
SIMULATION AND ANALYSIS OF TERRAIN SENSING, 

POSITION DETERMINATION AND NAVIGATION 

BY A ROBOTIC LUNAR ROVER 

 

By 

 

William Russell Longhurst 

 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

MASTER OF SCIENCE 

in 

Mechanical Engineering 

December, 2007 

Nashville, Tennessee 

 

Approved: 

Alvin M. Strauss 

George E. Cook 

Kenneth R. Fernandez 



 ii 

ACKNOWLEDGEMENTS 

 

 I would like to thank Dr. Alvin Strauss and Dr. George Cook for their leadership 

and guidance not only toward this thesis research but for their overall contribution to my 

academic development while at Vanderbilt University. 

 I would also like to thank Dr. Ken Franedez at NASA’s Marshall Space Flight 

Center for his time and contributions to this research.  His willingness to provide and 

share incite into his work at Marshall Space Flight Center’s Exploration Advanced 

Capabilities Office was invaluable to me.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

TABLE OF CONTENTS 

                                                                                                                                    Page 

ACKNOWLEDGEMENTS ................................................................................................ ii 

LIST OF TABLES .............................................................................................................. v 

LIST OF FIGURES............................................................................................................ vi 

Chapter 

I     INTRODUCTION AND SUMMARY......................................................................... 1 

           Background Information .......................................................................................... 1 
           Research Presented................................................................................................... 3 
           Survey of Literature ................................................................................................. 4 
           Simulation Software................................................................................................. 6 
           Mathematics and Mechanics .................................................................................... 7 
                 Position and Velocity Vectors............................................................................ 7 
                 Orientation.......................................................................................................... 9 
                 Transformation Matrix ..................................................................................... 10 
                 Three Dimensional Trilateration ...................................................................... 11 
           Invisible Cartesian Robot ....................................................................................... 16 
           Control Systems ..................................................................................................... 18 

II   MODELING AND SIMULATION ............................................................................ 21 

           Models.................................................................................................................... 21 
                 Lunar Surface ................................................................................................... 21 
                 Lunar Reconnaissance Orbiter ......................................................................... 23 
                 Robotic Lunar Rover........................................................................................ 23 
                 Propulsion System............................................................................................ 26 
                 Steering System................................................................................................ 32 
                 Dynamics System............................................................................................. 36 
                 Navigation System ........................................................................................... 39 
                 Inertial Measurement Unit ............................................................................... 41 
           Simulations............................................................................................................. 42 
                 Lunar Reconnaissance Orbiter Scan ................................................................ 42 
                 Position Determination..................................................................................... 47 
                 Dynamics and Navigation ................................................................................ 50 

III  RESULTS.................................................................................................................... 52 

            Lunar Surface Mapping......................................................................................... 52 
            Lunar Rover’s Position Determination ................................................................. 58 



 iv 

            Lunar Rover’s Dynamics and Navigation............................................................. 60 

IV  CONCLUSIONS AND FUTURE EFFORTS ........................................................... 65 

            Position Determination.......................................................................................... 65 
            Inertial Measurement Unit Modeling.................................................................... 67 

Appendix 

A.  INVISIBLE CARTESIAN ROBOT INVERSE-KINEMATICS  
      EQUATIONS DERIVATION .................................................................................... 70 
 
B.  LISP FILES USED TO CREATE KEY ROBOSIM MODELS ................................. 73 
            Invisible Cartesian Robot ...................................................................................... 73 
            Lunar Surface ........................................................................................................ 74 
            Lunar Rover........................................................................................................... 77 
            Lunar Reconnaissance Orbiter Scan ..................................................................... 81 
            Position Determination.......................................................................................... 87 
 
C.  MATLAB SIMULINK MODELS .............................................................................. 95 

REFERENCES................................................................................................................ 107 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

LIST OF TABLES 

 

Table           Page 

1.1     Invisible Cartesian robot link parameter table ........................................................ 18 

3.1     Identified mapped lunar terrain features ................................................................. 56 

3.2     Experimental results from the position determination simulation .......................... 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

LIST OF FIGURES 

 

Figure           Page 

1.1     A position vector relative to a known frame ............................................................. 8 

1.2     The lunar rover’s velocity vector .............................................................................. 9 

1.3     Mapped frames........................................................................................................ 11 

1.4     Reference points repositioned to the x-y plane and viewed as spheres .................. 13 

1.5     The invisible Cartesian robot frame assignments ................................................... 17 

2.1     The lunar surface model.......................................................................................... 22 

2.2     The robotic lunar rover model................................................................................. 25 

2.3     Turn radius as determined by the steering wheels’ position. .................................. 37 

2.4     The lunar surface being scanned by the LRO ......................................................... 46 

2.5     The lunar rover measuring its distance to a terrain feature ..................................... 49 

3.1     The LRO generated map of the lunar surface ......................................................... 52 

3.2     The LRO generated map of the lunar surface as viewed from above ..................... 54 

3.3     The LRO generated data superimposed over the lunar surface model ................... 55 

3.4     Mapped lunar terrain points P1 through P5. ........................................................... 57 

3.5     Mapped lunar terrain points P6 through P15 .......................................................... 57 

3.6     The lunar rover’s path with no measurement errors ............................................... 61 

3.7     The lunar rover’s path for test number 1................................................................. 62 

3.8     Rover navigation near a rock with a collision and then without a collision ........... 63 

3.9     The lunar rover’s path for test number 2................................................................. 64 

C.1    The navigation central processing unit system........................................................ 95 



 vii 

C.2     The navigation controller system ........................................................................... 96 

C.3     The steering system ................................................................................................ 97 

C.4     The steering dynamics equation subsystem............................................................ 98 

C.5     The propulsion system............................................................................................ 99 

C.6     The propulsion dynamics subsystem.................................................................... 100 

C.7     The propulsion dynamic equation subsystem....................................................... 101 

C.8     The dynamics system............................................................................................ 102 

C.9     The position subsystem ........................................................................................ 103 

C.10   The directional heading subsystem....................................................................... 104 

C.11   The inertial measurement unit system.................................................................. 105  

C.12   The dynamics and navigation simulation system................................................. 106 

 

 



 1 

CHAPTER I 

 

INTRODUCTION AND SUMMARY 

 

Background Information 

 Previous surface exploration of the Earth’s moon and of the planet Mars was 

performed with robots that were controlled remotely from Earth based command centers.  

Although the robots generally performed successfully, each one of their tasks had to be 

initiated and controlled by a human operator.  This form of operation is very time 

consuming and labor intensive for the command center.  When data is received from the 

robot, it has to be analyzed by an operations staff before the next command can be sent to 

the robot.  The problems of remote control manifest themselves particularly when it 

comes to a mobile robot’s navigation.  When camera images from the robotic rover are 

used as the primary means of navigation, the time delay to transmit and process the image 

becomes a burden on the operations staff.  With a time delay, the operations staff spends 

a lot of time waiting on imagery data in between commands.  In addition, because there is 

no real time image, the operations staff becomes inherently limited with each motion 

command specifying the distance to traverse the rover across the lunar surface.  If they 

become too aggressive and send the robotic rover to a point not clearly seen through the 

camera, they run the risk of damaging the robot.  They even could end its mission by 

driving it over the edge of a cliff, or into a crater where it would remain confined.  To 

prevent this from occurring, the operations staff with each motion command traverses the 

robot a small distance over the surface and then waits for an updated camera image 
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before commanding the rover to move again.  The time delay for image transmission 

from the Earth’s moon is small in comparison to Mars.  Operating a robotic rover on 

Mars from an Earth based command center becomes even more difficult due to 

communication delays of up to forty minutes (LeMaster and Rock 2003). 

 To solve this problem, future robotic rovers need to depend less on human 

operators.  A better type of control architecture for a robotic rover would be supervised 

control.  Under supervised control there would be limited interface between the robotic 

rover and the human operator.  The robotic rover could perform tasks under its own 

control without tying up valuable human resources located at the command center.  In 

regard to navigation, the robotic rover could traverse the surface under its own control 

and only be assisted by a human operator in certain situations.  Possible situations that 

might require human interface could be fault recovery, collision avoidance, 

instrumentation calibration and assignment of mission tasks. 

 A first step in developing a robotic rover that has supervised control involves 

addressing the position determination problem.  Before a robotic rover can successfully 

navigate itself on a foreign surface, it must know its starting position coordinates.  A 

method presented in this thesis calls for a laser range finder on a robotic lunar rover to 

measure its distance to prior mapped lunar terrain features such as craters, boulders and 

rocks.  The laser range finder would be remotely controlled by an operator back at the 

command center.  The operator would locate, through the use of a camera, identifiable 

terrain features.  When three terrain features are identified by the operator, the laser range 

finder would be activated to measure its distance to those objects.  With the position 
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coordinates of the terrain features and the measured distance to them, the robotic lunar 

rover’s position can be calculated. 

 

Research Presented 

 The research performed for this thesis examined the method and accuracy of 

determining a robotic lunar rover’s position through measuring its relative distance to 

lunar terrain of known position.  The mathematical basis behind this position 

determination method is called three dimensional trilateration.  This same mathematical 

formalism is used by the United States’ space based global positioning system (GPS).  

However, GPS uses satellites that orbit the Earth to broadcast a position and a time signal 

to a receiver.  This broadcasted data is then used by the receiver to determine its position 

(LeMaster and Rock 2003).   The lunar rover presented in this research measures distance 

with a laser range finder and an Earth based operator enters the coordinates of the ranged 

terrain features. 

Chapter II presents a series of simulations that was created to emulate proposed 

lunar missions of mapping and exploration.  The series began by simulating a mapping 

mission of the lunar surface.  The modeled lunar surface was mapped by a modeled lunar 

reconnaissance orbiter (LRO).  Each square meter of the lunar surface was mapped to an 

elevation accuracy of plus or minus one half meter.  The data generated from the LRO 

created a three dimensional map of the lunar surface.  The generated map from this LRO 

simulation was able to provide visual imagery regarding the size and location of terrain 

features on the lunar surface.    
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The modeled lunar rover measured its relative distance to the distinguishing 

terrain on the modeled lunar surface.  Each one of the terrain features had assigned 

positional data.  The positional data was assigned based upon the lunar map that was 

generated by the LRO mapping simulation.  Thus inherently there was some error 

between the true location of each terrain feature and its measured location.  In addition, 

there was distance measurement error associated with the limited accuracy of the laser 

range finder. 

Chapters III and IV present the results and conclusions of these simulations.  The 

experimentally obtained results show that the lunar rover’s position was obtained on 

average to within 3.31 meters of its actual position.  The results are even better when only 

the horizontal coordinates are considered.  On average, the x position was determined to 

within 0.03 meters and the y position to within 0.80 meters. 

To further evaluate this positioning error a dynamics and navigation simulation 

was created to graphically analyze the resulting lunar rover motion.  Within this 

simulation the drift of an inertial measurement unit (IMU) was also modeled.  The results 

of this simulation show the effects of the initial position error and the need to recalculate 

position periodically due to the accumulating measurement error of the IMU. 

 

Survey of Literature 

 Within the last ten years there has been a lot of research in the field of 

autonomous robot navigation.  This research has been inspired by the dawn of GPS and 

its potential applications.  With the establishment of GPS, a positional reference can 

easily be obtained by any robot that has a receiver.  Recent research has been conducted 
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using computer simulations to develop new alignment methods for IMU systems and 

techniques to overcome the errors associated with the inertia sensors (Zhang, Y. and Gao, 

Y., 2007).  Zhang and Gao published their work in March 2007 in a paper titled “A 

Method to Improve the Alignment Performance of GPS-IMU System”.  A even more 

recent paper titled “Integrity of an Integrated GPS/INS System in the Presence of Slowly 

Growing Errors. Part I: A Critical Review” was published in July 2007 (Bhatti, U., 

Ochieng, W. and Feng, S., 2007).  The paper presents a critical review of GPS and how it 

is used in conjunction with an inertia navigation system.  It examines failure modes and 

current error monitoring methods that ensure system integrity.  The authors conclude that 

tightly coupled GPS and inertia navigation systems are needed for accurate navigation. 

 Literature closely related to the research presented in this thesis can be found in 

the Autonomous Robot Journal.  Work published by Kwon, Y. and Lee, J titled “A 

Stochastic Map Building Method for Mobile Robot using 2-D Laser Range Finder” 

presents a method for a mobile robot to use a laser range finder and build a virtual map of 

its surroundings (Kwon, Y. and Lee, J., 2004).  The created map of the robot’s 

environment is then used with algorithms for navigation and obstacle avoidance.  A even 

more in depth research of this topic is presented in the article “A Set Theoretic Approach 

to Dynamic Robot Localization and Mapping” (Di Marco, M., Garulli, A., Giannitrapani, 

A. and Vicino, A., 2004). 

 More closely related literature to this thesis can be found in two papers.  The first 

paper titled “Active Single Landmark Based Global Localization of Autonomous Mobile 

Robots”, presents a method for a mobile robot to estimate its position based upon the 

known location of one landmark (Bais, A., Sablatnig, R., Gu, J., and Mahlknecht, S., 
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2006).  The proposed robot and algorithm uses a stereo vision camera mounted on a 

rotating head to measure the landmark’s range from three different positions.  A 

trilateration based method is then used to calculate the robots position.  The second paper 

titled “A Local-Area GPS Pseudolite-Based Navigation System for Mars Rovers” 

presents a navigation system that enhances GPS (LeMaster, E. and Rock, S., 2004).  The 

navigation system is called the Self-Calibrating Pseudolite Array (SCPA).  It uses an 

array of GPS-based transceivers that are positioned on the ground.  The array of 

transceivers acts as navigation beacons for mobile robots operating in a localized area.  

Positional accuracy of the order of a centimeter can be obtained. 

 

Simulation Software 

 The two software packages used for this series of simulations were ROBOSIM 

and MATLAB Simulink.  ROBOSIM is a robotic software simulation package developed 

at Vanderbilt University and used for class instruction and research (Fernandez 1988) 

(Springfield 1993).  The software has a built in LISP interrupter.  All of the modeling for 

the ROBOSIM simulations was performed using LISP code.  A listing of LISP files 

created for key models and simulations is included in Appendix B.  The lunar surface, 

lunar rover, LRO and an invisible Cartesian robot were all modeled with ROBOSIM.  

The LRO surface mapping and the robotic lunar rover’s position determination 

simulations were also performed using ROBOSIM. 

 Simulink is a software package built into MATLAB.  It is used for graphically 

modeling and simulating dynamic systems (The MathWorks 2004).  The dynamics and 

navigation simulation was created using Simulink.  The robotic lunar rover’s proposed 
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propulsion, steering and navigations systems were modeled and the rover’s resulting 

motion was graphically displayed each time the simulation was performed.  

 

Mathematics and Mechanics 

 The presented simulations utilized basic vector mechanics to position, transform 

and map objects.  Most of the mathematics required to perform these operations are 

contained in ROBOSIM functions. Thus a basic understanding of the math is needed.  A 

brief review of vectors, frame to frame mapping procedures, and three dimensional 

trilateration is presented in the following sections.   

 

Position and Velocity Vectors 

 To mathematically describe a point or an object’s position relative to a reference 

frame requires a position vector.  The position vectors used in this research were based 

upon a Cartesian reference frame.  A typical position vector referenced to a Cartesian 

coordinate frame is shown in Figure 1.1.  The position vector contains three elements that 

relate its position to each of the three Cartesian axes.  Position vectors used in the 

simulations positioned both points and objects.  When an object was positioned in the 

simulations it was positioned with regards to its assigned frame.  Thus every object used 

had its own coordinate frame.  Each object’s frame was positioned relative to another 

frame.  All objects used in the simulation were eventually referenced back to the single 

world frame.  
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Figure 1.1: A position vector relative to a known frame. 

 

 A velocity vector is a different type of vector than a position vector (Craig, J. 

2005).  Although both types of vectors could have the same value of magnitude and 

direction, they do not possess the equivalent meaning.  A velocity vector could be 

positioned anywhere relative to the reference frame and have the same meaning provided 

that it maintained its magnitude and direction.  Because a position vector has dimensions 

of length and a line of action it can only be placed one way on the coordinate reference 

frame.  A velocity vector was used in the dynamics and navigation simulation to describe 

the lunar rover’s instantaneous velocity in relation to the each of the three principal axes 

of the world reference frame.  This velocity vector was continually placed at different 

locations on the coordinate reference frame as the rover traversed the lunar surface but it 

always had the equivalent meaning shown in Figure 1.2. 
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Figure 1.2: The lunar rover’s velocity vector. 

 

Orientation 

 As stated in the last section each object used in the simulations had a frame and its 

frame was positioned relative to another frame.  To mathematically describe an object’s 

frame orientation with respect to another frame, a dot product operation is used.  When 

each of the principal axes of both the object and the reference frame is consider being a 

unit vector, the dot product of two axes simply becomes the value of the cosine of the 

angle between them. The dot product operation can be viewed as the projection of the 

object’s frame onto the reference frame.  Each of the three principal axes of the object’s 

frame is projected onto each of the three reference frame’s axes.  The x axis of the object 

is projected on the x axis, y axis and z axis of the reference frame.  The process is then 
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repeated for the y axis and z axis of the object.  The result of this operation is a 3 x 3 

matrix that is called the rotation matrix (Craig, J., 2005).  

 

Transformation Matrix 

 To mathematically describe the combined position and orientation of an object 

with respect to a reference frame a transformation matrix is used.  The transformation 

matrix is used because it not only allows us to mathematically describe, but also to 

manipulate an object’s position and orientation with respect to another frame.  Since it is 

a matrix it can be used to write an equation that strings together a series of frame 

relationships.  The created equation simply multiplies the matrixes together to get a net 

relationship between the two end frames.  This equation can also be used to describe or 

operate on an object by translating, rotating and transforming it to a certain position and 

orientation.  Figure 1.3 shows a series of frames and illustrates and how they can be 

mapped together and used to either describe or operate on an object. 

 Frame A and B shown in Figure 1.3 are each position by a vector relative to the 

world frame.  In addition both of their orientations are known relative to the world frame.  

From the mappings shown, Frame B’s position and orientation is also known relative to 

frame A.  Thus there are two ways to map frame B relative to the world frame.  Frame B 

could first be mapped to A and the resultant can then be mapped to the world frame.  This 

product of mappings produces the net result of frame B’s position and orientation relative 

to the world frame.  This is graphically illustrated by the series of vectors between the 

three frames shown in Figure 1.3. 
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Figure 1.3:  Mapped frames. 

 

 To make this mathematical operation possible a 4 x 4 homogenous transformation 

matrix is created (Craig, J., 2005).  The homogeneous transformation matrix consists of 

the 3 x 3 rotation matrix and the 3 x 1 position vector.  The position vector is placed in 

the far right column of the homogenous transformation matrix while the rotation matrix 

occupies the first three rows and columns.  The fourth row of the homogenous 

transformation matrix consists of the values [0 0 0 1]. 

   

Three Dimensional Trilateration 

 To solve for the lunar rover’s position three dimensional trilateration was used.  

Three dimensional trilateration uses three reference points and the distance to these points 

to determine a position.  In association with the following text, the diagram in Figure 1.4 

helps explains how three dimensional trilateration works.  In addition both a geometrical 
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approach and numerical approach is presented in the following paragraphs to explain the 

position determination method. 

After the lunar rover measures its distance to reference point one, its position is 

then known to be at a distance of r1 from reference point one.  The possible positions of 

the rover are now restricted to the surface of a sphere.  The sphere has a radius of r1 and 

is located at reference point one.  As the rover completes its second distance 

measurement to reference point two, the rover must also be positioned somewhere on the 

surface of the second sphere.  The second sphere has a radius of r2 and is located at 

reference point two.  Upon examining these two location criteria it can be determined by 

inspection that the rover must then lie somewhere on the circle that is created by the 

surface overlap of the two spheres.  To further reduce the possible positions of the rover, 

another distance measurement is taken with respect to a third known reference point.  The 

third distance measurement of r3, tells us the rover must also be positioned on the surface 

of a sphere that has a radius of r3 and that is located at reference point three.  This third 

position criterion means that the rover is located at the point where the third sphere 

intersects the circle that was created by the surface overlap of the spheres located at 

reference points one and two. 

From a numerical evaluation of three dimensional trilateration, the solution for 

position can be determined through the equations of three spheres.  Each sphere can be 

expressed in its equation form.  The position of the rover can be found by setting all three 

equations equal to each other and solving for the three unknown coordinates.  However 

the math quickly becomes complicated.  To simplify this problem, the spheres are 

together transformed into a more solvable form as shown in Figure 1.4. 
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Figure 1.4:  Reference points repositioned to the x-y plane and viewed as spheres. 

 

 To begin the transformation, the first reference point’s location is translated to the 

world frame’s origin.  Reference points two and three are also translated to new locations 

but all three reference points still maintain their spatial relationship with each other.  

Reference point two is rotated so that it is located on the positive x axis.  The first 

rotation is about the z axis and then the second rotation is about the y axis.  To maintain 

the same spatial relationship, reference point three is also transformed through the same 

identical rotations. The last transformation involves rotating reference point three to the 

x-y plane.  This is done by rotating it about the x axis.  All of the rotation angles can 

easily be determined by inspecting each reference point’s positional coordinates and then 

applying trigonometric principles to solve for the angles. 
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 Once the transformation is complete the reference point’s new locations and the 

corresponding measurements to them can be applied to the following three equations of 

the resulting spheres. 

 

r1
2 = x2 + y2 + z2            (1.1) 

r2
2 = (x – px20)2 + y2 + z2           (1.2) 

r3
2 = (x – px30)2 + (y – py30)2 + z2          (1.3) 

 

 To solve for the value of the x coordinate, equation (1.2) can be subtracted from 

equation (1.1) and rearranged into the form given by equation (1.4).  

 

x = (r1
2 – r2

2 + px202) ⁄ (2 · px20)2          (1.4) 

  

Substituting equation (1.4) into equation (1.1) and then setting equation (1.1) equal to 

equation (1.3) yields the solution for y given in equation (1.5). 

 

y = ((r1
2 – r3

2 + px302 + py302) ⁄ (2 · py30)) – ((px30 ⁄ py30) · x)        (1.5) 

 

The calculated values of x and y can now be entered into equation (1.1).  Equation (1.1) 

is then rearranged into equation (1.6) to solve for the value of z. 

 

z = √ (r1
2 – x2 – y2)           (1.6) 
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With the solution of z being the square root of a number there are three 

possibilities that could result.  If the solution to equation (1.6) is zero, it means the sphere 

located at reference point 3 intersects at one location, the circle created by the surface 

overlap of the spheres at reference point one and two.  A second scenario is no real 

solution to equation (1.6) exists, because one can not solve for the square root of a 

negative number.  When this occurs, it means the sphere at reference point three is 

outside the circle created by the surface overlap of the spheres located at reference point 

one and two.  With noisy data this situation is very plausible.  The solution when this 

occurs is to set z = 0 since it is the closest answer.  The third scenario is when there are 

two real solutions to equation (1.6).  This means that the sphere located at reference point 

three intersects at two distinct locations, the circle created by the surface overlap of the 

spheres located at reference point one and two.   

When there are two solutions to equation (1.6), there are two options to determine 

the correct answer.  The first is two take an additional measurement to a fourth reference 

point.  The other is to apply logic through observing the relationship between the three 

reference points and the location of the rover.  If the plane created by the three reference 

points is above the rover, the solution that leads to the rover’s correct position is the 

negative value given in equation (1.6).  On the other hand, if the plane created by the 

three reference points passes below the rover, the positive solution to equation (6) leads 

to the correct position of the rover.  As long as the rover uses three reference points that 

are on three different sides of its location and above its current elevation, the correct 

solution will always be the negative value.  If there is any uncertainty about whether the 

reference points are below or above the rover, a simple test can be performed to 
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determine the answer.   By measuring with the laser range finder, the rover could 

determine the coordinates of the reference points relative to the rover.  An equation of the 

plane created by the reference points relative to the rover could then be established.  The 

equation could then be evaluated to determine the z coordinates’ value when both x and y 

are set to zero.  When the reference point’s coordinates are established relative to the 

rover, the rover’s position is at the origin of the reference frame.  If the returned z value is 

negative it means the rover is above the plane created by the three reference points.  If the 

value is positive, the rover is below the plane created by the three reference points. 

 Now that the x, y and z coordinates have been determined, the transformation 

used to place the reference points in the required criteria, must be applied in reverse to 

the calculated coordinates to find the true position of the rover. 

 

Invisible Cartesian Robot 

 A key element used in the simulations was an invisible Cartesian robot.  An 

invisible Cartesian robot is a six axis robot with no visible links.  Since there are not any 

visible links, each axis has an infinite number of positions it can obtain.  With three axes 

dedicated to positioning and the other three dedicated to orientation, the invisible 

Cartesian robot can place its sixth axis frame in any desired position and orientation.  

With this capability, the invisible Cartesian robot was used to grasp either the LRO or the 

lunar rover and move it about in the simulation environment.  Through the use of the 

Cartesian robot and with its inverse kinematics program defined in ROBOSIM, the LRO 

was moved over the lunar surface to simulate its motion while in lunar orbit. In addition 
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through the use of the Cartesian robot and Simulink, the lunar rover was moved on the 

lunar surface to simulate its autonomous navigation and lunar surface exploration. 

 The six frames of the invisible Cartesian robot are shown in Figure 1.5.  The first 

three axes were used for positioning along the x, y and z axes of the world frame, while 

the last three were used for orientation.  The Denavit-Hartenberg link parameter table 

(Denavit, J. and Hartenberg, R., 1955) (Craig, J., 2005) shown in Table 1.1, numerically 

shows each of the links and how each link relates to its adjoining link.   

 

 

Figure 1.5: The invisible Cartesian robot frame assignments. 
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The information contained in the parameter table was used to construct the 

Cartesian robot.  The notation used to construct the Denavit-Hartenberg table is defined 

as: 

ai = the distance from Zi to Zi+1 measured along Xi; 

αi = the angle form Zi to Zi+1 measure along Xi; 

di = the distance from Xi-1 to Xi measured along Zi; 

θi = the angle from Xi-1 to Xi measured along Zi. 

  

The ROBOSIM LISP file for constructing this robot is listed in Appendix B.  In 

addition the inverse kinematics equations used in positioning each axis to obtain a desired 

position and orientation for the LRO and the rover is derived in Appendix A.   

 

Table 1.1:  Invisible Cartesian robot link parameter table. 

 

 

Control Systems 

 Although control systems are not a primary focus of the research presented in this 

thesis, some background information regarding the control methods utilized in one of the 

simulations is necessary.  Three control systems were developed for the implementation 
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of the dynamics and navigation simulation.  To accurately simulate the resultant motion 

of an autonomous rover, control systems for the propulsion, steering and navigation 

models were developed.  Each of the three control systems used feedback to establish a 

closed loop system.  The feedback was then used to compute the servo error.   

For the propulsion and the steering system, the processing of their servo errors led 

to the required input torque for their motors to drive the lunar rover’s velocity and 

steering wheels’ position errors to zero.  The navigation controller used the error 

associated with directional heading to change the steering wheels’ position in order to 

drive the directional heading error to zero. 

The propulsion and steering control systems each utilized two control laws that 

worked in conjunction and supplied the required torque for the propulsion and steering 

motors.  To accomplish this each of the control systems was partitioned into two portions.  

The partitioned controller consisted of a model based portion and a servo based portion.  

The servo based portion arranged the servo error into a differential equation that had a 

solution that decayed to zero over time.  Controller gains were selected and placed in the 

differential equation to control the behavioral response of the system.  The model based 

portion was used to cancel the nonlinearity of the propulsion and steering systems and to 

provide enhanced control of the complex systems.  This method of control modeling is 

known as the computed-torque method (Craig, J. 2005) (Paul, P., 1972) (Markiewicz, B., 

1973) (Bejczy, A., 1974). 

The navigation system was constructed in a manor that just applied proportional, 

integral, and derivative (PID) control to the directional heading error.  The PID controller 

sent the conditioned error signal to the steering system as the desired steering wheels’ 
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position.  As the steering wheels turned in conjunction with the linear velocity from the 

propulsion system, the directional heading naturally changed.  The PID controller simply 

drove the directional heading error to zero by commanding the steering motor to turn the 

wheels until the rover achieved its desired directional heading.   
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CHAPTER II 

 

MODELING AND SIMULATION 

 

Models 

 

Lunar Surface 

As previously stated the lunar surface model was created in ROBOSIM.  The 

lunar surface model represented forty nine thousand square meters of horizontal lunar 

landscape.  The length of each side of the square surface model was seventy meters.  As 

seen in Figure 2.1 the surface was made of five distinct feature groups.  The groups were: 

the two craters, the flat surface, the large boulder formation in the bottom, the large 

jagged rock formation on the left side and two sets of rolling hills on the top and right 

side of Figure 2.1.  In addition to the five distinct feature groups there were several small 

rocks scattered throughout the flat surface and on the hillsides.  

The three highest surface points on the model were the twin peaks of the large 

jagged rock formation and the hilltop on the far side of the lunar terrain.  Both of these 

terrain features had a peak height of about ten meters above the flat surface.   The flat 

surface was position at thirty meters above the x – y plane of the world frame.  The two 

lowest elevations on the model were the two craters.  Both of these craters were 

approximately five to seven meters wide and five meters deep. 

 A listing of the LISP file used to model the lunar surface is contained in Appendix 

B.  As can be seen in the file listing, the lunar surface was modeled as a composite object 
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within ROBOSIM.  It was necessary to establish the surface as a single simulation object 

for three reasons.  The first was to simplify the positioning of the entire model relative to 

the world frame.  Second, the creation and positioning of the terrain features became 

much simpler because they were placed relative to the flat surface instead of the world 

frame.  The lines of code used to create and position the terrain features were clearly 

separated and neatly organized within the LSIP file.  If changes were desired, they could 

have been easily accomplished due to this organization scheme.  Third, fewer lines of 

code were used to create the scanning algorithm for the LRO scan simulation.  With the 

surface being a composite object, only one object had to be checked for a collision with 

the simulated laser beam.   

 

 

Figure 2.1:  The lunar surface model. 
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Lunar Reconnaissance Orbiter 

 In the series of simulations, the lunar reconnaissance orbiter (LRO) was an 

artificial lunar satellite that orbited the Earth’s moon and mapped the surface.   The LRO 

moved above the lunar surface and used a laser to measure the distance between the lunar 

surface and its position.  The LRO with its laser produced data that was used to generate 

within the simulation environment, a three dimensional map of the lunar surface.  Each 

square meter of the surface was mapped to an accuracy of one half meter in elevation.  

 The LRO modeled in ROBOSIM consisted of its main body and two solar panels 

on each side of its body.   The originating point of the laser used for measuring was at the 

base of the LRO.  The surface mapping algorithm placed the laser at the LRO’s base and 

extended the laser beam until it collided with the lunar surface.  The algorithm then 

calculated the distance from the LRO’s base to the collision point.  The calculated 

distance was then used to generate a single pixel of the lunar surface map. 

 The LRO movement through its orbit was accomplished in the simulation 

environment with the use of the invisible Cartesian robot.  The invisible Cartesian robot 

grasped the LRO at its base and moved it over the surface while it measured the distance 

to the terrain below. 

 

Robotic Lunar Rover 

The design of the lunar rover model was created based upon the existing design of 

a terrestrial rover called MARCbot.  MARCbot stands for: multi-functional, agile, remote 

controlled robot.  MARCbot was developed by an engineering company called Exponent.  

MARCbots are primarily used by the United States Army as a tool to search and inspect 
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potentially explosive devices.  To perform their dangerous tasks, a MARCbot is remotely 

operated with the aid of an onboard camera.  The image captured by the camera is 

transmitted back to the command center where it can be processed and viewed on a video 

screen.  Based upon the image being viewed on the video screen the operator will 

transmit operation commands back to the MARCbot. 

  This type of remote operation through the use of an onboard camera is similar to 

how the lunar rover would operate under supervised control.  The lunar rover during its 

position determination routine would be operated remotely from Earth.  An onboard 

camera would allow the operator to visually inspect the local lunar terrain.  While 

inspecting the terrain the operator would search for distinguishing terrain features that 

were previously identified with the LRO mapping of the lunar surface.  The operator 

would have at his disposal the LRO generated map of the lunar surface to reference.  

While viewing both the image from the lunar rover’s camera and the image of the LRO 

generated map, a comparison of the two images can be performed.  The operator would 

try to match a terrain feature seen through the onboard camera, such as a rock or boulder 

with its corresponding image on the LRO generated map.  Once a distinguishing terrain 

feature was matched to a LRO mapped terrain feature, the operator would activate the 

onboard laser range finder to measure the distance from the lunar rover’s base to the 

identified terrain feature of known position. 

 The robotic lunar rover created in ROBOSIM and used in the simulations is 

shown in Figure 2.2.  The rover had a turret mounted laser range finder and camera.  In 

addition the rover had an extendable arm with a small sensor mounted on its end that 

could be used for additional terrain sensing and measurement.  The laser range finder and 
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video camera had combined motion and targeting ability in both azimuth and elevation 

angles. 

 

 

Figure 2.2: The robotic lunar rover model. 

 

 The overall physical size of the lunar rover was very small when compared to the 

lunar terrain.  The rover’s wheel base length was sixty centimeters and its wheel base 

width was approximately forty-eight centimeters.  The height of the turret that contained 

the laser range finder and camera was sixty-six centimeters.  The four tires with all-

terrain tread were eleven centimeters wide and twenty four centimeters tall.  These 

physical dimensions are similar to the MARCbots overall dimensions.   
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 The rover was created with its base frame in the middle of its wheel base.  When 

the rover was positioned within the simulation environment, it was with its base frame.  

In addition after the laser measured the relative distance from the laser beam’s point of 

origin to a nearby surface terrain feature, an algorithm took that measured distance and 

determined the distance between the identified surface terrain feature and the rover’s base 

frame.  Thus all positioning calculations for the rover were done with respect to its base 

frame.  The LISP file used to model the robotic lunar rover is contained in Appendix B. 

 The modeled lunar rover was used in the position determination simulations as 

well as the dynamics and navigation simulation.  In the position determination 

simulations, the rover with its laser range finder was used in conjunction with a distance 

measuring algorithm and a trilateration algorithm to calculate the rover’s position.  A set 

of ten simulations was created to experimentally determine the rover’s position relative to 

know positions of terrain.  In the dynamics and navigation simulation the rover was 

positioned and then traversed over the lunar surface.  During the simulation the lunar 

rover’s position was continually evaluated to understand the net effect of the 

measurement and positioning errors. 

 

Propulsion System 

 A propulsion system model for the lunar rover was created in Simulink.  The 

propulsion model was used within the dynamics and navigation simulation to produce the 

desired value of linear velocity for the lunar rover.  The resulting linear velocity produced 

by the propulsion system was then used in conjunction with the steering and navigation 

systems to produce the desired motion dynamics for the lunar rover.  
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The propulsion model shown in Figures C.5 through C.7 of Appendix C consists 

of an electric motor and transmission.  The motor is powered by direct current (DC) 

while the modeled transmission has a gear ratio of 10:1 to drive the rear wheels of the 

lunar rover.   

 The input torque to the DC motor must overcome several forces in order to drive 

the lunar rover.  These forces consist of: vehicle inertia, motor inertia, rolling friction 

between the surface and the wheels, viscous damping due to machine lubrication and 

coulomb friction in the gears and bearings.  In addition, with Earth-based testing or 

missions to Mars, the rover would have to overcome a damping force due to atmospheric 

drag on the vehicle.  All of these potential force components were taken into account 

when the motor’s torque equation was developed.  Equations (2.1) through (2.7) with 

their defined variables, give the torque (τp) required by the DC motor to propel the lunar 

rover. 

 

τp = Ieff. inertia ω΄p + νeff damping ωp + τ gravity + τ atmospheric drag + τ rolling friction + τ coulomb friction (2.1) 

ω΄p → Rover drive wheels’ angular acceleration. 

ωp → Rover drive wheels’ angular velocity. 

 

Ieff. inertia = ½ m r2 + n2Im            (2.2) 

 m → Mass of the rover. 

 r → Radius of the rover’s wheels. 

 n → Transmission’s gear ratio. 

 Im → Motor’s inertia. 



 28 

νeff damping = νwheels + n
2νmotor     (2.3) 

 νwheels → Viscous damping constant for the rover’s wheels. 

νmotor → Viscous damping constant for the motor.  

 n → Transmission’s gear ratio. 

 

τ gravity = m g r sin(α)      (2.4) 

 m → Mass of the rover. 

 g → Gravity. 

  r → Radius of the rover’s wheels. 

 α → Pitch angle of the rover. 

 

τ atmospheric drag = ½ C A ρ V2 r     (2.5) 

 C → Coefficient of drag for the rover. 

 A → Front surface area of rover. 

 ρ → Atmosphere’s density. 

 V → Rover’s linear velocity. 

 r → Radius of the rover’s wheels. 

 

τ rolling friction = µ m g r cos(α)      (2.6) 

 µ → Coefficient of rolling friction between the wheels and the surface. 

 m → Mass of the rover. 

 g → Gravity 

 r → Radius of the rover’s wheels. 



 29 

 α → Pitch angle of the rover. 

 

τ coulomb friction = β sign(ωp)     (2.7) 

β → Coulomb fiction constant in gears and bearings. 

 

To control the propulsion system and ultimately the linear velocity of the lunar 

rover, a closed loop partitioned control scheme was selected.  The controller was 

partitioned into a model portion and a servo portion.  The model portion was further 

divided into an alpha (Αp) part and a beta (Βp) part. The model portion of the controller 

was utilized to provide more precise control of the complex propulsion system.  In 

addition the model portion’s control law along with its interaction with the servo 

portion’s control law provided a method to process the nonlinear dynamics of the 

propulsion system.  With the use of the alpha and beta sections of the model portion, the 

nonlinear components of the system were nullified.  The servo control law was setup in 

the form of an error equation.  The mathematical nature of the servo portion’s control law 

in conjunction with the model portion’s control law provided an algorithm that forced the 

motor’s output speed to the value of the desired speed.  

The control law for the model portion of the controller is given by equation (2.8).  

The control law equates the required torque from equation (2.1) to the model portions of 

the partitioned controller plus an input (τ΄p) from the servo portion.  

 

τp = Αp τ΄p  + Βp      (2.8) 

 



 30 

Setting the variable τ΄p equal to ω΄p and then equating equations (2.1) and (2.8) 

leads to the mathematical definition of Ap and Bp.  The values for the model portions of 

the controller are given by equations (2.9) and (2.10). 

 

Ap = Ieff. inertia      (2.9) 

Bp = νeff damping ωp + τ gravity + τ atmospheric drag + τ rolling friction + τ coulomb friction      (2.10) 

 

The servo portion of the controller used feedback to establish an error (ep) 

pertaining to the difference between the desired input angular wheel velocity and the 

resultant output angular wheel velocity.  The calculated angular wheel velocity error, the 

desired angular wheel acceleration (ω΄pd), the value of τ΄p, and the selected proportional 

and integral control gains (Kpp & Kpi) were used to establish the servo control law given 

in equation (2.11).   

The angular velocity error signal was parallel processed in two ways by the servo 

control law.  In one circuit branch it was multiplied by the proportional control gain.  In 

another branch the error signal was integrated and then multiplied by the integral control 

gain.  The results of these two operations were added together along with the desired 

angular acceleration of the wheels and then fed into the model portion of the controller as 

the signal value for τ΄p. 

 

τ΄p = (Kpp) ep + (Kpi) ∫ep + ω΄pd    (2.11) 
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By recalling from the model control law that τ΄p equaled ω΄p and then subtracting 

ω΄p from both sides of equation (2.11), equation (2.12) is produced.  This differential 

equation descries how the velocity error was conditioned and processed in the servo 

portion of the partitioned controller.  In addition this differential equation describing the 

error signal dynamics has a solution that decays to zero over time.  Thus the servo control 

drove the difference between the inputted desired velocity and the actual rover velocity to 

zero.  Since the differential equation has a solution in which the error decays to zero, the 

response of the servo control system was controlled by the selection of the gain values.  

For this servo control system values of twenty five and five were selected for Kpp and 

Kpi. 

 

e΄p + (Kpp) ep + (Kpi) ∫ ep = 0     (2.12) 

 

With the closed loop feedback of angular wheel velocity, the partitioned control 

system calculated and supplied the required current needed for the DC motor.  The 

control system increased speed of the rover until it reached a velocity of one meter per 

second.  This was accomplished by setting the desired speed profile in the form of a 

straight line with a positive slope.  After five seconds of operation the desired speed 

reached its maximum linear velocity of one meter per second.  Once the desired speed 

achieved this velocity, the desired speed was maintained at one meter per second.  The 

controller was tuned so that the lunar rover responded accordingly to the desired speed 

profile.  The lunar rover continually increased its speed for five seconds up to a value of 
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one meter per second.  Once the maximum velocity of one meter per second was reached, 

the lunar rover maintained that value of velocity.    

The modeled controller did not convert the physical system values into electrical 

process signals.  Input and output variables of velocity and acceleration were 

mathematically processed through the system without any conversions of their forms.  In 

addition since torque is proportional to current, the simulation model ignored operational 

amplifiers and thus furthered simplified the model by not converting torque to an 

equivalent value of current. 

 

Steering System 

 The steering system modeled in Simulink consists of a DC motor, a rack gear, a 

pinion gear, linkage mechanisms, the two front wheels of the rover and a controller.  The 

Simulink model is shown in Figures C.3 and C.4 of Appendix C.  All of these modeled 

components worked in series together to turn the lunar rover’s front wheels.  In the 

previously presented propulsion model, the control system controlled the rear wheel’s 

angular velocity about their horizontal axes to cause the wheels to move with a rolling 

motion.  In contrast the steering control system controlled the two front wheel’s angular 

position about their vertical axes in order to control the horizontal direction they rolled. 

 The steering system was modeled as a rack and pinion type of steering device.  

Torque from a DC motor turned the pinion gear that was attached to the motor’s shaft.  

The rotating pinion gear was engaged with a rack gear.  The rotating pinion gear caused 

the gear rack to translate in a linear motion.  The rack with its linear motion was attached 

to mechanical linkages.  The linear motion of the rack caused the linkages to turn the 
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front wheels about their vertical axes.  The front wheels were limited to thirty degrees of 

rotation in either direction. 

 To control the angular positioning of the front wheels, a partitioned controller was 

utilized.  The steering system’s controller was designed almost identical to the propulsion 

system’s partitioned controller.  The steering system’s partitioned controller also 

consisted of a model and a servo portion.  The model portion was further divided into two 

additional portions.  The model and servo portions each had their own control laws that 

worked together to supply the required torque to the DC motor used to steer the lunar 

rover. 

 The input torque to the DC steering motor must overcome several forces in order 

to turn the lunar rover’s front wheels.  These forces consist of: steering mechanism 

inertia, motor inertia, spring force in the steering mechanism, friction between the surface 

and the wheels, viscous damping due to machine lubrication and coulomb friction in the 

gears and bearings.  All of these potential force components were taken into account 

when the steering motor’s torque equation was developed.  Equations (2.13) through 

(2.16) with their defined variables, give the torque (τs) required by the DC motor to turn 

the lunar rover’s wheels. 

 

τs = Ieff. inertia s Θ˝s + νeff damping s Θ΄s + keff springΘs + ƒcoulomb friction sign(Θ΄s) (2.13) 

Θ˝s → Rover front wheels’ angular acceleration. 

Θ΄s → Rover front wheels’ angular velocity. 

Θs → Rover front wheels’ angular position. 

keff spring → Effective spring torque constant for the steering system. 
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Ieff. inertia s = ½ mst rpg
2 + Ist m            (2.14) 

 mst → Mass of the steering linkages, gears and wheels. 

 rpg → Radius of the rover’s pinion gear. 

 Ist m → Motor’s inertia. 

 

νeff damping s = νst wheels + νst  motor     (2.15) 

 νst wheels → Viscous damping constant for the rover’s steering mechanism. 

νst motor → Viscous damping constant for the steering motor.  

  

ƒcoulomb friction = ƒsuf + ƒmech     (2.16) 

ƒsuf → Sliding friction constant between wheels and surface. 

ƒmech → Sliding friction constant with steering mechanism. 

 

Like the propulsion controller, the steering controller also used a closed loop 

partitioned control scheme.  The steering controller was partitioned into a model portion 

and a servo portion.  The model portion consisted of an alpha (Αs) part and a beta (Βs) 

part. The model portion control law was utilized to provide more precise control and a 

means to nullify the nonlinear dynamics of the steering system.  The servo control law 

was established using the error from the wheel’s angular position and angular velocity.  

The mathematical nature of the servo portion’s control law in conjunction with the model 

portion’s control law provided an algorithm that turned the front wheels to the desired 

angular position.   
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The control law for the model portion of the steering controller is given by 

equation (2.17).  The control law equates the required torque form equation (2.13) to the 

model portions of the partitioned controller plus an input (τ΄s) from the servo portion.  

 

τs = Αs τ΄s + Βs      (2.17) 

 

Setting the variable τ΄s equal to Θ˝s and then equating equations (2.13) and (2.17), 

leads to the mathematical definition of As and Bs.  The values for the model portions of 

the steering controller are given by equations (2.18) and (2.19). 

 

As = Ieff. inertia s      (2.18) 

Bs = νeff damping s Θ΄s + keff springΘs + ƒcoulomb friction sign(Θ΄s)   (2.19) 

 

The servo portion of the steering controller used feedback of the wheel’s angular 

position and velocity to establish error signals (es & e΄s).  The calculated angular position 

error, angular velocity error, a desired angular acceleration (Θ˝sd), the value of τ΄s, and the 

selected proportional and derivative control gains (Ksp & Ksv) were used to establish the 

servo control law given in equation (2.20).   

The angular position error signal was multiplied by the proportional control gain 

while the velocity error signal was multiplied by the derivative control gain. The results 

of these two operations were added together along with the desired angular acceleration 

(Θ˝sd) and then fed into the model portion of the steering controller as the signal value for 

τ΄s. 
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τ΄s = (Ksp) es + (Ksv) e΄s + Θ˝sd    (2.20) 

 

By recalling from the model control law that τ΄s equaled Θ˝s and then subtracting 

Θ˝s from both sides of equation (2.20), equation (2.21) is produced.  This differential 

equation descries how the position and velocity error signals were conditioned and 

processed in the servo portion of the partitioned controller.  In addition this differential 

equation describing the error signal dynamics has a solution that decays to zero over 

time.  Thus the servo control drove the difference between the desired input position of 

the front wheels and the actual front wheel’s position to zero.  Since the differential 

equation has a solution in which the error signal decays to zero, the response of the servo 

control system was controlled by the selection of the proportional and derivative gain 

values.  For this servo control system values of nine and six were selected for Ksp and 

Ksv. 

 

e˝s + (Ksv) e΄s + (Ksp) es = 0     (2.21) 

 

With the closed loop feedback of angular position and velocity, the partitioned 

control system supplied the required current needed for the DC motor to turn the lunar 

rover’s front wheels to the desired position.   

 

Dynamics System 

 The dynamics system created in Simulink is a kinematics model of the lunar 

rover.  The system received input signals form the lunar rover’s propulsion and steering 
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systems and then calculated the resulting instantaneous directional heading and position 

vector of the rover as it traversed the lunar surface.  The model can be seen in Figure C.8 

through Figure C.10 of Appendix C. 

 There are two major subsystems of the model.  One subsystem calculated the 

rover’s directional heading with respect to the world frame while the other continually 

integrated the rover’s velocity vector to determine the position of the rover.  The rover’s 

physical characteristics of wheel base length (WB length) and width (WB width), along with 

the position angle of the rover’s front wheels and the linear velocity of the rover were 

needed to determine the rover’s directional heading.  The wheel base length and width 

were of constant values but the rover’s steering wheels’ position and linear velocity 

values were dynamic.  The every changing position angle of the wheels was fed into the 

dynamics system as the output signal of the steering system.   Likewise the linear input 

velocity was the output signal of the propulsion system. 

 

 

Figure 2.3: Turn radius as determined by the steering wheels’ position. 
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 Before the directional heading could be determined the turn radius of the rover 

had to be established.  As can be seen in Figure 2.3, the turn radius was a function of the 

wheel base length and width as well as the front wheels’ angular position.  Equation 

(2.22) expresses the front wheel’s position angle as a function of rover parameters.   

 

Θs = tan
-1(WB length) / (TR + WB width)   (2.22) 

 

Equation (2.22) can be rearranged into the more useful form given by Equation (2.23).  

Equation (2.23) calculated the needed value of the rover’s instantaneous turn radius (TR). 

 

TR = (WB length – (tan(Θs) x WB width)) / (tan(Θs))   (2.23) 

 

Next the rover’s turn radius, liner velocity and wheel base width were used to 

define the rover’s angular rotation rate (φ΄).  As can be seen in Figure 2.3, when the rover 

turned about a center point of turn, the center point’s frame (X΄-Y΄) orientation was the 

same as the rover’s frame (X-Y).  Thus the rover’s orientation about both frames was 

always identical.  When the angular rotation rate was calculated about the turn point’s 

origin, it was mapped to the rover’s frame.  The mapping occurred by multiplying the 

angular rotation equation by a rotation matrix (R).  Since the frames had the same 

orientation, the rotation matrix’s value was unity.   The rover’s angular rotation rate was 

calculated using equation (2.24).  To determine the direction heading (φ) of the rover, the 

angular rotation rate signal was simply integrated as given by equation (2.25). 
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φ΄ = R (Vrover / (TR + ½ WB width))    (2.24) 

φ = ∫ R (Vrover / (TR + ½ WB width))    (2.25) 

  

 The instantaneous position vector of the rover was calculated by simply 

integrating the known velocity vector.  Recall from Chapter I that the velocity vector 

could be placed anywhere within the world frame as long as the magnitude and 

orientation with respect to the world reference frame did not change.  Since the dynamics 

model continually determined the rover’ directional heading and linear velocity with 

respect to the world frame, the velocity vector signal was continually integrated to 

generate the rover’s instantaneous position vector.  With the velocity vector graphically 

defined in Figure 1.2 the velocity vector’s component (X, Y, and Z) were calculated 

using equations (2.26 – 2.28). 

 

X rover = ∫Vrover cos(α) cos(φ)     (2.26) 

Y rover = ∫Vrover cos(α) sin(φ)     (2.27) 

Z rover = ∫Vrover sin(α)      (2.28) 

 

Navigation System 

 The proposed navigation model created in Simulink controlled the horizontal 

position and directional heading of the rover.  The model shown in Figures C.1 and C.2 

of Appendix C consisted of two subsystems.  One subsystem served as the controller 

while the other served as the central processing unit.   
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The controller subsystem used proportional, integral and derivative (PID) control 

to condition and process the error signals in order to manipulate the directional heading 

of the rover.  The error signals (e΄d and ed) were determined by the difference between the 

rover’s desired and actual values of angular velocity and directional heading.  The actual 

change to the directional heading occurred after the navigation controller fed the 

conditioned and processed error signal to the steering system. The conditioned and 

processed error signal described the needed change to the directional heading.  Since the 

directional heading is a function of the angular position of the rover’s front wheels, the 

directional heading was changed simply by turning the front wheels.  As the rover moved 

with a linear velocity, the front wheels were turned based upon the value of the 

conditioned and processed error signal.  The conditioned and processed error signal was 

fed into the steering system as the desired front wheels’ angular position (Θsd).  The 

change in angular position of the front wheels in conjunction with the linear velocity 

induced an angular velocity to the rover.  The rover’s front wheels were continually 

turned by the navigational controller until the rover’s directional heading maintained the 

desired value.   

The PID controller conditioned and processed the error signals of the rover’s 

directional heading and angular rotation rate as shown in equation (2.29).  As can be seen 

in equation (2.29), the rover’s angular velocity error (e΄d) was multiplied by a gain value 

(Knv) while the directional heading error (ed) was multiplied by a gain value (Knp).  In 

addition and separately, the directional heading error was integrated and multiplied by 

another gain (Kni).  The results of these operations were added together to define 

conditioned and processed error signal.   
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  e΄d Knv + ed Knp + Kni ∫ed = Θsd    (2.29) 

 

 The central processing unit provided the desired directional heading to the 

navigational controller.  The desired directional heading was determined from the x and y 

world frame coordinates entered into the navigation plan.  It was calculated by taking the 

inverse tangent of the dividend produced when the y coordinate was divided by the x 

coordinate.  The resulting angle value from the trigonometric function was sent to the 

navigational controller as the desired directional heading.   

The navigation plan consisted of four coordinate sets.  Each coordinate set was 

entered and stored in the model as a sequential order of planned navigation points.  

During the simulation the rover would drive to each set of coordinates in the predefined 

order.  When the rover’s position was within ten centimeters of the desired navigation 

point the central processing unit would switch the desired directional heading to the next 

navigation point.  Once the forth navigation point was reached the simulation would 

automatically stop. 

 

Inertial Measurement Unit 

An inertial measurement unit (IMU) is a device that is used to measure angular 

and linear acceleration through the use of accelerometers.  An IMU has the ability to 

measure linear acceleration along its three major axes and angular acceleration about 

those axes.  The IMU is also able to integrate the measured acceleration signals twice to 

establish its position relative to a reference frame.  When the IMU is first activated an 

initial position of the unit must be entered.  Once the initial position data is entered into 
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the unit, the unit will continually determine its location as it is moved about the reference 

frame.  Inevitably there are measurement errors associated with the accelerometers.  The 

measurement errors lead to an induced drift velocity which in turn provides an ever 

increasing positional error. 

 A simplified model of an IMU was created in Simulink to simulate the 

measurement of the rover’s acceleration and to calculate its position.  The three principal 

axes as well as the directional heading were taken into account.  After the initial position 

was entered, the IMU model received the rover’s linear and angular velocity signals from 

the dynamics system.  Once the values were received a drift velocity was added to each 

signal.  The model added a total linear drift velocity of three tenths of a nautical mile per 

hour to the rover’s velocity.  The total drift velocity was distributed across all three of its 

axes.  In addition the model added one tenth of a degree per hour of angular drift to the 

rover’s angular velocity.  Once the drift was added to the actual velocity values, the 

signals were integrated to determine the rover’s position.  The position signals were fed 

into the navigation system as feedback of the rover’s determined position.  The IMU 

model can be viewed in Figure C.11 of Appendix C. 

 

Simulations 

 

Lunar Reconnaissance Orbiter Scan 

 The LRO scan simulation emulated a lunar surface mapping mission.  During the 

simulation the LRO flew above the modeled lunar surface and scanned the terrain below.  

While emulating the mission, the simulated LRO generated a three dimensional surface 
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map of the modeled lunar surface.  The generated surface map was comprised of an array 

of three dimensional pixels.  Each pixel represented one square meter of the lunar 

surface.  Each pixel’s height dimension represented that square meter’s elevation.  The 

generated model was accurate to within one half meter for each square meter of 

horizontal surface.   

The LRO scan simulation had two purposes.  The first purpose was to generate 

realistic data in order for future mission controllers to become familiar with the nature of 

the data a real LRO would generate.  The second purpose was to produce a surface map 

that would be used to identify distinguishing terrain features and assign coordinates to 

those terrain features.  Once the LRO generated lunar surface map had coordinates 

assigned to its terrain features, it was then used in the next simulation to determine the 

lunar rover’s position.  The LISP file used to create the ROBOSIM simulation of the 

LRO scan is listed in Appendix B.   

To start the simulation the lunar surface model, the LRO model and the invisible 

Cartesian robot were loaded into the simulation environment.  The invisible Cartesian 

robot was used to grasp and move the LRO about the simulation environment.  With the 

use of the robot’s axes the LRO flight was graphically simulated.  In addition the joint 

value of each of the robot’s axes was used to determine the position of the LRO and the 

laser beam. 

As the LRO moved above each square meter of lunar surface, it emitted a 

simulated laser beam.  The laser beam was used to measure the distance to the lunar 

surface below.  The simulated laser beam was modeled as a single photon of light.  The 

modeled photon was in the form of a cube with its frame origin at the center of the cube.  
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The photon’s two surfaces that were parallel to the lunar surface were each one square 

meter in area while the height of the four surfaces perpendicular to the lunar surface was 

one meter in length.  The laser beam’s photon originated at the base frame of the LRO.  

As the simulation progressed the photon was indexed further away from the LRO and 

toward the lunar surface.  The positive z axis of the LRO’s frame always remained 

perpendicular to the horizontal lunar surface and pointing down toward it.  Each time the 

photon was repositioned it was along the LRO’s positive z axis.  Once the photon was 

repositioned it was checked to see if it collided with the lunar surface.  ROBOSIM has a 

collision detection heuristic built into its software.  The heuristic compared the two 

objects in the simulation environment to see if their surfaces collided.  If the photon 

collided with the lunar surface, the distance from the LRO’s frame to the photon’s frame 

was stored and used to generate a map pixel.  The one half meter of elevation accuracy 

for each square meter of horizontal lunar surface was achieved since the photon’s frame 

was at the center of the cube.  As previously mentioned the two surfaces of the photon 

that were parallel to the lunar surface were one square meter in size.  This along with the 

fact that the photon’s frame origin was one half meter from either of the two surfaces 

produced the desired accuracy when the photon’s position was indexed one meter, each 

time along the LRO’s positive z axis. 

To perform the scanning of the lunar surface by the means described above an 

algorithm was set up.  The algorithm utilized three nested loops to perform the mapping.  

The first loop positioned the LRO with respect to the x axis of the world frame. The 

second loop positioned the LRO with respect to the y axis of the world frame.  Since the 
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LRO was grasped by the invisible Cartesian robot, the algorithm was actually controlling 

the first two axes of the robot instead of directly positioning the LRO.   

Once the LRO’s position had been established above the surface, the third loop 

within the algorithm activated the laser beam.  The laser beam’s photon was indexed 

toward the lunar surface along the LRO’s positive z axis.  Each time the photon was 

indexed it was checked for a collision.  If no collision was detected the photon was 

indexed one meter further away from the LRO.  If no collision occurred after one 

hundred indexes the algorithm would exit the third loop and return to the second loop.   

In the second loop the algorithm would index the position of the LRO one meter 

along the y coordinate.  After the LRO’s position along the y axis was indexed, the 

algorithm would once again enter the third loop and activate the laser beam.  The 

algorithm then once again began to index the photon and check for a collision.  If a 

collision between the laser beam’s photon and the lunar surface was detected the 

algorithm would store the joint axis values of the Cartesian robot and the indexed 

position of the photon.  Through the multiplication of transformation matrices that 

spatially described each axis of the Cartesian robot and the photon’s position relative to 

the LRO, a generated pixel was placed in the simulation environment.   

The pixel was assigned a color based upon its surface elevation.  The pixel colors 

were comprised of various shades of red, green and blue.  If the surface was detected to 

be four and half meters below the nominal flat surface the pixel was assigned the color 

red.  If the surface was detected to be thirteen meters above the nominal flat surface the 

pixel was assign the color blue.  All distance in between were proportionally assigned 

based upon this range. 
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After the pixel had been generated the algorithm would then exit the third loop 

and return to the second loop to index the LRO along the y axis of the world frame.  The 

algorithm would then repeat the laser beam index and the collision detection process 

again.  The algorithm continued to index along the y axis until it reached a value of 

seventy meters. At that point the algorithm would exit the second loop and return to the 

first loop.  The first loop would index the LRO along the x axis of the world frame.  After 

the LRO was positioned in the new location the algorithm would then return and process 

through the second and third loops to continue the mapping.  Once the first loop had 

moved the LRO seventy meters along the x axis of the world frame and the algorithm 

completed its processing through the interior loops, the LRO generated lunar surface 

model was complete.    

 

 

Figure 2.4:  The lunar surface being scanned by the LRO. 
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Figure 2.4 shows the LRO as it scanned the lunar surface and generated surface 

map pixels.  The laser beam’s photon can be seen as it indexed towards the lunar surface.  

The red cube below the LRO is the laser beam’s photon.  

After the LRO had generated the map of the lunar surface, fifteen terrain points 

were visually identified on the map.  These fifteen points were assigned coordinates 

relative to the world frame.  The coordinates were obtained by using the invisible 

Cartesian robot to position small markers on the map’s surface.  As each marker was 

placed on top of an identifiable pixel, the robot’s joint axis values were recorded.  The 

values for the first three axes provided the position of the terrain point. 

 

Position Determination 

 Using ROBOSIM a position determination simulation was developed to evaluate 

how accurate a lunar rover’s position could be determined by measuring its distance to 

terrain features of known location.  The LISP file used to create the simulation is listed in 

Appendix B.   In this position determination simulation the method of three dimensional 

trilateration was used to calculate the lunar rover’s position.  The simulated rover used a 

laser range finder to measure its distance to the terrain features.  Two constraints were 

applied when selecting terrain features to range.  Each terrain feature had to be 

identifiable from the rover’s perspective view.  In addition each terrain feature must have 

been mapped and assigned coordinates from the previous LRO mapping simulation.  This 

criterion was used because it simulated the circumstances a real lunar rover under 

supervised control by a remote operator would encounter when its position has to be 

determined.  An Earth based operator would only be able to view the lunar surface 
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through the rover’s camera.  In addition the Earth based operator would have to identify 

on the LRO generated map, the lunar terrain features viewed through the rover’s camera. 

 To begin the simulation the lunar surface and the rover were placed in the 

simulation environment.  The lunar rover was positioned on the surface model.  Its actual 

x, y, z coordinate position in meters was (0, 0, 30).  A coordinate position of (0, 0, 30) 

meters placed the robot at the center of the horizontal lunar surface.  Its elevation relative 

to the world frame was thirty meters along the positive z axis. 

 Three identifiable terrain features were chosen as points to measure.  The terrain 

features’ coordinates were retrieved from the LRO generated map and placed into the 

position determination algorithm.  With the terrain features as the targets, the turret on the 

rover rotated and raised the laser so that it pointed at the first target point. 

 An algorithm very similar to the LRO’s laser beam was used to generate and 

position the rover’s laser beam.  The photon from the laser was modeled as a cylinder 

that was two centimeters in diameter and twenty centimeters long.  The photon’s frame 

origin was at the center of the cylinder.  By placing the frame’s origin at the center of the 

modeled photon, the laser beam’s measuring accuracy was set to plus or minus ten 

centimeters. To begin the distance measuring algorithm the laser beam’s photon was 

placed at the base frame of the laser.  The photon was then moved twenty centimeters 

away from the laser’s base frame and toward the target.  The photon moved along the 

direction of the modeled laser’s z axis.  The photon was oriented with the laser’s z axis 

centered lengthwise through the twenty centimeter long cylinder.  Once the photon was 

positioned it was checked for a collision with the lunar surface.  If no collision was 

detected the photon was indexed another twenty centimeters toward the target.  When a 
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collision was finally detected the distance between the base frame of the laser and the 

photon’s frame was stored.  Since the distance between the base of the rover and the 

terrain feature was needed, the simulation used the joint axis values of the turret and the 

photon’s distance from the laser’s base frame to calculate the net distance between the 

rover’s base and the targeted terrain point.  The laser measuring process was then 

repeated for two additional targets.  Figure 2.5 shows the lunar rover measuring its 

distance to an identifiable target. 

 

 

Figure 2.5: The lunar rover measuring its distance to a terrain feature. 

 

 After the distance to all three terrain points was measured, the simulation 

calculated the rover’s position relative to those points using the three dimensional 
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trilateration method descried in Chapter I.  The method translated and rotated the 

reference points until all three points were located on the world frame’s x – y coordinate 

plane.  The first reference point was translated to (0, 0) and the second reference point 

was positioned on the positive x axis.  During all of the translations and rotations the 

position of the reference points relative to each other never changed.  Once the reference 

points were manipulated to the described specifications, the corresponding position of the 

rover was calculated by solving for the intersection point of the three imaginary spheres 

that were created by the reference points and the distances to them.  The rover’s actual 

position relative to the world frame was finally determined by taking the prior calculated 

position and reversing the translations and rotations. 

 

Dynamics and Navigation 

 To analyze the effects of the errors in the position determination simulation, a 

dynamics and navigation simulation was created.  The simulation combined together the 

Simulink models of the rover’s propulsion system, steering system, IMU system, 

dynamics system, and navigation system.  Input and output signals from the models 

worked in conjunction to create a dynamic simulation of the rover’s navigation about the 

lunar surface. 

 Before the simulation began a set of four predefined coordinates were entered into 

the navigation system.  The four sets of coordinates established the planned path the 

rover was to travel.  Next the calculated position of the rover was entered into the 

modeled IMU.  The entered data was the rover’s calculated position from the prior 

position determination simulation. 
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Once the simulation began the propulsion system provided a velocity signal to the 

dynamics system while the steering system provided a signal describing the front wheels’ 

angular position.  The rover’s linear velocity propelled the rover forward while the front 

wheels turned the rover in order to change its directional heading.  The position of the 

rover’s front wheels was changed based upon an input signal from the navigation system.  

The navigation system controlled the directional heading of the rover.  As the rover 

started moving forward the navigation controller would send a signal to the steering 

system commanding the front wheels to turn.  The front wheels would turn the rover until 

the desired directional heading was maintained.  Once the rover reached the first 

programmed position point, the navigation system then began to drive the rover to its 

next desired position point.  The process continued until the rover reached its fourth 

programmed point. 

The resulting dynamics of the rover were graphically displayed both in Simulink 

and ROBOSIM.  Within the ROBOSIM environment the lunar rover was traversed about 

the lunar surface with the use of the invisible Cartesian robot.  Output signals of position 

and directional heading from the dynamics system within Simulink were imported into 

the ROBOSIM environment as the joint axis values of the invisible Cartesian robot.  The 

invisible Cartesian robot grasped the lunar rover and positioned it according to the 

signals.  This provided a graphical animation of the lunar rover’s motion.  In addition 

plots of the rover’s true position and the rover’s measured position were generated within 

the Simulink environment. 
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CHAPTER III 

 

RESULTS 

 

Lunar Surface Mapping 

 As the LRO scan simulation was conducted a surface map of the modeled lunar 

surface was generated.  Figure 3.1 shows the generated map from the LRO scan 

simulation.  As can be seen the map was constructed of three dimensional pixels. 

 

 

Figure 3.1:  The LRO generated map of the lunar surface. 
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The map’s main purpose was to provide reference points so that the lunar rover’s 

position could be determined in the following simulations.  A secondary purpose of the 

map was to provide a model that could be used to prepare for future lunar missions.  The 

map could be used by mission planners to comprehend how the data from a lunar 

mapping mission might appear. 

Upon observation of the map shown in Figure 3.1, prominent terrain features were 

distinguishable.  Features that rose above the flat surface and reached a distinct point 

were very identifiable.  For example, the four peaks in each of the corners of the map 

were clearly visible.  The peaks’ color assignments of green and blue clearly 

distinguished them from the lime colored flat surface that predominately filled the map.  

In addition, the opposite elevation extremes that were associated with the craters were 

easily detectable on the map.  As the surface level dropped below the flat surface, reddish 

pixels appeared.  These reddish pixels indicated a lower surface elevation of 

approximately eighteen meters when compared to the blue pixels that represented the 

elevated surface peaks. 

Figure 3.2 provided another view of the LRO generated map.  This view is similar 

to traditional satellite reconnaissance images.  If the technology that creates a three 

dimensional pixel were not available, the map would have to be evaluated in the form 

similar to what is shown in Figure 3.2.  From this view the pixel colors became very 

important when evaluating elevation changes in the lunar surface. 

From the view above, rapid elevation changes were very distinguishable.  With 

the rapid elevation change the color among nearby pixels did not blend together. The 

jagged rock formation in the lower right corner of the map provided a good example.  
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The sharp change in color with nearby pixels indicated a significant change in elevation.  

From the lunar model itself, this jagged rock formation had vertical walls and rose 

sharply from the lunar floor.  On the other hand, the pixels representing the rolling 

hillside in the upper left corner of Figure 3.2 tended to blend together.  The hillside could 

be distinguished but it was not as prominent as the jagged rocks. 

 

 

Figure 3.2:  The LRO generated model of the lunar surface as viewed from above. 
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Small rocks a half meter or greater in elevation and that were isolated from other 

terrain features were also noticeable.  However rocks that were joined with other features 

were undetectable.  For example the small rocks located at the edge of the crater shown 

in the lower left corner of Figure 3.2 blended in with the hillside. 

   Since the map was generated with a limited accuracy of one half meter in 

elevation for each square meter of horizontal surface area, a comparison between the 

model and the map was conducted.  The results can be viewed in Figure 3.3. 

 

 

Figure 3.3: The LRO generated data superimposed over the lunar surface model. 

 

 Figure 3.3 shows the map superimposed over the lunar surface model.  This 

comparison revealed the inaccuracies of the map.  The most noticeable of these errors 
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was the surfaces that were curved.  Small portions of the hillsides and crater regions 

protruded past the map pixels.  This was due to the limited horizontal resolution of the 

mapping.  In addition the limited vertical resolution was evident by the exposure of the 

top surfaces of rocks when the map was superimposed over the lunar surface model. 

 After the lunar surface map was generated, distinguishable terrain features were 

identified as points and assigned coordinates.  The points were determined based upon 

two criteria.  The first criterion was the points had to be distinguishable on the map.  

Second, the points had to be visible from the rover’s view point.  These two conditions 

were required to maintain the simulation’s authenticity of a rover that was under 

supervised control by a remote operator. 

 A total of fifteen points, (P1 - P15) were chosen on the map.  The points were the 

tops of rocks, boulders and hillsides since these were the easiest targets to identify from 

the map and from the rovers line of sight.  A list of the points and their assigned 

coordinates are contained in Table 3.1.  Figures 3.4 and 3.5 also show the points with 

their coordinates except they are illustrated on the lunar surface map. 

 

Table 3.1:  Identified mapped lunar terrain features. 
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Figure 3.4:  Mapped lunar terrain points P1 through P5. 

 

 

Figure 3.5:  Mapped lunar terrain points P6 through P15 
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Lunar Rover’s Position Determination 

 The position determination simulation was executed ten times to obtain the 

average position of the lunar rover.  Each time the simulation was conducted a different 

set of terrain points was used.  The experimentally obtained results from the ten 

simulations are shown in Table 3.2.  

 

Table 3.2: Experimental results from the position determination simulations 

 

 

Before the first test was conducted the position determination simulation with its 

algorithms was tested to validate it was properly programmed.  The program was 

validated by the control test number 0.  Test number 0 used the exact position of the 

photon as the reference point’s coordinates each time the photon collided with the lunar 
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terrain.  By using this technique the returned position of the rover would match its true 

position since there were no errors in the reference coordinates.  The rover’s laser beam 

was targeted toward points P2, P15 and P8.  Once the laser’s photon collided with those 

points the actual position of the photon’s frame was used as the reference points.  The 

photon was positioned at point1, point2 and point3 when it collided with the surface.  

This is evidenced by the fact that distance measurements from test number 0 and test 

number 1 were the same for the two sets of reference points.  As can be seen by the 

results of test number 0, the rover’s position was determined to be its true position.  Thus 

the program was verified to be correct. 

After ten simulations with various combinations of three reference points the 

average position of the rover was calculated.  The results show the lunar rover’s 

calculated average position in meters with respect to the world frame was (0.03, 0.80, 

32.58).  When compared to the rover’s true position of (0, 0, 30) the rover had 3.31 

meters of total position error.  However if just the horizontal coordinates of x and y were 

evaluated the rover’s calculated position was quite accurate.  By examining the method of 

three dimensional trilateration presented in Chapter I, the improved accuracy in the 

horizontal coordinates can be explained.  The first two coordinates to be solved were the 

x and y coordinates.  Both of these values had some error.  Their errors carried over to the 

solution of the z coordinate because the calculated values for the x and y coordinates 

were entered into the equation to calculate the z coordinate. 

Test number 4 and number 5 produced the best results.  These tests used the small 

rocks as their reference points.  The rocks that are labeled as points P1, P11 and P12 were 

used for test number one.  The points P4, P12 and P9 were used for test number 2.  The 
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terrain points had three common characteristics that the other terrain points did not have.  

All of the points were small rocks two to three meters in diameter.  Each one of the rocks 

was approximately the same elevation as the rover.  Thus the tops of their surfaces where 

the LRO scanned were sensed by the rover’s laser beam.  Lastly the rocks were closer 

than the other terrain points. 

Test number 1 and number 2 produced the most error.  The terrain points 

referenced were P2, P8 and P15 for test number 1.  Test number 2 referenced points P3, 

P13 and P6.  Each of the points had three common characteristics.  Each of the points 

was elevated four to ten meters above the rover. Each point resided at the top of a boulder 

or rock formation where the rover’s laser could not sense the surface that was mapped by 

the LRO.  Last, each one of the points was twenty five meters or further away from the 

rover. 

 

Lunar Rover’s Dynamics and Navigation 

 The dynamics and navigation simulation demonstrated, with animated graphical 

output, the effect of the position determination error.  The average value obtained from 

the position determination simulations was entered into the rover’s IMU as its starting 

position.  In addition to the initial position error, the IMU was modeled with a typical 

drift velocity that is inherent to any IMU.  When all of these errors were taken into 

account the rover’s performance became limited.  Since the errors continually grew the 

accuracy in the measured position steadily decayed over time.   

To validate the simulation and to verify the models were setup correctly a control 

test was performed.  The test consisted of navigating the rover to a set of sequenced 
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horizontal coordinates with no initial position error or IMU error.  The results of this 

control test are shown in Figure 3.6.  The rover started at position (0, 0) and then drove to 

(20, 10).  Once at this position the rover changed its directional heading and proceeded to 

point (10, 20).  Once it reached the third program point the rover turned again and 

returned to its starting position.  As can be seen by the graph, the simulation and its 

models were validated. 

 

 

Figure 3.6:  The lunar rover’s path with no measurement errors 

 

The limited performance began with the error associated with the initial position 

determination.  To comprehend this error test number 1 of the simulation was run with 

the starting position of the rover at (0.03, 0.80).  This position was entered into the IMU 
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but the true starting position of the rover was at (0, 0).  The sequenced navigation points 

were the same as those of the previous test simulation.  The results of the simulation are 

shown in Figure 3.7. 

 

 

Figure 3.7:  The lunar rover’s path for test number 1. 

 

 As shown in Figure 3.7 the error between the rovers’s actual position and its 

measured position steadily grew as the rover operated.  Feedback to the controller via the 

IMU produced data that led the controller to manipulate the rover off its intended path.  

As can be seen by the graph, the rover never made it to any of its programmed points.  In 

addition to not reaching its desired points the rover collided with the rock located near the 
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coordinates (12, 12).  Figure 3.8 shows the graphical output of the rover navigating past 

the rock in the controlled test but colliding with it in test number 1. 

 

  

Figure 3.8: Rover navigation near a rock with a collision and then without a collision. 

 

To further evaluate the effect of the errors a second test was run with a different 

set of navigation points.  The rover once again started at (0.03 0.80) but it drove to points: 

(0 -10), (-12, 10) and (0, 0).  Once the rover reached its final destination it was 

approximately seven meters from its intended location.  The results of test number 2 are 

shown in Figure 3.9.  As can be seen in Figure 3.9 the position error of the rover steady 

increased as the simulation progressed. 

The results of the tests showed the position determination and IMU errors will 

drastically alter the rover performance.  If the rover’s IMU is not recalibrated regularly 

on a frequent schedule, the errors will continue to grow.  These results also demonstrated 

the usefulness of the produced simulation.  The graphical nature of the results produced 

easily comprehendible pictures.  The simulation was constructed as a platform for 
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research and mission development that can easily be analyzed with an accurate lunar 

surface model. 

 

 

Figure 3.9:  The lunar rover’s path for test number 2 
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CHAPTER IV 

 

CONCLUSIONS AND FUTURE EFFORTS  

 

Position Determination 

If only the relative position of the rover is needed, the use of a laser range finder 

to measure its distance to terrain points of known location does lead to an adequate 

position determination.  With an average error position of 3.31 meters, the rover would 

be limited in the type of tasks it could perform.  With this size of error, the rover would 

have to rely on the supervised control from a remote operator quite frequently for many 

tasks.  Any autonomous task that requires knowledge of an accurate position, such as 

precise navigation, map generation, rock retrieval or assembly tasks associated with the 

construction of a lunar base would not be possible without the assistance of supervised 

control.   On the other hand if the rover’s mission was exploratory in nature with tasks 

such as the photographic reconnaissance of certain regions of the lunar surface, position 

accuracy would not be as crucial.  Exploration, mapping and general surveying of the 

lunar surface with this limited accuracy could be accomplished using prior mapped 

terrain features as the points of reference. 

As a potential application, this position determination method could be used for 

the placement of positioning beacons.  Once a rover has placed several positioning 

beacons on the lunar surface, other rovers would not have to rely on supervised control to 

establish their position.  They would simply receive positional data from the previously 

placed beacons.  With the positioning beacons, the rovers would be able to operate 
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autonomously without the need to reestablish their position relative to the local terrain.  

This position determination method could be used on the lunar surface with the SCPA 

navigation system presented in Chapter I. 

When compared to the accuracy of GPS used here on Earth, the position 

determination results are not much different.  According to information posted on the 

National Space Based Positioning, Navigation, and Timing Executive Committee’s web 

site (www.pnt.gov), the GPS signal available for civilian use is guaranteed to provide a 

horizontal position accuracy of 36 meters, 95% of the time.  Typically the results are 

better than 16 meters depending on the signal.  The accuracy of GPS is improved 

significantly by augmenting the signal with a correction.  The United States Coast Guard 

Navigation Center operates a maritime Differential GPS (DGPS) that provides correction 

data from land based broadcast sites.  According to information posted on their web site 

(www.navcen.uscg.gov), the DGPS signal provides a 10 meter or better accuracy.  

Typically the signal provides a 1 to 3 meter positioning error.  When the results listed in 

Table 3.2 are compared to the error of DGPS, it can be concluded that accurate 

positioning is possible by the presented method.  

Using three dimensional trilateration with terrain features as the reference points 

to determine the position of a rover does provide some attractive benefits.  One major 

benefit is the cost.  The cost investment to design and build a laser range finder would be 

significantly cheaper when compared to systems similar to GPS.  With a lunar GPS, 

several satellites would have to be placed in orbit around the moon.  The cost to place and 

maintain these satellites would be enormous.  However with a laser range finder there 

would be significantly less development cost and practically no maintenance.  The only 
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significant development cost would be with the LRO used to map the lunar surface.  

Another benefit would be its reliability.  Since the system only consists of a camera and a 

laser mounted on a turret, there would be fewer components that could malfunction.  

With the rover operating on the lunar surface it would need to be maintenance free since 

there would be nobody there to repair it.  In addition the system would be independent of 

an array of orbiting satellites or positioning beacons. 

The major drawback to using terrain points as the known reference points is that 

they might not always be present in the local area of operation.  If the local lunar terrain 

is featureless then there would not be any targets available.  Even with limited terrain 

features, they still would have to be identifiable on the LRO generated map as well as 

through the lens of the rover’s camera. 

 

Inertial Measurement Unit Modeling 

Based upon the results from the dynamics and navigation simulation, the 

measurement errors that led to drift in the IMU, significantly degraded the rover’s 

navigation performance.  The drift of the IMU had more of an impact on the performance 

than the initial position error.  If the rover was able to recalibrate its IMU on a frequent 

basis, the drift could be eliminated.  With GPS and its ever present signal available near 

the Earth’s surface, an IMU is able to recalibrate before the errors become too large.  For 

a lunar rover, a similar GPS would probably not be available for many years. 

Current research and development is being conducted in order to set up localized 

navigation beacons (LeMaster, E. and Rock, S., 2004).  The beacons would be placed in 

an array were a rover could constantly receive positional data from the beacons.  With 
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this type of system a rover could easily acquire the positioning accuracy to successfully 

operate in an autonomous mode.  When compared to the position determination method 

presented in this thesis, the navigation beacons offer two major advantages.  The 

beacon’s location coordinates are very accurate and the signal to the rover is continuously 

transmitted. 

Using a GPS to provide an updated positional reference has two drawbacks.  In 

the case of a lunar positioning system it would be extremely expensive to build and 

operate.  Secondly a GPS signal might not always be present due to blockage or 

maintenance issues with a satellite.  An ideal positioning system to have would be one 

that did not rely on an external reference such as satellites or beacons. 

 Future efforts could be put forth to develop an IMU that did not rely on a GPS 

signal to recalibrate its position.  An IMU has many attractive advantages that if 

harnessed would lead to great advancements in autonomous robot navigation.  An IMU is 

immune to jamming and deception.  It is completely independent of outside systems.  

However the open loop nature of the IMU compounds the measurement errors.  The 

challenge would be to develop an integrated navigation system that used an IMU and 

other internal sensors onboard a rover to perform accurate navigation. 

 To aid in this development, the IMU model created for this thesis could be 

developed much further to better predict its measurement errors.  The model could be 

studied to develop rover maneuvers that minimized the error of the IMU.  Additionally 

the model could be coupled with other sensors to crosscheck the IMU’s position 

determination and make the necessary corrections.  The sensors could include drive shaft 

position sensors, wheel slippage sensors, or magnetic directional compasses.  The goal 
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would be to develop an IMU that could operate for longer durations without the need to 

be recalibrated.  In the case of a robotic lunar rover that was equipped with an IMU, it 

could drive to an area on the lunar surface where it could then measure its distance to 

terrain features and use those measurements to recalculate its position. 
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APPENDIX A 

 

INVISIBLE CARTESIAN ROBOT INVERSE-KINEMATICS 
EQUATIONS DERIVATION 

 

 The inverse-kinematics equations determine a robot’s joint axis values for a 

required end-effector frame position and orientation relative to a reference frame.  For the 

invisible Cartesian robot the joint axis values are d1, d2, d3, θ4, θ5 and θ6.  Each 

transformation from adjoining frames can be determined by using the data from the link 

parameter table given in Table 1.1 and applying those parameters to equation (A.1). 

 

  

 (A.1) 

  

 

Since the overall transformation that gives the position and orientation of the 

frame for axis 6 relative to the reference frame is known, both sides of equation (A.2) are 

known. 

 

 

                    (A.2) 
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By inspection of equation (A.2) and knowing that the first three axes of the 

Cartesian robot position the end-effector, it can be determined that d1 = Px, d2 = Py and d3 

= Pz.  To solve for the angle values of the remaining axes we must expand equation A.2 

to the form shown in equation (A.3). 

 

     (A.3) 

 

By rearranging equation (A.3) to the form of equation (A.4) the solution to θ4 can 

be obtained from the equating elements of each side of the equation. 

 

     (A.4) 

 

The value of the element [1, 3] on the left side of the equation is the known 

quantity r33.  The value of the element [3, 3] on the left side of the equation is the known 

quantity r23.  The corresponding elements [1, 3] and [3, 3] on the right side of the 

equation contain the values of cosθ4 sinθ5 and sinθ4 sinθ5.  The solution to θ4 can be found 

by equating these two elements and getting the inverse tangent of r23 / r33. Since the joint 

axis can have two solutions the coefficient wrist will defined as: wrist equals +1 for 

clockwise rotation and wrist equals -1 for counterclockwise rotation.  The final solution 

to θ4 is stated in equation (A.5). 

 

 θ4 = Atan2 (wrist sinθ4 sinθ5, wrist cosθ4 sinθ5) for θ5 ≠ 0 or θ5 ≠ 180  (A.5) 
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A singularity configuration results when θ5 goes to 0 or 180 degrees.  To avoid 

this problem whenever θ5 gets within plus or minus ½ degrees of either 0 or 180 degrees, 

the value of θ4 will be set and held at the corresponding value of θ5. 

 The solution to θ5 and θ6 can be found in similar method as θ4.  The solution to θ5 

lies within equation (A.6).  The [1, 3] and [3, 3] elements on each side of the equation can 

be equated as shown in equation (A.7) and (A.8).  The solution to θ5 is given in equation 

(A.9). 

 

     (A.6) 

sinθ5 = r33 x cosθ4 + r23 x sinθ4    (A.7) 

cosθ5 = -r13       (A.8) 

   θ5 = Atan2 (sinθ5, cosθ5)     (A.9) 

 

The solution to θ6 also lies within equation (A.6).  The [2, 1] and [2, 2] elements 

on each side of the equation can be equated as shown in equations (A.10) and (A.11).  

The solution to θ5 is given in equation (A.12). 

 

   sinθ6 = r21 x cosθ4 – r31 x sinθ4    (A.10) 

   cosθ6 = r22 x cosθ4 – r32 x sinθ4    (A.11) 

   θ6 = Atan2 (sinθ6, cosθ6)     (A.12) 
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APPENDIX B 

 

LISP FILES USED TO CREATE KEY ROBOSIM MODELS 

 

Invisible Cartesian Robot 

;Invisible_Cartesian_Robot.lsp 
(defun make-cartesian-robot nil (make-serial-agent 
;***** 
;Base Frame 
;***** 
 (make-fixed-link) 
 (rotatey 90)  ; Sets orientation of base wrt to world frame 
;***** 
;Link 1 
;***** 
(make-prismatic-link nil nil) 
 (matmult (rotatex 0) (translate 0 0 0) 
 (rotatez 0) (translate 0 0 0))  ; 1 wrt base 
;***** 
;Link 2 
;***** 
 (make-prismatic-link nil nil) 
 (matmult (rotatex -90) (translate 0 0 0) 
  (rotatez -90) (translate 0 0 0)) ; 2 wrt 1 
;***** 
;Link 3 
;***** 
 (make-prismatic-link nil nil) 
 (matmult (rotatex 90) (translate 0 0 0) 
  (rotatez 0) (translate 0 0 0)) ; 3 wrt 2 
;***** 
;Link 4 
;***** 
 (make-revolute-link nil nil) 
 (matmult (rotatex 0) (translate 0 0 0) 
  (rotatez 0) (translate 0 0 0)) ; 4 wrt 3 
;***** 
;Link 5 
;***** 
 (make-revolute-link nil nil) 
 (matmult (rotatex -90) (translate 0 0 0) 
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  (rotatez 0) (translate 0 0 0)) ; 5 wrt 4 
;***** 
;Link 6 
;***** 
 (make-revolute-link nil nil) 
 (matmult (rotatex 90) (translate 0 0 0) 
  (rotatez 0) (translate 0 0 0)) ; 6 wrt 5 
)) 
;****** Place robot in simulation ******** 
(setq cartesian (make-cartesian-robot)) 
(use-objects cartesian) 

 

Lunar Surface 

; Lunar_Surface.lsp 
;****************** 
; Set Viewing Parameters 
(clear-simulation) 
(set-look-from 45 45 45) 
(set-look-at 0 0 0) 
(set-camera 40 4000 100) 
(enable-smooth-shading t) 
(setq lunarsurface 
; Rolling hills. 
(make-composite 
 (make-dome 1)(translate 5 -4 0) 
 (make-dome 1)(translate 7 -8 0) 
 (make-dome 2)(translate 2 -10 0) 
 (make-dome 2)(translate -2 18 0) 
 (make-dome 8)(translate -12 20 -4) 
 (make-truncated-cone 12 1 7)(translate -20 20 0) 
 (make-dome 8)(translate -1 -12 -6) 
 (make-dome 10)(translate 15 -17 -7) 
 (make-dome 9)(translate -20 -18 -4) 
 (make-dome 2)(translate -20 -20 0) 
; Crater #1 (pos x)(pos y). 
 (make-revolve-surface 
  (make-primitive (list 
    #(2.5 0 0) 
    #(2.5 0 -1) 
    #(2 0 -2) 
    #(.5 0 -4) 
    #(0 0 -5) 
    #(0 0 -10) 
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    #(5 0 -10) 
    #(5 0 0) 
    #(2.5 0 0) 
    ) 
  ) 
 10)(translate 10 10 0) 
 (make-sphere 1.25)(translate 12 11.5 0) 
 (make-box 1.25 1.25 1.25)(matmult (translate 12 11.5 0)(rotatex 45)
 (rotatey 45)(rotatez 45)) 
 (make-box 1.25 1.25 1.25)(matmult (translate 12 11.5 0)(rotatex -45)
 (rotatey -45)(rotatez -45)) 
; Boulder group #1 - (pos x)(neg y). 
 (make-extrude-surface 
  (make-primitive (list 
    #(4 0 0) 
    #(3.5 1 0) 
    #(3 1.5 0) 
    #(2.9 3 0) 
    #(1 4.3 0) 
    #(0 5 0) 
    #(-2 5 0) 
    #(-1 4.1 0) 
    #(-5 3.4 0) 
    #(-8 3 0) 
    #(-4 2.5 0) 
    #(-7 1.5 0) 
    #(-9 1 0) 
    #(-5 .3 0) 
    #(-2 0 0) 
    #(4 0 0) 
    ) 
  ) 
 5)(translate 20 -25 0) 
 (make-extrude-surface 
  (make-primitive (list 
    #(4 0 0) 
    #(1.5 1 0) 
    #(2 1.5 0) 
    #(4 2 0) 
    #(5 3 0) 
    #(3.2 3.5 0) 
    #(4 5 0) 
    #(2.2 6 0) 
    #(-3 5 0) 
    #(-3.2 3 0) 
    #(0 0 0) 



 76 

    #(4 0 0) 
    ) 
  ) 
 8)(translate 19 -20 0) 
 (make-truncated-cone 3 .75 9.5)(translate 17 -19 0) 
 (make-sphere 1.1)(translate 18 -18 8) 
  (make-sphere 1)(translate 17 -18.5 8) 
 (make-box 3 3 3)(matmult (translate 16 -20 4)(rotatex 45)(rotatey 45)) 
 (make-sphere .75)(translate 17 -19 9.5) 
 (make-truncated-cone 4 .25 10)(translate 19 -14 0) 
 (make-sphere 1.0)(translate 15 -22 5) 
 (make-truncated-cone 4 1.7 6)(translate 21 -12 0) 
 (make-sphere 3)(translate 20 -10 1) 
 (make-sphere 2)(translate 20.5 -12 4) 
 (make-truncated-cone 5 .1 5)(translate 5 -20 0) 
 (make-dome 5)(translate 10 -20 0) 
 (make-truncated-cone 6 .5 8)(translate 0 -20 0) 
 (make-truncated-cone 6 .5 7)(translate 24 -18 0) 
; Boulder group #2 (pos x)(pos y) 
 (make-extrude-surface 
  (make-primitive (list 
    #(0 0 0) 
    #(1.5 0.5 0) 
    #(2 1.5 0) 
    #(1.5 2 0) 
    #(1 3 0) 
    #(-2 3.4 0) 
    #(-4 2.1 0) 
    #(-3 1 0) 
    #(-5 0 0) 
    #(-3.2 -2.5 0) 
    #(-1.6 -3 0) 
    #(0 -3.2 0) 
    #(0 0 0) 
    ) 
  ) 
  5)(translate 23 21 0) 
 (make-dome 1.5)(translate 21 22 5) 
 (make-sphere 1.7)(translate 21.5 20 5) 
 (make-dome 4)(translate 19 20 0) 
 (make-dome 3)(translate 22 18 0) 
 (make-dome 4)(translate 23 23 0) 
 (make-dome 7)(translate 16 26 -3) 
; Crater #2 + rocks (neg x)(neg y). 
 (make-revolve-surface 
  (make-primitive (list 
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    #(3.5 0 0) 
    #(3.5 0 -1) 
    #(3 0 -2) 
    #(1.5 0 -4) 
    #(0 0 -5) 
    #(0 0 -10) 
    #(7 0 -10) 
    #(7 0 0) 
    #(3.5 0 1.5) 
    #(3.5 0 0) 
    ) 
  ) 
 20)(translate -12 -12 0) 
 (make-sphere 1.5)(translate -13 -15.5 2) 
 (make-box 1.5 1.25 1.5)(matmult (translate -13 -15.5 2)(rotatex 45) 

(rotatey 45)(rotatez 45)) 
 (make-box 1.25 1.5 1.25)(matmult (translate -13 -15.5 2)(rotatex -45) 

(rotatey -45)(rotatez -45)) 
 (make-sphere 3)(translate -11 -17 -1) 
 (make-truncated-cone 7 .25 5)(translate -23 -11 0) 
 (make-truncated-cone 8 .1 10)(translate -15 -22 0) 
 (make-sphere 1)(translate -21 -17 5) 
; Flat surface. 
 (make-box 35 35 1)(translate -17.5 17.5 -1) 
 (make-box 35 35 1)(translate 17.5 -17.5 -1) 
 (make-box 35 10 1)(translate -17.5 -3 -1) 
 (make-box 8 35 1)(translate -4 -17.5 -1) 
 (make-box 35 20 1)(translate -17.5 -25 -1) 
 (make-box 10 35 1)(translate -30 -17.5 -1) 
 (make-box 35 8 1)(translate 17.5 3.5 -1) 
 (make-box 8 35 1)(translate 3.5 17.5 -1) 
 (make-box 35 22 1)(translate 17.5 24 -1) 
 (make-box 22 35 1)(translate 24 17.4 -1) 
) 
) 
(set-position lunarsurface (translate 0 0 0)) 
(use-objects lunarsurface) 

 

Lunar Rover 

;Lunar_Marcbot.lsp 
(defun make-lunar-robot nil (make-parallel-agent 
;*********** 
; Body of Robot 
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;*********** 
(set-object 
 (make-fixed-link 
 (make-box .8 .1 .05)(translate 0 0 .2) 
 (make-box .1 .1 .08)(translate .3 0 .12) 
 (make-box .1 .1 .08)(translate -.3 0 .12) 
 (make-cylinder .025 .38)(matmult (rotatex 90)(translate .3 .11 -.19)) 
 (make-cylinder .025 .38)(matmult (rotatex 90)(translate -.3 .11 -.19)) 
 (make-extrude-surface 
  (make-primitive (list 
   #(-.4 -.1 0) 
   #(.2 -.1 0) 
   #(.4 -.05 0) 
   #(.4 .05 0) 
   #(.2 .1 0) 
   #(-.4 .1 0) 
   #(-.4 -.1 0) 
 )) .02)(translate 0 0 .25) 
 (make-extrude-surface 
  (make-primitive (list 
   #(0 0 0) 
   #(.05 0 0) 
   #(.05 .03 0) 
   #(.025 .1 0) 
   #(0 .1 0) 
 )) .6)(matmult (translate -.4 .1 .27)(rotatez 90)(rotatex 90)) 
 (make-extrude-surface 
  (make-primitive (list 
   #(0 0 0) 
   #(.05 0 0) 
   #(.05 .03 0) 
   #(.025 .1 0) 
   #(0 .1 0) 
 )) .6)(matmult (translate .2 -.1 .27)(rotatez -90)(rotatex 90)) 
 (make-cylinder .05 .2)(translate -.3 0 .27)    
) 
:color '(100 150 50) 
) 
;******Base-to-Station transformation.****** 
 (translate 0 0 0) 
;************* 
; Wheel Creation. 
;************* 
 (setq lfw (make-wheel)) 
  (translate .3 .19 .11) 
 (setq rfw (make-wheel)) 
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  (translate .3 -.19 .11) 
 (setq lrw (make-wheel)) 
  (translate -.3 .19 .11) 
 (setq rrw (make-wheel)) 
  (translate -.3 -.19 .11) 
;************ 
; Laser Creation. 
;************ 
 (setq laser (make-laser)) 
 (translate 0 0 0);Laser base with respect to the base of the robot. 
;************************** 
; Arm and Swiss Ranger Sensor. 
;************************** 
 (setq arm (make-arm)) 
  (translate .3 0 .27) 
));End of make parallel agent and make lunar robot. 
;**************************************** 
; Define make-wheel. 
;***************************************** 
(defun make-wheel nil (make-serial-agent 
(make-fixed-link) 
(translate 0 0 0) 
(set-object 
(make-revolute-link nil nil 
(make-cylinder .11 .1)(matmult (rotatex 90)(translate 0 0 -.05)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 10)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 20)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 30)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 40)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 50)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 60)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 70)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 80)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 90)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 100)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 110)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 120)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 130)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 140)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 150)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 160)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 170)) 
(make-box .24 .1 .01)(matmult (rotatey 90) (translate 0 0 -.005)(rotatey 180)) 
) 
:color '(50 50 50)) 
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(translate 0 0 0);1 with respect to base. 
(set-object 
 (make-fixed-link 
  (make-cylinder .06 .12)(matmult (rotatex 90)(translate 0 0 -.06)) 
 ) 
 :color '(150 150 150)) 
 (translate 0 0 0); 2 with respect to 1. 
 ); End of make-serial agent. 
); End of defun make-wheel. 
;*************** 
; Define make-laser. 
;*************** 
(defun make-laser nil (make-serial-agent 
 (make-fixed-link) 
 (translate -.3 0 .57); Position laser base with respect to robot base. 
; Laser link1.  
 (set-object 
 (make-revolute-link nil nil 
  (make-box .1 .3 .025)(translate 0 0 -.125) 
  (make-box .05 .02 .1)(translate 0 .14 -.1) 
  (make-box .05 .02 .1)(translate 0 -.14 -.1) 
 ) 
 :color '(100 150 50)) 
 (translate 0 0 0);link1 wrt laser base 
; Laser link 2. 
 (set-object 
 (make-revolute-link nil nil 
  (make-cylinder .025 .3)(matmult (translate 0 0 -.15)(rotatex 0)) 
  (make-sphere .09)(translate 0 0 0) 
;  (make-cylinder .04 .2)(rotatey 90) 
 ) 
 :color '(100 150 50)) 
; Set laser link 2 with respect to laser link 1. 
 (matmult(rotatex 90)(translate 0 0 0)(rotatez 0)(translate 0 0 0)) 
; Laser link 3 - end effector. 
 (set-object 
  (make-fixed-link 
   (make-cylinder .04 .2)(translate 0 0 0) 
  ) 
  :color '(255 0 0)) 
; Laser link3 with respect to link 2. 
 (rotatey 90) 
 );End of make-serial-agent. 
); End of defun make-laser. 
;*************** 
; Define make-arm. 
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;*************** 
(defun make-arm nil (make-serial-agent 
(set-object 
(make-fixed-link 
 (make-box .08 .02 .04)(translate 0 0.04 0) 
 (make-box .08 .02 .04)(translate 0 -0.04 0) 
 (make-cylinder .04 .15)(matmult(translate 0 0.075 0.05)(rotatex 90)) 
 (make-box .4 .05 .05)(translate -.2 0 0.025) 
 (make-cylinder .025 .12)(matmult (translate -.4 .06 0.05)(rotatex 90)) 
 (make-box .05 .02 .11)(matmult(translate -.4 0.035 0.05)(rotatey 27)) 
 (make-cylinder .025 .12)(matmult (translate -.35 .06 0.15)(rotatex 90)) 
 (make-box .05 .02 .11)(matmult(translate -.4 -0.035 0.05)(rotatey 27)) 
 (make-box .5 .05 .05)(translate -.1 0 0.125) 
 (make-cylinder .025 .12)(matmult (translate .15 .06 0.15)(rotatex 90)) 
 (make-box .05 .02 .05)(translate .15 .035 .15) 
 (make-box .05 .02 .05)(translate .15 -.035 .15) 
 (make-box .05 .07 .02)(translate .15 0 .18) 
) 
:color '(200 255 100))  
(translate 0 0 0) ;Arm with respect to base. 
; Make Swiss Ranger Sensor. 
 (set-object 
 (make-fixed-link 
 (make-box .0423 .05 .067)(translate .15 0 .2) 
 ) 
:color ' (0 0 255)) 
(translate 0 0 0) 
); End of make-serial-agent. 
); End of defun make-arm. 
(setq r (make-lunar-robot)) 
(use-objects r) 

 

Lunar Reconnaissance Orbiter Scan 

;LRO_Scan.lsp 
(clear-simulation) 
;Load Associated Programs 
(load "Lunar_Surface.lsp") 
(load "gpos-cartesian.lsp") 
(load "cartesian_invkin.lsp") 
(load "Invisible_Cartesian_Robot.lsp") 
(load "Lunar_Reconnaissance_Orbiter.lsp") 
;Set Viewing Parameters 
(set-look-at 0 0 30) 
(set-look-from 45 45 75) 
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(set-camera 1 4000 100) 
(enable-smooth-shading t) 
(setq d 1); LRO speed during laser scan. 
(setq f .999); Laser beam length index value. 
(setq ii 1.0); Satellite index movement along the x axis. 
(setq jj 1.0); Satellite index movement along the y axis. 
(setq xx -35);Scan start position in the x direction. 
(setq yy -35);Scan start position in the y direction. 
(setq xxx 35);Scan stop position in the x direction. 
(setq yyy 35);Scan stop position in the y direction. 
(set-position LRO (translate 10 10 50)) 
(set-position lunarsurface (translate 0 0 30)) 
(setq lz (make-composite 
 (make-box 1 1 .5)(translate 0 0 0) 
 (make-box 1 1 .5)(translate 0 0 -.5) 
 ) 
) 
(set-object lz :color'(255 0 0)) 
(use-objects lz) 
(setq picture1 (make-sphere .001)) 
(set-update nil) 
(move-inter-to cartesian (translate 10 10 50) 0 d) 
(grasp cartesian LRO) 
(move-inter-to cartesian (translate 5 5 50)0 d) 
(let 
( 
(x xx) 
) 
(loop 
 (let 
 ( 
 (y yy) 
 ) 
 (loop    
 (move-inter-to cartesian (matmult(translate x y 50)(rotatex 180)) 0 d) 
  (let 
  ( 
  (length 1) 
  (point) 
  ) 
  (loop 
  (setq length (+ length f)) 

(set-position lz (matmult(gpos-cartesian cartesian)(translate 0 0 (+ 0 
length)))) 

  (if 
   (and 
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   (= (check-collision lz lunarsurface) nil) 
   ) 
    (progn  
    () 
    ) 
    (progn 
    (setq point (make-box 1.0 1.0 (- 50 length))) 

(set-position point (matmult(translate 0 0 (* -1 (- 50 
length))) 
(gpos-cartesian cartesian)(translate 0 0 (+ 0 length))(rotatex 
180))) 

    (if 
     (>= length 24.5) 
     (set-object point :color'(255 0 0)) 
    ) 
    (if  
     (and 
     (>= length 24)(< length 24.5))   
     (set-object point :color'(240 15 0)) 
    ) 
    (if 
     (and 
     (>= length 23.5)(< length 24)) 
     (set-object point :color'(225 30 0)) 
    ) 
    (if 
     (and 
     (>= length 23)(< length 23.5)) 
     (set-object point :color'(210 45 0)) 
    ) 
    (if 
     (and 
     (>= length 22.5)(< length 23)) 
     (set-object point :color'(195 60 0)) 
    ) 
    (if 
     (and 
     (>= length 22)(< length 22.5)) 
     (set-object point :color'(180 75 0)) 
    ) 
    (if 
     (and 
     (>= length 21.5)(< length 22)) 
     (set-object point :color'(165 90 0)) 
    ) 
    (if 
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     (and 
     (>= length 21)(< length 21.5)) 
     (set-object point :color'(150 105 0)) 
    ) 
    (if 
     (and 
     (>= length 20.5)(< length 21)) 
     (set-object point :color'(135 120 0)) 
    ) 
    (if 
     (and 
     (>= length 20)(< length 20.5)) 
     (set-object point :color'(120 135 0)) 
    ) 
    (if 
     (and 
     (>= length 19.5)(< length 20)) 
     (set-object point :color'(105 150 0)) 
    ) 
    (if 
     (and 
     (>= length 19)(< length 19.5)) 
     (set-object point :color'(90 165 0)) 
    ) 
    (if 
     (and 
     (>= length 18.5)(< length 19)) 
     (set-object point :color'(75 180 0)) 
    ) 
    (if 
     (and 
     (>= length 18)(< length 18.5)) 
     (set-object point :color'(60 195 0)) 
    ) 
    (if 
     (and 
     (>= length 17.5)(< length 18)) 
     (set-object point :color'(45 210 0)) 
    ) 
    (if 
     (and 
     (>= length 17)(< length 17.5)) 
     (set-object point :color'(30 225 0)) 
    ) 
    (if 
     (and 
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     (>= length 16.5)(< length 17)) 
     (set-object point :color'(15 240 0)) 
    ) 
    (if 
     (and 
     (>= length 16)(< length 16.5)) 
     (set-object point :color'(0 255 0)) 
    ) 
    (if 
     (and 
     (>= length 15.5)(< length 16)) 
     (set-object point :color'(0 240 15)) 
    ) 
    (if 
     (and 
     (>= length 15)(< length 15.5)) 
     (set-object point :color'(0 225 30)) 
    ) 
    (if 
     (and 
     (>= length 14.5)(< length 15)) 
     (set-object point :color'(0 210 45)) 
    ) 
    (if 
     (and 
     (>= length 13)(< length 14.5)) 
     (set-object point :color'(0 195 60)) 
    ) 
    (if 
     (and 
     (>= length 12.5)(< length 13)) 
     (set-object point :color'(0 180 75)) 
    ) 
    (if 
     (and 
     (>= length 12)(< length 12.5)) 
     (set-object point :color'(0 165 90)) 
    ) 
    (if 
     (and 
     (>= length 11.5)(< length 12)) 
     (set-object point :color'(0 150 105)) 
    ) 
    (if 
     (and 
     (>= length 11)(< length 11.5)) 
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     (set-object point :color'(0 135 120)) 
    ) 
    (if 
     (and 
     (>= length 10.5)(< length 11)) 
     (set-object point :color'(0 120 135)) 
    ) 
    (if 
     (and 
     (>= length 10)(< length 10.5)) 
     (set-object point :color'(0 105 150)) 
    ) 
    (if 
     (and 
     (>= length 9.5)(< length 10)) 
     (set-object point :color'(0 90 165)) 
    ) 
    (if 
     (and 
     (>= length 9)(< length 9.5)) 
     (set-object point :color'(0 75 180)) 
    ) 
    (if 
     (and 
     (>= length 8.5)(< length 9)) 
     (set-object point :color'(0 60 195)) 
    ) 
    (if 
     (and 
     (>= length 8)(< length 8.5)) 
     (set-object point :color'(0 45 210)) 
    ) 
    (if 
     (and 
     (>= length 7.5)(< length 8)) 
     (set-object point :color'(0 30 225)) 
    ) 
    (if 
     (and 
     (>= length 7)(< length 7.5)) 
     (set-object point :color'(0 15 240)) 
    ) 
    (if 
     (and 
     (>= length 1)(< length 7)) 
     (set-object point :color'(0 0 255)) 
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    ) 
   (use-objects point)      
   (return) 
   ) 
  ) 
   (if 
    (> length 100)  
    (return) 
   ) 
  ) 
  ) 
 (setq y (+ y jj)) 
  (if 
  (> y yyy) 
  (return) 
  ); End of if statement. 
 ); End of loop to drive robot along the y axis. 
); End of let to drive robot along the y axis. 
(setq x (+ x ii));Index along the x axis. 
 (if 
 (> x xxx); End of scan along the x axis 
 (return) 
 ); End of if statement. 
); End of loop to drive robot along the y axis. 
); End of let to drive robot along the x axis. 
(remove-objects lz) 

 

Position Determination 

; 3D_Trilateration_1.lsp 
(clear-simulation) 
; Load Associated Programs 
(load "Lunar_Surface.lsp") 
(load "Lunar_Marcbot.lsp") 
(load "gpos-laser.lsp") 
; Set Viewing Parameters 
(set-look-at 0 0 30) 
(set-look-from 45 45 75) 
(set-camera 1 4000 100) 
(enable-smooth-shading t) 
; Set the position of the lunar surface. 
(set-position lunarsurface (translate 0 0 30)) 
; Set the position of the robotic lunar rover. 
(set-position r (translate 0 0 30)) 
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(message-box "Position determination of a robotic lunar rover using 3-D trilateration."  
"View of the lunar surface.") 
(drive-agent laser '(360) 200) 
(set-camera 40 4000 3000) 
(set-clipplane 40 4000)  
(message-box "Position Determination of a robotic lunar rover using 3-D trilateration."  
"View of the robotic lunar rover with its laser range finder.") 
(drive-agent laser '(0) 800) 
; Create laser beam photon (lz). Cylinder size determines laser's detection accuracy. 
(setq lz (make-composite 
  (make-cylinder .01 .1)(translate 0 0 0) 
  (make-cylinder .01 .1)(translate 0 0 -.1) 
    ) 
);Lasers accuracy set to +/- .1 meters. 
(set-object lz :color'(255 0 0)) 
; Set view point behind rover. 
(set-look-at 20 20 30) 
(set-look-from -1 -1 31) 
(set-clipplane 1 4000) 
(set-camera 1 4000 100) 
;**************************************************** 
; Drive laser range finder to first point to measure. 
;**************************************************** 
(drive-agent laser '(42.5 11) 500) 
; Place laser on end of laser base. 
(setq lzsight (make-cylinder .039 30)) 
(set-position lzsight (matmult(translate 0 0 30)(gpos-laser laser))) 
(set-object lzsight :color '(255 0 0)) 
(use-objects lzsight) 
; Algorithm to measure distance with laser beam. 
(let 
( 
(length 1) 
) 
(loop 
(setq length (+ length .19)) 
; Position laser beam at the base of the laser + indexed length. 
(set-position lz (matmult(translate 0 0 30)(gpos-laser laser)(translate 0 0 (+ 0 length)))) 
(use-objects lz) 
 (if 
 (and ;Check for collision between the laser beam and the moon. 
 (= (check-collision lz lunarsurface) nil) 
 ) 
  (progn  
  () 
  ) 
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  (progn 
   (setq point1 (make-sphere 0.5)) 
   (set-object point1 :color '(255 0 0)) 
; Position the data point; 
; Matrix Multiplication (Position of the Lunar Rover)(Laser's Base Position)(Length of 
laser beam). 

(set-position point1 (matmult(translate 0 0 30)(gpos-laser 
laser)(translate 0 0 (+ 0 length)))) 

; Get position of laser tip relative to rover base and determine distance between. 
   (setq pos1 (matmult (gpos-laser laser)(translate 0 0 (+ 0 length)))) 
   (setq px1 (tref pos1 0 3)) 
   (setq py1 (tref pos1 1 3)) 
   (setq pz1 (tref pos1 2 3)) 
; Set r1 to the distance between the laser tip and the rover's base. 
   (setq r1 (sqrt (+ (* px1 px1) (* py1 py1) (* pz1 pz1)))) 
   (return)        
   
  ) 
 ) 
 (if 
 (> length 50);max length of laser beam.   
 (return); If no collision with beam at length of 50, then end laser beam index. 
   ) 
 ) 
 ) 
) 
(remove-objects lz) 
(remove-objects lzsight) 
(message-box "Calculated distance from the lunar rover's base frame to the identified 
LRO scan target P2 ."  
 "Distance in meters :" (+ 0 r1)) 
; Reposition view point behind rover. 
(set-look-at 20 -20 30) 
(set-look-from -1 1 31) 
(set-clipplane 1 4000) 
(set-camera 1 4000 100) 
;****************************************************** 
; Drive laser range finder to second point to measure. 
;***************************************************** 
(drive-agent laser '(-36 21.5) 500) 
;Place laser on end of laser base. 
(setq lzsight (make-cylinder .039 27)) 
(set-position lzsight (matmult(translate 0 0 30)(gpos-laser laser))) 
(set-object lzsight :color '(255 0 0)) 
(use-objects lzsight) 
; Algorithm to measure distance with laser beam. 
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(let 
( 
(length 1); Initial length of the laser beam. 
) 
(loop 
 (setq length (+ length .19)); Index the length of the laser beam. 
 ; Position laser beam at the base of the laser + indexed length. 

(set-position lz (matmult(translate 0 0 30)(gpos-laser laser)(translate 0 0 (+ 0 
length)))) 

 (use-objects lz) 
 (if 
 (and ;Check for collision between the laser beam and the moon. 
 (= (check-collision lz lunarsurface) nil) 
 ) 
  (progn  
  () 
  ) 
  (progn 
   (setq point2 (make-sphere 0.5)) 
; If there is a collision - create data point. 
   (set-object point2 :color '(0 255 0)) 
; Position the data point; 
; Matrix Multiplication (Position of the Lunar Rover)(Laser's Base Position)(Length of 
laser beam) 

(set-position point2 (matmult(translate 0 0 30)(gpos-laser 
laser)(translate 0 0 (+ 0 length)))) 

; Get position of laser tip relative to rover base and determine distance between. 
   (setq pos2 (matmult (gpos-laser laser)(translate 0 0 (+ 0 length)))) 
   (setq px2 (tref pos2 0 3)) 
   (setq py2 (tref pos2 1 3)) 
   (setq pz2 (tref pos2 2 3)) 
; Set r2 to the distance between the laser tip and the rover's base. 
   (setq r2 (sqrt (+ (* px2 px2) (* py2 py2) (* pz2 pz2)))) 
   (return)         
  ) 
 ) 
 (if 
 (> length 50); Max length of laser beam.   
 (return); If no collision with beam at length of 50, then end laser beam index. 
 ) 
); end of loop 
); end of let 
(remove-objects lz) 
(remove-objects lzsight) 
(message-box "Calculated distance from the lunar rover's base frame to the identified 
LRO scan target P15." "Distance in meters: " (+ 0 r2)) 
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; Reposition view point behind rover. 
(set-look-at -20 -20 30) 
(set-look-from 1 1 31) 
(set-clipplane 1 4000) 
(set-camera 1 4000 100) 
;**************************************************** 
; Drive laser range finder to third point to measure. 
;**************************************************** 
(drive-agent laser '(-123.7 19.5) 500) 
; Place laser sight on end of laser base. 
(setq lzsight (make-cylinder .039 30)) 
(set-position lzsight (matmult(translate 0 0 30)(gpos-laser laser))) 
(set-object lzsight :color '(255 0 0)) 
(use-objects lzsight) 
; Algorithm to measure distance with laser beam. 
(let 
( 
(length 1); Initial length of the laser beam. 
) 
(loop 
 (setq length (+ length .19));Index the length of the laser beam. 
 ; Position laser beam at the base of the laser + indexed length. 

(set-position lz (matmult(translate 0 0 30)(gpos-laser laser)(translate 0 0 (+ 0 
length)))) 

 (use-objects lz) 
 (if 
 (and ;Check for collision between the laser beam and the moon. 
 (= (check-collision lz lunarsurface) nil) 
 ) 
  (progn  
  () 
  ) 
  (progn 
  (setq point3 (make-sphere 0.5)) 
; If there is a collision - create data point. 
  (set-object point3 :color '(0 0 255)) 
; Position the data point; 
; Matrix Multiplication (Position of the Lunar Rover)(Laser's Base Position)(Length of 
laser beam) 

(set-position point3 (matmult(translate 0 0 30)(gpos-laser laser)(translate 0 
0 (+ 0 length)))) 

; Get position of laser tip relative to rover base and determine distance between. 
  (setq pos3 (matmult (gpos-laser laser)(translate 0 0 (+ 0 length)))) 
  (setq px3 (tref pos3 0 3)) 
  (setq py3 (tref pos3 1 3)) 
  (setq pz3 (tref pos3 2 3)) 
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; Set r3 to the distance between the laser tip and the rover's base. 
  (setq r3 (sqrt (+ (* px3 px3) (* py3 py3) (* pz3 pz3)))) 
  (return)          
  ) 
 ) 
 (if 
  (> length 50); Max length of laser beam.   
  (return); If no collision with beam at length of 50, then end laser beam 
index. 
 ) 
); end of loop 
); end of let 
(remove-objects lz) 
(remove-objects lzsight) 
(message-box "Calculated distance from the lunar rover's base frame to the identified 
LRO scan target P8." "Distance in meters: " (+ 0 r3)) 
;**************************** 
; Target Data from LRO Scan. 
;**************************** 
; Point1 is target P2 [21.5, 20, 37] 
(setq point1 (make-sphere 1)) 
(set-position point1 (translate 21.5 20 37)) 
(setq point1x 21.5) 
(setq point1y 20) 
(setq point1z 37) 
; Point2 is target P15 [19, -14 40] 
(setq point2 (make-sphere 1)) 
(set-position point2 (translate 19 -14 40)) 
(setq point2x 19) 
(setq point2y -14) 
(setq point2z 40) 
; Point3 is target P8 [-15, -22, 40] 
(setq point3 (make-sphere 1)) 
(set-position point3 (translate -15 -22 40)) 
(setq point3x -15) 
(setq point3y -22) 
(setq point3z 40) 
;*********************************************************************** 
; Move Point1 to [0, 0, 0] & translate Point2 and Point3 the corresponding value. 
;*********************************************************************** 
(set-position point1 (translate 0 0 0)) 
(set-position point2 (translate (- point2x point1x) (- point2y point1y) (- point2z point1z))) 
(set-position point3 (translate (- point3x point1x) (- point3y point1y) (- point3z point1z))) 
(use-objects point1 point2 point3) 
;************************************************ 
; Determine Point2's position relative to Point1. 
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;************************************************ 
(setq pos21 (get-position point2 :relative-to point1)) 
(setq px21 (tref pos21 0 3)) 
(setq py21 (tref pos21 1 3)) 
(setq pz21 (tref pos21 2 3)) 
;****************************************************** 
; Rotate Point2 to where its origin lies on the + x-axis. 
;****************************************************** 
(setq thetaz (* (atan py21 px21) (/ 180 pi))) 
(setq thetay (* (atan pz21 (sqrt (+ (* px21 px21) (* py21 py21)))) (/ 180 pi))) 
(set-position point2 (matmult (rotatey (* 1 thetay))(rotatez (* -1 thetaz)) 
 (translate (- point2x point1x) (- point2y point1y) (- point2z point1z)))) 
;*********************************************************************** 
; Rotate Point3 through the same rotations as Point2 previously was rotated. 
;*********************************************************************** 
(set-position point3 (matmult (rotatey (* 1 thetay))(rotatez (* -1 thetaz)) 
 (translate (- point3x point1x) (- point3y point1y) (- point3z point1z)))) 
;************************************************ 
; Determine Point3's position relative to Point1. 
;************************************************ 
(setq pos31 (get-position point3 :relative-to point1)) 
(setq px31 (tref pos31 0 3)) 
(setq py31 (tref pos31 1 3)) 
(setq pz31 (tref pos31 2 3)) 
;*********************************************************************** 
; Rotate Point3 so that it lies on the Z=0 plane with Point1 and Point2. 
; Check to see if Point3 is in the III or IV quadrant so the rotation about the x axis 
; will be correct.  If py31 is negative or equal to zero the angle calculated from atan 
;function will rotate to the z=0 plane.  If it is in the I or II quadrant then Point3 will need 
;to be rotated in the opposite direction of the calculated angle. 
;*********************************************************************** 
(if (<= py31 0) 
 (setq thetax (* (atan pz31 (sqrt (+ (* 0 px31 px31) (* py31 py31)))) (/ 180 pi))) 
 (setq thetax (* (atan pz31 (sqrt (+ (* px31 px31) (* py31 py31)))) (/ 180 pi) (-1))) 
) 
;********************************************** 
; Rotate Point3 so that it is on the z=0 plane. 
(set-position point3 (matmult (rotatex (* 1 thetax))(rotatey (* 1 thetay))(rotatez (* -1 
thetaz))(translate (- point3x point1x) (- point3y point1y) (- point3z point1z)))) 
;**************************************************************** 
; Determine Point3's new position relative to Point1 (or origin). 
;**************************************************************** 
(setq pos30 (get-position point3)) 
(setq px30 (tref pos30 0 3)) 
(setq py30 (tref pos30 1 3)) 
(setq pz30 (tref pos30 2 3)) 
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;**************************************************************** 
; Determine Point2's new position relative to Point1 (or origin). 
;**************************************************************** 
(setq pos20 (get-position point2)) 
(setq px20 (tref pos20 0 3)) 
(setq py20 (tref pos20 1 3)) 
(setq pz20 (tref pos20 2 3)) 
;*********************************************************************** 
; Now we have three spheres located on the z=0 plane with radiuses of r1, r2 & r2.   
; Take the formula for each of the spheres and set them equal to each other.   
; This will allow you to solve for the unknown x, y, & z coordinates.  
;*********************************************************************** 
(setq x0 (/ (+ (* r1 r1) (* -1 r2 r2) (* px20 px20)) (* 2 px20))) 
(setq y0 (- (/ (+ (* r1 r1) (* -1 r3 r3) (* px30 px30) (* py30 py30)) (* 2 py30)) (/ (* px30 
x0) py30))) 
(if (< (+ (* r1 r1) (* -1 x0 x0) (* -1 y0 y0)) 0) 
 (progn (setq z0 0); Set z0 = 0 because there is too much noise/error in the data. 
 (message-box "Caution! Noisy Data. Possibly high level of error in results.") 
 ) 
 (progn (setq z0 (* -1 (sqrt (+ (* r1 r1) (* -1 x0 x0) (* -1 y0 y0)))))) 
; Use negative solution since rover is below targets. 
) 
;*********************************************************************** 
; Set a point at this position (x0, y0, z0) and then re-position the point by reversing  
; the previous translations.  The re-positioned point's location will be the calculated  
; position of the lunar rover's base. 
;*********************************************************************** 
(setq rover-position (make-sphere 1)) 
(set-position rover-position (matmult (translate (* 1 point1x) (* 1 point1y) (* 1 point1z)) 
(rotatez (* 1 thetaz)) (rotatey (* -1 thetay)) (rotatex (* -1 thetax))  
(translate (* 1 x0) (* 1 y0) (* 1 z0)))) 
(setq rover (get-position rover-position)) 
(setq rover-x (tref rover 0 3)) 
(setq rover-y (tref rover 1 3)) 
(setq rover-z (tref rover 2 3)) 
(setq error (* (/ (- (sqrt (+ (* rover-x rover-x) (* rover-y rover-y) (* rover-z rover-z))) 
(sqrt (* 30 30))) (sqrt (* 30 30))) 100)) 
(setq diste (sqrt (+ (* rover-x rover-x) (* rover-y rover-y) (* (- rover-z 30) (- rover-z 
30)))))  
(message-box "(X,Y,Z) position of the lunar rover's base frame."  
"Calculated position using 3-D Trilateration method :" "(" (* 1 rover-x) ", " (* 1 rover-y) 
", " (* 1 rover-z) ") meters." 
" 
Actual position: (0, 0, 30) meters." 
"  
Total distance of error: "(* 1 diste) " meters.") 
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APPENDIX C 

 

MATLAB SIMULINK MODELS 

 

 

Figure C.1:  The navigation central processing unit system. 
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Figure C.2:  The navigation controller system. 
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Figure C.3:  The steering system. 
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Figure C.4:  The steering dynamic equation subsystem. 
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Figure C.5:  The propulsion system. 



 100 

 

Figure C.6:  The propulsion dynamics subsystem. 



 101 

 

Figure C.7:  The propulsion dynamic equation subsystem. 
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Figure C.8: The dynamics system. 
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Figure C.9: The position subsystem. 
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Figure C.10: The directional heading subsystem. 
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Figure C.11:  The inertial measurement unit system. 
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Figure C.12:  The dynamics and navigation simulation system.
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