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CHAPTER I 

 

INTRODUCTION 

 

Polymeric Thin Films 

With the tremendous recent focus on nanoscale science and engineering, an 

increasing need exists for high performance ultrathin films for use as coatings on 

surfaces.1  Several obstacles must be addressed in order to provide new, engineered 

materials for various applications in this field.  The ability to coat objects of any shape, 

not just flat surfaces, is important when considering the wide range of surfaces 

(nanoparticles, microchannels, etc) currently being used.2-4  Along these lines, the ability 

to pattern films at interfaces in a straightforward manner can impact surface-directed or 

templated processes.  Precise control over film thickness at the nanometer level, surface 

properties at the molecular level, and selectivity as to which materials are modified and 

the composition and placement of chemical moieties within the film represent ideal 

processing capabilities for molecularly engineered surfaces.5  Films and coatings are used 

to alter surface and barrier properties of materials and can potentially meet the processing 

requirements for nanoscale science and engineering.6  Thin polymer films offer an ideal 

tool for these purposes due to the large array of available polymers that can be used 

depending upon the specific application.6  Tailoring bulk and surface properties of 

polymers, by either choosing an appropriate polymer initially or introducing desirable 

moieties by reaction with an existing polymer film, can enhance the use of these 

materials in separations7 or in the protection or modification of metal surfaces.8 
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Fluorinated Polymer Films 

Fluorinated polymer films are of particular interest due to the unique and useful 

properties they exhibit, including low critical surface energy, low dielectric constant, 

reduced friction, and enhanced chemical resistance.9-12  Fluorinated polymers already 

have found use in a variety of applications including various coatings,10 integrated circuit 

interconnects,13 and biomedical materials.14,15  They comprise a significant economic 

market, with approximately 100 million kg consumed annually.9  For all of their desirable 

attributes and use in applications, however, fluorinated polymers are limited by difficult 

processibility and high expense.10,16,17  Perfluoropolymers, polymers made up entirely of 

carbon and fluorine (i.e. poly(tetrafluoroethylene), or PTFE) are especially limited by 

these two issues.  Furthermore, the precursor of PTFE is C2F4, a known carcinogen that is 

regulated by the Clean Air Act of 1990 (Section 112(r)).  For these reasons, other 

avenues to harnessing the desirable properties of fluorinated polymers have been sought. 

 

Processing of Partially Fluorinated Polymer Films 

The most common method for circumvention of perfluoropolymer processibility 

issues is the use of partially fluorinated polymers.  Since the most desirable 

fluoropolymer properties are typically the surface characteristics, only a small proportion 

of fluorocarbon need be introduced into a film in the interfacial region to affect surface 

properties.  Furthermore, placing the expensive fluorocarbon groups only at the outer 

interface dramatically reduces production cost as compared to a perfluoropolymer.  

Fluorinated groups tend to phase separate from other chemical functionalities (including 

hydrocarbons) so that when in reasonable proximity to a surface, these groups 
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spontaneously migrate away from the bulk polymer and preferentially partition at the air-

film interface, thus yielding fluoropolymer-like properties at very low overall 

concentrations.9,10  Films that take advantage of partial fluorination are generally 

prepared by spin-coating,18,19 solution-casting,17,20,21 direct surface polymerization with 

fluorinated monomers,16 plasma deposition,22,23 or chemical adsorption.24  These methods 

produce films with the properties of fluorinated polymers but often in a relatively 

uncontrolled fashion.  Chemical adsorption produces only polymer monolayers.24  

Solution casting, spin coating, and plasma deposition are all limited to flat surfaces and 

result in films that are only physisorbed to the surface.19,21,22  Spin-coating, unlike 

solution casting, does offer some control over film thickness in the sub-micron range, 

however.  Plasma deposition offers greater control over film growth but requires low 

pressure and specialized equipment.22  These methods often require curing at high 

temperatures after deposition to bring fluorocarbon moieties to the interface to enhance 

surface properties. 

 

Surface-Initiated Polymerization of Partially Fluorinated Polymer Films 

Surface-initiated polymerizations do not have many of the drawbacks encountered 

by these other film application methods.  Surface-initiated polymerization, as the name 

implies, involves the following two steps: 1) anchoring of an initiator (typically a good 

leaving group that produces a radical or ion under proper conditions) and 2) 

polymerization directly from the surface-tethered initiator to grow the polymer film.  

Since these polymerizations occur directly from the surface, film thickness is readily 

controlled simply by varying polymerization time or other reaction conditions, and the 
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resulting polymer films are covalently anchored to the substrate.  Finally, the method is 

applicable to both flat and rough substrates since single molecule diffusion is utilized to 

fill in all surface sites.  Surface-initiated polymerization with a fluorinated monomer, 

however, results in only very thin fluorinated films and can be quite expensive.16,25,26    

To extend the applications of fluorinated polymer films, further developments in the 

ability to produce and use these films in numerous applications must be sought.  Herein, 

an untapped method for enhancing and altering film properties by introduction of 

fluorocarbon (and similarly hydrocarbon) groups will be explored in great detail. 

 

New Approach to Partially Fluorinated, Engineered Films 

This research introduces a new methodology (Figure 1.1) for the preparation of 

well-defined polymer thin films and enables engineering of surfaces for different 

applications.  In this new approach, we first grow surface-initiated polymer films by 

means of a controlled polymerization technique.  The robust, covalently attached films 

can be grown on surfaces of any geometry and to desired thickness with nanometer-level 

control.  Second, these polymer films contain side chains that can be modified chemically 

to add functionality to the films.  Many different film compositions—fluorocarbons and 

hydrocarbons, for instance—may be employed and used in combination with one another 

to gain molecular-level control over film surface properties as well as bulk properties.  

Furthermore, unlike polymerizations in solution, there are no separations issues after 

reaction since the polymer film is anchored to the surface and unreacted species are 

simply washed away by rinsing.  The numerous possibilities for growth and modification  
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Figure 1.1.  A general surface-initiated film preparation scheme is shown.  I represents 
an initiator adsorbed to a surface.  Upon exposure to a monomer, M, a polymer is grown 
from the initiated surface.  If M has reactive sites, it may be reacted with a derivatizing 
species, D, to form a polymer film having derivatized repeat units, MD. 
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of these films provide a direct avenue to molecularly engineered polymer films on 

surfaces. 

 This work will address the creation of relatively thick (up to 200 nm) polymer 

films through the use of a controlled surface-initiated polymerization followed by simple 

post-polymerization reactions.  In light of the fact that fluorocarbons are generally useful 

for surface and bulk hydrophobicity, attaching fluorocarbon side chains via post-

polymerization derivatization yields the ability to direct surface properties (wettability) or 

bulk structuring and hydrophobicity (barrier properties) of the films.  The base idea of 

this work details the effect of side chain composition and length on the surface and 

barrier aspects of the resulting films.  A variety of both fluorocarbon and hydrocarbon 

modifications can be made to direct and even tune film properties.  Once a fundamental 

understanding of modification-properties relationships are developed, these same ideas 

can be transferred into engineering film properties in more advanced ways.  As 

specifically demonstrated in this work, fluorocarbon-modified films may be hydrolyzed 

to retain a bulk fluorocarbon composition while allowing surface properties to be tuned 

using any of the modifications already characterized.  Finally, microcontact printing may 

be used to pattern these engineered surfaces at a much smaller scale. 
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CHAPTER II 

 

BACKGROUND 

 

Surface-Initiated Polymerizations 

Major advances in the solution-phase synthesis of polymers have yielded 

unprecedented control over macromolecular composition, molecular weight, and 

polydispersity index (PDI) to enable the preparation of extremely well-defined polymeric 

materials.1-3  Within the past few years, many of these advances have been extended to 

surfaces in the creation of polymer films and coatings.  To form robust attached films, 

one end of the polymer chains must be functionalized to adhere to the surface.  If 

polymer chains have been grown in solution and then are applied to a substrate, both 

steric effects and diffusional limitations arise when trying to pack the chains on a 

surface.4  Once several of the chains attach to the surface, they prevent the subsequent 

diffusion and placement of more chains, and the packing density is greatly limited.  If, 

however, the polymer chains are simultaneously grown from the entire surface, the chain 

density can be maximized and diffusional effects minimized since the monomer must 

only be present at the outer, growing chain end.  Hence, only a procedure involving 

direct, surface-initiated growth of a polymer film can achieve well-packed, covalently 

attached surface films.  This so-called surface-initiated polymerization strategy offers 

several advantages over traditional methods for preparing polymer films and coatings, 

including (1) improved adhesion due to a chemical coupling of the initiator/polymer 

chain to the substrate, (2) the ability to prepare uniform, conformal coatings on objects of 
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any shape,5 (3) excellent control over film thickness,6 from a few nanometers up to the 

micron level5 in some cases, (4) tunable grafting densities, based on the surface coverage 

of the initiator, (5) simplified separations issues, since the polymer is grown from a 

support, and (6) good control over depth-dependent composition by growing additional 

blocks to prepare copolymer films.7-9  Due to these processing advantages, surface-

initiated polymerizations have been utilized to functionalize or modify nanostructures and 

particles,10-17 chromatography media,18-23 and porous supports,24-26 to prepare 

environmentally responsive brushes that alter their conformation upon exposure to a 

stimulus,8,24,27-30 to provide a barrier against etching,31,32 to serve as a dielectric layer in a 

device,5 and to prevent or reduce biological adsorption.33,34 

In general, surface-initiated polymerizations require the immobilization of 

appropriate initiator groups onto the surface prior to polymerization, typically achieved 

by preparing a self-assembled monolayer (SAM) from initiator-terminated adsorbates.   

These adsorbates are often synthesized to contain thiol4,5,35 or disulfide36,37 head groups to 

enable chemisorption at gold and other coinage metals or chlorosilane4,7,18,38 head groups 

for modification of oxide surfaces of silicon.  In some cases, the simplest route is to 

chemically couple the initiator to an existing SAM, for example, by exposing a hydroxyl-

terminated monolayer to a functionalized initiator.39,40  In addition, initiator groups can 

often be anchored to polymers and other materials that present or are modified to present 

carboxylic acid-11,41 or alcohol-rich42 surfaces. 

There are many different classes of surface-initiated polymerizations as defined 

by the chemical mechanism for propagation, including anionic, cationic, ring-opening 

(ROP), radical, the more specific atom transfer radical (ATRP), and ring-opening 
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metathesis (ROMP).  The general types of initiators and monomers used for each method 

and some key advantages and disadvantages of each approach are summarized in Table 

2.1.  Living anionic routes4,43-45 are highly controlled polymerizations that enable the 

preparation of chains with low polydispersity and films with complex polymer 

architectures.  However, the growth rates for anionic polymerizations are rather slow 

such that long exposure times (a few days) are commonly required to produce films with 

thicknesses of 10 – 20 nm at room temperature.4  These polymerizations are also 

extremely sensitive to moisture and impurities.4  Cationic polymerizations1,46,47 exhibit 

many of the same advantages and disadvantages as anionic polymerizations but tend to 

propagate a bit faster and are generally not as controlled due to higher termination rates.  

Traditional radical polymerizations generally exhibit more rapid kinetics, often with 

significant loss of control, and are compatible with a wide variety of monomers, 

including those that contain polar or unprotected functional groups.21,39  Unlike most 

other methods, traditional radical polymerizations do not allow the reactivation of chain 

ends to prepare block copolymer films.  A specific class of controlled radical 

polymerizations, ATRP,2,7 has become the most popular approach for preparing thin 

films due in part to the wide variety of vinyl monomers that can be polymerized and the 

ability to prepare films with different blocks by reactivating chain ends.8,9,27  ATRP also 

tolerates moisture; in fact, for polar monomers, the kinetics of polymerization is greatly 

accelerated when water is used as solvent.6,37  PDIs for ATRP chains are generally below 

1.5,2 lower than those for traditional radical polymerizations.  ROP proceeds by either 

cationic16 or anionic44 mechanisms and is used to produce linear polymers from cyclic 

monomers.  ROMP exhibits rapid kinetics under mild conditions but is somewhat limited  
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Table 2.1.  Commonly studied monomers and initiators for some different surface-
initiated polymerization (SIP) techniques and key advantages and disadvantages of each 
technique. 
 
 
 

SIP Type Initiators Monomers Advantages Disadvantages References

Anionic 
Diphenyl-
ethylene 
(activated by 
BuLi) 

Vinyl 

Low PDI, 
living (dienes 
and styrenes 
only) 

Affected by 
moisture and 
impurities, 
slow kinetics 

[4, 43]  

Cationic Triflate, 
-OCH3

Vinyl, 
propylene 
glycol 

Larger 
propagation 
rate constants 
than anionic 

Affected by 
moisture and 
impurities 

[46,47]  

Radical Azo 
compounds Vinyl 

Allows 
monomers 
having polar 
functional 
groups 

Cannot form 
block or graft 
copolymers 

[21,39]  

ATRP Haloesters, 
halides Vinyl 

Rapid kinetics 
in water, can 
form multiple 
blocks, 
chemical 
diversity 

Higher PDI 
than ionic, 
difficult with 
acidic 
monomers 

[6,7,36]  

ROP Triflate, 
tin(II) octoate 

Cyclic esters, 
oxazolines, 
glycidol 

Preparation of 
biologically 
important 
polymers 

Limited 
chemical 
diversity 

[16,44] 

ROMP Ruthenium 
carbenes Norbornenes 

Mild reaction 
conditions, 
thick films 

Limited 
chemical 
diversity 

[5,13,49]  
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compositionally.5,19,48-50  The predominate ROMP monomer studied in surface-initiated 

cases has been norbornene and its functional derivatives.  Surface-initiated 

polymerizations may be used in a variety of contexts, including the modification of 

planar surfaces, in microfabrication or nanofabrication, and in the modification of 

nonplanar surfaces and particles.  Typically, surface properties are altered using these 

methods, yielding changes in surface-environment interactions. 

The ability to modify and control the surface properties of materials has become 

increasingly important due in part to the recent emergence of nanostructured materials 

where surface area to volume ratios are high.  Successful control over surface properties, 

such as wettability, adhesion, and adsorption, relies on engineering the composition and 

structure at the outer few angstroms of a material.  Within the past 20 years, SAMs have 

been utilized widely to modify surface properties due to their ability to present a two-

dimensional sheet of dense, homogeneous chemical functionality at a surface.  

Limitations of SAMs have included the difficulty in producing films thicker than a few 

nanometers51 and the finite stability of these molecular films.52,53  Since the stability of 

tethered organic films generally improves with molecular weight (and thickness) due to 

increased interchain interactions,54 surface-initiated polymerizations provide a controlled 

method to greatly amplify the thickness and stability of molecular films.  In addition, 

surface-initiated films can be synthesized and engineered to exhibit interesting dynamic 

behavior, such as stimuli-driven conformational changes that affect wettability or 

biological adhesion.  To date, surface-initiated films have been used widely to alter 

surface wettability,25,55-58 reduce protein adsorption,34 and affect adhesion at a 

surface.29,59 
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Literature Examples of Surface-Initiated Polymerizations on Planar Surfaces  

 

Stimuli-Responsive Films 

Another attractive feature of surface-initiated polymer films, particularly in very 

thin (<30 nm) films, is the ability to prepare loosely packed, stimuli-responsive brushes 

that alter their conformation upon changes in the environment.  This reversibility of 

conformation enables “switchable” surface properties, which could lead to applications in 

sensors as well as “smart” membranes and fabrics.  ATRP enables the preparation of di- 

and triblock copolymer films from a wide range of monomers where each block has a 

different interaction with a solvent to provide the framework for a solvent-sensitive film.  

Brittain and coworkers8 have used ATRP to develop solvent-responsive films from ABA 

type triblock copolymer brushes where the middle block has different physicochemical 

properties than the end blocks.  The film adopted an extended brush configuration when 

exposed to a good solvent for all the blocks but adopted a folded brush conformation 

when exposed to a good solvent for the middle block.  Using a ~15 nm poly(methyl 

acrylate) (PMA)-block-polystyrene (PS)-block-PMA film grown from silicon and initially 

exposed to dichloromethane (good solvent for all the blocks), the advancing water 

contact angle changed by ~20° upon exposure to cyclohexane (good solvent for PS).  

Brittain and coworkers have shown that this difference in wettability upon solvent 

exposure can be amplified to ~40° using diblock films with PMA as the lower block and 

poly(pentafluorostyrene) as the upper block on Si/SiO2.27 
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Barrier Coatings 

Due to the ability to produce dense, conformal layers of controlled thickness and 

composition over any surface topology, surface-initiated polymer films have potential 

impact as dielectric layers in the preparation of low-cost, light-weight organic thin film 

transistors.  Rutenberg et al.5 have used ROMP to prepare polynorbornene dielectric 

layers atop a gold strip gate electrode on silicon.  The use of ROMP enables mild 

conditions and rapid access to sufficiently thick films (1.2 μm) that exhibit low 

capacitances (3 nF/cm2) and are essentially pinhole free.  The polynorbornene film 

provided a conformal coating over the electrode and was subsequently used to support a 

thin, vapor-deposited film of pentacene  (semiconductor) before the entire structure was 

pressed against a PDMS substrate that contained two gold strips as drain and source 

electrodes.  The resulting FET exhibited mobility ranges of 0.1–0.3 cm2/V s and on/off 

ratios of 10–100.  While polynorbornene films function well here, the future investigation 

of other film compositions with even lower dielectric constants could lead to further 

improvements in dielectric properties at reduced film thicknesses.  This work nicely 

illustrates a case where the characteristics of surface-initiated polymerizations well match 

the needs of an emerging technology. 

Effective barrier films for applications in etch resistance and membrane 

separations may also be created using surface-initiated approaches.  As a case in point, 

Bruening and coworkers26 have used fluorocarbon-modified polyhydroxyethyl 

methacrylate (PHEMA) as an ultrathin (~50 nm) dense outer skin grown atop a gold-

coated porous alumina membrane for separation of gases.  While unmodified PHEMA 

provides little or no selectivity, fluorinated PHEMA exhibits selectivities of 8–9 for 
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CO2/N2 and CO2/CH4.  Bruening and coworkers26 also showed that cross-linked 

poly(ethylene glycol dimethacrylate) (PEGDMA) skins grown atop polyelectrolyte-

coated alumina membranes exhibited an enhanced selectivity of ~20 for CO2/N2.  The 

high level of control over thickness and composition of these surface-initiated films and 

the ability to initiate their growth from different surfaces—in this latter case, a 

polyelectrolyte layer atop porous alumina—is highly advantageous in the preparation of 

dense membrane skins.  They have more recently extended the fluorinated PHEMA films 

to pervaporation membranes and demonstrated extremely high fluxes and VOC/water 

selectivities as high as 500 with film thickness <200 nm.60 

 

Patterning Polymer Films  

The ability to pattern surface-initiated polymer films can lead to advances in 

surface-directed events and in microfabrication.  The patterning of surface-initiated 

polymer films has been achieved by various methods that each succeed in localizing 

initiator-terminated groups on the surface.  The most common method is to microcontact 

print an inert alkanethiol and subsequently backfill the pattern with an active thiol or 

disulfide to initiate polymerization locally.31,36  Another method uses ultraviolet light 

through a mask to irradiate and activate an initiator layer for subsequent polymerization 

in selective regions.61  These methods generally enable rapid patterning of fairly large 

surface areas (up to a few cm2) but have not yet been reliably used to achieve submicron 

polymeric features.  Irradiation with an electron beam (instead of uv light) has produced 

features as small as 70 nm with good throughput.62  Methods based on the use of AFM 

tips can either remove and backfill (nanoshaving)30 or deposit (dip pen 
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nanolithography)50 molecular components and offer the capability to produce submicron 

features and to control feature composition in a site-specific manner.  Nonetheless, 

throughput is an issue with scanning probe methods, and to be successful, these methods 

require the user to develop a significant expertise. 

Hawker and coworkers31,36 reported the first patterning of surface-initiated 

polymer films based on microcontact printing.  They prepared patterned ultrathin films of 

poly(caprolactone) by ROP or poly(methyl methacrylate) (PMMA), PHEMA, and others 

by ATRP.  More hydrophobic polymers were observed to greatly resist the penetration of 

aqueous-phase etchants and reduced the rate of etching by two orders of magnitude over 

that of the initiator SAM.   In this manner, the polymer greatly amplifies the etch 

resistance of the SAM. 

To achieve a similar goal, Zhou et al.32 exposed PMMA and PHEMA films 

prepared by surface-initiated ATRP to ultraviolet irradiation through a TEM grid to 

completely remove the polymer brush and initiator in the irradiated regions.  They then 

electrodeposited conducting polypyrrole microstructures in the bare regions of the surface 

or exposed the patterned films to etchants to create polymer-capped gold microstructures.   

While hydrophobic PMMA films exhibited good etch resistance, hydrophilic PHEMA 

films did not.  Nonetheless, capping the hydroxyl groups of PHEMA by reaction with 

trimethylchlorosilane greatly improved the etch resistance of the films. 

 

Literature Examples of Surface-Initiated Polymerizations on Nonplanar Surfaces 

As compared with traditional methods of applying polymer films, surface-

initiated approaches provide a key advantage in their ability to uniformly coat nonplanar 

 18



surfaces.  A variety of nonplanar surfaces have been used as supports for polymerization, 

including gold,13,16 silica,15,18,19,21,22,24,63 clay,64 latex,14 dextran,42 polystyrene,65,66 and 

magnetite67 particles, and carbon nanotubes.10,11,68-71  This list is only a sampling of 

possible surfaces from which polymerization can be performed,72 as any surface may be 

suitable if it can be functionalized with an initiator species.  Furthermore, many surface-

initiated polymerization techniques have been used to accomplish these modifications, 

including ROP,16 ROMP,13,19 free radical,21,63,64,67,68 ATRP,10,11,14,18,24,42,65,66,70-72 and 

anionic69 routes. 

With a focus on the ability to tailor properties at the molecular level, surface-

initiated techniques are increasingly finding use in modification of nonplanar substrates.  

The most common reason for modification of particles, nanotubes, and supports is to alter 

interactions of these materials with the surrounding environment, and thin polymer layers 

offer a straightforward way to accomplish this.  Modification of a particle, for instance, 

with an initiator allows subsequent controlled polymerization to occur equally from the 

entire surface area, allowing tremendous control over film growth and properties.  

Surface-initiated techniques enhance the dispersion or solvation of particles and 

nanotubes and alter composition for materials in separations processes. 

A large volume of work has been devoted to nonplanar surfaces in a few key 

research areas: chromatographic supports, nanoparticles, and nanotubes.  Work in 

separations has focused on functionalization of materials to improve selectivity while 

nanotube and particle work has been concerned mainly with increasing the dispersion of 

these materials in solvents, constructing a polymer layer around a particle to protect from 

chemical or mechanical attack, or preparing well-defined nanoscale structures. 
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Separation Media 

Modification of surfaces for use in separations processes has been widely used in 

recent years to improve selectivity.19,20,26  The tremendous control over uniformity, 

thickness, and composition offered by surface-initiated polymerization techniques is 

again the reason they have found use in these applications.  Of particular interest in this 

area, work by Buchmeiser and coworkers has centered on the use of ROMP to grow 

functionalized norbornenes from silica surfaces.20,73,74  For the chromatographic 

separation of phenols, anilines, lutidines, and hydroxyquinolines, they have demonstrated 

the ability to grow poly(norborn-2-ene), poly(7-oxanorborn-2-ene-5,6 dicarboxylic acid), 

or copolymers of these two compounds on silica supports.20  As compared to supports 

created by coating solution polymers onto silica, which tends to clog pores and reduce 

surface area, the surface-initiated supports provided much improved separations. 

 

Micro- and Nanoparticles 

A significant amount of interest has been shown in the surface-initiated 

modification of particles, both on the nanometer and micron size scales.  For the most 

part, research on particles has focused on increasing their solubility or dispersibility in 

solutions by augmenting their interactions with solvents while some work has focused on 

materials synthesis.  Of the considerable work in this latter area, Mandal et al.75 and more 

recently Blomberg et al.63 have utilized nanoscale particles as scaffolds to prepare 

hollow, polymeric capsules.  Blomberg et al.63 grafted poly(styrene-co-

vinylbenzocyclobutene) or poly(styrene-co-maleic anhydride) onto silica nanoparticles 

(600 nm) via a free radical polymerization to create core-shell nanoparticles.  Similar 
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polymer modifications have been used on numerous particles to impart desirable surface 

interactions, such as to increase solubility or to protect the inner core material while 

maintaining its properties.  However, since the desired application in these cases was not 

to improve particle-solvent interactions but to create hollow nanospheres, the choice of 

monomers was driven by one simple factor, the ability to exhibit crosslinking.  To 

facilitate crosslinking in the polymer films surrounding the core, the benzocyclobutene 

group exhibits intermolecular coupling at elevated temperatures or maleic anhydride may 

be reacted with a diamine compound.  After polymerization and crosslinking, the inner 

silica core was chemically etched away with HF to reveal a nanocapsule.  Only with the 

maleic anhydride polymer was the crosslinking sufficiently robust to withstand the 

conditions of core removal, enabling the nanocapsules to remain intact after processing.  

Control over the structural integrity of a system such as this allows for applications in 

drug and dye encapsulation upon infusion and other areas where protection or gradual 

release of an inner substance is desirable. 

 

Carbon Nanotubes 

Due to their extraordinary mechanical and electrical properties, carbon nanotubes 

have the potential to be used in a variety of applications (molecular wires, sensors, and in 

composite materials) but are limited by poor solubility in most solvents that dramatically 

hinders their processibility.11,71  Covalent modifications of the nanotube surfaces tend to 

destroy the structure or properties of the nanotubes because a large number of sidewall 

carbons (at least 1 in 10) must be modified to achieve desirable solubility.10  However, 

surface initiated techniques can achieve good solubility while minimally altering 
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nanotube structure by growing polymer from 1 in ~250 sidewall carbons.10  Only a 

handful of examples of surface-initiated polymerization from carbon nanotubes exist in 

the literature.10,11,68-71  Qin et al.11 grew PS from carbon nanotubes using ATRP and 

found, as have other groups that perform surface-initiated polymerization from carbon 

nanotubes, that the starting carbon nanotube bundles tend to separate into smaller bundles 

or even individual tubes during modification.  Furthermore, the PS exterior resulted in 

good dissolution of the nanotubes into common organic solvents.11  Kong et al.70 took 

this general approach (but using PMMA instead of PS) one step further.  As has often 

been achieved on planar surfaces using ATRP (since chain ends may be reactivated by 

addition of a transition metal species), they grew a second polymer layer atop the PMMA 

layer.  They chose a functional polymer (PHEMA) for this second layer, thus yielding a 

nanotube surrounded by a nonpolar PMMA layer which itself was surrounded by a more 

polar PHEMA layer.  The resulting solubility of the block copolymer-grafted nanotube 

was dependent on solvent, with good solvents for PHEMA providing effective solvation.  

This methodology, adapted from work on simpler planar surfaces, may find use in 

creating novel devices and materials from functionalized carbon nanotubes and further 

demonstrates the wide applicability of surface-initiated polymerization techniques. 

 

Overview of Dissertation 

The work contained herein is focused on surface-initiated ATRP, a controlled free 

radical polymerization technique that allows a high level of control over film 

growth,6,7,37,40,76 and post-polymerization modifications to films.  ATRP has become one 

of the most popular controlled polymerization methods due to the wide array of available 
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monomers and a propagation that is not highly sensitive to many impurities.  The 

mechanism for ATRP polymer chain growth has been discussed extensively by 

Matyjaszewski and others.1,2,77  As shown in Figure 2.1, a halide-terminated alkyl 

initiator is converted to a radical by a CuI species, which in turn is oxidized to CuII.  The 

active radical can then add to a monomer with a double bond, creating a new species with 

the radical now transferred to the end of the polymerized chain.  Propagation may 

continue by adding more monomers or the process may be deactivated at any time by 

recombining with CuII.  To minimize termination reactions, a relatively low concentration 

of radical species should be maintained.  This is accomplished, as evident from Figure 

2.1, by simply adding deactivating CuII species to the solution initially.  Adding a greater 

amount of CuII to the reaction slows the polymerization but also improves the 

polydispersity of the resulting polymer.7 

ATRP in solution has been performed extensively on numerous vinyl monomers 

with recently increasing focus on growing films from a surface.  When ATRP was 

originally applied to the surface-initiated case, polymerization kinetics was slowed 

tremendously due to an increase in termination reactions.7,76  Growth of thick polymer 

films using traditional ATRP is, therefore, somewhat problematic.  Accordingly, ATRP 

and other controlled polymerization techniques have difficulty growing thick surface-

initiated partially fluorinated films.  In fact, relatively few surface-initiated 

polymerizations involving direct growth of partially fluorinated polymer films from 

fluorinated monomers have even been conducted.  Park, Rühe, and coworkers25 prepared 

ultrahydrophobic surfaces by polymerizing perfluoroalkylethyl acrylates via a radical 

mechanism onto the surface of porous silicon (up to ~70 nm thick films).  Andruzzi et  
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Figure 2.1.  General ATRP polymerization scheme, including activation, propagation, 
and deactivation steps.  X and Y are halogens, and M is a monomer having vinyl 
functionality. 
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al.78 utilized surface-initiated nitroxide-mediated radical polymerization on silica to grow 

diblock copolymer films having an outer polystyrene block (up to 11 nm thick) with 

semifluorinated alkyl side chains.  Brittain and coworkers27 used surface-initiated ATRP 

on silica to grow diblock copolymer films having either perfluorinated polystyrene or 

perfluorinated acrylate outer blocks of thickness <5 nm.  In each of these examples, 

inclusion of the semifluorinated groups was primarily to induce hydrophobicity, but film 

thickness was typically low. 

Recent efforts to increase surface-initiated growth rates have relied on innovations 

in solution-phase ATRP.  Researchers have shown that water and other polar solvents 

increase polymerization kinetics while still maintaining good kinetic control.79-82  

Bruening, Baker, and coworkers6 have remarkably and successfully extended this water-

accelerated ATRP strategy to prepare surface-initiated films of PHEMA with controlled 

thickness of up to 700 nm.  Furthermore, the ability to derivatize the reactive hydroxyl 

side chains of PHEMA after film growth has been demonstrated.  Bruening, Baker, and 

coworkers used low-molecular-weight hydrocarbon acid chlorides in an acylation 

reaction.6  Other recent work has exploited the hydroxyl groups of PHEMA by reaction 

with trimethylchlorosilane to make the film more hydrophobic and improve its etch 

resistance.32  Kraft and Moore have investigated the effects of reacting PHEMA 

microgels with hydrocarbon acid chlorides (ranging from m = 1 to 15) to form fatty acid 

layers that delay microgel expansion.83  They found that acetyl-modified and unmodified 

microgels expand readily, that rather short (m = 4) alkyl chains offer maximum resistance 

to microgel expansion, and that as the chain length is further increased, the resistance 

decreases.  These methods provide insight toward an alternative strategy for preparation 
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of derivatized (i.e. partially fluorinated) polymer films.  Use of water-accelerated surface-

initiated ATRP followed by various chemical modifications of the polymer allows us to 

use a base film as a test stage for creation of numerous polymer films with varying 

chemical composition and film properties. 

 

Specific Focus of Dissertation 

The primary objectives of this research, which will be addressed in subsequent 

chapters, are the following: 

1. Grow surface-initiated polymer films on gold, with side chains that can be 

reacted to introduce fluorocarbon functionality.  Characterize surface, 

structural, and barrier properties upon modification with different 

fluorocarbon groups. 

2. Modify polymer side chains with hydrocarbons.  Evaluate dependence of film 

properties on alkyl chain length.  Compare properties of hydrocarbon films 

with those of fluorocarbon films. 

3. Combine film modifications to create copolymer films.  Surface and bulk 

properties can be tailored by reaction with different species. 

4. Pattern polymer films onto a surface via microcontact printing.  Demonstrate 

the ability to grow and derivatize well-defined polymer patterns on a surface, 

and explore the modification of fluorocarbon-modified films using a reactive 

printing technique. 
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CHAPTER III 

 

EXPERIMENTAL PROCEDURES AND CHARACTERIZATION METHODS 

 

Experimental Procedures 

 

Materials 

CuCl (99.995+%), CuBr2 (99.999%), 2,2’-bipyridine (bpy, 99+%), 2-

hydroxyethyl methacrylate (HEMA, >99%), pyridine (99+%), heptafluorobutyryl 

chloride (C3F7COCl, 98%), pentadecafluorooctanoyl chloride (C7F15COCl, 97%), 

pentafluorobenzoyl chloride (C6F5COCl, 99%), lauroyl chloride (C11H23COCl, 98%), 

myristoyl chloride (C13H27COCl, 97%), palmitoyl chloride (C15H31COCl, 98%), 

K3Fe(CN)6 (99+%), K4Fe(CN)6·3H2O (99%), KOH (85+%), and hexadecane (99%) were 

used as received from Aldrich.  N,N-dimethylformamide (DMF, 99.9%), 

dichloromethane (99.9%), iso-octane (99%), trifluoroacetic anhydride ((CF3CO)2O, 

99+%), acetyl chloride (CH3COCl, 98%), octanoyl chloride (C7H15COCl, 99%), stearoyl 

chloride (C17H35COCl, >99%), KBr (99.7%), Na2SO4 (anhydrous), hexane (99.9%), n-

octane (99%), n-decane (99+%), n-dodecane (99%), and n-tetradecane (99+%) were used 

as received from Fisher.  Gold shot (99.99%) and chromium-coated tungsten filaments 

were obtained from J&J Materials and R.D. Mathis, respectively.  Silicon (100) wafers 

(Montco Silicon) were rinsed with ethanol and deionized water and dried with nitrogen.  

Sylgard 184 silicone elastomer base and curing agent were purchased from Dow Corning 

Corporation.  Ethanol (AAPER, absolute) was used as received.  NaCl cover slips 
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(International Crystal Labs) were used as received.  Deionized water (16.7 MΩ·cm) was 

purified with a Modu-Pure system and used as a solvent during polymerization and for 

rinsing.  An initiator-terminated disulfide, (BrC(CH3)2COO(CH2)11S)2, was synthesized 

as described in the literature.1 

 

Preparation of Gold Substrates 

Gold substrates were prepared by evaporating chromium (100 Å) and gold 

(1250 Å) in sequence onto silicon (100) wafers at rates of 1-2 Å s-1 in a diffusion-pumped 

chamber with a base pressure of 4 × 10-6 torr.  After removal from the evaporation 

chamber, the wafers were typically cut into 1 cm × 3 cm pieces, with slightly larger 

1.4 cm × 4 cm pieces used when obtaining electrochemical impedance spectra. 

 

Polymerization of PHEMA 

Procedures followed to make PHEMA films via water-accelerated ATRP are similar to 

those outlined in Huang et al.2  A detailed procedure is included in Appendix A for 

reference.  Gold substrates were first placed in a 1 mM ethanol solution of 

(BrC(CH3)2COO(CH2)11S)2 for at least 24 h.  The initiated samples were then rinsed with 

ethanol, dried with nitrogen, and placed in vials that were subsequently degassed and 

back-filled with nitrogen.  A CuI/CuII/bpy (69 mM CuCl, 20 mM CuBr2, 195 mM bpy) 

system in a 50:50 v:v water/HEMA solution2 was used for polymerization.  Since a 

glovebox was not available and oxygen will oxidize the activating CuI species and 

terminate polymerization, the mixture was placed in a Schlenk flask sealed with a rubber 

septum and was degassed by performing three freeze-pump-thaw cycles.  This was 

 36



followed by transfer of the solution via cannula into vials containing up to six samples 

each.  After polymerizing for 12 h at room temperature (Figure 3.1), the samples were 

thoroughly rinsed with water and DMF and then dried with nitrogen.  As measured by 

ellipsometry, PHEMA film thicknesses were typically around 220 nm under these 

conditions.  All of the work presented hereafter will use the 12 h, ~220 nm PHEMA film 

as a basis.  Various modifications to the base film will be addressed as they are 

encountered. 

As already mentioned, water-accelerated, surface-initiated ATRP allows control 

over film thicknesses.  Using the procedure outlined in the previous paragraph but 

varying polymerization time is the most direct method of control.  To this end, film 

thicknesses of PHEMA samples at polymerization times of 0.5, 1, 2, 5, 8, and 12 h were 

measured by ellipsometry.  Figure 3.2 shows the wide range of film thicknesses that are 

possible with this technique.  As indicated by the data, film growth is not linear with time 

and therefore is not consistent with a truly “living” polymerization.  Our kinetics data, 

when compared to that of other groups, demonstrate somewhat less living character, 

likely because others purify the monomer before polymerization to remove inhibitors 

and/or perform the entire polymerization in a glovebox.  Thus, while post-polymerization 

modification is the main aspect of control that will be highlighted by this work, Figure 

3.2 demonstrates another aspect of film property control, thickness variation, which could 

be utilized for film engineering. 
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Figure 3.1.  Growth of PHEMA film from initiator on gold using water-accelerated 
ATRP. 
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Figure 3.2.  Film growth kinetics for the surface-initiated water-accelerated ATRP of 
PHEMA on gold.  If error bars are not visible, the size of the point approximates the 
error. 
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Characterization Methods 

 

Reflectance Absorption Infrared Spectroscopy 

Reflectance absorption infrared spectroscopy (RAIRS) is used to determine film 

composition and to derive structural information from the polymer films.  Absorbance of 

radiation in the IR region of the electromagnetic spectrum (400 to 4000 cm-1) results in 

various vibrations (bending, stretching, etc.) of molecules.  Molecules and functional 

groups absorb radiation in specific regions of the spectrum, allowing identification of 

species that are present by simply monitoring radiation absorbance peaks across the entire 

spectrum.3 

Although several types of IR spectroscopy exist, RAIRS specifically has the 

ability to aid in determination of structural information of films.  The observed peak 

intensity for a given stretching or bending mode from RAIRS is proportional to the 

square of the component of its dynamic dipole moment normal to the surface, as 

indicated by the following proportionality:4 

 

mz
2cosI θ∝  (3-1) 

 

where I represents the spectral intensity and θmz is the average angle between the 

transition dipole moment (m) for a particular band and the surface normal (z).  This 

dependence arises because, for radiation polarized parallel to the plane of incidence 

(substrate), the resulting electric field vector is mostly perpendicular to the substrate.5,6  

Thus, during absorbance of IR radiation, band intensity will be highest when the 
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transition dipole moment is most closely aligned normal to the surface (θmz → 0°), and 

transition dipole moments that lie nearly parallel to the surface normal (θmz → 90°) will 

have much less spectral intensity.  Table 3.1 lists the peak positions and chemical group 

assignments for IR peaks commonly encountered in the polymer films in this study.  

More detailed discussion of specific IR peaks will be addressed as necessary. 

RAIRS was performed using a Bio-Rad Excalibur FTS-3000 infrared 

spectrometer.  The p-polarized light was incident at 80° from the surface normal.  The 

instrument was run in single reflection mode and equipped with a Universal sampling 

accessory.  A liquid nitrogen-cooled, narrow-band MCT detector was used to detect 

reflected light.  Spectral resolution was 2 cm-1 after triangular apodization.  Each 

spectrum was accumulated over 500 or 1000 scans with a deuterated octadecanethiol-d37 

self-assembled monolayer on gold as the background.  In Chapter IV, to allow 

comparison between the orientation of fluorinated acid chlorides in the isotropic liquid 

phase and fluorinated species within the film, transmission IR spectra were obtained for 

the pure liquid acid chlorides confined between two NaCl cover slips.  Spectra were 

accumulated over 1000 scans using a NaCl cover slip as background. 

 

Electrochemical Impedance Spectroscopy 

Barrier properties of polymer films may be measured with electrochemical 

impedance spectroscopy (EIS).  In EIS, the film is part of an electrochemical cell with a 

solution containing redox probes and ions and connected to an alternating current source.  

During an EIS experiment, current is measured upon altering the potential of the working  
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Table 3.1.  Important IR vibrational mode peak positions for characterization of PHEMA 
and modified PHEMA films in this study.  The chemical group assignment and a brief 
description of the relevance of the peaks to this study are listed.   Unless noted, all peaks 
represent stretching vibrational modes. 

 

 

Absorption 
Range (cm-1) Assignment Comment 

1000-1300 C-O Multiple bands of varying intensity 

1100-1400 C-F Multiple strong bands, especially for long 
chains; ratio of certain of these peaks leads to 
structural information for fluorocarbon chains in 
bulk 

1400-1500 C-H (bending) Moderate bands, only observed in hydrocarbon-
modified films 

1500-1600 C…C Strong bands; only observed for aryl-modified 
films 

1700-1800 C=O Strong bands; PHEMA film has one band with 
acylation modifications giving another 

2800-2950 C-H Various moderate bands; CH2 peak positions 
contain crystallinity/structuring information 

3000-3700 O-H Broad, weak band; used to estimate conversion 
for modified PHEMA films 
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electrode with a sinusoidal perturbation of varying frequency.  The following equation is 

then applicable to this situation: 

 

)tcos(
)tcos(Z

)tcos(I
)tcos(E

)t(I
)t(EZ 0

0

0

φ−ω
ω

=
φ−ω

ω
==  (3-2) 

 

where Z is the impedance in the system, E(t) is the applied potential at time t, I(t) is the 

resulting current at time t, E0 is the amplitude of the potential, ω is the radial frequency 

(equals 2πf where f is the frequency in Hz), I0 is the amplitude of the current, φ is the 

phase shift of the output signal, and Z0 is the magnitude of the impedance.  From these 

equations, the impedance of a system can be characterized by a magnitude and a phase 

shift.  An impedance plot is obtained by measuring cell current while altering the 

frequency of the ac source.  The impedance changes due to the ability of redox probes to 

reach the vicinity of the working electrode/metal surface underlying the film where they 

can be oxidized/reduced.  Impedance is directly affected by the transport of ions through 

a film, and lower frequencies allow more time for diffusive processes to occur.7  Since an 

electrochemical cell is used, the results can be modeled using equivalent electrical 

circuits, like those shown in Figure 3.3, consisting of resistors and capacitors that 

represent film properties.  Resistance and capacitance values for the initiator and polymer 

layers in our films may be estimated using the following equations that apply to the 

equivalent circuits shown in Figure 3.3: 

 

2
imag

2
real )Z()Z(Z +=  (3-3) 
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RZreal =  (3-4) 

Cj
1Zimag ω

=  (3-5) 

 

where |Z| equals Z0 and is the magnitude of the total impedance, and Zreal and Zimag are 

the real (resistance) and imaginary (capacitance) components of the impedance.  As 

evidenced by the impedance equations for real and imaginary components, higher film 

resistance and lower film capacitance yield higher total impedance.  Higher impedance 

corresponds to the inhibition of ion transport to the surface and signifies a better barrier 

film.8 

EIS was performed with a Gamry Instruments CMS300 impedance system 

interfaced to a personal computer.  A flat-cell (EG&G Instruments) was used to expose 

only 1 cm2 of each sample to the aqueous solution containing electrolyte and redox 

probes while preventing sample edges from being exposed.  The electrochemical cell 

consisted of an aqueous solution of 1 mM K4Fe(CN)6·3H2O, 1 mM K3Fe(CN)6, and 

0.1 M Na2SO4 with a Ag/AgCl/saturated KCl reference electrode, a gold substrate 

counter electrode, and a gold substrate containing the film to be studied as the working 

electrode.  Data were collected in the range from 10-1 to 104 Hz using 10 points per 

decade and were fit with an appropriate equivalent circuit (Figure 3.3) to determine 

resistance and capacitance values.  Reported values and ranges for resistance and 

capacitance represent the averages and standard deviations of values obtained from at 

least four independent sample preparations.  Typically, a difference of ~0.5 in log Rf or a 

difference of ~4 nF in Cf was found to be statistically significant based on the t-test at a 

95% confidence level. 
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Figure 3.3.  Equivalent electrical circuits to model the electrochemical impedance 
behavior of various films on gold.  a) One time constant model for the initiator monolayer 
only. b)  Two time constant model including the initiator layer with a polymer layer atop 
it.  This model applies to all the polymer films encountered in this study.  A Warburg 
impedance, ZW, may be included in the polymer layer of this model if transport of ions 
through the polymer becomes diffusion-limited.  c) A one time constant model containing 
only the polymer film.  This model appropriately reflects the behavior of modified 
polymer films when the impedance due to Rf is much greater than the combined 
impedance of Ri and Ci in parallel, so the time constant due to the initiator is not observed 
in the impedance spectra.  For these cases, the equivalent circuit in b) simplifies to this 
model. 
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Ellipsometry 

Measurement of film thickness is most readily accomplished through use of 

ellipsometry.  Linearly polarized light in a specified wavelength range is shone onto a 

reflective surface containing the polymer film.  Upon reflection the light is elliptically 

polarized, and a detector collects both phase (Δ) and amplitude (Ψ) information regarding 

the reflected light.  Model layers representing the film on the surface can be created to fit 

the measured data to theory.  Typically for polymer films, a generic two-term Cauchy 

layer model is used for this purpose: 

 

2
n

n
B

An
λ

+=  (3-6) 

 

where n is the film refractive index, An and BBn are model fit parameters, and λ is the 

wavelength of incident light.  Since n and thickness are not usually known, the Cauchy 

model along with standard models for Fresnel reflection coefficients allow both of these 

physical film parameters to be determined by fitting the models to the experimental data 

for Δ and Ψ and minimizing the mean square error.  9

A J.A. Woollam Co. M-2000DI variable angle spectroscopic ellipsometer with 

WVASE32 software for modeling was used for all ellipsometry experiments.  Data were 

collected on three spots per sample at one angle (75°) and over an extensive wavelength 

range (usually 400–800 nm) to ensure more accurate fits of theoretical models to the data.  

Optical constants of bare gold samples were determined by ellipsometry and used as the 

baseline from which all polymer film samples were measured.  The two-term Cauchy 

layer model worked very well for the polymer films in this study, as the index of 
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refraction estimated from the model decreased as lower dielectric materials (i.e. 

fluorocarbon or hydrocarbon) were introduced into the films.  Based on the model, an 

unmodified PHEMA film had a value of about 1.5 for An, while hydrocarbon- and 

fluorocarbon-modified PHEMA films had An values of around 1.42 and 1.38, 

respectively, which are consistent with the expected dielectric characteristics of these 

films.  In all cases, BBn was on the order of 10  and had a rather small effect on n. -3

 

Contact Angle Goniometry 

The surface properties of films, which are dependent on the outermost ~5 Å of 

surface composition/structure,10 can be evaluated by contact angle goniometry.  A small 

drop of liquid iss placed onto the film-coated surface.  Interfacial forces between the 

liquid drop, the film surface, and air determine the shape of the drop on the surface.  The 

interfacial forces, or tensions, are denoted as γSV at the solid-vapor interface, γSL at the 

solid-liquid interface, and γLV at the liquid-vapor interface.  A force balance of these 

tensions involved in the surface-liquid-air interface leads to Young’s equation: 

 

γSV - γSL = γLV cos θ (3-7) 

 

where the static contact angle, θ, is the angle between the line drawn tangent to the edge 

of the liquid drop (at the liquid-vapor interface) and the line flush with the surface 

underneath the drop (the solid-liquid interface).  With a given liquid, usually water or 

hexadecane, the values of every term except γLV change depending on surface 

composition.  θ is readily measured with a goniometer, an optical microscope with a 
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protractor built into the lens, and water and hexadecane contact angles are generally 

reported to indicate the relative hydrophilicity/hydrophobicity and 

oleophilicity/oleophobicity of a surface.  Larger measured angles result from more 

hydrophobic and oleophobic surfaces.  Table 3.2 reports the expected contact angles for 

surfaces of varying composition that have bearing on this work. 

Contact angles are useful in providing insight into surface roughness, chemical 

composition, and interfacial structure.  By adding small liquid drops to the surface using 

a microliter syringe, two separate contact angle measurements, θA and θR, are generally 

made.  θA, the advancing contact angle, is measured after liquid has been added to the 

drop, causing it to slowly advance across the surface, and θR, the receding contact angle, 

is measured after liquid has been removed from the drop, causing it to slowly recede 

across the surface.  The contact angle hysteresis, θA - θR, gives a measure of the 

roughness or chemical heterogeneity of the surface.  Smoother surfaces have a very low 

hysteresis while rough surfaces have a much larger hysteresis.11  The chemical 

composition at the surface also greatly affects the measured contact angles.  Depending 

on whether a surface is dominated by -CH2-, -CH3, -CF2-, -CF3, or higher energy 

(-COO-, -OH) groups, the contact angles will be altered.12  If the measured contact angles 

are similar to the known values for well-structured -CH3 or -CF3 surfaces, the 

hydrocarbon or fluorocarbon chains must structure by lying normal to the air-film 

interface. 

A Rame-Hart contact angle goniometer with a microliter syringe was used to 

measure advancing and receding contact angles on static drops of water and hexadecane 

on the polymer surfaces.  The needle tip of the syringe remained inside the liquid drop  
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Table 3.2.  Typical advancing water and hexadecane contact angles for various surface 
compositions.  Values are based on work with self-assembled monolayers12 with terminal 
group X except for -CH2 and -CF2, which are taken from studies of polymethylene13 and 
poly(tetrafluoroethylene)14 films, respectively. 
 
 
 

Surface Group (X) θA(H2O) θA(HD) 

-CH2CH2OH 30 <10 

-Br 83 <10 

-CH2 103 <10 

-CF2 104a 40a

-CH3 115 48 

-CF3 118 79 

a Equilibrium contact angles   
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while measurements were taken on both sides of ~5 μL drops.  Reported values and 

ranges represent the average and standard deviation of values obtained for at least five 

independent sample preparations. 

 

Atomic Force Microscopy 

The surface topography of a film as well as film thickness may be investigated via 

atomic force microscopy (AFM).  AFM is typically performed in one of two modes—

contact or tapping.  For soft polymeric surfaces, AFM is generally operated in tapping 

mode because it eliminates lateral forces (i.e. scraping) across the sample that could 

potentially damage the surface.  In both modes of AFM, a cantilever with an attached tip 

is made to move vertically across a sample.  A photodiode detector monitors the vertical 

position of the tip at each point as it rasters across the surface and uses the combined 

horizontal and vertical position information from every point to create an image of the 

surface.  The difference in the two modes is the interaction of the tip with the sample.  In 

contact mode, the tip position is adjusted vertically to maintain a constant interaction 

force with the surface.  In tapping mode, the cantilever oscillates near its resonance 

frequency and, as a result, “taps” the surface during each oscillation.  Setting and 

maintaining constant oscillation amplitude keeps interactions between the tip and the 

sample surface constant.  The resulting AFM image is a topographical representation of 

the sample surface, which can give information regarding surface roughness and film 

thickness under the proper conditions.15 

AFM images of patterned polymer films were obtained in a cleanroom 

environment with a NanoScope III scanning probe microscope equipped with a J 
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piezoelectric scanner (Digital Instruments, Santa Barbara, CA) having an AFM tip with a 

nominal radius of curvature of ~10 nm.  An area of 120 μm × 120 μm was scanned in 

tapping mode to obtain surface topographical images.  The images were plane-fitted and 

filtered to remove noise using the instrument software. 
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CHAPTER IV 

 

MODIFICATION OF SURFACE-INITIATED POLYMER FILMS 
WITH FLUOROCARBON CHAINS 

 

Fluorinated polymer films exhibit excellent barrier properties1 and extremely low 

critical surface tensions,2 causing water and oils to bead up on exposure.  Methods 

commonly used to deposit fluorinated polymers onto a surface include spin-coating,3 

solution casting,4,5 and chemical adsorption.6  These methods produce films with the 

properties of fluorinated polymers but often in a relatively uncontrolled fashion.  While 

chemical adsorption produces only polymer monolayers,6 spin-coating and solution 

casting exhibit poor control over film thickness in the sub-micron range and produce 

films that are only physically attached to the underlying substrate.3,5  Plasma deposition7 

and chemical vapor deposition8,9 can provide greater control over film thickness by 

growing the fluorinated films from an underlying surface, but these methods require low 

pressure and specialized equipment and may yield films with compositions that are not 

well defined (markedly different from the starting monomer).7-9  In general, high cost and 

difficult processibility limit the use of fluorinated polymers in many applications.3,4,10,11 

One route to fluorinated polymer films that has not been fully explored is surface-

initiated polymerization.  The advantages of growing a film directly from a surface 

include well-controlled growth, especially when the kinetics exhibit living character,12 

and stability due to covalent attachment of the polymer backbone to the surface.13,14  Jung 

et al.10 and Andruzzi et al.15 have prepared surface-initiated films on silica from 

hydrophobic fluoromonomers using radical-chain polymerizations.  The films exhibited 
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highly hydrophobic and oleophobic surfaces, but film growth was slow in both cases, 

with the thickest films being only 70 nm after 27 h exposures at 60 ºC.10  The ability to 

prepare surface-initiated, partially fluorinated films over a much greater range of 

thicknesses—from ultrathin films used to modify surface properties to thicker films that 

are ideal as protective coatings—could greatly impact the applications of these films. 

We take advantage of a controlled radical polymerization technique, water-

accelerated ATRP (see Chapter II for details), to grow much thicker surface-initiated 

films that have reactive sites throughout.  These reactive sites can then be used to 

introduce fluorocarbon groups, providing the ability to engineer structural, surface, and 

barrier properties of films while avoiding processing issues that are typically encountered 

with fluorinated polymers.  This approach to partially fluorinated polymer films exploits 

the rapid kinetics, precise control, and covalent attachment of surface-initiated PHEMA 

growth, and fluorination is performed directly on the surface-attached film for ease of 

processing and separations.  All work contained herein involves films that have been 

fluorinated as completely as possible (until reaction no longer occurs).  For further 

information on film fluorination kinetics and film properties in various states of 

fluorination, the reader is referred to the Master’s work of Mayker Bantz.16,17 

 

Experimental Procedures 

 PHEMA films having reactive hydroxyl side chains were created as described in 

Chapter III.  Derivatization of PHEMA with fluorocarbon side chains was accomplished 

by exposing the film to 20 mM solutions of trifluoroacetic anhydride ((CF3CO)2O), 

heptafluorobutyryl chloride (C3F7COCl), pentadecafluorooctanoyl chloride (C7F15COCl),  
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Figure 4.1.  Derivatization of PHEMA hydroxyls with fluorocarbon groups via a 
nucleophilic acylation reaction with either acid chlorides or anhydrides. 
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or pentafluorobenzoyl chloride (C6F5COCl) with 25 mM pyridine in dichloromethane for 

at least 3 h to give F1, F3, F7, or FBZ films, respectively (Figure 4.1).  After reaction, the 

films were rinsed with dichloromethane and ethanol and dried with nitrogen. 

 

Results and Discussion 

 

Film Composition and Structure 

RAIRS was used to monitor compositional changes within the polymer films due 

to acylation by the various fluorinated species.  Figure 4.2 shows the IR spectra of 

PHEMA along with all four fluorinated PHEMA films.  The most readily quantifiable 

change in the spectra that is indicative of successful acylation is diminution of the 

hydroxyl peak in the region from 3100 to 3700 cm-1, as the hydroxyl side chains of 

PHEMA are converted to fluorinated esters.  We have used this diminution of integrated 

hydroxyl peak area (AOH) to estimate conversion (χ) of the hydroxyl side chains as 

 

PHEMAOH,

PHEMAdfluorinateOH,

A

A
1−=χ  (4-1) 

 

which assumes that any change in integrated hydroxyl peak area is due solely to acylation 

and not to orientational changes of the unreacted hydroxyl groups.  Due to the distinct 

differences in perfluorinated chain length and type, some difference in film conversion 

was expected.  As indicated in Table 4.1, the very short chain modification present in F1 

exhibits a significantly higher conversion (~90%) than that observed in either F3 or F7 
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Figure 4.2.  Reflectance-absorption IR of PHEMA films on gold before and after 
exposure to fluorinated acid chlorides or anhydrides.  There are several key regions of 
interest when evaluating effectiveness of the acylation reaction: C-O and CF2, 1100–1400 
cm-1; C…C, 1500–1700 cm-1; C=O, 1700–1800 cm-1; OH, 3100–3700 cm-1. 
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Table 4.1.  Conversion (χ) and thickness increase for fluorocarbon-modified PHEMA 
films as estimated from RAIR spectra and ellipsometry, respectively.  Initial thickness of 
PHEMA films was ~220 nm. 
 

 F1 F3 F7 FBZ
χ (%) 90 ± 2 79 ± 4 77 ± 5 83 ± 3

Observed Thickness Increase (%) 50 78 137 78 

Predicted Increase-MW (%) 66 119 234 124 

Predicted Increase-Vol (%) 41 65 121 47 
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films (~80%), consistent with improved transport and reduced steric hindrance for low 

molecular weight species.  The similar conversion for F3 and F7 suggests that transport 

of these acid chlorides into the film does not limit the ultimate conversion but that steric 

effects due to the packing of adjacent fluorocarbon chains along a common backbone is 

the limiting factor.  We attribute the high conversion in FBZ (80+%) to π-π stacking of 

the perfluoroaryl groups, which would result in a lower packing parameter based on the 

face-to-face distance between the disc-like perfluoroaryl groups18 (3.2 Å) versus that for 

perfluoroalkyl chains6 (5.6 Å) and allow greater accessibility to unreacted hydroxyl 

groups along a common backbone.  For these and all other films presented in later 

chapters, a statistically significant difference in film conversion at the 95% confidence 

level from the t-test was ~4-5%. 

Further analysis of Figure 4.2 reveals key differences between the spectra of the 

fluoroalkyl- and fluoroaryl-modified PHEMA and unmodified PHEMA in the region of 

1100-1800 cm-1.  Every repeat unit of the PHEMA film has an ester immediately off the 

main backbone chain, and the associated carbonyl appears in the IR spectrum at 

1733 cm-1.  Also due to the presence of hydroxyl groups throughout the PHEMA film 

that can hydrogen bond with this carbonyl, a shoulder appears on the carbonyl peak that 

causes it to broaden toward lower wavenumbers.19,20  Acylation greatly reduces hydrogen 

bonding within the film, which diminishes the shoulder on the original carbonyl peak and 

causes an apparent shift to higher wavenumbers (1738 cm-1 for F1, 1737 cm-1 for F3, 

1735 cm-1 for F7).  Acylation also produces another ester along the side chain, which 

results in the appearance of a second carbonyl peak in the spectrum.  For films with 

fluoroalkyl side chains, this new carbonyl peak appears at significantly higher 
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wavenumbers (1790-1800 cm-1) due to α halogen substitution.21  For FBZ, the new 

carbonyl peak combines with the original one to yield a broad peak at ~1749 cm-1.  While 

α halogen substitution is absent in this case (only β fluorines), the fluorine atoms on the 

aromatic ring are electron-withdrawing groups, and thus raise the carbonyl peak 

frequency.  Conjugation of the carbonyl with the nearby aromatic ring likely offsets this 

effect and lowers the frequency21 in comparison to the perfluoroalkyl-substituted 

PHEMA.  The overall result of these competing effects is observed. 

Careful examination of Figure 4.2 reveals that the PHEMA carbonyl peak 

(~1735 cm-1) loses ~30% intensity upon acylation with C3F7COCl or C7F15COCl.  This 

reduction is most likely due to film expansion, which alters the orientation of the 

carbonyl and thus its intensity in the RAIR spectrum as discussed in Chapter III.  This 

explanation is supported by the fact that hydrolysis of the fluorinated esters (vide infra) 

returns the PHEMA carbonyl to its original, prefluorinated intensity.  As fluorocarbon 

groups are added to the side chain, the surface-attached polymer chain (backbone plus 

side chains) requires additional space and likely expands to orient more normal to the 

surface, thus altering the orientation of the original carbonyl groups. 

Introduction of fluorinated side chains to the polymer film is also evidenced by 

the appearance of large peaks throughout the region from 1100 to 1400 cm-1, indicative 

of CF (in FBZ), CF2 (in F3 and F7), or CF3 (in F1) stretching.  While the presence of 

peaks in this region verifies the presence of fluorinated moieties, some structural 

information can also be gathered, particularly for F3 and F7 films.  Since fluoroalkyl 

chains exhibit a helical structure, there are two types of CF2 stretching peaks expected in 

the IR for F3 and F7: those lying along the helical axis (νax
CF2, 1300-1400 cm-1) and those 

 61



perpendicular to the helical axis (νpd
CF2, 1100-1300 cm-1).6,22  The ratio of νpd

CF2 to νax
CF2 

absorbance for the film, relative to the same ratio for an isotropic orientation of the acid 

chlorides in the liquid state, provides information on the orientation of the fluorocarbon 

side chains in the polymer film relative to the surface normal.  Given the surface selection 

rules for RAIRS,23,24 the intensity for a given mode in the IR spectrum is proportional to 

the square of the component of its dynamic dipole moment oriented along the surface 

normal (Chapter III).  Hence, when the ratio of νpd
CF2 to νax

CF2 is greater in the film than 

in the isotropic liquid, the fluorocarbon helical axis generally lies more along the parallel 

to the substrate surface, but when this ratio is less in the film than in the isotropic liquid, 

the fluorocarbon helical axis is more normal to the surface.6  

Transmission IR spectra of the randomly oriented liquid fluoroalkyl acid chlorides 

(Figure 4.3) yields a νpd
CF2:νax

CF2 absorbance ratio of ~1.8.  For the bulk liquid, νpd
CF2 are 

more readily observed than νax
CF2 even when chains are randomly oriented.  For the F3 

film (Figure 4.2), the νpd
CF2:νax

CF2 absorbance ratio is also ~1.8, which suggests that these 

chains are randomly oriented within the film in similar fashion to the pure acid chloride.  

F7, however, exhibits a much higher νpd
CF2:νax

CF2 absorbance ratio (~4.5) indicating that 

the C7F15 side chains in the polymer film are generally aligned more parallel to the metal 

surface such that the axial CF2 peaks are nearly undetected.  Most likely, the C7F15 side 

chains align within the film to maximize interchain van der Waals interactions, whereas 

C3F7 side chains are too short to promote such structuring and thereby assume more 

random orientations.  The fluorobenzoyl and trifluoromethyl side chains also show 

activity in the C-F region but cannot form a helical structure and have no CF2 stretching. 
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Figure 4.3.  Transmission IR spectra of perfluoroalkyl acid chlorides in the liquid state.  
The relative intensity of νpd

CF2 (1100–1300 cm-1) and νax
CF2 (1300-1400 cm-1) peaks 

(1.8:1 ratio) for the pure liquids provides a reference to assess orientation of fluorinated 
side chains in the polymer films. 
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The aromatic C-F stretch shows two peaks between 1200 and 1350 cm-1, but there is no 

good indicator from IR of how these aromatic side chains are oriented within the film.  

Other evidence for the addition of the fluorobenzoyl group to the side chain is the 

presence of peaks for fluorinated C…C aromatic ring stretching from 1500 to 1700 

cm-1.7,25  The trifluoromethyl group of F1 exhibits three stretching peaks between 1190 

and 1350 cm-1.7 

 

Film Thickness 

Table 4.1 shows fluorinated film thickness increases obtained by taking 

ellipsometry measurements both before and after acylation of PHEMA.  The water-

accelerated ATRP of PHEMA resulted in 220 ± 11 nm thick films after 12 h.  PHEMA is 

envisioned as being loosely packed, but the addition of fluorocarbon side chains would 

still cause an expansion of the film to minimize constraints.  After fluorination, the 

greatest thickness increase over that of PHEMA was observed for F7, followed by FBZ 

and F3, and then F1.  As expected, a longer side chain requires more space and thus 

increases film thickness by inducing a greater extension of the PHEMA backbone than 

that induced by a shorter side chain. 

Expected thickness increases after addition of side chains were estimated using 

two separate methods while also accounting for conversion.  Predictions based solely on 

the increase in molecular weight of the repeat unit upon acylation have been used for 

addition of hydrocarbon chains to films.26  Based on this model, the trend in thickness for 

the fluorinated groups is correct but the actual thickness increases are not nearly as high 

as predicted (Table 4.1; up to 100% overprediction).  We developed another model that is 
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based on the increase in molecular volume of the repeat unit using bond lengths27,28 and 

chain packing data6,18 from the literature.  To estimate volumes of the different 

components in the film, we modeled the fluoroalkyl groups as cylinders with length of 

1.3 Å per -CF2- group27 and diameter of 5.6 Å based on chain packing data.6 The 

fluoroaryl group was modeled as a disk with diameter of 5.0 Å (estimated from the 

benzene carbon-carbon cross-ring length of 2.8 Å28 in addition to two C-F lengths of 1.1 

Å27 each) and a thickness of 3.2 Å based on crystal interplanar face-to-face packing 

distance.18   The remainder of the side chain along with the main polymer backbone 

(-CH2C(CH3)CO2(CH2)2CO2-) was approximated as cylinders behaving as normal 

hydrocarbon chains (lengths of 1.25 Å per -CH2- group27 and diameter of 4.2 Å from 

chain packing data).6 Carbonyl and ether bonds were approximated as -CH3 or -CH2- 

groups, respectively, due to lack of exact data for these groups in similar compounds.  As 

with the molecular weight prediction, all samples were referenced to the basic PHEMA 

repeat unit to estimate relative increases in the molecular volume.  With the volume-

based predictor, the predicted changes are much closer to the experimental values at the 

expense of the overall trend; FBZ is predicted to give a smaller increase in film thickness 

than F3, which is not observed experimentally.  The volume-based model does provide 

much closer agreement with experimental values, as all fluoroalkyl modifications are 

underpredicted by 15% or less and FBZ is underpredicted by only ~30%.  

 

Surface Wettability and Structuring 

Advancing and receding contact angles (θA and θR) of water were measured for all 

polymer films to determine the relative hydrophobicity of the surface.  Table 4.2 gives 

 65



average contact angles for the fluorinated films along with the values for PHEMA and the 

bromine-terminated initiator monolayer for comparison.  The advancing contact angle of 

water on the initiator is 80°, which is identical to that reported for a bromine-terminated 

monolayer film.29  The extremely low contact angle hysteresis (θA – θR = 6°) for the 

initiator is indicative of a smooth monolayer film as well.  Once PHEMA is grown from 

the initiator, the advancing contact angle does not change significantly, but the hysteresis 

becomes quite high, suggesting that the surface of the film becomes rough and/or 

chemically heterogeneous.  Upon acylation with the fluorinated acid chlorides, the 

advancing contact angles of water increase dramatically, consistent with hydrophobic 

groups at the outermost surface, with the largest effect being observed for the addition of 

C7F15 side chains.  The contact angle hysteresis remains high for all fluorocarbon-

modified films, so there seems to be no or minimal smoothing of the film due to 

acylation.  The advancing contact angle for FBZ, while much lower than the fluoroalkyl-

modified films, is similar to that for a film prepared from the plasma deposition of 

perfluorobenzene.7 

Contact angles of hexadecane were also measured on all polymer films.  

Compared to water, hexadecane is a more sensitive probe of fluorocarbon groups over 

hydrocarbon groups.30  F1, F3, and F7 exhibit advancing hexadecane contact angles of 

48°, 67°, and 79°, respectively.  Monolayers exhibiting well-structured CF3 surfaces are 

known to exhibit hexadecane contact angles from 80° down to 70°, depending on the 

length of the fluorinated chain.29  The fact that the fluoroalkyl-modified PHEMA films 

exhibit contact angles that fall in or near this range while hexadecane wets unmodified 

PHEMA reveals that fluorocarbon groups dominate the surface of these polymers. 
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Table 4.2.  Advancing and receding contact angles (º) of water and hexadecane and 
critical surface energy (γC) of films on gold. 
 
 

Water Hexadecane 

Film θA θR θA θR

γC 

(mN/m)

Disulfide Initiator 80 ± 2 74 ± 2 <10 <10  

PHEMA 75 ± 3 23 ± 2 <10 <10  

FBZ 90 ± 2 69 ± 3 <10 <10  

F1 89 ± 1 65 ± 1 48 ± 2 43 ± 2 21 

F3 110 ± 2 70 ± 9 67 ± 2 54 ± 3 15 

F7 128 ± 2 71 ± 5 79 ± 2 64 ± 3 9 
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Hexadecane completely wets FBZ, but this result is not unexpected for the aromatic side 

group.  Fluoroaromatics, as also evidenced by lower water contact angles, do not 

generally yield surfaces as hydrophobic or oleophobic as their straight chain 

counterparts.31 

Since F1, F3, and F7 are both hydrophobic and oleophobic, these films should 

have low critical surface energies, γC, in which the value will suggest whether -CF3 

groups indeed dominate the outermost surface.  A surface consisting entirely of -CF3 

groups2 has a γC as low as 6 mN/m whereas one consisting entirely of -CF2- groups, as 

with polytetrafluoroethylene,32 exhibits a γC of ~18 mN/m.  To estimate the critical 

surface energies of the films, we used the Zisman method32,33 and selected a series of 

alkanes having even numbers of carbons, from hexane to hexadecane, as contacting 

liquids.  θA for each of the liquids was measured and cos θA was plotted against γL, the 

surface tension of the liquid (Figure 4.4).  A straight line fit of the data and extrapolation 

of the line to cos θA = 1 gives γC of the film such that a liquid with γL < γC will completely 

wet the surface.  From Figure 4.4, F7 exhibits a γC of 9 mN/m, indicating that the 

interface consists of -CF3 groups and that the fluorocarbon chains are oriented near the 

surface normal there.  F3 exhibits a γC of 15 mN/m, which is consistent with a mixture of 

-CF3 groups and other slightly higher energy groups, most likely -CF2- or -CH2-, at the 

outer surface.  F1 exhibits a γC of 21 mN/m, indicative of the presence of -CF3 groups but 

also other higher energy groups. 

A proposed structure of these fluorinated PHEMA films is surmised based on 

results from wetting measurements and RAIRS.  The γC value indicates that the F7 

surface consists primarily of -CF3 groups, so the fluorocarbon chains at the surface are 
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Figure 4.4.  Zisman plot to determine critical surface energy, γC, of F1, F3, and F7.  A 
series of even-numbered n-alkanes from hexane to hexadecane was used as contacting 
liquids.  γC is 9 mN/m for F7, 15 mN/m for F3, and 21 mN/m for F1.  When an error bar 
is not observed, the size of the symbol provides an estimate of the error. 
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mostly normal to the substrate.  The dominance of νpd
CF2 absorbance in the IR, on the 

other hand, points to the C7F15 chains being oriented more parallel to the substrate in the 

bulk film.  This follows closely with the findings of Genzer and coworkers34 for spun-

cast isoprene polymers with semifluorinated ether side chains.  They observed that the 

fluorinated groups oriented parallel to the surface in the bulk but more normal to the 

surface at the outer layers.  From wettability data, the shorter CF3 and C3F7 chains are 

unable to orient at the surface like C7F15, and other groups besides -CF3 are present at the 

outer film layer.  The presence of stronger νax
CF2 bands in the IR for F3 suggests these 

fluorocarbon groups in the bulk are not parallel to the substrate but randomly oriented.  

Overall, the short side chains present in F3 and F1 are unable to induce structuring within 

the bulk film or at the air-film interface.  The critical chain length for fluorocarbon 

structuring is around seven; fluorinated chain lengths even of length three provide no 

structuring in the bulk or at the interface. 

 

Barrier Properties 

We evaluated the effect of fluorination on the barrier properties of the PHEMA 

films using EIS upon exposure to 1 mM K3Fe(CN)6 and 1 mM K4Fe(CN)6 in 0.1 M 

Na2SO4(aq).  Figure 4.5 contains the EIS spectra, in the form of Bode plots, for bare gold, 

the initiator-terminated monolayer, PHEMA, and the four fluorinated polymer films, all 

on gold.  The solid curves in the plot represent best fits of the data with appropriate 

equivalent circuit models (Figure 3.3) to provide quantitative information on the effect of 

film composition on the resistance and capacitance of the films.  For uncoated gold, the 

spectrum is fit with a model containing a solution resistance (Rs) in series with the 
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Figure 4.5.  Electrochemical impedance spectra obtained in 1 mM K3Fe(CN)6 and 1 mM 
K4Fe(CN)6 in 0.1 M Na2SO4(aq) for films on gold.  Spectra are shown for PHEMA 
before and after various fluorocarbon modifications with bare gold and initiator-modified 
gold for reference.  Solid curves represent a fit of the data to an equivalent circuit. 

 

 

 

 

 71



following combination: Warburg impedance (ZW) and charge transfer resistance (Rct) in 

series with one another but in parallel with a double layer capacitance (Cdl).35  The 

Warburg impedance that dominates this spectrum at low frequencies is consistent with 

rapid charge transfer between the redox probes and the uncoated surface.  The mere 

presence of the initiator monolayer on the gold surface dramatically increases the 

impedance and produces a spectrum that is fit with a parallel combination of initiator 

resistance (Ri) and capacitance (Ci) in series with Rs, identical in form to a Randles model 

equivalent circuit used previously to describe self-assembled monolayers 

(Figure 3.3a).36,37  Similar to the behavior of other types of monolayers on metal surfaces, 

this film blocks gold surface sites and greatly reduces charge transfer. 

When a 220-nm-thick film of PHEMA is grown atop the monolayer, the 

impedance spectrum in Figure 4.5 shows two time constants and is appropriately fitted 

with a more complex model (Figure 3.3b) containing a polymer film resistance (Rf) and a 

total film (polymer plus initiator) capacitance (Cf).  The time constant at low frequencies 

is caused by the initiator layer (τi = RiCi) and is larger than that caused by PHEMA 

(τf  = RfCf).  One surprising observation from Figure 4.5 is that growth of a ~220 nm film 

of PHEMA from the surface did not affect the impedance properties at low frequency as 

compared with those of the monolayer.  This observation confirms that the contribution 

of PHEMA to the impedance spectrum is limited to the time constant at high frequencies.  

Table 4.3 enables comparison of the average capacitances and resistances for the 

initiator-terminated monolayer and PHEMA.  Addition of the PHEMA layer reduces the 

total film capacitance (Cf) due to its enhanced thickness but exhibits a very low resistance 

(Rf) in comparison to that of the initiator (Ri).  On a per unit thickness basis, SAMs 
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Table 4.3.  Values for film capacitance (Cf) and resistance (Rf) of fluorocarbon-modified 
PHEMA films. 
 
 

Film
Cf 

(nF/cm2)
Log Rf 

(Ω⋅cm2)

Initiatora 2400 ± 300 6.0 ± 0.4 

PHEMA 640 ± 200 3.0 ± 0.3 

FBZ 6.2 ± 0.7 7.8 ± 0.3 

F1 12 ± 1 6.9 ± 0.1 

F3 12 ± 7 6.7 ± 0.5 

F7 9.2 ± 1.7 7.4 ± 0.4 

a Ci and Ri values are given for the initiator. 
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generally provide much greater resistances than thin polymer films due to the 

minimization of defects during the monolayer assembly process.38  The very low 

resistance of PHEMA indicates that it is loosely packed and a poor barrier film.  This 

characteristic allows a larger molecule, namely a fluorinated acid chloride in our case, to 

effectively diffuse into the film and react with side chains throughout.  If the PHEMA 

film were well-packed, acylation and film expansion would be unfavorable. 

In contrast to the impedance behavior of PHEMA, fluorinated PHEMA films 

exhibit only one time constant.  The key difference for the fluorinated films is that the 

time constant due to the initiator does not appear in the spectrum because Rf due to the 

fluorinated polymer is much greater than the combined impedance corresponding to Ri 

and Ci.  Therefore, the equivalent circuit in Figure 3.3b simplifies to a Randles model in 

which Rs is in series with a parallel combination of Rf and Cf (Figure 3.3c).  Both Ri and 

Ci should remain relatively constant throughout all polymer films although they could not 

be measured for the fluorinated films.  Thus, for comparison purposes, only Rf and Cf 

values are compared between the different polymer films in Table 4.3. 

In general, the best barrier films are those having the highest resistance and the 

lowest capacitance (Equations 3-3 through 3-5).  Relating this idea to the impedance 

spectra in Figure 4.5, the films become progressively better barriers in going from the 

lowest curve (bare gold) to the highest curve (FBZ).  Comparison of Rf for either F1 or 

F3 with that for PHEMA shows ~4 orders of magnitude improvement upon fluorination.  

Also, the film capacitance was lowered by a factor of ~50 in both cases due to the 

capping of hydrophilic hydroxyl groups and the enhanced hydrophobicity of the partially 

fluorinated film that more effectively excludes water and yields a lower effective 
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dielectric constant.  The fact that even the short chain modification present in F1 gives 

much improved barrier properties over PHEMA suggests that conversion of hydroxyl 

groups plays a significant role in boosting film resistance and capacitance, as F1 is unable 

to structure the film but does have a very high side chain conversion.  F1 and F3 likely 

show similar impedance behavior because even though F1 has a higher film conversion, 

F3 includes more hydrophobic material in the film.  For F7, the resistance was increased 

by a factor of 5 above F3 with capacitance ~25% lower.  The improved barrier 

performance of F7 over F3 is attributed to the higher fluorocarbon content and the ability 

of the longer fluoroalkyl chains to structure the film and minimize defects.  As already 

stated, hydroxyl conversion plays a role in this process, but for these two films 

conversion is almost identical (~80%) but the drastically improved structuring of F7 

gives a much smaller yet still significant improvement in Rf.  The most surprising result 

from Figure 4.5 and Table 4.3 was that FBZ, even though the perfluorobenzoyl group 

was a short addition to the side chain, was actually the best barrier film studied, with the 

highest resistance and lowest capacitance.  This film provided an improvement over 

PHEMA by nearly five orders of magnitude for resistance and two full orders of 

magnitude for capacitance.  Even compared to the thicker F7 film, FBZ exhibited a 

higher resistance (by a factor of 2.5) and a 30% lower capacitance.  We attribute the 

superior protection of FBZ to its high conversion (~85%) and the ability of the 

perfluoroaryl groups to exhibit dominant π-π interactions, effectively stacking atop one 

another to structure the film and eliminate ion-conducting pathways.  Fluoroaromatics 

like perfluorobenzene have been shown18,39 to exhibit such strong π-π interactions, even 

packing closer together than typical aromatic rings. 
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Fluorinated side chains greatly improve barrier properties over PHEMA, most 

likely due to the capping of hydrophilic hydroxyl groups throughout the film.  Structuring 

of the chains within the film, enhanced for longer perfluoroalkyl groups and for 

perfluoroaryl groups, and the water-repellent nature of the fluorocarbons that minimize 

water penetration also play key roles in the creation of these barrier coatings.  Merely 

taking up available space in the film does not account for the observed results, 

particularly when considering the resistance and capacitance of FBZ as compared with 

the other fluorinated films. 

 

Film Stability 

In this work, the acylation reaction results in a fluorinated ester linkage on the 

polymer side chains.  Esters having fluorocarbon constituency α or β to the carbonyl 

moiety are known to be susceptible to degradation upon exposure to heat40,41 or base.42  If 

so desired, the fluorocarbon side chains could be strengthened in regard to hydrolysis by 

addition of a hydrocarbon (CH2) spacer next to the carbonyl.  While gaining the surface 

properties of fluorinated polymers is directly advantageous for our method of surface-

initiated polymerization and modification, the ability to simply and effectively cleave the 

fluorocarbon side chains could have a broad impact on the preparation of temporary 

resists or patterned films and surfaces.40 

The stability of PHEMA–based polymer films against hydrolysis was evaluated 

by placing samples of PHEMA, F1, F3, F7, and FBZ in deionized water or a 0.5 M KOH 

solution in ethanol for various amounts of time, rinsing with deionized water, drying with 

nitrogen, and then reexamining their IR spectra.  IR spectra for the samples exposed to 
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water showed no detrimental effects even after 5 days of exposure.  The PHEMA sample 

in KOH also showed no change in the IR spectrum.  The IR spectra of the fluorinated 

polymers in KOH, on the other hand, showed conversion of the film back to PHEMA 

almost instantaneously (within 1-2 s) for the fluoroalkyl side chains (Figure 4.6) and 

within 20 min for the fluoroaryl side chain (not shown).  Reversion to PHEMA was 

evidenced by the complete loss of the carbonyl peak at ~1790 cm-1 (for the fluoroalkyl 

films) and CF stretching peaks from 1100 to 1400 cm-1, the regained peak in the hydroxyl 

region from 3100 to 3500 cm-1, and the regained intensity of the carbonyl at 1733 cm-1 

(Figure 4.6).  As previously mentioned, this last point provides confirmation that the 

original reduction in the carbonyl at 1733 cm-1 upon acylation was not due to chain loss 

but rather to orientational effects.  Even the perfluorobenzoyl side chain, having no 

α fluorine but only β fluorine, reverted back to PHEMA within 20 min as the ester was 

gradually hydrolyzed.  These attributes are consistent with rapid hydrolysis of the 

fluorinated ester but an inability to hydrolyze the hydrocarbon PHEMA ester, which is 

much more stable.42  The remarkable ability to convert these partially fluorinated 

polymer films back to PHEMA by simple immersion in base may provide a new strategy 

to control the depth-dependent composition within polymer films and holds promise for 

the efficient patterning of polymer films and structures.  This particular attribute will be 

explored more fully in subsequent chapters to create novel polymeric architectures. 

 

Conclusions 

Addition of fluorinated side chains to surface-initiated PHEMA through an 

acylation reaction results in a partially fluorinated polymer film and imparts desirable 
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Figure 4.6.  RAIR spectrum of a single PHEMA sample: a) before fluorination; b) after 
fluorination with C7F15COCl to form F7; and c) after hydrolysis with 0.5 M KOH in 
ethanol for ~1 s. 
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attributes such as surface hydrophobicity and oleophobicity, bulk and interfacial film 

structuring, and dramatically improved barrier properties.  A longer fluoroalkyl side 

group (C7F15) on PHEMA greatly improves the film properties in all areas—higher 

resistance, lower capacitance and critical surface tension, and a more well-defined 

structure—as compared with shorter fluoroalkyl chains (CF3 or C3F7), due to enhanced 

interchain interactions.  A perfluoroaryl side group (C6F5) provides the greatest resistance 

and lowest capacitance of all the films, due to its high conversion and strong 

intermolecular stacking interactions of the fluoroaryl groups to greatly reduce ion-

conducting paths.  The production of fluorinated PHEMA in the manner described avoids 

many problems encountered with traditional fluorinated polymer films, such as solubility 

and adhesional issues, and enables rapid assessment of the role of side chain length and 

composition on film properties while maintaining a common reference film (PHEMA).  

Furthermore, the critical surface energies of the fluoroalkyl-modified films are at least 

comparable to and, with long side chain modifications, even much lower than those of 

PTFE and many other fluorinated polymers. 
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CHAPTER V 

 

MODIFICATION OF SURFACE-INITIATED POLYMER FILMS 
WITH HYDROCARBON CHAINS 

 

Hydrocarbon polymers are potentially useful in thin films applications because 

they are inert, available at low cost, and resistant to penetration by moisture.1-5  However, 

many hydrocarbon polymers, such as polyethylene, are extremely difficult to process into 

ultrathin films due to solubility issues.6  In similar fashion to well-controlled preparation 

of polymer films having fluorocarbon side chains, films exhibiting hydrocarbon side 

chains may also be created using the same growth and similar post-polymerization 

reaction scheme (Figure 5.1).  This methodology again utilizes a base film as a test stage 

for creation of numerous polymer films with varying chemical composition and enables a 

fundamental understanding of how hydrocarbon side chain length affects film properties.  

Comparisons with fluorocarbon chains can be made regarding bulk and interfacial 

structuring, wettability, and barrier properties.  Uncovering these molecular-level details 

will be advantageous in the molecular-level design of polymer films. 

Other groups have performed work on the modification of polymer hydroxyl 

groups with hydrocarbon chains or on the effect of hydrocarbon chain length on the 

properties of thin films.  One recent work has exploited the hydroxyl groups of PHEMA 

by reaction with trimethylchlorosilane to make the film more hydrophobic and improve 

its etch resistance.7  Additionally, modification of hydroxyl groups with C15H31COCl has 

been shown to dramatically improve surface hydrophobicity of thin (≤ 40 nm) surface-

initiated polyglycidol brushes grown via anionic ring-opening polymerization on silicon.8   
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Figure 5.1.  Derivatization of PHEMA hydroxyl groups with hydrocarbon chains via a 
nucleophilic acylation reaction with alkanoyl chlorides. 
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Kraft and Moore have investigated the effects of reacting PHEMA microgels with 

hydrocarbon acid chlorides (ranging from m = 1 to 15) to form fatty acid surface layers 

that delay microgel expansion.9  They found that acetyl-modified and unmodified 

microgels expand readily, that rather short (m = 4) alkyl chains offer maximum resistance 

to microgel expansion, and that as the chain length is further increased, the resistance 

decreases.  Varying alkyl side chain length has also been tested on Langmuir-Blodgett 

films, specifically to investigate the role of chain length on the structure and order of film 

packing.  Of particular relevance, acylethylenimines having short hydrocarbon side 

chains were found to exist in an easily compressible, liquid-like state.10  As the side chain 

length was increased, the monolayers became more condensed until at chain lengths 

greater than 13, the resulting monolayers became crystallized, rigid structures.  Similarly, 

a hydrocarbon side chain length of 18 in polyimide Langmuir-Blodgett films resulted in 

crystallized structures, as verified by IR peak positions for methylene stretching modes.11  

As for surface-initiated polymers, Stöhr and Rühe grew various n-alkyl methacrylates 

from physisorbed poly(caprolactone) macroinitiators on silicon oxide.12  They found that 

the surface became increasingly hydrophobic as the length of the polymer side chain was 

increased from a methyl to a stearyl group.  However, to our knowledge, the combined 

structural, surface, and barrier properties of polymer films with varying alkyl side chain 

length has not been investigated.  Our general film preparation methods allow us to make 

these film property comparisons among various hydrocarbon-modified films along with 

comparisons to the fluorocarbon-modified PHEMA films. 
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Experimental Procedures 

 PHEMA films having reactive hydroxyl side chains were created as described in 

Chapter III.  Derivatization of PHEMA with hydrocarbon side chains was accomplished 

by exposing the film to 20 mM solutions of acetyl chloride (CH3COCl), octanoyl chloride 

(C7H15COCl), lauroyl chloride (C11H23COCl), myristoyl chloride (C13H27COCl), 

palmitoyl chloride (C15H31COCl), or stearoyl chloride (C17H35COCl) with 25 mM 

pyridine in iso-octane for at least 3 h to give H1, H7, H11, H13, H15, or H17 films, 

respectively (Figure 5.1).  After reaction, the films were rinsed with iso-octane and 

ethanol and dried with nitrogen.  To facilitate discussion and comparison of the multiple 

chain lengths employed in this work, m will be used to denote the chain length of the 

hydrocarbon modification: CmH2m+1; m = 1, 7, 11, 13, 15, 17. 

 

Results and Discussion 

 

Film Composition and Structure 

We used RAIRS to monitor compositional changes within the polymer films due 

to acylation by the various hydrocarbon acid chlorides.  Figure 5.2 shows a survey IR 

spectrum for a representative hydrocarbon-modified PHEMA film, H7, along with the 

spectrum for PHEMA.  All other hydrocarbon-modified films exhibit the same peaks in 

the IR spectrum as H7 but at slightly different positions and intensities.  Differences 

between the films, particularly in the C=O and CH2 stretching regions, are accentuated in 

Figures 5.3 and 5.4, respectively.  In similar fashion to the fluorocarbon-modified 

PHEMA films, diminution of the hydroxyl peak in the region from 3100 to 3700 cm-1
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Figure 5.2.  Reflectance-absorption IR spectra of PHEMA and a representative 
hydrocarbon-modified PHEMA film, H7.  Regions of interest are labeled on the plot. 
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Figure 5.3.  Carbonyl (C=O) stretching region of IR spectra for PHEMA and 
hydrocarbon-modified PHEMA films.  The dashed line at 1733 cm-1 indicates the 
position of the carbonyl peak for PHEMA. 
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Figure 5.4.  C-H stretching region of IR spectra for PHEMA and hydrocarbon-modified 
PHEMA films.  The dashed lines are positioned at 2852 and 2921 cm-1, corresponding to 
the lowest peak positions observed for νs(CH2) and νa(CH2) in these films. 
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may be used to estimate conversion of hydroxyl side chains of PHEMA to esters.  Table 

5.1 lists conversions, calculated using Eq 4-1, from at least five independent preparations 

for each acid chloride.  As the length of the hydrocarbon side chain is increased, 

conversion drops substantially, suggesting molecular size limits penetration and 

subsequent reaction of acid chlorides within the film.  H1 exhibits extremely high 

conversion since, as a small molecule, it can easily diffuse into the film and provides 

little steric hindrance after reaction.  For the modification with the longest side chain 

group (C17H35), conversion was significantly lower than that for the other hydrocarbon 

films.  Several attempts were made, without success, to increase conversion for H17 by 

using different solvents and raising temperature. 

The acylation reaction studied here causes two other differences in the IR spectra 

of modified PHEMA films as compared to PHEMA: introduction of an additional ester 

linkage and the presence of hydrocarbon chains of varying length on each modified side 

chain.  The hydrocarbon ester from acylation of the side chain results in a second 

carbonyl peak in the spectrum around 1750 cm-1 and enhanced C-O stretching peaks from 

1100 to 1300 cm-1.  The introduction of long hydrocarbon chains into the polymer film 

results in a significant increase in the intensity of C-H bending (1400 to 1500 cm-1) and 

C-H stretching (2800 to 3000 cm-1) modes in the IR spectrum. 

The carbonyl peak resulting from acylation is not easily distinguished from the 

original PHEMA ester carbonyl peak (Figure 5.3) due to similar chemical environment 

and therefore similar peak positions.  The peak for the carbonyl associated with the 

PHEMA ester appears at 1733 cm-1, whereas the carbonyl peak due to acylation appears 

at somewhat higher wavenumbers (~1750 cm-1, as evidenced by this peak position in H1)  
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Table 5.1.  Conversion, IR peak positions, and film thickness information for hydrocarbon-modified PHEMA films. 

 

  IR Peak Positions Film Thickness 

Film χ (%) ν (C=O)a νs (CH2) νa (CH2) 
Observed 

Increase (%) 
Repeat Unit 

MW (g mol-1) 
Predicted 

Increase (%) 
H1 93 ± 3 1750 — — 29 172 30 

H7 82 ± 5 1744 2858 2930 110 256 81 

H11 77 ± 6 1744 2855 2926 127 312 116 

H13 68 ± 5 1742 2855 2925 124 341 121 

H15 64 ± 4 1742 2852 2922 111 369 119 

H17 37 ± 6 1737 2852 2921 40 397 75 

H17/H1 82 ± 4 1750 2852 2920 53 — 87b

a The C=O peak positions are typical for each film but can shift slightly as conversion deviates from the average values. 
b Based on 35% conversion for H17 and 47% for H1. 
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but still relatively close to the PHEMA carbonyl peak.  Upon acylation, one broader peak 

appears in the region, representing the combined intensities of the PHEMA carbonyl and 

the carbonyl from the acylation reaction.  From Figure 5.3 and Table 5.1, the resultant 

carbonyl peak position shifts with increasing hydrocarbon chain length.  This shift is due 

to lower conversion within the film as m increases, meaning that less IR peak intensity is 

introduced at higher wavenumbers by the new carbonyl.  Furthermore, the overall 

intensity of the combined carbonyl peak is also reduced as m is increased because of 

diminishing conversion. 

Addition of alkyl groups to the PHEMA side chains also results in a significant 

increase in C-H bending and stretching bands in the IR spectrum, and the position of 

these peaks gives an indication of chain packing and crystallinity.  As compared to the 

spectrum for PHEMA, those for modified PHEMA show a sharper CH2 bending peak at 

~1470 cm-1 (Figure 5.2).  However, there is no peak splitting as observed in crystalline 

polymethylene lattices with orthorhombic chain packing.6  Symmetric and asymmetric 

methylene stretching modes, νs(CH2) and νa(CH2) respectively, become much more 

prominent and sharper after addition of alkyl side chains (Figure 5.4).  From previous IR 

studies of polymethylene chains,6,13 a νs(CH2) mode positioned at ~2850 cm-1 and a 

νa(CH2) mode positioned at ~2918 cm-1 are indicative of highly crystalline chain packing 

while shifts to higher wavenumbers indicate less dense, more liquid-like packing.14  

Figure 5.4 shows that increasing the hydrocarbon chain length results in more crystalline 

chain packing (fewer gauche conformers) within the film as the νa(CH2) position 

decreases from 2930 (m = 7) to 2921 (m = 17) cm-1.  The improved crystallinity observed 

for longer alkyl side groups is consistent with greater van der Waals interactions among 
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hydrocarbon chains, which increase proportionally with chain length and facilitate chain 

structuring within the film.15  Additionally, in copolymer systems having one component 

that packs efficiently and one that packs poorly (i.e. ethylene-butene copolymers16), the 

more efficient-packing chains tend to order while the poorer-packing chains do not.  

Similarly in our system, increasing hydrocarbon chain length results in more crystalline 

packing because the van der Waals interactions between the alkyl chains become 

increasingly important as compared with the interactions between other groups within the 

polymer film. 

 

Film Thickness 

Table 5.1 also shows film thickness increases obtained by ellipsometry for 

acylation of PHEMA with the various hydrocarbon acid chlorides.  Starting with a 

PHEMA film, the polymer layer expands upon acylation with hydrocarbon acid chlorides 

to accommodate the additional side chain volume.  The observed trends roughly agree 

(within ~30%) with theoretical estimates based on conversion and molecular weight 

considerations, which have been used previously17 to model the addition of short 

hydrocarbon groups to PHEMA.  Unlike for the fluorocarbon modifications, there is no 

need to model the thickness changes with a volumetric model since the entire polymer 

composition remains hydrocarbon; the volumetric and molecular weight models give the 

same expected thickness increases.  H1 results in only ~30% increased film thickness 

since minimal side chain volume was introduced even at very high conversion.  With the 

exception of H17, which exhibits exceptionally low conversion, the addition of long 

hydrocarbon groups (m = 7 to 15) resulted in slightly more than a doubling of polymer 
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film thickness.  Since the hydrocarbon chains exhibit lower conversions from H7 to H15, 

the film thickness change remains relatively constant for this series. 

 

Surface Wettability 

Advancing and receding contact angles (θA and θR) of water were measured for all 

polymer films to provide a measure of surface hydrophobicity.  Table 5.2 gives average 

contact angles for the modified films along with the values for PHEMA and the bromine-

terminated initiator monolayer for comparison.  Evaluation of water contact angles for 

the initiator monolayer and the PHEMA film have already been discussed in Chapter IV.  

The advancing and receding contact angles for water on H1 were consistent with a 

moderately hydrophilic surface and a smoothing of the film as compared with PHEMA 

(Table 5.2).  Longer chain hydrocarbon-modified PHEMA films (m = 7 to 17) show 

much higher advancing water contact angles, ranging from 104° to 117°.  Within this 

series, H7 gives a lower contact angle than the other films, indicating that the shorter 

chain is unable to fully affect surface properties likely due to insufficient chain length.  

All other alkyl-modified films (H11 to H17) provide fairly high water contact angles, 

consistent with those reported for methyl-terminated surfaces.18  Within this group, the 

lowest contact angle hysteresis is observed for H17 with the highest observed for H11, 

suggesting that longer alkyl side chains result in smoother or more homogeneous 

surfaces. 

Contact angles of hexadecane were also measured on all polymer films.  

Hexadecane is a sensitive probe of hydrocarbon surface composition, indicating whether 

a surface consists primarily of –CH2- or -CH3 groups. Well-structured methyl surfaces  
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Table 5.2.  Water and hexadecane advancing and receding contact angles (º) for 
hydrocarbon-modified PHEMA films on gold. 

 
Water Hexadecane  

Film θA θR θA θR

Initiator 80 ± 2 74 ± 2 <10 <10 

PHEMA 75 ± 3 23 ± 2 <10 <10 

H1 70 ± 2 52 ± 3 <10 <10 

H7 104 ± 2 60 ± 4 <10 <10 

H11 113 ± 1 59 ± 4 16 ± 3 <10 

H13 117 ± 1 70 ± 4 21 ± 2 <10 

H15 117 ± 2 65 ± 5 44 ± 1 26 ± 3 

H17 115 ± 3 77 ± 7 47 ± 2 34 ± 4 
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exhibit advancing hexadecane contact angles of ~50°, whereas hexadecane completely 

wets methylene surfaces.19  Table 5.2 shows that the advancing hexadecane contact angle 

increases with increasing hydrocarbon side chain length.  For H7, hexadecane completely 

wets the surface, indicating that –CH3 groups are not at the surface of this film and 

remaining consistent with the lower advancing water contact angle.  As the side chain is 

lengthened from m = 11 to 17, the hexadecane contact angle increases and approaches 

that for a purely methyl surface.  For H11 and H13, the hexadecane contact angle is low, 

indicating that these surfaces contain a large proportion of methylene or ester groups with 

some methyl functionality as well.  For H15 and H17, however, the higher hexadecane 

contact angles suggest that the surface consists almost entirely of -CH3 groups.  Dense 

methyl surfaces are only possible with modified PHEMA films if the added hydrocarbon 

side chains orient nearly normal to the air-film interface at the outer few angstroms.a  

These results are consistent with those from RAIRS, which indicate films with improved 

crystallinity as the hydrocarbon chain length is increased.  Furthermore, other 

researchers10 have noted an improvement in the crystallinity of acylethylenimine 

Langmuir-Blodgett films containing alkyl side chains having more than 13 carbons.  We 

observe similar results here, particularly on the basis of RAIRS and hexadecane wetting 

                                                 
a Bartell et. al have shown that hexadecane may insert itself into a film that has defects at 
the surface, thus artificially raising the hexadecane contact angle and yielding a surface 
that appears to have densely packed methyl groups.  Bicyclohexyl is often used to more 
clearly verify a methyl surface since it is unable to insert into a film due to its bulkiness 
but has only a slightly higher surface tension than hexadecane (32.8 vs. 27.6).  The 
advancing contact angle of bicyclohexyl on H15 and H17 was found to approach 53°, 
confirming the methyl functionality of these surfaces.  See Bartell and Ruch. J. Phys. 
Chem. 1959, 63, 1045-1049 or Bain et. al. J. Am. Chem. Soc. 1989, 111, 321-335 for 
further information on this phenomenon. 
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results, with both H15 and H17 exhibiting superior crystalline packing and surface 

structuring as compared to films modified with shorter hydrocarbon groups. 

For PHEMA modified with hydrocarbon as well as fluorocarbon chains, a critical 

chain length must first be utilized to induce well-structured surfaces.  From previous 

work with fluorocarbon chains (Chapter IV), we found that F3 is not a well-structured 

film at the interface but that F7 results in a densely packed, oriented fluorocarbon layer at 

the interface, exhibiting an extremely low critical surface energy (9 mN/m).  For the 

hydrocarbon films, alkyl chain lengths below 15 do not structure the surface to any great 

extent.  However, modification with chain lengths of either 15 or 17 yield densely 

packed, oriented hydrocarbon surface layers analogous to dense fluorocarbon layers 

observed for F7.  This offset in critical chain length was expected since, for Langmuir-

Blodgett acylethylenimine films having either hydrocarbon or fluorocarbon side chains, 

longer hydrocarbon chains were required to achieve similar structure and air-film 

interfacial behavior as much shorter fluorocarbon chains.10  The authors were unable to 

form LB films once a critical chain length was reached (m > 13 for hydrocarbons and 

m > 7 for fluorocarbons), as these polymers tended to form crystallized structures that 

were difficult to transfer to a substrate.  They attributed the shorter critical chain length to 

the increased rigidity and hydrophobicity for fluorocarbon chains.  For modified PHEMA 

films, the much larger area occupied by fluorocarbon chains as compared to hydrocarbon 

chains (diameter of 5.6 Å compared to 4.2 Å, or 80% greater area)20 and the enhanced 

fluorocarbon rigidity likely result in a shorter critical chain length.  In either case, these 

outermost groups orient normal to yield a mostly (perfluoro)methyl surface only when 
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the chains are sufficiently long to achieve interchain van der Waals interactions and 

prevent chain collapse at the surface that would expose (perfluoro)methylene groups. 

 

Barrier Properties 

We investigated the barrier properties of modified PHEMA films having various 

hydrocarbon side chains using EIS upon exposure to 1 mM K3Fe(CN)6 and 1 mM 

K4Fe(CN)6 in 0.1 M Na2SO4(aq).  Figure 5.5 shows EIS spectra in the form of Bode plots 

for the initiator, PHEMA, and the hydrocarbon-modified polymer films on gold.  Solid 

curves in the plot represent best fits of the data with appropriate equivalent circuit models 

(Figure 3.3) to provide quantitative information (Table 5.3) on the effect of composition 

on film resistance and capacitance.  The following terms are used to denote various film 

and solution characteristics: solution resistance, Rs; initiator capacitance, Ci; initiator 

resistance, Ri; total film (polymer plus initiator) capacitance, Cf; and polymer film 

resistance, Rf.  Chapter IV includes extensive discussion of the impedance spectra for 

both bare gold and the initiator monolayer on gold, so this will not be reiterated here. 

While the more complex two time constant equivalent circuit (Figure 3.3b) 

rigorously applies to the hydrocarbon-modified PHEMA films, only one time constant 

typically appears in their impedance spectra.  For the hydrocarbon films other than H17, 

Rf is greater than the combined impedance of Ri and Ci in parallel, so only a single time 

constant due to the hydrocarbon-modified film is observed in the spectra.  In the same 

manner as for the fluorocarbon-modified PHEMA films, the impedance spectra for these 

films may be modeled using the one time constant circuit shown in Figure 3.3c.  The 

impedance behavior of H17 (Figure 5.5), due to a poor fit with the basic two time 
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Figure 5.5.  Electrochemical impedance spectra for films on gold obtained in 1 mM 
K3Fe(CN)6 and 1 mM K4Fe(CN)6 in 0.1 M Na2SO4(aq).  Spectra are shown for PHEMA 
before and after various hydrocarbon modifications with initiator-modified gold as a 
reference.  Solid curves represent a fit of the data to an equivalent circuit. 
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Table 5.3.  Film capacitance (Cf) and resistance (Rf) values for PHEMA and 
hydrocarbon-modified PHEMA films. 
 
 

 
Film 

Cf 

(nF/cm2) 
log Rf

(Ω ·cm2) 
Initiatora 2400 ± 300 6.0 ± 0.4 

PHEMA 640 ± 200 3.0 ± 0.3 

H1 20 ± 3 6.7 ± 0.8 

H7 13.3 ± 4.8 7.0 ± 0.7 

H11 9.2 ± 2.3 6.9 ± 0.3 

H13 8.6 ± 2.1 6.7 ± 0.3 

H15 9.1 ± 2.4 6.5 ± 0.3 

 H17b 25 ± 19 4.2 ± 0.4 

H17/H1 11 ± 2 7.7 ± 0.2 
a Ci and Ri values given for the initiator 
b Log Zw (Ω ·cm2) for H17 was determined to be 5.0 ± 0.5 
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constant model, requires use of a modified two time constant model created by adding a 

Warburg impedance (Zw) term between Rf and the initiator circuit (indicated by the 

dashed box in Figure 3.3b).  Zw is used to represent a resistance to mass transfer21 

associated with the polymer film layer.  The frequencies at which Zw is observed lie 

between those where the initiator (low frequency, long time) and polymer (high 

frequency, short time) layers dominate.  During these intermediate time scales, the 

diffusion of redox species through the polymer limits electron transfer. 

Table 5.3 contains Rf and Cf values obtained for all hydrocarbon-modified films 

studied.  As the PHEMA film is modified with hydrocarbon side chains, the impedance 

spectrum is observed to shift upward, due to a dramatically lower film capacitance (factor 

of 25 or greater) and a remarkable increase in film resistance (factor of ~104 except for 

H17) over PHEMA.  Fits of the impedance data indicate minor drops in Rf as the 

hydrocarbon chain length is increased from 7 to 15 and a significant drop from 15 to 17 

(Table 5.3).  That the effect of chain length on film resistance is opposite that observed 

on film crystallinity and oleophobicity/hydrophobicity suggests that other film properties 

are influencing water and ion uptake.  In terms of capacitance, Cf is 13 nF/cm2 for H7, 

while for H11 through H15, Cf is about 9 nF/cm2.  These values are 50 to 70 times lower 

than Cf for PHEMA.  This comparison is consistent with the increased film thicknesses 

after acylation and the lower film dielectric constant imparted by hydrocarbon chains. 

As was suspected for the fluorocarbon-modified PHEMA films, the barrier 

properties of modified PHEMA films appear to be more closely related to side chain 

conversion than to surface properties or crystallinity of the film.  The bulk film must have 

suppressed interactions with water, accomplished in our case by removal of hydrogen 
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bonding moieties, to improve its resistance against penetration by aqueous solutions.  

When unreacted, hydroxyl groups may associate through hydrogen bonding to create 

water and ion-diffusing pathways through the film.  H1 exhibits a film resistance that is 

almost 4 orders of magnitude greater than that of unmodified PHEMA.  Since H1 

contains no long alkyl side chains and exhibits minimal structuring, the improved 

impedance must be due to high conversion in the capping of hydrophilic hydroxyl 

groups.  H7, even though it is not a well-structured film and does not exhibit impressive 

wettability, has a higher conversion than the films with longer hydrocarbon groups and a 

slightly higher Rf.  As the hydrocarbon chain length is increased, conversion becomes 

lower and Rf falls accordingly.  Furthermore, H17, which yields the most structured air-

film interface, exhibits a significantly reduced Rf as compared to the other hydrocarbons 

studied.  Merely eliminating hydroxyl groups from the film is a key to developing 

improved barriers from modified PHEMA films while bulk and interfacial film 

structuring are of secondary importance.  This finding is in slight contrast to results for 

formation of fluorocarbon-modified PHEMA films where tremendous improvements in 

barrier properties were observed at low conversions (χ ~ 20%) and were correlated with 

the surface properties of the films.22  We attribute this phenomenon to differences in film 

structuring and hydrophobicity for fluorocarbon versus hydrocarbon chains. 

We can utilize this capping approach to prepare films with optimal surface and 

barrier properties.  H17 films (with χ ~ 35%) have been backfilled by exposure to a 

20 mM solution of acetyl chloride in iso-octane to increase the conversion of hydroxyl 

groups to methyl esters (Table 5.1).  When conversion for H17 was increased by 

backfilling with acetyl chloride to form H17/H1, no change was observed in surface 
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properties, consistent with the dominance of oriented heptadecyl chains at the surface and 

a lower H1-rich region.  Thickness change for H17/H1 as compared to H17 (Table 5.1) 

was along the lines of that seen for a purely H1 film (13% increase due to ~45% 

improved conversion).  Figure 5.6 shows the impedance spectra for H1, H17, and 

H17/H1 while Table 5.3 contains the Rf and Cf values.  Of particular importance, the 

elimination of unreacted hydroxyl groups of H17 has a remarkable effect on resistance 

(over 3 orders of magnitude improvement) and capacitance (cut in half) while minimally 

affecting film thickness.  In comparison with H7 (Table 5.3), which also has a χ of ~0.8, 

the H17/H1 film shows a factor of 5 higher resistance, which we attribute to the superior 

surface properties of H17/H1 over H7 that reduce water and ion penetration into the film.  

While comparison of H1 and H17 in Figure 5.6 yields the importance of conversion in 

elevating barrier performance, comparison of these two films with H17/H1 reveals that 

both high conversion within the film and the preparation of a well-structured, 

hydrophobic surface is required to optimize the barrier properties of a film.  Our work 

agrees with that of Zhou et al.7 who found that increasing the hydrophobic nature of 

PHEMA by reacting hydroxyl groups with trimethylchlorosilane greatly improved the 

resistance of the film to aqueous etching solutions. 

In comparison with partially fluorinated PHEMA films generated in the same 

manner and exhibiting similar conversions, the hydrocarbon films exhibit comparable 

barrier properties (see Tables 4.3 and 5.3).  The typical film resistance achieved with the 

hydrocarbon films is roughly 107 Ω⋅cm2, with the best film (H17/H1) approaching 

108 Ω⋅cm2, and the best fluorinated films also approach 108 Ω⋅cm2.  The capacitances for 

both fluorocarbon and hydrocarbon films generally fall in the realm of 10 nF/cm2. 
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Figure 5.6.  Electrochemical impedance spectra obtained in 1 mM K3Fe(CN)6 and 1 mM 
K4Fe(CN)6 in 0.1 M Na2SO4(aq) for H17, H1, and H17/H1 films on gold.  Solid curves 
represent a fit of the data to an equivalent circuit. 
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Comparison between specific fluorinated films and hydrocarbon films can also be made 

based on side chain length and molecular weight.  Based on alkyl chain length, F7 

provides slightly higher Rf and lower Cf than H7, because of superior structuring at the 

surface and in the bulk even though H7 exhibits a bit higher χ (0.82 vs. 0.77).  In 

comparing side groups with similar molecular weight and conversion, H11 (MW = 312.4; 

χ = 0.77) and F3 (MW = 326.2; χ = 0.79) exhibit similar barrier properties.  We also 

attempted to use benzoyl chloride to modify PHEMA, but unlike a fluoroaryl-modified 

PHEMA film that exhibits high conversion and excellent barrier properties,23 the benzyl-

modified film exhibited poor conversion and barrier properties. 

 

Film Stability 

 The hydrocarbon modifications of PHEMA made in this work result in a new 

ester on the polymer side chains.  Unlike the fluorocarbon modifications already 

discussed, however, these esters cannot be hydrolyzed under mild conditions.  Ethanolic 

KOH solutions have absolutely no effect on these films.  Only when exposed to solutions 

containing lithium aluminum hydride (LiAlH4), a strong reducing agent, were these films 

cleaved at the newly formed ester bond.  Under these same harsh conditions, the original 

PHEMA ester was not cleaved, however, as it is likely more stable since it resides close 

to the polymeric backbone and is sterically less accessible.  The chemical conditions 

required to damage the films are of little concern practically, and these hydrocarbon-

modified PHEMA films could be used under most conditions. 
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Conclusions 

The two-step polymerization/reaction method presented here represents a 

straightforward and effective way to create ultrathin films having various hydrocarbon 

side chains.  The ability to grow PHEMA via a water-accelerated, surface-initiated 

scheme allows tremendous control over film thickness.  Subsequent reaction of polymer 

side chains introduces hydrocarbon functionality into the film with diminishing 

conversion as the hydrocarbon chain length is increased.  Increasing the hydrocarbon side 

chain length increases the crystallinity of the hydrocarbon groups within the polymer 

films due to enhanced van der Waals interactions.  Films having the longest chains, H15 

and H17, yield wetting properties consistent with a densely packed methyl surface, 

indicating that the outermost groups are oriented nearly normal to the air-film interface.  

Shorter chains are unable to impart this degree of structure to the film.  The hydrocarbon 

films studied here could adequately be used in an application requiring an 

oleophobic/hydrophobic surface at much less cost than a fluorocarbon film.  Tremendous 

improvement in film barrier properties was also observed upon acylation of PHEMA with 

hydrocarbon acid chlorides, but the improvement is linked most closely to conversion of 

side chains while film structure and surface properties are secondary issues.  The 

importance of conversion is illustrated by capping the hydroxyl groups of PHEMA with 

acetyl chloride to achieve χ ~ 90% and 4 orders of magnitude improvement in film 

resistance.  Nonetheless, the best barrier film prepared in this portion of the work, 

H17/H1, has both high conversion of hydroxyl groups (>80%) and a densely packed 

hydrophobic methyl surface.  Combined, the results described in this chapter demonstrate 
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the key roles of hydrocarbon side chain length and conversion in controlling film 

structure, surface properties, and barrier properties. 
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CHAPTER VI 

 

BLOCK-LIKE COPOLYMER FILMS USING CONTROLLED POST-
POLYMERIZATION REACTIONS 

 

Block copolymer thin films are often prepared by sequential polymerization of 

different monomers using controlled, surface-initiated polymerizations.1-3  These films 

exhibit properties that are dependent on monomer choice and have applications in 

lithographic masks, membranes, responsive coatings, and photonic devices.1,4-6  

However, the sequential polymerization steps utilized during formation of these films are 

time- and labor-intensive processes and tend to result in diminished block thicknesses due 

to progressively lower reinitiation efficiencies.1 

Herein, we demonstrate a method that requires only a single polymerization step 

but can yield copolymer films having block-like properties and controlled thickness up to 

several hundred nanometers (Figure 6.1).  As the starting point, poly(hydroxyethyl 

methacrylate) (PHEMA) films are grown from gold surfaces using surface-initiated, 

water-accelerated atom transfer radical polymerization (ATRP).7-11  The use of PHEMA 

allows, by simple post-polymerization chemical reactions, the addition of numerous side 

chains to tune film properties.  We and others have shown that the hydroxyl side chains 

of the PHEMA film can be derivatized by reaction with various species, including 

fluorocarbon and hydrocarbon acid chlorides, an imidazole, and trimethylchlorosilane, to 

produce films with a wide range of wettabilities (Chapters IV and V).10,12-18  Here, we 

modify PHEMA with pentafluorobenzoyl chloride (C6F5COCl) to generate a film 

denoted as FBZ that contains perfluoroaryl side groups on ~80% of the side chains.  Of 
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Figure 6.1.  Controlled hydrolysis and acylation reactions to form block-like copolymer 
films from a base PHEMA film on gold. 
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significance here, when fluorocarbon acid chlorides such as FBZ are employed in the 

modification of PHEMA, the resulting fluorinated esters created via the acylation 

reaction are susceptible to hydrolysis in basic solutions.  By controlling the base 

concentration and exposure time, hydrolysis of fluorinated PHEMA films can be 

conducted in a diffusion-limited manner, only removing fluorinated ester groups near the 

outer surface.  Since this hydrolysis regenerates hydroxyl groups, the outer portions of 

the film can be subsequently rederivatized with a second moiety (i.e. another 

fluorocarbon or hydrocarbon) to create block-like copolymer films (Figure 6.1).  The 

choice of modifying species allows surface as well as barrier properties to be altered to 

varying degrees and provides fundamental information on the effect of a dense outer 

block on the overall barrier properties of the film.14,16,18  As compared to use of a single 

functionality within polymer films, a combination of groups to simultaneously optimize 

all areas of effectiveness in applications provides the ultimate ability to engineer surfaces 

and films at the molecular level. 

In the interest of creating hydrophobic, oleophobic barriers via simple, controlled 

reactions, FBZ was chosen as the base film because it exhibits desirable barrier properties 

while presenting a surface that is oleophilic (wetted by hexadecane) and only moderately 

hydrophobic (undesirable for use as a non-wetting coating).  Therefore, the properties of 

this film may be dramatically altered and improved by modification with an outer block.  

In addition, FBZ is readily hydrolyzed but accommodates a slower, more easily 

controlled hydrolysis as compared with perfluoroalkyl modifications since it is slightly 

more stable (β but no α fluorine atoms).  The highly blocking barrier properties of FBZ 
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are important to achieving a controlled hydrolysis and preventing the KOH solution from 

penetrating into the fluorocarbon region of the film.  

Baker, Bruening, and co-workers have recently demonstrated that alumina 

membranes coated with thin (<200 nm) hydrocarbon- and fluorocarbon-modified 

PHEMA films exhibit remarkable separation factors (as high as 500) in the pervaporation 

of volatile organic compounds (i.e. benzene or ethyl acetate) from water.18  The ability to 

control both surface and barrier properties, as described herein, could ultimately be useful 

to affect molecular partitioning and diffusivities and perhaps, tailor separation 

efficiencies in a molecule-specific manner.  While post-polymerization reactions within 

films on a surface can occasionally be found in the literature,3,10,12,13,18,19 no analogous 

scheme was found for the preparation of block-like copolymer films from a 

homopolymer film. 

 

Experimental Procedures 

 PHEMA films having reactive hydroxyl side chains were created as described in 

Chapter III.  To create copolymer films, PHEMA was first exposed to 20 mM solutions 

of C6F5COCl with 25 mM pyridine in dichloromethane for at least 3 h to give FBZ films 

with high conversion (~80%) of hydroxyl groups to esters.  After acylation, the films 

were rinsed with dichloromethane and ethanol and dried with nitrogen.  Controlled 

hydrolysis of the films was achieved by exposing FBZ to a 0.5 M KOH ethanolic solution 

for 30 s, followed by rinsing with water and ethanol and drying with nitrogen.  The 

partially hydrolyzed films (PHEMA/FBZ) were then placed in solutions containing 

20 mM C6F5COCl, C7H15COCl, or C7F15COCl along with 25 mM pyridine for 3 h to 
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form FBZ/FBZ, H7/FBZ, or F7/FBZ films, respectively.  Dichloromethane was used as 

solvent for C6F5COCl and C7F15COCl solutions while iso-octane was the solvent for 

C7H15COCl solutions.  In order to make the terpolymer film, F7/FBZ+F1, FBZ films 

were placed in a 20 mM solution of trifluoroacetic anhydride and 25 mM pyridine in 

dichloromethane for 3 h to form FBZ+F1.  These films were then subjected to partial 

hydrolysis and reaction with C7F15COCl, as described above, to form F7/FBZ+F1. 

 

Results and Discussion 

 

Controlled Hydrolysis of Fluorocarbon-Modified PHEMA Films 

A 220 nm PHEMA film was exposed to a 20 mM solution of pentafluorobenzoyl 

chloride in dichloromethane for at least 3 h to generate an FBZ film with perfluoroaryl 

groups on the side chains.  As already shown, ~80% of the PHEMA hydroxyl groups are 

converted to perfluoroaryl groups, which are signified in the reflectance-absorption 

infrared spectra by a new carbonyl peak at ~1749 cm-1, aromatic C-F stretching peaks 

between 1200 and 1350 cm-1, and peaks for fluorinated C…C aromatic ring stretching 

from 1500 to 1700 cm-1 (Figure 6.2).  The FBZ film was then hydrolyzed for 30 s in 

0.5 M KOH ethanolic solution to form PHEMA/FBZ (outer/inner block as shown in 

Figure 6.1).  As indicated by IR conversion estimates based on changes in the hydroxyl 

peak area, this brief exposure resulted in minimal overall film hydrolysis with only ~5% 

of fluorinated ester groups in FBZ hydrolyzed to alcohols.  Accordingly, the IR spectra 

(Figure 6.2) for this film still indicated a predominately FBZ composition.  From 

ellipsometric measurements (Table 6.1), film thickness dropped ~15 nm upon hydrolysis, 
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Figure 6.2.  RAIR spectra for PHEMA, FBZ, and PHEMA/FBZ.  Modification of 
PHEMA to form FBZ results in additional C-O stretching from 1100 to 1300 cm-1, C-F 
stretching around 1350 cm-1, aromatic C…C stretching between 1500 and 1700 cm-1, and 
additional C=O stretching from the newly formed ester at 1749 cm-1.  Hydrolysis of FBZ 
to form PHEMA/FBZ results in no significant change in this low wavenumber region of 
the IR spectrum. 
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Table 6.1. Conversion, thickness, advancing water and hexadecane contact angles, and film resistance (Rf) and capacitance (Cf) of 
modified PHEMA block-like copolymer films. 
 

Film Conversion 
(%) 

Thickness 
(nm) θA (H2O) (°) θA (HD) (°) 

Log Rf 
(Ω⋅cm2) Cf (nF/cm2) 

PHEMA  224 75 ± 3 <10 3.0 ± 0.3 640 ± 200 

FBZ 81 ± 2 394 90 ± 2 <10 8.1 ± 0.6 9 ± 2 

PHEMA/FBZ 76 ± 2 379 75 ± 2 <10 8.2 ± 0.5 11 ± 2 

FBZ/FBZ 80 ± 2 390 92 ± 2 <10 8.2 ± 0.3 9 ± 1 

H7/FBZ 82 ± 3 402 106 ± 3 <10 8.8 ± 0.4 8 ± 1 

F7/FBZ 82 ± 3 444 128 ± 2 77 ± 2 9.1 ± 0.5 7 ± 1 

F7/FBZ+F1 87 ± 2 448 127 ± 2 77 ± 2 10.0 ± 0.4 8 ± 1 
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which, based on molecular weight of the cleaved perfluoroaryl groups, is consistent with 

a ~20 nm layer of regenerated hydroxyl groups remaining atop the film.  While the 

overall hydrolysis was minimal, the effect at the outer few angstroms was significant, as 

the advancing water contact angle indicated that surface properties reverted entirely to 

those of a PHEMA film.  This complete conversion at the outer surface and slight change 

in conversion overall is consistent with a diffusion-limited hydrolysis (as suggested in 

Figure 6.1).  As additional evidence of a diffusion-limited hydrolysis reaction, the surface 

properties (dependent only on the outer 5 Å of surface composition) of the films become 

those of PHEMA after only 1 s in 0.5 M KOH/ethanol, a condition in which ≤ 1% of the 

perfluorobenzoyl groups were hydrolyzed.  The slight extent of this reaction combined 

with the rapid and complete conversion of surface properties is consistent with a fast 

surface reaction.  A reaction-limited process would not likely cleave the entire surface 

layer of fluorinated esters in such a short amount of time but instead would diffuse into 

the bulk film, hydrolyze groups randomly, and only completely hydrolyze the surface on 

a longer time scale. 

Two further points support the claim of a diffusion-limited hydrolysis.  The first is 

the synthesis of F7/FBZ+F1, which is made by first forming FBZ+F1 (with F1 

presumably residing in lower regions of the film) followed by hydrolysis.  Our previous 

work has shown that in 0.5 M KOH, films having α fluorine esters (i.e. F1) hydrolyze 

instantaneously (~1 s), whereas films having β fluorine esters (i.e. FBZ) hydrolyze much 

more slowly (~20 min).  Even after 30 s hydrolysis, essentially no F1 functionality was 

cleaved, as evidenced by the constant intensity of an IR peak at 1790 cm-1 due to 

α fluorine C=O.  In a reaction-limited case, we might expect to see the base solution 
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diffuse into the film and rapidly cleave the F1 chains, but this is not observed.  The 

second supporting point is evidenced by the creation of H17/FBZ, which was made by 

reacting PHEMA/FBZ with stearoyl chloride to rederivatize the outer film portions to 

H17.  The RAIR spectrum for this film (not shown) indicates distinct CH2 stretching 

peaks at 2920 cm-1 and 2851 cm-1, consistent with an outer crystalline hydrocarbon 

region.  The observed crystallinity implies that the hydrocarbon chains are well-packed 

and therefore exist together in the outer region of this film. 

 

Rederivatization of Hydrolyzed FBZ Films 

Diblock-like copolymer films were formed by exposing PHEMA/FBZ films to 

solutions of octanoyl chloride or pentadecafluorooctanoyl chloride to rederivatize the 

outer film surface and form H7/FBZ or F7/FBZ, respectively (see Figure 6.1).  

PHEMA/FBZ or films rederivatized to form FBZ/FBZ served as experimental controls.  

A terpolymer film, F7/FBZ+F1, was engineered by backfilling with a short chain 

modification (trifluoroacetic anhydride) to have elevated hydroxyl conversion before 

controlled hydrolysis and rederivatization with F7 at the outer film surface.  After 

copolymerization, hydroxyl conversion estimates from the IR hydroxyl peak area (Table 

6.1) returned to the same levels as before hydrolysis, indicating that essentially all 

regenerated hydroxyl groups had been successfully rederivatized.  However, since the 

films still contain a predominate FBZ composition, only slight changes are observed in 

the low wavenumber region of the IR spectra (Figure 6.3).  Spectra for F7/FBZ and 

F7/FBZ+F1 each show the appearance of a peak at 1790 cm-1 that corresponds to 

α fluorination of the carbonyl group to produce -OC(O)CF2- linkages and an increase in 
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Figure 6.3.  RAIR spectra for copolymer films.  Rederivatization of PHEMA/FBZ to 
form copolymer films results in minimal changes.  For F7/FBZ, a small amount of CF2 
stretching around 1350 cm-1 and an additional C=O peak at 1790 cm-1 appear.  A 
terpolymer film, F7/FBZ+F1, exhibits even more CF3 and C=O stretching atop those for 
F7/FBZ. 
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CF stretching at 1250 cm-1 over that of the FBZ/FBZ control.15  In comparing H7/FBZ to 

FBZ/FBZ, the lack of spectral changes in the C-H bending region (1400-1500 cm-1) or in 

the C-H stretching region (not shown) are attributed to the weak IR absorbance of the 

short hydrocarbon groups, which we have also observed in homogeneous H7 films.16   

Copolymer film thickness (Table 6.1) increased significantly upon reacting the 

outer film portions with fluorocarbon or hydrocarbon groups which, as we have noted 

before, results from the polymer chains extending to accommodate the additional volume 

of long side chains.14  In fact, increases in film thickness generally scale with the 

molecular volume or mass of the derivatizing species (F7 > H7 > FBZ).  Upon 

comparison of copolymer wetting data in Table 6.1 with those for homogeneous films in 

Tables 4.2 and 5.2, reaction of the small portion of regenerated hydroxyl groups yielded 

the surface properties expected for PHEMA films modified exclusively with those acid 

chlorides.14,16  The surface groups of the copolymer films were chosen to be increasingly 

hydrophobic (PHEMA < FBZ < H7 < F7) in order to demonstrate the ability to tune 

surface properties by creating copolymer films in this manner.  Of the surfaces 

investigated here, only F7/FBZ and F7/FBZ+F1 with advancing hexadecane contact 

angles of 77° also exhibit oleophobic behavior, consistent with results for a homogeneous 

F7 film, where the fluorocarbon chains lie normal at the air-film interface and result in an 

extremely low critical surface energy of 9 mN/m.14 

 

Engineered Barrier Properties 

Work from previous chapters has shown that improving conversion of hydrophilic 

hydroxyl groups reduces the presence of water and ion-diffusing pathways and results in 
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dramatic improvement in the barrier properties (higher Rf and lower Cf) of modified 

PHEMA films.  Controlled film hydrolysis and subsequent surface modification provide 

a route to hold overall conversion constant while investigating the effect of surface 

composition on barrier properties.  To conduct this study of surface effects on barrier 

properties, we performed EIS on the copolymer films upon exposure to an aqueous 

solution of 1 mM K4Fe(CN)6·3H2O, 1 mM K3Fe(CN)6, and 0.1 M Na2SO4.  The 

impedance spectra for all the copolymer films, as well as for PHEMA and FBZ, are 

presented as Nyquist plots (to demonstrate slight differences more clearly than Bode 

plots) in Figure 6.4.  As shown in the inset, copolymer films with similar surface 

hydrophilicity to FBZ exhibit comparable barrier behavior, as indicated by the similar 

scale for Nyquist plots of FBZ, PHEMA/FBZ, and FBZ/FBZ.  For comparison, the 

Nyquist plot of PHEMA is also presented in the inset of Figure 6.4 but exists at 

significantly lower Z values than can be reasonably seen on the scale of the plot.  The 

Nyquist plots for the diblock-like films modified with more hydrophobic and structured 

surface compositions (H7/FBZ, F7/FBZ, and F7/FBZ+F1) exhibit distinctly higher 

impedances.   

To extract physical film parameters, the spectra for all modified PHEMA films 

were fit with the simplified, one time constant Randles equivalent circuit model in Figure 

3.3c.  As shown quantitatively in Table 6.1 and based on equivalent circuit fits of the 

impedance spectra for the films, Rf for the diblock-like copolymer films increases with 

increasing surface hydrophobicity (F7/FBZ > H7/FBZ > FBZ/FBZ ≈ PHEMA/FBZ).  

Simply modifying the outer few nanometers of the film to contain hydrophobic chains 

produces an order of magnitude difference in Rf between F7/FBZ and PHEMA/FBZ.   

 123



 

 

 

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

0

25

50

75

0 25 50 75

FBZ/FBZ

PHEMA/FBZ

FBZ

PHEMAF7/FBZ

H7/FBZ

F7/FBZ+F1

Z i
m

(M
Ω

·c
m

2 )

Zre (MΩ·cm2)

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

0

25

50

75

0 25 50 75

FBZ/FBZ

PHEMA/FBZ

FBZ

PHEMAF7/FBZ

H7/FBZ

F7/FBZ+F1

Z i
m

(M
Ω

·c
m

2 )

Zre (MΩ·cm2)
 

 
Figure 6.4.  Nyquist plots for the electrochemical impedance behavior of PHEMA, FBZ, 
all diblock-like copolymer films, and one terpolymer film.  All spectra were obtained in 
the frequency range from 10-2 to 104 Hz in an aqueous solution containing 1 mM 
K4Fe(CN)6·3H2O, 1 mM K3Fe(CN)6, and 0.1 M Na2SO4.  The larger view shows only the 
three best barrier films created in this work: F7/FBZ+F1 followed by F7/FBZ and 
H7/FBZ.  The inset is on a much smaller scale but shows spectra of FBZ, PHEMA/FBZ, 
and FBZ/FBZ, indicating that the barrier properties of these films do not vary 
significantly from one another.  The spectrum for PHEMA, a much worse barrier than the 
engineered films, appears at extremely low Z values (<1 MΩ⋅cm2) in the inset. 
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Among films with similar bulk composition and surface hydrophobicity (FBZ, 

PHEMA/FBZ, and FBZ/FBZ), Rf does not vary significantly, in agreement with the 

Nyquist plots for these films.  The likely reason for barrier property enhancement with 

increasing hydrophobicity is the ability of low energy surfaces to resist penetration by 

aqueous solutions.  Additionally, each of these films (Rf from 108 to 109 Ω⋅cm2) exhibits 

greater than 5 orders of magnitude improvement in Rf as compared to the base PHEMA 

film (Rf of 103 Ω⋅cm2) and up to one order of magnitude improvement in Rf as compared 

to the best homopolymer film, FBZ.  Cf increases slightly upon regeneration of surface 

hydroxyl groups due to greater water penetration into the outer region of the 

PHEMA/FBZ film.  The addition of surface groups having low dielectric constants, 

however, again reduces Cf, even below the starting value for FBZ.  To provide additional 

points of reference, H7 and F7 homopolymer films exhibit log Rf of 7.0 and 7.4 Ω⋅cm2, 

respectively, and Cf ranging from 9 to 13 nF/cm2 (Chapters IV and V).  The 

homopolymer FBZ film (used as the baseline in this study) provides a greater barrier than 

either of these films due to either higher hydroxyl conversion (vs. F7) or film structuring 

issues (vs. H7).  By engineering the outer surface region of diblock-like copolymer films 

based on FBZ, we can achieve coatings with significantly greater resistances and lower 

capacitances. 

Combining backfilling with controlled hydrolysis, as demonstrated with 

F7/FBZ+F1, enables the preparation of a film with higher overall conversion (87%) while 

maintaining a hydrophobic/oleophobic surface (Table 6.1).  Rf and Cf derived from an 

equivalent circuit fit to the EIS spectrum of this film indicate that it does indeed present a 

greater barrier to ion transport than the other copolymer films (an order of magnitude 
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higher Rf than that of F7/FBZ) or any of the homogeneous films prepared previously.14,16  

The Rf values of films created in this work (up to ~10 GΩ⋅cm2) are among the highest of 

any submicron films reported in the literature20 and even higher than many films having 

thicknesses of several microns.21  These results detail the importance of maintaining a 

highly hydrophobic surface and minimizing hydrophilic groups throughout to 

dramatically elevate the resistance of polymer films against water and ion permeation.  

 

Conclusions 

Using a single-step polymerization followed by simple chemical reactions, this 

approach allows creation of block-like copolymer films having partially fluorinated bulk 

composition with a wide range of surface chemical groups (fluorocarbon, hydrocarbon, 

hydroxyl-rich, etc.) to engineer film properties at the molecular level.  This unique 

methodology for the preparation of copolymer films successfully provides a direct 

avenue toward the customization of thin films and coatings.  Numerous potential 

applications of these barrier films exist.  Simple modification of PHEMA films has 

already been demonstrated for use in membranes12,18 and as etch resists.13  The ability to 

tune film properties to a greater degree, as evidenced in this work, could provide even 

higher selectivity and improved performance in these and many other applications.   
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CHAPTER VII 

 

PATTERNED GROWTH OF PARTIALLY FLUORINATED POLYMER FILMS 

 

Microfabrication, the creation of microstructures on surfaces, often involves the 

patterning of polymer films on surfaces.1,2  Patterned films are especially useful in 

directing various events at surfaces, with surface energy (hydrophilicity/hydrophobicity) 

being one of the most common and most desirable patterned properties.3-6  The 

hydrophobic nature of fluorinated surface regions has been used to direct the flow of 

solutions through more hydrophilic regions in microfluidic channels.3,7  Assembly of 

colloidal particles in patterned hydrophilic areas has been accomplished via wetting 

phenomena, where suspended particles are withdrawn with a liquid into higher energy 

(hydrophilic) surface regions and remain after liquid evaporation.4  In tandem on the 

same substrate, hydrophobic materials have been used as etch resists while hydrophilic 

materials have been observed to accelerate aqueous etching processes and increase 

etching contrast between the two areas.8  Numerous methods exist to create micro- and 

nanostructures on surfaces.  The most widely used technique, stemming from 

microelectronics fabrication, is photolithography, but various molding and printing 

techniques have more recently been developed to achieve patterned surfaces.1,9 

Soft lithographic techniques have especially become popular for micropatterning 

surfaces.  These techniques are termed “soft” because they involve “soft” organic 

materials (typically elastomers) as opposed to “hard” inorganic materials encountered in 

microelectronics.  The main advantages of soft lithography over photolithography are less 
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expensive equipment and materials and simpler procedures.  Additionally, while feature 

size in photolithography is limited by optical diffraction, soft lithography feature sizes are 

mainly limited by the properties of materials being utilized.1,9  Microcontact printing 

(μCP) with polydimethylsiloxane (PDMS) stamps having micron-size relief features has 

become quite popular for patterning surfaces due to its simple preparation and ease of 

use.  Simply inking a PDMS stamp with a solution containing a reactive species, drying 

it, and gently contacting the stamp with a surface results in transfer of the reactive species 

to that surface in the pattern initially present on the PDMS stamp.1,9  A variety of 

chemical species have been patterned onto surfaces using μCP, including alkanethiol 

SAMs,10,11 silane SAMs,12 metal ions,13,14 proteins,6 and chemical reagents.15 

Several routes to pattern surface-initiated polymer film growth are possible with 

μCP.  The most common method is to microcontact print an inert alkanethiol and then 

backfill the remaining surface area with an initiator.16-18  Since the ATRP initiator being 

used in this study is itself a disulfide, it is also possible to stamp the initiator directly onto 

the surface,19,20 although this more direct approach has never been demonstrated for the 

disulfide initiator used here.  ATRP will result in film growth only from initiated sites, so 

in either case, the surface will have clearly defined regions containing polymer film with 

adjacent bare gold or inert SAM-coated gold.  Especially in the case where bare gold 

remains interspersed with PHEMA or derivatized PHEMA, further processing is possible 

via another polymerization step.  As a demonstration of this concept, surface-catalyzed 

growth of polymethylene from bare gold will be conducted to create either 

hydrophobic/hydrophilic or fluorocarbon/hydrocarbon patterned surfaces. 
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Another potential patterning method that is possible exclusively with fluorinated 

PHEMA films is to deliver basic solution to hydrolytically pattern the surface.  In the 

ideal hydrolytic patterning situation, the stamped regions would be converted back to 

PHEMA, causing a change in film thickness and surface properties where the base 

solution is applied (similar to controlled hydrolysis in the creation of block-like 

copolymer films in Chapter VI but on the microscale). 

 

Experimental Procedures 

PDMS stamps having relief features of either 10 or 20 μm wide lines and 

correspondingly, either 20 or 40 μm wide spacings were used to pattern surfaces.  The 

PDMS stamps were fabricated in a clean room using lithographic masters (photoresist 

pattern on silicon) donated by Professor Ki-Bum Kim (Seoul National University).  By 

volume, one part of Sylgard 184 silicone elastomer curing agent to 10 parts of Sylgard 

184 silicone elastomer base were mixed thoroughly and then placed under vacuum in 

order to purge any entrapped air.  The mixture was then poured onto the masters and 

cured in a 60 °C oven for 2 h.  The PDMS stamps were cut into their respective sizes 

(~1 cm × 1 cm) using a scalpel.  The stamp surfaces were inked by rubbing them with a 

cotton swab that had been soaked in one of the following solutions: 10 mM dodecanethiol 

in ethanol, 10 mM ATRP disulfide initiator ((BrC(CH3)2COO(CH2)11S)2) in ethanol, or 

0.1 M to 0.5 M KOH in either water or ethanol.  After inking, the stamps were gently 

dried with nitrogen, and patterned surfaces were formed by pressing the inked stamps 

into contact with the gold or polymer-coated gold substrates.  The stamp was pulled off 

the substrate after about 1 min of contact, and the substrate was then rinsed with ethanol.  
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In the case of hydrolytic patterning, the substrate was also rinsed with water to ensure 

complete removal of KOH.  All other processing steps (polymerization and film 

derivatization) remained the same as described previously. 

Polymethylene (PM) films were prepared on bare gold regions of patterned 

PHEMA films by exposure of the substrates to ether solutions containing 4 mM 

diazomethane (DM) at 0 °C for 16 h (overnight).21,22  Film growth was carried out in 

capped 20 mL vials, and only one substrate was placed in each vial.  Upon removal, the 

samples were rinsed with ether and dried in a stream of nitrogen. 

 

Results and Discussion 

 

 Patterned ATRP Initiator and Subsequent Film Growth 

μCP Inert Alkanethiol and Backfilling ATRP Disulfide Initiator 

Hawker and coworkers16 previously microcontact printed hexadecanethiol onto 

gold before exposure to the ATRP disulfide initiator, (BrC(CH3)2COO(CH2)11S)2, to 

backfill the surface with sites conducive to polymer growth.  We stamped dodecanethiol 

onto gold using the same processing sequence (except growing PHEMA and derivatizing 

to F7 instead of growing PMMA) and found, as they did, that polymer was reliably only 

found in areas backfilled with initiator.  Initiator backfilling was only conducted for 

15 min as compared to the usual 12+ h initiator SAM formation to minimize the 

possibility of the initiator disulfide displacing stamped dodecanethiol.  Figure 7.1 

demonstrates these results in the form of a 2D tapping mode AFM image showing 10 μm 

wide dodecanethiol lines and 20 μm lines of F7.  The height of F7 film observed by AFM 
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Figure 7.1.  2-D tapping mode AFM image of a sample microcontact printed with 
dodecanethiol, backfilled with ATRP initiator, exposed to an ATRP reaction mixture to 
grow PHEMA atop the initiated area, and reacted to form F7 from PHEMA.  The 20 μm 
wide white lines denote ~25 nm thick F7 while the 10 μm wide dark areas represent 
dodecanethiol-coated gold. 
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in this case was ~25 nm.  A likely cause of the thinner than expected film formation was 

the limited time with which the sample was backfilled with the disulfide initiator.  While 

a longer backfill time should make available more initiator sites, pattern registration may 

be hindered. 

 μCP ATRP Disulfide Initiator 

In similar fashion to μCP of an alkanethiol, the ATRP disulfide initiator may be 

stamped directly onto a gold surface to create a SAM.  This approach of directly 

microcontact printing an initiator for polymerization onto a surface has been 

demonstrated in the literature only twice to our knowledge, once being with a 

trichlorosilane ATRP initiator19 and the other an amine-terminated alkanethiol20 for 

peptide polymerization.  A reduction in processing steps is the main advantage of this 

technique over that of stamping an inert layer and then backfilling.  Additionally, after 

polymerization, an inert layer is not present or does not have to be removed by selective 

etching,16 so that further processing from the interspersed bare substrate is possible. 

A PDMS stamp having 20 μm line features was inked with ATRP initiator and 

used to create an initiator pattern on a bare gold substrate.  After exposure to the ATRP 

polymerization mixture for 12 h, patterned PHEMA film growth was observed on the 

surface.  The PHEMA film was derivatized to form F7, which remained confined in 

initiator-patterned regions.  Figure 7.2 shows the RAIR spectra of initiator-patterned gold 

after PHEMA film growth and after acylation to form F7.  AFM images of these same 

patterned PHEMA and patterned F7 samples are presented in Figures 7.3 and 7.4.  Based 

on film thickness information from Figures 7.3 and 7.4, thickness increase of PHEMA 

upon acylation to F7 is 100% according to AFM, comparable to an ellipsometric 
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Figure 7.2.  RAIR spectra for a microcontact printed PHEMA film both before and after 
acylation to form F7.  The pattern used was 20 μm features with 40 μm spacing, resulting 
in one third of the surface having PHEMA growth.  Peak assignments are the same as for 
all other PHEMA and F7 films encountered in this work, but peak intensities are 
diminished since the PHEMA film does not cover the entire gold substrate. 
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Figure 7.3.  Tapping mode AFM image of a sample with patterned 20 μm lines of 
PHEMA film growth.  PHEMA film thickness is 65 nm, with the film only growing in 
regions where the initiator was patterned. 
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Figure 7.4.  Tapping mode AFM image of a sample with patterned 20 μm lines of 
PHEMA film growth that were subsequently derivatized to form F7 in the same pattern.  
F7 film thickness is 130 nm, or approximately double the thickness of the starting 
PHEMA film. 
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thickness increase of ~140% based on traditional, non-patterned films of PHEMA to F7.  

Absolute film thickness for the patterned PHEMA film was 65 nm, but from the same 

batch the corresponding ellipsometric thickness for a 12 h PHEMA film on fully-initiated 

bare gold was ~210 nm.  While the thickness difference is quite large, Farhan and Huck19 

noted similar behavior in the growth of poly(N-isopropyl acrylamide) on bare silicon and 

poly(ethylene terephthalate) where a homogeneous film yielded an ellipsometric 

thickness of 185 nm but an initiator-patterned film yielded an AFM thickness of 65 nm.  

They attributed the mismatch to differences in surface roughness since they patterned a 

relatively rough substrate but used smooth bare silicon as the control.  Similarly, since the 

gold-coated silicon wafers used in our work are not atomically flat and are likely much 

rougher even than the base silicon wafers, we attribute some of our thickness mismatch to 

roughness as well.  μCP onto a rough substrate hinders the amount of contact between the 

PDMS stamp and the surface, which is required to transfer the initiator onto the surface.  

Furthermore, creation of a homogeneous PHEMA film by dipping the entire substrate in 

solution overnight allows a complete initiator layer to be formed on the gold surface, no 

matter its roughness.  It may also be unreasonable to expect close agreement between 

ellipsometry and AFM since the two methods are measuring and utilizing different film 

aspects, namely optical or mechanical film properties, to estimate thickness. 

 

 Mixed Fluorocarbon/Hydrocarbon Polymer Films 

  Modification of PHEMA with Fluorocarbons and Hydrocarbons 

As greater engineering control over polymer film properties has become more 

desirable, an interest in self-assembling films that spontaneously or with minimal effort 
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form compositional domains has increased.23,24  Fluorocarbons are known to phase 

separate in the presence of all other chemical compositions, including hydrocarbon 

chains.25-27  In an effort to create modified PHEMA films having microdomains of 

fluorocarbon, we attempted to use the derivatization approach already demonstrated in 

Chapters IV and V to modify a single PHEMA film with both fluorocarbon and 

hydrocarbon side chains simultaneously.  PHEMA films were reacted with solutions 

containing various ratios of palmitoyl and pentadecafluorooctanoyl chlorides (60 mM 

overall acid chloride concentration) in an attempt to form a random copolymer film, 

H15/F7. 

 F7 was generally formed much faster than H15 in homopolymer films, so 

palmitoyl chloride was used in excess of the fluorocarbon acid chloride in the reaction 

mixture.  While results varied widely from run to run, typically even a small change in 

palmitoyl chloride:pentadecafluorooctanoyl chloride ratio from 12:1 to 14:1 resulted in 

markedly different compositions.  The 12:1 reaction mixture (55.4 mM palmitoyl:4.6 mM 

pentadecafluorooctanoyl) gave an entirely fluorocarbon F7 film, whereas the 14:1 

reaction mixture (56.0 mM palmitoyl/4.0 mM pentadecafluorooctanoyl) gave an entirely 

hydrocarbon H15 film, as demonstrated by the RAIR spectra in Figure 7.5.  This figure is 

only meant to convey the difficulty in creating mixed fluorocarbon/hydrocarbon films via 

reactive modification.  The exact reactant ratios where this composition inversion 

occurred tended to fluctuate over different independent preparations but were consistently 

observed within a <1 mM reactant concentration change.  Out of approximately sixty 

derivatized films, only two were created that actually incorporated significant quantities 

of both H15 and F7 functionality.  Several films contained <5% of one of the species and 
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Figure 7.5.  RAIR spectra for PHEMA films derivatized with a 60 mM acid chloride 
solution having either a 12:1 or 14:1 ratio of palmitoyl chloride: pentadecafluorooctanoyl 
chloride.  At 12:1, the resulting derivatized film is all fluorocarbon (F7), while at 14:1, 
the derivatized film is all hydrocarbon (H15).  The small window of reactant ratio-film 
composition change is indicative of phase separation phenomenon between fluorocarbon 
and hydrocarbon chains. 
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many others were entirely homopolymers.  The variability of this process suggests that 

phase separation and, by extension, kinetics play a significant role in this random 

copolymer film modification.  While there is more than sufficient acid chloride of either 

composition to modify the entire film, whichever chemical composition is the first to 

incorporate into the film generally dominates the entire film composition.  This is 

presumably a product of phase separation (both in the liquid reaction mixture and in the 

film itself during reaction) between hydrocarbons and fluorocarbons.  A film having 

either compositional extreme tends to preferentially partition more of the same groups 

into the film and ultimately yields homopolymers.  Figure 7.5 thus demonstrates 

fluorocarbon/hydrocarbon phase separation in a convincing and concise manner. 

  Directed Growth of PHEMA and Polymethylene Films 

 Since fluorocarbon/hydrocarbon patterns cannot be reliably created by 

simultaneous functionalization of PHEMA, we sought alternative approaches to combine 

F7 with hydrocarbon polymer films by taking advantage of bare gold regions that remain 

after initiator-patterned growth of PHEMA.  Since these mixed surfaces cannot be 

created through growth and modification of PHEMA, a separate processing step can be 

utilized to introduce hydrocarbon functionality for the purposes of creating patterned 

fluorocarbon/hydrocarbon microdomains and to investigate the interfacial behavior of the 

two polymers.  As already shown in Figures 7.3 and 7.4, PHEMA growth and 

derivatization results in a film on a portion of the surface but leaves a large proportion of 

bare gold area.  The unmodified bare gold is ideal for further processing steps to add 

surface functionality.  Patterned 12 h PHEMA growth and modification to create a 
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fluorocarbon film was followed by surface-catalyzed growth of polymethylene (PM) 

from bare gold sites to create F7/PM. 

Figure 7.6 shows the RAIR spectrum for F7/PM.  The presence of PM is indicated 

primarily by increased peak intensity for CH2 stretching modes at ~2850 and ~2920 cm-1.  

Various peaks from 1000 to 1800 cm-1 indicate the presence of F7 functionality, as 

discussed in Chapter IV.  F7/PM demonstrates the ability to create a single film 

containing both fluorocarbon and hydrocarbon groups using μCP.  If the PHEMA film is 

not derivatized before PM growth, a route to create patterned PHEMA/PM 

hydrophilic/hydrophobic surfaces is possible.  These types of patterned films are 

potentially useful in a variety of applications, including microfluidic devices,7 dewetting 

phenomenon,4 etch resists,8 or cell/biological attachment28,29 where the presence of 

fluorocarbon/hydrocarbon or hydrophobic/hydrophilic groups directs surface events to 

preferentially occur on one of the regions. 

Tapping mode AFM images of PHEMA/PM and F7/PM are presented in Figures 

7.7 and 7.8, respectively.  The most noticeable aspect of the PHEMA/PM film evident 

from the AFM image in Figure 7.7 is the presence of what appears to be an interfacial 

gap between the hydrophobic PM and the hydrophilic PHEMA.  The overall thickness 

difference between the two polymer regions is only ~50 nm, but the trench present 

between them is at least 30 nm deep when compared to the PHEMA film.  Based on the 

results of Figure 7.3, we would expect the PHEMA film to be ~65 nm thick (or perhaps a 

bit thicker if PM grows underneath PHEMA, as discussed in the next two paragraphs), so 

the trench presumably does not extend all the way to the surface, although this cannot be 

verified.  The ability of AFM to probe this gap is limited, but it consistently appears on  
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Figure 7.6.  RAIR spectrum for F7/PM.  Peak assignments are the same as for a 
homogeneous F7 film except for intense CH2 bending and stretching modes around 1450 
and 2900 cm-1, respectively, due to PM.  F7/PM contains both fluorocarbon and 
hydrocarbon functionality. 
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Figure 7.7.  Tapping mode AFM image of a sample with patterned 20 μm wide lines of 
PHEMA film growth and 40 μm wide stripes of PM grown from intermediate bare gold 
spaces.  A cross-section of the film, indicating differences in thickness between the 
PHEMA and PM regions, is presented in the lower portion of the figure. 
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Figure 7.8.  Tapping mode AFM image of a sample with patterned 20 μm wide lines of 
PHEMA film growth that was subsequently derivatized to F7 before growth of PM from 
intermediate bare gold spaces.  A cross-section of the film, indicating the difference in 
thickness between the F7 and PM regions, is presented in the lower portion of the figure.  
Regions at the interface that exhibit “flaring,” likely explained by the PM growth 
mechanism, are also indicated. 
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AFM images of PHEMA/PM only.  For both ATRP of PHEMA and surface-catalyzed 

growth of PM, the termination of active, growing chains increases at longer 

polymerization times (thicker films), such that the polymer chain density decreases as the 

distance from the surface becomes greater.  The result of decreased polymer chain 

density in regard to patterned films is a tendency for the features to shrink in dimension 

as the distance from the underlying surface is increased.  Hence, we observed a sloped 

sidewall on each patterned region in PHEMA/PM.  Since PHEMA and PM features are 

adjacent, but each feature becomes thinner as distance from the surface increases, the 

final result in the PHEMA/PM patterned film is an apparent interfacial gap that forms 

between the two polymer regions.  The horizontal distance from the lowest measured 

point in the gap to the top edge of the sidewall for either PHEMA or PM features is 

~2-3 μm, resulting in a total maximum distance across the gap of ~5 μm.  With the 

feature size of the AFM tip being <10 nm, the observed phenomenon is apparently not an 

artifact of AFM measurement but exists as a real feature of these films. 

The tapping mode AFM image of F7/PM in Figure 7.8 does not exhibit the 

interfacial gap between the PM and F7 regions, but the interface between PM and F7 

does flare out at the base of the F7 patterned region.  This feature is apparently not an 

artifact of AFM imaging either since the unfiltered version (not shown) of the AFM 

image in Figure 7.8 contains distinctly recognizable steps about 2-3 μm wide at the 

interface between the two regions; processing the image partially washed out these 

features, but the flared regions are still evident in Figure 7.8.  A possible explanation for 

the two distinct interfacial phenomena occurring between the PHEMA and PM phases 

lies in the mechanism of the surface-catalyzed growth of PM.  Guo and Jennings11 
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previously showed that the presence of a SAM actually enhances the growth of PM on 

gold substrates.  Similarly, when homogeneous PHEMA and F7 films (0.5 h 

polymerization or ~35 nm thick PHEMA and ~85 nm thick F7) were exposed to PM 

growth conditions (4 mM DM in ether at 0 ºC overnight), PM was incorporated into the 

film (Figure 7.9) to form PM-b-PHEMA and PM-b-F7, respectively.  The presumed PM 

growth mechanism is based on insertion of adsorbed methylene at gold sites that is 

enhanced by and pushes up a SAM.21  In this case, the PHEMA-based films contain an 

initiator SAM along with the tethered polymer film.  Presumably, the entire film is 

pushed up during PM growth such that a block-like copolymer film having lamellar PM 

and PHEMA (or F7) domains is formed.  In the homogeneous cases, PM growth on F7 

was significantly greater than that on PHEMA.  Compared to the growth of PM under the 

same conditions on bare gold,21 F7 enhanced the growth whereas PHEMA stunted PM 

growth.  A thicker F7 barrier film apparently allows DM into the film and to the 

underlying gold substrate more readily than does a thinner, loosely-packed PHEMA film.  

A possible explanation for these observations is that the hydroxyl groups present in 

greater abundance in PHEMA react with DM and quench the reaction. 

The extent of PM growth on homogeneous PHEMA and F7 films offers insight 

into the interfacial behavior exhibited between PHEMA and PM regions in the AFM 

images.  The gap, or trench, between phases is only observed in PHEMA/PM because of 

the quenching effect exerted by PHEMA on PM growth, where PM is physically unable 

to grow near regions dominated by PHEMA to the extent that it can grow in open bare 

gold spaces.  If significant PM growth were to occur underneath PHEMA, a gap would 

not be observed since the entire PHEMA layer would be pushed above a homogeneous  
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Figure 7.9.  RAIR spectra for PM, PM-b-PHEMA, and PM-b-F7 films created by 
exposing PHEMA and F7 films to PM growth conditions.  Presumably PM grows 
underneath the PHEMA-based films by an insertion mechanism, pushing the initiator and 
polymer films up as it grows.  The resulting films likely have a lamellar block copolymer 
structure.  PM grown on bare gold is shown as a reference. 
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PM layer and the two regions would no longer be adjacent.  A greater understanding of 

the interfacial behavior (particularly the presence of gaps such as the one observed here) 

of patterned films may open up new routes to patterned submicron features. 

The flaring behavior observed in F7/PM at the interface between the two regions, 

in similar manner, is likely the result of PM growth enhancement offered by F7.  The 

large difference in thickness (230 nm) for the PHEMA-patterned areas found by 

comparing Figures 7.7 and 7.8 (and assuming PM growth in bare gold regions is 

consistent) can likely be explained by the greater degree of “pushing-up” exerted on F7 

by PM.  The flared region in F7/PM exhibits a height of ~60 nm.  This flared region is 

most likely PM growing underneath the F7 that inflates the height changes in favor of F7.  

Furthermore, from Figure 7.9, we would expect even more PM to grow in the presence of 

F7 than grows on bare gold, so that the height of PM underneath the F7 region should be 

slightly greater than that in bare gold regions.  If the 60 nm tall flared region is actually 

just PM, the corresponding height of F7 in Figure 7.8 is 120 nm, which is in good 

agreement with a F7 film height of 130 nm from Figure 7.4.  The lack of an interfacial 

gap in F7/PM is, therefore, consistent with significant PM growth underneath the F7 film.  

Since the entire F7 film is pushed above the adjacent PM film, there are no regions where 

the two films are directly adjacent to one another.  A homogeneous PM film dominates 

the entire lower layer, with F7 lying above that.  In the cases of both PHEMA/PM and 

F7/PM, the interfacial behavior exhibited is a direct result of the control over PM growth 

kinetics offered by the two distinct functionalities (PHEMA or F7) patterned onto the 

surface.  PHEMA/PM likely also includes some (but much less) PM growth underneath 
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PHEMA that makes a direct comparison of height changes between PHEMA/PM and 

F7/PM nontrivial. 

 

Hydrolytic Patterning of Fluorocarbon-Modified PHEMA 

A more novel aspect of patterning modified PHEMA films lies in the remarkable 

ability to partially hydrolyze fluorinated esters on the side chains.  Since base (KOH) has 

been shown to easily hydrolyze esters having α or β fluorines, stamping basic solution 

onto a surface consisting entirely of fluorinated PHEMA would hydrolyze the surface in 

accordance with the pattern.  However, unlike traditional μCP followed by surface-

initiated polymerization, a polymer film remains over the entire substrate.  The stamped 

regions would maintain PHEMA functionality while the unstamped portions retain 

fluorocarbon functionality—a hydrophilic region surrounded by hydrophobic, oleophobic 

walls, as the film thickness should decrease upon hydrolysis (see Chapter IV).   

Complete hydrolysis of fluorocarbon-modified PHEMA films was demonstrated 

in Chapter IV, while controlled hydrolysis of these films was exploited in Chapter VI to 

create block-like copolymer films.  Combining hydrolysis and μCP may be accomplished 

by inking a PDMS stamp with a reactive species, KOH.  It was expected that base would 

be delivered to the surface at the features and begin cleaving fluorocarbon ester side 

chains upon contact.  The only related work found in the literature was conducted by 

Grzybowski and coworkers,15 who used an agarose stamp to apply potassium dichromate 

to PDMS or polystyrene to oxidize the surfaces, making hydrophilic regions in a 

patterned arrangement. 
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 Macroscale Demonstration 

As demonstration of a concept for hydrolytic patterning, a fluorocarbon-modified 

PHEMA film was patterned on the macroscale.  A paintbrush was first soaked in a 0.1 M 

KOH in ethanol solution and then subsequently used to “paint” a pattern on a F7 film.  

Areas where KOH was introduced by the paintbrush were readily hydrolyzed, 

regenerating hydroxyl groups and yielding hydrophilic, oleophilic surface regions.  Upon 

rinsing with either water or ethanol, liquid wets the hydrolyzed regions, maintaining the 

pattern that was painted on.  Without even using a liquid to test wettability, the painted 

regions are visibly altered due to a stark contrast in refractive index for F7 and PHEMA 

(~1.38 vs. ~1.50).  Figure 7.10 shows an example of a macropatterned F7 film, where a 

“VU” image was created on a F7 film using a paintbrush and then was rinsed with water.  

As expected, water remained only in the hydrophilic “VU” region but avoided the 

extremely hydrophobic surrounding areas.  Hydrolytic patterning of fluorocarbon-

modified PHEMA films is feasible for use in macroscale applications where patterned 

surface energy is desirable, such as directing the flow of water droplets on surfaces.30  

 Microscale Hydrolytic Patterning 

Several issues were determined to be of utmost importance in the micropatterned 

cleaving of fluorocarbon ester side chains in derivatized PHEMA films.  One of the most 

significant obstacles to patterning polymer films on the microscale is the behavior of 

solvent from the stamp upon contact with the surface.  If the solvent spreads across the 

surface, the resulting hydrolysis will give a distorted pattern.  Furthermore, the solvent 

would ideally be transported linearly down into the film with little to no lateral diffusion 

and completely hydrolyze the fluorocarbon-modified film in the patterned region only. 
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Figure 7.10.  F7 film with a macropatterned “VU” painted onto it with a paintbrush 
soaked in 0.1 M KOH in ethanol.  While feature size shown here is rather large 
(~0.6 cm), it demonstrates the potential feasibility of patterning fluorocarbon-modified 
PHEMA films on the microscale. 
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So in addition to solvent effects, a sufficient amount of base must be transferred to 

completely hydrolyze a several hundred nm thick film.  To further complicate the 

process, the film thickness should immediately shrink once hydrolysis starts and 

potentially result in a loss of stamp-film surface contact.  The specific factors that govern 

these behaviors are the following: surface energy of the film being patterned, surface 

tension of the liquid used to ink the PDMS stamp, and concentration of base in the inking 

solution.  Ultimately, inking the PDMS stamp with a solution of 0.5 M KOH in ethanol 

and μCP onto a F1 surface proved to be the most reliable conditions for hydrolytic 

patterning.   

Initial attempts at μCP fluorocarbon-modified PHEMA focused on F7 and a 

PDMS stamp inked with ethanol solutions having KOH concentrations ranging from 0.1 

to 0.5 M.  Optical microscope images of these attempts (not shown) revealed entirely 

unpredictable patterns that appeared to result from solvent spreading across the F7 

surface, as a small amount of residual solvent (ethanol in this case) aids in transport of 

the KOH into and across the film upon stamp contact.  Additionally, higher KOH 

concentrations resulted in more overall hydrolysis, so 0.5 M KOH solutions were used 

subsequently for all experiments in attempts to completely hydrolyze the fluorocarbon-

modified films in patterned regions.  To keep solvent spreading from occurring as 

readily, water was used as the solvent since it has a much higher surface tension and thus, 

exhibits a much higher contact angle on F7 than ethanol. 

In order to use water as the solvent for μCP, a PDMS stamp was made 

hydrophilic by placement in a UV/ozone cleaner for 1 h.  Longer exposure times were 

observed to crack the PDMS stamp and make it essentially unusable for reliable patterns.  
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The PDMS surface was confirmed to be hydrophilic since water completely wetted it 

immediately after removal from UV/ozone.  The stamp was stored in water to ensure that 

it remained hydrophilic for an extended period of time.  The PDMS stamp was inked with 

an aqueous 0.5 M KOH solution, dried, and applied to a F7 film.  Similar results occurred 

as before, with optical microscope images of the patterns being highly irregular (not 

shown). 

The primary unchanged variable up to this point was the film surface itself.  Since 

F7 presents an extremely hydrophobic and well-packed barrier film, the KOH solutions 

likely have difficulty penetrating the film and then transporting cleaved material out of 

the film.  To evaluate this issue, we attempted μCP of 0.5 M KOH solutions in both 

ethanol and water on F1.  FBZ has similar wettability to F1 but is more stable towards 

hydrolysis, so it was not considered an option.  Overall results with F1 were still found to 

be somewhat irregular and not entirely faithful to the original PDMS pattern, as solvent 

still spreads across the surface.  Nonetheless, we were able to produce an improved 

pattern when F1 was used as the base film instead of F7.  Figure 7.11 shows a tapping 

mode AFM image of a F1 surface microcontact printed with a PDMS stamp having 20 

μm line features and inked with a 0.5 M KOH in ethanol solution.  The F1 film shown in 

Figure 7.11 was based on a PHEMA film that was only grown for 0.5 h to produce a film 

thickness of ~35 nm.  The hydrolysis pattern is wavy and does not render pattern features 

crisply, and the hydrolysis pattern depth is only 6 nm.  We would expect a ~18 nm deep 

feature based on the expected difference in thickness exhibited by F1 for a 35 nm 

PHEMA film (Table 4.1).  The shallow depth arises from two possibilities: insufficient 

amounts of base can be delivered into the film to completely hydrolyze the film at the  
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Figure 7.11.  Tapping mode AFM image of a F1 film microcontact printed with a PDMS 
stamp having 20 μm line features and inked with 0.5 M KOH in ethanol.  The hydrolyzed 
region has a depth of 6 nm and does not faithfully reproduce the line pattern.  The 
increased feature width (up to 40 μm) likely results from solvent spreading across the 
surface. 
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points of contact and/or the F1 film does not exhibit as large a film thickness change 

upon hydrolysis as does F7. 

 

Conclusions 

Numerous methods exist for the creation of micropatterned polymer films through 

the use of microcontact printing.  We have demonstrated two straightforward methods to 

grow PHEMA (and derivatized PHEMA) films on gold in a patterned fashion—μCP of 

an inert alkanethiol followed by backfilling with an ATRP initiator or direct μCP of the 

initiator onto gold.  Because of its simpler processing, μCP the initiator directly onto gold 

is more desirable, and it also maintains bare gold functionality between regions of 

patterned PHEMA growth.  Bare gold can then be used to conduct a variety of additional 

processes.  In this work, we have exploited the unmodified gold regions to grow entirely 

hydrocarbon PM films via surface-catalyzed polymerization.  We were thus able to create 

mixed films having both fluorocarbon and hydrocarbon microdomains, which we were 

previously unable to achieve through the reactive modifications discussed in previous 

chapters.  AFM images of the PHEMA/PM and F7/PM films indicated interesting 

behavior at the interface between the regions, with PHEMA/PM exhibiting a noticeable 

gap and F7/PM exhibiting flared growth.  We believe these behaviors result from a 

quenching effect observed for growth of PM on homogeneous PHEMA films and a 

growth kinetics enhancement observed for PM on homogeneous F7. 

Since the fluorinated esters present in fluorocarbon-modified PHEMA films may 

be hydrolyzed by exposure to base, these films have the potential to be patterned 

hydrolytically by μCP basic solution.  A demonstration of this process on the macroscale 
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for these films verified the potential to use the hydrolysis reaction on the microscale.  

Various efforts, mainly centered on controlling solvent spreading during stamping and 

supplying a sufficient amount of base to the surface to effect hydrolysis, were made to 

micropattern fluorocarbon-modified PHEMA films hydrolytically.  Ultimately this 

approach is relatively unreliable and, on the microscale, unable to fully meet the 

expectations offered by the macroscale success. 
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CHAPTER VIII 

 

CONCLUSIONS AND FUTURE WORK 

 

Conclusions

 The overall work presented herein demonstrates a variety of tools available to 

engineer the architecture and physicochemical properties of polymeric films and 

structures.  Surface-initiated growth of PHEMA via water-accelerated ATRP provides a 

great deal of control over film thickness.  This hydroxyl-laden polymer can then be used 

as a base film for the addition of numerous functionalities, namely perfluoroalkyl, 

perfluoroaryl, and alkyl side chains via an acylation reaction, to dramatically alter film 

structuring and surface and barrier properties.  Extremely hydrophobic and even 

oleophobic surfaces can be created by modifying PHEMA with long perfluoroalkyl and 

alkyl groups.  Film barrier properties, which are up to five orders of magnitude higher 

than the base PHEMA film, are highly dependent on conversion of hydrophilic hydroxyl 

groups to hydrophobic fluorocarbon and hydrocarbon side chains but also depend to a 

lesser degree on overall film structuring and surface hydrophobicity.  Utilizing a wide 

range of chain lengths for both alkyl and perfluoroalkyl modifications allows film 

properties, especially surface energy and film structuring, to be tuned simply by the 

choice of modifying species. 

Hydrolysis of perfluoroaryl-modified PHEMA films can be performed in a 

controlled fashion to create block-like copolymer films by regenerating and subsequently 

rederivatizing hydroxyl groups in a surface region of the film.  Since the effects of a 
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variety of modifying species on film properties are known, hydrolysis may be combined 

with a surface modification choice to engineer surface wettability while maintaining a 

bulk fluorocarbon barrier film.  Film barrier properties can be boosted an order of 

magnitude beyond those of the base homopolymer film upon addition of hydrophobic 

surface modifications.  An even greater degree of engineering control over film 

properties is demonstrated by the creation of block copolymer films in this manner. 

 Microcontact printing can be used to extend film modifications to the microscale.  

μCP of the ATRP disulfide initiator directly onto gold to create a micropatterned 

PHEMA or modified PHEMA film leaves bare gold regions throughout the surface, 

which can subsequently be used for further processing.  An inert hydrocarbon film, PM, 

can be grown via surface-catalyzed polymerization in these gold regions to create 

microdomains of hydrophilic/hydrophobic or fluorocarbon/hydrocarbon composition on 

the surface, which cannot be made using reactive modification steps.  Hydrolysis of 

fluorocarbon-modified PHEMA was attempted via μCP, but it was unsuccessful for the 

formation of well-defined patterns. 

The techniques described here hold promise for the application-specific 

engineering of polymer films and coatings.  The fluorocarbon- and hydrocarbon-rich 

films described here could find use as dielectrics, etch resists, water- and oil-repellent 

coatings, and ultrathin membrane skins. 
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Future Work 

 

 Dependence of Film Properties on Thickness

 The polymers discussed throughout this work were based almost exclusively on a 

PHEMA film that was grown for 12 h and had a thickness of ~220 nm.  In many 

applications, it is advantageous to minimize film thickness while maintaining desirable 

surface and barrier properties.  Altering polymerization time to decrease PHEMA film 

thickness would provide an additional aspect of film control (demonstrated in Figure 3.2) 

that has yet to be explored in regard to post-polymerization modification schemes.  Upon 

modification of thinner PHEMA films with fluorocarbon and hydrocarbon side chains, 

many film properties would be expected to remain the same.  However, barrier properties 

of the films should gradually decrease until the initiator monolayer becomes a more 

dominant barrier at low frequency.  Since these same types of films have already found 

use in membranes,1,2 where flux as well as selectivity are of importance, the dependence 

of barrier properties on film thickness would be useful in system design.  As film 

thickness decreases, the polymer films may also structure differently or even exhibit 

dynamic or stimulus-responsive behavior that is often observed in thinner polymer 

films.3,4 

 

 Probing the Hydrolysis Interface of Block-like Copolymer Films 

 The interface resulting from hydrolysis of perfluoroaryl-modified PHEMA in the 

creation of block-like copolymer films appears to be confined to a region near the film 

surface.  Based on overwhelming circumstantial evidence, the reaction appears to exhibit 
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diffusion-limited behavior.  However, the interface created during this process could be 

more completely and accurately characterized using neutron reflectivity, which is often a 

tool of choice for the evaluation of polymer interfaces.5  Since fluorocarbons and 

hydrocarbons have vastly different scattering lengths, the presence of fluorocarbon below 

the interface and only hydrocarbon above it creates an excellent natural point of contrast 

within these samples.6   Furthermore, neutron reflectivity is capable of resolving 

nanometer distances over penetration depths of 100 nm or greater,7 which would yield a 

sufficient depth profile to capture the interfacial behavior for controlled hydrolysis of 

perfluoroaryl-modified PHEMA.  Using this technique, one could characterize diffusion-

like behavior of the hydrolysis reaction and subsequently the copolymer interface.  

 

 Probing PHEMA/PM and F7/PM Interfacial Regions 

 The mixed PHEMA and PM films created in this work exhibited interesting 

interfacial behavior, particularly the existence of a gap between PHEMA and PM regions 

resulting from the growth mechanics of patterned polymer films.  Creation of submicron 

patterned features may be possible by taking advantage of the gap present in 

PHEMA/PM.  To further probe the extent of this gap, EIS may be used to investigate the 

film barrier properties.  Although the PHEMA film is already a poor barrier, the gap 

should create a less-obstructed path to the underlying gold surface.  Based on the results 

already presented in this work, we would expect a very thin film of PM and perhaps a 

layer of initiator in this gap near the surface.  Compared to the remainder of the substrate 

area, however, these gaps comprise a very limited area, should offer even less of a barrier 

to transport of various materials, and could prove to be ideal sites for performing 
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chemistry on much smaller scales.  It may even be possible to create stamps for μCP that 

have relief features mimicking the gap of PHEMA/PM by curing an elastomer solution 

on top of one of these patterned surfaces. 

 

 Hydrolytic Patterning of Fluorinated PHEMA Using Hydrogel Stamps 

 The hydrolytic patterning of fluorocarbon-modified PHEMA films was 

successfully demonstrated on the macroscale but encountered solvent spreading and base 

concentration issues when attempts were made to apply it to the microscale.  The work of 

Grzybowski and coworkers8 demonstrated the use of agarose and polyacrylamide 

hydrogel stamps for reactive patterning of substrates.  They delivered potassium 

dichromate to various polymer surfaces to oxidize the surface, making it hydrophilic.  

This procedure is similar to our attempts to hydrolytically pattern fluorinated PHEMA 

with KOH.  The use of a hydrogel would allow aqueous solutions of KOH to be used, 

and KOH has a much higher solubility in water than in ethanol.  Furthermore, the 

hydrogel should absorb significantly more of the aqueous inking solution than the PDMS 

stamp could absorb the ethanolic inking solution.  The one limitation present for 

hydrolytic patterning (that they did not encounter and that may ultimately be the most 

important factor in utilizing the process for fluorocarbon-modified PHEMA films) is the 

shrinking of film thickness upon hydrolysis, which may inhibit continuous contact of the 

stamp and surface.  If prolonged contact is not possible, either a sufficient amount of 

KOH must be applied upon initial contact or only partial patterned film hydrolysis will be 

accomplished. 
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APPENDIX A 

 

SURFACE-INITIATED ATRP PROCEDURE 

 

1. Initiation of Surface 
 

a) The disulfide initiator (S(CH2)11OC(O)C(CH3)2Br)2 was prepared 
according to literature procedures to give a viscous yellow liquid. 

b) The tip of a glass pipette was dipped directly into the initiator to collect a 
small volume. 

c) Ethanol was squirted into the top of the pipette and the resulting 
initiator/ethanol solution was collected in a glass vial. 

d) Ethanol was poured into the vial until approximately half full. 
e) At most, eight gold samples were placed into a single vial for at least 2 h 

(but generally for 24 h) to give initiated gold samples. 
f) Upon initiation, samples were removed from the solution, rinsed with 

ethanol, and dried with nitrogen. 
 

2. Apparatus 
 

a) The following was set up in a fume hood with clamps: a vacuum pump 
connected with hose directly to a vacuum trap that was, in turn, connected 
to a vacuum manifold. 

b) Before each polymerization, the manifold was checked for cracks and all 
valves were placed into the closed position. 

c) Into a clean Schlenk flask, the appropriate weighed amounts of bipyridine, 
CuBr2, and CuCl were placed along with a stir bar.  Please note that the 
Schlenk flask should never be much more than half full, as it may explode 
during processing if overly full.  Keep this in mind while planning for the 
volume of solution (and accordingly, these solids) to be added during 
polymerization. 

d) A large rubber septum was pulled down over the top opening of the 
Schlenk flask to seal it off.  The fitting for the sidearm of the flask was 
screwed in to a closed position. 

e) Two pieces of copper (or other suitably malleable but strong) wire were 
twisted together and then used to tie down the rubber septum.  Pliers were 
used to hold both ends of the wire, pull it tightly around the septum, and 
twist it. 

f) The sealed Schlenk flask was clamped into place and connected to the 
manifold using rubber hose. 
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g) The vacuum pump was turned on with both the manifold and flask valves 
closed.  The manifold valve in line with the flask was opened slowly.  
Then, the flask valve was opened slowly until the flask was evacuated, as 
evidenced by the rubber septum being sucked down tightly onto the flask 
opening. 

h) Upon flask evacuation, the flask valve was closed and nitrogen was 
introduced to the flask through the rubber septum via a needle connected 
to a hose from a nitrogen gas cylinder.  The nitrogen flow through the 
needle should be very small (i.e. you should just lightly feel the flow if 
you direct it toward your arm).  The needle was removed from the flask 
once the rubber septum popped back up (or no more than 5-10 sec).  
Continuing gas flow in this state too long presents a hazard, as the 
pressure builds up within the flask. 

i) Evacuation and filling with nitrogen were repeated twice, ending with a 
moderately nitrogen-filled flask. 

j) A 1:1 v:v mixture of hydroxyethyl methacrylate (or other monomer):water 
was measured out using a graduated cylinder and poured into a beaker. 

k) A needle and syringe were used to introduce the monomer/water solution 
into the flask through the rubber septum.  If the pressure in the flask is too 
low initially, the liquid will be drawn out of the syringe and into the flask.  
If the pressure is too high, the liquid will need to be forced into the flask.  
Under this latter condition and after emptying the syringe, simply suck air 
into the syringe and discharge into the hood after removal from the flask.  
Repeat until the flask is no longer over-pressurized.  The entire volume of 
solution was added to the flask. 

l) The solution was stirred for about 10 sec using a magnetic stirrer to get the 
solids and liquids mixed together.  Then the stirrer was turned off. 

m) A dewar was filled with liquid nitrogen and the vacuum trap was placed 
down into the dewar.  This is most easily accomplished by sitting the 
dewar on an adjustable stand and raising/lowering it. 

n) Once the trap was cool, the valve to the flask was opened to evacuate it.  
Note that the trap should always be in liquid nitrogen when the potential 
exists to pull a liquid from the flask.  When small bubbles began forming 
at the top of the solution in the flask, the valve of the Schlenk flask was 
closed.  The rubber septum should again be depressed at the top of the 
flask. 

o) Nitrogen was added to the flask via needle as before until the septum 
popped back up. 

p) The evacuation/filling steps were repeated twice before ending with a final 
evacuation step to leave the flask halfway-filled with solution and at 
reduced pressure. 

q) The connection of the rubber hose from the manifold to the Schelnk flask 
was wrapped with parafilm.  Also the rubber septum atop the flask was 
wrapped with parafilm to minimize air introduction to the flask. 
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3. Freeze-Pump-Thaw Cycles 
 

a) The liquid nitrogen dewar was removed from the vacuum trap and the 
lower portion of the Schlenk flask was submerged into liquid nitrogen.  
Liquid nitrogen only needs to come up to the level of liquid in the flask.  
Again, the flask should not be much more than half full, as it may explode 
during the freezing process.  

b) Once the liquid in the flask was frozen (typically ~ 5min), the liquid 
nitrogen dewar was transferred back to the vacuum trap.  The flask valve 
was opened to begin pumping down the flask while the vacuum trap 
remained under liquid nitrogen. 

c) The flask continued to be pumped down until the top of the solution began 
to liquefy (typically ~10-15 min). 

d) The flask valve was closed.  Using an adjustable stand, the partially frozen 
flask was placed in a room temperature water bath to thaw it out (typically 
~30 min). 

e) The water bath was removed and the bottom of the flask was dried with a 
paper towel. 

f) The freeze, pump, and thaw steps were repeated twice more (for a total of 
three cycles).  Additional cycles may be run if desired but three cycles are 
most often used in the literature. 

g) At the conclusion of the third (or last) thaw cycle, the flask was filled with 
nitrogen gas via needle as before. 

h) The solution was stirred with a magnetic stirrer until a homogeneous 
brown solution formed (at least 10 min).  It does not hurt, however, to 
leave the solution stirring for a couple of hours. 

 
4. Preparation of samples in vials 
 

a) A line was made with permanent marker on the outside of clean vials to 
denote the fill level for the desired volume (typically 8mL).  Samples were 
placed into these marked vials.  Generally up to eight samples may be 
placed in each vial.  It is important that the gold side of samples do not 
touch, as this could introduce scratches and may limit possible film growth 
in the confined areas. 

b) Once the desired samples were placed in the vial, a small rubber septum 
was pulled down over the top opening of the vial to seal it off.  As with the 
Schlenk flask, pliers and two wires twisted together were then used to tie 
off the septum. 

c) A rubber hose with a needle attachment on one end was connected to the 
side of the manifold under vacuum.  The valve corresponding to this 
attached hose was opened. 

d) Each vial was degassed by carefully inserting the needle from this new 
attachment into flask through the rubber septum. 
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e) The vials were subsequently backfilled with nitrogen using a needle as 
before.  Care must be taken when degassing/backfilling the vials 
(particularly backfilling a vial with numerous samples) to ensure that the 
samples are not knocked around and fall atop one another. 

f) The degassing/backfilling procedure was performed two more times for 
each vial, ending with backfilling the vial with nitrogen. 

 
5. Transfer of reaction mixture to vials 
 

a) To transfer the reaction mixture into the vials without exposure to oxygen, 
nitrogen was introduced to the flask via needle as before.  Once the rubber 
septum popped up and the flask was filled with nitrogen, one end of a 
cannula was also inserted into the flask.  It is important that the nitrogen 
flow and amount of nitrogen in the flask be such (over-pressurized) that 
when the cannula is inserted, nitrogen is vented out through the cannula.  
The cannula should NOT be inserted into the liquid at this point. 

b) The other end of the cannula was inserted into a degassed/backfilled vial.  
Once the vial filled with nitrogen (typically ~1-2 sec), a needle attached to 
a bubbler was also inserted into the vial.  Nitrogen should immediately be 
vented through the bubbler, resulting in a steady rate of bubbles through 
the mineral oil of the bubbler. 

c) Stirring of the reaction mixture was stopped at this point, and the cannula 
was dipped into the reaction mixture in the flask.  After approximately 10 
sec, the brown liquid began flowing from the other end of the cannula into 
the sample vial.  Nitrogen flow may be adjusted slightly to slow or speed 
up flow of the reaction mixture through the cannula.  Few or no bubbles 
were present in the bubbler at this point. 

d) Once the reaction mixture level in the vial was approximately halfway to 
the marked volume line, polymerization time was recorded starting at this 
point. 

e) The mixture continued to be fed into the vial until the volume reached the 
marked line.  At this point, the end of the cannula in the Schlenk flask was 
pulled up out of the reaction mixture, and flow into the vial 
correspondingly ceased after a few seconds.  Nitrogen began flowing 
through the bubbler again. 

f) To seal the vial off for polymerization, the end of the cannula in the vial 
was first removed, followed by removal of the needle to the bubbler. 

g) The vial was subsequently wrapped completely in parafilm and set aside 
to polymerize for the desired period of time. 

h) To ensure homogeneity of the reaction mixture, the solution was stirred 
again for a few seconds.  The process for introducing the reaction mixture 
was repeated for each vial. 
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6. Clean-up 
 

a) After finishing all vials, the vacuum pump and nitrogen gas flow were 
turned off. 

b) The manifold was slowly opened to atmospheric pressure by opening one 
of the valves on the side of the manifold not under vacuum. 

c) All waste was disposed of properly. 
d) The cannula was cleaned by filling the Schlenk flask with water and 

putting nitrogen on it with the cannula inserted.  The cannula was dipped 
into the water and allowed to purge with water directly into the waste 
container for several minutes. 

e) The Schlenk flask was cleaned with soap and water to prepare it for the 
next use. 
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