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CHAPTER I 

 

INTRODUCTION 

 

 Like many common diseases with a genetic basis, the etiology of late-onset 

Alzheimer disease (LOAD) is complex.  Evidence suggests that LOAD is a 

heterogeneous trait with multiple susceptibility loci and possibly gene-gene interactions 

involved.  While there are existing methods that can address specific components of this 

etiology, ultimately, the real power of these methods lies in our ability to marry them into 

a comprehensive approach to genetic analysis, so that their relative strengths and 

weaknesses can be balanced and a range of alternative hypotheses can be investigated.  

Thus, I propose a two-stage, multi-pronged approach to the problem of genetic analysis 

of LOAD in which heterogeneity is first addressed by dissecting-out more homogeneous 

subsets of the data and then main effects and gene-gene interactions are investigated in 

each of these subsets. 

 The theoretical basis for such an approach to the analysis of complex genetic 

diseases is presented in Chapter II.  Definitions and examples of heterogeneity and 

interactions that complicate genetic analysis are presented.  Existing methods for 

detecting heterogeneity and interactions are reviewed, and gaps in methodology are 

discussed. 

 Chapter III presents a simulation study in which the performance of three 

clustering methods is compared in the task of uncovering trait heterogeneity in simulated 

data.  A novel data simulation algorithm is introduced.  The best of the three clustering 

1 



methods—Bayesian Classification—is chosen and its applicability to real data (based on 

its false positive and false negative rates) is investigated. 

Chapter IV details an extension of this simulation study in which the 

implementation of the Bayesian Classification method is modified to improve 

performance under a wider range of conditions realistic for genetic studies.  False 

positive and false negative rates under these conditions are also investigated. 

Chapter V presents an application of the proposed two-stage comprehensive 

analysis to a late-onset Alzheimer disease dataset.  Analysis of heterogeneity is 

performed using the Bayesian Classification clustering method.  Main effect analysis is 

performed in cluster subsets.  For the case-control dataset, the Pearson chi-square test of 

independence is applied, and for the family-based dataset, two-point linkage analysis, the 

Pedigree Disequilibrium Test and the Family-Based Association Test are utilized.  

Interaction analysis is performed using the Multifactor Dimensionality Reduction 

method.  Logistic regression is used to explore the structure of predictive MDR models 

found significant by permutation testing.  Results of these integrated analyses are 

interpreted, and limitations of the study design and analysis methods are discussed. 

In Chapter VI, the entirety of the research comprising this dissertation is put into 

perspective, discussing the lessons learned and the immediate future directions for this 

work.  New directions for future studies of neurogenetic diseases are also discussed and 

suggestions are made as to the focus of future research efforts, given current and 

forthcoming phenotyping technology, such as neuroimaging. 

2 



CHAPTER II 

 

BACKGROUND 

 

Adapted from:   

Thornton-Wells TA, Moore JH, Haines JL.  Genetics, statistics and human disease:  

analytical retooling for complexity.  Trends in Genetics 20: 640-647, 2004. 

 

“If the only tool you have is a hammer, you tend to see every problem as a nail.” 

Abraham Maslow, American psychologist, founder of humanistic psychology 

 

“The difficulty lies, not in the new ideas, but in escaping the old ones.” 

John Maynard Keynes, English economist 

 

Complex Human Genetic Disease 

 Over the past few decades, most of the success in the field of statistical genetics 

has come from identifying genes with substantial main (i.e., independent; non-

interactive) effects on the disease process.  Most statistical tools enabling this success 

were developed for and are primarily effective in the analysis of simple, Mendelian 

diseases such as Huntington disease, cystic fibrosis, and early-onset Alzheimer disease.  

Molecular biologists and geneticists alike now acknowledge that the most common 

human diseases with a genetic component are likely to have very complex etiologies.  

However, despite this belief, statistical geneticists continue using primarily traditional 

3 



methodologies to attack this complex problem.  Traditional statistical methods of genetic 

analysis, such as linkage and association, have failed to consistently replicate findings of 

main effect genes, even though they may explain a majority of the genetic effect of a 

complex disease.  For example, over 115 late-onset Alzheimer disease candidate genes 

have been tested and have generated a positive main effect, but all except apolipoprotein 

E (APOE) have failed to be consistently replicated (Pericak-Vance MA and Haines JL, 

2002).  Among the possible reasons for this failure are false positives due to population 

stratification and true differences in genetic etiology between study populations 

(Hirschhorn JN et al., 2002).  Advances in statistical and computational genetic 

methodology simply have not kept pace with the advance of available sources of data.  

There have been a few attempts to address complexity directly, including the 

development of nonparametric tools, but these have generally limited application.  One 

example is the transmission disequilibrium test that led to the discovery of the insulin 

receptor gene as a risk factor for diabetes (Spielman RS et al., 1993). 

Going forward, statistical geneticists must not only acknowledge but also directly 

confront the numerous complicating factors that can be involved in complex genetic 

diseases and that present significant challenges for traditional statistical methods.  Only a 

small fraction of the human genetics literature specifically reports on investigations of 

such complexity.  It is, perhaps, daunting to consider multiple complicating factors, such 

as locus heterogeneity, trait heterogeneity, and gene-gene interactions (see Figures 1 and 

2).  However, these must be addressed if we are to have any chance of understanding the 

genetic legacy of disease left to us by our forebears. 
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(Rivolta C et al., 2002) 
(Kulczycki LL et al., 2003; Povey S et al., 1994; Young J and Povey S, 1998) 
(Harding AE, 1993; Rosenberg RN, 1995) 
(Devos D et al., 2001) 
(Tager-Flusberg H and Joseph RM, 2003) 
(Bradford Y et al., 2001) 
(Carrasquillo MM et al., 2002) 
(Collinge J et al., 1991; De Silva R et al., 1994; Doh-ura K et al., 1989; Owen F et al., 
1990; Palmer MS et al., 1991) 

 

Fi
gu

re
 1

.  
H

et
er

og
en

ei
ty

-r
el

at
ed

 fa
ct

or
s c

om
pl

ic
at

in
g 

an
al

ys
is

 o
f c

om
pl

ex
 g

en
et

ic
 d

is
ea

se
:  

de
fin

iti
on

s, 
di

ag
ra

m
s a

nd
 

ex
am

pl
es

 

5 



 

Fi
gu

re
 1

, c
on

tin
ue

d.
  H

et
er

og
en

ei
ty

-r
el

at
ed

 fa
ct

or
s c

om
pl

ic
at

in
g 

an
al

ys
is

 o
f c

om
pl

ex
 g

en
et

ic
 d

is
ea

se
:  

de
fin

iti
on

s, 
di

ag
ra

m
s a

nd
 e

xa
m

pl
es

 

6 



Fi
gu

re
 2

.  
In

te
ra

ct
io

n-
re

la
te

d 
fa

ct
or

s c
om

pl
ic

at
in

g 
an

al
ys

is
 o

f c
om

pl
ex

 g
en

et
ic

 d
is

ea
se

:  
de

fin
iti

on
s, 

di
ag

ra
m

s a
nd

 
ex

am
pl

es
 

7 



Categorization and Analytical Approaches 

Each of the factors presented in Figures 1 and 2 complicate statistical analysis in 

one of two ways—either by creating heterogeneous, or competing, disease models 

(Figure 1), or else by creating a multifactorial, interacting disease model (Figure 2).  The 

challenge for modeling the relationship between genetic and environmental risk factors 

(independent variables) and disease endpoints (dependent variables) is different for these 

two categories.  Of course, what exacerbates the complexity is that none of these 

competing and interacting models are mutually exclusive.  Various combinations of 

(genetic and/or trait) heterogeneity and interactions might be important in any given 

disease of interest.  Thus, to dissect these factors, we must assemble a toolbox of both 

tried-and-true and newly constructed genetic analysis methodologies, which together can 

be used to discover the true underlying etiologies of complex traits. 

Many complicating factors can be addressed proactively by a well-considered 

study design.  This is perhaps one of the best investments researchers can make to 

maximize their ability to discover complex genetic disease models.  Because the causally 

complex relationship between the genotype and phenotype is the object of genetic 

studies, it is important to collect accurate and abundant phenotypic data.  In the absence 

of phenotypic data, there is not even the option of looking for a mapping between 

genotype and potential clinical subtypes, which could help identify a case of genetic 

heterogeneity.  Established guidelines or protocols concerning data collection should be 

followed and such data should be made available to others in an accessible format, so as 

to facilitate future meta-analysis.  Information regarding the exposure to potential 

environmental risk factors should be collected whenever logistically and economically 
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feasible.  Even with the best study design with regard to data collection, an ill-advised or 

incomplete analysis of the data can still yield disappointing, if not incorrect, results.  

Thus, we advocate a comprehensive approach to account for both the heterogeneity and 

the interaction models of disease. 

 

Heterogeneity 

For this category of factors, there are multiple independent (predictor) variables or 

else multiple dependent (outcome) variables that complicate the analysis by creating a 

heterogeneous model landscape.  In the case of allelic or locus heterogeneity or 

phenocopy, multiple predictor variables (e.g. multiple alleles, multiple loci and/or 

environmental risk factors) are present, some of which might be unmeasured or 

unobserved and, therefore, unavailable for inclusion in the disease model.  In the case of 

trait heterogeneity or phenotypic variability, multiple outcome variables are present, 

which cannot or have not been distinguished based on the available phenotypic 

information. 

Perhaps the most straightforward of the methods for addressing heterogeneity is 

sample stratification (Figure 3).  This method subdivides subjects based on any number 

of genetic, demographic, clinical or environmental factors to create more homogeneous 

subsets of the data.  The premise of this method is that there are two or more underlying 

disease models, which are conditional on the factor on which the data are being stratified.  

For example, one genetic model might be associated with disease in the absence of a 

specific environmental risk factor; however, when that environmental factor is present, a 

different set of genetic factors are involved.  Using different levels of the stratifying 

9 
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factor (e.g. different degrees of environmental exposure), one could perform further 

analyses, such as logistic regression (discussed in the following section).  The main 

limitation of sample stratification is a reduction in sample size within each stratum and 

thus a reduction in power. 

Some statistical methods that test the hypothesis of locus heterogeneity include 

the M test (Morton, 1955), the β test (Risch N, 1988) and the Admixture test (Figure 3) 

(Ott, 1992; Smith CAB, 1963).  Each of these methods is solely applicable to family-

based data on which linkage analysis is performed.  The M test uses a priori stratification 

of subjects based on discrete (or discretized) covariates, such as gender, ethnicity or 

clinical subtype, and tests for a difference in recombination fractions across the different 

subsets of families.  The β test is a similar but slightly more powerful statistical test than 

the M test, owing to a difference in their null distributions used to determine statistical 

significance.  The admixture test does not require a priori stratification but instead 

estimates (using maximum likelihood) the degree of admixture present in the sample 

from two-point or multi-point lod scores between marker and disease loci.  It then uses 

these estimates to evaluate the relative probabilities of linkage with and without 

heterogeneity.  Thus, the M and β tests evaluate a more specific hypothesis, and as a 

result, have more power than the admixture test.  The admixture test also lacks sensitivity 

and can only account for, not resolve, the underlying heterogeneity. 

A more recently developed method to address heterogeneity is the ordered subset 

analysis (OSA; Figure 3) (Hauser et al., 1998; Hauser et al., 2004).  In OSA, a continuous 

or ordinal covariate, such as blood lipid levels or disease age of onset, is used to rank 

order families, and then a cumulative lod score is iteratively calculated after each family 
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is added (in order) to the sample until the cumulative lod score begins to decrease.  Thus, 

those families included in the linkage analysis all provide support for linkage, and the 

subset of chosen families is more homogeneous with respect to the covariate and, 

therefore, hopefully, more genetically homogeneous than the whole dataset. 

Other methods aimed at producing more homogeneous subsets of the data include 

cluster analysis, latent class analysis and factor analysis (Figure 3).  Unlike the 

aforementioned statistical tests for heterogeneity that only incorporate linkage analysis, 

the following methods can also be applied to case-control datasets because they are not 

tied to any particular statistical analysis of the subsets.  There are hundreds of different 

cluster analysis methods, which operate based on different heuristics and fitness metrics, 

making them appropriate for particular types of data (continuous versus discrete, low- 

versus high-dimensional, and so on).  They all attempt to produce clusters with high 

intraclass similarity and/or low interclass similarity and have varying degrees of success.  

Cluster analysis has been widely used for analyzing DNA and protein microarray data 

(Slonim DK, 2002) and to find more homogeneous subgroups based on genetic 

background (Mountain JL and Cavalli-Sforza LL, 1997). 

Latent class analysis and factor analysis have a goal similar to cluster analysis but 

instead of directly clustering or classifying data based on known covariates, such as the 

scores of different items on a psychological or physical functioning test, these two 

methods try to derive ‘latent’ or underlying variables, such as summary scores of various 

test items, from relationships among the known covariates.  These latent variables are 

then used to classify or stratify the data.  Latent class analysis has been applied to 

phenotypic data for several diseases, including attention deficit hyperactivity disorder 
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(Neuman RJ et al., 1999), Alzheimer’s disease (Neuman RJ et al., 2000), autism (Pickles 

A et al., 1995) and schizophrenia (Sham PC et al., 1996). 

It should be noted that all of the methods discussed previously, with the exception 

of the admixture method, depend on covariate data, whether these be known genetic risk 

factors, demographic data, phenotypic data or endophenotypes.  Not only must such 

information be available but also these covariates must actually be relevant to, or be 

surrogates for, the existing heterogeneity.  If the data are incomplete, the performance of 

many of these methods for dissecting heterogeneity suffers and attempts to correct this 

problem by imputing data can introduce spurious associations.  In the absence of such 

relevant, complete data, we are left with seemingly few options of how to proceed when 

we suspect heterogeneity to have a role. 

To overcome some of these problems it might be advantageous to adapt the same 

basic principles of the aforementioned methods to the more complex data.  For instance, 

although clustering methods have been heavily utilized for microarray data, few studies 

have looked into clustering genotypic data from association-based studies to identify 

multilocus patterns that characterize particular subsets of the data.  Some clustering 

methodologies appropriate for such discrete data include hypergraph clustering (Han EH 

et al., 1997a), Bayesian classification (Hanson R et al., 1991) and fuzzy k-modes 

clustering (Huang Z and Ng MK, 1999). 

 

Interactions 

Gene–gene and gene–environment interactions are two complex genetic factors 

(Figure 2) that create a rugged model landscape for statistical analysis. There is clear and 
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convincing evidence that gene–gene interactions, whether synergistic or antagonistic, are 

not only possible but also are probably ubiquitous (Moore JH, 2003; Tong AH et al., 

2004). Similarly, gene–environment interactions are likely to be discovered if properly 

investigated. Thus, it is crucial that complex genetic datasets be properly interrogated for 

possible underlying interactions. 

Analytically it can be difficult to distinguish between heterogeneity and 

interactions.  Many of the methods that address heterogeneity might be equally applicable 

to uncovering interactions.  For instance, the discovery of linkage to a particular locus in 

only one subset of data produced by sample stratification could be indicative of 

heterogeneity, or it could be indicative of an interaction between the locus and the 

covariate used to stratify the data. However, there is also an entirely different set of 

methods that are particularly well suited to discovering interactions (but not 

heterogeneity; Figure 4). 

One traditional approach still widely used today is regression.  In particular, 

logistic regression is used when the outcome variable is discrete, for example, disease 

status (i.e. you either have the disease or you do not) (Figure 4).  Logistic regression 

enables direct modeling of the mathematical relationship of genetic and other risk factors 

to disease status.  However, this ‘workhorse’ suffers from the curse of dimensionality, 

meaning that as the distribution of data across numerous combinations of factors becomes 

sparse, the parameter estimates become unreasonably biased, particularly when the ratio 

of sample size to independent variables is below ten to one (Concato et al., 1993; Moore 

JH and Williams SM, 2002; Peduzzi P et al., 1996).  Thus, when considering a 

combination of loci, one or more of which have low minor allele frequencies, the number 

14 
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of individuals with certain multilocus genotype combinations will be so small (or perhaps 

equal to zero), that one cannot reasonably estimate, or generalize to the population, what 

is the disease risk for that combination of genotypes.  Missing or incomplete data can also 

create or exacerbate the problem of sparse data.  In addition, many standard approaches 

to implementing logistic regression, such as forward stepwise regression, require 

significant main effects to be modeled before including interaction effects between 

factors.  This is a major methodological limitation for situations where each locus has 

relatively small main (non-interactive) effects but more substantial interactive effects 

because none of those interactive effects would ever be considered. 

A more recently developed statistical method for evaluating gene–gene 

interactions is the focused interaction testing framework (FITF) (Millstein et al., 2006).  

This method is applicable to case-control data and uses likelihood ratio tests on 

increasingly greater orders of interaction between genes.  To reduce the number of 

interactions tested, a prescreening step is applied in which a goodness-of-fit chi-square 

statistic is used to detect association among candidate genes in the pooled case-control 

data.  Multiple testing is addressed by controlling false discover rates.  This method is 

reported to have better power to detect interactions than Multifactor Dimensionality 

Reduction (MDR, discussed below) when the genes involved have recessive, dominant or 

additive effects (Millstein et al., 2006).  However, the reported difference in power may 

be attributable to the particular implementation of MDR, which differs from that 

recommended by MDR’s authors, and to a disconnect between how the methods 

determine the success of an analysis of simulated data. 
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Another recently developed method for gene-gene interactions is the S-sum 

statistic, which is designed to overcome the curse of dimensionality and the multiple-

testing problems by reducing any number of independent variable statistics into one sum 

statistic and then using permutation testing to correct for an experiment-wise Type I error 

rate, which is the probability of concluding that there is an effect when one does not 

actually exist (Hoh J et al., 2001; Ott J and Hoh J, 2003).  ‘Set association’ analysis is the 

authors’ term for the application of the S statistic to SNP marker data from candidate 

genes or regions (Figure 4).  This method selects the ‘best’ set of n number of single 

nucleotide polymorphisms (SNPs), whose Sn statistic is statistically significant, leading to 

the inference that the entire set of SNPs might be interacting in some way to increase 

disease risk, or else that they are all contributing independently to disease risk.  However, 

because the summed statistics are all single-marker statistics, set association analysis 

does not look at any specific (non-additive) interactive effects among markers and would 

be likely to miss nonlinear or antagonistic types of gene–gene interactions.  This method 

has successfully identified a set of seven SNPs, which together were associated with 

restenosis incidence (P < 0.0001) and explained over 11% of the overall variance (Zee 

RY et al., 2002).  In theory the S statistic can be used with any number of test statistics on 

discrete or continuous data, but its applications and limitations are still being evaluated 

(Wille A et al., 2003). 

When the outcome variable is continuous, as is the case for a quantitative trait 

locus (QTL), such as serum prolactin levels, linear regression can be used to model the 

relationship between risk factors and QTL status (Figure 4).  However, linear regression 

faces the same limitations logistic regression does regarding parameter estimation and 
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modeling interactions.  Cheverud and Routman (Cheverud JM and Routman EJ, 1995) 

developed an alternative parameterization of gene–gene interactions based on its effects 

on genetic variance components (additive, dominance and interaction); however, it is 

limited to evaluating only two loci at a time and all possible genotypes must be present in 

the sample. 

Multivariate adaptive regression splines (MARS) (Cook NR et al., 2004; 

Friedman J, 1991) is a generalization of stepwise linear regression that is particularly 

suited for high-dimensional problems in which many independent variables might be 

modeled.  MARS is also similar to classification and regression trees (CART) (Cook NR 

et al., 2004; Morgan JN and Sonquist JA, 1963; Province MA et al., 2001; Shannon WD 

et al., 2001), which iteratively subdivide data to build a hierarchical classification model.  

A Bayesian belief network (BBN) (Good IJ, 1961) is a probabilistic reasoning system 

that builds a topological (but necessarily hierarchical) model of interactions (joint 

probabilities) (Figure 4).  BBN, CART and MARS all suffer from the same problem of 

sequential conditioning that can plague many other regression-based methods, which 

makes it difficult to discover interactions (especially higher-order interactions) among 

predictor variables, depending on the strength of their individual (or lower-order 

interaction) effects.  The binary nature of CART further limits its ability to model any 

additive interaction.  Still, the most troubling limitation that plagues all these methods is 

their inability to model, much less discover, nonlinear interactions. 

Two types of computational methods—data reduction and pattern recognition—

that come from the computer science field offer the potential for uncovering such 

nonlinear interactions, with increased tolerance for missing or incomplete data (Figure 4).  
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Nelson et al. (Nelson MR et al., 2001) developed a combinatorial partitioning method 

(CPM) that utilizes data reduction to investigate gene–gene interactions. CPM has shown 

success in building multilocus models with nonlinear interactions to explain and predict 

variability in plasma triglyceride (Nelson MR et al., 2001) and plasma plasminogen 

activator inhibitor 1 levels (Moore JH et al., 2002).  Culverhouse et al. (Culverhouse R et 

al., 2004) developed a modification of the CPM method, the restricted partition method 

(RPM), which heuristically restricts the exhaustive search used in CPM and thereby 

reduces its computational load for evaluating interactions.  Multifactor dimensionality 

reduction (MDR) is one data reduction method developed specifically for genotypic data 

that has been successful at finding gene–gene interactions in both simulated data (Hahn 

LW and Moore JH, 2004; Hahn et al., 2003; Ritchie MD et al., 2001; Ritchie MD et al., 

2003) and real data (Ashley-Koch et al., 2006; Cho YM et al., 2004; Ma et al., 2005; Qin 

et al., 2005; Ritchie et al., 2001; Tsai CT et al., 2004; Williams SM et al., 2004).  

Artificial neural networks perform pattern recognition and have been applied to 

genotypic data with varied success (Lucek P et al., 1998; Marinov M and Weeks D, 2001; 

McCulloch W and Pitts W, 1943; Sherriff A and Ott J, 2001).  However, recent work has 

improved the reliability of artificial neural networks through their optimization by 

evolutionary computation (EC) algorithms (Fogel GB and Corne DW, 2002), which use a 

computational search methodology uniquely suited for rugged model landscapes (Ritchie 

et al., 2003b).  One limitation of these computational methods is the potential difficulty 

of interpreting the biological implications of the resulting predictive models (Moore JH 

and Ritchie MD, 2004; Moore and Williams, 2002). 
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Retooling for the Future 

None of the aforementioned methodologies is superior in all respects for the range 

of complicating factors that might be present in any given dataset.  Given the relative 

shortcomings of our current analyses in complex diseases, we need to extend greatly the 

range of available analytical tools.  There is a crucial need for extensive reevaluation of 

existing methodologies for complex diseases, as well as for massive efforts in new 

method development.  It is important that empirical studies be conducted to compare and 

contrast the relative strengths and weaknesses of methods on specific types of problems.  

For example, although cluster analysis has shown promise in numerous other scientific 

and mathematical fields, its use with genetic, particularly discrete genotypic data, has not 

been adequately explored.  Similarly, artificial neural networks modified with 

evolutionary computation have great potential for discovering nonlinear interactions 

among genes and environmental factors.  However, work is still ongoing to evaluate its 

limitations with regard to the heritability and effect sizes that can be detected. 

Ultimately, the real power of existing and yet-to-be-developed methods lies in our 

ability to marry them into a comprehensive approach to genetic analysis, so that their 

relative strengths and weaknesses can be balanced and few alternative hypotheses are left 

uninvestigated.  We propose routinely taking a two-step approach to analysis because no 

single method adequately investigates heterogeneity and interaction issues 

simultaneously.  For example, clustering or ordered subset analysis can be used first to 

uncover genotypic and/or phenotypic heterogeneity and to subdivide the data into more 

homogeneous groups.  Then in a second step, specific tests of interactions, such as the S 

sum statistic approach or the multifactor dimensionality reduction method can be used to 
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investigate gene–gene or gene–environment interactions within each of the homogenized 

subgroups.  This is still not a perfect approach, but it is an important improvement over 

the more common alternative of a single-pronged approach to analysis. 

Such a combined strategy must be the future of genetic statistical analysis.  We 

must harness our knowledge and experience of existing methods even as we open our 

minds to newly fashioned techniques and approaches.  By thus ‘retooling’ our analyses, 

we provide the best opportunity for uncovering the genetic basis of common human 

disease. 
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CHAPTER III 

 

A COMPARISON OF CLUSTERING METHODS 

 

Adapted and expanded from previous work completed for  

Masters Thesis in Biomedical Informatics (2005) and published as follows: 

Thornton-Wells TA, Moore JH, Haines JL.  Dissecting trait heterogeneity: a comparison 

of three clustering methods applied to genotypic data.  BMC Bioinformatics 7:204, 2006. 

 

Background 

 For over 30 years, cluster analysis has been used as a method of data exploration 

(Anderberg MR, 1973).  Clustering is an unsupervised classification methodology, which 

attempts to uncover ‘natural’ clusters or partitions of data.  It involves data encoding and 

choosing a similarity measure, which will be used in determining the relative ‘goodness’ 

of a clustering of data.  No one clustering method has been shown universally effective 

when applied to the wide variety of structures present in multidimensional datasets.  

Instead, the choice of suitable methods is dependent on the type of target data to be 

analyzed.  Clustering has been utilized widely for the analysis of gene expression (e.g., 

DNA microarray) data; however, its application to genotypic data has been limited 

(Slonim DK, 2002). 

Most traditional clustering algorithms use a similarity metric based on distance that 

may be inappropriate for categorical data such as genotypes.  Newer methods have been 

developed with categorical data in mind and include extensions of traditional methods 
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and application of probabilistic theory.  Three such methods were chosen (as discussed in 

a subsequent section) to compare in the task of discovering trait heterogeneity using 

multilocus genotypes—Bayesian Classification (Hanson R et al., 1991), Hypergraph-

Based Clustering (Han EH et al., 1997a), and Fuzzy k-Modes Clustering (Huang Z and 

Ng MK, 1999)—all of which are appropriate for categorical data. 

 

Methods 

 

Data Simulation 

To compare the performance of clustering methodologies in the task of uncovering 

trait heterogeneity in genotypic data, datasets were needed in which such heterogeneity 

was known to exist.  Since there are no well-characterized real datasets available that fit 

this description, a simulation study was needed.  Genetic models that contained two 

binary disease-associated traits, such that there is trait heterogeneity among ‘affected’ 

individuals, were used.  In addition, some of the models incorporate locus heterogeneity, 

a gene-gene interaction, or both.  Figure 5 depicts the structure of the four genetic models 

used to simulate the genotypic data. 

Four prevalence levels were simulated for each genetic model:  (1) fifteen 

percent, which is characteristic of a common disease phenotype such as obesity (Flegal 

KM et al., 1998), (2) five percent, which is characteristic of a relatively common disease 

such as prostate cancer (Narod SA et al., 1995), (3) one percent, which is 
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Model 1 – Trait Heterogeneity Only 
       
Allelic Variant i of Locus A  DiseaseX-Associated Trait I 
          Disease X 
Allelic Variant ii of Locus B  DiseaseX-Associated Trait II 
 

Model 2 – Trait Heterogeneity with Locus Heterogeneity 
 
Allelic Variant i of Locus A   
     DiseaseX-Associated Trait I  
Allelic Variant ii of Locus B       Disease X 
 
Allelic Variant iii of Locus C  DiseaseX-Associated Trait II 
 

Model 3 – Trait Heterogeneity with Gene-Gene Interaction 
 
Allelic Variant i of Locus A   
     DiseaseX-Associated Trait I  
Allelic Variant ii of Locus B       Disease X 
 
Allelic Variant iii of Locus C  DiseaseX-Associated Trait II 
 
 
Model 4 – Trait Heterogeneity with Locus Heterogeneity and 

Gene-Gene Interaction 
 
Allelic Variant i of Locus A   
     DiseaseX-Associated Trait I  
Allelic Variant ii of Locus B        
          Disease X 
Allelic Variant iii of Locus C   
     DiseaseX-Associated Trait II  
Allelic Variant iv of Locus D 
 

Figure 5.  Structure of Genetic Models Used for Data Simulation 

 

 

characteristic of a less common disease such as schizophrenia (Schultz S and Andreasen 

N, 1999), and (4) one tenth of one percent, which is characteristic of a more uncommon 

disease such as multiple sclerosis (Kurtzke JF, 1991).  Three realistic levels of sample 
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size were simulated for each model:  200, 500 and 1000 affected individuals.  Finally, 

four levels of non-functional loci were simulated:  0, 10, 50 and 100.  The inclusion of 

non-functional loci adds a random noise effect that is present in real candidate gene 

studies in which the functional locus or loci are among many more suspected but actually 

non-functional loci.  All loci, including the functional loci, were simulated to have equal 

biallelic frequencies of 0.5. 

Although the above parameter settings are by no means exhaustive of the 

biologically plausible situations, the outlined conditions are reasonable and specify 192 

different sets of data specifications due to the combinatorial nature of the study design.  

To have adequate power to detect a difference in performance among clustering 

methodologies, 100 datasets per set of parameters were simulated, resulting in a total of 

19,200 simulated datasets. 

 For the purposes of simulating these data, a novel data simulation algorithm 

capable of incorporating these complex genetic factors in an epidemiologically-sound 

manner was designed and developed (Figure 6).  Penetrance is the probability of having a 

particular phenotype given a specific genotype (single or multilocus).  Prevalence, on the 

other hand, is the percentage of individuals in a population that have a particular 

phenotype.  The penetrance levels of the two simulated disease-associated traits are 

constrained by the overall prevalence level of the simulated disease.  The two traits were 

simulated to contribute equally to the prevalence of the associated disease (fifty percent 

trait heterogeneity), such that a small but naturally occurring degree of overlap would be 

present, representing individuals having both disease-associated traits, instead of just one 

or the other.  These penetrance tables are inputs for the new data simulation algorithm. 
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Penetrance Function Array:  each cell value represents the probability of having the disease-
associated trait, given the (multilocus) genotype 

 
Unaffecteds Probability Array:  each cell value represents the probability of having the multilocus 

genotype given that the disease status is unaffected, which is the probability of being negative 
for all traits, or the joint probability of being negative for each trait, given the genotype 
frequency (prior probability) 

 
Affecteds Probability Array:  each cell value represents the probability of having the multilocus 

genotype given that the disease status is affected, which is the probability of being positive for 
at least one trait, which is the same as 1 – probability of being negative for all traits, or 1- joint 
probability of being negative for each trait, given the genotype frequency (prior probability) 

Pseudocode: 
 
1. Allocate two probability arrays, one for Affecteds and one for Unaffecteds, each of size 

∏∑
= =

L

i

A

j

i

j
1 1

  where L is the total number of loci and Ai is the number of alleles for locus i. 

 
2. For each penetrance function p(Status=Affected | Multilocus Genotype) 

==>Distribute 1-p across relevant cells of Unaffecteds probability array 
 

3. Populate cells of the Affecteds probability array with 1-(cell probability) of corresponding cells of 
the Unaffecteds probability array 
 

4. For each locus  
==>Distribute allele frequencies across appropriate cells of both probability arrays 

 
5. Generate the specified number of unaffected individuals from the Unaffecteds probability array 

 
6. Generate the specified number of affected individuals from the Affecteds probability array 
 
7. Determine the status of each disease-associated trait for each affected individual thus….  If the 

affected individual has a high-risk genotype combination for that disease-associated trait, then 
that individual is affected for that trait.  Otherwise, the individual is unaffected for that disease-
associated trait.  (By design, each affected individual will be affected at one or more disease-
associated traits.) 

Figure 6.  Novel Data Simulation Algorithm.  Simulates trait heterogeneity, locus 
heterogeneity and gene-gene interactions in an epidemiologically-sound manner.  The 
inputs are penetrance function arrays, which are translated into probability arrays for 
affecteds and unaffecteds, separately.  Then affected and unaffected individuals (with 
multilocus genotypes) are simulated from those respective arrays. 
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 For one fourth of the models, trait heterogeneity only is involved (not locus 

heterogeneity or gene-gene interactions), and there is one genetic risk factor for each of 

the two traits.  Each locus acts in a recessive manner, such that affected individuals have 

both copies of the high-risk allele at the disease-associated “functional” locus (Figure 7).  

A naturally occurring degree of overlap between the two traits can result, such that some 

affected individuals have the high-risk genotypes for both traits. 

 

 

(a)  

1A1A 1A1B 1B1B 
0 0 x 

 

(b)  

2A2A 2A2B 2B2B 
0 0 x 

 

Figure 7.  Genetic Model THO (Trait Heterogeneity Only) 
The penetrance tables for Trait I (a) and Trait II (b) are presented.  Cell values indicate 
penetrance level, or the probability of having the trait, given the corresponding multilocus 
genotype.  For each of the two traits, a Mendelian recessive genetic model is used, in 
which the trait is penetrant only when two copies of the high risk (B) allele are present.  
The penetrance (x) is constrained by the desired overall disease prevalence to be 
simulated (0.001, 0.01, 0.05 or 0.15). 
 

 

In the second quarter of the datasets, a locus heterogeneity model described by Li 

and Reich (Li WT and Reich J, 2000) was also simulated (Figure 8b) so that for one of 

the traits, there are two associated loci, each of which is responsible for roughly half of 

the individuals affected with the trait.  In that locus heterogeneity model, each of the 
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functional loci acts in a recessive manner, such that the disease-associated genotype for 

the locus consists of two copies of one high-risk allele.  For the other trait, a recessive 

model was implemented, as described above (Figure 8a). By chance, there might be some 

affected individuals who have the high-risk genotype from the first trait as well as one of 

the high-risk genotypes from the second trait. 

 

 

(a) 

1A1A 1A1B 1B1B
0 0 x 

 

(b) 

  2A2A 2A2B 2B2B
3A3A 0 0 x 
3A3B 0 0 x 
3B3B x x x 

 
 
 
 
 
 
Figure 8.  Genetic Model THL (Trait Heterogeneity with Locus Heterogeneity)   
The penetrance tables for Trait I (a) and Trait II (b) are presented.  Cell values indicate 
penetrance level, or the probability of having the trait, given the corresponding multilocus 
genotype.  For Trait I, a Mendelian recessive genetic model is used, in which the trait is 
penetrant only when two copies of the high risk (B) allele are present.  For Trait II, a 
locus heterogeneity model described by Li and Reich (Li WT and Reich J, 2000) is used, 
in which the trait is penetrant only when two copies of the high risk allele at one or both 
loci are present (in this case the B alleles for locus 2 and 3 are high risk). 
 

 

In the third quarter of the datasets, a gene-gene interaction was simulated for one of 

the two traits.  The “diagonal” gene-gene interaction model, first described by Frankel 

and Schork (Frankel WN and Schork NJ, 1996) and later by Li and Reich (Li WT and 
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Reich J, 2000), which is nonlinear and nonadditive in nature, was used (Figure 9b).  

Under this model, a multilocus genotype is high-risk if it has exactly two high-risk alleles 

from either of the two associated loci.  A multilocus genotype with fewer than or greater 

than two high-risk alleles is not associated with disease.  For the other trait, a recessive 

model was implemented, as described above (Figure 9a).  By chance, there might be 

some affected individuals who have the high-risk genotype from the first trait as well as 

one of the high-risk genotypes from the second trait. 

 

 

(a)  
1A1A 1A1B 1B1B

0 0 x 
 

(b)  

 2A2A 2A2B 2B2B
3A3A 0 0 x 
3A3B 0 0.5x 0 
3B3B x 0 0 

 
Figure 9.  Genetic Model THG (Trait Heterogeneity with Gene-Gene Interaction) 
The penetrance tables for Trait I (a) and Trait II (b) are presented.  Cell values indicate 
penetrance level, or the probability of having the trait, given the corresponding multilocus 
genotype.  For Trait I, a Mendelian recessive genetic model is used, in which the trait is 
penetrant only when two copies of the high risk (B) allele are present.  For Trait II,  the 
“diagonal” genetic model first described by Frankel & Schork (Frankel WN and Schork 
NJ, 1996) and later by Li and Reich (Li WT and Reich J, 2000) is used.  Two loci (2 and 
3) are involved, each with two alleles (A and B), and the trait is penetrant only when 
exactly two copies of the high risk allele from either locus are present. 
 

 

In the fourth quarter of the datasets, one trait is simulated to involve locus 

heterogeneity (Figure 10a), while the other is simulated to involve the “diagonal” gene-
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gene interaction, as described above (Figure 10b).  Thus, there are some affected 

individuals who, by chance, will have one high-risk genotype from the first trait as well 

as one high-risk genotype from the second trait. 

 

 

(a)  
 1A1A 1A1B 1B1B

2A2A 0 0 x 
2A2B 0 0 x 
2B2B x x x 

 

(b)  

 3A3A 3A3A 3A3A
4A4A 0 0 x 
4A4B 0 0.5x 0 
4B4B x 0 0 

 
Figure 10.  Genetic Model THB (Trait Heterogeneity with Both Locus Heterogeneity and 
Gene-Gene Interaction).  The penetrance tables for Trait I (a) and Trait II (b) are 
presented.  Cell values indicate penetrance level, or the probability of having the trait, 
given the corresponding multilocus genotype.  For Trait I, a locus heterogeneity model 
described by Li and Reich (Li WT and Reich J, 2000) is used, in which the trait is 
penetrant only when two copies of the high risk allele at one or both loci are present (in 
this case the B alleles for locus 2 and 3 are high risk).  For Trait II,  the “diagonal” 
genetic model first described by Frankel & Schork (Frankel WN and Schork NJ, 1996) 
and later by Li and Reich (Li WT and Reich J, 2000) is used.  Two loci (2 and 3) are 
involved, each with two alleles (A and B), and the trait is penetrant only when exactly 
two copies of the high risk allele from either locus are present. 
 

 

The input file for each of the clustering methods, which are described below, 

includes genotype and trait status information.  Each row is a single individual.  Column 

headings include unique individual number, trait status (affected for Trait 1, Trait 2, or 
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both), and all simulated loci.  Genotypes for each locus are encoded nominally (not 

ordinally), such that no genetic model assumptions are incorporated.  Loci are numbered, 

and alleles are lettered.  Thus, for a given locus ‘3’ that has two alleles ‘A’ and ‘B’, the 

three possible genotypes are ‘3A3A’, ‘3A3B’, and ‘3B3B’.  A different nomenclature 

could easily be used, however, since the methods simply treat each genotype as a 

character string for labeling purposes only and do not attribute any meaning or order to 

them. 

 

Clustering Methods 

 There exists a very large number of clustering algorithms and even more 

implementations of those algorithms.  The choice of which clustering methodology to use 

should be determined by the kind of data being clustered and the purpose of the 

clustering (Kaufman L and Rousseeuw PJ, 1990).  Genotypic data are categorical, which 

immediately narrows the field of appropriate methods for this study to only a few.  Three 

different clustering methodologies were chosen that are suitable for categorical data and 

are appealing due to their speed or theoretical underpinnings. 

The goal of this cluster analysis is to find a partitioning of the affected individuals 

based on multilocus genotypic combinations that maps onto the trait heterogeneity 

simulated in the data.  For example, consider a dataset with 10 loci (numbered 1 to 10), 

each of which has two alleles (A and B), such that at each locus there are three possible 

genotypes (AA, AB and BB).  It is likely that among affected individuals in the dataset, 

subsets of individuals will share specific genotypes or multilocus combinations of 

genotypes (such as 2B2B; or 3A3B and 9A9B together), either by chance or because such 
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combinations are related to genetic background, phenotypic variability, or trait 

heterogeneity in some way.  Thus, a successful clustering would be one in which all the 

individuals who were simulated to have Trait I end up in one or more clusters that do not 

have any individuals unaffected for Trait I and all individuals who were simulated to 

have Trait II end up in one or more distinct clusters that do not have any individuals 

unaffected for Trait II (Figure 11).  (Those individuals, who by chance have both Trait I 

and Trait II, could be ‘correctly’ placed in any cluster.)  Such a clustering would 

effectively eliminate the noise present among affected individuals due to trait 

heterogeneity.  In the case where locus heterogeneity is also simulated, an even more 

successful clustering would be one in which there are two or more Trait II clusters, each 

of which has only those individuals who have a specific high-risk genotype (e.g., 2B2B 

from Figure 12) and none that do not. 

 

Bayesian Classification 

 The first clustering method is Bayesian Classification (Cheeseman P and Stutz J, 

1996; Hanson R et al., 1991).  The corresponding AutoClass software is freely available 

from Peter Cheeseman at the NASA Ames Research Center.  Bayesian Classification 

(BC) aims to find the most probable clustering of data given the data and the prior 

probabilities.  In the case of genotypic data, prior probabilities are based on genotype 

frequencies, which for the purpose of the proposed data simulations are set in accordance 

with Hardy-Weinberg equilibrium and equal biallelic frequencies of 0.5.  The most 

probable clustering of data is determined from two posterior probabilities.  The first 

involves the probability that a particular individual belongs to its ‘assigned’ cluster, or  
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(a) 

     Locus      Trait  
Indiv 1 2 3 4 5 6 7 8 9 10 1 2 

1 BB AB AB AB AB AA AB BB AB BB X  
2 AB BB BB AB BB BB AB AB BB AB  X 
3 BB BB AA AA AB AB AA AB BB AB X X 
4 AB BB AB AB AB AB BB AB AA AB  X 
5 BB AB AA AB AA AB AA AB AA BB X  
6 BB AB AB AB BB BB AB AA AB AB X  
7 BB BB BB BB AB AB AA AB BB AB X X 
8 AB BB AB AB AA AA AB BB AB BB  X 
9 BB AA AB AB BB AB AB AA AB AB X  

10 AB BB AB BB AB AB BB AB AB AA  X 
11 AA BB AA AA AA AB AA AB AB AB  X 
12 BB AB BB BB AB BB AB BB AA AB X  
13 AB BB AB AA AB AB BB AB AA AA  X 
14 BB AA AB AB BB BB AB AA AB AB X  
15 AB BB BB BB AB AA AB BB AB AA  X 

 
(b) 

     Locus      Trait  
Indiv 1 2 3 4 5 6 7 8 9 10 1 2 

1 BB AB AB AB AB AA AB BB AB BB X  
3 BB BB AA AA AB AB AA AB BB AB X X 
5 BB AB AA AB AA AB AA AB AA BB X  
6 BB AB AB AB BB BB AB AA AB AB X  
9 BB AA AB AB BB AB AB AA AB AB X  

12 BB AB BB BB AB BB AB BB AA AB X  
14 BB AA AB AB BB BB AB AA AB AB X  

 
(c) 

     Locus      Trait  
Indiv 1 2 3 4 5 6 7 8 9 10 1 2 

2 AB BB BB AB BB BB AB AB BB AB  X 
4 AB BB AB AB AB AB BB AB AA AB  X 
7 BB BB BB BB AB AB AA AB BB AB X X 
8 AB BB AB AB AA AA AB BB AB BB  X 

10 AB BB AB BB AB AB BB AB AB AA  X 
11 AA BB AA AA AA AB AA AB AB AB  X 
13 AB BB AB AA AB AB BB AB AA AA  X 
15 AB BB BB BB AB AA AB BB AB AA  X 

 
Figure11.  Hypothetical Clustering of a THO Dataset 
(a) A small dataset consistent with the Trait Heterogeneity Only (THO) genetic model 
(see Figure 7) is presented.  All individuals with the high risk genotype (BB) at locus 1 
have Trait I, and all individuals with the high risk genotype (BB) at locus 2 have Trait II.  
Some individuals have both high risk genotypes and, therefore, both traits. 
A successful clustering of this dataset might be one in which there are two clusters (b) 
and (c), such that one cluster contains only individuals who have Trait I (b) and the other 
cluster contains only individuals who have Trait II (c). 
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otherwise stated as the probability of the individual’s multilocus genotype, conditional on 

it belonging to that cluster, with its characteristic genotypes.  The second posterior 

probability involves the probability of a cluster given its assigned individuals, or 

otherwise stated as the probability of the cluster’s characteristic genotypes, conditional on 

the multilocus genotypes of the individuals assigned to that cluster. 

In actuality, individuals are not ‘assigned’ to clusters in the hard classification 

sense but instead in the fuzzy sense they are temporarily assigned to the cluster to which 

they have the greatest probability of belonging.  Thus, each individual has its own vector 

of probabilities of belonging to each of the clusters.  The assignment of individuals is also 

not considered the most important result of the clustering method.  A ranked listing is 

produced of all loci in the dataset with their corresponding normalized “attribute 

influence” values (ranging between 0 and 1), which provide a rough heuristic measure of 

relative influence of each locus in differentiating the classes from the overall dataset.  

Thus, emphasis is placed on the identification of which attributes, or loci, are most 

important in producing the clustering.  This information that can then be used to more 

directly stratify affected (and/or unaffected) individuals, for instance, by using the top n 

most influential loci identified, and to enable meaningful interpretation of the clustering 

result. 

 

Hypergraph Clustering 

 The second method is Hypergraph Clustering (Han EH et al., 1997a).  It has been 

implemented in the hMETIS software, which is freely available from George Karypis at 

the University of Minnesota.  Hypergraph clustering seeks a partitioning of vertices, such 
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that intracluster relatedness meets a specified threshold, while the weight of hyperedges 

cut by the partitioning is minimized.  In this case, vertices represent single locus 

genotypes, hyperedges represent association rules, and hyperedge weights represent the 

strength of the association rules.  For instance, if a specific genotype at one locus co-

occurs with a specific genotype at another locus, an association rule linking those two 

genotypes would be created, and that rule would have a weight equivalent to the 

proportion of individuals in the dataset that had both of those genotypes.  Thus, for our 

purposes, association rules are multilocus genotype combinations that are found in the 

dataset.  The freely available LPminer program was used to generate the association rules 

(Seno M and Karypis G, 2001).  LPminer searches the database for multilocus genotype 

combinations that appear together with substantial frequency (above a prespecified 

“support” percentage) and outputs this info as a list of association rules.  hMETIS takes 

these association rules and uses them to create a hypergraph in which single locus 

genotypes are vertices and association rules dictate the presence and weight of 

hyperedges.  hMETIS creates a partition of the hypergraph such that the weight of the 

removed hyperedges is minimized.  It achieves this by using a series of phases, somewhat 

analogous to the stages of a simulated annealing algorithm, in an attempt to avoid making 

decisions which are only locally (not globally) optimal. 

This process results in a partitioning (or clustering) of the genotypes in a dataset.  

If a single dataset were being analyzed, this information by itself could be sufficiently 

helpful since it would provide information about which multilocus genotypes appear with 

such frequency that they characterize groups of individuals.  Individuals could be directly 

stratified using such multilocus combinations (similar to the way attribute influence 
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values in the Bayesian Classification method could be used).  However, for the purpose 

of comparing the results of Hypergraph Partitioning to those of the other two methods, 

which produce clusters, or partitions, of individuals (not genotypes), such a partitioning 

of individuals still needed to be created.  Since a given individual could have more than 

one of the multilocus genotypes specified by different hyperedges in the final 

partitioning, the partitioning of individuals was not entirely straightforward.  Thus, a 

heuristic was devised such that each individual would be assigned to the partition, or 

cluster, for which it had the highest percentage of matching genotypes (Figure 12).  More 

specifically, for each cluster, the number of loci represented by one or more genotypes in 

that cluster was determined (Lc).  Then, for each individual, for each cluster, the number 

of matching genotypes between the cluster and the individual (Mic) was divided by Lc, 

producing a vector of similarity percentages per individual, similar to the vector of 

probabilities used by the Bayesian Classification and Fuzzy k-Modes Clustering methods.  

Each individual was then assigned to the cluster with which it had the greatest similarity. 

 

Fuzzy k-Modes Clustering 

The third clustering method is Fuzzy k-Modes Clustering (Huang Z and Ng MK, 

1999).  k-Modes is a trivial extension to categorical data of the popular k-means 

algorithm.  In both methods, cluster centroids can be initialized at random or by one of 

many seeding strategies (Duda RO and Hart PE, 1973), and individuals are assigned to 

their nearest cluster centroids.  Then, cluster centroids are reevaluated based on their 

newly assigned individuals.  For the k-means algorithm, the centroid is calculated as the 

mean vector of genotypes across individuals.  However, for nominal data, such means are  
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(a) 
 
Cluster 1 Cluster 2 Cluster 3
1B1B  2B2B  7A7B 
3A3B    9A9A 
 
(b) 
 

     Locus      

 Percentage 
of Matching 
Genotypes 
by Cluster 

 

Indiv 1 2 3 4 5 6 7 8 9 10 1 2 3 
1 BB AB AB AB AB AA AB BB AB BB 100 0 50 
2 AB BB BB AB BB BB AB AB BB AB 0 100 50 
3 BB BB AA AA AB AB AA AB BB AB 50 100 0 
4 AB BB AB AB AB AB BB AB AA AB 50 100 50 
5 BB AB AA AB AA AB AA AB AA BB 50* 0 50 
6 BB AB AB AB BB BB AB AA AB AB 100 0 50 
7 BB BB BB BB AB AB AA AB BB AB 50 100 0 
8 AB BB AB AB AA AA AB BB AB BB 50 100 50 
9 BB AA AB AB BB AB AB AA AB AB 100 0 50 

10 AB BB AB BB AB AB BB AB AB AA 50 100 0 
11 AA BB AA AA AA AB AA AB AB AB 0 100 0 
12 BB AB BB BB AB BB AB BB AA AB 50 0 100** 
13 AB BB AB AA AB AB BB AB AA AA 50 100 0 
14 BB AA AB AB BB BB AB AA AB AB 100 0 50 
15 AB BB BB BB AB AA AB BB AB AA 0 100 50 

 
Figure 12.  Example of Post-processing of Hypergraph Clustering Result 
Hypergraph clustering produces a clustering of genotypes, instead of individuals.  Thus, a 
clustering of individuals must be induced from this clustering of genotypes.  As described 
in the text, an individual in assigned to the cluster for which it has the highest percentage 
of matching genotypes.  Given the dataset presented in Figure 11(a) and a clustering of 
genotypes that is presented here (a), a clustering of individuals can be induced (b). For 
each individual (row), the percentage of matching genotypes that is highlighted indicates 
to which cluster the individual becomes assigned.  Notice that for individual 5, there is a 
tie between the percentage of matching genotypes for clusters 1 and 3.  In such cases, we 
arbitrarily assign the individual to the lower numbered cluster.  Since cluster 3 does not 
contain any high-risk genotypes, it does not facilitate the goal of creating a clustering that 
maps to the simulated trait heterogeneity, and in the case of individual 12, it ends up 
capturing an individual who would preferably be clustered in cluster 1. 
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not necessarily meaningful, and the k-modes algorithm instead determines the centroid as 

the mode vector of genotypes across individuals.  Genotypes are encoded nominally (not 

ordinally), such that no two genotypes are considered ‘closer’ than another two, and the 

‘distance’ between an individual and a centroid is calculated as the cumulative number of 

non-matching genotypes across all loci.  After cluster centroids are reevaluated, 

individuals are again assigned to their nearest centroids, and this process is repeated until 

the assignment of individuals to clusters does not change.  Figure 13 demonstrates the 

first steps of the k-modes clustering, using the same dataset presented in Figures 11 and 

12.  The straightforward algorithm was developed in the C++ language.  The number of 

clusters (k) was prespecified to be 2, 3, 4, 5 or 6.  All five possible k were run for each 

dataset.  Each cluster centroid was initially set to the values of a randomly selected 

individual in the dataset being analyzed.  Both a ‘fuzzy’ and a ‘hard’ version of the k-

modes algorithm were implemented and tested, and while their results on test datasets 

were comparable, the fuzzy version did perform slightly better and provided more 

information, which could be used for interpretation of results.  Thus, the fuzzy version 

was chosen for use in these analyses. 

 

Statistical Analysis 

 

Comparison of Clustering Methods 

Each clustering method has its own metric(s) for evaluating the “goodness” of a 

clustering of data.  Since these methods are being tested on simulated data, classification 

error of a given clustering can be calculated as the number of misclassified individuals  
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(a) 
     Locus      

Cluster 1 2 3 4 5 6 7 8 9 10 
1 (1) BB AB AB AB AB AA AB BB AB BB 
2 (5) BB AB AA AB AA AB AA AB AA BB 
3 (12) BB AB BB BB AB BB AB BB AA AB 
4 (15) AB BB BB BB AB AA AB BB AB AA 
 
(b) 

     Locus      
 Cluster 

Distance 
  

Indiv 1 2 3 4 5 6 7 8 9 10 1 2 3 4 
1 BB AB AB AB AB AA AB BB AB BB 0 6 5 5 
2 AB BB BB AB BB BB AB AB BB AB 8 8 6 6 
3 BB BB AA AA AB AB AA AB BB AB 8 5 7 8 
4 AB BB AB AB AB AB BB AB AA AB 7 6 7 7 
5 BB AB AA AB AA AB AA AB AA BB 6 0 5 10 
6 BB AB AB AB BB BB AB AA AB AB 4 7 5 8 
7 BB BB BB BB AB AB AA AB BB AB 8 6 5 6 
8 AB BB AB AB AA AA AB BB AB BB 4 7 8 4 
9 BB AA AB AB BB AB AB AA AB AB 5 7 8 8 
10 AB BB AB BB AB AB BB AB AB AA 7 8 8 4 
11 AA BB AA AA AA AB AA AB AB AB 9 5 9 8 
12 BB AB BB BB AB BB AB BB AA AB 5 7 0 5 
13 AB BB AB AA AB AB BB AB AA AA 8 7 8 6 
14 BB AA AB AB BB BB AB AA AB AB 5 7 6 8 
15 AB BB BB BB AB AA AB BB AB AA 5 10 5 0 

 
(c) 

     Locus      
Cluster 1 2 3 4 5 6 7 8 9 10 
1  BB AA AB AB BB AA AB AA AB AB 
2  BB BB AA AA AA AB AA AB AA AB 
3  BB BB BB BB AB BB AB AB BB AB 
4 AB BB AB BB AB AB BB AB AB AA 
 
Figure 13.  Example of k-Modes Clustering 
In this example, the same dataset presented in Figure 11 is used to demonstrate the 
different steps involved the k-modes clustering algorithm, and k was chosen to be 4, such 
that four clusters will initially be formed.  (a) The cluster centroids are seeded by 
randomly selecting the genotypes of actual individuals in the dataset.  The number in 
parentheses beside the cluster number is the individual used to seed that cluster.  (b) 
Individuals are then compared to each of the cluster centroids, and the number of 
nonmatching genotypes between each cluster centroid and that individual are recorded.  
The individual is then assigned to the cluster for which it had the fewest number of 
nonmatching genotypes (in bold).  (c) The next step is to update the cluster centroids 
based on the individuals now assigned to the clusters.  The mode genotype among 
individuals assigned to a cluster becomes the centroid genotype at that locus.  Genotypes 
that changed from the initialization to the update are shown in bold. 
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(d) 

     Locus      
 Cluster 

Distance 
  

Indiv 1 2 3 4 5 6 7 8 9 10 1 2 3 4 
1 BB AB AB AB AB AA AB BB AB BB 4 9 7 7 
2 AB BB BB AB BB BB AB AB BB AB 6 7 3 7 
3 BB BB AA AA AB AB AA AB BB AB 8 3 4 6 
4 AB BB AB AB AB AB BB AB AA AB 7 6 6 3 
5 BB AB AA AB AA AB AA AB AA BB 8 3 8 8 
6 BB AB AB AB BB BB AB AA AB AB 2 8 6 8 
7 BB BB BB BB AB AB AA AB BB AB 8 4 2 5 
8 AB BB AB AB AA AA AB BB AB BB 5 8 8 6 
9 BB AA AB AB BB AB AB AA AB AB 1 7 7 7 
10 AB BB AB BB AB AB BB AB AB AA 8 7 6 0 
11 AA BB AA AA AA AB AA AB AB AB 8 2 7 6 
12 BB AB BB BB AB BB AB BB AA AB 7 7 3 8 
13 AB BB AB AA AB AB BB AB AA AA 9 5 7 2 
14 BB AA AB AB BB BB AB AA AB AB 1 8 6 8 
15 AB BB BB BB AB AA AB BB AB AA 7 9 5 4 

 
Figure 13, continued.  Example of k-Modes Clustering 
(d) After the centroids are updated, the individuals are reevaluated as to which cluster 
they most closely resemble and are assigned to that cluster.  Only individual 4 was 
assigned to a different cluster than it was previously.  Steps (c) and (d) are repeated until 
no genotypes are changed in any cluster centroid and no individuals’ cluster assignments 
are changed. 
 

 

divided by the total number of individuals.  However, simple classification error has its 

disadvantages.  Firstly, in cases such as this where there is overlap between the known 

classes, the researcher must make an arbitrary decision as to when individuals who have 

been simulated to have both traits, not just one or the other, are considered to be 

misclassified.  The decision about error is equally arbitrary when the number of resulting 

clusters is greater than the number of known classes.  For instance, if the individuals 

belonging to one class were divided into two classes by the clustering algorithm, 

calculating classification error would require either (1) that none of those individuals be 

considered incorrectly classified, since they are all in homogenous clusters, or else (2) 

that all individuals from one of those clusters be considered misclassified.  Neither choice 
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seems to satisfactorily capture the “goodness” of the clustering result.  Subsequently, it is 

not advisable to compare the classification error of two clustering results for which the 

number of clusters differs. 

It is for these reasons alternative cluster recovery metrics were investigated.  The 

Hubert-Arabie Adjusted Rand Index (ARIHA) addresses the concerns raised by 

classification error and was, therefore, chosen to evaluate the goodness of clustering 

results from the three clustering methods being compared (Hubert L and Arabie P, 1985).  

Calculation of the ARIHA involves determining (1) whether pairs of individuals, who 

were simulated to have the same trait, are clustered together or apart and (2) whether 

pairs of individuals, who do not have the same trait, are clustered together or apart.  The 

ARIHA is robust with regard to the number of individuals being clustered, the number of 

resulting clusters, and the relative size of those clusters (Steinley D, 2004).  It is also 

sensitive to the degree of class overlap, which is desirable since it will penalize more for 

good clusterings that occur by chance than classification error would.  When interpreting 

ARIHA values, 0.90 and greater can be considered excellent cluster recovery, 0.80 and 

greater is good cluster recovery, 0.65 and greater reflects moderate cluster recovery, and 

less than 0.65 indicates poor cluster recovery.  These values were derived from empirical 

studies showing observations cut at the 95th, 90th, 85th and 80th percentiles 

corresponded to ARIHA values of 0.86, 0.77, 0.67 and 0.60 respectively (Steinley D, 

2004). 

The ARIHA was used as the gold standard measure to compare the performance of 

the three clustering methods.  Three categorical variables were created that could be 

tested using the nonparametric chi-square test of independence.  The ARIHA values were 
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discretized into a 1 or 0 depending on whether they met or exceeded the cutoff values for 

excellent, good and moderate cluster recovery, as described above.  A chi-square test of 

independence was performed testing the null hypothesis that the number of clusterings 

achieving a certain ARIHA value was independent of the clustering method, thereby 

evaluating whether one method significantly outperformed the others.  Five percent was 

chosen as the significance level (alpha). 

 

Applicability to Real Data 

 As a reminder, the ultimate goal of this research is to find a clustering method that 

works well at uncovering trait heterogeneity in real genotypic data.  Unlike for the 

current simulation study, for real data it is not known a priori to which clusters 

individuals belong, otherwise the clustering would not be necessary.  Indeed, it is the goal 

of clustering to uncover natural clusters or partitions of data using the method-specific 

“goodness” metric as a guide.  In preparation for application of a clustering method to 

real data, after choosing the superior method, that method’s internal clustering metrics 

were analyzed using permutation testing to determine how good a proxy they are for 

ARIHA. 

One hundred permuted datasets per simulated dataset was chosen, which should 

result in a reasonable approximation of the null distribution but would not put 

unreasonable strain on resources and time (Good P, 2000).  Genotypes were permuted 

within loci across individuals, such that the overall frequency of genotypes at any one 

locus was unchanged, but the frequency of multilocus genotypes was altered at random.  

This created a null sample in which the frequency of multilocus genotypes was no longer 
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associated with trait status except by chance.  The empirically-determined superior 

clustering method was applied to each permuted dataset and both the internal clustering 

metric values and the ARIHA were determined.  For each set of 100 permuted datasets, the 

significance of each of the simulated dataset results was determined based on whether 

they exceeded the values at the significance level in the corresponding null distribution.  

Ten percent was chosen as the acceptable Type I error rate since these methods serve as a 

means of data exploration to be followed by more rigorous, supervised analyses on 

individual clusters of the data.  However, the more conventional levels of 0.05 and 0.01 

were also evaluated.  Finally, the ability of permutation testing to preserve acceptable 

Type I (false positive) and Type II (false negative) error rates was evaluated at the three 

specified significance levels. 

 

Results 

 Descriptive statistics and plots for the Hubert-Arabie Adjusted Rand Index results 

were produced.  Mean ARIHA values for Bayesian Classification, Hypergraph Clustering 

and Fuzzy k-Modes Clustering were 0.666, 0.354 and 0.556, respectively.  Confidence 

intervals around the means were also produced to demonstrate the preciseness of the 

ARIHA measurements.  The results for each method across all datasets are presented in 

Table 1.  Mean ARIHA values differed by genetic model type, with higher scores achieved 

on Trait Heterogeneity Only (THO) datasets for the Bayesian Classification and 

Hypergraph Clustering methods (Figure 14). 
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Table 1.  Confidence Intervals around ARIHA Means by Method 
 

   95% Confidence Interval  

Method Mean Standard Error Lower End Upper End 

Bayesian 0.666 0.001 0.664 0.667 

Hypergraph 0.354 0.001 0.352 0.355 

Fuzzy k-Modes 0.556 0.001 0.555 0.558 
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Figure 14.  Comparison of ARIHA Means by Method and Model.  Bars represent means, 
and error bars, which are very short and may be difficult to see, represent 95% 
confidence intervals.  Horizontal lines represent thresholds for quality of cluster recovery:  
0.90 for excellent recovery, 0.80 for good recovery and 0.65 for moderate recovery. 
 

 

Results are displayed as percentages by clustering method (Figure 15) and by 

clustering method and genetic model (Figure 16).  A chi-square test of independence was 

performed testing the null hypothesis that the number of clusterings achieving the 
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specified ARIHA cutoff value was independent of the clustering method.  The three 

methods performed significantly differently on each of the ARIHA cutoff statistics (Table 

2).  Bayesian Classification outperformed the other two methods.  However, across all the 

dataset parameters, Bayesian Classification achieved moderate or better recovery on only 

48% of the datasets (Figure 15). 
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Figure 15.  Percentage of Clustering Results Achieving Cluster Recovery Levels by 
Method 
 
 
 
 
Table 2.  Overall Results of Chi-Square Test of Independence.  The null hypothesis that 
the percentage of clustering results achieving the specified cluster recovery level does not 
differ across clustering methods was tested. 
 

Cluster Recovery Statistic χ2 df p 

%Results achieving Excellent cluster recovery (ARIHA ≥ 0.90) 1787 2 < 0.001

%Results achieving Good cluster recovery (ARIHA ≥ 0.80) 1614 2 < 0.001

%Results achieving Moderate cluster recovery (ARIHA ≥ 0.65) 8565 2 < 0.001
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The performance of the three clustering methods across different dataset parameters 

was evaluated to find particular conditions under which one method consistently 

achieved good or excellent recovery (not just better recovery than the other two 

methods).  For those datasets simulated under the THO model, Bayesian Classification 

performed well, with over 73 percent of its resulting clusterings achieving an ARIHA 

value of 0.90 or greater, indicating excellent recovery (Figure 16).  For this subset of the 

datasets, Bayesian Classification outperformed the other two methods, and again there 

was a significant difference in performance across the three methods, as measured by a 

chi-square test of independence on each of the three new ARIHA cutoff statistics (Table 

3).  Analysis of the other simulation parameters failed to show as great a difference 

among methods where the ‘winning’ method performed as well as the Bayesian 

Classification performed in the THO datasets (data not shown).  Thus, this subset of data 

was chosen for further investigation into the efficacy of using the Bayesian Classification 

method to uncover trait heterogeneity in real data. 

The Bayesian Classification method produces two internal clustering metrics for 

each resulting cluster, or class: (1) class strength, and (2) cross-class entropy.  Class 

strength is a heuristic measure of how strongly each class predicts “its” instances and is 

reported as the log of class strength.  Cross-class entropy is a measure of how strongly 

the class probability distribution function differs from that of the dataset as a whole.  

Because each metric is reported per resulting cluster, or class, the average metric value 

across clusters was calculated and utilized for evaluating cluster fitness.   To evaluate 

the validity of using the Bayesian Classification internal clustering metrics—class 

strength and cross-class entropy—as a proxy for the ARIHA (since ARIHA is unknown for 
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Figure 16.  Percentage of Clustering Results Achieving Cluster Recovery Levels by 
Method and Model 
 

 

 

Table 3.  Results of Chi-Square Test of Independence for THO Datasets. 
The null hypothesis that the percentage of clustering results achieving the specified 
cluster recovery level does not differ across clustering methods was tested. 
 
Cluster Recovery Statistic Model χ2 df p 

%Results achieving Excellent cluster recovery (ARIHA ≥ 0.90) THO 3713 2 < 0.001 

%Results achieving Good cluster recovery (ARIHA ≥ 0.80) THO 3107 2 < 0.001 

%Results achieving Moderate cluster recovery (ARIHA ≥ 0.65) THO 2609 2 < 0.001 
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real data), permutation testing was performed.  Resulting p-values for ARIHA, average log 

of class strength and average cross class entropy were used to calculate false positive and 

false negative rates at three significance levels of 0.01, 0.05 and 0.10.  A clustering result 

was considered a false positive if it was considered significant according to either 

average log of class strength or average cross class entropy but was not considered 

significant according to our ARIHA standard.  A clustering result was considered a false 

negative if it was called not-significant according to both average log of class strength 

and average cross class entropy but was considered significant according to ARIHA.  

Figures 17 and 18 show the false positive and false negative rates, respectively, by alpha 

level. 
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Figure 17.  False Positive Rate by Significance Level (Alpha). 
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Figure 18.  False Negative Rate by Significance Level (Alpha) 

 

 

 The false positive, or Type I, error rate was controlled very well at three percent 

or less for all three significance levels.  The false negative, or Type II, error rate was not 

controlled as well, however.  At the least stringent significance level (α = 0.10), the Type 

II error rate was 18 percent, and at the most stringent level (α = 0.01), the rate was 47 

percent.  Other simulation parameters were examined for their impact on the false 

negative rate, and Figures 19 and 20 show the false negative rate by alpha level paneled 

by number of nonfunctional loci and number of affecteds (sample size), respectively.  As 

might be expected, the lowest false negative rates were achieved for datasets with the 

lowest number of nonfunctional loci (10) and the greatest sample size (1000). 
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Figure 19.  False Negative Rate by Significance Level (Alpha), Paneled by Number of 
Nonfunctional Loci.  These rates are across all genetic models (THO, THL, THG and 
THB). 
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Figure 20.  False Negative Rate by Significance Level (Alpha), Paneled by Number of 
Affecteds (Sample Size).  These rates are across all genetic models (THO, THL, THG 
and THB) 
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Discussion 

 

Data Simulation 

The new data simulation algorithm produced complex genotypic datasets that 

included trait heterogeneity, locus heterogeneity and gene-gene interactions.  Most 

existing simulation software that attempt to simulate heterogeneity do so by allowing the 

user to specify what portion of the dataset is to be simulated under one model versus 

another, and the resulting individuals are simply combined into one dataset.  In the new 

algorithm, however, the disease penetrance models, which were used to simulate the data, 

were constructed so that overall prevalence levels were controlled, allowing naturally 

occurring overlaps, in which some individuals would have both traits (and their 

associated multilocus genotypes) by chance.  This is important because it more closely 

simulates the natural variation one would expect under the “common disease, common 

variant” hypothesis in which there is very little if any selective pressure against alleles 

that increase disease risk only slightly or only in combination with other susceptibility 

alleles at the same or distinct loci (Cargill et al., 1999; Chakravarti, 1999; Reich and 

Lander, 2001; Risch and Merikangas, 1996).  This novel data simulation algorithm 

should prove very useful for future studies of other proposed genetic analysis methods for 

complex diseases. 

 

Comparison of Clustering Methods 

 The Bayesian Classification method outperformed the other two methods across 

most dataset parameter combinations, with the exception of the most complex  
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model (THB) on which Fuzzy k-Modes Clustering performed best.  When the results 

were further examined to find a set of parameters for which one or more methods 

performed well, Bayesian Classification achieved excellent recovery for 73% of the 

datasets with the THO model (Figure 16) and achieved moderate recovery for 56% of 

datasets with 500 or more affecteds and for 86% of datasets with 10 or fewer 

nonfunctional loci (Figures 21 and 22).  Neither Hypergraph Clustering nor Fuzzy k-

Modes Clustering achieved good or excellent cluster recovery even under a restricted set 

of conditions (data not shown). 

Bayesian Classification was obtained as closed-source software, for which there 

are numerous parameters that can be optimized, as discussed in Chapter IV.  Initial 

parameter settings were chosen as recommended by the authors based on the type of data 

being analyzed.  However, it is possible that alternative settings may yield better results.  

For example, for datasets with the more complex genetic models, greater numbers of 

nonfunctional loci and smaller sample sizes, the maximum number of classification trials 

and/or the maximum number of classification cycles per trial may need to be longer, and 

those parameters concerned with convergence rate and stopping criteria may need to be 

changed  to delay convergence.  If improvements in performance could be achieved with 

reasonable time and resource tradeoffs, such changes would certainly be desirable.  

Further investigation of this matter is discussed in Chapter IV. 

It was disappointing that Hypergraph Clustering did not perform very well under 

most conditions, despite its intuitive appeal as a method that would find frequently-

occurring multilocus genotypic patterns.  The Hypergraph Clustering method has been 

reported to work well with very large variable sets (on the order of thousands), which 
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Figure 21.  Percentage of Bayesian Classification Clustering Results Achieving Cluster 
Recovery Levels by Number of Affecteds (Sample Size) 
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Figure 22.  Percentage of Bayesian Classification Clustering Results Achieving Cluster 
Recovery Levels by Number of Nonfunctional Loci 
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have complex patterns for which large numbers of clusters (10-20+) were relevant (Han 

EH et al., 1997b).  However, there has been no examination of the method’s performance 

on smaller variable sets.  Thus, it is possible that the restricted patterns present in our 

multilocus genotypic data were too simple and sparse and that the method is simply tuned 

to search for more complex patterns.  Also, we were required to devise a translation of 

the resulting partitioning of genotypes into a clustering of individuals.  We tested several 

such translations and implemented the best process out of several tested.  Oftentimes, 

even when the method correctly chose the functional genotypes to be in different 

partitions, too many other nonfunctional genotypes were also chosen, which meant that 

the difference between an individual’s likelihood of belonging to one cluster versus 

another was too small, making the choice of cluster assignment almost arbitrary. 

The Fuzzy k-Modes Clustering method performed comparably to Bayesian 

Classification for the more complex datasets and was much less computationally 

intensive.  It has been widely reported that the performance of k-means algorithms is 

highly variable depending on the method of seeding the initial cluster centroids (Duda 

RO and Hart PE, 1973).  While we used the recommended method of selecting 

individuals from the dataset to serve as the initial cluster modes, we perhaps could have 

achieved better results if we implemented an additional step to ensure that the initial 

centroids were substantially dissimilar to each other.  This is supported by evidence that 

when the Fuzzy k-Modes Clustering resulted in only one cluster (effectively no 

partitioning of the data), the initial centroids were very similar and the method had 

converged early so that individuals had equal probability of belonging to any of the 
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clusters.  In such cases, the individual was arbitrarily assigned to the first cluster, thereby 

leading to all other clusters being empty. 

As expected, the simpler the model, the better the performance of the three 

clustering algorithms, with the exception that the Hypergraph Clustering and Fuzzy k-

Modes Clustering methods performed somewhat better on the THB (Trait Heterogeneity 

with Both locus heterogeneity and gene-gene interaction) datasets than they did on the 

THL (Trait Heterogeneity with Locus heterogeneity) and THG (Trait Heterogeneity with 

Gene-gene interaction) datasets.  Likewise, in general, the fewer the nonfunctional loci 

and the larger the sample size, the better the performance. 

 

Applicability to Real Data 

 To determine the efficacy of using the Bayesian Classification method on real 

data, the reliability of its internal clustering metrics at finding good clusterings was 

evaluated.  Using the combination of the average log of class strength and the average 

cross class entropy to determine significance, the false positive rate was controlled very 

well, at three percent or less for all three significance levels.  The false negative rate was 

acceptably low (18 percent) for the less stringent significance levels of 0.10.  However, it 

was high (47 percent) for the most stringent significance level of 0.01.  Thus, if a 

clustering of data were called significant according to permutation testing using either the 

average log of class strength or the average cross class entropy, one could be quite 

confident that the result were real.  Typically geneticists prefer to accept a higher false 

positive rate to increase power; however, there is indeed a trade-off between these two 

types of error.  Valuable time and resources can be spent on follow-up studies, and it can 
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be very detrimental to pursue leads that do not have a good chance of yielding new 

information about the disease under study.  Therefore, we would recommend the 

Bayesian Classification method for use in the first stage of a comprehensive analysis 

strategy to detect heterogeneity and then main effects and interactions, with the caveat 

that a negative result should be interpreted carefully and may indicate that other methods 

for detecting heterogeneity should be considered as well. 
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CHAPTER IV 

 

FURTHER EVALUATION OF BAYESIAN CLASSIFICATION 

 

Background 

 The Bayesian Classification method is effective at uncovering trait heterogeneity 

in simulated genotypic data while preserving very low false positive rates and reasonably 

low false negative rates.  However, these results were for the simplest of simulated 

genetic models and may not generalize to more complicated models.  This chapter will 

present an extension of the previous work in which the Bayesian Classification method is 

modified to improve its performance under a wider set of simulation conditions.  As 

discussed in Chapter III, it is possible that the parameter settings used in the initial data 

simulation study were not appropriate for the more complex genetic models.  The goal of 

this study is to test different parameter settings to make improvements in performance for 

the more complex models without compromising performance for the simplest ones. 

In addition, false positive and false negative rates will be determined for a wider 

range of simulation conditions.  It is possible that even though the method performance 

decreases for these more complex models, the false positive rate will remain well-

controlled, such that positive results are very trustworthy, in which case the method 

would still be useful.  Conversely, along with decreased performance, an increased false 

positive rate (decrease in power) would prevent reasonable conclusions from being drawn 

about its results and thus render the method’s use inadvisable.  Thus, determining how 

the method behaves under these wider set of conditions will allow us to have more 
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confidence in our inferences about results from application of Bayesian Classification to 

real data. 

 

Methods 

 

Modification of Parameter Settings 

 The Bayesian Classification method software has over 30 different parameter 

settings that can be modified by the user to tweak the method’s application.  Six 

parameters were chosen as being likely to affect method performance on more complex 

data patterns since they affect how and what kind of search is performed in looking for 

the best clustering of the data.  They determine initial search conditions, the type of 

search performed (i.e., what types of stopping criteria are used), and what values those 

stopping criteria impose.  The six chosen parameters include: (1) start_j_list, (2) 

max_n_tries, (3) try_fn_type, (4) halt_range, (5) halt factor, and (6) max_cycles. 

Table 4 shows the settings for each of these six parameters used in the initial 

simulation study and in the current extension to that study. Only one parameter setting 

was modified at a time, so that the effect of that particular setting change could be 

evaluated in comparison to the initial settings.  For each of the new modified parameter 

settings, Bayesian Classification was applied to all 19,200 datasets that were simulated 

according to specifications detailed in Chapter III. 

One decision the search algorithm must make is what the optimal number of 

clusters is for the data.  The start_j_list parameter specifies a list of numbers that are the 

initial quantity of clusters the search algorithm tries when optimizing this value.  This list 
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guides the search but does not restrict the algorithm, since it will also try other values that 

it deems likely to produce more optimal results.  For the problem of detecting 

heterogeneity, we are primarily interested in clustering results where the number of 

classes is ten or less; therefore, the default start_j_list was modified accordingly (see 

Table 4). 

 

 

Table 4.  Bayesian Classification Parameter Settings in Simulation Studies.  Note that 
try_fn_type is listed twice since all three search strategies were tried—
‘converge_search_3’ initially and both ‘converge’ and ‘converge_search_4’ in the current 
simulation study. 
 

Parameter  Initial Setting Modified Setting 
start_j_list 2,3,5,7,10,15,25 10,9,8,7,6,5,4,3,2,1 
max_n_tries 50 100 
try_fn_type converge_search_3 converge 
try_fn_type converge_search_3 converge_search_4 
halt range 0.5 0.75 
halt_factor 0.0001 0.001 
max_cycles 200 500 

 

 

The max_n_tries parameter specifies a limit on the number of times the algorithm 

will produce a clustering of the data.  Thus, the higher the value of this parameter, the 

longer the search will last and, in theory, the better the likelihood that the algorithm will 

find a globally optimal solution.  The max_n_tries parameter was increased from 50 to 

100, thereby doubling the maximum number of attempts at finding the optimal solution.  

Larger values were tested on a few datasets, but the computation time was not feasible, 

given the large volume of simulated datasets to be evaluated.  Ideally, on a real dataset, 
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one would set this parameter to the default of 0, allowing unlimited numbers of tries at 

reaching the optimal solution, within the constraints of other search parameter settings. 

The try_fn_type parameter specifies one of three search strategies (‘converge’, 

‘converge_search_3’ and ‘converge_search_4’) the algorithm may use in searching for an 

optimal solution.  The three strategies use different types of stopping criteria based on 

convergence measures.  The default setting is the ‘converge’ algorithm, which is thought 

to perform better on a wide variety of problems than the other two algorithms (Taylor W 

et al., 2002).  The authors indicate that the two alternative search algorithms may perform 

better on some problems but will perform substantially worse on others.  Since this was 

one of the most critical parameters, we tried both alternative algorithms. 

The halt_range and halt_factor parameters affect the convergence rate and, 

conversely, the number of cycles the search strategy will use.  Increasing these values 

decreases the convergence rate.  Therefore, we increased each of them, in turn.  The 

halt_range parameter was increased from 0.5 to 0.75.  The halt_factor was increased by a 

factor of ten from 0.0001 to 0.001.  Higher values were also tested but were found to be 

cost-prohibitive in run time. 

The max_cycles parameter specifies an upper limit on the number of cycles the 

search will perform while the convergence criteria have not been met.  The default value 

of 200 was increased to 300.  Higher values were tested on a small number of datasets but 

were found to increase computation time beyond reasonable limits, given the large 

volume of datasets being evaluated. 
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Applicability to Real Data 

 Using the best group of parameter settings, as determined by the aforementioned 

simulations, permutation testing to determine false positive and false negative rates was 

performed on datasets under a wider set of data simulation conditions.  Data simulated 

under the Trait Heterogeneity with Locus Heterogeneity (THL) and Trait Heterogeneity 

with Gene-Gene Interaction (THG) models, as described in Chapter III, were evaluated, 

where the prevalence was 15 percent, the number of nonfunctional loci was either 10 or 

100 and the sample size was either 500 or 1000.  In the interest of time and computational 

resources, only the first 50 (out of 100) replicates of each set of conditions were used, and 

for each of the replicates, 500 permutated datasets were created, resulting in 200,000 

datasets that were analyzed. 

 

Results 

Figures 23-25 show how method performance differed with each parameter 

setting modification, as measured by the percentage of clustered datasets achieving 

moderate (Figure 23), good (Figure 24) or excellent (Figure 25) cluster recovery 

according to the Hubert-Arabie Adjusted Rand Index.  There was essentially no 

improvement in method performance for either model for each of the modified parameter 

settings, and in fact, modifications in two parameters (start_j_list and try_fn_type) led to 

decreases in performance.  Thus, we concluded that the initial parameter settings were the 

best we had discovered and that those settings should be used going forward. 

False positive and false negative rates were calculated based on permutation 

testing results on the THL and THG genetic model datasets, as specified above.  Overall,  
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false positive rates were still well-controlled, although less so for the THG datasets, 

where ten percent of the clustering results determined significant by the Bayesian 

Classification internal clustering metrics (alpha = 0.01) were actually not significant  

according to the Hubert-Arabie Adjusted Rand Index (ARIHA) (Figure 26).  Conversely, 

false negative rates were better for THG datasets than they were for the THL or the 

previously-evaluated THO datasets.  At the most liberal alpha of 0.10, only sixteen 

percent of the clustering results deemed not significant by the internal clustering metrics 

were actually significant by the ARIHA (Figure 26). 

A more detailed breakdown of this same data is presented in Figure 27 showing 

how false positive and false negative rates track with the number of significant results by 

internal clustering metric and by ARIHA, for each set of simulation conditions, where 

alpha is ten percent.  Note that the vast majority of clustering results are significant by 

ARIHA across all sets of conditions and that high error rates are very specific to certain 

sets of simulation conditions.  False positive rates were at or below five percent for all 

sets of simulation conditions.  Even in the worst case, for datasets simulated under the 

more complex THG model, with 10 (versus 100) nonfunctional loci, clusterings results 

still yielded false positive rates between 11 and 12 percent, very close to alpha of ten 

percent.  False negative rates were near zero for most sets of conditions.  However, for 

datasets containing 100 (versus 10) non-functional loci, the false positive rates ranged 

from two to 94 percent, with the highest rates for datasets with 500 (versus 1000) 

affecteds. 
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Figure 26.  Error Rates for THG and THL Genetic Model Results.  False positive rates 
are shown in the first column and false negative results are shown in the second column.  
Row one shows results for the Trait Heterogeneity with Gene-Gene Interaction genetic 
model datasets.  Row two shows results for the Trait Heterogeneity with Locus 
Heterogeneity genetic model datasets.  The three bars represents results at the 
significance levels (alpha) of one percent, five percent and ten percent. 
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Discussion 

 Attempts to improve upon the performance of the Bayesian Classification method 

at the task of detecting heterogeneity in genotypic datasets were unsuccessful.  The 

parameter settings chosen in the initial simulation study detailed in Chapter III, which 

were based on the methods’ authors’ recommendations and the characteristics of the 

simulated data, turned out to be as good as or better than any setting modifications 

applied in the current study. 

 Extended permutation testing of a wider set of simulation conditions provided 

insight into how the method’s two internal clustering metrics—class strength and cross 

class entropy—compare to the gold standard of the Hubert-Arabie Adjusted Rand Index.  

The internal clustering metrics were biased based on the dataset characteristics of sample 

size and, especially, number of non-functional loci.  This is important to keep in mind 

when the Bayesian Classification method is applied to real data, in which the underlying 

pattern of inheritance and presence (or degree) of heterogeneity and gene-gene 

interactions are unknown.  These results suggest that one can place a high degree of 

confidence in a positive (significant) result based on permutation testing of the method’s 

internal clustering metrics, but less so when the number of nonfunctional loci in the 

dataset is fairly low, since a dataset containing a gene-gene interaction may have a 

slightly inflated false positive rate under these conditions. 

Interpretation of a negative (not significant) result is more difficult.  Under the 

majority of conditions simulated, the false negative rate is very well controlled and the 

power to detect the underlying heterogeneity present in the data is high.  However, there 

are large fluctuations in false negative rates due primarily to differences in the number of 
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results considered significant by the internal clustering metrics (Figure 27).  For a dataset 

with a high number of non-functional loci (100) and a moderate sample size (500), the 

false negative rate may approach 100 percent, eliminating all power to detect 

heterogeneity when it exists, which is of course discouraging.  Further simulation studies 

exploring the “breakpoint” or slope of the false negative rates between the two extremes 

of the current simulation conditions may further aid in interpretation of negative results. 

 Even though the current simulation study found that most results were significant 

by permutation testing (using ARIHA), recall that performance as measured by the 

percentage of results achieving ‘excellent’, ‘good’ or ‘moderate’ cluster recovery was 

low (less than 45 percent of datasets achieving moderate cluster recovery) for the more 

complex datasets (Chapter III).  One aspect of this issue is that the internal clustering 

metrics used by Bayesian Classification are biased under certain dataset conditions 

(discussed above).  It is also possible that the null distribution we created, in which the 

relationship within multilocus genotypes was disrupted, was not the most appropriate 

choice for the question we were asking and was, therefore, leading to erroneous 

conclusions.  The goal of the permutation testing is to test whether the clustering results, 

with their corresponding average class strength and average cross-class entropy values, 

have uncovered structure unlikely to be present (by chance) in data that has no real 

(functional) underlying structure.  Perhaps we should permute only the genotypes of the 

known functional loci or of the loci with the highest influence values.  In real data, since 

the functional loci are unknown as such, we would only be able to use influence values as 

a guide to choosing which loci to permute.  This would disrupt the relationship(s) among 

loci already identified by the clustering algorithm as being the strongest, but it would 
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leave any other, presumably weaker multilocus genotype patterns in tact.  Thus, if those 

patterns are sufficiently strong, that the clustering (on the original, unpermuted data) 

would not stand out as being significantly different from what could be found in the 

permuted data.  However, this would shift the bias even more in a conservative direction, 

increasing the false negative rate, which we are interested in reducing. 

 There is also the question of how good we need the clustering results to be.  Is 

moderate cluster recovery (ARIHA >= 0.65) good enough to enable our statistical methods 

to find main effects and/or gene-gene interactions that were previously masked by 

heterogeneity?  Is an ARIHA of only 0.50 or even 0.35 good enough?  To answer that 

question, we would need to perform main effect and gene-gene interaction tests on the 

simulated data before and after clustering and determine the power to detect the effect in 

the before and after datasets.  If a clustering result with a certain ARIHA leads to a 

substantial increase in the power to detect an effect in the data, then the method is 

working well, for our purposes.  If, instead, only a clustering result achieving good 

cluster recovery (ARIHA >= 0.80) aids in the detection of effects obscured by 

heterogeneity, then it is indeed very important that the relationship between ARIHA and 

statistical significance based on permutation testing be well-understood and, if necessary, 

that the permutation testing procedure be modified to enable clearer interpretation of 

results. 
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CHAPTER V 

 

APPLICATION OF TWO-STAGE ANALYSIS APPROACH TO 
LATE-ONSET ALZHEIMER DISEASE DATA 

 

Background 

Alzheimer’s disease (AD; MIM: 104300) is a neurodegenerative disorder 

characterized clinically by a decline in two or more areas of cognition, one of which is 

usually episodic memory, in the absence of acute causes (Pericak-Vance MA and Haines 

JL, 2002).  Presenting symptoms range from memory impairment to visuospatial 

disorientation, language impairment, depression and psychotic episodes.  This range of 

symptoms suggests extensive cortical damage largely in the hippocampus but also in 

posterior-parietal areas, temporal-parietal systems or even frontal lobe areas (Fox NC and 

Rossor MN, 2000; Perry and Hodges, 2000; Roses, 1997; Small et al., 2000).  While 

gross sensory and motor abnormalities generally rule out AD, some moderate 

disturbances similar to those seen with Parkinson Disease (PD), such as tremor, rigidity 

and bradykinesia, may instead suggest a distinct subtype—AD with Parkinson Disease 

(Brown et al., 1998; Chen et al., 1991; Mayeux et al., 1985; Molsa et al., 1984; Perry et 

al., 1997).  While AD can occur as early as the third decade of life (Cruts et al., 1995), it 

most commonly occurs after the sixth decade.  The age of onset for late-onset Alzheimer 

disease (LOAD) is generally defined to be after age 60 or 65 but extends into the ninth 

decade (Pericak-Vance MA and Haines JL, 2002).  The prevalence of AD was estimated 

to be 13.5 million worldwide and 4.5 million in the United States in 2000, with 
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projections for 2005 up to 21.2 million worldwide (Hebert et al., 2003; Katzman R and 

Fox P, 1999).  

AD is defined pathologically by the presence of two abnormalities in the cerebral 

cortex.  The first is senile plaques that have an amyloid beta (Aβ) protein core, and the 

second is neurofibrillary tangles, which contain the microtubule-associated protein tau 

(Goedert M, 1999; Wisniewski et al., 1993).  It remains controversial whether the plaques 

and tangles are themselves pathogenic or whether they are merely “tombstones” of other 

pathogenic processes (Glabe C, 2000).  Only a weak link between plaque load and 

severity of illness has been found, while the load of neurofibrillary tangles may be more 

strongly correlated with severity (Guillozet et al., 2003; Mufson et al., 1999).  Also, both 

plaques and tangles have been found in normal older adults, leading many to suggest that 

these abnormalities are secondary effects arising from the true pathological mechanisms 

underlying AD.  In addition, Lewy bodies, which contain fibrils of aggregated, insoluble 

alpha-synuclein (McKeith et al., 2004), have been observed in up to 20% of AD cases in 

the substantia nigra (which is characteristic of PD) and elsewhere in the brain (Ditter and 

Mirra, 1987; Growden, 1995; McKeith et al., 1996).  A growing body of literature 

suggests substantial overlap among AD, dementia with Lewy bodies, and Parkinson 

Disease (Pericak-Vance MA and Haines JL, 2002).  It is possible that the developments 

of Aβ plaques, neurofibrillary tangles and Lewy bodies have common physiological 

pathways.  However, it is also possible each one of these features (plaques, tangles and 

Lewy bodies) is a distinct trait, with its own etiology, which would mean that AD is a 

heterogeneous trait that would be better defined as the coincident state of having the trait 

for plaques and the trait for tangles.  Likewise, AD with PD could then be better 
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described as the concomitance of the three traits for plaques, tangles and Lewy bodies.  

Such dissection and categorization of AD is speculative and controversial but not without 

support.  

AD has a strong, albeit complex, genetic component, as evidenced by recent 

family-based studies reporting sibling recurrence risk ratios between 4 and 5, indicating 

that a sibling of a person with LOAD is 4-5 times more likely to develop LOAD than 

someone in the general population (Breitner et al., 1988; Hirst et al., 1994; Sadovnick et 

al., 1989).  Also, twin studies show a concordance rate of 0.49 for monozygotic twins 

versus 0.18 for dizygotic twins (Bergem, 1994).  This demonstrates that there is an 

almost 3 fold increased risk of developing AD for siblings that share all, versus (on 

average) half, of their genes with their affected twin.  Still, the fact that the monozygotic 

concordance rate is far from 100 percent suggests that other factors, including 

environment, are likely involved.  In addition, segregation analyses of LOAD show a 

complex genetic etiology with multiple genes and environmental factors involved (Daw 

et al., 1999; Daw et al., 2000; Pericak-Vance MA and Haines JL, 2002; Rao et al., 1994; 

van Duijn et al., 1993).  Some environmental risk factors under investigation include 

head trauma, plasma homocysteine levels and non-steroidal anti-inflammatory drugs, the 

last of which is purported to have a protective effect (Andersen et al., 1995; Breitner et 

al., 1995; Mayeux et al., 1995; Roberts et al., 1994; Seshadri et al., 2002). 

The only known gene conferring risk for LOAD is apolipoprotein E (APOE).  It is 

estimated that at least fifty percent of the genetic effect of LOAD remains unexplained 

(Daw et al., 2000; Roses AD et al., 1995; Slooter et al., 1998).  Over 115 LOAD 

candidate genes have been tested and have generated a positive main effect, but all except 
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APOE have failed to be consistently replicated (Pericak-Vance MA and Haines JL, 2002) 

(Figure 28).  While the initial reports may have been false positive findings, alternatively, 

these inconsistencies could be indicative of heterogeneity and/or environmental 

interactions across the entire phenotype.  Reported differences of incidence and 

prevalence between ethnic and gender groups are also indicative of interactions with 

environment and/or genetic background.  The possibility of gene-gene interactions has 

been explored only superficially (Pericak-Vance MA and Haines JL, 2002).  

Late Onset Alzheimer Disease is just one example of a complex disease, in which 

traditional statistical methods of analysis such as linkage and association have failed to 

identify main effect genes.  Among the possible reasons for this failure are false positives 

due to population stratification and true differences in genetic etiology between study 

populations (Hirschhorn JN et al., 2002).  In addition, while a small number of supervised 

computational methods exist for discovering gene-gene interactions, the power of these 

methods drops dramatically when locus or trait heterogeneity is present (Ritchie et al., 

2003a).  Current statistical approaches for detecting heterogeneity, such as the admixture 

test (Ott J and Hoh J, 2003; Smith, 1963), are neither sensitive nor powerful and can 

merely account for, not resolve, any underlying heterogeneity (see Chapter II). 

It is possible that phenotypic data could be utilized to improve the performance of 

these methods in the face of locus or trait heterogeneity by facilitating heuristic 

stratification of data.  For instance, age of onset data was used to stratify AD patients, 

leading to the detection of association with the apolipoprotein E4 allele in late-onset and 

sporadic cases (Saunders et al., 1993; Strittmatter et al., 1993).  However, for most 

diseases, particularly neurological diseases, little detailed phenotypic data has been  
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consistently collected in combination with genotypic data.  Postmortem histological data 

are rare for cases, even rarer for controls, and neuroimaging can be expensive and 

challenging with mentally ill patients.  It is for these reasons that an unsupervised 

method, such as the Bayesian Classification method investigated in Chapters III and IV, 

which does not rely on phenotypic data, would be valuable to mine potentially 

heterogeneous genotypic data as a means of data stratification and hypothesis generation. 

In Chapter II, a comprehensive two-step approach to analysis was proposed in 

which heterogeneity is first addressed and then main effects and interactions are 

subsequently investigated in the more homogeneous subsets discovered in the first stage.  

In this chapter, an application of this two-stage approach to a LOAD dataset is presented 

in which cluster analysis is first used to uncover heterogeneity and to subdivide the data 

into more homogeneous groups.  Then in the second stage, traditional linkage and 

association tests are used to detect main effects and a computational data reduction 

method is used to investigate gene–gene interactions within each of the subgroups. 

 

Methods 

 

Specifics of Late-Onset Alzheimer Disease Dataset 

The late-onset Alzheimer Disease dataset includes samples obtained by (1) Dr. 

Jonathan L. Haines at Vanderbilt University, Dr. Pericak-Vance at Duke University and 

Dr. Gary Small at UCLA of the Collaborative Alzheimer Project (the CAP dataset), (2) 

the Indiana Alzheimer Disease Center National Cell Repository (the IU dataset), and (3) 

the National Institute of Mental Health Alzheimer Disease Genetics Initiative dataset (the 
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NIMH dataset).  Although the NIMH and IU datasets represent a rich resource for 

generating hypotheses, they are in use by multiple groups (including CAP).  In contrast, 

the CAP dataset represents an independent set of families that can, therefore, be used to 

confirm and extend initial findings. 

All subjects are Caucasian Americans.  Written consent was obtained from all 

participants in agreement with protocols approved by the institutional review board at 

each contributing institution.  Alzheimer Disease was diagnosed according to the 

NINCDS-ADRDA criteria (McKhann et al., 1984).  Age of onset was recorded as the age 

at which the first symptoms were noted by the participant or family member.  Only 

subjects with an age of onset of 65 or greater were included in this late-onset dataset. 

Markers previously genotyped in over 25 candidate genes and a region of interest 

(ROI) on chromosome 10 were included in the dataset.  The data were then ‘cleaned’ to 

remove markers and subjects with high percentages of missing data.  This was an 

iterative process that resulted in a dataset with 148 markers in the chromosome 10 ROI 

and in 22 candidate genes residing on eight different chromosomes.  All chosen markers 

were genotyped in at least 90 percent of included subjects (Figures 29 and 30), and all 

chosen subjects were genotyped for greater than 85 percent of the included markers 

(Figures 31 and 32). 

Most of the functional candidate genes chosen here are purported to have some 

role in LOAD through their involvement in the processing of amyloid precursor protein 

(APP; MIM: 104760), the secretion of its product, Aβ, and/or the phosphorylation of tau 

or regulation of microtubules within neurons.  Table 5 lists alphabetically the 22 genes  
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Figure 29.  Family-Based Data:  Percentage of Missing Genotypes by Marker 
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Figure 30.  Case-Control Data:  Percentage of Missing Genotypes by Marker 
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Figure 31.  Family-Based Data:  Percentage of Missing Genotypes by Subject 
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Figure 32.  Case-Control Data:  Percentage of Missing Genotypes by Subject 
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genotyped in one or both of the samples, along with their full names and identification 

numbers in the Mendelian Inheritance in Man (MIM) and Entrez Genome databases of 

the National Center for Biotechnology Information (NCBI). 

The family-based dataset, derived from all three ascertainment sources, consists 

of 654 families with 1422 subjects with possible, probable or definite LOAD and 744 

cognitively normal elderly individuals.  Of these families, 328 contain a total of 1279 

discordant sibling pairs (DSPs), in which one sibling is affected with LOAD and the 

other is unaffected.  For this sample, there are 138 markers genotyped in 22 genes on 8 

chromosomes, plus the ROI on chromosome 10.  The CAP dataset also includes a clinic-

based unrelated case-control sample of 451 cases with possible, probable or definite 

LOAD and 699 cognitively normal elderly controls who were either spouses of AD 

patients or subjects recruited from outpatient clinics at the participating institutions.  For 

this case-control sample, there are 93 markers genotyped in 19 genes on eight 

chromosomes.  Across the family-based and case-control samples, there are 82 markers 

in common, covering 18 genes on 8 chromosomes and the ROI on chromosome 10.  

Table 6 lists all markers genotyped, giving their chromosomal location and noting 

whether they are genotyped in the family-based dataset and/or the case-control dataset.  

One marker, labeled ‘1920’, is actually a combination of two adjacent single nucleotide 

polymorphisms—rs2456777 and rs2456778—that could not be distinguished by the 

Taqman probe used for genotyping (Liang X et al., 2006). 
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Table 5.  Genes Covered by Markers Genotyped in One or Both Samples 

Symbol Location Name MIM 
ID 

Gene 
ID 

A2M 12p13.3-
p12.3 Alpha-2-macroglobulin 103950 2 

A2MP 12p13.3-
p12.3 Alpha-2-macroglobulin pseudogene - 3 

ACE 17q23.3 Angiotensin 1 converting enzyme 
(petidyl-dipeptidase A) 106180 1636 

AGT 1q42-q43 angiotensinogen 106150 183 
APOE 19q13.2 Apolipoprotein E 107741 348 
CDC2 10q21.1 Cell division cycle 2 116940 983 

COG2 1q42.2 component of oligomeric Golgi complex 
2 606974 22796 

GAPDH 12p13 Glyceraldehydes-3-phosphate 
dehydrogenase 138400 2597 

GAPDHS 19q13.1 Glyceraldehydes-3-phosphate 
dehydrogenase, spermatogenic 609169 26330 

IDE 10q23-q25 Insulin degrading enzyme 146680 3416 
LIPC 15q21-q23 Lipase, hepatic 151670 3990 

LRP1 12q13-q14 Low-density lipoprotein receptor-related 
protein 1 107770 4035 

LRRTM3 10q21.3 Leucine-rich repeat transmembrane 
neuronal 3 protein - 347731 

LTA 6p21.3 Lymphotoxin alpha (TNF superfamily, 
member 1) 153440 4049 

OLR1 12p13.2-
p12.3 

Oxidized density lipoprotein (lectin-
like) receptor 1 602601 4973 

PLAU 10q24 Urokinase-type plasminogen activator 191840 5328 

PPM1H 12q14.1-
q14.2 

Protein phosphotase 1H (PP2C domain 
containing) - 57460 

PZP 12p13-
p12.2 Pregnancy-zone protein 176420 5858 

TNF 6p21.3 Tumor necrosis factor (TNF 
superfamily, member 2) 191160 7124 

TNFRSF6 / 
FAS 10q24.1 Necrosis factor receptor superfamily 

member 6 134637 355 

UBQLN1 9q21.2-
q21.3 Ubiquilin 1 605046 29979 

VR22 / 
CTNNA3 10q22.2 Catenin (cadherin-associated protein), 

alpha 3 607667 29119 
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Table 6.  Markers Genotyped in Family-Based and Case-Control Samples.  Chromosomal 
location is given according to NCBI dbSNP Human Build 126.  Markers with no gene 
listed were chosen to cover the region of interest on chromosome 10. 
 

Chrom Gene Marker NCBI Location Present in Fam Present in CC
1 COG2 rs3789662 227135608 X X
1 AGT rs7536290 227143437 X X
1 AGT rs3789670 227150449 X X
1 AGT rs2478545 227150856 X X
1 AGT rs4762 227152712 X X
1 AGT rs2148582 227156534 X X
1 AGT rs5051 227156607 X X
1 AGT rs1326886 227166495 X X
6 LTA rs1799724 31650461 X X
6 TNF rs1800750 31650942 X X
6 LTA rs1800629 31651010 X X
6 LTA rs361525 31651080 X X
6 TNF rs4645843 31652541 X X
9 UBQLN1 rs7866234 83508371 X
9 UBQLN1 rs2781003 83508569 X X
9 UBQLN1 rs2781002 83508579 X
9 UBQLN1 rs12344615 83510749 X
9 UBQLN1 rs2780995 83520722 X
9 UBQLN1 rs10868038 83521233 X X
9 UBQLN1 rs11140213 83531038 X X

10 rs10826594 29623140 X
10 rs1023207 32134896 X
10 rs1319013 33583935 X
10 rs1148247 35536952 X
10 rs6482044 37892393 X
10 rs6593491 42585568 X
10 rs1890739 45074179 X
10 rs1806797 48357923 X
10 rs7097397 49695402 X
10 rs14327 51735896 X
10 rs1904018 53523252 X
10 rs4998401 55575412 X
10 rs4935648 57804443 X
10 rs10763551 59943904 X
10 CDC2 1920 61896492 X X
10 CDC2 rs7919724 62165848 X X
10 CDC2 rs2448341 62205963 X X
10 CDC2 rs2448347 62215148 X X
10 rs7090884 63632032 X
10 rs1935 64597829 X
10 rs7089698 65054573 X  
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Table 6, continued.  Markers Genotyped in Family-Based and Case-Control Samples. 
 

Chrom Gene Marker NCBI Location Present in Fam Present in CC
10 VR22 4783 67208785 X X
10 VR22 rs1786927 67352267 X X
10 VR22 rs2126750 67507709 X
10 VR22 rs4745886 67530329 X X
10 VR22 rs7911820 67534145 X X
10 VR22 rs7070570 67534610 X
10 VR22 rs7074454 67534965 X
10 VR22 rs10822719 67535076 X X
10 VR22 rs6480140 67538887 X
10 VR22 rs922347 67652964 X X
10 VR22 rs4463744 67778486 X X
10 VR22 rs2441718 67806967 X X
10 VR22 rs2939947 67808364 X X
10 VR22 rs2456737 67825340 X X
10 VR22 rs4746606 68061108 X X
10 VR22 rs7909676 68104803 X X
10 LRRTM3 rs1001016 68347044 X X
10 LRRTM3 rs12769870 68347401 X X
10 LRRTM3 rs1925583 68349950 X X
10 LRRTM3 rs2394314 68350254 X X
10 LRRTM3 rs1925577 68358439 X
10 LRRTM3 rs10762122 68386380 X X
10 LRRTM3 rs942780 68406547 X X
10 LRRTM3 rs1925617 68434823 X X
10 LRRTM3 rs1925622 68439644 X X
10 LRRTM3 rs1925632 68469620 X X
10 LRRTM3 rs1952060 68472940 X X
10 LRRTM3 rs2147886 68488649 X X
10 LRRTM3 rs2251000 68494777 X X
10 LRRTM3 rs2764807 68498938 X X
10 LRRTM3 rs10762136 68513538 X X
10 VR22 rs11593235 68546044 X X
10 VR22 rs10997591 68671884 X X
10 VR22 rs7903421 68951738 X X
10 VR22 rs3096244 69080192 X X
10 rs870801 71599752 X
10 rs1227047 73104105 X
10 PLAU rs1916341 75341168 X X
10 PLAU rs2227564 75343107 X X
10 PLAU rs2227566 75343737 X X
10 PLAU rs2227568 75343885 X X
10 PLAU rs4065 75346470 X X
10 rs1898071 77477033 X
10 rs1439042 80374264 X
10 rs1336439 82822237 X
10 rs11816558 84709583 X
10 rs3750686 87198514 X  
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Table 6, continued.  Markers Genotyped in Family-Based and Case-Control Samples. 
 

Chrom Gene Marker NCBI Location Present in Fam Present in CC
10 TNFRSF6 rs1800682 90739943 X X
10 TNFRSF6 rs1324551 90741496 X X
10 TNFRSF6 rs2031612 90756960 X X
10 TNFRSF6 rs2296600 90760419 X X
10 rs4933194 92501347 X
10 IDE rs2251101 94201284 X X
10 IDE rs1832196 94258314 X X
10 IDE rs7076966 94315491 X X
10 IDE rs4646954 94323807 X X
10 IDE rs3758505 94324758 X X
10 IDE rs7099761 94325779 X X
10 IDE rs1544210 94477781 X X
10 rs701865 95371763 X
10 rs4372378 97234998 X
10 rs2039826 99516658 X
10 rs2255901 101629786 X
10 rs3127242 103303589 X
10 rs7084783 105314160 X
10 rs2058980 107379174 X
10 rs10509859 109803462 X
12 GAPD rs7307229 6513864 X
12 GAPD rs3741916 6514252 X
12 GAPD rs3741918 6514517 X
12 GAPD rs1060621 6514957 X
12 GAPD rs1060620 6514983 X
12 GAPD rs1060619 6515042 X
12 A2M rs1800433 9123618 X
12 A2M rs3832852 9137444 X
12 PZP rs10842971 9194563 X X
12 PZP rs3213831 9208040 X X
12 PZP rs2277413 9209051 X X
12 PZP rs3213832 9212768 X X
12 PZP rs12230214 9238059 X X
12 A2MP rs16918212 9276225 X X
12 A2MP rs34362 9276692 X X
12 A2MP rs17804080 9279277 X X
12 OLR1 rs1050283 10203556 X
12 LRP1 rs1799986 55821533 X
12 LRP1 rs1800127 55825349 X
12 LRP1 rs1800174 55846076 X
12 LRP1 rs1800181 55864555 X
12 LRP1 rs2075699 55871411 X
12 LRP1 rs1800154 55875926 X
12 LRP1 rs1800165 55877493 X
12 LRP1 rs11172124 55881222 X
12 LRP1 rs9669595 55881333 X
12 LRP1 rs7956957 55889082 X  
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Table 6, continued.  Markers Genotyped in Family-Based and Case-Control Samples. 
 

Chrom Gene Marker NCBI Location Present in Fam Present in CC
12 PPM1H rs2029721 61435611 X X
15 LIPC rs6078 56621285 X X
15 LIPC rs6083 56625302 X X
17 ACE rs4291 58907926 X X
17 ACE rs4295 58910030 X
17 ACE rs4311 58914495 X
17 ACE rs4329 58917190 X
17 ACE rs4646994 58919636 X X
17 ACE rs4343 58919763 X X
17 ACE rs4353 58924154 X
17 ACE rs4978 58927493 X
19 GAPDS rs4806173 40716765 X X
19 GAPDS rs12984928 40721692 X
19 APOE rs440446 50101007 X X  

 

 

Statistical Analysis 

A comprehensive, two-stage approach to analysis was performed in which 

heterogeneity was first investigated in the dataset and then main effects and gene-gene 

interactions were investigated among the resulting subsets or clusters of data.  Although 

all of the markers in the dataset had been previously tested for main effects and some 

even for interactions, this testing was performed at different time points over the past 10 

years and, therefore, the samples on which they were tested vary to different degrees 

from the sample being analyzed in the current study.  It is for this reason that a 

preliminary analysis of the complete datasets was performed prior to the two-stage 

analysis, using all the main effect and interaction-detection methods proposed for the 

subsets of data. 

 Analysis of deviations from Hardy-Weinberg equilibrium (HWE) and linkage 

equilibrium were tested using the Haploview program (Barrett et al., 2005) on the 

complete case-control and family-based datasets.  Hardy-Weinberg Equilibrium 
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stipulates the expected ratio of individuals in a population who have each of a marker’s 

possible genotypes, based solely on that marker’s allele frequencies.  Deviations from 

HWE in a sample could be indicative of genotyping error or a violation of one HWE’s 

assumptions—random mating, no selection, no mutation, no migration and infinite or 

large sample size.  Alternatively, it could be evidence for association.  Linkage 

disequilibrium (LD) is the statistically observed (population) phenomenon of two or more 

segments of DNA being observed together more often that would be expected by chance.  

When LD exists between two or more markers, there is essentially one signal or effect 

coming from those markers.  If one or more of the markers in LD exhibit an association 

with disease, it could be any one of those markers (or another variant not genotyped in 

the dataset that is also in LD with one or more of these markers) that is the functionally 

relevant one. 

The Bayesian Classification method (Cheeseman P and Stutz J, 1996; Hanson R 

et al., 1991), previously investigated in simulation studies described in Chapters III and 

IV, was used to detect heterogeneity.  For the family-based and case-control data, 

separately, the affected individuals in the dataset were subjected to cluster analysis, and 

the resulting clustering created subsets, which were more homogeneous than the 

complete dataset.  Each cluster subset was then recombined with the entire group of 

unaffected individuals from the respective dataset for subsequent analysis of main effects 

and interactions. 

For the family-based data, two-point heterogeneity lod score (HLOD) linkage 

analysis using FASTLINK and HOMOG (Ott, 1999) and two methods for detecting main 

effect association—the family-based association test (FBAT) (Horvath et al., 2001) and 
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the pedigree disequilibrium test (PDT) (Martin et al., 2000; Martin et al., 2001)—were 

performed.  Linkage analysis tests whether a marker and a disease locus co-segregate 

within families (according to a specific genetic model), in violation of Mendel’s laws, 

which would suggest that the disease susceptibility allele is at or near the marker in 

question.  Both recessive and dominant disease models are tested, and the maximum 

heterogeneity lod score, which is the highest lod score found for either model under the 

range of full range of possible theta values, is reported.  Tests for allelic association are 

nonparametric and detect deviations in the expected frequency of a marker allele with 

respect to disease status, which would suggest that the disease susceptibility allele is, or is 

in linkage disequilibrium with, the marker in question.  The FBAT for allelic association 

uses data from discordant sibpairs and from nuclear families (decomposing extended 

pedigrees, if present, into nuclear families), whereas the PDT can use data from 

discordant sibpairs, from nuclear families, and from intact extended pedigrees (without 

decomposition and accounting for intrafamilial correlation).  For the case-control data, a 

chi-square test of independence was used to detect main effect associations.  In each case, 

a genotype-based model was tested in which the distribution of cases to controls at each 

of the possible genotypes was compared. 

For both the family-based and the case-control datasets, the multifactor 

dimensionality reduction (MDR) method was used to detect gene-gene interactions (Hahn 

et al., 2003; Ritchie et al., 2001).  MDR is a nonparametric data reduction computational 

method that performs an exhaustive search of the data space, looking for combinations of 

genetic markers and/or environmental factors whose genotypes or levels, when reduced 

to a single risk variable with two levels—high- and low-risk—predict disease status.  
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Using 5-fold cross validation, we measured the average balanced prediction accuracy 

(across the five cross-validation intervals) of every possible combination the best one-, 

two- and three-way MDR models.  Accuracy is a function of the percentage of true 

positives (TP) and true negatives (TN), defined as TP/(TP+FN) (Moore et al., 2006).  

Because each of the datasets tested were unbalanced to some degree—meaning that the 

number of affecteds differed substantially from the number of unaffecteds—the metric 

‘balanced accuracy’ was actually used, along with an adjusted threshold for determining 

risk status.  The adjusted threshold further corrects for the imbalance in the data by 

comparing the ratio of affecteds to unaffecteds with the particular multilocus genotype 

being considered to the ratio in the overall dataset.  For each of the one-locus, two-locus 

and three-locus combinations, the ‘best’ MDR model was chosen as the one with the best 

average balanced prediction accuracy.  All ‘best’ MDR models were evaluated for 

statistical significance using permutation testing with 1000 permutations. 

For each of the ‘best’ two- and three-marker MDR models achieving prediction 

accuracy of 55 percent or greater, the markers in those MDR models were used in logistic 

regression analyses to further characterize the underlying statistical models.  Logistic 

regression can determine the structure of the model, in terms of whether markers are 

influencing or predicting disease status primarily through independent (main) effects or 

through interactions with each other.  One can also obtain odds ratios from logistic 

regression, which are helpful in interpreting these models.  For the case-control data, a 

logistic regression analysis was performed in SPSS, and for the family-based data, a 

multivariate logistic regression method, which controls for intrafamily correlation, was 
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implemented in SAS (Martin ER et al., 2005; Siegmund et al., 2000) and applied to all 

discordant sibpairs.  

 

Results 

 

Analysis of Complete Datasets 

 Linkage analysis of the complete family-based dataset detected the known effect 

of APOE (HetLOD = 7.963) and other marginal linkage scores (HetLOD between 1 and 

1.5) for one marker in AGT and four markers in VR22.  The FBAT detected the known 

association of APOE (χ2=86.989, df=2, p<0.001) as well as two substantial effects 

(χ2=13.876, df=1, p<0.001 and χ2=9.085, df=1 p=0.003) and one marginal effect 

(χ2=4.343, df=1, p=0.037) in ACE, and five other marginal effects (χ2>4.2, p<0.05) in 

LRRTM3, PLAU and A2MP.  The PDT detected the known association with APOE 

(χ2=98.388, df=2, p<0.001), two other substantial effects—one in A2M (χ2=6.772, df=1, 

p=0.009) and one in ACE (χ2=7.104, df=1, p=0.008)—and 10 other marginal effects (χ2> 

4.5, p<0.05).  Table 7 presents results from all three tests on all markers showing 

statistically significant effects (p<0.05) according to at least one test.  Analysis using the 

chi-square test of independence on the complete case-control dataset detected the known 

association with APOE (χ2=171.62, df=5, p<0.001) and seven other marginal effects in 

CDC2, VR22, LRRTM3 and GAPDH (χ2>6.2, p<0.05) (Table 8). 

MDR gene-gene interaction analysis was performed on both the complete family-

based and complete case-control datasets.  Since MDR works by comparing the ratio of 

affected to unaffected individuals but does not account for intrafamilial correlations, for  
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Table 7.  Main Effect Analysis Results for Complete Family-Based Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 
 

2-Pt Linkage PDT FBAT
Chrom Gene Marker Max HetLOD Chi-Square p-value ChiSquare p-value

1 AGT rs5051 1.033 0.114 0.736 0.010 0.921
10 VR22 rs7070570 1.366 1.416 0.702 0.248 0.619
10 VR22 rs2441718 1.407 0.312 0.577 1.771 0.183
10 VR22 rs2456737 1.038 1.143 0.285 2.835 0.092
10 VR22 rs7909676 1.068 4.540 0.033 2.682 0.101
10 LRRTM3 rs1925622 0.302 2.849 0.091 4.285 0.038
10 LRRTM3 rs1925632 0.140 2.052 0.152 5.283 0.022
10 LRRTM3 rs2764807 0.097 3.556 0.059 4.462 0.035
10 PLAU rs2227568 0.000 5.170 0.023 3.446 0.063
10 PLAU rs4065 0.000 3.152 0.076 4.987 0.026
10 rs4933194 0.052 4.676 0.031 0.886 0.347
12 A2M rs3832852 0.011 6.772 0.009 1.587 0.208
12 A2MP rs34362 0.047 0.904 0.342 4.673 0.031
12 LRP1 rs1800154 0.000 4.017 0.045 2.145 0.143
12 LRP1 rs9669595 0.003 4.599 0.032 1.939 0.164
12 LRP1 rs7956957 0.000 4.059 0.044 2.343 0.126
17 ACE rs4291 0.000 7.104 0.008 13.876 < 0.001
17 ACE rs4295 0.000 3.23 0.072 9.085 0.003
17 ACE rs4646994 0.000 5.481 0.019 3.056 0.080
17 ACE rs4343 0.000 4.516 0.034 3.689 0.055
17 ACE rs4353 0.000 4.887 0.027 3.405 0.065
17 ACE rs4978 0.000 6.503 0.011 4.343 0.037
19 APOE rs440446 7.963 98.388 < 0.001 86.989 < 0.001  

 

 

Table 8.  Main Effect Analysis Results for Complete Case-Control Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

Pearson's
Chrom Gene Marker ChiSquare p-value

10 CDC2 rs2448347 6.581 0.037
10 VR22 rs1786927 7.035 0.030
10 VR22 rs2441718 8.553 0.014
10 VR22 rs2456737 6.222 0.045
10 LRRTM3 rs942780 7.586 0.023
10 LRRTM3 rs1925617 6.465 0.039
12 GAPD rs1060621 7.188 0.027
19 APOE rs440446 171.62 < 0.001  
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family-based data, only discordant sibpairs (DSPs) are used in the analysis.  Two datasets 

were created—the first with only one randomly chosen DSP per family (designated 

‘1DSP’) and the second with all individuals who are part of one or more DSPs in a family 

(designated ‘AllDSPs’).  MDR detected the main effect of APOE in all three datasets 

(Case-Control, 1DSP and AllDSPs) by choosing APOE as the best one-locus models with 

perfect (5 of 5) cross-validation consistency and by including APOE in the best two- and 

three-locus models as well, all of which were statistically significant (p < 0.05) (Table 9).  

To give MDR the opportunity to detect other effects without interference of the APOE 

effect, we excluded APOE from the datasets  

 

 

Table 9.  MDR Analysis Results for Complete Datasets 

Number 
of Loci

Marker Genes 
(Markers)

Avg Bal 
Prediction 
Accuracy p-value

CV 
Consist

Case-
Control 1 APOE (rs440446) 68.32 < 0.001 5

2 APOE (rs440446)      
AGT (rs5051) 67.18 < 0.001 2

3
APOE (rs440446)    
PLAU (rs1916341) 

LRRTM3 (rs10762136)
66.18 < 0.001 2

1DSP 1 APOE (rs440446) 59.52 0.01 5

2 APOE (rs440446)    
VR22 (rs7909676) 60.23 < 0.001 3

3
APOE (rs440446)    
OLR1 (rs1050283)   
Chr.10 (rs1916341)

57.27 0.04 1

AllDSPs 1 APOE (rs440446) 62.50 < 0.001 5

2 APOE (rs440446)      
AGT (rs7536290) 60.47 < 0.001 2

3
APOE (rs440446)    
OLR1 (rs1050283) 

LRRTM3 (rs12769870)
60.27 < 0.001 3
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and re-ran the analysis.  In these subsequent analyses, none of the best one-, two- or 

three-locus models achieved average balanced prediction accuracies of greater than 53 

percent or cross-validation consistency values of more than 2, and none were statistically 

significant (p > 0.20; see Table 10). 

 

 

Table 10.  MDR Analysis Results for Complete Datasets with APOE Excluded. 

Number 
of Loci Marker Genes (Markers)

Avg Bal 
Prediction 
Accuracy p-value

CV 
Consist

Case-
Control 1 A2MP (rs34362) 48.13 0.93 2

2 VR22 (rs10997591)     
LRRTM3 (rs10762136) 50.97 0.47 1

3
UBQLN1 (rs2781002)   
VR22 (rs10997591)      

IDE (rs1544210)
52.37 0.21 2

1DSP 1 VR22 (rs7909676) 48.91 0.86 1

2 OLR1 (rs1050283)    
Chr.10 (rs1898071) 48.47 0.90 1

3
OLR1 (rs1050283)   
Chr.10 (rs1898071)    

LRRTM3 (rs10762122)
46.99 0.97 1

AllDSPs 1 Chr.10 (rs6482044) 50.55 0.57 2

2 OLR1 (rs1050283)  
LRRTM3 (rs2147886) 48.24 0.95 1

3
 OLR1 (rs1050283)  
Chr.10 (rs1898071)     

AGT (rs5051)
48.97 0.88 1

 

 

 

Detection of Heterogeneity 

 Bayesian Classification was applied to each of the complete case-control and 

family-based datasets.  Only affected individuals are used in the cluster analysis.  The 

family-based dataset produced twelve clusters, and the case-control dataset produced four 
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clusters.  To reduce the number of clusters produced by the family-based dataset and to 

focus on heterogeneity that might be present in both datasets, we took the top 30 markers 

from each dataset with the highest influence values and selected those markers present in 

both datasets (31 markers) (Table 11).  Recall that a marker’s influence value provides a 

rough heuristic measure of relative influence that marker had in differentiating the 

clusters from the overall dataset.  Then, we performed the cluster analysis again using  

 

 

Table 11.  Top 30 Highest-Influence Markers Common to Both Datasets 

Chrom Gene Marker FamInfluValue CCInfluValue
1 AGT rs2148582 0.016 0.161
1 AGT rs5051 0.020 0.178
9 UBQLN1 rs2781003 0.118 0.065
9 UBQLN1 rs10868038 0.116 0.024
9 UBQLN1 rs11140213 0.131 0.042
10 VR22 rs922347 0.019 0.118
10 VR22 rs4463744 0.016 0.115
10 VR22 rs2939947 0.027 0.108
10 LRRTM3 rs1001016 0.009 0.089
10 LRRTM3 rs1925617 0.417 0.359
10 LRRTM3 rs1925622 0.393 0.404
10 LRRTM3 rs1925632 0.799 0.940
10 LRRTM3 rs1952060 0.562 0.521
10 LRRTM3 rs2147886 0.840 1.000
10 LRRTM3 rs2251000 0.818 0.932
10 LRRTM3 rs2764807 0.542 0.615
10 LRRTM3 rs10762136 0.441 0.503
10 VR22 rs11593235 0.307 0.279
10 VR22 rs10997591 0.015 0.294
10 VR22 rs3096244 0.024 0.291
10 TNFRSF6 rs1800682 0.033 0.091
10 TNFRSF6 rs1324551 0.023 0.083
10 IDE rs7076966 0.018 0.073
10 IDE rs4646954 0.016 0.078
10 IDE rs3758505 0.017 0.101
10 IDE rs1544210 0.015 0.078
12 PZP rs3213832 0.023 0.071
15 LIPC rs6083 0.019 0.072
17 ACE rs4291 0.369 0.007
17 ACE rs4646994 0.597 0.015
17 ACE rs4343 0.759 0.080  
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only those 31 markers.  This second analysis produced 15 clusters in the family-based 

dataset and 6 clusters in the case-control dataset.  After again ranking the markers by 

their influence values, it was discovered that the top 5 markers were the same in both 

datasets (Table 12).  Therefore, in one final attempt to produce a clustering that was 

similar across both datasets and produced a more reasonable number of clusters, which 

could be subsequently investigated for main effects and interactions, we performed the 

cluster analysis again using only these top 5 markers.  This third and final round of 

clustering produced 5 clusters in the family-based dataset and 3 clusters in the case-

control dataset (Table 13).  Upon closer inspection, two of the five clusters in the family-

based dataset contained only seven and five affected subjects, respectively, making 

subsequent analysis of those clusters inadvisable due to almost no power to detect an 

effect.  Thus, for all intensive purposes, there were only three resulting clusters for each 

of the datasets. 

Permutation testing was performed to determine whether the final clustering 

based on the top five high-influence markers was statistically significant.  In the family- 

based data, the clustering results produced an average class strength value of -4.34 

(p<0.002) and an average cross-class entropy value of 4.00 (p<0.002).  In the case-

control data, the clustering results produced an average class strength value of -2.71 

(p<0.002) and an average cross-class entropy value of 4.43 (p<0.012).  Thus, for each of 

the datasets, the clustering results were significant at our predetermined alpha of ten 

percent (as suggested by our simulation studies in Chapters III and IV). 
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Table 12.  Top Five Highest-Influence Markers from Second-Round of Cluster Analysis 

Chrom Gene Marker FamInfluValue CCInfluValue
10 LRRTM3 rs1925632 0.938 0.792
10 LRRTM3 rs1952060 0.623 0.944
10 LRRTM3 rs2147886 1.000 1.000
10 LRRTM3 rs2251000 0.940 0.834
10 LRRTM3 rs2764807 0.673 0.890  

 

 

Table 13.  Distribution of Affected Individuals in Final Clustering Results 

 Number   of Affecteds 
Cluster Family-Based Data Case-Control Data 

0 673 215 
1 480 157 
2 257 79 
3 7 - 
4 5 - 

 

 

Since the top 5 markers were all in the same gene (LRRTM3), we investigated 

whether they were in linkage disequilibrium (LD) with each other and thus were 

encoding a single haplotype block.  LD analysis using Haploview indeed showed that the 

five markers and four additional flanking markers were all in high LD with each other, 

and it showed the first four markers to be in a haplotype block (Figures 33 and 34).  

Furthermore, inspection of the multi-locus genotypes at the top 5 markers across the three 

clusters in each dataset showed that one multi-locus genotype was predominant in each of 

the three clusters and that these three multi-locus genotypes were the same across the 

case-control and family-based datasets (Table 14). 
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Figure 33.  Linkage Disequilibrium Plot of Top 5 High-Influence Markers in Family-
Based Dataset.  The top five markers are:  rs1925632, rs1952060, rs2147886, 2251000, 
and rs2764807.  Numbers in each square represent pair-wise R2 values (e.g., the number 
95 in the second square from the left on the top line of the plot indicates an R2 value of 
0.95 for markers rs1925617 and rs1925622).  The markers in bold are those in a 
haplotype block, as defined by the Haploview software program. 
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Figure 34.  Linkage Disequilibrium Plot of Top 5 High-Influence Markers in Case-
Control Dataset.  The top five markers are:  rs1925632, rs1952060, rs2147886, 2251000, 
and rs2764807.  Numbers in each square represent pair-wise R2 values (e.g., the number 
92 in the second square from the left on the top line of the plot indicates an R2 value of 
0.92 for markers rs1925617 and rs1925622).  The markers in bold are those in a 
haplotype block, as defined by the Haploview software program. 
 
 

Table 14.  Predominant Genotypes for the Top Five High-Influence Markers by Cluster 

  Cluster  
Marker 0 1 2 
rs1925632 A / C C / C A / A
rs1952060 C / T C / C T / T 
rs2147886 C / T C / C T / T 
rs2251000 A / G A / G A / G

rs2764807 C / T C / C T / T 

98 



Detection of Main Effects in Subsets of Data 

 For each of the three clusters (0,1,2) in the family-based dataset, linkage analysis 

and association analysis by FBAT and PDT were conducted.  For each of the three 

clusters (0, 1, 2) in the case-control dataset, the chi-square test of independence was 

performed.  Since the three clusters in each dataset correspond exactly, due to their 

definition by the same multilocus genotypes at the top 5 high-influence markers, analysis 

results are presented in the following subsections by cluster number. 

 

Cluster 0 Results 

 Table 15 presents results for cluster 0 for all markers with significant scores on at 

least one of the three statistical tests performed (two-point linkage, FBAT and PDT).  For 

cluster 0, linkage analysis found large HetLOD scores (greater than 10) for all five of the 

top high-influence markers plus three flanking markers in the LRRTM3 gene.  Seven 

additional markers in the VR22 gene, which contains the LRRTM3 gene, produced 

HetLOD scores greater than 3.  APOE produced a HetLOD score of 3.75 (reduced from 

7.963 in the complete family-based dataset).  For cluster 0, the FBAT found very strong 

associations with one marker in UBQLN1 (χ2=6.864, df=1, p=0.009), two markers in 

ACE (χ2=13.494, df=1, p<0.001 and χ2=10.875, df=1, p<0.001) and with the APOE 

marker (χ2=59.407, df=2, p<0.001).  Ten other markers in LTA, VR22, LRP1, ACE and 

the ROI on chromosome 10 showed marginal association (χ2>3.9, p<0.05).  For cluster 0, 

the PDT found very strong association with APOE (χ2=59.407, df=2, p<0.001) and 

marginal association with 15 other markers in VR22, LRP1, ACE and the ROI on 

chromosome 10 (χ2>3.9, p<0.05). 
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Table 15.  Main Effect Analysis Results for Cluster 0 Family-Based Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

2-Pt Linkage PDT FBAT
Chrom Gene Marker Max HetLOD Chi-Square p-value Chi-Square p-value

6 LTA rs1799724 1.0995 0.467 0.494 0.069 0.793
6 LTA rs1800629 0.1523 0.711 0.399 4.175 0.041
9 UBQLN1 rs2781003 0 3.046 0.081 6.864 0.009

10 rs6482044 0.6086 4.898 0.027 4.781 0.029
10 rs1904018 1.7161 1.519 0.218 2.566 0.109
10 rs10763551 1.4194 0.863 0.353 1.42 0.233
10 CDC2 rs7919724 1.1955 0.534 0.465 1.603 0.206
10 CDC2 rs2448341 1.1791 0.249 0.618 2.427 0.119
10 rs7089698 0.1562 4.902 0.027 0.854 0.356
10 VR22 rs1786927 1.4381 0.337 0.561 0.017 0.895
10 VR22 rs2126750 1.9445 0.067 0.796 0.227 0.633
10 VR22 rs4745886 4.7019 0.004 0.948 0.002 0.967
10 VR22 rs7911820 4.0837 0.085 0.771 0.086 0.770
10 VR22 rs7070570 2.5327 0.339 0.953 0.08 0.777
10 VR22 rs7074454 4.9523 0.017 0.897 0.141 0.707
10 VR22 rs6480140 1.125 1.114 0.291 0.536 0.464
10 VR22 rs922347 1.619 2.028 0.154 1.049 0.306
10 VR22 rs4463744 1.7541 0.183 0.669 0.785 0.376
10 VR22 rs2441718 4.0431 2.469 0.116 5.021 0.025
10 VR22 rs2939947 3.9423 0.205 0.651 0 0.987
10 VR22 rs2456737 1.1742 3.462 0.063 5.388 0.020
10 VR22 rs4746606 1.2506 0.183 0.669 0.229 0.633
10 VR22 rs7909676 3.1293 5.431 0.020 4.46 0.035
10 LRRTM3 rs1001016 1.0904 0.502 0.479 0.003 0.959
10 LRRTM3 rs12769870 1.8426 1.24 0.266 0.333 0.564
10 LRRTM3 rs2394314 1.6074 0.454 0.501 0 0.995
10 LRRTM3 rs1925577 2.2237 0.453 0.501 0.027 0.869
10 LRRTM3 rs942780 1.8796 0.794 0.373 1.78 0.182
10 LRRTM3 rs1925617 11.1942 0.329 0.566 0.602 0.438
10 LRRTM3 rs1925622 11.2218 0.111 0.740 0.596 0.440
10 LRRTM3 rs1925632 20.2925 0.113 0.737 0.319 0.572
10 LRRTM3 rs1952060 12.638 2.367 0.124 2.107 0.147
10 LRRTM3 rs2147886 20.147 1.076 0.300 1.293 0.256
10 LRRTM3 rs2251000 20.4094 0.221 0.638 0.447 0.504
10 LRRTM3 rs2764807 13.0929 0.159 0.690 0.557 0.455
10 LRRTM3 rs10762136 10.2544 0.159 0.690 2.013 0.156
10 VR22 rs11593235 4.8028 0.677 0.411 1.978 0.160
10 VR22 rs10997591 2.5524 0.053 0.818 0.007 0.932
10 VR22 rs7903421 0.6966 4.57 0.033 1.064 0.302
10 VR22 rs3096244 2.5206 2.081 0.149 0 0.992
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Table 15, continued.  Main Effect Analysis Results for Cluster 0 Family-Based Dataset.  
Significant results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

2-Pt Linkage PDT FBAT
Chrom Gene Marker Max HetLOD Chi-Square p-value ChiSquare p-value

10 rs870801 1.6058 1.214 0.271 2.132 0.144
10 PLAU rs2227564 1.07 0.134 0.714 0.199 0.655
10 PLAU rs2227566 1.0844 0.027 0.869 0.054 0.816
10 PLAU rs2227568 1.5063 0.6 0.439 0.127 0.721
10 PLAU rs4065 1.0192 0.414 0.520 0.401 0.527
10 rs1439042 1.9356 0.082 0.775 0.638 0.424
10 rs1336439 1.194 1.004 0.316 0.905 0.341
10 IDE rs7076966 1.0434 0.051 0.821 0.102 0.750
10 IDE rs7099761 1.1965 0.509 0.475 1.019 0.313
10 rs225590 0 4.447 0.035 3.471 0.062
12 LRP1 rs1800181 0.0002 5.433 0.020 3.001 0.083
12 LRP1 rs1800154 0.0154 4.306 0.038 2.354 0.125
12 LRP1 rs1800165 0.0141 4.976 0.026 3.077 0.079
12 LRP1 rs9669595 0.0914 5.371 0.021 3.954 0.047
12 LRP1 rs7956957 0 3.918 0.048 2.328 0.127
17 ACE rs4291 0 6.339 0.012 13.494 < 0.001
17 ACE rs4295 0 4.831 0.028 10.875 0.001
17 ACE rs4311 0 2.683 0.102 6.534 0.011
17 ACE rs4646994 0 5.236 0.022 4.38 0.036
17 ACE rs4343 0 4.67 0.031 4.766 0.029
17 ACE rs4978 0 5.657 0.017 5.099 0.024
19 APOE rs440446 3.7521 66.373 < 0.001 59.407 < 0.001  

 

 

 In the case-control dataset, very strong associations were found for the top 5 high-

influence values in LRRTM3 and three flanking markers, plus one marker in IDE and the 

APOE marker (χ2>38, p<0.001).  Four other markers in the PLAU, A2MP and ACE 

genes showed marginal association (χ2>8, p<0.05).  Table 16 presents results chi-square 

results for all markers showing significant association (p < 0.05) for the cluster 0 case-

control dataset. 
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Table 16.  Main Effect Analysis Results for Cluster 0 Case-Control Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 
 

Chrom Gene Marker
Pearson's 
Chi-Square p-value

10 LRRTM3 rs1925617 47.383 < 0.001
10 LRRTM3 rs1925622 45.252 < 0.001
10 LRRTM3 rs1925632 185.361 < 0.001
10 LRRTM3 rs1952060 80.66 < 0.001
10 LRRTM3 rs2147886 197.482 < 0.001
10 LRRTM3 rs2251000 171.91 < 0.001
10 LRRTM3 rs2764807 101.962 < 0.001
10 LRRTM3 rs10762136 105.74 < 0.001
10 VR22 rs11593235 38.462 < 0.001
10 PLAU rs2227568 9.118 0.028
10 IDE rs7099761 10.815 0.013
10 IDE rs1544210 19.355 < 0.001
12 A2MP rs34362 8.182 0.042
17 ACE rs4291 8.414 0.038
19 APOE rs440446 118.292 < 0.001  

 

 

When comparing results across the family-based and case-control datasets for 

cluster 0, thirteen markers were found significant (p < 0.05) by the chi-square test in the 

case-control dataset and by at least one test (linkage, FBAT or PDT) in the family-based 

dataset.  These markers include the top 5 high-influence markers in LRRTM3 and four 

flanking markers, plus one marker each in the PLAU, IDE, ACE and APOE genes—

rs2227568, rs7099761, rs4291 and rs440446, respectively. 

 

Cluster 1 Results 

 In the cluster 1 family-based dataset, linkage analysis showed very high HetLOD 

scores (greater than 5) for all five of the top high-influence markers plus four flanking 

markers in the LRRTM3 gene.  Five additional markers in VR22 produced HetLOD 
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scores greater than 3.  Marginal HetLOD scores (greater than 1) were found in another 31 

markers in VR22, LRRTM3, PLAU, IDE, APOE and the ROI on chromosome 10.  Both 

the FBAT and the PDT found very strong association (χ2>39, p < 0.001) with the top 5 

high-influence markers in LRRTM3 and four flanking markers, plus APOE.  The PDT 

found 13 additional markers in CDC2, VR22, PLAU, IDE, A2M, ACE, GAPDHS and 

the ROI on chromosome 10 that showed marginal association (χ2>3.8, p<0.05).  The 

FBAT found marginal association (χ2>4.3, p<0.05) with four of the same markers PDT 

found (in PLAU, IDE and the ROI on chromosome 10). 

 In the cluster 1 case-control dataset, the chi-square test of independence found 

very strong association (χ2>15, p<0.001) with the top 5 high-influence markers in 

LRRTM3 and six flanking markers, plus one marker in GAPDH and APOE.  In addition, 

22 other markers in AGT, UBQLN1, VR22, CDC2, PLAU, IDE, GAPDH, A2MP, LIPC 

and ACE showed marginal association (χ2>6, p<0.05).  Table 18 presents chi-square 

results for all markers showing significant association (p < 0.05) for the cluster 1 case-

control dataset. 

 When comparing across the family-based and case-control datasets for cluster 1, 

17 markers were found significant (p < 0.05) by the chi-square test in the case-control 

dataset and by at least one test (linkage, FBAT or PDT) in the family-based dataset.  

These markers include the top 5 high-influence markers in LRRTM3 and four flanking 

markers, plus three additional markers in VR22 (rs4463744, rs10997591 and rs3096244), 

three markers in CDC2 (1920, rs2448341 and rs2448347), three markers in PLAU 

(rs1916341, rs2227566 and rs4065), and one marker in IDE (rs1832196) and APOE 

(rs440446).  Worth noting, there are two markers in ACE (rs4353 and rs4978) that were  
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Table 17.  Main Effect Analysis Results for Cluster 1 Family-Based Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

2-Pt Linkage PDT FBAT
Chrom Gene Marker Max HetLOD Chi-Square p-value Chi-Square p-value

10 rs10826594 1.2548 0.714 0.398 0.333 0.564
10 rs1023207 1.0589 0.126 0.722 0.21 0.647
10 rs1319013 0.3697 4.306 0.038 1.345 0.246
10 rs6593491 1.5791 0.035 0.851 1.603 0.205
10 rs4998401 1.9603 0.795 0.373 0.948 0.330
10 rs4935648 2.6603 0.088 0.766 0.098 0.754
10 rs10763551 1.2115 0.124 0.725 0.964 0.326
10 CDC2 1920 2.0918 0.405 0.524 1.4 0.496
10 CDC2 rs2448341 0.4463 4.469 0.035 1.071 0.301
10 CDC2 rs2448347 1.2699 0.540 0.463 0.045 0.833
10 rs7090884 1.6566 0.045 0.831 0.024 0.878
10 rs1935 1.644 0.837 0.360 0.497 0.481
10 rs7089698 1.1446 0.168 0.682 0.053 0.818
10 VR22 rs1786927 0.3379 3.882 0.049 3.799 0.051
10 VR22 rs2126750 1.3995 2.579 0.108 0.73 0.393
10 VR22 rs4745886 1.8666 1.927 0.165 1.13 0.288
10 VR22 rs7911820 0.4904 4.311 0.038 4.311 0.038
10 VR22 rs7070570 3.1473 2.359 0.307 0.682 0.409
10 VR22 rs6480140 0.3839 4.953 0.026 4.953 0.026
10 VR22 rs922347 4.5899 0.129 0.720 0.223 0.637
10 VR22 rs4463744 2.1485 0.220 0.639 0.708 0.400
10 VR22 rs2441718 2.1851 0.841 0.359 1.68 0.195
10 VR22 rs2939947 3.6337 0.008 0.929 0.955 0.329
10 VR22 rs2456737 3.2556 1.485 0.223 1.796 0.180
10 VR22 rs4746606 1.4451 0.116 0.733 0.323 0.570
10 VR22 rs7909676 1.7719 1.735 0.188 1.689 0.194
10 LRRTM3 rs12769870 2.6682 0.333 0.564 0.788 0.375
10 LRRTM3 rs1925583 2.6807 1.189 0.276 0.482 0.488
10 LRRTM3 rs2394314 2.8638 0.919 0.338 0.684 0.408
10 LRRTM3 rs1925577 2.3376 0.113 0.737 0.005 0.944
10 LRRTM3 rs1925617 8.2048 45.075 < 0.001 55.866 < 0.001
10 LRRTM3 rs1925622 9.3456 46.140 < 0.001 57.161 < 0.001
10 LRRTM3 rs1925632 14.638 55.764 < 0.001 70.219 < 0.001
10 LRRTM3 rs1952060 7.8202 54.554 < 0.001 67.365 < 0.001
10 LRRTM3 rs2147886 16.7244 53.720 < 0.001 66.162 < 0.001
10 LRRTM3 rs2251000 15.4586 55.748 < 0.001 68.044 < 0.001
10 LRRTM3 rs2764807 10.721 50.449 < 0.001 58.393 < 0.001
10 LRRTM3 rs10762136 10.2257 46.537 < 0.001 57.414 < 0.001
10 VR22 rs11593235 5.976 39.195 < 0.001 45.584 < 0.001
10 VR22 rs10997591 2.55 1.186 0.276 0.277 0.599
10 VR22 rs3096244 1.4214 0.162 0.688 0.603 0.438  

104 



Table 17, continued.  Main Effect Analysis Results for Cluster 1 Family-Based Dataset.  
Significant results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

2-Pt Linkage PDT FBAT
Chrom Gene Marker Max HetLOD Chi-Square p-value Chi-Square p-value

10 PLAU rs1916341 1.0987 1.801 0.180 1.598 0.206
10 PLAU rs2227564 1.5754 0.025 0.874 0.373 0.541
10 PLAU rs2227566 1.3058 1.848 0.174 1.982 0.159
10 PLAU rs2227568 0.2907 6.470 0.011 5.032 0.025
10 PLAU rs4065 1.2024 1.594 0.207 3.203 0.074
10 rs1439042 1.5462 0.601 0.438 0.424 0.515
10 rs11816558 1.073 0.000 1.000 0.065 0.798
10 IDE rs2251101 0 7.388 0.007 4.788 0.029
10 IDE rs1832196 0.2703 5.028 0.025 6.31 0.012
10 IDE rs4646954 1.1098 1.817 0.178 2.64 0.104
10 rs4372378 0.4067 5.704 0.017 4.995 0.025
12 A2M rs3832852 0.0837 6.674 0.010 1.357 0.244
17 ACE rs4353 0 4.265 0.039 2.425 0.119
17 ACE rs4978 0 3.991 0.046 2.254 0.133
19 GAPDS rs4806173 0.25 4.464 0.035 3.6 0.058
19 APOE rs440446 2.1577 40.994 < 0.001 43.475 < 0.001  

 

 

significant by the FBAT and PDT in the family-based dataset but are not present in the 

case-control dataset.  In the family-based dataset, these markers are in linkage 

disequilibrium with two other markers (rs4646994 and rs4343) that are were found 

significant by the Pearson chi-square test of independence in the case-control dataset. 

 

Cluster 2 Results 

 In the cluster 2 family-based dataset, linkage analysis produced HetLOD scores 

greater than 3 for the top 5 high-influence markers in LRRTM3 and four flanking 

markers, plus one additional marker in VR22.  Marginal HetLOD scores (greater than 1) 

were found in another 18 markers in AGT, VR22, ACE and the ROI on chromosome 10.   
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Table 18.  Main Effect Analysis Results for Cluster 1 Case-Control Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

Chrom Gene Marker
Pearson's 
Chi-Square p-value

1 AGT rs2148582 11.144 0.004
1 AGT rs5051 12.809 0.002
1 AGT rs1326886 8.652 0.013
9 UBQLN1 rs2781003 6.305 0.043
9 UBQLN1 rs2780995 6.794 0.033
9 UBQLN1 rs12344615 7.624 0.022
9 UBQLN1 rs11140213 8.023 0.018

10 CDC2 1920 11.509 0.021
10 CDC2 rs2448341 6.269 0.044
10 CDC2 rs2448347 7.161 0.028
10 VR22 rs4463744 11.652 0.003
10 LRRTM3 rs1925617 73.726 < 0.001
10 LRRTM3 rs1925622 56.225 < 0.001
10 LRRTM3 rs1925632 225.507 < 0.001
10 LRRTM3 rs1952060 92.221 < 0.001
10 LRRTM3 rs2147886 241.493 < 0.001
10 LRRTM3 rs2251000 226.643 < 0.001
10 LRRTM3 rs2764807 138.128 < 0.001
10 LRRTM3 rs10762136 119.639 < 0.001
10 VR22 rs11593235 39.889 < 0.001
10 VR22 rs10997591 26.598 < 0.001
10 VR22 rs3096244 23.893 < 0.001
10 PLAU rs1916341 6.591 0.037
10 PLAU rs2227566 6.866 0.032
10 PLAU rs4065 7.26 0.027
10 IDE rs1832196 7.803 0.020
10 IDE rs7076966 9.976 0.007
12 GAPD rs7307229 8.618 0.013
12 GAPD rs1060620 15.79 < 0.001
12 GAPD rs1060619 14.489 0.001
12 A2MP rs16918212 6.051 0.049
12 A2MP rs17804080 8.722 0.013
15 LIPC rs6083 8.748 0.013
17 ACE rs4646994 6.004 0.050
17 ACE rs4343 8.903 0.012
19 APOE rs440446 91.857 < 0.001  
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Both the FBAT and the PDT found very strong association (χ2>11, p < 0.001) with the 

top 5 high-influence markers in LRRTM3 and four flanking markers, plus APOE.  The 

FBAT found five additional markers in LTA, LRRTM3, PLAU and ACE that showed 

marginal association (χ2>4, p<0.05).  The PDT found one more LRRTM3-flanking 

marker with a very significant association (χ2=12.255, df=2, p < 0.001) and three other 

markers in CDC2, PLAU and LRP1 that showed marginal association (χ2>4.9, p < 0.05).  

Table 19 presents results for cluster 2 for all markers with significant scores (p<0.05) on 

at least one of the three statistical tests performed (two-pt linkage, FBAT and PDT).   

 In cluster 2 case-control dataset, the chi-square test of independence found very 

strong association (χ2>67, p<0.001) with the top 5 high-influence markers in LRRTM3 

and four flanking markers, plus APOE.  In addition, three other markers in VR22 and 

A2MP showed marginal association (χ2>7, p<0.05).  Table 20 presents chi-square results  

for all markers showing significant association (p < 0.05) for the cluster 2 case-control 

dataset. 

 When comparing across the family-based and case-control datasets for cluster 2, 

10 markers were found significant (p < 0.05) by the chi-square test in the case-control 

dataset and by at least one test (linkage, FBAT or PDT) in the family-based dataset.  

These markers include the top 5 high-influence markers in LRRTM3 and four flanking 

markers, plus APOE. 

 

107 



 Table 19.  Main Effect Analysis Results for Cluster 2 Family-Based Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

2-Pt Linkage PDT FBAT
Chrom Gene Marker Max HetLOD Chi-Square p-value Chi-Square p-value

1 AGT rs5051 1.7146 0.155 0.694 0.819 0.365
1 AGT rs2148582 1.7798 0.003 0.953 0.38 0.538
6 LTA rs1800629 0 1.573 0.210 4.594 0.032
10 rs10826594 1.0955 0.268 0.605 0.096 0.757
10 rs1319013 1.3621 1.613 0.204 1.747 0.186
10 rs1148247 1.0737 0.109 0.741 1.053 0.305
10 rs6482044 1.3444 0.822 0.365 0.142 0.706
10 rs6593491 1.1512 0.297 0.586 0.985 0.321
10 rs1890739 2.627 0.261 0.610 0.064 0.800
10 rs14327 1.0027 0.43 0.512 0.852 0.356
10 rs10763551 2.3693 0.166 0.684 0.014 0.905
10 CDC2 rs7919724 0.6497 4.955 0.026 2.602 0.107
10 VR22 rs2126750 1.6167 1.152 0.283 1.716 0.190
10 VR22 rs7074454 1.1114 0.674 0.412 0.557 0.456
10 VR22 rs6480140 1.8565 0.653 0.419 0.01 0.920
10 VR22 rs2441718 3.5833 0.576 0.448 0.041 0.839
10 VR22 rs2939947 1.2757 0.272 0.602 0.573 0.449
10 VR22 rs2456737 1.4679 0.052 0.820 0.17 0.681
10 VR22 rs4746606 1.4457 0.193 0.661 0.081 0.776
10 LRRTM3 rs942780 0.1022 12.255 < 0.001 9.648 0.002
10 LRRTM3 rs1925617 3.7431 11.904 0.001 19.368 < 0.001
10 LRRTM3 rs1925622 3.9166 11.062 0.001 18.319 < 0.001
10 LRRTM3 rs1925632 8.2935 23.69 < 0.001 27.201 < 0.001
10 LRRTM3 rs1952060 6.8637 21.041 < 0.001 22.93 < 0.001
10 LRRTM3 rs2147886 9.664 28.35 < 0.001 33.476 < 0.001
10 LRRTM3 rs2251000 9.1483 26.098 < 0.001 33.166 < 0.001
10 LRRTM3 rs2764807 8.4098 21.525 < 0.001 29.282 < 0.001
10 LRRTM3 rs10762136 8.3662 21.407 < 0.001 31.142 < 0.001
10 VR22 rs11593235 6.5029 19.458 < 0.001 20.156 < 0.001
10 PLAU rs2227568 1 7.042 0.008 7.36 0.007
10 rs4933194 1.0466 0.428 0.513 0.039 0.843
12 LRP1 rs1800154 0 5.141 0.023 2.807 0.094
17 ACE rs4291 0.001 1.373 0.241 4.729 0.030
17 ACE rs4343 0.0855 2.33 0.127 4.077 0.043
19 APOE rs440446 0.5671 36.984 < 0.001 25.785 < 0.001  
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Table 20.  Main Effect Analysis Results for Cluster 2 Case-Control Dataset.  Significant 
results are highlighted in pale (p<0.05) or fluorescent (p<0.01) yellow. 

 

Chrom Gene Marker
Pearson's 
Chi-Square p-value

10 LRRTM3 rs1925617 96.408 < 0.001
10 LRRTM3 rs1925622 93.924 < 0.001
10 LRRTM3 rs1925632 182.472 < 0.001
10 LRRTM3 rs1952060 134.996 < 0.001
10 LRRTM3 rs2147886 202.584 < 0.001
10 LRRTM3 rs2251000 195.167 < 0.001
10 LRRTM3 rs2764807 146.342 < 0.001
10 LRRTM3 rs10762136 101.079 < 0.001
10 VR22 rs11593235 72.618 < 0.001
10 VR22 rs10997591 11.588 0.003
12 A2MP rs16918212 7.025 0.030
12 A2MP rs17804080 10.425 0.005
19 APOE rs440446 67.132 < 0.001  

 

 

Detection of Gene-Gene Interactions in Subsets of Data 

 For each of the three clusters in both the family-based and case-control datasets, 

an MDR gene-gene interaction analysis was conducted.  APOE and the top 5 high-

influence markers, plus the four flanking markers in linkage disequilibrium with those 

top markers, dominated the best MDR models (data not shown).  To allow other effects 

to be detected over these known effects, these ten markers were excluded and the MDR 

analyses were repeated.  Tables 21, 23 and 25 present the best MDR models for clusters 

0, 1 and 2, respectively.  Cross-validation (CV) consistency is provided as the number of 

times (out of 5) that the reported best model was the best in the fold, or split, of the data.  

The average (across all five cross-validation intervals) of the balanced prediction 

accuracy and its corresponding significance level (p-value) is also reported.
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Cluster 0 Results 

 For cluster 0, in the family-based 1DSP dataset, the best one-locus MDR model 

was rs4291 in ACE (p = 0.10) and the best two-locus model was rs4291 in ACE and 

rs7909676 in VR22 (p = 0.17), which is not in LD (r2 ≤ 0.01) with any LRRTM3 marker 

in the dataset (Table 21).  These two models were the only MDR models for cluster 0 that 

achieved a prediction accuracy of approximately 55 percent or greater.  It is worth noting 

that the best one-locus MDR model in the case-control dataset, which had a lower 

prediction accuracy of 48.5 (p = 0.86), was also rs4291 in ACE.  A statistically 

significant full factorial model was fit to the cluster 0 family-based dataset using rs4291 

and rs7909676 (χ2 = 19.264, df=3, p = 0.0002), but the individual parameter estimates 

indicate that the significant effect in the model is primarily coming from marker rs 4291 

(Table 22).  The heterozygote and the A/A homozygote for rs4291 increased risk for 

disease by 2.066 (p = 0.0106). 

 

Cluster 1 Results 

For cluster 1, in the case-control dataset, the best one-locus model was rs3096244 

in VR22 (p = 0.11), which is not in LD (r2 ≤ 0.04) with any LRRTM3 marker in the 

dataset, and the best two-locus MDR model involved rs3096244 in VR22 and rs4343 in 

ACE (p = 0.08).  In the 1DSP family-based dataset, the best two locus model was 

rs2255901 in the chromosome 10 ROI and rs 922347 in VR22 (p = 0.13), which is not in 

LD with any LRRTM3 marker in the dataset,.  These three models were the only MDR 

models for cluster 1 that achieved a prediction accuracy of greater than 55 percent (Table 

23). 
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Table 21.  MDR Analysis Results for Cluster 0 
 

Num 
Loci

Marker Genes 
(Markers)

Avg Bal 
Prediction 
Accuracy p-value

CV 
Consist

Case-
Control 1 ACE (rs4291) 48.50 0.86 2

2 A2MP (rs34362)  
PLAU (rs1916341) 52.15 0.34 2

3
VR22 (rs1786927)    
IDE (rs1544210)  

AGT (rs5051)
49.30 0.76 1

1DSP 1 ACE (rs4291) 56.48 0.10 4

2 ACE (rs4291)     
VR22 (rs7909676) 54.99 0.17 3

3
ACE (rs4646994)  

OLR1 (rs1050283)   
VR22 (rs4745886)  

48.62 0.87 1

AllDSPs 1 Chr.10 (rs6482044) 54.37 0.12 3

2 OLR1 (rs1050283)  
VR22 (rs7909676) 49.42 0.80 1

3
OLR1 (rs1050283)  
CDC2 (rs7919724)  
AGT (rs2148582)

50.54 0.62 1
 

 

 

Table 22.  Logistic Regression Results for Cluster 0 Family-Based Data Using Markers 
from Significant Two-Locus MDR Model 
     95% Hazard  

Confidence  
Ratio  
Limits 

Factor χ2 df p Value Hazard 
Ratio 

Lower Upper 

VR22(rs7909676) 3.6832 1 0.0550 1.916 0.986 3.723 
ACE(rs4291) 6.5254 1 0.0106 2.066 1.184 3.606 
rs7909676 * 
rs4291 

0.3573 1 0.5500 0.881 0.582 1.335 
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Table 23.  MDR Analysis Results for Cluster 1 
 

Num 
Loci

Marker Genes 
(Markers)

Avg Bal 
Prediction 
Accuracy p-value

CV 
Consist

Case-
Control 1 VR22 (rs3096244) 55.74 0.11 3

2 VR22 (rs3096244)  
ACE (rs4343) 56.73 0.08 2

3
VR22 (rs3096244)  
VR22 (rs922347)  
PZP (rs3213831)  

53.73 0.24 2

1DSP 1 Chr.10 (rs2255901) 52.61 0.41 3

2 Chr.10 (rs2255901)  
VR22 (rs922347) 56.29 0.13 3

3
ACE (rs4646994)  
LRP1 (rs1800154)  
OLR1 (rs1050283)

48.39 0.86 1

AllDSPs 1 GAPDS (rs4806173) 52.74 0.31 4

2 GAPDS (rs4806173)  
VR22 (rs7074454) 50.68 0.59 2

3
GAPDS (rs4806173)  
VR22 (rs4745886)  
Chr.10 (rs6482044)

50.51 0.62 1
 

 

 

A statistically significant full factorial model was fit to the cluster 1 case-control 

dataset using rs3096244 in VR22 and rs4343 in ACE from the best two-locus MDR 

model (χ2 = 20.646, df=3, p < 0.001) (Table 24).  Both markers displayed significant 

main effects, and the interaction effect, which had the opposite effect on risk, was also 

significant (Table 24).  At marker rs3096244 in VR22, the heterozygote and T/T 

homozygote decreased risk by 0.464, and at marker rs4343 in ACE, the heterozygote and 

G/G homozygote decreased risk by 0.425.  However, in reference to any genotype 

combination that included the A/A homozygote for rs3096244 or the A/A homozygote 

for rs4343, those same genotypes when considered together actually increased risk by 

1.696. 
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Table 24.  Logistic Regression Results for Cluster 1 Case-Control Data Using Markers 
from Significant Two-Locus MDR Model 
     95% Odds  

Confidence  
Ratio  
Limits 

Factor χ2 df p Value Odds 
Ratio 

Lower Upper 

VR22(rs3096244) 14.498 1 < 0.001 0.464 0.309 0.694 
ACE(rs4343) 14.363 1 < 0.001 0.425 0.270 0.671 
rs3096244 * 
rs4343 

9.072 1 0.003 1.696 1.199 2.400 

 

 

Using the two markers included in the best two-locus MDR model for the 1DSP 

family-based dataset, logistic regression was used to fit a full factorial model to the data.  

However, the full model was not statistically significant (χ2 = 1.4917, df=3, p > 0.68) ; 

nor were any of its factors (data not shown). 

It is perhaps worth noting that in the AllDSPs dataset, rs7074454 and rs4745886 

in VR22 were each in the best two- and three-locus MDR models, respectively.  These 

markers are in linkage disequilibrium with each other in the complete family-based 

dataset but are not in LD with the VR22 markers found in the best case-control MDR 

models.  Marker rs4745886 in VR22 was out of Hardy-Weinberg equilibrium in the 

complete family-based dataset.  None of these family-based models in cluster 1 achieved 

prediction accuracy greater than 55 percent. 

 

Cluster 2 Results 

For cluster 2, the best one-locus MDR model in the case-control dataset was 

rs10997591 in VR22 (p < 0.04), which is not in LD (r2 ≤ 0.12) with any LRRTM3 marker 

in the dataset, and the best one-locus MDR model in the 1DSP family-based dataset was 
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rs11816558 in the ROI on chromosome 10 (p = 0.08).  These two models were the only 

MDR models in cluster 2 that achieved a prediction accuracy of greater than 55 percent 

(Table 25). 

 

 

Table 25.  MDR Analysis Results for Cluster 2 

Num 
Loci

Marker Genes 
(Markers)

Avg Bal 
Prediction 
Accuracy p-value

CV 
Consist

Case-
Control 1 VR22 (rs10997591) 60.09 0.04 5

2 VR22 (rs10997591) 
CDC2 (1920) 49.49 0.72 1

3
VR22 (rs10997591)  

IDE (rs1544210)  
COG2 (rs3789662)

44.73 0.98 1

1DSP 1 Chr.10 (rs11816558) 59.32 0.08 5

2 OLR1 (rs1050283)  
CDC2 (1920) 51.60 0.58 1

3
OLR1 (rs1050283)  
ACE (rs4646994)  

Chr.10 (rs1916341) 
50.15 0.73 1

AllDSPs 1 PZP (rs12230214) 48.03 0.89 1

2 ACE (rs4646994)  
Chr.10 (rs870801) 51.98 0.46 1

3
OLR1 (rs1050283)  
ACE (rs4646994)   
CDC2 (rs1920)

47.30 0.93 2
 

 

 

It is worth noting that rs10997591 in VR22 was also present in the best two- and 

three-locus MDR models for the case-control dataset, although their corresponding 

prediction accuracy was below 50 percent.  The marker rs1050283 in OLR1 appeared in 

the best two- and three-locus MDR models for the 1DSP dataset and in the best three-

locus MDR model for the AllDSPs dataset.  In addition, the best two-locus MDR models 

114 



in both the case-control and the family-based 1DSP datasets and the best three-locus 

model in the family-based AllDSPs dataset, all included marker 1920 in CDC2.  Finally, 

the marker rs4646994 in ACE was included in the best three-locus model for the 1DSP 

dataset and in the best two- and three-locus models for the AllDSPs dataset. 

 

Discussion 

 Simulation studies of the Bayesian Classification method presented in Chapters 

III and IV were performed using simulated case-control data.  The current application of 

the clustering method involves both family-based and case-control data.  Family-based 

data naturally have intrafamily correlations among markers, which may not be relevant to 

the disease in question.  Large families with particular multilocus genotype patterns may 

bias the choice of high influence markers more so than smaller families, leading to 

choices that may not generalize to a large family-based dataset or case-control dataset.  

No attempt was made to control for such intrafamily correlations directly.  However, our 

decision to perform multiple rounds of clustering, choosing only those markers common 

to both datasets, may have averted some of this potential bias.  It is encouraging that, at 

least in this particular application, the same five markers were selected in both the 

family-based and case-control datasets as being the highest influence markers. 

Another issue created by family-based data involves the way in which the 

clustered affected individuals are recombined with the set of unaffected individuals.  

Since the main effect analysis methods for family-based data use pedigree information 

and leverage family structure and intrafamily correlation, any splitting of families 

threatens to reduce the informativeness of such families and to subsequently reduce the 
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power of the analyses.  For this reason, it might have been ideal to have all affected 

individuals from a family always be clustered together, thereby avoiding any disruption 

of family structure.  However, there was no way to implement such constraints within the 

existing (closed source) clustering software, and as it turned out, the clustering method 

did not choose to cluster together all individuals of the same family.  Thus, the power of 

main effect analyses on family-based cluster subsets was likely reduced to some degree. 

The power of our analyses on the cluster subsets may also have been lowered (in 

comparison to the complete datasets) because the number of affected subjects in each 

subset is only a fraction of what is present in the complete dataset.  Since clustering is 

performed only on the affected individuals in the dataset, for the purpose of subset 

analysis, the resulting clusters of affected individuals are recombined with the full set of 

unaffected individuals.  Therefore, this also means that the data in most of the subsets is 

substantially unbalanced.    The complete case-control dataset was already somewhat 

unbalanced, with a ratio of cases to controls of 0.65.  Thus, the ratios in the cluster 

subsets for the case-control data were even more unbalanced—0.31, 0.22 and 0.11—for 

clusters 0, 1 and 2, respectively.  The complete family-based dataset was unbalanced but 

in the opposite direction, with a ratio of cases to controls of 1.91.  Thus, the ratios in the 

cluster subsets for the family-based data were not as badly affected as those in the case-

control dataset—0.90, 0.65, 0.35—for clusters 0, 1 and 2, respectively. 

Another difference between our simulation studies and the current application is 

that the simulation studies used markers which had no linkage disequilibrium (LD) with 

each other, while the current application involved markers with considerable LD, 

comprising multiple haplotype blocks.  The clustering method chose to focus on a set of 
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markers in LRRTM3 that were in high LD with each other to cluster affected subjects 

into more homogeneous subsets.  The fact that the Bayesian Classification method 

essentially used (a readily discoverable) haplotype block to cluster the datasets may not 

be a particularly interesting result.  Afterall, one could have used the results from the 

linkage disequilibrium analysis directly to choose haplotype blocks upon which to stratify 

the data, although the choice among haplotype blocks would have been arbitrary.  

Perhaps the fact that the clustering method could have found other multilocus genotype 

patterns but did not means that there were no other interesting patterns to be found.  

Alternatively, it is possible that there were other multi-locus genotype patterns in the 

datasets but that these patterns simply were not as strong or as consistent as those in the 

haplotype block of LRRTM3 and hence were not chosen to highly influence cluster 

assignment.  One could try to select tag SNPs prior to clustering, with the goal of 

reducing the strength or dominance of such LD in the dataset, thereby allowing other 

weaker, perhaps more interesting, multilocus genotype patterns to be selected for use in 

clustering the dataset.  However, initial attempts at implementing this approach on the 

current datasets indicate that the process of choosing the tag SNPs would be iterative, 

adhoc and somewhat arbitrary—in short, not at all a straight-forward solution to the 

situation.  Additionally, eliminating markers by choosing tag SNPs could also dilute any 

multilocus genotype effects that are present, which the clustering method could have used 

to stratify the data. 

Regardless of whether the clustering method’s use of a haplotype block is novel 

or interesting, the question remains as to whether stratification or clustering based in this 

specific dataset using this particular LD block in LRRTM3 is meaningful.  It is, indeed, 
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possible that there are main effects and/or interactions among other genes that are only 

present on certain LRRTM3 haplotype backgrounds.  It is also possible that there are 

direct or indirect interactions between LRRTM3 and these other genes and that clustering 

on the LRRTM3 haplotype block allows those effects to be detected.  It is also possible 

that the pertinent interactions involve VR22, which is the larger gene in whose intron 

LRRTM3 resides.  Ultimately, whether these results are meaningful will be determined 

by whether the statistical results reported here can be replicated, and, more importantly, 

whether functional molecular studies can demonstrate the biological plausibility of such 

interactions. 

VR22 or CTNNA3 (catenin, alpha 3; MIM#607667) is a binding partner of beta-

catenin (Janssens et al., 2001), which interacts with presenilin 1.  Presenilin 1 interacts 

with the gamma-secretase involved in processing the amyloid precursor protein (APP), 

and its mutations have been associated with increased levels of amyloid beta 42 (Citron et 

al., 1997; Duff et al., 1996; Qian et al., 1998), the primary component of senile plaques 

found in Alzheimer disease.   

Leucine-rich containing proteins, like LRRTM3, are involved in protein-protein 

interactions, and the family of leucine-rich repeat transmembrane proteins (LRRTMs) are 

involved in many cellular events during nervous system development and disease 

(Lauren et al., 2003).  Of particular relevance to Alzheimer disease pathology, LRRTM3 

is highly expressed in the adult mouse hippocampus, in the granular layer of the dentate 

gyrus (Lauren et al., 2003).  Tau-mediated neurodegeneration in this area is thought to 

play a role in Alzheimer disease progression (Shahani et al., 2006). 
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Recent evidence is mounting in support of an alternative hypothesis for 

Alzheimer disease pathology, which implicates cell cycle reactivation as a key early 

event that precedes and possibly is causally related to tau and APP phosphorylation and 

apoptotic cell death (Andorfer et al., 2005; McPhie et al., 2003; Yang et al., 2006).  

Amyloid precursor protein has been purported to regulate activation of neuronal cell 

cycle proteins (McPhie et al., 2003); therefore, hypothetically, mutations in VR22 could 

indirectly affect cell cycle activation, through interactions with APP (by way of beta-

catenin and presenilin 1).  Additionally, since LRRTM3 is thought to be involved in 

neuronal development in some of the key areas that are later targets of neuronal cell death 

in Alzheimer disease, perhaps LRRTM3 is being re-activated in some way that facilitates 

the cell cycle re-entry of neurons.  Thus, it would be interesting to learn whether VR22 

and/or LRRTM3 are differentially expressed in the brains of AD patients versus controls. 

For every cluster, the main effect and interaction subset analyses showed 

LRRTM3 markers exhibiting strong effects.  This is an expected result since almost all 

(affected) individuals in a cluster had the same genotypes at those markers and in 

comparison to the unaffecteds in the datasets, it would appear that those genotypes were 

associated with disease status.  Likewise, flanking or nearby markers in LRRTM3 and the 

larger gene, VR22, within which LRRTM3 resides, might demonstrate effects that could 

be attributed to the LRRTM3 haplotype block effect.  Table 26 shows the NCBI map 

locations of all genotyped markers in the VR22 and LRRTM3 genes, along with their 

HetLOD scores in the complete family-based dataset and its three clusters.  Figure 35 

shows a plot of these HetLOD scores starting with the most distal markers that achieved a 

HetLOD of at least 2. 
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Looking across all the main effect and interaction analyses, there are a few genes 

for each cluster that deserve further investigation in relation to their LRRTM3 haplotype 

(Table 14).  In some cases where there are two or more markers in LD with each other, in 

the case-control dataset, one of the markers is significant but in the family-based dataset, 

the other one is.  This can be a simple case of sampling differences, since the two datasets 

are independent samples drawn from different populations and by chance the distribution 

of alleles or genotypes between affecteds and unaffecteds can be different between those 

samples at any given marker. 

 

Complete Dataset Discussion 

 The preliminary analysis of the complete family-based and case-control datasets 

found three markers that were significant in both the case-control and family-based 

datasets—VR22 markers rs2441718 and rs2456737 and APOE marker rs440446.  

LRRTM3 marker rs1925617 was significant in the case-control dataset and was in LD 

with three other LRRTM3 markers—rs1925622, rs1925632 and rs2764807—which were 

significant in the family-based dataset by their PDT chi-square statistics.  None of the 

MDR interaction analyses that excluded the known effect of APOE produced significant 

models. 

 Many of the markers that were found significant by at least one main effect 

statistical test in either the complete case-control or complete family-based datasets were 

also significant in the analysis of specific subsets produced by the Bayesian Classification  
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Table 26.  Chromosomal Location and Linkage Analysis Results for Markers in VR22 
and LRRTM3.  Highlighted markers were the top five high-influence markers used in the 
final cluster analysis. 
 

HetLOD in Family- Based Dataset
Chrom Gene Marker Location (kb) Complete Cluster 0 Cluster 1 Cluster 2

10 VR22 4783 67,209 0.000 0.900 0.962 0.241
10 VR22 rs1786927 67,352 0.000 1.438 0.338 0.110
10 VR22 rs2126750 67,508 0.036 1.945 1.400 1.617
10 VR22 rs4745886 67,530 0.768 4.702 1.867 0.913
10 VR22 rs7911820 67,534 0.165 4.084 0.490 0.711
10 VR22 rs7070570 67,535 1.366 2.533 3.147 0.241
10 VR22 rs7074454 67,535 0.643 4.952 0.777 1.111
10 VR22 rs10822719 67,535 0.008 0.816 0.380 0.600
10 VR22 rs6480140 67,539 0.000 1.125 0.384 1.857
10 VR22 rs922347 67,653 0.119 1.619 4.590 0.468
10 VR22 rs4463744 67,778 0.551 1.754 2.149 0.413
10 VR22 rs2441718 67,807 1.407 4.043 2.185 3.583
10 VR22 rs2939947 67,808 0.560 3.942 3.634 1.276
10 VR22 rs2456737 67,825 1.038 1.174 3.256 1.468
10 VR22 rs4746606 68,061 0.201 1.251 1.445 1.446
10 VR22 rs7909676 68,105 1.068 3.129 1.772 0.510
10 LRRTM3 rs1001016 68,347 0.000 1.090 0.336 0.000
10 LRRTM3 rs12769870 68,347 0.000 1.843 2.668 0.933
10 LRRTM3 rs1925583 68,350 0.001 0.824 2.681 0.856
10 LRRTM3 rs2394314 68,350 0.015 1.607 2.864 0.852
10 LRRTM3 rs1925577 68,358 0.079 2.224 2.338 0.986
10 LRRTM3 rs10762122 68,386 0.001 0.864 0.820 0.249
10 LRRTM3 rs942780 68,407 0.000 1.880 0.692 0.102
10 LRRTM3 rs1925617 68,435 0.343 11.194 8.205 3.743
10 LRRTM3 rs1925622 68,440 0.302 11.222 9.346 3.917
10 LRRTM3 rs1925632 68,470 0.140 20.293 14.638 8.294
10 LRRTM3 rs1952060 68,473 0.260 12.638 7.820 6.864
10 LRRTM3 rs2147886 68,489 0.066 20.147 16.724 9.664
10 LRRTM3 rs2251000 68,495 0.073 20.409 15.459 9.148
10 LRRTM3 rs2764807 68,499 0.097 13.093 10.721 8.410
10 LRRTM3 rs10762136 68,514 0.492 10.254 10.226 8.366
10 VR22 rs11593235 68,546 0.636 4.803 5.976 6.503
10 VR22 rs10997591 68,672 0.379 2.552 2.550 0.394
10 VR22 rs7903421 68,952 0.000 0.697 0.136 0.812
10 VR22 rs3096244 69,080 0.000 2.521 1.421 0.671  
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analysis.  However, there was not complete consistency across the clusters, and some 

markers were not significant in any of the subsequent main effect analyses of the cluster 

subsets.  Tables 27 and 28 indicate which of the markers initially found significant in the 

complete datasets were also found significant in one or more of the cluster subsets.  Eight 

markers were found significant across all three clusters as well as in their respective 

complete dataset—APOE marker rs440446, two markers from VR22 (rs2441718 and 

rs2456737), four markers from LRRTM3 (rs1925617, rs1925622, rs1925632 and 

rs2764807) and one marker from PLAU (rs2227568).  Interestingly, the effect of APOE 

was less in each of the cluster subsets than it was in the complete datasets, perhaps 

simply due to smaller sample sizes and more unbalanced data.  In contrast, the VR22, 

LRRTM3 and PLAU marker effects were all enhanced in the cluster subsets.  Since the 

clusters were produced basically by stratifying on an LRRTM3 haplotype block, it is not 

surprising that the VR22 and LRRTM3 marker effects are strengthened. 

The PLAU marker rs2227568 is approximately 6.26 Mb away from the nearest 

genotyped VR22 marker and it exhibits no LD (r2=0) with any of the VR22 or LRRTM3 

markers.  Therefore, it is unlikely that the consistency of the PLAU marker’s results can 

be attributed to the LRRTM3 effect.  PLAU (urokinase-type plasminogen activator; 

MIM#5328) converts plasminogen to plasmin, and plasmin is involved in the processing 

of the amyloid precursor protein and in the degradation of amyloid-beta (Finckh et al., 

2003).  The PLAU marker rs2227564 is a C/T missense polymorphism that has been 

associated with plasma amyloid-beta-42 levels and with LOAD in a German sample 

(Finckh et al., 2003) and in a United States Caucasian sample (Ertekin-Taner et al., 

2005).  However, at least two subsequent studies have failed to replicate these results—in  
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Table 27.  Cluster Subset Results for Markers Found Significant in Complete Family-
Based Dataset  (HetLOD > 1, or FBAT or PDT p < 0.05).  Marks in a cluster column 
indicate that the marker was found significant by at least one main effect family-based 
test (linkage, FBAT or PDT) in that cluster subset. 
 

    Cluster  
Chrom Gene Marker 0 1 2 

1 AGT rs5051   x 
10 VR22 rs7070570 x x  
10 VR22 rs2441718 x x x 
10 VR22 rs2456737 x x x 
10 VR22 rs7909676 x x  
10 LRRTM3 rs1925622 x x x 
10 LRRTM3 rs1925632 x x x 
10 LRRTM3 rs2764807 x x x 
10 PLAU rs2227568 x x x 
10 PLAU rs4065 x x  
10 rs4933194   x 
12 A2M rs3832852  x  
12 A2MP rs34362    
12 LRP1 rs1800154 x  x 
12 LRP1 rs9669595 x   
12 LRP1 rs7956957 x   
17 ACE rs4291 x  x 
17 ACE rs4295 x   
17 ACE rs4646994 x   
17 ACE rs4343 x  x 
17 ACE rs4353  x  
17 ACE rs4978 x x  
19 APOE rs440446 x x x 

 
 
 
Table 28.  Cluster Subset Results for Markers Found Significant in Complete Case-
Control Dataset.  Marks in a cluster column indicate that the marker was found 
significant by at least one main effect family-based test (linkage, FBAT or PDT) in that 
cluster subset. 
 

    Cluster  
Chrom Gene Marker 0 1 2 

10 CDC2 rs2448347  x  
10 VR22 rs1786927    
10 VR22 rs2441718    
10 VR22 rs2456737    
10 LRRTM3 rs942780    
10 LRRTM3 rs1925617 x x x 
12 GAPD rs1060621    
19 APOE rs440446 x x x 
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an Italian sample (Bagnoli et al., 2005) and in a Scottish and Swedish sample (Blomqvist 

et al., 2004). 

 

Cluster 0 Discussion 

For cluster 0, three genes (PLAU, IDE and ACE) showed interesting results for 

main effect and/or interaction analyses.  In PLAU, the marker rs2227568 was significant 

according to both its two-point HetLOD score and its Pearson chi-square statistic.  The 

PLAU markers rs2227564 and rs2227566, which are in LD with the former marker, were 

also significant by their HetLOD scores. 

IDE (insulin degrading enzyme; MIM#146680) is a metallopeptidase that can 

degrade peptides such as amyloid beta and may be responsible for the removal of 

extracellular amyloid beta (Selkoe, 2001) and the clearance of the cytoplasmic fragment 

of amyloid precursor protein following liberation of the amyloid-beta protein (Edbauer et 

al., 2002).  In IDE, the marker rs7099761 was significant by its HetLOD score and its 

Pearson chi-square statistic.  The IDE marker rs1544210, which is in LD with the former 

marker, was also significant by its Pearson chi-square statistic. 

Perhaps the most interesting results were for the ACE gene.  ACE (angiotensin 1 

converting enzyme; MIM#106180) has been shown to inhibit the aggregation of amyloid 

beta by degrading amyloid beta 40 into less toxic products (Hu et al., 1999; Hu et al., 

2001).  The marker rs4291 was significant by its PDT, FBAT and Pearson chi-square 

statistics and appeared in the best one- and two-locus MDR models for the 1DSP family-

based dataset.  This two-locus MDR model was confirmed by logistic regression to be 

largely a main effect of rs4291.  Five other ACE markers—rs4295, rs4311, rs4646994, 
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rs4343 and rs4978—which were all in LD with the former marker and/or each other, 

were also significant by their PDT and FBAT statistics. 

 

Cluster 1 Discussion 

For cluster 1, four genes (PLAU, IDE, CDC2 and ACE) showed interesting 

results for main effect and/or interaction analyses.  In PLAU, markers rs1916341, 

rs2227566 and rs4065, which are in LD with each other, were all significant by their 

HetLOD scores and Pearson chi-square statistics.  In IDE, marker rs1832186 was 

significant by its FBAT, PDT and Pearson chi-square statistics.  In addition, IDE markers 

rs2251101 and rs4646954, which are in LD with rs1832186, were also significant by 

their FBAT and PDT chi-square statistics. 

CDC2 (cell division cycle 2; MIM#116940) is a kinase involved in the abnormal 

phosphorylation of tau and the aggregation of tau into paired helical filaments (Pei et al., 

2006), which are present in the neurofibrillary tangles of Alzheimer disease.  In CDC2, 

markers rs2448347 and 1920 were significant by their HetLOD scores and their Pearson 

chi-square statistics.  Another CDC2 marker, rs2448341, which is in LD with rs2448347, 

was also significant by its Pearson chi-square statistics and its PDT chi-square statistic. 

Finally, in ACE, markers rs4646994 and rs4343, which are in LD with each other, 

were significant by their Pearson chi-square statistics, and rs4343 appeared in the best 

two-locus MDR model in the case-control dataset, which was confirmed by logistic 

regression to have both a main and interactive effect involving rs4343.  In addition, ACE 

markers rs4353 and rs4978, which are in LD with rs4646994, were found significant by 

their PDT chi-square statistics. 

126 



Cluster 2 Discussion 

In cluster 2, there were no genes, other than the expected LRRTM3, VR22 and 

APOE, which showed evidence for association in both the case-control and family-based 

datasets.  This subset was the smallest and most unbalanced from each of the case-control 

and family-based clusters, and it is possible that its overall size and/or the extent of the 

imbalance between affecteds and unaffecteds made these analyses too underpowered to 

detect an effect, if it were there.  It is also possible that no interactions exist with the 

cluster 2 LRRTM3 haplotype and the other markers included in the datasets. 

 

Other Discussion 

 No discussion about a large data analysis project such as this would be complete 

without mention of the multiple-testing problem.  As one increases the number of tests 

performed, the likelihood of generating false positive results also increases, beyond the 

per-comparison significance level (alpha) established at the beginning of the study.  

There are a number of different strategies for correcting for this inflation of the false 

positive rate.  However, most are quite conservative, and in light of the fact that the 

current study is exploratory in nature, such caution at the expense of power would be 

imprudent.  For example, if we were to use a simple Bonferoni correction (Dunn OJ, 

1961), we would have to divide our per-comparison alpha by the total number of markers 

being tested (93 for the case-control dataset and 138 for the family-based dataset), 

resulting in a family-wise alpha of about 0.0005.  In the overall datasets, only APOE 

marker rs440446 would have been considered statistically significant, and in the cluster 

subsets, only a few other LRRTM3 markers would have reached significance also.  A 
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more liberal correction strategy such as False Discovery Rate could be employed instead 

(Benjamini and Hochberg, 1995; Storey, 2002).  However, since our predominant goal is 

to not miss any real effects, which we could subsequently investigate further, even a 

slightly more liberal correction strategy is not desired.  In addition, since we know there 

is considerable LD among our markers, the assumption that all the tests are independent 

is not valid.  We would, in fact, expect that two markers in LD with each other would 

frequently produce similar results, in excess of how often two independent markers 

should do so.  Furthermore, since all of the markers tested were chosen because they are 

functional and/or positional candidates for late-onset Alzheimer disease, the likelihood 

that a positive result is true is higher than it would be if the markers were chosen at 

random, for example in the case of a genomic screen.  Finally and perhaps most 

importantly, it should be noted that we have tested two independent datasets, which serve 

as one test and one replication dataset, and are focusing only on those effects that were 

found significant (at the per-comparison level of 0.05) in both datasets.  Thus, we have 

further reduced the chance that such a statistically significant result is a false positive. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary, Conclusions and Future Studies 

 Common diseases with a genetic basis are likely to have a very complex etiology, 

in which the mapping between genotype and phenotype is far from straightforward.  A 

new comprehensive statistical and computational strategy for identifying the missing link 

between genotype and phenotype has been proposed.  Numerous examples of 

heterogeneity and gene-gene or gene-environment interactions support the theoretical 

basis for such an approach, which emphasizes the need to address heterogeneity in the 

first stage of any analysis (Chapter II).  Uncovering any heterogeneity that may exist in a 

dataset removes a formidable source of noise, affording main effect and interaction 

analysis methods the best opportunity to detect effects that may be present only on 

particular genetic backgrounds or in individuals with particular environmental 

exposure(s). 

It is a reality that currently a majority of genetic studies, particularly those 

involving neurological diseases, do not have substantial phenotypic data available, even 

though the quality and volume of genotypic data may be excellent.  Many factors, 

including cost, feasibility (invasiveness), and technical limitations (reliability and 

interpretation) of phenotyping technologies, make the collection of rich phenotypic data 

more challenging.  Given the lack of methods for dissecting heterogeneity that do not rely 

on substantial phenotypic data, a comparison of three ‘unsupervised’ clustering methods 
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was conducted (Chapter III).  Bayesian Classification was chosen as the best of these 

methods, which allow detection of multilocus genotype patterns that may underlie or be a 

proxy for genetic or trait heterogeneity.  It performed very well under a simple genetic 

model of trait heterogeneity, and it had very good control of its false positive rate and 

acceptably low false negative rates under specific simulation conditions. 

Since it is unknown how complex the genetic models in real data are, a further 

evaluation was conducted of Bayesian Classification’s performance and applicability 

under a wider range of simulation conditions was performed (Chapter IV).  False positive 

rates were well-controlled under all conditions simulated.  However, false negative rates 

varied dramatically between conditions.  Under the specific condition of having a 

relatively high number of nonfunctional loci (100) and a moderate sample size (500 

affected individuals), the false negative rates were unacceptably high (at or above 60 

percent).  However, for all other conditions, the false negative rates were at or below 20 

percent, with most below five percent (at an alpha of ten percent).  The other number of 

nonfunctional loci tested was an order of magnitude lower (10), and the other value for 

sample size was double (1000).  Thus, further simulation studies exploring the 

“breakpoint” or slope of the false negative rates between the two extremes of the current 

simulation conditions may further aid in interpretation of negative results.  For example, 

there may be a critical ratio of independent variables (genotypes) to instances 

(individuals) above 5 affecteds per marker genotyped that must be maintained in order to 

keep false negative rates under control, and this would be an important to know when 

designing a study or interpreting results from a Bayesian Classification analysis. 
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The application to late-onset Alzheimer disease presented in Chapter V involves a 

family-based dataset with 138 markers genotyped and 1422 affected individuals (yielding 

a ratio of over 10 affecteds per marker genotyped) and a case-control dataset with 93 

markers genotyped and 451 affected individuals (yielding a ratio of just under 5 affecteds 

per marker genotyped).  Thus, based on the simulation studies, the case-control dataset 

may have been underpowered to allow detection of heterogeneity by the Bayesian 

Classification method.  However, this concern was perhaps mitigated by taking a 

consensus approach, looking for commonality of high-influence markers between the two 

datasets. 

 Bayesian Classification found statistically significant clusterings for both the 

family-based and case-control datasets, which used the same five markers as their most 

influential in determining cluster assignment.  These markers were all in LRRTM3 and 

were in high linkage disequilibrium with each other.  Each of the three resulting clusters 

could be characterized by their haplotypes at these five markers, and the same haplotypes 

defined the clusters in both the family-based and case-control data.  In subsequent 

analyses to detect main effects and gene-gene interactions, markers in four genes—

PLAU, IDE, CDC2 and ACE—were found to be associated with late-onset Alzheimer 

disease in particular subsets of the data based on their LRRTM3 haplotype.  While all of 

these genes are viable candidates for LOAD based on their known biological function, 

further studies are needed to replicate these statistical findings and to elucidate possible 

biological interaction mechanisms between LRRTM3 and these genes. 
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Future Directions for Research 

Molecular biologists and geneticists alike now acknowledge that the most 

common human diseases with a genetic component are likely to have complex etiologies. 

Similarly, there has been increasing appreciation for the phenotypic complexity of 

disease traits and for the need to collect rich phenotypic data to facilitate the elucidation 

of the even more complex relationships between genotypes and phenotypes. Investigation 

of such complexity requires well-informed study design, meticulous data collection and 

innovative strategies for data analysis. 

Over the past twenty years, advances in genotyping technology have far outpaced 

those in statistical and computational methods for analyzing genetic data.  Likewise, 

geneticists have given much less attention to phenotyping technologies.  To most 

effectively leverage the massive amounts of genotypic data being produced, we must 

have comparably rich datasets of phenotypic information available for mapping 

genotypes to phenotypes.  Thus, going forward, genetic studies will need to increasingly 

focus time and resources to collecting phenotypic data that can refine definitions or 

subcategories of traits or diseases and can serve as endophenotypes, which are more 

likely to have simple etiologies and to directly map to specific genetic markers. 

In the case of neurological diseases, one collection of phenotyping technologies 

which has matured considerably over the past five to ten years is neuroimaging.  

Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been 

used successfully to detect signs of disease, sometimes in advance of clinical symptoms, 

in such neurological diseases as Alzheimer disease (Masters et al., 2006; Small et al., 

2000) schizophrenia (Ho et al., 2003; Velakoulis et al., 2006) and Tourette syndrome 
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(Gerard and Peterson, 2003).  The more recently developed diffusion tensor imaging 

(DTI) method might come even closer to measuring a biologically relevant proxy for 

neuronal dysfunction, and it has already been applied to such neurological diseases as 

Alzheimer disease (Nierenberg et al., 2005), schizophrenia (Buchsbaum et al., 2006) and 

Turner syndrome (Holzapfel et al., 2006).  Neuroimaging methods are minimally 

invasive and can produce data with good spatial or temporal resolution.  Voxel-based 

morphometry methods are being developed and applied for associating differences in 

activation of particular brain regions with genetic markers of disease. 

In addition to these neuroimaging technologies, an emphasis on possible 

biological mechanisms of disease has positively influenced the design of behavioral 

assessment tools, increasing their utility for phenotyping and producing endophenotypes 

that can be mapped to genotypic data.  Overall, careful planning of study designs will be 

essential, making best use of existing resources and keeping in mind what statistical and 

computational analyses will be possible based on the types of data to be collected.  Future 

genetic studies of neurological diseases will require collaboration among geneticists, 

behavioral neuroscientists and neuroimaging experts, particularly in the short-term.  

Methodologies enabling the integration of disparate data sources (genotyping and 

neuroimaging or behavioral) must be investigated in order to harness the power inherit in 

their complexity. 
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