(cluster 0: 67.5% → 69.6%, p = 0.508; cluster 1: 63.4% → 63.5%, p = 0.735;

cluster 2: 40.3% → 53.8%, p = 0.0003; cluster 3: 47.6% → 49.1%, p = 0.108).

117

These results show that the students spent too much time on acquiring information

by checking the correctness of the domain models, rather than acquiring information

from the science resource. Solely depending on information derived from model

simulation without understanding of the knowledge, may result in frequent use of

trial-and-error approaches, which had negative impact on model building tasks.

Given these deficiencies, we believe that there are better ways to help the students

become good learners. By providing proper adaptive scaffolding, the students should be

able to improve their learning and model building strategies that have not been achieved

through their self-improvements over time (e.g., the improvements from rollercoaster unit

to macroscopic fish tank unit). So next, we apply the reinforcement scaffolding approach

to data from the two units and discuss the results as well as potential adaptive scaffolds

generated based on the reinforced models.

5.2.2 Analysis of Reinforced Classification Model

First, we apply the same methods used for the Betty’s Brain Experiments (Section 5.1.2),

to derive the reinforced classification HMMs for the rollercoaster unit, which are shown

in Figure 5.33 (cluster 0), Figure 5.34 (cluster 1), Figure 5.35 (cluster 2), and Figure 5.36

(cluster 3).

Table 5.12 shows the comparison of the measures excluding those related to learning

performance, which we could not compute for the reinforced models. In the table, the

bolded entries are those with significant change pre- and post-reinforcement learning (p-

values < 0.05). For example, the change of IA effort measure for cluster 2 pre- and post-

reinforcement learning was significant (p = 0.003).

As we can see from Table 5.12, the differences for most measures that pre- and post-

reinforcement learning were not significant (p values > 0.05), with only a few exceptions

(bolded entries in the table). The parameters in the reinforced classification HMMs were

tuned by the reinforcement learning, which we believe can achieve better classification

118

Figure 5.33: The reinforced classification HMM of Cluster 0 for the rollercoaster unit

119

Figure 5.34: The reinforced classification HMM of Cluster 1 for the rollercoaster unit

120

Figure 5.35: The reinforced classification HMM of Cluster 2 for the rollercoaster unit

121

Figure 5.36: The reinforced classification HMM of Cluster 3 for the rollercoaster unit

122

Table 5.12: Comparison of the four Clusters post-reinforcement classification learning for
the rollercoaster unit in CTSiM. The bolded entries are those with significant change pre-
and post-reinforcement learning (p-values < 0.05).

Cluster 0
(n = 33)

Cluster 1
(n = 23)

Cluster 2
(n = 4)

Cluster 3
(n = 38)

Overall IA effort % 1.2 (2.1) 1.5 (1.9) 9.1 (3.6) 4.1 (3.1)
Search Rate % 2.2 (1.8) 2.6 (1.9) 8.5 (3.4) 2.1 (1.3)
IA→SC transitions% 12.8 (11.7) 13.4 (8.5) 16.1 (9.5) 19.1 (10.2)
SA→SC transitions% 8.1 (3.9) 9.5 (5.5) 12.2 (7.6) 11.9 (6.1)
SC→IA transitions% 0.1 (0.3) 0.6 (0.9) 3.0 (1.2) 0.9 (0.4)
SC→SA transitions% 18.1 (6.7) 18.8 (6.0) 12.8 (5.8) 15.3 (7.3)
Conceptual Model Edit % 5.4 (3.9) 4.3 (3.2) 11.5 (4.0) 8.8 (3.0)
Computational Model Edit % 31.2 (19.6) 29.7 (13.5) 35.7 (15.6) 42.3 (22.9)
Model Testing effort % 34.6 (22.5) 39.9 (26.3) 25.4 (13.5) 32.4 (20.9)
Model Comparison effort % 36.7 (23.9) 22.2 (11.1) 13.7 (5.2) 10.9 (6.6)
Compare Model in Parts % 34.2 (16.4) 25.6 (11.8) 31.8 (13.9) 28.2 (22.4)
Coherence of Model Edits 0.9 (2.5) 0.9 (1.6) 3.9 (1.9) 3.1 (2.2)
Number of ModelEdit chunks 10.9 (6.0) 9.9 (4.7) 15.6 (5.7) 14.2 (6.2)
Size of ModelEdit chunks 14.8 (9.9) 17.2 (10.5) 5.5 (1.7) 11.3 (6.3)

accuracy. In order to verify the improvements in the classification accuracy. We ran the

leave-one-out cross-validation (LOOCV) on the original data set, and the expanded data

set used to learn the updated HMMs. We compared the results of LOOCVs performed on

the two data sets to show the improvements in classification accuracy.

In every iteration of the LOOCV, we took one action sequence sa from cluster Ci of

the original student data out and performed the reinforcement learning using the rest of the

data to generate four updated HMMs (i.e., HMMs for the four clusters discussed above).

The action sequence sa was assigned with classification label j if the reinforced HMM

of cluster C j had the highest log-likelihood value for sa. If j is the same as the original

cluster label (i.e., i) that sa belongs to, we say the classification is accurate. The average

classification accuracy of all students’ action sequences was computed for the LOOCVs.

The average classification accuracy of LOOCV on the original data set was 0.62 (in

the rollercoaster unit) which is even lower than the result of Betty’s Brain data (0.68).

Because of the complexity of the CTSiM system, there are more available actions that can

123

be taken than that in the Betty’s Brain system. As we can see from Tables 5.6 and 3.1, there

are 32 available actions for CTSiM versus 18 for Betty’s Brain. The increased number of

actions/observations results in the more complex HMMs. So when the sample size is small

(i.e., 98 students), the HMMs may overfit the data and lead to low LOOCV accuracy.

On the other hand, after applying reinforcement learning to generate additional action

sequences that grew the data set to four times of its original, the LOOCV accuracy of rein-

forced classification HMMs for the rollercoaster unit have been increased to 0.81 (0.62→

0.81). This result showed significant improvement in classifying students into the correct

groups, which is helpful in providing the scaffolding that adapts students with different

learning behaviors. Next, we derive and analyze the reinforced scaffolding models for the

rollercoaster and the macroscopic fish tank units, and use the results to derive example

scaffolds.

5.2.3 Analysis of Reinforced Scaffolding Model

We ran the reinforcement learning algorithm as illustrated in Section 4.3.3 to extend

the existing action sequences for the rollercoaster unit. The extended action sequences

were then used to learn updated HMMs as the reinforced scaffolding model. The rein-

forced scaffolding models for the rollercoaster unit are shown in Figure 5.37 (cluster 0),

Figure 5.38 (cluster 1), Figure 5.39 (cluster 2), and Figure 5.40 (cluster 3).

In order to compare the reinforced scaffolding HMMs with the original HMMs for the

rollercoaster unit, we generated results of the same measures from the extended action

sequences that were used to learn reinforced HMMs and compared them with the results

from the original data shown in Table 5.7. The newly generated results of the measures

for the rollercoaster unit are shown in Table 5.13. The learning performance measures (Sg

and Sm) were excluded here because there is no accurate way to compute the real learning

performance out of a virtual agent informed by reinforcement learning.

Instead of horizontal comparison of the measures between different clusters, we are

124

Figure 5.37: The reinforced scaffolding HMM of Cluster 0 for the rollercoaster unit

125

Figure 5.38: The reinforced scaffolding HMM of Cluster 1 for the rollercoaster unit

126

Figure 5.39: The reinforced scaffolding HMM of Cluster 2 for the rollercoaster unit

127

Figure 5.40: The reinforced scaffolding HMM of Cluster 3 for the rollercoaster unit

128

Table 5.13: Comparison of the four Clusters post-reinforcement scaffolding learning for
the rollercoaster unit in CTSiM. Results are presented as mean (standard deviation).

Cluster 0
(n = 33)

Cluster 1
(n = 23)

Cluster 2
(n = 4)

Cluster 3
(n = 38)

Overall IA effort % 15.2 (5.4) 10.1 (3.3) 17.0 (5.9) 11.8 (4.9)
Search Rate % 8.2 (3.8) 7.6 (2.9) 21.5 (10.1) 8.1 (4.0)
IA→SC transitions% 52.5 (16.6) 66.3 (21.8) 53.3 (17.1) 59.1 (18.7)
SA→SC transitions% 20.1 (13.5) 18.5 (9.3) 22.1 (12.6) 21.9 (10.0)
SC→IA transitions% 3.1 (2.1) 2.6 (1.6) 3.1 (1.6) 3.3 (2.5)
SC→SA transitions% 48.2 (16.5) 54.9 (21.9) 53.8 (15.9) 55.2 (22.1)
Conceptual Model Edit % 11.4 (7.2) 10.9 (7.7) 12.1 (8.0) 11.8 (6.5)
Computational Model Edit % 30.1 (21.0) 35.8 (22.5) 36.9 (18.9) 37.3 (23.3)
Model Testing effort % 14.8 (7.7) 18.8 (8.7) 11.5 (5.4) 16.5 (7.0)
Model Comparison effort % 16.5 (10.1) 21.5 (10.9) 18.3 (8.9) 19.7 (8.8)
Compare Model in Parts % 59.2 (15.6) 55.5 (12.0) 61.3 (12.5) 60.3 (15.7)
Coherence of Model Edits 4.1 (1.9) 4.3 (2.1) 6.3 (3.1) 4.4 (1.7)
Number of ModelEdit chunks 30.3 (13.6) 31.5 (15.9) 36.3 (10.3) 32.5 (16.3)
Size of ModelEdit chunks 4.8 (0.9) 4.5 (1.1) 4.3 (1.4) 4.9 (1.8)

more interested to see the differences generated by the reinforced scaffolding models when

compared to the original models. For the rollercoaster unit, as we can see from Tables 5.13

and Table 5.7:

• The average percentage of taking IA actions for all the clusters were increased sig-

nificantly (cluster 0: 1.4%→ 15.2%, p < 0.00001; cluster 1: 1.7%→ 10.1%, p <

0.00001; cluster 2: 7.6% → 17.0%, p = 0.00002; cluster 3: 3.7% → 11.8%, p <

0.00001). We did not see this change from the rollercoaster unit to the macroscopic

fish tank unit. The more effort put in acquiring information from science resource

increased the potential that would support later actions [7]. This could help students

perform better at model building as well as gain a better understanding of the knowl-

edge through the process of model building.

• Besides, there were more use of search actions, especially for cluster 2 (cluster 0:

2.3%→ 8.2%, p < 0.00001; cluster 1: 1.9%→ 7.6%, p < 0.00001; cluster 2: 8.2%

→ 21.5%, p < 0.00001; cluster 3: 1.4%→ 8.1%, p < 0.00001). Because students in

129

cluster 2 had the highest use of search actions in the original data, the final measure

of it in cluster 2 was also higher than in other clusters after reinforcement learning.

Using more search actions when acquiring information can make students become

more involved in the knowledge-seeking process.

• The average percentage of coherent transitions also increased for all the clusters.

Therefore, more SC actions were supported by prior acquired information either

from IA actions or from SA actions. Supported SC actions can effectively increase

the chance of correctly building the domain model. However, as we have discussed

before, the higher percentage of SA→SC transitions may indicate the use of trial-

and-error approaches for building the domain model. In a previous study with CT-

SiM [55], the chunk size of IA, SC, and SA actions was shown to be an important

factor for success in model building. The use of smaller chunks implies that stu-

dents decomposed their modeling tasks into smaller sub-tasks. When the chunk size

is high, there will be high percentages of self-categorical transitions (e.g., IA→IA,

SC→SC, and SA→SA). The reinforcement learning applied to this dataset rewarded

the use of smaller chunks for better long-term consequences, and therefore reduce the

percentage of self-categorical transitions. So the percentage of SA→SC transitions

have been increased due to the decrements of SA chunk sizes.

• The average percentage of SA actions (i.e., the sum of Model Test and Model Com-

pare efforts) decreased for all the clusters (cluster 0: 67.5%→ 31.3%, p < 0.00001;

cluster 1: 63.4%→ 40.3%, p = 0.003; cluster 2: 40.3%→ 29.8%, p = 0.015; cluster

3: 47.6%→ 36.2%, p = 0.022). In this case, the effort put in taking SA actions were

redistributed (reduced in general) to allow for more use of coherently related actions

between information acquisition, solution construction, and solution assessment.

• The average percentage of Compare Model in Parts increased to the values that

were close to those in the the original macroscopic fish tank unit (cluster 0: 34.2%

130

→ 59.2%, p = 0.009; cluster 1: 24.8% → 55.5%, p < 0.00001; cluster 2: 29.0%

→ 61.3%, p < 0.00001; cluster 3: 23.6% → 60.3%, p < 0.00001). This shows

that students did make great improvements in taking the divide-and-conquer strategy

applied to solution assessment from the rollercoaster unit to the macroscopic fish

tank unit.

• The average number of Coherence of Model Edits increased for every cluster (clus-

ter 0: 1.1%→ 4.1%, p < 0.00001; cluster 1: 1.3%→ 4.3%, p < 0.00001; cluster 2:

4.2%→ 6.3%, p = 0.015; cluster 3: 2.9%→ 4.4%, p = 0.037). It has been shown

in [55, 68] that maintaining the correspondence between the conceptual and com-

putational models for each agent/environment behavior is very useful for improving

students’ model building performance. The reinforced scaffolding models have also

captured these changes.

• The average number of ModelEdit chunks increased (cluster 0: 11.7%→ 30.3%, p

< 0.00001; cluster 1: 10.5% → 31.5%, p < 0.00001; cluster 2: 15.2% → 36.3%,

p < 0.00001; cluster 3: 13.8% → 32.5%, p < 0.00001), while the average size of

ModelEdit chunks decreased (cluster 0: 15.2% → 4.8%, p < 0.00001; cluster 1:

16.5%→ 4.5%, p < 0.00001; cluster 2: 5.6%→ 4.3%, p = 0.043; cluster 3: 10.9%

→ 4.9%, p = 0.00003) significantly after the reinforcement learning, showing that

building smaller parts of the model separately can help improve the model building

performance.

Overall, we have observed a lot of significant changes made by the reinforcement learn-

ing that can be considered as improvements in students’ learning behaviors. Next, we run

the reinforcement learning algorithm as illustrated in Section 4.3.3 to extend the existing

action sequences for the macroscopic fish tank unit. The extended action sequences were

used to learn updated HMMs as the reinforced scaffolding model. The reinforced scaf-

folding models for the macroscopic fish tank unit are shown in Figure 5.41 (cluster 0),

131

Figure 5.42 (cluster 1), Figure 5.43 (cluster 2), and Figure 5.44 (cluster 3).

Figure 5.41: The reinforced scaffolding HMM of Cluster 0 for the macroscopic unit

132

Figure 5.42: The reinforced scaffolding HMM of Cluster 1 for the macroscopic unit

In order to compare the reinforced scaffolding HMMs with the original HMMs for

133

Figure 5.43: The reinforced scaffolding HMM of Cluster 2 for the macroscopic unit

134

Figure 5.44: The reinforced scaffolding HMM of Cluster 3 for the macroscopic unit

135

Table 5.14: Comparison of the four Clusters post-reinforcement scaffolding learning for the
macroscopic fish tank unit in CTSiM. Results are presented as mean (standard deviation).

Cluster 0
(n = 19)

Cluster 1
(n = 19)

Cluster 2
(n = 20)

Cluster 3
(n = 40)

Overall IA effort % 31.1 (10.3) 28.6 (12.5) 25.2 (8.6) 26.8 (11.5)
Search Rate % 10.6 (5.1) 22.3 (8.7) 26.7 (12.5) 14.1 (6.6)
IA→SC transitions% 41.1 (17.6) 29.8 (9.5) 32.3 (8.3) 39.1 (12.3)
SA→SC transitions% 10.6 (4.7) 11.2 (5.1) 12.1 (5.1) 9.8 (4.8)
SC→IA transitions% 5.5 (3.3) 4.3 (2.9) 11.3 (7.3) 9.6 (6.1)
SC→SA transitions% 37.2 (12.0) 33.6 (12.6) 26.8 (8.5) 27.8 (9.4)
Conceptual Model Edit % 10.5 (3.5) 9.9 (2.9) 11.3 (4.2) 10.6 (2.6)
Computational Model Edit % 21.1 (10.1) 26.8 (12.5) 37.1 (16.0) 36.5 (18.9)
Model Testing effort % 12.5 (4.3) 18.6 (4.6) 8.3 (3.1) 9.5 (2.4)
Model Compare effort % 21.6 (13.5) 12.3 (8.8) 21.5 (11.4) 19.7 (13.0)
Compare Model in Parts % 81.8 (10.5) 78.2 (9.9) 80.5 (11.5) 77.5 (12.5)
Coherence of Model Edits 10.4 (5.3) 9.9 (5.5) 13.8 (6.7) 11.6 (5.9)
Number of ModelEdit chunks 59.7 (23.7) 60.2 (26.7) 63.1 (27.0) 64.5 (31.6)
Size of ModelEdit chunks 4.9 (1.5) 5.2 (1.9) 4.8 (1.1) 4.6 (2.2)

the macroscopic fish tank unit, we generated the results for the same measures from the

extended action sequences that were used to learn reinforced HMMs and compared them

with the results from original data shown in Table 5.9. The newly generated results of

the measures for the macroscopic fish tank unit are shown in Table 5.14. The learning

performance measures (Sg and Sm) were excluded here because there is no accurate way to

compute the real learning performance out of a virtual agent under reinforcement learning.

For the macroscopic fish tank unit, we compared the results from Table 5.14 and Ta-

ble 5.9, and present the analyses as following:

• The average percentages of IA actions taken by students from all the clusters in-

creased significantly (cluster 0: 1.6% → 31.1%, p < 0.00001; cluster 1: 2.3% →

28.6%, p < 0.00001; cluster 2: 6.7% → 25.2%, p < 0.00001; cluster 3: 4.8% →

26.8%, p < 0.00001). The amount of increment was higher than those in the roller-

coaster unit, showing that more unused potential were performed to build better

domain models in the macroscopic fish tank unit.

136

• Within the IA actions, there were more use of search actions for all the clusters

(cluster 0: 5.3%→ 10.6%, p = 0.007; cluster 1: 10.6%→ 22.3%, p = 0.003; cluster

2: 13.2% → 26.7%, p = 0.009; cluster 3: 5.2% → 14.1%, p < 0.00001). These

increments were also higher than the rollercoaster unit. One possible reason is that,

the domain model to be built in the macroscopic fish tank unit is more complex than

the rollercoaster unit, and the trial-and-error approach became even less reliable. In

order to build correct domain models, students needed to search and acquire more

information to support their solution construction actions.

• Similarly to our analyses for the rollercoaster unit, the percentage of taking coher-

ent transitions increased for all the clusters. However, there were some differences

between clusters. For example, cluster 2 and 3 had more of the SC→IA transitions

(cluster 0: 0.8%→ 5.5%, p < 0.00001; cluster 1: 1.1%→ 4.3%, p = 0.0002; cluster

2: 1.9%→ 11.3%, p < 0.00001; cluster 3: 0.7%→ 9.6%, p < 0.00001), while clus-

ter 0 and 1 took more SC→SA transitions (cluster 0: 11.7%→ 37.2%, p < 0.00001;

cluster 1: 12.6%→ 33.6%, p < 0.00001; cluster 2: 9.3%→ 26.8%, p < 0.00001;

cluster 3: 9.8% → 27.8%, p < 0.00001). Depending on the different paths toward

success, the learning strategy in cluster 2 and 3 encourages more on going back to

read after building some parts of the domain model than cluster 0 and 1.

• The overall percentage of SA actions (i.e., the sum of Model Test and Model Com-

pare efforts) also decreased for all the clusters (cluster 0: 69.6%→ 34.1%, p = 0.007;

cluster 1: 63.5%→ 30.9%, p = 0.0009; cluster 2: 53.8%→ 29.8%, p = 0.009; clus-

ter 3: 49.1%→ 29.2%, p = 0.008). And the percentage of Compare Model in Parts

increased to even higher values (cluster 0: 65.8% → 81.8%, p = 0.011; cluster 1:

65.2%→ 78.2%, p = 0.023; cluster 2: 65.6%→ 80.5% p = 0.031; cluster 3: 60.9%

→ 77.5%, p = 0.048). Like in the rollercoaster unit, the effort put in taking SA ac-

tions were redistributed to allow the more use of coherently related actions between

137

information acquisition, solution construction, and solution assessment.

• The average number of Coherence of Model Edits increased for every cluster (clus-

ter 0: 3.6%→ 10.4%, p < 0.00001; cluster 1: 3.1%→ 9.9%, p < 0.00001; cluster

2: 6.6%→ 13.8%, p < 0.00001; cluster 3: 4.8%→ 11.6%, p = 0.00002). The rea-

son is the same as shown in [55, 68] that maintains the correspondence between the

conceptual and computational models for each agent/environment behavior is very

useful for improving students’ model building performance.

• The average number of ModelEdit chunks increased (cluster 0: 32.7%→ 59.7%, p

= 0.0009; cluster 1: 30.8%→ 60.2%, p < 0.00001; cluster 2: 45.1%→ 63.1%, p =

0.001; cluster 3: 39.5%→ 64.5%, p = 0.0005), while the average size of ModelEdit

chunks decreased (cluster 0: 9.6%→ 4.9%, p < 0.00001; cluster 1: 13.1%→ 5.2%,

p < 0.00001; cluster 2: 7.6% → 4.8%, p = 0.019; cluster 3: 7.3% → 4.6%, p =

0.006) significantly after the reinforcement learning, showing that building smaller

parts of the model separately can also help improve the model building performance

in the macroscopic fish tank unit.

Overall, we can see some significant changes in the learning behaviors after reinforce-

ment learning according to Tables 5.13 and 5.14. For both units, the percentage of taking

IA actions have increased significantly to encourage acquiring more information from the

science resources so that the later SC action can be supported. The reinforced models also

encouraged a lot more use of coherent transitions and divide-and-conquer strategies such

as Compare Model in Parts actions to build the model in small chunks.

Some changes of these measures pre- and post-reinforcement learning in the roller-

coaster unit have been reflected by the original evolution from the rollercoaster unit to

the macroscopic fish tank unit, showing that the students can improve by themselves over

time. But the reinforcement learning shows that students can improve at much faster rates

when supported by adaptive scaffolding.

138

5.2.4 Example scaffolds

Using the same methodology illustrated in Section 5.1.4, we can identify students that

are under-performing and provide adaptive scaffolds by comparing measures of their ac-

tion sequences against the corresponding measures derived from the reinforced scaffolding

models. We list some examples of the scaffolds that can be derived as follows:

• If a student who is learning in the rollercoaster unit, has taken a significant amount

of SA actions whereas his/her effectiveness percentage of model building actions

remain in low level. The students can be informed to use Compare Model in Parts

function if he/she hasn’t used it a lot. Otherwise, scaffolds can be given to encourage

decomposition of the modeling task into smaller sub-tasks. Since Compare Model

in Parts plays an important role in the divide-and-conquer strategy, the percentage

measure of it should always be monitored when students are learning in CTSiM.

• According to the reinforced scaffolding models for rollercoaster and macroscopic

fish tank units, scaffolds can be provided differently. For example, a student who

is classified into cluster 0 can be encouraged to go back to read more frequently

when he/she is learning in the macroscopic fish tank unit (IA effort in the reinforced

model is 31.1%) than that in the rollercoaster unit (IA effort in the reinforced model

is 15.2%). We can use specific action patterns to show the adaptive model building

strategies that can be suggested to students in different units. For example, there is

a frequent pattern “IA→ SC conc → SC comp → SA” for the rollercoaster unit,

which can be applied to build the domain model. This pattern refers to a strategy that

uses information acquired by reading to support subsequent conceptual and com-

putational ModelEdit actions that are coherently related. The solution assessment

actions are taken at the end to verify the ModelEdit actions. But when it comes to the

macroscopic fish tank unit, the more frequent pattern is changed to “IA→ SC conc

→ SC comp→ IA→ SA→ IA”, where more IA actions are inserted into the same

139

strategy to help them stick to the parts to be built and reduce the chance of incorrect

SC actions by acquiring more information from the science resources. In complex

modeling tasks, it is hard to detect and correct mistakes compared to simpler models.

So, it is important to apply the best strategy for building every part of the domain

model.

• Within each unit, different scaffolds can be provided to a student if he/she is classified

into different clusters. For example in the macroscopic fish tank unit, a student with

low usage percentage of coherent transitions would receive suggestion on applying

strategy of “IA→ SC conc→ SC comp→ SA” if he/she is classified into cluster 2

or 3, whereas the suggestion would be to take more IA actions before taking solution

assessment actions (i.e., “IA→ SC conc→ SC comp→ IA→ SA→ IA”) if he/she

is classified into cluster 0 and 1. According to the reinforced scaffolding models, the

percentage of going back to read after taking SA actions, i.e., the percentage of SC

→ IA transitions for cluster 0 (5.5%) and cluster 1 (4.3%), are significantly lower

than that in cluster 2 (11.3%) and 3 (10.6%). The reinforced scaffolding models here

can be interpreted as that students who are classified into cluster 2 and 3 have more

successful model building actions by keeping high IA-involved coherent transitions.

• The scaffolds can be provided according to students’ real-time performance. For

example, if an under-performing student is building the model with SC actions having

the average effectiveness percentage of above 0.5, the suggestion will be focusing on

the higher level decomposition of the modeling tasks. But if the student is making

mistakes repeatedly, a more detailed strategy with more coherent transitions between

IA, SC, and SA actions can be suggested to make sure he/she understands what went

wrong and why.

140

5.3 Summary

In this chapter, we have presented the experiment results using data collected from 98

6th grade students who worked in the Betty’s Brain system (see Section 3.1). We then

introduced a second OELE, i.e., CTSiM, and presented experimental results using data

collected from students who worked for two units in CTSiM (i.e., the rollercoaster and the

macroscopic fish tank units).

Using each data set, we generated both the reinforced classification HMMs and the

reinforced scaffolding HMMs. For the reinforced classification model, we run Leave-one-

out cross validation (LOOCV) on the original data set as well as the data set used to train

the reinforced classification models. The comparison of LOOCV accuracy for datasets

pre- and post-reinforcement learning have shown that the reinforced classification models

can perform better in classifying students into correct clusters that were derived by HMM

clustering.

Then, we compared the reinforced scaffolding HMMs with the HMMs generated from

the original data set. We used coherent measures adopted from previous work to illustrate

the change of the learning behaviors pre- and post-reinforcement learning. These results

have shown the strength of the reinforcement learning that the reinforced-scaffolding model

can capture the evolution of learning behaviors that can lead to better learning outcomes,

and thus provide the basis for adaptive scaffolding.

For the Betty’s Brain system, the reinforcement learning mostly discovers some com-

mon action patterns that can help students’ improve their learning across different clusters.

On the other hand, in the CTSiM OELE, the reinforcement learning is more likely to find

different action patterns that may help students from different cluster to make progress on

building the domain models.

We have also illustrated the process of monitoring and providing scaffolds to students

who might be under-performing. Some example scaffolds for different OELEs (i.e., Betty’s

Brain versus CTSiM) are provided to show that the reinforced classification and the rein-

141

forced scaffolding model can be used together to form the basis for generating adaptive

scaffolds.

142

Chapter 6

Conclusions and Future Work

In this work, we have presented a data-driven learner modeling approach to model stu-

dents’ learning behaviors in Open-Ended Learning Environments (OELEs). The approach

combines the use multiple machine learning techniques, such as Hidden Markov Model

(HMMs), unsupervised learning, reinforcement learning, and Monte Carlo tree search

(MCTS), within a reinforcement learning framework, to generate complete and accurate

learner models from students’ data collected from OELEs. This learner modeling approach

generates reinforced learner models as the basis for providing adaptive scaffolds, which

can help students building better domain models and become better learners in OELEs. We

summarize the major accomplishments of this work in Sections 6.1 and 6.2, and present

potential future work in Section 6.3.

6.1 Accomplishment I - The Learner Modeling Approach

Started by learning HMMs from the original data set as the initial learner model, we

applied reinforcement learning and MCTS to generate/extend action sequences and com-

bined them with the original students’ action sequences to learn updated HMMs, which we

believe are more complete and accurate. When generating HMMs for the original data set,

we also applied an HMM clustering algorithm to derive clusters of students with similar

behaviors, where the reinforcement learning was performed on each of the clusters.

Since we wanted the learner modeling approach to be generally applicable to different

OELEs, we derived the action-view representation which logged students’ actions as well

as the corresponding context associated with the actions when they worked in OELEs. The

action-view representation can be applied to different learning environments, and therefore,

provided a solution to the data heterogeneity problem. We also used this representation to

143

derive coherence relations between actions, which were later applied to help to perform

simulations in MCTS.

One of the challenges for learner modeling on data collected from classroom studies

using OELEs, is that we may suffer from the data impoverishment problem (e.g., a Betty’s

Brain study with a class of 98 students), which can cause inaccurate models to be built.

This motivated us to develop the reinforcement learning algorithm combined with MCTS

to grow the data volume by generating/extending students’ action sequences. Basically, the

reinforcement learning was applied to simulate a virtual student interacting with the OELE,

where those interactions were logged as actions for generating/extending action sequences.

Within the reinforcement learning framework, we applied the MCTS as the interpreter

to determine which actions shall be taken by the virtual student to interact with the system.

The MCTS can produce rewards for all of the available actions by taking into consideration

long-term consequences according to specific modeling purposes. In this work, we config-

ured the selection policy in MCTS differently to derive (1) the reinforced classification

models by generating additional action sequences, to increase the accuracy of classifying

students into correct groups; and (2) the reinforced scaffolding models by extending ex-

isting action sequences, to capture behavioral patterns that can lead to better performance

in OELEs. Overall, we have successfully implemented the proposed learner modeling ap-

proach.

6.2 Accomplishment II - Verification of the Learner Modeling Approach

In order to verify our learner modeling approach, we performed experiments on two

different OELEs, i.e., Betty’s Brain and CTSiM, which we’ve presented in detail about

their interfaces as well as available actions that students can take. For the experiments,

we generated the HMMs from the original data set and used them to derive the reinforced

models for each of the two experiments. In addition, we adopted various coherent measures

from earlier work, to analyze and compare students’ learning behaviors and performance.

144

For the original models, we generated results of the measures and performed pairwise

MannWhitney U-Test for each pair of clusters. We used these results to analyze and dis-

cuss students’ learning behaviors with respect to their corresponding learning performance.

Then, for the reinforced models:

• We performed leave-one-out cross validation (LOOCV) on the original data set and

the reinforced data set to show the improvements in classification accuracy delivered

by the reinforced classification model. For both experiments, we have observed

significant accuracy improvements pre- and post-reinforcement learning.

• We compared the reinforced scaffolding models with the original HMMs and empir-

ically analyzed and interpreted the changes of the measures to discover the behavioral

evolution that can lead to better performance. The experiments showed interesting

results (e.g., the redistribution of effort put in information acquisition, solution con-

struction, and solution assessment, the ratio change of using coherent actions, etc.),

which are then used as the basis for providing example scaffolds.

For providing adaptive scaffolds, we used the reinforced classification model to classify

a student who has been detected as under-performing into a cluster that is derived from the

HMM clustering. The reinforced scaffolding model corresponding to this cluster was then

used to determine what the deficiencies were about the student’s current activities, based

on which, scaffolds were provided accordingly.

Overall, we have developed a data-driven learner modeling approach which combines

multiple techniques, to solve the challenges we met for accurate learner modeling. Exper-

iments with the two different OELEs have produced promising results, showing that our

approach has the potential to better understand students’ learning behaviors and to support

their learning in OELEs.

145

6.3 Future Work

Taking this work as a starting point, there are several research directions that can be

considered as future works. For each of these future work, sufficient effort on research

and experiments are needed to enhance and promote the strength of our learner modeling

approach. We summarize some of the research directions below.

Designing sophisticated system for providing adaptive scaffolding. In this work, we

presented empirical analyses and introduced some example scaffolds based on the experi-

mental results. It is important to design a sophisticated system that can appropriately pro-

vide adaptive scaffolding to be used in the future study with OELEs. This process should

keep the teachers involved by providing them the information about the learner models,

as well as the outcome of reinforced classification (e.g., which group is each individual

classified into) and reinforced scaffolding (e.g., what are the potential scaffolds in different

circumstances).

Applying the learner modeling approach to multi-stream data. For example, the

data we get from Meta Tutor consists not only the event log of learners activities and inter-

actions with the system but also their emotion data collected when they are learning. The

multi-stream HMMs (MS-HMM) can be applied to model learners’ data with multiple ob-

servation sequences. However, there should be a different methodology for reinforcement

learning to take into consideration the relation between actions and emotions.

Applying Alternative representation of learner models. In this work, we used the

Hidden Markov Models to capture students’ learning behaviors as well as their cognitive

and metacognitive processes when they study in OELEs. It is interesting to see if other

data-driven models can fit into this reinforcement learning schema. For example, the deep

Convolutional Neural Network (CNN) can be used as the model for performing the classi-

fication task as well as predicting performance outcome. Compared to the HMM, the deep

CNN can represent students’ learning behaviors and cognitive and metacognitive process

at different levels of abstraction by using multiple hidden layers. However, in order to use

146

the CNN appropriately, one should solve the:

1. Input problem. A neural network requires a set of inputs instead of the action se-

quences collected from OELEs that were used to learn HMMs.

2. Interpretation problem about neurons. A neural network is typically viewed as a

black box, where the neurons are hard to interpret. In HMM, it is easier to interpret

the hidden states and transitions by analyzing the probability matrices.

Applying the learner modeling approach to other learning environments. Because

of the action-view representation, we solved the data heterogeneity problem across the

two different OELEs, i.e., Betty’s Brain and CTSiM. It will be interesting to see if it is

applicable to other learning environments by building appropriate task models. The learner

modeling approach should also have adaptive design of reinforcement learning framework

to meet different specification and requirements. For example, the interaction between

the virtual agent, the environment, and the interpreter for reinforcement learning might be

different (e.g., learning environments with multiple agents and environments and different

interpretation methodologies).

147

BIBLIOGRAPHY

[1] Satabdi Basu, Amanda Dickes, John S Kinnebrew, Pratim Sengupta, and Gautam

Biswas. Ctsim: A computational thinking environment for learning science through

simulation and modeling. In CSEDU, pages 369–378, 2013.

[2] James René Segedy, John S Kinnebrew, and Gautam Biswas. Modeling learner’s

cognitive and metacognitive strategies in an open-ended learning environment. In

AAAI Fall Symposium: Advances in Cognitive Systems, 2011.

[3] Geraldine Clarebout, Jan Elen, W Lewis Johnson, and Erin Shaw. Animated peda-

gogical agents: An opportunity to be grasped? Journal of Educational multimedia

and hypermedia, 11(3):267–286, 2002.

[4] Susan Land. Cognitive requirements for learning with open-ended learning environ-

ments. Educational Technology Research and Development, 48(3):61–78, 2000.

[5] Satabdi Basu, Gautam Biswas, and John S Kinnebrew. Using multiple representa-

tions to simultaneously learn computational thinking and middle school science. In

Thirtieth AAAI Conference on Artificial Intelligence, pages 3705–3711, Phoenix, AZ,

2016.

[6] Gautam Biswas, James R Segedy, and Kritya Bunchongchit. From design to im-

plementation to practice a learning by teaching system: Betty’s brain. International

Journal of Artificial Intelligence in Education, 26(1):350–364, 2016.

[7] James R Segedy, John S Kinnebrew, and Gautam Biswas. Using coherence analysis to

characterize self-regulated learning behaviours in open-ended learning environments.

test, 2(1):13–48, 2015.

148

[8] Satabdi Basu, Gautam Biswas, Pratim Sengupta, Amanda Dickes, John S Kinnebrew,

and Douglas Clark. Identifying middle school students?challenges in computational

thinking-based science learning. Research and Practice in Technology Enhanced

Learning, 11(1):1–35, 2016.

[9] John Kinnebrew, James Segedy, and Gautam Biswas. Integrating model-driven and

data-driven techniques for analyzing learning behaviors in open-ended learning envi-

ronments. IEEE Trans of Learning Technologies, to appear, 2016.

[10] John S Kinnebrew, James R Segedy, and Gautam Biswas. Analyzing the temporal

evolution of students’ behaviors in open-ended learning environments. Metacognition

and learning, 9(2):187–215, 2014.

[11] Janet Metcalfe and Bridgid Finn. Metacognition and control of study choice in chil-

dren. Metacognition and learning, 8(1):19–46, 2013.

[12] Jere E Brophy. Motivating students to learn. Routledge, 2013.

[13] Philip H Winne. Improving measurements of self-regulated learning. Educational

Psychologist, 45(4):267–276, 2010.

[14] Daniel L Schwartz and Taylor Martin. Inventing to prepare for future learning: The

hidden efficiency of encouraging original student production in statistics instruction.

Cognition and Instruction, 22(2):129–184, 2004.

[15] Jason Tan and Gautam Biswas. The role of feedback in preparation for future learning:

A case study in learning by teaching environments. In International Conference on

Intelligent Tutoring Systems, pages 370–381. Springer, 2006.

[16] David Silver et al. Mastering the game of go with deep neural networks and tree

search. Nature, 529:484–503, 2016.

149

[17] Gautam Biswas, Hogyeong Jeong, John S Kinnebrew, Brian Sulcer, and ROD

ROSCOE. Measuring self-regulated learning skills through social interactions in a

teachable agent environment. Research and Practice in Technology Enhanced Learn-

ing, 5(02):123–152, 2010.

[18] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,

and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions

on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[19] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[20] Hogyeong Jeong, Amit Gupta, Rod Roscoe, John Wagster, Gautam Biswas, and

Daniel Schwartz. Using hidden markov models to characterize student behaviors

in learning-by-teaching environments. In International Conference on Intelligent Tu-

toring Systems, pages 614–625. Springer, 2008.

[21] R Luckin et al. Modeling learning patterns of students with a tutoring system using

hidden markov models. Artificial intelligence in education: Building technology rich

learning contexts that work, 158:238, 2007.

[22] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.

Modeling how students learn to program. In Proceedings of the 43rd ACM techni-

cal symposium on Computer Science Education, pages 153–160. ACM, 2012.

[23] Girish Balakrishnan and Derrick Coetzee. Predicting student retention in massive

open online courses using hidden markov models. Electrical Engineering and Com-

puter Sciences University of California at Berkeley, 2013.

[24] Masun Homsi, Rania Lutfi, Rosa M Carro, and Barakat Ghias. A hidden markov

model approach to predict students’ actions in an adaptive and intelligent web-based

150

educational system. In Information and Communication Technologies: From The-

ory to Applications, 2008. ICTTA 2008. 3rd International Conference on, pages 1–6.

IEEE, 2008.

[25] Luis Javier Rodrı́guez and Inés Torres. Comparative study of the baum-welch and

viterbi training algorithms applied to read and spontaneous speech recognition. In

Iberian Conference on Pattern Recognition and Image Analysis, pages 847–857.

Springer, 2003.

[26] Cen Li and Gautam Biswas. A bayesian approach to temporal data clustering using

hidden markov models. In ICML, pages 543–550, 2000.

[27] Konstantina Chrysafiadi and Maria Virvou. Student modeling approaches: A litera-

ture review for the last decade. Expert Systems with Applications, 40(11):4715–4729,

2013.

[28] Elaine Rich. User modeling via stereotypes. Cognitive science, 3(4):329–354, 1979.

[29] Kurt VanLehn. Student modeling. Foundations of intelligent tutoring systems, 55:78,

1988.

[30] Mark Elsom-Cook. Student modelling in intelligent tutoring systems. Artificial Intel-

ligence Review, 7(3-4):227–240, 1993.

[31] James L Stansfield, Brian P Carr, and Ira P Goldstein. Wumpus advisor 1: A first

implementation program that tutors logical and probabilistic reasoning skills. 1976.

[32] Peter Brusilovsky and Eva Millán. User models for adaptive hypermedia and adaptive

educational systems. In The adaptive web, pages 3–53. Springer-Verlag, 2007.

[33] ASHRAF A Kassim, SABBIR AHMED Kazi, and SURENDRA Ranganath. A web-

based intelligent learning environment for digital systems. International Journal of

Engineering Education, 20(1):13–23, 2004.

151

[34] Cristina Carmona and Ricardo Conejo. A learner model in a distributed environment.

In International Conference on Adaptive Hypermedia and Adaptive Web-Based Sys-

tems, pages 353–359. Springer, 2004.

[35] Lisa N Michaud and Kathleen F McCoy. Empirical derivation of a sequence of user

stereotypes for language learning. User Modeling and User-Adapted Interaction,

14(4):317–350, 2004.

[36] Stellan Ohlsson. Constraint-based student modeling. In Student modelling: the key

to individualized knowledge-based instruction, pages 167–189. Springer, 1994.

[37] Kyparisia A Papanikolaou, Maria Grigoriadou, Harry Kornilakis, and George D

Magoulas. Personalizing the interaction in a web-based educational hypermedia sys-

tem: the case of inspire. User modeling and user-adapted interaction, 13(3):213–267,

2003.

[38] Raymund Sison and Masamichi Shimura. Student modeling and machine learning. In-

ternational Journal of Artificial Intelligence in Education (IJAIED), 9:128–158, 1998.

[39] Victoria Tsiriga and Maria Virvou. Modelling the student to individualise tutoring in

a web-based icall. International Journal of Continuing Engineering Education and

Life Long Learning, 13(3-4):350–365, 2003.

[40] Ryan SJd Baker. Modeling and understanding students’ off-task behavior in intelli-

gent tutoring systems. In Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 1059–1068. ACM, 2007.

[41] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[42] Hamed Shakouri and Mohammad B Menhaj. A systematic fuzzy decision-making

process to choose the best model among a set of competing models. IEEE Transac-

152

tions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(5):1118–

1128, 2008.

[43] Konstantina Chrysafiadi and Maria Virvou. Evaluating the integration of fuzzy logic

into the student model of a web-based learning environment. Expert Systems with

Applications, 39(18):13127–13134, 2012.

[44] Cristina Conati, Abigail Gertner, and Kurt Vanlehn. Using bayesian networks to man-

age uncertainty in student modeling. User modeling and user-adapted interaction,

12(4):371–417, 2002.

[45] D Abderrahim et al. Using bayesian networks for student modeling. In Proceedings

of the 6, h IEEE International Conference on Advanced Learning Technologies, pages

1002–1007, 2006.

[46] Eva Millán, Tomasz Loboda, and Jose Luis Pérez-de-la Cruz. Bayesian networks for

student model engineering. Computers & Education, 55(4):1663–1683, 2010.

[47] Krittaya Leelawong and Gautam Biswas. Designing learning by teaching agents: The

betty’s brain system. IJ Artificial Intelligence in Education, 18(3):181–208, 2008.

[48] Michael J Hannafin. Open-ended learning environments: Foundations, assump-

tions, and implications for automated design. In Automating instructional design:

Computer-based development and delivery tools, pages 101–129. Springer, 1995.

[49] John D Bransford, A Brown, and R Cocking. How people learn: Mind, brain, experi-

ence, and school. Washington, DC: National Research Council, 1999.

[50] Gautam Biswas, Hogyeong Jeong, John S Kinnebrew, Brian Sulcer, and ROD

ROSCOE. Measuring self-regulated learning skills through social interactions in a

teachable agent environment. Research and Practice in Technology Enhanced Learn-

ing, 5(02):123–152, 2010.

153

[51] Ningyu Zhang, Gautam Biswas, and Yi Dong. Characterizing Students’ Learning

Behaviors Using Unsupervised Learning Methods, pages 430–441. Springer Interna-

tional Publishing, Cham, 2017.

[52] James R Segedy. Adaptive scaffolds in open-ended computer-based learning environ-

ments. Vanderbilt University, 2014.

[53] J. S. Kinnebrew, J. R. Segedy, and G. Biswas. Integrating model-driven and data-

driven techniques for analyzing learning behaviors in open-ended learning environ-

ments. IEEE Transactions on Learning Technologies, 10(2):140–153, April 2017.

[54] Ningyu Zhang, Gautam Biswas, and Yi Dong. Characterizing students’ learning be-

haviors using unsupervised learning methods. In International Conference on Artifi-

cial Intelligence in Education, pages 430–441. Springer, 2017.

[55] Satabdi Basu, Gautam Biswas, and John S Kinnebrew. Using multiple representations

to simultaneously learn computational thinking and middle school science. In AAAI,

pages 3705–3711, 2016.

[56] James R Segedy, John S Kinnebrew, and Gautam Biswas. Coherence over time:

understanding day-to-day changes in students open-ended problem solving behaviors.

In International Conference on Artificial Intelligence in Education, pages 449–458.

Springer, 2015.

[57] Lawrence R. Rabiner. Readings in speech recognition. chapter A Tutorial on Hidden

Markov Models and Selected Applications in Speech Recognition, pages 267–296.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[58] Ka-Chun Wong, Tak-Ming Chan, Chengbin Peng, Yue Li, and Zhaolei Zhang. Dna

motif elucidation using belief propagation. Nucleic Acids Research, 41(16):e153,

2013.

154

[59] Cheng Ye, John S. Kinnebrew, James R. Segedy, and Gautam Biswas. Learning

behavior characterization with multi-feature, hierarchical activity sequences. In 8th

International Conference on Educational Data Mining, June 2005.

[60] Yi Dong, John S Kinnebrew, and Gautam Biswas. Comparison of selection criteria

for multi-feature hierarchical activity mining in open ended learning environments.

2016.

[61] Cen Li and Gautam Biswas. Temporal pattern generation using hidden markov model

based unsupervised classification. In Proceedings of the Third International Sympo-

sium on Advances in Intelligent Data Analysis, IDA ’99, pages 245–256, London,

UK, UK, 1999. Springer-Verlag.

[62] LR Bahl, Peter F Brown, Peter V De Souza, and Robert L Mercer. Maximum mutual

information estimation of hidden markov model parameters for speech recognition.

In proc. icassp, volume 86, pages 49–52, 1986.

[63] Abhijit Gosavi. Reinforcement learning: A tutorial survey and recent advances. IN-

FORMS Journal on Computing, 21(2):178–192, 2009.

[64] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo

tree search: A new framework for game ai. In AIIDE, 2008.

[65] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Pro-

ceedings of the 17th European Conference on Machine Learning, ECML’06, pages

282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[66] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal

of Machine Learning Research, 3(Nov):397–422, 2002.

[67] Stephen H Edwards. Using software testing to move students from trial-and-error to

reflection-in-action. ACM SIGCSE Bulletin, 36(1):26–30, 2004.

155

[68] Satabdi Basu. Fostering Synergistic Learning of Computational Thinking and Middle

School Science in Computer-based Intelligent Learning Environments. Vanderbilt

University, 2016.

[69] Uri Wilensky and I Evanston. Netlogo: Center for connected learning and computer-

based modeling. Northwestern University, Evanston, IL, 4952, 1999.

[70] Satabdi Basu and Gautam Biswas. Providing adaptive scaffolds and measuring their

effectiveness in open ended learning environments. Singapore: International Society

of the Learning Sciences, 2016.

156

