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CHAPTER 1  

 

INTRODUCTION 

 

With the tremendous pace of development in medical imaging technologies, the 

ability to investigate brain structure and function has been revolutionized. High resolution 

Magnetic Resonance Imaging (MRI) has emerged as the premier modality to provide 

noninvasive means of visualizing the brain’s internal structures in detail. Brain 

morphometric studies have been utilized to elucidate various anatomical feature 

differences among populations, as well as to characterize correlations between neural 

substrates and growth, degenerative processes, or gene expressions. Usually 

morphometry analyses have been applied on regions of interests (ROIs) which can be 

clearly defined, such as the hippocampus [1, 2]  or the corpus callosum [3-5] that are 

known to be associated with specific diseases. But for certain diseases or disabilities, 

such a priori anatomical knowledge does not exist. In this situation, global approaches 

are sought after to find anatomical differences throughout the entire brain.  

This dissertation focuses on a global morphometric approach, called deformation-

based morphometry (DBM) [6, 7] which quantifies and characterizes morphometric 

differences between brains on a voxel-by-voxel basis without any pre-defined ROIs. 

DBM analysis, sometimes referred to as tensor-based morphometry (TBM), has been 

carried out on a variety of populations, including patients with schizophrenia [8-12], 

Alzheimer’s disease[13-15], and developmental or genetic disorders[16-25]. The DBM 

approach requires images from different groups to be registered together to a brain atlas 
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(i.e. template) and statistically identifies morphological differences between groups based 

on the deformation fields generated by a non-rigid registration algorithm. A number of 

registration algorithms have been proposed over the years for this purpose [26-31]. 

Although several studies have compared non-rigid registration algorithms for segmentation 

tasks [32-37], few studies have compared the effect of the registration algorithms on 

population differences that may be uncovered through deformation-based morphometry 

(DBM). The overarching goal of this dissertation is to assess qualitatively and quantitatively 

the extent to which DBM results are a function of the registration algorithm used to compute 

the deformation fields. Two very different real data sets and a series of simulated data sets 

are used to compare these registration algorithms.  

Brain atlases play an important role in DBM analysis, as they serve as the standard 

coordinate system to which all brain images are aligned for subsequent comparison and 

integration of DBM measurements. To avoid the bias introduced by a single volume, 

group specific atlases are usually created to be representative of the predefined 

populations using various techniques involving non-rigid registration [38-46]. We thus 

investigate the effect of various non-rigid registration algorithms on the creation of group 

specific atlases.  

This chapter is organized as follows. Section 1.1 provides some background on 

DBM and the various processing steps in details. Section 1.2 briefly reviews previous 

work on non-rigid registration algorithms comparison. This is followed by a description 

of each of the five non-rigid registration algorithms used in our study. Section 1.3 covers 

the fundamental steps that have been used in this work for the creation of group specific 

atlases. An overview of the remainder of the dissertation is presented in section 1.4.   
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1.1 DEFORMATION BASED MORPHOMETRY (DBM) 

 

 

1.1.1 A Brief Background on DBM Analysis 

Brain morphometric studies usually involve the images of multiple subjects being 

aligned together by some form of spatial normalization. The two primary results 

produced by the spatial normalization process are the deformed images and the 

deformation fields that describe the transformations required to match each image 

volume to a common template. Morphometric analyses can thus be broadly classified into 

two categories: those that operate on the images and those that operate on the 

deformation fields.   

Examples of the first category of morphometric analysis which is not primarily  

based on the analysis of the deformation fields includes voxel-based morphometry (VBM) 

[47], morphometry based on the HAMMER [31] algorithm, or surface-based 

morphometry (SBM). VBM, proposed by Ashburner et al. [47], involves spatially 

normalizing all the images, extracting the gray matter from the normalized images, 

smoothing and performing a voxel-wise statistical analysis to localize group differences. 

Optimized VBM provides an option to modulate the segmented gray matter images with 

the Jacobian determinants derived from the spatial normalization [48]. Morphometry 

analysis based on the HAMMER registration algorithm, proposed by Shen and 

Davatzikos [31, 49], involves the segmentation of white matter (WM), gray matter (GM), 

the calculation of Regional Analysis of Volumes Examined in Normalized Space 

(RAVENS) to account for anatomical volume changes produced by the non-rigid 

registration process, and the statistical analysis on RAVENS maps. SBM relies on the 
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output of cortical surface segmentation and surface-based registration algorithms to find 

statistical differences in the cortical thickness and surface areas [50-52]. Detailed 

discussions of these techniques are beyond the scope of this study because they do not  

exclusively rely on the deformation fields.  

The second category of morphometric analysis techniques utilizes the information 

from the deformation fields to characterize differences between groups; these techniques 

include deformation-based morphometry (DBM) [7] and tensor-based morphometry 

(TBM) [6, 47]. Many features of the deformation fields could be extracted and compared 

to find group morphological differences. When the concept of DBM was first introduced, 

DBM referred to two kinds of deformation field-derived features: 1) the parameters 

describing the deformation fields, represented as a combination of nonlinear basis 

functions  [6, 7, 47]; 2) the full 3D deformation fields at each voxel [8]. Techniques 

based on the full 3D deformation field became the mainstream approaches for DBM 

because they provide more detailed and region specific information even though they 

require substantial computational resources. The deformation field describes the 

displacement at each and every voxel from one subject to the atlas. By taking the 

gradients of the field at each point, a Jacobian matrix field can be computed. The field 

obtained by taking the determinants of the Jacobian matrix at each voxel produces a map 

that indicates local volume growth (Jacobian determinant greater than one) or reduction 

(Jacobian determinant smaller than one). TBM (Tensor Based Morphometry) is usually 

referred to as the morphometric techniques that use the Jacobian determinant to measure 

voxel-wise volumetric changes between two groups (see for instance the work of 

Thompson et al. [13, 19-22, 53]  and others [24, 25, 54]). However, researchers like 
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Studholme et al. [16, 17], Evans et al. [12, 55-57], and others [57-61] also used the term 

DBM when using the Jacobian matrix and Jacobian determinant as deformation field-

based features. In this dissertation, DBM is referred to as any approach that uses features 

extracted from the deformation fields, including displacement vectors and the Jacobian 

determinant. Group morphological differences are localized after statistical analysis on 

these deformation field features. DBM does not require any segmentation tasks and prior 

information on structures. 

 

 

1.1.2 The Overview of DBM Analysis 

Fig. I. 1 presents an overview of the general deformation-based morphometry 

(DBM) technique used in this dissertation. Suppose  a normal control (NC) group and a 

subject group, which could be a number of subjects from the NC group at a different time 

point or subjects from a population for which it is hypothesized that anatomical 

differences exist. All the MR images in the two groups are first preprocessed and 

spatially aligned using rigid/affine registration (see section 1.2.1). The two groups of 

images are pooled together, a DBM atlas with average intensity and shape is constructed 

(see section 1.2.2 for details), and all the images are registered to that atlas. Non-rigid 

registrations from all images in each group to the DBM atlas yield a series of deformation 

fields that describe the correspondence between the individual subject to the atlas. Two 

DBM features are derived from these deformation fields: the deformation field magnitude 

(DFM) and the Jacobian determinant (JAC). The deformation field magnitude at each 

voxel is simply the length of the displacement vector that brings a voxel in one image 

into correspondence in the other. This feature could be used as a biomarker to indicate 
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morphological shape and position variation. Morphological features of higher order, e.g., 

the Jacobian determinant, have been used to measure local volumetric expansion or 

shrinkage. 

 

Fig. I. 1. The overview of the deformation-based morphometry (DBM) method 

 

Statistical analysis on the features extracted from the deformation fields is usually 

performed using the Statistical Parametric Mapping (SPM) package (Wellcome 

Department of Cognitive Neurology, London, UK http://www.fil.ion.ucl.ac.uk/spm/). In 

practice, two sample t-tests are performed on a voxel basis, yielding a T map in SPM.  

Multiple comparison issues are dealt with after the T map was thresholded at uncorrected 

p of 0.001. Correction for multiple comparisons can be done by requiring a minimum 

cluster size [8, 18], controlling the False Discovery Rate (FDR) [62], or the Family-wise 

Error (FWE), as well as by nonparametric permutation tests [63]. Since the deformation 

field is a slowly varying smooth field, the Random Field Theory (RFT) is often used to 
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calculate the FWE corrected p values (corrected p <0.05) to correct for multiple 

comparisons; this is the method we have used in this work. Statistically significant 

clusters after correction are usually color-coded and superimposed on the DBM atlas to 

show the regions where two groups have morphological differences.  

 

 

1.2 NON-RIGID REGISTRATION ALGORITHMS 

 

 

Since DBM relies on the deformation fields generated by non-rigid registrations, 

it is very important to assess and compare the effect of various registration techniques on 

the performance of DBM analysis. We will first review previous work on non-rigid 

registration comparison. This review will be followed by a brief introduction of the five 

well-established non-rigid registration algorithms compared in this study: (1) The 

Adaptive Bases Algorithm (ABA) [26], (2) The Image Registration Toolkit (IRTK) [27], 

(3) The Automatic Registration Tools (ART) [28], (4) The FSL Nonlinear Image 

Registration Tool (FNIRT) [64], and (5) The normalization algorithm available in SPM 

[29].  

 

 

1.2.1 A Brief Review of Comparisons of Registration Algorithms  

Over the last five to ten years, a number of non-rigid registration algorithms have 

been proposed but their comparison and evaluation is a difficult task. As opposed to 

rigid-body problems for which a ground truth can be established and used to measure 

registration accuracy [35], evaluation of algorithms designed for non-rigid registration 

remains somewhat empirical. Several approaches have been proposed and studies 
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conducted to compare these algorithms using metrics such as tissue overlap measures [32, 

36, 37, 65] or dispersion of homologous landmarks [28]. Klein et al. [33] conducted a 

comprehensive study in which 14 algorithms are compared using tissue overlap measures 

applied to human brain MRI images. Murphy et al. [34] provided a public platform for 

comparison of 20 registration algorithms applied to intra-patient thoracic CT image pairs.  

However, these studies are mostly based on the comparison of segmentation results 

obtained with registration-based and manual segmentations in specific anatomical regions. 

Little has been done to study the effect of non-rigid registration algorithms on DBM-

derived findings. One exception is the work of Yanovsky et al. [66] in which the power 

and stability of large-deformation registration schemes combined with various matching 

functionals were studied with TBM. 

 

 

1.2.2 Adaptive Bases Algorithm (ABA) 

The Adaptive Bases Algorithm (ABA) is an intensity-based non-rigid registration 

algorithm [26] which uses an optimization process to deform the source image )(xB  to 

match a target image )(xA under a chosen similarity measure. Mathematically, this can be 

expressed as: 

                                           (1)
 

in which )(' xvxx  , x  is a coordinate vector, and )(xv  is the deformation field 

computed in the registration process. F is an intensity-based similarity measure. Here we 

have adopted the normalized mutual information (NMI) [67], which is estimated using 

the joint histogram of the source image )(xB  and the target image )(xA . The goal of ABA 

is to find the deformation field )(xv  that maximizes the NMI between the two images. 

)'),(),'((maxarg
'
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ABA models the deformation field )(xv as a linear combination of radial basis functions 

)(x with finite support irregularly spaced over the image domain, i.e., 

                                                        (2) 

where ic  is the coefficient of each of the basis function, and )(x is one of Wu’s 

compactly supported positive radial basis function [68]: 

 , and                  (3) 

for ,0r with )0,1max()1( rr   , and s  is a predetermined scale for the basis function. 

This algorithm works iteratively across scales and resolutions. Here, resolution 

means the spatial resolution of the image while the scale is related to the transformation 

itself. At each resolution, the scale of the transformation is adapted by modifying the 

region of support of the basis functions, which is proportional to the scale of the 

deformation, and the number of basis function. When the algorithm progresses to finer 

resolutions and smaller scales, the region of support of the basis functions is reduced. The 

overall deformation field is modeled as a combination of deformation fields computed at 

different resolutions and scales.  

One technique used in ABA to increase the algorithm’s speed is to detect the 

misregistered regions and optimize those regions locally. When the algorithm moves 

from one level to the other, the gradient of the NMI with respect to the basis function’s 

coefficients is first evaluated to determine the regions that are misregistered. If the 

gradient is large, the NMI is probably not at a minimum which means that the region that 

corresponds to this basis function is misregistered. Then the local deformation field is 

computed with a steepest gradient descent algorithm, one region at a time. As is often the 
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case for non-rigid registration algorithms based on basis functions, this algorithm includes 

mechanisms designed to produce transformations that are topologically correct (i.e., 

transformations that do not lead to tearing or folding). This is done by imposing constraints 

on the relative value of the coefficients of adjacent basis functions. Furthermore, both the 

forward and the backward transformations are computed simultaneously, and these 

transformations are constrained to be inverses of each other.  

 

 

1.2.3 Image Registration Toolkit (IRTK) 

The Image Registration Toolkit (IRTK) algorithm is based on the free-form non-

rigid registration algorithm (FFD) proposed by Rueckert et al. [27]. As is the case with 

ABA, non-rigid registration is an optimization process aiming at maximizing the 

similarity between two images while constraining the deformation fields to be smooth. 

The similarity measure used in this algorithm is also the normalized mutual information 

(NMI), defined as: 

                                              (4)
 

where )(AH and )(BH denote the marginal entropies of image A and image B , and 

),( BAH is their joint entropy, which is calculated from the joint histogram of image A  

and B . 

Let the local transformation be )',','(),,(: zyxzyxT  , which maps any point 

),,( zyx in image A  into its corresponding point )',','( zyx  in image B , and let   denote 

a zyx nnn  mesh of control points kji ,,  
in the image domain. The local transformation 

can then be described by a free-form deformation (FFD) model based on B-splines: 

),(
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where lB represents the l th basis function of the B-spline: 

;
; ;             (6)

 

The cubic B-splines have a limited support, i.e, changing control point kji ,,  

affects the transformation only in the local neighborhood of the control point. A large 

spacing of control points allows modeling of global non-rigid deformation, while a small 

spacing of control point allows modeling of highly local non-rigid registration. The IRTK 

algorithm was implemented in a hierarchical multi-resolution approach.  

To constrain the spline-based FFD transformation to be smooth, a penalty term is 

introduced to regularize the transformation. The smoothness of the transformation can be 

computed as: 

               (7) 

The optimization process then consists in minimizing a cost function comprised 

of two terms: 

                                    (8)
 

The weighting parameter  defines the tradeoff between the alignment of the two 

images and the smoothness of the transformation. The non-rigid transformation 

parameters   are optimized as a function of the cost function using an iterative gradient 

descent technique. 
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1.2.4 FSL Nonlinear Image Registration Tool (FSL) 

FNIRT is a tool included in the FMRIB Software Library (FSL) 

(http://www.fmrib.ox.ac.uk/fsl/) that permits non-rigid registration between two images. 

The deformation field between the two images in FNIRT is modeled as a linear 

combination of basis-functions of quadratic or cubic B-splines. Let f denote the 

reference images and g denote the image we want to warp. The registration is an 

optimization process that minimizes a cost function )(wO , defined as the sum-of-squared 

differences between these two images:  

                                      (9)

 

where ix is each voxel location and N is the total voxel number. The set of parameters w  

are the coefficients for the basis-functions. The FNIRT algorithm aims to find the values 

of w  that minimize the cost function )(wO . The sum-of-squared differences (SSD) cost-

function has advantages when searching for the parameters that minimize its value. 

Methods of finding the parameters w  come in various flavors. Some require only the 

ability to calculate O(w) whereas others rely on the first, and possibly second, derivatives 

with respect to w . The latter kind of methods can have large advantages over the former 

in terms of execution speed since there are a large number of unknown parameters. The 

Gauss-Newton method falls into the second category and is an approximation to the 

Newton-Raphson method that is valid when the function O is a sum-of-squares. In this 

case,  can be iteratively updated as follows: 
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where H and O denote the Hessian and the gradient of O respectively, and k is the 

iteration cycle. An advantage of the Gauss-Newton method is that it provides a direction 

in which to search for a local minimum, which potentially leads to faster convergence. To 

avoid local minima, sub-sampling is also used here to reduce the image resolution by 

some factor and then register the resulting low-resolution images together. This ensures 

that large structures in the images are registered first. The warp field from this first 

registration is then used as initial values in a second registration, this time with less sub-

sampling and so forth until finally one is using the full resolution of the images. 

As discussed above, non-rigid registration involves trade-offs between 

minimizing the cost function and making the warp fields reasonable. As is the case in the 

other algorithms, this is done in FNIRT by adding a penalty term to the similarity 

measure as shown below:  

                                     (11)

 

where )(w  is the regularization function and   is the weight factor that determines the 

relative balance between how similar the images need to be and how smooth we want the 

deformation field to be. Larger values for λ mean that the transformations are smoother 

and that the warped image will generally be a little less similar to the template. Smaller λ 

values lead to images that are more similar but fields that are less regular. In FNIRT, the 

function )(w  can either involve the membrane energy or the bending energy of the 

transformation. 
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1.2.5 Automatic Registration Toolbox (ART) 

The Automatic Registration Toolbox (ART) is a non-parametric method, 

proposed by Ardekani et al [28], to register a template image )(rIt
 and a subject image

)(rIs
. The objective of ART is to find a displacement vector ))(),(),(()( rurururw zyx at 

each voxel r  to maximize a similarity measure between the two images. In this algorithm, 

the local cross-correlation (CC) defined below is used as similarity measure.  

Let r be a neighborhood around and including voxel r . The template feature 

vector t

rf  is defined as  rt

t

r vvIf  :)( , and the subject feature vector s

rf  is defined as

 rs

s

r vvIf  :)( . The similarity between two arbitrary vector 1w  and 2w  is defined as: 

                                              (12)

 

where H is a symmetric centering matrix designed to remove the mean of the vector it 

pre-multiplies. Let r be a search neighborhood around and including r . The 

displacement vector )(rw  is estimated as rqrw )( , by maximizing the similarity 

measure ),( s

q

t

r ffS
 
 at voxel q  in r . 
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In ART, the neighborhoods r and r  are cubic and centered on voxel r . The 

algorithm works at multiple resolutions allowing the search neighborhood to be large at 

lower resolution and shrunk iteratively at finer resolutions. The images are low-pass 

filtered with Gaussian kernels of various widths when moving from resolution to 

resolution. At each iteration, the displacement field found is applied to the image before 
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starting the next iteration. The displacement field is interpolated to a larger field at higher 

resolution level with a fast filter of cubic splines.  

The regularization of the displacement field is implemented by simple Gaussian 

low-pass filtering of the displacement field obtained at the end of different iterations in 

the multi-resolution algorithm. To ensure the homeomorphism property of the 

deformation fields, the Jacobian determinant at each voxel is calculated at each resolution 

and is guaranteed to be positive. The width of the smoothing Gaussian kernel is increased 

incrementally until the property is met. ART is a non-parametric method, but the 

deformation field is, at the end, approximated by a truncated Fourier-Legendre series as 

follows:  
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(14) 

where Pn denotes a Legendre polynomial of degree n. The coefficients c are stored and 

can be recalled later to synthesize the displacement field.  

 

 

1.2.6 SPM Normalization (SPM) 

The non-linear spatial normalization approach of SPM (Statistical Parametric 

Mapping) assumes that the image has already been approximately registered with the 

template with a twelve-parameter affine registration [29]. The spatial normalization in 

SPM warps a smoothed version of an image to a smooth template. This is an optimization 

process that minimizes the mean square difference (MSD) between the template )(xg  

and a warped source image ),( xf , as in 
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where the   are the deformation field coefficients for a set of basis functions,   is a 

scale factor to accommodate intensity differences, and 2  is estimated with a heuristic 

approach for different images. The deformations are parameterized by a linear 

combination of about 1000 low-frequency three dimensional discrete cosine transform 

(DCT) bases. The spatial transformation from x to y is: 

                                          (16) 

                                             (17) 

                                           (18) 

where mk
 
is the m th coefficient for dimension k  and )(xm

 
is the m th basis function 

at position x. The basis functions are separable, and each one is generated by multiplying 

three one-dimensional basis functions together: 

                                       (19)
 

In one dimension, the DCT of a function is generated by premultiplication with 

the matrix   , where the elements of the  M  by  J  matrix     are defined by [29]: 
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 A Gauss-Newton approach is used to optimize the parameters and regularization 

is based on the bending energy of the displacement field. In practice, the approximate 

second derivatives are used, because they can be computed more easily. The SPM 

normalization is implemented in MATLAB.  
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1.3 GROUP ATLAS CREATION  

In this section, we will first introduce the preprocessing steps required to perform 

DBM analyses, and we will detail the method used for the creation of group specific 

atlases using both affine and non-rigid registration techniques.  

 

 

1.3.1 Data Preprocessing 

Our overall pre-processing 

procedure involves correction for intensity 

non-uniformity in MR images and rigid-

body reorientation of the images to 

compensate for different head position 

during scanning. Magnetic resonance (MR) 

signal intensity measured from 

homogeneous tissue is seldom uniform. 

The intensity nonuniformity is usually due 

to poor RF coil uniformity, gradient-

driven eddy currents, and patient anatomy inside and outside of the FOV. The 

Nonparametric Nonuniformity intensity Normalization (N3) algorithm was proposed by 

Sled et al. [69] to correct such nonuniformity. This algorithm requires no modeling of 

tissue classes and no expert supervision. The N3 correction is independent of pulse 

sequence and insensitive to pathological data. To eliminate the dependence of the field 

estimate on anatomy, an iterative approach is employed to estimate both the 

multiplicative bias field and the distribution of the true tissue intensities. The N3 

Fig. I. 2. Before (upper row) and after (lower row) 

N3 intensity correction for one MR image. 
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correction algorithm has been implemented in a Perl script (Nu_correct) and has been 

used widely as a preprocessing step. All the image volumes used in our study have been 

corrected for intensity inhomogeneity with this algorithm. Fig. I. 2 shows an example. 

The top panels show a volume prior to correction. The bottom panels show the same 

volume after correction. 

 To compensate for orientation differences during image acquisition, we employ a 

reference volume as the target to realign all the volumes. The Montreal Neurology 

Institute (MNI) [70] template is a commonly used standard atlas, so we adopted the MNI 

nonlinear template with 1 mm isotropic resolution as the initial reference. The brain size 

is important in our dataset. It is thus important to preserve brain size while realigning the 

volumes, which requires using a rigid-body transformation. But, in our experience, using 

only a rigid body transformation to register our volumes to the MNI template leads to 

inaccurate results. This inaccuracy is attributed to both the brain size difference between 

these volumes and to the differences in head coverage. Typically, some of our volumes 

cover a larger portion of the neck than does the MNI template. To address this issue, we 

registered one volume in our data set to the MNI template using a nine-degrees of 

freedom transformation (rigid body plus anisotropic scaling). We then used only the 

rotation angles and the translation vector to realign this volume to the template. Then the 

realigned volume is used as the template to rigidly re-align all the other volumes in our 

data sets.  

Fig. I. 3 illustrates the process used to register one volume to the MNI template. 

The left panel in this figure shows one of our volumes before registration. The second 

panel is the MNI atlas. The third panel is the registration result obtained when using only 
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a rigid-body transformation to register our volume and the MNI volume. The last panel is 

the registration result obtained with the affine method we have used. 

 

Fig. I. 3. A-a coronal view of a subject; B – The MNI152 template; C- After direct rigid registration 

to MNI152 template; D – Affine registration first, and then extract the rigid registration parameter 

to deform the image. 

 

1.3.2 Overview of Group Specific Atlas Creation  

Group atlas creation methods fall into two broad categories: group-wise non-rigid 

registration [38, 39, 45] and iterative pair-wise non-rigid registrations [40, 44]. Generally, 

the computational time and complexity involved in these approaches prevents the 

application of group-wise registration to create an atlas from 3D MR images in a large 

population. As an alternative, different iterative schemes have been proposed to build 

atlases based on pair-wise non-rigid registrations. In particular, Guimond et al [40] 

proposed a fully automatic technique to obtain an average intensity and shape image as 

the average brain model, which is stable with respect to the choice of the initial reference 

image. In this study, we will build group specific atlas for group comparison and DBM 

analysis based on this scheme, as illustrated in Fig. I. 4.  

The iterative averaging model construction method includes the following steps:  

1. A first reference volume is selected at random from a group (Fig. I. 4. A). 

2. All the rigidly aligned volumes in that group (Fig. I. 3. B) are registered to this one 

using an affine/non-rigid registration algorithm [71]. This produces two deformation 

A B C D 
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fields for each volume. One, which we call the forward deformation field, registers a 

volume to the reference volume. The other, which we call the inverse deformation 

field (Fig. I. 3. D), registers the target volume to each volume (see section 1.3.4 

below for a discussion on the celebration of the inverse fields). 

3. All the volumes are deformed and reformatted using the forward registration fields, 

resulting in a series of volume (Fig. I. 3. C) that are similar to the reference volume.  

4. All the registered volumes are intensity-averaged (Fig. I. 4. E) and all inverse 

deformation fields are averaged (Fig. I. 4. F). 

5. The average inverse field (Fig. I. 4. F) is applied to the intensity average (Fig. I. 4. E) 

to produce a new intensity and shape averaged volume (Fig. I. 4. G) which becomes 

the updated atlas (Fig. I. 4. A).  

6. The process is repeated from step 2 until convergence to the group atlas. 

Fig. I. 4. Schematic representation of the atlas creation process used in our study 

A 

B C 

D F 

E 

G 



21 

 

This algorithm converges rapidly to the centroid of the intensity and shape of the 

image set and does not depend on the choice of initial reference volume. This 

independence is shown in Fig. I. 5. The top panels in Fig. I. 5. a and Fig. I. 5. b are 

different views of the two initial reference volumes, and the bottom panels show the 

corresponding atlases obtained with these initial volumes. The final atlases look very 

similar despite the fact that the starting volumes are different. This confirms that the 

process converges well. We will also compare the effect of various non-rigid registration 

algorithms on the resulting group atlases. 

 

Fig. I. 5. Effect of initial reference selection on population averages for the whole population. Top 

panels in (a) and (b): the axial and coronal views of two different initial references; bottom panels in 

(a) and (b): the axial and coronal views of the average brain model atlases obtained from the 

corresponding initial reference volumes. 

 

1.3.3 Atlases Based on Affine Registration  

Our purpose is to compare local differences that are revealed between groups with 

various non-registration algorithms. To compensate for large differences we first 

normalize the volumes using affine registrations and create what we refer to as “affine 

atlases”. Fig. I. 5 shows the affine atlases for two different groups. The first column 
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shows the initial reference volumes in each group, the second column shows the averaged 

intensity volume after the first iteration, and the third column shows the deformed 

volumes in column 2 after applying the average inverse deformation field. The fourth and 

fifth columns are the deformed atlas results after the second and third iterations. The 

affine atlases are blurry, but converge only after two iterations. One image is then 

affinely registered to the affine atlas.  All the other images are then registered to the 

resulting volume with affine transformations. The transformed images are then used as 

input for the creation of non-rigid atlases and the subsequent non-rigid registration 

processes. 

 

Fig. I. 6. The affine atlases for two different groups. The first column shows the reference volumes in 

each group, the second column shows the averaged image after the first iteration The third column 

shows the atlases shown in column two deformed with the averaged inverse deformation fields. The 

fourth and fifth columns show the affine atlases after the second and third iterations. 

 

 

1.3.4 Atlases Based on Non-rigid Registrations 

As has been discussed in section 1.3.2, the atlas creation process requires the 

forward deformed images and the inverse deformation fields to iterate. Computing the 



23 

 

inverse deformation field from the forward deformation field or vice-versa is easily done 

in the case of a rigid or affine transformation, i.e., in the case of transformations that can 

be expressed in terms of a few parameters. It is much more difficult to do for typical non-

rigid transformations, which have thousands of degrees of freedom. Because non-

registration algorithms are typically not symmetric, computing the two fields by 

swapping the role of the image volumes (i.e., the target becomes the source and the 

source the target) is also not appropriate. Developers of some of the algorithms that we 

used provide utilities that permit computing the inverse deformation fields from the 

forward deformation fields, but not all of them do. Even when these utilities are provided, 

several steps are often required to use them. Furthermore, the formats in which the 

deformation fields are stored differ from algorithm to algorithm. There is thus a 

substantial amount of data manipulation and processing that needs to be done before 

group atlases can be computed and deformation fields compared.  

 

 Forward 

Images 

Forward 

deformation 

fields 

Backward 

Images 

Backward 

deformation 

fields 

Config. 

File 

needed? 

ABA 

(cspline)     
yes 

IRTK 

(nreg) 
call IRTK 

transformation
1
 

call IRTK 

dof2image
2
 

call IRTK 

transformation
3
 

call FSL 

invwarp
4
 

yes 

ART 

(3dwarper)  
5
 

call ART 

applywarp3d 

call ART 

ivf
6
 

no 

FSL 

(fnirt) 
call FSL  

applywarp 

call FSL 

fnirtfileutils 

call FSL 

applywarp 

call FSL 

invwarp
7
 

yes 

SPM 
(normalisation)  

call SPM 

Deformations
8
  

call SPM 

Deformations
8
 

call SPM 

Deformations
8
 
no 

Table. I. 1. Comparison of non-rigid registration methods in terms of their outputs for atlas creation 

Note: 

1: The forward deformed images are Big-Endian. They need to be converted to Little-Endian. 
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2. The results are three separate deformation fields in X, Y and Z directions.  The Y direction 

needs to be multiplied by (-1) to correspond to the convention used by the other algorithms.  

3. Needs a specification of “-v” in the transformation to obtain the inverse deformed image, it 

takes about one hour to do. The inverse deformation fields are not exported. There is no 

mechanism provided by the IRTK developers to get access to the inverse fields. 

4. Since there is no “easy” way to invert the forward deformation fields with IRTK tools, we need 

to modify the format of the forward DF to make it a suitable input for the FSL tool invwarp, 

which takes about 1.5 hour. We compared the inverse images obtained that way with those 

obtained directly with IRTK and we have shown that they are the same.  

5. The ART deformation field is in the NIFTI format, a factor called scale_slope needs to be 

found in the header and used to multiply the deformation fields to get the real displacement fields. 

6.  The procedure described in 5 needs to be applied here also.   

7. This output needs to be changed from NIFTI_GZ, to NIFTI, and then to ANALYZE format to 

deform the averaged image with a software developed in house.  

8. In MATLAB, the Deformations module in SPM has different toolboxes for each step.   

 

Table.I.1 below shows what each registration algorithm provides and how things 

have been computed when the information is not directly available. The check mark ( ) 

means that the information is directly obtained from the registration steps, without 

additional processing step or format change. 

All the non-rigid registrations are done on the Advanced Center for Computing 

and Research Education (ACCRE) Linux cluster at Vanderbilt University. To run or call 

any program on a cluster, an associated PBS (portable batch system) file is needed to 

submit the job. Programs to write and modify PBS files are needed at each step for each 

non-rigid registration method. When configuration files are needed, programs to write 

and modify the configuration files also need to be written. Most of the averaging 

calculations on the forward images and inverse deformation fields are conducted on the 

cluster with a C program; additional operations to deform the average image at each 
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iteration are carried out using software developed in house. SPM analysis runs in the 

MATLAB environment and batch processes are transferred to the cluster. As discussed 

above there are many data format conversions among RAW, ANALYZE, NIFTI, and 

NIFTI_GZ formats that are required at various stages and great care needs to be taken to 

create header files required by the various packages. Before running algorithms in batch 

for all the data, experiments have been conducted to guarantee the correct interpretation 

of deformation field format and data format conversions. We have developed a pipeline 

integrating all necessary processing steps to run on the ACCRE cluster in parallel for 

each of the five non-rigid registration algorithms, permitting processing different dataset 

automatically.  

 

 

1.4 OVERVIEW OF THIS DISSERTATION 

 

 

Two very different real data sets and a series of simulated datasets are used in our 

study. The first real dataset includes both normal control subjects and patients suffering 

from the Williams Syndrome (WS). There are large and well-documented anatomical 

differences between the normal and WS populations. The second data set contains MR 

images acquired from third-grade children with different levels of mathematical ability, 

from normal to severe difficulties. Anatomic differences between children with high and 

low mathematical scores are not as obvious as those in the first dataset. We are interested in 

using both real datasets to compare the effect of non-rigid registration algorithms on DBM 

analysis. A series of simulated data sets for which the ground truth is known has also been 
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used in our comparative study. More information about each of these datasets will be found 

in the following chapters.  

The reminder of this dissertation is organized as follows. Chapter II studies the 

effect of non-rigid registration algorithms on DBM results and atlas creation using the 

Williams Syndrome dataset. The unique nature of the data set used in this study also 

permits the correlation of visible anatomical differences between the groups and regions 

of difference detected by each algorithm. Chapter III uses similar techniques to compare 

registration’s effect on DBM results with the children dataset. Chapter IV presents the 

simulation model and introduces different growth models that have been used as ground 

truth to compare DBM results. Chapter V concludes the work presented in this thesis and 

outlines possible directions for future work.   



27 

 

CHAPTER 2 

 

EFFECT OF NON-RIGID REGISTRATION ALGORITHMS ON 

DEFORMATION BASED MORPHOMETRY: A COMPARATIVE STUDY WITH 

CONTROL AND WILLIAMS SYNDROME SUBJECTS 

 

2.1 INTRODUCTION 

 

 

Non-rigid registration is a core component in many medical image analysis 

processes. Typical applications include spatial normalization, atlas-based segmentation, 

and deformation-based morphometry (DBM). Atlas-based segmentation refers to a 

technique in which structures of interest are first delineated in one or several reference 

image volumes. These reference volumes, also called atlases are registered to a new 

volume, often called the target volume, and the registration transformation is used to 

transfer labels from the atlases to the target volume. If the registration is accurate, 

accurate segmentation can thus be obtained. DBM commonly refers to a set of techniques 

in which features extracted from the deformation fields computed with non-rigid 

registration algorithms are used to detect differences between groups [7, 8, 57]. It is an 

alternative to the more widespread voxel-based morphometry (VBM) techniques [47]. 

Over the last five to ten years, a number of non-rigid registration algorithms have 

been proposed but their comparison and evaluation is a difficult task. As opposed to 

rigid-body problems for which a ground truth can be established and used to measure 

registration accuracy [35], evaluation of algorithms designed for non-rigid registration 
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remains somewhat empirical. Several approaches have been proposed, and studies have 

compared these algorithms using metrics such as tissue overlap measures [32, 36, 37, 65] 

or dispersion of homologous landmarks [28]. Recently, Klein et  al. [33]conducted what 

is the most comprehensive study we are aware of in which 14 algorithms are compared 

using tissue overlap measures. However, evaluating the effect of non-rigid registration 

algorithms on DBM-derived findings remains largely unaddressed. One exception is the 

work of Yanovsky et al. [66] in which the power and stability of large-deformation 

registration schemes combined with various matching functionals were studied with 

tensor-based morphometry. 

The goal of this work is to determine the sensitivity of DBM-based findings to the 

non-rigid registration algorithms used to conduct the DBM study. To avoid the bias 

introduced by a single subject in DBM analysis, a group template with average anatomy 

is usually created [9, 21, 72] as the DBM atlas to which all volumes are subsequently 

registered. We thus begin by investigating whether or not the choice of a particular non-

rigid registration algorithm affects the creation of this group atlas. We then perform DBM 

analysis using five different non-rigid registration algorithms to detect regional 

differences between two groups. To do so we use two metrics, one is sensitive to 

volumetric differences, the other to anatomic variability. A major difficulty with 

comparative DBM studies is the lack of ground truth. One unique feature of this study is 

that we have used samples from populations for which detailed anatomical differences 

have previously been studied and reported. We show that our group atlases preserve these 

characteristics. We can thus relate DBM findings to visible anatomical differences in 

these atlases. The remainder of this chapter is organized as follows: In the next section, 
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we describe the data and methodology we have used. Section 2.3 reports our results. Our 

conclusions are presented in section 2.4. 

 

 

2.2 MATERIALS AND METHODS 

 

 

2.2.1 Data and Preprocessing  

Our study was conducted on a set of 26 subjects. Thirteen of these (8 males, 5 

females; mean age, 23.6±4.2 years) were subjects with Williams Syndrome (WS) and 

thirteen were age-matched typically-developing Normal Control (NC) subjects (7 males, 

6 females; mean age, 23.1±5.8 years). Williams Syndrome is a rare genetic disorder 

caused by the deletion of approximately 25 genes in the 7q11.23 region of the genome 

[73, 74]. WS subjects have mild to moderate intellectual disability and particular deficits 

in visual-spatial skills, but they also display unique behavioral features such as 

hypersociability, hyperaffiliative behaviors, atypical, highly expressive language and 

enhanced fascination with music [75]. There are well-documented anatomical differences 

between NC and WS subjects, including decreased overall brain and cerebral volumes[21, 

73], differences in corpus callosum shape [76], shortened dorsal end of the central sulcus 

[77, 78], anomalous sylvian fissure morphometry [79], enlarged cerebellar vermis [80], 

and a bilateral reduction in anterior and posterior insular volume [81].   

Images were acquired with a 3T Philips Achieva MRI scanner with an 8-channel 

receiver head coil and 40 mT/m gradients (200mT/m/ms slew-rate). For each subject, a 

3D T1-weighted anatomic volume was obtained with a turbo field echo (TFE) sequence 

with matrix size of 256 x 256 x 170 and voxel size of 1 mm
3
. All scans were acquired at 
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the Vanderbilt University Institute of Imaging Science. All scans were corrected for 

intensity non-uniformity using the N3 algorithm [69]. To orient all the volumes in a 

standard pose, one of the volumes was registered to the MNI template [70]. This was 

done by registering one volume to the MNI atlas with a nine-parameter transformation 

and then using the rigid body component of the transformation. (This was done because 

differences in head coverage and head size did not permit accurate registration with only 

a rigid body transformation.) All the other volumes were then registered to this first one 

using a rigid-body transformation computed with a standard intensity based registration 

algorithm [71]. Normalized Mutual Information (NMI) was used as similarity measure 

[67]. All the computations in this study were carried out on the Advanced Computing 

Center for Research and Education (ACCRE) cluster at Vanderbilt University. 

 

 

2.2.2 Creation of Group Atlases 

To determine whether or not the choice of registration algorithm affects the shape 

of group atlases, we have used each registration algorithm to create two atlases, i.e., one 

for the WS group and the other for the NC group. This was done also to determine the 

extent to which group atlases would capture anatomic differences that have been 

documented previously. A number of procedures have been reported in the literature to 

create group atlases [40, 82-84]. We have selected a widely used iterative method put 

forth by Guimond et al. [40]. For a group of image volumes, one volume is first 

randomly chosen as an initial atlas to which all the other volumes in the dataset are 

registered. The forward (i.e., from the subjects to the atlas) and the backward (i.e., from 

the atlas to the subjects) deformation fields are computed. As will be discussed further, 



31 

 

some registration algorithms produce both fields when others require additional 

computations to obtain one from the other. The subject images are deformed with the 

forward fields and intensity averaged. The average of the backward fields is then applied 

to this intensity average to produce an updated group atlas. The registration and 

averaging processes are repeated until convergence, which is typically achieved after 

three or four iterations. 

The group atlas was created in two steps. First, one WS volume and one NC 

volume were selected to initialize an affine atlas creation process.  One affine WS atlas 

and one affine NC atlas were computed with only affine transformations to mitigate the 

potential bias introduced by the starting volumes. Then all the volumes were registered to 

their respective affine atlas with nine-parameter affine registrations adjusting for the 

brain size differences. Second, one of the affinely registered volumes was randomly 

selected within each group as initial volume for the iterative creation of the non-rigid 

atlases. The non-rigid atlases were computed with each of the five non-rigid registration 

techniques used in this study (these algorithms are described below). Overall ten atlases 

based on non-rigid registration algorithms were thus computed, five WS and five NC. 

To investigate the impact of registration algorithms on DBM results, one single 

DBM atlas had to be produced. This was done as described above except that all the 

volumes were pooled together. This process started with the calculation of an overall 

affine atlas and all the 26 volumes were affinely registered to this overall affine atlas. 

Then an overall average intensity and shape volume, called the DBM atlas, was 

computed. As will be shown in section 2.3.1, the choice of non-rigid registration 

algorithm has little impact on the creation of atlases. The overall DBM atlas was thus 
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created with one single non-rigid registration algorithm. The Adaptive Bases Algorithm 

(ABA) [26] that was developed in-house and described below has been used for this 

purpose. Once the overall DBM atlas was computed, five non-rigid registration 

algorithms were used to calculate the non-rigid transformations that register the 26 

affinely registered volumes to this DBM atlas. For each registration algorithm, we thus 

produced 26 deformation fields; these were then analyzed and compared.   

 

 

2.2.3 Non-rigid Registration Algorithms  

We selected five well-established non-rigid registration algorithms for 

comparison: 1) the Image Registration Toolkit (IRTK) [27]; 2) the FMRIB Nonlinear 

Image Registration Tool (FSL) [64]; 3) the Automatic Registration Tools (ART) [28]; 4) 

the Adaptive Bases Algorithm (ABA) [26]; 5) SPM normalization[29]. IRTK and ART 

were among the best-ranked registration algorithms in Klein’s study [33]. We added 

ABA because we have considerable experience with its use, as well as FSL and SPM that 

are widely used. Each algorithm is described briefly in the following subsections. Each 

algorithm outputs deformation fields in a different format and some but not all generate 

both the forward and the backward fields. Techniques that were used to obtain these are 

detailed below. 

 

2.2.3.1 IRTK 

IRTK uses the Normalized Mutual Information (NMI) [67] as the image 

similarity measure to maximize [27]. The deformation field is modeled as a linear 

combination of 3D B-splines. The executable for IRTK nreg can be downloaded from: 

http://www.doc.ic.ac.uk/~dr/software. Utilities are provided to generate the forward 
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deformed images and the associated deformation fields. There is no utility provided to 

produce the inverse deformation field.  In this study, we have generated these fields with 

the FSL inwarp facility. This required modifying the format of the forward deformation 

fields produced by IRTK to make them compatible with inwarp. 

 

2.2.3.2 FSL  

The FSL non-linear image registration (FNIRT) tool is included in the FMRIB 

Software Library (FSL) (http://www.fmrib.ox.ac.uk/fsl/).  The deformation field is 

modeled as a linear combination of basis functions that can be quadratic or cubic B-

splines. The similarity measure is the sum-of-square differences between the images. The 

algorithm produces a series of coefficients that can be used to produce the deformed 

images with a utility called applywarp. The forward and reverse deformation fields are 

obtained with the utilities fnirtfileutils and invwarp, respectively. 

 

2.2.3.3 ART 

The Automatic Registration Toolbox (ART) is a non-parametric method [28] that 

maximizes the local cross-correlation between the two images. The ART tool can be 

found at NITRC: http://www.nitrc.org/projects/art/. The 3dwrapper utility generates the 

deformed images and forward deformation fields.  Computing the inverse deformation 

fields requires an additional step performed with the utility ivf. Both the forward and 

inverse deformation fields are in the NIFTI format. As such, the real displacement fields 

need to be computed from those stored in the file using a scale factor called scale_slope 

that is found in the file header.  

 

2.2.3.4 ABA 

http://www.fmrib.ox.ac.uk/fsl/
http://www.nitrc.org/projects/art/
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The ABA algorithm [26]  models the deformation field as a linear combination of 

radial basis functions and optimizes the normalized mutual information between two 

images. The ABA executable cspline generates the forward and inverse deformed image 

and deformation fields automatically. The forward and inverse deformation fields are 

constrained to be inverses of each other. 

 

2.2.3.5 SPM  

The normalization utility in SPM8 is an algorithm that minimizes the mean square 

differences between a template and a warped source image using a deformation field 

generated with a linear combination of about 1000 low frequency three-dimensional 

cosine bases [29]. The forward and inverse deformation fields can be obtained with the 

Deformations Toolbox in SPM8.  

 

 

2.2.4 Features Used in our DBM Analysis 

We have used two features estimated from the deformation fields to perform our 

DBM analysis: the Jacobian determinant of the transformation and the magnitude of the 

local displacement.  

Jacobian determinant: The Jacobian determinant (referred to as JAC in the 

remainder of this article) of a 3D transformation is defined as follows:  

   (     )   |

 (  )   ⁄  (  )   ⁄  (  )   ⁄

 (  )   ⁄  (  )   ⁄  (  )   ⁄

 (  )   ⁄  (  )   ⁄  (  )   ⁄
|                  (21) 

in which the vector            is the vector of displacements at position (x,y,z). 

The JAC measures local volume changes. Values greater than one indicate tissue 

expansion and values smaller than one indicate tissue compression. A value of one 
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indicates no volume change. It is a measure that is commonly used in DBM-based studies 

[3, 16-18, 21, 57]. 

Magnitude of the deformation field: The magnitude of the deformation field 

(referred to as DFM in the reminder of this chapter) is defined as follows: 

   (     )   √            
                      (22) 

The DFM has been used [8, 9, 84, 85] as a measure of variability in a set of image 

volumes. If all the volumes in a set were exactly identical, the group atlas would be 

identical to the volumes, and the magnitude of the deformation field would be zero. The 

larger the difference between volumes the larger their “distance” from the atlas volume 

and the larger the displacement needed to register a particular volume to this atlas.     

 

 

2.2.5 Statistical Analysis  

Statistical comparison of JAC and DFM across groups was carried out using the 

general linear model regression implemented in SPM8. For each registration algorithm, 

two sample voxel-wise t-tests were computed between the NC subjects and the WS 

subjects, leading to one T map for each of the two DBM features. Family Wise Error 

(FWE) corrections based on the random field theory [86] was performed to address the 

multiple comparison issues at both peak and cluster level inferences. Peak-level 

correction allows focal differences between groups to be identified while cluster-level 

correction reveals more diffuse differences. In all the results presented in this study an 

uncorrected p value of 0.001 was used to threshold the T maps (T > 3.47, df =24). A 

corrected p value of 0.05 was used as the significance threshold at both peak and cluster 
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levels. Clusters that survived after either peak or cluster level correction were deemed 

statistically significant.  

 

 

2.2.6 Comparisons of DBM Results 

Every registration algorithm used in this study produced statistically significant 

clusters. However, the number, size, and position of these clusters varied across 

algorithms. Thus, comparing these algorithms is difficult. Even answering the simple 

question “Are these algorithms detecting equivalent regions of interest?” is complicated 

because regions produced by several algorithms may overlap partially or several small 

regions produced by one algorithm may overlap with a single larger region produced by 

another algorithm. To address this 

issue, we have developed the 

following scheme. First, for each 

algorithm, binary images were 

produced in which a voxel value 

equals one if the voxel is within a 

significant cluster and zero otherwise. 

This is illustrated schematically in Fig. 

II.1 for three registration algorithms. 

Then these binary images were added together, producing an image in which voxel 

values range from zero to N with N the number of registration algorithms. We call this 

image the membership map and it is shown on the bottom left of Fig. II.1. Here, values in 

the membership map range from 0 to 3 and voxels are color-coded to reflect this (1 = 

Fig. II. 1. Region selection for DBM results comparison. 
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blue, 2 = green, 3 = red). This membership map has three connected regions R1, R2, and 

R3. Regions in the membership maps are then filtered using a membership value 

threshold. In the example shown in Fig. II. 1, regions that do not contain voxels with a 

value of 3 are eliminated. The final region of interest is defined as the union of the binary 

masks that overlap the connected region that contains voxels with a value of 3. Following 

the example illustrated in Fig. II. 1, the rectangular regions produced by algorithms A and 

B and the two small bottom regions produced by algorithm C would be considered to be 

the equivalent region across algorithms. In our study, we compare five algorithms and we 

use a membership threshold of 4 to select regions of interest.  

Our analysis is performed in DBM atlas space, so the localization of the 

statistically significant clusters is not based on standard Talairach coordinates. Instead the 

names of the regions are obtained by visual comparisons of our DBM clusters with 

labeled MR images using two apps for the iPhone: the iSurf Brainview v3.0.0 

(http://itunes.apple.com/app/isurf-brainview/id381072423?mt=8, Netfilter, Rio de Janeiro, 

Brazil) based on the MRI automatic segmentation produced by FreeSurfer and the Brain 

Tutor 3D (http://www.brainvoyager.com/iOS/iphonebraintutor3d.htm).  

 

 

2.3 RESULTS 

 

 

2.3.1 Effects of Registrations on Group Atlas 

Fig. II. 2 presents ten group atlases that have been produced using the method 

described in section 2.2.2. Each column shows the NC atlases (top), the WS atlases 

(middle), and the difference between the two (bottom) for each of the five algorithms 

http://itunes.apple.com/app/isurf-brainview/id381072423?mt=8
http://www.brainvoyager.com/iOS/iphonebraintutor3d.htm
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used herein. Qualitatively, there is little difference between the atlases except that the 

volumes produced by SPM are slightly blurrier. The difference volumes show that 

anatomic differences highlighted by ABA, IRTK, FSL, and ART are largely similar. One 

obvious difference is that the NC atlases are larger in size than the WS atlases; this is in 

accordance with what has been reported in the literature[73].  

 

Fig. II. 2. The creation of group atlases for the NC (top panel) and the WS (middle panel) group 

using five registration algorithms (from left to right): ABA, IRTK, FSL, ART, SPM. The image 

differences are shown at the bottom. 

 

It has also been documented [77, 78] that WS subjects have shorter central sulci 

that do not come as close to the inter-hemispheric line as those in control subjects. These 

studies were performed manually on individual scans. Fig. II. 3 shows cortical renderings 

of the group atlases in which the central sulcus has been delineated (red lines for the NC 

group and green lines for the WS group). This figure shows that the group atlases 
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produced by different registration algorithms preserve such gross anatomical differences 

between the two groups that have been previously reported in this population.  

 

 

Fig. II. 3. Central sulcus tracing on the group atlases for NC (top panel, red lines) and WS (bottom 

panel, green lines) groups using five registration algorithms (from left to right): ABA, IRTK, FSL, 

ART, and SPM. 

 

The midline length and bending angles of the corpus callosum (CC) were defined 

by [76] and measured on individual subjects. Their work showed that WS subjects have a 

shorter midline and a larger bending angle. In this study, we segmented the mid-sagittal 

CC, extracted the CC skeleton and measured the skeleton length and bending angles 

automatically on each individual as well as on the 10 group atlases. We confirmed that 

WS subjects have a statistically significant shorter CC midline length (p=0.003) and a 

larger CC bending angle (p<0.001) than NC subjects. Fig. II. 4 illustrates CC shape 

differences between the WS and NC atlases using ABA as the registration method. Fig. II. 

5 compares the CC measurements on group atlases using five registration algorithms and 

the group means of individual measurements. This figure shows that both the midline 

length and bending angles in the group atlases are representative of the values observed 

in the samples as a whole.  Based on our results, we can conclude that the choice of a 
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particular registration algorithm has 

little effect on the resulting group 

atlases at both the cortical and deep 

brain structure levels. To simplify 

our analysis of DBM results, we have thus used a single algorithm to produce an overall 

DBM atlas based on the pooled WS and NC volumes. We have chosen ABA to do so 

because we are most familiar with this algorithm. 

Fig. II. 5. Effect of registration on Corpus Callosum (CC) shape differences for NC and WS atlases.   

 

 

2.3.2 Raw T maps 

Fig. II. 6 shows the raw T maps that have been obtained with the five algorithms 

(columns) for both the JAC and DFM features (rows). In this figure, warm colors indicate 

that the feature values are larger for the NC subjects than the WS subjects; cold colors 

mean the opposite. A number of observations can be made from these images. First, 

general patterns are somewhat similar across algorithms except for SPM. Second, the 

smoothness of the maps varies across algorithm. This variation in smoothness is related 

to the variation in smoothness of the deformation fields, and it is more pronounced for the 

JAC than the DFM because the former is based on the derivative of the fields. These 

figures show that ART produces the least smooth T-maps. ABA comes second, followed 

by FSL and then IRTK.  

Fig. II. 4. CC shape differences between NC and WS. 
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Fig. II. 6. T maps for JAC (top row) and DFM (bottom row) obtained with different registration 

algorithms.  

 

 

 

Fig. II. 7. Smoothness estimation (FWHM in X, Y and Z directions) for JAC and DFM T maps for 

different registration algorithms (from left to right): ABA, IRTK, FSL, ART, and SPM.  

 

We have used the SPM8 utility to estimate the smoothness of the JAC and DFM 

map expressed as full width at half maximum (FWHM) in the X, Y, and Z directions. 

These values, which are shown in Fig. II. 7, are used to calculate FWE corrected p values 

using the Random Field Theory [86]. Based on these results, one could anticipate that 
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various algorithms will produce regions of statistical significance that vary not only in 

size but also in location, (e.g., ART could lead to small focal regions that are statistically 

significant when other algorithms may produce larger regions). 

 

 

2.3.3 DBM Results Obtained with the JAC and DFM Features  

Fig. II. 8 and Fig. II. 9 show anatomical differences between the NC and WS 

groups uncovered by DBM with the JAC and DFM features after FWE correction for 

each of the non-rigid registration algorithms. In both figures, pixels with uncorrected p 

values smaller than 0.001 (T >3.467, df = 24) that are part of a statistically significant 

cluster at either cluster/peak or both levels are shown in color based on their T values. 

Each column shows DBM results for one algorithm superimposed on the DBM atlas. As 

was the case earlier, warm colors mean that a larger value of the feature was observed in 

the NC subjects than in the WS subjects. Cold colors mean the opposite. Following the 

scheme detailed in section 2.2.6, common regions of interests across algorithms were 

identified using a membership threshold value of 4, i.e., at least 4 algorithms found a 

cluster in this region to be statistically significant after FWE correction (corrected 

p<0.05). A value of 4 was chosen rather than 5 because SPM detected very few 

significant voxels. Statistical results are overlaid on one subject deformed to the DBM 

atlas and statistical significance after FWE corrections are reported as follows. If a cluster 

in a region (there can be more than one cluster in a region for one specific algorithm) is 

significant at both peak and cluster level, a solid circle is drawn around the region. If only 

cluster level significance is found, a dashed circle is drawn. If the clusters are significant 

only at the peak level, a dotted circle is drawn. Regions without circles are statistically 
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significant regions at either peak/cluster level or both levels after FWE corrections that 

are found by less than four algorithms.   

Three consistent regions of interests (ROIs) were found when the JAC feature is 

used. Two of them (R1 and R2) indicate volumetric enlargement in the NC subjects 

localized bilaterally around the insular cortex, Sylvian fissure, putamen, pallidum, and 

some white matter. R3 is localized in the center of the cerebellum and suggests that WS 

subjects show an enlargement of the cerebellum. These ROIs were found by DBM with 

ABA, IRTK, FSL, and ART. The DBM results based on the SPM normalization are 

qualitatively and quantitatively different. This algorithm only finds one large region 

located in the frontal lobe that is significant at both peak and cluster levels.  

There are also a number of other statistically significant clusters found by less 

than four algorithms (see Fig. II. 8). ABA found a cluster around the anterior cingulate 

cortex close to the genu of the CC showing volumetric enlargement for NC subjects. 

ABA, IRTK and FSL all found clusters around the middle of the corpus callosum that 

indicate volumetric enlargement for NC subjects. FSL and ART found volumetric 

reduction for NC subjects around the splenium of the CC. These clusters are likely 

caused by differences in shape in the CC between NC and WS groups. ABA, IRTK, FSL 

and ART all found different clusters in the brain stem, but these regions do not overlap. 

FSL also found one cluster around the posterior part of the superior frontal sulcus 

showing a volumetric reduction in NC subjects.   

Two consistent regions of interests (R1 and R2) were found when using the DFM 

feature. ABA, IRTK, FSL, and ART found clusters significant after peak level and/or 

cluster level correction bilaterally across the insular cortex, orbitofrontal gyrus and 



44 

 

temporal pole (see Fig. II. 9). These blue patches indicate more anatomical variations in 

WS subjects than in NC subjects, though the size and distribution of clusters vary across 

algorithms. SPM also found a cluster in R1 with an uncorrected p of 0.001, but this 

region was not significant after FWE correction (not shown). FSL found two other unique 

clusters around the left superior frontal gyrus (significant at both levels) and left inferior 

frontal gyrus (significant at only cluster level).  

Table. II. 1 and Table. II. 2 list all the clusters found in each ROI by different 

algorithms and their levels of significance after FWE corrections for the JAC and the 

DFM features, respectively. For example, in region 1 in Table. II. 1, ABA found two 

clusters significant at the cluster level, IRTK found one contiguous region significant at 

both peak and cluster levels, FSL found one contiguous cluster significant at both peak 

and cluster levels (note that this cluster is very large and extends across hemispheres; we 

separated the voxels in the left and right hemispheres for analysis purpose), and ART 

found three isolated clusters all significant at cluster level and two of them are significant 

at peak level. The rest of Table. II. 1 and Table. II. 2 can be interpreted in the same way. 

The significance information in Table. II. 1 and Table. II. 2 is also reflected in the circle 

line types in Fig. II. 8 and Fig. II. 9, respectively. 
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Fig. II. 8. DBM results based on JAC differences between NC and WS groups. 

Fig. II. 9. DBM results based on DFM differences between NC and WS groups. 
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Region Name Methods T_max Corr.P_pk Corr.P_cl Cluster 

size R1: right hemisphere: insular 

cortex, sylvian fissure, putamen, 

pallidum, and white matter. 

(NC>WS) 

 

ABA 6.21 0.087* <.000 4639 

6.16 0.095* 0.008 1535 

IRTK 6.08 0.018 <.000 11995 

FSL 6.15 0.038 <.000 25896† 

ART 8.48 0.004 <.000 3724 

7.2 0.045 0.001 725 

5.61 0.649* 0.001 700 

R2: left hemisphere: insular 

cortex, sylvian fissure, putamen, 

pallidum, and white matter. 

(NC>WS)  

 

ABA 6.49 0.05 <.000 3301 

9.48 <.000 <.000 3530 

IRTK 7.82 0.006 <.000 13148 

FSL 6.15 0.038 <.000 25896† 

ART 7.88 0.013 <.000 3619 

R3: cerebellum (NC<WS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABA 5.97 0.136* <.000 4901 

IRTK 5.71 0.043 0.043 3928 

FSL 6.15 0.038 0.145* 1435 

ART 5.75 0.548* 0.025 430 

Table. II. 1. Summary of DBM results based on JAC over three ROIs. *means corrected p >0.05. † 

means FSL has a contiguous region, and we treated it as two clusters divided by the inter-hemisphere 

fissure. 

 

Region Name Methods T_max Corr.P_pk Corr.P_cl Cluster 

Size 

R1: right hemisphere: insular 

cortex, orbitofrontal gyrus, and 

temporal pole. (NC<WS) 

 

ABA 6.59 0.008 <.000 13664  

IRTK 6.19 0.006 0.003 20194 

FSL 5.18 0.087* 0.004 9817 

ART 6.22 0.041 <.000 5710 

R2: left hemisphere: insular 

cortex, orbitofrontal gyrus, and 

temporal pole. (NC<WS) 

ABA 5.91 0.029 0.003 8384 

IRTK 5.63 0.018 0.007 16146 

FSL 4.31 0.392* 0.009 8180 

ART 6.58 0.020 <.000 7035 

Table. II. 2. Summary of DBM results based on DFM over two ROIs. *means corrected p> 0.05. 

 

 

2.3.4 Relating DBM Findings to Observable Anatomical Differences 

The group atlases provide us with a means of relating findings produced by DBM 

analysis to visible anatomical differences between two groups. Indeed, section 2.3.1 has 

shown that the group atlases preserve group anatomical differences across normalization 
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algorithms at both cortical and deep brain structure levels. To correct for size differences 

between the groups and thus permit observation of local differences between these groups, 

the WS and NC group atlases were registered to the DBM atlas with a nine-degree 

freedom transformation.  

 

 

Fig. II. 10. Scheme used for affine registration of group atlases to the DBM atlas (highlight of 

observable differences).  

 

Fig. II. 10 shows the process schematically. The top panel shows an axial view in 

the NC atlas (left) and the WS atlas (right) obtained with the ABA algorithm. The bottom 

panel shows the deformed group atlases (NC on the left and WS on the right) registered 

to the DBM atlas (middle) with affine transformations. The horizontal lines have been 

drawn on the deformed group atlases (pink for NC and cyan for WS) to show that affine 

transformations have compensated for width differences in the atlases. Group differences, 

after affine transformations, are clear and highlighted with curved lines drawn on the 

deformed group atlases. The anterior end of the right insular cortex (shown with red 
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arrows) extends further in the NC atlas than it does in the WS atlas. On both hemispheres, 

there are lateral displacements between the NC and WS groups along the coursing of the 

cortical area circumscribed by the sylvian fissure, the superior temporal gyrus and the 

inferior insular cortex. Notably, the DBM atlas is somewhere in the middle. 

Fig. II. 11 compares visible anatomical differences between groups and regions of 

statistically significant differences found by DBM with ABA, IRTK, FSL, and ART. The 

top panel shows the zoomed view of the bottom panel in Fig. II. 10 (subpanel A-C), as 

well as the color-coded intensity differences between the deformed NC and WS atlases 

(subpanel D). The bottom panel displays the DBM results of JAC based on different 

registration methods superimposed onto the DBM atlas over region R1 (see Fig. II. 8).  

 

Fig. II. 11. Top panel: A) deformed NC atlas, B) DBM atlas, C) deformed WS atlas, and D) Image 

differences between A and C (Colormap range: [-160,160]).  Bottom panel: The DBM results for JAC 

based on a) ABA, b) IRTK, c) FSL, and d) ART. The pink and cyan lines were drawn on the 

deformed NC and WS atlas respectively.  

 

To interpret these results, one needs to keep in mind that all the non-rigid 

registration algorithms that have been used in this study are intensity-based. Typically, 

these algorithms will be driven by regions of high contrast, i.e., edges in the images. The 
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transformations in regions of low contrast are plausible interpolations whose smoothness 

depends on the regularization scheme or the mechanism used by each algorithm to model 

the deformation fields. As seen on the top panel figures, a larger area of gray matter is 

present in the anterior part of right insular cortex in the NC atlas than in the WS atlas 

(marked with red arrows). This is also reflected as a blue blob in subpanel D. Thus, the 

DBM atlas had to be expanded in this region to match the NC group and contracted to 

match the WS group. The DBM results based on all four algorithms indeed found that the 

NC group has a larger volume than the WS group in the right anterior insular cortex. 

DBM results also show that this statistically significant different region spans the 

putamen, pallidum, and some white matter. Subpanel D does not show obvious 

differences between group atlases around the basal ganglia (putamen and pallidum), 

however the lateral displacements of the cortical area (shown with yellow arrows) 

between the group atlases are apparent. Registration algorithms need to displace this 

particular cortical area laterally and medially when matching the DBM atlas to the NC 

and WS groups, respectively by stretching or compressing the low-contrast region of the 

basal ganglia. DBM results have detected areas of such expansion, whose patterns are a 

function of the transformation smoothness (e.g., ART detects several localized regions of 

expansion when IRTK detects one single large one). 
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Fig. II. 12. Top panel: A) deformed NC atlas, B) DBM atlas, C) deformed WS atlas, and D) Image 

differences between A and C (Colormap range: [-160,160]).  Bottom panel: The DBM results for JAC 

based on a) ABA, b) IRTK, c) FSL, and d) ART. The pink and cyan lines were drawn on the 

deformed NC and WS atlas respectively  

 

Fig. II. 12 compares the cerebella in the WS and the NC atlases after these have 

been registered to the DBM atlas with a nine-degree freedom transformation. The 

cerebellum contours have been drawn in pink on the deformed NC atlas and in cyan on 

the deformed WS atlas, showing that the cerebellum is larger in the WS group than it is in 

the NC group after adjusting for brain size differences. It also shows that the lobes are 

better separated in the NC atlas than in the WS atlas. In the bottom panel, colored clusters 

of statistically significant differences between JAC values in the NC and WS groups are 

superimposed on the DBM atlas. Here, the algorithms had to expand the cerebellum in 

the DBM atlas to make it match the cerebellum in the WS group and compress it to make 

it match the cerebellum in the NC group. The blue patches reflect JAC values larger for 

the WS group than the NC group. Smoothness of the deformation fields computed by 

each algorithm influences the location and extent of the patches. The lack of contrast 

inside the cerebellum and good contrast with the surrounding CSF explains that ABA, 
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IRTK, and FSL find regions in the middle of the cerebellum, which would be expected if 

a structure with uniform intensity was expanded and the algorithms were driven by the 

edges of this structure. FSL and ART both find another region of statistical significance 

in the anterior vermis. ART producing the least smooth deformation fields also leads to 

the most local differences. ABA, IRTK, and ART also find some regions of expansion 

over the brainstem region. These differences are likely caused by the compression over 

the cerebellar region.  

 

 

 

Fig. II. 13. Top panel: A:) deformed NC atlas, B) DBM atlas, C) deformed WS atlas, D) Image 

differences between A and B (Colormap range: [-160,160]). Middle panel: The DBM results obtained 

with the DFM feature with different registration algorithms superimposed on the DBM atlas. Bottom 

panel: The DBM results obtained with the JAC feature with different registration algorithms 

superimposed on the DBM atlas. The cyan and pink lines delineate the boundary of the right anterior 

insular cortex drawn on the deformed WS and NC atlas respectively. 
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Fig. II. 13 relates observable group differences with the DBM results obtained 

with both the DFM and the JAC features with the different registration algorithms. The 

top panel shows a sagittal view of the atlases that cover a sub-region of the right anterior 

insular cortex, the only region over which statistically significant differences are found 

with both the DFM and JAC features. Pink and cyan lines were drawn to highlight the 

boundary of the anterior right insular sulcus on the deformed NC and WS atlases 

respectively, showing that the two groups have distinct sulcal patterns around this area. 

The middle panel shows areas of statistical significance obtained with the DFM feature 

over this region for all registration algorithms. These results indicate that the WS group 

has more anatomical variation around the anterior insular cortex, the orbitofrontal gyrus 

and the temporal pole than the control group. The bottom panels show the regions of 

statistical significance when the JAC feature is used. These results indicate a region of 

enlargement around the right anterior insular sulcus in NC subjects. DBM results 

obtained with the DFM and JAC features thus indicate that there are more anatomical 

variations and a volumetric reduction around the anterior portion of the insular cortex in 

the WS group compared to the NC group. 

 
 

2.4 DISCUSSION 

 

 

We have used five different non-rigid registration algorithms (ABA, IRTK, FSL, 

ART and SPM) to study the effect of registration on atlas creation and on results 

produced by DBM analysis. We have shown that the choice of a particular registration 

algorithm has little effect on the creation of group atlases. Using data sets acquired from 

population samples with documented anatomical differences, we have also shown that all 
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the algorithms we have studied as well as the method used to produce the atlases preserve 

anatomical differences between groups at both cortical and deep brain structure levels. 

Previous work on structural differences in WS samples relies on volumetric measurement 

and shape delineation performed manually or semi-automatically on individual subjects. 

Most of these measurements were carried out on two data sets acquired by Reiss and 

colleagues [73, 76, 77] and by Jackowski and colleagues [78]. Differences observed 

between our group atlases correlate well with these findings. This indicates both that 

morphological characteristics of WS brains are stable across samples and that group 

atlases that capture these characteristics can be created automatically. 

The effects of non-rigid registration algorithms on DBM analysis using both the 

JAC and the DFM features were compared both qualitatively and quantitatively using 

voxel-wise regression analysis. All the algorithms we studied except for SPM produce 

generally similar T maps. After FWE corrections at both peak and cluster level inferences 

(uncorrected p<0.001; corrected p<0.05), different registration methods generate 

statistically significant clusters that are different, both in terms of size and location. This 

is more pronounced for the JAC than the DFM feature. These differences can be 

explained, in part, by the smoothness of the deformation fields produced by each 

algorithm and the similarity measure used to drive the algorithms.  

ABA and IRTK both maximize the normalized mutual information between the 

images and both model the deformation field with spline-like basis functions. There is 

more agreement between these two algorithms than between other pairs of algorithms. 

FSL also models the deformation field with spline functions but uses the intensity 

difference between the images as its similarity measure. This may explain several unique 
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clusters found around the cortical area by this algorithm. ART leads to smaller and more 

scattered clusters compared to the other algorithms. This is because this algorithm 

optimizes a local similarity metric in a non-parametric fashion. It may permit the 

detection of small structural differences but our results suggest that it leads to regions that 

are artificially broken into several small pieces. Even though the normalization utility in 

SPM is widely available and easy to use, our results show that it is not the best approach 

to use when performing DBM studies due to the relative low number of degrees of 

freedom in the modeling of the deformation fields.   

Our study shows that DBM results need to be interpreted with care and that the 

characteristics of the registration algorithm used in the study need to be taken into 

consideration in the interpretation process. For instance, DBM results obtained with the 

JAC show that the NC group has higher JAC values around the anterior insular cortex 

and the basal ganglia (putamen and pallidum) than the WS group. Without looking at the 

anatomic group atlases we have generated, one may be tempted to conclude that the 

relative volumes of the anterior insular cortex, putamen and pallidum are larger in the NC 

group than they are in the WS group. Another Jacobian-based morphometry study [22]  

performed with the ANIMAL [87] registration algorithm concluded that WS subjects 

have disproportionally decreased volumes around the basal ganglia and the thalamus. 

However, drawing such conclusion from JAC differences in DBM results alone is not 

prudent. Indeed, as was discussed earlier, the group atlases show obvious bilateral 

displacements of the sulcus regions surrounding the inferior insular sulcus, sylvian fissure, 

and superior temporal gyrus as well as differences in the anterior part of the insular 

cortex (Fig. II. 11). Previous work showed anomalous sulcal and gyral morphometry in 
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the sylvian fissure [79] as well as increased cortical thickness around the right perisylvian 

area in a WS sample [88]. Cohen et al. [81] measured the morphometry of the insular 

cortex on individual subjects and found that both the anterior and posterior insular 

volume were reduced bilaterally after accounting for reduced total brain volumes in WS 

subjects. Our DBM results reveal consistent findings for the anterior insular cortex, and 

the group atlases also showed a more anterior orientation of the anterior insular sulcus in 

the NC atlas than that in the WS atlas (Fig. II. 13). However, there is a lack of contrast 

around the basal ganglia (the putamen and the pallidum), where the deformation is thus 

somewhat arbitrary and a function of the normalization scheme used in the non-rigid 

registration algorithm. Thus, it is possible that apparent volume differences in these 

regions are caused by displacements driven by the cortical areas. To the best of our 

knowledge no measurement of the putamen and pallidum have been made in individual 

subjects. We thus cannot verify that areas of statistical differences detected by DBM in 

these regions are real. 

Results obtained over the cerebellar area also show that drawing very specific 

conclusions on group differences based on DBM analysis alone is difficult. ABA, IRTK, 

FSL, and ART all find differences in this region but little can be said except that the 

overall volume of the cerebellum is larger in the WS group than in the NC group. Schmitt 

et al. [80] examined the cerebellar vermis on 20 subjects with WS and 20 age and gender 

matched NC subjects, showing that the posterior vermis is significantly larger in WS. Our 

JAC-based DBM results only found differences in the center of the cerebellum showing 

that the algorithms we have compared can only detect gross volumetric changes over the 

cerebellum and not substructure differences.  
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Although not used as often as the JAC, the magnitude of the deformation field 

(DFM) may be a useful feature to use to find anatomical variation differences in groups 

that cannot be detected by an approach that is only sensitive to volumetric changes. All 

registration algorithms except for SPM detect more anatomical variations in WS subject 

around the anterior insular cortex and orbitofrontal gyrus in both hemispheres using the 

DFM. Several VBM studies have shown bilateral differences in gray matter density 

around the orbitofrontal area [79, 89, 90], which may be related to our findings. Also, 

surface-based analysis performed on cortical folding showed that the WS subjects have 

generally shallower olfactory sulcus compared to NC subjects [91]. However, we do not 

know of any work that has compared anatomical variability in WS and control samples, 

so we cannot relate our findings to previous reports. Our results suggest that a detailed 

analysis of this general orbitofrontal area may reveal other differences between NC and 

WS subjects.  

In conclusion, to the best of our knowledge, this study is the largest to date that 

compares DBM results obtained with various well-established registration schemes. The 

subjects on which this study has been conducted permits comparison of DBM findings to 

observable anatomical differences, thus providing us with a good ground truth surrogate. 

Our study shows that the effect of non-rigid registration algorithms on the creation of 

atlases is negligible, meaning that all the algorithms we have evaluated are able to 

produce warped images that look alike with the exception of SPM that produces slightly 

more blurred images because of the smoothness of the deformation field it produces. 

Comparing differences between the group atlases with previously published results, we 

can conclude that our atlases are representative of their respective group. But our study 
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also shows that registration algorithms have a substantial effect on DBM results both 

qualitatively and quantitatively. Even though general trends are similar across algorithms, 

specific conclusions that may be drawn when using one algorithm versus the other may 

vary substantially. When performing DBM analysis, our suggestion would thus be to use 

more than one algorithm and to look for regions that are consistently labeled as 

significant across these algorithms. Interpretation of the DBM results also requires taking 

into consideration the location of the detected regions of compression or extension, e.g., 

in a region of high or low contrast, the way the algorithms operate and the properties of 

the deformation field. While DBM results based on DFM and JAC can be used as good 

screening tools to identify differences between groups, specific conclusions on the nature 

and the location of these differences should only be drawn after careful analysis and 

possibly after correlating these findings with other biological or behavioral measurements.  
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CHAPTER 3 

 

RELATION BETWEEN CORTICAL ARCHITECTURE AND MATHEMATICAL 

ABILITY IN CHILDREN: A DBM STUDY 

 

 

3.1 INTRODUCTION 

 

 

The ability to comprehend and manipulate numbers are fundamental cognitive 

skills, yet population-based studies indicate that between 5 and 9 percent of U.S. children 

exhibit significant deficits in mathematical reasoning, which are manifested as learning 

disabilities or difficulties in developing age-appropriate competencies in math. Even as 

early as first grade, children with math difficulties (MD) demonstrate a specific weakness 

in the ability to accurately and quickly retrieve mathematical facts to perform simple 

arithmetic [92, 93], yet little is understood about the origins of such specific difficulties in 

the absence of more general limitations on learning and intelligence. 

Functional neuroimaging techniques such as functional magnetic resonance 

imaging (fMRI) have demonstrated that a reproducible set of parietal, prefrontal and 

occipitotemporal brain areas are systematically activated when subjects are asked to 

perform simple calculations [94-96]. For example, Dehaene et al. showed that exact 

calculations usually rely on semantic identification and retrieval of numerical facts from 

memory, engaging prefrontal regions, while approximation recruits bilateral areas of the 

parietal lobes involved in visual-spatial processing [95]. Similarly, Simon et al. 

characterized the functional specialization of calculation-related activations in the 
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intraparietal sulcus [97]. However, although functional neuroimaging has been 

extensively applied to the study of populations with math difficulties, to date there have 

been few studies that have used high resolution structural MRI to determine whether 

there are differences in brain morphology between normal and MD children, and none 

have examined whether specific structural variations in the brain are associated with the 

level of math skills in children.  

In principle, morphological analysis can reveal differences in the underlying 

cerebral substrates between normal populations and groups with mathematical difficulties, 

independent of any specific functional assessment. For example, Issacs et al. [98] used 

voxel-based morphometry (VBM) to demonstrate that impaired calculation ability in 

children with very low birth weight could be associated with less gray matter in the left 

parietal lobe in this population than in a normal cohort, while Rotzer et al. [99] showed 

that developmental dyscalculia was associated with a significantly reduced gray matter 

volume in the right intraparietal sulcus, anterior cingulum, the left inferior frontal gyrus, 

and the bilateral middle frontal gyri. Molko et al. [100] also found an abnormal length, 

depth, and sulcal geometry of the right intraparietal sulcus in girls with dyscalculia 

associated with Turner’s syndrome. These studies provide strong evidence for structural 

differences in populations that suffer from comorbid disorders in calculation skills, but it 

is not known if there are structural variations which correlate with the range of math 

ability found in a normal population, or whether children with low math skills can be 

distinguished by anatomical differences from those with normal abilities.  

In this chapter, deformation-based morphometry (DBM) [7, 8] analysis will be 

performed to identify potential morphological features in the brain related to the 
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mathematical performances for normal third-grade children. DBM involves the spatial 

normalization and co-registration of three-dimensional image data into a common space 

and subsequent analysis of the deformation fields produced by the registration process. 

As such it does not attempt to make measurements of specific structures as in other 

techniques, but instead quantifies the local morphological differences in structure for all 

parts of the brain.  

In chapter II, five non-rigid registration algorithms have been compared to study 

their effect on DBM results when there are clear reported anatomical differences between 

the two groups as is the case in the Williams Syndrome dataset. In this chapter we study a 

group of subjects for which there is not documented gross anatomical difference, and we 

study whether or not DBM can detect subtle differences that may be related to 

mathematical ability. As we have done in the previous chapter, we process this data set 

with five non-rigid registration algorithms and we determine the extent to which findings 

are algorithm-dependent.  

There are three main questions we want to investigate: 1) whether there are 

anatomical differences between two groups of children with very different mathematical 

abilities; 2) whether there is a correlation between brain morphological features    and 

mathematical proficiency in a group of children; 3) to what degree the registration 

algorithms used to perform these studies affect the results.  As was the case in the 

previous chapter, we use the deformation field magnitude, which measures the 

displacement at each voxel, and the Jacobian determinant, which measures local 

volumetric changes, to conduct our studies.  As discussed in section 1.2.2-1.2.6, the five 

non-rigid registration algorithms we have used are: 1) The Adaptive Bases Algorithm 
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(ABA), 2) The Image Registration Tool Kit (IRTK), 3) The FSL nonlinear registration 

tool, 4) The Automatic Registration Tool (ART), 5) The normalization toolbox in SPM8. 

To the best of our knowledge, this is the first study that uses DBM to investigate whether 

or not brain anatomical features correlate with mathematical performance in a relatively 

large population of third graders.  

 

 

3.2 MATERIALS AND METHODS  

 

 

3.2.1 Data Description  

Seventy-nine children were recruited for imaging and testing (43 males; 36 

females; mean = 8.86 + 0.38sd years old). The calculation and reading subtests from the 

Wide Range Achievement Test – Third Edition (WRAT-3) [101] were administered to 

participants during the first semester of their third-grade year. Because children with a 

specific disability in mathematical calculation show a different pattern of cognitive 

deficits than children with a disability in both reading and mathematical calculation [102], 

we selected participants only with high reading ability as measured by their performance 

on the WRAT-3.  Mean standard score on the WRAT-M was 98.49 (SD = 12.93; range: 

74 -135) and 112.47 (SD = 11.55; range: 95-141) on the WRAT-R. No significant 

relationships between standard scores on the WRAT-3 subtests and participants’ age or 

gender were observed, and there was no significant correlation between reading and math 

scores. All subjects also had a score of at least 80 on the Wechsler Abbreviated Scales of 

Intelligence (WASI) [103]. 
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Two subset groups were extracted from the 79 subjects based on their 

mathematical performances. Children who performed below the 20th percentile on 

WRAT-M were placed into the math disability (MD) group; children with a WRAT-M 

percentile score above 50 were placed in the normal control (NC) group. There were 

twenty participants in the MD group (12 males and 8 females; mean age, 10.8±0.4 years) 

and twenty normal controls individually matched on age and gender (12 males and 8 

females; mean age, 10.9±0.4 years).  

The anatomical images were acquired with a 3T Philips Achieva MRI scanner 

with an 8-channel sensitivity encoding (SENSE) head coil. For each subject, a 3D T1-

weighted anatomic volume was obtained with a turbo field echo (TFE) sequence (TR = 

8.9 ms; TE = 4.6 ms; FOV = 256 mm*256 mm*170 mm; image resolution = 1 mm*1 

mm*1 mm). All scans were acquired at the Vanderbilt University Institute of Imaging 

Science (VUIIS). 

 

 

3.2.2 Creation of Group Atlases 

All the MRI images were corrected for intensity inhomogeneity with the N3 

algorithm and rigidly aligned to the MNI template to correct for differences in pose and 

orientation during acquisition (see section 1.3.1 for details).  As discussed in section 1.3.2, 

the affine group atlas for the whole 79 MRI images was constructed in an iterative way. 

Due to the blurriness of the affine atlas, one volume was then selected and registered to 

the affine atlas with a nine-parameter affine transformation. Next, this transformed 

volume served as the reference volume, to which all the other images were registered 

with affine transformations.  
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Three non-rigid atlases were created for subsequent analysis using the scheme 

proposed by Guimond et al. (see section 1.3.2). One DBM atlas was built with all the 79 

MRI images and served as the template image in the following DBM analysis. Two 

group-specific atlases were created with the 20 images in each of the two extreme subsets 

in the NC and the MD groups. The atlas creation technique that has been used is an 

iterative process in which (a) one volume is chosen as a initial reference/atlas, (b) all the 

other volumes are registered to the atlas using a non-rigid registration method, (c) the 

deformation fields which register the atlas to each of the other volumes are computed and 

averaged, (d) the average deformation field is applied to the average of deformed 

volumes to the atlas, thus resulting in a new atlas, and (e) the process is repeated from (b) 

until convergence. Experience has shown that the process converges after three to four 

iterations. The results are insensitive to the choice of the original reference, as shown in 

section 1.3.2. Comparison result presented in section 2.2.1 showed that the choice of non-

rigid registration algorithms does not affect the creation of the group atlases at both the 

cortical and deep brain structure levels. Registration between volumes was thus achieved 

using the Adaptive Bases Algorithm (ABA)[26], which is an intensity-based non-rigid 

registration algorithm developed in house. The registration and averaging steps were 

conducted on the Vanderbilt University Advanced Computing Center for Research and 

Education (ACCRE) parallel-computing cluster. 

  

3.2.3 Group Differences Identified with DBM 

To investigate whether there are anatomical differences between two groups of 

children with different ranges of mathematical abilities (the first question we want to 
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investigate), DBM analysis was first carried on the two extreme subset groups: the NC 

group and the MD group. Twenty affinely transformed images in both the NC and MD 

groups were registered to the DBM atlas using five non-rigid registration algorithms: 

ABA, IRTK, FSL, ART, and SPM. Details about these five registration algorithms were 

presented in section 2.2.3. Each algorithm yielded a series of 20 forward deformation 

fields, one for each subject in each group. Each forward deformation field contains one 

three-dimensional vector at each voxel, capturing the displacements along the X, Y and Z 

directions required to match each voxel in the DBM atlas to its corresponding voxel in 

each individual subject. Two DBM features derived from each deformation field were 

calculated (see section 2.2.4): the Jacobian determinant (JAC) and the deformation field 

magnitude (DFM). The JAC measures local volumetric expansion or shrinkage and the 

DFM measures anatomical shape variations.  

Statistical differences in the JAC or DFM values between the NC and the MD 

groups were assessed using the general linear model regression implemented in SPM8 

(Wellcome Department of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk). 

For each registration algorithm, two-sample t-tests were performed on a voxel-by-voxel 

basis between the NC subjects and the MD subjects, leading to one T map for each of the 

two DBM features. Family Wise Error (FWE) correction based on the random field 

theory [86] was performed to address the multiple comparison issues at both the peak and 

cluster level inferences. In this study, a loose threshold of uncorrected p of 0.01 and a 

commonly used threshold of uncorrected p of 0.001 were both applied on the T maps to 

visualize different ranges of statistical significance. A FWE corrected p value of 0.05 was 

then used to define statistically significant clusters/voxels at both the peak and cluster 

http://www.fil.ion.ucl.ac.uk/
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levels. Clusters that survived either peak or cluster level FWE corrections were deemed 

to be regions of difference identified with DBM.  

Different registration algorithms may generate different regions of morphological 

difference between the NC and the MD groups. Therefore, common regions of interests 

(ROIs) were defined as illustrated in Fig. II. 1 and also described in the previous chapter. 

Briefly, the output of the DBM analysis process can be transformed  into a binary image, 

in which a voxel value is one if the voxel is within a statistically significant cluster after 

FWE correction and zero otherwise. Adding all the binary images produced by the 

different registration algorithms leads to a membership image, which is then thresholded 

to localize common regions of interests (ROIs). Here the membership threshold was 

chosen to be two as opposed to 4 in the previous study because we observed less 

agreement between algorithms in this data set than what we have observed in the William 

Syndrome study.  

When the final ROIs are superimposed on the DBM atlas, the names of the 

anatomical regions were obtained by visual comparisons of our DBM clusters with 

labeled MRI images using two apps for the iPhone: the iSurf Brainview v3.0.0 

(http://itunes.apple.com/app/isurf-brainview/id381072423?mt=8, Netfilter, Rio de Janeiro, 

Brazil) based on the MRI automatic segmentation produced by FreeSurfer and the Brain 

Tutor 3D (http://www.brainvoyager.com/iOS/iphonebraintutor3d.htm).  

 

 

3.2.4 Correlation of DBM Findings with Math Scores   

Deformation-based morphometry (DBM) was also performed on the entire dataset 

that contains 79 MRI images to explore possible correlations between morphometric 

http://itunes.apple.com/app/isurf-brainview/id381072423?mt=8
http://www.brainvoyager.com/iOS/iphonebraintutor3d.htm
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features and mathematical performances in children (the second question we are 

addressing in this work). All the 79 affinely transformed images were registered to the 

DBM atlas using the five non-rigid registration algorithms: ABA, IRTK, FSL, ART and 

SPM. For each algorithm, JAC and DFM features were calculated at each voxel from the 

79 deformation field. An ANCOVA test was performed to correlate on a voxel basis the 

value of these features and the WRAT-M scores, adjusting for age and gender. This 

yielded a T map of statistical difference for each registration algorithm, which captures 

the correlation between the DBM features and the participants’ WRAT-M standard 

scores. The T maps were then thresholded at uncorrected p of 0.01 and 0.001 to show the 

level of statistical significance at each voxel.  

Based on the ROIs identified with voxel-wise analysis, a region-based study was 

performed. To do this, the mean value of the DBM features were computed over the 

regions and correlated with the WRAT-M scores. Plots of mean feature values vs. 

WRAT-M scores were produced to visually show the general trend that was observed.  

Regression lines were also computed for each region and each registration algorithm.  
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3.3 RESULTS 

 

 

3.3.1 Group Differences Detected with DBM Analysis of the JAC eature 

We first estimated the smoothness of the JAC and DFM fields expressed as their 

full width at half maximum (FWHM) in all directions computed with the SPM8 utility. 

The results are shown in Fig. III. 1. SPM produced the smoothest fields for both JAC and 

DFM, followed by IRTK, FSL, ABA and ART. 

    

Fig. III. 1. Smoothness estimation (FWHM in X, Y and Z directions) for JAC (left) and DFM (right) 

T maps for different registration algorithms (from left to right): ABA, IRTK, FSL, ART, and SPM. 

 

Fig. III. 2 shows the color-coded T maps of the voxel-wise T-test analysis 

performed on the JAC feature obtained with five non-rigid registration algorithms. Each 

row displays selected slices in the T maps obtained with one algorithm. From top to 

bottom the rows show the results obtained with ABA, IRTK, FSL, ART and SPM. Warm 

colors mean that a larger JAC value is observed in the NC children than in the children in 

the MD group. Cold colors mean the opposite. Qualitative comparisons across different 

registration algorithms show that ABA, IRTK and FSL produce somewhat similar 

patterns, ART produces a more scattered T map, and SPM yields a smoother map than all 

the other algorithms. To localize the regions that show a statistical difference in the JAC 

value, a loose threshold with uncorrected p of 0.01 (T = ±2.43, df = 38) and a widely 



68 

 

used threshold with uncorrected p of 0.001 (T = ±3.32, df = 38) are applied on the raw T 

maps. Fig. III. 3 shows the regions with different ranges of p values for each registration 

algorithm. For voxels with positive T values (NC>MD), yellow and red colors are used to 

label voxels with uncorrected 0.001<p<0.01 and p<0.001 respectively. For voxels with 

negative T values (NC<MD), green and blue colors are used to indicate the uncorrected 

0.001<p<0.01 and p<0.001 respectively. The thresholded maps are superimposed on one 

volume nonlinearly deformed to the DBM atlas to show the corresponding structures. 

ABA, IRTK and FSL find consistent red regions around the right inferior frontal gyrus, 

midbrain area and right inferior temporal gyrus. However, none of these clusters survived 

the FWE correction (corrected p of 0.05) at either peak or cluster level. Results show that 

there are no statistically significant volumetric differences between the children with 

normal and low mathematical abilities. This is so despite the consistency of the results 

observed across algorithms.  
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Fig. III. 2. The color-coded T maps of the voxel-wise T-test analysis on the JAC features between the 

NC and the MD group based on five non-rigid registration algorithms. Each row displays selected 

slices in the T maps obtained with one algorithm, from the top to the bottom: ABA, IRTK, FSL, ART 

and SPM. 
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Fig. III. 3. The regions with different ranges of p values for DBM results for JAC based on each 

registration algorithm superimposed on one volume deformed to the DBM atlas. Warm colors show 

NC has larger JAC than MD, and cold colors mean the opposite. None of these clusters survived the 

FWE multiple comparison correction.  
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3.3.2 Group Differences Detected with DBM Analysis of the DFM Feature  

Fig. III. 4 shows the color-coded T maps of the voxel-wise T-test analysis 

performed on the DFM feature between the NC and the MD group obtained with five 

non-rigid registration algorithms. Warm colors mean that MD subjects have larger 

anatomical variations than the NC subjects. Cold colors mean the opposite. Qualitative 

comparison shows that ABA, IRTK and FSL show similar patterns, while ART and SPM 

produce the least smooth and the smoothest T maps, respectively. Thresholding the T 

maps with uncorrected p values of 0.01 and 0.001 leads to Fig. III. 5, showing the color-

coded regions with different ranges of the statistical significance in a similar fashion as in 

Fig. III. 3. The results shown in Fig. III. 4 and Fig. III. 5 show that the MD children have 

more anatomical variations than the NC children around the left temporal and occipital 

lobe, the orbital-frontal area and the right insular cortex. Such differences are consistently 

found across different registration algorithms although patterns vary somewhat. After 

FWE correction for multiple comparisons, all the clusters that survived for the different 

registration algorithms were combined to find the common regions of interests, as 

explained in section 2.2.6. If at least two registration algorithms found overlapping 

regions (membership threshold of 2), these were considered to be a common ROI in 

which anatomical variation differences between the NC and the MD group may exist.  

Fig. III. 6 displays the statistically significant clusters after the FWE corrections 

for each of the five non-rigid registration methods, superimposed on one volume 

nonlinearly deformed to the DBM atlas. In this figure, pixels with uncorrected p values 

smaller than 0.001 (red clusters in Fig. III. 5) that are part of a statistically significant 

cluster at either cluster/peak or both levels are shown in color based on their T values. 
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Each column shows the DBM results for one algorithm on the same selected views as in 

Fig. III. 5.Warm colors mean that larger DFM values were observed in the MD subjects 

than in the NC subjects. Cold colors mean the opposite. The line type used for the circles 

reflects the statistical significance after FWE corrections for the clusters within the ROI. 

If a cluster in a region is significant at both peak and cluster level, a solid circle is drawn 

around the region. Dotted lines or dashed lines are drawn around a cluster that is 

statistically significant at either peak level or cluster level. Three regions of interests 

(ROIs) are circled with different colors: R1-Orange; R2-Red, and R3-Yellow. All five 

non-rigid registration algorithms found R1 located around the left occipitotemporal 

sulcus, the left fusiform gyrus (BA 37) and the cerebellum. ABA and IRTK also found 

R2 around the left olfactory sulcus and the gyrus rectus (BA 47). IRTK and ART found 

R3 in the right insular cortex. Table. III. 1 lists all the clusters found in each ROI by 

different registration algorithms and their maximum T values, the FWE corrected p 

values at peak and cluster levels, and the cluster sizes. The blue (green) colors in the table 

mean the region is significant with corrected p of 0.05(0.5) based on that algorithm. 

R2 and R3 each were found to be statistically significant by only two algorithms 

(different pairs for each region). But Fig. III. 5 also shows that the other algorithms found 

regions of difference in the same general area. For example, FSL, ART and SPM all 

found yellow or red clusters around R2 that meet the loose uncorrected p threshold 

(p<0.01). Also, ABA and FSL both have a relatively large red cluster (uncorrected 

p<0.001) around the right insular cortex (R3). However these were not found to be 

significant after FWE correction. There is also a unique cluster around the left superior 
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frontal gyrus found only by IRTK that is statistically significant at peak-level after FWE 

correction (corrected p of 0.025).  

 

 

Fig. III. 4. The color-coded T maps of the voxel-wise T-test analysis on the DFM features between the 

NC and the MD group based on five non-rigid registration algorithms. Each row displays the 

selected slices in the T maps obtained based on one algorithm, from the top to the bottom: ABA, 

IRTK, FSL, ART and SPM. 
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Fig. III. 5. The regions with different ranges of p values for DBM results for DFM based on each 

registration algorithm imposed on one volume deformed to the DBM atlas. Warm colors show that 

NC has larger DFM than MD, and cold colors mean the opposite.  
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Fig. III. 6. The common ROIs in the DBM results of DFM difference between NC and MD groups. 

All clusters are statistically significant after FWE correction and superimposed on one volume 

deformed to the DBM atlas. Three ROIs were identified and circled with different colors. The line 

type means different statistical significance levels. 

 

Regions Names Methods T_max P_peak P_cluster Cluster 

Size 
R1: Left occipitotemporal 

cortex, left fusiform gyrus 

(BA37), and cerebellum. 

ABA 5.46 0.02 0.008 6878 

IRTK 4.39 0.097 0.007 17643 

FSL 4.86 0.062 0.019 7355 

ART 4.85 0.248 0.038 1896 

SPM 4.56 0.015 0.006 67909 

R2: Left orbital gyrus, 

olfactory sulcus, gyrus 

rectus. (BA47) 

ABA 5.39 0.024 0.015 5749 

IRTK 4.40 0.096 0.041 9270 

FSL 4.22 0.270 0.461 1031 

ART 5.05 0.160 0.177 1125 

R3: Right insular cortex ABA 4.47 0.222 0.328 1419 

IRTK 5.17 0.014 0.055 8037 

FSL 4.41 0.180 0.271 1939 

ART 4.95 0.201 0.048 1772 

R4: Left superior frontal 

gyrus* 

ABA  4.48 0.216 0.221 1914 

IRTK 4.94 0.025 0.214 2974 
Table.III. 1. Summaries of DBM results based on DFM over three ROIs based on different 

registration algorithms. * means the region found only by IRTK with corrected p of 0.05. Green/blue 

colors mean this region is significant with corrected p of 0.5/0.05 by that algorithm. 
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3.3.3 Group Differences Detected with DBM Analysis of the Voxel-wise 

Correlation Coefficient between the DFM Feature and the WRAT-M Score.  

Correlation analysis between the children’s WRAT-M scores and the anatomical 

features for the entire dataset of 79 children was conducted throughout the entire brain 

with the DBM technique. The results were produced with the five non-rigid registration 

algorithms introduced previously. Only the DFM feature has been considered in the 

correlation study, because no group volumetric differences were found between the NC 

and the MD group. Fig. III. 7 shows the color-coded T maps for the voxel-wise 

correlation coefficient between WRAT-M scores and the DFM feature for all 79 children. 

This map was produced with an ANCOVA model, adjusted for age and gender. Each row 

displays the three selected views of the T maps obtained with one algorithm. From top to 

bottom, the rows show the results obtained with ABA, IRTK, FSL, ART, and SPM. 

Warm colors mean negative correlation between the WART-M score and the DFM value, 

while cold colors mean positive correlation. As was done in Fig. III. 3 and Fig. III. 5, a 

loose threshold at uncorrected p of 0.01 (T = ±2.38, df = 74) and a regular threshold at 

uncorrected p of 0.001 (T = ±3.20, df = 74) are used to threshold the T maps. Images 

thresholded with these values are coded with different colors, as shown in Fig. III. 8. As 

can be observed, the yellow and red clusters in Fig. III. 8 appear to be in a position that is 

similar to the position of the yellow and red clusters shown in Fig. III. 5, but with smaller 

cluster sizes and lower significances of uncorrected p values. None of the clusters are 

statistical significant after the FWE correction.  
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Fig. III. 7. The color-coded T maps of the voxel-wise ANCOVA analysis between the DFM feature 

and WRAT-M scores for all the 79 children based on five non-rigid registration algorithms. Each 

row displays three selected views of the T maps obtained based on one algorithm, from the top to the 

bottom: ABA, IRTK, FSL, ART and SPM. 
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Fig. III. 8. The regions with different ranges of p values for DBM results of DFM correlated with 

WRAT-M scores based on each registration algorithm superimposed on one volume deformed to the 

DBM atlas. Warm colors show that NC has larger DFM than MD, and cold colors mean the opposite.  
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Fig. III. 9. Scatter plots for correlation analysis between the mean DFM over each ROI and the 

WRAT-M scores for all the 79 children, using five different registration algorithms. Red frames 

mean the correlation coefficients are statistically significant (p<0.05), blue frames mean the opposite.  
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Fig. III. 9 presents the plots showing the relation between the mean DFM over 

each ROI (Y axis) and the math scores for each registration algorithm (X axis). Each 

subpanel shows the regression line that has been computed,  the ROI (R1, R2 or R3) to 

which the plot relates (top left), the registration algorithm that has been used (bottom left), 

the correlation coefficient r between the mean DFM and the WRAT-M scores (right side), 

and the p value. If the correlation is statistically significant (p<0.05), the sub-panel is 

marked with a red border, otherwise (p>0.05) it is drawn in blue. Because this analysis is 

based on one single value/region, i.e., the mean value of the feature over the region, there 

is no need for multiple comparison correction. 

As can be observed, ABA, IRTK and FSL show statistically significant 

correlations between the mean of the DFM over each ROI and the WRAT-M scores. This 

agrees well with the color-coded clusters around R1, R2 and R3 for these algorithms in 

Fig. III. 5 and Fig. III. 8. This means that the lower the child’s math score, the larger the 

DFM mean values tend to be over each ROI, i.e. the more the voxels in this ROI have to 

be   displaced to match the atlas image with the subject’s image. FSL yielded statistically 

significant correlations over R2 and R3, but not over R1. Fig. III. 8 also shows that FSL 

found the correlation T maps over R2 and R3 to meet the loose uncorrected threshold of 

0.01, but not over R1. SPM only finds statistically significant correlations between mean 

DFM and WRAT-M scores over R1, as can be seen from Fig. III. 8. These results suggest 

that there may be a correlation between brain anatomy and math performance over these 

regions even though these differences are not strong enough to produce significant 

regions when voxel-wise analysis and FWE correction for multiple comparisons are used.  
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3.4 DISCUSSION 

 

 

Deformation-based morphometry analyses have been used to investigate brain 

anatomical features for third-grade children with different mathematical performances. 

The effect of five non-rigid registration algorithms (ABA, IRTK, FSL, ART and SPM) 

on the DBM results have been studied when this technique is used to detect  

morphological differences between two subset groups, and to explore correlations 

between anatomical features and  mathematical ability with the entire group of 79 third 

graders. There are no statistically significant volumetric differences between the NC and 

the MD groups that have been found using DBM and JAC as the feature. This leads to the 

conclusion that either no differences exist or such differences are too subtle to be detected 

with this data set. However, DBM analysis performed on the DFM feature found 

significant anatomical variations between the two groups around three regions identified 

consistently by at least two registration algorithms after FWE correction (p of 0.05). The 

three regions are the left occipital-temporal cortex, left orbital-frontal cortex, and right 

insular cortex. Simulated results in the next chapter indicate that FWE corrections with 

corrected p of 0.05 maybe too strict. Indeed results we have produced on simulated data 

sets suggest that corrected p values as high as of 0.5 preserve true positive clusters while 

eliminating false positive ones. Table.III.1 lists all the p values for regions R1, R2, R3. 

This table shows that with a p value of 0.25 all the algorithms find all these regions to be 

statistically significant. At this p value, an additional region around the left superior 

frontal gyrus is also detected by two algorithms.  
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 DBM analysis on the entire 79 children did not find statistically significant 

correlation between the DFM and math scores after FWE correction with the standard p < 

0.05 criterion. But the p values for region R3 (around the right insular cortex) for ABA, 

IRTK, FSL, and ART are 0.23, 0.27, 0.21, and 0.11, respectively. Again, with a looser 

threshold of 0.25, this region would be found to be significant. Furthermore, ROI-based 

correlations of mean DFM values and WRAT-M scores are statistically significant.  

These findings reinforce some of the conclusions we drew in the previous chapter, 

i.e., that registration algorithms indeed have an impact on DBM-based results. As we did 

in the previous chapter, we would thus recommend using more than one algorithm when 

conducting DBM studies. As will be shown in the next chapter, statistical analysis of the 

results is also a challenge. Consensus among algorithms despite weak statistical 

significance obtained with each of them may be an indication that the criteria for 

inclusion are too strict and that findings are real.  Our findings also expand on previous 

functional studies of developmental changes in occipital-temporal cortex with age [104] 

by demonstrating that a relationship between calculation skill and morphological 

variability in these cortices may exist as early as third grade. The deformation field 

magnitude (DFM) in the left occipitotemporal cortex and the left fusiform gyrus are 

found to be statistically different between the NC and the MD group, as well as 

negatively correlated with mathematical skills. Functional specialization of the left 

occipitotemporal cortex has been demonstrated for various classes of visual stimuli [105, 

106]. Diminished processing of written numerical symbols could explain findings of 

significantly slower response times during calculation tasks in individuals with MD 

compared to their same age peers [92, 93]. The left fusiform gyrus is also an area critical 
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to word/number recognition so differences in architecture in this region could be linked 

to math performance.  

In addition, two volumes located in the orbitofrontal cortex and the right insular 

cortex showed similar behavior. These brain regions are associated with attention, 

decision-making, and executive function. Functional imaging has implicated that insular 

region as an important area involving emotional processing [107] and speech-motor 

function [108]. In particular the right anterior insula has been identified as a key region of 

interest in specific phobias [109, 110]. Morphometry study also shows a reduced insular 

volume for subjects with Williams Syndrome [81] This reduction was also found by the 

DBM analysis in our previous chapter. Therefore, a disruption in any one of these 

cognitive processes could conceivably cause a break down in the normal course of 

procedures and interrupt the processes of solving calculation problems. In view of the 

evidence that young children compared to adults have increased activation in prefrontal 

cortex while performing a simple calculation task [104], the increased morphological 

variability in poor calculation performers may be a contributing factor to their use of less 

mature strategies during problem solving and retrieval errors [92, 93]. A significant 

difference between the findings in the current study and previous studies [98, 99, 101] is 

that we did not find morphological differences in the parietal cortex related to 

mathematical skill. The differences may be due to the behavioral task that we used, the 

method of analysis, or participant characteristics such as age and severity of 

mathematical disability. Although the findings from this study appear to be in accordance 

with neuropsychological models and previous results, more rigorous validation, 

particularly correlating with other neuroimaging modalities such as functional MRI, are 
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still warranted to confirm them. In particular, more specific descriptions of the variations 

in deformation fields in terms of underlying sulcal architecture, gyral patterns or tissue 

volumes should be established. 
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CHAPTER 4 

 

AN ANALYSIS OF THE EFFECT OF NONRIGID REGISTRATION 

ALGORITHMS ON DBM ANALYSIS USING SIMULATED DATASETS 

 

 

4.1 INTRODUCTION 

 

 

Deformation-based morphometry (DBM) analysis has been used to quantify and 

characterize morphological differences between different groups, as well as to elucidate 

correlations between the brain anatomy and genetic disorders or various cognitive 

abilities. The DBM approach requires images from different groups to be registered 

together to a brain atlas and statistically identifies morphological differences between 

groups based on the deformation fields generated by a non-rigid registration algorithm. 

Although several studies have compared non-rigid registration algorithms based on 

segmentation performance, little work has been done to compare the effect of registration 

algorithms on population differences that may be uncovered through deformation-based 

morphometry.  

In the previous two chapters of this dissertation, the effect of registration 

algorithms on DBM analysis has been studied with five different non-rigid registration 

algorithms and two very different datasets. The first dataset includes normal subjects and 

patients with Williams Syndrome (WS) with large and well-documented anatomical 

differences between the two groups. The other dataset contains children with a range of 

mathematical abilities. In this data set, the anatomical differences, if present, are more 
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subtle than those observed in the WS dataset. Both studies have shown the DBM results 

depend on the algorithm that is used. However, the lack of ground truth has limited our 

ability to quantitatively compare these algorithms. The primary goal of this chapter is to 

develop a framework that allows a comparison of the effects of various non-rigid 

registration algorithms on DBM results with simulated ground truth. This framework 

includes synthesizing realistic deformation fields and MR images, introducing various 

known local deformations, performing DBM analysis with various non-rigid registration 

methods, quantifying the performance of these registration methods, and studying the 

effect of statistical correction methods on the results. A software pipeline integrating the 

different blocks that form this framework has been developed to produce data sets on the 

Advanced Computing Center for Research and Education (ACCRE) cluster to take full 

advantage of available parallel computational resources.  

In this study, we have used the statistical simulation of deformations (SSD) 

method proposed by Xue et al. to simulate realistic deformation fields and MR images 

[111]. In the training phase of the SSD model, a wavelet-based principal component 

analysis algorithm (W-PCA) decomposes a set of training deformation fields using the 

Wavelet-Packet Transform (WPT) and subsequently captures within-scale statistics via 

hierarchically organized PCA models [112]. In the simulation phase, realistic 

deformation fields are produced by drawing sample parameter values from the 

parameters’ probability density functions (pdfs). The fields produced with this approach 

are then adjusted to constrain the value of the Jacobian determinant and regularized with 

a nested Markov Random Field (more details can be found in [111] and the software that 

implements this technique can be found at www.rad.upenn.edu/sbia/software.) The 

http://www.rad.upenn.edu/sbia/software
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deformation fields produced by this algorithm can then be used to generate a series of 

images. Several parameters can be adjusted to manipulate the SSD model to control the 

desired amount of inter-subject anatomical variation. The adjustment of parameters 

allows the creation of populations with a controllable amount of variability. For instance, 

we can produce populations in which differences are detected before multiple comparison 

correction but not after correction.   

After a series of images was created with the aforementioned technique, an 

assortment of local deformations was introduced to simulate pathologies and differences 

between populations. These local deformations were simulated with local radial 

symmetric deformation fields used to deform the simulated MRI.  These were also used 

to define ground truths when comparing DBM results obtained with various registration 

algorithms. As was the case in the previous chapters, the five nonrigid registration 

algorithms used in this study are: (1) The Adaptive Bases Algorithm (ABA) [26], (2) The 

Image Registration Toolkit (IRTK) [27], (3) The FSL Nonlinear Image Registration Tool 

(FSL) [64], (4) The Automatic Registration Tools (ART) [28], and (5) The normalization 

algorithm in SPM8 (SPM) [29]. For each registration algorithm, DBM analysis was 

performed between various simulated groups (further details on these various groups are 

provided below). The same statistical analysis that was performed on the real data sets 

was applied (see section 1.1.2). DBM results obtained with the five non-rigid registration 

algorithms were then compared to the known ground truth both qualitatively and 

quantitatively.  

The remainder of this chapter is organized as follows. First, we describe in some 

details the framework that has been developed to generate the data sets, including 
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describing the technique that has been used to train the simulator, the models that have 

been used to simulate local differences, the various groups that were produced, and the 

method we have used to define the ground truth. Next, we present results we have 

obtained with each of the algorithms we have used, and we compare their performance.  

 

 

4.2 METHOD  

 

 

Fig. IV. 1 presents an overview of the framework that has been used. Thirty-six 

MR images were used to train the SSD model, and two groups of MR images were 

created with the trained SSD model. These two groups are called G1 and G2, each with 

20 simulated MR images. The simulation details are described in section 4.2.1. Next, 

eight different sets of local deformations 

are introduced to simulate different types 

of morphological anomalies and applied 

to the G2 group to yield eight new groups 

(see section 4.2.2). DBM analyses were 

then used to detect group anatomical 

differences between the G1 group and 

eight new groups using the five non-rigid 

registration (NR) algorithms (see section 

4.2.3). The DBM results were then 

Fig. IV. 1. The overview of the proposed framework 
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compared both quantitatively and qualitatively with the ground truth defined with a 

criterion derived from the Jacobian of the local deformations, as explained in section 

4.2.2. 

 

 

4.2.1 Simulation with the SSD Model  

Thirty-six MR brain images obtained from normal children (20 males and 16 

females, 8.9±0.4 years old) were used in this section. Each image was corrected for 

intensity inhomogeneity with the N3 algorithm and rigidly aligned to the MNI template 

to correct for differences in pose and orientation during acquisition (see section 1.3.1 for 

details). Atlas-based segmentation combined with the FSL Brain Extraction Tool [113] 

was used to strip the skulls for all the 36 MR images. One subject was selected as the 

atlas, to which all the other 35 subjects were registered with affine transformations. The 

affinely transformed images were then non-rigidly registered to the atlas to produce 

deformation fields to train the SSD model.  

 
Fig. IV. 2. The various steps used to train the SSD models and to produce test images.  
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Fig. IV. 2 illustrates the steps used to train the model and produce images. To 

reduce possible bias of the SSD model towards one particular registration algorithm, the 

thirty-five subjects in the training dataset were randomly assigned into five groups of 

seven subjects. For each group, one non-rigid registration algorithm was used to register 

the seven images to the atlas image. For each group, this registration produced seven 

deformation fields (the colored arrows in the figure shows that training deformation fields 

were produced by different algorithms). Each registration algorithm outputs deformation 

fields in a different format. These are then converted to the format required for the 

training of the SSD model. The 35 format-adjusted deformation fields were used to train 

the SSD model, yielding a series of PCA and wavelet parameters. Because deformation 

fields produced by the five algorithms were used in the training, simulated deformation 

fields should not have characteristics that favor one algorithm over the other.   

 After the creation of the SSD model, the distribution of the parameters was 

sampled to produce a set of 40 simulated deformation fields. By applying the inverse of 

these deformation fields to the atlas, 40 simulated realistic MR images were created and 

randomly assigned into 2 groups, called the G1 and the G2 group. The anatomical 

differences between the G1 and the G2 groups detected with the five non-rigid 

registration algorithms were subsequently analyzed with DBM analysis. The inter-subject 

anatomical variation in the simulated images can be adjusted by limiting the range of 

parameter values and this range was iteratively adjusted based on the DBM results to 

ensure that no statistically significant anatomical differences between the G1 and G2 

groups exist. 
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4.2.2 Simulation with the Growth Models 

 Local displacements were simulated to introduce various pathologies in the G2 

group and to derive the ground truth for subsequent comparisons of DBM results 

obtained with different non-rigid registration algorithms. Eight sets of local displacement 

models were produced in total based on two base growth models (GM1 and GM2), each 

comprising several local growths patterns with different characteristics.   

Each local growth is a radially symmetric deformation field. The displacements 

along the x, y, and z directions are obtained by coordinate conversions from the 

deformation field magnitude using the trigonometric functions. The deformation field 

magnitude (DFM) is a function of the Euclidean distance  (     )from each voxel  

        to the seed location             as described in the equations (4.1-4.3) below: 

 

 (     )  √(    )
  (    )

  (    )
  
, (4.1) 

   (     )  {
 (     )                                    (     )   

 (     )        (     )      (     )   
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  (     )      (     )           
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where R is the growth radius, α is the increase rate inside the radius, and β is the 

decreased rate outside the radius. Growth models are combined with the deformation 

fields to produce local deformations spread over the brain that simulate small and large 

differences between image volumes.  

Fig. IV. 3. Coordinates conversion. 
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Fig. IV. 4. The illustration of GM1 and GM2. 

 

 

Fig. IV. 4 shows the local deformations used in the two base groups: GM1 (top 

panel) and GM2 (bottom panel). The left column shows the parameter values used for 

each local growth, the middle column shows the color-coded DFM where it is larger than 

1 mm overlaid on the atlas, the third column shows a deformed grid that permits the 

visualization of the local deformation field in the GM1 and GM2 models (for comparison, 

the average displacements between the template and the various volumes produced by the 

SSD simulator in these regions is on the order of 3 mm). The rightmost column shows the 

region over which the magnitude of the DFM is larger than one millimeter. These DFM 

masks were used to characterize the displacement radius of the local growth, shown in 

the left panel in Fig. IV. 5. In this figure, the blue and red bars represents the local growth 

in the GM1 and GM2 groups respectively. To simulate more variation in local differences, 

the seed location for each growth model is randomly perturbed along each direction by 

20%, 50%, and 80% of their corresponding displacement radius. For each percentage 

value, 20 samples drawn from a uniform distribution were used to displace the seed 
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locations in GM1 and GM2, yielding 20 new image volumes. Eight sets of local 

deformations derived from the GM1 or GM2 base models with different displacements 

were produced and combined with the deformation fields used to generate the 20 images 

in the G2 group. 

    

Fig. IV. 5. The displacement radius and growth radius for local growths in GM1 and GM2. 

 

 

Because we create differences between populations by introducing local  

expansion, in this chapter, we limit our study to the JAC feature. To define a ground truth 

to which we compare the DBM results based on various algorithms, we compute the JAC 

of the simulated fields and threshold these to 1.1. The growth sizes based on this criterion 

for each local growth in the GM1 (in blue) and GM2 (in red) are shown in the right panel 

of Fig. IV. 5.  Fig. IV. 6 shows the final ground truth for each set of growth model. This 

ground truth has been defined as the union of the 20 masks in which the JAC is larger 

than 1.1.  
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Fig. IV. 6. The ground truth for each set of the growth model. 

 

4.2.3 Deformation-based Morphometry (DBM) Analysis 

Fig. IV. 7 shows the flowchart of the various steps used for the DBM analysis of 

the simulated datasets. Starting from the atlas (top left), the G1group (shown with red 

frames) and the G2 group (shown with blue frames) were first simulated with the SSD 

model. This produced two groups of simulated images with 20 volumes in each group. 

The two local growth models (GM1 and GM2) combined with different seed 

displacements (DS0-DS3) were applied to each subject in the G2 group, yielding 8 

groups of MR images. The deformed grids for each growth model are shown in this 

flowchart, GM1 has five big local growths and GM2 has ten smaller local growths. Each 

group is named after the GM choice and the displacement percentages, i.e. 

G2_GM2_DS2 means the G2 group deformed by GM2 with a random displacement of 

the seeds location by 50%. The other group names can be interpreted in the same way. 

There are twenty images in each group which each have been deformed by one radially 

symmetric local growth with a possible displacement of the seed. The ground truth 
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computed for each group is shown in Fig. IV. 6. In the remainder of this chapter, 

G2_GM*_DS* represents any of the 8 deformed groups.  

 

 
Fig. IV. 7.The flowchart for DBM analysis on simulated datasets. 

 

 

DBM analyses were performed between the G2_GM*_DS* group and the G1 

group using the five non-rigid registration algorithms: ABA, IRTK, FSL, ART, and SPM. 

The JAC features were calculated to characterize volumetric differences between groups. 

Voxel wise t-tests were performed between the JAC values for each of the 8 groups and 

the G1 group, yielding 8 different T maps for each registration algorithm (each algorithm 

is shown in a different color). At the bottom right of Fig. IV. 7, T maps obtained with 
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each registration method are compared with the ground truth obtained from the growth 

models.   

 

 

4.2.4 Quantitative Comparisons 

 Quantitative comparisons of registration algorithms were based on comparing 

differences detected with DBM analysis to the ground truths. As was done for the 

analysis of subject data sets, T maps were first created. These are then thresholded at an 

uncorrected p value of 0.001 (T=3.312, df=38).  This thresholding yields a series of 

clusters for each algorithm. Then a Family Wise Error (FWE) corrected p of 0.05 at 

either the cluster level or peak level was used to correct for the multiple comparison 

issues (some clusters that survive the uncorrected p of 0.001 may not be statistically 

significant after the FWE correction). The metric used to quantify the performance of the 

registration algorithms is the cluster detection rate (CDR). The CDR values were 

computed both before and after FWE corrections to study the effect of FWE correction 

on DBM results for each algorithm. For this metric, the True Positive (TP), False 

Negative (FN), and False Positive (FP) 

concepts illustrated in Fig. IV. 8 have been 

used. In this figure, the light red circle 

represents the ground truth, and the blue 

circle denotes the results produced by each 

registration algorithm. The definition of TP, 

FN and FP for this metric is based on the 

cluster count. Fig. IV. 8. FN, TP, FP. 
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The cluster detection rate (CDR) is defined as the number of TP clusters divided 

by the number of clusters in the ground truth plus the number of FP clusters: 

     
                     

                                                        
 

  

        
 

The total number of clusters in the ground truth is five for the large growth model 

(four in the GM1_DS3 because two clusters were merged due to seed displacements) and 

ten for the small growth model. For each of the clusters in the ground truth, we have used 

the heuristic rule that if any voxel in that cluster is detected to be statistically significant 

by one registration algorithm, that cluster is labeled as a TP for that algorithm. The final 

TP for this algorithm will range from 0 to the total number of clusters in the ground truth. 

When one cluster in the ground truth is detected as multiple smaller clusters by one 

algorithm, only one TP is counted. The number of artificially broken (AB) clusters into 

which a cluster is broken is also recorded. If one registration algorithm finds a cluster that 

does not correspond to a ground truth region, this cluster is counted as a FP. The CDR is 

also called Jaccard similarity or Tanimoto coefficient [114]. The CDR is zero if none of 

the clusters in the ground truth have been detected by DBM. When DBM detects all the 

clusters in the ground truth and there is no FP, the CDR is 1. The higher the CDR, the 

better that registration algorithm can detect known group anatomical differences with 

DBM analysis. 
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4.3 RESULTS 

 

 

4.3.1 Simulated Images with the SSD Model 

Fig. IV. 9 shows four examples of simulated MR images in the G1 group (top 

panel) and in the G2 group (bottom panel). The atlas image is shown on the left. 

 

 

Fig. IV. 9. Examples of simulated images with the SSD model in G1 (top) and G2 (bottom) groups. 

 

As can be seen, the simulated MR images look very realistic while showing 

anatomical differences. Fig. IV. 10 displays the T maps for the JAC features between the 

G1 and the G2 group based on five non-rigid registration algorithms (left to right): ABA, 

IRTK, FSL, ART, and SPM. Warm colors indicate the features values are larger for the 

G2 images than the G1 images; cold colors mean the opposite. The red square box around 

the T map means that no cluster survived the uncorrected p of 0.001. The white square 

box means that no cluster survived the FWE corrected p of 0.05, though some clusters 

may have survived the uncorrected p of 0.001, the number of such clusters is listed at the 

bottom right within each box. 
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Fig. IV. 10. Statistical analysis of JAC between the G1 and G2 groups. 

 

As shown in the top panels 

of Fig. IV. 10, ABA and ART 

both found several clusters that 

survived the uncorrected p of 

0.001, while IRTK, FSL and SPM 

found no such cluster. However, 

the white boxes around the ABA 

and ART maps also mean that those clusters are not statistically significant after FWE 

correction at either the peak level or the cluster level. Overall, there are no statistically 

significant differences in the value of the JAC feature between the G1 and G2 groups 

after FWE corrections for any of the five nonrigid registration algorithms (all have white 

boxes or red boxes). The color-coded T maps for JAC differences show that the general 

patterns are similar across different algorithms but that the smoothness of these maps 

varies across algorithms. We used the full width at half maximum (FWHM) feature 

computed by SPM8 to quantify the smoothness of the fields. The values obtained for 

each algorithm are shown in Fig. IV.11. This figure shows that SPM produces the 

Fig. IV. 11. Smoothness estimation (FWHM in X, Y, and Z 

directions) for JAC T maps. 
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smoothest field, followed by IRTK, FSL, ART, and ABA. In previous chapters, the 

smoothness of the JAC fields for these registration algorithms have also been calculated 

(see Fig. II. 7 and Fig. III. 1). SPM consistently produces the smoothest fields.  The main 

difference is that ABA produces the least smooth field in the simulated data, while ART 

produces the  least smooth field in both real datasets.  

 

 

4.3.2 Simulated Images with the Growth Models  

Fig. IV. 12 presents an axial view of a simulated image in the G2_GM0_DS0  

(left most), the G2_GM1_DS0 (0% displacement), the G2_GM1_DS1 (20% 

displacement), the G2_GM1_DS2 (50% displacement), and the G2_GM1_DS3 (80% 

displacement) groups. The middle row shows zoomed in regions of these images, with 

the red arrows pointing to visual differences with the left most image. The green dots 

show the original seed location for the local growth models. In the GM1 images, there is 

a relatively large local growth located in the white matter region. The figure shows the 

effect of displacing the seed has on the generated images. The color-coded images are 

difference images computed between the deformed images and the reference one. The 

rightmost color-coded image shows the effect of a large seed displacement. Fig. IV. 13 

shows the same thing for images in the GM2 group. The differences are less obvious as 

the growth size in the GM2 group is small, which also leads to smaller displacements. 
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Fig. IV. 12. An example of simulated images in the G2 group and four GM1 based groups. The 

zoomed views are shown in the middle panel, and bottom panel shows the intensity differences. The 

red arrows point to the visual differences with the left most image. 

 

  

Fig. IV. 13. An example of simulated images in the G2 group and four GM2 based groups. The 

zoomed views are shown in the middle panel, and bottom panel shows the intensity differences.   
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4.3.3 Qualitative Comparisons of Registration Algorithms  

Fig. IV. 14 presents a series of images that permit the qualitative comparison of 

DBM results obtained for the JAC feature with the various non-rigid registration 

algorithms. Each row corresponds to one deformation model; the first four to the GM1 

(large growth) model and the last four to the GM2 model (small growth). Within each 

category the 4 rows correspond to the various amount of offset that has been applied to 

the seeds, i.e., DS0-0%, DS1-20%, DS2-50%, and DS3-80%. In each case, the ground 

truth (i.e., the union of the regions over which JAC is larger than 1.1) is listed in the left 

most column. The second column from the left shows the region over which the 

magnitude of the deformation field is larger than 1 mm to give the reader a sense of the 

size of the displacement range. The following columns show results obtained with ABA, 

IRTK, FSL and ART. The color coded maps are the T maps thresholded at an 

uncorrected p of 0.001 (T=3.319, df=38). SPM did not find any cluster that survived this 

test in any of the groups so these results are not shown. Warm colors mean that a larger 

feature value was observed in the deformed groups than in the G1 group. Clusters that are 

not statistically significant after FWE corrections (corrected p<0.05) at either cluster or 

peak level are marked with white circles.  

A number of observations can be made from these results. Focusing on the large 

growth model in Fig. IV. 14, differences between populations become more difficult to 

detect as one move from the 0% model to the 80% model because these differences are  

more diffuse and the variability introduced by the growth model becomes more difficult 

to separate from the anatomical variability introduced by the SSD model. This is reflected 

in the results. All four algorithms were able to detect all five clusters in the 0% and 20% 
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cases and these were deemed significant after FWE correction. The extent of these 

clusters is approximately the same for all the algorithms. In the 50% seed displacement 

case, all four algorithms detected all the clusters but most of them were eliminated after 

FWE correction. At 80% most of the clusters are missed (only FSL finds one that is 

statistically significant).  

For the small growth model, ABA and ART detect the majority of the clusters at 0% 

displacement while IRTK and FSL missed most of them. The substantial difference 

observed between ABA and ART on the one hand and IRTK and FSL on the other can be 

attributed to the smoothness of the deformation fields produced by these algorithms. The 

smallest growth areas are below the detection threshold of these two algorithms. The data 

is a little bit more difficult to interpret for ABA and ART. At 0% seed offset both ABA 

and ART detect seven out of the ten regions of difference but they do not eliminate the 

smaller ones and keep the larger ones. Whether or not a region is kept also depends on 

the parameters that have been used in the growth model and on the location of the seed. 

On the left side of the head, the growth parameters are such that displacements within the 

growth region are larger than displacements in the growth regions on the right side of the 

head. This leads to larger Jacobian values within these regions, to larger T values, and 

subsequently to the labeling of the regions as being statistically significant. In the 50% 

seed displacement case, most of the survived clusters have seeds located intensity 

homogeneous regions, e.g. white matter or thalamus.  
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Fig. IV. 14. Qualitative comparison of registration algorithms on DBM results of JAC with the 

ground truth for 8 different sets of growth models (thresholded at uncorrected p of 0.001). White 

circles mean that the cluster is not statistically significant after FWE corrected p of 0.05. 
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4.3.4 Quantitative Comparisons of Registration Algorithms  

Table. IV. 1 and Fig. IV. 15-16 present a more quantitative comparison between 

algorithms based on the cluster detection rate (CDR) parameters introduced before. Table. 

IV. 1 presents all the information needed to calculate the CDR values for each algorithm 

and each growth model before and after FWE correction. In this figure, TP, FP, and CDR 

refer to True Positive (green cells in the table), False Positive (pink cells in the table), and 

cluster detection rate (gray cells in the table), respectively. BF denotes before FWE 

correction and AF denotes after FWE correction with corrected p of 0.05. 

 

Table. IV. 1. Summaries of DBM results of JAC based on different registration algorithms 

comparing to ground truth, in terms of TP, FP and CDR, for eight GM1 and GM2 derived groups. 

 

 
Growth Model GM1 GM2 

Displacements DS0 DS1 DS2 DS3 DS0 DS1 DS2 DS3 

Truth 5 5 5 4 10 10 10 10 

TP 

BF 

ABA 5 5 5 2 10 10 8 5 

IRTK 5 5 5 2 2 2 2 1 

FSL 5 5 5 2 4 3 3 2 

ART 5 5 5 2 9 9 8 6 

AF 

ABA 5 5 1 0 7 7 2 0 

IRTK 5 5 2 0 0 0 0 0 

FSL 5 5 2 1 1 1 1 0 

ART 5 5 2 0 7 7 4 0 

FP 

BF 

ABA 10 9 10 12 9 11 12 8 

IRTK 0 0 0 0 1 1 1 0 

FSL 0 0 0 0 0 0 0 0 

ART 3 4 3 2 7 8 6 7 

AF 

ABA 0 0 0 0 0 0 0 0 

IRTK 0 0 0 0 0 0 0 0 

FSL 0 0 0 0 0 0 0 0 

ART 0 0 0 0 0 0 0 0 

CDR 

BF 

ABA 0.33 0.36 0.33 0.13 0.53 0.48 0.36 0.28 

IRTK 1.00 1.00 1.00 0.50 0.18 0.18 0.18 0.10 

FSL 1.00 1.00 1.00 0.50 0.40 0.30 0.30 0.20 

ART 0.63 0.56 0.63 0.33 0.53 0.50 0.50 0.35 

AF 

ABA 1.00 1.00 0.20 0.00 0.70 0.70 0.20 0.00 

IRTK 1.00 1.00 0.40 0.00 0.00 0.00 0.00 0.00 

FSL 1.00 1.00 0.40 0.25 0.10 0.10 0.10 0.00 

ART 1.00 1.00 0.40 0.00 0.70 0.70 0.40 0.00 
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Fig. IV. 15 presents the CDR results graphically. This figure shows that at a p 

value of 0.05, FWE correction is efficient in eliminating false clusters but also that, in 

many instances, it leads to the elimination of true positive clusters. FWE correction 

improves the CDR for ART and ABA for the large deformation model with 0% and 20% 

seed perturbation. It does, however, degrade the CDR for every algorithm for the large 

growth model with 50% and 80% seed perturbation. For the small deformation model, 

FWE improves the CDR for ABA and ART with 0% and 20% seed perturbation when it 

degrades the performance of IRTK and FSL for these same cases. It degrades the 

performance of all the algorithms for seed offsets of 50% and 80%. In general, with the 

data sets used in this study, FWE tends to be too conservative and leads to the elimination 

of TP clusters. Fig. IV. 16 presents CDR results when the p value after FWE correction is 

increased to 0.1 and 0.5. These results indicate that, with our data set, a much less 

conservative threshold of 0.5 can be used without increasing the number of false positives. 

 

 

Fig. IV. 15. Cluster Detection Rate (CDR) for DBM using JAC before and after FWE corrections 

(corrected p of 0.05) for GM1 and GM2 derived groups. 
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Fig. IV. 16. Cluster Detection Rate (CDR) for DBM using JAC when using FWE corrected p of 0.1 

and 0.5 for GM1 and GM2 derived groups 

 

 

4.4 DISCUSSION 

 

 

This chapter has presented a computational pipeline that permits the creation of 

simulated data sets with known differences. The pipeline has been used to study the 

performance of several non-rigid registration algorithms when trying to detect small and 

large local differences between populations. Qualitative and quantitative comparisons of 

these registration algorithms have shown that a clear characterization of algorithms 

performance is a challenging task and that the statistical analysis of the results is also 

difficult. Detectability of regions of difference depends not only on the smoothness of the 

deformation field that is produced by the algorithms but also on the nature and position of 

the growth regions. As would be expected, with smoother fields it is more difficult to 

identify small localized differences between populations. Our results indicate that, in 

general, algorithms that are capable of localizing these small localized differences also 

are capable of localizing larger regions. In chapters 2 and 3, we have suggested that 
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agreement between algorithms could be an indication of true differences between 

populations despite a lack of statistical significance found by any of these algorithms. 

Our simulations support this statement. Looking at the small displacement results, two 

algorithms, i.e., ABA and ART are capable of detecting the smallest clusters. As shown 

in Table. IV. 1, ABA detects 10, 10, 8, and 5 TP clusters in the DS0, DS1, DS2, and DS3 

data sets of GM2, respectively. These numbers are 9, 9, 8, and 6 for ART. ABA detects 9, 

11, 12, and 8 FP clusters while ART detects 7, 8, 6, and 7 FP clusters. Taking the 

intersection of all these regions without any correction for multiple comparison produces 

9, 9, 8, 4 TP and 0, 0, 0, 0 FP. Combining these leads to a CDRs equal to 0.9, 0.9, 0.8, 

and 0.4 for the GM2 DS0, DS1, DS2, and DS3 data sets. These are better CDRs than 

those obtained with FWE correction. This is due to the fact that FP occurs at different 

locations with ABA and ART but that TP areas are stable across algorithms. The same 

thing can be done for the large displacement models. Here, a number of combinations 

could be used because all four algorithms behave similarly. Considering again ABA and 

ART, Table.IV.1 shows that ABA detects 5, 5, 5, and 2 TP clusters in the DS0, DS1, DS2, 

and DS3 data sets of GM1, respectively. These numbers are 5, 5, 5, and 2 for ART. ABA 

detects 10, 9, 10, and 12 FP clusters when ART detects 3, 4, 3, and 2 FP clusters. Taking 

the intersection of these two sets leads to 5, 5, 5, 1 TP and 0, 0, 0, 0 FPs. Combining 

these leads to CDRs that are 1, 1, 1, and 0.25 for the GM1 DS0, DS1, DS2, and DS3 data 

sets. These are equal to the CDRs obtained after FWE for any of the algorithm for the 

DS0 and DS1 groups, substantially better than the CDR after FWE correction for all the 

algorithms for the DS2 group and better than the CDR for all the algorithms expect FSL 

for the DS3 group.            
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CHAPTER V 

 

SUMMARY AND FUTURE WORK 

 

The overall goal of this dissertation was to assess the effect of registration 

algorithms on DBM-based findings. DBM is routinely used to detect differences between 

populations but studies are usually conducted with only one registration algorithm with 

which the research group is most familiar. In fact, we do not know of any other study that 

has thoroughly investigated this question. Multiple comparisons issues related to DBM 

analysis are known and methods have been proposed to address these, but whether or not 

these techniques are efficient is also not well documented. After the extensive 

comparison of five well known registration algorithms, the main conclusions that can be 

drawn from this work are that (1) DBM-based findings are indeed dependent on the 

registration algorithm that is used and (2) the FWE multiple-correction scheme that is 

commonly used may be over-conservative. 

 Dependence of DBM findings on the registration algorithms can lead to very 

different conclusions when comparing populations. In chapter 2, we have shown that the 

volumetric differences between normal control (NC) subjects and subjects with Williams 

Syndrome (WS) may occur around the bilateral insular cortex and putamen, as well as the 

cerebellum, based on DBM results found by ABA, IRTK, FSL, and ART. However, the 

DBM results based on SPM normalization are qualitatively and quantitatively different, 

i.e. this technique finds only one unique large cluster located in the superior frontal cortex. 

There are also a number of statistically significant clusters found by only one or two 
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registration algorithms. For example, ABA found a unique cluster around the anterior 

cingulated cortex, while FSL and ART both found a cluster around the splenium of the 

corpus callosum. For the anatomical variation differences between the NC and WS group, 

two consistent regions located bilaterally around the orbitofrontal cortex were found by 

all the registration algorithms except SPM. Nevertheless, FSL found two other unique 

clusters around the left inferior and superior fontal gyrus. In chapter 3, DBM analyses 

using the DFM features have discovered statistically significant anatomical variations 

between normal children and children with mathematical difficulties. To the best of our 

knowledge, this is the first report that brain anatomy may correlate with the level of 

mathematical performance in a relatively large population of third graders. 

All five non-rigid registration algorithms found clusters around the left occipital-

temporal cortex and the fusiform gyrus, though these clusters vary in size and shape 

across algorithms (see Fig. III. 6). But, ABA and IRTK also found one region around the 

left orbital-frontal cortex; IRTK and ART each detected another cluster in the right 

insular cortex. Moreover, IRTK produced a unique cluster at the left superior frontal 

gyrus, which was not found by any other algorithms. The discrepancy between results 

obtained with various registration algorithms is possibly rooted in their registration 

mechanisms, e.g. the similarity measure and the modeling of the deformation fields. In 

general, larger clusters are usually generated by the algorithm that yields smoother 

deformation fields, and vice versa. Our results also show that DBM results need to be 

interpreted with care and that the characteristics of the registration algorithm that is used 

need to be taken into consideration in the interpretation process.   
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Because the lack of ground truths makes it difficult to compare algorithms under 

controlled conditions, we embarked on an effort to produce simulated data sets in which 

known differences between populations could be introduced. These data sets not only 

confirmed what had been observed with the real data, i.e., different algorithms lead to 

different results, but also that correction for multiple comparisons does not perform 

equally well for every algorithm. The smoothness of the field is used when performing 

FWE correction. Our results indicate that FWE correction tends to perform better for 

algorithms that produce less smooth fields (ABA and ART) than for those that produce 

smoother fields (IRTK and FSL). For instance, FWE correction improves the CDR for 

ABA and ART for both deformation models with 0% and 20% seed perturbation, because 

the false positive cluster produced by ABA and ART are all eliminated by FWE 

correction. But the CDR for IRTK and FSL stay the same before and after FWE 

correction for big growth model, because the two algorithms have no false positive 

clusters. Nevertheless, the FWE correction degrades the CDR performance for all 

algorithms in both growth models with 50% and 80% seed offset and for IRTK and FSL 

in small growth models with 0% and 20% seed offset, which is all due to the fact that 

many true positive clusters are eliminated after FWE correction (see Table.IV.1). Overall 

this correction technique appears to be over-conservative using corrected p threshold of 

0.05 based on this dataset.  

Based on our work, we believe there is value in using more than one algorithm 

when performing DBM analysis. The open question is to determine how to interpret the 

results produced by these algorithms. Should statistically significant regions produced by 

any algorithm be considered to be significant, should consensus between algorithms be 
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used to increase confidence in the findings, etc.? For instance, in chapter 3 we have found 

a consistent focal region (region R3 in Fig. III. 6) in the general area of the right insular 

cortex. This region was deemed to be significant by two algorithms (IRTK and ART) but 

not by ABA (p = 0.22) and FSL (p = 0.18). In the correlation study of DFM with the 

WRAT-M scores for all the 79 children, this region is found to be statistically significant 

by all registration algorithms except SPM when an uncorrected p-value threshold of 

p<0.001 is used. Despite the fact that FWE correction performed on the correlation 

feature does not produce any significant clusters at the customarily used corrected p < 

0.05 threshold (corrected p: ABA-0.23, IRTK-0.27, FSL-0.21, ART=0.12), the 

consistency of the findings by all four algorithms suggests the existence of a relation 

between anatomy and math ability in this region.  As our simulation results have shown, 

a simple scheme in which regions of difference found by several algorithms are kept and 

those that are found by only one are eliminated leads to better results than standard FWE 

correction. 

The simulation framework we have developed has already been useful in 

analyzing and comparing registration algorithms but it is only a beginning and it could be 

expanded in a number of directions. First of all, we only use a single reference volume, 

which we deform with the deformation fields we produce. More variability in the data 

sets could be introduced by using more than one reference volume. More sophisticated 

techniques could also be used to introduce differences between populations. For instance, 

Karacali et al. [115] have proposed a method that permits simulating local growth or 

atrophy  with a topology-preserving transformation model that generates a deformation 

field with a desired level of trophy or growth by minimizing the difference between its 
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Jacobian determinants and the desired one. Such desired Jacobian patterns can thus serve 

as the ground truth in the comparison stage.  

 This framework could also be used to evaluate the advantages and disadvantages 

of various methods aiming at combining results produced by several registration 

algorithms. As mentioned earlier, using multiple registration algorithms could be 

beneficial when performing DBM analysis but the best way to do it needs to be 

investigated.  Recently, Koikkalainen et al. [116] has shown that multi-template tensor-

based morphometry yields statistically significantly better classification results than the 

single-template method. Multi-registration and multi-scale deformation based 

morphometry (MM-DBM) thus appear to be an interesting direction for future work as 

group anatomical differences could occur at different scales. These differences can be 

uncovered by varying the smoothness of the fields. The information from multiple 

registration algorithms or from a single algorithm with different smoothing kernels could 

be combined at different stages of DBM analysis, e.g.: 1) average the deformation fields, 

2) average the JAC or DFM maps, 3) average the T maps, or 4) define voting schemes as 

the one we have used in our simulation study. 

 The thesis examined by this dissertation is that the choice of registration 

algorithm has a significant effect on DBM. In this work, we have compared the outputs 

of various algorithms to verify that thesis. In order to facilitate spatial comparisons, we 

have applied each algorithm to a single atlas constructed by only one of these algorithms 

instead of employing algorithm-specific atlases. This choice may have reduced the 

variation across algorithms, but even with this reduction, the thesis is confirmed: 

Changing the registration algorithms has a significant effect on DBM.   
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