
Hardware-Software Partitioning of Soft Multi-Core Cyber-Physical Systems

By

Benjamin Babjak

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial ful�llment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

December, 2014

Nashville, Tennessee

Approved:

Akos Ledeczi, Ph.D.

Theodore Bapty, Ph.D.

Aniruddha S. Gokhale, Ph.D.

Janos Sallai, Ph.D.

Pietro Valdastri, Ph.D.

Copyright c© 2014 by Benjamin Babjak
All Rights Reserved

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ABBREVIATIONS . ix

Chapter

I. Introduction . 1
Solution strategy . 4
The structure of this document . 7

II. Background . 8

Concurrent and parallel architectures . 8
Computing units . 9
Memory sharing . 12
Interconnections . 12

Resource allocation and deployment . 13
The nature of the problem and solution strategies . 14

Related system and architecture examples . 15
Early architectures . 16
Multi-core embedded architectures . 16
Soft multi-core architectures . 18

III. Hardware architecture . 20

Analysis . 20
MarmotE platform example . 22
AVR HP Soft core example . 24

Soft multi-core architecture . 26
Evolution of ideas . 27
Final architecture . 29
Multi-core MicaZ . 32

IV. Programming paradigm. 36

The TinyOS framework and network embedded systems C (nesC) 37
Basic concepts . 37
Detailed description . 38
Sense and Forward application example . 40

Multi-core programming . 42
Multi-core Sense and Forward application example . 47

iii

V. Environment . 50

Framework . 50
Multi-core project generation . 51

Simulation . 59
Analysis . 61
Modi�cations to support multi-core simulation . 66

VI. Case study . 69

Analysis and processing . 69
Wavelet-based time-frequency analysis . 70
Event classi�cation and parameter estimation . 71

Results . 76
Measurement procedure . 76
Onset time estimation . 77
Wavelet Packet Decomposition (WPD) time-frequency analysis 77
Gaussian Mixture Model (GMM) and Expectation�Maximization (EM) 79
OPTICS clustering . 80
Localization . 81

Multi-core transformation . 82
E�ects of parallel execution . 85

VII. Conclusion . 92

Appendix

A. Analysis and proof of onset time picker methods . 94

Proof for constant variance time series . 94
Proof for monotone increasing variance time series . 98

B. Calculating variances . 104

REFERENCES . 106

iv

LIST OF TABLES

Table Page

1. Usual and possible total memory sizes for small AVR MicroController Units
(MCUs). 24

2. Possible address space and data size when utilizing 2 kB block memories. 30

3. Examples for maximum message numbers in a 2 kB queue. 31

4. Description of message queue registers. * Destination/source ID are NOT globally
unique, but separately de�nied for every core. ** Initiating the transfer will
automatically reset these bits to 0. 34

5. Log quality index thresholds for valid Acoustic Emission (AE) events. 75

6. Dimensions of the tested metal beams. 76

7. The second aluminium break test crack location estimates for two onset time
pickers. Actual crack location at −46.2 cm. 81

8. The steel break test crack location estimates for two onset time pickers. Actual
crack location at −78.7 cm. 82

9. Run time results for the single-core Structural Health Monitoring (SHM) system
with a clock rate of 7 372 800Hz. Sampling at 750 kHz for two channels, input
bu�ers 128 samples long, clustering performed based on 10 previous events. 86

10. Power consumption of a core in di�erent states as measured with the Avrora
simulator. 86

11. Run time results of onset time estimation, quality index calculation, and Time
Di�erence of Arrival (TDoA) for di�erent bu�er lengths. For TDoA and WPD,
the minimum reasonable bu�er sizes are marked. 87

v

LIST OF FIGURES

Figure Page

1. MarmotE sensor platform. 22

2. Memory maps of two AVRmicrocontrollers copied from their respective datasheets,
[9] and [11]. 25

3. Multi-core sense and forward application concept. 26

4. Soft multi-core architecture. Inter-core communication is exclusively done using
Queue-Based Messaging Framework. 29

5. The two memory modes of the ATMega128L. Copied from the datasheet [10]. . . . 33

6. Pseudocode example for a simple transmission. 35

7. Pseudocode example for a simple reception. 35

8. Structure of a nesC application showing how a con�guration can be expanded
to reveal other components within yielding hierarchical containment. The darker
object is one single instance of a component appearing simultaneously within
di�erent con�gurations at di�erent levels of the hierarchy. 40

9. Sense and forward example on a single core. 41

10. Task call tree example. 44

11. Rerooted cutting. 45

12. Partitioning abstraction on the topmost level. Circle nodes are assigned or ded-
icated components, triangle nodes are copyable components, square components
are non-dedicated and non-copyable. Simple edges can not connect components
across cores, while crossed edges can as they are cuttable. Dashed edges indicate
connection of components on di�erent cores. 46

13. Sense and forward example on multiple cores. 49

14. Framework for multi core project code generation. 52

15. Recursive search algorithm working on the �rst component of a component list. . . 54

16. Pseudocode for the recursive top-level search. 56

vi

17. Partitioning on the topmost level. Circle nodes are components dedicated to
di�erent cores imposing partitioning constraints on the rest of top-level components. 58

18. Pseudocode for the recursive hierarchical search. 60

19. The node. 64

20. Radio channel for the original single core case. 65

21. Threads, medium, and synchronizer. 65

22. Thread A and thread B both waiting for the other thread to reach a point in time
in the future. 66

23. Multiple mediums across several components. 67

24. Thread A and thread B � both associated with two mediums and hence two
synchronizers � waiting for the other thread to reach a point in the past, but
because threads did not update every synchronizer about their progress, they
never leave waiting state. 67

25. The di�erence between the original and multi-core MicaZ in the simulator. 68

26. Simpli�ed block diagram of the AE signal processing. 69

27. Aluminium break test setup, with 2.44m long beam. 76

28. Onset time estimation; red vertical line marks the onset time as detected. 77

29. Time-frequency characteristics of AE events from two di�erent sources at the �rst
aluminium break setup. 77

30. Time-frequency characteristics of AE event with time di�erence of around 0.2ms
at the �rst aluminium break setup. The white markings indicate where the signal
in that band started according to the Akaike's Information Criterion (AIC)-based
selector. 78

31. Gaussian distributions as estimated by the EM algorithm for the �rst aluminium
break test with shaker set to 1.27 cm amplitude. 79

32. Gaussian distributions as estimated by the EM algorithm for the steel break test
with shaker set to 0.51 cm amplitude. 79

33. OPTICS clustering results for the AIC-based onset time picker measurements for
the steel break test. 80

34. OPTICS clustering results for the AIC-based onset time picker measurements for
the �rst aluminium break test with shaker set to 2.54 cm amplitude. 81

vii

35. Multi-core system architecture. 83

36. AE events for the �rst aluminium break test with a shaker amplitude set to 1 inch. 84

37. Processing time line. 86

38. Average number of lost events for every processed event. 88

39. Power consumption during active processing. 88

40. Time that can be spent in power save state. 89

41. Power consumption with e�cient duty cycling. 90

42. Multi-core versus single core (dotted line) event loss probability and power con-
sumption. 91

43. Multi-core versus single core (dotted line) event loss probability and power con-
sumption. Balanced parallel execution. 91

44. Two consecutive time series with di�erent variances. n1, n2, m1, m2, and ∆n are
the length (in samples), σ2

1, σ
2
2, γ

2
1 , γ

2
2 , and β

2 are the corresponding variances. . . . 95

45. Two consecutive time series with di�erent variances. n1, n2, m1, m2, and ∆n are
the length (in samples), σ2

1, σ
2
2, γ

2
1 , γ

2
2 , and β

2 are the corresponding variances. . . . 99

46. Relation of β values . 101

viii

LIST OF ABBREVIATIONS

ADC Analog�to�Digital Converter 1, 23, 27, 39, 64, 82

AE Acoustic Emission v, vii, viii, 3, 4, 69�78, 80, 83�85, 89

AIC Akaike's Information Criterion vii, 72, 74, 77�82

ALU Arithmetic Logic Unit 11

AMP Asymmetric MultiProcessing 11, 12, 29

AP Assignment Problem 14

API Application Programming Interface 19, 65

AR AutoRegressive 72

ASIP Application�Speci�c Instruction�set Processor 11

BIC Bayesian Information Criterion 74

CDF Cumulative Distribution Function 83, 84, 87

CMOS Complementary Metal�Oxide�Semiconductor 10, 85

COMA Cache Only Memory Architecture 12, 30

CORDIC COordinate Rotation DIgital Computer 11

CPLD Complex Programmable Logic Device 17

CPS Cyber-Physical System 1�3, 8, 42, 89, 92

DAC Digital�to�Analog Converter 1, 23

DFG Data�Flow Graph 18

DFS Depth�First Search 54

DMA Direct Memory Access 12, 82

DSP Digital Signal Processor 2, 11, 21

EEPROM Electrically Erasable Programmable Read-Only Memory 17, 24

EM Expectation�Maximization iv, vii, 74, 79, 83

EMI ElectroMagnetic Interference 22

ix

FIFO First In, First Out 29

FIR Finite Impulse Response 70

FPGA Field�Programmable Gate Array 2, 3, 7, 11, 18, 19, 21�23, 25�27, 29, 66, 92

FSM Finite�State Machine 61

FTL FreeMarker Template Language 51

GA Genetic Algorithm 14, 74

GALS Globally Asynchronous Locally Synchronous 21, 22, 90

GMM Gaussian Mixture Model iv, 74, 79

HPF High�Pass Filter 70

I2C Inter-Integrated Circuit 13, 17, 39

IAT Inter-Arrival Time 83, 84, 87, 89

IC Integrated Circuit 6, 10, 13, 16, 17, 20, 21, 23, 62, 64, 85, 92

IDE Integrated Development Environment 61

ILP Instruction�Level Parallelism 10

IMU Inertial Measurement Unit 20

IO Input/Output 16, 23, 24, 27, 32�34, 39, 61, 62

IP core Intellectual Property core 2, 3, 5, 6, 11, 26, 30, 83

IQ In-phase and Quadrature 23

ISA Instruction Set Architecture 2, 11, 24, 32

ISM Industrial, Scienti�c, and Medical 23

KP Knapsack Problem 14

MAP(2) Markovian Arrival Process with two states 84, 88�90

MCMC Markov Chain Monte Carlo 14

MCU MicroController Unit v, 1, 2, 4, 6, 9, 16�18, 20, 21, 24�26, 32, 61�64, 68, 82, 85, 92

MIMO Multiple-Input and Multiple-Output 23

ML Maximum Likelihood 74

x

MMCMC Metropolis Markov Chain Monte Carlo 74

MoC Model of Computation 3, 18

nesC network embedded systems C iii, vi, 5�7, 32, 36�40, 42�44, 46, 47, 51, 92, 93

NUMA Non�Uniform Memory Access 12, 30

OFDM Orthogonal Frequency�Division Multiplexing 23

OPTICS Ordering Points To Identify the Clustering Structure 74, 82, 83

OS Operating System 17, 19, 37, 40

PC Personal Computer 13, 14, 42

PLD Programmable Logic Device 2, 8, 10, 11, 18, 21

PSO Particle Swarm Optimization 14

RAM Random�Access Memory 11, 16, 18

RF Radio Frequency 1, 17, 20�24, 32, 62, 64, 83

RISC Reduced Instruction Set Computing 18, 24

ROM Read�Only Memory 18, 24

RTL Register�Transfer Level 3, 11

SA Simulated Annealing 14

SHM Structural Health Monitoring v, 3, 7, 69�71, 82, 83, 85, 86, 93

SHP System Hyper Pipelining 11, 25

SMP Symmetric MultiProcessing 11�13

SNR Signal�to�Noise Ratio 23

SoC System on Chip 11, 23, 25, 66

SoE System of Elements 66, 68

SPI Serial Peripheral Interface Bus 64, 66

SRAM Static Random�Access Memory 21, 24, 25, 34, 92

TDMA Time Division Multiple Access 17

TDoA Time Di�erence of Arrival v, 69, 74, 79, 81, 83, 86, 87

xi

TM Transactional Memory 19

UMA Uniform Memory Access 12

USB Universal Serial Bus 22, 23

USRP Universal Software Radio Peripheral 62

VHDL Very high speed integrated circuits Hardware Description Language 3, 18

VM Virtual Machine 17

WPD Wavelet Packet Decomposition iv, v, 70, 77, 78, 83, 87

WSN Wireless Sensor Network 5, 20, 22, 26, 32, 37, 50, 62�64, 69, 71, 78

XML Extensible Markup Language 51, 52

XSLT Extensible Stylesheet Language Transformations 51, 54, 57

xii

CHAPTER I

INTRODUCTION

Embedded systems have become an ubiquitous part of our contemporary environment.

This is made possible mainly by the continuous decrease in power consumption and size

of newer generations of semiconductor devices in accordance with Moore's law. Complete

embedded systems are designed with only a handful of components. The central piece of

these platforms is a MicroController Unit (MCU) with a set of integrated peripherals, such

as Analog�to�Digital Converters (ADCs), Digital�to�Analog Converters (DACs), hardware

timers, etc. For additional functionality, external peripheral devices are added to the plat-

form. These devices are themselves highly-integrated, and may provide various services,

such as Radio Frequency (RF) communication, optical sensing, motion sensing, etc. By em-

ploying e�cient duty-cycling, these platforms can operate at low power consumption levels

unachievable by other processing solutions, like general purpose processors found in desktop

computing.

However, with the proliferation of embedded technology, new use cases started to emerge

putting forward processing requirements not achievable by these conventional architectures.

New application type, referred to as Cyber-Physical Systems (CPSs), are de�ned by the

close interaction of physical and computing systems. A subset of CPSs observe physical

phenomenon and instantly process recordings, which can be best accomplished if close to

the source. Hence, these systems are tightly integrated with physical structures or complex

machinery, and form an essential part of the whole. These new CPS applications have

more complex computational requirements. More precisely, a subset of CPSs are multi-

channel high-throughput applications. They usually incorporate several sensors, for which

the recordings have to be processed concurrently at a su�ciently high rate in order to

e�ciently control the underlying system. These requirements of low power operation and

high computational throughput may only be met by recon�gurable parallel computing and

most recent silicon technology as opposed to the widespread single-core design philosophy.

Traditionally, the single-core design process for all kinds of embedded architectures re-

volves around �nding the right MCU for the task [32]. This may be di�cult and unlike

other system design processes of other engineering �elds. For instance, in case of engines,

it is fairly well-known how the end product is used, and requirements will not change over

time. CPSs � being in e�ect computer-based systems � are expected to adapt and provide

1

more functionality over time with updated software. Improvement needs might originate

from an ever changing physical environment, or an update could become available because

a better algorithm was developed.

Thus, embedded systems in general usually resort to excessive general-purpose computing

solutions to deliver the necessary performance and adaptability. However, this is inevitably

suboptimal and inherently ine�cient � if feasible at all. For instance, to achieve hard-real

time requirements and deterministic timing, the auto industry employs polling and lookup

tables, which contain pre-calculated system responses. This way computation is avoided as

every response is a memory load operation. Timing can be handled with relative ease, but

the cost is a much bigger memory with higher power consumption. This is inherent in and a

response to the fact that a general-purpose processor cannot easily guarantee the execution

of complicated algorithms in a timely and deterministic manner.

New high-throughput CPSs have basically two main alternatives to MCUs. On the one

hand, Digital Signal Processors (DSPs) represent a specialized form of embedded processors

that have support for certain types of computations at the Instruction Set Architecture (ISA)

level. On the other hand, Field�Programmable Gate Arrays (FPGAs), the most common

form of Programmable Logic Devices (PLDs), o�er the possibility to implement arbitrary

digital circuits. For high-throughput computation-intensive tasks, both outperform general-

purpose MCUs. Unfortunately, for severely resource-constrained battery-operated devices,

they consume too much power, and are thus inapplicable.

Conventional FPGAs store con�guration in an external memory. Hence, every time they

start up, the contents of said memory have to be read, resulting in an initial phase when the

fabric is already powered on, but not yet con�gured. It is during this short time period that

conventional FPGAs draw high inrush currents, thereby consuming power unnecessarily.

However, with the introduction of �ash-based process technology, it became possible to

store FPGA con�guration directly on chip. This had the advantage that the most important

power saving feature, duty-cycling became viable. Hence, �ash-based FPGAs represent

an interesting new direction of research for the embedded �eld. They provide a unique

opportunity to implement parts of the algorithm directly in hardware. This translates to

lower power consumption and better timing.

Also, a combination of these devices can be employed, for example, one or several MCUs

and an FPGA. Even with just an FPGA, there are several options to explore, e.g., one soft-

core instantiated in fabric along Intellectual Property cores (IP cores) for application-speci�c

processing. The main issue of this new FPGA technology is the fundamentally di�erent

programming paradigm. MCUs prominently employ simple imperative languages, like C,

2

describing algorithms in a sequential manner. FPGAs, on the other hand, follow a Register�

Transfer Level (RTL) programming concept with naturally more concurrent languages, like

Very high speed integrated circuits Hardware Description Language (VHDL) [70]. The two

Models of Computation (MoCs) are incompatible. Certain classes of calculations can be

conveniently expressed with the latter, resulting in e�cient IP cores implementations. Yet,

in most cases of high-level algorithm development, the RTL abstraction is cumbersome.

Any switch between these models e�ectively means manual (re)implementation. Once the

assignment of MoC components to hardware and software is complete, it is exceedingly

tedious to rearrange the setup [84].

Testing the performance under real load will almost certainly lead to rewrites, as system

parameters cannot be safely estimated before the whole implementation process �nished.

Also, since development is iterative, the above steps have to be repeated [24, 74, 83]. Thus,

development turns into a labor-intensive trial and error process, without the possibility to

rapidly converge towards an optimum solution. Opportunities for reuse of hardware and

software modules are limited, and proper trade-o� exploration is missing. Hence, the de-

velopment process will likely yield suboptimal results for the multi-channel high-throughput

application domain [81].

Thus, instead of utilizing the hardware directly, soft processing cores should be instan-

tiated in the fabric, which can then be programmed the conventional way. Consequently,

developers can use familiar languages and development environments. This necessitates a

software development framework that supports multi-core platforms.

In this new co-design philosophy, not only software but � due to soft-core processors �

the hardware itself becomes an adaptable, application-oriented part of the design. Hardware

and software are co-designed in a spiral development cycle [70, 84]. A prerequisite for this

integration are hardware and software modules with well-de�ned interfaces hiding actual

implementation details and encouraging trade-o� exploration. These abstractions enable

mapping that supports systematic re�nement of models into optimized implementations on

parallel architectures [58].

Our research focuses on this direction, but with the main idea of instantiating not one,

but several soft cores, in order to have a single chip multi-core embedded architecture.

The central motivation for our approach stems from the observation that contemporary

embedded CPSs have to perform many loosely connected high-throughput tasks in a tightly

timed parallel manner.

Consider the example of Structural Health Monitoring (SHM) employing Acoustic Emis-

sion (AE) signals. This application is going to be the comprehensive use case of this new

concept, and is described in great detail in chapter VI. In this example, cracking events in

3

metal structures form ultrasonic stress waves, which can be detected. Evaluation of these

signals provides deep insight into the structure's condition. A tightly integrated embedded

system has the advantage that it can perform the analysis in real-time. The main tasks

of the system include onset time detection of AE signals, the classi�cation, and the radio

transmission of important events. All of these tasks are fairly independent with individual

timing requirements, which can be more easily met by individual cores.

The contributions of this thesis include an end-to-end design approach that yields multi-

core applications with event-driven inter-core communication, a detailed simulation environ-

ment, and a comprehensive case study.

Solution strategy

Our concept involves the functional decomposition of complex applications with the goal

to identify the autonomous modular components of the design. Components associated

with certain functionality are assigned to individual soft processing cores, which only have

limited responsibility. Our approach for parallel embedded computing focuses on a subtype

of problems with messaging-based loose connection among cores. Also, computing nodes

perform di�erent tasks, and hence have di�erent codes running.

From the programmers point of view, this approach yields simpler per core programs

and reduced complexity. From an architectural point of view, the di�erent cores may have

di�erent parameters, for example, lower clock rates, which may reduce power consumption.

But, as the cores only serve certain limited purposes, latency and response time can still be

lower than in the single MCU case. As embedded systems have to perform an increasing

number of critical tasks, fault tolerance is becoming an ever more important issue. Another

advantage of this multi-core approach and functional decomposition is that it allows the

identi�cation of crucial components, which may be duplicated for redundancy. For example,

voting systems may be built in the design to guarantee that failure of a single component

does not e�ect the rest of the system.

The outlined system concept has many associated challenges. Parallel architectures have

already been extensively researched, but never widely employed in the resource-constrained

embedded application �eld. The described recon�gurable computing-based architecture will

have to support integration of hardware and software components. For the developer, the

architecture has to provide a method to conveniently move functionality from soft cores to

the hardware and back, if required. The assignment of these components to cores also has

to be simple, with automated tools helping the developers �nding feasible solutions.

4

Soft-Core architecture

As a �rst step towards a soft multi-core system, a general architecture concept was

conceived. The key question is how the soft-cores and IP cores will communicate and syn-

chronize. Communication of systems made up of modular components can be categorized

either as loosely or tightly coupled. Systems with tightly coupled communication have their

modules integrated in a very interdependent manner. For instance, in case of shared mem-

ory with blocking mutually exclusive access, the participating cores have to wait for resource

access without being able to perform any useful computations in the meantime. Hence, code

execution of one part is very much dependent on what other system segments are currently

doing. This has the advantage that the whole system is inherently synchronized to a certain

degree at all times. But this also means that certain processing steps cannot be instantly

executed because of unrelated processes. For this reason, the tightly coupled approach is

less suitable in our case. In order to be able to serve strictly timed peripherals, the loosely

coupled concept with its independent and autonomous components seems more favorable.

According to this, an event-driven queue-based messaging architecture was developed,

where each processing unit has dedicated data memory and dedicated program memory. As

each core can be regarded as a separate individual unit, programming can be performed com-

pletely independently without a�ecting other cores. This independence is a crucial feature

of the design, as separate cores are meant to handle individual hardware resources. The goal

was to provide exclusive access to the soft core for the resource handling task and avoid costly

context switches. To that end, communication with other cores is non blocking. To achieve

this, a dedicated message queue and message delivery framework was necessary. Since com-

munication involves a rather complex messaging procedure, delivery times may not be fully

deterministic. Time-critical operations should be performed within the execution thread of

a single dedicated core. Although this architecture concept imposes some restrictions on the

design, the bene�ts outweigh the disadvantages as the clear partitioning of complex tasks

helps the programmer to keep the overview of time-critical segments.

Programming paradigm

The network embedded systems C (nesC) language � widely employed in the Wireless

Sensor Network (WSN) community � encapsulates sequential blocks of algorithms in au-

tonomous components that have inner states and only interact through interfaces, which are

well-de�ned sets of functions. This approach, along with the basic TinyOS framework, pro-

vides a development method using interchangeable components, thus, furthering modularity.

This component-based approach �ts the proposed multi-core architecture quite well, even

though the concept was never meant for multi-core architectures and parallel execution.

5

The advantage of nesC is its highly modular approach that e�ectively hides the complex-

ity of the underlying framework and hardware access. The developer only has to deal with

top level components. This complicates the restructuring of existing single-core programs

to multi-core architectures, as high-level components may have complex interdependencies

not apparent at �rst sight. The goal is to support developers in designating top-level com-

ponents for di�erent processing units, and have an automated process check the feasibility

of the assignment. If it is indeed a feasible solution, the assignment of all the components

will be automatically generated by the proposed development tool.

The process can rely on the component containment and component interconnection

information extracted by the nesC compiler. This is the key feature to provide rapid iteration

through various designs, and as such, is tightly integrated with the development environment.

Development and simulation

In the early phases of the application-speci�c design, any choice of actual hardware may

impose inherent limitations on overall system capabilities not immediately evident to the

developer (especially in case of highly complicated systems), thereby reducing the solution

space for the given problem and yielding suboptimal results. It is thus preferable to be able

to test ideas in the least restrictive way but at high enough detail using a sophisticated

simulation environment.

Typical simulation approaches either represent the system at the transaction level only

or give detailed insight into only some severely limited parts. In order to be able to truly

iterate towards an optimum, the developer has to be able to test concepts at various levels

and at various points of the system, such as at the instruction level, hardware resource access,

networking, etc. Also, to ease the migration of ideas from concepts to actual code running on

hardware, the simulation framework has to support the testing of regular compiled binaries.

One tool for embedded system simulation that satis�es all of the above described criteria,

is the Avrora cycle-accurate embedded platform and sensor network simulator. However,

the original software package lacks some crucial features necessary for the simulation of

recon�gurable multi-core architectures. For instance, only a limited set of microcontrollers

and architectures was supported, meaning that simulated platforms could only consist of a

single central MCU and some connected Integrated Circuits (ICs). The framework has been

extended to capture every aspect of multi-core system design with special focus on custom

IP cores and the proposed queue-based messaging architecture.

6

The structure of this document

This thesis is organized as follows. Chapter II gives an overview on parallel and re-

con�gurable computing. In chapter III the message-queue based architecture for the novel

embedded FPGA platforms is presented. Chapter IV presents nesC and the programming

paradigms employed for the multi-core partitioning of applications. Chapter V discusses

the simulation environment meant to enable rapid design iterations and in-depth program

analysis. Chapter VI shows how the above described ideas were utilized on a SHM example.

Finally, chapter VII concludes the thesis.

7

CHAPTER II

BACKGROUND

The purpose of this chapter is to give an overall view on parallel embedded development,

the resource allocation problem, and examples for exiting systems. The discussion below

is by no means exhaustive. These topics represent several decades of research in computer

engineering, and a thorough study is well beyond the scope of this chapter. The goal here is

to look at the essential aspects and concepts to convey an intuitive understanding. Also, the

aim is to �nd out where some of the issues lie, so we can start coming up with well-founded

hardware and software design choices.

Concurrent and parallel architectures

This section discusses parallel embedded development with a focus on soft multi-core

architectures and PLD utilization for CPSs [85, 56]. The feasibility of a concurrent design

is summed up by Amdahl's law for parallel speedup:

S(N) =
1

(1− P) + P
N

(1)

where P is the proportion of the runtime that can be parallel executed on N computa-

tional units resulting in a speedup of S(N). The equation clari�es that parallel execution

does not always yield performance increase. For example, depending on the problem, in-

stead of many homogeneous processing units, it may be better to have less with a few high

performance processors [8]. This is only with regards to speed, and the equation does not

deal with the many other issues associated with actual implementation. For example, power

consumption of the whole system was shown to have a complicated, non-linear relation with

the number of units and clock rates. Slower and consequently less power hungry processors

in parallel do not always require less energy than one high-power, fast processor [31].

Parallel concepts

There are many ways of approaching parallelism, which can be reduced to assignment

of data to computing units and assignment of tasks to computing units [65]. No single

assignment is optimal in all cases. Consider the following examples [78].

8

Fractal calculations, like the Mandelbrot set, can be trivially distributed among homo-

geneous computing units. The same code has to run on each computing unit with no data

shared or exchanged during the entire operation. Only the boundaries of the space have to

be speci�ed, and results have to be gathered.

The N-body problem in astrophysics investigates how a system of point masses in�uence

each other's motion. The di�culty is that gravitational forces act between any two objects

at any time. Thus, if we divide the objects equally between units, we end up with a solution

requiring a lot of data exchange. Computing units have to constantly query the position of

the other units' objects. Here mutually exclusive shared memory can mitigate data transfer

penalties, while all units can run the same code.

The Barnes-Hut N-body model is a simpli�cation of the above problem. The e�ect of

several objects in the far distance is modeled with a single combined mass [20]. The same

or similar code may run on all computing unit, but space segments are associated with

processors, not objects. E�ects of combined masses in the distance mean low data transfers

that allows message passing, as opposed to shared memory with its race condition issues.

The N-queens problem is a simple way to demonstrate unintentional, but unavoidable

unbalanced workload partitioning. Find all the possible ways of placing N queens on a

chessboard without any of them being able to capture any of the others. A solution is to

recursively place queens on possible positions, and pass these chessboards to other processors

to perform the same task. This goes on until N queens are placed or none can be. When

distributing the task, the number of operations on a processing unit is not known a priori.

The same code is executed, with minimal data exchange, but resulting in very inconsistent

workload.

Computing units

In essence, all forms of computations boil down to executions of individual operations.

The instruction-stream-based traditional von Neumann general-purpose machine paradigm �

and to a certain degree actual implementation of simple MCUs � follows the main steps of (i)

(optionally) reading from memory to registers, (ii) performing operations on register contents

writing results to registers, (iii) and �nally (optionally) storing data in memory. All in order,

sequentially executing one operation at a time, controlled by a program counter [70, 37].

This concept su�ers severe limitations, which are overcome by smart techniques in actual

products. Thus, implementations are by now completely detached from the programmer's

model. Timing behavior is unpredictable making real-time computations complicated.

For instance, out-of-order execution and superscalar (multiple instructions issued simul-

taneously) techniques completely go against fundamental assumptions on the programmer's

9

side to exploit Instruction�Level Parallelism (ILP) in hopes of achieving some performance

gains. These techniques require redundant rename registers in the order of hundreds for

contemporary machines. This signi�cantly increases the number of operation input sources

and operation output sinks, which is a huge burden on wiring and multiplexing. These

housekeeping, switching, administrative circuits consume more power, real estate, and time

in contemporary high-performance processors than parts performing operations.

Current process technology is the most e�cient � in terms of performance per joule and

silicon area � for pipelined processors of �ve-to-eight stages [8]. Any e�ort to further increase

performance will likely hit one or more of the following �walls� [7]:

• ILP wall: the lack of increase in discoverable parallelism in sequential program code

to maintain high utilization of pipelined processors with multiple execution units.

• Power wall: the exponential increase of power consumption of Complementary Metal�

Oxide�Semiconductor (CMOS) ICs with increasing clock rates. Decreasing device size

may help, but eventually increases power consumption due to leakage currents.

• Memory wall: the growing gap between processor and memory speeds. Whereas

memory access used to have no penalties and instruction execution took considerable

amount of time, it is quite the other way around for contemporary devices.

The incentive to turn to multi-core solutions stemmed from this constantly and eventually

sharply declining performance bene�t associated with clock rate maximization and increased

hardware complexity. [62] shows an example of a multi-core architecture with four simple

cores being more e�cient in terms of speed on the same die area than a wide-issue superscalar

processor. Thus, even for personal computing, parallel concepts originally conceived in the

'60s become a viable alternative [8].

Parallelism is very di�erent for resource-constrained embedded systems. To meet strict

requirements, high-throughput embedded systems rely on application-speci�c and adapt-

able computing. Speedup factors and power consumption reductions of up to four orders

of magnitude for certain tasks my be achieved this way. This is an apparent paradox since

the clock frequency is substantially lower, and for recon�gurable PLDs even other param-

eters (i.e., area, number of transistors for a single functional unit, etc.) are behind that of

microprocessors � again by orders of magnitude [70].

Recon�gurable computing

The idea to have application-speci�c circuitry alongside more general-purpose computa-

tional units to form a heterogeneous parallel computer was �rst published in 1960 [30, 28, 27].

10

However, at the time of its inception, the technology was not ready and able to deliver useful

prototypes. Those have only emerged in the '80s thanks to the constant progress of silicon

technology. Contemporary o�-the-shelf System on Chips (SoCs) architectures commonly in-

clude PLDs, which provide the necessary versatility for application-speci�c purposes [38, 61].

State of the art SoCs feature enough logic gates and block Random-Access Memories

(RAMs) to implement complex operations and to support various IP cores and soft processing

units. Some FPGAs come with complete DSP blocks, which are bene�cial when forming the

Arithmetic Logic Units (ALUs) of soft processors [19]. There are plenty of soft-core RTL

designs available. Some are vendor speci�c and locked to their hardware, others are open-

source and cross-platform. Most cores implement a well-known ISA, some cores strive to be

fully compatible with existing hardware. Others extend existing ISAs with precision timing

capabilities [49, 17, 16].

The RTL description of soft cores makes it possible to easily add additional register levels

to the design. This is referred to as the C-slowing technique. It can improve throughput

of digital circuits, if used in conjunction with retiming. The concept can also be utilized to

increase the perceived number of independent digital circuits (instead of throughput), which

is called System Hyper Pipelining (SHP) [77]. Reported examples show that the number

of instantiated cores on the same fabric can be �ve times more. This makes the method

exceptionally useful for soft multi-core SoC projects.

The software-based nature of cores also provides unique recon�gurability. The �rst main

approach is the customization of instructions [73]. Using Application�Speci�c Instruction�

set Processors (ASIPs) means the technique of adding and removing instructions as needed

[54]. For example, application code can be �rst compiled with every possible instruction in

mind. But subsequent scanning of the compiled binary will show what instructions are really

used. Unused instructions can be discarded completely from the hardware [56]. If certain

operations and algorithms are found to be used extensively, it might be worth implementing

them in PLD hardware directly. For instance, a logarithm, using the COordinate Rotation

DIgital Computer (CORDIC) iterative method, is far more e�cient than a pure software

equivalent.

The other approach is customization of processor structure. Conjoined architectures have

been investigated, where some execution units were shared between cores. It was found that

the technique saved fabric space and power, without having signi�cant adverse e�ects on

execution times [73]. Also, multiple versions of execution units (like multipliers) exist to

chose from.

When distribution of tasks is considered, Asymmetric MultiProcessing (AMP) and Sym-

metric MultiProcessing (SMP) systems can be distinguished. The former has processors

11

dedicated to a limited set of tasks, while the latter treats processors as equal and allows

any task on any processor [54]. AMP was typical of early systems. For instance, one com-

puting unit was solely dedicated to the operating system and the other to user programs.

Contemporary computers are dominantly SMP machines.

Memory sharing

Having several computing units working together on shared problems necessitates some

form of inter-core communication. If the main goal of communication is to signal an event,

it is su�cient to simply change the state of an input pin. However, communication usually

revolves around the transfer of more data than the processing unit can handle at once, thus

processor accessible memory has to be involved in some form.

Architectures can be distributed or shared memory systems. With the former, each

processor possesses exclusive memory. The contents of this memory is only accessible by

others indirectly, i.e., by sending messages to the memory owner and explicitly asking. To

transfer large chunks of data from one memory to the other, the Direct Memory Access

(DMA) method is the straightforward well-known solution.

The second option of shared memory is e�ectively the opposite concept. Earlier architec-

tures used shared memory with Uniform Memory Access (UMA), which means that memory

address space had uniform access times for all units. Individual processors very likely used

private caches, some systems even had extra memory dedicated to that single purpose, which

is called a Cache Only Memory Architecture (COMA). On the contrary, newer approaches

tend to be Non�Uniform Memory Access (NUMA) machines. The address space is still

shared, but each unit has segments that it can access faster. This has the advantage of

faster execution times due to code locality, but su�ers from memory coherency and con-

sistency issues, which are usually overcome with hardware mechanisms like the snooping

protocols or directory-based protocols [37].

Interconnections

Systems can be categorized either as loosely-coupled or tightly-coupled [70, 37]. Loosely-

coupled multiprocessor systems refer to standalone computing units connected via a high

speed communication layer, e.g., a fast local network. Contrarily, a tightly-coupled architec-

ture is more integrated and interdependent. Processors often coexist in the same package,

likely share memory, and are connected and synchronized at a low level. Tightly-coupled

systems outperform their loosely-coupled counterparts in terms of energy e�ciency, power

consumption, size, and inter-core communication speed. However, loosely-coupled systems

12

are more �exible and support gradual replacements and upgrades of computing units. Hence,

they do not require an initial high design investment and long development times. During

normal operation, loosely-coupled parts also have less direct e�ect on each other, so the

system is more resilient towards the failure of single parts.

The most straightforward connection type or topology is when every unit is directly

connected to every other unit it needs to communicate with. The overhead of growing edge

numbers and the number of wire crosses renders this approach only feasible for a small

number of units. Instead, traditionally, bus type connections are utilized with a shared

transmission medium. This has less wiring and is very useful for broadcasting, but presents

the bus as a bottleneck. For instance, the Inter-Integrated Circuit (I2C) is a very popular

bus speci�cation for embedded systems for interconnecting ICs, while AMBA and Wishbone

are examples for on-chip buses [70].

Given a certain level of complexity, it makes sense to talk about a network of computing

units. The assumption is that inter-core communication reaches a complexity that justi�es

the addition of a network layer. The designer has many degrees of freedom to form a

network [34], with well-documented topologies like the Fat Tree [14, 48]. The additional

feature requirements of networks (like routing) can introduce a signi�cant burden on overall

system power and area usage. The routing and bu�ers can occupy as much as 75% of total

chip area, which can be reduced � without sacri�cing throughput and delay � by employing

bu�erless routing [57].

Also, if connection types are examined with regards to throughput and delay, two distinc-

tive approaches emerge. Circuit switching, as known from early wired telephone networking,

provides a channel with �xed parameters between two nodes. Connectionless and connection-

oriented packet switching are more �exible. But they do not provide a dedicated channel,

do not guarantee parameters, and can even change data arrival order.

Resource allocation and deployment

This section provides an overview of the fundamental aspects of resource allocation. The

main question is that given a set of processing unit types, tasks, and constraints (e.g., certain

components have to communicate with each other), how can tasks be mapped to computing

nodes?

First some de�nitions. Regarding the time of the allocation, static and dynamic methods

can be distinguished [70]. Dynamic allocation at run-time [74] is now very common with

multi-core SMP Personal Computers (PCs). Static, compile time assignment is more typical

of resource-constrained embedded machines [2, 85, 56, 60, 64]. In terms of who is responsi-

ble for the allocation, the two main approaches are centralized and distributed techniques.

13

Centralized means some sort of a manager-worker relationship, where the manager is most

likely also responsible for load balancing. State of the art PCs operate this way. Distributed

solutions are necessary, when no central management is possible. Here the worker nodes

themselves divide the tasks among each other, as seen with the N-queens problem.

The nature of the problem and solution strategies

The branch of mathematics that is dealing with �nding (in some sense) optimal subsets

of objects within �nite sets is called combinatorial optimization. Resource allocation is

a typical use case for this �eld, and consequently shares the same fundamental issue. The

optimum very likely can not be expressed analytically, and an exhaustive search is practically

impossible due to the size of the solution space. The way these problems are solved, is by

employing iterative algorithms that converge (maybe only probabilistically) towards the

optimum [71].

E�cient algorithms exist for certain set of well-known problems, like the Knapsack Prob-

lem (KP) and the Assignment Problem (AP). However, if researchers can not formulate

their resource allocation tasks such that they resemble one of the well-known (and solved)

problems, only suboptimal algorithms may be available. In most cases these problems tend

to be NP-complete [47, 26, 63, 18] or even NP-hard [15, 6]. Thus, for quick (sub-optimal)

results some form of general or problem-speci�c heuristics are employed, e.g., Markov Chain

Monte Carlo (MCMC) random walks [4], Simulated Annealing (SA) [46], Genetic Algorithm

(GA) [68, 6], and Particle Swarm Optimization (PSO) [63, 13]. A crucial assumption here

is that it is possible to de�ne a multiple input single output utility or cost function that is

indicative of the quality of a con�guration. Such a function can be employed to select the

(in some sense) optimal point among all others [68].

The goal of optimization

Although single output cost functions are a very popular concept, not all optimization

problems can or should be approached this way. For instance, a fundamentally di�erent

approach is called global c-approximation. Contrarily to a single scalar value, it is based

on n distinct objectives (each equally important) represented by a vector [43]. Di�erent

resource allocations are compared by comparing their vectors, which can be interpreted as

points in the design space. Vector coordinates may be reordered and multiplied with a

constant for certain problems, e.g., scheduling. Two allocations are considered equally good,

if their respective coordinates are within a c multiple of each other.

14

Also, it is not trivial to de�ne single output cost functions. Domain-speci�c variations

could reward shorter execution times or lower power consumption, but for certain problems

more abstract notions have to be introduced [44]. Fairness and e�ciency are among these

ideas proposed for the mapping of tasks with heterogeneous requirements to cores with

heterogeneous capabilities [41]. The authors of this paper present a generally applicable

family of functions with only two parameters, which can favor fairness over e�ciency, or the

other way around. Furthermore, constraining said parameters will yield even more bene�cial

properties of the function and consequently the allocation itself [44].

In the unlikely case that the utility function is of a special form, like a convex or a linear

expression, fast converging optimization algorithms can be applied. These are described in

the �eld of convex optimization and linear programming, respectively [71, 6]. However, this

usually requires a strong simpli�cation of the problem [6].

If the design space can be depicted in such a way that the axes � corresponding to the

dimensions of the space � indicate favorable properties of the system in a consistent manner

(e.g., for a car the speed of the vehicle, where a higher value is always considered better), the

notion of Pareto points can be introduced [72, 68]. This concept originates from economics,

and is a useful tool to distinguish system con�gurations that represent meaningful trade-

o�s. A Pareto point is a con�guration in the design space that is in some respect (that

is to say along at least one axis) better than any other. When dealing with optimization,

we are probably exclusively interested in these Pareto points � forming the so called Pareto

front. This is because for any other regular point, there exists at least one con�guration

that is better in every way. Pareto points can be found using heuristics mentioned above,

for instance.

With the Pareto front at hand, the question remains which Pareto point to choose? One

approach is the above mentioned utility function method. But probably, the very reason,

why Pareto points were calculated in the �rst place, was that no such function exists, or

it is inconclusive when making this �nal decision. So, some other criterion is required, like

Pareto dominance. Here the superiority of every Pareto point is judged based on how many

out of all the regular points are in every respect worse.

Related system and architecture examples

In this section, examples of existing systems, architectures are presented. These examples

are meant to showcase (i) practical solutions applicable for the embedded domain and (ii)

how software and hardware issues of constrained parallel architectures were tackled in the

past.

15

Early architectures

Parallel recon�gurable computing has been investigated for many decades. The early

attempts were typically aimed at the improvement of mainframe level computers. The goal

of research was to improve scienti�c calculations or data-intensive processing. As such,

these architectures can not be considered embedded systems, but because of the immature

technology, they had to face similar challenges, e.g., power constraints, low clock rates, and

limited memory.

The reported earliest concept and architecture for recon�gurable parallel computing is

the UCLA �xed-plus-variable (F+V) structure computer from the early '60s [30, 27, 28, 29].

The concept was to have a main processor control the recon�gurable hardware, which would

then be tailored to perform a speci�c task, such as image processing or pattern matching.

With the task executed, the hardware would be rearranged to perform some other task. This

resulted in a hybrid computer structure combining the �exibility of software with the speed

of hardware.

A parallel computing architecture from the '80s was the Connection Machine that had

processors as many as 65,536 [22]. The original prototype had processors connected in a

hypercubic arrangement, each had 4 kbit of RAM. Programming used a version of LISP and

subsequentially C. It was mainly used for physical simulations.

Other early setup showcasing a di�erent but very adaptable parallel platform concept

built on the advancements of silicon technology was the Transputer [78, 1, 65] from the '80s.

It was basically a set of expansion cards in a personal computer, with each transputer unit

consisting of one processor, small memory, and four bidirectional channels, which could be

used to hook up to other transputer units. Every unit had a uni�ed 32 bit address space,

containing Input/Output (IO), local, and global memory, latter much slower to access, with

communication (through the four bidirectional channels) being memory mapped as well.

Multiple threads were allowed to run on transputer units with hardware support for fast

context switching. Software development was done with imperative languages, the same

compiled code was loaded on every unit, each transputer selected appropriate execution

branch according to its hard-coded node ID.

Multi-core embedded architectures

Advancements in silicon process technology have reached the tipping point, where the

small size of MCUs makes it possible to add additional cores to even the most resource-

constrained designs. In fact, even if it was not originally intended, given a design with

sophisticated contemporary ICs, it is very likely to end up with a multi-core architecture.

Any kind of state of the art ICs probably already includes an MCU of some sort. For instance,

16

the CC2520 is advertised merely as an RF transceiver, but readily includes a computing core.

Under these circumstances, it is a logical to partition the design into autonomous modules

with a well-de�ned purpose. Hence, many projects result in stackable platforms with units

dedicated to power handling, complex processing, sensing, or communication. The biggest

di�erence is the number and interconnections of cores.

The straightforward approaches employ the available MCUs and interfaces, like PIC cores

and I2C respectively [67].

Other research focuses on the design cycle of prototype, pilot, and production, with a

reusable module consisting of CC2420 RF transceiver, MCU, and �ash memory ICs. The

parts are placed on a 1 inch by 1 inch board, with vias on the perimeter cut in half for

easy integration. No communication interface, method, or protocol is speci�ed, IC pins are

directly wired to the perimeter connectors [24].

More complicated approaches have networks of stacked sensor nodes connected through

busses, where individual nodes are running uC/OS-II real-time Operating System (OS) with

a complete network stack (phy, link, net). In the traditional �exible node architecture re-

source control is centralized on a single high-power processor of some sort. But here, each

resource in a MASS node is built into physically separable modules with supporting resource-

speci�c processors. This makes it straightforward for developers to extend both the hardware

and software architecture while preserving e�ciency goals. Adapting to complicated require-

ments is a matter of connecting additional modules to the system [25].

Some architectures dedicate application-speci�c hardware to handle communication. That

way the main processing unit is free to perform useful computation. An example for this

would be the mPlatform, which has the usual stackable modules (CC2420 RF, MCU, power).

Communication uses busses in a Time Division Multiple Access (TDMA) way with dedicated

bus drivers implemented in Complex Programmable Logic Device (CPLD) providing a serial

interface towards the processors [52].

Stackable sensor platforms, however, have inherent size constraints imposed by the pack-

aging technology. Hence, in an e�ort to miniaturize, research is heading towards platform

stacks built by only the layers of silicon and completely omitting the package. This results

in complex architectures occupying space as small as a couple mm3 [61].

As for the programming of such embedded systems, usually low-level solutions are em-

ployed, but higher-level languages were investigated as well. [66] shows an example of a

complete JAVA Virtual Machine (VM) on a sensor platform. An Electrically Erasable Pro-

grammable Read-Only Memory (EEPROM) memory at a prede�ned external memory ad-

dress stores software components that are loadable at run-time. If the overhead associated

with the framework is acceptable this system o�ers unique plug'n'play capabilities.

17

Soft multi-core architectures

The application of soft-cores within recon�gurable PLDs is not entirely new. Many

researchers have recognized the potential of such systems and have made signi�cant con-

tributions. In this section, FPGA-based architectures are discussed that combine MCUs

and soft-cores. These are the multi-core systems that are the most similar to our proposed

concept.

[85] is an example for a data�ow approach on a system on chip, with parallelism analysis

at compile time, and scheduling based on worst case execution times. Resource allocation will

have some components running in a single Altera Nios Reduced Instruction Set Computing

(RISC) type core, while others in FPGA fabric. Connection of said components and the core

are realized with a bus, the e�ciency of which is assured with compile time bus arbitration

analysis.

The main di�erence between this idea and the proposed approach is that in this case

processing has to (i) strictly follow the Data�Flow Graph (DFG) Model of Computation

(MoC) and uses static precalculated scheduling, and (ii) all inter-component communications

use the same bus. Our approach envisions no such restrictions, as communication can be

direct connection of components, and scheduling is not enforced (it is the responsibility of

the application developer) allowing data drops and graceful degradation.

[56] again is an example for compile time analysis and resource allocation. Soft cores are

generated for DFG nodes as needed, code dedicated to every core is analyzed, and super�uous

processor subunits are removed. RAM and Read�Only Memory (ROM) contents are also

generated.

The key di�erences from the work presented here are the development process, where the

cycle accuracy of cores is guaranteed by simulating VHDL code with hardware acceleration,

as opposed to the fast software only solution discussed in later sections.

Other works advocating the favorable properties of recon�gurable fabric interconnected

with several processors include the ReMAP architecture [82], where fabric shared among

cores is employed for �exible inter-process communication and processing resulting in a

graph like program structure, once more reminiscent of the data�ow idea. The architecture

showed improved computational performance in simulation.

Di�erence compared to the proposed work is the fundamental concept of fabric utilization.

The ReMAP architecture uses fabric primarily as a means for communication among physical

cores with additional simple computations. Our approach uses the fabric much more freely,

with no such limitations.

Other research used FPGA fabric exclusively to implement a soft multi-core system of

four SPARC processors connected with a 64 bit bus, with each core running a complete

18

OS. Shared memory model was used for communication using the OpenMP Application

Programming Interface (API), and platform capabilities were tested with GSM and ADPCM

protocol implementations [50]. In contrast, our work does not limit core interconnections

to a bus, and assumes a much less resource-intensive OS more applicable for lightweight

embedded controller systems.

In [40], the authors argue in favor of standardized virtual fabric on top of real FPGA

fabric in conjunction with a hardware microcontroller that is capable of dynamically recon-

�guring it during run-time for application-speci�c processing tasks. The paper focuses on the

e�cient run-time recon�guration of virtual fabric for di�erent algorithms, and thus envisions

a more hardware like approach for computation, as opposed to our work, where hardware

and software components are treated as equal.

[76] is a research focused on the fault tolerant connection of multiple physical cores and

fabric components within the FPGA utilizing a bus structure with built in cache memories.

The cache-based communication is similar to the concept presented in this document. But

the authors focus on the fault tolerant aspect of communication, and only consider bus type

connection, which due to arbitration, may in fact be suboptimal in some cases.

[75] shows an example for a more complicated solution where the processor runs a com-

plete Linux-based operating system called BORPH. It can compile, synthesize, and upload

con�gurations into the fabric on-the-�y, which are then treated like regular processes. Com-

mand line tools can be used to stream data into these hardware processes, and their output

can be piped to the input of other software or hardware processes. If two such processes

are connected directly, the operating system takes care that data is streamed only directly

between the two components in hardware.

Of course, seriously power constrained systems are not capable of running an OS this

sophisticated performing the above mentioned complicated tasks. Also, the pipelining ap-

proach limits the type of topologies that can be e�ciently created.

Also Linux based is the ATLAS platform [83] developed mainly to research the Trans-

actional Memory (TM) concept, with a main processor running the OS and several soft

cores on several FPGAs running parallel threads of the system. The system is meant to be

a testbed and includes frameworks for pro�ling and detection of violations, over�ows, and

bottlenecks of multi-threaded programs.

This system is very unlike the previously described ones, as it aims to be a hardware

simulator. It is thus inapplicable for embedded systems, although the concept of in-fabric

instantiated interconnected cores is also present here.

19

CHAPTER III

HARDWARE ARCHITECTURE

The goal of this chapter is to discuss how recent hardware development results can

be utilized to build more e�cient soft multi-core parallel embedded systems with a focus

on WSNs. A state-of-the-art soft multi-core approach with the appropriate programming

model seems a promising, new alternative to the well established MCU architectures. The

design problem is shifted towards a combined hardware and software development, where the

hardware is not �rmly speci�ed, but instead the needs of a particular application determine

the con�guration.

Analysis

Simple embedded systems are typically implemented on single-board microcontroller-

based hardware. These systems may also include application-speci�c highly-integrated ICs,

e.g., RF transceivers, Inertial Measurement Units (IMUs), optical sensors, actuator drivers,

or other complex peripherals. There are many di�erent commercial MCUs and they all

support this architecture with readily available reference boards, evaluation kits, and cor-

responding development environments. The abundance of available solutions gave rise to

the rapid development of a large variety of embedded devices. However, the conventional

approach with a single simple MCU has unavoidable shortcomings.

For instance, very high clock rates may be necessary if all peripherals are to be served in

a timely manner. A failure to increase the clock rate su�ciently can lead to deadline misses

and interrupt misses. From a programming point of view, the growing number of peripherals

and tasks increase the overall code complexity as well. The single execution thread, which

has to deal with several peripherals and consequently interrupts, will have to go through

several context switches while serving nested interrupts. This will add signi�cant jitter to

interrupt handling times. Also, developers have to be aware of the e�ects of several interrupt

handling routines being executed in a single thread � assuming that the necessary clock rate

could be properly determined beforehand.

Tendencies for embedded computing and sensor nodes point to more peripherals and more

processing power requirements. Applications, which require higher computational power

than state-of-the-art MCUs can provide, need to choose another direction. It has been

long known that application-speci�c processors have better computational properties than

20

general purpose processors. The two main alternatives are DSPs (or other high performance

microprocessors) and PLDs predominantly in the form of FPGAs. The latter category

represents the more suitable choice for embedded systems, as it supports the instantiation

of a variety of arbitrary digital circuits and easy reprogramming by the users. This could

mean various soft MCU cores and interconnection networks within a single IC.

However, FPGA platforms face serious issues for duty cycling � one of the most important

power saving feature � as every restart of their circuitry is penalized by high inrush currents

and thus high power consumption. This is due to the uncon�gured state of the fabric at

startup, which only gets setup once the circuit con�guration is loaded from an external Static

Random�Access Memory (SRAM). On the other hand, �ash-based FPGA technology is a

feasible solution even from the power consumption point of view. As opposed to conventional

devices, it stores the con�guration on chip, so that it is always available right form the

startup. Thus, resets and duty cycling are no cause for increased power demand, and novel

�ash FPGA platforms can be designed.

By utilizing �ash FPGAs a true parallel, soft multi-core approach can be embraced.

The fundamental idea is to have largely independent, parallel running cores dedicated to a

single or a limited set of peripherals and tasks � possibly with real-time requirements. High-

throughput, time sensitive processing steps can be taken care of by application-speci�c digital

circuits with shorter, more deterministic run-times. This setup is especially bene�cial for

data�ow type computations, like DSP, however, this is not merely a data�ow problem. The

architecture addresses the more general �eld of high-throughput applications with partial

real-time requirements. For example, a system with a RF IC very likely has strict deadlines

to meet in order to successfully communicate, while at the same time other aspects of the

operation may not have such constraints. It is important to emphasize that end-to-end real-

time requirements of the whole system are not addressed here. The focus is on the real-time

requirements of certain independent, limited tasks.

The bene�ts of this architecture are reduced complexity and simpler programs. The

independent parts are much more predictable and exhibit a more easily understandable

behavior, while still providing lower latency and shorter response times. Also, cores can run

at their own optimal speeds forming a Globally Asynchronous Locally Synchronous (GALS)

system. In fact, above a certain complexity and clock rate this is a necessity, as global

synchrony is not possible. The GALS design can achieve power savings due to two main

factors. Firstly, computing cores can choose lower clock rates, secondly, power dissipation

due to routing a global clock signal across IC does not exist. The clock distribution network

is signi�cantly easier to design at the local level. Global clock skew and slew rate issues are

also alleviated since the design complexity of each synchronous block is reduced and easier

21

to manage. Furthermore, the presence of several independent clocks can reduce switching

noise, and GALS systems also tend to be more resilient towards ElectroMagnetic Interference

(EMI) [69]. In addition, malfunctioning of a single core does not directly in�uence the rest of

the system, and critical functionality can even be redundantly distributed on multiple cores,

providing fault tolerance.

MarmotE platform example

In the following, our custom-designed, universal, low-power, multi-channel, wireless sen-

sor node called MarmotE is brie�y presented [12], see Figure 1a, to serve as an example for

the above described novel �ash FPGA platform concept. The primary driving force behind

the hardware design was to create a general and �exible WSN research platform. Our most

important goal was to enable experimentation with power saving techniques (such as en-

ergy harvesting), various analog sensor and radio front-ends, recon�gurable processing (such

as cross-layer optimization for RF communication), and embedded multi-core computing

approaches.

(a) Modular layers. (b) Simpli�ed block diagram.

Figure 1: MarmotE sensor platform.

The platform follows a modular layered approach, and can be physically and logically

divided into three parts, see Figure 1b. The bottom layer manages energy, featuring power

monitoring and interfaces for batteries, wall power, and other sources, e.g., energy harvesting

units. The middle layer is responsible for domain conversion, digital processing based on

the SmartFusion �ash FPGA, and high-speed connectivity such as a Universal Serial Bus

22

(USB) or Ethernet. The application-speci�c front-end layer has baseband ampli�ers and

carries a RF chip for wireless communication. The stacked architecture makes it possible to

seamlessly replace the top-layer radio front-end and the bottom-layer power supply modules,

while keeping the same mixed-signal processing module intact.

The current top-layer module, named Joshua, is an analog front-end designed to oper-

ate in baseband, as well as in the 2.4 to 2.5 GHz Industrial, Scienti�c, and Medical (ISM)

frequency band. It interfaces with the middle-layer module through pairs of analog base-

band In-phase and Quadrature (IQ) signals, both for transmission and reception. For RF

research, the board allows experimentation with various types of channel access methods

and modulation techniques. It is built primarily around the integrated Maxim MAX2830

RF transceiver supporting both single and dual-antenna setups. The RF transceiver has

outstanding properties. For example, on the receiver side, the IC is capable of amplifying,

downconverting, and �ltering with a noise �gure of only 2.6 dB, and, based on the Signal�to�

Noise Ratio (SNR) requirements of a 54 Mbit

s
Orthogonal Frequency�Division Multiplexing

(OFDM) WiFi signal, the receiver sensitivity is as low as -76 dBm.

The middle-layer, called Teton, is a mixed-signal processing module. It controls the top-

layer and provides computational resources for rudimentary baseband signal processing. The

basis of the module is a �ash FPGA-based Microsemi A2F500 SmartFusion SoC and two

external Maxim MAX19706 domain converters that can simultaneously process two sets of

analog baseband IQ signal pairs. Each IQ Rx and Tx pair is connected to the 10bit ADCs and

DACs, respectively. Interfacing with two sets of baseband signals renders the Teton board

suitable for even Multiple-Input and Multiple-Output (MIMO) application development.

The most important guiding design concept here was the lack of space for sharp analog

anti-aliasing and reconstruction �lters, which meant oversampling and subsequent digital

�ltering for proper channel selection. This is well supported by the 22MHz sampling rate of

the ICs.

The bottom-layer module, named Yellowstone, is a power manager designed around a

low-power microcontroller to regulate and monitor the power rails of the MarmotE platform.

It powers the entire stack and measures and logs current draw, along with battery status.

The module has three possible sources of power, a 5V wall adapter, a USB connector, and a

Li-Ion battery. The former two are used both to power the voltage regulators and to charge

the battery. A step-down regulator controls the 1.5V rail, while a low-dropout regulator is

used on the 3.3V rail, primarily supplying the core and the IO blocks of the SmartFusion

SoC, respectively.

23

AVR HP Soft core example

The AVR HP is an example for a soft processor that may be employed in a soft multi-core

architecture. It is a hyper pipelined (thus the HP extension in the name) version of an AVR

type processor written in Verilog. The AVR platform in general is a Harvard architecture

and RISC type processor. The AVR HP was chosen from a wide variety of contemporary

available soft cores with vastly di�erent capabilities and properties. The parameters of the

AVR HP provide a good insight into the requirements of soft cores.

This soft processor has several bene�ts. It has readily available compilers, like avr-gcc

that works on linux and windows alike. It is an actual hardware microcontroller family with

many embedded systems and wireless sensors using it. Also, a simulator, called Avrora [80],

is available for the platform with support for peripherals (like RF chips) and communication

simulation.

The AVR is an 8 bit architecture with a two stage, single level pipeline design. In other

words, the next instruction fetching and the current instruction execution takes place simul-

taneously. Most instructions take just one or two clock cycles, and usually clock rates of up

to 20MHz are supported. The AVR ISA is considered more orthogonal than the available

alternatives. The AVR HP soft-core is compatible with this instruction set meant for classic

cores.

Program memory (�ash ROM) is typically less than 64 kB for the smallest MCU types.

Data memory (SRAM) is also severely limited. Table 1 shows the maximum memory sizes

(based on address widths) compared to actual usual memory sizes.

Address width [bit] Data width [bit] Size [kB] Max size [kB]

Program memory 12 16 8 8
Data memory 16 8 2 64

Table 1: Usual and possible total memory sizes for small AVR MCUs.

The data address space is further restricted as it also incorporates the memory mapped

register �le and IO registers. Figure 2 shows the memory maps and layout of typical AVR

MCUs with separate data and program memory.

AVRs have 32 single-byte registers. In most cases, the working registers are memory

mapped to the �rst 32 memory addresses followed by 64 IO registers. The actual SRAM

starts after these sections, however, for devices with more IO capabilities more than 64

addresses are reserved at the lower addresses. Most chips have a third type of memory as

well, a built-in EEPROM for persistent data storage, but that is usually not completely

memory mapped, and is treated like a peripheral.

24

(a) AT90s8535 (b) ATmega88

Figure 2: Memory maps of two AVR microcontrollers copied from their respective datasheets, [9]
and [11].

Synthesis bottlenecks

Synthesis of an AVR compatible MCU on a FPGA has to address two main issues.

As opposed to their large counterparts, FPGAs viable in embedded systems o�er limited

amounts of resources. Still, both the digital logic and the memory requirements of the

MCU have to �t the FPGA. Obviously, the memory requirements should be preferably

satis�ed by on-chip block memory. Employing fabric for this purpose would be wasteful, and

external memory may not be an option on small embedded systems. The Microsemi A2F500

SmartFusion SoC (utilized in our MarmotE platform) features 24 4 kB block memories. An

alternative, the Spartan-6 XC6SLX16, is equipped with 32 block memories each 2 kB in size,

supporting true dual port access. To be precise, the Spartan device is a conventional SRAM

device, mostly used in the embedded environment. As such, it does not represent the �ash

FPGA technology, nevertheless, it is an informative example in terms of FPGA parameters.

Digital logic is implemented in fabric, and thus, the key question here is how many of

the MCUs may be instantiated. If the cores are the same, it is easy to see that certain

parts are instantiated redundantly several times without actually being fully utilized. It

is this realization that sparked interest in conjoined processor architectures, where certain

operational units, i.e., multiplier, divider, etc., may be shared among many concurrent cores.

In a sense, the most advanced form of this sharing is SHP, where every part of the processor

is shared, except for core registers, which store the current state of the processor. The

advantage of such an approach is of-course a better fabric utilization. The AVR HP soft-

core under discussion is designed along these lines. Synthesis and place-and-route results

indicate that up to around 10 HP AVR cores could �t in the fabric of a Spartan-6 XC6SLX16.

25

In an actual deployment, this number may vary due to fabric requirements of other parts

of the system, e.g., application-speci�c IP cores, messaging framework, sensor drivers, bus

adapters, etc.

The conclusion of this comparison is that for small FPGAs in embedded systems both

the available block memory and fabric present a hard limit on the number of soft-cores.

Soft multi-core architecture

In this section, the architecture is introduced that was designed to address the above

stated issues. The guiding design philosophy was to be as non-intrusive and transparent

from the developer's point of view as possible. Ideally, this multi-core architecture can

seamlessly run code developed for single MCU systems.

Sense and Forward application example

In order to design a useful architecture, however, �rst the application �eld has to be

understood, and the type of parallelism at hand has to be determined. A well-known example

in the �eld of WSNs is examined to help with the design considerations for the proposed

architecture concept.

The �Sense and Forward� application illustrates some of the major tasks of WSNs. The

embedded system has to measure some value in a periodic manner, it then has to send

a radio message to the rest of the network based on the measurement results. Since the

communication is expected to be cooperative, nodes are also required to intercept each

other's radio messages and process and retransmit them as needed, thus forming a multi-

hop network.

Core 1

Core 2

Core 3

ADC

RFIC

Figure 3: Multi-core sense and forward application concept.

26

Figure 3 shows a possible multi-core partitioning of the problem. A sensor's value is read

with an ADC at periodic time intervals guaranteed by a hardware timer on Core 1. After

some preprocessing and evaluation, it is sent to Core 2, which is then responsible for further

processing. Core 2 sends the result, which is going to be radio transmitted, to Core 3. Core

3 takes care of all aspect of the radio communication. If a radio message is received, that

will also be processed on Core 3, and subsequently sent to Core 2 where after some more

processing a response is generated. Finally, the response is sent back to Core 3, and gets

transmitted. Core 1 and Core 3 are independent and have no direct in�uence on each other;

Core 2 depends on the input of the other two cores.

The example resembles the parallelism described at the Barnes-Hut N-body model exam-

ple. Similar code may (but not necessarily) run on multiple cores. No raw unprocessed data

streams are sent between cores; low data transfer rates allow message passing � as opposed

to shared memory with its race condition issues.

Assumptions and constraints

Some basic assumptions and constraints have to be made. I will assume that the embed-

ded system, built using the above outlined FPGA platform, can have a set of (i) peripheral

soft cores, dedicated for IO handling, (ii) and internal soft cores, alongside components in

fabric, for processing.

The number of cores is limited to a fairly low number � on the order of ten. Thus,

every core can be directly connected to those it has to communicate with. Alternatively a

bus system may be employed [76], but is very likely not necessary. Resource allocation and

deployment, scheduling, and optional load balancing can be centralized to a manager, there

is no need for distributed solutions.

As discussed above, very limited amount of memory is available, typically only a few kB,

which has far reaching consequences. In a 32bit or more likely 16bit data address space,

there is plenty of room to memory map peripherals. As for the code, only small programs

may �t into the individual program memory of each core.

Evolution of ideas

The guiding principle is that the user should be able to start out from a single-core

project, and employ it in a multi-core environment. The architecture has to support this

transition as e�ciently as possible. The main issue is the access to the limited memory

available. Memory is going to be used for data and program code storage. The program

code is less important, because the Harvard architecture separates it from the data memory

27

space, and hence it can be in a read-only block. This immediately eliminates the issues of

mutually exclusive access. A core's data memory space, on the other hand, is di�erent, as it

may be altered by the owner and other cores � directly or indirectly during communication.

I.

The simplest approach is if communicating cores are directly connected, with no low-level

bu�ering. One core transmits data, while the receiver stores and processes.

Problem: This results in a tightly coupled system, with all its drawbacks. Cores have

to be synchronized, and they have to be simultaneously in communication mode using up

clock cycles to handle the transmission. No meaningful processing or task execution can take

place during this time.

II.

A better approach for our purposes is a more loosely coupled connection, where commu-

nication does not require tight synchronization. This may be achieved by dedicating a bu�er

for incoming data at every core. This solution has hardware and software aspects to it. On

the hardware side, memory is required, which is going to be the primary limiting resource.

Also, some form of hardware supported, mutually exclusive access mechanism has to be in

place to resolve coinciding resource usage. On the software side, the resource access may be

blocking or non-blocking. The latter is preferred, otherwise parallelism can not be exploited

to its fullest. In this case, the outcome of the access attempt has to be propagated up to the

software level, and has to be handled there.

Problem: The question is where the line is drawn between the hardware and software.

Which parts of the mutually exclusive access mechanism are implemented in hardware and

software?

III.

The concept can be to minimize hardware complexity, and only have minimal hardware

support (e.g., with semaphores). This way the burden of proper resource access would be

carried by the software.

Problem: Although this approach is more �exible, it requires severe changes in the

software architecture. These changes are not just a couple lines indicating the locking of a

resource, but a whole conceptual change moving from a single-threaded to a multi-threaded

paradigm.

28

IV.

A solution where the whole of the data transfer process is supported by hardware seems

more viable. In this architecture the software is only responsible for initiating a transfer

and handling the response. In this context the response indicates whether the transfer was

successful or not, which still has to be handled by the program.

Problem: Depending on the type of resource, this concept can still result in complex

software. For example, a shared data memory abstraction means that the software would

have to determine how to �nd and allocate empty spaces. On the receiver side, the software

would have to subsequently determine the order and priority of data placed there. Thus, the

�nal solution is simple First In, First Out (FIFO) message queue-based concept.

Final architecture

The proposed �nal hardware architecture can be categorized as a loosely coupled, cir-

cuit switched, AMP system made up of Harvard type cores, see Figure 4. Cores can be

connected to hardware peripherals or connected to special purpose processing blocks imple-

mented within fabric. The key part of the architecture is the introduction of a queue-based

messaging framework for inter-core communication, which utilizes both FPGA fabric and

block memories, and has associated components in software as well. The latter are introduced

in chapter IV.

Prog. Mem.
Inst. Cache

Data
Memory

Message
Queue

Memory Handler

Core 1

PM DM MQ

MH

Core 2

PM DM MQ

MH

Core N

MQ

MH

IP Core(s)

...

Custom
instruction

Shared
Program Memory

Queue-based
Messaging Framew.

Peripheral
e.g. SPI

Peripheral
e.g. I2C

Figure 4: Soft multi-core architecture. Inter-core communication is exclusively done using Queue-
Based Messaging Framework.

Cores are assigned individual block memories, which are divided into three parts:

29

• Program memory or � if the code is to big to �t � instruction cache (completely

transparent for the core)

• Data memory (including static and dynamic data)

• Message queue (one memory mapped message queue for every core)

For example, a theoretical allocation of block memories for eight cores could designate

three pieces of 2 kB block memories to each. One block for instruction cache or program

memory, data memory, and message queue, respectively, which would use altogether 24

memory blocks. Remaining blocks, for instance, 6 × 2 kB = 12 kB in case of the Spartan

device, can be used for miscellaneous purposes. Table 2 shows the memory address sizes for

this arrangement.

Address width [bit] Data width [bit]

Instruction Cache/Program memory (5+)7 16
Data Memory (8+)8 8

Table 2: Possible address space and data size when utilizing 2 kB block memories.

Data memory is the simplest to describe in this setup. It is distributed and not shared

among cores, and (in order to avoid race conditions) other processors can only in�uence the

content of it indirectly through messages.

As for the program memory, depending on the compiled code size, two approaches are

possible. The �rst method has a single (or very few programs) compiled and loaded into a

shared, read-only memory area created from the remaining miscellaneous block memories.

The cores then load the relevant parts into their respective instruction caches. In other

words, this is a COMA approach in terms of program memory. Alternatively, if individual

program memories are large enough to hold the whole code, the binaries may be loaded

directly into individual program memories.

The main di�erence between this and desktop multi-core systems is that latter have

the shared memory in a NUMA arrangement. NUMA has the usual problems of memory

coherence and consistency, but here these issues are non-existent, since the shared program

memory is read-only.

Within this framework each core and IP core has a dedicated hardware message queue

also utilizing block memory. Inter-core communication is exclusively done by sending short

messages to these queues. The queues can hold messages of arbitrary format, but in its

simplest form, function pointers (because of their uniqueness) along with parameters can be

used.

30

With such a memory setup, cores likely do not directly connect to block memories, but

indirectly through some form of a multi-purpose memory handler. It takes care of loading

the instruction cache (if shared program memory is employed). It could pre-cache program

code from shared memory while the cores are in reset. Also, the memory handler maps the

message queue seamlessly into the data memory address space.

The clock of the memory handler and block memories can be much faster than the clock

of the cores. This way memory transactions do not stall core execution. Also, the handler

and memory blocks preferably have to support dual port access, meaning that processes can

modify memory content independently on two ports in one clock edge � assuming they do

not work on exactly the same memory cell. This is especially critical for the message queues,

because with dual port access it becomes possible to read the next message from the queue

and insert a new message at the same time.

Asynchronous or parallel execution is achieved by putting messages in the core's message

queue, with a process running on the core solely dedicated to sequentially removing said

messages, and running associated functions. The queue write operation is a cooperation of

di�erent memory handlers.

The queue-based messaging framework provides rudimentary routing as well, but because

communicating cores are expected to be hard wired in a direct point-to-point manner to each

others' queues, the routing problem is reduced to mere switching. This has the advantage

that the hardware parts of the framework become simple logic functions, and hence, less

fabric is required when synthesized.

In-fact the limiting factor of the framework is the available block memory and not the

fabric. For instance, message queues have to be big enough to not over�ow and hold all

the messages throughout the normal operation of device. In depth analysis is unavoidable

for obtaining the exact required minimum queue and memory sizes for a given application.

The Avrora simulator, described in chapter V, can be employed for this step. Table 3 shows

examples for possible message sizes in a 2 kB block memory queue.

Max messages in queue [pcs] Message size = header + payload [B]

256 8=4+4
128 16=4+12
64 32=4+28
32 64=4+60
16 128=4+124

Table 3: Examples for maximum message numbers in a 2 kB queue.

31

Further possibilities

There are many optional ways to extend the capabilities of this architecture depending on

the requirements. For instance, peripheral soft-cores can optionally be mapped to several IO

pins handling critical events. The advantage is that for such pins, parameters like reliability

can be improved.

Also, soft-cores may be extended with application-speci�c instructions in the fabric. The

AVR ISA already has an instruction hierarchy in which only the most fundamental instruc-

tions are supported on every AVR MCU; more complex operations are only provided by the

more complex MCUs.

A further possibility is that memory handlers may be sophisticated enough to handle

certain interrupts autonomously. They could be extended to generate and push messages

into the queue alleviating the real-time interrupt handling burden of processors.

Multi-core MicaZ

The MicaZ is a 2.4GHz IEEE 802.15.4 compliant RF mote module used for enabling

low-power WSNs. It is a well-known platform widely used for various purposes. Also, it is

well supported; both the TinyOS framework and the Avrora simulator provide support for

the device out of the box. Thus, when devising a multi-core capable platform, the MicaZ

mote was chosen as the starting point.

The goal was to create a platform that is backward compatible, yet can be easily extended

for multi-core applications. The multi-core MicaZ is a virtual sensor platform in the Avrora

simulator that features all the components of a normal MicaZ. But, instead of a single

ATMega128L AVR MCU, it has several ATMega128L MCUs interconnected using message

queues. The �rst core has the exclusive access to the platform's regular peripherals. All other

cores only have individual, exclusive timer peripherals. Due to the backward compatibility,

development for the platform is very simple; existing frameworks and tools can be used.

The platform was meant to be as non-restrictive as possible to support design space

exploration. Hence, parameter upper limits can go beyond the above outlined restrictions.

For instance, no shared program memory is required, as MCUs have su�cient program

memory to hold code. So, using the nesC compiler, binaries can be generated that can be

directly loaded onto any of the cores of the platform. Also, it can have an arbitrary number

of cores, up to 256, and by default every core is connected to every other core, and thus, has

access to all message queues of the system. The queue-based messaging framework within

the simulator is simulated at the transaction level, and so message transmission times can

be arbitrarily chosen, non-zero values.

32

Message queues

To maintain backward compatibility, the queue-based messaging framework was added

in such a way that it does not interfere with already existing system parts.

Using the memory handler, the cores are able to push messages into the queue of any

other core, even into their own. The queue size is limited to ten entries for the multi-core

MicaZ platform and can be extended if need be. The messaging passing process employs a

request-reply approach. The transmitter �rst requests an empty slot in the message queue, to

which the receiver replies whether the request was granted or not. If granted, the transmitter

sends the actual message.

Figure 5: The two memory modes of the ATMega128L. Copied from the datasheet [10].

The receivers and transmitters are memory mapped for the ATMega128L cores. The

ATMega128L has two memory modes [10], see Figure 5. The main di�erence is the lack of

160 IO registers in memory con�guration B � which is the so called ATmega 103 compatibility

mode.

An obvious choice to map the message queue would be the 64 IO registers, which can

be found in both memory con�guration modes at the same location, but unfortunately that

region is too small to carry all the necessary registers. Queues could be mapped as external

memory as well, but there the interface is pin-based, thus simulation would have to be

performed at bit/pin level. Internal memory could be utilized for the memory mapping, but

33

there is not too much of that available, and it is not known how it is used in some programs.

There may be even hard-coded addresses in a program code, which might interfere with the

memory mapped registers, that would instantly break backward compatibility. Also internal

SRAM is used for other purposes, like stack pointer, which can be set in code to point

anywhere in SRAM.

Reg Flags
Type Description

Name Address Name Bit #

RX

STATUS 0x009E RDY 0 R
1 indicates one or several new
messages in the bu�er, resets
to 0 if message queue empty.

CTRL 0x009F POP 0 W
Any write to this bit pops the
�rst message (and source ID)
form the message queue.

SOURCE* 0x00A0 NA R
Source ID/number of the
transmitter the message

originated from.

MSG
_0 0x00A1 NA R 1st byte of RX message bu�er.
...

...
...

...
...

_31 0x00C0 NA R 32nd byte of RX message
bu�er.

TX

STATUS** 0x00C1
BUSY 0 R

1 indicates that the message
bu�er is already in use.

TRNSF 1 R
1 indicates that the contents

of TX bu�er are being
transmitted.

DEST* 0x00C2 NA W
By writing a RX queue's ID

here the bu�er content
transfer is initiated.

ALLOC 0x00C3 SCS 0 R

1 indicates a successfull
allocation of the message

bu�er, and sets the �BUSY�
bit.

MSG
_0 0x00C4 NA W 1st byte of TX message bu�er.
...

...
...

...
...

_31 0x00E3 NA W 32nd byte of TX message
bu�er.

Table 4: Description of message queue registers.
* Destination/source ID are NOT globally unique, but separately de�nied for every core.
** Initiating the transfer will automatically reset these bits to 0.

Hence the 160 IO registers in memory con�guration B are the only feasible location. A

signi�cant part of that is unused, but still not enough to memory map the whole message

queue. Only the �rst entry in the incoming queue is available, and only one entry for outgoing

messages is memory mapped. Also, this introduces some limitations on the message sizes,

34

the upper limit was set to 32 bytes. The memory mapped registers with description can be

found in Table 4.

The usage of these registers is rather simple, an example pseudo code for a minimalistic

message transmission and reception application can be seen on Figure 6 and 7 respectively.

1 if TX ALLOC register SCS bit == 0 then
2 return, message bu�er allocation failed
3 end
4 write message bytes into TX MSG registers
5 write message destination ID into TX DEST register (starts transfer)

Figure 6: Pseudocode example for a simple transmission.

1 if RX STATUS register RDY bit == 0 then
2 return, no new message
3 end
4 read message bytes from RX MSG registers
5 read message source ID from RX SOURCE register
6 write RX CTRL register POP bit (removes this message)

Figure 7: Pseudocode example for a simple reception.

35

CHAPTER IV

PROGRAMMING PARADIGM

This chapter introduces the nesC programming language and the related TinyOS frame-

work, and shows how they may be employed in the soft multi-core embedded environment.

The soft multi-core architecture outlined in chapter III was not designed with any par-

ticular programming language or paradigm in mind. It is language-agnostic, and from the

architecture's point of view, the only criterion for the language is that it should support

message passing. Hence, the choice of the language is rather decided based on development

related issues.

The ultimate goal is to augment the single core programming approach so that it enables

programmers to easily distribute applications on many cores. Ideally, existing single-core

software projects should be fairly simple to migrate to the new multi-core architecture. The

resulting new multi-core application then should have improved properties compared to the

old one, particularly with regards to reduced event misses. It is this aspect of the development

process that is going to serve as the main criterion when assessing the feasibility of di�erent

programming concepts.

Practically speaking, this means requirements for structural composability and modular-

ity. This is essential in order to be able to distribute the di�erent parts of the project on

di�erent cores. Also, concurrency and asynchronous function execution have to be supported

due to the parallel nature of the new architecture.

Currently, there are several languages employed in the design of embedded systems, which

fall into a few categories in terms of programming paradigm. The lowest level languages,

i.e., assembly, and mid-level languages, like C, are following the procedural paradigm, which

provides composability by de�ning procedures. This is only a rudimentary form of modu-

larity, hence for more sophisticated cases the object-oriented paradigm is employed instead.

Object-oriented languages, like C++ or JAVA, are not as common in embedded development,

but they are still used.

The ideal programming paradigm is one that combines the simplicity and support of

C and the modular capabilities of object-oriented languages. There are several languages

that could be considered to ful�ll these criteria. For instance, the Virgil III language was

developed speci�cally with the embedded environment in mind balancing object-oriented,

functional, and procedural programming features. However, the nesC programming language

36

is more widely accepted than its counterparts and more mature. It provides the necessary

modularity, and �ts the multi-core concept, thus, it was chosen as the base language.

The TinyOS framework and nesC

The nesC language � widely employed in the WSN community � addresses the lack

of modularity and reusable components in C [33]. It is a component-based event-driven

extension of C meant for a framework called the TinyOS platform [61]. TinyOS is an OS

designed to run on resource-constrained hardware platforms. The core OS requires only 400

bytes of code and data memory, combined.

Basic concepts

The language and the OS are based on some elaborate concepts. In order to develop a

clear understanding, two main viewpoints are presented �rst, which will enable subsequent

parallelization as well. Details are then described later on.

Code structure

From a code structuring point of view, nesC enables composability and furthers mod-

ularity. Applications for the framework can be described in terms of graphs. The nodes

are components, which encapsulate functionality and state, and expose a subset of them

through interfaces. Edges are bi-directional connections between components via these in-

terfaces. For these connections, or wirings in nesC terminology, the interfaces need to be

speci�ed only, not the associated components.

Execution model

From an execution model point of view, the OS does not support thread-based concur-

rency in which thread stacks would consume precious memory. Instead, it schedules and

provides asynchronous, deferred execution of non-time-critical and computationally inten-

sive operations referred to as tasks. Tasks are independent, but do not run truly concurrently

in the single execution thread of a single core, as there is no pre-emption. Tasks run to com-

pletion, so they can be considered atomic with respect to each other, but not with respect

to interrupts. A task can be thought of as a chain of (subsequent and branching) function

calls entering components through their interfaces. These task call trees are rooted in the

scheduler. Task executions are requested for either a hardware interrupt or a previous task

having posted a deferred task.

37

Due to the lack of pre-emption, an approach was needed to break up long tasks into

smaller, manageable pieces. This is achieved by using split-phase interfaces. These interfaces

provide a way to initiate an operation in a non-blocking manner, and have a callback that

signals the completion of the operation later on within the context of a di�erent task.

Detailed description

Language design

A few basic principles underlie the design of nesC a direct extension of C. Developers

are already familiar with C, and it is widely supported on many platforms. In fact, even

during nesC executable generation, an intermediary C code project is created �rst based on

the nesC source. However, the new features of nesC are not directly dependent on any C

features.

nesC is a static language, so there is no dynamic allocation of components or graph

restructuring during run time. The main advantage is that (with the intermediary C code)

whole program analysis and optimization can be performed at compile time. nesC is based on

the concept of components, and directly supports TinyOSâ��s event-based model. TinyOS

itself was written in nesC.

Interfaces

nesC applications are built by writing and assembling components, which provide and

use interfaces. Provided interfaces represent functionality that the component o�ers; the

used interfaces represent functionality the component needs to perform its job. Interfaces

specify a set of callable functions to be implemented by the interface's provider (commands)

and a set of callable functions to be implemented by the interface's user (events). This

allows a single interface to contain the functions necessary for sophisticated interactions

between components. It is impossible to connect two components unless the correct number

of command and event handlers are implemented.

Component interfaces may be wired zero, one, or more times, which makes it possible to

fan-in and fan-out. For example, many client components can be wired to the same interface

of a serving component, and so in the client components many call expressions may access

the same provided command, which is the fan-in case. Conversely, a single command call

expression can be connected to a number of command implementations, which is the fan-out

case.

38

A regular command of a normal interface in nesC will usually return some value, which

can be, for example, the value read from an ADC. In fact, the command will block until it

has this value. A split-phase type interface, on the other hand, has a command that only

initiates the operation. The execution of this command is non-blocking and does not return

a result directly. Progress is signaled at a later time through an event within the context of

a di�erent task. For instance, the initialization of a timer and subsequent deferred callbacks

for when the timer �red is a common example.

Components

Because interface de�nitions are separated from component de�nitions, components can

cleanly abstract away underlying di�erences in implementation. For example, on one plat-

form the temperature sensors may be a memory mapped internal device, while on other

platforms the sensor access may require external I2C communication.

Components may be modules or con�gurations, showing a strong separation of construc-

tion and composition: Modules exclusively contain the actual application code and expose

interfaces; con�gurations support hierarchy by containing other graphs of wired (connected)

components. At the topmost level, a single con�guration is de�ned, referred to as the top

component (con�guration), that includes all other components.

Most components in TinyOS represent services or hardware and therefore exist only in a

single instance. A very important fact is that these components are allowed to simultaneously

exist at many di�erent levels and points in the hierarchy. In other words, one single instance

of a component may be found in many di�erent con�gurations at the same time. It is

important to stress that such components are not copies of an object sharing some states,

but are truly one single object, see Figure 8.

Some components have to be instantiated multiple times, with slightly di�erent working

parameters. In nesC, this can be done using abstract components, which have optional ini-

tialization parameters. For example, many di�erent timer components may be instantiated,

which provide di�erent time resolutions speci�ed as an input parameter.

Concurrency and atomicity

The TinyOS execution model is single-threaded, but interrupts can suspend the main

thread to access shared resources. Resources, in this case, mean peripherals (accessed via

IO commands or memory addresses) or state variables (memory). This leads inherently to

race conditions that have to be dealt with.

39

Figure 8: Structure of a nesC application showing how a con�guration can be expanded to reveal
other components within yielding hierarchical containment. The darker object is one
single instance of a component appearing simultaneously within di�erent con�gurations
at di�erent levels of the hierarchy.

nesC distinguishes synchronous and asynchronous code. Synchronous code is only reach-

able from tasks, while asynchronous code can be called from at least one interrupt handler.

Due to the non-preemptive nature of the OS, synchronous code can be regarded atomic with

respect to other synchronous code. However, there can be potential race conditions whenever

asynchronous code is involved.

nesC employs atomic sections to prevent race conditions. An atomic section is a small

code sequence (handling shared resources) that nesC ensures will run atomically. The un-

derlying mechanism of atomic sections is disabling and enabling interrupts. This requires

only a few cycles, however, if the code within the atomic section is long, interrupt losses can

occur. To minimize this e�ect, atomic statements are not allowed to call commands or signal

events, either directly or in a called function.

Sense and Forward application example

Figure 9 shows one implementation of the sense and forward example on a single core.

Gray, dashed boxes represent con�gurations, white, dotted boxes are interfaces, and light

brown boxes depict modules. Each of these have names, which are always inside the box in

the middle at the top. Some components and interfaces are referred to by aliases that are

written above them. Modules can have state variables, which can be found under their names

and are marked (circle, star). If the same markings within that module appear at certain

functions, it is a hint that that particular function accesses that particular variable. Arrows

40

SenseForwardAppC

SenseForwardPMainC

booted

Boot

ActiveMessageC

start

startDone

SplitControl

as AMControl

TimerMilliC

as Timer

startPeriodic

�red

Timer<TMilli>

as Timer

DemoSensorC

as Sensor

read

readDone

Read<uint16_t>

as Read

SignalProcessingP

proc

procDone

Process

as SignalProcess

AMReceiverC

receive

Receive

RFProcessingP

proc

procDone

Process

as RFProcess
AMSenderIFP

bool busy ?

message_t pkt ◦

SendRadioMsg

RFMsgSend

AMSenderC

getPayload

Packet

◦

send

sendDone

AMSend

◦
?◦

ADC

RFIC

1.

2.

1.

2.

3.

1.

2.

Figure 9: Sense and forward example on a single core.

indicate control �ow; inside interfaces solid arrows are commands, hollow arrows are events.

Within modules colored arrows show the sequence in which commands and events are called.

There are three main colors standing for the three main �ows of the program. Brown arrows

show what functions are called during initialization, red arrows show the process of taking

a sample and eventually sending it via the radio interface, blue arrows show what happens

when the device intercepts a radio message and retransmits it.

The actual working of the program is straightforward. The �MainC� con�guration signals

the �booted� event on start up, which starts the radio interface using the �ActiveMessageC�

con�guration. When the radio interface is up and running, the hardware timer is initialized

using the �Timer� con�guration. From that point on the hardware timer will periodically

41

signal the ��red� event, which will call the �Sensor� and read a value. The �SignalProcess-

ingP� module will then take this value do some sort of processing, and call �SendRadioMsg�

command in �AMSenderIFP� module. This latter is really nothing more than a module

dedicated to hold the state variables (i.e., message bu�ers and �ags) associated with the

radio stack, and prepare and send a message. The �Packet� interface provides a simple way

to handle message bu�ers.

Multi-core programming

Parallel execution of nesC makes it possible to address temporal issues not handled by

single-threaded single-core solutions. The language �ts the proposed multi-core architecture

quite well, even though the concept was never meant for such platforms.

First, the goal of parallel execution has to be clari�ed. For PCs, parallel execution serves

merely as a way to speed up computation. Users expect deterministic behavior regardless of

their application running on several or just a single core. Parallel embedded applications and

CPSs are expected to add value � for example, by providing better analysis of environmental

observations � thus, potentially resulting in di�erent behavior with additional processing

capacity. For instance, an automobile anti-lock braking system in a vehicle can bene�t from

additional computing power and yield shorter break distances and improved vehicle control.

Our main goal for parallel execution is to be able to serve more interrupts in a timely

manner without compromising power constraints, resulting in lower latency, shorter response

times, and less event misses.

Partitioning

Every nesC application, examined at the topmost level, is a combination of hypergraphs

and multigraphs. This is because several components can be wired up using the same

interface, and components may have many parallel connections. The partitioning process of

such graphs can be viewed as a division along some carefully chosen lines, so that the graph

is separated into subsets of nodes and edges. Depending on how the partitioning lines are

drawn, some edges or nodes may fall on borders dividing the subsets.

In terms of nesC, this results in two options when considering partitioning: cutting

components or cutting along interfaces. Cutting a component would mean that parts of

its interfaces, state variables, and functions within can be extracted to form a separate

component. While this is conceivable, it is rather unlikely, because this would mean that

there are more or less independent parts within the same component. The very idea of a

42

component is to collect related functionality, so cutting components is improbable. Hence,

the basic approach is to cut along interfaces and maintain the integrity of components.

However, for a valid nesC program, all interfaces have to stay connected, so if one of

the connections is moved to another core, some other new component has to take over that

interface at the old place. That new component has to make sure that any command calls will

eventually trigger the appropriate command calls on the other core. This helper component

is going to be called the wrapper component, as it wraps up the whole underlying messaging

framework in a transparent manner.

The task call tree interpretation

The component to core assignment is not just a graph partitioning problem despite mainly

employing the structural model. The graph abstraction omits the time and causality aspects

of the execution model. Causality, in this context, means the order in which functions (pro-

vided by components) get subsequently called. After all, nesC is still a procedural imperative

language, thus, computation is still expressed as nested, branching function calls within the

context of tasks. Hence, it is crucial to see how partitioning and mapping (using wrap-

per components and the queue-based messaging framework) a�ects not just the component

graph but the call trees as well.

Call trees are de�ned for procedural languages, like C, as trees representing the functions

that the program enters and leaves during run time. Call trees are extensively used in

computer science to analyze memory requirements and program run time, but they have

practical value as well during the debugging process in software development.

However, a call tree that details every function call provides too much detail for the parti-

tioning purposes described here. Several function calls can take place within one component

never actually leaving the component, which calls are thus irrelevant for a partitioning where

the smallest entity is a whole component. Hence, for all practical purposes, the partitioning

described here has a granularity that does not go beyond the component level. Instead of

conventional function call trees, here task call trees are discussed that describe how compo-

nents call each other via their interfaces, see Figure 10.

The structural model is used for partitioning, but the partitioning decisions are based on

the task call trees of the execution model. Thus, the main types of task call trees have to

be identi�ed. These are crucial patterns that allow the assessment of timing and causality

issues thereby aiding successful mapping to multiple cores.

• Disjoint tree: Two task call trees can be regarded completely disjoint, if they use

disjoint set of components. Disjoint trees can run in a trivially parallel manner. The

43

TinyOS framework

Task queue

Top-level
hierarchy

(a) Simple function calls.

TinyOS framework

Task queue

Top-level
hierarchy

(b) Split-phase.

Figure 10: Task call tree example.

underlying assumption is that every resource is only accessed by a single component

providing a convenient abstraction layer for it, in accordance with the nesC language

concept. Resources, in this context, are peripherals and component state variables in

memory. A subtype of this class is the inert tree, which is a tree with no access to any

resources. These trees can serve benchmarking purposes, e.g., for power consumption.

• Conjoined tree: Two trees sharing a set of components. A shared component is a

likely sign of shared resource access, which means that both task call trees have to be

executed on the same core. However, there are certain cases, where components do

not contain resources, but rather provide services, e.g., mathematical functions. These

components have no persistent inner states and a�ect no peripherals, thus they can

be safely copied. Each task call tree can receive its own copy, and the trees become

disjoint.

With this notation, the partitioning and assignment problem boils down to �nding dis-

joint trees that may run in parallel. If such trees are not found, conjoined trees may be

turned into disjoint trees, if shared components can be safely duplicated. It is very likely

that the above described classi�cation alone will still not result in satisfactory partitioning,

and the task call tree distribution on separate cores is unbalanced. In order to reduce the

number of components within a task call tree and thereby shorten its run time, rerooted

cutting (following the tree analogy) can be applied.

The rerooted cutting technique is in e�ect the splitting of a task call tree at a split-phase

interface into two disjoint trees. In other words, a new call tree is created from the branch

that is the split-phase interface, see Figure 11. It can shorten the runtime of the original

tree, which may help to meet timing constraints.

44

TinyOS framework

Task queue

Top-level
hierarchy

TinyOS framework

Task queue

Top-level
hierarchy

Queue-based
messaging

Figure 11: Rerooted cutting.

For example, the independent sequential initialization of peripherals can be split up very

easily this way. On the conventional single core system, a task call tree may sequentially

visit components (dedicated to peripherals), and execute their initialization commands. On

a multi-core system some of the peripherals may be assigned to di�erent cores. So, the

split-phase call to the peripheral component's initialization command may be redirected

through the messaging framework. This way the original task call tree returns immediately

once the messaging framework has sent the message. The new call tree on the other core

will be initiated by the messaging framework having received the initialization command

call message. Eventually the messaging framework will call the same component, and the

peripheral gets initialized. But, by that time the original task call tree on the �rst core is

already �nished.

Partitioning abstraction

For partitioning purposes an abstraction was devised in order to easily describe the pro-

cess. The goal while designing this abstraction was to give a simple way to model the

hypergraph partitioning problem. The simplest and most important features of the prob-

lem were extracted, which (i) allow to address a wide variety of situations, and (ii) aid in

complexity analysis of algorithms. Chapter V provides two examples for this in the form of

partitioning validation algorithms.

See Figure 12 for a visual representation of the abstraction. The abstraction de�nes

cores, so that during the parallel development work�ow the developer has to assign some

components to these computing cores. There are no restrictions within the abstraction on the

assignment process, hence, theoretically arbitrary components may be assigned to arbitrary

cores. However, in practice this does not always hold:

45

Figure 12: Partitioning abstraction on the topmost level. Circle nodes are assigned or dedicated
components, triangle nodes are copyable components, square components are non-
dedicated and non-copyable. Simple edges can not connect components across cores,
while crossed edges can as they are cuttable. Dashed edges indicate connection of
components on di�erent cores.

• If a resource or state is associated with a core, then modules directly working with said

state or resource have to run on the same core as well.

So, the abstraction de�nes assigned or dedicated components to speci�c cores, but it also

de�nes unassigned components, which may be associated with any core. The �nal assignment

of such components is automatically performed by the development tool set. However, it is

the developer's responsibility to mark certain components and edges in order to guide this

process.

Some components may be marked �copyable�, which indicates that they can be safely

replicated on di�erent cores. In other words, in case of conjoined trees, these are the shared

components which may be duplicated thereby safely separating the call trees. There are no

restrictions within the abstraction on the outgoing wires of such components. If a copyable

component is a con�guration (in nesC terms), then it is assumed that every subcomponent

within can be copied as well.

The developer has the responsibility to verify that for the application at hand, a given

component can be considered copyable. There are some guidelines the developer may follow

to assess this property:

• Components may not access core speci�c peripherals or resources.

• Components may use their state variables only temporarily. In other words, they can

not have a real permanent state that would store information in between consecutive

calls a�ecting overall code execution.

Some interfaces may be de�ned as �cuttable�, meaning they may (but not necessarily)

connect components residing on di�erent cores. In other words, a call tree may be cut and

rerooted at this branch. Whether an interface has this property or not depends very much

on the application, and thus no general method was found so far to identify such interfaces.

46

Again, this de�nition is very much application dependent, and certain cuttable interfaces

in one case may not be regarded as such in other cases. That being said, certain assumptions

can be made that guide the developer:

• If a signal or event of a module returns a value of any kind, the interface is not cuttable.

In nesC terminology, the interface has to be split-phase. Otherwise, the issuing core

would be blocked waiting for the response of the other core thereby defeating the whole

concept of parallel execution.

• The interface must not be timing critical, as the communication through these inter-

faces is not guaranteed and might involve the queue-based messaging framework.

• No pointer parameters may be passed, as cores have no shared memory. If a signal

or event of a module works on the state of another module passed on as a pointer

parameter, it has to be executed on the same core as the calling module.

• Transmission data rates can not be too high, as message queue block memories are

limited in size.

Multi-core Sense and Forward application example

Figure 13 shows how the sense and forward example could be subdivided among three

cores employing the multi-core concepts. Also, it introduces some of the software components

involved in the messaging process. It may look complicated at �rst sight, but the multi-core

transformation and inner workings are straightforward.

Notice how existing con�gurations and modules are left intact, and the queue-based

messaging framework (enclosed with a dashed, blue box) was added. In between cores,

message queues were added that represent a simpli�ed version of the hardware message

queues. Each core has one queue, and an additional fabric based processing algorithm

(depicted as a simple white box with no markings) has one as well. On the software side,

queues have associated modules, which have the sole task of putting messages in and reading

messages from the hardware. Message handler blocks use this functionality. These modules

are responsible for creating the right message format and routing the messages to their

proper destination. Finally, wrapper modules provide the original interfaces for the original

components, and manage the transformation of values into messages and the other way

around.

The work �ow is the same as seen in the single core case, only this time most com-

mand calls and event signaling have to go through the messaging framework. The solution

47

is however transparent, and pre-existing modules and con�gurations require no signi�cant

rewrites. All the new framework related modules can be computer generated. This approach

provides an easy way to move single core applications to the multi-core platform. The exact

procedure of this migration is discussed in chapter V.

48

SenseForwardAppC_1

SenseForwardP_1W

as SenseForwardP MsgHandlerP_1

HWRXMsgQueueP

receive

RXMsg

as FromRXMsgQ

receive

RXMsg

as ToWrapper

TimerMilliC

as Timer

startPeriodic

�red

Timer<TMilli>

as Timer

DemoSensorC

as Sensor

read

readDone

Read<uint16_t>

as Read

send

TXMsg

as FromWrapper

HWTXMsgQueueP

send

TXMsg

as ToTXMsgQ

ADC

5.

1.

3.

4.

SenseForwardAppC_2

SenseForwardPMsgHandlerP_2 MainC

booted

BootActiveMessageC_W

as ActiveMessageC

send

TXMsg

as FromAMW

receive

RXMsg

as ToAMW

start

startDone

SplitControl

as AMControl

TimerMilliC_W

as Timer

send

TXMsg

as FromTMW

receive

RXMsg

as ToTMW

startPeriodic

�red

Timer<TMilli>

as Timer as Timer

DemoSensorC_W

as Sensor

send

TXMsg

as FromDSW

receive

RXMsg

as ToDSW

read

readDone

Read<uint16_t>

as Read as Read

SignalProcessingP_W

as SignalProcessingP

send

TXMsg

as FromSPW

receive

RXMsg

as ToSPW

proc

procDone

Process

as SignalProcess

AMReceiverC_W

as AMReceiverC

receive

RXMsg

as ToAMRW

receive

Receive

RFProcessingP

proc

procDone

Process

as RFProcess

AMSenderIFP_W

as AMSenderIFP

send

TXMsg

as FromAMSIFW

SendRadioMsg

RFMsgSend

HWTXMsgQueueP

as HWTXMsgQP_1

send

TXMsg

as ToTXMsgQ_1

HWRXMsgQueueP

as HWRXMsgQP

receive

RXMsg

as FromRXMsgQ

HWTXMsgQueueP

as HWTXMsgQP_2

send

TXMsg

as ToTXMsgQ_2

HWTXMsgQueueP

as HWTXMsgQP_S

send

TXMsg

as ToTXMsgQ_S

1.

4.

2.

5.

6.

2.

3.

SenseForwardAppC_3

SenseForwardP_3W

as SenseForwardP MsgHandlerP_3

HWRXMsgQueueP

receive

RXMsg

as FromRXMsgQ

receive

RXMsg

as ToWrapper

ActiveMessageC

start

startDone

SplitControl

as AMControl

AMReceiverC

receive

Receive

AMSenderIFP

bool busy ?

message_t pkt ◦

SendRadioMsg

RFMsgSend

AMSenderC

getPayload

Packet

◦

send

sendDone

AMSend

◦
?◦

send

TXMsg

as FromWrapper

HWTXMsgQueueP

send

TXMsg

as ToTXMsgQ

RFIC

2.

3.

7.

1.

4.

Figure 13: Sense and forward example on multiple cores.

49

CHAPTER V

ENVIRONMENT

In this chapter the development framework and the Avrora WSN simulator are intro-

duced. The development framework is meant to help with the transition of single core

projects to parallel solutions. To assess the result of this transition before actual deployment

the simulator can be employed. It helps answering questions, like how many and what type

of cores a certain application needs, and how these shall be connected.

Framework

The goal of the framework is to provide support such that developers are able to des-

ignate top-level components for di�erent processing units. An automated process checks

the feasibility of the assignment, and if it is indeed a feasible solution, the assignment is

automatically generated.

Analysis

There are several conceptual questions and challenges associated with this problem.

Chapter III described the underlying multi-core architecture, and chapter IV introduced

the programming concept. These are the necessary requirements, and it is possible to de-

velop multi-core applications based on these concepts and resources alone. However, without

the framework to automate the steps, the development is a tedious and error-prone process.

A major challenge is the extraction of information at each step of the code generation

process. The guiding concept is to �nd the optimum level of detail and use only as much as

necessary. Redundancy and useless information only increase complexity.

One aspect of this problem is the identi�cation of the common part of algorithms and

functionality that have to be provided by every core of the architecture. This means predom-

inantly the software components fundamental to the multi-core communication. However,

these components cannot be simply copied and distributed among cores. The components

have to be tailored to the application and underlying architecture. The common code ele-

ments and patterns have to be determined. This is a non-trivial issue, but is crucial in order

to create the code template that can form the basis of any multi-core project.

The second aspect of this challenge is directly connected to the previous issue. With

the template at hand, the code generation process could create arbitrary projects given

50

the right information. Suitably, component containment and component interconnection

information is extracted by the nesC compiler itself and is readily available. However, the

generated description contains too much information, and can be considered too noisy for

our purposes. The challenge here is full project generation with minimal information is used.

The third aspect applies to the highest level partitioning description. The previously

de�ned level of detail, which is imperative for code generation, is still too convoluted for

human understanding. Thus, it has to be generated from an even simpler description and

the information extracted by the nesC compiler. It has to fully describe the partitioning,

yet has to be simple enough for human interaction.

Another challenge is the viability assessment of the partitioning. This is the key feature to

provide rapid iteration through various designs, and as such, has to be tightly integrated into

the framework. Not all partitioning concepts can be realized, but this my not be apparent

at �rst. Feasibility assessment has to take into account hardware resources and component

inner states. From a mathematical point of view, the nesC top-level component arrangement

can be considered a combination of a hypergraph and multigraph. The former because any

number of components can be wired up via a single interface type, and the latter because

two components may be simultaneously connected via several interfaces. Thus, the viability

assessment means algorithms that traverse this graph structure and try to �nd connections

between components that violate the partitioning assignment.

Multi-core project generation

Once the above described key challenges were identi�ed, the structure of the framework

followed implicitly. Only widely available, free, preferably open source and standardized

tools and technologies were employed. The backbone of the framework became the Ex-

tensible Markup Language (XML) �le format, the Extensible Stylesheet Language Trans-

formations (XSLT) transformation standard, and the FreeMarker template engine with the

corresponding FreeMarker Template Language (FTL). Also, all of the tools working with

these formats are written in JAVA, and hence the whole framework is platform agnostic and

easily portable. The shell scripts, which glue together the individual tools, were written for

the bash shell, and are the most platform speci�c parts. But these scripts are little more

than a collection of subsequent command calls, not complex algorithms, hence, they can be

easily rewritten for any platform.

Figure 14 shows the complete framework (utilizing the TinyOS development environ-

ment) for code generation. The top part of the �gure shows the conventional single core

development process. The developer starts out by creating a single-core project, which

(compiled by the nesC compiler) results among others in a platform-speci�c binary and

51

nesC

single-core
project

binaries

Avroraproject desc
XML

partition guide
XML

Saxonviability check
XSLT

partition error
log

partition guide
full XML

multi-core
solution

binaries

Avrora

multi-core
solution tmpl

detailed desc
XML

Saxongenerate wires
XSLT

generate interfs
XSLT

generate comp
XSLT

generate cores
XSLT

FMPP

nesC

Figure 14: Framework for multi core project code generation.

an XML �le (�wiring-check.xml�) describing the project. This XML contains information

regarding the project code (parsed by the compiler) including among others de�nitions of

components, interfaces, variables, event and command parameters, return values, etc. Also,

at this point the developer has the option to take the compiled binaries and run them on

the Avrora cycle accurate simulator to verify functionality and detect early bugs.

Once satis�ed with the results, the developer can move on to the multi-core project gen-

eration phase. First and foremost, this means that the developer has to create a partitioning

guide. The partitioning abstraction, introduced in chapter IV, is employed here to describe

the desired partitioning. The framework was designed such that this step is kept simple and

requires minimal information:

• The name of topmost component of the project.

52

• A list of cores.

• A list of component names within the top component dedicated for a core from the

above list.

• A list of �cuttable� interface names, which refers to split-phase interfaces that may be

employed to connect components on di�erent cores for the particular application.

• A list of �copyable� component names, which refers to components that do not access

resources, like peripherals and persistent state variables in memory, and can thus be

copied and instantiated separately on several cores for the particular application.

It is a very real possibility that the developer-de�ned partitioning is simply not viable,

thus, it is crucial to verify the proposed component separation. This is a two-step procedure.

The �rst step only deals with top-level components, hence, it is called top-level partitioning.

The second step handles partitioning issues of the whole component hierarchy, and is thus

called hierarchical partitioning. The details of the partitioning and feasibility testing are

described further down.

The outcome of the feasibility check is a valid full partitioning guide. This �le is made

up of mostly the same information as the input partitioning guide, but it also lists all the

top level components assigned to cores.

In itself this �le still does not hold the information necessary to generate actual code.

Thus, a subsequent step is necessary during which the full partitioning guide and the single-

core project descriptor �les are processed, and the actual code generating information is

extracted. The extracted detailed description contains the minimal amount of information

necessary to create the whole of the multi-core project:

• The name of topmost component of the project.

• A detailed list of wires connecting interfaces at the topmost level.

• A detailed list of interfaces employed including description of commands and events.

• A detailed list of top-level components including references to the interfaces they utilize.

• A detailed list of used cores including references to the components they host.

The �nal step towards a multi-core solution is the actual code generation, which employs

a prede�ned template for the queue-based messaging framework architecture. The template

is general in the sense that it does not assume any particular number or interconnection of

53

cores. It also does not specify components, except for the components that are part of the

queue-based messaging framework itself. The template is universally applicable for any type

of top-level arrangement.

Top-level partitioning

Top-level partitioning takes care of component partitioning on the topmost level. The

feasibility test algorithm serves two purposes. It veri�es that the partitioning is feasible given

the list of copyable components, cuttable interfaces, and dedicated components. Secondly,

the algorithm assigns so far unassigned components.

Feasibility check

The devised algorithm for the feasibility check is an application speci�c variant of the

pre-order Depth�First Search (DFS). For all practical purposes, it is safe to assume that the

number of components on the topmost level is adequately limited, hence, the run time of

this algorithm is not critical.

Figure 15: Recursive search algorithm working on the �rst component of a component list.

The algorithm itself is implemented in a recursive manner due to the declarative nature

of XSLT (which does not even support variables). At its heart the algorithm is recursively

repeating the same steps. In a nutshell,

• take a list of components as input,

• remove the �rst component,

• check the �rst component to see if it is assigned to a di�erent core,

• generate a new list from this �rst component's neighbors (see Figure 15),

54

• recursively analyze this new list,

• and �nally recursively analyze the rest of the input list (without the �rst component).

Figure 16 shows the simpli�ed pseudo code for the algorithm. For the sake of simplicity,

the depicted algorithm only performs the feasibility test. However, it could also return the

link (chain of components) between two con�icting components, which is straightforward

feature to add.

The recursive function takes two lists of components as input.

• The �rst list �L� is just a collection of components (assumed to reside on the same

core) that we would like the algorithm to check for contradicting assignments. A

contradiction, in this case, means that any component in �L� is already assigned to a

di�erent core than the given core.

• The second list �potential_L� is the set of components that have been visited once and

seem to check out, meaning that they can be potentially dedicated to the given core.

However, this is just a temporary state, and these components are not fully veri�ed

yet. Their status can change depending on what the algorithm �nds during recursive

steps.

The algorithm returns a state and another component list. The state simply indicates

whether the algorithm has found anything contradicting the assignment or not. This list

holds all the (directly or indirectly) connecting components that may be safely assigned to

the same core as the original input list.

Time complexity

The number of graph nodes, i.e., components, and the number of edges, i.e., connections

via interfaces, are represented by N and M respectively. In order to analyze the time com-

plexity of the algorithm, I will assume that complex steps, like set operations, have a simple,

naive implementation with a O(N2) complexity. So, for example, at line 4 the set opera-

tion means the removal of super�uous components. I will assume that the underlying naive

approach enumerates the nodes of the input list �L� (which in itself is O(N)), and at every

iteration also enumerates the other list �potential_L�. This yields the O(N2) complexity.

Most operations in the algorithm can be considered set operations on two sets, like the

example, and thus complexity has an O(N2) component. However, the rest of the operations,

like at line 10, enumerate connecting components or interfaces, and thus have to take into

account edges, which adds an O(M) component. So, in itself the recursive function is

55

1 Recursive_top_level(L, potential_L);
2 begin
3 // Only components we don't already have as potential candidates

4 L = L \ potential_L;
5 if L is empty then
6 return NORMAL;

7 // Check first component

8 E = �rst element from input list L;

9 if E is on another core then
10 con_L = list of components connecting to E \ potential_L;

11 if E is on another core ∧ con_L is empty then
12 rec_state, rec_L = Recursive_top_level(con_L, potential_L ∪ E);

13 if E connects backwards via a cuttable wire then
14 ret_state1 = NORMAL;
15 else if E is on another core then
16 ret_state1 = TAINTED;
17 else if E is copyable ∨ con_L is empty then
18 ret_state1 = NORMAL;
19 else
20 ret_state1 = rec_state;

21 if E is on another core ∧ (rec_state = NORMAL ∨ E is copyable) then
22 ret_L1 = E ∪ rec_L;

23 // Check rest of the list

24 rest_L = L \ E;
25 if rest_L is empty then
26 ret_state2 = NORMAL;
27 else
28 ret_state2, ret_L2 = Recursive_top_level(rest_L, potential_L ∪ ret_L1);

29 // Generate return value

30 if ret_state1 = TAINTED ∨ ret_state2 = TAINTED then
31 ret_state = TAINTED;
32 else
33 ret_state = NORMAL;

34 ret_L = ret_L1 ∪ ret_L2;
35 return ret_state, ret_L;

Figure 16: Pseudocode for the recursive top-level search.

O(N2 + M), but as it gets called for every node once, the total time complexity of the

algorithm can be estimated as O
(
N(N2 +M)

)
.

56

However, in ordinary tinyOS applications M , the number of connecting wires, i.e. edges,

is small. With certain assumptions based on this fact a simpler time complexity estimation

can be derived. In a regular graph the number of edges has to be limited M ≤

(
N

2

)
=

N !
2!(N−2)!

, which corresponds to the case of a complete graph.

In a hypergraph edges can connect arbitrary number of nodes, thus the upper limit

changes to M ≤
∑N

k=2

(
N

k

)
=
∑N

k=2
N !

k!(N−k)!
. If edges are limited to connect at most α

components, the limit becomes M ≤
∑α

k=2

(
N

k

)
=
∑α

k=2
N !

k!(N−k)!
.

In a multigraph nodes can be connected by an arbitrary number of edges, thus the upper

limit changes from the simple regular case to M ≤ B

(
N

2

)
= B N !

2!(N−2)!
, where B can be an

arbitrary multiplying factor. However, for all practical purposes, it is safe to assume that

the number of parallel edges between nodes is very limited, and B = β is a constant.

Combining the results of the hypergraph and multigraph case, the upper limit of edges

can be expressed as M ≤ β
∑α

k=2
N !

k!(N−k)!
. Examination of this upper limit on M reveals

that the highest order of N is Nα. Hence, the expression for the order of time complexity

may be updated to O
(
N(N2 +Nα)

)
= O

(
Nα+1

)
.

As a �nal note, the actual true time complexity of the actual implementation of the

algorithm is di�cult to estimate. The XSLT interpreter hides the implementation of com-

plex steps (like set operations) and the corresponding time complexity. These operations �

depending on the underlying algorithms and data structures � can have vastly di�erent run-

time complexity. It is likely the XSLT interpreter is optimized and does not follow the naive

approach. Thus, the time complexity for individual set operations is probably better than

O(N2) as assumed in the beginning. Consequently, the time complexity can be assumed to

be better than the derived results. However, as the number of top-level components tends

to be low, the exact value of time complexity is not crucial.

Assigning undedicated components

The second main objective is the assignment of undedicated components to cores. This is

performed in a greedy manner by successively executing the above algorithm with di�erent

sets of input components dedicated to di�erent cores. For example, the �rst run would

have components dedicated to the �rst core as input, and thus would return a list of all

the components that can be assigned to the �rst core. Similarly, the second run would have

components dedicated to the second core as input, but all the cores dedicated to the �rst core

57

would be on a prohibited list, and hence the algorithm would be forbidden to reassign them

to the second core. The procedure continues until all top-level components are assigned, see

Figure 17.

Figure 17: Partitioning on the topmost level. Circle nodes are components dedicated to di�erent
cores imposing partitioning constraints on the rest of top-level components.

The total time complexity can thus be estimated as O
(
C N(N2 + M)

)
, where C is the

number of cores, N is the number of components, and M is the number of connections.

Once the assignment process is complete, an updated version of the partitioning guide �le

is generated, which contains all top-level components with their respective cores. This full

partitioning guide is used in the following.

Hierarchical partitioning

Given a viable top-level partitioning (in an automatically generated full partitioning guide

�le), the hierarchical partitioning check is performed next. This phase is meant to verify that

said partitioning remains viable even if the component hierarchy is taken into account. Hence

instead of a top-level connectivity hypergraph, this step analyzes the component containment

graph.

Feasibility check

The main issue here is that certain components can exist simultaneously at di�erent

points (and levels) in the hierarchy. These are not copies of the same component, but are

indeed a single instance of one component. In other words, the containment graph is not a

tree, and it may very well be cyclic. Given the above abstraction, the shared components

may only be assigned to di�erent cores simultaneously if they are copyable, in which case

each core receives its own copy.

58

In this case, the feasibility test algorithm veri�es that the partitioning is viable given

the list of copyable components and dedicated components. Again a similar algorithm is

employed, but for all practical purposes, this simplistic approach proves satisfactory.

The algorithm is implemented in a recursive manner similarly to the top-level partitioning

case. The recursive function takes two lists of components as input.

• The �rst list �L� is just a collection of components (assumed to reside on the same

core) that we would like the algorithm to check for contradicting assignments. A

contradiction, in this case, means that any component in �L� is already assigned to a

di�erent core than the given core.

• The second list �ignore_L� is e�ectively the set of copyable components, which can

be safely disregarded when searching for components instantiated multiple times on

di�erent cores.

The algorithm returns a state and another component list. The state simply indicates

whether the algorithm has found anything contradicting the assignment or not. This list

holds all the (directly or indirectly) connecting components that may be safely assigned to

the same core as the original input list. Figure 18 shows the simpli�ed algorithm.

Time complexity

The number of containment graph nodes, i.e., components, and the number of edges,

i.e., containment relations, are represented by N and M respectively. Again the assumption

is made that set operations will contribute a O(N2) complexity. However, operation at

line 10 is di�erent; it enumerates all contained components. At most M edges have to

be examined for this, and because the containment graph is neither a hypegraph nor a

multigraph M < N − 1. Hence, the complexity of a single execution of the function is

O(N2 + N − 1) = O(N2). However, the function is called for every node once in the worst

case, so the total time complexity of the algorithm can be estimated as O
(
N(N2)

)
= O(N3).

This basic algorithm is repeatedly run for all cores continuously accumulating valid com-

ponents or stopping if an erroneous component is found. The total time complexity can

thus be estimated as O(C N3), where C is the number of cores, and N is the number of

components.

Simulation

In the following the Avrora discrete time, cycle accurate, embedded systems and network

simulator is introduced. Furthermore, the modi�cations are explained that enabled the

59

1 Recursive_hierarchical(L, ignore_L);
2 begin
3 // Remove components we ignore

4 L = L \ ignore_L;
5 if L is empty then
6 return NORMAL;

7 // Check first component

8 E = �rst element from input list L;

9 if E is on another core then
10 con_L = list of components inside E;
11 rec_state, rec_L = Recursive_hierarchical(con_L, ignore_L);

12 if E is on another core then
13 ret_state1 = TAINTED;
14 else
15 ret_state1 = rec_state;

16 ret_L1 = rec_L;

17 // Check rest of the list

18 rest_L = L \ E;
19 if ret_state1 = NORMAL then
20 ret_state2, ret_L2 = Recursive_hierarchical(rest_L, ignore_L);

21 // Generate return value

22 if ret_state1 = TAINTED ∨ ret_state2 = TAINTED then
23 ret_state = TAINTED;
24 else
25 ret_state = NORMAL;

26 if ret_state1 = TAINTED then
27 ret_L = ret_L1;
28 else if ret_state2 = TAINTED then
29 ret_L = ret_L2;
30 else
31 ret_L = ret_L1 ∪ ret_L2;

32 return ret_state, ret_L;

Figure 18: Pseudocode for the recursive hierarchical search.

simulator to tackle systems with multiple cores, enabling the analysis of soft multi-core

platforms and networks as well.

During any development process, the later fundamental problems are discovered, the

exponentially higher the cost of repairs become. Thus, early detection of issues plays a

crucial role in the design of contemporary systems. Simulation � whether that of hardware

or software � is a prominent method to gain insight into the workings of complex designs.

60

It is especially important for embedded systems that have sophisticated, real-time analysis

requirements, yet cannot themselves run debugging software.

There are plenty of methods to simulate embedded code. Most MCU manufacturers

provide some sort of a solution out of the box with their Integrated Development Environment

(IDE). The problem is that they either only support the simulation of a single unit, or they

provide multi-node simulation only for a certain type of functionality, e.g., radio networking.

The Avrora open-source, discrete time simulator [23, 80, 86, 79, 45, 51] addresses this issue.

It is cycle accurate and supports the simulation of a network of various nodes inclusive

their communication. This makes it possible to directly test binaries developed for various

platforms, and, for instance, immediately see how the signal processing and the radio stack

hold up for radio networking.

Analysis

In Avrora, MCUs are fully simulated (memory, registers, IO, etc.), and peripherals are

modeled as Finite�State Machines (FSMs). The main ideas of Avrora stem from two key

observations:

• Most nodes spend their time predominantly in sleep or some low power mode where

they are not performing any computation but simply wait for some event to occur.

• Even when nodes are not in sleep but working, they mostly perform independent tasks,

i.e., inner book keeping and processing, with no in�uence on any of the other nodes.

These observations have led to a fundamentally di�erent type of cycle accurate simulation

approach. Instead of the whole network and all the peripherals running in a synchronous

lockstep manner, each MCU core is given a separate thread, which is solely responsible for

simulating the core and the connected peripherals. Also, even within a thread, the core

and peripherals are not simulated for every cycle. Instead, a single event-queue is employed

for every core and connected peripherals, and the simulator is essentially only dealing with

events as they happen. Thus, for example, timers do not require clock cycle simulations,

they only have to place an event in the queue.

This latter is of course not really an improvement if the MCU is performing some com-

putation intense task, because then practically every cycle means an interpretation of the

code's instruction. But, because cores are usually in sleep mode, the simulator can simply

jump ahead in the event queue in most cases.

However, this could quickly lead to nodes drifting apart in time to a degree where inter-

node communication became impossible. For instance, by the time node A sends a message

61

to node B, node B may have already advanced so far ahead in time that from its point of

view the radio message happened in the past, and thus is not relevant anymore. Hence, the

key to the above described ideas is the loose synchronization of nodes, which in essence is a

method to stop individual node simulator threads from getting to far ahead.

Other features

As the name suggests, the simulator was originally intended for AVR MCUs, but due to

its modularity, it can support other architectures as well, e.g., Intel MCS-51 8051. Complete

platforms can be simulated, i.e., Mica2, MicaZ, TelosB, inclusive the RF ICs and other

peripherals. Also, it is highly modular and can be easily extended with more components.

The simulator supports a network of nodes with accompanying physical topology. The

radio communication aspect supports di�erent levels of detail, meaning that by default a

simplistic radio channel is employed, but more sophisticated radio models are also available.

Theoretically, with GNU Radio and Universal Software Radio Peripheral (USRP) the sim-

ulated platforms can actually be tested on real radio channel or sensory data in real time.

Existing measurements can be given (with some pre-processing) as input to virtual platforms

to see how the WSN manages to handle data.

The simulator is not following a step-wise global approach to perform cycle accurate

simulation, but it can fall back to that mode if need be. This way it is fast enough to do

real time simulation of a few of cores, but several cores can be simulated as well within a

reasonable amount time.

It provides a unique opportunity to perform design space exploration and answer funda-

mental design questions like:

• Number of nodes needed to cover a WSN application

• Number of processing cores needed on one node

• The association of cores to IO and sensor peripherals

• Number and type of inter-core connections (every core can be connected to every core)

• Interconnecting message queue size (in�nite message queue length)

• Transmission time length (can go down to couple cycles, can be asymmetric for cores

or for platforms)

• Processing architecture

� Instruction set (special high level instructions, e.g., log)

62

� Heavy processing steps placed in fabric

Disadvantages

The simulator has been designed with certain assumptions in mind, thus for some scenar-

ios, the original version can be considered suboptimal. The original simulator assumed that

platforms are single-core. Although it's easy to extend, it required fundamental rewrites for

e�cient simulation of multi-core architectures. (There was a simulation possibility for wired

networks, but that was limited to certain core connection types and numbers, and only step

synchronization was supported, in which case there was no wireless communication.) The

WSN simulation only supported nodes of the same type (program code could di�er though).

Also, the simulator employed time resolution that was equal to the clock rate of the MCUs

� assuming that all MCUs had the same clock rate. In order to apply Avrora for multi-core

WSN simulation purposes, the code base had to be rewritten.

Inner workings in a nutshell

The simulator can run in di�erent modes to analyze di�erent aspects and con�gurations

of nodes. Obviously, the mode that is the most important for WSNs is the full network

and node simulation. Within this simulation mode the most important entities � roughly

corresponding to JAVA classes as seen in the simulator � are listed below. This is the

simpli�ed hierarchical simulator inner structure:

• Simulation: Includes everything simulation related. (Much more than listed, but for

the sake of simplicity everything else was omitted.)

� Synchronizer: Responsible for the coordination of cores, it acts as a leash re-

straining individual threads from running to far ahead in time.

∗ Medium: Shared resource that enables message transfer among participat-

ing components running in di�erent threads, e.g. radio channel, digital bus,

message queue.

∗ Com device: Transmitter and receiver associated with a speci�c medium

with corresponding hardware components found in the �Platform�.

� Node: Represents a node and acts as an interface towards �Simulation�. It does

not care about the inner structure and elements of the �Platform�, it is only

concerned with and contains simulation related objects: the thread(s) and the

event queue(s) associated with the core(s) within.

63

∗ Platform: A container holding the core and every connected peripheral, but

being a representation of actual hardware, it does not care about threads and

such.

∗ Simulator: Handles the simulation of the core; an interpreter that processes

instructions.

∗ SimulatorThread: The thread associated with the particular �Simulator�.

Figure 19 shows the structure of a node. The original concept was centered around

a single MCU that had a processing core and some inner, memory mapped peripherals

e.g. ADCs. Peripherals not integrated into the MCU connected through pins e.g. like the

CC2420 RF IC. These peripherals can use sophisticated communication protocols like Serial

Peripheral Interface Bus (SPI), in which case the simulation is not pin level but transaction

level, i.e., working with bytes as opposed to bits.

Node

Platform

Microcontroller

Peri-
pheral

µC
core

e.g. ADC

Peri-
pheral

Atmel µC

e.g. CC2420

mem
mapped

pin
mapped

Figure 19: The node.

Medium and synchronizer

Mediums de�ne message formats and communication protocols. A medium can be any-

thing that allows communication among nodes. Originally, it was meant to represent only a

single radio channel, which was the sole way for WSN nodes to interact. Thus, synchroniza-

tion in essence was the analysis of this medium: determining what messages were broadcasted

and when. This way independent threads knew when to wait to not loose possible messages

that could potentially in�uence their further operation. An example of this is shown on

Figure 20.

Note that mediums are independent from platform or hardware and thus can reach across

nodes, cores, and devices. For every medium, a separate synchronizer is dedicated to take

care of the throttling of individual threads. Every core (and thus simulator and simulator

thread) of a medium connects to its single synchronizer.

64

Node

Platform

Microcontroller

Peri-
pheral

µC
core

CC
2420

Node

Platform

Microcontroller

Peri-
pheral

µC
core

CC
2420

Node

Platform

Microcontroller

Peri-
pheral

µC
core

CC
2420

Radio channel
medium

Figure 20: Radio channel for the original single core case.

time

threads Legend:

A B C

Actual progress
in time

Thread waits until
everyone passed this

Progress as reported
to medium

Thread waiting
at a point in time

Figure 21: Threads, medium, and synchronizer.

The synchronizer keeps track of how far ahead each simulator thread progressed. It

does this with the cooperation of the simulator threads themselves, which actively report

their progress to each synchronizer they are connected to. Synchronizers provide the API

necessary, so that nodes can wait on each other and can report their progress, i.e., there

is a command called �waitForNeighbors� that blocks the thread until all other nodes have

reached the speci�ed simulation time point. If other nodes have reached or surpassed that

time, the wait unblocks, and the thread continues. See Figure 21.

The point in simulation time that a thread can specify for other threads to reach can

only be in the past. If threads are allowed to wait until other threads have passed them in

simulation time it is possible for a set of threads to get stuck, see Figure 22. Each thread is

waiting for the others to reach a given time point in the future, which they never do.

Also, threads can potentially deadlock even if not waiting for others to reach a future

event, but just to catch up to the same exact time. This is because it is not guaranteed that

65

time

threads Legend:

A B

Actual progress
in time

Thread waits until
everyone passed this

Progress as reported
to medium

Thread waiting
at a point in time

Figure 22: Thread A and thread B both waiting for the other thread to reach a point in time in
the future.

threads will broadcast their progress before they start waiting. One way to avoid this is to

allow only one thread to wait for others passing future or present events, but it is better to

allow threads to wait only for points in the past.

Modi�cations to support multi-core simulation

For the multi-core simulation, the structure above remained mainly unchanged with the

addition of another container entity within the �Platform� called System of Elements (SoE).

A SoE contains devices, peripherals, cores, and other SoEs. It has pins as interfaces for

outside connections, but high-level interfaces like SPI are also possible. Examples for what a

SoE could be used for include the modeling of SoCs, or soft cores instantiated within FPGA

fabric.

Extended medium and synchronizer

Mediums were extended to incorporate inter-core communication as well. With addi-

tional cores the number and type of interconnections and consequently that of the mediums

increased. Note how mediums reach across nodes, cores, SoEs, and devices in Figure 23.

For every medium, a separate synchronizer is dedicated to take care of the throttling of

individual threads. In the original concept, every core (and thus simulator and simulator

thread) of a medium connected to its single synchronizer, but in the improved revision, cores

can be connected to several mediums and thus several synchronizers at the same time. This

introduced new multi-thread synchronization challenges and situations that could potentially

lead to deadlocks.

For example, failure to broadcast thread progress to every synchronizer before entering

wait mode can lead to deadlocks. In such a scenario, two threads both associated with the

66

Node

Platform

SoE

Peri-
pheral

µC
core

Peri-
pheral

µC
core

µC
core

Peri-
pheral

Peri-
pheral

SoE

Peri-
pheral

SoE

Peri-
pheral

SoESoE

Peri-
pheral

Peri-
pheral

Peri-
pheral

Peri-
pheral

Peri-
pheral

Peri-
pheral

Various
mediums

Figure 23: Multiple mediums across several components.

two di�erent mediums (and synchronizers) could end up waiting for the other one to reach a

certain point in the past, which they already have, but simply did not broadcast, see Figure

24.

time

threads Legend:

A B

Thread waits until
everyone passed this

Thread waiting
at a point in time

Progress as reported
to medium 1.

Progress as reported
to medium 2.

Figure 24: Thread A and thread B � both associated with two mediums and hence two synchro-
nizers � waiting for the other thread to reach a point in the past, but because threads
did not update every synchronizer about their progress, they never leave waiting state.

Another common form of deadlock comes with the mutually exclusive locking of several

resources. The issue emerged if the same set of resources were locked in di�erent order by

two threads. The solution was to enforce the locking of resources in the same order.

67

Multi-core MicaZ

Node

Platform

Microcontroller

µC
core

CC
2420

(a) MicaZ.

Node

Platform

SoE

µC
0

µC
N

µC
1

CC
2420

(b) Multi-core MicaZ.

Figure 25: The di�erence between the original and multi-core MicaZ in the simulator.

The MicaZ compatible multi-core platform � introduced in chapter III � was implemented

within the enhanced Avrora simulator. Instead of a single ATMega128L MCU the platform

employs a SoE with several ATMega128L MCUs tightly interconnected using message queues,

see Figure 25.

68

CHAPTER VI

CASE STUDY

In this chapter, a non-trivial, high-throughput, multi-channel application is introduced,

and is subsequently transformed to a multi-core project. The application deals with the

SHM problem, and utilizes our sensor platform. The application involves analysis techniques

(along with measurement results), which are mapped to the soft multi-core architecture. This

example is meant to demonstrate the issues associated with high-performance embedded

systems.

The goal of SHM is to give insight into the condition and state of structures with emphasis

on damage detection. AE-based SHM methods [59] are on-site, non-destructive approaches,

which mainly detect ultrasound stress waves caused by sudden, inner structural changes.

The sources of AE signals can be damage-related, but alternative causes are also possible

introducing false positives and background noise. The nature and location of the damage

may be estimated by using one or a combination of multiple parameters, such as the Time

Di�erence of Arrival (TDoA) between di�erent transducers.

The application example focuses on AE measurements to provide signal time-frequency

analysis, and to localize cracks with the TDoA method. It is a sensing technology that has

been successfully tested in a laboratory environment. However, actual deployment of a WSN

based around this technology becomes feasible only if the processing requirements can be

met on a power-constrained embedded platform.

Analysis and processing

The application involves several signal processing steps, which are depicted on Figure 26.

Valid AE event pre-selection

HPF

De-
frame

2 Ch
Thresh-
old

Frame

Time-Fr Analysis
Wave-
let

De-
frame

Parameter estimation

Utility
fn

Di� Time
win

Min

Ave-
rage

Sub-
tract

EM

De-
frameInput

HPF

Figure 26: Simpli�ed block diagram of the AE signal processing.

69

The �rst step of digital signal processing is a simple �ltering. Since background noise

has signi�cant energy concentrated in the lower frequency ranges, a 15 tap Finite Impulse

Response (FIR) High�Pass Filter (HPF) (cuto� frequency 50 kHz, attenuation 50dB) is

employed. For reference, the original bandwidth of the PKWDI AE sensor is 850 kHz. From

the data stream, the system collects time windows in which the signal crossed the threshold

level.

Wavelet-based time-frequency analysis

Because physical phenomena and material properties have such profound e�ects on mea-

sured signals, SHM is considered to be the �science of signatures�. For example, sound speed

in materials can be frequency dependent due to properties like shape and structure a�ect-

ing wave propagation. Hence, it is crucial for in-depth analysis to have information on the

frequency components present in an AE recording, and their arrival time.

The principal issue here is the inherent time-frequency uncertainty associated with the

analysis process. Conventional Fourier analysis involves de�ning a global time and frequency

resolution a priori to performing the actual transformation. This resolution is independent

of actual signal content, and the method is only viable if signal parameters, i.e. bandwidth

and duration, are also known a priori. Oversampling and other approaches � to cover worst

case scenarios � are theoretically possible but infeasible on resource-constrained embedded

systems. A careful balance has to be found whether timing accuracy or frequency selectivity

are preferred.

The wavelet transform is a widely-used promising alternative for time-frequency analysis

that can adjust the transformation process on the �y to adapt to signal contents. It is

capable of not only altering the overall time-frequency resolution, but it can also �zoom

in� on interesting parts. In other words, the time-frequency resolution does not have to be

homogeneous, so within the same analysis some frequency bands may have higher selectivity

or more accurate timing. The method achieves this by subsequently dividing the examined

signal into an upper and lower frequency band and halving the sampling rate. These steps

can be repeated many times until the desired frequency selectivity is reached resulting in

a perfect binary tree of band-�ltered, reduced sampling rate signals at the nodes. This

approach for wavelet analysis is called Wavelet Packet Decomposition (WPD), and it is up

to the user to decide on the granularity of the decomposition, i.e. the tree nodes that are

utilized to represent the signal. Note that nodes do not necessarily have to be on the same

level. Usually, a cost function is employed to select the � in some sense � best partitioning.

A common approach aims to minimize the overall Shannon entropy of the decomposition

[21], see (2).

70

K = −
n∑
i=1

pi log2(pi) (2)

Where K is the Shannon entropy value that is to be minimized, and pi = Ei

Etotal

. Here Ei
is the energy content of one node (frequency band), Etotal is the energy content of all nodes

on that same level in the binary tree (all frequency bands with the same bandwidth). The

conventional best basis selection (frequency partitioning) process in essence calculates the

sum of entropies for two children (n = 2) and compares it to the entropy of the parent node

(n = 1). The lower entropy partitioning is chosen or, in case of equality, the parent.

The wavelet approaches described in the SHM literature are predominantly concerned

with the analysis of a single recording of a single channel at a time. Yet in practical applica-

tions, an ensemble of related recordings have to be evaluated and compared, i.e. (i) multiple

recordings of the same signal from di�erent channels, (ii) multiple signals originating from

the same source. This can necessitate a common basis set. Also, by pinpointing common

bands of interest and bands that can be safely disregarded, the method provides a way for

data reduction, which plays a prominent role in WSN communication.

Our partitioning utilizes not one, but several binary trees corresponding to the ensemble

of related recordings. We compute the cost functions for each node for each tree, and

subsequently create a sum tree. In the sum tree each node is the sum of all nodes from all

the trees at the same level and same position. The sum tree is then evaluated using the

same steps as described above. The results section shows examples for our time-frequency

analysis.

Event classi�cation and parameter estimation

The other fundamental signal evaluation path focused on time domain analysis, where

we tried to �nd the arrival time of valid AE events. The challenge here is that signals

are highly dispersive, hence it would be very di�cult to de�ne the exact beginning even in

a completely noise free recording. Secondly, the system has to (i) identify measurements

indicating potential sources, and (ii) recordings stemming from the same source have to be

classi�ed as such. Finally, the measurement parameters have to be extracted in order to

reason on the damage location.

71

Onset time and measurement quality

Our method for accurate onset time estimates and for separation of valid AE events from

false positives was to �rst provide a short time window around the event, then to calculate

a �utility� or ��tness� function that would give a minimum at the exact start of an AE event

within the window.

Utility function 1. � The Akaike's Information Criterion (AIC)-based onset time selector

Originally, AIC was meant for statistical model identi�cation [3]. It helps to avoid over�t-

ting by �nding the simplest model that provides a good enough approximation. It was later

applied to model non-stationary, non-overlapping, independent time series with di�erent

AutoRegressive (AR) model properties [42]. Because AR model estimation is so resource-

consuming, a simpler method was proposed [53], dealing with only two, subsequent time

series, see (3).

AIC(k) = k ln
(
var(x[1, k])

)
+

(N − k − 1) ln
(
var(x[k + 1, N])

)
(3)

Where x[1, k] is the time series starting with the �rst sample and ending with (and

inclusive of) the kth, N is the number of samples, and var() = 1
N−1

∑N
i=1(xi − xi)2 = σ̂2

2 is

a variance estimate. Variations on the calculation of var() can be found in literature. The k

value giving the minimum AIC(k) is the most likely onset time index.

It can be mathematically proven that if both of the time series within the time window

have constant but di�erent variances (e.g., Gaussian white noise), the method will point to

the onset time of the second series, see appendix A. However, the crucial realization here is

that the original AIC method's variance was AR estimation error related, while this latter

method is a direct variance of a signal part; thus (without a DC component), the approach

boils down to a simple comparison of signal energy in two parts of the time window. Note

that for Gaussian white noise, the variance is equal to the noise spectral density times the

bandwidth: σ2 = N0B.

Utility function 2. � The reciprocal-based onset time selector

We examined several other utility functions that achieve similar performance to AIC but

have lower computational cost, see appendix A. A reciprocal relationship, as seen in (4),

stood out in particular.

72

�tness function = − n1

σ̂1
2
− n2

σ̂2
2

(4)

Where n1 is the length of the �rst time series, n2 is the length of the second, σ̂1
2 is the

variance estimate of the �rst block, σ̂2
2 is the same for the second.

The advantages are (i) no logarithm calculation, and (ii) better onset time estimates for

some signals. Experience showed that dispersive signals were handled better, see appendix

A, and empirical evidence also suggests that in most cases − n1

σ̂1
2
is a su�cient approximation

of the �tness function.

Quality index for measurements

To distinguish AE events from noise events, signal energy-based methods are often sug-

gested in the literature, but these approaches are usually unreliable; thus, we devised a

di�erent �quality index� indicator. The idea stems from the observation that for valid mea-

surements, utility functions decrease rapidly towards the minimum, then steeply increase,

whereas for noise, no such trend is noticeable. Thus, if the �tness function's derivative is

taken, the values after the minimum tend to be notably higher than zero for real AE events.

The quality of the measurement is then estimated with (5).

q =
1

M

imin+M∑
i=imin

(
gi − gi−1

)
(5)

Where q is the quality index, g is the utility function, M is the number of samples, and

imin is the �tness function minimum index. The quality index is hence the mean of a few

(e.g. M = 40) derivative values right after imin.

Source number and parameter estimation

AE events form clusters in a two dimensional measurement space (quality index and AE)

where the number of random processes � that is the number of AE sources � is unknown.

The signal evaluation tries to answer two fundamental questions: What is the number of

sources and what are their parameters i.e. time di�erence and quality? Only very rudimen-

tary assumptions can be made regarding the recordings. We can assume that during the

measurement procedure the crack location can be considered �x, resulting in time di�erences

with low variances for valid AE recordings of the same source. Also, we can assume that

73

these recordings will have a high mean quality index, whereas false positives will generally

stay low.

Expectation�Maximization (EM) for parameter estimation

With all possible AE events at hand, the TDoA of the crack location may be estimated.

In this context, time di�erence is a random variable, and as such, statistical tools have to

be employed to estimate it. For this part we additionally assume a Gaussian Mixture Model

(GMM) with at least two mixed independent processes (i.e. the noisy events and valid AE

events). No closed formulas exist to estimate a multi-dimensional GMM's parameters, so we

utilize the EM algorithm instead, which iteratively converges to the Maximum Likelihood

(ML) estimate. The disadvantage of the EM method is that it is very sensitive to numerical

representation, and easily �nds local maxima. In order for it to converge to the true ML

estimate, it has to be initialized relatively close to the right answer with the proper number

of processes and plausible parameters.

Initial estimates and OPTICS clustering

One way to generate initialization estimates could be to employ search heuristics like

the GA or Metropolis Markov Chain Monte Carlo (MMCMC) that could �nd a near ML

estimate, which could then be subsequently re�ned with the EM algorithm. As for the

number of sources, some information criterion like the AIC (in the original sense) or Bayesian

Information Criterion (BIC) could be employed to �nd a model with the right number of

independent processes giving a high likelihood estimation without over�tting the data.

However, the problem is that all of these approaches rely on the GMM assumption,

which may not be an appropriate model for all cases. Even if the valid AE measurements

may be approximated by Gaussian distributions, the set of false positives may not. Also,

adhering to the GMM, outliers can adversely a�ect the estimation procedure. Hence, we

ended up utilising a completely di�erent, clustering-based approach, which can provide EM

initialization (given the GMM assumption holds), or alternatively can directly provide rough

source number and parameter estimates.

Our approach to turn towards density-based clustering algorithms was motivated by the

observation that valid recordings from the same source formed dense clusters. The Ordering

Points To Identify the Clustering Structure (OPTICS) algorithm proved to be uniquely

suitable in our situation as it can too adapt to the analysed data itself and does not require

a priori information [5]. The main idea is to order all the measurement points by traversing

them sequentially. Starting from an arbitrary point the next available recording is selected

74

that is (i) in the densest environment and is (ii) in the neighborhood of previous selections.

For example, in case of a single Gaussian distribution the algorithm will converge to the

densest middle part and subsequently work its way out layer by layer. For each measurement

point the so called reachability distance is stored, which tells how far it is from the previous

point in the ordered list. Clusters will show up as dents in the ordered reachability distance

list. To �nd the cluster beginning and end the steepness of the curve is evaluated. Clusters

start where the distance between consecutive points steeply decreases, and end where the

distance steeply increases. The algorithm requires a few tuning parameters, i.e., level of

steepness, maximum radius for density calculations, etc. However, we chose very generic

non-restrictive values, and the algorithm was not sensitive to these parameters, and would

converge to the proper results for a wide range of parameter values.

An important feature of this method is that it is capable of discovering hierarchical clus-

ters. Once again this information on hierarchy can be represented as a tree, and it is up to

the user to decide which decomposition is the � in some sense � best. Selecting the right

clusters or the right level in the hierarchy is a non trivial problem. On one hand we try

to have clusters include as many points as possible, so that statistical estimates are more

accurate, but at the same time an overly all-embracing cluster will include several outliers,

false positives, and points originating from other sources. There are many possibilities to

verify that a cluster su�ciently encapsulates relevant measurements. Again assuming that

valid AE events form Gaussian distributions, one tactic is to use statistical indicators, e.g.

look for clusters that (i) have certain kurtosis and skewness values, or (ii) perform well at

the Anderson-Darling test for normal distribution. The problem � as with all statistical

approaches � is that in order to be able to meaningfully reason on sample set distributions,

relatively large number of measurement points have to be available. This is clearly unde-

sirable in our case, as we want to estimate as soon as possible, and very likely do not have

the luxury of being able to collect hundreds of cracking events before forming a decision. By

that time it might be already to late.

Aluminium Steel

AIC-based -3.5 -4
Reciprocal -2 -3

Table 5: Log quality index thresholds for valid AE events.

Instead we chose a simpler approach where we speci�ed constraints corresponding to (i)

the two dimensions of the measurement space and (ii) number of points. The �rst constraint

stated that only those clusters are of interest that have a mean log quality index higher than

certain threshold values shown in Table 5. For the second constraint, the time di�erence for a

75

distance of 30 cm was calculated (based on the sound speed estimate), and any cluster with a

time di�erence standard deviation higher than that value was discarded. The last constraint

speci�ed that a cluster has to include at least 4 points. Among hierarchical clusters satisfying

these conditions we only kept the parents at the top most level.

Results

Measurement procedure

Aluminium Steel
1st beam 2nd beam

length [m] 3.35 2.44 3.35
height [cm] 7.6 7.6 7.6
width [cm] 6.4 6.4 5.9

Table 6: Dimensions of the tested metal beams.

To determine our system's capability, two aluminium American Standard 6061-T6 type

I-beams and a S3x5.7 section of ASTM A36 steel beam were tested, see Table 6. First,

the beams were partially sawn in the middle, so that damages would form in a reasonable

amount of time at a known location under a reasonable load. The beams were then mounted

to supports on both ends, and an electro-mechanical shaker below the middle of the specimen

was connected to the beam center with a tight link that would not impede crack growth. The

system of two supports and the shaker-specimen link formed 3-point bending conditions, see

Figure 27.

Figure 27: Aluminium break test setup, with 2.44m long beam.

Measurement sessions consisted of several approximately 20 minute long intervals, em-

ploying successively increasing shaker amplitudes. Two PKWDI AE microphones were

mounted on the beams at di�erent distances from the crack.

76

Onset time estimation

Figure 28a and 28b show the AIC- and reciprocal-based onset time selector results re-

spectively, with the latter seemingly giving an overly early onset time estimate. Proper

magni�cation reveals that the �rst signal components have indeed arrived at that time, so

it has actually provided a better estimate in this case. Generally, for the measured signals

at hand we have observed the reciprocal method to yield earlier estimates. As previously

stated, this is also a matter of how one interprets the beginning of a highly dispersive signal.

(a) AIC-based result. (b) Reciprocal selector result.

Figure 28: Onset time estimation; red vertical line marks the onset time as detected.

WPD time-frequency analysis

(a) AE event with time di�erence of around
0.8ms.

(b) AE event with time di�erence of around
0.2ms.

Figure 29: Time-frequency characteristics of AE events from two di�erent sources at the �rst
aluminium break setup.

77

The WPD of the two di�erent valid measurement groups in the �rst aluminium break

test, see Figure 29a and 29b, revealed fundamental di�erences in energy distribution in the

time-frequency domain. This con�rmed the di�erent origin theory, as the 0.8ms recording,

unlike the 0.2ms, had energy concentrated in predominantly the lower frequency regions.

Figure 30: Time-frequency characteristics of AE event with time di�erence of around 0.2ms at
the �rst aluminium break setup. The white markings indicate where the signal in that
band started according to the AIC-based selector.

Figure 30 shows how the above described method adjusted the time-frequency resolution

to capture the essence of the signal, which is the same as seen on Figure 29b. In this

particular example, compared to the hand chosen �x resolution, the method decided on

mainly wider frequency bands with better time resolution. We also applied the AIC-based

onset time selector on each signal in the frequency bands to estimate when each component

�rst appeared as marked with white vertical lines. In this case the bottom two bands ended

up with no indicators as the algorithm decided there is no signi�cant activity present based

on the log quality indices. This shows how in a resource-constrained WSN these bands could

be disregarded to save on communication costs. Also, in severely power-constrained setups

only the start times within each bands may be transmitted, which would only require a

couple of bytes to encode. For this application the AIC-based onset time detection proved to

be better because the reciprocal method yielded too early results with much higher variances

among bands. Also, this frequency partitioning is not representative for all AE events in

the sense that the Shannon entropy-based approach proved to be very sensitive to signal

content, and resulted in widely di�erent basis sets for di�erent inputs.

78

GMM and EM

Figure 31a and 31b show the results of our EM event grouping and parameter estimation

for the �rst aluminium test. Looking at the AIC results, the events with a log quality index

of -3.5 at around 0.2ms stem from the break in the beam. Points below can be considered

useless noise events or false positives. A third cluster unexpectedly appeared as well with

high quality indices at 0.8ms. Closer inspection revealed that it was not caused by re�ected

waves, but very likely originated from outside the beam (i.e. the supports). Because of the

quite di�erent TDoAs, it was simple to categorize the measurements. Note how in this case

the reciprocal method provided much tighter grouping of recordings of the same source.

(a) AIC-based onset time picker results. (b) Reciprocal onset time picker.

Figure 31: Gaussian distributions as estimated by the EM algorithm for the �rst aluminium break
test with shaker set to 1.27 cm amplitude.

(a) AIC-based onset time picker. (b) Reciprocal onset time picker.

Figure 32: Gaussian distributions as estimated by the EM algorithm for the steel break test with
shaker set to 0.51 cm amplitude.

Figure 32a and 32b show the results of our EM event grouping and parameter estimation

for the steel test. For the AIC results, the events with a log quality index of -3.5 at around

−0.2ms originate from the break in the beam. Points below -4 may be considered useless

79

noise events or false positives. In this case the two onset time selector methods provided

similar performances.

OPTICS clustering

(a) Shaker set to 1.27 cm amplitude. (b) Shaker set to 0.51 cm amplitude.

Figure 33: OPTICS clustering results for the AIC-based onset time picker measurements for the
steel break test.

Figure 33a and 33b show the OPTICS clustering algorithm �ltering out potential clusters

for the same measurements as seen previously. Note that some of the recordings classi�ed as

outliers by the algorithm are actually valid AE events, however, the method still managed

to �nd the proper number of sources with most of the relevant points.

Figure 34 depicts one of the more challenging clustering problems. In this situation there

is no clear separation between false positives and valid points, yet the algorithm managed

to �nd relevant recordings. In fact, out of 18 measurement sets it found the right number

of sources 14 times. Out of the remaining 4, in one case it divided the single valid cluster

into three adjacent parts at regions, where the measurements where extra dense, and the

remaining 3 cases involved sets with very few, altogether less than 35, points.

80

Figure 34: OPTICS clustering results for the AIC-based onset time picker measurements for the
�rst aluminium break test with shaker set to 2.54 cm amplitude.

Localization

Given the simple, one dimensional measurement setup, an accordingly uncomplicated

damage localization approach was utilized. The above described onset time selecting methods

gave TDoAs, which, in conjunction with accurate sound propagation speed estimates, yielded

damage location information. Sound speed was measured and estimated separately, but using

the same framework.

The �rst aluminium beam break test served as proof of concept, and showed that the

system worked, but the measurements did not yield accurate results in terms of localization.

shaker
amplitude [cm]

onset time
detection

log quality
index

time di�
[ms]

sound
speed [m

s
]

distance
di� [cm]

0.25 AIC based −2.83 −0.1475 3880 −57.3
reciprocal −2.41 −0.1276 4290 −54.7

0.38 AIC based −2.41 −0.1107 3880 −43.0
reciprocal −1.64 −0.1001 4290 −42.9

0.51 AIC based −3.03 −0.1443 3880 −56.0
reciprocal −2.04 −0.1326 4290 −56.9

Table 7: The second aluminium break test crack location estimates for two onset time pickers.
Actual crack location at −46.2 cm.

Figure 7 gives the overview of the end results for the second break test. Here the sensor

positions were accurately measured, the actual distance di�erence was −46.2 cm. The shaker

amplitude was increased gradually and proper cable connections were veri�ed. The results

show that the best measurements were recorded at the second measurement run with a

shaker amplitude set to 0.38 cm. The quality index is the highest here for both onset time

81

detections and accordingly the localization is the most accurate here with an error of only

around 3 cm. With other measurement runs crack growth location detection su�ered a higher

error of around 10 cm and had correspondingly lower quality indices.

shaker
amplitude [cm]

onset time
detection

log quality
index

time di�
[ms]

sound
speed [m

s
]

distance
di� [cm]

0.38 AIC based −3.84 −0.2134 3550 −75.8
reciprocal −2.78 −0.1913 4240 −81.2

0.51 AIC based −3.74 −0.1972 3550 −70.0
reciprocal −2.19 −0.1903 4240 −80.8

Table 8: The steel break test crack location estimates for two onset time pickers. Actual crack
location at −78.7 cm.

For the steel break measurement the distance di�erence ground truth was −78.7 cm. Here

the sound speed was measured right before the actual break, which had a very bene�cial

e�ect on the reciprocal onset time detection. The error was reduced to around 2 cm. The

AIC based method bene�ted from that as well but still managed to give a worse error of

around 9 cm.

Multi-core transformation

In order to assess the merits of a multi-core device, let's look at an actual SHM system.

Assume a structure, for which civil engineering has identi�ed a critical beam that needs to

be constantly monitored. Within this context, the above described processing methods are

very relevant and applicable.

Single-core

Building a system with sensor nodes following the conventional single-core approach is

not trivial and may not even be feasible. Taking a MicaZ mote as reference, the clock rate

is around 8MHz (7 372 800Hz according to the Avrora simulator), while the sampling rate

in this application is 750 kHz. This gives only about 10 cycles to fully process every sample,

which is not realistic at the level of complexity at hand. Hence, a pure software approach

running on a single MCU is not viable. Thus, basic bu�ering and threshold crossing detection

is assumed to be implemented in a separate peripheral device.

The application-speci�c peripheral takes care of monitoring and recording of the ADC

input. It stores measured values in a circular bu�er using DMA. Every time a threshold

level is crossed, it sends an interrupt to the MCU. The rest of the processing and all other

tasks are carried out by software on the MCU. These tasks include the OPTICS clustering,

82

RF communication, and miscellaneous administrative functions. The EM method and WPD

are omitted in this example for the sake of brevity.

Multi-core

Figure 35 shows the multi-core version of the SHM application. The thresholding, the

onset time detection, the TDoA estimation, and the quality index calculation are moved to

IP cores in the fabric. Each channel has these components, so they can provide preprocessed

AE events. One core is dedicated to the OPTICS algorithm, which classi�es incoming events,

and constantly adapts based on previous samples. The result of the classi�cation is then

forwarded to the main core that decides on the next step based on the system's overall state.

It can examine the state of batteries, the severity of the damage, previous events, received

messages. If the event is considered important, a message is generated and forwarded to a

third soft-core that is responsible for reliable radio communication and real-time handling

of the RF hardware.

AE event
pre-processing

Classi�er

Ch2

MainCh1 RF

FPGA
fabric Core 0 Core 1 Core 2

Figure 35: Multi-core system architecture.

Event misses

Structures can be under constant stress and vibration, e.g., high tra�c bridges, airplanes

during long distance �ights. Thus, in a real life scenario there can be an exceeding number of

events, and any event may signal critical structural failure. Hence, a crucial system feature

� and the main �gure of merit to evaluate the bene�ts of the architecture � is the probability

of event misses.

Our shaker experiments are a reasonable starting point, as they simulate the constant

stress and vibration that structures are exposed to. The consequence is a series of damage

events at di�erent points in time. The success of the system depends on whether it is capable

to evaluate an event in real-time before the next one arrives. Hence, the characterization of

Inter-Arrival Times (IATs) is the key question.

In queueing theory the most simple way to model the time between the arrival of events

is the Poisson or exponential process. The Cumulative Distribution Function (CDF) of such

a process is a simple exponential. The Poisson process is a renewal process, so that past

events have no in�uence on current or future arrival times. The simplest example is the

83

replacement of a malfunctioning device with a new one of the same type. Because after

every failure the device is completely renewed, the time to the next failure can be estimated

using only the failure rate of the device family. There is no need for any information on

previous events.

Renewal processes provide an oversimpli�ed model in our case, because the cracking

process is likely in�uenced by previous cracking events. Hence, a better category of modeling

is applied, called non-renewal processes. With these processes, past events have a direct

in�uence on future events. Markov chains are employed as the underlying structure of these

models, where event arrivals are associated with certain state transitions. The main issue

is determining the number of states and the transitions among them. Increased number of

states and transitions provide a better �tting, but at the cost of complexity. Finding the right

Markov chain to properly model stochastic processes is a subject of ongoing research, and is

beyond the scope of this work. Within this document a simple Markovian model is employed,

which can be categorized as a Markovian Arrival Process with two states (MAP(2)) [39, 55,

35]. The most important bene�t of the MAP(2) model, compared to more sophisticated

models, is that it has analytical formulas for data �tting [36].

Figure 36a shows AE event arrival for the �rst aluminium break test with a shaker

amplitude at 1 inch. Figure 36b shows the CDFs.

(a) AE events in time. (b) CDFs of event IAT.

Figure 36: AE events for the �rst aluminium break test with a shaker amplitude set to 1 inch.

The average IAT is 2176ms, and the MAP(2) model basically alternates between a rarely

visited state with a low event generation rate, and an often visited state with a high event

generation rate. The results show that the simple exponential model cannot accurately

predict IAT. Even though the MAP(2) model has only two states, the CDF estimate provides

a much better approximation. A Kolmogorov-Smirnov test would still reveal that the model

is not perfect, but it is much closer to the measured values. Also, model �tting could be

84

improved with additional states, but that is beyond the scope of this work. The goal is not

to provide the most accurate characterization of AE event arrivals, but to develop a general

understanding of the physical properties and their e�ects on system design.

E�ects of parallel execution

One way to mitigate miss rates in the single-core system could be to signi�cantly increase

bu�er sizes, but, memory is a scarce resource. Also, even if bu�er sizes were increased by

orders of magnitude, the system could not provide deterministic real-time insight into the

current state of the structure. The evaluation delay would be very random and would depend

on the current load of the bu�ers.

Other way to handle event misses is to increase clock rate. This approach can provide

shorter, deterministic response times, and is indeed widely used. However, this method has

inherent limitations as well. First, the clock rate has an upper limit, and the higher the clock

rate goes, the higher the complexity of associated circuits and consequently their power con-

sumption. Secondly, the dynamic power consumption of CMOS circuits is a linear function

of their operating frequency for MCU level ICs. As a side note, this simple linear dependence

is becoming less accurate with increasing process resolution. For contemporary complex mi-

croprocessors, with transistor counts in the billion range, the static power consumption, due

to leakage currents, is signi�cant.

Amdahl's law regarding parallel speedup provides an alternative remedy for the problem.

It is well known that the more parts of the algorithm can be run in a parallel manner, the

shorter the response time becomes. It is this property that the multi-core system can utilize.

This is also heavily exploited in state of the art microprocessors with multi-stage, pipelined

architectures.

Figure 37a and 37b show the timing of the single-core and multi-core systems respectively.

On the single-core system every task has to be executed on the single execution thread, thus,

in order to avoid event losses, all parts of the processing have to be �nished before the next

event arrives. On the multi-core system, processing steps are executed in a parallel, pipelined

manner. This means that the critical time length is reduced to the longest, individual

processing time length. However, this is not just the time necessary for the processing,

messaging is also included. The bottleneck becomes the longest processing step.

Table 9 shows single-core run time results for an example implementation of the SHM

system. Two main observations can be made. Firstly, the total run time of 96.07ms makes it

feasible to duty cycle. Embedded platforms, like the MicaZ, can have multiple clock inputs.

Low accuracy, on chip relaxation oscillators are capable of waking up in a matter of µs, while

external resonant oscillators require couple ms to wake up in case of an interrupt. Even in

85

Ch1 Ch2 Classi�erMain RF

AE event

(a) Single core system.

Ch1

AE event

Ch2

Classi�er

Main

RF

Classi�er

AE event #2

Main

Ch2

Ch1

(b) Multi-core system.

Figure 37: Processing time line.

Processing step
∆ time

[cycle] [ms]

Onset time, TDoA
Start
Finish 248,832 33.75

Event clustering
Start 187 0.03
Finish 417,831 56.67

Misc management
Start 261 0.04
Finish 2,012 0.27

RF communication
Start 10 0.00
Finish 39,145 5.31
Total 708,278 96.07

Table 9: Run time results for the single-core SHM system with a clock rate of 7 372 800Hz. Sam-
pling at 750 kHz for two channels, input bu�ers 128 samples long, clustering performed
based on 10 previous events.

the latter case, the wake up time is negligible compared to the active processing time, so

energy can be saved by duty cycling. The extent of this is shown in Table 10. Compared

to the active processing state, both idle and power save states consume less energy, with the

latter around two orders less.

State PdB [dBm]

Active -16.4
Idle -20.0
Power save -34.3

Table 10: Power consumption of a core in di�erent states as measured with the Avrora simulator.

86

The other main observation is that in the current implementation the majority of time

is consumed by the event classi�cation algorithm. A parallel reimplementation here would

bring the most bene�ts. The other signi�cant processing step revolves around the onset

time estimation, quality index calculation, and TDoA, detailed in Table 11. Here the run

time shows a linear relation with the bu�er size, and can quickly become longer than the

classi�cation time. Hence, a logical step would be to try to decrease the bu�er size. However,

the bu�er size directly a�ects system capabilities. A bigger bu�er enables the monitoring

of longer beams, because larger TDoA values can be detected. Also, the more sophisticated

processing steps, e.g. spectrum analysis with WPD, require larger bu�ers. All these aspects

contradict the short response time requirements, which thus may only be achieved employing

parallel execution.

Bu�er size ∆ time
[smpls] [cycle] [ms]

64 127,296 17.27
TDoA → 128 248,832 33.75

256 492,928 66.86
512 981,118 133.07

WPD → 1024 1,956,670 265.39
2048 3,907,582 530.00

Table 11: Run time results of onset time estimation, quality index calculation, and TDoA for
di�erent bu�er lengths. For TDoA and WPD, the minimum reasonable bu�er sizes are
marked.

The need for short response times also becomes evident if, based on the CDFs, the

number of average lost events is calculated. The average IAT is 2176ms, so a simplistic

approach could assume that a processing time of at most 2 s would be enough to handle

events. However, as shown on Figure 38, the actual measurement data reveals four lost

events for every processed. The �gure shows that for a reliable system the processing time

has to be drastically reduced.

Looking at a single-core system, where the processing requires a de�nitive number of clock

cycles, the only way to achieve shorter processing times may be to increase clock frequency,

which increases dynamic power consumption. The relation between processing time and

active state power consumption is depicted in Figure 39a. The �gure demonstrates that

below a processing time of 500ms, which still corresponds to a fairly high average lost event

number, the average power consumption can increase by almost three orders of magnitude

with decreasing processing time.

87

Figure 38: Average number of lost events for every processed event.

(a) Processing time. (b) Event miss probabilities.

Figure 39: Power consumption during active processing.

In order to put the power increase in perspective, the processing time can be directly

translated into event miss probabilities, shown on Figure 39b. The example single-core

system with a total processing time of 96.07ms may seem a fair compromise based on the

previous �gure. The average active power consumption is -16.44 dBm, and any decrease

in processing time (by increasing the clock rate) would result in steep power increases.

However, the new �gure shows that this particular power level only corresponds to an event

miss probability of around 15 percent, which may be considered unacceptably high in a

mission critical situation. Also, the �gure shows, that high reliability systems with less than

one percent event miss probability require around 40 times more power. As a �nal note, the

�gure demonstrates that the MAP(2) model is inadequate to describe event arrival at very

low event miss rates.

These active power consumption values are too high for battery operated sensor nodes,

so these systems only become feasible once duty cycling is considered. Thus, the length of

88

the time interval between the �nishing of processing an event and the arrival of the next

event has to be found. The longer this time interval is, the longer the system may stay in

low power mode, thereby saving energy.

Figure 40: Time that can be spent in power save state.

Figure 40 shows the time that can be spent in low power state versus the processing

time. The results seem paradoxical, but reveal important properties of underlying physical

processes, and highlight why CPSs have to have such tight connections to the physical

aspects. The results suggest that the more time the processing takes, the more it has to wait

for the next event. The explanation for this stems from the fact that AE events form tight

bursts. In other words, if the material gives in and cracks, it is very likely to crack several

times in rapid succession. But after this, it will remain stable for a long time, thus increasing

the average IAT to over two seconds. The inherent limitations of the Poisson model prevent

it from capturing this behaviour altogether, but the MAP(2) captures the essence of actual

measurement data.

This has two main consequences. Firstly, if a system takes too much time processing the

�rst event, it will simply miss all the rapidly following events, and will thus miss valuable

opportunities to analyze crack growth. Secondly, if the system cannot process events right

away, it may have to wait for a long time for the next cracking event in order to gain insight

into the structure's state, by which time it may be already too late. Thus, once more the

importance of short response times is shown.

With good estimates for low power state times, the e�ects of duty cycling may be included

in the power simulations. Figure 41 depicts the average power consumption of an e�ciently

duty-cycling single-core system. It can be seen that the overall power consumption dropped

by 15 dB, which directly results in improved battery life, but the overall shape of the curve

has not changed.

89

Figure 41: Power consumption with e�cient duty cycling.

Also, nearly identical curves result if we built the multi-core system, and allow each core

(performing a di�erent processing step) to run at its own clock rate. The bottleneck is the

longest processing step, and there is no real gain for the other cores to �nish faster. So,

cores that perform simple processing steps may be slowed down, so that each require the

same amount of processing time. With reduced clock rates, signi�cant power savings may

be achieved, which balance the cumulative consumption of the several parallel cores.

In that regard, a couple slower cores are equivalent to one fast core, which would make

the latter the more preferable solution, as it is much simpler. However, clock rates cannot be

increased above a certain level. This is not just a question of increasing power consumption.

Large systems are di�cult to synchronize due to clock skew and clock slew issues. Above a

certain complexity, systems naturally tend to be GALS.

If the clock rate is �xed, and thus the consumed power is �xed, the single-core approach

will take longer time to process events, and consequently the event loss probability will

increase. From the other point of view, the single-core solution can only achieve the same

processing time, and thus event loss probability, if its clock is faster, resulting in a higher

power consumption. This relation is depicted on Figure 42.

Due to the nature of these curves, it is obvious, and all models agree on this, that at high

event loss probabilities and low power consumptions, the parallel solution is more reliable

than the single-core. For example, for the MAP(2) curve at around -26 dBm the event loss

probability is 5 percent, while for the parallel system it is less than 3 percent. Also, the

measurement data shows a clear advantage at low event loss rates, which is not captured by

any of the models. At around -18 dBm power consumption, the single-core solution provides

a loss probability of 2.5 percent, while the parallel approach is around 0.5 percent. A �ve

fold improvement.

90

Figure 42: Multi-core versus single core (dotted line) event loss probability and power consump-
tion.

However, the clustering algorithm largely dominates the overall run time, and is an

obstacle for true parallel execution. With a more balanced distribution, better improvements

can be achieved as seen in Figure 43a. For low event loss probabilities the improvement in

power is 5 dB. For -18 dBm power consumption the event loss probability shows a seven

fold improvement. However, an order of magnitude improvement, 10 dB, can be achieved in

power if the 10 cores, maximally provided by the platform, are equally employed, as seen in

Figure 43b. The probability improvement for -18 dBm power consumption is about eight

fold at more than 4 percent, with even better results at higher probabilities.

(a) 5 cores. (b) 10 cores.

Figure 43: Multi-core versus single core (dotted line) event loss probability and power consump-
tion. Balanced parallel execution.

91

CHAPTER VII

CONCLUSION

Conventional embedded platforms predominantly employ a single microcontroller with

additional application-speci�c ICs. An emerging subset of embedded systems and CPSs

have multiple channels and high sampling rates to observe various physical phenomena. The

high throughput and computational requirements of these applications render the single

MCU approach infeasible, due to the required high clock rates and correspondingly increased

power consumption. One approach to overcome the issue is to add an FPGA to the platform

in order to implement application-speci�c processing in con�gurable hardware. However,

the high inrush currents, associated with the duty-cycling of conventional SRAM FPGAs,

prevented the application of these devices in the power constrained embedded environment.

The application of the novel �ash FPGA technology mitigates this problem. Our prototype

sensor platform, called MarmotE, is an example of this concept.

However, development of FPGA-based applications is more complex, less �exible and the

number of developers familiar with the technologies is limited. Moreover, the conventional

approach has a large legacy code base. The key contribution of this thesis stems from

this observation, and suggests the instantiation of several soft cores in the con�gurable

hardware fabric. A soft core is basically a fully functional MCUs implemented in a hardware

description language, and thus can be instantiated � even multiple times � within most

FPGAs. The resulting multi-core architecture provides parallel improvements, in accordance

with Amdahl's Law, yet keeps the familiar MCU abstraction for computation. Synthesis

results have shown that up to 10 soft cores may �t in the currently available �ash FPGAs.

We propose an architecture based on a loosely coupled network of cores, because cores can

operate largely independently on separate dedicated tasks, each with their own processing

and timing requirements. This way cores may run at di�erent clock rates to provide optimum

power consumption. To facilitate this architecture, a queue-based messaging framework was

developed with corresponding hardware and software abstractions.

The new architecture requires an accompanying application development environment.

The nesC was chosen as the programming language, as its programming model enables and

enforces modularity that is crucial in partitioning and assigning independent tasks to cores.

Regular procedural languages typically yield monolithic programs, which are hard to au-

tomatically analyze and partition. The necessary communication components were added

92

to TinyOS, the modular embedded operating system built on top of nesC, to transparently

support the queue-based messaging framework in the hardware. Also, the single core devel-

opment environment was augmented to help guide the transition of single core projects to

the multi-core platform.

A signi�cant addition to this environment has been the improved version of the cycle

accurate simulator, called Avrora, which is now capable to fully support multi-core platforms.

It is able to simulate and evaluate a network of sensors employing the same binaries that are

eventually downloaded into the soft cores.

Finally, a comprehensive case study has been conducted in the �eld of SHM to demon-

strate the requirements and properties of a concrete application. It showcased the level of

complexity for contemporary signal processing, and demonstrated an application that can

bene�t from the computational improvements provided by the parallel platform.

The main advantage of the architecture is that for time critical applications, it can provide

better power consumption and response time properties by e�ectively pipelining tasks. The

architecture is especially bene�cial, if most of the available cores of the architecture can be

equally utilized.

93

APPENDIX A

ANALYSIS AND PROOF OF ONSET TIME PICKER METHODS

Some assumptions:

• time series are upper and lower bounded, more speci�cally −1 < xi < 1 for i = 1..N

• γ2
1 � 1

• constant zero mean value within any time series

• the biased variance estimation (σ̂2) is accurate enough, thus for our practical purposes:

σ2 = σ̂2 =
1

N

N∑
i=1

x2
i −

1

N

(N∑
i=1

xi

)2

The goal is to come up with a method that, based on the below shown variables, can

estimate the start of the signal change. There are many ways to achieve this, the approach

taken here is going to be the de�nition of a "�tness" function f(n1, n2, σ
2
1, σ

2
2) that gives

either a minimum or a maximum at the point of change. Many such functions exist, this

document focuses primarily on two of them referred to as the "simpli�ed onset time picker

following the AIC form" and the "reciprocal onset time picker".

Throughout the proofs the lemma in APPENDIX B is going to be employed.

Proof for constant variance time series

Some assumptions:

• Constant variance within �rst time series: σ2
1 = γ1

2 = β2

Simpli�ed onset time picker following the AIC form

The �tness function: n1 lnσ2
1 + n2 lnσ2

2

The statement to prove here is that the right side in the following inequality is always

less than the left:

94

-1

1
n1; σ2

1 n2; σ2
2

m1; γ2
1 m2; γ2

2

∆n; β2

Figure 44: Two consecutive time series with di�erent variances. n1, n2, m1, m2, and ∆n are the
length (in samples), σ2

1, σ
2
2, γ

2
1 , γ

2
2 , and β

2 are the corresponding variances.

n1 lnσ2
1 + n2 lnσ2

2 ? m1 ln γ2
1 +m2 ln γ2

2

σ2
1
n1σ2

2
n2 ? γ2

1
m1γ2

2
m2

γ2
1
n1σ2

2
n2 ? γ2

1
m1γ2

2
m2

σ2
2
n2 ? γ2

1
m1−n1γ2

2
m2

σ2
2
n2 ? γ2

1
∆n
γ2

2
m2

σ2
2 =

∆n

n2

β2 +
m2

n2

γ2
2 =

∆n

n2

γ2
1 +

m2

n2

γ2
2 ?

(
γ2

1

)∆n
n2

(
γ2

2

)m2
n2

(
1− m2

n2

)
γ2

1 +
m2

n2

γ2
2 ?

(
γ2

1

)1−m2
n2

(
γ2

2

)m2
n2

1− m2

n2

+
m2

n2

γ2
2

γ2
1

?

(
γ2

2

γ2
1

)m2
n2

1 +
m2

n2

(
γ2

2

γ2
1

− 1

)
?

(
γ2

2

γ2
1

)m2
n2

1 + rα ? (1 + α)r

Which is Bernoulli's inequality for α =
γ2

2

γ2
1
− 1, r = m2

n2
, and since

• α => −1

• α 6= 0 because γ2
2 6= γ2

1

• 0 ≤ r < 1

it follows:

95

1 + rα > (1 + α)r

n1 lnσ2
1 + n2 lnσ2

2 > m1 ln γ2
1 +m2 ln γ2

2

Reciprocal onset time picker

−n1

σ2
1

− n2

σ2
2

? −m1

γ2
1

− m2

γ2
2

−n1

γ2
1

− n2

σ2
2

? −m1

γ2
1

− m2

γ2
2

−n2

σ2
2

? −∆n

γ2
1

− m2

γ2
2

− n2
2

∆nβ2 +m2γ2
2

= − n2
2

∆nγ2
1 +m2γ2

2

? −∆n

γ2
1

− m2

γ2
2

∆n

γ2
1

+
m2

γ2
2

?
n2

2

∆nγ2
1 +m2γ2

2

∆nγ2
2 +m2γ

2
1

γ2
1γ

2
2

?
n2

2

∆nγ2
1 +m2γ2

2(
∆nγ2

2 +m2γ
2
1

)(
∆nγ2

1 +m2γ
2
2

)
? n2

2γ
2
1γ

2
2

(∆n)2γ2
2γ

2
1 + ∆nm2

(
γ2

2

)2

+m2 ∆n
(
γ2

1

)2

+ (m2)2γ2
1γ

2
2 ? (m2 + ∆n)2γ2

1γ
2
2

∆nm2

((
γ2

2

)2

+
(
γ2

1

)2
)

+ γ2
1γ

2
2

(
(∆n)2 + (m2)2

)
?

(
(∆n)2 + 2∆nm2 + (m2)2

)
γ2

1γ
2
2

∆nm2

((
γ2

2

)2

+
(
γ2

1

)2
)

? 2∆nm2γ
2
1γ

2
2(

γ2
2

)2

+
(
γ2

1

)2

? 2γ2
1γ

2
2(

γ2
2 − γ2

1

)2

? 0

Which is a trivial inequality and γ2
2 6= γ2

1 , thus:

(
γ2

2 − γ2
1

)2

> 0

−n1

σ2
1

− n2

σ2
2

> −m1

γ2
1

− m2

γ2
2

96

Power of two onset time picker

The �tness function: n1

(
σ2

1

)2

+ n2

(
σ2

2

)2

n1

(
σ2

1

)2

+ n2

(
σ2

2

)2

? m1

(
γ2

1

)2

+m2

(
γ2

2

)2

n1

(
γ2

1

)2

+ n2

(
σ2

2

)2

? m1

(
γ2

1

)2

+m2

(
γ2

2

)2

n2

(
σ2

2

)2

? ∆n
(
γ2

1

)2

+m2

(
γ2

2

)2

n2
2

(
σ2

2

)2

? n2∆n
(
γ2

1

)2

+ n2m2

(
γ2

2

)2

(
∆nβ2 +m2γ

2
2

)2

=

(
∆nγ2

1 +m2γ
2
2

)2

? n2∆n
(
γ2

1

)2

+ n2m2

(
γ2

2

)2

(∆n)2
(
γ2

1

)2

+ 2∆nm2γ
2
1γ

2
2 +m2

2

(
γ2

2

)2

? n2∆n
(
γ2

1

)2

+ n2m2

(
γ2

2

)2

∆n(∆n− n2)
(
γ2

1

)2

+ 2∆nm2γ
2
1γ

2
2 +m2(m2 − n2)

(
γ2

2

)2

? 0

−∆nm2

(
γ2

1

)2

+ 2∆nm2γ
2
1γ

2
2 −m2∆n

(
γ2

2

)2

? 0

−
(
γ2

1

)2

+ 2γ2
1γ

2
2 −

(
γ2

2

)2

? 0

0 ?
(
γ2

1 − γ2
2

)2

Which is a trivial inequality and γ2
2 6= γ2

1 , thus:

0 <
(
γ2

1 − γ2
2

)2

n1

(
σ2

1

)2

+ n2

(
σ2

2

)2

< m1

(
γ2

1

)2

+m2

(
γ2

2

)2

Other usable methods without proof

• ln replaced by its Taylor series: −n1

I∑
i=1

(
1− σ2

1

)i
i

− n2

I∑
i=1

(
1− σ2

2

)i
i

, which works

reasonably well if I > 64

• −n1

(
1− σ2

1

)I − n2

(
1− σ2

2

)I
, which works reasonably well if I > 64

• −n
2
1

σ2
1

− n2
2

σ2
2

97

• −
√
n1

σ2
1

−
√
n2

σ2
2

• n1

(
1− 1

σ2
1

)
+ n2

(
1− 1

σ2
2

)
•

(
n1∑
i=1

i

)(
1− 1

σ2
1

)
+

(
n2∑
i=1

i

)(
1− 1

σ2
2

)

• n1

(
1− 1

σ2
1

1
I

)
+ n2

(
1− 1

σ2
2

1
I

)

Unusable methods without proof

• n1σ
2
1 + n2σ

2
2

•
(
σ2

1

)n1

+
(
σ2

2

)n2

• n1

(
σ2

2

)2
+ n2

(
σ2

2

)2

•
(
n1 + σ2

1

)(
n2 + σ2

2

)
• −1

n1σ2
2

+
−1

n2σ2
1

Proof for monotone increasing variance time series

In this section a dispersive signal is assumed. It is analysed if the above de�ned �tness

functions still hold up under these conditions.

The assumptions are:

• monotone increasing variances: 0 < γ2
1 < β2 < σ2

2 ≤ 1

Simpli�ed onset time picker following the AIC form

n1 lnσ2
1 + n2 lnσ2

2 > m1 ln γ2
1 +m2 ln γ2

2

σ2
1
n1σ2

2
n2 > γ2

1
m1γ2

2
m2(

m1γ
2
1 + ∆nβ2

m1 + ∆n

)n1

σ2
2
n2 > γ2

1
m1

(
∆nβ2 + n2σ

2
2

∆n+ n2

)m2

(
m1γ

2
1 + ∆nβ2

m1 + ∆n

)m1+∆n

σ2
2
n2 > γ2

1
m1

(
∆nβ2 + n2σ

2
2

∆n+ n2

)∆n+n2

98

-1

1
n1; σ2

1 n2; σ2
2

m1; γ2
1 m2; γ2

2

∆n; β2

Figure 45: Two consecutive time series with di�erent variances. n1, n2, m1, m2, and ∆n are the
length (in samples), σ2

1, σ
2
2, γ

2
1 , γ

2
2 , and β

2 are the corresponding variances.

It's easy to see this relation, the base is a smaller (and < 1) and the exponent is a larger

value:

σ2
2
n2 >

(
∆nβ2 + n2σ

2
2

∆n+ n2

)∆n+n2

Thus to have the method working the following has to hold:

(
m1γ

2
1 + ∆nβ2

m1 + ∆n

)m1+∆n

> γ2
1
m1

m1γ
2
1 + ∆nβ2

m1 + ∆n
> γ2

1

m1
m1+∆n

m1γ
2
1 + ∆nβ2 > (m1 + ∆n)γ2

1

m1
m1+∆n

∆nβ2 > (m1 + ∆n)γ2
1

m1
m1+∆n −m1γ

2
1

β2 >
(m1

∆n
+ 1
)
γ2

1

m1
m1+∆n − m1

∆n
γ2

1

99

Reciprocal onset time picker

−n1

σ2
1

− n2

σ2
2

> −m1

γ2
1

− m2

γ2
2

m1

γ2
1

+
m2

γ2
2

>
n1

σ2
1

+
n2

σ2
2

m1

γ2
1

+
(∆n+ n2)2

∆nβ2 + n2σ2
2

>
(m1 + ∆n)2

m1γ2
1 + ∆nβ2

+
n2

σ2
2

It's easy to see this relation, the numerator is a larger and the denominator is a smaller

value:

(∆n+ n2)2

∆nβ2 + n2σ2
2

>
n2

σ2
2

=
n2

2

n2σ2
2

Thus to have the method working the following has to hold:

m1

γ2
1

>
(m1 + ∆n)2

m1γ2
1 + ∆nβ2

m2
1γ

2
1 +m1∆nβ2 > γ2

1m
2
1 + γ2

12m1∆n+ γ2
1(∆n)2

m1∆nβ2 > γ2
12m1∆n+ γ2

1(∆n)2

m1β
2 > γ2

12m1 + γ2
1∆n

β2 > γ2
1

(
2 +

∆n

m1

)

100

Comparison of β for the two methods

γ2
1

(
2 +

∆n

m1

)
?
(m1

∆n
+ 1
)
γ2

1

m1
m1+∆n − m1

∆n
γ2

1

2 +
∆n

m1

+
m1

∆n
?
(m1

∆n
+ 1
)
γ2

1

−∆n
m1+∆n

(m1 + ∆n)2

m1(m1 + ∆n)
? γ2

1

−∆n
m1+∆n

1 +
∆n

m1

? γ2
1

−1
m1
∆n

+1

1 +
∆n

m1

?
1

γ2
1

1
m1
∆n

+1

γ2
1

1
m1
∆n

+1 ?
1

1 + ∆n
m1

γ2
1 ?

(
1

1 + ∆n
m1

)m1
∆n

+1

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

∆n
m1

(
1 + ∆n

m1

)−m1
∆n
−1

Figure 46: Relation of β values

Plotting the right side of the equation as seen in Figure 46 reveals that it is mostly

greater than 0.1 whereas the left side of the equation (the variance of baseline noise) can be

safely considered much less than that. This means that for our practical purposes:

101

γ2
1 <

(
1

1 + ∆n
m1

)m1
∆n

+1

γ2
1

(
2 +

∆n

m1

)
<

(m1

∆n
+ 1
)
γ2

1

m1
m1+∆n − m1

∆n
γ2

1

Which means that among all the time series with monotone increasing variance those that

satisfy the β2 > γ2
1

(
2 + ∆n

m1

)
condition will necessarily give a minimum for the reciprocal

�tness function right at the beginning of the signal, while at the same time no such guarantee

exists for the simpli�ed AIC method.

Break down of the simpli�ed AIC method

A break down of the simpli�ed AIC method means:

n1 lnσ2
1 + n2 lnσ2

2 < m1 ln γ2
1 +m2 ln γ2

2

σ2
1
n1σ2

2
n2 < γ2

1
m1γ2

2
m2(

m1γ
2
1 + ∆nβ2

m1 + ∆n

)n1

σ2
2
n2 < γ2

1
m1

(
∆nβ2 + n2σ

2
2

∆n+ n2

)m2

(
m1γ

2
1 + ∆nβ2

m1 + ∆n

)m1+∆n

σ2
2
n2 < γ2

1
m1

(
∆nβ2 + n2σ

2
2

∆n+ n2

)∆n+n2

(
m1γ

2
1 + ∆nβ2

m1 + ∆n

)m1+∆n
σ2

2
∆n+n2

σ2
2

∆n
<

γ2
1

∆n+m1

γ2
1

∆n

(
∆nβ2 + n2σ

2
2

∆n+ n2

)∆n+n2

(
m1 + ∆nβ

2

γ2
1

m1 + ∆n

)m1+∆n

γ2
1

∆n
< σ2

2
∆n

(
∆nβ

2

σ2
2

+ n2

∆n+ n2

)∆n+n2

(
m1 + ∆nβ

2

γ2
1

m1 + ∆n

)m1+∆n(
∆n+ n2

∆nβ
2

σ2
2

+ n2

)∆n+n2

<

(
σ2

2

γ2
1

)∆n

(
m1 + ∆nβ

2

γ2
1

m1 + ∆n

)1+
m1
∆n
(

∆n+ n2

∆nβ
2

σ2
2

+ n2

)1+
n2
∆n

<
σ2

2

γ2
1(

m1 + ∆nβ
2

γ2
1

m1 + ∆n

)1+
m1
∆n
(

∆n+ n2

∆nβ
2

σ2
2

+ n2

)1+
n2
∆n

<

(
m1 + ∆nβ

2

γ2
1

m1 + ∆n

)1+
m1
∆n
(

∆n+ n2

n2

)1+
n2
∆n

<
σ2

2

γ2
1

102

Meaning that for any given n2, m1, ∆n, β2, and γ2
1 one can come up with a su�ciently

large σ2
2 that will render the simpli�ed AIC method useless, while as long as β2 > γ2

1

(
2 +

∆n
m1

)
condition holds the reciprocal method still remains applicable. This described scenario

can very well happen if the variance increases exponentially, which can easily occur with

dispersive waves in a complex wave propagation environment.

103

APPENDIX B

CALCULATING VARIANCES

Lemma

σ̂2
2 =

1

n2

N∑
i=n1+1

x2
i −

1

n2

(N∑
i=n1+1

xi

)2

=

=
1

n2

[
n′1∑

i=n1+1

x2
i +

N∑
i=n′1+1

x2
i −

(n′1∑
i=n1+1

xi +
N∑

i=n′1+1

xi

)2
]

=

=
1

n2

[
n′1∑

i=n1+1

x2
i +

N∑
i=n′1+1

x2
i −

(n′1∑
i=n1+1

xi

)2

− 2

n′1∑
i=n1+1

xi

N∑
i=n′1+1

xi −
(N∑
i=n′1+1

xi

)2
]

=

=
1

n2

[
n′1∑

i=n1+1

x2
i +

N∑
i=n′1+1

x2
i −

(n′1∑
i=n1+1

xi

)2

−
(N∑
i=n′1+1

xi

)2
]
− 2

n2

n′1∑
i=n1+1

xi

N∑
i=n′1+1

xi =

=
1

n2

[
n′1∑

i=n1+1

x2
i −

(n′1∑
i=n1+1

xi

)2

+
N∑

i=n′1+1

x2
i −

(N∑
i=n′1+1

xi

)2
]
− 2

n2

n′1∑
i=n1+1

xi

N∑
i=n′1+1

xi =

=
1

n2

[
∆n

(
1

∆n

n′1∑
i=n1+1

x2
i −

1

∆n

(n′1∑
i=n1+1

xi

)2
)

+ n′2

(
1

n′2

N∑
i=n′1+1

x2
i −

1

n′2

(N∑
i=n′1+1

xi

)2
)]
−

− 2

n2

n′1∑
i=n1+1

xi

N∑
i=n′1+1

xi =

=
1

n2

[
∆nσ̂2

1 + n′2σ̂
′
2

2

]
− 2

n2

n′1∑
i=n1+1

xi

N∑
i=n′1+1

xi =

=
∆n

n2

σ̂2
1 +

n′2
n2

σ̂′2
2 − 2

n2

n′1∑
i=n1+1

xi

N∑
i=n′1+1

xi

But since mean values are considered to be zero:

104

σ̂2
2 =

∆n

n2

σ̂2
1 +

n′2
n2

σ̂′2
2

105

REFERENCES

[1] B. Abbott, C. Biegl, R. Souder, T. Bapty, and Janos Sztipanovits. Graphical pro-
gramming for the transputer. In [1990] Proceedings. The Twenty-Second Southeastern
Symposium on System Theory, pages 86�90. IEEE Comput. Soc. Press, 1990.

[2] I. Ahmad. Dynamic critical-path scheduling: an e�ective technique for allocating task
graphs to multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
7(5):506�521, May 1996.

[3] H. Akaike. A new look at the statistical model identi�cation. IEEE Transactions on
Automatic Control, 19(6):716�723, December 1974.

[4] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 72(3):269�342, June 2010.

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OPTICS:
ordering points to identify the clustering structure. ACM SIGMOD Record, 28(2):49�60,
June 1999.

[6] P. Arato, S. Jahasz, Z.A. Mann, A. Orban, and D. Papp. Hardware-software partitioning
in embedded system design. In IEEE International Symposium on Intelligent Signal
Processing, 2003, pages 197�202. IEEE, 2003.

[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical report, EECS Department, University of
California, Berkeley, 2006.

[8] Krste Asanovic, John Wawrzynek, David Wessel, Katherine Yelick, Rastislav Bodik,
James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David
Patterson, and Koushik Sen. A view of the parallel computing landscape. Communica-
tions of the ACM, 52(10):56, October 2009.

[9] Atmel. AT90S/LS8535 Datasheet Mature, 2001.

[10] Atmel. ATmega128 Complete, 2004.

[11] Atmel. ATmega48/88/168 Complete, 2011.

[12] Benjamin Babjak, Sandor Szilvasi, Alex Pedchenko, Mark Hofacker, Eric J. Barth, Peter
Volgyesi, and Akos Ledeczi. Experimental Research Platform for Structural Health
Monitoring. In Advancement in Sensing Technology Smart Sensors, Measurement and
Instrumentation, volume 1, pages 43�68. Springer Berlin Heidelberg, 2013.

106

[13] Alakananda Bhattacharya, Amit Konar, Swagatam Das, Crina Grosan, and Ajith Abra-
ham. Hardware Software Partitioning Problem in Embedded System Design Using Par-
ticle Swarm Optimization Algorithm. In 2008 International Conference on Complex,
Intelligent and Software Intensive Systems, pages 171�176. IEEE, 2008.

[14] A. Bouhraoua, O. Diraneyya, and M.E. Elrabaa. A simpli�ed router architecture for
the modi�ed Fat Tree Network-on-Chip topology. In 2009 NORCHIP, pages 1�4. IEEE,
November 2009.

[15] Hajo J. Broersma, Daniel Paulusma, Gerard J. M. Smit, Frank Vlaardingerbroek, and
Gerhard J. Woeginger. The Computational Complexity of the Minimum Weight Pro-
cessor Assignment Problem. In Bernhard Hromkovi£, Juraj and Nagl, Manfred and
Westfechtel, editor, Graph-Theoretic Concepts in Computer Science, pages 189�200.
Springer Berlin Heidelberg, 2005.

[16] David Broman. High-Con�dence Cyber-Physical Co-Design. In Proceedings of the Work-
in-Progress (WiP) session of the 33rd IEEE Real-Time Systems Symposium (RTSS
2012), 2012.

[17] David Broman, Michael Zimmer, Yooseong Kim, Hokeun Kim, Jian Cai, Aviral Shri-
vastava, Stephen A. Edwards, and Edward A. Lee. Precision Timed Infrastructure:
Design Challenges. In Proceedings of the Electronic System Level Synthesis Conference
(ESLsyn 2013), 2013.

[18] Fangzhe Chang, Jennifer Ren, and Ramesh Viswanathan. Optimal Resource Allocation
in Clouds. In 2010 IEEE 3rd International Conference on Cloud Computing, pages
418�425. IEEE, July 2010.

[19] Hui Yan Cheah, Suhaib A. Fahmy, Douglas L. Maskell, and Chidamber Kulkarni. A
lean FPGA soft processor built using a DSP block. In Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays - FPGA '12, page 237,
New York, New York, USA, 2012. ACM Press.

[20] Barry A. Cipra. The Best of the 20th Century: Editors Name Top 10 Algorithms.
Society for Industrial and Applied Mathematics News, 33, May 2000.

[21] R.R. Coifman and M.V. Wickerhauser. Entropy-based algorithms for best basis selec-
tion. IEEE Transactions on Information Theory, 38(2):713�718, March 1992.

[22] W. Daniel Hillis. The connection machine: A computer architecture based on cellular
automata. Physica D: Nonlinear Phenomena, 10(1-2):213�228, January 1984.

[23] Rodolfo de Paz Alberola and Dirk Pesch. AvroraZ: Extending Avrora with an IEEE
802.15.4 Compliant Radio Chip Model. In Proceedings of the 3nd ACM workshop on
Performance monitoring and measurement of heterogeneous wireless and wired networks
- PM2HW2N '08, pages 43�50, New York, New York, USA, 2008. ACM Press.

107

[24] Prabal Dutta, Jay Taneja, Jaein Jeong, Xiaofan Jiang, and David Culler. A building
block approach to sensornet systems. In SenSys '08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, page 267, New York, New York, USA,
2008. ACM Press.

[25] N. Edmonds, D. Stark, and J. Davis. Mass: modular architecture for sensor systems.
In IPSN 2005. Fourth International Symposium on Information Processing in Sensor
Networks, 2005., pages 393�397. IEEE, 2005.

[26] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, and Ivan Breskovic. SLA-
Aware Application Deployment and Resource Allocation in Clouds. In 2011 IEEE 35th
Annual Computer Software and Applications Conference Workshops, pages 298�303.
IEEE, July 2011.

[27] G. Estrin. Recon�gurable computer origins: the UCLA �xed-plus-variable (F+V) struc-
ture computer. IEEE Annals of the History of Computing, 24(4):3�9, October 2002.

[28] G. Estrin, B. Bussell, R. Turn, and J. Bibb. Parallel Processing in a Restructurable
Computer System. IEEE Transactions on Electronic Computers, EC-12(6):747�755,
December 1963.

[29] G. Estrin and R. Turn. Automatic Assignment of Computations in a Variable Structure
Computer System. IEEE Transactions on Electronic Computers, EC-12(6):755�773,
December 1963.

[30] Gerald Estrin. Organization of computer systems. In Papers presented at the May 3-
5, 1960, western joint IRE-AIEE-ACM computer conference on - IRE-AIEE-ACM '60
(Western), page 33, New York, New York, USA, 1960. ACM Press.

[31] Silvia Figueira. An analysis of the energy e�ciency of multi-threading on multi-core
machines. In International Conference on Green Computing, pages 283�290. IEEE,
August 2010.

[32] Jack Ganssle. The Art of Designing Embedded Systems. 1999.

[33] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David
Culler. The nesC language: A holistic approach to networked embedded systems. In
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design
and implementation - PLDI '03, page 1, New York, New York, USA, 2003. ACM Press.

[34] E. Harrington. Synchronization Techniques for Various Switching Network Topologies.
IEEE Transactions on Communications, 26(6):925�932, June 1978.

[35] Armin Heindl. Inverse characterization of hyperexponential MAP(2)s. In 11th Interna-
tional Conference on Analytical and Stochastic Modeling Techniques and Applications,
page 183�189, 2004.

108

[36] Armin Heindl, Gábor Horváth, and Karsten Gross. Explicit Inverse Characterizations
of Acyclic MAPs of Second Order. In EPEW'06 Proceedings of the Third European
conference on Formal Methods and Stochastic Models for Performance Evaluation, 2006.

[37] John L Hennessy and David A Patterson. Computer Architecture, Fourth Edition: A
Quantitative Approach. Number 0. Morgan Kaufmann, 2006.

[38] Jonathan Hill. The soft-core discrete-time signal processor peripheral. IEEE Signal
Processing Magazine, 26(2):112�115, March 2009.

[39] András Horváth and Miklós Telek. Markovian Modeling of Real Data Tra�c: Heuristic
Phase Type and MAP Fitting of Heavy Tailed and Fractal Like Samples. In Performance
Evaluation of Complex Systems: Techniques and Tools, pages 405�434, 2002.

[40] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker. A Heteroge-
neous Multicore System on Chip with Run-Time Recon�gurable Virtual FPGA Archi-
tecture. In 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pages 143�149. IEEE, May 2011.

[41] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multi-resource alloca-
tion: Fairness-e�ciency tradeo�s in a unifying framework. In 2012 Proceedings IEEE
INFOCOM, pages 1206�1214. IEEE, March 2012.

[42] Genshiro Kitagawa and Hirotugu Akaike. A procedure for the modeling of non-
stationary time series. Annals of the Institute of Statistical Mathematics, 30(1):351�363,
December 1978.

[43] A. Kumar and J. Kleinberg. Fairness measures for resource allocation. In Proceed-
ings 41st Annual Symposium on Foundations of Computer Science, pages 75�85. IEEE
Comput. Soc, 2000.

[44] Tian Lan, David Kao, Mung Chiang, and Ashutosh Sabharwal. An Axiomatic Theory
of Fairness in Network Resource Allocation. In 2010 Proceedings IEEE INFOCOM,
pages 1�9. IEEE, March 2010.

[45] Olaf Landsiedel, Klaus Wehrle, Ben L. Titzer, and Jens Palsberg. Enabling detailed
modeling and analysis of sensor networks. Praxis der Informationsverarbeitung und
Kommunikation, 2005.

[46] Akos Ledeczi. Parallel systems with �exible topology. PhD thesis, 1995.

[47] Ben Lee and A. R. Hurson. Issues in Data�ow Computing. Advances in Computers,
37:285�333, 1993.

[48] E.K.F. Lee and P.G. Gulak. A CMOS Field-programmable Analog Array. In 1991
IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pages
186�314. IEEE, 1991.

109

[49] Isaac Liu. Precision Timed Machines. PhD thesis, University of California, Berkeley,
May 2012.

[50] Tao Liu, Zhenzhou Ji, Qing Wang, and Suxia Zhu. Research on E�ciency of Signal
Processing on Embedded Multicore System. In 2010 First International Conference
on Pervasive Computing, Signal Processing and Applications, pages 907�911. IEEE,
September 2010.

[51] Yu Liu. The Wireless Sensor Network Simulator, 2012.

[52] Dimitrios Lymberopoulos, Nissanka B. Priyantha, and Feng Zhao. mPlatform: A Re-
con�gurable Architecture and E�cient Data Sharing Mechanism for Modular Sensor
Nodes. In 2007 6th International Symposium on Information Processing in Sensor Net-
works, pages 128�137. IEEE, April 2007.

[53] N. Maeda. A method for reading and checking phase times in auto-processing system
of seismic wave data. Zisin, Journal of the Seismological Society of Japan, 38:365�380,
1985.

[54] G. Martin. Overview of the MPSoC design challenge. In 2006 43rd ACM/IEEE Design
Automation Conference, pages 274�279. IEEE, 2006.

[55] William Mary, Giuliano Casale, and Eddy Z. Zhang. Interarrival Times Characterization
and Fitting for Markovian Tra�c Analysis. In Dagstuhl Seminar, 2008.

[56] Oleg Maslennikow, Juri Shevtshenko, and Anatoli Sergyienko. Con�gurable Micropro-
cessor Array for DSP Applications. In Lecture Notes in Computer Science, pages 36�41.
2004.

[57] Thomas Moscibroda and Onur Mutlu. A case for bu�erless routing in on-chip networks.
ACM SIGARCH Computer Architecture News, 37(3):196, June 2009.

[58] Laurent Moss, Hubert Guérard, Gary Dare, and Guy Bois. Recent Experience on an
ESL Framework for Rapid Design Exploration Using Hardware-Software Codesign for
ARM-based FPGAs. In SAME 2012, 2012.

[59] Boris Muravin, Gregory Muravin, and Ludmila Lezvinsky. The Fundamentals of Struc-
tural Health Monitoring By The Acoustic Emission Method. In 20th International
Acoustic Emission Symposium, pages 253�258, Kumamoto.

[60] P.K. Murthy and E.A. Lee. Multidimensional synchronous data�ow. IEEE Transactions
on Signal Processing, 50(8):2064�2079, August 2002.

[61] B. O'Flynn, S. Bellis, K. Delaney, J. Barton, S.C. O'Mathuna, A.M. Barroso, J. Ben-
son, U. Roedig, and C. Sreenan. The development of a novel minaturized modular
platform for wireless sensor networks. In IPSN 2005. Fourth International Symposium
on Information Processing in Sensor Networks, 2005., pages 370�375. IEEE, 2005.

110

[62] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung
Chang. The case for a single-chip multiprocessor. ACM SIGPLAN Notices, 31(9):2�11,
September 1996.

[63] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. A Particle
Swarm Optimization-Based Heuristic for Scheduling Work�ow Applications in Cloud
Computing Environments. In 2010 24th IEEE International Conference on Advanced
Information Networking and Applications, pages 400�407. IEEE, 2010.

[64] Joseph Porter, Zsolt Lattman, Graham Hemingway, Nagabhushan Mahadevan, Sandeep
Neema, Harmon Nine, Nicholas Kottenstette, Peter Volgyesi, Gabor Karsai, and Janos
Sztipanovits. The ESMoL Modeling Language and Tools for Synthesizing and Simulat-
ing Real-Time Embedded Systems. In 15th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2009.

[65] Hideki John Reekie. Realtime Signal Processing: Data�ow, Visual, and Functional
Programming. PhD thesis, 1995.

[66] Till Riedel, Philipp Scholl, Christian Decker, Martin Berchtold, and Michael Beigl. Plug-
gable real world interfaces Physically enabled code deployment for networked sensors.
In 2008 5th International Conference on Networked Sensing Systems, pages 111�114.
IEEE, June 2008.

[67] Utz Roedig, Sarah Rutlidge, James Brown, and Andrew Scott. Towards multiprocessor
sensor nodes. In Proceedings of the 6th Workshop on Hot Topics in Embedded Networked
Sensors - HotEmNets '10, page 1, New York, New York, USA, 2010. ACM Press.

[68] Thomas W Rondeau, Allen B Mackenzie, Je�rey H Reed, Scott F Midki�, and Sheryl B
Ball. Application of Arti�cial Intelligence to Wireless Communications. PhD thesis,
Virginia Polytechnic Institute, 2007.

[69] Emre Salman and Eby Friedman. High Performance Integrated Circuit Design. 2012.

[70] Patrick R. Schaumont. A Practical Introduction to Hardware/Software Codesign. 2010.

[71] Alexander Schrijver. Combinatorial Optimization Polyhedra and E�ciency, volume 24.
2003.

[72] David Sheldon, Rakesh Kumar, Roman Lysecky, Frank Vahid, and Dean Tullsen.
Application-Speci�c Customization of Parameterized FPGA Soft-Core Processors. In
2006 IEEE/ACM International Conference on Computer Aided Design, pages 261�268.
IEEE, November 2006.

[73] David Sheldon, Rakesh Kumar, Frank Vahid, Dean Tullsen, and Roman Lysecky. Con-
joining Soft-Core FPGA Processors. In 2006 IEEE/ACM International Conference on
Computer Aided Design, pages 694�701. IEEE, November 2006.

111

[74] L.T. Smit, G.J.M. Smit, J.L. Hurink, H. Broersma, D. Paulusma, and P.T. Wolkotte.
Run-time mapping of applications to a heterogeneous recon�gurable tiled system on
chip architecture. In Proceedings. 2004 IEEE International Conference on Field- Pro-
grammable Technology (IEEE Cat. No.04EX921), pages 421�424. IEEE, 2004.

[75] Hayden Kwok-Hay So and Robert Brodersen. A uni�ed hardware/software runtime
environment for FPGA-based recon�gurable computers using BORPH. ACM Transac-
tions on Embedded Computing Systems, 7(2):1�28, February 2008.

[76] Martin Straka, Jan Kastil, Jaroslav Novotny, and Zdenek Kotasek. Advanced fault
tolerant bus for multicore system implemented in FPGA. In 14th IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems, pages 397�
398. IEEE, April 2011.

[77] Tobias Strauch. Hyper pipelining of multicores and SoC interconnects. EETimes, 2010.

[78] Dominique Thiebaut. Parallel Programming in C for the Transputer. 1994.

[79] Ben L. Titzer and Jens Palsberg. Nonintrusive precision instrumentation of microcon-
troller software. In ACM SIGPLAN Notices, volume 40, page 59, New York, New York,
USA, July 2005. ACM Press.

[80] B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: scalable sensor network simulation
with precise timing. In IPSN 2005. Fourth International Symposium on Information
Processing in Sensor Networks, 2005., pages 477�482. IEEE, 2005.

[81] Pieter van der Wolf, Erwin de Kock, Tomas Henriksson, Wido Kruijtzer, and Gerben
Essink. Design and programming of embedded multiprocessors: An Interface-Centric
Approach. In Proceedings of the 2nd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis - CODES+ISSS '04, page 206, New
York, New York, USA, 2004. ACM Press.

[82] Matthew A. Watkins and David H. Albonesi. ReMAP: A Recon�gurable Heterogeneous
Multicore Architecture. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 497�508. IEEE, December 2010.

[83] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia Ge, Christos
Kozyrakis, and Kunle Olukotun. A practical FPGA-based framework for novel CMP
research. In Proceedings of the 2007 ACM/SIGDA 15th international symposium on
Field programmable gate arrays - FPGA '07, page 116, New York, New York, USA,
2007. ACM Press.

[84] W.H. Wolf. Hardware-software co-design of embedded systems. Proceedings of the
IEEE, 82(7):967�989, July 1994.

[85] Baifeng Wu and Chenglian Peng. System-on-chip design with data�ow architecture.
In 8th International Conference on Computer Supported Cooperative Work in Design,
volume 2, pages 748�752. IEEE, 2004.

112

[86] Fei Yu. A survey of Wireless Sensor Network simulation tools, 2011.

113

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Chap. I: Introduction
	Solution strategy
	The structure of this document

	Chap. II: Background
	Concurrent and parallel architectures
	Computing units
	Memory sharing
	Interconnections

	Resource allocation and deployment
	The nature of the problem and solution strategies

	Related system and architecture examples
	Early architectures
	Multi-core embedded architectures
	Soft multi-core architectures

	Chap. III: Hardware architecture
	Analysis
	MarmotE platform example
	AVR HP Soft core example

	Soft multi-core architecture
	Evolution of ideas
	Final architecture
	Multi-core MicaZ

	Chap. IV: Programming paradigm
	The TinyOS framework and nesC
	Basic concepts
	Detailed description
	Sense and Forward application example

	Multi-core programming
	Multi-core Sense and Forward application example

	Chap. V: Environment
	Framework
	Multi-core project generation

	Simulation
	Analysis
	Modifications to support multi-core simulation

	Chap. VI: Case study
	Analysis and processing
	Wavelet-based time-frequency analysis
	Event classification and parameter estimation

	Results
	Measurement procedure
	Onset time estimation
	WPD time-frequency analysis
	GMM and EM
	OPTICS clustering
	Localization

	Multi-core transformation
	Effects of parallel execution

	Chap. VII: Conclusion
	App. A: Analysis and proof of onset time picker methods
	Proof for constant variance time series
	Proof for monotone increasing variance time series

	App. B: Calculating variances
	REFERENCES

