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CHAPTER I 
 

INTRODUCTION 
 

Statement of Problem 

Heart failure (HF) is a severely limiting terminal condition characterized by a 

progressive chronic disease state with intermittent acute exacerbations. Classic HF 

symptoms include progressive dyspnea, fatigue, and edema that increase in intensity 

during periods of acute exacerbations. These symptoms are usually progressive in 

severity over the course of the syndrome and eventually result in the patient’s death. HF 

can be caused by any myocardial injury and its resulting myopathy (Hunt, 2005).    

In modern countries, such as the United States, coronary artery disease, along 

with subsequent myocardial infarction, is the most common etiology of HF (Hunt, 2005). 

Although clinicians who monitor the treatment of patients with HF are aware of a variety 

of systemic metabolic derangements related to changing body composition over the 

course of HF, they lack appropriate evidence-based interventions, such as basic 

nutritional guidelines (Lennie, 2008). In the current neurohormonal model of HF, a 

number of short-term and long-term compensatory mechanisms for reduced cardiac 

output are described, such as the sympathetic nervous system (SNS), that result in 

compensatory effects (Packer, 1992). Because these compensatory mechanisms have 

previously been determined to be energy dependent systems, their chronic up-regulation 

suggests an increasing systemic energy demand. Therefore, one could reasonably 

hypothesize that these systems increase energy expenditure over time and potentially 

affect macronutrient substrate utilization rates during the course of HF.   
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Little evidence exists to guide the understanding of the metabolic demands 

associated with HF. Researchers conducted several studies in their attempts to determine 

the increase in metabolic rate associated with the disease, but these studies were plagued 

with poor measurement systems and a lack of participant inclusion controls (Roberto 

Aquilani et al., 2003; Obisesan et al., 1996; Obisesan, Toth, & Poehlman, 1997; Pasini, 

Opasich, Pastoris, & Aquilani, 2004; Toth, Gottlieb, Fisher, & Poehlman, 1997; Toth, 

Gottlieb, Goran, Fisher, & Poehlman, 1997). For these reasons, these studies yielded 

confounding results, making the determination of the clinical utility of measuring 

metabolic function in patients living with HF difficult. Although direct measurement of 

metabolic function did not yield specific evidence regarding potential energy demands of 

patients with HF, secondary analyses of data from randomized, controlled clinical trials 

and cohort studies revealed a clear survival benefit associated with obesity in patients 

with HF (Curtis et al., 2005; Fonarow, Srikanthan, Costanzo, Cintron, & Lopatin, 2007; 

Hall et al., 2005; Kalantar-Zadeh, Abbott, Salahudeen, Kilpatrick, & Horwich, 2005; 

Oreopoulos et al., 2008).   

 

Purpose of Study 

A variety of physiologic compensatory systems are up-regulated to preserve organ 

perfusion in response to HF, including the SNS, the rennin-angiotensin-aldosterone 

system (RAAS), endothelin production, and cardiac tissue remodeling. Although each of 

these systems acts to provide perfusion support early in the development of HF, their 

chronic up-regulation leads to rapid progression of HF. Pharmacologic therapies that 

chronically suppress these systems, such as beta-adrenergic blockade and angiotensin 
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converting enzyme inhibitors, have been found to reduce symptoms, such as shortness of 

breath, and decrease morbidity and mortality. Previous physiologic research indicated 

that these systems are energy dependent and that chronic up-regulation increases 

physiologic energy demands. For example, increased SNS stimulation results in increased 

heart rate and cardiac inotropy, both of which are energy dependent effects (Goodwin, 

Taylor, & Taegtmeyer, 1998). These systems are up-regulated chronically during the 

course of HF. Thus, one could reasonably expect that they result in chronic increased 

energy utilization. As HF symptoms increase, particularly during the late stages, these 

energy utilization effects should become more pronounced, potentially resulting in 

physiologic harm and more rapid disease progression. Unfortunately, this hypothesized 

increased energy utilization during the course of HF has not yet been fully described. 

Although the chronic effects of these compensatory systems were not fully 

explored, evidence suggested that energy balance may play a unique and important role 

in HF. As discussed previously, recent evidence indicated that patients with HF who are 

obese appear to have significant survival benefits over normal weight patients 

(Oreopoulos et al., 2008). Because of this suggestion, the development of nutritional 

guidelines for both normal weight and obese patients living with HF has been difficult. 

Of particular interest were the results of several recent studies that suggest the natriuretic 

peptide system, which is up-regulated during the course of HF, may be responsible for 

lipolysis and subsequently for the shifting of systemic substrate utilization through the 

liberation of free fatty acids (the primary substrate utilized in myocardial energy 

production; (Kalra & Tigas, 2002; Sengenès, Zakaroff-Girard, & Moulin, 2002).   
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A more robust physiological model of HF was needed to account for the 

metabolic demands, both energetic and substrate, associated with the disease process and 

its progression. With systemic energetic measurement, one could measure total energy 

expenditure and its sub-components with great accuracy. What was unclear was the 

feasibility of taking these measures in the HF population and the development of an 

appropriate sampling strategy to account for metabolic variations found in the HF.  

The primary problem addressed in this dissertation study was the lack of any 

feasibility data on whole room indirect calorimetry in the HF population, along with an 

accurate description of systemic energy expenditure and substrate utilization in 

individuals with HF. The purpose of this dissertation research study, therefore, was to 

assess the feasibility of whole room calorimetry in patients with HF by assessing for 

potential differences in systemic energy expenditure and substrate utilization between 

normal weight and obese individuals with HF.   

 

Significance 

The significance of studying systemic metabolism in patients with HF could be 

broadly viewed in terms of its significance to society, to the nursing profession, and to 

healthcare. 

 

Significance to Society 

 HF represents a significant burden to society through increased morbidity, 

mortality, and healthcare costs. As of 2004, cardiovascular disease was present in over 80 

million U.S. citizens and resulted in approximately 869,000 deaths per year, of which 
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284,000 were related to HF (Rosamond et al., 2008). This disease has been the number 

one killer of Americans since 1900, with the singular exception of 1918 when the 

influenza epidemic occurred.   

Treatment aimed at avoiding mortality and improving quality of life during HF 

had an expected cost, both direct and indirect, of $34.8 billion in the United States in 

2008 (Rosamond et al., 2008). Following initial hospital admission for HF, patients were 

likely to have repeat hospitalizations: 2% within 2 days of discharge, 20% within 30 

days, and 50% within 6 months (Aghababian, 2002). Patients hospitalized for initial acute 

exacerbations of  HF had 1-year mortality rates of 33.1% (Jong, Vowinckel, Liu, Gong, 

& Tu, 2002) and 5-year mortality rates of 50%  (Aghababian, 2002). These mortality 

rates suggested that patients with HF may have mortality rates worse than patients with 

some cancers, including cancers of the breast, bowel, and ovary (Stewart, MacIntyre, 

Hole, Capewell, & McMurray, 2001). Therapy in HF has been focused on slowing the 

loss of the patient’s functional limitations and on decreasing mortality. Therefore, 

because of the mortality rates and the substantial costs associated with treatment, HF has 

become a significant healthcare issue to society.  

The incidence of HF has also been steadily rising since the 1980s, currently 

accounting for more than 1 million hospital admissions annually in the United States 

(Rosamond et al., 2008). Internationally, the World Health Organization reported that one 

third of global deaths were attributed to cardiovascular disease, including  HF  ("Strategic 

priorities of the WHO Cardiovascular Disease programme.," 2008). This increasing rate 

could have a massive economic impact in many countries. For example, over the 10-year 

period 2006–2015, China could lose an estimated $558 billion in national income related 
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to cardiovascular disease morbidity and mortality ("Strategic priorities of the WHO 

Cardiovascular Disease programme.," 2008). One of the current goals of the World 

Health Organization Task Force on Cardiovascular Disease, a program aimed at the 

prevention, management, and monitoring of cardiovascular diseases, has been the 

development of cost effective healthcare innovations for the treatment of cardiovascular 

disease, including HF.   

 

Significance to the Nursing Profession 

 As discussed previously, cardiovascular disease has been rapidly increasing 

throughout the world. The majority of these cases will ultimately result in 

cardiomyopathies, initiating the clinical syndrome of HF, a symptomatic, progressive 

condition that ultimately results in the patient’s death. HF will also be the cause of a 

significant amount of suffering among patients and families. As a profession whose 

primary goal is intervention for the reduction of human suffering, nurses will find cardiac 

disease and subsequent HF to be the primary focus of future clinical interventions.  

 Identifying specific clinical interventions to reduce or halt the progression of HF 

could be extremely difficult. Because HF is a complex syndrome that has yet to be fully 

described in a physiologic model adequate for predicting disease progression, 

identification of pathways to slow progression has been difficult. Expansion of the 

physiologic model to include factors such as metabolic dysfunction in HF might result in 

identification of new clinical interventions. In particular, nutritional therapy, a 

distinguishing feature of the nursing profession since the time of Nightingale 
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(Nightingale, 1992), might be a low-cost, efficacious target for HF intervention 

development.   

 Cardiovascular nurses (in particular, advanced practice nurses) are in a unique 

position to affect the outcomes of HF patients. Over the past decade, the management of 

complex chronic diseases, including HF, has been increasingly shifted to nurse-led clinics 

(Grady et al., 2000). Although a combination of pharmaceutical management and 

individualized symptom management is helpful in slowing HF disease progression, 

nurses have been limited by the lack of evidenced-based nutritional interventions for this 

population (Lennie, 2008).     

 

Significance to Healthcare   

An improved understanding of the metabolic changes associated with HF might 

yield a variety of potential clinical interventions for HF patients. Potential areas for 

advances based on an improved understanding of systemic metabolic changes in HF 

include (a) the development of nutritional guidelines for HF patients, (b) an improved 

clinical definition of cardiac cachexia, and (c) a method to measure systemic 

compensatory efforts during HF. At this time, no comprehensive nutritional guidelines 

for the care of patients with HF have been found (Lennie, 2008) 

Studies indicated variations in body composition during HF are strongly related to 

long-term survival. Cardiac cachexia, the wasting state often associated with late stage 

HF, was associated with a marked increase in mortality of 50% in 18 months Conversely, 

overweight or obese patients had a significant survival improvement over normal weight 

HF patients (Oreopoulos et al., 2008). Although these body composition classifications 
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were associated with survival in HF, little information was found about the specific 

macro- and micro-nutrient requirements for individuals with HF. With information 

regarding the specific energetic needs and nutrient needs during the course of HF, 

nutritional guidelines could be developed with the potential to optimize body 

composition-related survival.  

 During the course of chronic HF, changes in systemic metabolism often result in a 

state of chronic catabolism and generalized tissue wasting. This wasting process is 

currently defined as cardiac cachexia, referring to the cachexia found specifically in the 

chronic HF. Cardiac cachexia has been linked to the rapid progression of symptoms 

found in late-stage HF, with a subsequent increase in mortality to 50% in 18 months (S. 

Anker et al., 1997). According to the suggested definition of cachexia, one must sustain a 

non-edematous weight loss of at least 6% over the course of 6 months (Anker et al., 

2003). However, basing the diagnosis of cardiac cachexia on anthropometric changes, 

which require a significant amount of time to occur, often resulted in finding this 

systemic metabolic derangement late in its course. A better diagnostic definition might 

eventually be possible by using energy expenditure measurement and measurement of 

specific macronutrient utilization rates.   

The individual compensatory systems found during the course of HF have been 

previously described as including (a) the SNS; (b) the RAAS; (c) inflammatory/immune 

activation; and (d) the production of vasoactive proteins, such as endothelin. These 

systems act acutely to compensate for loss of perfusion in HF, but their chronic up-

regulation results in detrimental effects that negatively affect morbidity and mortality in 

late-stage HF. Although aspects of these compensatory actions can be measured, their 
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energetics have not yet been described.  Because these compensatory systems are energy 

dependent, one approach to describe the cumulative compensatory effects of these 

systems during HF could be longitudinal assessments of energy expenditure and substrate 

utilization rates. This approach might result in a more robust description of the systemic 

metabolic stress placed on individuals with HF over time and in valuable evidence for the 

use of medications to suppress the chronic pathologic effects of these compensatory 

systems.  

 Overall, a more robust understanding of the metabolic changes associated with 

HF could result in a variety of potential clinical benefits. Thus, by including evidence of 

systemic metabolic changes over time in the current neurohormonal model of HF, 

improved clinical interventions could be developed.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

Theoretical Framework 

Physiologic models of HF have evolved over the past 60 years. Early models were 

focused on fluid volume overload to explain the patient’s symptoms, such as fatigue, 

shortness of breath, edema, and general malaise. With one of the first modern models, the 

cardio-renal model, excessive sodium and fluid retention resulting from decreased renal 

blood flow and increased aldosterone, secondary to loss of cardiac contractility, were the 

primary causes of symptoms (Packer, 1992). Consequently, diuretic therapy was used to 

reduce fluid volume overload and related symptoms. Although this model explained 

some of the relationships between volume overload and symptoms, it could not be used 

to explain the continued progression of HF with diuretic treatment.    

 With the advent of right heart catheterization and echocardiography, an increasing 

interest in the hemodynamic alterations of HF resulted in the expansion of this model into 

the cardiocirculatory model of HF. This model served to augment earlier frameworks by 

including reduced cardiac output and peripheral vasoconstriction as central elements of 

the physiologic processes associated with HF symptoms. Several pharmacological 

treatment strategies suspected of improving symptoms and reducing mortality were tested 

under this model, including cardiac inotropes and vasodilators. Of particular interest was 

the development of various inotropic support agents, including milrinone, enoximone, 

imadzodan, vesnarinone, xamoterol, and ibopamine. Many of these agents were found to 
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significantly improve HF symptoms, although progressive testing revealed unexpectedly 

that all the agents resulted in increased mortality (J. N. Cohn et al., 1998; J. N. Cohn & 

Johnson, 1990; CONSENUS:Investigators, 1987; DiBianco et al., 1989; 1990; Hampton 

et al., 1997; O'Connor et al., 1999; Packer et al., 1991; Pfeffer et al., 1992; Uretsky et al., 

1990; Yusuf, 1991; Yusuf et al., 1992).   

A variety of other agents were tested for their potential benefits in HF, including 

beta-adrenergic blockade, suppressors of the RAAS, and diuretic therapies. Angiotensin 

converting enzyme inhibitors and beta- adrenergic blockers were found to improve 

symptoms and to dramatically reduce HF-associated mortality (CIBIS-II:Investigators, 

1999; Colucci, 2004; CONSENUS:Investigators, 1987; Fowler, 2004; Packer et al., 1996; 

Pfeffer et al., 1992; Yusuf et al., 1992). Although these agents appeared to be beneficial 

in lowering mortality rates, the cardiocirculatory model was insufficient to explain the 

benefits of these agents. 

 Currently, the study of the HF pathophysiology has been focused on the 

neurohormonal model (Francis, 2001; Packer, 1992). In this model, the heart is viewed as 

having two distinct but interrelated functions. First, as conceptualized in the 

cardiocirculatory model, the heart is a muscular pump used to distribute blood. Second, 

the heart is an endocrine organ with specific homeostatic functions that interact with 

other physiologic systems to compensate for short-term depressed cardiac function. 

Discoveries in the early 1980s indicated that the heart also functioned to mediate a 

variety of physiologic functions by producing neurohormones that have physiologic 

effects at sites outside of the heart. Essentially, in this model, the heart is viewed as 

having a key role in hormone production and homeostatic regulation.   
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The Neurohormonal Model of Heart Failure 

 In the neurohormonal model, HF is conceptualized as a syndrome of activated 

neurohormonal systems following an initial myocardial injury (Anker & Al-Nasser, 

2000; Packer, 1992; Tziakas, Chalikias, & Xateras, 2003). Although this model is 

inclusive of the known hemodynamic alterations of HF, it has been expanded to include 

the neurohormonal changes associated with both acute and chronic HF. These 

neurohormonal alterations are part of normal physiologic compensatory mechanisms. 

However, when activated during HF, these physiologic compensation mechanisms 

adversely affect the progression of HF. 

 These competing compensatory mechanisms are up-regulated by decreased 

cardiac output and tissue perfusion resulting from the cardiac injury. When these 

mechanisms activate, they result in preservation of blood flow and organ perfusion. 

Nonreversible myocardial damage results in chronic up-regulation of these 

neurohormonal mechanisms, leading to further progression of the disease. The primary 

neurohormonal compensatory mechanisms include the following (Tziakas et al., 2003): 

(a) SNS activation, (b) RAAS activation, (c) inflammatory/immune activation, (d) 

endothelin production, and (e)  natriuretic peptide secretion. 

These systems are up-regulated during periods of low cardiac output and low 

tissue perfusion to provide short-term compensation to increase cardiac output and organ 

perfusion. In cases of nonreversible chronic decreases in cardiac output, these systems are 

activated over long periods of time and adversely affect hemodynamics and myocardial 
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function. For further clarity, each of these systems has been discussed within the context 

of the neurohormonal model of HF.  

Sympathetic nervous system activation. As discussed previously, the SNS is 

chronically stimulated in patients with HF with long-term detrimental effects (Hasking et 

al., 1986; Kaye et al., 1995). Studies from the 1960s revealed that urinary and serum 

norepinephrine (i.e., measures of SNS activation) are increased in individuals with HF 

and are positively associated with symptom severity (Chidsey, 1962; J. N. Cohn et al., 

1984). Early in states of decreased cardiac output, the increased level of circulating 

norepinephrine is compensatory, resulting in increased cardiac output through 

chronotropic and inotropic responses while shunting blood from the periphery to the 

central circulation for increased organ perfusion. As the HF syndrome progresses, the 

RAAS is activated by the increased sympathetic stimulation, resulting in sodium and 

water retention that effects increased intravascular volume. Long-term sympathetic 

stimulation also results in cardiac myocyte hypertrophy, apoptosis, and necrosis (Gerdes 

& Capasso, 1995; McGavock, Victor, Unger, & Szczepaniak, 2006; Pfeffer & 

Braunwald, 1990). This long-term stimulation paradoxically results in down-regulating 

the beta-adrenergic receptors, in particular the beta-1 receptors, which can result in 

myocardial electrical and mechanical dysfunction. These processes effect further 

increases in sympathetic stimulation over time (Anversa, Olivetti, & Capasso, 1991; 

Pfeffer & Braunwald, 1990).  

 Renin-angiotensin-aldosterone system activation. Activation of the RAAS results 

in fluid retention and altered systemic hemodynamics when renal perfusion is low. 

Specifically, intravascular fluid volume is increased through aldosterone-dependent water 
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retention; and renal perfusion is increased through arterial vasoconstriction and 

sympathetic stimulation. A long-term reduction in renal perfusion results in (a) increased 

progressive fluid retention and (b) increased systemic vascular resistance. The effect of     

continued increased intravascular fluid volume is increased intravascular hydrostatic 

pressure with resultant pulmonary and peripheral edema. The effect of increased systemic 

vascular resistance is an increased left ventricular workload.   

 RAAS activation results in the production of angiotensin II, a potent systemic 

vasoconstrictor and efferent renal arteriole constrictor. The effect of this vasoconstriction 

is increased cardiac preload and afterload. At the renal efferent arteriole, the effect is an 

increased glomerular filtration rate and increased sodium reabsorption in the renal 

tubules. This vasoconstriction results in increased systemic blood pressure and increased 

vital organ perfusion, while increasing glomerular filtration. Increased levels of 

circulating angiotensin II present over long periods of time yield deleterious effects on 

the heart through increased filling pressure and increased workload. Along with cardiac 

effects, prolonged exposure to elevated levels of angiotensin II also results in afferent 

renal arteriole constriction, which effects a marked reduction in glomerular filtration rates 

over time and ultimately in renal failure (Ferrari, Ceconi, Curello, & Visioli, 1998; 

Schrier & Abraham, 1999).  

Further prolonged RAAS activation, with subsequent angiotensin II production, 

results in considerable cardiac consequences, including cardiac remodeling. Chronically 

elevated levels of angiotensin II have been linked to cardiac myocyte hypertrophy, 

apoptosis, necrosis, and stimulation of cardiac fibroblasts. The cumulative effects of these 

pathways is progressive myocardial remodeling that furthers the progressive dysfunction 
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of HF (Anversa, Olivetti, & Capobasso, 1991; Gerdes & Capasso, 1995; Pfeffer & 

Braunwald, 1990; Schrier & Abraham, 1999).  

Inflammatory/immune activation. HF is a state during which significant immune 

and inflammatory activation occurs (S. D. Anker & S. von Haehling, 2004; Mann, 2002; 

Torre-Amione, 2005). Much of this activation is subsequent to the initial myocardial 

injury that eventually results in HF symptoms. Previous research studies were focused on 

a variety of pro-inflammatory cytokines and their soluble receptors. Cytokines are a class 

of proteins used for intercellular communications in the cellular immune response. In 

particular, cytokines are produced by activated macrophages and mediate the systemic 

inflammatory response.   

Currently, three competing hypotheses have been formulated to explain the source 

of potential antigens that initiate the immune response during HF (S. Anker & S. Von 

Haehling, 2004). According to the first hypothesis, tissue injury secondary to loss of 

cardiac output occurring at both the myocardium and peripheral tissue is responsible for 

immune activation. According to the second hypothesis, because of the significant bowel 

wall edema found in HF, lipopolysaccharides cross this barrier, translocating into the 

intravascular compartment where an immune response is initiated. Lipopolysaccharides 

are a strong endotoxin naturally produced in the cell wall of gram-negative bacteria. 

According to the third hypothesis, the myocardium may actively produce cytokines in 

response to prolonged sympathetic stimulation without a specific antigen present. 

Although several potential explanations exist for the potential activation of the 

immune/inflammatory response via antigen introduction or physiologically, no clear 
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identification of the source of this activation has yet been found. Each of these 

hypotheses might have a role, or some undiscovered phenomenon could be responsible.   

Several key cytokines have been found to have roles in the pro- and anti-

inflammatory responses associated with HF. The pro-inflammatory cytokines include 

tumor necrosis factor-alpha, interleukin-1, interleukin-6, and interferon-γ; the anti-

inflammatory cytokine is interleukin-10 (Sharma, Coats, & Anker, 2000; Zhao & Zeng, 

1997). The pro-inflammatory cytokines have been found capable of exerting a deleterious 

effect on the myocardium through inducing myocardial hypertrophy, apoptosis, and loss 

of inotropy via disarrangement of the myocardial extracellular space (Yokoyama et al., 

1993). However, although the outcomes for cytokine production occurring in HF are 

identified, much of the specific pathophysiology has remained unknown.  

Endothelin production. Endothelins are a family of peptides produced by the 

vascular endothelium that have potent vasoconstrictor and mitogenic properties. 

Circulating plasma endothelin concentrations have been shown to be elevated in HF and 

to be associated with symptom severity (Cody, Haas, Binkley, Capers, & Kelley, 1992; 

Pacher et al., 1996). Endothelins are produced primarily by the vascular endothelium and 

are the cause of peripheral vasoconstriction, which results in increased preload and 

afterload. At the renal arteriole bed, endothelins are the cause of renal constriction, 

resulting in sodium and water retention. Along with peripheral vasoconstriction, 

endothelins have been shown to cause severe pulmonary vasoconstriction, which results 

in increased right ventricular afterload and pulmonary hydrostatic pressure (Cody et al., 

1992; Tsutamoto et al., 1999). Besides these hemodynamic effects, long-term endothelin 

production has been found to have direct deleterious effects on the myocardium, 
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including cardiac myocyte hypertrophy, myocardial fibrosis, and extracellular matrix 

disarrangement (Schrier & Abraham, 1999).   

Natriuretic peptide release. In 1981, DeBold et al. were able to potentiate 

natriuresis and hypotension when the supernatants of Sprague-Dawley rats’ atrial and 

ventricular cardiac tissues were administered intravenously in other Sprague-Dawley rats. 

This initial discovery resulted in the formation of the neurohormonal model of HF 

because it showed that cardiac tissues contained hormones capable of producing systemic 

and local biological activity.    

Three natriuretic peptides have been identified in humans: atrial natriuretic 

peptides (produced in the atrial myocardium), brain-type natriuretic peptides (produced in 

the ventricular myocardium), and C-type natriuretic peptides. These neurohormones have 

several specific mechanisms, including (a) an increased glomuler filtration rate from 

efferent renal arteriole constriction and afferent renal arteriole dilation; (b) reduced 

sodium reabsorption with resultant natriuresis; (c) inhibition of the RAAS secondary to 

inhibition of renin secretion; (d) inhibition of aldosterone secretion, thereby increasing 

natriuresis; (e) inhibition of endothelin-1, resulting in pulmonary artery dilation; and (f) 

systemic vasodilatation. The effects of these actions are decreased systemic vascular 

resistance, reduced preload, reduced afterload, reduced cardiac workload, and increased 

cardiac output.  

In addition to these systemic neurohormonal effects, the cardiac natriuretic 

peptides appear to have direct effects on the myocardium. These agents appear to have 

anti-mitogenic properties that counteract myocyte hypertrophy and inhibit fibrosis 

through reducing the number of fibroblasts in the myocardium (Calderone, Thaik, 
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Takahashi, Chang, & Colucci, 1998; Cao & Gardner, 1995; Pfeffer & Braunwald, 1990).  

These effects result in anti-remodeling of the injured ventricular myocardium.  

The discovery that cardiac hormones appear to have a role in the metabolic 

processes of adipose tissue (Sengene, Berlan, Glisezinski, LaFontan, & Galitzky, 2000) 

has been of particular interest, suggesting that the heart may have a role in modulating 

systemic metabolic processes. Overall, the natriuretic peptide system appears to down-

regulate many of the compensating systems, such as the SNS, the RAAS, and 

inflammatory markers, for periods of reduced cardiac output under normal conditions. 

 

Systemic Bio-Energetics of Heart Failure  

 The neurohormonal model of HF contains several compensatory systems that 

interact over the course of HF. As described previously, many of these systems affect 

short-term compensation for decreased cardiac output and organ perfusion. However, 

when activated over long periods of reduced cardiac output, these systems result in direct 

end-organ damage. Of benefit is the ability of this model to explain patients’ continued 

progression of HF independent of therapies that are inhibitors specific neurohormonal 

systems, such as beta-adrenergic blockers and agents that suppress the RAAS. 

 One of the interesting implications of this model is its potential to affect a variety 

of local and systemic metabolic pathways. For example, the compensatory systems 

discussed previously are all energy dependent in that significant energy expenditure is 

required in their activation and subsequent response. However, this energy dependence is 

secondary to the work achieved by each of the compensatory systems. Although the work 
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accomplished by these physiologic systems is described very well, the quantification of 

the energy utilized in this process has not yet been fully described.    

 Previous studies indicated increase body temperature, a surrogate marker of 

increased metabolism, throughout the course of HF (A. E. Cohn & Steele, 1934; Kinsey 

& White, 1940; Steele, 1934). These studies revealed the clearest evidence for increased 

energy production rates, possibly related to the increase in energy expenditure associated 

with these multiple compensatory systems. Although this is indicative of an energy 

production increase, the net energy expenditure has not yet been fully described and 

quantified. Therefore, one might reasonably assume that chronic activation of these 

systems, as indicated in the neurohormonal model of HF, will result in increased energy 

requirements both at the local tissue and systemic levels.    

Although systemic energy expenditure appears to be increased in HF, 

consideration should be made for the increased energy expenditure of each of the 

activated physiologic compensatory systems. For example, in a study from 1922, 

researchers attempted to determine the energetic impact of immune activation (Barr, 

Russell, Cecil, & Du Boise, 1922). The results indicated that an increase of one degree 

centigrade in body temperature, initiated with the injection of protease or typhoid 

vaccine, was equal to an increase in basal energy expenditure of 7%–13%. This study 

was the last human study conducted to attempt to quantify the energetic impact of 

immune activation. However, although humans were understudied, the results of studies 

using animal models indicated that immune activation is clearly an energy dependent 

process (Bonneaud et al., 2003; Demas, Chefer, Talan, & Nelson, 1997; Sheldon & 

Verhulst, 1996).    
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 The SNS has a role in maintenance and regulation of exchanges of energy, both 

internally and externally (Recordati, 2003). In compensating for the reduced perfusion in 

HF, cardiac chronotropic and inotropic effects increase substantially. These effects result 

in an increased energy demand secondary to an increased myocardial workload (Suga, 

1990). Overall, the net effect is an increase in cardiac energy expenditure that, when 

paired with a lack of available substrate, results in worsening cardiac function (Ashrafian, 

Frenneaux, & Opie, 2007).  Clinically, this might explain the association of beta-

adrenergic blockade with substantial reductions in resting metabolic rate and some of the 

morbidity and mortality benefits of the drug in HF (Podbregar & Voga, 2002).  

 The SNS, RAAS, and ET endothelin all result in the constriction of vascular 

smooth muscle, ultimately to regulate blood flow and pressure. Vascular smooth muscle 

has a substantial metabolic demand because continued augmentation of muscular tone is 

necessary to deal with moment-to-moment variations in blood pressure and flow (Barron, 

Kopp, Tow, & Parrillo, 1996; Butler & Siegman, 1985). Thus, one might reasonably 

suspect that the chronic up-regulation of these systems results in chronic elevations in 

systemic energy demands.    

One might also reasonably view the natriuretic peptide system not only as the 

cardiac regulatory system handling alterations in systemic hemodynamics but also as the 

system to provide needed substrate and energetic control during myocardial stress. This 

could be accomplished through free fatty acid liberation directly via lipolysis (Birkenfeld 

et al., 2005) or through down-regulating the workload of these systems, as previously 

discussed. When the heart is under acute stress, a shift occurs resulting in free fatty acid 

being used as the primary energy substrate, followed by carbohydrates (Goodwin et al., 



   

21 
 

1998). However, little has been learned about cardiac metabolism during chronic long-

term cardiac stress. Hypothetically, a substrate utilization shift to utilization of fat might 

be a way to compensate for the long-term increased metabolic demands of these 

compensatory systems.   

Thus, the neurohormonal model of HF could be expanded to include a number of 

predicted pathways for increased EE and reduced energy intake. In this expanded model, 

a bio-energetic model of HF (Figure), the potential relationships between energy 

expenditure and the activated compensatory systems as previously discussed have been 

clarified. Previous work showed that later-stage HF results in decreased nutritional intake 

from psychosocial conditions and increased gut edema (Lennie, 2008; Pirlich, Norman, 

Lochs, & Bauditz, 2006; Stephan von Haehling, Doehner, & Anker, 2007; Witte & Clark, 

2002). Ultimately, this model could be used to predict elevated expended energy and 

reduced nutrient intake in HF patients that result in massive systemic energy deficiencies. 

Such deficiencies could be the reason for the rapid progression of HF in later stages and 

could have implications in the development of cardiac cachexia (S. D. Anker et al., 

1997). Accurate systemic level measurement could also be of assistance in the 

identification of these pathways and in the development of a HF model capable of 

predicting a patient’s substrate and energetic needs.   
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Figure. A bio-energetic model of heart failure. 
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Critical Analysis of Relevant Literature 

Most current understandings of systemic metabolic processes occurring during 

HF have come from a variety of research studies focused on the measurement of systemic 

energy expenditure. Hood-based indirect calorimetry was first used in 1994 to study the 

differences in energy expenditure in patients with HF versus healthy subjects. Measured 

resting energy expenditure, calculated from a 45-minute period of gas exchange, was 

found to be 18% higher in patients with HF than in healthy subjects (1828+/- 275 kcals/d 

vs. 1543+/- 219 kcals/d), although no significant difference in caloric intake was noted 

between groups on a 3-day nutritional intake record (Poehlman, Scheffers, Gottlieb, 

Fisher, & Vaitekevicius, 1994). Differences in energy expenditure were more pronounced 

when energy expenditure was indexed against fat-free mass from dual x-ray 

absorptiometry. As fat-free mass increased, a strong, positive, linear correlation with 

energy expenditure was shown. This finding suggested that although fat mass has a role 

as an energy store, an increased basal metabolic rate is required to maintain an increased 

fat mass.     

  In 1997, Toth, Gottlieb, Fischer et al., attempted to use dually labeled water to 

measure energy expenditure in comparing cardiac cachexia patients to non-cachexic 

patients and healthy controls. Initial resting energy expenditure (REE; via hood-indirect 

calorimetry measured via gas exchange over 45 minutes) and dual energy x-ray 

absorptiometry (DEXA) for body composition also were completed. The study indicated 

no statistically significant short-term differences in REE between patients with HF and 

those without HF, including those patients with cachexia (Toth, Gottlieb, Goran, et al., 

1997). These findings differed from those in previous studies that suggested increased 
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energy expenditure in HF. Because this study was cross-sectional and was based on a 

small sample size (N = 75), drawing conclusions regarding energy expenditure 

throughout HF progression was difficult. However, the findings appeared be in contrast 

to previous energy expenditure evaluations within HF.  

Calorimetry based research was expanded with the use of a free fatty acid 

assessment in 1998. In a small study of patients with HF (N = 7) and healthy controls (N 

= 7), Lommi, Kupari, and Yki-Jarvinen (1998) attempted to quantify the differences in 

energy expenditure and free fatty acid concentration. The results revealed corroboration 

for the results of previous studies, confirming the increase in energy expenditure 

associated with HF. In this study, free fatty acid concentrations were found to be 

significantly higher in patients with HF, along with N-terminal-pro-B-natriuretic peptide 

levels. Although unknown at the time of publication, the findings were confirmation of 

the role of NPs in up-regulating fat metabolism (increasing free fatty acid). 

In 2003, Acquilani et al. looked at the energy and nitrogen balance between non-

obese subjects with HF and normal weight controls. By estimating total energy 

expenditure from REE (measured by metabolic cart) and comparing it to subjects’ dietary 

records, they found a lack of appropriate caloric and protein intake to match daily needs. 

When direct measures of REE were assessed, although the methodology of this 

measurement was not described, significant differences were found between HF and 

control subjects matched by age, body mass index (BMI), and sedentary lifestyle 

(1499±228 kcals vs. 1309±315 kcals [p < 0.05], respectively; (R. Aquilani et al., 2003). 

Although the results from this study suggested increased protein and energy needs in 

patients with HF, they were limited by the accuracy of the metabolic measurement 
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techniques. In particular, metabolic measurements were averaged over a 60-minute 

period using metabolic carts and were transformed into total energy expenditure rates for 

a 24-hour period. Regardless, the results of this study still suggested that many HF 

subjects may be calorie and protein deficient.  

More recently, a small study of eight patients with ischemic HF versus controls 

indicated that patients with HF had decreased rates of glucose oxidation and increased fat 

oxidation. However, no differences in resting energy expenditure were revealed over a 

25-minute period (Norrelund et al., 2006). Although this study was limited by its sample 

size, it did show some apparent differences in substrate utilization between patients with 

HF and healthy individuals that warrant further study.   

A variety of information in the literature suggested significant metabolic and 

inflammatory derangements are associated with HF and cardiac cachexia. These 

derangements have not been well described, primarily because of the accuracy and timing 

of instrumentation and lack of sufficient samples. Norrelund et al.’s (2006) and Acquilani 

et al.’s (2003) works, although limited by sample size and instrumentation, suggested 

potential differences in systemic substrate utilization and energy expenditure in patients 

with HF. The specific components of total energy expenditure used to identify basal 

energy expenditure, such as sleep energy expenditure and REE, have not yet been 

measured.  

Recent suggestions that obesity improving survival in HF has resulted in scientific 

interest in the study of metabolic changes associated with obesity and HF (Curtis et al., 

2005; Fonarow et al., 2007; Kalantar-Zadeh, Anker, Coats, Horwich, & Fonarow, 2005; 

Lavie, Osman, Milani, & Mehra, 2003). In 2001, Horwich, Fonarow, Hamilton, 
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MacLellan, Woo, and Tillisch described an unusual relationship between obesity and HF 

mortality, now referred to as the obesity paradox. Prior to this study, the presence of 

obesity as an independent risk factor for the development of cardiac disease, including 

HF, was well documented (Hubert, Feinleib, McNamara, & Castelli, 1983). Horwich et 

al. (1983) divided 1,203 patients enrolled in a comprehensive HF treatment program into 

four subsets based on BMI: underweight subjects (< 20.7), normal weight subjects (20.7 

to 27.7), overweight subjects (27.8 to 31), and obese subjects (> 31). Subjects also were 

matched within baseline characteristics so that patient weight was the primary difference 

between groups. The follow-up time for subjects in the study was 60 months. At the end 

of the follow-up period, data were analyzed and mortality rates determined for each 

group. Subsequent analysis revealed that subjects with high BMIs (i.e., the overweight or 

obese categories) did not display increased mortality. Instead, they showed  a trend 

toward improved 5-year survival (Horwich et al., 2001). Surprisingly, these investigators 

concluded that following a diagnosis of HF, obesity was not associated with increased 

mortality but appeared to improve survival rates. The authors speculated that this 

association might be related to obesity-associated alterations in a number of physiologic 

systems, including cytokine activation, global substrate utilization, and neuroendocrine 

alterations.  

 Horwich et al.’s (2001) study was followed by a subset analysis of the Digitalis 

Investigation Group (DIG) trial in which researchers looked at survival differences 

associated with BMI (Curtis et al., 2005). In the DIG study, the sample size was 

increased to 7,767 patients, more than 6 times larger than the sample in Horiwich et al.’s 

(2001) study. Also notable was that although the BMI categories in the DIG study were 
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similar to those in the earlier work, slightly different cutoffs for the subset groups were 

used. The DIG assigned patients to the following four groups: underweight  (< 18.5), 

healthy weight (18.5 to 24.9), overweight (25.0 to 29.9), and obese (> 30). Subjects were 

followed for 37 months, and hazard ratios (HR) were calculated for the final time point. 

Subjects who were overweight or obese had significantly less risk of death during follow-

up (HR = 0.88 [CI = 95%, 0.80–0.96] and HR = 0.81 [CI = 95%, 0.72–0.92], 

respectively) when compared to normal weight individuals (Curtis et al., 2005). This was 

consistent with an absolute risk reduction of almost 20% over 37 months. 

 A third study to examine obesity and HF was conducted in a European medical 

community. In 2003, Davos et al. reported results from their study designed to compare 

mortality rates between patients with cachexia (defined as “a state of incremental weight 

loss” [p. 29] associated with HF) and non-cachexic patients. The non-cachectic patients 

were divided into quintiles based on BMI. A total of 589 patients were followed 

prospectively for a total of 108 months. At the end of the follow-up, patients with BMIs 

in the 4th and 5th quintiles (20.7–26.9) appeared to have better survival rates. In fact, the 

4th quintile group had the better survival rates at both 1 year (relative risk of 0.91 [0.85-

0.96]) and 3 years (0.73-0.89) than those who were of normal weight. This prospective 

study appeared to confirm the results of previous retrospective studies that from a 

survival perspective, the “ideal” body weight for patients with HF is higher than that of 

the average population.    

In 2005, a large multi-site cohort study was published in which 2,707 U.S. 

patients identified as having a primary admitting diagnosis of HF were followed for 3 

years (Hall et al., 2005). Ejection fraction and admitting BMI were confirmed on the 
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initial hospital admissions. Patients were separated into four BMI quartiles:  < 24.3, 24.4–

28.5, 28.6–34.1, and  ≥ 34.2. At the 3-year time point, cohort quartiles were analyzed for 

mortality while controlling for age, gender, and disease severity. The analysis showed an 

approximately 18% absolute reduction in mortality for patients with BMI ≥ 34.2 

compared to the normal weight group.   

 The relationship between obesity and reduced HF mortality was suggested in all 

of these studies. Even though this relationship appeared to be well established, the 

underlying mechanisms associated with this phenomenon remained unidentified. 

However, researchers suspected systemic metabolism and inflammation were influenced 

by the role of adipose tissue in regulating and producing hormones (Bulcao, Ferreira, 

Giuffrida, & Ribeiro-Filho, 2006; Gualillo, Gonzalez-Juanatey, & Lago, 2007).  

 The studies (Curtis et al., 2005; Davos et al., 2003; Hall et al., 2005; Horwich et 

al., 2001) linking obesity and improved survival in HF suggested that by further 

understanding the metabolic processes that occur during HF, potential avenues may be 

revealed for the development of interventions to reduce mortality in patients with HF.  

Currently, no comprehensive guidelines exist for the nutritional support of patients with 

chronic HF. From a clinical perspective, determining what the appropriate nutritional 

recommendations for patients with HF should be has been difficult, especially in light of 

the apparent risk of developing HF once obese versus the survival benefit of obesity after 

developing HF. Clarification of the mechanisms driving this survival benefit could be 

useful in determining the appropriate interventions for patients with HF. 
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Indirect Calorimetry and Its Assumptions/Limitations 

There are two potential measurement strategies for the measurement of human 

macronutrient oxidation reactions, such as those comprising human macronutrient 

oxidation reactions, direct or indirect calorimetry. With direct calorimetry, one measures 

the heat of combustion during a particular reaction, a technique that is well suited for the 

basic science assessment of the caloric values of specific chemical reactions. Although 

direct calorimetry of human subjects is possible (ie… thermography)  via direct measure 

of heat production over time, these measurements are technically difficult to obtain and 

are prone to error. Thus, indirect calorimetry is currently the accepted method for the 

measurement of biologic oxidation and free energy production in clinical research 

subjects (Akohoue et al., 2007; Buchowski, Chen, Byrne, & Wang, 2002; Denne, 2001; 

Greco et al., 1998; Neyra et al., 2003; Treuth, Hunter, Weinsier, & Kell, 1995). Although 

Lavoisier’s discovery that oxygen and carbon dioxide have major roles in respiration, 

Weir (1949) demonstrated it was possible to calculate energy production by measuring 

oxygen and carbon dioxide quantities in the difference between inhaled and exhaled air.  

Used in a number of clinical populations, this whole-room technique has not yet been 

used in HF. 

Direct calorimeters were used early in the development of calorimetry techniques 

to provide measures of heat production over time. With these devices, either a heat sink 

method or direct thermography is employed. However, neither application is well suited 

for clinical application. The construction and adequate temperature controls necessary for 

a large scale heat sink (i.e., submersion of chamber in water) for human calorimetry are 

difficult to accomplish, and thermography is overly complex because multiple internal 
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(i.e., typically esophageal and rectal catheters) and external temperature probes are 

needed over time to calculate energy expenditure. Therefore, although changes in 

temperature can be measured, the response time of direct systems can be slow (Seale, 

Rumpler, Conway, & Miles, 1990; Walsberg & Hoffman, 2005).  

Indirect calorimeters are now available in two configurations: metabolic carts, 

which are small, portable systems; and whole room indirect calorimeters, which are large 

chambers contained within a hospital-type room. These large indirect calorimeters can be 

validated and calibrated with the combustion (oxidation) reaction of a substance with a 

known caloric value, or mixed gas infusion technique. They are currently the most 

accurate systems for measuring energy expenditure 

A variety of limitations and assumptions must be considered when using indirect 

calorimetry and its necessary stoichemetric calculations of substrate utilization and 

energy production (Ferrannini, 1988; Swyer, 1991). The first assumption is that the 

quantities of oxygen consumed and carbon dioxide produced can be measured accurately 

and reliably over a given period of time. Indirect calorimeters are often validated and 

calibrated for accuracy and reliability using these two primary techniques. In the first, the 

oxidation of a given amount of a particular substance with a known specific heat is 

recorded in the calorimeter and compared to known values. This technique, originally 

described by Barrett and Robertson in 1937, can be used to test the calorimeter against a 

substance with a known oxygen consumption and carbon dioxide production rate. In the 

second, a gas infusion technique can be used to evaluate response time and gas analyzer 

accuracy (Moon, Vohra, Jimenez, Puyau, & Butte, 1995). This technique involves the 

infusion of N2 and CO2 gas. Currently, these techniques are used for the calibration of 
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metabolic chambers and to assess the accuracy of a particular chamber prior to metabolic 

assessment.    

The second assumption is that the stoichiometry of each of the substrate equations 

remains fixed. In other words, the ratio of oxygen consumption (VO2) and carbon dioxide 

production (VCO2) remains the same for each of the substrates during the entire period of 

measurement. This is of particular concern for protein oxidation because some variations 

in protein waste and protein energy production may occur during periods of catabolism. 

In this system of equations, the ratio of protein used in energy production versus that 

wasted is assumed to remain constant.    

The third assumption is that no anaerobic metabolism occurs. Because complete 

anaerobic metabolism is not compatible with human life, this assumption is of little 

concern. Although some anaerobic metabolism does occur in the gut, with the subsequent 

production of methane, it is assumed to be negligible in this system of metabolic 

measurement.    

 The final assumption is that no unusual metabolic substrates exist in the system at 

the time of measurement. Specifically, alcohol and ketones can be metabolized, if 

available, and have different free energy production values than the substrates noted 

previously, resulting in inaccurate substrate utilization rates and energy expenditure. 

Alcohol is excluded as a metabolite by controlling the subject’s intake. Ketone 

metabolism can be excluded by excluding subjects with insulin resistance and diabetes.  

As with many physiologic measurements systems, indirect chamber calorimeters 

have the advantage of being tested against a known substance for the purposes of 

calibration. These systems are calibrated by combusting a known weight of ethanol 
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(∆𝐺𝐸° = −7.064 𝑘𝑐𝑎𝑙
𝑔

) and measuring the VO2 and VCO2. Then the non-protein corrected 

Weir equation is used to determine the energy released in the combustive reaction. 

Because the actual free energy released from a gram of ethanol is known, a comparison 

between an actual energy released value and the calculated energy released can be made 

via the Weir equations. Although this is the basic procedure for testing and calibrating all 

indirect calorimeters, the combustive substance is not restricted to ethanol. Any substance 

that fully combusts and has a known free energy value can be used.   

 Although a variety of pragmatic issues surrounding indirect chamber calorimetry 

exist, it has remained the gold standard for measurement of systemic substrate utilization 

and subsequent energy production (Ferrannini, 1988; Sun, Reed, & Hill, 1994). Because 

of this gold standard of accuracy and the ability to measure metabolism over periods of 

several hours to several days, whole-room indirect calorimetry is the ideal instrument for 

the initial physiologic measurement of systemic energy utilization during a disease state.  

 

Specific Aims and Hypotheses 

Based on a synthesis and understanding of the extant literature on systemic 

metabolic factors in HF, the following specific aims and hypotheses were examined in 

this dissertation research study: 

Specific Aim 1: To determine the feasibility of 24-hour indirect calorimetry 

measurement in the HF population, including the assessment of obese and non-

obese patients with HF.  

Specific Aim 2: To assess energy expenditure and substrate utilization in obese 

and non-obese HF patients.  
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Research Hypothesis 1: There will be a difference in 24-hour daily average 

resting energy expenditure (REE; kcal/min/kg of lean mass) between obese and 

normal weight patients with ischemic HF.  

Research Hypothesis 2: There will be a difference in average 24-hour resting 

respiratory quotient (RQ) between obese and normal weight patients with 

ischemic HF.   
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CHAPTER III 

 

METHODS 

 

Design 

 In this study, a descriptive, quasi-experimental, nonequivalent groups design was 

used to examine the feasbaility of whole-room indriect calorimtery and to asssess 

potential energy expenditure and substrate utilization differences between obese patients 

with HF and those without HF.     

 

Rationale and Specific Aims 

Despite advances in the medical treatment of HF, little has been learned about the 

systemic metabolic factors associated with the disease. Failure to understand mechanisms 

linking altered systemic metabolism with poor HF outcomes has been the major reason 

metabolic interventions have not been developed and tested. The purpose of this 

dissertation research study, therefore, was to test the feasibility of using whole-room, 

indirect calorimetry to measure systemic metabolic function in patients with HF. 

Examining systemic metabolic function and energy substrate utilization in patients with 

HF might result in further clarification of the energy-dependent processes associated with 

disease progression in this population and, thus, should be rigorously examined using 

highly precise instrumentation.  

The original specific aims in this study were to describe potential differences 

between obese and normal weight patients with HF with respect to both energy 
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expenditure and macronutrient utilization. Evidence from previous research suggested a 

potential survival benefit for obese patients with HF compared to patients of normal 

weight. Although fatty acid oxidation is known to be an important source of energy for 

the myocardium, understanding the differences in the number of calories burned and 

substrates (i.e., fat, protein, or carbohydrate) being used could reveal the reason obese HF 

patients appear to have better survival. However, modifications to the protocol and to the 

specific aims were made due to circumstances encountered once the study was begun.  

Protocol Modification   

Over a 10-month recruitment period, while the entire obese HF arm of the study 

was successfully recruited, only one subject was identified for enrollment in the non-

obese HF arm of this study. Based on an interim meeting with faculty advisors, the study 

was closed for further recruitment. A total of seven subjects consented to the study, with 

six subjects (five obese, one non-obese) completing the approved protocol. A single 

subject withdrew from the study due to inability to schedule the required Vanderbilt 

University General Clinical Research Center (GCRC) in-patient visit. 

 In lieu of using the planned non-obese HF group for comparison, historical 

control data collected from healthy obese subjects were accessed, identified, and 

analyzed. These de-identified control subjects had data maintained in the Vanderbilt 

University Energy Balance Laboratories database and were collected from healthy obese 

patients who had participated as control subjects in previous clinical research 

studies. These control data were obtained from studies in which measures identical to 

those used in this protocol were employed, including assessment of demographic factors, 

24-hour calorimetry measures, anthropometrics, and Dual-energy X-ray absorptiometry 
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(DEXA). The control subjects were healthy individuals, free from disease, who could 

perform activities of daily living independently and had no diet control prior to their 

whole-room indirect calorimeter measurement.  Five control subjects were matched to the 

five obese HF subjects on age range, gender, race and obesity class. The matched 

individuals from the control database met all exclusion criteria set for the obese arm of 

the study. Because of this matching process, comparisons between healthy obese subjects 

and obese subjects with HF could be performed. Thus, the total sample size for this study 

was 10 participants.  

Aim and Hypotheses Modifications 

Modifications were also required for Specific Aim 2 and both research 

hypotheses:  

Modified Specific Aim 2: To assess energy expenditure and substrate utilization 

between healthy obese individuals and obese patients with ischemic HF.  

Research Hypothesis1: There will be a difference in resting energy expenditure 

(REE; kcal/min/kg of lean mass) between healthy obese individuals and obese 

patients with ischemic HF.  

Research Hypothesis 2. There will be a difference in resting respiratory quotient 

(RQ) between healthy obese individuals and obese patients with ischemic HF. 

The purpose of these new hypotheses was to determine the potential effects of HF on 

REE and RQ in obese patients.  
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Protocol 

Obese patients with HF were admitted to the Vanderbilt University GCRC for a 

24-hour period. Prior to their stay, subjects filled out a 3-day dietary log (Appendix A). 

This log was evaluated for patterns of unusual substrate intake prior to the indirect 

calorimetry assessment. To develop the inpatient diet, the Mifflin-St. Jeor equation was 

used to calculate caloric needs of each subject (Mifflin et al., 1990). A standardized diet 

was then prepared using U.S. Department of Agriculture (Guidelines Advisory 

Committee, 2010) recommendations, which included a calorie distribution of 60% 

carbohydrates, 20% fat, and 20% protein. The diet also contained less than 3 grams of 

sodium per day per the sodium restriction guidelines of the Heart Failure Society of 

America (Lindenfeld J et al., 2010). Study subjects received a total of four meals, three 

during the 24-hour chamber stay and one the following morning prior to discharge. All 

meals were weighed before and after consumption to determine caloric and substrate 

intake during the chamber stay. Study subjects were asked to eat this specific diet but 

were not restricted if they requested other nourishment. During their GCRC stay, subjects 

were asked to bring their home medications, which they self-administered while in the 

calorimeter. 

 On arrival at the GCRC, subjects’ physical measurements, including height, 

weight, and abdominal girth, were obtained and DEXA scans were completed to 

determine each subject’s total amount of fat, protein, and bone. Subjects were then placed 

in the whole-room indirect calorimeter for 24 hours, where the oxygen used and carbon 

dioxide produced from the participant’s respirations were measured. Physical activity 

was measured during the indirect calorimeter stay using two GT3X ActiGraph tri-axial 
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accelerometers. The GT3X ActiGraph is an instrument designed to measure accelerations 

from 0.5 to 2.5 G, with each acceleration defined as a “count” with corresponding G 

amplitude. In earlier studies, ActiGraph accelerometers were validated against measures 

of energy expenditure, primarily through doubly-labeled water techniques with R ranging 

from 0.51 to 0.96 (Laporte et al., 1979; Melanson & Freedson, 1996; Plasqui & 

Westerterp, 2007). Of the commercially available accelerometry-based activity monitors, 

ActiGraphs have shown the best reliability (G coefficient = 0.64, SEM = 348; (Welk, 

Schaben, & Morrow, 2004)  

For this study, acceleration counts were used to measure the subjects’ physical 

activities. One GT3X ActiGraph was placed on the wrist of the subject’s dominant side 

and one on the hip of that side to allow for differentiation between whole body 

movements via the hip sensor and small, upper extremity movements via the wrist sensor. 

During their stay, subjects were asked to do some basic physical activities to assess 

physical activity energy expenditure (see Study Procedures).  

 

Inclusion/Exclusion Criteria 

The inclusion/exclusion criteria for this study were designed to be as inclusive of 

subjects diagnosed with ischemic HF as possible yet realistic within the context of a 

limited feasibility study. The following inclusion criteria were developed for the HF arm 

of the study: (a) 40–65 years of age at time of consent; (b)  diagnosed with ischemic HF;  

(c) New York Heart Association Functional Classification (NYHA) Class II or III; (d) a 

history of HF for more than 6 months; (e) ejection fraction on previous echocardiogram 

of less than 40%; (f) current therapy with angiotensin converting enzyme inhibitor (or 
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angiotensin receptor blocker) and beta adrenergic receptor blocker; and (g) a BMI of 18.5 

to 24.9 kg/m2for the normal weight group or  30.1 to 40 kg/m2 for the Class 1 and Class 2 

obese group. The following exclusion criteria were used: (a) female gender; (b) identified 

cardiac cachexia, defined as more than 6.0% euvolemic weight loss over a period of less 

than 6 months; (c) patients currently experiencing acute decompensated HF exacerbation 

per Heart Failure Society of America guidelines; (d) known diabetes mellitus; (e) known 

hypothyroidism, requiring thyroid replacement therapy; (f) current diagnosis of cancer; 

(g) alcohol intake 24-hours prior to entry to the metabolic chamber; (h) requiring 

assistance with activities of daily living; (i) inability to complete a dietary log prior to 

calorimetry measures; and (j) inability to lay supine for completion of DEXA scanning. 

 

Rationale 

 A variety of metabolic factors have been found to influence energy expenditure 

and substrate utilization (e.g., age, gender, and concurrent medical conditions). Because 

current epidemiologic trends indicated the age range of individuals diagnosed with 

ischemic HF is 40–65 years (Rosamond et al., 2008), this age group was selected for 

participation in this research study. Only obsese patients with HF and healthy obsese 

control subjects were included because the modified Specific Aim 2 in this study 

concerned assessment of the differences between these two groups. NYHA classification 

II or III was selected to exclude the actively decompensating patients within Class IV and 

the asymptomatic patients within Class I. Ejection fraction was selected to ensure all 

patients had systolic HF, with an ejection fractionless than 40%. A history of HF for 

more than 6 months was selected to ensure that chronic HF patients were enrolled, and 
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that they did not meet the definition of cachexia. Subjects were only enrolled if they had 

been prescribed appropriate HF regimes, including a RAAS inhibitor and beta-adrenergic 

blockers, to ensure a homogenous sample.  Because of the small sample size, inclusion 

criteria were developed to enhance the metabolic homogeneity of the sample.  

 Exclusion criteria were selected to eliminate subjects that might have altered 

metabolic needs and varied substrate utilization due to pathophysiologic states known to 

alter these measures. Women were excluded due to known changes in body composition 

associated with menopause, which is prevalent in female HF patients within the included 

age range (Ley, Lees, & Stevenson, 1992; Svendsen, Hassager, & Christiansen, 1995). 

Patients with known cardiac cachexia were excluded because they represented a 

metabolic extreme that was beyond the scope of this feasibility study. Patients with 

metabolic disorders known to influence energy expenditure and substrate utilization, 

including diabetes mellitus, hypothyroidism, and active cancer, also were excluded. 

Additional rationale for the exclusion of potential participants included (a) consumption 

of alcohol 24 hours prior to the 24-hour indirect calorimetry measure to ensure accurate 

RQ measures; (b) inability to perform activities of daily living safely in the calorimetry 

chamber by themselves; (c) inability to complete dietary logs to ensure accurate 

calorimetry measures; and (d) inability to lay supine for DEXA scanning.    

 

Enrollment 

 Study particpants were recruited from the HF program in the Vanderbilt Heart and 

Vascular Institute. Patients with Class 1 or 2 obesity (BMIs of 30.1–40 kg/m2) who were 

referred to the institute with a diagnosis of ischemic HF were approached by a clinical 
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nurse or physician while the patients were attending either initial appointments or follow-

up clinic visits to determine their interest in participating in the study. After a patient 

provided verbal consent to discuss the study, the primary investigator approached the 

patient to explain study procedures and to obtain informed consent.    

 

Study Procedures 

 The following procedures were employed during the study. Each of the 6 days 

involved for each patient have been described. 

Day 0. Following consent, the primary investigator completed a chart review to 

ensure that the participant met study criteria. If the participant was eligible and provided 

written consent, the individual was given the 3-day food diary to complete (Appendix A) 

starting the following morning. This food diary and accompanying instructions were 

designed to provide a record of what and when the patient ate prior to GCRC admission. 

Subjects scheduled their inpatient stay at the time of their consent and were instructed to 

return the food diaries on the dates of their calorimetry stays. 

The following data were collected from the participant’s electronic medical record  

on Day 0: (a) demographics (age and race); (b) weight at previous HF follow-up (6 

months +/- 1 month); (c) left ventricular ejection fraction on most recent echocardiogram; 

(d) concomitant medications; (e) past medical history to determine the presence of 

hypertension, previous coronary interventions, previous ischemic heart disease, diabetes 

mellitus, previous atrial fibrillation, previous cardiac arrest, previous metabolic disorder, 

history of permanent pacemaker or internal cardioversion device, chronic obstructive 
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pulmonary disease or emphysema, hyperlipidemia, chronic anemia, renal failure or 

insufficiency, and arthritis.  

 Days 1, 2, 3. Participants filled out their food diaries per instructions. Following 

Day 3, participants were asked to return their diaries at the time of their calorimetry stays. 

Participants were also asked to bring their medications with them and to be responsible 

for taking their own medications during their inpatient stays. 

Day 4. Day 4 was scheduled sometime within a month following consent. Table 1 

shows the schedule subjects followed on Day 4. On Day 4, the subject’s match with study 

inclusion/exclusion criteria was re-evaluated. After the subject’s study eligibility was 

reconfirmed, anthropometric measures and a DEXA scan were taken. The inpatient 

calorimeter 24-hour stay with assessment of physical activity was then initiated.  

Day 5. On this day, the last day of the protocol, subjects followed the schedule 

shown in Table 1. 

 

Food Diary Description 

During a 3-day period prior to entry into the whole-room indirect calorimeter, 

subjects maintained dietary logs of all the foods they consumed. These dietary logs were 

collected prior to the subjects’ admission to the Vanderbilt GCRC and were evaluated for 

patterns of food and fluid intake. The GCRC dietitian and kitchen were responsible for 

formulating a diet for each subject based on the guidelines described previously.  
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Table 1. Schedule for Days 4 and 5 of Study Protocol 

Time Activity 

Day 4 7:00 a.m. Check in at GCRC* and have body measures and DEXA scan taken 

 
8:00 a.m. Entry into Calorimeter: Sitting and resting (resting energy expenditure 

evaluation) 

 8:30 a.m. Breakfast 

 10:00 a.m. Free time 

 

10:30 a.m. Physical activity: sorting objects (10 minutes), shelf reach (10 minutes), writing 
by hand (10 minutes), laundry sorting (10 minutes), floor sweep (10 minutes), sit 
to stand (10 minutes). The duration of each activity was 10 minutes. Each 
activity was followed by a rest period of 10 minutes. Activity concluded at 12:30 
p.m. 

 12:30 p.m. Lunch 

 1:30 p.m. Free time 

 

3:00 p.m. Physical activity: sorting objects (10 minutes), shelf reach (10 minutes), writing 
by hand (10 minutes), laundry sorting (10 minutes), floor sweep (10 minutes), sit 
to stand (10 minutes). The duration of each activity was 10 minutes. Each 
activity was followed by a rest period of 10 minutes. Activity concluded at 5:00 
p.m. 

 5:00 p.m. Free time 

 5:30 p.m. Dinner 

 6:30 p.m. Free time 

 
9:30 p.m. Bedtime (subject’s preference). Chamber door opened; assistant enters and sets 

up bed.  

Day 5 6:00 a.m. Wake up 

 6:30 a.m. Sitting and resting (formal resting energy expenditure evaluation) 

 8:00 a.m. Exit calorimetry room 

 8:30 a.m. Discharge 

*GCRC = Vanderbilt University General Clinical Research Center 

  

Dual Energy X-Ray Absorptiometry Scan Description 

Body composition was measured using a GE Lunar DEXA scanner. The DEXA 

scanner is designed to use two X-ray energies to determine fat free mass, lean mass, bone 

mass, and percentage of body fat. Low-dose x-rays are passed through the subject to 
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determine body composition. The amount of x-ray exposure is less than that of a single 

chest radiograph. The scan takes approximately 15 minutes.  

 This technique was originally validated using ex-vivo water, muscle, and fat 

sampling. The original validation study revealed acceptable precision error (SD, CV) for 

each of the measures (i.e., lean mass, 1.4kg [6.4%]; fat mass, 1.1kg [3.1%]; (Haarbo, 

Gotfredsen, Hassager, & Christiansen, 1991). This technique also showed good test–

retest reliability. In a recent paper, researchers discussed three successive scans of normal 

controls that revealed almost perfect correlation between lean mass and fat mass (r = 0.99 

and r = 1.00, respectively; (Lohman, Tallroth, Kettunen, & Marttinen, 2009).     

For this study, each scan conducted took approximately 15 minutes. Each subject 

was required to lie flat on an x-ray table while the scan was performed. 

 

Whole-Room Indirect Calorimetry Description 

The Vanderbilt GCRC whole-room calorimeter is an airtight environmental room 

with an entrance door and an air lock for passing food and other items. To provide 

facilities for daily living and to bridge the difference between laboratory and free-living 

environments, the room has been equipped with a desk, a chair, an outside window, a 

toilet, a sink, a telephone, a TV/VCR, an audio system/alarm clock, and a fold-down 

mattress. Temperature, barometric pressure, and humidity of the room are precisely 

controlled and monitored. Oxygen consumption (VO2) and carbon dioxide production 

(VCO2) are calculated by measuring the difference in the content of oxygen and carbon 

dioxide from the air entering and exiting the chamber, and then accounting for the rate of  

purged air. 
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After hardware and software modifications, the whole-room indirect calorimeter 

has consistently shown the highest accuracy and fastest response time compared with the 

reported data for similar room calorimeters. Results from routinely performed ethanol 

combustion tests over past the 6 years indicated that the system error is controlled within 

1% (STD = 0.37% for energy expenditure, STD = 0.61% for RQ, n = 18) over large 

oxygen and carbon dioxide concentration ranges. Because of the fast response (> 90% 

reading in 1 minute), investigators have been able to study energy expenditure and 

substrate oxidation during acute physiological changes and during clinical interventions. 

Thus, because of the accuracy and fast response of the whole-room indirect calorimeter, 

investigators have been able to study alterations in energy regulation not previously 

feasible. 

All subjects in this study were admitted to the GCRC for their inpatient 

calorimetry assessments. During their stays in the calorimeter chamber, subjects were 

provided 24-hour monitoring by the GCRC nursing staff. The primary investigator was 

also present on-site for the 24-hour measurement. A call button was located in the 

calorimeter room in the event the patient needed to contact a GCRC nurse or the primary 

investigator. In the event of an emergency, the calorimeter room was accessible by all 

Vanderbilt emergency teams and their services. The collaborating HF physician for this 

study, Dr. Henry Ooi, was also notified of any change in any subject’s clinical status. 

 

Accelerometer Description  

Physical activity was measured during the calorimeter stay using two GT3X 

ActiGraph tri-axial accelerometers. The GT3X ActiGraph is an instrument designed to 
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measure accelerations from 0.5 to 2.5 Gs, with each acceleration defined as a “count” 

with corresponding G amplitude. A variety of studies revealed validation for the 

ActiGraph accelerometers against measures of energy expenditure, primarily through 

doubly labeled water techniques with R ranging from 0.51 to 0.96 (Laporte et al., 1979; 

Melanson & Freedson, 1996; Plasqui & Westerterp, 2007). Of the commercially available 

accelerometry-based activity monitors, ActiGraphs have shown the best reliability (G 

coefficient = 0.64, SEM = 34; (Welk et al., 2004).  

 Summed counts per unit of time were used as measures of the participants’ 

physical activities. One GT3X ActiGraph was placed on the wrist of the subject’s 

dominant side and one was placed on the subject’s hip on that side. With this placement, 

whole body movements via the hip sensor could be differentiated from small, upper 

extremity movements via the wrist sensor. During their stays, subjects were asked to do 

some basic physical activities (see Table 1) to assess their physical energy expenditure, 

which was measured both with the calorimeter and the accelerometers. 

 

Risks 

Little physical risk was associated with this study. Each participant was subject to 

an estimated dose of 7 mrem from the DEXA scan, which is comparable to two anterior–

posterior chest x-rays.  

The whole-room calorimeter is an airtight environmental room with an entrance 

door, an air lock for passing food and other items, and an outside window. This room was 

made airtight through the use of a specially designed door, which could be opened by the 

participant at any time. Although the chamber was relatively small, comparable to a small 
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hospital room, some subjects might have felt claustrophobic during their stays. Subjects 

were allowed to discontinue their stays in the room calorimeter at any time. To provide 

facilities for daily living and to increase comfort, the room was also equipped with a 

desk, a chair, a toilet, a sink, a telephone, a TV/VCR, an audio system/alarm clock, and a 

bed for sleeping. The Vanderbilt GCRC provided 24-hour nursing care for study 

participants, who were routinely observed by the nursing staff as if they were staying in 

standard inpatient rooms. Subjects also had access to a call button to summon nursing or 

research staff, if needed.    

Subjects were asked to participate in several activities throughout the day as 

outlined in Table 1: standing, sitting, writing, sorting objects, and sweeping. These were 

common activities of daily living that should have been consistent with patients’ typical 

days at home. The activities were selected to increase energy expenditure associated with 

physical activity but to minimize potential injury. Anyone requiring assistance with 

activities of daily living were excluded from the study, as noted previously, to minimize 

the risk associated with these basic activities. However, some level of injury potential 

existed, such as shortness of breath or, more severe, falling down. Also, the potential for 

heart problems, such as a myocardial infarction, existed that could be life threatening. 

Therefore, a research staff member was present during the activity periods and was 

prepared to terminate any activities that appeared unsafe for the subjects. Subjects were 

also able to stop doing any of the activities if they wished, as outlined in the informed 

consent. 

Although subjects were unlikely to develop changes in their condition, the 

primary investigator (an intensivist NP) was on site for immediate intervention. The 
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attending study physician, Dr. Henry Ooi (HF cardiologist) was also to be notified and 

consulted should any subject develop such changes.  

 

Reporting of Adverse Events  

Dr. Michael Vollman, Vanderbilt University School of Nursing (and dissertation 

adviser), served as chair of the Data Safety and Monitoring Board (DSMB). Other DSMB 

members included the project biostatistician, Dr. Mary Dietrich, and the project 

physician, Dr. Henry Ooi. After enrollment was initiated, the DSMB conducted an 

overview after each 24-hour chamber measurement. Oversight by the DSMB included (a) 

a review of any proposed amendments to the study protocol; (b) expedited monitoring of 

all serious adverse events; (c) ongoing monitoring of drop-outs and nonserious adverse 

events; (d) a determination of whether study procedures should be changed or whether 

the study should be halted for reasons related to the safety of study subjects; and (e) 

periodic reviews of the completeness and validity of the data to be used for analyses of 

safety and tolerability. The DSMB also ensured subject privacy and research data 

confidentiality. 

The primary investigator, Joshua Squiers, was onsite during each subject’s 

inpatient admission and was responsible for the reporting of adverse events. The 

Institutional Review Board and DSMB members were notified of any adverse events 

within 24 hours of their occurrence.  
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Study Withdrawal/Discontinuation 

Participants could withdraw from the study at any time. If a patient discontinued 

the inpatient stay, all research procedures were to be immediately stopped. The primary 

investigator was also to be notified at that time.  

Participants could also be discontinued from the study by a research team member. 

Reasons for doing so included ineligibility due to exclusion criteria, failure to return the 

food diary, and any safety concern during the time the patient was admitted. 

 

Statistical Considerations 

The sample size (N = 10; 5 per group) was selected to determine initial feasibility 

of using whole-chamber calorimetry in this population. To this point, feasbility data had 

been collected, including the ratio of collected-to-expected data collection (90% of all 

calorimetry data were expected to be collected),, and whole-room calorimeter tolerance 

(great than 20 hours of cumulative data were expected to be collected on each subject).   

Formal data analysis was conducted using Statistical Package for Social Sciences 

(SPSS, Version 18) software. Demographic and anthropometric characteristics of the 

patient groups were summarized using descriptive statistics (e.g., frequencies, means, 

ranges). Of specific interest were the magnitude and variability of the differences in these 

key variables between the obese and non-obese groups.   Although the research team was 

hesitant to suggest sufficient power existed statistically to compare the observed 

differences or to test the hypotheses of group differences, the REE and RQ data for the 

two groups were compared using the Wilcoxon sum-ranked test. Data from this 

exploratory study will be used to determine the appropriate effect sizes for powering 
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future studies and for hypothesis generation. Dr. Mary Dietrich served as the primary bio-

statistician for this dissertation research study.  

 

Privacy/Confidentiality Issues 

All efforts, within reason, were made to keep the participants’ protected health 

information private. All data were transported to the investigators and maintained in their 

locked office in a locked file cabinet. Data collected from the whole-room indirect 

calorimeter were electronically collected on a portable encrypted drive at the conclusion 

of each subject’s calorimetry stay. Calorimetry and summary data were manually entered, 

or uploaded, into a password-protected data entry and management platform (RedCap) 

developed by the bioinformatics core in the Vanderbilt Institute for Clinical and 

Translational Research. 

 

 

Follow-Up and Record Retention 

The study duration was approximately 8 months. All study participants were 

recruited and completed the protocol within that time.  Study records will be retained for 

6 years. However, these records may be indefinitely archived in the RedCap data storage. 
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CHAPTER IV 

 

RESULTS 

 

In this chapter, the study results have been presented in three formal sections: 

sample characteristics, descriptive statistics, and hypothesis testing. When appropriate, 

tables have been included to display the data. 

 

Sample Characteristics 

Six adult males with ischemic cardiomyopathy completed the research protocol, 

including the inpatient 24-hour indirect calorimetry stay. Due to a lack of subjects 

meeting the criteria for inclusion in the non-obese arm of the study, only the five subjects 

with obesity and their matched controls were used to supply data in this study. 

Demographic and clinical information for the five obese subjects with HF has been 

included in Table 2.  

Overall, the HF participants ranged in age from 49 to 60 years (M = 54.5 years, 

Mdn = 57 years), and in weight from 88.27 kg to 128.1 kg (M = 102.82 kg, Mdn = 102.05 

kg). They had BMIs ranging from 30.8 kg/m2 to 38.3 kg/m2 (M = 32.67 kg/m2, Mdn = 

31.5 kg/m2; see Table 3) and had body fat percentages from 34.3% to 42.3% (M = 35.5%, 

Mdn = 35.5%). These subjects all had ischemic cardiomyopathy, with systolic HF and EF 

less than 40%. All were being seen routinely by a cardiologist specializing in HF, and all 

were on angiotensin converting enzyme inhibitor (or angiotensin receptor blocker) and 

beta-adrenergic blocker therapy. Reviews of the dietary logs prior to the subjects’ 



 

52 
 

calorimeter stays showed all subjects’ dietary habits were consistent with a Western diet. 

None of the subjects reported ethanol intake within 48 hours of their chamber stays. 

 

Table 2. Demographic and Clinical Information for the Obese Heart Failure Group 

 Subject 

Descriptor 1 2 3 4 5 

Age 57 58 49 60 57 

Race* C C C C AA 

EF (%) 35 35 30 30 20 

NYHA Class II II II II II 

ICDŧ Yes Yes Yes Yes Yes 

Chronic obstructive pulmonary disease** No No No Yes No 

DM** No No No No No 

HTN** Yes No No No Yes 

HLPL** No No Yes No No 

Anemia** No No No No No 

Renal disease** No No No No No 

Arthritis** No No No No No 

C = Caucasian; AA = African American;  
Ŧ yes = device implanted; no = no device  
** yes = history of the disease; no = no history of the disease 
EF = left ventricular ejection fraction, NYHA = New York Heart Association functional classification, 
ICD = implantable cardiac defibrillator, DM = diabetes mellitus, HTN = hypertension, HLPL = 
hyperlipidemia  

 

 

Five healthy obese men who matched the five obese HF subjects in race, age, and 

obese classification were selected from the Vanderbilt University Energy Balance 

Laboratories database (see Table 3). These men ranged in age from 40 to 58 years (M =  

52.8 years, Mdn = 56 years) and in weight from 87 kg to120 kg (M = 99.84 kg, Mdn = 

98.2 kg). They had BMIs ranging from 30.1 kg/m2 to 36.63 kg/m2 (M = 32.14 kg/m2, 
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Mdn = 30.65 kg/m2) and had body fat percentages ranging from 23.7% to 39.8% (M = 

33.16%, Mdn = 34.2%). Body composition data were collected to provide a description 

of total fat mass and to quantify lean mass for indexing energy expenditure values.  

 

Table 3. Body Composition Data for Obese Heart Failure and Control Groups 

Subject Age Race 
Weight 

(kg) 
Height 
(cm) 

Body 
fat (%) 

Fat mass 
(kg) 

Lean 
mass (kg) 

Lean 
mass 
(%) 

Body 
mass 
index 

Obese heart failure group 

1 57 C 102.6 177.8 34.3 33.572 64.164 62.5 32.5 

2 49 C 128.1 182.8 39.8 48.338 73.219 57.2 38.3 

3 58 C 105.3 185.0 42.3 42.540 57.953 55.0 30.8 

4 60 C 107.9 180.2 35.1 36.016 66.498 61.6 33.2 

5 57 AA 85.1 165.2 37.7 30.717 50.734 59.6 31.2 

Obese control group 

1C 57 C 98.2 179.0 36.0 34.136 60.713 61.8 30.65 

2C 56 C 120.0 181.0 39.8 45.737 69.271 57.7 36.63 

3C 40 C 101.5 175.0 34.2 33.817 65.193 64.2 33.14 

4C 53 C 92.5 175.0 32.1 28.532 60.455 65.4 30.1 

5C 58 AA 87.0 177.1 23.7 19.502 62.848 72.2 30.1 

C = Caucasian; AA = African American 
 

   

None of these matched subjects had known comorbidities, including liver, 

thyroid, kidney, and heart disease; hypertension; and cerebrovascular incidents. In 

addition, none were taking medications known to alter energy metabolism or autonomic 

functions.  

Resting energy periods were confirmed with accelerometer data and analyzed 

using the Weir equation. REE in the obese HF group averaged 1.66 kcal/min (Mdn = 1.67 
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kcal/min, range = 1.42–1.97 kcal/min); in the healthy obese group, REE averaged 1.42 

kcal/min (Mdn = 1.40 kcal/min, range = 1.4–1.627 kcal/min). REE was indexed with lean 

mass for each subject. The group of obese HF men averaged 0.0267 kcal/min/lm (Mdn = 

0.0270 kcal/min/lm, range = 0.0221– 0.0296 kcal/min/lm); the healthy obese men 

averaged 0.0223 kcal/min/lm (Mdn = 0.0230 kcal/min/lm, range = 0.0198–0.0233 

kcal/min/lm). RQ was assessed during the resting periods with minute-to-minute 

averaging. RQs among the obese HF group averaged 0.74 (Mdn = 0.724, range = 0.65–

0.84). In the healthy obese group, RQs averaged 0.87 (Mdn = 0.880, range = 0.76–0.94). 

REE and RQ data have been presented in Table 4. 

 

Table 4. Resting Energy Expenditure (REE) and Respiratory Quotients (RQ) for Obese 
Heart Failure and Obese Control Groups   

 

Subject RQ REE (kcal/min) REE (kcal/min/lm) 

Obese heart failure group 

1 0.84 1.42 0.0222 

2 0.76 2.05 0.0270 

3 0.72 1.69 0.0283 

4 0.71 1.94 0.0268 

5 0.65 1.50 0.0297 

Obese control group 

1 0.88 1.40 0.0231 

2 0.90 1.62 0.0234 

3 0.94 1.44 0.0221 

4 0.87 1.40 0.0232 

5 0.76 1.25 0.0199 
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Specific Aims and Hypothesis Testing 

 The primary aim of this research study was to determine the feasibility of 24-hour 

indirect calorimetry measurement of energy expenditure and substrate utilization in the 

HF population. A total of six obese patients with HF initiated the study. Of those, one 

subject (16.7%) discontinued the study due to an adverse event. For the purposes of this 

study, a feasible calorimeter stay was defined as the collection of greater than 22 hours of 

useable data during the course of a 24-hour measurement period. All of the five subjects 

who completed the 24-hour indirect calorimeter stay provided more than 1,320 minutes 

of useable calorimetry data during their 1,440 minute chamber stays, which ranged from 

a minimum 1,340 minutes to a maximum of 1,406 minutes. All subjects provided more 

than 91.7% of the calorimetry data that could be collected during this time period, 

exceeding the 90% feasibility threshold for the study. During these five subjects’ stays, 

no clinical or systems-related problems were noted by the investigator. 

REE (kcal/min/lm) was higher 16.6% on average between the subjects with HF 

than among the control group (0.02677 kcal/min/lm vs. 0.02231 kcal/min/lm, 

respectively). However, matched pairs analysis using the Wilcoxon rank-sum test 

indicated no statistically significant differences (p = 0.08) between the groups on REE. 

RQ was reduced among the HF subjects (M = 0.74, Mdn = 0.724, range = 0.65–0.84) 

versus the control group (M = 0.87, Mdn = 0.880, range = 0.76–0.94). A statistically 

significant difference was found in RQ between the two groups (p = .043). These results 

have been presented in Table 5. 

 



 

56 
 

 
 
Table 5. Resting Energy Expenditure (REE) and Respiratory Quotient (RQ) Differences 
Between the Obese Heart Failure and Obese Control Groups 
 

Variable Obese heart failure group  Obese control group p* 

REE (kcal/min/kg lm) 0.0268 0.0223 0.08 

RQ 0.738 0.898 0.043 

*Wilcoxon rank-sum test 
 

 

Adverse Events 

A single adverse event consisting of an appropriate discharge from an implantable 

cardioverter-defibrillator in response to ventricular tachycardia during a subject’s 

overnight sleep period was reported during the course of this research study. This subject, 

the only non-obese subject who consented, was discontinued from the study at that time 

and transferred to the care of the Vanderbilt emergency department. This subject 

completed only 14.5 hours of the 24-hour calorimetry protocol and had no formal REE 

measure taken. Data collected from this subject were not included in this analysis. The 

Institutional Review Board and the DSMB were notified of the adverse event. No 

changes to the protocol were deemed necessary.  
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CHAPTER V 

 

DISCUSSION 

 

In this chapter, a discussion of the study results have been presented. The chapter 

has been organized into five formal sections: study feasibility, hypotheses, study 

strengths and limitations, conclusion and implications, and recommendations for future 

research. 

 

Study Feasibility 

 Although data collection feasibility goals were easily achieved, non-obese 

subjects with HF were difficult to identify. Only a single individual subject meeting the 

inclusion/exclusion criteria for the non-obese HF group agreed to participate. 

Historically, researchers studying obesity and HF have had little difficulty enrolling 

subjects with HF and normal BMI (Curtis et al., 2005; Gustafsson et al., 2005; Horwich 

et al., 2001; Mehra et al., 2004). The academic medical center where the subjects were 

screened for enrollment is located in Tennessee, a state with one of the highest 

prevalence rates for obesity in the United States (Galuska et al., 2008; Jackson, Doescher, 

Jerant, & Hart, 2005). Therefore, with a high rate of obesity among the general 

population within the referral radius of the Vanderbilt Heart Failure Program, the 

difficulty of finding subjects who met the non-obese weight requirements is plausible. 
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The difficulty experienced in recruiting normal weight patients with HF could 

also have been due to the type of patients found at this particular tertiary academic 

medical center. A variety of smaller community hospitals in the area have well-

established HF programs and typically only refer advanced HF patients to the Vanderbilt 

Heart Failure Program for transplantation or ventricular assist devices. Many of these 

patients are long-term HF patients who have been treated well at outside centers. Because 

subjects with increased BMIs have improved survival, these advanced HF patients may 

tend to represent an obese HF population when compared with HF programs at other 

local centers.  

 Based on the findings of this dissertation research study, whole-room indirect 

calorimetry appears to be a feasible technique for the assessment of energy expenditure 

and substrate utilization in the HF population. Thus, a novel, highly accurate technique 

exists for future examination of substrate and energetics questions related to the HF 

disease process. Nonetheless, because of the difficulty in recruiting participants into the 

non-obese HF arm of the study, adequate assessments of energy expenditure and 

substrate utilization between non-obese and obese HF patients was difficult. Future 

studies may need to include broader sampling strategies (e.g., recruiting from multiple 

institutions) to allow for increased sample sizes and better sampling of subjects at various 

BMI levels.  

  

Hypotheses 

Results from this study suggest that obese HF patients had a 16.6% relative 

increase in REE (0.0267 vs. 0.0223 kcal/min/kg LM, p = 0.08) and a lower RQ (0.738 vs. 
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0.898, p = 0.043) compared with healthy obese individuals. These results suggest an 

increasing metabolic demand associated with HF, along with a preference toward fat 

metabolism at rest. This result is surprising because the obese HF subjects were all on 

medications that suppress metabolic rate, such as angiotensin converting enzyme 

inhibitors and beta-adrenergic blockers (Anker et al., 2003; Lainscak, Keber, & Anker, 

2006; S. von Haehling, Sandek, & Anker, 2005). The differences in these medications 

between the groups should result in reducing the increased energy expenditure found 

among the HF patients. This suggests that the increase in energy expenditure found in the 

HF subjects may have been even more pronounced had they been off these medications at 

the time of measurement.   

This increase in energy expenditure has several physiologic and clinical 

implications. First, an increase in REE suggests an increase in energy expenditure 

associated with the pathophysiologic processes of HF. Based on the neurohormonal 

model of HF and its implied energetic cost, this increase in energy expenditure is likely 

associated with the compensatory efforts of the body necessary to maintain homeostasis 

during a chronic pathologic state. For an adult male with a baseline 2,000 kcal/day energy 

requirement to increase energy expenditure by 16.6%, he must increase his intake by 

121,180 kcals per year to maintain energy balance. If the individual is unable to increase 

intake beyond 2,000kcal/ day, significant changes in body composition are likely to occur 

over that period of time. Assuming only a loss of fat mass, the increased metabolic 

demand will equate to a total loss of 34.6 pounds of fat over a 1-year period. Considering 

the recent definition of cardiac cachexia, which only requires a loss of 6% body weight in 

6 months to increase mortality to 50% in 6 months, the possibility that increased REE 
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may have a role in advancing HF is startling (Springer, Filippatos, Akashi, & Anker, 

2006). This appears consistent with known increases in energy expenditure among 

patients with cancer cachexia and HIV (Delano & Moldawer, 2006; Kosmiski et al., 

2003). 

Second, a lower RQ suggests that obese subjects with HF had a shift in systemic 

substrate utilization toward fat-based metabolism when compared with obese healthy 

patients. This shift toward fat-based metabolism may be explained by several different 

mechanisms. First, the myocardium of HF patients is known to shift towards a free fatty 

acid-based metabolism rather than towards a carbohydrate-based metabolism as in their 

healthy counterparts (Eichhorn et al., 1994; Taylor et al., 2001). This may account for the 

reduction in systemic RQ found in this study. Previous measures of myocardial RQ 

suggest that myocardial tissue in HF patients may have an RQ as low as 0.67 (Eichhorn 

et al., 1994).  Unclear, however, is whether changes in myocardial tissue RQ alone may 

affect systemic RQ enough to provide the reduction in systemic RQ found in this study. 

Both cardiac and non-cardiac mechanisms are likely to have roles in this shifting RQ 

during HF, although they have yet to be fully described.  In particular, there may be 

differences in shifting RQ between obese and non-obese HF subjects, possibly related to 

an increased number of natriuretic peptides receptor “C” clearance receptors (NPR-C) 

found in adipose tissues (Lommi, Kupari, & Yki-Jarvinen, 1998; Taylor et al., 2001).  

Recent advances in the understanding of the effects of natriuretic peptides may 

suggest a unique mechanism for shifting myocardial and potentially systemic substrate 

utilization. Natriuretic peptides have been shown to be elevated in HF patients 

(O'Donoghue, Januzzi, O'Donoghue, & Januzzi, 2005). Levels of these peptides have also 
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been shown to be elevated throughout the course of HF and are independent predictors of 

HF severity (Berger et al., 2002; Fisher, Berry, Blue, Morton, & McMurray, 2003; 

Masson et al., 2006). From a metabolic standpoint, natriuretic peptides may have a role in 

lipid mobilization during periods of high myocardial workload. This may be a primary 

mechanism to provide free fatty acids for myocardial tissues during increased myocardial 

workload and may be the explanation for the increase in free fatty acids found during the 

course of HF (Lommi, Kupari, & Yki-Jarvinen, 1998; Taylor et al., 2001). Laboratory 

studies of adipose tissues have revealed the adipose cell signaling pathway via natriuretic 

peptides receptors “A” (NPR-A) and “C” (NPR-C) on the adipose cell wall, which result 

in free fatty acid release. Although free fatty acid mobilization with an intravenous 

injection of natriuretic peptides has been demonstrated in the laboratory setting, whether 

this occurs during the course of HF is unclear. Together, these two specific signaling 

pathways may result in increased lipid mobilization and may be the explanation for the 

reduction in resting RQ found in this study. Further research may be necessary to include 

these mechanisms in the neurohormonal model of HF. These mechanisms may also 

explain the shifting substrate utilization found in HF.   

Studies evaluating systemic metabolic changes in HF are relatively new in the 

literature, with the first use of hood-based indirect calorimetry in 1994 (Poehlman et al., 

1994). Further studies appeared to indicate an increased metabolic demand associated 

with the disease state (R. Aquilani et al., 2003; Lommi et al., 1998; Poehlman et al., 

1994), while other studies suggested little or no change in metabolic demands associated 

with HF when compared with healthy controls (Norrelund et al., 2006; Toth, Gottlieb, 

Fisher, et al., 1997). Although these studies revealed valuable insights for future 
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hypothesis generation, they were limited by the accuracy of the measurement technique 

(hood calorimetry and doubly labeled water) and lacked appropriate metabolic control via 

non-homogenous HF samples. In this current study, an initial description of the energetic 

cost of HF in a tightly controlled sample utilizing the gold-standard measurement system 

via whole-room indirect calorimetry has been presented.  

 

Strengths and Limitations 

 The primary strength of this study was the use of whole-room calorimetry for the 

assessment of energy expenditure and substrate utilization in this population. Although 

whole-room calorimetry is the gold standard for measuring energy expenditure and 

substrate utilization, to date, this method had not been used to measure systemic 

metabolism in patients with HF. Studies of energy expenditure and substrate utilization 

have been limited by the availability of whole room calorimeters. In addition, few of the 

limited number of facilities with whole-room calorimeters have available staff for energy 

expenditure and substrate assessments over 24-hour periods.   

This study was conducted as the first step toward filling a significant gap in the 

literature by showing the feasibility of 24-hour whole-room indirect calorimetry in the 

HF population and by providing a description of the increased energy expenditure of 

patients with HF. These results will be useful for estimating effect size for future 

research.  

 This study also had a variety of limitations. The study sample, which consisted 

only of men with systolic HF, was obtained through non-random convenience sampling. 

This sampling method could affect the generalizability of the study findings, even though 
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the size was appropriate for an early feasibility study. Ideally, subjects should be placed 

on a 3-day prescribed diet to control for any diet-related changes in energy expenditure 

and substrate utilization. Although subjects were all confirmed to be eating a standard 

Western diet, diet variations were not controlled during the course of the study. For the 

purposes of this feasibility study, confirming a consistent Western diet among all subjects 

was considered to be adequate.  

 Caution should be taken not to over generalize the results from this study. 

Although the results appear consistent with the neurohormonal model of HF, which 

suggests an increase in metabolic response to the physiologic burden of disease over 

time, these findings should be confirmed with a larger, appropriately powered study.   

 

Conclusion and Implications 

This research study was the first study to use an indirect room calorimeter to 

measure energy expenditure and substrate utilization in HF patients. The findings 

suggested an increase in REE and a lower RQ among obese patients with HF compared 

with healthy obese control subjects. Although limited by sample size, these findings 

might be clinically significant because a relative 16.6% increase in resting metabolic 

demands may have a significant impact if present throughout the course of HF. These 

results suggested that obese HF patients may have an increased basal metabolic rate with 

a shift towards fat-based metabolism at rest. Overall, these findings appeared consistent 

with the increase in metabolic demands hypothesized in the neurohormonal model of HF 

and likely represented the energy demands of a prolonged compensatory response to a 

failing heart.    
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In conclusion, whole-room indirect calorimetry is a feasible method to measure 

energy expenditure and substrate utilization in patients with HF. Results from this 

dissertation research study suggested an increase in REE and a shift in resting RQ away 

from carbohydrate metabolism to fat metabolism among obese subjects with HF when 

compared with healthy obese controls.    

 

Recommendations for Future Research 

 This was a cross-sectional study of one point during the course of the subjects’ 

HF course.  Ideally, a future longitudinal study should be undertaken to determine if these 

metabolic changes are present throughout the course of HF. With a large prospective 

cohort study, including both genders and subjects with all HF types, researchers could 

conduct longitudinal assessments of energy expenditure and substrate utilization. Such 

research should result in identification of effect size for energy expenditure and RQ 

across the HF population, as well as in further information regarding the changing 

energetics found during the course of HF. In particular, a longitudinal study might reveal 

information concerning the metabolic role of common comorbidities found during HF, 

such as diabetes mellitus. A further description of HF progression and severity utilizing 

cardiac and metabolic biomarkers could be used as a framework to understand better the 

longitudinal changes in metabolic demands and shifting substrate utilization. Of 

particular interest, determining whether RQ is correlated with natriuretic peptide levels 

over time could result in a better description of this potential substrate shifting 

mechanism.   
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 Once effect size and energy expenditure mechanisms specific to heart disease 

patients are clarified, a variety of clinical interventions could be considered for future 

study. Dietary manipulations are of particular interest because they tend to be low cost 

and could be useful substrate for increased energy demand. Along with dietary 

manipulation, a variety of pharmacologic targets for intervention, including the NP 

system, SNS, and gastrointestinal systems, could be considered for future studies.   
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APPENDIX A: FOOD DIARY 
 

Vanderbilt University Medical Center 
General Clinical Research Center 

Bionutrition Unit 
 
 
As a part of this study, you will be asked to keep a diary of everything you eat and drink 
for three days. Begin with the first food or drink in the morning and write down what you 
eat as you go through the day. The nutritionist will review your completed food diary. If 
possible, please save any food labels from food you have eaten.  
 
 

RECORDING FOOD INTAKE 
 

1. Write down on the Food Diary the day, time, and place (home, home of a friend, 
restaurant) of each meal and snack. 
 
2. Write down one food item per line on the Food Diary. Space is provided on both sides 
of the form. Include gum, candy, and drinks. 
 
3. Write down the amount and name of food on the Food Diary using common household 
measures, such as tablespoons, cups, package sizes. 
 
4. When you write down a food, also write down how it was cooked. For example: baked, 
boiled, broiled, fried, or roasted. This is very important. 
 
6. Write down anything you add to your food. This would include milk on cereal, cheese 
or lettuce on a sandwich, salad dressing on your salad, butter or jelly on bread, etc.  
 
7. When eating out, write down the place where you ate, the food ordered, and amount 
eaten.    
 
    For example: Taco Bell, Burrito Grande, ate 1/2   
    Or, McDonald’s, Big Mac, ate all. 
 
8. If you have any questions, please call the nutritionist at 615-322-2430. 
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Food Diary 
 
Name:                                                                         ID#_______________________  Protocol 
No:______________________ 
 
Today’s Date:___________________________________ Day of 
Week:___________________________________________ 
Please write down everything you eat and drink today. Include the type of food, brand names, and 
serving size (if possible, please save food labels). In the first column under meal and place, please put 
what meal you ate and where you ate it. You may use the back side of the page also. Thank you. 
 

Time, Meal 
and  Place 

Serving 
size 

       Type of Food You Ate Office Use 
Only 
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