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CHAPTER I 

 

INTRODUCTION 

 

1 Introduction 

My dissertation contributes to auction studies in the field of Industrial Organization. 

An auction is a selling mechanism. To a seller, the motivation for using an auction as a 

selling mechanism is that bidders have one-sided private information. Because of the 

asymmetric information and the induced uncertainty, auctions help sellers to find the 

buyers who value their goods the most. From a social planner's point of view, auctions also 

can help allocate resources efficiently and achieve the social optimum. 

In practice, the implication of research on auctions is three-fold. First, plenty of 

goods and services are traded by auctions in the real world nowadays. For example, the U.S. 

traded volume through auctions will reach $660 billion according to the International Data 

Corporation 2002 report. Here are a few categories from an economist's point of view. (1) 

Consumer goods such as art, wine, fish and flower are often traded through auctions. (2) 

Public goods and utilities such as highway projects, electricity and oil drilling projects are 

often auctioned as contracts by the government. (3) Financial assets such as stocks, bonds 

and securities are also good examples. (4) Goods sold by online auctions are even more 

diverse. For example, you can bid for Staples coupons on eBay.com. Studies of auctions 

can help evaluate mechanisms in various auctions and improve the efficiency of the 

auctions. 

Second, auctions offer a testing ground for economic theory, for example, game 
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theory with incomplete information. Economic theories are often much more developed 

than empirics. One reason is lack of data. The other reason is the intensive computational 

burden incurred when we estimate structural parameters. On one hand, various auctions in 

practice provide economists easily accessible datasets. On the other hand, the structural 

econometric approach, which is an important tool for my dissertation research and which I 

will elaborate on later, helps us establish a link between game-theoretic models and 

empirical analyses. 

Third, the Internet greatly expands the auction market and accelerates its 

development. Demand for professional auction design is higher and higher. A recent 

example is the design for the auctions of the 3G mobile phone licenses in UK in 2000. The 

auctions of mobile phone licenses across the world are only the most famous new auction 

markets. This presents another reason for economists to develop theories and analyze data 

to guide auction practice. 

My dissertation is motivated by an interesting feature that I observed from the 

procurement auctions organized by the Indiana Department of Transportation (INDOT): 

many of these auctions are held with multiple rounds. This feature is attributed to the use of 

secret reserve prices in these auctions. Prior research has indicated that auctions with 

reserve prices sometimes lead to no transaction if no bidder can propose a price better than 

the reserve price.1 However, there are still chances of trade if bidders' values for the unsold 

objects change. Thus the seller can continue auctioning the unsold objects from the 

previous auctions. Previous research, however, has not paid much attention to this feature 

in auctions. My dissertation offers thorough theoretical and empirical analyses on 

                                                 
1See, for example, Elyakime, Laffont, Loisel and Vuong (1997), Bajari and Hortasu (2003), and Li and 
Perrigne (2003). 
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multi-round procurement auctions with reserve prices. 

According to the 1992 US Census of Construction Industries a total of $35.3 billion 

was spent during 1992 on highway and street construction activities. Auctions are adopted 

by departments of transportation in many states to sell construction contracts to firm 

contractors. However, auction mechanisms are heterogeneous across states. For example, 

the INDOT adopts a secret reserve price and announces it after the contract is successfully 

awarded. The California Department of Transportation adopts a secret reserve price, but 

never announces it. The Texas Department of Transportation uses an announced reserve 

price, but the reserve price is not binding. Heterogeneous policies motivate my research 

into government practice to help evaluate and improve the procurement auction process. 

My dissertation uses three chapters to study multi-round procurement auctions with 

reserve prices. In the first chapter, I develop a static model with non-forward looking 

bidders. I make this assumption to simplify the analysis and to accommodate the flexibility 

of allowing for changes of bidders' private cost distributions across stages. I first propose a 

game-theoretic bidding model in multi-round procurement auctions with secret reserve 

prices and evaluate how the release of the auctioneer's reserve price affects bidders' 

bidding behavior and auctioneer's expected payment. Then I provide various reduced-form 

analyses on the INDOT data to validate the model. 

In the second chapter, I maintain the assumption of myopic bidders and carry out a 

structural econometric analysis on the multi-round procurement auction data from the 

INDOT. Using the structural estimates, I evaluate how the release of the reserve price 

affects the government's expected payment through a counterfactual analysis. 

In the third chapter, I introduce dynamic features into the model by assuming that 
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bidders are forward looking and their private cost distributions do not change across stages. 

I propose a dynamic bidding model. Then I solve a bidder's dynamic control problem to 

obtain the symmetric Markov perfect equilibrium. Next, I develop a two-step estimation 

approach to conduct a structural econometric analysis on the dynamic multi-round 

procurement auction game. Then I use this approach to analyze the data from the INDOT. 

Lastly, using the estimates of the inferred cost distribution, I evaluate the reserve price 

policy through counterfactual analysis. 

To model the multiple stages and secret reserve price, I focus the first-price 

sealed-bid auction model on a simple environment -- the independent private value (IPV) 

paradigm. I also restrict my attention to bidders' strategic changes over stages, while 

assuming that the government's reserve price is exogenous and private over stages. This 

assumption, although restrictive, is consistent with the data.2 While the model focuses on 

the procurement auctions that are low-bid auctions, as it is motivated by the procurement 

data from the INDOT, it can be readily extended to high-bid auctions. 

My model yields some interesting predictions and implications. First, the bidding 

prices uniformly decline over stages, because of the information about the secret reserve 

prices revealed in the previous stage. This prediction holds regardless of whether the 

bidders are forward looking or not. Second, bidders mark up higher when placing bids with 

forward looking than without forward looking. This reflects the bidders' opinion of 

winning today versus winning later. Third, I study the reserve price release policies in the 

static model by simulation. Under some specifications, a secret reserve price is better than 

a public reserve price, and vice versa. 

                                                 
2According to the officials at the INDOT, generally no change is made in the engineer estimate (as the reserve 
price) after a round of unsuccessful auction and in practice there were very few changes made. Hence the 
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My structural analyses recover the inferred costs, the use of which allows us to 

evaluate the reserve price policy in the current procurement auction mechanism. I conduct 

counterfactual analyses. I find that on one hand when the bidders are not forward looking, 

to help the INDOT save budget, the use of a secret reserve price is better than a public 

reserve price. On the other hand, the result depends on the discount factor, in other words 

the bidders’ attitude about the future, when the bidders are forward looking. When the 

discount factor is low, the use of a secret reserve price is better. When the discount factor is 

high enough, the use of a public reserve price is better. 

My dissertation contributes to the study of structural auction models and the policy 

of procurement auctions. First, its theoretical finding has potential to explain why secret 

reserve prices are widely used in practice. Second, it is the second study of dynamic 

structural econometric auction models. Jofre-Bonet and Pensendorfer (2003) give the first. 

Lastly, it offers insights into the highway procurement auctions policies. 

 

2 Multi-Round Auctions and Reserve Prices: A Survey 

Since Vickrey's (1961) seminal work, studies of auction theories have grown 

rapidly. See surveys by Milgrom (1985, 1987), McAfee and McMillan (1987), Wilson 

(1992) and Klemperer (1999). The reserve price, as an important policy instrument in 

auctions, has drawn a lot of attention. Reserve prices, if binding, may lead to no trade. 

Multi-round auctions can therefore be attributed to the use of reserve prices in auctions. I 

investigate research on these issues one by one. I also provide a short survey on studies of 

auctions in a dynamic setting as well as studies of highway procurement auctions. 

 

                                                                                                                                                 
reserve price is the government's knowledge rather than its dynamic strategy. 
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2.1 Reserve Prices in Auctions 

There are various reasons for a seller to use a reserve price in auctions. Most 

importantly, setting a reserve price can protect the seller from a profit loss. Basically, there 

are two reserve price policies, namely a public reserve price when it is announced and a 

secret reserve price when it is kept private to the seller. The focus of my dissertation is on 

secret reserve prices as they are used in the INDOT auctions. Secret reserve prices are 

widely used. Use of secret reserve prices in auctions has been studied in empirical work. 

Hendricks, Porter and Wilson (1994) study the Outer Continental Shelf auctions. 

Ashenfelter (1989) examines wine and art auctions. Elyakime, Laffont, Loisel and Vuong 

(1994, 1997) and Li and Perrigne (2003) find secret reserve prices are used in timber 

auctions. Bajari and Hortacsu (2003) study eBay coin auctions with endogenous entry and 

empirically compare the two reserve price policies in these auctions. 

Theoretical work in studying secret reserve prices, however, has been limited, with 

exceptions such as Vincent (1995) using risk aversion to explain the use of secret reserve 

prices in a common value paradigm and Li and Tan (2000) in an independent private value 

paradigm. They show that in the presence of risk aversion, using a secret reserve price is 

better for the seller than using the optimal public reserve price for single-round auctions 

under some conditions. Alternative explanations have also been provided through the 

seller's objectives other than maximizing profits such as maximizing the expected sales as 

in Elyakime, Laffont, Loisel and Vuong (1994). Hiding reserve prices may also help the 

auctioneer deter collusion from bidders as explained in Ashenfelter (1989). In addition, as 

argued in Bajari and Hortacsu (2003), secret reserve prices may be used to encourage 

participation in auctions with entry. 
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The theoretical study of the seller's optimal reserve price strategy is often in a 

relatively simple environment. See e.g., Riley and Samuelson (1981) find the optimal 

reserve price in first-price sealed-bid auctions within IPV paradigm, and Laffont and 

Maskin (1980) solve for the optimal public reserve price in second-price auctions. 

Elyakime, Laffont, Loisel and Vuong (1994) also find the optimal secret reserve price in a 

one-shot first-price auction. The empirical study of auction data in complicated 

environment, on the other hand, often treats the seller's reserve as exogenous and 

concentrates on analyzing bidding. See e.g., Bajari and Hortacsu (2003) and Jofre-Bonet 

and Pesendorfer (2003)'s study of repeated games of highway auctions. 

 

2.2 Multi-Round Auctions 

Studies of multi-round auctions have been quite limited. Elyakime, Laffont, Loisel 

and Vuong (1997) study a two-round auction game where the first round is conducted as a 

first-price sealed bid auction with a secret reserve price, and if the object is not sold, the 

second round is conducted through bargaining between the seller and the bidder with the 

highest bid from the first round. Horstmann and LaCasse (1997) propose a common value 

second-price bidding model in which the seller is assumed to know the true common value 

and has the option of holding the auction for a one-time resale. The seller announces a 

reserve price for screening inferior bids but does not guarantee a sale in the first round 

auction. Skreta (2004) proposes a new concept, namely non-commitment, which is the 

same as in my research. Under non-commitment, if no trade takes place, the seller cannot 

commit not to try to sell the object in the second period. Skreta studies a two-period auction 

model. The seller can implement a revenue maximizing allocation rule by running a 
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Myerson auction with buyer-specific cutoffs in each period. The reserve price decreases 

overtime if no trade takes place. Evidently, these models do not fit with the multi-round 

procurement auctions organized by the INDOT as these auctions can be held for more than 

two rounds if the project is not sold in the previous round, and the government does not 

strategically choose to re-auction the project. 

 

2.3 Dynamic Auction Models 

The literature on empirical estimation of auctions has largely focused on a static 

auction setting. Paarsch (1992), Laffont, Ossard and Vuong (1995), and Guerre, Perrigne 

and Vuong (2000) among others develop empirical approaches in static auction games. 

Elyakime, Laffont, Loisel and Vuong (1994, 1997) and Li and Perrigne (2003) empirically 

analyze the use of secret reserve prices in static auction games. There is little empirical 

work on dynamic auction games with an exception of Jofre-Bonet and Pesendorfer (2003). 

Jofre-Bonet and Pesendorfer develop an estimation approach of a dynamic auction game 

with capacity constraint as the state variable to analyze the California highway auctions. 

Laffont and Robert (1999) and Donald, Paarsch and Robert (2002) also analyze finitely 

repeated auctions. Recently, Athey and Bagwell (2006) study dynamic auctions with 

persistent private information. 

 

2.4 Applications in Highway Procurement Auctions 

As one of the main applications in the empirical auction literature, highway 

procurement auctions have inspired a great deal of research. Early studies are Feinstein, 

Block and Nold (1985) and Porter and Zona (1993) who study issues of bidder collusion. 
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Bajari (1997) studies asymmetry between bidders. For recent structural work in analyzing 

procurement auctions, see Bajari and Ye (2002) for detecting collusion, Hong and Shum 

(2002) for assessing the winner's curse, Jofre-Bonet and Pesendorfer (2003) for capacity 

constraints in dynamic procurement auctions, Krasnokutskaya (2002) for the effect of 

unobserved auction heterogeneity in an asymmetric first-price IPV paradigm, and Li and 

Zheng (2005) for entry and competition effects. 

It is worth noting that unobserved auction heterogeneity in procurement auctions 

has been documented (e.g. Krasnokutskaya (2002) and Li and Zheng (2005)). Failing to 

control for the unobserved auction heterogeneity can cause severe bias in structural 

estimation, and hence result in misleading policy evaluations and recommendations. My 

structural approach takes into account the unobserved auction heterogeneity. 

 

3 Structural Econometric Approach: A Survey 

In contrast to the large number of theoretical auction studies, fewer empirical 

studies have attempted to validate theoretical auction models using real auction data. A 

possible reason for this gap between theoretical and empirical work arises from the 

computational difficulties due to the nonlinearity and numerical complexity associated 

with the estimation of structural econometric models. Most empirical studies concentrate 

on testing some implications of the theory of auctions using reduced-form econometric 

models, such as linear regressions. See the recent survey by Laffont (1997). 

The main methodology of the reduced-form approach is to test the comparative 

statics predictions from the theoretical models, without directly recovering the parameters 

of bidders' value distribution (so called underlying structure). The advantage of this 
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approach is that it is computationally easy. The disadvantage is that it is hard to interpret 

the estimates because it lacks connection to the theoretical auction model. Without 

primitive parameters, it is also hard to further simulate alternative mechanisms in 

comparison to the current mechanism. Therefore further analysis calls for the structural 

econometric approach. 

My dissertation mainly uses the structural approach. Nevertheless I use 

reduced-form when it is necessary to present a fast and intuitive test of the theoretical 

model as well. In subsequent sections, I provide a brief survey on the auction literature in a 

static setting on one hand as it is well developed in auction studies. I present the literature 

on a broader class of empirical industrial organization models in a dynamic setting on the 

other hand as there have been very few empirical studies of dynamic auction models. 

 

3.1 Literature on Static Models 

The earliest structural static econometric auction models are Paarsch (1989, 1992) 

who estimates econometric models that are closely derived from theory. In recent years, we 

have seen various studies that have well established this area. I briefly review the methods 

that have been very useful in estimation and testing. 

One strand of methods is within a parametric framework. This line of research 

specifies the distribution of the unobserved private values in some finite dimensional 

parameter space. Then it uses observables to derive a likelihood function or moment 

conditions. Structural parameters are estimated by methods in the family of maximum 

likelihood or generalized method of moments (GMM). Since the boundary of the observed 

equilibrium bids often depends on the parameters of the distribution of the latent values, 
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the standard maximum likelihood approach is inappropriate. Donald and Paarsch (1993) 

propose a piecewise maximum likelihood estimation method to overcome this difficulty. 

However, using likelihood and moment conditions of bids requires the computation of the 

equilibrium bidding strategy which is complicated as a closed-form solution is often not 

attainable. As a resolution, Laffont, Ossard and Vuong (1995) propose the simulated 

non-linear least squares estimation method using winning bids. Li and Vuong (1997) 

further extend this method to the framework of using all bids. This method does not require 

to solve the equilibrium bids and has great computational advantage. Recently, Hong and 

Shum (2002) propose a monotone quantile estimator for first-price sealed-bid auctions 

including both a private and a common value component. Li (2005) proposes a method of 

simulated moments for the first-price sealed-bid auctions with entry and binding reserve 

price. 

The other strand of research is within a nonparametric framework. Guerre, Perrigne 

and Vuong (2000) show that the latent values are non-parametrically identified from the 

observed bids in the first-price IPV auction models. They establish a general two-step 

non-parametric framework to recover the distribution of the values. In the first step, it 

estimates the distribution of bids. In the second step, relying on the first order condition for 

the optimal bids, it obtains the inferred values and uses these values to non-parametrically 

fit the distribution of values. The implication of this method is two-fold. First, the estimates 

obtained from this method are robust as it is non-parametric. Second, it has computational 

advantage because it does not require the computation of the equilibrium bids. The main 

disadvantage of this method is that the rates of convergence are slower than  N   as is 

typical of non-parametric methods. In addition, if there are many covariates, it is 



 12

impractical. Following this line of research, Elyakime, Laffont, Loisel and Vuong (1994, 

1997) analyze the first-price IPV model with a secret reserve price. Li, Perrigne and Vuong 

(2000, 2002) propose non-parametric identification and estimation methods for the 

first-price affiliated private value auction models and conditionally independent private 

information auction models. Athey and Haile (2002) provide more non-parametric 

identification and testing results for a variety of auction models. Hong and Shum (2003) 

propose a non-parametric test of common values versus private values. Athey and Haile 

(2005) provide an excellent survey on the non-parametric structural approach. 

 

3.2 Literature on Dynamic Models 

In contrast to the well-established structural approach in analyzing static auction 

games, there is far less structural empirical work on dynamic auction games. There are a 

few exceptions. Laffont and Robert (1999) and Donald, Paarsch and Robert (2002) analyze 

finitely repeated auctions. Laffont and Robert consider a sequence of auctions in which an 

identical object is sold at each stage. Their model generates complex intra-day dynamics 

that are applied to data on eggplant auctions. Donald, Paarsch and Robert consider a model 

in which a finite number of objects are sold in a sequence of ascending-price auctions. 

They estimate the model using data on the sales of Siberian timber-export permits. 

Jofre-Bonet and Pensendorfer (2003) estimate a dynamic repeated highway procurement 

auction game with capacity constraint as the observed state variable. They propose a 

two-step estimation method. In the first step, it estimates the distribution of bids. In the 

second step, it recovers the cost distribution relying on the first order condition of bids. A 

complication in estimating a dynamic model is to approximate the value function 
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numerically. 

Jofre-Bonet and Pensendorfer's approach builds partially on the two step approach 

that Elyakime, Laffont, Loisel and Vuong (1994) and Guerre, Perrigne and Vuong (2002) 

develop for static models. The main contribution of their paper is to extend the estimation 

method to dynamic auction games. In their paper, the dynamic auction model seeks to find 

a symmetric Markovian equilibrium which shares the property as in Rust (1987). The 

conditional independence assumption in the data generating process is necessary to adopt 

the framework of Markov dynamic decision processes. See Rust (1994) for a detailed 

survey on the structural estimation of Markov decision processes. See also Pakes (1994) 

for a survey on the literature of estimation in dynamic games. 
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CHAPTER II 

 

A GAME OF MULTI-ROUND AUCTION WITH SECRET RESERVE PRICE 
AND NON-FORWARD LOOKING BIDDERS 

 

1 Introduction 

In this chapter, I propose a game-theoretic bidding model in multi-round 

procurement auctions with secret reserve prices and evaluate how the release of the 

auctioneer's reserve price affects bidders' bidding behavior and auctioneer's expected 

payment. Then I carry out various reduced-form econometric analyses on the multi-round 

procurement auction data from the INDOT to validate the model. 

To analyze the complexity of multiple stages and secret reserve price, I establish 

my first-price sealed-bid auction model in a simple environment -- the independent private 

value (IPV) paradigm. Meanwhile, I assume that the government's reserve price is 

exogenous and private over stages. This assumption, although restrictive, is consistent with 

my data. It also permits me to focus on bidders' strategic changes over stages 

Although my model for the procurement auctions focuses on low-bid auctions 

which is motivated by the procurement data from the INDOT, it can be easily generalized 

to analyze high-bid auctions. My model yields some interesting predictions and 

implications. First, the bidding prices uniformly decline over stages, because of the 

information about the secret reserve prices revealed in the previous stage. Second, under 

some conditions, hiding the secret reserve price is better for the government than 

announcing it. This result provides an explanation as to why secret reserve prices are 

commonly used in auctions from a new perspective. 
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The implication of the reduced-form analyses is two-fold. First, it validates the 

important assumptions in the model, such as the exogeneity of reserve prices and number 

of potential bidders. Second, it tests first the equilibrium bidding monotonically decreasing 

in cost and second the bid in the second round is lower than in the first round. 

Studies of multi-round auctions have been quite limited. A few existing studies are 

all limited to a two-round auction model with various seller's second-round options. See 

Elyakime, Laffont, Loisel and Vuong (1997), Horstmann and LaCasse (1997), and Skreta 

(2004). Apparently, these two-round models do not fit with the multi-round procurement 

auctions organized by the INDOT as these auctions can be held for more than two rounds if 

the project is not sold in the previous round, and the government does not strategically 

choose to re-auction the project. 

This chapter is organized as follows. In Section 2, I present the data to motivate the 

model. In Section 3, I construct the model of multi-round procurement auctions with secret 

reserve prices, and solve the Bayesian Nash equilibrium. I also investigate the implications 

from my model. In Section 4, I compare the effects of different information release policies. 

In Section 5, I conduct a reduced-form econometric analysis of the data. Section 6 

concludes. All technical proofs are included in the Appendix. 

 

2 Data 

My dissertation analyzes a data set of highway auctions held by the INDOT. The 

INDOT lets highway construction contracts through auctions. The auctions are held as 

first-price sealed-bid auctions where the INDOT reserve prices are unknown to bidders. 

Each contract specifies the construction work on highways within Indiana undertaken by 
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the winner of the auction. The winner of each auction performs projects described in the 

contract and is paid by the government. The prices bid by all participants are the amount 

that they ask for compensation. 

An auction proceeds as follow. The INDOT posts the notice to contractors to invite 

bids five weeks prior to the bidding day. The notice includes simple information such as 

the type of projects in each contract, date of completion requested, and the length or area of 

the projects. Bid proposals and plans for the contracts that consist of more information on 

characteristics of the projects are also available upon request. Next, with the advent of the 

bidding day, each bidder submits a sealed bid to an electronic bidding system knowing that 

the government has a secret reserve price. Finally, on the bidding day, the received bids are 

unsealed and ranked by the government publicly. If the lowest bid in the auction is lower 

than the reserve price, the contract is then awarded to the bidder. Otherwise the contract 

will be readvertised and reauctioned in the following month. This feature makes the data 

unique. 

The INDOT lets four types of construction work: road work, bridge work, traffic 

facilities and highway maintenance. I select one specific type of bridge work, which is 

called bridge rehabilitation, to analyze for two reasons. First, there exists large 

heterogeneity across different auctions. The characteristics of bridges are relatively more 

observable to econometricians among all work. Second, among all bridge work, bridge 

rehabilitation work not only reveals most characteristics to econometricians but also occurs 

most frequently. 

The sample analyzed in this paper is from INDOT monthly lettings from 

September 1996 to December 2004. For each auctioned contract, I have the following 
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observations: the identity of each bidder, all bids, the reserve price, the number of bidders, 

the number of projects, the length of projects, the number of working days (or the 

completion date), the DBE goal and the structure of the bridge.1 Before I exclude the 

lettings whose descriptive variables are missing, I have 37 lettings that have two rounds of 

auctions. In 34 lettings, the contractors in the second round are a subset of the contractors 

in the first round. There are three lettings, however, all of which have one single bidder in 

the first round and one new single bidder in the second round. I exclude them from my 

sample. I also exclude from the sample the lettings whose descriptive variables are missing. 

As a result, my final sample consists of 273 lets and 1428 bids in total. Among the 273 lets, 

243 were sold in the first round that involves 1261 bids. There are 30 lets unsold in the first 

round (near 12.5%) but sold in the second round with totally 167 bids in both rounds, and 

102 bids in the first round, and 65 bids in the second round, respectively. 

Table 2.1 and Table 2.2 give the description of the variables and the summary 

statistics of the data. On average, DBE percentage is 7.52 which means 7.52% of the total 

value of the contract is operated by DBE firms. DBE is regulated by the government hence 

it is not the choice of bidders. The average number of working days for completing the 

bridge work is around 138. The average length of the projects is 79.21 meters (about 260 

feet). Intuitively, the longer a project takes and/or the longer the bridge is, the more work 

needs to be done and hence the higher cost it could result in. The average number of 

projects in each contract is 1.18, meaning that there can be multiple projects on vicinity 

                                                 
1DBE (short for disadvantaged business enterprise program) is committed by the INDOT to implement to 
ensure nondiscrimination in the award and administration of USDOT-assisted contracts. DBE goal is 
expressed as a percentage. This percentage, when applied to the total federal highway construction funds 
received by the INDOT during the year, represents the amount of dollars that DBE firms working on INDOT 
contracts as prime contractors, subcontractors, or truckers should receive. Hence in a particular letting, the 
primary contractor if not a DBE firm, has the responsibility for contracting all ready, willing and able DBE 
firms who express a desire to work on any of the pay items of the contract; and must subcontract at least as 
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sites. Multiple projects could potentially affect the capacity as well as the share ability of 

the facilities of the firms. 38% of the bridges have a steel structure, with the rest having 

structures of concrete, wood and others. 

The summary statistics also reveal several important features of the data. On 

average, the number of bidders in the first round is 4.99 whereas the number of bidders in 

the second round is 2.23. Second, the average reserve price is $855,615 and the average bid 

is $839,506 for those with only one round. The former is greater than the latter meaning 

that the secret reserve price is effectively binding. On the other hand, they are very close. 

Third, if I concentrate on the auctions with two rounds, I find that on average, the bid is $ 

638,917 in the first round and $588,992 in the second round, with a difference of $49,925. 

This indicates that bids on average are lower in the second round than in the first round. 

 

3 The Model for Multi-Round Auctions with Secret Reserve Prices 

In this section, I propose a game-theoretic model for multi-round procurement 

auctions with secret reserve prices, and derive the corresponding Bayesian-Nash 

equilibrium. 

 

3.1 Setup of the Game 

The government lets a single and indivisible contract to firm contractors. There are 

N  potential contractors who are interested in bidding for the contract. Each potential 

bidder is risk-neutral with a disutility equal to his private cost c . The government has an 

engineer estimate that is secret and serves as a reserve price in that the lowest bid has to be 

below it to become the winning bid. Because of the secret reserve price, it is possible for a 

                                                                                                                                                 
much as the required percentage of the total value to one or more DBE firms. 
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project not to be awarded in an auction. If this is the case, the project will be re-auctioned 

later. Thus the game has multiple stages. 

The government's secret reserve price 0r  is drawn from a distribution )(⋅G  with 

support ],[ cc  where .0≥c   )(⋅G  is twice continuously differentiable and has a density 

)(⋅g  that is strictly positive on the support. Potential bidders draw their private costs 

independently at stage j  from a common distribution denoted )(⋅jF  with support ],[ cc  

and the corresponding density )(⋅jf  that is strictly positive on the support.2 Thus I focus 

on the independent private value paradigm. When forming his bid, each bidder knows his 

private cost c , but does not know 0r  as well as others' private costs. On the other hand, 

each bidder knows that 0r  is drawn from )(⋅G  and all private costs are independently 

drawn from )(⋅jF . )(⋅G  and )(⋅jF  are common knowledge to all bidders. As a result, all 

bidders are identical a priori and the game is symmetric. 

More specifically, the game can be characterized in the following order. In the first 

stage, the government has an engineer estimate that serves as the reserve price. The reserve 

price is kept fixed and secret until the contract is sold. It is exogenous in that it is not related 

to the government's optimal and strategic decision. As a result, I can focus on the strategic 

changes of the bidders' strategies across stages. Without knowing the reserve price, all N  

potential bidders participate in the game in the first stage and submit their bids. At the end 

of the first stage, all bids are opened, ranked and released. The reserve price, however, is 

not made public until after the contract is sold out. If the lowest bid, which requests the 

                                                 
2While we assume that )(⋅G  and )(⋅jF  have a common support for simplicity, our approach can be readily 

generalized to the general case where )(⋅G  and )(⋅jF  have different supports. 
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least compensation of cost from the government, is lower than the reserve price, the 

contract is awarded to the associated bidder and the game ends. Otherwise, the game 

continues to the next stage. 

In the second stage, there are two main changes. First, each contractor re-draws his 

private cost from a common distribution )(2 ⋅F , which in general can be different from 

)(1 ⋅F . This is a key assumption in my model, and will be labeled as the random cost 

replacement assumption hereafter. This assumption implies that each bidder's cost in one 

auction round can be different from his in another. Being endowed with the lowest cost in 

the first round does not mean being endowed with the lowest in other rounds. This 

assumption can be used to justify my observation that in most of the auctions in my data, 

the actual bidders of the second round are a subset of the bidders in the first round. 

Moreover, the assumption that each bidder re-draws his private cost in a different round is 

reasonable. Each firm can participate in several different auctions in one month. They may 

lose in some auctions while winning in others. In a later round, the firm's private cost for 

the same project can change from the previous round because the firm may face different 

capacity constraints and may have different opportunity costs. 

Another important feature of my model is that there is a Bayesian updating on the 

reserve price from the bidders. Specifically, when an unsold project is re-auctioned, though 

the engineer's estimate is still kept secret, bidders have more information about this secret 

reserve price in this round than in the preceding one as they know the lowest bid from the 

preceding round. Therefore, they take this lowest bid into their strategy calculation as 

additional information as they know the secret reserve price has to be below this lowest bid. 

If a potential bidder's private cost he re-draws in this new round is above the lowest bid 
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from the preceding round, he will not submit his bid. Thus this lowest bid plays a similar 

role to that of a public reserve price in screening bids. Thus, though I assume that there is 

no entry problem in the first round in that all potential bidders submit their bids, in the 

subsequent rounds, a potential bidder will not submit his bid if his private cost is higher 

than the lowest bid he observes from the preceding round. As a result, the actual bidders in 

the subsequent rounds must be a subset of the potential bidders of the first round. 

 

3.2 The Bayesian-Nash Equilibrium Bidding Strategy 

Denote a bidder's cost at the j -th stage jc  and the associated bidding strategy .jb  

I focus on the symmetric increasing Bayesian-Nash bidding equilibrium. Define the 

equilibrium bidding function as )( jj cb β=  such that .0)( >⋅′β  I also use ∗
js  to denote the 

lowest bid in the j -th stage. 

In this chapter, I assume that bidders solve their bidding strategies stage by stage 

without considering possible future rounds at the current round.3 Under this assumption 

and the random cost replacement assumption, I can derive the bidder's Bayesian-Nash 

equilibrium across stages as follows. 

 Proposition 1 The Bayesian-Nash equilibrium strategies are  

,
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for the first round and 

                                                 
3This assumption rules out forward-looking bidders. On the other hand, it has a generality in that it allows for 
different private cost distributions across different rounds, while one has to assume the same private cost 
distribution across stages in a dynamic game with forward-looking bidders. 
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for the j-th reauction round respectively. 

 

3.3 Comparing Bidding Strategies across Stages 

Expressions (1) and (2) indicate that the bidding strategies differ from stage to stage 

in my model, and the interval over which the bidding strategy is defined also changes over 

stages. For instance while the first round equilibrium is defined on ],[ cc , the second round 

equilibrium is defined on the interval ],,[ 1
∗sc  which is  truncated from above compared to 

the first round. While the secret reserve price is not revealed, the rejected lowest bid from 

the previous round gives bidders information that the secret reserve price is below this bid; 

bidders will not submit their bids above this lowest bid. Intuitively, this would make 

bidders bid more aggressively and reduce their bids over stages. This is indeed the case, as 

shown in the next proposition. 

 Proposition 2 In the multi-round auction model, the equilibrium markup and bid in stage 

j  is less than or equal to the equilibrium markup and bid in the previous stage everywhere 

on ],[ 1
∗
−jsc . 

A few remarks follow. First, this proposition shows that the equilibrium bidding 

strategies are indeed decreasing from stage to stage if the contract is not sold out. Moreover, 

the reduction is universal on the whole common interval. Second, this result is established 

allowing the private cost distributions to vary across stages. Thus it is a strong prediction 

from the model as it is robust to the change of the bidders' cost distribution over stages. 

Third, this result is empirically testable and can be used for testing rationality of bidders in 
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real auctions. 

 

3.4 Numerical Examples 

To explore more properties of the bidding functions across stages, I give some 

numerical examples. I specify different distributions and vary the number of potential 

bidders. As the analytical solutions are in general not attainable, I numerically solve for 

equilibrium bids. Without loss of generality, I illustrate )(1 cβ  and ).(2 cβ  The bidding 

functions under different specifications are depicted in Figure 2.1 -- 2.3. 

The depicted curves reinforce two main findings from the theoretical model. First, 

the bidding functions are strictly increasing. Second, the bids in the second round are 

everywhere below the bids in the first round on the common support. I conduct a large 

number of numerical specifications and these findings are generally consistent. 

The graphs also reveal some other interesting patterns. First, the bids are negatively 

related to the number of potential bidders in every round. This is simply because of the 

competition effect. Second, the disparity between )(1 cβ  and )(2 cβ  are affected by two 

factors. On one hand, it is affected by the number of potential bidders. The difference 

between them shrinks as the number of potential bidders increases. This is reasonable 

because as the number of potential bidders increases, the competition effect becomes more 

intense, which makes a bidder's mark-up in every auction round small and converging. On 

the other hand, it is affected by the lowest bid in the first round of unsold auction. The 

smaller this lowest bid is, the larger the difference between )(1 cβ  and ).(2 cβ  I label this 

effect as boundary effect. In the first round, the boundary condition is at the upper bound of 

the cost distribution, while in the second round the boundary condition is at the previous 
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lowest bid (upper bound of a truncated distribution). The lower the truncated bound is, the 

lower the maximum possible bid in the second round is. Hence the boundary effect tends to 

enlarge the difference in bidding across stages. 

 

4 Government's Information Revelation 

In this section I compare welfare impacts of different reserve price release policies 

from the government. Motivated by the INDOT data feature, my model has focused on the 

use of the secret reserve price by the government. Alternatively, the government can make 

the engineer's estimate public and use it as a public reserve price. In this scenario, the 

government can find no bids submitted if all bidders' private costs are above the public 

reserve price. If I maintain the random cost replacement assumption, then the government 

can re-auction the project in the next round with the same public reserve price. As a result, 

under the random cost replacement assumption, the multi-round feature can be 

accommodated by both secret and public reserve prices. It would be interesting to compare 

the welfare implications of these two mechanisms and gain insights on why secret reserve 

prices are used in auctions. 

 

4.1 Multi-Round Auctions with Public Reserve Prices 

I maintain all the assumptions made in Section 2.1 except that now the reserve price 

r0  is public. In the j -th round, the Bayesian-Nash equilibrium strategy, as shown in Riley 

and Samuelson (1981), is given by 
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for 0rc < ; for a potential bidder whose private cost is above 0r , he will not bid. 

If all potential bidders' private costs are above 0r , no bids are submitted at the 

current round, and the project can be re-auctioned in the next round. As in the secret 

reserve price case, I assume that the set of potential bidders remains the same across stages. 

At each round, however, a bidder's bidding strategy as defined in (3) may change because 

of the new private cost he re-draws from )(⋅jF . 

 

4.2 The Comparison of Mechanisms 

I compare the government's ex ante expected payments under the two reserve price 

policies, assuming that bidders re-draw their private costs at each round, and the 

government will re-auction the unsold contract in the next round until it is sold out. Since it 

is infeasible to make such a comparison generally as the ex ante expected payments in 

these two cases do not have closed form expressions in general, I conduct some simulation 

studies by assuming that the private cost distribution remains the same across stages, and 

by considering some commonly used functional forms for the private cost distribution and 

the reserve price distribution such as the uniform and exponential distributions. 

I specify different distributions and vary the number of potential bidders to carry 

out a group of simulations. I then compare the government's expected expenditures under 

the two mechanisms. 

I first plot the simulated expected expenditure as a function of the reserve price. As 

can be seen from the graphs, under some specifications, the secret reserve price policy 
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dominates the public reserve price in that the (ex post) expected expenditure under the 

secret reserve price is below that under the public reserve price. Some other specifications, 

however, yield the opposite findings. I further compute the ex ante expected expenditures 

by integrating out the reserve prices and report them in Table 2.3, which reveals that the 

expected expenditure under secret reserve prices is sometimes lower and sometimes higher 

than under public reserve prices. 

The graphs also reveal some other interesting patterns. First, the (ex post) expected 

expenditure as a function of either a secret or public reserve price is almost increasing with 

the reserve price4. This is reasonable because the higher is the reserve price, the less 

restrictive is the auction to the bidders. The acceptable bids are high when the reserve 

prices are high. Second, the effect of the number of bidders is complicated. On one hand, 

the larger the number of bidders, the closer the two curves are because of the competition 

that tends to offset the different effects of different reserve prices on bidding. This 

competition effect is in analogy to that in the earlier numerical results on equilibrium bids 

between stages. On the other hand, the minimum bid in the previous round is lowered by 

the intensity of competition in the case of a secret reserve price. This is a factor that drags 

down the bids in the auctions with secret reserve prices, which does not exist in the public 

reserve price mechanism. The boundary effect favors the secret reserve price. It affects the 

position of the intersection and the difference of the two curves. Consequently, the 

boundary effect tends to enlarge the favorable range for the secret reserve price and 

increase the distance between the two curves in its favorable range. The net effect is 

determined by the combination. It seems from the graphs that the competition effect often 

                                                 
4The sampling variation resulting from simulations causes the small fluctuations on the curve; otherwise the 
curve could be more monotone. 
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dominates. 

 

5 Reduced-Form Empirical Analyses 

In this section, I provide a preliminary analysis of my data, trying to relate my 

theoretical model to the data by justifying some assumptions, and to test some predictions 

from the model.5 

 

5.1 Exogeneity of Number of Potential Bidders in the First Round and the Reserve 
Price 
 

In my model, I assume that there is no entry in the first round. In other words, the 

set of potential bidders is identical to that of actual bidders. To justify this assumption, I 

take a look at the number of bidders in the first round and test the exogeneity of this 

variable. To this end, I use both the Poisson model and the negative binomial model as the 

number of bidders is a count variable. Using all data in the first round including both sold 

lettings and unsold lettings, I estimate both models. Since in my data set, I do not have any 

auction that has no bidder participation, the number of bidders in my data is truncated from 

zero. Thus I use the truncated Poisson and negative binomial models. 

The ML estimation results of both models are reported in Table 2.4-2.5. The results 

show that no covariates used in the regression are statistically significant in explaining the 

number of bidders. Thus, the number of actual bidders can be treated exogenous and 

considered the same as the number of potential bidders. 

Another important assumption in the theoretical model is that the government's 

reserve price is exogenous in that it is not related to the number of bidders and does not 

                                                 
5While our model is general enough to allow for possibility of infinite rounds, we can only focus on analyzing 
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change across different rounds. To test the exogeneity of the reserve price in my data, I run 

a regression of the logarithm of the reserve price on a set of covariates including the 

number of bidders. From the results reported in Table 2.6, I can see that interestingly, both 

the number of bidders and the round-two dummy are not significant in the regression.6 

That both the number of bidders and round-two dummy have no effect on the reserve price 

provides support for the exogeneity of the reserve price. 

 

5.2 Regression Analysis of Bids 

There are two empirically testable implications about the equilibrium bids from my 

theoretical model. First, it can be easily verified that the Bayesian-Nash equilibrium 

strategies given by (1) and (2) are monotone decreasing with the number of potential 

bidders. Intuitively, the larger the number of bidders, the more competitive the auction. 

The competition drives the bidders to bid more aggressively. Second, the theoretical model 

predicts that the equilibrium bids are lower in the second stage. 

To test these two implications, I run a pooled regression of the logarithm of bids on 

a set of covariates. To allow for structural change in bid over the two auction rounds, which 

is indicated by the theoretical model, I include the round-two dummy variable and its 

interactions with other variables. I report the regression results in Table 2.7. It turns out that 

the number of bidders is strongly significant and negatively related to bids. The round-two 

dummy and some interactive terms are strongly significant, meaning that there exists 

structural change in bid across auction stages. Furthermore, I calculate the marginal effect 

of the round-two dummy on the bids. The marginal effect is -$53004 and strongly 

                                                                                                                                                 
the first two rounds because of our data limitation. 
6round-two is a dummy variable equal to 0 when an auction is in the first round and 1 when an auction is in 
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significant, meaning that on average the bidders tend to lower their bids in the second 

round by $53,004 which is about 8.3% of the project value. This result is quite close to the 

outcome in the summary statistics. These findings offer support to my theoretical model. 

The 2R  of the pooled regression is 0.51, indicating that on one hand the model fits 

moderately well, on the other hand I may ignore some unobserved auction heterogeneity. 

To further ascertain the existence of unobserved auction heterogeneity, I conduct a 

random-effect panel data analysis using only the first round auction data, as the auction 

data have a panel feature. I report the regression results in Table 2.8. The results strongly 

indicate that there exists unobserved auction heterogeneity as the error variance from the 

unobserved heterogeneity accounts for 95% of the total error variance. Hence it calls for 

controlling the unobserved heterogeneity in the structural inference. 

 

6 Conclusion 

In this chapter, I study multi-round auctions with secret reserve prices. My model 

yields some predictions that can be empirically tested, such as that the equilibrium bids 

decline uniformly over various stages. Also, my simulation study of the model 

demonstrates that depending on the specifications of the underlying distributions, the 

auctioneer may be better off by keeping the reserve price secret, which is the case in my 

data that motivates my study. Thus my model has the potential to be used to explain why, 

in some real world auctions, secret reserve prices are used. 

This chapter offers insight on the use of secret reserve prices in multi-round 

auctions and the strategic changes in bidders' bidding strategies. It is worth noting, on the 

other hand, that my model is a static model with non-forward looking bidders. I make this 

                                                                                                                                                 
the second round. 
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assumption to simplify the analysis and to accommodate the flexibility of allowing for 

changes of bidders' private cost distributions across stages. Alternatively, one can 

introduce dynamic features into the model by assuming that bidders are forward looking 

and their private cost distributions do not change across stages. In chapter IV, I propose a 

dynamic model of multi-round auctions with secret reserve prices and develop a structural 

approach. 
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APPENDIX 

1. Lemma 1 

In the first stage, bidder si′  probability of winning is )](1[)](1[ 1
1

1 i
N

i bGcF −− − ; while in 

the j -th stage, bidder si′  probability of winning is  
)(

)]()([)](1[

1

11
1

∗
−

∗
−

− −−

j

ij
N

ijj

sG
bGsGcF

.  

Proof Bidder i  wins the auction if his bid is less than the other 1−N  bids as well as the 

reserve price. The probability of winning can be described by the probability of the 

occurrence of the following event, )(minPr( 11 kiki bb
≠

<  and )01 rbi < , which is a joint 

probability. Because the pair wise independence of agents, it is a product of )Pr( 01 rbi <  

and .),Pr( 11 ikbb ki ≠∀<  At equilibrium if the bidders play the symmetric bidding strategy, 

then )()( 11 ki cc ββ <  implies .11 ki cc <  Hence it follows that 

)(1)Pr(1)Pr( 111111 iikki cFcccc −=>−=< ,  

).(1)Pr(1)Pr( 11001 iii bGbrrb −=<−=<  

In the j -th stage, the information from previous auction rounds enables the bidders to 

form a Bayesian updated belief of .0r  Therefore the probability that ijb  is less than 0r  is 

contingent on the past information set 1−Λ j , i.e., )|Pr( 10 −Λ< jij rb , where ∗
−1js  is the 

lowest bid from the previous auction round. Henceforth ,10
∗
−< jsr  is the information set 

.1−Λ j  bidders bid as if they saw 0r  drawn from a truncated distribution ).|( 1
∗
−< jsrrG  It 

then leads to the following result 
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Similarly, the probability of winning is based on )(minPr( kjikij bb
≠

<   and  ),0rbij <  a joint 

probability. Thus the result immediately follows. 

 

2. Proof of Proposition 1 

Define )(⋅β  as the symmetric increasing Bayesian-Nash equilibrium bidding strategy. 

Since it is the same function for each bidder, we can suppress the subscript .i  We index the 

strategy in j -th stage by .jβ  We solve the game stage by stage to obtain the separate 

equilibrium. In the first stage, the bidder chooses 1b  to maximize his expected payoff 

)](1[))]((1)[( 1
1

1
1

11111 bGbFcb N −−−= −−βπ  . The first order condition is as follows 

)())]((1)[()](1[))]((1[ 1
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1111
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11 bgbFcbbGbF NN −−−− −−−−− ββ  
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ββ , 

where )(11 cb β=  and ).( 1
1

1 bc −= β  After we replace 1b  with the function of c , we get the 

differential equation for 1β  

)()()](1)[()()](1[)](1[ 11
1

1111
1

1 cgcFccGcF NN ′−′− −−−−− βββββ  

0)()](1)[1))](((1)[)(( 1
2

111 =−−−−− − cfcFNcGcc Nββ . 

Further algebra turns the differential equation into 

))]}((1[)](1{[))]}((1[)](1)[({ 1
1

11
1

11 cGcF
dc
dccGcFc

dc
d NN βββ −−=−− −− . 

Using the boundary condition  cc =)(1β , we can solve the equation above and get 
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In the j -th reauction stage, the bidder maximize his expected payoff in the j -th round as 

follows 

)(
)]()([))]((1[

)(
1

1
11

∗
−

∗
−

−− −−
−

j

jj
N

jjj
jjb sG

bGsGbF
cbMax

j

β
. 

The corresponding first order condition is 

)(
1)())]((1)[(

)(
)]()([

))]((1[
1

11

1

111
∗
−

−−
∗
−

∗
−−− −−−

−
−

j
j

N
jjjj

j

jjN
jjj sG

bgbFcb
sG

bGsG
bF ββ  

0
))((

1))(())]((1)[1(
)(

)]()([
)( 1

121

1

1 =
′

−−
−

−− −
−−−

∗
−

∗
−

jj
jjj

N
jjj

j

jj
j bs

bfbFN
sG

bGsG
cb

β
ββ . 

In equilibrium, we obtain the differential equation for jβ   
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Then it can be written as 

)]}()([)](1{[)]}()([)](1)[({ 1
1

1
1

jj
N

jjj
N

jj GsGcF
dc
dcGsGcFc

dc
d βββ −−=−− ∗

−
−∗

−
− . 

The boundary condition is different here. It involves participation decision of the bidder’s 

entry to the j -th round auction occurs only if a bidder's private cost in j -th round is less 

than ∗
−1js . Hence the above strategy is conditional on that the private cost is less than ∗

−1js . 

As a result, the boundary condition is ∗
−

∗
− = 11 )( jjj ssβ  for this stage. Integrate over ],[ 1

∗
−jsc , 

using the boundary condition, we can get the following 
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3. Proof of Proposition 2 

By the uniqueness of symmetric Bayesian Nash equilibrium solution of (1) and (2), we 

have 
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From (A.2) and (A.3), we have 
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Therefore it follows that ).()( 1 cc jj −≤ ββ   
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Table 2.1 Variables and Number of Observations 

number of lets with one round  243 

number of lets with two round  30 

Variable Description NOBS

characteristics of lets   

Dbe DBE percentage goal 273 

Time number of working days needed 273 

Np number of projects 273 

Steel whether the bridge is of steel structure 273 

Length length of the bridge(s), meter 273 

Prices   

Rp government's engineer estimate 273 

bid1 for lets with one round 1261 

bid1&2 for lets with two round (both rounds) 167 

bid1-2 bid in the first round auction that is unsold 102 

bid2-2 bid in the second round 65 

participation   

Nb number of potential bidders 273 

nb2 number of bidders in 2nd round 30 
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Table 2.2 Summary Statistics 

Variable mean std.dev. min max 

Dbe 7.52 3.16 0 15 

Time 137.53 65.76 20 451 

Np 1.18 0.60 1 5 

Steel 0.38 0.49 0 1 

Length 79.21 82.27 3.22 607.31 

Rp 855614.8 895489.2 70671.35 6742284 

bid1 839506 869855.5 65325.78 6684512 

bid1&2 619485.5 398895.8 94853 2230051 

bid1-2 (first round) 638917.3 427400.6 94853 2230051 

bid2-2 (second round) 588992.4 350553.3 97637.2 1505183 

Nb 4.99 1.98 1 10 

nb2 2.23 1.01 1 5 
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Table 2.3 Results of Simulation Study 

 )(cF    )(rG    N   public rp secret rp 

exp (1) exp (1) 4 0.0388 0.0341 

exp (1) exp (1) 7 0.024 0.0228 

exp (1) exp (1) 10 0.0174 0.0172 

exp(2) exp (1) 10 0.0306 0.0281 

exp(0.5) exp (1) 10 0.0092 0.0096 

exp(0.3) exp (1) 10 0.0056 0.0062 

exp(0.3) exp(1) 7 0.0082 0.0086 

unif [0,1] unif [0,1] 4 0.2911 0.2662 

unif [0,1] unif [0,1] 7 0.2032 0.1958 

unif [0,1] unif [0,1] 10 0.1554 0.1543 

unif [0,0.3] unif [0,1] 10 0.0519 0.0586 

unif [0,0.5] unif [0,1] 10 0.0838 0.0886 

unif [0,0.7] unif [0,1] 10 0.1138 0.1174 

exp: exponential distribution, mean in parentheses 

unif: uniform distribution, bounds in brackets 
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Table 2.4 Poisson Regression Model of NB 

nb (Dept. Var.) Coef. Std. Err. 

dbe 0.0161 0.01 

time 5.07e-04 4.31e-04 

np -0.0505 0.0513 

steel 0.042 0.0608 

length 3.59e-04 3.82e-04 

_cons 1.42* 0.104 

Observations: 273    Log likelihood: -567.24 

restricted log likelihood  -573.42 

chi2(d.f.=5) = 12.37  p-value = 0.03 

left truncated data, at nb=0 

*: significant at 5% 
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Table 2.5 Negative Binomial Model of NB 

nb (Dept. Var.) Coef. Std. Err. 

dbe 0.016 0.01 

time 5.08e-04 5.21e-04 

np -0.0504 0.0653 

steel 0.042 0.073 

length 3.59e-04 3.37e-04 

_cons 1.42* 0.13 

Observations: 273    Log likelihood: -567.24 

left truncated data, at nb=0 

*: significant at 5% 
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Table 2.6 OLS Estimates of Regression of Reserve Prices 

log(rp) (Dept. Var.) Coef. Std. Err. 

nb -0.011 0.011 

round-two -0.12 0.12 

dbe 0.045* 0.011 

time 0.005* 0.0005 

np 0.204* 0.060 

steel 0.273* 0.073 

length 0.0024* 0.0004 

_cons 11.84* 0.149 

Number of Observations: 273                           52.2 =R   

*: significant at 5% 
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Table 2.7 OLS Estimates of Regression of Bids 

log(bid) (Dept. Var.) Coef. Std. Err. 

round-two -0.826* 0.4113 

nb -0.020* 0.0068 

dbe 0.037* 0.0053 

time 0.0048* 0.0002 

np 0.191* 0.0387 

steel 0.272* 0.0337 

length 0.0024* 0.0002 

nb*round-two 0.0504 0.0481 

dbe*round-two 0.006 0.0197 

time*round-two -0.001 0.0016 

np*round-two 0.681* 0.1560 

steel*round-two -0.340 0.2276 

length*round-two 0.0005 0.0005 

_cons 11.927* 0.0809 

marginal effect  )( 12 bb −   -5.3e+04* 3.1e+03 

Number of Observations: 1428                   51.02 =R   

*: significant at 5% 
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Table 2.8 Random Effect Analysis of Bids 

log(bid) (Dept. Var.) Coef. Std. Err. 

nb -0.0214 0.016 

dbe 0.039* 0.011 

time 0.0047* 0.0005 

np 0.201* 0.060 

steel 0.265* 0.073 

length 0.0024* 0.0005 

_cons 11.91* 0.14 

 5346.02 =uσ    1179.02 =εσ    

 9536.0=ρ   (fraction of variance due to  u  ) 

Number of Groups: 273 

Model:  llll iii uxbid εβ ++=)log(   

*: significant at 5% 
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Figure 2.1 Bidding Functions of the First Two Stages in Multi-Round Auctions with 
Secret Reserve Prices: Uniform Distributions 

 
Note: The contractors’ private cost and the governmental reserve price are uniformly 
distributed. In each subplot, b refers to contractor, g refers to government, N refers to 
number of contractors and S* refers to the lowest bid in the first round of an unsold 
contract. We maintain the convention of notations throughout the figure set 1. 
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Figure 2.2 Bidding Functions of the First Two Stages in Multi-Round Auctions with 

Secret Reserve Prices: Exponential Distributions 
 
Note: The contractors’ private cost and the governmental reserve price are exponentially 
distributed. 
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Figure 2.3 Bidding Functions of the First Two Stages in Multi-Round Auctions with 

Secret Reserve Prices: Mixed Distributions 
 
Note: Weib refers to weibull distribution; Beta refers to Beta distribution; logn refers to 
log normal distribution. In each subplot, the contractor’s distribution is put in the first 
place. 
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Figure 2.4 The Comparison of Governmental Expenditures under Uniform Cost 

Distributions 
 
 
Note: solid lines represent (ex post) governmental expenditures under public reserve 
prices, dash lines are under secret reserve prices. 
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Figure 2.5 The Comparison of Governmental Expenditures under Exponential Cost 

Distributions 
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CHAPTER III 

 

STRUCTURAL ANALYSIS OF MULTI-ROUND PROCUREMENT AUCTIONS 
WITH NON-FORWARD LOOKING BIDDERS 

 

1 Introduction 

In this chapter, following the game-theoretic model in Chapter II, I carry out a 

structural econometric analysis on the multi-round procurement auction data from the 

INDOT. Using the structural estimates, I evaluate how the release of the reserve price 

affects the government's expected payment through counterfactual analysis. 

To analyze the procurement auction data, and in addition to provide an empirical 

framework within which the multi-round model with secret reserve prices can be analyzed, 

I develop a structural model from the theoretical model that I propose. My structural 

approach takes into account of the unobserved auction heterogeneity, the existence of 

which in procurement auctions has been documented (e.g. Krasnokutskaya (2002) and Li 

and Zheng (2005)). Failing to control for the unobserved auction heterogeneity can cause 

severe bias in structural estimation, and hence result in misleading policy evaluations and 

recommendations. 

I adopt the method of simulated moments (MSM) to estimate the underlying 

structural parameters. This approach provides a unified framework within which some 

interesting hypotheses can be tested, in addition to the computational advantage in 

obtaining consistent estimates. For example, we can test whether the private cost 

distribution varies across stages. I use my structural approach to analyze the INDOT data. 

Using the structural estimates, I carry out a counterfactual analysis by simulating the 
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auctions with different government's reserve price release policies in the multi-round 

scenario. I find that the government could save more than $13,000 (or about 2.5% of the 

project value) on average on a representative bridge work auction by hiding the engineer 

estimate rather than disclosing it. Hence the use of secret reserve price may be a good 

policy in practice in procurement auctions. 

This chapter is organized as follows. In Section 2, I provide a structural 

econometric framework for analyzing multi-round auction data. In Section 3, I apply the 

structural approach to analyze the INDOT data. In Section 4, I use counterfactual analysis 

to evaluate the government's reserve price policy. Section 5 concludes. All technical proofs 

are included in the Appendix. 

 

2 Structural Inference of Muti-Round Auction Models 

 

2.1 The Parameterization of the Structural Model 

Based on the theoretical auction model, there are three primitives, namely, the 

government's reserve price distribution )(⋅G  and the private cost distributions )(⋅jF , 

2,1=j . )(1 ⋅F  can be in general different from )(2 ⋅F . Nonparametrically, )(⋅G  can be 

identified from the observed reserve prices as they are assumed to be random draws from 

)(⋅G . Moreover, following Guerre, Perrigne and Vuong (2000) and Li and Perrigne (2003), 

it can be verified that )(1 ⋅F  is identified over its entire support ],[ cc  by the observed bids 

in the first round, and )(2 ⋅F  is identified over ],[ 1
∗sc  by the observed bids in the second 

round (see the appendix for a discussion). In this paper, however, I adopt the parametric 

approach because I only observe 30 auctions in the second round, which makes 
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nonparametric estimation problematic. 

In an econometric framework, asymptotic statistical inference is based on a large 

number of auctions. Let 1L  be the number of auctions in the first round, 2L  be the number 

of auctions in the second round. Some auctions in 1L  did not result in a sale and went into 

the second round. For the l -th auction at the j -th round, let )(⋅lG  and )(⋅ljF  denote each 

primitive distribution respectively with corresponding densities )(⋅lg  and )(⋅ljf , 2,1=j . 

Assume that ),,|( γlll uxGG ⋅=  and ),,|( jj uxFF θlll ⋅= , where lx  is a vector of 

variables that I use to control for the observed auction heterogeneity, and lu  is a scalar 

variable that represents the unobserved auction heterogeneity, both affecting the 

government's reserve price as well as the bidders' costs, γ  is a vector of unknown 

parameters in KR⊂Γ , and θ  is a vector of unknown parameters in .R K⊂Θ  I assume 

that u  is independent of x , and has a distribution )|( σ⋅W  with )|( σ⋅w  being the density 

function, where σ  is a vector of unknown parameter in .R m⊂Σ  

Conditional on both observed and unobserved heterogeneity x  and u , I specify the 

reserve price distribution and the cost distribution as exponential as follows 
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where ),0( ∞∈c  and ),0( ∞∈r . By including the intercept in x , I normalize the 

unobserved heterogeneity term u  such that .0][ =uE  I assume that ),0( 2σNu ∼ , where 

2σ  is an unknown parameter. 
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2.2 Structural Equilibrium Solutions 

Next I need to solve the theoretical auction model for equilibrium solutions with the 

above specified distributions. The Bayesian Nash equilibrium bidding strategy in the first 

round is given as follows, which is a closed-form solution 
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The Bayesian Nash equilibrium bidding strategy in the second round, which is a 

solution to the equation given below 
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does not have a closed form. 

 

2.3 Estimation and Testing for Changes of Private Cost Distributions 

In my auction data, at round ,j  2,1=j , we observe reserve prices, number of 

potential bidders and a set of auction heterogeneities ),,( lll xNr . We also observe bids in 

round 1 and round 2, respectively. My estimation of the structural parameters is based on 

the likelihood function of r  given in (1) and the moment conditions of ljib  ( 2,1=j  ), 

where ljib  denotes the i -th bid in the l -th auction at the j -th round. Specifically, from (3) 

we obtain the moment condition  
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for the equilibrium bids lib1  in the first auction round. Similarly, from (4) we can obtain 

);,,,,(],),(,,|[ 22212 θσγllllllll uxbmuxgNscbE ii ≡⋅≤ ∗                        (6) 

for the equilibrium bids lib2  in the second round, where  );,,,,( 222 θσγlll uxbm i   does not 

have a closed form because the second round bidding function does not have a closed form. 

Note (1), (5) and (6) are all conditional on lu  which is not observed. For estimation, 

however, we need to obtain conditions that depend only on observables. In order to derive 

such conditions, we integrate lu  out of (1), (5) and (6) and get the followings 
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The parameters of primary interests are ,γ  ,1θ  2θ  and σ . I estimate them using 

(7), (8) and (9). 

 

2.3.1 A Two-Step Estimation Approach 
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I adopt a two-step estimation strategy. In the first step, I recover γ  and σ  using 

likelihood function (7) to get γ̂  and σ̂ . In the second step, I estimate 1θ  and 2θ  using 

moment conditions (8) and (9) as well as the estimates γ̂  and σ̂ . 

Since I fully specify the distribution of the reserve price and we observe reserve 

prices, in the first step, γ  and σ  can be efficiently estimated by maximum likelihood (ML) 

approach. A complication arises from the feature that there is no closed form likelihood 

function because of the integration with respect to lu . Thus, I use a simulated maximum 

likelihood (SML) estimation approach (Gourieroux and Monfort (1996)). Specifically, the 

SML estimator is defined by 
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As indicated in (10), I use the importance sampling technique in the numerical 

integration. The importance density function is the standard normal ).(⋅φ  I draw S  of sul s 

from )(⋅φ  in simulation, where S  is sufficiently large compared to the sample size .1L  As 

∞→1, LS  and 0/1 →SL , the SML estimator is asymptotically equivalent to the ML 

estimator (Gourieroux and Monfort (1996)). 

In the second step, I separately estimate 1θ  and 2θ , using moment conditions (8) 

and (9), respectively, and the estimates γ̂  and σ̂  obtained in the first step. Again because 

of the presence of the unobserved heterogeneity, I propose a method of simulated moments 

estimator (MSM). Let );ˆ,ˆ,,()( jjijjijji xbMbY θσγθ llll −= , ( )2,1=j . We need to 

simulate );ˆ,ˆ,,( jjij xbM θσγll , hence I draw sul  from )ˆ|( σ⋅w  and define 

);ˆ,ˆ,,,()( j
s

jijjij
s
ji uxbMby θσγθ lllll −= . 
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For each ( )2,1=j , a MSM estimator can be defined by 
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where Ω  is a KK ×  symmetric positive-definite weighting matrix. 

Additional difficulty in computation arises from the fact that the simulated 

);ˆ,ˆ,,( jjij xbM θσγll  involves the Bayesian-Nash equilibrium strategy, which is especially 

cumbersome for 2=j , because it does not have a closed form solution. I follow Elyakime, 

Laffont, Loisel and Vuong (1994) to numerically recover the bidding function by a 

recursive procedure. Starting from the boundary condition, the equilibrium bidding 

strategy can be numerically solved in a recursive manner. Note that the resulting MSM 

estimator is consistent given that the first-step estimators γ̂  and σ̂  are consistent. 

Noting the complexity involved in my two-step estimation procedure, I use 

bootstrap to obtain variance-covariance matrices of the estimates. Because of the panel 

feature of the auction data, I adopt a block bootstrap (e.g. Andrews (2002)) to obtain the 

standard errors for my two-stage MSM estimator. 

 

2.3.2 Testing for Cross-Stage Change of Private Cost Distributions 

In the previous section, I develop a framework of estimating the structural model of 

multi-round auctions separately round by round, allowing for the underlying cost 

distributions to change across two rounds. It would be interesting to test whether the 

underlying cost distributions change or not across stages. If it turns out that the 

distributions do not change, it means that bidders re-draw their costs from the same 

distribution across stages. Moreover, in this case, I can more efficiently estimate the 
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private cost distribution parameters by jointly estimating both auction rounds. 

I propose a formal test following Andrews and Fair (1988), who extend the Chow 

test of structural changes in classical linear models (Chow (1960)) to test structural 

changes in nonlinear models. The null hypothesis here is 210 : θθ =H , which is the case 

of testing for pure structural change (see Andrews and Fair (1988)). The Wald test statistic 

is applicable to my MSM estimator, which can be implemented as follows. First, the MSM 

in (MSM) is implemented as discussed previously. Let LL /11 =π  and LL /22 =π . Then, 

the Wald test statistic is given by 

)ˆˆ()/ˆ2/ˆ/ˆ()ˆˆ( 2121122211
'

21 θθππππθθ −−+−= −VVVLW  

where 1̂V  and 2V̂  are the estimated asymptotic variances matrices of 1̂θ  and 2θ̂  

respectively, 12V̂  is the matrix of the estimated asymptotic covariances between 1̂θ  and 2θ̂  

The general inverse −⋅)(  of covariance term in the middle equals the regular inverse 1)( −⋅  

with probability going to one as ∞→L .  W  follows a 2χ  distribution with the dimension 

of the structural parameter vector θ  as its degrees of freedom. 

 

3 Results 

In this section, I apply my structural econometric approach to analyze the data from 

the INDOT, so as to uncover the underlying private cost and reserve price distributions. By 

concentrating on a specific type of bridge work, I choose a set of observed covariates 

{=x dbe, time, np, steel, length, intercept} . First I use the two-stage estimation to estimate 

the model under unobserved auction heterogeneity. Then I test the cross-stage change of 

private cost distributions. Lastly, I conduct a robustness check. 
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3.1 SML and MSM Estimates for the Structural Parameters and the Unobserved 
Heterogeneity 

 
The parameters of the reserve price distribution γ  and the parameter of the 

unobserved heterogeneity σ  can be jointly estimated based on (SML). I draw a large 

sample, namely 1000=S , of sul s from )1,0(N , i,e, ),( luφ  and adopt importance 

sampling to implement the SML. Furthermore, I gain the standard errors through bootstrap. 

The results are reported in Table 3.1. 

Next we estimate parameters in private cost distributions jθ  ( for )2,1=j  based 

on (11). To gain the simulated moments, I recursively solve for equilibrium bids and 

calculate the numerical integration. I simulate lu  from )ˆ,0( 2σN . Here the number of sul s 

that I draw is 100=S , a number relatively smaller than the one I use in implementing 

SML, as an MSM estimator is consistent for any fixed number of simulations (Gourieroux 

and Monfort (1996)). Furthermore, I use the identity matrix as the weighting matrix. Using 

bootstrap, I obtain the standard errors of the estimates. Moreover, as we need to incorporate 

the variation from the estimation of γ̂  and σ̂ , I jointly resample the auction data including 

both reserve prices and bids and repeat the SML estimation and MSM estimation 

simultaneously. The results of the estimation are reported in the first four columns of Table 

3.2. 

The results indicate that all variables that I pick up have significant effects on 

private costs. Evaluated at the sample mean of the observed and unobserved auction 

characteristics, the mean private cost is about $641,000. Increases in the length of the 

bridges and the time needed to accomplish the projects raise private costs, and in turn 

increase bids, as expected. Specifically, holding all the other factors constant, increasing 
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the length of the project by one meter (or 3.28 feet) will increase the mean private cost by 

0.21% or about $1,350. One more working day needed for a project will increase the mean 

private cost approximately by 0.42% or $2,700. Furthermore, rising in the DBE percentage 

results in higher private cost. This is reasonable because higher DBE percentage increases 

the primary contractor's transaction cost in a project by finding and subcontracting partial 

work to a DBE firm. More specifically, one unit increase in DBE will increase the mean 

private cost by about 4% or slightly more than $25,700. An interesting pattern shows 

different effects of the number of projects (np) on the government's reserve price and the 

bidders' costs. Increasing the number of projects involved in one contract tends to raise the 

government's valuation of the work, but to lower the bidders' costs. This is because a bidder, 

while undertaking the projects, will consider the economic scale of taking multi-projects 

on multi-sites in neighborhood that reduces his cost. The government may not take the 

effect of economic scale into account since it does not assume the work anyway. This 

explains why we see a negative effect of np on the private costs, but a positive effect on the 

reserve price. Moreover, one unit increase in the number of projects can save the firm's 

private cost on average by about 3.9% which is slightly less than $25,000. Bridges of a 

steel structure cause about $180,000 more than bridges of other structures on the mean 

private cost. Furthermore, the estimate of the unobserved heterogeneity parameter is 

strongly significant, meaning that there exists unobserved auction heterogeneity in my data 

set. 

 

3.2 Testing for Cross-Stage Change of Private Cost Distributions 

To implement the test, I estimate the bidding equations separately round by round 
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and obtain 1̂θ  and 2θ̂ . I then compute the W  statistic, which is 1.45. Thus the null 

hypothesis is not rejected at a 5% significance level. It implies that a bidder re-draws his 

private cost from the same cost distribution across different auction rounds. 

In this case, I re-estimate θ  in view of θθθ == 21  by utilizing this restriction in 

the MSM estimation to obtain a more efficient estimate. The results are reported in the last 

two columns of Table 9. In sections that follow I use these estimates for inference. 

 

3.3 Robustness Check 

I take the estimate of the parameter of the unobserved auction heterogeneity σ̂  

from the first-stage estimation for granted in the second-stage, assuming that the 

unobserved auction heterogeneities are from the same distribution for both the auctioneer 

and the bidders. Although this is mainly for simplifying computation (particularly for those 

of the second round auctions), I can empirically check its validity. I estimate the parameter 

of the unobserved heterogeneity in (11) jointly with the parameters of the private cost 

distribution and obtain σ~ . I then compare σ̂  and σ~ . It turns out that σ̂  and σ~  are very 

close (0.054 and 0.055), which validates the assumption. 

 

4 Counterfactual Analysis 

In this section we investigate welfare impacts of different reserve price release 

policies on the government. Motivated by the INDOT data feature, my model has focused 

on the use of the secret reserve price by the government. Alternatively, the government can 

make the engineer's estimate public and use it as a public reserve price. In this scenario, the 

government can find no bids submitted if all bidders' private costs are above the public 
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reserve price. If I maintain the random cost replacement assumption, then the government 

can re-auction the project in the next round with the same public reserve price. As a result, 

under the random cost replacement assumption, the multi-round feature can be 

accommodated by both secret and public reserve prices. It would be interesting to compare 

the welfare implications of these two mechanisms using a counterfactual analysis. Such a 

comparison allows us to evaluate the INDOT's auction mechanism and assess the 

efficiency of its current reserve price policy. Moreover, it offers insight on why secret 

reserve prices are used in auctions. Since I have uncovered the underlying structural 

elements, I can conduct simulations under the two different reserve price release policies 

and compare the government's payment under the two different scenarios. 

I construct a representative auction by setting all observed characteristics at the 

sample means of the corresponding covariates. The simulation results are reported in Table 

3.3. The expected procurement cost is $537,689 under the public reserve price, $524,048 

under the secret reserve price. The difference is strongly significant. The INDOT on 

average can save $13,641, or 2.5% of the project value, on a typical bridge work auction by 

adopting a secret reserve price, thereby saving millions of dollars of budgets on all 

highway projects yearly. On the other hand, the difference in the probability of no sale is 

10%. The INDOT undergoes a no sale risk of 10% greater by adopting a secret reserve 

price. However, it comes with a large standard error and therefore statistically insignificant. 

Moreover, in practice the highway contracts are often sold out within two rounds, the cost 

saved by adopting the secret reserve price outweighs the no sale risk caused. Hence my 

findings indicate that the use of secret reserve price may be a good policy in practice in 
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procurement auctions.1 

 

5 Conclusion 

I develop a structural approach to analyze the INDOT data. The structural approach 

recovered the distributions of the reserve prices and the private cost. The estimates for 

structural parameters allow us to conduct counterfactual analyses. I find that the INDOT 

could have significantly saved budgets by adopting a secret reserve price rather than using 

a public reserve price. 

The empirical analysis of this chapter offers insights into the use of secret reserve 

prices in multi-round auctions and the strategic changes in bidders' bidding strategies. It is 

worth noting, on the other hand, that this structural analysis is based on the static model 

with non-forward looking bidders. The advantage of the static model is that it 

accommodates the flexibility of allowing for changes of bidders' private cost distributions 

across stages. However, the conclusions from the structural analysis and the counterfactual 

analysis do not necessarily hold if the bidders are forward looking. This stimulates my 

research in a new chapter. One can introduce dynamic features into the model by assuming 

that bidders are forward looking and their private cost distributions do not change across 

stages. In the next chapter, I propose a dynamic model of multi-round auctions with secret 

reserve prices and develop a structural approach. 

                                                 
1McAfee and McMillan (1992) have argued that secret reserve prices can be used for preventing collusions. 
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APPENDIX 

1. Derivation of the equilibrium bids 

For the exponential distribution, we have 

)),exp(/exp(1)( uxccF +−−= θ   )),exp(/exp(1)( uxrrG +−−= γ  

)),exp(/exp()(1 uxccF +−=− θ   )).exp(/exp()(1 uxrrG +−=− γ  

Substituting them into equation (1) in Chapter 3, I get 
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I use contraction mapping to solve it. We start with a conjecture of )(1 cβ , say )(0
1 cβ , 

which is the left hand side function. Then we substitute it into the right hand side to 

compute. This yields the right hand side function )(1
1 cβ . If my conjecture is right, then 
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Then with )(1
1 cβ , we compute )(2

1 cβ . It follows that ),()( 1
1

2
1 cc ββ =  
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Therefore the solution is given by )(2
1 cβ , i.e. 
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2. Nonparametric Identification 

 

2.1. The First Stage of Multi-Round Procurement Auction 

In real auctions, on one hand reserve prices are observed and can be used to identify the 

distribution of the reserve price )(⋅G . On the other hand, costs are bidders' privation 

information which is not observed to econometricians. Instead, the econometricians can 

observe bids. At issue is with the observation of bids and reserve prices, whether we can 

identify the distribution of the latent private costs. Because the equilibrium bidding 

strategy relates the observed bids 1b  to the unobserved private costs 1c  which are random, 

bids are also random. Denote the distribution of bids in the first stage by )(1 ⋅H  with 

support ],[ 11 bb  which is twice continuously differentiable and has a density )(1 ⋅h  that is 

strictly positive on the support. Therefore the identification problem of the multi-round 

auction model with a secret reserve price reduces to whether the bidders' private cost 

distribution in every auction round is uniquely determined from the observed bids. 

Depending on the equilibrium relationship between 1b  and 1c , we can show that 

))(()( 1
111 bFbH −= β  and ))((/))(()( 1

1
1

11 bbfbh −− ′= βββ  for all )](,[ 1 ccb β∈ . Further, with 

some algebra the first order condition of the bidders' problem in the first stage gives us the 
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following inverse bidding function for all ],[ ccc∈  

)()()1(
1),,,(

1111
1111 bbN

bNGHbc
µλ

ψ
+−

−== ,                       (A.1) 

where ))(1/()()( 111111 bHbhb −=λ , ))(1/()()( 111 jbGbgb −=µ  are hazard rates. Equation 

(A.1) expresses the private cost 1c  as a function of the equilibrium bid 1b , its distribution 

)(1 ⋅H , its density )(1 ⋅h , the government's reserve price distribution )(⋅G  with its 

corresponding density )(⋅g , and the number of potential bidders N . Specifically, equation 

(A.1) states that if the observed bids 1b  is the equilibrium bid, as is assumed in the 

structural econometric approach, then the bidders' private costs 1c  corresponding to 1b  

must satisfy such a relation. Let )(1 ⋅NH  denote the joint distribution of ),...,( 111 Nbb . 

Proposition 1 For ,...,2=N  let )(1 ⋅NH  and )(⋅G  be two distributions with respective 

support N
Nbb ],[ 11  and ],[ cc  with ),,,( 111 NGHbc ψ=  and ),,,( 11 NGHcc ψ= . There 

exist a pair of distribution ],[ 1 GF  of bidders and the government's reserve price with 

common support ],[ cc  such that )(1 ⋅NH  and )(⋅G  are the corresponding distributions of 

the equilibrium bids and reserve prices in the j-th stage of the multi-round procurement 

auction with independent private costs and a secret reserve price if and only if for 

,...,2=N   

A1.  )(),...,( 1111111 iN
N
iNN bHbbH =Π=   

A2. the function ),,,( 11 NGH⋅ψ  defined in equation (A.1) is strictly increasing on ],,[ 11 bb   

and its inverse is differentiable on )],,,(),,,,([],[ 1111 NGHbNGHbcc ψψ≡ . 

 In addition, when )(⋅jF  and )(⋅G  exist, they are unique with support ],[ cc  and satisfy 
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)),,,(()( 1
111 NGHcHcF −= ψ  for all ],[ ccc∈ . Meanwhile, ),,,(1 NGH⋅ψ  is the quasi 

inverse of the equilibrium bidding strategy in the sense that ),,,(),,,( 1
11 NGFbNGHb −= βψ  

for all )](,[ 1 ccb β∈ . Proposition 1 indicates that the multi-round procurement auction 

model with a secret reserve price is nonparametrically identified. The identification is 

achieved without any parametric assumptions. 

 

2.2. The Reauction Stage of Multi-Round Procurement Auction 

In a reauction stage, the information released from the previous stage raises a new 

difficulty because the lowest bid from the previous stage serves as a binding announced 

reserve price. For illustration, we solve the identification problem in stage j . Different 

from stage  1 , the binding pseudo reserve price ∗
−1js  introduces a truncation because a 

potential bidder with a private cost higher than ∗
−1js  does not bid. Let ∗

jib  denote the 

equilibrium bid of the i -th actual bidder, ∗= jNi ,...1 , and )(⋅∗
jH  be its distribution. Thus 
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−

∗∗  for all 

)](,[ 1
∗
−∈ jj scb β . Hence with some algebra the first order condition of the bidders' problem 

in stage j  gives us the following inverse bidding function for all ],[ 1
∗
−∈ jscc  

∗
−

∗
−

∗∗ ≤= 11  if ))(,,,,( jjjjjjjj scsFNGHbc ψ  

)|()()1(
1

1
∗
−

∗∗
∗

+−
−=

jjjjj
j sbbN

b
µλ

,                                    (A.2) 

where ))()(1/()()()( 11
∗
−

∗∗∗
−

∗∗∗∗ ⋅−⋅= jjjjjjjjjj sFbHsFbhbλ and 
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))()(/()()|( 11 jjjjjj bGsGbgsb −= ∗
−

∗
−µ  are quasi hazard rates. Equation (A.2) is the analog 

of (A.1), but involves )( 1
∗
−jj sF , which is unknown. This complicates the identification of 

the model. The next result solves the identification problem. 

Proposition 2 For ,...,2=N  let )(⋅∗
jH  and )(⋅G  be two distributions with respective 

support ],[ 1
∗
−jj sb  and ],,[ cc  and )(⋅π  be a discrete distribution. There exist a pair of 

distribution ],[ GFj  of bidders and the government's reserve price with common support 

],[ cc  such that (1) )(⋅∗
jH   is the truncated distribution of the equilibrium bids and )(⋅G  is 

the reserve price distribution in the j-th stage of the multi-round procurement auction with 

independent private costs, a secret reserve price and a binding information bound 

],[1 ccs j ∈∗
− , and (2) )(⋅π  is the distribution of the number of actual bidders ∗

jN  if and only 

if for ,...,2=N  

A1.  )(⋅π   is Binomial with parameters  ))(1,( 1
∗
−− jj sFN  , where  1)(0 1 << ∗

−jj sF   

A2. The observed bids are  ... dii   as  )(⋅∗jH   conditionally upon  ∗
jN   and  +∞=∗

↑ ∗
−

)(lim
1

bhjsb j
  

A3. the function  ))(,,,,( 1
∗
−

∗⋅ jjj sFNGHψ   defined in equation (A.2) is strictly increasing on  

],,[ 1
∗
−jj sb   and its inverse is differentiable on 

))](,,,,()),(,,,,([],[ 1111
∗
−

∗∗
−

∗
−

∗∗
− ≡ jjjjjjjjjjj sFNGHssFNGHbsc ψψ . 

Moreover, if conditions A1-A3 hold, then )( 1
∗
−jj sF  is unique while )(⋅jF  is uniquely 

defined on ],[ 1
∗
−jsc  as )))(,,,,(()()( 1

1
1

∗
−

∗−∗∗
− ⋅⋅=⋅ jjjjjjjj sFNGHHsFF ψ . In addition, 

))(,,,,( 1
∗
−

∗⋅ jjjj sFNGHψ  is the quasi inverse of the equilibrium bidding strategy in the 

sense that ),,,())(,,,,( 1
1 NGFbsFNGHb jjjjj

−∗
−

∗ = βψ  for all )](,[ 1
∗
−∈ jj scb β . Proposition 
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2 parallels Proposition 1. In particular, it indicates that the multi-round procurement 

auction model with a secret reserve price is nonparametrically identified on )](,[ 1
∗
−jj sc β . 

Because of the truncation of the observed bids, a nonparametric approach prevents us from 

identifying the entire distribution of private costs. 
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Table 3.1 SML Estimates of Reserve Prices Distribution and Unobserved Heterogeneity 

Variable                     Coef.                        Std. Err. 

dbe 0.0514* 0.0018 

time 0.0052* 0.0002 

np 0.299* 0.0082 

steel 0.300* 0.0106 

length 0.00212* 0.0001 

_cons 11.469* 0.0923 

 2σ   0.054* 0.0016 

*: significant at 5%   
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Table 3.2 MSM Estimates of Private Distribution 

Variable Separate Estimates More Efficient Estimates 

  1θ   Std. Err  2θ   Std. Err  θ   Std. Err 

dbe* 0.0398 0.0010 0.0393 0.0037 0.0401 0.0009 

time* 0.0044 0.0001 0.0041 0.0005 0.0042 0.0001 

np* -0.0343 0.0008 -0.0394 0.0077 -0.0388 0.0009 

steel* 0.2947 0.0098 0.2440 0.0529 0.2809 0.0071 

length* 0.0021 0.0001 0.0019 0.0002 0.0021 0.0001 

_cons* 12.1394 0.0336 16.8904 2.2696 12.2670 0.0654 

 2σ  (robustness check): 0.0548 

*: significant at 5% 
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Table 3.3 The Comparison of Policies by Simulations 

difference in  difference in  

government's payment Std. Err probability of no sale Std. Err 

 )sec( retpublic −     )sec( retpublic −    

13641* 5876  - 0.1 0.06 
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CHAPTER IV 

 

A DYNAMIC ANALYSIS OF MULTI-ROUND AUCTION MODEL WITH 
FORWARD LOOKING BIDDERS 

 

1 Introduction 

In this chapter, I continue to study the interesting multi-round feature observed in 

the procurement auctions organized by the Indiana Department of Transportation. This 

feature is attributable to the use of secret reserve prices in these auctions. The previous 

chapters have obtained various predictions and implications from the theoretical model and 

results from the structural empirical analyses on the INDOT data. However, these results 

are all based on a critical assumption: bidders are non-forward looking. As I proposed at 

the end of the last chapter, what if bidders are forward looking? In this chapter, I construct 

a dynamic bidding model in multi-round procurement auctions with secret reserve prices to 

analyze the dynamic bidding behavior when the bidders foresee the possibility of a 

reauction round in the future. 

In a dynamic setting, a bidder's control problem is to optimally choose bid in an 

infinite period horizon, because he considers the possibility of the future reauctioning. The 

state variables in the dynamic auction game include a bidder's belief about the secret 

reserve price and his private cost. In the first auction round, the belief of the secret reserve 

price is the upper bound of the reserve price distribution because there is no information 

about the reserve price. In a reauction round, it is represented by the lowest bid from the 

previous auction round if the auction round fails. The state of the belief of the reserve price 

is common knowledge to all bidders and also observed to the econometrician. Private costs, 
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on the other hand, are bidders' private information and unobserved to the econometrician. 

The conditional independence assumption, as will be discussed subsequently, allows us to 

derive a Markov Perfect equilibrium (MPE) in the presence of an unobserved state. 

When bidders' private cost distribution does not change and cost redraws are 

independent across period, the dynamic model in this paper readily accommodates my 

previous static multi-round auction model. The previous model is a special case in which 

bidders are not forward looking. Without being forward looking, bidders place bids in 

every round after they obtain their draws of new private costs. I prove that when the 

discount factor in my dynamic auction model is zero, I am back to the case without forward 

looking. My model yields some interesting predictions and implications. First, bidding 

prices uniformly decline over stages, because of the information about the secret reserve 

prices revealed in the previous stage. Numerical results show that the value function 

increases in the state variable, namely the belief about the reserve price. Second, my 

bidding model predicts that in the presence of a future bidding possibility, bidders bid less 

aggressively and therefore they increase their current bids. 

There has been little empirical work on dynamic auction games. Existing studies on 

empirical estimation of auctions has largely restricted to a static auction setting. See 

Paarsch (1992), Laffont, Ossard and Vuong (1995), and Guerre, Perrigne and Vuong (2000) 

among others. An exception is Jofre-Bonet and Pesendorfer (2003) who first study the 

estimation approach of a dynamic auction game with capacity constraint as the state 

variable to analyze California highway auctions. In this chapter, my dissertation offers the 

second study of structural dynamic auction models. 

To analyze the procurement auction data, and in addition to provide an empirical 
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framework within which the dynamic multi-round model with secret reserve prices can be 

analyzed, I develop a structural model from the theoretical model that I propose. My 

structural approach takes into account of the unobserved auction heterogeneity as I did in 

the model with non-forward looking bidders. 

I adopt a two step estimation method. As the two-step estimation approach in the 

literature, my approach is computationally easy to implement. Two step estimation 

methods based on first order condition are well known in the literature. Although many 

studies apply the two step method, most of them are on static auction games.1 Estimation of 

dynamic auction games remains limited with an exception of Jofre-Bonet and 

Pensendorfer (2003). I distinguish my research from Jofre-Bonet and Pensendorfer in the 

following ways. First, I analyze an auction game with multiple rounds and single auction 

object instead of a repeated auction game with different auction objects in different periods. 

Second, I explicitly estimate the reserve price distribution from the data. Third, I control 

for the unobserved heterogeneity when I estimate the distribution of bids. 

I use my structural approach to analyze the INDOT data. Using the structural 

estimates, I carry out a counterfactual analysis by simulating the auctions with different 

government's reserve price release policies in the multi-round scenario. I find that whether 

using a secret reserve price or using a public reserve price depends on the bidder’s attitude 

about the future. When the bidders are forward looking and their discount factor is 

sufficiently large, announcing the reserve price can be better than keeping it secret. 

This chapter is organized as follows. In Section 2, I construct the model of dynamic 

multi-round procurement auctions with secret reserve prices, and solve the Markov Perfect 

                                                 
1See Elyakime, Laffont, Loisel and Vuong (1994), Guerre, Perrigne and Vuong (2000) and Athey, Levin and 
Seira (2004) for applications in various auction studies. 
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equilibrium. I also investigate the implications from my model. In Section 3, I provide a 

two step estimation method for analyzing dynamic multi-round auction data. In Section 4, I 

apply the structural framework to analyze the INDOT data. In Section 5, I use 

counterfactual analysis to evaluate the government's reserve price policy. Section 6 

concludes. All technical proofs are included in the Appendix. 

 

2 The Model for Dynamic Multi-Round Auctions 

In this section, I propose a game-theoretic model for dynamic multi-round 

procurement auctions with secret reserve prices, and derive the symmetric MPE. 

 

2.1 The Stage Game 

In the first stage, the government offers a single indivisible contract for sale. The 

events occur in the following order. First, the characteristics of the projects contained in the 

contract are revealed to bidders. An exogenous engineer estimate 0r  is kept secret and 

fixed throughout the auction rounds. The value of 0r  is drawn by the government from a 

distribution )(⋅G . Second, N  potential bidders draw their costs of conducting the 

contractual highway work privately and independently from a common distribution )(⋅F . 

Third, bidders may submit bids. Lastly, the contract is awarded to the lowest bidder if the 

bid is at the same time lower than the reserve price. Bids are released regardless of whether 

the contract is awarded or not, while the reserve price is disclosed only if the contract is 

awarded. 

If the contract is unsold, the auction proceeds to a reauction stage. In a reauction 

stage t , the government reauctions the same contract from the previous round. The reserve 
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price is kept secret and the same as before. Each bidder readjusts his private information 

and obtains a new random draw of tc . Observing information from the previous round, 

bidders update their beliefs about the reserve price. Specifically, the lowest bid from the 

previous round denoted by ts  serves as a truncated upper bound of the reserve price. The 

upper bound of the reserve price ts  is a random variable to the bidders and changes over 

periods. It is used by bidders when forming new bids. Therefore it is a common state 

variable in the dynamic game. Only bidders with costs lower than the bound choose to 

submit bids. The game continues until the contract is awarded. 

Note that from an econometric point of view, ts  is a state variable observed to both 

bidders and the econometrician. However, each individual bidder’s cost realization tc  is 

not observed by the other bidders and the econometrician. Therefore I distinguish the 

observed and the unobserved state respectively. For further discussion, see Rust (1987). In 

Section 2.3, I give assumptions on the statistical properties of the state variables. 

 

2.2 The Dynamic Structure 

The common priors include the distribution of c ,  )(⋅F  and the distribution of 0r , 

)(⋅G  on the support ],[ cc . I use lower case to denote the corresponding density functions. 

The transition of states is a Markov process. Denote transition probability density function 

as )|( 1 tt ssq +  and transition function as )( tsω  such that )|()( 1 ttt ssEs +=ω . I will give the 

specific functional form of the transition function while I discuss the distribution of 

optimal bids. As a result, all bidders are identical a priori and the game is symmetric. 

In order for me to adopt the framework of Markov dynamic decision processes, 
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conditional independence of the observed state and the latent cost is crucial in the data 

generating process. The role of conditional independence assumption is discussed in 

details in Rust (1987). I explain it in our context in the next section. I seek to find a 

symmetric MPE for an infinite period dynamic control problem. Conditional on the current 

state, the value function )(⋅V  and the policy function )(⋅β  are independent of time index. 

 

2.3 The Value Function 

In period t , bidder i  chooses b  to maximize his discounted expected payoff. The 

discount factor is denoted by δ  ( 10 << δ ). The value function is defined by the following 

equation 

]),|,(),,(
),,|Pr(),,|Pr()[(

max),,(
1111111 ++++++−+

−−
− ∫⋅

+−
=

tttttttitti

tittitt

btitti dsdcscscpsbcW
sbbnonesbbicb

sbcW
δ

.          (1) 

Since we cannot observe c , in the subsequent analysis I use the ex ante value 

function which integrates out cost. In order for this to work, I make the conditional 

independence assumption, following the discussion in Rust (1987). 

 CI )|()|(),|,( 1111 tttttttt ccfssqscscp ++++ ⋅=   

CI implies that given the previous state, the current observed state and private cost 

are independent. Note however, CI in our context is different from Rust (1987).2 In 

addition, we make the following assumption. 

 A1 tt cc ⊥+1   

A1 means while they are forward looking, future cost is random and not dependent 

                                                 
2Rust makes CI as )|()|(),|,( 11111 +++++ ⋅= tttttttt scfssqscscp , which implies that tc  is noise 

superimposed on the ts  process. This does not fit our case. 
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upon their current random draws.3 Bidders replace their costs in every round because of 

reasons such as opportunity cost and capacity constraint. A1 and CI imply the following 

conditional independence assumption adaptable to our context. 

 CI’ )()|(),|,( 1111 ++++ ⋅= ttttttt cfssqscscp   

Furthermore, we define the following ex ante value function 

tttittititi dccfsbcWsbV )(),,(),( −− ∫= .                                           (2) 

From here on, as I seek to find a symmetric bidding strategy, I suppress subscript  i  

and the dependence of the value function on the bidding strategies of the other bidders in 

the value function. With assumption CI', combining (1) and (2) leads to the following 

recursive equation 

tttt

tttbt

dccfssVE

sbnonesbicbsV

)()]|)((

),|(Pr),|(Pr)[(max)(

1 ××

+−=

+

∫ δ
.                       (3) 

In equation (3), s  represents the belief about the reserve price. When s  is larger, 

bidders are more optimistic about the reserve price. Furthermore, because of the symmetry 

of the bidding strategies and the value functions across bidders, the value functions of all 

bidders are uniformly higher. Hence intuitively, the value function is increasing in s . We 

will obtain the value function numerically to verify our intuition. 

 

2.4 The Bid Distribution 

Because the equilibrium bidding strategy relates the observed bids b  to the 

unobserved private costs c  which are random, bids are also random. Throughout my 

                                                 
3Statistical tests we perform in the data offer support for the random replacement assumption. The correlation 
of the ranks of the bidders in the first round and in the second round is about 0.30. Further test of the 
correlation of same bidders' bids across auction rounds shows that the correlation is 0.17. 
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analysis, I denote the distribution of bids b , )(⋅H  which has a support ],[ bb . 

Furthermore, I can express the probability terms using the distributions of bids and reserve 

prices. Bidder i 's probability of winning the auction is defined as follows 

.
)(

)()(
)](1[

)| and )(min(Pr),,|(Pr

1

0

t

tN

titi

sG
bGsG

bH

srbbbsbbi
−

−=

<<=

−

−−

 

Denote i−  as the other bidders and )1()min( −− = Ni bb  as the smallest order statistic 

in the other 1−N  bids. Denote its distribution function as ( )⋅M  with corresponding 

density function )(⋅m . The expression of the distribution of the order statistic 

)1()min( −− = Ni bb  is 1)](1[1)( −−−= NuHuM , with density )()](1)[1()( 2 uhuHNum N−−−= . 

The following lemma gives the probability of the event that no bidder wins the contract in 

period t  conditional on the state ts  and greatly simplifies the computation burden in my 

subsequent estimation method. 

Lemma 1 The probability of the event that no bidder wins the contract given the state  s  in 

period  t   can be represented by 

dv
sG
vgvMsbbisbbnone

t

s

ctiti
t

)(
)()(),,|(Pr1),,|(Pr ∫−−= −− . 

Now I give the functional form of the transition probability density function and the 

motion function respectively. The transition probability function is given by the following 

equation 

]))(1(1/[)()](1[)|( 1
1

11
N

tt
N
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−

++ . 

The motion function is given by the following equation 

1111 )|()|()( ++++ ⋅== ∫ ttttttt dsssqsssEsω . 
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2.5 Markov Perfect Equilibrium 

Next, I derive the MPE bidding strategies using the distribution function of bids. 

For easy exposition, I use s  to denote the current period state and s′  to denote the next 

period state. The first order condition is given by the following expression 
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Multiplying the equation by { })]()([)](1[/)( 1 bGsGbHsG N −− − , defining hazard 

rates for bid and reserve price )](1/[)()( bHbhb −=λ  and )]()(/[)()|( rGsGrgsr −=µ  

respectively, I get the following 
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Some algebra yields 

)|)((
)|()()1(

1 ssVE
sbbN

cb ′+
+−

+= δ
µλ

.                                      (4) 

Note the bidder's markup includes two terms. The second term on the right hand 

side is the markup in the current period, the third term is the discounted markup in the 

future. 

Proposition 1 Under the monotone hazard rate assumption, equilibrium bids in the 
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dynamic model are increasing in the discount factorδ . 

Equation (4) has the following implications. First, as stated in the above 

proposition, equilibrium bids are increasing in δ . The larger the discount factor is, the 

more patient the agents are about the future, therefore the higher markup the bidders will 

add to their costs while placing bids. Second, the larger the state s  is, the higher the bound 

of the truncation, in other words the less restrictive (or competitive) the secret reserve price 

to the bidders. Therefore intuitively, bidders increase bids when  s   is high. With unknown 

function )(⋅V , it is not easy to show it analytically. However, I will show it by the 

numerical result through my empirical analyses. 

Proposition 2 If 0=δ  and the private cost distribution does not change, the following two 

results hold. 

(i) bidders' dynamic control problem is equivalent to non-forward looking problem. One 

can solve the game stage by stage to get the separate equilibrium. 

(ii) In the non-forward looking case, the equilibrium bid in stage t has the following 

expression 

)|()()1(
1

sbbN
cb

µλ +−
+= .                                                  (5) 

The implication of the above proposition is two-fold. First, it shows that the 

dynamic model with forward-looking accommodates the static model without forward 

looking, when private cost distributions do not change across stages. No forward looking 

means that bidders do not care about the same auction in the future. Second, with forward 

looking, bidders add more to the costs when they bid in the current period. The second 

result is stated in the corollary below. The additional part as seen in equation (4) explains 

the future possibility of winning this auction. 
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Corollary 1 When the private cost distributions are the same and the monotone hazard 

rate assumption holds, bidders bid more when they are forward looking than when they are 

not forward looking. 

The intuition is when a bidder is forward looking, he claims that his type is higher 

than his actual type by adding a future expectation to it. In other words, he bids less 

aggressively. In the context of procurement auctions, he bids more. 

Proposition 3 In the multi-round dynamic auction game, at equilibrium at the same state 

level on the whole common state space, the bid function in one period is less than or equal 

to the bid function in the previous period, ..ei , )()( 1 cc tt −≤ ββ  for all  c   on the common 

support. 

This result is consistent with the result derived from the non-forward looking case. 

It is also consistent with the two-round auction data and supported by the reduced-form 

regression analysis (see Chapter 2). 

 

3 Estimation Method 

This section gives a discussion of my estimation method of the dynamic 

multi-round auction model. First, I describe the two-step estimation approach based on the 

distribution of equilibrium bids and the first order condition of optimally chosen bids. Then 

I describe the identification of the distribution function of privately known costs briefly. 

 

3.1 Estimation Approach 

I observe data on bids, contract characteristics, number of potential bidders and 

bidders' state variable. My objective is to infer private costs. I propose a two step 
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estimation method which is computationally easy in that it does not require solving the 

equilibrium bid functions. In the first step, I estimate the distribution of equilibrium bids. 

In the second step, based on the equilibrium first order condition, I obtain the private costs 

and its distribution. This method, as the other two-step methods seen in auction literature, 

assumes that the observed bids are generated by equilibrium play and satisfy the first order 

condition of equilibrium bids. 

Two step estimation methods based on the first order condition are well known in 

the literature. See Elyakime, Laffont, Loisel and Vuong (1994), Guerre, Perrigne and 

Vuong (2000) and Athey, Levin and Seira (2004) for applications in various auction 

studies. Although many studies apply the two step method, most of them are on static 

auction games. Estimation of dynamic auction games remains limited with an exception of 

Jofre-Bonet and Pensendorfer (2003). 

From the first order condition, I have derived equation (4) for the optimal bids. This 

leads to the following equation for the private cost 

)|)((
)|()()1(

1)|( ssVE
sbbN

bsb ′−
+−

−= δ
µλ

ϕ .                            (6) 

Equation (6) provides an explicit expression of the private costs that involves bid, 

the hazard function of bid, the hazard function of reserve price and the value function. 

Parallel to the former analysis of the markup of equilibrium bids, equation (6) states that 

the cost equals the bid minus a mark down. The mark down has two parts. The first part 

accounts for the level of competition in the current auction round. The second part accounts 

for the future discounted profit if firm i  wins the contract. Equation (6) can be used to 

recover the distribution of private costs. 

In order to infer the distribution of costs, I need estimators for the functions 
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appearing in the right hand side of (6). These functions are: the bid hazard function, the 

secret reserve price hazard function, the discount factor, the transition function and the 

value function. I discuss my strategy to find the appropriate estimators for them as follows. 

First, an estimator of the bid distribution function can be directly obtained from the data on 

bids and observed state variable and other heterogeneity. Therefore the bid hazard function 

can be obtained. Second, the secret reserve price hazard function can also be obtained 

directly from the data on reserve prices. Third, I choose different discount factors and 

examine how sensitive the estimates are to variations in the discount factor. Fourth, the 

transition function of the state is the distribution function of the random smallest order 

statistic from the truncated bid distribution on ],[ sb . In other words, )(sω  is drawn from a 

probability distribution function defined by ])](1[1/[])](1[1[ NN sHH −−⋅−− . Hence the 

transition of state is estimated along with the distribution function of bids. Finally, I need to 

recover the value function. The value function is defined in equation (3). However, 

equation (3) involves latent cost variables and endogenous decisions of other bidders. I 

give my method of how to recover the value function later. 

 

3.2 Reserve Price and Bid Distributions 

Based on the theoretical auction model, I parameterize two distributions: the 

reserve price distribution )(⋅G  and the bid distribution )(⋅H . In an econometric framework, 

asymptotic statistical inference is based on a large number of auctions. Let L  be the 

number of auctions. For the l -th auction, let )(⋅lG  and )(⋅lH  denote each primitive 

distribution respectively with corresponding densities )(⋅lg  and )(⋅lh , 2,1=j . Assume 

that ),,|( γlll uxGG ⋅=  and ),,|( θlll uxFH ⋅= , where lx  is a vector of variables that I 



 90

use to control for the observed auction heterogeneity, and lu  is a scalar variable that 

represents the unobserved auction heterogeneity, both affecting the government's reserve 

price as well as the bidders' bids, γ  is a vector of unknown parameters in KR⊂Γ , and θ  

is a vector of unknown parameters in .R K⊂Θ  I assume that u  is independent of x , and 

has a distribution )|( σ⋅W  with )|( σ⋅w  being the density function, where σ  is a vector of 

unknown parameters in .Rm⊂Σ  

Conditional on both observed and unobserved heterogeneity  x   and  u  , I specify 

the reserve price distribution and the bid distribution as exponential as follows 
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where ),0( ∞∈b  and ),0( ∞∈r . By including the intercept in x , I normalize the 

unobserved heterogeneity term u  such that .0][ =uE  I assume that ),0( 2σNu ∼ , where 

2σ  is an unknown parameter. 

 

3.3 The value function 

Note the estimation of the bid hazard function and the transition function is based 

on the distribution of observed bids from the first step. The key idea is if I can express the 

value function in terms of the distribution of bids, then I can get an estimator of the value 

function. The following proposition states that the value function can be represented as a 

recursive equation involving the bid distribution function. 

Proposition 4 Given the distribution of the equilibrium bids, the value function can be 



 91

represented as follows 

).|)(()()],|(Pr),|([Pr

)(
)|()()1(

),|Pr()(

ssVEdbbhsbisbnone

dbbh
sbbN

sbisV

s

b

s

b

′×⎥⎦
⎤

⎢⎣
⎡ ++

+−
=

∫

∫

δ

µλ                (9) 

The representation of the value function in equation (9) contains two parts. The first 

part accounts for the bidder's current expected profits. The second part accounts for the 

bidder's sum of discounted expected future profits. The proof of the proposition is based on 

two observations. First, I may write the probability of winning as a function of the 

distribution of bids by other bidders, ignoring dependence of other bidders' bids on cost 

draws. Thus each bidder's dynamic game is reduced to a single agent dynamic decision 

problem where each bidder maximizes the discounted sum of future payoffs using the 

equilibrium bid distribution associated with other bidders. Still, this single agent dynamic 

decision problem does involve the latent cost. My second observation is that the first order 

condition of optimal bids gives an explicit expression of the bidder's costs in terms of his 

equilibrium bids and the equilibrium bids distribution. Substituting this expression into the 

value function yields an expression involving the distribution and the density of 

equilibrium bids only. 

Next I develop numerical methods to approximate the value function based on 

equation (9). Furthermore, my methods are computationally easy for two reasons. First, the 

symmetric Markovian strategies require that bidders with the same state follow the same 

bidding strategy and the observed state variable s  is a common random variable for all 

bidders. Therefore the ex ante value function )(sV  is common to all bidders in the same 

period. Second, the transition function )(sω  is continuous in s  and therefore the value 
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function is continuous in s  as well. 

Specifically, I numerically evaluate the expected current period payoff as follows 

dbbh
sbbN

bH
sA sG

bGsGN
s

b
)(

)|()()1(
)](1[

)( )(
)]()([1

µλ +−

−
=

−−

∫ . 

Complexity arises from the computation of the integration. I adopt Monte Carlo 

sampling method to evaluate the integration as I obtain an estimator of the distribution of 

bids )(bh . I draw a large number of jb  )...3,2,1( Js =  from )|( sbH  on the support ],[ sb .  

The integration is the expectation of the integrand approximated by the sample analogue 
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Using Lemma 1, I can show that the probability terms in equation (recursive value) 

sum to dvvgvM
sG
sHsH s

c )()(
)(
)()( ∫− . Then I numerically evaluate the discounted sum of 

future payoffs similarly by the Monte Carlo sampling approach. The probability terms in 

the bracket in equation (9) are defined as )(sB . The following lemma establishes the 

numerical method of evaluating )(sB  which greatly simplifies the computation. 

Lemma 2 It can be shown that the probability term )(sB  can be calculated by the 

following equation 

( ) 1

1

)(1)()( −

=

−= ∑ Ni
I

i

uH
I
sHsB ,  

where iu   is drawn from )|( suG   on the support ],[ sc . 

Finally, I iteratively solve for )(sV  based on the recursive equation in proposition 3 

and the numerical method. To evaluate the value function at any value s , start with ss =0  
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and obtain )( 0sA  and )( 0sB . Then obtain =1s  )( 0sω  by the transition function. )( 0sV  

is given by )|)(()()()( 01000 ssVEsBsAsV δ+= . Take a step further, calculate )( 1sA , 

)( 1sB  and 2s , and then substitute )()()( 211 sVsBsA δ+  for )( 1sV . After the 1-st 

substitution, I get )|)(()()()()()()( 121021000 ssVEsBsBsAsBsAsV δδ ++= . Stop at the  

m -th iterative substitution when the last term that involves ms  dies out. Sum up all terms 

to get )( 0sV . 

 

3.4 The Distribution of Private Costs 

With the distribution function of bids at hand, we can infer bidders' private costs. 

To see how I infer the distribution of costs, notice the following. First, there is a 

relationship between the distribution function of costs and the distribution function of bids 

given by )|()|( sbHscF = . Second, the inverse of the bid function conditional on state 

variables, )|( sbc ϕ= , is given in equation (6). Thus, using these two relationships, I can 

specify my estimator of the cost distribution function as 

)|()|(
})|(|{

sdHscF
csbb

⋅= ∫ ≤ϕ
.                                                  (10) 

Given that ϕ  is invertible, the estimator can be written as )|)|(()|( 1 sscHscF −= ϕ . 

Standard errors of estimates are calculated using the delta method. 

Before I end this section, I briefly discuss the identification issue. In a dynamic 

structural auction model, I try to identify two primitives: the private cost distribution 

function )(⋅F  and the discount factor  δ  . In my model, knowing the random bids can not 

jointly identify the distribution of costs and the discount factor, which is similar to other 

dynamic estimation approaches (see Rust (1994)). However, given δ , I can identify the 
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distribution of cost which is the same as Jofre-Bonet and Pensendorfer (2003). 

 

4 Results 

This section presents the estimation results. I first report the estimates of the bid 

distribution function under control of unobserved heterogeneity. The estimation method is 

simulated maximum likelihood approach. I then discuss the estimates of the value function. 

Lastly, I discuss the inferred costs. 

 

4.1 Estimates of the Reserve Price and Bid Distribution Functions 

The parameters of the reserve price distribution γ  and the parameter of the 

unobserved heterogeneity σ  can be jointly estimated based on (7). I draw a large sample, 

namely 1000=S , of sul s from )1,0(N , ..ei , ),( luφ  and adopt importance sampling to 

implement the SML. Furthermore, I gain the standard errors through bootstrap. The results 

are reported in Table 3.1 (see Chapter 3). 

Next I estimate parameters in bid distributions θ  based on (8). I simulate lu  from 

θ̂  Here the number of sul s that I draw is 1000=S . Using bootstrap, I obtain the standard 

errors of the estimates. The results of the estimation are reported in Table 4.1. 

The results indicate that all variables that I pick up have significant effects on bids. 

I evaluate the effects at the mean of the bid distribution which is $516,210. Increases in the 

length of the bridges and the time needed to accomplish the projects raise private costs, and 

in turn increase bids, as expected. Specifically, holding all the other factors constant, 

increasing the length of the project by one meter (or 3.28 feet) will increase the mean bid 

by 0.23% or about $1,187. One more working day needed for a project will increase the 
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mean bid approximately by 0.53% or $2,633. Furthermore, rising in the DBE percentage 

results in higher bid. This is reasonable because higher DBE percentage increases the 

primary contractor's transaction cost in a project by finding and subcontracting partial 

work to a DBE firm. More specifically, one unit increase in DBE will increase the mean 

bid by about 4% or slightly more than $20,600. The number of projects (np) has a positive 

effect on bids. One unit increase in the number of projects can increase the mean bid by 

28% which is slightly more than $144,000. Bridges of a steel structure cause about 

$139,000 more than bridges of other structures on the mean bid. Furthermore, the estimate 

of the unobserved heterogeneity parameter is strongly significant, meaning that there exists 

unobserved auction heterogeneity in my data set. 

 

4.2 Estimates of Value Function 

Empirically, the value function depends on the state variable and the auction 

heterogeneity. I can approximate the value function for each auction l . I depict the value 

function in figure 4.1 at the mean of the auction characteristics and 95.0=δ  for 

illustration. 

The empirical results reveal some features of the value function. First, from the 

graph the value function is increasing in the state s . This finding reinforces my former 

intuition. The higher the bidder's state, the larger the value function is. The state s  

represents the bidder's belief of the reserve price. A high belief of the reserve price leads to 

a high markup. Finally such an optimistic bidding results in a high value. Second, I try 

different values of the discount factor δ . The results of the value function do not differ 

much. To find the reason, I decompose the contribution to the value function into )(sA  and 
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)(sB . )(sA  is the current payoff. )(sB  is the probability of winning in the future. I find 

that the first part )(sA  accounts for a dominant part of contribution. )(sB  is a very small 

number on the other hand. In other words, in symmetric bidding bidder i  has a much 

stronger belief that he wins in the current round. Most of his bidding efforts are paid to the 

current round. Hence the discount factor does not affect the value function dramatically. 

 

4.3 Estimates of Costs 

To illustrate the estimates of the distribution, I fix the value of the auction 

characteristics at the sample means and 95.0=δ . I first depict the bid function. Then I 

discuss the markup and depict the distribution function of costs with 95% confidence 

interval. 

Figure 4.2 depicts the equilibrium bids versus costs. The bid function is estimated 

using equation (4). The bid function is plotted by fixing the auction characteristics at the 

sample mean and state variable at the upper bound of the reserve price and varying the cost. 

In addition to the bid function, the 45 degree line is reported. As is evident in the figure, the 

bid increases with the cost. 

The markup denotes the difference between the bid and the cost of a bidder. In the 

figure, the markup is the distance between the bid and the 45 degree line. Note that the bid 

line is almost parallel to the 45 degree line. This further strengthens that bidders weigh 

dominantly on the current proportion of the markup as I have shown in the analysis of the 

value function. In particular, the current proportion is constant in the exponential 

specification. To some extent, it reflects bidders' opinion of winning today versus winning 

later. 
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Figure 4.3 depicts the distribution function of costs. The distribution function is 

obtained by using equation (10). The distribution function is reported at the sample mean 

of the auction characteristics. I also compute the standard errors by delta method. The dash 

lines represent the 95% confidence interval. 

Note that in order to obtain the estimates of private costs, we have to fix the 

discount factor. Next I change the discount factor to gain different sets of inferred costs. 

Correspondingly, we can examine how the discount factor affects the inferred costs. I try 

different values of the discount factor and find that the larger the discount factor, the 

smaller the inferred costs. This is reasonable because increasing the discount factor results 

in greater markup thereby leading to smaller inferred costs. Figure 4.4 illustrates the 

distributions of costs with 3.0=δ  and 9.0=δ  respectively. The distribution function 

associated with 9.0=δ  stochastically dominates the distribution function associated with 

3.0=δ . 

 

5 Counterfactual Analysis 

In this section, I conduct counterfactual analysis. Secret reserve prices are used in 

the INDOT highway auctions. After I recover the cost distribution, I can estimate the 

procurement cost under the use of public reserve price by simulation. I find that with use of 

public reserve price, the INDOT slightly save some costs. 

Motivated by the INDOT data feature, my model has focused on the use of the 

secret reserve price by the government. Alternatively, the government can make the 

engineer's estimate public and use it as a public reserve price. In this scenario, the 

government can find no bids submitted if all bidders' private costs are above the public 
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reserve price. Thus the government can re-auction the project in the next round with the 

same public reserve price. As a result, under the random cost replacement assumption, the 

multi-round feature can be accommodated by both secret and public reserve prices. It 

would be interesting to compare the welfare implications of these two mechanisms using a 

counterfactual analysis. Such a comparison allows us to evaluate the INDOT's auction 

mechanism and assess the efficiency of its current reserve price policy. Since I have 

uncovered the underlying cost distribution, I can conduct simulations under the two 

different reserve price release policies and compare the government's payment under the 

two different scenarios. However, as the cost distribution depends on the discount factor, I 

vary the discount factor to conduct simulations. 

I construct a representative auction by setting all observed characteristics at the 

sample means of the corresponding covariates. The simulation of the secret reserve price 

can be done directly with use of the estimated bid distribution. Hence it does not involve 

the cost distribution, neither the discount factor. However, the simulation of the public 

reserve price involves the cost distribution. I vary the discount factor. For each value of the 

discount factor, I obtain the corresponding simulation result of the public reserve price. 

I report some of the results of my simulation in Table 4.2. My simulation produces 

several interesting findings. First, using a public reserve price, the expected procurement 

cost is decreasing in the discount factor.4 This is consistent with my previous finding that 

the inferred costs decrease in the discount factor. Because the cost distribution function 

with a larger discount factor dominates the distribution with a smaller discount factor, 

using the former leads to a lower winning bid in simulation than using the latter, keeping 

all the other factors constant. Second, it reveals the effects of the two reserve price policies 
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on the procurement cost, the implication of which is two-fold. First, the lower the discount 

factor, the greater the advantage by keeping the reserve price secret. Second, as the 

discount factor increases to a sufficient value, we see a completely opposite result: 

announcing the reserve price public is better than keeping it secret. The cutoff value of the 

discount factor is about 0.9 according to the simulation. 

On average, when 1.0=δ , the INDOT can save about $12,000 on a typical bridge 

work auction by adopting a secret reserve price. This number is comparable to the number 

13,641 in the third chapter in view of 0=δ . Hence our finding indicates that the use of 

secret reserve price may be a good policy in practice in procurement auctions when bidders 

are not forward looking or not so forward looking (the discount factor is low). However, as 

the bidders care more and more about the future, secret reserve price policy loses its 

advantage. The reason is simple. When they are forward looking, as we have seen earlier, 

the bidders increase the markups. Furthermore, the greater the value of the discount factor, 

the higher the markups. 

 

6 Conclusion 

In this chapter, I study multi-round auctions with secret reserve prices in a dynamic 

framework. This chapter is an extension of my previous chapter on multi-round auctions 

with secret reserve price in a static framework. I prove that the static model is a special case 

of the dynamic model in which the discount factor is zero. My model yields some 

predictions that can be empirically tested, such as that the equilibrium bids decline 

uniformly over various stages. Also, in the dynamic auction model, because of forward 

looking bidders may increase their current bids. 

                                                                                                                                                 
4 It would be strictly monotone had there been no simulation error. 
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I develop a structural approach to analyze the INDOT data. The structural approach 

recovered the distributions of the reserve prices and the private cost. The estimates for 

structural parameters allow us to conduct counterfactual analyses. I find that whether using 

a secret reserve price or using a public reserve price depends on the bidder’s attitude about 

the future. In particular, the INDOT could have saved budgets by adopting a public reserve 

price rather than using a secret reserve price when the bidders are forward looking and have 

a sufficient large discount factor. This chapter offers insights into the use of reserve prices 

in multi-round auctions with forward looking bidders and the strategic changes in bidders' 

bidding strategies. 
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APPENDIX 

1. Proof of Lemma 1 
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Thus the result immediately follows. 

 

2. Proof of Proposition 1 

The monotone hazard rate is standard in auction literature, it requires that ))(1/()( ⋅−⋅ Ff  is 

an increasing function. This is the same for )(⋅G . This is equivalent to 2]1[ gGg −≥−′ . 

With a few steps of algebra, it can be shown that 2])([ gGsGg −≥−′ . This implies that 

)|( s⋅µ  is increasing too. The implicit function in equation (4) is an increasing function. 

Therefore we conclude that it is an increasing function in c  and δ . 

 

3. Proof of Proposition 2 

When  0=δ  , the dynamic control problem is reduced to the following 
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[ ]),,|(Pr)(max),,( 11 −−−− −= titbtit sbbicbsbcW , 

which implies that the optimal bidding strategy can be solved stage by stage. 

The problem in stage t is 

)(
)()()](1)[( max 1

bG
bGsGbScb N −

−− − . 

Defining hazard rates as for bid and reserve price )](1/[)()( bHbhb −=λ  and 

)]()(/[)()|( rGsGrgsr −=µ  respectively, the first order condition implies the 

representation in the proposition. 

 

4. Proof of Corollary 1 

Note in non-forward looking case, I can generally distinguish the distributions of bids and 

therefore the bidding functions from stage to stage. 

If the private cost distributions are the same, we get the same functional forms for the 

equilibrium bids. With the monotone hazard rate assumption, bid is an increasing function 

in c  and  )|)(( ssVE ′δ  . Because cssVEc >′+ )|)((δ , the bid with forward looking is 

larger than the bid without forward looking. 

 

4. Proof of Proposition 3 

We derive the First order condition using the cost distribution. Define ).(cb β=  Then we 

have 
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The distribution of smallest order statistic )1( −Nb  is corresponding to the smallest order 

statistic )1( −Nc . Therefore, I have 

)(
)()](1)[1())(())]((1)[1())(( 22

c
cfcFNcscSNcm NN

β
βββ

′
−−=−−= −− .         (A.1) 
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Multiplying by )()( csG β ′  and rearranging, we get the following 
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Note that )(cb β= . We can rewrite the above equation as 
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Integrating over ],[ sc  and using the boundary condition ss =)(β , we obtain 
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In order to compare tb  and 1−tb , I add subscript to s  to distinguish bidding strategies in 

different periods. At the symmetric MPE, tb  is the optimal choice in period .t  Therefore I 

have the following inequality 
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Similarly, 1−tb  is the maximizer in period 1−t . The following inequality holds 
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Rewrite the second inequality as 
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Decompose the above inequality and use the first inequality to get the following inequality 
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Note that both sides of the inequality are the same increasing function that can be written as 

)()( 1 tt bb Π≥Π − , which implies that tt bb ≥−1 . 

 

5. Proof of Proposition 4 

First, I may write the probability of winning as a function of the distribution of bids by 

other bidders, ignoring dependence of other bidders' bids on cost draws. Thus each bidder's 

dynamic game is reduced to a single agent dynamic decision problem where each bidder 

maximizes the discounted sum of future payoffs taking as given the equilibrium bid 

distribution associated with other bidders. Still, this single agent dynamic decision problem 

does involve the latent cost. My second observation is that the first order condition of 

optimal bids gives an explicit expression of the bidder's costs in terms of his equilibrium 

bids and the equilibrium bids distribution. Substituting this expression into the value 
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function yields an expression involving the distribution and the density of equilibrium bids 

only. 

 

6. Proof of Lemma 2 Following Lemma 1, one can easily calculate and get )(sB . 
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Table 4.1 SML Estimates of bid Distribution and Unobserved Heterogeneity 

Variable                     Coef.                               Std. Err. 

dbe 0.0403* 0.0012 

time 0.0051* 0.0002 

np 0.284* 0.0077 

steel 0.274* 0.0066 

length 0.0023* 0.0001 

_cons 11.533* 0.0636 

 2σ   0.054* 0.0016 

*: significant at 5%   
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Table 4.2 Counterfactual Analysis on the Reserve Price Policy 

δ  0.1 0.3 0.5 0.7 0.9

d* -11992 -8229 -10326 -4498 509

*expected procurement cost under the secret reserve price minus the expected procurement 
cost under the public reserve price 
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Figure 4.1 The Value Function 
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Figure 4.2 The Bidding Function 
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Figure 4.3 The Distribution of Costs 
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 Figure 4.4 Distribution of Costs with Different Discount Factor 


