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CHAPTER I

INTRODUCTION

The decisive role of optimized and robust software in safety and mission-critical dis-

tributed real-time embedded (DRE) systems is becoming increasingly recognized. Embed-

ded software is pertinent in a variety of heterogeneous domains, e.g., avionics [18], auto-

motive systems [64], locomotives [97], and industrial control systems [98]. The volume

and complexity of such software grow everyday depending on an assortment of factors, in-

cluding challenging system requirements, e.g., resilience to hardware and software faults,

remote deployment and repairability. Deployment, the procedure of installing or reconfig-

uring software processes on embedded hardware, becomes extremely difficult if obtaining

access to such devices is limited. Large scale deployment of embedded software, for this

reason, has become considerably more arduous – periodic peer reviews [15], numerous

verification [74] [13] and certification methods [72] [87] are applied to maintain indus-

try standards for safety, precision and reliability of embedded real-time software. Even

still, software errors manifest in deployed systems; errors that can be extremely difficult to

reproduce in a laboratory test environment.

There exists a long list of real-world scenarios where errors in embedded software im-

plementations has cost millions of dollars and human life. Between 1999 and 2010, at

least 2,200 Toyota vehicles sold in the United States experienced unintended cases of rapid

acceleration causing nearly 900 accidents and over 100 deaths [22]. In 2010, Toyota re-

called some 10 million vehicles, an extraordinary number given that the company sold only

about 7 million vehicles during that period. Toyota engineers described the problem as a

disconnect in the vehicle’s complex anti-lock brake system (ABS) that caused less than a

one-second lag in its operation. With this delay, a vehicle going 60 mph will have traveled

nearly another 90 feet before the brakes begin to take hold. Brakes in Toyota hybrids such

1



as the Prius operate differently from brakes in most cars. In addition to the standard brakes,

which use friction from pads pressed against rotors, the embedded software driving the

electric motors help slow the vehicle. This process also generates electricity to recharge

the batteries. This is a prime example of how timing errors in consumer-focused embedded

software, spanning millions of lines of code, can have disastrous effects to everyday life.

The Prius is Toyota’s third best-selling model in the United States. The automaker recalled

2.3 million vehicles on January, 2011 because of problems with sticking gas pedals and

later halted the sale of the eight models involved in the recall. Toyota’s U.S. sales plunged

16 percent in January as a result, even as sales of other automakers rose.

To mitigate such software complexity, model-driven component-based software engi-

neering (CBSE) [9, 14, 20, 37, 82] has become an accepted practice. CBSE tackles esca-

lated demands with respect to requirements engineering, high-level design, error detection,

tool integration, verification and maintenance. The widespread use of component tech-

nologies in the market has made CBSE a focused field of research in the academic sectors.

Applications are built by assembling together small, tested component building blocks that

implement a set of services. These building blocks are typically built from design models

and captured in UML [12] class diagrams, or imported from other projects/vendors and

connected together via exposed interfaces, providing a "black box" approach to software

construction. This approach also treats software verification in a more modular fashion;

the various software components can be verified individually and then composed together

to derive a functional system.

Remote embedded devices, e.g., fractionated spacecraft 1, following mission timeta-

bles and hosting distributed software applications expose several concerns including strict

timing requirements, complexity in deployment, repairability and resilience to faults, in-

cluding mechanical failures like surface fractures, electrical failures, such as single-event

upsets, and manufacturing defects, and lastly software failures such as design defects and

1A fractionated spacecraft is a satellite architecture where the functional capabilities of a conventional
monolithic spacecraft are distributed across multiple modules which interact through wireless network links.
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run-time faults. High-security and time-critical software applications hosted on such plat-

forms run concurrently with all of the system-level mission management and fault recovery

tasks that are periodically undertaken on the distributed nodes. Once deployed, it is often

difficult to obtain a reliable period of low-level access to such remote systems for runtime

debugging and evaluation. These types of DRE systems, therefore, demand comprehensive

design-time modeling and analysis methods to detect possible anomalies in system behav-

ior, like the unacceptable response times in the advanced braking systems in vehicles.

With the DARPA System F6 Project, our team has designed and prototyped a full in-

formation architecture called Distributed REal-time Managed Systems (DREMS) [25, 29]

that addresses requirements for rapid component-based application development and de-

ployment for fractionated spacecraft. The stack of developed software includes a design-

time model-driven development tool suite [26], and a component model [66] with precise

execution semantics enabling robust and analyzable software designs. The minutiae of

the DREMS architecture are described in Chapter IV. The formal modeling and analysis

methodology presented in this dissertation focuses on applications that rely on this founda-

tional architecture.

The principle behind design-time analysis here is to map the structural and behavioral

specifications of the system under analysis into a formal domain for which analysis tools

exist. The key is to use an appropriate model-based abstraction such that the mapping from

one domain to another remains valid under successive refinements in system development

such as code generation. The analysis must ensure that as long as the assumptions made

about the system hold, the behavior of the system lies within the safe regions of operation.

The results of this analysis will enable system refinement and re-design if required before

actual code development.

Figure 1a shows a spiral model [16] of a typical industrial software/system development

life cycle (SDLC). The five stages in this cycle include requirements analysis, software de-

sign, implementation, integration testing, and design evolution. Although the intricacies
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(a) Industrial SDLC (b) DREMS Analysis-driven Workflow

Figure 1: Embedded Software Development Lifecycle Comparison

of each stage is hidden, the large majority of industrial software development follows this

life cycle. Embedded software development, especially for safety critical systems, does not

lend itself well to this life cycle, mainly because the deliverable in such projects is usually

not just a software package or a hardware platform but an amalgamation of both. Software

development in fields like robotics is tightly coupled with the hardware; assessment of soft-

ware performance is sometimes dependent on and blocked by hardware availability. Such

blocking delays lead to inefficiencies in software evaluation and longer development times.

It is also possible that design oversights could lead to poor timing performance, e.g., long

response times to critical events, that could damage the hardware in the process. Thus, the

analysis presented in this work supports and argues for a verification-driven workflow, as

shown in Figure 1b. The software evaluation is performed at design-time as often as possi-

ble until the assembly is refined and optimized. Application developers use domain-specific

modeling languages to structure large-scale component assemblies and modular code gen-

eration to speed up software development efforts. Moreover, domain-specific properties,

such as the component wiring, patterns of interaction, such as blocking remote method

invocations, asynchronous messaging etc., component execution code, and associated tem-

poral properties, such as worst-case execution times, deadlines etc., can be easily injected
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into such models. Using such application parameters in the design model, a formal analy-

sis model, e.g., Colored Petri Net model (CPN), is generated. The system behavior is both

simulated and analyzed by loading this model into an appropriate analysis tool, e.g., CPN

Tools [75], and useful properties of the system are verified, i.e., from design-level proper-

ties like priorities and deadlines, similar timing-related properties of components such as

worst-case response times are determined. By generating a bounded state space of the sys-

tem, the execution traces exhibited by the system can be searched for property violations.

Such system properties include the lack of deadlocks, deadline violations, and worst-case

trigger-to-response times. The goal of this analysis is to ensure that a component-based sys-

tem, an assembly of tested component building blocks, meets the temporal specifications

and requirements of the system.

The results of this analysis will help improve the application enabling safe deployment

of dependable components that are known to operate within system specifications. Using

CBSE also enables this restructuring process as the components are not necessarily coupled

software entities. So, when designing the integrated system, the analysis can be performed

by assigning time budgets to the discrete tasks in the execution. This enables timing analy-

sis before implementation and also uses the time budgets as requirements for efficient code

implementation. These budgets are often derived from some high-level requirements and

appropriately distributed between the different components in the system. The analyzed

system may not necessarily be complete, but instead be in a process of evolution. As the

design progresses, the system requirements become concrete and the design is re-verified

at each stage to ensure the consistency of all timing guarantees.

The remainder of this dissertation is organized as follows. Chapter II describes some

fundamental concepts about distributed real-time systems, component-based software and

some challenges in timing analysis. Chapter III briefly describes general software testing

and analysis methodologies, and summarizing related research in timing analysis and verifi-

cation for distributed real-time embedded applications. Chapter IV introduces the DREMS
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infrastructure and the Component Model used to experiment with and validate the timing

analysis results. Chapter V discusses the Colored Petri net-based timing analysis model

devised for component-based DRE systems. Chapter VI describes the scope and efficiency

of the analysis methods implemented with this CPN model. Chapter VII evaluates this

model with published results on analysis design, scalability and experimental validation.

Finally, Chapter VIII concludes the dissertation, providing a summary of the detailed work

and describing potential future work.
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CHAPTER II

FUNDAMENTALS

A real-time system [55] is one where the correctness of the system behavior is depen-

dent not only on the logical results of the computation but also on the physical time when

these results are produced. Here, the system behavior refers to the sequence of outputs

over time of the system. The flow of time is modeled as a directed line that extends from

the past into the future. A slice of time in this line is called an instant. Any ideal (expected)

occurrence at a time instant is called an event. An interval on this time line is called the

duration, defined by two events, the start event and the end or terminating event. This

timeline is discrete when the time line is partitioned into a sequence of equally spaced du-

rations, called clock ticks. A real-time system typically changes as a function of physical

time, i.e., a non-spatial continuum in which events occur in apparently irreversible succes-

sion from the past through the present to the future. If the real-time system is distributed,

then it consists of a set of computers, nodes, interconnected by a real-time communication

network.

Real-time systems are subject to strict operational deadlines. These deadlines constrain

the amount of time permitted to elapse between a stimulus provided to the system and a

response generated by the system. Consequently, the correctness of such systems depends

heavily on its temporal and functional behavior. Real-time programs that are logically cor-

rect, i.e., implement the intended functions, may not operate correctly if the required timing

properties are not met. Typically, such systems are classified as either soft or hard real-time

systems. In soft real-time systems, missing deadlines does not completely degrade the

overall system performance, e.g., delays in opening a web browser does not render the

web browser useless; the browser is still functional. Hard real-time systems, however, are

systems where missed deadlines could be critical, e.g., delays in pacemaker timing cycles

7



leading to irregular heart beats with potentially fatal consequences. It is important that any

error within the system, e.g., data loss or corruption, node failure etc., be detected within

a short time with a very high probability and mitigation be taken under strict timing con-

straints. The required error-detection latency must often be in the same order of magnitude

as the sampling period of the fastest critical control loop. Then, it is possible to perform

corrective action, or bring the system to a safe state. This makes the design of hard real-time

systems different from soft real-time systems. The demanding response time requirements,

often in milliseconds or less, preclude human intervention during normal operation. A hard

real-time system must be highly autonomous to maintain safe operation. In contrast, the

response time requirements of soft real-time systems is often in the order of seconds.

Timing and schedulability analysis in real-time systems usually assumes an ideally

functioning software program where every step of computation performs as expected, and

characterizes these steps with timing properties, such as worst-case execution times (WCET)

[92] or response times [44]. Once a timing model of the system is developed, the behavior

can be analyzed by using either a discrete event simulator, prototypical testing or formal

analysis methods. This thesis concentrates on a formal analysis approach to analyzing the

temporal behavior of a class of distributed real-time embedded systems.

Verification establishes a consistency between the formal system specification and the

system requirements, and also between the specification and the implementation, while val-

idation is concerned with the consistency between the model of the user’s intentions and

the system requirements. The missing link between verification and validation is the rela-

tionship between the user’s expectations and the final system as built, i.e., validation can be

done on multiple artifacts but ultimately the system should meet the client’s expectations.

Discrepancies between these notations are called system specification errors. Verification

can usually be reduced to a mathematical analysis process, while validation must examine

the system’s behavior in the real-world. If properties of a system have been formally veri-

fied, it still has not been established whether the existing formal specification captures all
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the aspects of the intended behavior in the user’s real-world environment. To be free of

specification errors, validation and specification testing are required for quality assurance.

The primary verification method is formal analysis and the primary validation method is

testing. The following chapter reviews various general analysis methodologies, includ-

ing system-level or acceptance testing and formal verifications methods, and also selective

system-level analysis methodologies for concurrent real-time systems that are related to

this dissertation.
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CHAPTER III

RELATED RESEARCH

3.1 Petri net-based Timing Analysis of Concurrent Systems

A Petri net [70] is an abstract, formal paradigm to model concurrent systems. The

properties, concepts, and techniques of Petri nets are developed in search for natural, simple

and powerful methods for describing and analyzing the flow of information and control in

systems that exhibit asynchronous and concurrent activities. The major use of Petri nets

has been the modeling of systems of events in which it is possible for some events to occur

concurrently but there are constraints on the concurrency, precedence, or frequency of these

occurrences.

Figure 2 shows a sample Petri net. The pictorial representation of a Petri net as a graph

used in this illustration is common practice in Petri net research. The Petri net graph models

the static properties of a system, much as a flowchart represents the static properties of a

computer program.

This Petri net contains two types of nodes: circles (called places) and bars (called

transitions). These graph nodes are connected using directed arcs from places to transitions

and from transitions to places. If an arc is directed from node x to node y (either from a

place to a transition or a transition to a place), then x is an input to y, and y is an input of x.

In Figure 2, place P2 is an input to transition t1.

In addition to static properties, a Petri net can have dynamic properties that result from

its execution. The execution of a Petri net is controlled by the position and movement of

the markers (called tokens) in the Petri net. Tokens, indicated by black dots, reside in the

circles representing the places on the net. A Petri net with tokens is a marked Petri net.

A transition must be enabled in order to fire; a transition is enabled when all of its input

places have a token in them. Tokens are moved by the firing of transitions of the net. A
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Figure 2: Sample Petri Net, reprinted from [70]

transition fires by removing the enabling tokens from its input places and generating new

tokens which are deposited in the output places of the transition. In the marked Petri net in

Figure 2, the transition t2 is enabled since it has a token in its input place P1. If t2 fires, the

token in P1 is removed and a token is placed in places P2, and P3.The distribution of tokens

in a marked Petri net defines the state of the net and is called a marking. This marking may

change as a result of firing transitions. When multiple transitions are enabled for firing,

one transition is chosen non-deterministically; the variability in the firing order of multiple

enabled transitions gives Petri nets the capability to model non-deterministic systems, e.g.,

distributed systems where the ordering of events is not deterministic.

Formally, a Petri net is a five tuple (P, T, A, W, M0), where P is a finite set of places, T
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is a finite set of transitions, A is a finite set of arcs between places and transitions, W is a

function assigning weights to arcs, and M0 is some initial marking of the net. Places hold

a discrete number of markings called tokens. These tokens often represent resources in the

modeled system.

Petri nets enable the modeling and visualization of dynamic system behaviors that in-

clude concurrency, synchronization, and resource sharing. Theoretical results and applica-

tions concerning Petri nets are plentiful [23, 38], especially in the modeling and analysis

of discrete event-driven systems. Models of such systems an be either untimed or timed

models. Untimed models are those approximations where the order of the observed events

are relevant to the design but the exact time instances when a state transitions is not con-

sidered. Timed models, however, study systems where its proper functioning relies on the

time intervals between observed events. Petri nets and extensions have been effectively

used for modeling both untimed [38] and timed systems [99]. For a detailed study of Petri

nets and its applications, the reader is referred to standard textbooks [70, 76] and survey

papers [63, 96, 100].

Petri nets have evolved through several generations from low-level Petri nets for con-

trol systems [76] to high-level Petri nets for modeling dynamic systems [43] to hierarchical

and object-oriented Petri net structures [24] that support class hierarchies and subnet reuse.

Several extensions to Petri nets exist depending on the system model and the relevant prop-

erties being studied, e.g., Timed Petri nets [89], Stochastic Petri nets [11, 57] etc. High-

level Petri nets are a powerful modeling formalism for concurrent systems and have been

widely accepted and integrated into many modeling tool suites for system design, analysis,

and verification.

3.1.1 Example High-level Petri net Tool: CPN Tools

CPN Tools [75] is an open source tool for editing, simulating, and analysis of Colored

Petri Nets (CPN) [42]. A CPN is a tuple (Σ,P,T,A,N,C,G,E, IN) where: Σ is a finite
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set of non-empty types called color sets. Color sets determine the types of tokens, opera-

tions, and functions that can be used in the net inscriptions (arc expressions, guards, etc.).

Places, transitions, and arcs are defined by three finite sets P, T, and A respectively. N

is a node function N ⊆ (PXA)U(AXP). The color function C maps each place p into a

set of possible token colors C(p), i.e., each token on p must belong to the type C(p). The

guard function G maps each transition t into an expression of type boolean, i.e., a pred-

icate. The arc expression function E maps each arc a into an expression which must be

of type C(p(a)), i.e., evaluation of the arc expression must yield a resultant token that can

be attached to the corresponding place. Lastly, the initialization function IN maps each

place p into an expression which must be of type C(p), i.e., this function initializes each

place with a token value of the appropriate color set type. This extends the behavior of a

basic Petri net since a token represents an instance of a complex data type. In basic Petri

nets, tokens in a place can represent quantity, e.g., number of tokens in a place could indi-

cate the number of ready threads, or tokens could represent truthfulness of a state, e.g., a

token in the Blocked place represents a globally blocked state. In CPN, tokens can not only

represent a much larger variety of data structures but multiple tokens in a place can have

different properties. This means that a CPN transition requires more than just the presence

of a token in its input places; the tokens must have the right data (values) for the transition’s

guard conditions to be true, adding a layer of compactness to the representation of data.

3.2 Analyzing AADL models with Petri nets

Teams of researchers have, in the past, identified the need for integration of timing anal-

ysis methods with complex system design environments, especially in model-driven archi-

tectures [78]. Modeling languages like MARTE [65], which is based on UML, and AADL

[31] (Architecture Analysis and Design Language) provide a high-level formalism to de-

scribe a DRE system, at both the functional and non-functional level. MARTE (Modeling

and Analysis of Real-time Embedded Systems) defines the foundations for model-based
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description of real-time and embedded systems. MARTE supports the annotation of mod-

els with information required to perform specific types of analysis, such as performance

and schedulability analysis.

In general, MARTE provides a generic canvas to describe and analyze systems. The

user is required to add domain/system-specific properties and artifacts on top of the generic

platform. Compared to MARTE, AADL comes with a stand-alone, complete semantics

that is enforced by the standard. In [78], the authors propose a bridge that translates AADL

specifications of real-time systems to Petri nets for timing analysis. This formal notation

is deemed to be well-suited to describe and analyze concurrent systems and provides a

strong foundation for formal analysis [34] methods, such as structural analysis and model

checking. The high-level goal is to check and verify AADL models for properties like

deadlock-freedom and boundedness. The workflow presented here is similar to the work in

this thesis in the sense that a system design model along with user-specified properties are

translated into a high-level Petri net-based analysis model.

The execution behavior of the software in AADL is represented by AADL components

called Threads. Interactions are modeled by communication places in the Petri net to trig-

ger associated actions when AADL threads receive new data (new Petri net tokens). The

thread execution is represented by an automata that has three parts: (1) thread life cycle

that handles scheduling, dispatching, initialization and completion; (2) thread execution

that executes thread-specific code; and (3) error management that handles potential errors.

Symmetric nets [36, 93] are high-level Petri nets commonly used for analysis of causal

properties in distributed systems, where tokens can carry data and nets can have a set of

initial markings. Using this Petri net, the analysis uses model checking to verify (1) lack

of deadlocks in the system and (2) correct causality e.g. a message sent by a producer is

always received and processed by a consumer.

However, there are some potential improvements to this work. Not only is the generated

Petri net structure hard to follow, it is seemingly composed of sub-Petri nets, one for each
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thread (and its lifecycle) in each process. It is clear that although the transformation is

sound, the generated Petri net models are going to be intractably large for complicated

scenarios. The state space of the Petri net is dependent on the number of places in the net

and the corresponding internal states. The generated net would not scale well for large

process sets or distributed scenarios without using state space reduction techniques that

rely on symmetry [83]. Such troubles can be alleviated by using a high-level Petri net such

as CPN where much more information can be packed in a Petri net token. Complex token

data structures reduce the number of places required to describe a system model, e.g., a

list of C-style struct data structures can abstractly model a set of processors. This reduces

the number of places that would be required to represent a full system. Such modeling

constructs are essential in component-based systems where the full system is typically a

large assembly of tested black box components. Lastly, the modeling constructs used are

strictly bound to AADL concepts and cannot be easily modified for systems not modeled

using AADL.

3.3 Analyzing AADL Models with Timed Petri nets

The authors in [78] have also investigated analysis of AADL models using Petri net

extensions such as Timed Petri nets [77]. Using the modeling concepts and analysis capa-

bilities of Petri net extensions means that developers can analyze for a larger set of system-

level properties such as schedulability dimensioning, and deadlock detection. This work

allows for efficient model-driven development and prototyping of real-time systems. Petri

nets have proven to be useful mathematical means to analyze both the structure and behav-

ior of a real-time system. Structural analysis involves analyzing a model structure to obtain

knowledge about properties like circular dependencies, and causality flaws. Behavioral

analysis is performed by generating and searching a bounded state space of the system,

typically deducing safety properties, e.g., deadline violations. By using Timed Petri nets,
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the authors insert time into any property that needs to be verified. By tagging these proper-

ties, state space queries reveal the temporal nature of system-level events that enable timing

analysis results e.g. worst-case response times.

The approach presented in this work [77] uses a Timed Petri net pattern to model the

thread life-cycle, derived from the corresponding AADL model. The state of the AADL

threads are modeled using places and the life cycle is handled by the transitions. The

periodicity of the thread execution is managed external to the thread pattern, by using

timed tokens that represent the system clock. Multi-threaded execution is managed by the

Processor place. The presence of a token in this place indicates an idle processor, enabling

potential thread state changes.

Analysis techniques using Petri nets need to record/detects errors such as deadline vio-

lations in Petri net places. To detect missed deadlines, a deadline-detection subnet is simply

added to the TPN pattern. Similar to missed deadlines, missed activations can also be de-

tected. When the thread must be dispatched but misses its activation deadline, a detector

transition fires, marking a missed activation. When model checking this system, if there is

no token in some Missed Activation place any where in the state space of the system, then

no thread activations were missed.

Similar to this work, our CPN-based analysis work uses bounded observer places [6]

that observe the system behavior for property violations and prompt completion of oper-

ations. However, this work [77] only considers periodic threads in systems that are not

preemptive. The non-preempt-able thread execution is evident in the need to check for

missed activations. Our analysis aims to improve on this work by (1) generating a more

scalable and efficient pattern-based analysis model and (2) supporting various types of hi-

erarchical scheduling algorithms, both preemptable and non-preemptable with (3) complex

periodic and aperiodic interaction patterns.

16



3.4 MAST: Modeling and Analysis Suite

MAST [35] is the Modeling and Analysis SuiTe for real-time applications. MAST, still

in development, aims to provide a set of tools that enable engineers and system integrators

developing real-time applications to check the timing behavior of their system, including

schedulability analysis. The techniques implemented by this tool focus on fixed-priority

scheduled systems, such as the ones in commercial operating systems. The tools aims to

support the timing analysis developed for both single processor [45, 54] and distributed

real-time systems [68, 84].

A model describing real-time applications should not only represent the structure of

the system but also the hard real-time requirements imposed on it. Most of the existing

schedulability analysis methods are based on a linear timing and interaction model where

each task is activated by the arrival of a single event or message and each message is sent

by a single task. This linear model does not allow for complex interactions, e.g., nested

request-response interactions and event sequences, and so in such cases the analysis meth-

ods are not applicable. The MAST model of real-time system is a rich representation. It

is an event-driven model where complex dependence patterns among tasks are established,

e.g., tasks may be activated by the arrival of several events at their output, making it suit-

able for analysis of real-time systems designed with object-oriented methodologies. This

MAST model description is derived from a standard UML and MARTE description [61].

For analysis, the MAST suite includes schedulability analysis tools that use newly pub-

lished research techniques such as the offset-based methods [67] that enhance analysis

results, providing less pessimistic estimates than previous results [84]. The system de-

scription is specified through an textual description language that serves as the input to the

analysis tools. Using UML, the real-time view of the DRE is described [80] by adding

appropriate behavior specifying classes. The application design is linked with the real-time

view to get a full description of the modeled system, along with its timing behavior and

requirements.
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3.5 Verification in AutoFocus 3

FOCUS is a general theory providing a model of computation based on the notion of

streams and stream processing functions [17]. It is suitable to describe models of dis-

tributed, reactive systems. Based on this mathematical foundation, a tool called AutoFocus

3 [40] allows for a graphical description of systems according to this model of computation.

In AutoFocus 3, the system model is described as a set of communicating components.

Each component has a defined interface (black box view) and an implementation. The

interface consists of a set of communication ports. A port is either an input port or an output

port, each identified by its name and its type. Components can exchange data by sending

messages through output ports and receiving messages via input ports. Communication

paths are called channels. A channel connects an output port to some input port, thus

establishing a relationship. From the logical point of view, channels transmit messages

instantaneously.

AutoFocus 3 networks are executed synchronously based on a discrete notion of time

and a global clock. In this setting, a component can be either strongly causal or weakly

causal. A strongly causal component has a reaction delay of at least one logical time tick

which means that the current output cannot be influenced by the current input values. A

weakly causal component may produce an output which depends on the current input i.e.

the reaction is instantaneous. A network of strongly causal components are always well

defined, e.g., unique fixed-points for recursive equations induced by channel connections

always exist. Networks of weakly causal components are also well defined under the con-

straint that no cycles exist, i.e., no weak causal component may send a signal that feeds

back to itself in the same time tick.

Input/Output automaton models are used to define stateful component behavior. The

automaton consists of a set of control states, a set of data variables and a state transition

function. One of the control states is defined to be the initial state of the component, while

each data state variable has a defined initial value. The state transition function is defined
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as a mapping from the current state, the current input values, and the state variable values

to output values. Using this model, AutoFocus 3 supports techniques to verify the logi-

cal architecture early in the development process, e.g., automatic test case generation and

model checking. Methodologies such as in [32] present the application of model checking

techniques to verify the logical architecture of AutoFocus 3 models.

The formal verification process with AutoFocus 3 comprises of: (1) selecting system

parts to be verified, (2) selecting requirements for the selected parts to be verified, (3) for-

mally specifying the selected requirements, and (4) formally verifying using model check-

ing. If the model checking succeeds, then the verification is finished, but if the model

checking fails, then analysis is required to identify the reason, e.g., implementation error,

requirement formalization error, etc. This analysis uses Linear Temporal Logic [33] to

convert informal textual specification, e.g., "The Adaptive Cruise Control (ACC) starts by

driver interaction only" to a formal temporal logic specification using boolean and temporal

operators. The system model is exported into the modeling notation of the model checking

tool SMV [59, 60] used by the AutoFocus 3 project.

The workflow on the above verification methodology is fairly tenuous. For any sys-

tem part, a state-transition model of the part has to be constructed; this model represents

the functional properties of the part. Then, all of the informal textual requirements of the

system part need to be translated into LTL specifications by the user and then fed into the

integrated model checker. One of the reasons the model checking could fail is improper

formalization of the requirements. Secondly, the approach does not seem to model the ac-

tual execution of the software, i.e., code execution on top of layers of management software

running on appropriate hardware. Thus, the method is best utilized for identifying logical

errors in the system design or inconsistent property specification. The approach does not

necessarily model or analyze the complete timing behavior of the component processes and

is applicable mainly to early designs where the component assembly is being prepared for

integration.
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CHAPTER IV

DESIGN MODEL: DISTRIBUTED MANAGED SYSTEMS (DREMS)

4.1 DREMS Component Model

Timing analysis of component-based software, as presented in this dissertation, is tar-

geted towards the DREMS component model ( Distributed REaltime Managed System)

[29] [66]. DREMS was designed and implemented for the class of distributed real-time

embedded systems that are remotely deployed and characterized by strict timing require-

ments, e.g., a cluster of satellites, UAV swarms, disaster relief robots, etc. DREMS is

a software infrastructure for the design, implementation, deployment, and management

of component-based distributed real-time embedded systems. The infrastructure includes

design-time modeling tools [26] that integrate with a well-defined and fully implemented

component model [51, 66] used to build component-based applications. Rapid prototyp-

ing and code generation features coupled with a modular runtime platform automate the

tedious aspects of the software development and enable robust deployment and operation

of mixed-criticality distributed applications. This chapter elaborates on the DREMS com-

ponent model, the component operation execution semantics, and the process scheduling

aspects, i.e., properties of the DREMS software stack that are relevant for generating a

timing analysis model.

Figure 3 presents a typical DREMS-style component. Component-based software en-

gineering relies on the principle of assembly, i.e., large and complicated systems can be

iteratively constructed by composing small reusable component building blocks. Each com-

ponent contains a set of communication ports, interfaces, a message queue, time-triggered

event handling and state variables. Using ports, components communicate with the exter-

nal world. Using interfaces and message passing schemes, components process requests

from other components. This interaction mechanism lies at the heart of component-based
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Figure 3: DREMS Component

software. Each DREMS component supports four basic types of ports for interaction with

other collaborating components. These ports are Facets, Receptacles, Publishers, and Sub-

scribers. A component’s facet is a unique interface that it exposes to its clients. This

interface can be invoked either synchronously via remote method invocation (RMI) or

asynchronously via asynchronous method invocation (AMI) [73, 88]. A component’s re-

ceptacle specifies an interface required by the component in order to function correctly.

Using its receptacle, a component can invoke operations on other components using either

RMI or AMI. A publisher port is a single point of data emission. This port emits data

produced by a component operation. A subscriber port is a single point of data consump-

tion, feeding received data to the associated component. Publishers and Subscribers enable

the OMG DDS publish/subscribe [30] style of messaging. More details on this component

model can be found in [66].
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4.2 Component Execution Semantics

An operation is an abstraction for the different tasks undertaken by a component. These

tasks are implemented by the component’s source code written by the developer. Applica-

tion developers provide the functional, business-logic code that implements operations on

local state variables and inputs received on component ports. For example, a PID controller

[8] could receive the measured value of a process variable from a sensor component, and

using the relevant gains and set points (desired value for the process variable), calculate a

new control signal to be sent to the actuator component.

In order to service interactions with the underlying framework and with other compo-

nents, each component has a message queue. This queue holds operation requests received

from another component, i.e., messages, service requests or responses, and timer activa-

tions. Each request is characterized by a priority and a deadline. Priority refers to the rela-

tive importance of one operation over another within the scope of the component. Deadline

refers to the worst-case duration from the arrival of a triggering event to the completion

of the response operation. If the execution of the operation takes beyond its deadline to

complete, then a deadline violation is said to have occurred.

Each DREMS component has a separate execution thread that handles the execution

of all component operations. This executor thread picks the next available request from

the message queue and executes the operation to completion, i.e., the operation schedul-

ing is non-preemptive. So, all operations in the queue, regardless of priority, need to wait

for the currently executing operation to complete. Allowing only a single executor thread

per component and enforcing a single-threaded non-preemptive scheduling scheme on the

operations helps avoid synchronization primitives for internal state variables and estab-

lishes a more easily analyzable system. It is true that multi-threaded solutions to operation

scheduling would avoid starvation, i.e., operations in the queue will not have to wait forever

if the currently executing operation is blocked on a resource. We address such cases in our

experimental evaluation (Section 7.5.7). However, the DREMS execution of application
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components is still the more predictable one and lends itself more easily for analysis. The

non-determinism in multi-threaded executions causes a tree of possible behaviors, leading

to a common analysis challenge called state space explosion [53]. Keeping the operation

execution to a single thread per component (1) bounds the overall number of threads in

the system leading to a more tractable analysis, and (2) reduces the degree of concurrency,

making the analysis computationally less demanding.

Figure 4: Component Operation Execution Semantics

Figure 4 shows the execution semantics of a component operation executed on the com-

ponent’s executor thread. At some time ti, the component executor thread is busy executing

an operation – component operations can be triggered into execution by the (1) expiry of a

timer, (2) the arrival of a subscription message, or (3) the arrival of a service request. t_req

represents the arrival time of a remote request. t_wait is the wait time of this request in the

message queue while the current operation is still executing. t_req_schld is the time stamp

at which the current operation completes executing. At this time, the remote request is

finally scheduled for execution. t_req_cmpl is the time stamp at which the remote request

completes. The overall time taken by the component to respond to this request is calculated

as: t_wait + t_exec = t_req_cmpl − t_req.

Simplifying assumptions include that this component is the only component thread
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executing on the CPU assuming a single core CPU. This is a simple scenario showing how

a single operation on a single component is affected by the operation scheduling semantics.

When there are multiple components, the wait times of the remote request are worsened by

OS scheduling non-determinism when executing the component threads.

If the executor threads of various components are of different priorities, then the highest

priority ready executor thread is always chosen. If these threads are of equal priority,

then round-robin scheduling is carried out, i.e., multiple components execute concurrently

on one CPU. Round-robin scheduling assigns a fixed time slice to each thread, e.g., time

quantum of 4 ms, in equal portions and in circular order, handling all threads without

priority.

4.3 Temporal Partition Scheduler

DREMS components are grouped into processes that are assigned to temporal parti-

tions, implemented by the DREMS OS scheduler. This scheduler was implemented by

modifying the behavior of the standard Linux scheduler, introducing an ARINC-653 [7]

style temporal and spatial partitioning scheme. The primary goal of this scheme is to enable

isolation or partitioning of processes so as to prevent one process from adversely affecting

any other process in a different partition.

Temporal partitions are periodic fixed intervals of the CPU’s time. Threads associated

with a partition are scheduled only when the partition is active. This enforces a tempo-

ral isolation between processes assigned to different partitions. The repeating partition

windows are called minor frames. The aggregate of repeating minor frames is called a

major frame. The duration of a major frame is called the hyperperiod, which is typically

the lowest common multiple of the partition periods. Each minor frame is characterized

by a period and a duration. The period specifies how often this partition becomes active

and the duration defines how much of the CPU time is available for scheduling the runnable

threads associated with that partition. Figure 5 shows a sample temporal partition schedule.
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Figure 5: Sample Temporal Partition Schedule with Hyperperiod = 300 ms

By confining applications to partitions, i.e., its own memory space and temporal window of

possession of computing resources, this scheduling scheme aims to enable safety and time-

liness in mission-critical systems; safety by isolating processes in different applications

and security levels from interacting with each other, and timeliness by providing processes

with a guaranteed slice of the CPU time.

4.4 Motivation to use DREMS

DREMS supports a wide variety of interaction patterns: synchronous and asynchronous

service-oriented request-response style communication, and non-blocking publish-subscribe

style communication. The wide variety of interactions and communication mechanisms are

inspired by other common industrial component models such as CIAO [90] and ACM [27],

and the execution semantics are precisely defined and implemented. A qualitative eval-

uation of its capabilities [66] show that although the model was designed for fractionated

spacecraft, DREMS is suitable for a variety of distributed and embedded environments. All

of these properties make this component model very generic and a suitable target for the

timing analysis work presented in this thesis.
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CHAPTER V

COLORED PETRI NET-BASED MODELING METHODOLOGY

5.1 Problem Statement

Consider a set of mixed-criticality component-based applications that are distributed

and deployed across a cluster of embedded computing nodes. Each component has a set

of interfaces that it exposes to other components and to the underlying framework. Once

deployed, each component functions by executing operations observed on its component

message queue. Each component is associated with a single executor thread that handles

these operation requests. The nature of mixed-criticality means that these executor threads

are scheduled in conjunction with a known set of high-criticality system threads and other

low priority best-effort threads. All scheduled threads are also subject to a temporally

partitioned scheduling scheme.

System Assumptions:

1. Knowledge about the component definition i.e. the properties of all ports and timers

in each component, e.g., priority of the operations, periodicity of the timer, operations

bound to timers, servers and subscribers.

2. Knowledge about the mapping between ports/timers and component operations, i.e.,

how each component functionality is exposed to the component’s environment.

3. Knowledge about the sequence of computation steps of finite duration that are exe-

cuted inside each component operation. This is dependent on the operation’s business-

logic code written by the application developer.

4. Knowledge of worst-case time taken by the computational steps. There are some

exceptions to this assumption, e.g., blocking times on RMI calls cannot be accurately

judged as these times are dependent on too many external factors, e.g., the nature of
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the process scheduling on both the client and the server, the business logic of the

server operation that could include RMI calls to other remote servers etc.

5. Knowledge about the component assembly, i.e., the connections between instantiated

components that form communication topologies.

6. Knowledge about the mapping between application processes and hosts, i.e., the ac-

tual embedded computer on which the process will execute.

7. Knowledge about the temporal partitioning schedule enforced by the operating sys-

tem on each host.

8. Knowledge about the mapping between application processes and temporal partitions

on each host.

Using these assumptions, the problem here is to ensure that the temporal behavior of

the composed system meets its end-to-end timing requirements, e.g., trigger-to-response

times between distant sensors and actuators. Providing this guarantee implicitly requires

that communicating components in a component assembly meet individual timing dead-

lines. Following the DREMS component model execution, a blocking I/O operation blocks

a component from attending to any other requests till the operation is completed. Such

blocking interaction patterns can propagate large delays to other components, especially in

a highly connected system. A useful analysis result here would not only be in identifying

end-to-end timing violations but also tracing delays within individual components. Track-

ing timing violations enables the analysis in identifying the causes for the anomalies, e.g.,

nontrivial circular dependencies or scheduling delays. If an abstract model of the business

logic of component operations is also encoded in the analysis model, then inefficient cod-

ing practices such as wasteful loops can also be marked as probable causes for deadline

violations.

Individual components need to be analyzed to identify the pure execution times of the

various computational steps in the component operations, i.e., the amount of time taken
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by the various steps in an operation to complete if the corresponding component executor

thread was the only thread executing on the system with zero CPU contention. When a set

of tested components are composed together, each component’s execution is affected by

various factors including scheduling delays, network communication delays, blocking de-

lays and other interaction-specific variabilities. Any timing analysis model for component-

based software should account for such factors.

There are two important challenges to modeling and analyzing DRE systems: scope

and abstraction level. The scope of the analysis here should be the full system of composed

components. The abstraction level of the analysis must include enough detail to account

for the various timing delays mentioned above while also not capturing all aspects of low-

level code. A highly detailed and dynamic low-level model is necessary for simulation but

not ideal for model checking and verification-based analysis due to issues like state space

explosion. Also, highly composable system designs provide recombinant components that

can be selected and assembled in various combinations to satisfy user requirements. In such

cases, the analysis model must be efficiently capable of tackling changes in component as-

sembly, e.g., moving components to separate processes or devices, adding or removing

additional instances of the same component, etc. This is a challenge when building and

non-trivially generating an analysis model from a system design. Thus, efficiency, scala-

bility and extensibility are also modeling requirements for our timing analysis.

5.2 Colored Petri Net-based Analysis Model

Petri nets have been introduced in Section 3.1. Ordinary Petri nets have no types and are

not modular. Tokens are abstract dots that represent the presence or absence of some entity.

Tokens in a place could represent the presence of a message, or availability of resource,

i.e., the state of execution of the place that is holding the token. The number of tokens in

a place could therefore be used to represent the quantity of some available resource. Also,

28



ordinary Petri nets are flat structures; no hierarchy can be established to make the model

more readable or concise.

With Colored Petri nets (CPN) [42], it is possible to use data types and complex data

manipulations – each token has attached a typed data value, called the token color. It

is also possible to make hierarchical descriptions, i.e., a large model can be obtained by

combining a set of submodels with well-defined interfaces between submodels and well-

defined semantics of the combined model. Furthermore, each submodel can be reused. One

of the primary reasons for choosing Colored Petri Nets over other high-level Petri Nets such

as Timed Petri Nets or other modeling paradigms like Timed Automata is because of the

powerful modeling concepts made available by token colors. Each colored token can be a

heterogeneous data structure such as a record that can contain an arbitrary number of fields.

This enables modeling within a single color-set (C-style struct) system properties such

as temporal partitioning, component interaction patterns, and even distributed deployment.

The token colors can be inspected, modified, and manipulated by the occurring transitions

and the arc bindings. Component properties such as thread priority, port connections and

real-time requirements can be easily encoded into a single colored token, making the model

considerably concise.

The CPN analysis model, as modeled in CPN Tools [75], is shown in Figure 6. Places,

shown as ovals, in this model contain colored (typed) tokens that represent the state of

interest for analysis e.g. Clocks place holds tokens of type clocks maintaining information

regarding the state of the clock values and temporal partition schedule on all computing

nodes. Transitions, shown as rectangular boxes, are responsible for executing this model,

progressing the state of the modeled system and transferring tokens between places. Arcs,

between transitions and places dictate the token flow and data structure manipulations.

All arcs contain inscriptions, which are essentially function calls, written in Standard ML

[62], that manipulate token structures e.g. arc inscriptions in the arc from the transition

Timer_Expiry to the place Timers, manipulate all timer tokens by updating the timer expiry
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offsets. When a transition fires, every input arc to this transition is evaluated first. Using

the input tokens and the arc inscriptions on all output arcs, tokens are released to all output

places i.e. all input arcs are associated with token values before the transition fires and

output arc tokens are calculated after the transition fires. This process of associating a token

value to an arc is called an arc binding. So, every transition firing leads to the production of

strict arc bindings used to (1) evaluate guard conditions on the transitions and (2) produce

output tokens.

Figure 6: Colored Petri Net Analysis Model

From the design model of the system, we generate the initial CPN tokens that are in-

jected into places in this analysis model. The modeling concepts in Figure 6 can be divided
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and categorized based on system-level concepts being analyzed. Figure 7 shows the orga-

nizational structure of this CPN. Below, we describe each of these structural divisions in

detail.

Figure 7: Analysis Model - Structural Aspects

5.2.1 Model of Time

Appropriate choice for temporal resolution is a necessary first step in order to model

and analyze threads running on a processor. The OS scheduler enforces temporal partition-

ing and uses a priority-based scheme for threads active within a temporal partition. If there

is no active OS-level temporal partitioning, the analysis model assumes the presence of a
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single infinitely long temporal partition in which all the application processes can execute.

If multiple threads have the same priority, a round-robin (RR) scheduling is used. Each

thread has a quantum which is effectively a duration of time where the thread is allowed

to keep hold of the CPU if the thread remains runnable and the scheduler determines that

no other thread needs to run on that CPU instead. Thread quanta are generally defined

in terms of some number of clock ticks. If it doesn’t otherwise cease to be runnable, the

scheduler decides whether to preempt the currently running thread every clock tick. In or-

der to observe and analyze this behavior, we have chosen the temporal resolution to be 1 us;

a fraction of 1 scheduler clock tick. In Section 6.2.3, we describe the disadvantages of man-

aging time as a fixed-step increasing variable and describe our solutions that significantly

improve the generated state space and the efficiency of the analysis.

5.2.2 Modeling Temporal Partitioning

The place Clocks in Figure 6 holds the state of the node-specific global clocks. The

temporal partition schedule modeled by these clocks enforces a constraint: component

operations can be scheduled and component threads can be run only when their parent

partition is active. Each clock token NC is modeled as a 3-tuple:

NC = < Node, Value, T PSNode > (1)

where, NodeNC is the name of the computing node, ValueNC is an integer representing

the value of the global clock and T PSNodeNC is the temporal partition schedule on NodeNC.

Each TPS is an ordered list of temporal partitions.

T P = < Name, Prd, Dur, O f f , Exec > (2)

Each partition T P (Eq. 2) is modeled as a record color-set consisting of a name

NameT P, a period PrdT P, a duration DurT P, an offset O f fT P and the state variable ExecT P.
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Aggregate of such partitions can fully describe a partition schedule. Complete partition

schedules are maintained per computing node. Figure 8 shows a C++-style struct repre-

sentation of the temporal partition schedule. Each clock structure is modeled similarly in

Stardard ML [62] as a color and these colored tokens are placed in the Clocks place (Figure

6).

Figure 8: Temporal Partition Schedule Data Structure

5.2.3 Modeling Component Thread Behavior

Figure 9 presents a snippet of our CPN, modeling the thread execution cycle. The place

Components holds tokens that keep track of all the ready threads in each computing node.

Each component thread CT is a record characterized by:

CT = < IDCT , PrioCT , OCT > (3)

where IDCT constitutes the concatenation of strings required to identify a component

thread in CPN, i.e., component name, node name and partition. Every thread is char-

acterized by a priority (PrioCT ) which is used by the OS scheduler to schedule the thread.

Component threads are maintained in a priority queue in the CPN model. When scheduling
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a thread, a Schedule_Thread transition evaluates this priority queue and all the component

message queues to find the highest priority component thread that is currently executing an

operation or is ready to execute a new operation. If multiple component threads of equal

(and highest) priority are ready to execute, then one of these threads is chosen at random

and scheduled. When this thread consumes its quantum of CPU, the thread is enqueued to

the back of the priority queue of threads and is not chosen again until all other competing

threads are allowed a slice of CPU time.

Figure 9: Component Thread Execution Cycle

If the highest priority (OS schedulable) thread is not already servicing an operation

request, the next ready operation from the message queue is dequeued and scheduled for

execution (represented by OCT ). Depending on the component scheduler, this operation
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may be the highest priority, or may have the earliest deadline or may be the oldest request.

The scheduled thread token is placed in Running Threads.

When a thread token is marked as running, the model checks to see if the thread execu-

tion has any effect on itself or on other threads. These state changes are updated using the

transition Execute_Thread which also handles time progression. Keeping track of ValueNC,

the thread is preempted at each clock tick. This transition loop, i.e., Schedule_Thread ->

Execute_Thread -> Preempt/Unblock_Thread -> Schedule_Thread ... cycle repeats for-

ever, as long as there are no system-wide deadlocks and some upper limit on the clock

values isn’t reached.

5.2.4 Modeling Component Operations

Every operation request OP made on a component Cx is modeled as a Standard ML

record of the 4-tuple:

OP(Cx) = < IDO, PrioO, DlO, StepsO > (4)

where, IDO is a unique concatenation of strings that help identify and locate this opera-

tion in the system (consisting of the name of the operation, the component, the computing

node, and the temporal partition). Assuming a PFIFO operation scheduling scheme, the op-

eration’s priority (PrioO) is used by the analysis engine to enqueue this operation request

on the message queue of Cx. The completion of this enqueue implies that this operation

has essentially been scheduled for execution. Figure 10 shows the operation scheduling

cycle. The message queue tokens are placed in CMQ (i.e. Component Message Queues).

The tokens in this place are a constraint on the Schedule_Thread transition and are used to

calculate the subset of threads that are runnable. When threads execute, operation requests

may be enqueued in component message queues as shown by this cycle. The transition En-

queue_Operation enqueues any operation requests that are sent by the currently executing
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threads. These requests are enqueued onto the appropriate message queue in the chosen

scheduling scheme.

Figure 10: Component Operation Scheduling Cycle

Once enqueued, if this operation does not execute and complete before its fixed deadline

(DlO), its real-time requirements are violated. The completion of each operation request is

saved in the place Completed_Operations. This place is an observer that is simply notified

by the Execute_Thread transition every time the thread execution also completes the exe-

cuting operation. The tokens in Completed_Operations saves a snapshot of the operation’s

properties including its operation’s enqueue timestamp, dequeue timestamp, completion

timestamp and deadline. By analyzing the tokens in this place, deadline violations in an

interval of time can be detected.
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Once an operation request is dequeued, the execution of the operation is modeled as a

transition system that runs through a sequence of steps dictating its behavior. Any of these

underlying steps can have a state-changing effect on the thread executing this operation

e.g. interactions with I/O devices on the component-level could block the executing thread

(for a non-deterministic amount of time) on the OS-level. Therefore, every component

operation has a unique list of steps (StepsO) that represent the sequence of local or remote

interactions undertaken by the operation. Each of the m steps in StepsO is a 4-tuple:

si = < Port, Unblksi, Durt , Exect > (5)

where 1 ≤ i ≤ m. Port is a record representing the exact communication port used by

the operation during si. Unblksi is a list of component threads that are unblocked when si

completes. This list is used, e.g., when the completion of a synchronous remote method

invocation on the server side is expected to unblock the client thread that made the invoca-

tion. Finally, temporal behavior of si is captured using the last two integer fields: Durt is

the worst-case estimate of the time taken for si to complete and Exect is the relative time

of the execution of si, with 0 ≤ Exect ≤ Durt .

Consider the simple RMI application show in Figure 11. The application has two com-

ponents, a client and a server. The client component is associated with a periodic timer that

triggers a sequence of interactions between the two components. When the client timer

expires, a timer operation is enqueued on the client’s operation queue. When scheduled,

the client executor thread executes this operation, which makes an RMI call to the server

component. Once the query is made, the client thread is effectively blocked till a response

is received. The server thread that produces this response may not be scheduled immedi-

ately due to the constraints of temporal partition scheduling and other thread scheduling

delays. Once the RMI operation is completed on the server, the client thread is unblocked.

In the above example, the duration of time for which the client is blocked, is dependent
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Figure 11: RMI Application

on, among several factors, what happens inside the remote method on the server. This re-

mote method could either simply take up CPU time, interact with the underlying framework

or interact with other components in the application. To capture such interaction patterns,

the step color-set is defined in CPN. In this example, two operation tokens are required

to describe the operations handled by the components: a client side timer operation and a

server side RMI operation. A sample client timer operation is shown in Figure 12.

Figure 12: RMI Application - Client Timer Operation

This timer operation runs on the client component with a priority of 50, and a deadline

of 80 ms. The business logic of this operation consists of a single RMI call that takes 4 ms

to send out the query after which it blocks the executing client thread. After the client thread

runs for time t = q_t, the client thread is moved to a blocked state and an RMI operation is
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induced on the server side. The client side thread remains blocked until the server thread

completes executing the remote method. Once the server thread completes execution, it

sends the response of the RMI back to the client. The model takes note of how long the

client has been blocked by using the time stamp at which it received a response. The client

thread runs for an additional 4 ms to process this response before it marks completion. The

token for the server RMI operation is shown in Figure 13. Note that all time measurements

in this token are in micro-seconds i.e. a step duration of 4000 implies 4 ms of activity.

The requested RMI operation is run on the server component with a priority of 50 and a

deadline of 15 ms. The deadline of this operation cannot be worse than the deadline of

the client side operation that initiated the interaction. If this operation delays past 80 ms,

a client side deadline violation is detected as the client thread is blocking for longer than

expected.

Figure 13: RMI Application - Server Operation

5.2.5 Modeling Component Interactions

In our earlier RMI example, the client is periodically triggered by a timer to make

a remote method call to the server. When the client executes an instance of this opera-

tion, a related operation request is enqueued on the server’s message queue. In reality,

this is handled by the underlying middleware. Since the details of this framework are not

modeled, the server-side request is captured as an induced operation that manifests as a

consequence of the client-side activity. Tokens that represent such design-specific interac-

tions are maintained in the place Component Interactions (Figures 6,14) and modeled as
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shown in equation 6. The interaction Int observed when a component Cx queries another

component Cy is modeled as the 3-tuple:

Int(Cx,Cy) = < NodeCx , PortCx , O(Cy)> (6)

When an operational step in component Cx uses port PortCx to invoke an operation on

component Cy, the request OCy is enqueued on the message queue of Cy.

Figure 14: Operation Induction

Every interaction token contains an interaction port and an operation. The transition

Execute_Thread observes the activity on the currently running thread. When executing the

model, if a particular step executed by a component thread would, on completion, request

the services of another component, a token is placed on the Waiting to Enqueue place. So,

once the client thread pushes out an RMI query, an operation needs to be induced on the

server queue. So an interaction token for this communication is constructed. The model

waits for the RMI call on the client side to complete, at which point it places the operation

i_op on the server message queue. This induction is represented in Figure 15.
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Figure 15: Operation Induction Token

5.2.6 Modeling Timers

DREMS components are inactive initially; once deployed, a component executor thread

is not eligible to run until there is a related operation request in the component’s message

queue. To start a sequence of component interactions, periodic or sporadic timers can be

used to trigger a component operation. In CPN, each timer T MR is held in the place Timers

and represented as shown in Eq. 7. Timers are characterized by a period (PrdT MR) and an

offset (O f fT MR). Every timer triggers a component using the operation request OT MR.

T MR = < PrdT MR, O f fT MR, OT MR > (7)

When the component’s timer expires, a timer callback operation is placed on the compo-

nent message queue. When the component executor thread is picked by the OS scheduler,

this operation is dequeued and the timer callback is executed. In CPN, timer operations are

modeled as shown in Figure 16.

All component timers are expressed as separate tokens and initialized in the Timers

place. It is important to note that the enqueue operation does not happen until the appro-

priate partition is active. This is because the component-specific thread responsible for

enqueueing (or dequeuing) incoming operations is also affected by temporal partitioning.
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Figure 16: Timer Operations

5.3 Modeling Component Operation Business Logic

5.3.1 Problem Statement

Consider a set of component-based applications deployed on distributed hardware.

Each application consists of groups of components that interact with each other and also

with the external environment, e.g., I/O devices, other applications, underlying middle-

ware etc. Each component exposes a set of interfaces through which external entities can

request operations. As mentioned earlier, an operation is an abstraction for the different

tasks undertaken by a component. These operations are exposed through ports and can be

requested by other components. When an operation is requested, the request is placed in

the component’s message queue and eventually serviced. When ready, the business logic of

the operation, i.e., a local callback is executed. This piece of code represents the brains of

the operation. The goal here is to be able to model this business logic, for every component

operation, effectively as part of the design model, including temporal estimates such as

worst-case execution times for individual code blocks, so that the model can be translated

into appropriate data structures in our CPN analysis model.
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5.3.2 Challenges

The execution of component operations service the various periodic or aperiodic inter-

action requests coming from either a timer or other connected (possibly distributed) com-

ponents. Each operation is written by an application developer as a sequence of execution

steps. Each step could execute a unique set of activities, e.g., perform a local calculation

or a library call, initiate an interaction with another component, process a response from

external entities, and it can have data-dependent, possibly looping control flow, etc. The

behavior derived by the combination of these steps contribute to the worst-case execution

of the component operation. The behavior may include non-deterministic delays due to

component interactions while being constrained by the temporally partitioned scheduling

scheme and hardware resources. The challenge here is to identify a language that would

enable the description of potentially dynamic behavior realized in a component operation.

The modeling aspects emerging from this challenge will have to propagate to any timing

analysis model that studies the system. This is true because any non-deterministic delays

such as blocking times need to be accounted for when analyzing the temporal behavior.

5.3.3 Outline of Solution

The business-logic model of a component operation requires to be completely inte-

grated into our CPN modeling methodology. This means that the model, however complex,

needs to be translated into some token data structure in CPN. This is our primary constraint.

The CPN analysis model needs to know how an operation is structured, i.e., what are the

sequential steps in the code, along with WCET on each step. Lastly, since the CPN model

does not model or simulate component data management, data-dependent conditional state-

ments in the business-logic model were avoided or abstracted away. Following these rules,

we designed a language for describing the component operation business logic. Each com-

ponent operation model is then attached to a component port or timer in the main design

model and enriches the model with refined details about the workings of the operation.
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In summary, this model is capable of representing several types of code blocks including

local function calls, remote procedure calls, outgoing port-to-port interactions, incoming

port-response processing, and bounded loops.

The execution of component operations service the various periodic or aperiodic inter-

action requests coming from either a timer or other connected (possibly distributed) com-

ponents. Each operation is written by an application developer as a sequence of execution

steps. Each step could execute a unique set of activities, e.g., perform a local calculation

or a library call, initiate an interaction with another component, process a response from

external entities, and it can have data-dependent, possibly looping control flow, etc. The

behavior derived by the combination of these steps contribute to the worst-case execution

of the component operation. The behavior may include non-deterministic delays due to

component interactions while being constrained by the temporally partitioned scheduling

scheme and hardware resources. This section briefly describes the various aspects of this

behavior specification that are general enough to be applicable to a range of component-

based systems.

Figure 17 shows the Extended Backus-Naur form representation of the grammar [49]

used for modeling the business logic of component operations. The symbol ID represents

identifiers, a unique grouping of alphanumeric characters, and the symbol INT represents

positive integers. Each operation is characterized by a unique name, a priority, and a dead-

line. The priority is an integer used to resolve scheduling conflicts between operations

provided by the same component when multiple messages from other entities are received.

This priority is different from the executor thread’s OS-level priority; operation’s priorities

are used by the component-level scheduler to find the next operation to be executed by a

component executor thread. The deadline of the operation is the worst-case time that can

elapse after the operation is marked as ready and the completion of the operation. The

business logic of every component operation is modeled as a sequence of steps, each with
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Figure 17: Grammer for the Business Logic of Component Operations

known worst-case execution time. We broadly classify these steps into (1) blocks of se-

quential code, (2) peer-to-peer synchronous and asynchronous remote calls, (3) anonymous

publish calls, (4) blocking and non-blocking I/O interactions and (5) bounded loops.

Business Logic models represent the sequence of steps that are executed in a component

operation. These component operations are executed when the component is triggered

which can happen in three ways: (1) the expiry of a timer executes a callback, (2) the

reception of message on the subscriber port, and (3) the reception of a method request

from a remote client on a server port. When one of these events occurs, the corresponding

operation is enqueued on the message queue and eventually handled. When the operation

is executed, the component can use any and all outgoing ports at its disposal to publish

messages or query other remote servers, as shown in Figure 17. Additionally, the operation

can also execute local non-blocking function calls that perform any required computations.

For each such step, the grammar enables the integration of timing properties. With RMI

calls, query_time is an optional annotation that represents the worst-case estimated duration
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of time taken by a client port to send out a request to the serving component. This time

can be used to include network buffering delays or any other pre-processing steps enforced

by the infrastructure before the request actually leaves the client component. Similarly,

processing_time represents the duration of time after the client component receives the

response from the server when any post-processing steps are executed by the infrastructure.

These delays are optional and can be encapsulated within LOCAL blocks on either side of

the call. If these expected delays are set to zero, the analysis will execute these interactions

in a single synchronous step taking no time. However, in reality these steps still take a non-

zero amount of time to execute. Therefore, if such metrics are not known then these values

can be set to zero and an overall worst-case execution time can be set per operation. This is

the maximum amount of time that can elapse after the component operation has begun to

execute. This time will include all component interactions and network delays that affect

the operation’s execution.

Figure 18 shows a sample business logic model conforming to this grammar. The Data

Acquisition Module is a periodically triggered I/O component, i.e., this component receives

a stream of sensor information from various sensor devices e.g. inertial measurement units

(IMU) and GPS modules. This component packages this information and publishes sensor

state as a message to all subscribers, e.g., components that implement controllers. Figure

18 shows the translation from the conceptual understanding of the workings of this compo-

nent operation to the abstract business logic model that is then translated into CPN tokens

(Figure 19), as described in Section 5.2.4.

Every time the above timer expires, this sensor_read_timer operation is enqueued onto

the component message queue (Figure 10). When the Data_Acquisition_Module compo-

nent is scheduled, this operation is dequeued from the message queue and is marked for

execution. The Execute_Thread transition fires, this component thread executes i.e. each

operation step in the component operation proceeds to sequentially consume CPU. So, first

the LOCAL code block executes for 15 milliseconds. Every 4 milliseconds (the default
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Figure 18: Sample Business Logic Model

clock tick), the scheduler checks to see if this thread needs to be preempted in favor of

any other higher priority ready thread. If no other higher priority threads are ready to ex-

ecute, this thread continues to consume CPU and the exec_time attribute of this step is

incremented. When exec_time = duration, this step is removed from the operation and

the next step begins execution. Here, the component uses its publisher port to send out a

sensor_state message. Since no other delays are detailed for this step, the analysis model

executes this step in zero time. When this step completes, the Execute_Thread transi-

tion enqueues an operation on all subscriber components’ message queues following the
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Figure 19: CPN Business Logic Representation

interaction rules described in Section 5.2.5. Lastly, a LOCAL code block consumes 2 mil-

liseconds of CPU and the operation is marked as complete. The clock value on this node

when the operation completes is saved as a completion_time of this operation.

5.4 Modeling Component-based Cyber-Physical Systems

A large subset of modern DRE systems are also Cyber-Physical Systems (CPS) e.g.

flight controllers [81], traffic light controllers [39] etc. In these systems, the runtime ap-

plication can consist of a number of sub-systems including a list of sensors, actuators, and

controllers that interact with each other and govern the dynamics of the plant, i.e., the phys-

ical state of the system. For instance, a DREMS-style sensor component in a flight control

scenario may interact with low-level hardware, e.g., GPS, inertial measurement units, cam-

eras, etc., receive a stream of information, sample sensor state from this stream and publish

this information at a defined period. A high-level controller may receive this sensor data

periodically and perform some PID control, commanding a remote actuator component

with new settings, e.g., the deflection of control surfaces, that in turn cause changes in the

attitude of an aircraft, elevations in pitch etc. The actuator periodically receives these com-

mands and appropriately modifies the state of the low-level hardware, e.g., driving a set

of motors for a defined duration of time so that an aircraft control surface causes airplane

take-off.

When modeling CPS sensors, the analysis considers two cases: request-response style
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queries and periodic sensor streams. When using request-response queries, a sensor soft-

ware component operation is triggered, e.g., through a component timers, and this oper-

ation actively queries the sensor hardware for updated state. The query can be blocking

or non-blocking, and the sensor software component publishes this updated state to other

interested components. When using periodic sensor streams, the component is triggered by

the arrival of sensor data (that is streaming) and the component publishes the received data

sample.

Similarly, an actuator component may receive commands to actuate, e.g., deflecting the

flaps on the trailing edge of an aircraft wing. This is the second I/O component that directly

interacts with hardware and influences the state of the system. For the sake of modeling

simplicity, actuation commands are modeled as non-blocking write operations performed

by software components to control low-level hardware. By modeling these interactions as

separate from other local code blocks or function calls, the business logic model is enriched

with a broader set of actions that can be used to identify the source of timing delays in a

component operation. This section describes the integration of these designs into both the

business logic model and the CPN analysis.

Figure 20 shows the integration of CPS sensor models into the CPN analysis model.

The sensor hardware is modeled in the Sensor place; each sensor token is associated with

a period representing the periodicity of the state updates. Each sensor state is updated by

the Sensor_Update transition periodically and a new Sensor_State is recorded. This sensor

state is either queried by a component operation or received as part of a sensor stream. In

case of blocking read operations, the querying operation blocks until a new sensor state is

available in the Sensor_State place.
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Figure 20: CPN Analysis Model - CPS Sensors

The business logic of the component operations can read the state of the variables in

Sensor_State as required when performing computations. Since the CPN analysis does not

model data or data flow, only the name of the required sensors is captured in the business

logic. Thus, the business logic model, as described in Section 5.3 is revised as shown in

Figure 21.

Figure 21: Modeling CPS - Business Logic Integration

The business logic model integrates two types of sensor read operations and one ac-

tuator write operation. The sensor read operation can be blocking or asynchronous. In

blocking reads, the operation does not continue execution if the required sensor state is
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unavailable in Sensor_State place. When a new state is available, the currently blocked

operation consumes the sensor token and proceeds execution i.e. the worst-case time taken

to perform the sensor read is dependent on the periodicity of the sensor update. This is

similar to a request-response style query, i.e., a sensor component requests updated state

information from a sensor device, and the sensor responds as soon as it is updated. In asyn-

chronous read operations, if an updated sensor state is unavailable, the operation uses the

latest state, i.e., the previous state of the sensor obtained from a previous read operation.

Asynchronous sensor read operations do not take any time and the CPN analysis does not

assume any faulty behavior on the part of the sensors, i.e., the sensor state is strictly up-

dated periodically without any delays. As for actuators, the most common means to control

an actuator, e.g., servo motor, is to write a value to the corresponding actuator system vari-

able(s), e.g., toggling the state of a set of general purpose input-output (GPIO) hardware

pin(s). Such system variables or hardware pins are assumed to be always ready to accept

new write operations.

The above models are quite simplistic. There is no way for the analysis model to know

if the received state information is stale or not. The component operation, at runtime, may

decide not to publish sensor state if the received state information is stale. Such a choice

cannot be modeled with this business logic since there is neither model of data (values

of local variables or sensor state) nor any model of conditional statements. Thus, in such

cases, the results of the analysis can lead to gross overestimates as the analysis will only

consider the case when the publish always happens, i.e., the worst-case scenario.
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CHAPTER VI

STATE SPACE ANALYSIS AND VERIFICATION

The state of a dynamic system is represented by a minimal set of variables, called state

variables, that fully describe the system and its response to any given set of inputs. This

minimum set of variables, si(t), i = 0,1,2, ..n along with knowledge of those variables at

an initial time t0 and the system inputs for time t > t0, are sufficient, in a deterministic

system, to predict the future system state and outputs for all time t > t0. This asserts that

the dynamic behavior of a state is completely characterized by the set of state variables

si(t).

CPN Tools uses a built-in state space analysis tool to generate a bounded state space

from an initialized CPN model. Here, the state space is a directed graph structure where

the vertices, called states, represent a unique system state. An edge between two states

represents the transition from one state to another. If a state S can non-deterministically

transition into K possible future states, then S becomes the root of a K-ary tree. The state

of the system in our case is a record of all the places in the CPN i.e. the token values in every

place of the CPN model. This record is therefore a snapshot of the token configuration of

the net and represents its execution state. State space generation is a process of generating

this directed graph, from some initial state. For pragmatic reasons, we generate a bounded

state space, i.e., a graph structure bounded by some rule, e.g., ti < tbound , where ti is some

global variable representing time. It must be noted here that CPN Tools supports the notion

of global variables; one such variable is used to establish this bound. In this case, the state

space will contain only nodes where the state variable ti is less than some upper bound

tbound . Alternately, the rule can be to generate a state space as long as the component

message queue size is under 50 waiting requests.

To illustrate the state space analysis of a component-based application using our CPN,
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we consider a simple example – consider three equal-priority components executed on a

single device. Each component has a periodic timer that fires every 10 ms and triggers the

execution of a block of code. Each component maps to an executor thread and these three

threads are scheduled concurrently with all other threads in the system. In this example,

there are no other component threads or system-level threads considered. Based on the OS

scheduling scheme, these components, with equal priority, are scheduled using round-robin

policy. Since all three timers have the same period and the relative offsets are zero, the three

timers fire concurrently and the respective component threads are marked as ’ready’ at the

exact same time. Since all three component threads are ready to execute the same times,

there are 3! possible thread execution orders in the worst case when following round-robin

scheduling, assuming single core execution.

Figure 22 shows a bounded state space generated in CPN Tools for this component

assembly. The component threads have the same priority and are executed in the same

device. Each component is triggered with a 100 Hz periodic timer and all three timers are

synchronized to illustrate non-determinism. The round robin scheduling quantum is set to

4 milliseconds. ’Mark’ is a state space query function that provides the marking of a place

in a particular state space node. There are 6 branches from the initial state of the system as

the model realizes the 6 possible behaviors. Each node in this state space is annotated with

a state space ID and also a pair of integers in the format "p:c", where p refers to the number

of parent nodes and c refers to the number of child nodes. This figure also shows results of

a state space query. Specifically, the query finds the marking on the Completed_Operations

place in two different state space nodes, 35 and 37. In node 37, Timer_3_operation is the

first operation to complete as Component_3 is the first ready thread chosen by the OS.

In node 35, Timer_1_operation is the first operation to complete as Component_1 is the

first ready thread chosen by the OS. This illustrates the tree of possible behaviors that is

represented by the state space starting from an initial state. The goal of state space analysis

is to search this tree of possibilities to identify a single execution trace, i.e., a single branch
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in this tree that either satisfies or negates a system property, e.g., that the deadline of one of

these timer operations is violated.

Figure 22: Bounded State Space for a Multi-component Timer example

6.1 Searching the State Space

CPNTools’ inbuilt state space analysis tool comes with a programming interface – a set

of function that can be used by a user to query a generated state space. One of the many
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available functions is the SearchNodes function, as shown in Figure 23. This function tra-

verses the nodes of the state space and at each node, evaluates a predicate and accumulates

a list of nodes that satisfy this predicate.

Figure 23: SearchNodes function provided by CPNTools

There are six parameters provided to this search function. Area refers to the search area,

i.e., the part of the state space that needs to be searched. Often, the search area is the entire

graph but it is possible to provide a subset of the graph, e.g., a list of strongly connected

components 1. The second argument, Pred, specifies a predicate function that evaluates

each node and produces a boolean result. All nodes that evaluate to false are ignored and

all nodes that evaluate to true are retained for further analysis. The third argument, Limit

is an integer referring to how many times a predicate should evaluate to true before the

search should terminate. If this limit is infinite, the entire state space is always searched.

Eval is an evaluation function that is executed on all state space nodes that satisfy the

predicate function, e.g., an evaluation function to find the execution time of an operation

when its predicate function detects a deadline violation. Lastly, Start is the initial value

of the result and Comb is a combination function that accumulates each new result from
1A directed graph G is strongly connected if every vertex is reachable from every other vertex in the graph.

A strongly connected component is a maximal strongly connected subgraph of G, i.e., no additional edges or
vertices from G can be included in the subgraph without breaking its property of being strongly connected
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the evaluation function with prior results. In our analysis, the size of the state space can

grow exponentially, e.g., as a function of time. The combination function is a constant time

operation as it simply appends a new node to the end of the accumulated results list, given

the searching algorithm a time complexity of O(n) where n is the number of nodes in the

state space. However, if the combination function is dependent on the size of the input,

then it directly affects this search complexity.

The rest of this chapter details how a bounded state space can be used to analyze

DREMS applications for deadline violations, response times predictions etc.

6.1.1 Deadline Violations

A deadline violation refers to a system state where the execution time of a compo-

nent operation has exceeded its deadline. The operation may violate its deadline with-

out beginning execution since wait times in the message queue count towards the to-

tal delay from the arrival of the message to the completion of the corresponding oper-

ation. The SearchNodes function in CPNTools is quite generic and can be easily ap-

plied to our analysis model to identify such violations in the state space. For all opera-

tions, either completed or waiting for execution, it is sufficient to execute the predicate

current_time−operation.enqueue_time > operation.deadline. All nodes that satisfy this

predicate are nodes that represent deadline violation states.

Alternatively, by adding observer places to our timing analysis model, i.e., places

that passively observe the system and accumulate tokens when certain conditional tran-

sitions execute, deadline violations can be recorded as the model is executing. A Dead-

line_Violation (Figure 24) transition fires at any point in time when the guard dl_guard

is satisfied and arc bindings exist with its input places. The transition observes the states

of the currently running threads and the component message queues to identify deadline

violations on operations that are either executing or waiting to execute. The dl_violation

tokens are collected in a place called Late Operations (LO),
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LO = < Nodename,Oname,OST , ODLT > (8)

where operation Oname executing on computing node Nodename started at time OST

and violated its deadline at time ODLT . Since the component-level scheduler uses a non-

preemptive scheme, this operation is still run to completion after the violated deadline.

Delays like these propagate to the waiting operations in the message queue.

Figure 24: Deadline Violation Observer place

6.1.2 System-wide Deadlocks

System-wide deadlocks are caused by bad application design, e.g., a set of executing

threads are indefinitely blocked on each other; a server operation invoking an RMI on an

already blocked client component. Such scenarios are typically due to cyclic dependencies

that are undetected during system design. Using state space analysis, such deadlocks can

be detected in several ways.

One of the ways is to check if all of the component threads are blocked in any state space

node, i.e., the number of tokens in the place Blocked_Threads is equal to the total number

of component threads. In CPNTools, this is expressed using the Standard ML query as

shown in Figure 25. This query consists of a function definition and a function call. First,
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the function AllThreadsBlocked is defined, that returns true if the length of the marking in

the place Blocked_Threads in the Analysis_Model page at the nth state space node, is equal

to total number of component threads in the system. This function is used as the predicate

function in the subsequent call to the SearchNodes function. The SearchNodes function is

invoked with a set of arguments that request the search of the entire generated state space,

to find the subset of state space nodes where the AllThreadsBlocked predicate is true, and

to accumulate these nodes and save the result in the SystemWideDeadlock variable. This

variable, if non-empty, indicates the presence of a system-wide deadlock. Using the nodes

in the list, a trace can be generated to find the sequence of operations that lead to the

deadlock. Using this trace, any implicit circular dependencies can be detected.

Figure 25: SML Query to detect system-wide deadlocks caused by (blocking) cyclic
dependencies between components

6.1.3 Response-time Analysis

Response time analysis identifies the worst-case time taken for the system to generate

a desired output signal after an input trigger has been provided, e.g., time taken for the

emergency braking system on an automated train controller to respond to sensory input.

58



A component-based system can have a variety of triggers but in this context, a trigger

is considered as any operation request received by a component. The response to this

trigger is the completion of some other operation at a future time instant, e.g., activating

the brakes, after the occurrence of the trigger. With state space analysis, it is possible to

identify the worst-case response times for a (trigger_operation,response_operation) pair

by first obtaining response times for all trigger-to-response paths and finding the maximum.

Similar to deadline violation detection, using the SearchNodes function, this can be

accomplished as follows. The predicate function for the search tests all state space nodes

for the completion of the response_operation. The evaluation function scans the list of

completed operations in all state space nodes where a response operation was the last op-

eration marked as completed. In this list, by identifying the trigger operation and response

operation, the response time is calculated as the difference Response_Operationcmpl_time−

Trigger_Operationenq_time. These results are accumulated by the combination function and

the maximum response time is calculated from the resultant list. The time complexity of

this search is again linear with respect to the size of the state space but the size of the state

space itself can be exponential. The size of the accumulated results list is at most half the

size of the state space since the trigger and the response are always in separate state space

nodes. Finding the maximum trigger-to-response time within the resultant list is also done

in linear time.

This result, as with other state space analysis results here, assumes ideal functional

behavior for all operations, i.e., the completion of the operation always provides the desired

results. Since the business logic model for operations does not encode data-dependent

behavior and conditional execution, the completion of a response operation is no indication

about the correctness of the response, merely its timeliness. It is therefore also not possible

to differentiate between response "types" as all responses are seen as equivalent.
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6.2 Modeling and Analysis Improvements

6.2.1 Problem Statement

The CPN analysis work presented in [51], i.e., the original approach developed and de-

scribed in the previous section, has some limitations. The clock values in the distributed set

of computing nodes progress by a fixed amount of time regardless of the pace of execution.

This is one of the primary causes of state space explosion since many of the intermediate

states between interesting events, though uneventful, are still recorded by the state space

generation. For instance, in a temporal partition spanning 100 ms, even if a thread executes

for 5 ms and the rest of the partition is empty, then if the clock progresses at a 1 ms rate,

a 100 states are recorded in the state space when there are at most 5-7 interesting events

in this interval. For a larger set of distributed interacting components, this can become a

problem. Also, for distributed scenarios where multiple instance of a set of applications

are executed in parallel, on independent computers, our CPN modeling methodology isn’t

efficient, leading to a tree of parallel executions even when the distributed computers are

independent i.e. the computers can be synchronously progressed. The goal of this work is

to mitigate such analysis issues and arrive at a more efficient and scalable analysis model.

6.2.2 Outline of Solution

Improving the performance of our CPN analysis method required the evaluation of our

existing results to identify how the state space generation worked. The state space of CPN

is a tree of CPN markings, where each marking is a data structure with specific values

representing the tokens in all its places. So, our goal is to reduce the number of markings

accumulated in the CPN, i.e., the number of distinct states of interest. This required us to

evaluate our representation of time. Using time as a fixed-step monotonically increasing

entity means that the CPN place managing time would always contain a new clock token,

therefore forcing the CPN marking to become a part of the state space.

To alleviate this issue, we modeled time as a dynamically changing variable, where the
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changes are strategically forced time jumps instead of a strictly incrementally increasing

clock value. This is similar to a discrete event scheduling model but the next (closest)

interesting event needs to be calculated based on the current state of the system. The

states of all timers are used to calculate the next timer expiry. The states of all executing

threads is evaluated to calculate the earliest next timestamp for thread preemption. Simi-

larly, the state of all executing operations is analyzed to identify the earliest next enqueue

onto the component message queue. When temporal partitioning is enabled, the next parti-

tion switching timestamp is also considered in effectively calculating the minimum amount

of time by which the analysis clock on each node needs to be progressed to ensure that

time is efficiently managed while ensuring that no interesting event is skipped because of

the progression.

Similarly, our data structure representation for distributed deployments, i.e., using un-

ordered token sets instead of ordered lists, enabled our earlier CPN models to nondetermin-

istically choose one of the various distributed nodes to execute, generating a exponentially

increasing tree of execution orders. Once we moved to representing our distributed hard-

ware nodes as a list, the execution engine iteratively executing the analysis on each node in

the list, leading to one execution order instead of a tree. Using a list has the same expres-

sive power as using a set and does not constrain any resultant behavior. This is because the

analysis model does not care about the order in which the hardware nodes are processed;

simply the order (in time) in which the events and interactions take place. So, regardless

of whether a set or a list is used, the same resultant behavior(s) is observed. By using

lists instead of sets, the analysis model simply avoids needless non-determinism in the arc

bindings when transitions fire.

Such issues are resolved with our analysis improvements, reported in [49]. We modified

the timing analysis model to allow dynamic time progression, i.e., the clocks (one for each

computing node) in the CPN model do not progress at a constant rate but instead experience

time jumps to the next interesting time step e.g. next timer expiry, end of partition, next

61



scheduling preemption point, or next remote interaction. This makes the model execution

progress at a much higher rate and reduces the overall number of states being recorded in

the state space.

We also adjusted our modeling concepts when describing distributed deployments. We

experienced needless state space explosions as a consequence of using CPN semantics

when modeling distributed computers. If the computers are modeled as an aggregate of

independent CPN tokens, then the CPN transition that progresses the execution in each

computer is independent, leading to a potential C! different orders for C computers. For in-

stance, 4 distributed computers leads to 24 possible execution orders displayed by the tran-

sition responsible for picking the next computer to evaluate and progress. We alleviate this

issue by assuming that all computers in a distributed scenarios have synchronized clocks

and execute simultaneously leading to a synchronous progress. In CPN, this is done by

maintaining the state of each computer in a list instead of an unordered aggregate. In prac-

tice this can be achieved by using the Precision Time Protocol (PTP) [21] to synchronize

clocks throughout the computer network. The time protocol synchronizes all clocks within

a network by adjusting clocks to the highest quality clock. The Best Master Clock (BMC)

algorithm determines which clock is the highest quality clock within the network. The

BMC then synchronizes all other clocks (slave clocks). This ensures that two computers in

a network have synchronized clocks when an assembly of components is executed on the

pair. Once the clocks on the computers are time-synchronized, the applications are started

in parallel across the distributed computers. Thus, two periodic timers in two components

executing on these two synchronized computers will trigger the respective components at

approximately the same time instant.

6.2.3 Handling Time

The CPN-based analysis consists of executing a simulation of the model and construct-

ing a state space data structure for the system (for a finite horizon), and then performing
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queries on this data structure. This is automated by CPN Tools. The first improvement over

the basic CPN approach is in how we handle time. Although it is true that CPN and similar

extensions to Petri Nets such as Timed Petri Nets inherently have modeling concepts for

simulation time, we explicitly model time as an integer-valued clock color token in CPN.

There are several reasons for this choice.

Firstly, this is an extension to our previous arguments about choosing Colored Petri

Nets. Modeling the OS scheduler clock as a colored token allows for extensions to its data

structure such as (1) intermediate time stamps and internal state variables, and (2) adding

temporal partitioning schemes like the (time-partitioned) ARINC-653 [7] scheduling model

(Figure 26).

Figure 26: A Clock Token with Temporal Partitioning

These extended data structure fields can be more easily manipulated and used by the

model transitions during state changes, allowing for richer modeling concepts that would

not be easily attainable using token representations provided by Timed Petri Nets. The

ability to pack colored tokens with rich data structures also reduces the total number of

colors required by the complete model. This quantitative metric directly influences the

reduced size of the resultant state space. The downside of this approach to modeling is that

we have to choose a time quantum. But in practical systems this is usually not a problem,

as the low-level scheduling decisions are taken by an OS scheduler based on a time scale

with a finite resolution.

Secondly, modeling time as a token allows for smarter time progression schemes that

can be applied to control the pace of simulation. If we did not have such control over time,
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the number of states recorded for this color token would combinatorially explode and itself

contribute to a large state space. In order to manage this complexity, we have devised some

appropriate time jumps in specific simulation scenarios.

If the rate at which time progresses does not change, then for a 1 msec time resolution,

S seconds of activity will generate a state space of size: SSsize =
S∗1000

∑
i=1

T Fti where T Fti is the

number of state-changing CPN transition firings between ti and ti+1. This large state space

includes intervals of time where there is no thread activity to analyze either due to lack of

operation requests, lack of ready threads for scheduling, or due to temporal partitioning.

During such idle periods, it is prudent to allow the analysis engine to fast-forward time

either to (1) the next node-specific clock tick, (2) the next global timer expiry event, or (3)

the next activation of the node-specific temporal partition (whichever is earliest and most

relevant). This ensures that the generated state space tree is devoid of nodes where there is

no thread activity.

Figure 27: Dynamic Time Progression
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Figure 27 illustrates these time jumps using 4 scenarios. Assuming the scheduler clock

ticks every 4 msec, Case 1 shows how time progression is handled when an operation

completes 2 msec into its thread execution. At time t, the model identifies the duration of

time left for an operation to complete. If this duration is earlier than the next preemption

point, then there is no need to progress time in 1msec increments as no thread can preempt

this currently running thread till time t + 4msec. Therefore, the clock_value in Figure 26

progresses to time t + 2msec, where the model handles the implications of the completed

operation. This includes possibly new interactions and operation requests triggered in other

components. Then, time is forced to progress to the next preemption point where a new

candidate thread is scheduled. This same scenario is illustrated in Case 2 when the time

resolution is increased to 100 usec instead of 1 msec. Notice that the number of steps taken

to reach the preemption point are the same, showing how the state space does not have

to explode simply because the time resolution is increased. Case 3 illustrates the scenario

where at time t, the scheduler has no ready threads to schedule since there are no pending

operation requests but at time t+3msec, a component timer expires, triggering an operation

into execution. Since timers are maintained in a global list, each time the Progress_Time

transition checks its firing conditions, it checks all possible timers that can expiry before the

next preemption point. So, at time t when no threads are scheduled, the model immediately

jumps to time t +3msec. This scenario also shows that if the triggered operation does not

complete before the preemption point and there are no other ready threads or timer expiries

that can be scheduled, the clock value jumps to the operation completion. It must be noted

here that this case is valid only because the DREMS architecture we have considered uses

a non-preemptive operation scheduling scheme. Lastly, Case 4 shows time jumps working

with temporal partitioning. At some time t + x, the model realizes the absence of ready

threads and does not foresee any interaction requests from other components, then it safely

jumps to the end of the partition without stepping forward in 1 msec increments. This

time progression directly shows how the state space of the system execution reduces while
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still preserving the expected execution order, justifying our choice of modeling time as a

colored token using CPN.

6.2.4 Distributed Deployment

The second structural change to the analysis model is in how distributed deployments

are modeled and simulated. Early designs on modeling and analysis of distributed applica-

tion deployments [51] included a unique token per CPN place for each hardware node in

the scenario. Since the individual node tokens are independent and unordered, there is non-

determinism in the transition bindings when choosing a hardware node to schedule threads

in. For instance, if there are 2 hardware nodes in the deployment with ready threads on both

nodes, then either node can be chosen first for scheduling threads leading to two possible

variations of the model execution trace. Therefore the generated state space would expo-

nentially grow for each new hardware node. In order to reduce this state space and improve

the search efficiency, we have merged hardware node tokens into a single list of tokens

instead of a unassociated grouping of individual node tokens. This approach is inspired by

the symmetry method for state space reduction [46].

Figure 28 illustrates this structural reduction. Consider a distributed deployment sce-

nario with an instance of a DREMS application deployed on each hardware node, Sat1

through Sat6. Components Comp1 and Comp2 are triggered by timers, eventually lead-

ing to the execution of component operations (modeled as shown in Figure 17). If all the

timer tokens in the system were modeled individually, the transition Timer_Expiry would

non-deterministically choose one of the two timer tokens that are ready to expire at t=0.

However, if the timers are maintained as a single list, then this transition (1) consumes the

entire list, (2) identifies all timers that are ready to expire, (3) evaluates the timer expira-

tion function on all ready timers, (4) propagates the output operation tokens to the relevant

component message queues in a single firing. This greatly reduces the tree of possible tran-

sition firings and therefore the resultant state space. Also, if there is no non-determinism in
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Figure 28: Structural Reductions in CPN

the entire system, i.e., there is a distinct ordering of thread execution, then this model can

be scaled up with instantiating the application on new hardware nodes with no increase in

state space size. This is because all of the relevant tokens on all nodes are maintained as a

single list that is completely handled by a single transition firing.

An important implication of the above structural reduction is that the simulation of the

entire system now progresses in synchronous steps. This means that at time 0, all the timers

in all hardware nodes that are ready to expire will expire in a single step. Following this,

all operations in all component message queues of all these nodes are evaluated together

and appropriate component executor threads are scheduled together. When these threads
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execute, time progresses as described in Section 6.2.3, moving forward by the minimum

amount of time that can be fast-forwarded.

6.3 Scalability: Investigating Advanced State Space Analysis Methods

The main disadvantage of using state spaces for analysis is the state explosion problem:

even relatively small systems may have an enormous number of reachable states, and this is

a serious limitation for the use of state space methods in analysis of real-life systems. This

has led to the development of many different reduction methods for alleviating the state

explosion problem. Examples of such reduction techniques include partial order reduction

methods [69, 85, 94], and the symmetry method [41]. Reduction methods represent the

full state space in a compact, condensed form or represent only a subset of the full state

space. The reduction is done such that the answer to the verification questions can still be

determined from the reduced state space.

The scalability of the DREMS timing analysis CPN has been improved using the sym-

metry method, as described in the previous section. Instead of reinventing any state space

reduction methods, the ASAP [91] analysis platform is used to effectively apply existing

advanced state space analysis methods on the DREMS analysis model with no additional

changes. In ASAP, the CPN analysis model is imported as such and integrated into a

verification project. ASAP provides a platform on which to choose a variety of analysis

parameters e.g. the type of graph traversal (depth-first, breadth-first etc.) and any analysis

technique e.g. sweepline method as relevant.

Using the CPN Tools’ built-in state space analysis tool, a bounded state space was gen-

erated reaching up-to 10 hyperperiods of component thread activity on a 100-component

example. This bounded generation took 36 minutes on a typical laptop. The goal with

using ASAP is to evaluate the effectiveness and utility of advanced state space reduction

techniques that can be readily applied on any Colored Petri net, such as the DREMS analy-

sis model. With no changes to the model, the model is analyzed in ASAP for system-wide
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Table 1: Scalability Testing with CPNTools and ASAP – A bounded state space
covering 10 hyperperiods of component interactions is generated

Tool Test
Case

Number of
Embedded

Nodes

Temporal
Partitions

per
Node

Threads
per

Partition

Size of
State
Space

Generation
Time

CPNTools 1 5 2 1 180 0.981 s
CPNTools 2 2 5 5 124,469 846 s
CPNTools 3 5 5 4 485,552 2190 s

ASAP 3 5 5 4 144,861 495.147 s

deadlocks in under 10 minutes. Table 1 summarizes these results. It must be noted that the

size of the state space is reduced partly due to temporal partitioning itself. As described

using Figure 22, the branching nature of the state space graph is dependent on (among other

factors) the number of "ready" equal-priority component executor threads. With temporal

partitioning, this number reduces down to a fraction of the total number of components.

Without temporal partitioning, if all 100 threads are theoretically ready to execute, then the

size of the state space would be in order of millions of nodes and the state explosion would

make any analysis intractable. So, it is observed that though tools like ASAP help alleviate

the state explosion and make state space generation occur in much faster rates, the DREMS

timing analysis model is still affected by this explosion in very large-scale systems with

potentially thousands of components.
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CHAPTER VII

EXPERIMENTAL EVALUATION

Experimentally validating our timing analysis results is an important and necessary re-

quirement. In order to obtain any level of confidence in our CPN-based work, the system

design model needs to be completed implemented, and deployed on the target hardware

platform. We have constructed a testbed [47] to simulate and analyze resilient cyber-

physical systems consisting of 32 Beaglebone Black development boards [1]. We have

chosen the light-weight ROS [71] middleware layer and implemented our ROSMOD Com-

ponent model [48] on top of it. This component model provides the same execution se-

mantics and interaction patterns as our DREMS component model [66]. Our goal with this

work was to (1) establish a set of distributed component-based applications, (2) translate

this design model to our CPN analysis model, (3) deploy these applications on our testbed

and accurately measure operation execution times, and finally (4) perform state space anal-

ysis on the generated CPN model to check for conservative results, compared against the

real system execution.

7.1 Challenges

Experimental validation requires that online measurements of the real-time system

match with the design-time timing analysis results in a way that the timing analysis re-

sults are always close but conservative. If the timing analysis results predict a deadline

violation, this does not necessarily mean that the real system will violate deadlines but if

the timing analysis and verification guarantees the lack of deadline violations, then the real

system should agree with this prediction. The design-time timing analysis primarily uses

bounded state space analysis for such predictions. The analysis is bounded by necessity i.e.

to tackle the state space explosion problem. Obtaining confidence from the timing analysis
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results depends entirely on the behavior of the system and the applied bounds. Recall that

DREMS components are dormant by nature and need to be triggered either by timers or

through interaction ports. Component-based applications using DREMS typically exhibit

some periodic behavior, i.e. sequences of interactions between components that repeats

periodically. Each interaction sequence could involve a set of distributed components or

assemblies. In such scenarios, design-time analysis bounds the state space generation to

some constant multiple of the overall period of the application. The overall period here is

some duration of time after which all of the sequences of interactions in the application

have repetition. By analyzing some reasonably large multiple of the application period,

the state space analysis both generates and searches a sufficiently large set of states of the

system, i.e. execution behaviors. Assuming the execution correctness of the timing analy-

sis model and sufficiently conservative worst-case estimates of execution times, a complete

absence of timing anomalies in this bounded state space is typically a good indication of a

safely executing system. There are various ways to obtain the WCET values for individual

operational steps but the easiest approach is to execute the design on our testbed and make

accurate measurements.

7.2 Measurement and Instrumentation of Component Operations

As described in Section 5.3, the business logic of component operations is a set of

computational steps. The ordering of execution of these steps, and also the semantics of

each step directly affects the worst-case execution time of the block of code. Thus, in order

to integrate the worst-case aspects of a component operation when modeling the business

logic, these aspects need to be measured.

WCET of component operational steps needs to be measured by having each compo-

nent operation execute at highest priority with no other component threads intervening this
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process, i.e., each operation must be executed stand-alone on the CPU with as little inter-

vention as possible from other components. If a component operation requires an inter-

action, e.g., a client-server or publish-subscribe interaction, then the source or destination

of this "connection" must execute on a different CPU. That way, the CPU of the opera-

tion being measured isn’t affected by the other components/operations that are part of the

interaction.

Secondly, this experiment must be repeated multiple times with different inputs (if any),

including the worst-case input. This is necessary to ensure complete coverage of the busi-

ness logic code so that the worst-case execution time of the operation is accurately and

consistently measured. In the past, researchers have applied various test case generation

methods including (1) translating Statecharts to Finite State Machines (FSM) and using

tools like Condado [79], or (2) using model checking and symbolic execution with the

Java PathFinder model checker [86] or (3) WISE [19] (Worst-case Inputs from Symbolic

Execution). WISE, for example, uses exhaustive test generation for small input sizes and

generalizes the result of executing the program on those inputs into an "input generator."

The business logic code of the operation is instrumented with logging statements, i.e.,

function calls part of a logging infrastructure that present as little overhead as possible.

Our logging framework used a circular buffer or ring buffer implementation of fixed size

and ensured that the logged strings are written to disk only when the destructor of the

logging class is called. That way, during the execution of the component operation, the

delays caused by the act of logging is kept to a minimum. Log statements are injected

into different parts of the code, e.g., right before a component interaction, or a looping

statement.

Recall from earlier discussion that conditional statements are not modeled in our busi-

ness logic. Modeling data-driven behavior, e.g., if-else statements, is avoided to keep the

state space as reduced as possible. However, this presents a challenge; if there is an infre-

quently executed (e.g. twice) "if" statement that takes 5 s, and a frequently executed (e.g.
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300 times) "else" statement that takes 2 ms, which WCET should the analysis consider?

Should the "else" statement be considered since it happens significantly more often? Here,

we have decided to stick to the worst-case behavior, i.e., always choosing the "if" case. The

problem with this choice is that this will lead to a gross over-estimation of the operation’s

behavior and this exposes the weakness in our busines logic model. Regardless, for condi-

tional statements in the actual business logic, logging statements are added before the start

of the first conditional statement and after the end of the last conditional statement. The

execution time for a set of conditional statements, i.e., multiple if-else cases that are written

in a sequence by the programmer, are evaluated together and the worst-case is identified.

The worst-case measurement for the operational steps across multiple runs of the ex-

periment gives us a pure execution times of the various code blocks in an operation. This

measurement is called pure because it is made with as little interference as possible from

other component operations. These measurements are used to construct the business logic

models in the system model. From here, the analysis CPN is generated and the measure-

ments are injected as tokens into CPN places, e.g., timer tokens, interaction tokens, etc.

Once a complete CPN is generated, bounded state space analysis is performed. The bound

on the state space generation is represented in terms of some number of clock ticks, calcu-

lated as some large multiple of the lowest frequency event in the system, e.g., is the lowest

frequency event is a timer that fires every second, then the state space is generated to cover,

e.g., 100 seconds of activity, covering 100 timer expiries. This bound should ideally be

derived mathematically by considering all periodic events in the system and calculating the

minimum amount of time for which the system must be observed to either catch timing vi-

olations or declare that the system is safe. In our analysis, these bounds are chosen simply

based on experience, i.e., a duration of time deemed to be "sufficiently large", e.g., at least

10 hyperperiods of a temporal partition schedule.

The final step of the analysis process is to compare the analysis results for the com-

posed system, i.e., all software components executing as planned in the final deployment,
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against the exact same deployment on a real testbed. Here, the measurement of interest

is the worst-case response time of all component operations, i.e., for each component op-

eration, the time taken from when the operation was requested in the message queue till

when the component executor thread completes execution of the operation business logic.

The execution of multiple operations can be grouped to calculate worst-case trigger to re-

sponse times. Similar to the pure execution time measurements, the testbed deployment

of the composed system must be repeated multiple times with various inputs in order to

ensure that the worst-case is truly captured. In order to perform such evaluation, we have

constructed a testbed called the RCPS testbed. This is described below.

7.3 Resilient Cyber-Physical Systems (RCPS) Testbed

7.3.1 Architecture

The RCPS testbed, as shown in Figure 29 consists of 32 RCPS nodes, each of which is

a Beaglebone Black (BBB) [1] development board. For the subset of CPS we are interested

in, the behavior of the CPS can be much more precisely emulated with these boards com-

pared to running the applications inside of a standalone simulation. For example, NASA’s

CubeSat Launch Initiative (CSLI) [4] provides opportunities for nanosatellites to be de-

ployed into space for research. CubeSats are small (4-inch cubes) satellites running low-

power embedded boards and being prepared for interplanetary missions [5] to Mars. A

distributed set of CubeSats can be easily tested with this architecture if it can be integrated

with a high-fidelity space flight simulator; each RCPS node would run the embedded soft-

ware of a single CubeSat.

The Gigabit Ethernet port of each BBB is connected to a Communication Network

switch. This is a programmable OpenFlow [58] switch, allowing users to program the

flowtable of the switch to control the routes that packets follow and completely config-

ure the full network and subnets required for their emulated deployment. Furthermore,

the configurability of the communications network enables per-link or per-flow bandwidth
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Figure 29: Testbed Architecture

throttling, enabling precise network emulation. The primary Development and Control

machine, running our software development tools, communicates with the BBBs using this

network. After software applications are deployed on this testbed, the characteristics of

the real CPS network can be enforced on the application network traffic. Therefore, this

network emulates the physical network which a distributed CPS would experience on de-

ployment.

Each RCPS node is also connected to a Physics Network using a 10/100 USB-to-

Ethernet adapter, since the BBBs only have one gigabit ethernet port. This network is

connected to a Physics Simulation Machine running Cyber-Physical Systems simulations.

This network provides the infrastructure necessary to emulate CPS sensing and actuation

in the loop, allowing application software to periodically receive sensor data and open in-

terfaces to output actuator commands to the simulation.

The Physics Simulation Machine closes the interaction loop for the testbed nodes, al-

lowing the physical dynamics of the RCPS nodes to be simulated in the environment in
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which it would be deployed, e.g. satellites’ orbital mechanics and interactions can be sim-

ulated for a satellite cluster.

7.4 ROSMOD Software Infrastructure

We execute component-based software applications on the RCPS testbed using a model-

driven development tool called ROSMOD [48]. ROSMOD is an integrated development

environment for rapid prototyping component-based software for the Robot Operating Sys-

tem (ROS) middleware. ROSMOD is well suited for the design, development and deploy-

ment of large-scale distributed applications on embedded devices. ROSMOD includes a

modeling language, a graphical user interface, code generators, and a deployment infras-

tructure. The utility of ROSMOD has been demonstrated in the past with a real-world case

study: an Autonomous Ground Support Equipment (AGSE) robot that was designed and

prototyped using ROSMOD for the NASA Student Launch competition, 2014âĂŞ2015.

7.4.1 ROSMOD vs. DREMS

ROSMOD includes an implementation of the DREMS component model. However,

there are some minor differences between ROSMOD and the original DREMS. Primarily,

the middleware layer in DREMS, i.e., the layer responsible for providing the various sup-

ported communication patterns has been swapped out for the simpler, light-weight ROS

middleware. Among other factors, this reduces the effort required on the developer’s part

to rapid prototype a distributed component-based application. This switch to ROS also

shows the versatility of the DREMS component model. Secondly, the ROSMOD infras-

tructure does not implement any temporal partitioning like DREMS. The goal here is to

also show that the CPN analysis model is flexible enough to model and analyze systems

without temporal partitioning constraints.
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7.4.2 ROSMOD Modeling Language

To enable the design, development, and testing of software on distributed CPS, we have

developed a modeling language specific to the domain of distributed CPS which utilize

ROS, the ROSMOD Modeling Language (RML). Figure 30 shows the metamodel for this

language using GME [52] notation; the GME-based metamodel figure is very similar to a

traditional UML class diagram with some minor differences in notation. RML captures all

the relevant aspects of the sofware, the system (hardware and network), and the deploy-

ment which specifies how the software will be executed on the selected system. Using

ROSMOD, developers can create models which contain instances of the objects defined in

RML. This approach of using a domain specific modeling language to define the semantics

of the models allows us to check and enforce the models for correctness. Furthermore, this

approach allows us to develop generic utilities or extensions, called plugins [56] which can

act on any models created using ROSMOD, for instance generating and compiling the soft-

ware automatically or automatically deploying and managing the software on the defined

system. The rest of this section goes into the specific parts of the modeling language, called

the metamodel, and how they define the entities in a ROSMOD Model.

77



Figure 30: ROSMOD Metamodel
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The top-level entity of RML is a Project, which is shown in the upper left of Figure

30. The language supports a variety of modeling concepts that address structural and be-

havioral aspects for distributed embedded platforms. ROSMOD users can create models of

software workspaces, required software libraries, embedded devices, network topologies,

component constraints and hardware capabilities. The language also supports code devel-

opment, particularly with regards to port interface implementations i.e. the execution code

for operations owned and triggered by communication ports or local timers. Below, we

describe in detail the various aspects of this metamodel and how these concepts are integral

to developing distributed CPS and rapid prototyping needs.

7.4.3 Motivation for ROSMOD Software Model

The goal of the ROSMOD software model is to provide a language to precisely model

the application software. When using a DREMS-style component model, the software is

primarily a collection of components, where each component is defined by its ports and

timers. Building a precise model of the software has various benefits. Firstly, applying

model-driven development techniques enables reuse of previously defined components i.e.

a single component can be instantiated or copied or modified as required and executed on

the runtime system. Secondly, the development time of the application can be reduced

significantly as a large part of the runtime code can be fully generated based on templates.

Lastly, a clear model of the software provides a canvas for design-time analysis. If the

structural aspects of the software are captured in the model of the component assembly, and

the behavioral properties of the components are encoded in the attributes of its ports and

timers, then using translation rules, a design-time analysis model can be fully generated.

7.4.4 Software Model

The Software class in Figure 30 models a software workspace. A workspace, following

ROS terminology, is a collection of applications that are developed and compiled together
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into binaries. Thus, each Software class can contain ROS applications, called Packages,

and Libraries required for the applications. Packages consist of Messages, Services and

Components. Components contain a set of pointers to Libraries to establish dependence

e.g. an ImageProcessor component requires OpenCV, an open-source computer vision

library. Libraries are of two types: Source libraries and System libraries. Source libraries

are standalone archives that can be retrieved, extracted and integrated into the software

build system with no additional changes. System libraries are assumptions made by a

software developer regarding the libraries pre-installed in the system. Here, system refers

to the embedded device on which the component is intended to execute.

Messages represent ROS message types used by publisher and subscriber ports for

topic-based communication. Similarly, Services describe the ROS peer-to-peer request-

reply interaction pattern. Each service is characterized by a pair of messages, request and

response. A client entity can call a service by sending a request message and awaiting a re-

sponse. This interaction is presented to the user as a remote procedure call. Each ROSMOD

component contains a finite set of communication ports. These ports refer to messages and

services to concretize the communication interface. Components can also contain Timers

for time-triggered operation e.g. periodically sampling inertial measurement sensors while

operating an unmanned aerial vehicle (UAV).

7.4.5 Motivation for ROSMOD System Model

The goal of the ROSMOD system model is to provide a language to precisely model

the network of computers capable of executing applications defined in the software model.

The system model is necessary for both compilation and deployment. The software de-

fined in the software model, and therefore the generated source code must be compiled

down to a binary for runtime execution. An accurate model of the available runtime sys-

tem provides necessary information for cross-compilation requirements. The deployment
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framework can use the system model to find a suitable candidate device onto which the ap-

plication processes are deployed. As shown in Figure 30, a deployment consists of a set of

abstract containers, where each container is a set of processes. The deployment infrastruc-

ture maps each container to one available RCPS node based on availability; regardless of

which RCPS node a container maps to, the set of processes contained by that container are

always deployed together. To automate this process, the system model must capture fine-

grained details about each available device, including information such as the IP address,

the user permissions, and means to access the device e.g. Secure Shell Protocol (SSH) [95].

As with the software model, this system model can be reused in all ROSMOD projects for

a given hardware assembly, such as the RCPS tested.

7.4.6 System Model

A System Model completely describes the hardware architecture of a system onto which

the software can be deployed. A ROSMOD Project contains one or more Systems. Each

System contains one or more Hosts, one or more Users, one or more Networks, and one or

more Links. A host can contain one or more Network Interfaces, which connect through a

link to a network. On this link the host’s interface is assigned an IP address, which matches

the subnet and netmask specification of the network. Additionally, a host has a set of ref-

erences to users, which define the user-name, home directory, and ssh-key location for that

user. The host itself has attributes which determine what kind of processor architecture it

has, e.g. armv7l, what operating system it is running, and lastly a combination of Device

ID and Device ID Command which provide an additional means for specifying the type

of host (and a way to determine it), for instance specifying the difference between a Bea-

gleBone Black and an NVIDIA Jetson TK1 which both have armv7l architecture but can

be separated by looking at the model name in the device tree. Finally, a host may contain

zero or more Capabilities to which the component constraints (described in the previous

section) are mapped. The final relevant attribute is the Network Profile attribute of a link.
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Using the network profile, which is specified as a time-series of bandwidth and latency val-

ues, we can configure the links of the network using the Linux TC to enforce time-varying

bandwidth and latency. This network configuration is useful when running experiments on

laboratory hardware for which the network is not representative of the deployed system’s

network.

7.4.7 Deployment Infrastructure

The workflow for software deployment is as shown Figure 31. After the user has gen-

erated and compiled the software model into binary executables, they can run an exper-

iment that has valid deployment model and system model references. Every ROSMOD

workspace is generated with an additional node package. This builds a generic node exe-

cutable that can dynamically load libraries. When the software infrastructure generates and

compiles the source code for the software model, the components are compiled into dynam-

ically loadable libraries, one for each component definition along with a single executable

corresponding to the generic node package. The first step the deployment infrastructure

performs when running an experiment is generating the XML files which contain meta-

data about each ROS node modeled in the ROSMOD Deployment Model. This metadata

includes the component instances in each node and the appropriate component libraries to

be loaded. Based on the XML file supplied to the node executable, the node will behave

as one of the ROS nodes in the deployment model. This allows for a reusable framework

where a generic executable (1) loads an XML file, (2) identifies the component instances in

the node, (3) finds the necessary component libraries to load and (4) spawns the executor

threads bound to each component.
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Figure 31: Software Deployment Workflow

7.5 Validation of Timing Analysis Results

Validation of the modeling and analysis requires strict evaluation of the execution traces

generated by the state space analysis and comparing these traces against the traces observed

in the experiments. The CPN model is validated if an execution trace, i.e., an order in which

the component operations have executed, can be shown in the CPN generated state space.

If so, the the state space accounts for the real behavior and this would show that the CPN

model of the component behavior is consistent with the expectations of the user. If the

generated state space does not contain the execution trace observed in the experiments,

then this will show expose (1) errors in the CPN model of the behavior, or (2) insufficient

non-determinism considerations, e.g., if the non-determinism does not correctly account
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for all the possible thread, timer, or operation executions during a time period, then the

analysis will be incorrect and unreliable.

Experimental validation should also demonstrate that online measurements of the real-

time system match with the timing analysis results in a way that the timing analysis results

are always close but conservative. The goal of the analysis is to obtain a fairly accurate

estimation of the runtime behavior i.e. estimates of component timing behavior that isn’t

so conservative that the results are useless. If the real execution of a specific operation

takes 100 milliseconds and the timing analysis predicts 107 milliseconds, then this is close

e.g. less than 10% error, but conservative. On the other hand, if the design-time analysis

predicts the execution time to be in the order of seconds or tens of seconds, then the analysis

is conservative but grossly over-estimate. One of the biggest assumptions in our CPN work

is the knowledge of worst-case execution times of the individual steps in the component

operations. As detailed in Section 5.3, the business-logic modeling language captures the

temporal behavior of component operations, especially WCET metrics for the different

code blocks inside an operation. For example, consider a simple client-server example as

shown in Figure 11. The client component is periodically triggered by an internal timer

and executes a synchronous remote method invocation to a remote server component. The

interaction here demands that the client component be blocked for the duration of time it

takes the server to receive the operation, process its message queue, execute the relevant

callback, and respond with output.

Note that in Figure 11, we only annotate isolated code blocks that take a fixed amount of

execution time on a specific hardware architecture. These are the only measurements that

we can reliably make with repeated testing and instrumentation. The client-side blocking

delay is not measured because there are numerous factors responsible for this delay e.g.

server’s message queue state, scheduling non-determinism, network delays etc. In order to

be able to predict this delay, we need to use state space analysis and search through the tree

of possible executions to identify the worst-case blocking delay. This also means that our
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CPN model must capture and account for such delay-causing factors. Lastly, in order to

reliably obtain worst-case response times from the analysis, the analysis must account for

all significant non-deterministic possibilities, e.g., timers expiring at the same time as other

operation inductions, threads unblocking at the same time as other component interactions,

etc.

The remainder of this section presents various primitive interaction patterns and assem-

blies that have been evaluated. The results are restricted to simple cases, though we have

tested on medium-to-large scale examples spanning 25-30 computing nodes, and with up

to a 100 components. The scalability of our model, however, is not within the scope of this

paper as we have previously evaluated this metric [49]. As mentioned earlier, in all of our

tests, we use the ROS [71] middleware and our ROSMOD [48] component model.

7.5.1 Note on the Beaglebone Black RCPS nodes

The Beaglebone Black embedded devices in the RCPS cluster presented an interesting

challenge during experimentation. These devices are low-power embedded boards that are

expected to run at 1 GHz CPU clock frequency. These devices, while running Ubuntu, are

also influenced by a CPU scaling governor. This governor provides a mechanism for CPU

throttling by setting the devices to run at different modes, e.g., power-saver, performance,

on-demand etc., depending on the operational needs. These modes affect the CPU clock

frequency ranges in which device operates, e.g., power-save limits the CPU frequency to

300 MHz, instead of 1 GHz, Similarly, the on-demand scaling mode throttles the CPU

frequency to within the range of 300-600 MHz depending on the CPU demand. These

variations are harmful to our experiments, as the execution times of the component opera-

tions will vary wildly depending on the clock frequency at the time of execution. In order

to prevent this, not only is the scaling governor set to performance mode, but the minimum

scaling frequency is also forcefully set to 1 GHz. This way, the clock frequency is forced

to run at 1 GHz for 100% of the time regardless of the load on the CPU. Secondly, the
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components threads are executed in real-time priority, with the real-time thread scheduling

scheme set to SCHED_RR, i.e., fixed-priority scheduling with round-robin conflict resolu-

tion.

7.5.2 Understanding the CPN Analysis Plots

By performing state space analysis, we are analyzing a bounded tree of possible com-

ponent behaviors. By identifying the worst-case execution trace in this tree, we’re able

to obtain a suitable conservative candidate execution that represents a possible behavior.

Once this trace is identified, we plot the response time behavior of all components in this

trace. This pattern is followed in all of the following plots. Figure 32 describes the analysis

plots presented later in this chapter. Each subplot in this figure represents the execution of

a component operation. The x axis of this plot represents the analysis time, and the y axis

represents the response time of the operation. Each execution is shown as a rectangular

pulse, the amplitude of which is the worst-case response time (WCRT) of the operation i.e.

the time taken for the operation to complete (response) from when the executor thread was

released for execution (trigger). The rising edge of the pulse represents the enqueue time

stamp of the operation i.e. the time instant when a request for this operation was enqueued

onto the component message queue. The falling edge of the pulse represents the comple-

tion time stamp i.e. the time instant when the component executor thread has completed

execution of the operation and is ready to service the next request waiting in the queue.

Since the response time of the operation is calculated from the enqueue time instant, the

plot can have intersecting pulses, as shown in the second subplot. Here a new operation

request is enqueued onto the message queue while an existing instance of the operation

request is being executed by the component executor thread.
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Figure 32: Interpreting Execution Time Plots

The following sub-sections present some use-cases and example deployments on which

the CPN analysis has been tested. We begin testing with some primitive interaction patterns

in order to ensure that the timing analysis model correctly executes as per the semantics of

the interactions, e.g., blocking behavior in client-server interactions, PFIFO scheduling

schemes on the component level, etc.

7.5.3 Client-Server Interactions

As shown in Figure 11, a simple client server example. A client component is periodi-

cally triggered into execution by a component timer (period = 5 s). The timer expiry causes

an operation request to manifest in the client component message queue. The client com-

ponent executor thread then executes this operation, i.e., executes the computational steps

in the operation’s callback, calls a service exposed by the server component, and blocks

until the server responds. At this point, a client request manifests on the server component
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message queue. The server component executor thread picks this operation request, exe-

cutes the server callback and responds to the client, essentially unblocking the client. This

behavior repeats periodically.

Figure 33: Experimental Observation: Client-Server Interactions

As mentioned in the experiments workflow, each component operation is executed sep-

arately on the testbed to obtain the pure execution times, i.e., uninterrupted execution times

of the operations. These numbers are plugged into business logic models to generate a

complete, analysis-ready CPN. Once the CPN is ready, a composed system-level analysis

can be performed. Here, all the components in the assembly, i.e., the client and the server

are deployed together in the RCPS testbed and the operation response times are accurately

measured with as little overhead as possible. The deployments are repeated at least 10-

15 times, with each run spanning some large multiple of the lowest frequency event, e.g.,

100 seconds of activity is recorded when the triggering timer fires every 5 seconds. We

believe this is sufficient periods of activity, especially for such a simple example, to ob-

tain a distribution of execution times. Once all the deployments are finished, the logs are

collected and the worst-case response times for all operations are derived using a Python-

based script. When the worst-case logs are identified, these logs are used as the candidate
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worst-case execution and plotted. Figure 33 shows the worst-case behavior observed over

all the experimental runs.

The following figure shows a histogram of the measurements; the plots are generated

using a Python-based script using a 25-bin histogram configuration. As it can be seen here,

there is very little difference between the average-case and worst-case behavior for both

operations. This is because there is very little variability in the business logic and timer

frequency is not so large as to affect the delays caused by the blocking interactions.

Figure 34: Histogram of Measurements for Client-Server Scenario

Using the generated analysis CPN, we perform bounded state space analysis covering

about 100 seconds of thread activity on both client and server nodes. Searching through

this state space, a list of operation response times are generated for both operations. The

state space node containing the worst-case response time is identified for each operation

and a backtrace is calculated using the state space analysis function interface. Then, this

backtrace is written to a file and plotted. Figure 35 shows the execution time plot derived

from our CPN. As expected, since there are no other interruptions on the server side, the

server is able to promptly respond to the client.
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Figure 35: CPN Analysis Results: Client-Server Interactions

Table 2 shows a summary of these results. Similar tables are included as part of all

other experiments in this section.

7.5.3.1 Bad Designs

The goal of our CPN timing analysis is to identify bad component designs, unacceptable

execution times, response times etc. There are various ways in which we can accidentally

design a poorly performing client-server interaction. In the above case, the server operation

Table 2: Client Server Example - Summary of Results

Operation
Name

Component
Name

Measured
Response

Time
(µ , σ )
(ms)

Measured
WCRT

(ms)

CPN
Analysis
WCRT

(ms)

Deadline
(ms)

Error
(%)

Power
Operation Server

(828.82,
0.11) 829.15 852.0 2000 2.75

Client
Timer

Operation
Client

(1120.72,
0.03) 1121.30 1152.0 3000 2.71
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takes 852 ms in its worst-case before responding to the client and unblocking the client

executor thread. If instead, the server operation took 8.5 seconds, the client component

will stay blocked for 10 times longer and the client timer expiries will not be serviced

faster than the timer periods. This shows a simple use-case where the currently blocked

client timer operation is starving subsequent timer expiries from being handled promptly.

Figure 36 shows our CPN predictions after simply changing this server execution time.

Figure 36: CPN Analysis Results: Client-Server Response Times in Bad Designs

The execution time of the each new client-side timer operation is worse than the pre-

vious since the operation is spending much longer waiting in the queue. Recall that the

execution time of a component operation includes the waiting time in the message queue.

Even with a bounded state space that spans just 1 minute, it is clear that the client com-

ponent message queue size is monotonically increasing. This is a use case where a client

component execution is affected by delays caused on a remote server. Each client-server
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interaction delay will only be worsened when the server component has other operations to

tend to aside from the client requests.

7.5.4 Publish-Subscribe Interactions

Similar to the earlier example, consider the ROSMOD publish-subscribe interaction. A

publisher is periodically triggered by a timer when this component broadcasts a message on

a topic. A subscribing component receives this message and performs some computation.

In this case, the timer period is set to 2 seconds i.e. every 2 seconds, these two component

interact via publish-subscribe messaging passing.

In order to enforce some variabilities in the execution, the publish-timer and subscriber

operation business logic consists of algebraic computations performed in a loop. An upper

limit for the number of iterations is assumed. At each invocation of this operation, a loop

count somwewhere between 20% and 60% of the upper limit is randomly picked from a

uniform distribution. The computations repeat for the chosen numer of iterations before

the operation is marked as complete. We also ensure that any compiler optimization on this

computation is disabled. Figure 37 shows experimental observations for this component

assembly. Figure 38 shows the histogram of the measurements.
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Figure 37: Experimental Observation: Publish-Subscribe Interactions

Figure 38: Histogram of Measurements for Publish-Subcribe Scenario
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Figure 39 shows our CPN analysis results. As evident, the CPN results closely matches

and validate this sample. Table 3 summarizes the results. Since this is another simple

use-case, there is not much non-determinism involved if the components are executing in

separate devices. The execution trace, based on the design, follows a simple and deter-

ministic ordering. Evaluating simple cases like this is important in order to ensure that the

CPN correctly models and executes these types of interaction patterns. In the following

examples, we also evaluate more integrated and complex scenarios.

Figure 39: CPN Analysis Results: Publish-Subscribe Interactions

7.5.4.1 Bad Designs

Similar to the client-server example, we can explore another accidental bad design that

may become hard to track. In a publish-subscribe interaction, the publisher and the sub-

scriber are completely detached from each other i.e. delays in the subscriber operation do

not affect the publisher. So, the only way the publisher component can affect its own behav-

ior is how it is triggered. Periodically triggered data dissemination is the most commonly
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Table 3: Publish Subscribe Example – Summary of Results

Operation
Name

Component
Name

Measured
Response

Time
(µ , σ )
(ms)

Measured
WCRT

(ms)

CPN
Analysis
WCRT

(ms)

Deadline
(ms)

Error
(%)

Subscriber
Port

Operation
Subscriber

(194.17,
0.03) 194.71 200.0 1000 2.712

Publisher
Timer

Operation
Publisher

(226.48,
12.77) 249.21 252.0 1000 1.11

used streaming pattern aside from event-driven messaging. Here, if the period of the timer

is decreased from 2 s to 10 ms, the publisher gets triggered too frequently and is seriously

affected by a local design flaw.

Figure 40: CPN Analysis Results: Time-triggered Publisher – Periodicity Issues

Figure 40 shows the CPN results for this design. The subscriber still performs as ex-

pected taking 200 ms to process each incoming message. But the publishing component
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is affected by the periodicity of its trigger. The publish_timer fires every 10 ms, and at

each expiry enqueues a timer operation request onto the publisher component’s message

queue. Each timer operation itself takes about 250 ms i.e. 25 times of the periodicity

of its trigger. The inevitable result of this design is the monotonically rising execution

times of each subsequent timer operation due to progressively delayed response. Here, the

t_response_time = t_dequeue - t_enqueue becomes progressively worse and eventually the

publisher’s message queue overflows. In the real experiment, we were unable to access the

publisher component’s device via remote shell as the device CPU was saturated.

7.5.5 Trajectory Planner

In the past [51], we have used a Trajectory Planner deployment to illustrate the utility

of our state space analysis. As shown in Figure 41, a Sensor component is periodically

triggered every second by the sensor_timer at which point it publishes a notification to the

Trajectory Planner component, alerting the planner of new sensor state. The planner com-

ponent receives this notification on its state_subscriber. On receiving this message, the

planner executes a remote method invocation to the compute server located in the Sensor,

blocked and waiting for a response. At this point, the compute_operation is executed on

the Sensor which returns the updated sensor state. This unblocks the planner component

which uses the new sensor state to perform trajectory planning tasks. This is an impor-

tant scenario as it enforces all DREMS-supported interaction patterns, i.e., periodically

triggered, publish-subscribe and client-server interactions. However, aside from the minor

variations in the loop iteraction count, there is no non-determinism in this scenario, i.e.,

there is deterministic order in which the various events are handled.
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Figure 41: Trajectory Planner Test

Figure 42 shows the execution time plot of this sample where the sensor updates happen

once a second. Figure 44 presents the CPN analysis plot and Table 4 summarizes the

results.
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Figure 42: Experimental Observation: Trajectory Planner

Figure 43: Histogram of Measurements Trajectory Planner
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This is a common interaction pattern in Cyber-Physical systems since embedded sen-

sors are updated at a much higher frequency than a path planning entity. Thus, the planner

can query the sensor at a lower rate to sample the sensor state. In this example, the planner

is matching the frequency of the sensor since the execution cost is low. However, when

more components are added to this deployment, the planner would have to fetch sensor

state less frequently so as to not affect other system-level deadlines.

Figure 44: CPN Analysis Results: Trajectory Planner

If the sensor update frequency is increased to 100 ms, the sensor begins to notify the

planner at a much higher frequency than expected. If there is no down-sampling on the

planner’s side, every single update will be handled by the planner, leading to dangerous

queue size growth on the planner. Figure 45 shows this deployment, as observed in the

CPN analysis.
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Table 4: Trajectory Planner Example – Summary of Results

Operation
Name

Component
Name

Measured
Response

Time
(µ , σ )
(ms)

Measured
WCRT

(ms)

CPN
Analysis
WCRT

(ms)

Deadline
(ms)

Error
(%)

Sensor
Timer

Operation
Sensor

(198.48,
0.20) 199.0 199.05 400 0.02

Compute
Operation Sensor

(438.39,
7.33) 445.37 448.95 600 0.80

State
Subscriber
Operation

Trajectory
Planner

(439.92,
7.34) 446.87 450.95 1000 0.91

Figure 45: CPN Analysis - Sensor firing too frequently
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7.5.6 Time-triggered Operations

Time-triggered operations are an integral part of our component model. DREMS com-

ponents are dormant by default. A timer has to trigger a inactive component for all sub-

sequent interactions to happen. Since the DREMS component model supports various

scheduling schemes on a single component message queue, this following test evaluates a

priority first-in first-out (PFIFO) scheme. Multiple timers are created in a single compo-

nent, each with a unique priority and period. A timer with a high frequency is assigned a

high priority. Figure 46 shows our experimental observations on a 5-timer example.

Figure 46: Experimental Observation: Periodic Timers
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Figure 47: Histogram of Measurements for Periodic Timers Scenario

Since ROSMOD components are associated with a single executor thread and com-

ponent operations are also non-preemptive, a low-priority operation could theoretically

run forever, starving a higher priority operation from ever executing, leading to dead-

line violations e.g. Timer_1_operation can affect all other higher priority timers. Fig-

ure 48 shows our CPN prediction where such a scenario is evident. It can be seen that

Timer_5_operation, the timer with the highest priority is periodically seeing spikes in ex-

ecution time, courtesy of other lower priority operations consuming CPU without preemp-

tion. Table 5 summarizes the results.
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Figure 48: CPN Analysis Results: Periodic Timers

7.5.7 Long-Running Operations

Our ROSMOD component model implements a non-preemptive component operation

scheduling scheme. A component operation that is in the queue, regardless of its priority,

must wait for the currently executing operation to run to completion. This is a strict rule for

operation scheduling and does not work best in all system designs e.g. in a long-running

computation-intensive application, rejuvenating the executing operation periodically and

restarting it at a previous checkpoint increases the likelihood of successfully completing

the application execution. In applications executing long-running artificial intelligence (AI)

search algorithms e.g. flight path planning algorithms, the computation should not hinder

the prompt response requirements of highly critical operation requests such as sudden ma-

neuver changes. Our ROSMOD component model does not support the asynchronous can-

cellation of long-running component operations to service other highly critical operations
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Table 5: Periodic Timers – Summary of Results

Operation
Name

Component
Name

Measured
Response

Time
(µ , σ )
(ms)

Measured
WCRT

(ms)

CPN
Analysis
WCRT

(ms)

Deadline
(ms)

Error
(%)

Timer_1 Component_1
(226.49,
11.53) 243.16 253.0 300 4.04

Timer_2 Component_1
(95.81,
15.01) 122.41 138.0 150 12.72

Timer_3 Component_1
(54.76,
2.64) 62.78 69.5 75 10.68

Timer_4 Component_1
(24.18,
1.13) 28.96 29.54 37.5 2.0

Timer_5 Component_1
(3.97,
0.14) 5.15 9.89 10 92.03

waiting in the queue. With a few minor modifications to our scheduling schemes, long run-

ning operations can, however, be suspended if a higher priority waiting operation requires

service. With these additions, we are able to model and analyze component-based systems

that support long-running operations, with checkpoints, enabling the novel integration of

AI-type algorithms into our design and analysis framework.

7.5.7.1 Challenges

One of the primary challenges here is to identify the semantics of a long-running com-

ponent operation i.e. the scenarios under which the component operations scheduler sus-

pends a cooperating long-running operation in favor of some other operation waiting in the

queue. Firstly, the developer of the long-running operation must cooperate with the rest

of the system for suspension i.e. at some periodic checkpoint, the operation checks to see

if there are any other higher priority operations that require execution. The checkpoints

have to be built into the code for long-running operations. If a long-running computation

is modeled as a sequence of execution steps with bounded checkpoints, then the operation
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would execute in discrete steps and suspend at such checkpoints if necessary. An important

challenge here is accurately identifying the priority difference between the long-running

operation and the waiting operation. If the long-running operation is one checkpoint away

from completion e.g. 100-200 ms of execution time, then strictly following our suspen-

sion rules would not be the most prudent choice since this operation is almost complete.

However, if the waiting operation is a critical one, then regardless of the state of the long-

running operation, the executing operation must be suspended. Secondly, the modeled

long-running computation semantics must be incorporated into our component model so

that any analysis results obtained can be suitably validated.

Figure 49: Long Running Operations - Timing Diagram

7.5.7.2 Implementation and Results

In each long-running operation, we, therefore, include a synchronous checkpoint step,

as shown in Figure 49. The only assumption we make about this long-running operation

is the periodicity of these checkpoint steps i.e. we know how frequently a new checkpoint

is reached and we assume that the search algorithm used by the long-running operation is
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capable of reaching a safe state (the checkpoint) before suspending itself if required. If a

higher priority operation is ready and waiting in the queue, the long-running operation runs

till the next checkpoint is reached, then suspends. The higher priority operation is then

processed.

The component assembly for this test consists of three components: Component_1,

Component_2 and Component_3. Component_1 and Component_2 periodically publish

messages and Component_1 has a subscriber that receives these messages at different rates.

Component_1 also executes a long-running operation that yields the CPU to the higher pri-

ority subscriber operation as required. Meanwhile, Component_3 periodically queries a

service provided by Component_2. Figure 50 shows the execution time plot of this sce-

nario, as measured on our testbed. Notice the long-running operation on Component_1

consuming 64 sec of CPU during the test. This operation periodically suspends itself so

that the Name_Subscriber_Operation in Component_1 can receive messages on the sub-

scriber port.
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Figure 50: Experimental Observation: Composed Component Assembly.

For the CPN analysis, in order to obtain pure execution times of all these operations,

each operation on each component is executed as a stand-alone function on the hardware.

This way, we know the average and worst-case execution times of all operational steps with

minimal interruptions. These numbers are injected into our generated CPN and state space

analysis is performed. Figure 51 shows our CPN analysis results for the same assembly.
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Figure 51: CPN Analysis Results: Composed Component Assembly

7.5.8 Integration with Physics Simulators - Cyber-Physical Systems Scenarios

Kerbal Space Program [3] (KSP) is a widely popular space flight simulator for a variety

of platforms including Linux, OS X and Windows. In this game, players get to manage a

space program, designing and building spacecrafts and exploring celestial bodies.

While KSP does not provide a perfect simulation of reality, it has been widely praised

for its component-based design and development process coupled with aerodynamic, grav-

itational, and rigid-body interaction and simulation. In this simulation, every man-made

object follows Newtonian dynamics. Rocket thrust and aerodynamic forces are accurately

applied to the vehicles based on the directions and precise positions in which the force-

affected elements are mounted on the vessel. Using KSP, we have modeled scenarios for a

variety of flight missions including interplanetary travel. In this section, we briefly describe

an aircraft flight controller that was designed and tested using the RCPS testbed and KSP.
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This CPS scenario is a flight controller application used to completely control a KSP

aircraft from the primary space-plane hanger to a destination airport. The application pro-

cesses require inputs from KSP e.g. sensor data about pitch, roll, yaw, mean altitude etc.

and interfaces to control the flight dynamics model by setting actuators for thrust, pitch,

and heading. If these interfaces are available, then the processes can periodically retrieve

flight telemetry and provide commands for course correction and feedback control.

Figure 52: Kerbal Space Program - Flight Control Application - Stack

Using an open source project called kRPC [2] (Kerbal Remote Procedure Call Server),

the BBB nodes running CPS processes are provided with an interface to the simulation.

All components that interact with the simulation through kRPC are characterized as I/O

components. Figure 52 shows the software stack for this flight control application. This
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test consists of four components: periodic sensor stream, a high-level controller, a low-

level PID controller, and an actuator component. The sensor component interacts with the

simulation and receives a stream of sensory information e.g. pitch, roll, yaw, heading,

throttle, mean altitude etc. as fast as the kRPC interface can provide it. This stream of

data is sampled at a frequency of 20 Hz (lower than the sensor update frequency of 60 Hz),

packaged as a Sensor_State message and published by the Sensor component. The high-

level component receives this sensor information and decides on high-level state changes

e.g. take off, cruising, landing etc. Based on the required high-level state changes, this

controller component commands the PID component to maneuver the flight to the right

altitude and heading. The PID component uses pre-defined gains and calculates new thrust,

pitch, roll and yaw values based on the next goal altitude and heading. This actuation

command is published by the PID component and handled by the actuator component. The

actuator component provides the second interface to KSP for the ROSMOD application by

commanding the simulation interface to control the vessel. Figure 53 shows the Stearwing

A300 aircraft taking off from the space-plane hanger and stabilizing at a cruising altitude

of 2000 meters.
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Figure 53: Stearwing A300 PID Control

Figure 54 shows about 2.5 minutes of execution of the flight control application on

the experimental testbed and Figure 55 shows the CPN analysis results for the first 40

seconds of execution. Table 6 compares the response time values for all operations in this

application. Many of the component operations in this sample have pure execution times

in the order of hundreds of microseconds with spikes in execution times at the end of the

test during teardown i.e. the I/O components do not receive prompt responses from the
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simulation as the experiment is stopped. These delays propagate to other components in

the application e.g. actuator control subscriber operation.

Figure 54: Stearwing Flight Control - Experimental Observations

Figure 55 shows the CPN analysis results for this application. The worst-case pure
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execution times of all operation steps are calculated over multiple runs of the application

and the business logic for all operations are constructed. The generated CPN is executed

for a 100,000 steps i.e. about 40 seconds of thread activity. Since the period of the sensor

timer is 50 ms, the analysis cover around 800 periods of sensor state changes.

Figure 55: Stearwing Control - CPN Analysis Results
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Table 6: KSP Flight Controller – Summary of Results

Operation
Name

Component
Name

Measured
Response

Time
(µ , σ )
(ms)

Measured
WCRT

(ms)

CPN
Analysis
WCRT

(ms)

Deadline
(ms)

Error
(%)

Sensor
Timer Sensor

(0.07,
0.016) 0.22 0.23 50 4.36

Actuator
Control

Subscriber
Actuator

(16.055,
17.75) 186.40 203.84 400 9.35

Sensor
Subscriber

High-level
Controller

(0.06,
0.37) 0.09 1.019 400 1021.01

Flight
Control
Timer

High-level
Controller

(0.06,
0.13) 0.17 0.170 400 0.025

PID
Timer PID

(0.10,
0.96) 0.186 4.201 200 2152.5

PID
Control

Subscriber
PID

(0.05,
0.01) 0.162 1.013 500 524.47

As seen in the percentage error column of the above table, there are some huge over-

estimates of WCRT for some component operations. The cause for this is discussed below.

7.6 Analysis Limitations

The business logic abstraction, as presented in Section 5.3, is quite simple. This model

represents abstractly how long the different blocks of code in an operation take, but does

not fully model its behavior e.g. each non-blocking local code block is represented by a

single WCET and no other properties. Since variables local to these functional code blocks

are not modeled, this language also does not model conditional behavior. So, a high-level

controller component, that executes an event-driven state machine, as in the KSP test de-

scribed earlier, cannot be sufficiently modeled with the current model. Moreover, depend-

ing on the local state of such code blocks, different interaction patterns may be invoked
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e.g. if this high-level controller was responsible for performing periodic image processing

to identify an object, the image processing (and all the associated image processing) would

stop once the object was identified. Since this conditional interaction is not modeled in

the CPN business-logic language, the abstraction would assume that the image processing

interactions always happen, instead of conditionally. Such abstractions can lead to gross

over-estimation of the worst-case execution times of component operations.

Table 6 also exposes this limitation. The sensor subscriber operation in the high-level

controller component has an experimental response time of 90 usec, while the CPN anal-

ysis overestimates the WCRT to 1.019 msec. This subscriber operation is the one that

receives sensor state updates and makes decisions regarding the next state of the system

as a whole; decisions that can lead to large variabilities in end-to-end response times, as

evident in Figure 54. These variabilities also propagate to other component operations and

lead to over-estimation on the analysis side. This is the problem with (1) not modeling

(in CPN) variables and conditional statements in the component operations and (2) always

choosing the worst-case execution of steps inside a component operation. With state space

analysis, if this bad execution trace can be reached, then the analysis result becomes an

over-estimate.

The primary reason for keeping the business logic language to this level of simplicity is

to reduce the level of state space explosion i.e. modeling all local variables of an operation,

and consequently the state changes for each of these variables would exponentially increase

the size of the state space to be analyzed. Also, modeling the local variable state would also

require (1) modeling the semantics of language with which the operation code was written,

(2) evaluating all expressions using these local variables, and (3) calculating the result of

all conditionals used in the business logic at all possible times. Such an analysis would be

too refined, hard to implement and susceptible to semantic errors.
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CHAPTER VIII

SUMMARY AND FUTURE WORK

This thesis has presented an integrated timing analysis methodology for component-

based distributed real-time embedded systems. The following list summarizes the contri-

butions.

1. Developed a Colored Petri net-based methodology to model the temporal behavior

of component-based Distributed Real-time Embedded Systems. The Colored Petri

net models component-based applications using the semantics of the DREMS Com-

ponent Model.

2. Developed a translation scheme that uses a precise model of the software, hardware

and system deployment, to generate the Colored Petri net

3. Developed and applied state space analysis methods that answer important questions

about the timing behavior of the system e.g. estimated worst-case response times,

presence/absence of deadline violations, deadlocks etc.

4. Experimentally validated the design-time CPN timing analysis results by executing

the component assembly in an embedded systems testbed consisting of 32 Beagle-

bone Black embedded boards.

There is much significance to the presented methodology. A number of existing timing

analysis methods, as discussed in Chapter III, are either simulation-based analysis tech-

niques, or state space analysis methods applied to heavily abstracted models of a large

and complex system. Much of the system model is abstracted away and simple thread-

ing models, e.g., set of periodically triggered threads with fixed WCET, are considered.

This level of abstraction is often necessary to keep the analysis tractable, but this is also
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due to the modeling paradigm being used for analysis. By using high-level Petri nets like

CPN, a considerable amount of information can be modeled concisely in a scalable man-

ner. More importantly, the problem with many of these existing methods is the abstraction

itself. For a complex, hierarchically controlled system such as DREMS where there are

various factors of influence, e.g., (1) OS temporal partitioning, (2) component-level oper-

ation scheduling, (3) distributed interacting component assemblies, etc., there really aren’t

any tools that address the problem of design-time timing analyis and verification with the

necessary levels of detail. Unlike the simple threading models and abstractions typically

considered for analysis, the DREMS component threads cannot be associated with a single

execution time. In fact, the thread behaviors are almost entirely dependent on the operation

scheduling, which operates at a much higher level of abstraction. Being able to account

for hierarchical scheduling, varied interaction patterns, temporal partitioning, preemptive

and non-preemptive scheduling, distributed deployments and configurations, scheduling

schemes such as FIFO, PFIFO and EDF on a component-level, and provide scalable and

well integrated timing analysis is the primary significance of this work. A modern indus-

trial system is going to present design challenges in any if not all of the above aspects.

The ability to generate a structured, hierarchical analysis model from an annotated system

model is also an advantage here. Unlike other Petri net analysis models, our analysis model

remains structurally the same; the properties of the system model are encoded as CPN to-

kens with the execution semantics implemented in Standard ML as CPN functions and the

equal priorities of CPN transitions covering the possible non-deterministic behaviors.

There are still some potential extensions to this work. All of the results presented in this

thesis make an important assumption about the network - the network resources available

to each component are much larger than the requirements of the application i.e. there are

no buffering delays on the network queues when components periodically produce data.

The current analysis model, in this respect, is quite lacking. When a component publishes

a message on a topic, the analysis immediately generates a reception message that waits to
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enqueue on the receiver’s message queue. In reality, this interaction could be a lot more

involved - the published message is sent to the kernel network queue on the sender’s side

and removed from this queue following a data production profile i.e. available bandwidth

as a function of time. When dequeued, the packets take a finite worst-case transmission

time before being noticed on the receiver’s side. The buffering delays on the sender’s side

and the transmission time on the network are completely ignored by the timing analysis

model. In order to improve on this design, we have attempted to integrate existing Network

Calculus-based analysis methods [28] into our CPN. Specifically, a place is added to model

the Network Queue and a Dequeue transition fires when the network is ready to transport

more packets from the sender. The dequeuing follows a strict network profile and ceases

transmission when the data production rate is larger than the available bandwidth.

Also, the business logic model i.e. the model of execution code in a component oper-

ation is quite simplistic. This model is able to represent local non-blocking code blocks,

DREMS-style interaction patterns, and bounded loops of either. The model is however, un-

able to represent conditional statements that rely on local variables. This is a disadvantage

as the resultant analysis is unable to accurately represent the execution behavior of the run-

time code. Many if not most distributed real-time embedded scenarios in real-life exhibit

conditional behavior that are driven by runtime state e.g. robotic applications that transition

from one state of operation to another at runtime. The business logic of such operations

cannot be fully represented by the current model and this has lead to gross overestimates

in execution time behavior. Such over-estimation makes the analysis results useless as no

operation scheduling may be calculated as feasible. Thus, the business logic model, and its

integration into the analysis model both require improvement in order to support a wider

range of execution scenarios.
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based distributed real-time embedded systems. In Object/Component/Service-Oriented
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