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CHAPTER I 

 

INTRODUCTION 

 

Researchers, practitioners and organizations have long been interested in the 

extent to which visual functioning can be improved for low vision (LV) individuals 

(Barraga, 1964; 1970; Smith and O’Donnell, 1991; National Eye Institute; Association 

for Education and Rehabilitation of the Blind and Visually Impaired).  One central effort 

of practitioners and organizations has been to train the basic skills that are essential to 

independent daily living, thereby enhancing the quality of life for individuals with low-

vision (American Optometric Association, 2006).  

An essential component of effective visual functioning is our visual attention 

processes.  Studies have provided multiple examples how visual attention affects our ability 

to perform everyday activities.  Research now shows that visual attention can be altered or 

enhanced through experience and training.  The current study investigates whether visual 

attention and visual functioning across a wide field of view can be enhanced through 

training for individuals with impaired vision. 

 

Visual Functioning 

When you ask someone how good their vision is you will usually get a response 

such as their score on a vision test or that they have trouble driving at night.  In contrast, 

people will not usually answer that they have trouble driving in hectic situations like big 

city freeways or that they do not always notice things that others do.  Such difficulties are 
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not usually associated with vision.  These examples, however, rely on processing of 

visual information and represent an emerging view that vision is more than a score on 

simple tests such as visual acuity or contrast sensitivity.  Instead, the eye is now 

considered as a part of a system working together with the brain to acquire and process 

information.   

 

Visual Attention 

Acquiring and processing visual information is largely the domain of visual 

attention.  Our visual system is constantly bombarded with more information than we can 

process with our limited resources.  It has been proposed that attention involves separable 

networks that perform different functions to effectively process this wealth of 

information (Fan & Posner, 2004; Fan et al., 2002).  These include alerting, orienting, 

and executive control.  These three functions encompass the current use of the term 

visual attention.  These functions keep us vigilant to react to stimuli (alerting), allow us to 

select the most relevant or important subset of information for further processing 

(orienting), and control our strategies and goal-directed behaviors (executive control) 

(Posner & Raichle, 1994; Posner, 1995; Ruede, et al., 2005).   

The act of selectively focusing on a small number of attributes, objects, or 

locations out of many candidate inputs is perhaps the most common function addressed 

by visual attention research.  Studies have documented myriad ways that visual selection 

(orienting) facilitates processing of visual information.  Observers can better detect 

stimuli and respond faster at an attended location (Handy et al., 1996, Hawkins et al. 

1990; Yeshurun and Carrasco, 1999), can better discriminate properties of an attended 
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stimulus (Yeshurun and Carrasco, 2000; Treue and Martinez-Trujillo, 1999), and have 

greater sensitivity to fine changes to stimuli (Reynolds and Chelazzi, 2004; Gobel and 

Carrasco, 2005).  Performance enhancements are found at attended locations even when 

the eyes are looking elsewhere (Yeshurun & Carrasco, 1998; Pestilli & Carrasco, 2005).  

These results exemplify that visual functioning clearly involves more than just the optics 

of the eye. 

 

Low Vision 

This shift in how vision is construed has reshaped the way visual impairments are 

described as well.  It has been understood for quite some time now that performance on 

basic visual tasks which require detection and identification of simple visual stimuli do 

not adequately describe the variety of visual impairments.  Moreover, performance 

measures on these tasks do not predict well an individual’s visual functioning on real-life 

tasks in various environments (e.g., Ball et al., 1988).  The International Council for 

Education of the Visually Handicapped (ICEVH) formally embraced this functional 

perspective in the 1970’s and called for a new definition that would account for 

individuals who were mislabeled as blind, but still had useful visual functioning.  This 

new term would not be based on medical acuity alone, but instead put emphasis on visual 

functioning (Barraga, 1993).  The term low vision (LV) embodies this functional 

perspective.  Although there is no one universally accepted definition and no legal 

definition is established, the definition for LV used for the current work is: 
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“a person who has difficulty accomplishing visual tasks, even with prescribed 
corrective lenses, but who can enhance his or her ability to accomplish these tasks 
with the use of compensatory visual strategies, low vision and other devices, and 
environmental modifications.  (From Corn & Koenig’s “Foundations of Low 
Vision”) 
 
 
More than 5 million Americans have visual impairments that affect their everyday 

life (Oberdorfer, 2004) and between 50,000 to 100,000 school age children in the U.S. 

have visual impairments that require special education services (Nelson and Demetrova, 

1993; Corn and Koenig, 1996).   

Our earlier pilot work has indicated that LV youth have a pronounced decrement 

with their peripheral attention in particular.  Informal observations suggest that children 

with LV are not using peripheral vision effectively or in ways similar to those of children 

with normal vision.  Even children whose etiologies do not indicate involvement of the 

peripheral retina often appear not to attend to or locate objects effectively outside the 

central field of view.  Ambrose and Corn (1997) found that orientation skills of children 

with LV were inconsistent with the performance expected for their measured acuities and 

visual field extents.  These functional failures may be caused by a simple strategy to 

over-attend to the central field, or from other hindrances of normal development of their 

peripheral functioning.   

LV children and adolescents have several important differences in their peripheral 

abilities, as compared to typically-sighted individuals.  For one, they have markedly 

better peripheral acuity than would be expected from typically-sighted abilities.  

Compared to typically-sighted acuities, LV children have less drop-off in peripheral 

acuity, (Nyquist et al, 2005).  Relatively speaking, their peripheral vision has an elevated 

resolution and therefore may be an important resource to better utilize.   
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Central and Peripheral Acuity for Typically-Sighted (n=3) 
and Low Vision Youth (n=5)
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Figure 1.  Average spatial frequency thresholds of typically-sighted and LV  
youth for foveal and peripheral locations. 
 
 
 

 Other pilot studies performed in our lab indicate that the peripheral functioning of 

LV youth is different than the peripheral functioning for typically-sighted individuals.  

For one, peripheral motion discrimination appears to be worse for LV youth, whereas 

central motion discrimination is surprisingly equal between LV and typically-sighted 

individuals.  LV youth, however, do show a deficit for central motion discrimination 

when motion speed becomes very slow.  A deficit in peripheral motion perception may 

be one important cause of this population’s difficulties in performing certain everyday 

tasks. 
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Peripheral Attention and Visual Functioning 

Peripheral vision and peripheral visual attention are essential skills needed during 

common everyday tasks.  Studies show that measures of visual attention, particularly 

peripheral visual attention, correlate well with tasks and assessments of independent 

mobility (Geruschat & Smith, 1997; Ludt & Goodrich, 2002; Turano et al. 1996, 2002; 

Patel et al., 2006; Owsley & McGwin, 2004; Dodds & Davis, 1989).  Broman and 

colleagues (2004) used a measure of visual attention to predict number of falls, trouble 

with balance, physical activity, and bumping into objects during a mobility task.  Such 

correlations remain after adjusting for visual acuity and contrast sensitivity.  In addition 

to correlational evidence, attentional training has resulted in enhanced coordination and 

fewer minor mishaps in the home (Drew and Waters, 1986).  Similar effects appear for 

typically-sighted children as well.  Dunbar and colleagues (2001) tested the ability of 

children of various ages to switch attention and concentrate.  Children, who were more 

able to effectively switch attention, were more likely to show awareness of traffic when 

about to cross a road and crossed the road in an overall safer manner.   

Peripheral attention has also been linked to driver performance.  Statistics from 

driving accidents indicate significant correlations between difficulty in processing 

peripheral information and likelihood of causing an accident (Ball et al., 1988; Ball & 

Owsley, 2003; Owsley et al., 1998, 2001; Goode et al., 1998).   
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Enhancement of Visual Attention from Experience 

Some visual attention processes and capacities seem to change from certain 

experiences and normal development.  Research from training studies, anatomical and 

behavioral studies of special populations, and developmental studies all document 

changes to visual attention due to experience.  In the developmental literature, for 

example, several aspects of attention appear to improve over the course of childhood.  

The alerting function of attention, or the ability to remain vigilant while waiting for a 

target to appear, is found to be worse in children compared to adults.  Specifically, 

children’s alertness function slows down after repeated exposure to a particular stimulus 

(Kraut, 1976).  It is well documented that children’s visual selection (orienting) improves 

over the course of normal development.  As they get older, children are able to orient to a 

target location faster and to filter competing information better (Akhtar & Enns, 1989; 

Enns & Cameron, 1987), make better use of cues to guide their attention, are less 

distracted by invalid cues (Schul et al., 2003), and able to direct attention to a larger 

visual region (Enns & Girgus, 1985).  Studies also suggest that higher forms of attention 

(executive control) develop through childhood.  Age-related improvements are found on 

tasks involving resolution of conflict among stimulus elements.  For example, one study 

required children and adults to respond to a stimulus by pressing a key with the identical 

figure as the target while suppressing information on whether the response key is on the 

same side of the display as the target (Gerardi-Caulton, 2000).  Another study gave a 

child version of the stroop task to young children ages 2 – 4 (Gerstadt, Hong, & 

Diamond, 1994). Both studies showed strong evidence of development on these tasks. 
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Neuroplasticity 

Several pilot studies were presented earlier that revealed unexpected differences 

for peripheral motion processing performances of LV youth.   Another special 

population, in this case congenitally deaf individuals, also presents unusual visual 

abilities for tasks that require peripheral visual functions.  This group, however, shows 

enhanced performance.  Attentional selection, for one, appears to be more rapid for the 

congenitally deaf.  Loke and Song (1991) showed that deaf participants were 

significantly faster to detect a peripheral target (25° eccentricity) compared to hearing 

individuals, while both groups did not differ in their reaction times to central targets.  

Attentional capacity over a wide field of view is also enhanced for deaf individuals.  

Proksch and Bavelier (2002) demonstrated greater capacity of peripheral attention for 

deaf individuals.  Both hearing and deaf participants performed a flanker interference 

task, in which both a central target and a peripheral distractor stimulus (flanker) are 

presented simultaneously.  It is believed that this distractor will attenuate performance 

only if peripheral attentional resources are available.  In accordance with the view of 

greater peripheral attention in the deaf, peripheral flankers were more distracting in deaf 

than hearing individuals.  

Anatomical evidence indicates plasticity of the peripheral visual system for 

congenitally deaf individuals.  Psychophysical studies measuring event-related potentials 

(Neville and Lawson, 1987a; 1987b) have compared deaf and hearing adults on motion 

detection tasks for central and peripheral targets.  Not only do deaf adults perform better 

and faster for detecting peripheral motion, but they also display much larger attention-

related ERP amplitudes (indexed by the early negativity – N1) for peripheral targets.  
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Such differences did not occur when these individuals detected central targets.  fMRI 

studies find greater activation levels of MT/MST for a congenitally deaf group than 

hearing individuals when attending to peripheral motion stimuli at 15 º eccentricities 

(Bavelier et al., 2001; Fine et al., 2005).  Both groups, however, have comparable 

recruitment to MT/MST when visible peripheral stimuli are not attended to.   

Although LV youth demonstrate the opposite effect by performing worse on 

peripheral tasks, these two special populations have unique visual functioning in their 

peripheral fields.  These results, taken together with developmental studies showing 

attentional increases during typical development, suggest that peripheral visual 

functioning may be malleable during some point in childhood.    

Children are still learning what information their environments afford and are still 

developing visual strategies and abilities for acquiring that information.  Little is now 

known regarding whether visual skills and processes may be restricted to a particular 

developmental window or time span, but the best opportunities for visual and attentional 

development may be during childhood.  If so, then childhood may be an opportune time 

for training such skills.  Training studies with typically sighted adults have already 

enhanced visual attention.  This research is reviewed next. 

 

Training Visual Attention 

For two decades now, researchers have examined whether playing video games 

results in improved visual attention (Gopher, Weil, & Bareket, 1994; Green & Bavelier, 

2003; 2006a; 2006b; 2007; Greenfield, DeWinstanley, Kilpatrick, & Kaye, 1994; Trick, 

Jaspers-Fayer, & Sethi, 2005).  These studies reveal improvements in spatial and 
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temporal aspects of attention, capacity to track multiple moving objects, more efficient 

attentional monitoring, and even changes in peripheral acuity.  Although it is not known 

what exactly about video game training causes such enhancements, there are certain 

qualities that are good candidates.  Action video games are quite demanding on visual 

processing: multiple moving items must be selected, processed and tracked 

simultaneously, attention must be distributed across space and switched quickly among 

multiple locations while rewarding vigilance to unexpected peripheral targets, and 

irrelevant information must be actively suppressed.  This topic will be discussed further 

in the next section. 

Green and Bavelier (2003; 2006a; 2006b; 2007) have included both correlational 

and experimental studies of action video game playing.  The correlational studies 

compare the performance of non-video game players (NVGP) to video game players 

(VGP), as defined by previous video game exposure.  VGP groups consistently perform 

significantly better than the NVGP group on several attention-based visual tasks 

(described later).  Experimental studies start with all NVGP individuals and train half 

with action video games and the other half with a control video game.  This training lasts 

between 10, 1-hour sessions (2003; 2006a) and 30, 1-hour sessions (2006b; 2007).  VGP 

groups perform significantly better than NVGP groups on several measures.  For 

example, using an enumeration task, which provides an estimate for the number of items 

that can be attended at once, Green and Bavelier (2003, 2006a) showed that trained 

participants could attend to approximately 50% more items at once than untrained 

participants.   
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Enhancement of spatial distribution of attention 

Green and Bavelier (2003, 2006b) found training effects with the useful field of 

view (UFOV) task, which has been defined as a measure of the total visual field area in 

which useful information can be acquired within one eye fixation (Ball et. al., 1988).  The 

general structure of the UFOV measure includes an array of possible stimulus locations, 

where the locations form “spokes” emanating from a central fixation point.  Each spoke 

has several locations in which a distractor or target stimulus may appear.  These locations 

are fixed at 10, 20, and 30 degrees of eccentricity, making a total of 24 possible spatial 

locations.  Briefly presented stimuli appear at one or more of these locations, and an 

observer must locate the radial position of a peripherally presented target while 

simultaneously performing a central task of varying complexity.   

This measure does not correlate well with standard tests of visual acuity but rather 

provides a measure of attentional resources and their spatial distribution (Ball et al., 

1988).  Green and Bavelier (2003, 2006b) found that trained participants far 

outperformed their untrained counterparts at all locations in the visual field, sometimes 

approaching twice the accuracy for correctly locating a target.  There was also a slight, 

but non-significant trend for greater improvement for targets located further in the 

periphery.  A similar measure to this will be included in the current study. 

Enhancement of tolerance for perceptual crowding 

 Action video games also seem to refine the spatial resolution of peripheral vision, 

as measured by the crowding region.  Crowding refers to the difficulty to identify a target 

stimulus when other stimuli (distractors) are presented in close spatial proximity to the 

target.  These distractors, or flankers, effectively “crowd” the perceptibility of the target 
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stimulus.  The crowding region offers a measure of peripheral acuity, or resolution of 

visual-spatial attention (Intrilligator & Cavanaugh, 2001; Montaser-Kouhsari & 

Rajimehr, 2005; Tripathy & Cavanaugh, 2002). In other words, increased attention can 

reduce the crowding effect of flankers (Poder, 2005).  Green and Bavelier (2007) have 

demonstrated recently that participants trained on action video games can tolerate smaller 

target-distractor distances.  A measure of crowding will also be used in the current study. 

Perhaps the most interesting finding from these training studies is that many of 

these improvements described above are found beyond the visual field in which training 

took place.  For example, video game training was often displayed between +/- 10 

degrees of visual angle, but improvements were found as far out as +/- 30 degrees of 

visual angle.  This again points to the particular malleability of peripheral attention. 

These training studies that use action video games demonstrate a variety of ways 

that our visual system, particularly visual attention, benefits.  Although it is still unknown 

what specific qualities of these games are responsible, several possibilities include that 

these environments contain objects that move more quickly, peripheral processing is 

placed at a premium, and the number of items that need to be kept track of exceeds the 

circumstances in normal life.  LV children may be an especially trainable group in 

regards to visual attention.  The current study was designed to specifically investigate 

whether visual functioning, and peripheral visual attention in particular, can be enhanced 

for LV children via training. 
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Current Aims 

Inspired by the already mentioned training studies using action video games, one 

aim of the current study is to investigate how similar training may affect a group of 

children and adolescents with LV.  Based on the reviewed research, visual peripheral 

attention might improve particularly well for children and adolescents with LV.  Training 

effects will be measured in both central and peripheral vision, including measures similar 

to earlier training studies as well as a measure of more everyday visual functioning.   

A second aim attempts to flesh out the specific characteristics of video game 

training that cause attentional improvements.  Despite the accruing evidence that video 

games seem to improve visual attention, there is very little understanding about which 

aspects of these games are causing such effects.  To accomplish this, the effects of a 

novel (psychophysical task) training task will be included as a comparison to the 

traditional video game training.  The psychophysical training task is designed to emulate 

specific task characteristics that are found in video games that may drive visual 

improvements.  The action video games used in previous studies involve navigating 

through a world where numerous enemies can appear from virtually any location.  More 

specifically, it seems to be the case that these games require players to distribute and 

switch their attention to many locations in rapid succession while at the same time 

rewarding vigilance to unexpected peripheral targets.  Players must effectively ignore 

irrelevant stimuli and track multiple moving objects simultaneously.  These task demands 

are emulated in the psychophysical task.   
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Psychophysical Training Task 

This task is a modified multiple-object tracking (MOT) task.  Participants must 

track moving targets embedded in a field of competing, and visually identical, distracting 

elements.  Effective performance requires participants to ignore irrelevant stimuli.  At the 

same time that participants are tracking targets, they must also be vigilant to the far 

periphery, where briefly presented objects appear randomly and must be discriminated 

for direction of motion.  It is generally accepted that there is a large dynamic attentional 

component to the MOT task (Scholl, Pylyshyn, & Feldman, 2001).  One study has 

demonstrated that attention is actually split between the items during tracking (Sears & 

Pylyshyn, 2000).   This task provides a training program that includes the best candidate 

qualities found in action video games while eliminating the wide range of characteristics 

that are free to vary in action video games.   

 

Measures of Visual Functioning 

In order to quantify the effects of training, five tasks of visual attention and visual 

functioning are used.  These measures examine both central and peripheral visual 

functioning, including measures of spatial acuity and attention-based performance in both 

fields.  A measure of a more common everyday visual task (visual search) was also 

examined. 

 

Foveal Tasks 

 To investigate training effects on central vision, two motion discrimination tasks 

are used.  Each task presents stimuli at central fixation and measures temporal thresholds 
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and spatial frequency thresholds, respectively.  These tasks will be used as comparisons 

to the peripheral tasks of motion discrimination and spatial acuity. 

 

Peripheral Motion Discrimination 

Of fundamental importance to the current study are performance and training 

effects for peripheral motion perception and peripheral visual attention.  To this end, two 

forms of a motion discrimination task are included in the current study, called the simple 

and complex peripheral motion discrimination tasks.  These tasks were inspired by the 

UFOV task (Ball, et. al., 1988), which was described earlier as a stimulus localization 

task thought to provide an index of the distribution of visual attention across a large field 

of view (Ball et al., 1990; Owsley et al., 1995).   

Similar to the UFOV task, both tasks present stimuli at several locations 

throughout a wide visual field (12° and 25° eccentricity).  The current tasks, however, 

require motion discrimination and measure temporal thresholds for stimuli presentation.  

The simple peripheral motion discrimination task briefly displays a single moving 

stimulus in one of many potential spatial locations.  An observer must discriminate the 

direction of motion (up or down).  The complex peripheral motion discrimination task 

briefly presents three moving stimuli simultaneously and an observer must indicate 

whether all three motions are unidirectional (same) or have different directions of motion.  

These stimuli are spread throughout the visual field and require observers to process all 

three motion directions in order to correctly respond. 
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Perceptual Crowding 

A crowding task is included to measure peripheral attention and spatial resolution.  

Crowding refers to the difficulty to identify a target stimulus when other stimuli 

(distractors) are presented in close spatial proximity to the target.  These distractors, or 

flankers, effectively “crowd” the perceptibility of the target stimulus.  As mentioned 

earlier, the crowding region offers a measure of the resolution of visual-spatial attention 

(Intrilligator & Cavanaugh, 2001; Montaser-Kouhsari & Rajimehr, 2005; Tripathy & 

Cavanaugh, 2002). Consequently, increased attention can reduce the crowding effect of 

flankers (Poder, 2005).  Tolerance for perceptual crowding has important implications for 

reading and is a common problem for visually impaired individuals, such as in the cases 

of amblyopia or normal aging (Ball et al., 1988; Ball & Owsley, 1992).  Crowding 

tolerance has already been shown to improve for typically-sighted subjects after training 

with action video games (Green and Bavelier, 2006b). 

 

Visual Search of Natural Scenes 

A visual search task of naturalistic scenes is included in the current study as well 

to provide a more ecologically valid measure of visual functioning.  Children commonly 

report difficulties in everyday tasks that rely on visual search skills, expressing problems 

with distracting objects and events, cluttered visual scenes, and not enough time to locate 

task relevant objects. Visual search relies on a host of visual functions including selective 

visual attention, executive control, visual memory and well-coordinated eye movements.    
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CHAPTER II 

 

DESIGN AND METHOD 

 

Overview of Study 

The sequence of tasks and measures is displayed below in Table 1.  Participants 

were first screened on basic vision criteria and given a questionnaire about visually 

relevant activities they participate in.  Next participants were given a set of computer-

based tasks (pre-test measures) which typically took two or three sessions.  Subjects were 

then assigned to a training condition which lasted for the next 2-3 weeks.  After training, 

participants performed the same computer-based tasks again (post-tests measures).   

 

Table 1: Sequence of study: tasks and measures. 
Screening  
Measurements 

Pre-Test  
Measurements 

Training  
Conditions 

Post-Test 
Measurements 

Acuity Foveal Spatial  
Sensitivity 

Action Video Game Foveal Spatial  
Sensitivity 

Visual Field  Foveal Temporal 
Sensitivity 

Psychophysical Foveal Temporal 
Sensitivity 

Questionnaire Simple Peripheral  
Motion Discrimination 

Control Game  Simple Peripheral  
Motion Discrimination 

 Complex Peripheral  
Motion Discrimination 

 Complex Peripheral  
Motion Discrimination 

 Peripheral Crowding  Peripheral Crowding 

 Visual Search   Visual Search 
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Participants 

LV participants were recruited through the Tennessee and Oklahoma Schools for 

the Blind.  Participants are low-vision children and adolescents, ranging between 10 and 

18 years old, with no cognitive impairments, acuities between 20/60 and 20/800, and 

visual fields of at least 35 degrees in both the left and right visual hemifields.  These 

criteria were first screened by appropriate staff at the schools, and confirmed by the 

researcher using vision reports provided by the school.  A group of typically-sighted 

children and adolescents were recruited to perform the same pre-training tasks.  This 

group’s performance thresholds provided a baseline comparison to the low-vision 

participants’ measures.  This group ranges in ages from 10 to 17 years old and have 

normal visual acuity and peripheral fields.  A summary table of all participants is provided 

below (Table 2).



19 

Table 2: Ages and Visual Characteristics of Study Participants.   
* indicates glasses were worn during study 
               Visually- 
         Right Eye Left Eye Visual  Demanding Action 
School  Age Etiology    Acuity  Acuity   Field  Activities Video Games 
Control Group 13.1 (Avg) 
TSB   16 Nystagmus    20/800  20/400  normal  Weekly  None 
TSB   9 Nystagmus, Oculocutaneous Albinism 20/800  20/800  normal  Monthly None 
TSB   16 Stargardt’s Disease   20/60  20/80  normal  Weekly  Weekly 
OSB   10 Stargardt’s Disease   20/200  20/100  normal  Monthly Daily 
OSB   11 ROP     20/200* 20/200* -40°, +35° Weekly  None 
OSB   14 Nystagmus, Oculocutaneous Albinism 20/300  20/200  normal  None  Daily 
OSB   14 Nystagmus, Oculocutaneous Albinism 20/200  20/200  normal  Weekly  Weekly 
OSB   14 ROP     20/400  20/400  normal  Once  Once 
OSB   14 Nystagmus    20/200  20/200  normal  Never  Daily 
Video Game 15.3 (Avg) 
TSB   14 Aphakia    20/200* 20/200* normal  Once  Once 
TSB   17 Retinitis Pigmentosa   20/400  NLP  ?  Weekly  Never 
OSB   18 Stargardt’s Disease   20/400  20/400  8° central Monthly Weekly 
OSB   15 Stargardt’s Disease   20/200  20/200  normal  Daily  Daily 
OSB   13 Nystagmus, Septo-optic Dysplasia 20/200  20/200  +/- 45°  Daily  Weekly 
OSB   16 Coloboma    20/400  20/400  unknown Weekly  Monthly 
OSB   17 Aphakia, Cataracts, Nystagmus  20/200* 20/200* -42°, +37° Daily  Weekly 
OSB   12 Nystagmus, OD Esotropia  20/400* 20/400* normal   Monthly Never 
Psychophysical 15.6 (Avg) 
TSB   14 ROP     20/800  cf 1’  normal  Daily  Daily 
TSB   16 Nystagmus, Oculocutaneous Albinism 20/400  20/400  normal  None  Monthly 
OSB   14 Aphakia, Cataracts, Nystagmus  20/200* 20/200* normal  Weekly  Weekly 
OSB   16 Nystagmus    20/200* 20/200* normal  Daily  Once 
OSB   16 Nystagmus, Amblyopia   20/70  20/100  normal  Monthly Once 
OSB   15 Nystagmus    20/400  20/400  normal  Never  Never 
OSB   17 Nystagmus, Oculocutaneous Albinism 20/200  20/200  normal  Daily  Weekly   
Typically-sighted  14.6 (Avg) 
 



 

Before the study began, a power analysis was performed in order to make 

informed choices about the number of subjects needed to detect training effects.  Effect 

sizes were calculated from Green and Bavelier (2002; 2006), because these studies used 

training and dependent measures that were similar to the current study.  Beta calculations, 

or probabilities of detecting a significant result, are based on Lipsey (1990) with one-

tailed tests and alpha = .05.  Based on these calculations, between 6 and 9 subjects per 

condition are needed for these studies to have more than 80% power.  The current study 

attempted to have at least 8 subjects per condition. 

 

Assignment 

Previous pilot work suggested that participant’s prior experience with visually 

demanding activities (e.g., action video games, certain ball-based sports, biking) can have 

an important effect on study measures.  In order to control the influence of this factor on 

outcome measures, a randomized block design was incorporated into the assignment 

process.   Participants were first assessed on previous relevant experiences with a 

questionnaire (appendix A).  Based on their answers, participants were stratified, or 

blocked, into three levels of this factor (see appendix B for details of this process).  

Participants in each block level were then randomly assigned to a training condition 

without replacement.  This means that a participant was randomly assigned to one of the 

three conditions, and the next participant from the same block was randomly assigned to 

one of the remaining two conditions, and finally the next participant was placed in the 

remaining condition.  This process continued until all participants within a block had 



 

been assigned.  This form of assignment ensures that each experience level has equal 

representation in each training condition.   

 

Apparatus 

To present stimuli and collect response data, computer programs were run on a 

Macintosh G4 and a G5.  The program that ran the central motion discrimination task (2) 

used the Matlab computer language, version 5.2 (The Math Works Inc., Natick, MA) and 

the Psychophysical Toolbox routines, version 2.44 for the apple OS9 operating system 

(Brainard and Pelli, 2000 - http://psychtoolbox.org).  This program was only run on the 

G4 computer.  Stimuli for this program were presented on a LCD monitor (ViewSonic 

VX924, 37.5 cm horizontal x 30 cm vertical area, with 1024 x 768 resolution, 85 Hz, 

with linearized grey-scale).  Each pixel was 1.635 arcmin2.  Viewing distance was 

binocular at 77 cm.  Contrast was 99.8%, with minimum ambient background luminance 

of .13 cd/m2 and maximum luminance at 67 cd/m2. 

All other vision assessment tasks were run on a Macintosh G5 using the Matlab 

computer language, version 7.1 (The Math Works Inc., Natick, MA) and the 

Psychophysical Toolbox routines, version 1.0.6 for the apple OSX operating system 

(Brainard and Ingling, 2005- http://psychtoolbox.org). The stimuli were displayed on a 

matte finish projection screen using a NEC WT610 projector (174 cm horizontal x 130 

cm vertical area, with resolution of 1028 X 768, 120 Hz, with linearized grey-scale). 

Each pixel was 3.745 arcmin2.  Viewing distance was 156 cm.  Minimum ambient 

background luminance was .04 cd/m2 across the entire screen. Maximum luminance 



 

varied from 98 cd/m2 on the left side to 87 cd/m2 on the right side.  Contrast, however, 

was greater than 99.9% on the entire screen. 

The psychophysical training program was run with both Macintosh computers.  

The G5 again used the same projector and display parameters as described above.  The 

G4 now ran the identical operating system and programs as the G5 computer.  The G4 

used a Panasonic AE-9000U projector (198 cm horizontal x 149 cm vertical area, with 

resolution of 1028 X 768, 85 Hz, with linearized grey-scale). Each pixel was 3.755 

arcmin2.  Viewing distance was approximately 177 cm.  This distance was not strictly 

enforced for training sessions.  Contrast and luminance was made as similar as possible 

to the NEC projector.  Minimum ambient background luminance was .7 cd/m2 across the 

entire screen. Maximum luminance was 56 cd/m2 on the left side to 61 cd/m2 on the right 

side.  Contrast was 98.8% on the entire screen. 

A Playstation 2 video game console was used for the control and action video 

game conditions.  These training tasks were displayed on the same projectors with 

equivalent display sizes (28° wide X 21°high effective game area).   

 

Vision Measures 

Pre- and post-test measures were always given in the following order: complex 

peripheral motion discrimination, crowding, visual search, foveal motion discrimination 

(temporal thresholds) and simple peripheral motion discrimination, and foveal motion 

discrimination (spatial frequency threshold).  These tasks were always given in this order 

to reduce the confusability of response mappings that were observed during pilot work.  

All computer-based training tasks and measures incorporate adaptive QUEST staircases 



 

(Watson & Pelli, 1983).  This procedure enables computer programs to efficiently adjust 

a task parameter based on a participant’s performance in order to quickly estimate their 

threshold performance.  Thresholds (80%) were estimated with blocks of 25 trials per 

threshold estimate.  Each participant performed practice blocks until thresholds did not 

vary by more than 15% from the previous block.  Three to five more blocks were then 

run for data collection.  Auditory feedback was provided after each trial. 

 

Foveal and Peripheral Motion Discrimination (Temporal Thresholds) 

Stimuli were Gabor patches: moving sine wave gratings presented in a stationary 

spatial Gaussian envelope.  The motion occurred in two alternative directions: up or 

down.  Gabor size was 4° diameter, with spatial frequency (SF) of .75 cycles/° and 

temporal frequency (TF) was 10 °/second.  Gabors were presented in a temporal Gaussian 

envelope, whose duration was adjusted by a QUEST staircase in order to measure 

temporal thresholds. 

 
Figure 2.  Display of all possible Gabor locations for the simple 
motion discrimination task. 



 

The simple motion discrimination task briefly presented a single Gabor in one of 

13 possible spatial windows, very similar to the spatial layout of the UFOV task.  Figure 

2 displays an image of all possible stimuli locations for this task.  Spatial locations are at 

0°, +/-12°, and +/-25° in cartesian coordinates and 0° and +/- 45° in polar coordinates.  

Participants responded by pressing one of two keys to identify the direction.  This task is 

thought to primarily require the alerting and orienting functions of attention over a wide 

region of visual space, requiring rapid deployment of selective attention to various 

locations.   

A similar task, named the complex motion discrimination task, briefly presents 

three target Gabors simultaneously along the horizontal line (Figure 3).  All three targets 

move up or down independently and have the same stimulus attributes as the simple 

motion task.  A QUEST staircase again controls the stimulus presentation time.  A two-

alternative forced-choice (2AFC) is given to an observer:  Participants respond “same” if 

all three Gabors are moving in the same direction (all up or all down), or “different” if 

one Gabor moves in the opposite direction from the other two.  The program is 

constrained to produce “same” and “different” presentations equally often at 50% each.  

This task also requires the alerting and orienting functions of attention over a wide region 

of visual space, while also requiring rapid deployment of selective attention to a much 

larger region of space.  Executive control may be recruited as well in order to compare 

and reject incongruent stimuli. 

Two conditions are run with interspersed trials and independent threshold 

measurements.  One condition presents stimuli at central fixation and at 12° left and right 



 

of center, and a second condition presents the three stimuli at central fixation and 25° left 

and right of center.   

 

 
Figure 3:  Example of complex motion discrimination task. 

 

Crowding 

Stimuli are landolt-type letter c’s with four potential orientations: 0°, 90°, 180°, 

and 270°.  A target stimulus is briefly presented (150 msec.) along with four identical 

distractor letter c’s surrounding the target at 0°, 90°, 180°, and 270° polar degrees.  

Targets and distractors all have a diameter of 3° visual angle.  Participants were asked to 

fixate on a central point while the target was presented randomly at either 8° or 16° left or 

right of central fixation.  Participants discriminated the orientation of the target c.  A 

QUEST staircase procedure adjusts the target – distractor distance.  A separate threshold 

was measured for each eccentricity. 



 

Similar to the previously described tasks the crowding task presents stimuli very 

quickly, requiring vigilance (alerting function of attention) and rapid selection of a spatial 

location and correct orientation of a target stimulus (orienting function of attention).  

Crowding also measures the spatial resolution of attention. 

 

 
  Figure 4: Example of the 8° crowding stimuli presentation just  

after central fixation cross disappears. 
 

 

Naturalistic Visual Search 

This task measures how quickly participants can locate and point (with a laser 

pointer) to a target object located in photographs of typical scenes (i.e., office rooms). 

Nine target objects (e.g., coffee cup, plant, bottle of Motrin) were used, with one target 

per trial.  Each target is presented in four different scenes, for a total of 36 trials.  Targets 

and target placement were chosen to vary the level of discriminability from background 

scenes.  Level of discriminability was adjusted using different levels of contrast between 



 

target and background, amount of clutter, and number and similarity of distracting 

objects.  Trials were presented on the same large projection screen used for other 

measures.   

Before the trials began, the experimenter would explain the task and give the 

participant a brief test to make sure he or she could see the laser pointer and point to 

randomly called out corners of the screen.  All subjects could do this quickly.  

Participants were also instructed to find the target object with their eyes first and then 

point to the target with the laser pointer.  This reduced “fishing” for the target.  Laser 

points were almost always direct points or quick, linear sweeps toward the participant’s 

answer.   

Trial sequence began with a photograph of the target object alone in the center of 

the screen for 5 seconds.  The experimenter would state out loud the name of the target.  

Next the scene photograph would be displayed and the participant would begin searching 

for the target object.  The computer program began a timer at this point, which terminated 

once the experimenter pushed a button indicating that the target was located.  If a 

participant pointed to an incorrect object, the experimenter simply said “no” and instruct 

the participant to turn the laser back off if they did not do so on their own. After 30 

seconds, the experimenter would say “keep looking, you will find it”.  After 60 seconds, 

the experimenter would state again the name of the object, repeating this every following 

minute.  The trial would be terminated if a participant had not found the object after 5 

minutes, although this did not occur. 

 

 



 

Training Tasks 

 For all three groups, training consisted of playing the predetermined task for 10 

total sessions (40-50 minutes per session, minimum of 3 times a week and maximum of 5 

times a week).  Many video games were examined in order to find a child-friendly game 

that would emulate similar characteristics to video games used in previous studies.  The 

action video game chosen is Ratchet and Clank: Dreadlocked.  This game controls a 

character from the first person perspective, provides an appropriate level of challenge for 

LV children, and adapts appropriately to participants’ progress.  Most importantly, this 

game includes the task demands characteristic of action video games used in previous 

studies.  This game requires rapid visuospatial processing: multiple moving items must 

be attended and tracked simultaneously, vigilance to unexpected peripheral targets, and 

irrelevant objects must be rejected.   

The control training task is a video game called Lumines.  This game is similar to 

the well-known game Tetris, which has been used regularly in previous training studies 

as a control condition.  This game was selected to control for the effect of improved 

visuomotor coordination, while putting little demand on visuospatial processing. 

 

Psychophysical Training Condition 

Generally, this task is a multiple object tracking (MOT) task, with the addition of 

briefly presented moving Gabors that randomly appear in the periphery during the 

tracking task.  Participants begin their first session with a small block of trials so that the 

researcher can describe the task and let participants get acquainted with the task.  Initial 

blocks are also used to discern the appropriate parameter values (e.g., number of targets 



 

and distractors, speed of balls, etc.) to fit the participant’s skill level.  After task 

parameters are adjusted to match the participant’s performance, blocks of 50 trials begin.  

Blocks generally included two staircases of 25 trials each, with two levels of targets and 

distractors.  This helped to reduce monotony of the task. 
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       (3) 

     
 

Figure 5.  Sequence of psychophysical task: (1) targets are briefly identified, (2) balls 
move about randomly while peripheral Gabors may appear, (3) balls stop and participant 
chooses target from two alternatives. 

 



 

The sequence for a trial is presented in Figure 5 above.  Participants hit any key to 

initiate the trial. A number of static white balls (4 – 10) are presented for 2 seconds on the 

screen, appearing in random locations within a box (23° wide X 17° high).  Balls were 

1.5° in diameter.  During this time, 2-5 balls are highlighted (circled with black) to signal 

their status as targets.  Next, all balls become visually identical and begin moving 

randomly and independently of one another, avoiding each other and the edge of the box.  

These balls can approach but never touch each other (they repulse each other).  

Movement continues for 10 seconds, during which time briefly presented Gabors (same 

characteristics as previously described) may appear directly outside the box to the left or 

right (+/- 25°eccentricity).  Participants make a simple up/down discrimination to these 

targets.  Between 0 - 2 Gabor presentations may occur during a single tracking trial.  

Onset of first Gabor (if present) occurs between 500 msec and 3500 msec, and onset of 

second Gabor (if present) occurs between 500 msec and 3000 msec after the first Gabor 

is responded to.  After the balls stop moving, two balls become highlighted (one circled 

with red and another circled with blue).  Participants then respond to which highlighted 

ball is a target, “1” for red and “2” for blue. Immediate auditory feedback is provided for 

correct answers to both the tracking and the motion discrimination tasks. 

Several QUEST procedures are used in this task.  One adjusts the velocity of the 

targets and distractors to maintain 82% accuracy.  Velocities typically ranged between 

5.0°/second and 30°/second.  A second QUEST procedure adjusts temporal durations of 

the peripheral targets – these Gabors were presented in a temporal Gaussian envelope, 

whose duration was adjusted by a QUEST staircase in order to measure temporal 

thresholds.   The multiple QUEST procedures are used to keep performance adapted to 



 

participants’ skill level, similar to video games.  Adjustment of task difficulty with an 

adaptive staircase such as QUEST (especially with a conservative 82% threshold) 

minimizes the experience of failure, which presumably should have a positive effect on 

participants’ motivation.  The number of targets and distractors was also adjusted as 

participants’ skill level increased.  Once ball velocity surpassed approximately 

25°/second then the number of targets and distractors was increased before the next block 

of trials.  Participants usually completed two blocks of trails during each session.   



 

CHAPTER III 

 

RESULTS 

 

Participants 

Perhaps the most succinct way to describe the LV participants in this study is the 

word variable.  Participants had a wide range of performance thresholds on pre-test vision 

measures, as well as variability on individual characteristics.  For example, participants 

had many different types of visual impairments.  The most common type was Nystagmus 

(involuntary eye movement) with 58% having this condition.  Other impairments include 

Stargardt’s Disease (juvenile macular dystrophy) at 17%, Retinopathy of Prematurity 

(abnormal retinal blood vessel growth and scarring) at 13%, Aphakia (absence of the 

lens) at 13%, and congenital cataracts (8%).  Less frequent impairments included 

Retinitis Pigmentosa, Coloboma, Amblyopia, optic nerve hypoplasia, and Strabismus.  

Recall from Table 2 that many participants exhibit more than one of these conditions.   

These sources of variability introduce noise for data analyses and complicate how 

results are interpreted.  For one, the wide variance across participants can introduce pre-

training group differences, even when random assignment is used.  Such pre-existing 

group differences make it more difficult to attribute post-test differences to a training 

condition.  These issues can, and will, be handled using various research methods and 

statistical procedures which are discussed in a later section.  The following section will 

first take a closer look at individual-level characteristics and pre-training thresholds, in 

order to highlight the pre-training variability that may need to be controlled for in later 



 

analyses.  LV thresholds are also compared to a typically-sighted baseline group to 

highlight other patterns that help describe LV performance.  

 

Individual Pre-Training Thresholds 

Individual thresholds on foveal tasks are shown below (Figures 6 and 7) for both 

LV and typically-sighted participants.  Temporal thresholds had a wide range of 

thresholds for LV individuals (mean = 74.0 msec, SD = 78.5), although most performed 

in the same range as typically-sighted youth (mean = 48.1 msec, SD = 21.3).  

Importantly, group differences exist between average thresholds for the three LV training 

conditions (Control mean = 109.3, Video Game mean = 61.1, Psychophysical mean = 

49.2).  These differences are found in many of the measures presented in this section.  
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Figure 6.  Average individual temporal thresholds for foveal motion 
discrimination.  Thresholds are ordered within group by acuity, from best to 
worst. 



 

 Not surprising, the average foveal acuity (measured with a motion discrimination 

task) was much better for typically-sighted youth than for LV youth.  LV performance 

averaged 2.99 cyc./deg. (SD = 1.78), and typically-sighted youth averaged 10.18 

cyc./deg. (SD = 1.05).  Potentially important group differences may be present here as 

well for the three LV groups (Control mean = 2.5 cyc./deg., Video Game mean = 1.8 

cyc./deg., Psychophysical mean = 3.5 cyc./deg.). 
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Figure 7.  Average individual spatial thresholds for foveal motion discrimination. 
Thresholds are ordered within group by acuity, from best to worst. 
 
 
 
Temporal thresholds for peripheral motion discrimination are shown below in 

Figure 8.  LV performance, across all groups, was extremely variable, averaging 194.3 

msec (SD = 339.2) at 12° eccentricity, and 318.4 msec (SD = 409.4) at 25° eccentricity.  



 

Again, note the large differences between the three training groups on these pre-training 

thresholds (bars in black and gray with values included).   

Typically-sighted youth performed much better at these tasks, with substantially 

less variability between individuals.  This group averaged 40.3 msec (SD = 25.6) at 12° 

eccentricity, and 30.8 msec (SD = 11.6) at 25° eccentricity.   

Interestingly, these results show a clear difference in the two groups’ patterns of 

performance for peripheral motion processing.  Typical vision is characterized by 

enhanced temporal thresholds in the far periphery, while LV participants have declining 

performance in the far periphery.  This pattern held for every individual.  Even LV youth 

who performed at similar levels to the typically-sighted group show this pattern.   
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Figure 8:  Average individual temporal thresholds at two eccentricities of simple 
peripheral motion discrimination. Participants are ordered within group by acuity 
from best to worst. 



 

 Similarly, discriminating multiple moving stimuli was harder and more variable 

for LV youth (Figure 9).  LV thresholds averaged 216.4 msec (SD = 412.8) for 

25°condition and 393.4 msec (SD = 523.5) for 50° condition.  Typically-sighted youth 

averaged 30.0 msec (SD = 5.1) at a 25° stimuli spread and 34.0 msec (SD = 5.1) for a 50° 

stimuli spread.  LV participants again had more difficulty in the far periphery condition 

compared to typically-sighted performance.  Group averages for the three LV 

experimental conditions again show important pre-training differences. 

 Performance on this task appeared to elicit two confounding skills.  Several 

individuals seemed to use a strategy of sequentially examining each of the three stimuli 

separately with central vision.  All participants were asked to keep their eyes fixated 

centrally and examine the two peripherally located stimuli using their peripheral vision.  

This change in strategy altered the meaning of these participants’ thresholds.  Further 

analyses will attempt to separate out the influences from these individuals who appeared 

to perform the task incorrectly. 
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Figure 9: Average individual temporal thresholds at two eccentricities of complex 
peripheral motion discrimination. Participants are ordered within group by acuity 
from best to worst. 
 

  

Crowding performance was more similar between LV and typically-sighted 

participants (Figure 10), although variability was still greater between low-vision 

individuals.  This again resulted in differences between the three training groups.  LV 

participants averaged 5.2 deg. (SD = 3.0) at 8° eccentricity, and 7.8 deg. (SD = 3.1) at 

16° eccentricity, while the typically-sighted group averaged 3.5 deg. (SD = .45) at 8° 

eccentricity, and 7.1 deg. (SD = 1.5) at 16° eccentricity.   

Notice that average performance was almost equivalent between the two groups 

in the far periphery.  Because this task is a measure of peripheral spatial acuity, these 

results show a similar pattern to the study described earlier (Nyquist et al, 2005) which 



 

showed that LV youth have much less change from central to peripheral acuity compared 

to typically-sighted youth.  
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Figure 10: Average individual crowding thresholds at two eccentricities.  
Participants are ordered within group by acuity from best to worst. 
 
 
 
Visual search performance was also highly variable between low-vision 

participants and quite consistent between typically-sighted youth (Figure 11).  On 

average, typically sighted participants detected targets in 1.7 seconds (SD = .37), whereas 

LV participants took 10.1 seconds (SD = 11.3).  Note that group averages for the three 

training conditions were again markedly different. 
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Figure 11: Average individual target detection time for visual search task. 
Participants are ordered within group by acuity from best to worst. 
 
 
 
The preceding results have highlighted the considerable variability in visual 

thresholds for LV youth.  Table 3 below provides a summary of these characteristics for 

each of the three training groups.  Although individuals were randomly assigned to 

groups, thresholds and other characteristics differed between the three conditions before 

training.  These initial group differences will be accounted for in the analyses of post-test 

group differences.   

 

 

 

 



 

Table 3 Average pre-training vision thresholds and participant characteristics for each 
condition. 
 Control Group  

       (n=9) 
  Action Video  

 Game (n=8) 
  Psy.physical  

 Group (n=7) 

     Pre-Training 
    Measurements    M   (SD) 

 

   M   (SD) 

 

   M   (SD) 

Snellen Acuity (20/X)   284   (75)    300   (38)    324   (91) 

Age   13.1   (2.5)   15.3  (2.1)   15.6  (1.1) 

Foveal Spatial 
Sensitivity (cycle/°)   2.7   (1.8)    2.8  (1.7)    3.5  (2.1) 

Foveal Temporal 
Sensitivity (msec)  89.6  (96.0)   78.2 (88.0)   49.2 (34.2) 

Simple Peripheral Motion  
Discrimination - 12° (msec) 153.5 (162.6)  341.6 (553.0)   78.5 (50.6) 

Simple Peripheral Motion  
Discrimination - 25° (msec) 263.3 (255.6)  513.8 (627.7)  166.0 (116.6)

Complex Peripheral Motion  
Discrimination - 12° (msec) 168.6 (218.1)  360.0 (670.7)  113.6 (149.7)

Complex Peripheral Motion  
Discrimination - 25° (msec) 303.5 (324.3)  676.0 (776.3)  185.8 (198.2)

Peripheral Crowding - 8°  
(target/distractor distance)   4.8   (1.5)    6.8  (4.5)    3.8  (1.6) 

Peripheral Crowding - 16° 
(target/distractor distance)   8.1   (3.0)    9.0  (3.7)    5.9  (1.9) 

Visual Search (sec.)   9.0   (8.7)   14.0 (16.4)    7.2  (6.4) 

  

 

Training 

 Improvement on training conditions was assessed with several measures (Table 

4).  Control video game progress was measured with the median score from session 1 

subtracted from the median score during session 10, and then divided by the median 



 

score of session 1.  All players showed improvements, with an average improvement of 

376%.  Improvement for the action video game was indexed by cumulative game 

statistics.  Because this game progressed in difficulty and skill level as participants 

progressed through the game, three measures of summative game progress were used.  

“Total skill points” indicate level of mastery of various game skills, “completed 

challenges” is a measure of total game progress, and “tournament win/loss ratio” 

demonstrates progress, or lack of it.  Improvement was clear for most players, although 

two individuals clearly progressed much slower than other participants.  These two did, 

however, participate quite actively and seemed to be engaged and challenged throughout 

training.  

 
 
 
Table 4: Individual training improvement for control, action, and psychophysical training 
(n=9, n=8, n=7, respectively). 
 Control Video 

Game Condition 
 Action Video Game 

Condition 
 Psychophysical Training 

Condition 
 

Median Change 
Session 1 to 10 

 

Skill 
Points 

Completed 
Challenges 
(87 total) 

Tournament 
Win/Loss Ratio 

 
TPI  

Median 
Change 

Motion 
Threshold 

1 323% 1 15 11 1 / 9 1 43% -7% 
2 433% 2 31 77 10 / 10 2 -1% -9% 
3 212% 3 28 54 11 / 37 3 8% 4% 
4 407% 4 28 40 6 / 26 4 39% -127% 
5 481% 5 25 29 8 / 17 5 23% -14% 
6 387% 6 17 27 4 / 20 6 -10% 54% 
7 503% 7 44 62 13 / 9 7  32% 6% 
8           294% 8     14          11           1 / 5    
9           342%        
 

 



 

Improvement on the psychophysical task was measured with a derived measure 

labeled as tracking performance index (TPI).  This measure factored together velocity of 

balls (QUEST staircase at 82% threshold), number of tracked targets, and number of 

distractors: 

TPI = Velocity ×  # of StimuliTarget  ×  # of StimuliDistractor 

Average temporal threshold of Gabor presentations (QUEST staircase at 82% threshold) 

was also measured.  The median score from sessions 2 – 5 (Early Sessionsmedian) was 

compared to the median score for sessions 7 – 10 (Late Sessionsmedian).  Improvement for 

TPI and Gabor thresholds was calculated as (Late Sessionsmedian - Early Sessionsmedian) / 

(Early Sessionsmedian).  Table 5 below includes individual values for both early and late 

performance.  Average change was variable, with an average of 19% for TPI and -13% 

for temporal threshold.  The psychophysical training task was controlled by two QUEST 

staircases which keep performance at approximately 82%.  These staircases insured that 

performance was generally good even when these training measures indicate little or even 

negative change. 

 

 

 

 

 

 

 

 



 

Table 5. Individual median performance for several indicators during early and late 
sessions on the psychophysical training task. 

Participant 

Median
# of 

Targets 
Median # of 
Distractors 

Velocity 
of Balls 
(°/sec) 

Avg. Gabor 
Threshold 

(msec) 

TPI  
Median 
Change 

Motion 
Threshold 

Change 
1 Early 2 3 13.1 327.9   
1 Late 3 6 15.0 352.1 43% -7% 
2 Early 2 4 13.5 910.7   
2 Late 2 4 13.1 991.0 -1% -9% 
3 Early 4 6 7.5 87.6   
3 Late 4 6 13.5 84.3 8% 4% 
4 Early 2 3 6.8 335.5   
4 Late 3 4 9 762.1 39% -127% 
5 Early 4 6 20.3 85.8   
5 Late 4 6 24 97.8 23% -14% 
6 Early 3 7 9.8 221.9   
6 Late 3 7 14.3 101.0 -10% 54% 
7 Early 3 6 12 884.6   
7 Late 4 7 16.5 829.1  32% 6% 

 

 

Effects of Training on Vision Thresholds 

 The effects of training are examined separately for each visual task.  Because 

participants have substantial initial differences on pre-test measures, these differences are 

statistically controlled by using pre-test thresholds as covariates for each analysis.  Other 

participant-level characteristics are also included in analyses when appropriate. 

 

Foveal Tasks 

Both foveal tasks were analyzed separately with a 3 X 2 ANCOVA using training 

(control, action, or psychophysical) and etiology (nystagmus vs. not nystagmus) as 

between-subjects factors and age, acuity, and pre training performance covariates.  The 

post-training measure of temporal sensitivity was not different between groups F(2, 23) = 



 

.417, p < .67; and post-training spatial sensitivity thresholds were not significant either 

F(2, 23) = .881, p < .44.  Figure 12 below provides the post test thresholds by group, 

adjusted for pre-training thresholds, for both foveal tasks. 
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 Figure 12. Adjusted post test thresholds for foveal motion discrimination tasks. 

 

Individual training effects on foveal tasks 

Individual pre- and post-training performance on these foveal tasks is shown 

below for video game and psychophysical training.  The horizontal lines running through 

the graphs depict the average typically-sighted threshold along with confidence intervals.  

Notice that most LV thresholds were as good as or better than typically-sighted 

thresholds before training.  Performance for this task may already be at optimal levels.  It 

is not surprising to find that LV participants have reduced central acuity.  Notice, 

however, that individuals in the psychophysical condition have a slight but consistent 

pattern of improvement after training.  Five of seven individuals improved, which is not 

statistically significant using a sign-test, p > .46. 



 

 
Figure 13. Individual pre-post thresholds for central acuity and central motion 
discrimination and typically-sighted baseline. 
 
 
 

Peripheral Tasks 

Simple peripheral motion discrimination 

  Of primary interest for this study is whether peripheral vision is enhanced after 

training LV youth.  Thresholds for the simple motion discrimination task were tested for 

between group differences using a 3 X 2 X 2 MANCOVA.  Training (control, action, or 

psychophysical) and etiology (nystagmus vs. no nystagmus) were included as between-

subjects factors and eccentricity (12° vs. 25°) as a within-subjects factor.  Pre-training 

group differences were again controlled by including age, acuity and both 12° and 25° 

pre-test thresholds as covariates.   

There was a main effect of training, with estimated mean post test thresholds of 

261.2 , 233.9, and 200.3 for control, action, and psychophysical conditions, respectively,  

F(2, 14) = 4.14, p < .04, (observed power = .63).  Estimated post test means are based on 



 

mean pre test scores of 194.3 (12°) and 318.4 (25°) and average acuity of 20/301 and 

average age of 14.5.  There was a significant interaction between training condition and 

eccentricity, F (2, 19) = 9.34, p < .004, (observed power = .94), with lower thresholds 

only in the far periphery for both video game and psychophysical training compared to 

control (Figure 14).  Nystagmus was not a significant factor F(1, 14) = .329, p < .58, 

(observed power = .08).   
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Figure 14. Estimated group mean post thresholds for simple motion 
discrimination, groups equated with pre-training thresholds as covariate. 
 

 

 

 

 



 

Individual training effects on simple peripheral motion discrimination 

 The individual thresholds (pre and post) for the action and psychophysical 

conditions show that virtually all individuals have improved thresholds, with greater 

average improvement in the 25° task (Figure 15). 

 

 
Figure 15. Individual pre-post thresholds for simple peripheral motion 
discrimination and typically-sighted baseline. 

 
 

Complex peripheral motion discrimination 

Training effects on peripheral motion discrimination were also tested using 

performance thresholds on the complex motion discrimination task.  This was tested 

using a 3 X 2 X 2 MANCOVA, with training (control, action, or psychophysical) and 

etiology (nystagmus vs. no nystagmus) as between-subjects factors and eccentricity (12° 

vs. 25°) as a within-subjects factor.  Age, acuity, and both 12° and 25° pre-test thresholds 

were used as covariates.   



 

A marginal effect of training occurred, with estimated mean post test thresholds 

of 331.2 , 229.3, and 104.4 for control, action, and psychophysical conditions, 

respectively,  F(2, 14) = 3.69, p < .053, (observed power = .58).  Estimated post test 

means are based on mean pre test scores of 216.4 (12°) and 393.4 (25°) and average 

acuity of 20/301 and average age of 14.5.  There was a significant interaction between 

training condition and eccentricity, F (2, 14) = 4.27, p < .036, (observed power = .65), 

with experimental training groups having greater differences in the far periphery 

compared to control (Figure 16).  Nystagmus was not a significant factor F (1, 14) = .013, 

p < .92, (observed power = .05).   
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 Figure 16. Estimated group mean post thresholds for complex motion 
 discrimination, groups equated with pre-training thresholds as covariate. 

 



 

The graph above helps to explain why the main effect was only marginally 

significant.  Although there is substantial improvement for the psychophysical condition, 

the action video game condition shows a negligible change overall.  The video game 

condition is introducing variability that hinders the detection of real differences between 

the control and psychophysical training conditions.   

An even clearer picture emerges with pre-post scores at the individual level 

(Figure 17).  Individuals in the video game training remained very similar from pre- to 

post-test.  The average improvement for this group in the 25° condition seems to be 

solely due to one individual who displayed dramatic improvement.  In contrast, virtually 

all participants in the psychophysical training demonstrate improvement.  

 

 
Figure 17. Individual pre-post thresholds for complex peripheral motion 
discrimination and typically-sighted baseline. 

 
 



 

 As mentioned earlier, this task elicited two distinct strategies from participants.  

Some used a strategy of moving their fixation to each stimulus location separately instead 

of the correct strategy of maintaining central fixation.  A final test for training effects was 

performed with the data removed for participants who performed this task incorrectly.  

The criteria for removal included any threshold above 300 msec.  This value ensures that 

the incorrect strategy could not be performed since this is not enough time for such a 

strategy.  One participant from each condition was excluded due to elevated thresholds.  

This test entirely excluded the 50 degree separation task because many thresholds were 

above this threshold.  An ANCOVA was performed with the 25 degree post test 

thresholds, using pre-test thresholds as covariates.  An effect of condition was not found, 

but a similar pattern existed as shown in Figure 16.   

 

Crowding 

Peripheral acuity was tested with a 3 X 2 X 2 MANCOVA with training (control, 

action, or psychophysical) and etiology (nystagmus vs. not nystagmus) as between-

subjects factors and eccentricity (8° and 16°) as a within-subjects factor.  Age, acuity and 

pre-training thresholds (8° and 16°) were all included as covariates.   

There was an effect of training, with estimated mean post test thresholds of 3.99, 

2.57, and 2.29 degrees for control, action, and psychophysical conditions, respectively,  

F(2, 14) = 5.76, p < .016, (observed power = .78).  Estimated post test means are based 

on mean pre test scores of 2.2 (8°) and 4.0 (25°) and average acuity of 20/301 and 

average age of 14.5.  The graph (Figure 18) indicates that both video game and 

psychophysical training performed significantly better than the control group for both 8° 



 

and 16° conditions.  There was a marginally significant interaction between training 

condition and eccentricity, F(2, 14) = 3.29, p < .068, (observed power = .53), with a 

greater improvement in thresholds in the far periphery compared to near periphery for 

both video game and psychophysical training compared to control.  Nystagmus was again 

non-significant F (1, 14) = .39 p < .55, (observed power = .09).   

Several participants performed at ceiling or floor levels on this task during pre-

test, and remained at this level at post test, demonstrating no change on this measure.  

The same analysis was re-run omitting these four individuals.  Two were removed from 

the psychophysical condition and one each was removed from the control and video 

game conditions.  The effect of condition was marginally-significant, F (2, 10) = 3.87, p 

< .058, (observed power = .56).  No other interactions or effects were reliable.  This test 

is limited, however, due to the very small number of participants. 
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Figure 18. Estimated group mean post thresholds for crowding, groups equated 
with pre-training thresholds as covariate. 
 
 

 Figure 19 below shows that on average LV individuals are performing very 

similar to their typically-sighted counterparts.  This is not completely surprising, given 

that our previous findings (Nyquist et al., 2005) showed remarkably good peripheral 

acuity for LV youth. 



 

 
Figure 19. Individual pre-post thresholds for crowding task and typically-sighted 
baseline. 

 
 

Visual Search 

 Visual search performance was analyzed with a 3 X 2 ANCOVA, including 

training (control, action, or psychophysical) and etiology (nystagmus vs. not nystagmus) 

as between-subjects factors and age, acuity and pre test performance as covariates.  There 

was an effect of training, with estimated mean post test thresholds of 8.6, 5.5, and 4.0 

seconds for control, action, and psychophysical conditions, respectively,  F(2, 14) = 4.49, 

p < .031, (observed power = .67).  Estimated post test means are based on mean pre test 

scores of 10.1 seconds, average acuity of 20/301 and average age of 14.5.  The graph 

(Figure 20) indicates that both video game and psychophysical training performed 

significantly better than the control group on post-test.  Nystagmus was again non-

significant F (1, 14) = .63 p < .45, (observed power = .12).   
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Figure 20. Estimated group mean post thresholds for visual search task, groups 
equated with pre-training thresholds as covariate. 
 

 

The graph (Figure 21) below indicates that every subject in video game training 

and psychophysical training improved after training.  Several participants even matched 

or exceeded typically-sighted performance on this task. 

 



 

 
 Figure 21. Individual pre-post thresholds for a 
 visual search task and typically-sighted baseline. 

 
 

Overall Size of Training Effects 

It is impressive to consider the effect sizes caused by training (Figure 22).  Across 

all non-central visual tasks, seven in all, there were only two negative group effect sizes 

for the two training groups, with both of these being very small.  To give more meaning 

to this, an effect size of 0.5 is considered medium and an effect size of 0.8 is considered 

large (Cohen, 1988).  The graph shows a clear pattern of larger improvements for the 

psychophysical task, with non-foveal effect sizes ranging from 0.27 to 0.69.  Also, this 

graph again shows the pattern of larger improvements for tasks involving the far 

periphery.   

Appendix D provides the correlations of these effects sizes between each task, 

broken out by training group.   
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Figure 22.  Average pre-post effect sizes for each visual task broken out by 
training condition.  Similar tasks depicted by shades of the same color. 

 
 
 

 

 



 

CHAPTER IV 

 

DISCUSSION AND CONCLUSIONS 

 

The preceding analyses clearly show visual skills can be enhanced for LV youth.  

Three of the four measures of peripheral visual functioning were improved after action 

video games and psychophysical training.  These improvements are substantial, with 

most effect sizes ranging from medium to large (Cohen, 1988).  These three measures are 

thought to involve the alerting and orienting functions of attention while the fourth 

(complex peripheral motion discrimination) is thought to require more executive function 

of attention. Although the omnibus test for this measure was only marginally significant, 

a clear difference does exist between the control group and psychophysical training 

group.   

It may also be the case that the far periphery is subject to even more substantial 

training effects.  Results show a consistent trend of larger improvements for tasks 

involving the far peripheral fields.  Virtually every measure demonstrated this trend for 

both training conditions. 

Such improvements will likely have effects on everyday functioning for LV 

individuals.  Research illustrates that everyday activities require access to environmental 

information over a wide field of view, in both central and peripheral regions.  LV youth 

seem to have underutilized peripheral skills, which likely play a part in the difficulties 

they encounter with everyday tasks such as mobility.  Their improved peripheral 

functioning should positively impact their quality of life.   



 

Past research using LV populations often cannot relate LV performance to 

typically-sighted performance.  The current study reveals a large range of abilities for LV 

youth, with some LV performances at virtually an identical level to their typically-sighted 

counterparts on some tasks, while others are substantially below typical performance.  

Despite this variability, nearly all LV participants show a clear attenuation on motion 

perception tasks in the far periphery, whereas typical sight is characterized by heightened 

peripheral motion perception.  This result, along with larger training effects in the far 

periphery, points to an underutilization of the peripheral fields for LV youth. 

This study also extends the impact of video game training, and perceptual training 

in general, by demonstrating a transfer of training effects to a naturalistic visual search 

task.  This is thought to provide a measure of a more typical visual function used in 

everyday life.  Participants had exposure to the same pictures during pre and post testing, 

which introduces top-down influences such as visual memory.  Despite this weakness, the 

training effects reported here are based on between-group comparisons.  All groups were 

randomly assigned and received the same double exposure to these materials.  The 

average post test scores for both training groups was significantly better in relation to the 

control post test.  These differences can be attributed to the training interventions.  This 

study demonstrates that exposure to a low-level psychophysical training program can 

transfer to a higher-level visual task. 

The specific mechanisms responsible for improved visual search are still unclear.  

Future studies on the effects on visual search would benefit from using eye-tracking 

during the search process.  For example, if the distance of a saccade-to-target is 

significantly larger after training, this would be strong evidence for an improvement in 



 

the size of visual field that is attended to.  This requires a minor adjustment to the task, 

where new scenes are used at post-test.  Improved distractor rejection may also be 

uncovered by eye-tracking if the time spent on distractors decreases after training.   

This study takes a first step beyond the video game training studies to uncover the 

basic qualities that may be necessary for enhancing visual attention and visual 

functioning.  The psychophysical training task employed a simple set of task demands 

and stimulus characteristics.  This task had very few of the extraneous factors that are 

found in the video games used for training.  Task demands include tracking multiple 

dynamic objects, which requires quickly switching and perhaps dividing attention, and 

making simple discriminations to peripheral Gabors, which requires vigilance to 

peripheral locations.  The individual and relative contribution that each of these has on 

training effects is still unknown.   Additional examination could help further uncover the 

essential qualities responsible for enhancing visual functioning.  

 

Next Steps 

Fleshing out training effects 

 One purpose of the current study was to demonstrate that training effects can 

occur across a range of visual functions.  Future studies should include a number of other 

measures.  This is a two-fold endeavor, including both everyday tasks and more basic 

visual functions such as the continued fleshing out of visual attention. 

Several candidate measures that may respond to training include reading 

comprehension, memory storage and retrieval, and executive control, since efficient 

attentional orienting has been suggested as a prerequisite for all these functions (e.g. 



 

Fischler, 1998; Pashler, 1998; Posner & DiGirolamo, 1998).  Reading in particular has 

clear practical implications for quality of life, especially for students with low vision.  

One review of studies showed that the primary presenting complaint at low vision clinics 

is problems with reading (Leat, Legge and Bullimore, 1999).  A large body of research on 

reading processes and reading comprehension exists for LV populations.  This research 

shows that there are two components to reading difficulty in low vision: the reduced 

range of print sizes that are legible, and the speed of reading (Legge, 2007).  According 

to Gordon Legge (2007), a renowned authority on normal and low vision reading, speed 

of reading is approximately equal to the mean saccade length divided by the average 

fixation time.  It appears that low-vision readers primarily differ from normal readers by 

having abnormally short saccades (Bullimore & Bailey, 1995; Rumney & Leat, 1994; 

Trauzettel, Klosinski, Teschner, Tornow & Zrenner, 1994).  Research indicates that these 

shorter saccades are due to a reduction in the visual span (Legge, et. al., 1997; 2001), 

which is the number of letters that can be recognized in one fixation.  The improvements 

found in the current study would suggest potential improvements in the visual span of 

these participants, which could translate into faster reading speeds. 

 It is still unclear how training impacts other practical tasks.  Independent and 

effective mobility, for example, is a primary goal of the LV community.  Interestingly, 

there is some evidence that difficulties in reading and mobility are due to two distinct 

visual functions.  Stelmack and colleagues (2007) have analyzed self-report visual 

function questionnaires and found two independent factors of visual function, where 

reading ability loads most heavily onto one factor and mobility ability loads heavily onto 



 

the other.  An important next step will be to investigate training effects on mobility, using 

a sensitive measure of this critical function.   

 Future studies should also strive to further flesh out how training affects the 

various attentional mechanisms, including alerting, orienting and executive control 

functions.  Although the current study points to improvements in each of these attentional 

networks, future studies should incorporate more direct measures of these three 

attentional functions.  One such measure, called the Attentional Network Test (ANT), has 

versions for adults (Fan, McCandliss, Sommer, Raz, & Posner, 2002) and school aged 

children (Rueda et al., 2004).  Other measures for future studies could include eye-

tracking during video game training.  Using such equipment to measure how players are 

moving their eyes around during this task could be informative.  For example, knowing 

where their eyes are just prior to localizing a target or shooting at a target could provide 

valuable information about the use of peripheral vision.   

 Finally, similar training studies with a LV population should include a blocked 

assignment design that uses additional individual factors including age, etiology, and 

acuity. 

Essential training characteristics 

 A second purpose of the current study was to better define the training 

characteristics responsible for improvements in visual functioning.  The current study 

demonstrates that a more basic psychophysical task can improve vision functions as 

much or better than an action video game.  Compared to action video games, this task has 

a considerably smaller set of task characteristics and stimulus attributes.  This result then 



 

reduces the necessary characteristics needed to train and enhance various visual 

functions.   

There are still many more questions to explore regarding the characteristics of 

training programs and how they relate to visual improvements.  For example, does a 

shorter or longer period of training change the levels of training effects?  One way to 

examine this, besides simply varying the duration or number of training sessions, is to 

compare the amount of improvement on the training task with the amount of 

improvement on the outcome measures.  The psychophysical training program used in 

the current study was not designed to measure improvement in a clear way because 

several parameters were adjustable in order to provide a strong training program.  

Therefore, a score on one parameter is not meaningful without the scores on other 

parameters, and there is no clear way to compare or combine these measures.  This 

limitation was intentional because the current study was designed to implement the most 

robust training program we could design in order to find training effects with a non-video 

game training task.     

Another open question is whether an even more robust training program can be 

developed.  There is reason to think that training programs can still be even more 

powerful instruments of change than currently available.   

Who can benefit and how much 

 It is not clear at this point which types of visual impairments may best respond to 

visual attentional training.  The current group consisted primarily of persons with 

Nystagmus, ROP, and Stargardt’s Disease.  This sample was used because these types of 

impairments tend to have relatively good acuity and intact visual fields.  It is unknown, 



 

however, if groups with more serious visual impairments may benefit from training.  For 

example, persons with cortical visual impairments (CVI) may respond well to simpler 

versions of the psychophysical training program.  The parameters of the psychophysical 

task are well-suited to adjust to the visual qualities that work well for individuals with 

CVI.  For example, CVI often responds well to visual information with simple, constant 

and predictable visual characteristics, with repetition of the same objects and same tasks.  

The color system is often intact in CVI as well, so bright fluorescent colors such as red, 

yellow, pink, and orange are responded to well.  These characteristics can easily be 

incorporated into a psychophysical program. 

 In conclusion, the results of this project provide a new direction for helping 

improve the lives of LV individuals.  This work also opens up the possibility for a 

number of future studies that might examine additional ways that training might help the 

LV community as well as provide a more basic insight into visual functioning. 

Vision is the dominant sense and arguably our most important single tool for 

interacting with the world and gathering information from our current surroundings.  

Efficient visual functioning enables us to understand the world around us better and to 

guide our actions accurately and quickly.  We should strive to provide the best possible 

version of this gift to every person. 



 

A. – QUESTIONNAIRE OF VISUALLY DEMANDING ACTIVITIES 

GUIDED QUESTIONNAIRE 
 

General Information 
 
Name: _______________   Eye condition / diagnosis:  
 
Subject # _____ Age:  ______ Gender:  ________  
 
Independent Mobility 
 
1.  “Are you a driver?” (If of legal age)  

 
Yes ___ No  

 
2.  “What type of optical devices, if any, do you use?”  
 

Near: ____  Far: _________ 
    
   None     None 

A few times a year   A few times a year 
A few times a month   A few times a month 
Every week    Every week 
Every day    Every day 

 
3.  “Do ever go anywhere by yourself?” 

 
(If yes) “Where?”  ____ 

  
“How frequently?” 

 
None 
A few times a year 
A few times a month 
Every week 
Every day 

 
 “Do you take public transportation by yourself?   

 
(If yes) “What kind?” _______________________________ 

    
“How frequently? 

 
None 
A few times a year 



 

A few times a month 
Every week 
Every day 

    
“Do you cross streets on your own?” 

 
(If yes) “What kind?” ___ 

    
“How frequently? 

 
None 
A few times a year 
A few times a month 
Every week 
Every day 

 
Experience with Video Games 
 
4.  “Do you, or have you ever played any video games (for example games using a 
playstation, xbox, or game cube).”  (If yes) “Which ones?” 
 
______________________________ ___________________ 
 
______________________________________________________________________ 
 
5.  (If answer is  yes to previous question)  “Do you, or have you ever, played games that 
control a character?  (If participant does not understand, give a few examples: snow 
boarding games, shooting games, Mario sunshine, etc).”  (If yes) “Which ones?” 
 
______________________________________________________________________ 
 
6.  “Now I am wondering about a certain type of game called a first-person shooter.  
These are games that have a certain look to them.  The game world moves much like the 
real world because the character has his or her back to you on the screen and you control 
and move them thru this world much as you would move yourself if you were in the 
game.  Do you, or have you ever played any games like this” (If yes) “Which ones?” 
 
___________________________________________________________________ 

 
Frequency of Video Game Play 
 
7.  “In the last few months, how often have you played video games?” 
 
None 
Once 
A few times month 



 

Every week 
Every day 
 
8.  “In the last few months, how often have you played driving video games?” 
 
None 
Once 
A few times a month 
Every week 
Every day 
 
9.  “In the last few months, how often have you played first-person shooter video 
games?” 
 
None 
Once 
A few times a month 
Every week 
Every day 
 
10.  “In the last few years, how often have you played video games?” 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
11.  “In the last few years, how often have you played driving video games?” 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
12.  “In the last few years, how often have you played first-person shooter video games?” 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
 
 



 

Sports and Outdoor Activities 
 
13.  “Please tell me any sports / activities you have played, and amount during the last 
few months (examples: playing catch, frisbee, tennis, ping-pong, running, biking)” 
 
Activity #1 ______________________ 
 
None 
Once 
A few times a month 
Every week 
Every day 
 
Activity #2 ______ __________________ 
 
None 
Once 
A few times a month 
Every week 
Every day 
 
Activity #3 ________ ________________ 
 
None 
Once 
A few times 
Every week 
Every day 
 
 
14.  “Please list any outdoor activities not already mentioned that you have done in the 
last few months (examples: four-wheeling, hunting, etc.)” 
 
Activity #1 ________________________ 
 
None 
Once 
A few times 
Every week 
Every day 
 
Activity #2 ________________________ 
 
None 
Once 
A few times 



 

Every week 
Every day 
 
Activity #3 ________________________ 
 
None 
Once 
A few times a month 
Every week 
Every day 
 
 
15.  “List any sports / activities you have played, and amount during the last few years 
(examples: playing catch, frisbee, tennis, ping-pong, running, biking)” 
 
Activity #1 ____________ ____________ 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
Activity #2 _____________ __________ 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
Activity #3 _____________ ___________ 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
16. “Please list any outdoor activities not already mentioned that you have done in the 
last few years (examples: four-wheeling, hunting, etc.)” 
 
Activity #1 ________________________ 
 
None 
A few times a year 



 

A few times a month 
Every week 
Every day 
 
Activity #2 _______________________ 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
Activity #3 ________________________ 
 
None 
A few times a year 
A few times a month 
Every week 
Every day 
 
----------------------------------------------------------------------------------------------------------- 

Questions for school faculty and staff 
 
List the student’s eye condition / diagnosis? 
  
   ________________________________________________ 
 
   ________________________________________________ 
 
List any known learning disabilities: 
 

________________________________________________ 
 
List any known measures of spatial abilities:  
  

________________________________________________ 
 
 
 
Mobility: have they participated in the TAPS program? 
 

Yes ___ No _ 
    
    



 

B. – PROCESS FOR ASSIGNING TO EXPERIENCE LEVEL 
 
 
ASSIGNMENT TO HIGH EXPERIENCE 
 
1. Playing first-person shooter video games (FPS) everyday  
 
2. OR, Playing FPS every week along with weekly frequency (or more) of highly visually 
demanding activities  
 
3. OR, Highly visually demanding activities everyday  
 
 
ASSIGNMENT TO MEDIUM EXPERIENCE 
 
1. Playing FPS once a week along with less than weekly frequency of highly visually 
demanding activities  
 
 
ASSIGNMENT TO LOW EXPERIENCE 
 
1.  All other participants who did not meet criteria for high or medium groups. 
 
 
List of highly visually demanding activities 
 
Playing catch or other ball-based sports 
Riding bike or dirt bike 
Running 
 



 

Appendix C – EXAMPLES OF VISUAL SEARCH PHOTOGRAPHS 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix D – CORRELATIONS BETWEEN IMPROVEMENTS ON VISION TASKS 

 

Correlation between effect sizes for control group (cohen’s d for pre and post measures).  
* significant at .05 
** significant at .01 

Control Condition 
  
          

Tasks Simple 
Motion 
12° 

Simple 
Motion 
25° 

Complex 
Motion 
12° 

Complex 
Motion 
25° 

Crowding 
8° 

Crowding 
16° Search

Simple Motion 0° 0.63** 0.13 0.27 0.45 0.08 0.22 -0.03 
Simple Motion 
12° 

 -0.20 -0.30 0.42 -0.03 0.20 -0.12 

Simple Motion 
25° 

  0.17 0.17 0.10 0.32 0.17 

Complex Motion 
12° 

   0.35 0.38 0.33 -0.20 

Complex Motion 
25° 

    0.72** 0.92** -0.50*

Crowding 8°      0.57* -0.18 
Crowding 16°       -0.58*
Search        

 

Correlation between effect sizes for video game group (cohen’s d for pre and post 
measures).   
* significant at .05 
** significant at .01 

Video Game Condition 
  
          

Tasks Simple 
Motion 
12° 

Simple 
Motion 
25° 

Complex 
Motion 
12° 

Complex 
Motion 
25° 

Crowding 
8° 

Crowding 
16° Search

Simple Motion 0° 0.40 -0.40 0.69** -0.02* -0.22* -0.48 -0.57*
Simple Motion 
12°   0.19 -0.17 -0.62 0.27 -0.21* -0.67
Simple Motion 
25°     -0.71* -0.57 0.47 0.14 -0.26*
Complex Motion 
12°       0.43 -0.46* -0.24 -0.05**
Complex Motion 
25°         -0.82 -0.41 0.48
Crowding 8°           0.76* 0.05
Crowding 16°             0.55
Search  

 



 

Correlation between effect sizes for psychophysical group (cohen’s d for pre and post 
measures).   
* significant at .05 
** significant at .01 

Psychophysical Condition 
  
          

Tasks Simple 
Motion 
12° 

Simple 
Motion 
25° 

Complex 
Motion 
12° 

Complex 
Motion 
25° 

Crowding 
8° 

Crowding 
16° Search

Simple Motion 0° 0.36 0.04 -0.71** -0.54* -0.56* 0.43 0.57*
Simple Motion 
12°   0.04 0.00 -0.04 -0.15 0.61 0.07
Simple Motion 
25°     -0.54* 0.39 0.01 -0.04 0.61*
Complex Motion 
12°       -0.04 0.54* -0.29 -0.86**
Complex Motion 
25°         0.29 -0.11 0.21
Crowding 8°           -0.62* -0.24
Crowding 16°             -0.07
Search               
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