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CHAPTER I 

 

INTRODUCTION 

 

Overview 

The transforming growth factor β (TGF-β) pathway has been established as 

essential for cancer progression due to its prominent role in the regulation of cell 

growth, differentiation and migration.  Through the canonical and non-canonical arms of 

the signaling pathway, TGF-β instigates cellular phenotypic changes and mediates its 

role as both a tumor suppressor and a tumor promoter.  Indeed, the first described 

phenotypic effect of TGF-β signaling was the induction of a cellular cytostatic program 

(Tucker et al. 1984) and provided the first evidence for the pathway being tumor 

suppressive (Massague 2004). However, there was also evidence to the contrary, such 

as carcinomas that overexpressed TGFβ1 ligand having increased tumor progression 

(Gorsch et al. 1992; Hasegawa et al. 2001).  The initial in vitro evidence for pro-

tumorigenic effects of TGF-β consisted of the induction of a mesenchymal phenotype in 

epithelial tumor cells [commonly known as an epithelial to mesenchymal transition 

(EMT)] after prolonged exposure to TGF-β (Caulin et al. 1995; Miettinen et al. 1994).  

These early studies into the functional outcome of active TGF-β signaling underlie the 

difficulties in implementing clinically efficacious treatment regimens targeting the TGF-β 

pathway.  The contextual cues driving the tumor suppressor and tumor promoter roles 

of TGF-β, as well as the switch between these two phenotypes are not fully understood.  
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As the understanding of tumor progression has expanded, the importance of the tumor 

microenvironment has been clearly demonstrated.  It is interesting to note that TGF-β 

signaling both endogenously in human disease as well as in genetically engineered 

mouse models of cancer is associated with characteristic epithelial changes as well as 

significant changes in the stromal tumor microenvironment (Hazelbag et al. 2002; 

Walker et al. 1994; Wikstrom et al. 1998).  TGFβ1 expression in invasive breast cancer 

correlates with progression of the cancer towards metastasis, extracellular matrix 

deposition, and the infiltration of immune cells (Walker et al. 1994).  These findings 

have laid the ground work for recent studies which have established TGF-β signaling not 

only as an important mediator of epithelial phenotypic changes but also of changes in 

the stromal environment that are essential for tumor progression.  Such findings lead us 

to hypothesize that microenvironmental TGF-β signaling, particularly in stromal 

fibroblasts, could regulate the progression of breast carcinomas.  As such, we sought to 

address the functional contribution of stromal TGF-β signaling to phenotypic epithelial 

cell changes as well as the ultimate goal of understanding its role in metastasis. 

The TGF-β Signaling Pathway 

TGFβ1 , β2 and β3 ligands act as the primary mediators of TGF-β signaling (Bierie 

and Moses 2006b; Massague 2012; Siegel and Massague 2003) and are secreted as 

inactive homodimeric polypeptides that can bind to latent TGF-β binding proteins, 

which promote extracellular sequestration (Rifkin 2005).  Upon activation, the ligands 

bind to the type II TGF-β receptor causing recruitment and phosphorylation of the type I 
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TGF-β receptor resulting in downstream signaling activation (Shi and Massague 2003) 

(Fig.1).  The strength of this signal depends on which ligand is bound, as the ligands vary 

in their binding affinity for this receptor.  This variation in ligand binding promotes 

differential ligand presentation to the type II TGF-β receptor (Stenvers et al. 2003).  The 

type III TGF-β receptor can augment the initialization of the signaling cascade through 

promotion of differential ligand binding (Moustakas et al. 1993).  The final 

heterotetrametic form of the active receptors initiates downstream signaling through 

either SMAD-mediated canonical signaling or SMAD-independent non-canonical 

signaling (Shi and Massague 2003).  Canonical signaling involves phosphorylation of the 

carboxy-terminal serine residue of the internal modulator smad proteins, SMAD2 or 

SMAD3, by the activated receptors (Derynck and Zhang 2003; Feng and Derynck 2005).  

To facilitate this interaction, adaptor proteins such as Smad anchor for receptor 

activation (SARA) are necessary (Tsukazaki et al. 1998).  This phosphorylation induces 

oligomerization of SMAD2 or SMAD3 with SMAD4, which is necessary for nuclear 

translocation (Schmierer and Hill 2005). Through interactions with a variety of 

transcription co-factors, the nuclear localized SMAD complex initiates transcriptional 

activation or repression of a number of genes (Figure 1).  A major target of TGF-β 

initiated transcription is SMAD7, known as an inhibitory Smad due to its ability to 

competitively inhibit the phosphorylation of SMAD2 or SMAD3 by TGFβR1 (Hayashi et 

al. 1997).  In this way, canonical TGF-β signaling regulates the activity of the pathway 

preventing the potentially harmful effects of overactivation of the TGF-β pathway.  TGF-

β signaling has 



4 
 

 also been linked to the activation of other signaling pathways, which comprises the 

non-canonical, Smad independent arm of the signaling pathway (Moustakas and Heldin 

2005). The active hetero-tetrameric receptor instigates activation of the PI3K/Akt, RhoA, 

and MAPK pathways among others (Massague and Gomis 2006).  

The outcome of these signaling pathways can either suppress cell proliferation or 

induce cellular migration and invasion.  Studies into the cytostatic phenotype induced by 

TGF-β have established numerous intermediaries including repression of MYC and cyclin 

dependent kinase 4 (CDK4), as well as the induced expression of CDK inhibitors p21 (also 

known as CIP1) and INK4B (also known as p15) (Ewen et al. 1995; Hannon and Beach 

1994; Polyak et al. 1994).  Furthermore, SMAD dependent activation of TIEG1, DAPK and 

BIM, among others, results in the triggering of programmed cell death (Pardali and 

Moustakas 2007).  Studies elucidating the tumor suppressor role of TGF-β corroborated 

evidence that loss of TGF-β signaling components was associated with carcinoma 

progression (Amendt et al. 1998; Bottinger et al. 1997).  The signaling pathway 

downstream of EMT induction by TGF-β has also been partly mapped. Inhibitor of DNA 

binding 1 (ID1), a transcriptional regulator, is inhibited by TGF-β, which results in 

decreased expression of E cadherin and ZO1, two factors known to help maintain an 

epithelial phenotype.  TGF-β signaling also induces the expression of EMT associated 

transcription factors, such as snail 1 (SNAI1), SNAI2 and lymphoid enhancer-binding 

factor 1 (LEF1), which help to promote loss of cellular adhesions and cytoskeletal 

rearrangement (Huber et al. 2005).  Non-canonical signaling pathways activated by TGF-

β, particular the RHOROCK and AKT pathways, were also shown to be essential in the 
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Figure 1. TGF-β Signaling During Tumor Progression. Early in 
tumorigenesis, TGF-β acts as a tumor suppressor in part through the 
SMAD dependent induction of cell cycle arrest.  Thus, one can 
hypothesize that  selective pressure leads to the expansion of tumor 
cells harboring inactivating mutations in the TGF-β pathway, thus 
allowing them to overcome the growth inhibitory effects of active TGF-
β signaling (Green = TGF-β responsive, Red = TGF-β non-responsive).  
Normal TGF-β signaling in TGF-β responsive cells feeds through the 
type II TGF-β receptor to activate downstream signaling targets. 
Canonical signaling is activated through phosphorylation of the type I 
TGF-β receptor to induce nuclear localization and transcriptional 
activity of SMADs.  Non-canonical signaling occurs independently of 
SMAD proteins and includes activation of RHOA, AKT and MAPK 
pathways.  As outlined by Levy and Hill (2006), loss of TGF-β 
responsiveness can occur through loss of function mutations, loss of 
expression, or promoter methylation of receptors or SMADs. 
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promotion of cellular migratory and invasive phenotypes observed on treatment with 

TGF-β (Dumont et al. 2003).  TGF-β’s induction of Rho-ROCK signaling has been linked 

not only with cell migration, but with specifically single cell migration.  Interestingly, 

abrogation of TGF-β signaling did not completely shut down epithelial migration but 

rather switched the cells towards a cohesive migratory phenotype (Giampieri et al. 

2009).  However, it is noted in this study that only single cells escaped into the 

vasculature which allowed for the establishment of metastasis.  Thus, the dichotomous 

effects of TGF-β signaling was established in which active signaling is associated with 

tumor suppression early in tumor development through initiation of growth arrest and 

with tumor promotion through the induction of EMT and cellular migration and invasion 

in late stage tumors. 

Regulation of TGF-β Signaling in Human Cancer 

 As pro- and anti-tumorigenic functions for TGF-β have been established, a key to 

understanding and effectively targeting the TGF-β pathway will involve delineating 

alterations to the pathway in human disease.  As with most signaling pathways, 

deregulation leading to altered pathway activation can occur at several levels.  Mutation 

or altered expression of ligands, receptors, or intercellular signaling mediators can affect 

proper cellular response to pathway activation. 

 In terms of progression of human cancer, there is little evidence to support 

mutations in TGF-β ligands (Levy and Hill 2006).  Most alterations to this level of the 

signaling pathway occur through the induced overexpression and increased secretion of 
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the ligand (cBioPortal).  Numerous studies across cancer types has associated increased 

expression of the TGF-β ligands with increased progression and metastasis of the 

disease as well as being indicative of poor patient survival (Decensi et al. 1998; Gorsch 

et al. 1992).  This overexpression induces increased activation of the TGF-β pathway.  

However, as will be mentioned, later this does not necessitate induced epithelial 

changes and has been linked with increased stromal activation which also effects tumor 

progression. 

 Acting as a bottleneck for signaling activation, alterations in receptor expression 

and function are an essential component to abrogating or enhancing downstream 

signaling activation.   Some of the first identified drivers of receptor inactivation in 

human cancers were associated with microsatellite instability in colon cancers 

(Markowitz et al. 1995).  Loss of proper DNA mismatch repair machinery can lead to 

amplification of microsatellite regions.  Sporadic generation of these microsatellite 

regions in promoter and coding regions of genes can lead to abrogation of their 

expression or expression of non-functioning proteins (Brentnall 1995).  Such is the case 

for TGFBR2, which has been shown to have its expression abrogated due to such 

mutations in colon, lung, gastric, pancreatic cancer as well as gliomas (Goggins et al. 

1998; Myeroff et al. 1995).  More recently, work into the epigenetic regulation of gene 

expression has shown this to be an important factor in regulating TGF-β signaling in 

tumor cells.  Epigenetic modulation of gene expression primarily occurs through 

modification of histones to promote nucleotide region availability and DNA methylation 

of CpG islands in gene promoter regions to modulate transcription factor binding and 
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promoter activity (Azad et al. 2013).  Histone deacetylation is essential to mediating loss 

of TGF-β responsiveness in lung cancer as altered chromatin structure correlated with 

loss of TGFBR2 expression (Osada et al. 2001). TGFBR2 expression could be rescued 

through the treatment of cells endogenously with an inhibitor of histone deacetylase 

(Ammanamanchi and Brattain 2004).  Similarly, promoter regions of these receptors 

have been shown to be methylated leading to suppression of their expression in 

numerous cancers (Chou et al. 2010; Hinshelwood et al. 2007; Pinto et al. 2003).  Such 

mutations and epigenetic modifications promote loss of TGF-β responsiveness and 

underlie a cause for the loss of TGF-β’s cytostatic effects on cellular proliferation. 

 Upon ligand binding to TGFBR2, downstream signaling is initiated in cells through 

either canonical or non-canonical intercellular mediators.  As SMADs represent the only 

TGF-β specific downstream signaling target, these proteins have been focused on for 

alterations leading to differential TGF-β response in tumor cells.  Chromosomal loss of 

18q21 has been found in nearly 90% of pancreatic cancer patients (Hahn et al. 1996).  

This chromosomal region contains many genes, but importantly this is where Deleted in 

Pancreatic Cancer 4 (DPC4), also known as SMAD4, is found.  These findings have been 

extended to other cancer such as colon cancers.  As a central hub for TGF-β signaling 

mediating nuclear shuttling of SMAD2 and SMAD3, loss of this chromosomal region is 

essential to mediating loss of TGF-β signaling in cancer cells.  It is interesting to note that 

all mediators of TGF-β signal transduction specific to the tumor epithelium are 

associated with a loss of expression supporting the role of TGF-β as a tumor suppressor 

in tumor development.  However, it should be noted that TGF-β ligands are typically 
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found to be overexpressed which potentially indicates that the pro-tumorigenic effects 

of TGF-β signaling lies outside of the epithelium in the tumor microenvironment. 

As mentioned above, histone modification and promoter methylation play a role 

in the expression of TGF-β signaling components.  However, these processes also play a 

role in determining the outcome of TGF-β signal activation.  Actions of TGF-β directly, as 

well as known functions of the pathway, have been linked with altered histone and 

promoter modifications (Sann Sanda Khin 2011).  At the histone level, transcriptional 

activation of SMAD2 targets requires histone acetylation by p300 prior to assembly of 

transcriptional machinery to drive gene expression (Ross et al. 2006).  At the promoter 

level, numerous cancer types show hypermethylation of RunX3 to attenuate TGF-β’s 

growth suppressive functions (Yeh et al. 2011).  Active TGF-β signaling is required for the 

maintenance of this methylation as tumors overexpress SMAD7, which inhibits TGF-β 

signaling, lose methylation of promoters and reverse the effects of gene silencing 

(Papageorgis et al. 2010).  Such data lends credence to the push for use of histone 

deacetylase (HDAC) and dna methyltransferase (DNMT) therapeutics which could act to 

reactivate silenced tumor suppressor functions of the TGF-β pathway. 

Epithelial TGF-β Signaling Effects on the Tumor Microenvironment 

Even without the introduction of oncogenic changes, normal epithelium exposed 

to TGF-β results in phenotypic changes in the stroma.  For example, expression of a 

constitutively active TβRI receptor in mammary epithelium results in mammary glands 

with greater collagen deposition surrounding the ductal epithelium (Muraoka-Cook et 
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al. 2006).  Notably, mammary and pancreatic carcinoma cells harboring activated ALK5 

induce a significant increase in angiogenesis on implantation into mice (Safina et al. 

2007; Schniewind et al. 2007) (Figure 2).  Active TGF-β signaling in mammary tumor cells 

also promotes tumor progression through SMAD independent induction of matrix 

metalloproteinase (MMP) expression resulting in enhanced angiogenesis and tumor cell 

invasion (Safina et al. 2007).  One of the more interesting effects of TGF-β signaling in 

malignant epithelium on the tumor microenvironment stems from its recently 

discovered association with microRNA (miRNA) regulation.  These potent modulators of 

gene expression are aberrantly expressed in numerous cancer types and linked with 

numerous pro- and anti-tumorigenic functions (Esquela-Kerscher and Slack 2006).  TGF-

β has recently been shown to promote the expression of DROSHA, which drives pre-

miRNA accumulation through cleavage of pri-miRNA sequences (Davis et al. 2008), thus 

increasing the maturation of miRNAs.  However, TGF-β signaling can also inhibit the 

function of specific miRNAs.   TGF-β expression in hepatocellular carcinoma (HCC) cells 

induces the expression of CC motif chemokine ligand 22 (CCL22), through inhibition of 

miR-34a expression, and promotes recruitment of regulatory T cells (P. Yang et al. 2012). 

TGF-β signaling also reduces the expression of miR-29a thereby regulating the induction 

of angiogenesis in endothelial cells (J. Wang et al. 2013).  TGF-β also induces the 

expression of miR-494 to regulate recruitment of myeloid derived suppressor cells 

(MDSCs) to tumor tissue.  TGF-β induced miR-494 also modulates MDSC function 

through promoting expression of pro-tumorigenic Arg1 and MMP2, 13, and 14 (Y. Liu et 

al. 2012b).  
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Figure 2. Microenvironmental Changes Mediated by Tumor Cell TGF-β 
Signaling. TGF-β signaling in tumor cells induces the expression of 
numerous mediators of extracellular change.  Tumors showing 
increased activity of TGF-β in the tumor cells are characterized by 
increased extracellular matrix (ECM) deposition through increased 
secretion of matrix proteins and maturation through ECM modifying 
enzymes such as LOXL4.  Additionally, TGF-β signaling in tumor cells 
drives the induction of endothelial cell recruitment and proliferation 
driving increased angiogenesis.  Conversely, TGF-β suppresses the 
expression of numerous cytokines and chemokines such as CXCL1 and 
CXCL5.  Loss of TGF-β responsiveness relieves this suppression and 
results in enhanced immune cell infiltration.   These 
microenivironmental changes promote epithelial cell and stromal cell 
phenotypic responses, which significantly affect tumor progression.  
Shown are the phenotypic changes resulting specifically from epithelial 
derived factors listed.   
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Induction of TGF-β signaling through genetic alterations or through the treatment of 

carcinoma cells with TGF-β has identified numerous gene targets, many of which are 

conserved in various cancer types (Hills et al. 2010; Maupin et al. 2010; Sartor et al. 

2010; S. E. Wang et al. 2008).  These experiments have begun to address the functional 

significance of gene expression induced by TGF-β by correlating these changes with 

patient data that predicts poor patient outcome (Coulouarn et al. 2008; S. E. Wang et al. 

2008).  Importantly, many of these gene expression targets have well characterized 

functions in modification of the tumor microenvironment and link with phenotypic 

changes seen on alteration of TGF-β signaling in mouse models of cancer (Fig.2).  TGF-β 

signaling in epithelial cells induces the expression of numerous extracellular matrix 

genes, including collagen 1 α1 (COL1α1) and COL4α1, as well as matrix modifying 

enzymes MMP2, MMP9 and lysyl oxidase-like 4 (LOXL4).  These same studies also 

provide supporting evidence for the observed angiogenic phenotypes on TGF-β 

activation in that gene expression analysis showed a significant increase in vascular 

endothelial growth factor A (VEGFA) and Thrombospondin 1 (THBS1) (Hills et al. 2010; 

Maupin et al. 2010; Sartor et al. 2010; S. E. Wang et al. 2008).  Given the previously 

mentioned EMT and migratory phenotypic changes induced on activation of TGF-β 

signaling, as well as the TGF-β epithelial gene signature associated with tumor 

recurrence, the identification of stromal changes solidifies epithelial TGF-β signaling as a 

pro-tumorigenic signaling pathway.  However, such investigations do not segregate the 

epithelial and stromal effects of epithelial TGF-β signaling on the promotion of tumor 
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cell metastasis and thus do not address the specific contribution of each to the 

correlation of TGF-β signaling with poor patient outcome. 

As tumors progress, the growth inhibitory effects of TGF-β are overcome through 

the loss of TGF-β pathway elements or downstream signaling targets (Bierie and Moses 

2006b; Massague 2008).  Loss of TGF-β responsiveness in tumor cells has significant 

effects on tumor progression not only through altered epithelial characteristics, but also 

through gene expression changes affecting the tumor microenvironment.  The primary 

association of activated TGF-β signaling has been with increased metastasis and poor 

patient prognosis primarily through induction of EMT (Giampieri et al. 2009; Mima et al. 

2013).  However, abrogation of TGF-β signaling in carcinoma cells can also result in 

increased metastasis (Bierie et al. 2008; Forrester et al. 2005).  Loss of TGFβ signaling 

components in both mouse models of cancer and human cancer has been associated 

with poor prognosis through increased progression and metastasis (Bottinger et al. 

1997; Levy and Hill 2006; S. L. Lu et al. 2006; Malkoski et al. 2012; Paiva et al. 2012).  

Similar to receptor activation in normal mammary epithelium, pancreatic epithelium 

expressing a dominant negative type II TGF-β receptor results in increased desmoplasia 

and angiogenesis in adult mice (Bottinger et al. 1997).  Abrogation or attenuation of 

TGF-β signaling either at the receptor or SMAD level in mouse models of cancer has 

various expected epithelial effects such as loss of growth inhibition, but also induces a 

number of stromal changes.  Such changes include activation of stromal fibroblasts, 

deposition of collagenous extracellular matrix, infiltration of a variety of immune cells, 

and increased angiogenesis (Bierie and Moses 2006a).  Recent work has shown that the 
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infiltration of MDSCs is increased in tumors in which epithelial TGF-β signaling is 

abrogated (L. Yang et al. 2008) (Fig.2).  The increased recruitment of these cells is 

primarily associated with the increased expression of the chemokines CXCL1 and CXCL5, 

the expression of which is normally inhibited by TGF-β.  Although this altered chemokine 

expression pattern is associated with increased myeloid cell infiltration into the tumor 

microenvironment, these chemokines can also drive the activation of stromal fibroblasts 

through the induction of connective tissue growth factor (CTGF) expression (Ijichi et al. 

2011).  Perhaps the most interesting induced gene expression change to result from 

abrogation of TGF-β signaling in epithelial cells is TGF-β ligand itself (Gewin et al. 2010; 

Lin et al. 2012).  Given that the epithelium expressing this cytokine can no longer 

respond to it, any effects derived from its expression would either be on a separate 

population of epithelial cells retaining their ability to respond to TGF-β or cells found in 

the stromal microenvironment.  This intriguing aspect of altered gene expression on 

epithelial TGF-β impairment will be discussed in the next section of this chapter as TGF-

β has significant effects on numerous cell types found in the tumor microenvironment. 

Recent work addresses the contribution of stromal changes, primarily in 

chemokine secretion, due to attenuation of TGF-β signaling in malignant mammary 

epithelium, on the outcome of human disease (Bierie et al. 2009).  In this paper 

epithelial loss of TGFβR2 results in increased expression of CXCL1, CXCL5, and bone 

marrow stromal cell antigen 2 (BST2) while downregulating expression of genes such as 

CXCL12, platelet derived growth factor β (PDGFβ) and CTGF (Fig.2).  These gene 
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expression changes significantly correlated with worse patient outcome in patients with 

lymph node positive, estrogen receptor positive (ER+) Luminal A type breast cancer.  

These findings introduce an interesting concept explaining many of the counter 

intuitive findings regarding impairment of epithelial TGF-β signaling ultimately 

promoting enhanced metastasis.  If, as many have shown, the stromal 

microenvironment is in and of itself a prognostic factor in driving tumor metastasis, it 

could override the previously established cell autonomous signaling events associated 

with tumor cell migration, invasion and metastasis (Finak et al. 2008).  Thus, even 

though tumor cells lacking TGF-β responsiveness no longer gain any epithelial centric 

metastatic advantages through the induction of EMT and migratory changes, the 

stromal alterations resulting from gene expression changes upon loss of TGF-β 

responsiveness compensate and overcome this loss to promote metastasis.  As tumors 

are heterogeneous, likely consisting of cells with and without the ability to respond to 

TGF-β, the contribution of stromal changes brought on by TGF-β signaling null epithelial 

cells to the metastasis of TGF-β responsive epithelium and vice versa is a concept yet to 

be delineated and is an important step in completing our understanding of TGF-β 

signaling dynamics and their effects on tumor progression. 

Effects of TGF-β Signaling in Stromal FIbroblasts on Tumor Progression 

Classically, increased expression of TGF-β1 in the bulk tumor, as well as 

increased serum levels of TGF-β ligands, is associated with poor patient prognosis 

(Gonzalez-Santiago et al. 2011; Smirne et al. 1999).  While the effects of this increased 
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ligand expression on epithelial tumor progression has been well established, 

consideration of the tumor stroma has only recently garnered a significant amount of 

momentum.  Although giving no indication of being causal or merely an effect of 

progression, specific gene expression changes in the stroma are noted at defined steps 

of breast cancer progression (Knudsen et al. 2012).  Thus, much like the “Vogelgram” 

laid out specific genetic changes associated with the stages of colon cancer progression 

(Vogelstein et al. 1988), we are beginning to appreciate that gene expression changes 

are also occurring in the stroma of tumors that correspond with tumor progression and 

staging.  However, mechanisms behind these changes and the pathways driving specific 

gene expression changes have yet to be fully elucidated.  Given, the pleotropic nature of 

TGF-β and its established role in manipulating the development and function of 

numerous stromal cells known to affect tumor progression, the homeostatic functions 

of these cells and how they are altered by TGF-β signaling to effect tumor progression is 

an important consideration in determining the pro- or anti-tumorigenic role of stromal 

TGF-β signaling.  In particular, the role of TGF-B in manipulating the function of 

fibroblasts is well known.  Given that TGF-B signaling is essential to determining their 

phenotypic responses as well as fibroblasts having a significant role in tumor 

progression, these cells became a focal point for our studies. 

Being one of the most well studied non-immune cells in the tumor 

microenvironment, carcinoma associated fibroblasts have been shown to play an 

important role in nearly every hallmark of tumor progression (Hanahan and Coussens 

2012).  These functions are performed through the secretion of a myriad of growth 
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factors and cytokines but primarily through the secretion and remodeling of 

extracellular matrix proteins.  TGF-β has previously been shown to induce myofibroblast 

differentiation in fibroblasts leading to increased collagen deposition and ECM 

remodeling (Desmouliere et al. 1993; Sime et al. 1997).  In fact, one of the most 

common features of carcinomas overexpressing TGF-β is a desmoplastic stromal 

environment (Border and Noble 1994; Verona et al. 2007; Walker et al. 1994).  

Increased ECM deposition corresponds well with known functions of TGF-β in fibroblast 

activation and desmoplasia independently corresponds with development of breast 

cancer (Bierie and Moses 2006a; Boyd et al. 2007; Leask and Abraham 2004; Massague 

2012).  Similarly, TGF-β has been shown to drive the expression of matrix remodeling 

genes such as lysyl oxidase and SPARC to promote the maturation of secreted collagens 

from fibroblasts (Peyrol et al. 1997; Reed et al. 1994).  Recently, it has been appreciated 

that the act of maturing these collagen fibers has its own effect on tumor progression 

through the induction of mesenchymal epithelial characteristics via increased matrix 

stiffness (Levental et al. 2009; Paszek et al. 2005).  Thus, through corollary evidence we 

can appreciate that TGF-βs action on the extracellular matrix through fibroblasts acts to 

promote tumor progression.  Direct testing to address this connection indeed results in 

the expected outcome.  Expression of a constitutively active Tgfbr1 in dermal fibroblasts 

results in increased fibrosis and increased expression of known fibroblast TGF-β target 

genes in chemically induced tumors in mice (Sonnylal et al. 2007).  Thus, an abundance 

of TGF-β in a tumor would likely elicit a similar response.  This has been shown to be 

true given that tumors that have been characterized as having increased levels of TGF-β  
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Figure 3. TGF-β Modulates Fibroblast Microenvironmental Function.  
Fibroblasts have numerous functions that can affect tumor progression 
including chemokine and growth factor release, secretion of matrix 
components, and induction of matrix remodeling.  TGF-β activity in 
these fibroblasts mediates these effects through promotion or 
suppression of various mediators of the resulting phenotype.   Studies 
analyzing TGF-β effects on gene expression through microarray 
analysis and proteomic analysis of fibroblasts with intact or defective 
TGF-β signaling pathways are summarized.  Green boxes indicate gene 
expression changes that are induced by TGF-β signaling and red boxes 
are those genes that are suppressed by TGF-β.  
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are associated with increased fibroblast activation and collagen deposition.  Adding to 

this, fibroblasts derived from small cell lung carcinomas show enrichment for TGF-β 

signaling compared with normal lung fibroblasts and the TGF-β enriched gene signature 

derived from these fibroblasts predicted poor patient outcome (Navab et al. 2011).  In 

fact, it has been shown that this increased TGF-β activation is caused through 

interactions between stromal fibroblasts and colon carcinoma cells inducing expression 

of numerous MMPs and known TGF-β target genes (Hawinkels et al. 2012).  As discussed 

above, numerous studies illustrate TGF-β mediated signaling mechanisms involved in 

the reciprocal interactions of tumor cells and the stroma.  However, it wasn’t until 

recently that the effects of these interactions in the context of tumor cell metastasis has 

been appreciated.  Calon et al. show overexpression of TGF-β in a TGF-β nonresponsive 

carcinoma cell line drives enhanced metastasis of these tumor cells.  This is through the 

stimulated expression of known TGF-β target genes such as interleukin 11 (IL-11), 

angiopoietin-like 4 (ANGPTL4), and CTGF from stromal fibroblasts (Figure 3).  

Importantly, the TGF-β driven signature from these fibroblasts was able to predict 

recurrence in human colon cancer patients (Calon et al. 2012).  As the authors 

comment, such TGF-β induced gene expression changes have also been ascribed to 

epithelial carcinoma cells, thus, regardless of the tumors cells ability to respond to TGF-

β, the pro-tumorigenic effects of this gene expression profile are seen in tumors 

expressing high levels of TGF-β. 

Similar to epithelial TGF-β signaling, work examining the role of fibroblast TGF-β 

on tumor progression has revealed a contradictory role for the pathway with respect to 
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tumor progression.  While there is a preponderance of evidence supporting a tumor 

promoting role of TGF-β in stromal fibroblasts, there is also a significant amount of work 

showing a tumor suppressive role.  The foundation of this work lies in the paper from 

Bhowmick et al. showing that specific deletion of Tgfbr2 in fibroblasts systemically 

results in spontaneous carcinoma initiation (Bhowmick et al. 2004).  Further work has 

shown that fibroblasts lacking TGF-β signaling increase the progression of breast, 

prostate, and squamous cell cancer, as well as melanoma (Cheng et al. 2005; Franco et 

al. 2011; Meng et al. 2011).  The major gene expression changes associated with the loss 

of this signaling axis in fibroblasts are in cytokine and chemokine expression.  In 

particular, increased expression of CXCL1, CXCL5, CXCL12, and TGF-β1 is observed in 

fibroblasts with abrogated TGF-β signaling (Xu et al. 2010) (Figure 3).  This would 

indicate that modulation of the tumor microenvironment through increased infiltration 

of immune cells is a primary driver behind enhanced tumor progression seen when 

fibroblasts lose TGF-β responsiveness (Bacman et al. 2007; Hazelbag et al. 2002).  

Supporting this is recent work from Achyut et al. in which a significant increase in 

inflammation is observed in spontaneous forestomach carcinomas resulting from 

abrogation of TGF-β signaling in fibroblasts (Achyut et al. 2013).  Interestingly, this 

inflammatory response appears to drive tumor formation through the silencing of 

CDKN1A via epigenetic promoter methylation.  Administration of anti-inflammatory 

drugs significantly delayed tumor onset and increased overall survival, supporting 

immune cell infiltration as a facilitator of tumor development.  This work has correlated 

TGFBR2 expression with progression of breast cancer from normal to ductal carcinoma 
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in situ (DCIS) to invasive ductal carcinoma (IDC) and shows that stromal TGFBR2 

expression goes down as tumor progress towards invasiveness (Knudsen et al. 2012).  

Interestingly, immunohistochemical studies in colon cancer have shown a similar trend 

but have gone one step further to show that low expression of TGFBR2 in the stroma is 

an independent predictor of poor patient prognosis (Bacman et al. 2007).  This work 

indicates that the systemic use of TGF-B inhibitors on cancer patients may elicit 

beneficial effects from the context of the tumor cell itself, but could induce 

protumorigenic effects when modulating carcinoma associated fibroblasts.     

Identified Microenvironmental Effects of TGF-β Targeted Therapeutics in Preclinical 

Models 

 Given the significant effects seen in tumor progression on manipulation of TGF-β 

responsiveness, efficacious intervention in the TGF-β pathway remains a highly sought 

after goal.  With evidence supporting loss of TGF-β receptors in epithelial cells having a 

profound effect on the stroma, as well as increased ligand expression by the tumor 

being associated with poor patient prognosis, the tumor microenvironmental effects of 

this pathway are increasingly becoming relevant to the implementation of therapeutics 

targeting the TGF-β pathway.  In particular, the use of treatments which inhibit the TGF-

β pathway act to reverse many pro-tumorigenic effects active TGF-β signaling has on the 

tumor microenvironment.  Preclinical studies using drugs which inhibit TGF-β signaling 

through either ligand sequestration or inhibitory receptor binding are well tolerated and 

efficacious in inhibiting both epithelial and stromal TGF-β signaling activation.  
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Interestingly, numerous studies note these treatments are efficacious in slowing tumor 

progression and correlate these findings with significant changes in the tumor 

microenvironment (Table 1).  Based on similar findings found across numerous studies, 

it appears that inhibition TGF-β signaling significantly impedes tumor progression 

through its effects on the immune system.  Systemic treatment of tumor bearing mice 

with inhibitors blocking TGF-β signaling results in increased maturation and activity of 

dendritic cells thus leading to increased tumor antigen presentation as well as increased 

T cell mediated tumor cell cytotoxicity (Diaz-Valdes et al. 2011; Tanaka et al. 2010).  

Other studies have shown similar results in that treatments inhibiting TGF-β signaling 

present with increased T cell infiltration or loss of chemotaxis of myeloid cells which 

could impede anti-tumor immunity (Terabe et al. 2009; Zhong et al. 2010).  Regardless 

of the mechanism identified, the end result of these experiments in many cases is an 

increase in T cell mediated cytotoxicity and decreased tumor growth and 

progression(Hardee et al. 2012; Schlingensiepen et al. 2011; Uhl et al. 2004).  

Others have noted anti-tumorigenic effects of anti-TGF-β treatments which 

occur through decreased endothelial cell proliferation, blood vessel formation, and 

ultimately inhibition of angiogenesis (Hardee et al. 2012; Mazzocca et al. 2009; Noma et 

al. 2008; M. Zhang et al. 2011).  This phenotype aids in slowing tumor progression not 

only by limiting nutrients to tumor cells, but also by increasing the delivery of 

chemotherapeutic agents.  Popularized by Rakesh Jain, the hypothesis of stromal 

normalization postulates that inhibition and reversal of pro-tumorigenic  
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Table 1. Microenvironmental Effects of TGFβ Inhibitors in Preclinical Tumor Models   

TGFβ 
Target 

Drug 
Name 

Cancers 
Tested 

Microenvironmental 
Effects 

Ref 

TGF-β 
Ligand 
Trap 

P144 Melanoma ↑Dendritic Cell, Natural Killer, 
and T cell activity 

(Diaz-Valdes et 
al. 2011) 

1D11 Lung, Breast, 
and 
Glioblastoma 

↑Natural Killer cell infiltration 
and CD8+ mediated cell killing 
↓Blood Vessel Area 

(Hardee et al. 
2012; J. Liu et al. 
2012a; Terabe 
et al. 2009) 

TGF-β 
Antisense 

AP12009 Pancreatic 
Cancer 

↑Immune Cell Mediated 
Cytotoxicity 

(Schlingensiepen 
et al. 2011) 

Receptor 
Inhibitors 

GW788388 Esophageal 
Squamous Cell 
Carcinoma 

↓Fibroblast activation 
↓vascular development 

(Noma et al. 
2008) 

LY2109761 Hepatocellular 
carcinoma, 
Glioblastoma 

↓Angiogenesis 
↑periocyte coverage 

(Mazzocca et al. 
2009; M. Zhang 
et al. 2011) 

LY364947 Glioblastoma ↑vascular permeability (Hardee et al. 
2012) 

LY3022859 Breast, 
Pancreas, 
Colon Cancer  

↑Natural killer cell and 
Cytotoxic T cell mediated 
tumor cell killing 
↓Treg cell presence 
↓ MDSC infiltration 

(Zhong et al. 
2010) 

SB431542 Breast Cancer ↑Dendritic Cell maturation (Tanaka et al. 
2010) 

SD-208 Breast Cancer 
Bone 
Metastasis, 
Glioma 

↓Osteoclast differentiation 
↑Immune Cell Mediated 
Cytotoxicity 

(Uhl et al. 2004) 

SX-007 Glioma ↑CD3+ Cell Presence (Tran et al. 
2007) 

SM-16 Lung Cancer ↑Activated CD8+ T cells, 
↑CD4+ Presence 

(Garrison et al. 
2012) 
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microenvironmental changes would be beneficial to patients due to enhanced delivery 

of cytotoxic chemotherapies.  In an elegant series of experiments, Dr. Jain showed that 

TGF-β inhibition fit the role of a stromal normalizer in that 1D11 treatment of mammary 

tumor implants reduced collagen deposition and increased blood vessel perfusion which 

ultimately results in an increased efficacy of doxorubicin uptake (J. Liu et al. 2012a).  

While not explicitly shown, there is also the potential of anti-TGF-β treatments to free 

cells from cell cycle arrest induced by active TGF-β signaling and thus enhance the 

efficacy of chemotherapeutics even further.    

Overview of Current TGF-β Targeting Clinical Trials for Cancer Treatment 

 Several phase I/II clinical trials of TGF-β neutralizing antibodies and small 

molecule inhibitors to both ligand and receptor have shown to be safe and efficacious 

with many trials still accruing patients (Bogdahn et al. 2011; Mead et al. 2003; Roldan 

Urgoiti et al. 2012; Schlingensiepen et al. 2011).  TGF-β inhibitory treatment regimens 

across numerous cancer types in mouse models as well as early stage clinical trials have 

shown benefits from the treatment with a mechanism ascribed being increased activity 

of antitumoral adaptive immune cells (Kim et al. 2008; Uhl et al. 2004).  Treatments 

targeting the TGF-β pathways fall into three categories of inhibitors: extracellular 

trapping of TGF-β ligands, antisense knockdown of TGF-β ligand expression, and 

inhibitors of activation of TGF-β receptor kinase activity.  GC-1008, a ligand trap 

developed by Genzyme, has shown to be well tolerated in human Phase I trials with 5 of 

the 23 patients treated showing partial response.  The antisense oligo AP12009, which 
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targets the TGF-β2 ligand, has also been used in phase I clinical trials and provides a 

significant survival benefit over conventional chemotherapy in high grade glioma 

patients (Bogdahn et al. 2011).  Interestingly, the mechanism behind this response is 

thought to derive from enhanced anti-tumoral immunity in these patients.  Yet, as more 

is learned about the effects of TGF-β signaling pathway in specific components of the 

microenvironment, we begin to see potential reasons behind a lack of response in some 

patients.  For example, loss of TGF-β signaling in fibroblasts diminishes the induction of 

a desmoplastic response from these cells yet still promotes tumor progression through 

augmentation of inflammatory cell infiltration (Achyut et al. 2013; Calon et al. 2012).  

Heterogeneous cell populations within the primary tumor must also be given 

consideration as inhibition of TGF-β may prevent tumors from undergoing EMT and 

invading into the surrounding tissue, but this may occur at the cost of freeing cells from 

the growth inhibitory effects of TGF-β.  In spite of this, clinical trials involving TGF-β 

inhibition through either genetic abrogation of TGF-β sensitivity, such as through the 

adoptive transfer of T lymphocytes expressing dominant negative forms of TGF-β 

receptor, or the use of inhibitory antibodies have pushed forward.  Though modest and 

mixed results are consistently obtained from these trials, this is probably due to varying 

stromal compositions and the pleotropic effects of TGF-β.   

Without a thorough understanding of the contextual dependence of TGF-β 

signaling actions in the stroma it is likely that the implementation of systemic 

therapeutics targeting the TGF-β pathway will yield inconclusive results due to tumor 

heterogeneity.  Thus, novel methods of delivery that allow for specific targeting to a 
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cellular type or evasion of pathway activation are being explored, including the adoptive 

transfer of T lymphocytes with abrogated TGF-β response thus circumventing its anti-

tumorigenic response.  This highly specific manipulation should provide beneficial 

effects on tumor progression without introducing controversial effects by effecting TGF-

β signaling in other stromal and epithelial cells.  There must also be a greater emphasis 

placed upon the understanding of how stromal components interact with each other 

and with tumor cells to drive tumor progression.  Such studies which would include how 

TGF-β modulates this interaction would provide a clear picture of the context in which 

tumor progression is occurring.  A greater understanding of the context driving TGF-β 

signaling effects in tumor progression will provide invaluable information on how and 

when to target the TGF-β pathway in patients. 

Summary 

 Primary work supporting the dichotomous nature of TGF-β signaling in cancer 

progression includes early studies involving epithelial overexpression of TGF-β ligand 

and abrogation of epithelial TGF-β signaling through receptor knockout.  While 

supporting dual roles for TGF-β signaling in late stage tumor progression both these 

models present with two similarities, increased metastasis and increased secretion of 

TGF-β ligand.  While TGFBR2 knockout epithelium is unable to respond to this increased 

ligand secretion, the microenvironmental changes would still be present.  Observations 

from our laboratory and others support microenvironmental changes representing a 

significant portion of the effects of epithelial TGF-β ligand overexpression and TGF-β 



30 
 

signaling abrogation.  This led us to hypothesize that stromal TGF-β signaling was driving 

enhanced metastasis in our TGFBR2 knockout tumors.  As described above, TGF-β 

signaling in stromal components supports tumor progression and metastasis through 

the induction of pro-tumorigenic microenvironmental functions, through MSC, 

fibroblast, and myeloid cells mediators, and inhibition of anti-tumorigenic immune cell 

function, particularly those involving the adaptive immune system.  Thus, we 

investigated the role of TGF-β signaling in stromal fibroblasts as a mediator of the 

resultant microenvironmental changes which could be responsible for this phenotype.  

Interesting, our findings once again support a dichotomous role for TGF-β signaling, but 

this time in the context of a fibroblast rather than an epithelial cell.  Presented herein 

we demonstrate that TGF-β can drive expression of matrix remodeling genes and that 

this matrix remodeling promote tumor cells metastasis.  Conversely, abrogation of TGF-

β signaling in fibroblasts also promotes tumor progression through an altered gene 

expression profile that enhances tumor progression.  Given that once again TGF-β 

signaling is shown to have dichotomous effects on tumor progression, our results 

support the use of highly selective TGF-β inhibition, such as through the adoptive 

transfer of cells lacking the ability to respond to TGF-β, or targeting the downstream 

targets of the TGF-β pathway identified as driving the pro-tumorigenic changes, such as 

inhibition of the mediators of matrix remodeling or immune cell chemotaxis.     
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Chapter II 

 

TGF-β INDUCED FIBROBLAST MATRIX REMODELING PROMOTES TUMOR CELL 

METASTASIS 

 

Introduction 

The stromal microenvironment of a tumor is an essential component of tumor 

progression (Finak et al. 2008).  Comprised of various resident and recruited cell types as 

well as extracellular proteins, the stromal components can determine phenotypic 

characteristics and ultimately patient outcome.  By providing growth factors and other 

migratory signals as well as depositing scaffolding proteins, the tumor stroma can 

effectively drive or impede a tumor cell toward intravasation and metastatic 

colonization (Khamis et al. 2012).  Specifically, matrix deposition and remodeling, largely 

facilitated through fibroblast mediators, promotes tumor growth and migration 

(Levental et al. 2009).  While stromal influence is acknowledged, a full understanding of 

the signals driving the formation of a tumor promoting stroma as well as the reciprocal 

response of the epithelium to these changes has yet to be obtained.  Insights into these 

interactions will provide the backbone for future therapeutic interventions specifically 

targeting tumor-stromal crosstalk. 

Extracellular matrix (ECM) proteins, and in particular collagen, are a major 

component of the tumor microenvironment and exert significant effects on the tumor 
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epithelium (Garamszegi et al. 2009).  Through its integrin mediators, extracellular matrix 

proteins encourage tumor growth and invasiveness.  Increased mammographic density, 

which is significantly associated with collagen levels, independently predicts increased 

probability of occurrence of breast cancer in patients (Boyd et al. 2007).  These results 

are mimicked in murine models of breast cancer progression in which deposition of 

collagen that is unable to be proteolytically cleaved results in increased tumor formation 

as well as increased lung metastasis (Provenzano et al. 2008). Recently, it has been 

appreciated that ECM-epithelial crosstalk is not only mediated by the ECM proteins 

themselves, but by the orientation and crosslinking status of the collagen fibers.  Lysyl 

Oxidase (LOX) is a matrix modifying enzyme that cross-links and stiffens collagen fibers 

to promote their stability (Levental et al. 2009).  LOX has garnered interest in breast 

cancer as an important enzyme regulating stromal modification to drive malignant 

progression (Levental et al. 2009). Although epithelial LOX has been implicated in tumor 

metastasis through the promotion of a TGF-β driven Epithelial to Mesenchymal 

Transition (EMT) and integrin mediated epithelial invasion (Taylor et al. 2011), the role 

of stromal LOX in tumor metastasis has yet to be examined.   

Previous work from our laboratory showed that abrogation of TGF-β signaling in 

epithelia results in a significant increase in PyMT driven mammary carcinoma metastasis 

(Forrester et al. 2005).  Looking at the primary tumor for a potential cause of this 

phenotype, one of the most striking observations was an expansion of the stromal 

microenvironment (Bierie et al. 2008).  As these tumors presented with increased levels 

of TGF-β derived from infiltrated myeloid derived suppressor cells and an increase in 
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SMA positive fibroblasts, we hypothesize that these activated fibroblasts are driving 

stromal expansion through increased matrix remodeling.  Work we have published in 

Pickup et al. 2013 aimed to identify differentially regulated matrix associated genes 

resulting in increased stromal expansion in the PyMTmgko model of breast cancer and to 

examine their role in driving epithelial cell phenotypes which ultimately results in 

metastasis.  To address this question, we used our established PyMTmgko model of 

mammary tumor progression in which the PyMT ongogene is selectively expressed in  

the mammary epithelium through the mouse mammary tumor virus (MMTV) promoter.  

Our findings show that TGF-β secreted by myeloid cells induces expression of LOX by 

carcinoma-associated fibroblasts, which in turn increases matrix crosslinking and 

stiffness to drive Keratin 14 cell FAK signaling, carcinoma cell intravasation and 

metastasis. 

 

Materials and Methods 

Mouse Model 

TβRII(fl/fl) mice were crossed with MMTV-PyVmT/MMTV-Cre/ TβRII(fl/fl)  transgenic 

mice to produce the TβRII(fl/fl)/PyMT (PyMTfl/fl) and TβRII(fl/fl)/PyMT/MMTV-Cre 

(PyMTmgko)mice.  Cell lines were isolated from these spontaneous tumors and used in 

further in vitro experimentation.  LOX inhibition studies used Beta-Aminopropriontrile 

(3mg/ml, Sigma) dissolved in the drinking water.  Mice were housed and handled 

according to approved Institutional Animal Care and Use Committee protocols. 
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Lung Whole Mount and Circulating Tumor Cell analysis 

Lungs were fixed in 10% neutral buffered formalin overnight at 4°C. The next day, lungs 

were dehydrated, placed in xylene for 1 h, and then changed to fresh xylene overnight. 

Lungs were rehydrated before dipping in Mayer's hematoxylin for 2 min and then 

washed in running tap water for 5 min. Tissues were destained in HCl (fresh 1% v/v from 

a 12 N solution) for 20 min, rinsed in running tap water overnight, dehydrated, and 

placed in xylene overnight before counting of stained metastatic tumor foci under a 

dissecting light microscope. 

Circulating blood was isolated from the left ventricle of tumor bearing mice upon 

sacrifice.  200uL of the blood was plated into a well of a gelatin coated 6 well dish and 

allowed to grow for 3 to 4 weeks.  After the growth phase, colonies larger than 150um 

were counted and quantified.   

Picrosirius Red Staining and Quantification 

Five micron sections of paraffin-embedded mammary tumors were stained with 0.1% 

Picrosirius Red (Direct Red 80; Sigma Aldrich).  Stained sections were imaged on a Zeiss 

Axiophot equipped with a cross-polarizer.  Images were quantified for pixel density of 

thresholded light intensity(Levental et al. 2009). 

In situ hybridization 

The following protocol was performed on sections of fresh frozen tumor tissue.  In brief, 

sections were digested with 0.125mg/ml of pronase, fixed in 10% formalin and blocked 
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with 0.2% glycine.  Sections were probed with Digoxigenin labeled sense and anti-sense 

probes, each ~300bp in length.  Probes were obtained from digestion of full length 

mouse LOX cDNA with HindIII and XbaI (New England Biolabs).  Following overnight 

probe incubation, staining was visualized through staining sections with 1:500 AP-

labeled anti-DIG (Roche).  Sections were counterstained with DAPI (Invitrogen) for nuclei 

visualization(Gorden et al. 2007). 

Collagen Contraction Assay 

Assay was performed via Cell Biolabs Protocol for Cell Contraction Assay CBA-201.  

Briefly, 100,000 fibroblasts are suspended in a 0.5mL collagen matrix and allowed to 

solidify in a well of a 24 well plate.  After solidification, the collagen mixture is freed 

from the plate into a floating state at which point contraction of the collagen gel is 

monitored and recorded.  Pictures at various timepoints are quantified for area relative 

to the 0 hour time point. 

Tissue preparation for AFM measurements of ECM stiffness: 

Mammary glands were analyzed following cryopreservation. Fresh glands were 

embedded in OCT (Tissue-Tek) aqueous embedding compound within a disposable 

plastic base mold (Fisher) and were snap frozen by direct immersion into liquid nitrogen. 

Frozen tissue blocks were then cut into 20 µm sections using disposable low profile 

microtome blades (Leica, 819) on a cryostat (Leica, CM1900-3-1). Prior to the AFM 

measurement, each section was thawed by immersion in PBS at room temperature. The 

samples were maintained in proteinase inhibitor in PBS (PROTEASE INHIBITOR COCKTAIL 
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Roche Diagnostics, 11836170001), with Propidium Iodide (SIGMA P4170, 20 µg/ml) 

during the AFM session.  

AFM measurements of ECM stiffness on tissue sections: 

All AFM indentations were performed using an MFP3D-BIO inverted optical AFM 

(Asylum Research) mounted on a Nikon TE2000-U inverted fluorescent microscope, as 

previously described(Lopez et al. 2011). Briefly, we used silicon nitride cantilevers with 

spring constant of 0.06 N/m with borosilicate glass spherical tip with 5 µm in diameter 

(Novascan Tech). The cantilever was calibrated using the thermal oscillation method 

prior to each experiment. Samples were indented at 20 µm/s loading rate, with a 

maximum force of 2 nN. Five AFM force maps were typically obtained on each sample, 

each map as a 20x20 µm raster series of indentations utilizing the FMAP function of the 

IGOR PRO build supplied by Asylum Research. The Hertz model was used to determine 

the elastic properties of the tissue. Tissue samples were assumed to be incompressible 

and a Poisson’s ratio of 0.5 was used in the calculation of the Young’s elastic modulus. 

Two-photon microscopy image acquisition and analysis: 

For two-photon imaging, we used custom resonant-scanning instruments based on 

published designs containing a five-PMT array (Hamamatsu, C7950) operating at video 

rate(Bullen et al. 2009). The setup was used with two channel simultaneous video rate 

acquisition via two PMT detectors and an excitation laser (2W MaiTai Ti-Sapphire laser, 

710-920nm excitation range). Second harmonics imaging was performed on a Prairie 

Technology Ultima System attached to an Olympus BX- 51 fixed stage microscope 
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equipped with a 25× (NA 1.05) water immersion objective.  Unfixed, hydrated samples 

were exposed to polarized laser light at a wavelength of 830nm and emitted light was 

separated with a filter set (short pass filter, 720nm; dichroic mirror, 495nm; band pass 

filter, 475/40nm). Images of x-y planes of 284 by 284μm at a resolution of 

0.656μm/pixel were captured using Micro-Manager Open Source Microscopy Software 

(Micro-Manager) in at least 3 locations on each mammary gland. Quantification of 

collagen fibers was achieved by setting a minimal threshold in the second harmonic 

signal. The threshold was maintained for all images across all conditions. The area of 

regions that was covered by the minimal threshold was calculated and 3 images per 

sample were averaged together (Image J, Image Processing and Analysis in Java). 

Collagen fiber diameters data were visualized and analyzed using Imaris (Bitplane AG) 

and MATLAB (MathWorks).  

RT-PCR 

RNA was purified with RNeasy Mini kit including DNaseI treatment(Qiagen). cDNA 

synthesis was performed using VILO cDNA kit (Life Technologies). SYBR green master 

mix is LuminoCt (Sigma). Primers designed using NCBI-Primer Blast (Supplementary 

Table S1), melting curves inspected after every run performed on BioRad CFX96 real 

time cyclers. All primers were optimized for 60 degree annealing and two-step cycling 

was performed from 95 degrees (10s) to 60 degrees (30s) for 40 cycles. GAPDH was 

used to calculate normalized fold change. 
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Western Blotting 

Total protein was isolated using Complete LysisM Buffer (Roche). Protein was diluted to 

equal concentrations and equally loaded on 10% polyacrylamide gels prior to transfer to 

a nitrocellulose membrane. Blots were incubated overnight with LOX (1:1000, Pierce), 

pFAK397 (1:1000, Invitrogen), Total FAK (1:1000 Cell Signaling), Collagen Type I (), and 

LOXL2 () antibodies.  HRP-conjugated secondary antibodies were used to visualize band 

intensity via x-ray film exposure. 

Immunofluorescence 

BSA (12%) was used to block all sections as well as dilute primary and secondary 

antibodies. Keratin 14 (1:500, Covance), pFAK397 (1:100, Millipore), Gr1 (BD), and αSMA 

oC. Secondary antibodies 

were all goat derived, highly cross-adsorbed, and used at 1:500.  Slides were mounted in 

SlowFade +DAPI  (Molecular Probes/Invitrogen).  Sections were imaged on a Zeiss 

LSM510 inverted confocal microscope with a 40X/1.3 Plan-NEOFLAUR objective.   

LOX activity assay 

Normal mouse mammary fibroblasts were treated with conditioned media from Gr1+ 

and Gr1- myeloid cells for 24 hours with or without TGF-ß inhibitor SB431542 (Sigma).  

Gr1+ and Gr1- cell conditioned media was prepared from magnetically isolated (Miltenyi 

Biotec) cells from a tumor bearing mouse.  Fibroblast conditioned media was obtained 

by conditioning fresh phenol red free DMEM with 10% adult bovine serum.  Conditioned 
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media was prepared in a final volume of 1 mL containing 1.2 M urea (Amresco), 0.05 M 

sodium borate (Sigma, pH 8.2), 0.1 units/mL of horseradish peroxidase (Fluka), 50 µM 

Amplex Red (Invitrogen) and 10 mM 1,5-diaminopentane (Sigma-Aldrich) and were 

incubated at 37°C for 1 hour.  Flourescence intensity was read on a Spectramax M5 at 

an excitation/emission of 560/590nm.  Intensity values were normalized to BAPN 

treated conditioned media to evaluate LOX specific fluorescence intensity(Levental et al. 

2009). 

Microarray Data Analysis 

Publically available human datasets, GSE33692 and GSE9014, were downloaded from 

NCBI Gene Expression Omnibus and analyzed via Agilents’ GeneSpring GX microarray 

analysis software.  GSE33692 dataset represents microarray data files from RNA 

extracted from either matched epithelial or stromal tissue from 3 normal, 9 DCIS, and 10 

IDC breast cancer patients[11].  GSE9014 is microarray  data derived from the stromal 

captured tissue of 53 breast cancer patients[1]. 

Statistics 

Statistical analysis was performed using Graphpad Prism after consultation with the 

Vanderbilt Biostatistics Department. 
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Results 

TGF-β Drives Fibroblast Activation and Matrix Remodeling in Mouse Mammary 

Fibroblasts 

The role of TGF-β signaling in fibroblast activation has been previously 

established (Reed et al. 1994).  However, work concerning the functional role of 

activated fibroblasts in the context of cancer progression has delineated several 

functional hallmarks (Calon et al. 2012).  Of particular interest was the role TGF-β played 

in driving the maturation and remodeling of the extracellular matrix.  In normal 

physiological as well as in diseased states, TGF-β has been shown to drive the expression 

of numerous matrix remodeling genes from cells of mesenchymal origin, including 

fibroblasts.  Validating these findings in mouse mammary fibroblasts, we see similar 

results to those previously reported in that treatment of fibroblasts with TGF-β 

significantly induced the expression of genes associated with an activated 

myofibroblast, including alpha-smooth muscle actin (αSMA), fibroblast activated protein 

(FAP), connective tissue growth factor (CTGF), and the alpha 2 subunit of type I Collagen 

(Col1a2) (Figure 4A).  Having established that mouse mammary fibroblast phenocopy 

the established role in fibroblast activation, we sought to address whether this affected 

the cells ability to interact with and remodel a collagenous matrix.  To accomplish this, 

we cultured mouse mammary fibroblasts embedded in a type I collagen matrix free 

floating in media and monitored the size of the collagen plug over a course of 72 hours.  

Over this time we observed that treatment with TGF-β induced a more dramatic  
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Figure 4. TGF-β Induction of ECM Remodeling Gene Expression in Fibroblasts.  

A) Q-PCR analysis of αSMA (1.0±0.07,1.66±0.085), FAP (1.00±0.11,2.99±0.2), 

CTGF (1.00±0.04, 17.57±1.15), and Col1a2 (1.00±0.05, 6.17±0.37) expression 

in mouse mammary fibroblasts untreated compared to fibroblasts treated 

10ng/ml of TGFβ1. Values represent relative fold change normalized to 

untreated fibroblasts. B) Representative images of a matrix contraction assay 

in which mouse mammary fibroblasts were allowed to contract a type 1 

collagen matrix over a 72 hour period.  Quantification included average 

diameter of the collagen plug at each time point for the cell lines at each 

condition.  C) Time course Q-PCR analysis of TGF-β induction of matrix 

remodeling gene LOX (1.00±0.22, 2.94±0.39, 2.25±0.3). Values represent 

relative fold change normalized to untreated fibroblasts.  D) Time course 

fluorescent activity assay for LOX normalized to BAPN treated sample of the 

same treatment at each timepoint.  
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contraction of the collagen matrix compared with the untreated control cells (Figure 

4B).  And similar to this induced phenotypic change, this effect was abrogated upon 

treatment of these cells with an ALK5 inhibitor, SB431542 (Figure 4B).  Interestingly, 

inhibition of TGF-β signaling abrogated even basal levels of collagen contraction by the 

mouse mammary fibroblasts without stimulation of TGF-β.  With these results in mind, 

we sought to address the gene expression changes induced by TGF-β specifically 

involved in collagen maturation and remodeling.  Lysyl oxidase (LOX) expression was 

significantly altered in fibroblasts upon treatment with TGF-β (Figure 4C).  LOX was of 

particular interest due to the large degree of recent work supporting LOX promoting the 

progression of numerous cancers through the induction of epithelial changes (Leight et 

al. 2012; Shih et al. 2012).  Validating these finding of increased LOX gene expression, 

we see that LOX activity in conditioned media of fibroblasts treated with TGF-β was 

indeed higher than untreated control cells (Figure 4D).  The data indicates that the 

activation of fibroblasts by TGF-β in mammary tissue not only drives matrix production 

but also the active remodeling of the synthesized matrix and particularly the production 

of LOX.   

 

LOX Expression is Enriched in the Stroma of Aggressive Breast Cancer 

Having established a TGF-β as a driver for LOX expression from fibroblasts, we 

sought to address whether stromal LOX expression was relevant to the progression of 

human breast cancer.  Recent work has emphasized the production of LOX by  
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Figure 5. LOX Expression is Enriched in the Stroma of PyMT Mouse 
Mammary Tumors as well as Human Invasive Ductal Carcinoma. A) 
qPCR analysis of LOX expression in fibroblasts (1±0.084, n=3), 
PyMTmgko tumor cells (0.14±0.1, n=3), and PyMTfl/fl tumor cells 
(0.3±0.12, n=3). Values represent relative fold change normalized to 
untreated fibroblasts. B) qPCR analysis for LOX from RNA extracted 
from epithelium (1±0.17, n=6) or stroma (9.15±0.9, n=6) from 
PyMTmgko tumors. Values represent relative fold change normalized to 
LCM Epithelium. C) Representative image of in situ hybridization of 
PyMTmgko tumor counterstained with DAPI. D) Analysis of microarray 
data from patient matched epithelium and stromal isolated from 
human invasive ductal carcinoma via LCM for ACTA2, CTGF, and LOX 
expression (GSE33692). Green = downregulated, Red = upregulated.  
E) Quantification of normalized expression values for ACTA2, CTGF, and 
LOX microarray data presented in (D). 
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tumor cells particular when under hypoxic stress (Erler et al. 2006).  Tumor cells 

cultured under hypoxic conditions or expressing high levels of HIF1α express higher 

levels of LOX than their non-hypoxic counterparts (Erler et al. 2006). Alternately, in 

human breast carcinoma, LOX expression is also a stromally produced gene that is 

expressed along with type I collagen (Levental et al. 2009; Peyrol et al. 1997).  To 

determine the relative contribution of either epithelial or fibroblast cells to LOX 

production we performed gene expression analysis on cell lines for each cell type.  Our 

results indicate that fibroblasts consistently expressed significantly more LOX when 

compared with epithelial tumor cells (Figure 5A).  To validate the relevance of these in 

vitro findings to disease progression in vivo, laser capture microdissection (LCM) was 

performed on tumor sections to isolate RNA from either epithelial or stromal regions of 

the tumor.  Upon qPCR analysis, the stroma of PyMTmgko tumors expressed 

approximately 10 fold more LOX than the neighboring epithelium (Figure 5B).  In situ 

hybridization for LOX mRNA again showed the stromal regions of PyMTmgko tumors were 

highly enriched for LOX mRNA compared to the epithelium (Figure 5C).  To verify the 

validity and relevance of such findings to human disease, publically available datasets of 

LCM epithelium and stroma from invasive ductal carcinoma (IDC) were analyzed to 

localize LOX expression.  Indeed, matching the finding in the PyMTmgko tumors, IDC 

tumors quantitatively showed a marked increase in LOX expression in the stroma 

compared to the epithelium.  LOX expression also aligned with genes known to be 

expressed in activated myofibroblasts, connective tissue growth factor (CTGF) and α-

smooth muscle actin (ACTA2) all of whose expression was increased in the stroma 
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(Figure 5D-E) (Arora and McCulloch 1994).  These results indicated that in both murine 

PyMT tumors as well as human IDC, the stroma is an abundant source of LOX. 

 

Infiltrating Myeloid Cells Drive Stromal Lysyl Oxidase Expression in a TGF-β Dependent 

Manner 

In numerous disease states including wound healing, fibrosis, and cancer, a large 

source of TGF-β production and secretion comes from infiltrating myeloid cells.  

Previous studies in our laboratory have shown that knockout of the type II transforming 

growth factor beta receptor in mammary tumor cells induced numerous stromal 

changes including increased CD11b+Gr1+ myeloid derived suppressor cell (MDSC) 

infiltration (L. Yang et al. 2008).  These tumors also present with an increased level of 

available TGF-β ligand.  As there is no difference in tumor cell secretion of TGF-β1 and a 

significant increase in TGFB1 expression from MDSCs infiltrating tumors compared to 

those found in the spleen, it is probable that the increased TGF-β1 ligand production 

seen in PyMTMGKO tumors is due to increased infiltration of MDSCs.  Having previously 

established TGF-β as a driver of LOX expression in fibroblasts, we sought to determine if 

this infiltrating myeloid cell population could also activate fibroblasts to drive LOX 

expression.  We treated mouse mammary fibroblasts with conditioned media from 

either Gr1 negative cells, representing lymphocytic and myeloid cell lineages excluding 

the Gr1+ MDSC population, or Gr1 positive cells which includes the MDSC population.  

While both Gr1- and Gr1+ conditioned media induced expression of αSMA from the  
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Figure 6. Infiltrating Myeloid Cells Drive Stromal LOX expression in a 
TGF-β dependent manner.  A) qPCR analysis of αSMA (also known as 
ACTA2) and LOX expression from fibroblasts treated with conditioned 
media from Gr1- or Gr1+ cells isolated from PyMTmgko mice with or 
without SB431542 treatment. Values represent relative fold change 
normalized to untreated fibroblasts. B) Dual Immunofluorescence 
localizing Gr1+ myeloid cells (Green) and αSMA expressing fibroblasts 
(Red) in PyMTmgko tumors. C) Scatter plot correlating stromal TGF-β1 
expression with stromal LOX expression in human breast cancer 
patients (GSE9014).  
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treated fibroblasts, only Gr1+ conditioned media significantly increased the expression 

of LOX (Figure 6A).  As any number of factors could be responsible for the induced gene 

expression change, we combined the conditioned media treatments with the TGF-β 

inhibitor SB431542 to determine if the induction of αSMA and LOX expression was 

dependent upon TGF-β.  Indeed, the gene expression changes elicited by both Gr1- and 

Gr1+ conditioned media were dependent upon TGF-β.  Validating these gene expression 

changes, we see that conditioned media from fibroblasts treated with conditioned 

media from Gr1+ myeloid cells had increased levels of lysyl oxidase activity as measured 

by the detection of hydrogen peroxide, a byproduct of LOX activity (Figure 6B).  To 

provide in vivo significance to these findings, we colocalized Gr1+ myeloid cells 

infiltrating PyMTMGKO tumors with activated αSMA expressing fibroblasts.  As shown in 

the representative images presented in Figure 6C, areas of Gr1+ cell infiltration 

colocalized with αSMA actin positive cells (Figure 6C).  Additional support for the 

premise of TGF-β derived from stromal cells driving fibroblast activation and LOX 

expression was gained from analysis of human patient microarray datasets.  Gene 

expression analysis on RNA extracted from the stroma of breast cancer patients shows 

that there is a positive correlation between TGFβ1 expression and the expression of LOX 

(Figure 6D).  The data would indicate that in both mouse and human breast cancer, TGF-

β derived from infiltrating myeloid cells can promote the activation of stromal 

fibroblasts and the expression of LOX.   
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PyMTMGKO Tumors Have Increased Maturation of the Collagenous Extracellular Matrix 

The generation of mammary tumors with and without the type II transforming 

growth factor beta receptor has been previously described (Bierie et al. 2008; Forrester 

et al. 2005).  As previously noted, mouse mammary tumors lacking Tgfbr2 gene 

expression are characterized by increased infiltration of MDSCs as well as increased 

levels of TGF-β ligand.  As presented previously, our work suggests that these infiltrating 

myeloid cells can promote the activation of stromal fibroblasts and drive matrix 

remodeling.  Prior work showed this mouse model presents with an enhanced reactive 

stroma and increased myofibroblast presence compared to tumors with intact TGF-β 

signaling (Bierie et al. 2008).  However, the differences in the extracellular matrix of 

these tumors remained unexplored thus we sought to investigate whether the 

previously noted in vitro induction of matrix remodeling translated into LOX expression 

and collagenous deposition in in vivo tumors.  Picrosirius Red staining analyzed under 

polarized light was used to further define the deposition of collagen fibers.  This stain 

also provides insight into collagen stability as positively stained collagen fibers have 

been described as thicker, more aligned, and more cross-linked (Gorden et al. 2007).  

Picrosirius Red staining showed enhanced deposition of mature collagen in PyMTmgko 

tumors (Figure 7A).  These data were quantified to show this difference as statistically 

significant between the PyMTfl/fl and PyMTmgko tumors (Figure 7A).  Second harmonics 

generation, the phenomenon of collagen scattering incoming light to a specific emission 

wavelength of exactly half that of the incoming light, revealed a trend of more abundant 

linearized, thick collagen fibers dispersed throughout the stroma, consistent with a 
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Figure 7. PyMT
MGKO

 Tumors Have Increased Maturation of the 
Collagenous Extracellular Matrix. B) Representative images (20X) of 

Picrosirius Red staining of PyMT
fl/fl

 and PyMT
mgko

 tumor sections. 
Quantification of thresholded pixel density representing positive 

picrosirius staining for PyMT
fl/fl

 (8.8*10
6 

A.U.± 1.4*10
6
,n=16) and 

PyMT
mgko

 (2.1*10
7
 A.U.± 2.3*10

6
, n=16) tumors. B) Second harmonic 

generation (SHG) for label free imaging of fibrillar collagen. Scatter 

plot of SHG signal indicate a 30% increase of SHG signal in PyMT
mgko 

(7140 A.U.±5696, n=5) compared to PyMT
fl/fl

 (4314 A.U.±2753, n=5) 
(P=0.1753 ns). C) Bulk tumor qPCR analysis of Col1α2 expression in 

Control (1±0.49, n=6) and PyMT
mgko

 tumors (0.9±0.3, n=6). Bulk tumor 
qPCR analysis of Col4α1 expression in Control (1±0.69 n=6) and 

PyMT
mgko

(0.62±0.12,n=6) tumors. Values represent fold change 
relative to PyMTfl/fl expression. D) qPCR and western blot analysis of 

LOX expression in PyMT
fl/fl

 (1±0.19, n=8) and PyMT
mgko

 (2.32±0.14, 
n=8)  using whole tumor RNA and protein extracts. Values represent 
fold change relative to PyMTfl/fl expression.  E) Scatter plot of Young’s 

Elastic Modulus of PyMT
fl/fl

 and PyMT
mgko

 showing an increase of the 

elastic modulus of PyMT
mgfl 

stromal mammary glands (840 ± 21.61 Pa) 

compared to PyMT
fl/fl

 (550 ± 10.54 Pa). 
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 greater amount of cross-linked collagen present in the PyMTmgko tumors, presented and 

quantified in Figure 7B.  There are several factors that can drive the expansion of a 

collagen matrix including increased collagen synthesis or increased maturation of 

collagen that is synthesized.  Interestingly, Q-PCR analysis indicated no increased 

expression of Collagen Type I or Type 4 implicating collagen stablization as the driver of 

increased collagen deposition (Figure 7C).  Consistently, tumor gene expression and 

protein levels showed that expression of the collagen crosslinking enzyme LOX was 

increased in the PyMTmgko tumors compared to PyMTfl/fl tumors (Figure 7D).  This 

protein cross-links collagen fibers to regulate their stability (Payne et al. 2007).  LOX was 

of particular interest due to its significant role in matrix remodeling and tumor 

progression (Erler et al. 2006).  Concordant with increased expression of LOX, atomic 

force microscopy indentation quantified a significant increase in the stiffness of the 

extracellular matrix associated with the PyMTmgko tumors (Figure 7E).  These results 

indicate that rather than enhanced collagen synthesis, PyMTmgko tumors promote 

increased matrix remodeling through collagen stabilization culminating in an overall 

increase in collagen deposition and stiffness in the stroma associated with PyMTmgko 

tumors.   

 

The LOX Inhibitor, BAPN, Attenuates Collagen Maturation/Crosslinking in PyMTMGKO 

Tumors. 

Several studies have linked LOX activity with collagen crosslinking and increased 

matrix stiffness, however others have also noted that increased matrix stiffness can be 
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Figure 8. The LOX Inhibitor, BAPN, Attenuates Collagen 

Maturation/Crosslinking in PyMT
MGKO

 Tumors. A) Representative AFM 

force maps of PyMT
fl/fl

, PyMT
mgko

 and PyMT
mgko

 + BAPN stromal areas, 

indicating stiffer collagen in PyMT
mgko

. BAPN treatment significantly 

decreased the elastic modulus by 69.52% compared to PyMT
mgko

 
(P<0.0001).  B) Top row: Representative images of ECM fibrillar 

collagen diameter (color-coded) and cell nuclei (purple) of PyMT
fl/fl

, 

PyMT
mgko

 and PyMT
mgko

 + BAPN visualized with second harmonic 
generation (SHG) microscope. Bottom row:  collagen fibers diameter 

quantification shows a distribution in the PyMT
fl/fl

 samples with 80% of 

fibers with diameter falling in the range 0.4 - 2.2 µm. PyMT
mgko 

shows 
a wider distribution (80% of fibers with diameter falling in the range 

0.6 - 3.8 µm) with respect to the PyMT
fl/fl

. BAPN treatment reduced 

collagen accumulation and fiber thickness in PyMT
mgko 

(80% of fibers 
with diameter falling in the range 0.5 – 1.8 µm). C) ) ECM stiffness 

distribution of PyMT
fl/fl

 (0.1 to 2 kPa), PyMT
mgko

 (0.1 to 10 kPa )and 

PyMT
mgko

 + BAPN (0.1 to 0.5 kPa).  
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 driven by factors such as increased collagen secretion in an enclosed space.  To test 

whether LOX activity was responsible for the increased matrix stiffness observed in 

PyMTmgko mice, we treated tumor bearing mice with an irreversible chemical inhibitor of 

LOX activity, Beta-Aminoproprionitrile (BAPN).  BAPN is a synthetic chemical inhibitor of 

LOX activity that mimics the efficacy of LOX inhibitory antibodies when used in in vivo 

treatments (Bondareva et al. 2009; Erler et al. 2006; Wilmarth and Froines 1992).  To 

examine the effects of BAPN treatment on the matrix stiffness of our tumors, several 

analyses were performed.  Atomic force microscopy indentation mapping performed on 

those tumors showed a significant increase in stromal matrix stiffness in PyMTmgko 

tumors compared to PyMTfl/fl, validating the previously shown results, as well as a 

reduction in the tensile strength of the stromal regions of these tissues upon treatment 

with BAPN when compared to untreated controls (Figure 8A).  These results indicate 

that a significant amount of the increased matrix stiffness observed in PyMTmgko tumors 

is due to the actions of LOX.  Consistent with the regional distribution and co-

localization of Gr1+ cells and αSMA fibroblasts was the non-uniform spread of linearized 

collagen fibers we observed at the tumor periphery by second harmonic generation 

imaging (Figure 8B).  Supporting the idea of regional infiltration of MDSCs inducing local 

collagen remodeling, we quantified a spectrum of focally stiffened extracellular matrix 

by atomic force microscopy indentation (Figure 8C).  Reinforcing LOX’s role in this 

phenotype, we observed that BAPN treatment significantly reduced this variability, 

normalizing collagen fiber thickness and reducing stromal stiffness.  These results show 
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that LOX is the primary driver of the enhanced matrix stiffness observed in PyMTmgko 

tumors as well as validate the efficacy of BAPN to inhibit this matrix stiffness. 

 

BAPN Reduced Tumor Cell Metastasis Through Decreased Tumor Cell Extravasation in 

PyMTMGKO Tumors. 

TGF-β has long been known to promote metastasis in late stage tumors through 

the induction of an EMT, however epithelial loss of TGF-β signaling in our mammary 

tumors presents with increased metastatic burden (Forrester et al. 2005).  There is yet 

no concrete evidence to support a mechanism behind the increased metastasis seen 

upon abrogation of TGF-β signaling in tumor epithelium, but the myriad of stromal 

changes observed in this model are independently linked to tumor progression.  Lysyl 

oxidase expression in human breast cancer has been shown to be predictive of worse 

outcome in human patients as well as increased metastasis in mouse models of the 

disease (Erler et al. 2006).  As matrix stiffness and LOX expression are significantly 

increased in PyMTmgko tumors, the effect of this increased expression on the enhanced 

lung metastasis of the PyMTmgko tumors was examined.  Treatment of PyMTmgko mice 

with BAPN resulted in no significant change in time to tumor palpation (Figure 9A).  

Histological analysis of the primary tumor showed no changes to the composition or 

characteristics of the tumor epithelium or stromal infiltrates (Figure 9B).  BAPN 

treatment also did not cause any significant changes in tumor volume in PyMTmgko mice 

(Figure 9C).  However, upon examination of lung whole mounts from PyMTmgko mice 

with and without BAPN treatment, there was a significant decrease in the incidence of  
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Figure 9. BAPN Reduced Tumor Cell Metastasis Through Decreased 
Tumor Cell Extravasation in PyMTMGKO Tumors. A) Survival curves from 
birth to first palpable tumor in PyMTmgko (n=8 per group) mice with 
and without BAPN treatment. B) Representative images (20X) of 
Hemotoxylin and Eosin staining PyMTmgko tumors treated with and 
without BAPN. C) Tumor volume at the time of sacrifice in PyMTmgko 
mice control (3.26±0.07 mm2, n=8) and BAPN treatment (3.07±0.36 
mm2, n=8).  D) Incidence of tumor metastasis PyMTmgko mice treated 
with and without BAPN presented as a percentage of the total group. 
E) Quantification of the number of lung metastases per control 
(5.5±1.45, n=8) and BAPN treated group (1.17±0.6, n=8) F) 
Quantification of the number of circulating tumor cells cultured from 
the circulating blood of PyMTfl/fl and PyMTmgko mice treated with 
(1±0.37, n=8) and without BAPN (4±0.68, n=8).  Values represent the 
average number of 100mm or greater colonies formed for each 
experimental group. G) Quantification of lung metastasis in mice 3 
weeks after tail vein injection of PyMTmgko tumor cells into mice 
treated with (5.625±2.51) or without (3.875±0.55) the LOX inhibitor 
BAPN. 
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lung metastasis following BAPN treatment (Figure 10D).  Additionally, in those PyMTmgko 

mice that did harbor lung metastasis upon BAPN treatment, the number of lung 

metastasis was significantly lower than in the untreated PyMTmgko mice (Figure 9E).  In 

the cascade of metastatic progression, intravasation from the primary tumor into the 

vasculature is one of the first steps (Pantel and Brakenhoff 2004).  Upon examination, 

we noted a reduced numbers of viable tumor cells in the circulation suggesting that LOX 

inhibition significantly reduced metastasis by inhibiting tumor cell intravasation (Figure 

9f).  As premetastatic niche effects of LOX have been established (Erler et al. 2009), tail 

vein injection experiments into mice with and without BAPN treatment were performed 

and showed no differences in metastatic colonization potential (Figure 9G). Thus, these 

data suggest that matrix remodeling promotes tumor cell metastasis in PyMTmgko 

tumors by enhancing intravasatation into the vasculature. 

 

Matrix Stiffness Enriches for a Basal Keratin 14 Cell Population. 

Since we showed that increased matrix stiffness promoted tumor cell escape 

from the primary tumor into the vasculature, we next looked for correlations between 

matrix remodeling and phenotypic molecular changes associated with highly aggressive, 

metastatic tumors.  Previous work has shown that tumor cells cultured on stiff 

collagenous matrix have increased mesenchymal characteristics compared to tumor 

cells cultured on softer matrix.  While there are numerous potential reasons behind this 

phenotypic observation, one of the more notable ones includes the augmentation of a 

cells ability to respond to TGF-β dependent upon the stiffness of the matrix.  On a “soft”  
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Figure 10. Matrix Stiffness Enriches for a Basal Keratin 14 Cell 

Population. A) qPCR analysis of Keratin 14 expression from whole 

tumor RNA of PyMTmgko mice with (0.52±0.054)  and without 

(1.33±0.076) BAPN treatment. Values Represent Normalized ΔΔCt.  B) 

Representative images (40X) of immunflourescent staining for Keratin 

5 (Green:488nm) and Keratin 14 (Red:594nm) counterstained with 

DAPI.  Yellow seen in Overlay represents colocalization of staining. C) 

Immunofluorescent images of PyMTmgko (1.2*107±1.1*106, n=16) and 

PyMTmgko+BAPN (6.9*106±9.07*105, n=16) tumors stained for keratin 

14 were quantified via thresholded pixel density measurement. 
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matrix, treatment of cells with TGF-β induces cell cycle arrest eventually leading to 

apoptosis.  When these same cells are cultured on stiff matrix, they instead undergo an 

EMT in response to TGF-β compared to the cytostatic effects observed on soft matrix 

(Leight et al. 2012).  As our model utilizes tumor cells which are unresponsive to TGF-β, 

we observed no differences in the induction of mesenchymal characteristics upon 

inhibition of matrix stiffness with BAPN (data not shown).  Analysis of whole tumor 

mRNA revealed that the stiffer tumors had increased levels of the myoepithelial/basal 

keratin 14 expression compared to those tumors where LOX activity was inhibited 

(Figure 10A).  Immunofluorescent imaging of tumor sections validated these findings.  

Particularly in regions of stromal/epithelial interface there is an enrichment of keratin 

14 positive cells in untreated PyMTMGKO tumors.  However, reduction of tumor stiffness 

through BAPN treatment resulted in an abrogation of keratin 14 positive cells at the 

tumor/stromal interface (Figure 10B).  These results were quantified to show significant 

loss of keratin 14 staining in PyMTMGKO tumors treated with BAPN (Figure 10C).  Thus, 

while we do not see an increase cells with a mesenchymal phenotype we do see an 

expansion of cells that have been associated with more aggressive basal tumors and 

poor patient prognosis. 

 

Focal Adhesion Kinase Activation is Enriched in Keratin 14 Cells on Stiff Matrix 

One of the hallmark features noted of epithelial cells interactions with mature, 

crosslinked, collagenous matrix is the importance of integrins and focal adhesions in 

governing the epithelial cells response to these matrix changes.  Integrins, as mediators  
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Figure 11. Focal Adhesion Kinase Activation is Enriched in Keratin 14 

Cells on Stiff Matrix. A) Immunoblot analysis of lysates from PyMT
mgko

 

and PyMT
mgko

 +BAPN tumors for phosphor-FAK(397) and Total FAK. 
Integrated pixel intensity shows decreased phosphorylated FAK in 

BAPN treated PyMT
MGKO

(0.47±0.09 a.u., n=16) tumors compared with 

untreated PyMT
MGKO

(0.76±0.017 a.u., n=16) relative to total FAK levels. 
B) Representative images (40X) of immunofluorescent staining of 
phospho-FAK397 (Green) and Keratin 14 (Red) counter staining with 

TOPRO3 (Blue). C) Immunofluorescent images of PyMT
mgko

 

(237956±29571 a.u., n=16) and PyMT
mgko

+BAPN (181259±15658 a.u., 
n=16) tumors stained for phospho397-FAK were quantified via 
thresholded pixel density measurement. 
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of tumor cells interactions with the extracellular matrix, promote the afore-mentioned 

phenotypes observed in epithelial cells in  response to alteractions in the extracellular 

matrix. Valerie Weaver’s group has shown that alpha 5 beta 1 integrin is essential to a 

cells ability to detect and respond to matrix changes.  One of these changes most 

important to the induction of changes to epithelial characteristics is the formation of 

focal adhesions at the site of integrin binding to extracellular matrix proteins.  Weaver 

and others have noted that as matrix stiffness increases the number and size of focal 

adhesions formed is significantly increased in tumor cells in stiff matrix environments 

compared with softer environments (Baker et al. 2012).  Immunoblot analysis confirms 

this finding in our model as well, showing that inhibition of LOX activity in PyMTmgko 

tumors reduces the phosphorylation of focal adhesion kinase, which is a necessary 

event for the formation of proper focal adhesion complexes (Figure 11A).  While there is 

less total FAK in the tumors as well, quantification of the relative amount of 

phosphorylated focal adhesion kinase to total focal adhesion kinase shows that there is 

less FAK phosphorylation regardless of the decreased total FAK levels (Figure 11A).  We 

sought to address the localization of focal adhesion formation in our tumors and how 

this localization changed in response to inhibition of matrix stiffness.  Imaging of 

PyMTmgko tumors treated with and without BAPN revealed an interesting observation in 

that the majority of phosphorylated FAK found in the untreated tumors was found at 

the tumor/stromal interface and seems to localize in keratin 14 positive cells.  Upon 

inhibition of LOX activity with BAPN, we see not only a loss of these keratin 14 positive 

cells, as noted above, but we also see that there is a loss of focal adhesion kinase 
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phosphorylation, validating the immunoblot data (Figure 11B).  Quantification of 

phosphorylation FAK in PyMTmgko tumors indeed shows that treatment with BAPN 

results in a significant reduction in focal adhesion formation upon inhibition of matrix 

stiffness (Figure 11C).   These results validate previously reported finding as to the 

effects of matrix stiffness on epithelial-ECM interactions as well as provide an intriguing 

possibility of the responsiveness to matrix stiffness be localized in a particular 

population of tumor cells.   

 

Discussion 

The microenvironment is an essential component in promoting tumors towards 

metastasis (Hanahan and Coussens 2012).  While significant effort has been placed on 

the cellular components of the microenvironment, such as immune cells, fibroblasts and 

endothelial cells, one of the most interesting components is the extracellular matrix 

(ECM).  The ECM acts a foundation upon which tumors build themselves, a scaffold for 

blood and lymphatic vessels, and a trigger for integrin mediate cellular changes to 

promote growth and migration (P. Lu et al. 2012).  As breast cancer with abrogated TGF-

β signaling have substantially worse disease free survival, we sought to address the role 

an altered collagen matrix played in the aggressiveness of tumors (Bierie et al. 2009; 

Paiva et al. 2012).  In PyMTmgko tumors, a significant increase in collagen stiffness and 

LOX expression was observed (Figure 7).  Matrix remodeling through collagen 

crosslinking has been linked with increased tumor progression and invasiveness 

(Levental et al. 2009).  LOX, as a primary mediator of collagen crosslinking, is increased  
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Figure 12. Proposed model of PyMTmgko promotion of matrix stiffness and 

enhancement of tumor cell metastasis. PyMTmgko tumor cells have been 

shown to secrete increased levels of CXCL1 and CXCL5 ligands.  This 

enhanced chemokine secretion promotes the infiltration of myeloid cells, 

inparticular Gr1+CD11b+ myeloid derived suppressor cells.  These cells act as 

a major source of TGF-β1 ligand which coupled with the increased infiltration 

result in a tumor with increased total TGF-β1 availability compared to PyMT 

control tumors.  TGFβ1 acts on stromal fibroblasts to promote their 

activation to myofibroblasts as well as their secretion of matrix remodeling 

protein lysyl oxidase.  Lysyl oxidase promote the maturation of collagen 

fibers through the covalent crosslinking of individual strands of collagen into 

a cohesive trimer.  Collagen crosslinking is correlated with numerous 

epithelial changes but in particular the promotion of tumor cell metastasis. 



70 
 

  



71 
 

in breast cancer and associated with poor patient prognosis/metastasis [NextBio].  We 

observed that BAPN treatment to inhibit LOX mediated matrix remodeling significantly 

reduced tumor metastasis through decreased tumor cell intravasation.  Our data 

indicates that LOX is stromally derived in PyMTmgko tumors, thus LOX acts as a promoter 

of tumor metastasis independent of the cellular source and potentially through similar 

mechanisms.   Interestingly, it appears that stromal TGF-β signaling drives this increase 

in LOX expression.  The evidence for TGF-β promoting LOX expression and matrix 

remodeling thus adds another layer of complexity to the premise of therapeutically 

targeting TGF-β in the context of cancer. 

Various tumor characteristics have been attributed to alterations of the 

collagenous microenvironment in tumors.  Notably, hypoxic conditions drive the 

expression of LOX from tumor epithelium (Erler et al. 2006).  As a driver for many of the 

phenotypes observed in our PyMTmgko tumors, hypoxia was a prospective candidate for 

our enhanced tumorigenesis.  However, no difference in hypoxia was seen (data not 

shown) leading us to look elsewhere. Previous work from our laboratory has shown that 

epithelial loss of functional TGFβR2 expression results in an increased recruitment of 

MDSCs and that this promotes tumor progression to metastasis (L. Yang et al. 2008).  

These cells are a major source of TGF-β in tumors.  We show that these immature 

myeloid cells localize to areas of αSMA expression in PyMTmgko tumors and can promote 

tumor matrix remodeling through TGF-β mediated stimulation of stromal fibroblasts, 

specifically via induced expression of LOX.  It has been previously established that lung 

fibroblasts, as well as cardiac myofibroblasts, can express LOX upon TGF-β stimulation 



72 
 

(Boak et al. 1994; Choudhary et al. 2009).  We show that this LOX promoting source of 

TGF-β from fibroblasts can be tumor infiltrating immune cells.  Our study suggests that 

the tumor epithelium can indirectly promote an aggressive microenvironment through 

the facilitation of interactions of various components of the tumor microenvironment.   

LOX is known to promote focal adhesion formation in mammary carcinoma cells, 

and in vivo inhibition of LOX suppresses both hypoxic and non-hypoxic tumor metastasis 

(Levental et al. 2009).  Using a different mouse model of breast cancer, we have 

recapitulated these findings of decreased focal adhesion formation and metastasis upon 

inhibition of LOX with BAPN.  While it should be noted that BAPN has been reported to 

have effects on members of the LOX family, we did not see any appreciable changes in 

LOXL expression (data not shown) and while certainly not quantitative, the relative Ct’s 

for the LOXL qPCR were significantly lower than those for LOX indicating lower gross 

expression in our tumors.  As LOX acts to crosslink extracellular collagen and elastin, the 

induction of these phenotypes is likely due to its ability to promote stiffness in the 

tumor microenvironment (Baker et al. 2012; Levental et al. 2009).  Increased matrix 

stiffness leads to an EMT in tumor epithelium, which led us to ask if inhibition of LOX in 

our spontaneous tumors resulted in decreased circulating tumor cells and metastasis 

through the prevention of this transition (Leight et al. 2012).  While no difference in the 

induction of EMT was observed, most likely due to a lack of TGF-β responsiveness in the 

carcinoma cells of the model used, we did see an increase in keratin 14 expression.  

While previously basal breast cancer cells have been shown to secrete LOX, this was the 

first instance in which we see LOX activity regulating this tumor cell phenotype (Chu et 
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al. 2012; Erler et al. 2006).  Live cell imaging of Keratin 14+ mammary epithelium has 

shown these cells to be highly protrusive and migratory specifically in response to a 

collagen matrix (Nguyen-Ngoc et al. 2012).  As collagen was shown to be the main driver 

of this migratory phenotype, modulation of the collagen matrix could abrogate this 

effect.  This indeed turned out to be the case in that inhibition of LOX resulted in fewer 

Keratin 14+ cells.  Linking this aggressive basal phenotype with previous findings 

regarding the effects of LOX on the tumor epithelium, we find that K14 cells are 

enriched for the formation of focal adhesions in our PyMTmgko tumors.  The ability to 

adhere and respond to the extracellular matrix is an essential step in obtaining a 

migratory phenotype and promoting metastasis of tumor cells.  As expected, inhibition 

of LOX activity diminished this focal adhesion enrichment.  This, potentially, links not 

only the epithelial phenotype of these cells with their ability to respond to matrix cues, 

in particular matrix crosslinking and stiffness, but also to the decrease in metastasis 

through diminished tumor cell intravasation.   

The data presented in this study show that microenvironmental changes have 

significant effects on tumor progression.  We show that the aggressiveness of tumor 

epithelium is not only dictated by the genetic programming of the tumor cell but also by 

the state of the extracellular matrix.  By demonstrating that inhibition of matrix 

remodeling can not only inhibit tumor cell metastasis, but also modulate the phenotypic 

characteristics of the tumor cells, we have further refined the conceptual framework 

used to think about stromally targeted therapeutics.  Showing that myeloid cell 

infiltrates can arouse stromal activation should widen the breadth of patients 
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considered for immune modulating treatments and also provide new readouts for the 

efficacy of treatment options.  However, while addressing many pressing issues in the 

field of cancer biology, our data also raise some interesting questions.  We show that 

extracellular matrix modifications can drive phenotypic changes in basal cells, thus it is 

now necessary to identify the molecular basis for this interaction.  Both growth factor 

responsiveness as well as adhesion have been shown to regulate cellular phenotypes, 

therefore the ability of ECM modification to promote these signaling pathways could 

begin to address this phenotypic switch.  It is also unclear what the specific role these 

basal cells play in the invasive and metastatic phenotype observed.  Addressing the 

specific migratory and invasive capacity of these different populations of cells will aid in 

pushing forward our knowledge of tumor metastasis.  With metastasis representing the 

major cause of morbidity and mortality in breast cancer patients, a thorough 

understanding of stromal cues present in the tumor microenvironment and reciprocal 

epithelial responses to these cues in the context of tumor metastasis is essential. 
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Chapter III 

 

STROMAL LOSS OF TGFBR2 EXPRESSION PREDICTS POOR PROGNOSIS IN BREAST 

CANCER PATIENTS 

 

Introduction 

While aspects of the tumor microenvironment have been shown to play a role in 

influencing tumor progression, Morag Parks group solidified the role of the stroma in 

manipulating patient outcome by showing that stromal gene expression signatures can 

predict breast cancer patient survival (Finak et al. 2008).  However, this study does not 

address the factors in the microenvironment regulating the interaction between stromal 

cells and the tumor epithelium or specific gene expression changes driving poor patient 

prognosis.  Numerous functions of fibroblasts have been shown to influence tumor 

progression, particularly in the context of TGF-β induced changes to gene expression 

and cellular phenotype (Lewis et al. 2004; Verona et al. 2007).  As mentioned previously, 

TGF-β induces numerous stromal changes predominantly through the manipulation of 

the collagenous extracellular matrix (Reed et al. 1994).  In lung cancer, carcinoma 

associated fibroblasts present with a gene expression signature enriched in TGF-β 

responsive genes and showed that treatment of normal fibroblasts with TGF-β induced a 

similar gene expression pattern (Navab et al. 2011).  Despite the preponderance of 

evidence supporting a pro-tumorigenic role of active TGF-β signaling in the tumor 

microenvironment, experimental and clinical evidence supports a loss of TGF-β signaling 

being worse for cancer progression.  In colon cancer, stromal TGFBR2 expression is an 
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independent predictor of patient survival with lower stromal TGFBR2 resulting in worse 

patient prognosis (Bacman et al. 2007).  Immunohistochemical analysis of oral and 

squamous cell carcinoma stroma shows that TβRII is lost specifically in fibroblasts found 

in the tumor stroma as tumor progress from dysplasia to carcinoma (Meng et al. 2011).   

Thus, much like epithelial TGF-β signaling, there appears to be opposing effects of TGF-β 

signaling on fibroblasts in the context of influencing tumor progression. 

Previous work from our laboratory has established loss of Tgfbr2 expression in 

FSP expressing fibroblasts as a driver of tumorigenesis in adjacent epithelium 

(Bhowmick et al. 2004).  This seminal work supported two emerging topics in the field of 

cancer biology: (1) the importance of stromal gene expression in the influence of tumor 

formation and (2) that loss of TGF-β signaling in a stromal cell population can promote 

tumor progression.  Further in vivo analysis of tumors lacking Tgfbr2 expression in 

fibroblasts shows that this loss of TGF-β signaling promotes cell growth and migration 

through increased HGF secretion (Cheng et al. 2005).  Interestingly, the abrogation of 

TGF-β signaling in fibroblasts has a similar effect to abrogation in epithelial cells in that 

numerous cytokines regulating immune cell recruitment are increased (Hembruff et al. 

2010; Li et al. 2012).  This is supported by in vivo evidence showing tumors where 

fibroblast lack expression of Tgfbr2 has increased infiltration of myeloid cells.  The 

infiltration of these myeloid cells promotes tumor growth through a variety of direct 

and indirect mechanisms.  Given the significance of fibroblast Tgfbr2 expression on the 

progression of mouse model of cancer as well as the evidence supporting a pro-

tumorigenic role of TGF-β target genes in fibroblasts, we sought to address the 
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functional role TGF-β plays in these cells in human disease progression.  To address this 

question, we used in vitro and in vivo experimental models to correlate gene expression 

and phenotypic changes in fibroblasts upon loss of TGFBR2 to gene expression changes 

identified in human patients.   

 

Experimental Procedures 

Cell lines 

 Fibroblast cell lines were derived from C57BL/6 mice containing LoxP sites 

flanking exon 2 of the TGFBR2 gene.  Knockout fibroblasts were made by crossing the 

above mouse with a FSP-Cre mouse to direct recombination to specifically fibroblasts.  

Mouse mammary glands from these mice were harvested and grown in 10% FBS 

containing DMEM.  Selective trypinization was used to eliminate epithelial cells from the 

cultures to generate a cell population of fibroblasts.  Experiments involving tumor cells 

were performed with tumor cells derived from Polyoma Middle T tumor bearing mice.   

qPCR 

 RNA was purified with RNeasy Mini kit including DNaseI treatment(Qiagen). 

cDNA synthesis was performed using VILO cDNA kit (Life Technologies). SYBR green 

master mix is LuminoCt (Sigma). Primers designed using NCBI-Primer Blast, melting 

curves inspected after every run performed on BioRad CFX96 real time cyclers. All 

primers were optimized for 60 degree annealing and two-step cycling was performed 

from 95 degrees (10s) to 60 degrees (30s) for 40 cycles. GAPDH was used to calculate 

normalized fold change. 
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Western Blot 

 Total protein was isolated using Complete LysisM Buffer (Roche). Protein was 

diluted to equal concentrations and equally loaded on 10% polyacrylamide gels prior to 

transfer to a nitrocellulose membrane. Blots were incubated overnight with Phospho-

SMAD2, αSMA, ACTIN antibodies.  HRP-conjugated secondary antibodies were used to 

visualize band intensity via x-ray film exposure. 

RayBio Chemokine Array/ECM qPCR Array 

Membrane bound antibody arrays Mouse Cytokines 3,4,5 Cat# AAM-CYT-2000-4 were 

obtained from RayBio and incubated with conditioned medium. Exposure was 

performed with ECL plus, images were scanned at high resolution and analyzed for 

intensity using NIH image J software. RT-PCR focused arrays were purchased from 

SABiosciences/Qiagen and performed as instructed by manufacturers protocol, 

including RNA purification, cDNA synthesis, real time instrumentation protocol and 

analyzed via web based tools provided 

(http://www.sabiosciences.com/pcrarraydataanalysis.php). Specifically, the ECM array 

was used. 

Immunohistochemistry 

Deparafinized slides underwent pH6.0 Citrate Buffer antigen retrieval. These 

slides were blocked with serum derived from the host animal of the primary antibody 

for 1 hour before overnight incubation with the primary antibody: pSmad2, Ki67, 

Caspase3, and F4/80.  After washing with PBS to remove the primary, strepavadin 
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conjugated secondary antibody against the primary host species was added to the 

sections for 30 minute.  Another round of washing preceded the addition…  

Immunofluorescence 

BSA (12%) was used to block all sections as well as dilute primary and secondary 

antibodies. Fibronectin and Collagen Type IV antibodies were incubated on fibroblasts 

plated in a 4 well culture slide overnight at 4oC. Secondary antibodies were all goat 

derived, highly cross-adsorbed, and used at 1:500.  Slides were mounted in SlowFade 

+DAPI (Molecular Probes/Invitrogen).  Sections were imaged on a Zeiss LSM510 inverted 

confocal microscope with a 40X/1.3 Plan-NEOFLAUR objective. 

Migration Assay 

 24 hours prior to seeding of tumor cells into the transwells, 50,000 fibroblasts 

with or without Tgfbr2 expression were seeded into a 24 well plate.  After allowing 

these cells to establish for 24 hours, transwells with 25,000 PyMT cells seeded into the 

upper chamber with placed in the wells containing either of the fibroblasts.  PyMT 

tumor cells were allowed to migrate for a 24 hour period before being fixed and stained 

with DAPI for immunofluorescence imaging.  Total number of DAPI+ nuclei were  

quantified for each 20X image using Metamorph.   

Tumor Implantation/Metastasis Counts 

 PyMT tumor cells and fibroblasts with and without the expression of TGFBR2 

were mixed at a ratio of 2.5:1 and suspended in collagen mixture.  These collagen plugs 

were allowed to solidify and then implanted into the cleared #4 mammary gland of 
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C57/B6 mice.  Tumors were allowed to grow for approximately 28 days before sacrifice.  

At time of sacrifice, tumors were weighed and total size was measured with calipers.  

Lungs were also removed for analysis of lung metastasis. 

Lungs were fixed in 10% neutral buffered formalin overnight at 4°C. The next 

day, lungs were dehydrated, placed in xylene for 1 h, and then changed to fresh xylene 

overnight. Lungs were rehydrated before dipping in Mayer's hematoxylin for 2 min and 

then washed in running tap water for 5 min. Tissues were destained in HCl (fresh 1% v/v 

from a 12 N solution) for 20 min, rinsed in running tap water overnight, dehydrated, and 

placed in xylene overnight before counting of stained metastatic tumor foci under a 

dissecting light microscope. 

Microarray Data Analysis 

 Publically available human datasets, GSE33692 and GSE9014, were downloaded 

from NCBI Gene Expression Omnibus and analyzed via Agilents’ GeneSpring GX 

microarray analysis software.  GSE33692 dataset represents microarray data files from 

RNA extracted from either matched epithelial or stromal tissue from 3 normal, 9 DCIS, 

and 10 IDC breast cancer patients (Sharma et al. 2010).  GSE9014 is microarray  data 

derived from the stromal captured tissue of 53 breast cancer patients (Finak et al. 2008). 

Kaplan Myer plots for relapse free patient survival were generated using kmplot.com 

(Gyorffy et al. 2010). 

 

 



81 
 

Statistics 

Statistical analysis was performed using Graphpad Prism after consultation with 

Dr. Fei Yi of the Vanderbilt Biostatistics Department. 

 

Results 

Decreased stromal TGFBR2 expression correlates with poor prognosis in breast cancer 

patients. 

As indicated above, the effects of TGF-β signaling in stromal fibroblasts have 

been shown to promote tumor progression and metastasis.  However, as breast cancer 

progresses from an in situ disease to an invasive disease, gene expression analysis 

shows that stromal expression of TGFBR2 decreases.  In colorectal cancer, decreased 

stromal expression of TGFBR2 correlated with poor patient survival thus we sought to 

address whether stroma with intact TGF-β signaling components predicted better 

survival for breast cancer patients.  Using publically available data mining tools, 

decreased expression of TGFBR2 from bulk tumor predicts for poor survival in breast 

cancer patients.  Break down of these patients into those with aggressive LN+ disease or 

Grade 3 cancer shows a similar trend with decreased TGFBR2 expression again 

predicting poor patient survival (Figure 13A).  To address the functional loss of TGF-β 

signaling in stromal cells, we next performed immunohistochemistry for phosphorylated 

Smad2 on a tissue microarray containing patient tissue ranging from normal to invasive 

ductal carcinoma (Figure 13B).  Gross histological analysis of stromal cells in these tissue 

samples reveals that Smad2 phosphorylation in fibroblastic cells in the tumor  
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Figure 13. Decreased Stromal TGFBR2 Expression Correlates with Poor 

Patient Prognosis.  A) In silico analysis of breast cancer patient survival upon 

segregation of whole tumor expression of TGFBR2 into high or low 

expression in all patients, LN+ patients, and patients with Grade 3 breast 

cancer.  B) IHC staining for phosphorylated Smad2 in a) adenosis of the 

breast b) hyperplasia of ductal epithelium c) Grade 2 Invasive Ductal 

Carcinoma and d) Grade 3 Invasive Ductal Carcinoma. Arrows indicate 

stromal cells with fibroblastic morphology. C) Analysis of breast cancer 

patient data (GSE ) based upon segregating stromal expression of TGFBR2 

into high vs. low groups. 
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stroma decreases as the disease progresses towards IDC.  Given the indication that TGF-

β signaling in the stroma is indeed decreased as tumors progress, we sought to address 

the impact this would have on patient survival.  Publically available datasets of laser 

capture microdissected tumor stroma from breast cancer patients was segregated into 

TGFBR2 high and low expressing groups.  From here, the changes in the available 

patient data of these two groups were compared.  No difference was observed in tumor 

size from patients with low or high TGFBR2 stroma.  However, patients with TGFBR2 low 

stroma did show a statistically significant increase in poor outcome and tumor 

recurrence (Figure 13C).  These data indicate that stromal loss of TGFβR2 expression is 

likely to occur in fibroblasts and that this decreased expression is correlated with poor 

patient outcome. 

 

Fibroblasts lacking Tgfbr2 expression present with an altered gene expression profile 

Given that our data indicate fibroblastic cells in the stroma show decreased TGF-

β signaling as tumor progress and we have previously published that loss of TβRII in 

fibroblasts promotes epithelial tumorigenesis, we sought to address the functional 

significance of loss of Tgfbr2 expression in fibroblasts.  To do this, we isolated and 

characterized fibroblasts from Floxed Tgfbr2 mice with (Fibrofl/fl) and without (FibroR2KO) 

FSP-Cre expression to drive fibroblast specific recombination of the type II transforming 

growth factor beta receptor.  Fibroblasts were selected based on degree of 

recombination.  Northern blot analysis was utilized to select the fibroblast culture to 

utilize for our studies based on degree of recombination of Tgfbr2 (data not shown). 
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Figure 14. FibroR2KO Lose TGF-β Responsiveness and Present an Altered Gene 

Expression Profile.  A) Immunoblot analysis of for TGF-β responsiveness 

based on phosphorylation of Smad2 as well as changes in fibroblast marker 

alpha smooth muscle actin. B) qPCR quantification of changes in expression 

of TGF-β responsive genes CTGF (1.00±0.11, 19.27±2.13, 0.03±0.003, 

0.04±0.005), Smad7 (1.00±0.07, 2.19±0.12,0.39±0.014, 0.34±0.015), and 

Col1α2 (1.00±0.04, 2.23±0.22, 1.04±0.03, 1.16±0.06) upon TGF-β stimulation 

of both Fibrofl/fl and FibroR2KO fibroblasts. Values represent fold change 

relative to Fibrofl/fl fibroblast expression.  * = p<0.05. C) Representative 

immunofluorescent images of ECM deposition in in vitro cultures of Fibrofl/fl 

and FibroR2KO fibroblasts with and without TGF-β stimulation. 
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 Immunoblot analysis for canonical TGF-β signaling components as well as alpha-smooth 

muscle actin indicate that FibroR2KO fibroblasts lose the ability to respond to TGF-β as 

indicated by loss of induction of Smad2 phosphorylation (Figure 14A).  Interestingly, 

there is no indication to any change in typical fibroblast genes such as α-SMA or 

collagen I.  However, quantitative PCR analysis of Fibrofl/fl fibroblasts indeed shows 

these cells can respond to TGF-β through the increased expression of known TGF-β 

responsive fibroblast genes such as CTGF, Smad7, and Col1α2 (Figure 14B).  Validating 

these observations, immunofluorescence for ECM proteins was performed on in vitro 

cultures.  As expected, fibronectin deposition was increased upon treatment of Fibrofl/fl 

fibroblasts with TGF-β1 and completely absent in FibroR2KO fibroblast cultures.  As well, 

there was minimal collagen 4 expression in normal fibroblast cultures and this is 

significantly increased in FibroR2KO fibroblasts (Figure 14C).  These data would indicate 

that loss of Tgfbr2 expression in fibroblasts does indeed attenuate the responsiveness of 

fibroblasts to TGF-β as well as prevent the induction of known TGF-β responsive genes.   

 

Loss of Fibroblast Tgfbr2 expression promotes tumor cell metastasis 

 As we have previously shown that stromal loss of TGFBR2 is associated with poor 

patient prognosis, we sought to address the functional impact of TβRII loss in fibroblasts 

on tumor progression.  To do this, we implanted tumor cells with either Fibrofl/fl or 

FibroR2KO fibroblasts into the cleared #4 mammary fat pad in C57BL/6 mice.  These 

tumors were allowed to grow for 28 days prior to sacrifice and isolation of tumors and  
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Figure 15. Fibroblasts lacking Tgfbr2 expression promote tumor cell 

metastasis.  A) Quantification of tumor weight at the tumor of sacrifice 28 

days after tumor implantation of Fibrofl/fl or FibroR2KO fibroblasts with PyMT 

tumor cells. B) Quantification of lung metastasis in mice with either Fibrofl/fl 

or FibroR2KO fibroblasts with PyMT tumor cells 28 days after implantation. C) 

Representative images of Ki67 staining in tumors implants with wither 

Fibrofl/fl or FibroR2KO fibroblasts.  Graph shows quantification of Ki67 staining 

Fibrofl/fl + PMTB6-2 imaplants (0.685±0.014 A.U., n=16) and FibroR2KO + 

PMTB6-2 implants (0.72±0.016 A.U., n=16) normalized to the total number 

of cell based on hematoxylin staining.  D) Representative images of cleaved 

caspase 3 staining in tumor implants with either Fibrofl/fl or FibroR2KO 

fibroblasts.  Graph shows quantification of cleaved caspase 3 staining of 

Fibrofl/fl + PMTB6-2 implants (0.026±0.0016 A.U., n=16) and FibroR2KO + 

PMTB6-2 implants (0.023±0.0036 A.U., n=16) normalized to total cell 

number based on hematoxylin staining. D)  Representative images of DAPI 

staining of transwells after 24 hours of cell migration stimulated by either 

Fibrofl/fl or FibroR2KO fibroblasts. Graph represents quantification of total 

number of migrated PyMT cells towards either Fibrofl/fl (138.18±4.71, n=12) 

or FibroR2KO (242.5±13.53, n=12) fibroblasts per 20X image.   
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lungs.  Gross analysis of tumor weight indicates no difference in the growth of tumor 

cells when implanted with TβRII knockout fibroblasts (Figure 15A).  Previously in our 

laboratory we showed fibroblasts lacking Tgfbr2 expression promoted tumor growth via 

increased Ki67+, proliferative cells (Cheng et al. 2005).  Tumor cells implanted with 

FibroR2KO fibroblasts do not show a similar trend as we found no differences in Ki67 

staining (Figure 15C).  We also do not observe any differences in cell death, as 

quantified through staining for cleaved caspase3 (Figure 15D).  The major phenotypic 

difference observed between these tumors was the enhancement of tumor cell 

metastasis by FibroR2KO fibroblasts.  Whole mount analysis of lung metastasis in these 

mice showed that FibroR2KO fibroblasts promote the lung metastasis of tumor cells 

(Figure 15B).  With FibroR2KO fibroblasts promoting tumor cell metastasis upon implant, 

the effect of fibroblasts directly on the epithelial cells ability to migrate was addressed.  

Fibrofl/fl and FibroR2KO fibroblasts were seeded onto the bottom of a 24 well plate prior 

to the use of non-coated transwells with PyMT cells in the chamber.  The number of 

PyMT which migrated towards the fibroblasts was assessed and quantified by counting 

DAPI positive cells on the underside of the transwell.  From this experiment we see that 

there was a significant increase in the number of tumor cells which migrate towards the 

FibroR2KO fibroblasts (Figure 15E).  Such data lends itself towards TGF-β signaling, in the 

context of fibroblast-epithelial interactions, being suppressive of the induction of tumor 

cell migration which could play a role in tumor metastasis. 
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Gene signature derived from fibroblasts lacking Tgfb2 expression correlates with poor 

patient prognosis. 

With TGF-β signaling playing such a pivotal role in so many aspects of fibroblast 

function, we performed microarray analysis on Fibrofl/fl and FibroR2KO fibroblasts.  This 

analysis allowed us to do an unbiased survey of significant gene expression changes 

dictating the phenotypic differences between these cells.  Q-PCR analysis validated 

many of the top genes up and down regulated.  Analysis of patient gene expression data 

using the top 10 genes that were up-regulated in the FibroR2KO fibroblasts (Table 2), we 

observe that increased expression of these genes is correlated with poor patient survival 

in breast cancer patients, particularly in LN+ patients.  The same is also true for genes 

down-regulated in FibroR2KO fibroblasts (Table 1, Figure 16C).  Using the same analysis 

for down-regulated genes, we observe that patients with low expression of the 

identified genes correlate with poor patient prognosis.  Interestingly, analysis of 

expression data from LN+ patients does not maintain this trend showing that increased 

expression of genes that are downregulated in FibroR2KO fibroblasts correlates with poor 

patient prognosis (Figure 16C).   To begin to address the functional changes that effect 

patient outcome, we performed pathway analysis on genes that were significantly 

altered by 5 fold between Fibrofl/fl and FibroR2KO.  Validating the model, we observe that 

the TGF-β pathway was identified as a significantly altered pathway using the gene 

expression that was decreased in the FibroR2KO fibroblasts (Table 3).  Also, supportive of 

our results showing the FibroR2KO gene expression signature correlates with poor patient 

prognosis, we observe that genes that  
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Figure 16. Gene Expression Signature of Fibroblasts which lack TβRII 

Correlates with Poor Patient Prognosis.  A) Clustering analysis of gene 

significantly changed between fibroblasts with and without Tgfbr2 

expression.  B) qPCR validation of top gene identified as being increased: Il-5 

(1.00±0.17, 5.32±0.1, n=3), Serpinb5(1.00±0.17, 820.2±187.2), and 

Ctsc(1.00±0.17, 1588.1±139.2), or decreased: Ogn(1.00±0.19,0.012±0.002), 

Dlk1(1.00±0.17,0.00007±0.000001), and Thbd(1.00±0.18, 0.0052±0.006), in 

fibroblasts lacking TGF-β responsiveness. Values represent fold change 

relative to Fibrofl/fl.  C) Relapse Free Survival (RFS) of patients upon 

segregation into high or low expression of top 10 genes whose expression is 

increased or decreased in fibroblast lacking Tgfbr2 expression. Red = High 

expression; Black = Low Expression. 
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that are identified in pathway involved in cancer are significantly found in those genes 

increased in the FibroR2KO fibroblasts.  From this we conclude that similar to the results 

presented previously in which TGFBR2 low stroma predicts worse patient prognosis, the 

gene expression changes associated with Tgfbr2 loss in fibroblasts are also predictive of 

poor patient prognosis.   

 

Fibroblasts with Abrogated TGF-β Signaling have Altered ECM Related Gene 

Expression 

 As the functional role of TGF-β signaling in the induction of fibroblast ECM 

secretion and deposition, we anticipated that FibroR2KO fibroblasts would have a 

significantly altered ECM expression profile.  Thus, the BROAD pathway analysis of gene 

expression changes in these fibroblasts showing significant differences in ECM Receptor 

interactions gave credence to looking further into these effects (Table 3).  In order to get 

a broad overview of changes specifically centered on ECM changes, we performed a 

qPCR array specifically for genes involved in the deposition and modification of the 

extracellular matrix (Figure 17A).  The results of this array supports that abrogation of 

TGF-β signaling in fibroblasts does indeed induce significant changes to the cells ability 

to deposit and manipulate the ECM.  As expected, we observe that several genes 

previously identified were validated such as increased expression of Col4a1 and a loss of 

CTGF expression in  



97 
 

  

Figure 17. Fibroblasts lacking Tgfbr2 Expression have altered ECM related 

gene expression profile.  A) qPCR results for gene expression analysis of ECM 

related genes in either the Fibrofl/fl mouse mammary fibroblasts or the 

FibroR2KO mouse mammary fibroblasts.  All genes are shown relative to the 

Fibrofl/fl mouse mammary fibroblasts.  B) Analysis of patient relapse free 

survival after segregation of patients based on those genes shown to be 

increased in the FibroR2KO fibroblasts relative to the Fibrofl/fl fibroblasts. 
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FibroR2KO fibroblasts.  As the gene expression changes in the FibroR2KO fibroblasts were 

previous established to be predictive of poor patient survival, we want to know the gene 

expression changes specifically influencing the ECM had the same effect on patient 

survival.  Specifically using those genes whose expression is increased in the FibroR2KO 

fibroblasts, we do not see high expression of these genes predicting poor patient 

response (Figure 17B).  Rather we observe these genes being predictive of overall better 

survival in non-segregated breast cancer patients.  However, when we segregate these 

patients into those that presented with LN+ disease, we again see that the increased 

expression of these ECM genes does predict poor survival in these patients (Figure 17B).   

Loss of Tgfbr2 in Fibroblasts Promotes Myeloid Infiltration through Increased Cytokine 

Expression 

 Another of the functional changes in FibroR2KO fibroblasts identified by the 

BROAD pathway analysis that garnered our attention was the cytokine receptor 

interactions (Table 2).  As abrogation of TGF-β signaling in epithelial cells promotes the 

expression of numerous chemokines and others have identified cytokine changes in 

fibroblasts with low Tgfbr2 expression, we sought to identify whether we saw similar 

changes in our cells.  For this, we performed a cytokine array on conditioned media 

comparing Fibrofl/fl and FibroR2KO fibroblasts (Figure 18A).  The conditioned media from 

FibroR2KO fibroblasts had increased levels of the chemokines CXCL5, CXCL12, and CCL9.  

Also present was an increased level of decorin and MMP3 validating findings from both 

the microarray expression results as well as the ECM qPCR array.  Given that there was  
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Figure 18. Fibroblasts lacking Tgfbr2 expression have altered interactions 

with myeloid cells correlating with a different cytokine profile.  A) Image of 

representative cytokine array profile examining differences in cytokine 

presence in the conditioned media of Fibrofl/fl and FibroR2KO fibroblasts. 

Graphs show quantification of changes in CXCL5, CCL9, CXCL12, DCN, PTX3, 

and MMP3 based on altered pixel density normalized to positive control.  B) 

Representative images of F4/80 staining of tumors resulting from implants of 

PMTB6-2 tumors cells with either Fibrofl/fl or FibroR2KO fibroblasts.  C) Altered 

relapse free survival of all (left) and LN+ (right) patients based on expression 

those cytokines differentially expressed in the FibroR2KO fibroblasts.   
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significant up-regulation of chemokines that have been associated with influencing the 

infiltration of myeloid cells into the tumor microenvironment, we turned to our in vivo 

implants presented in Figure 16 to analyze macrophage infiltration.  Staining for F4/80, a 

marker of activated macrophages shows a trend of more activated macrophages 

present in the stromal areas of the tumors with FibroR2KO fibroblasts (Figure 18B).  

Increased infiltration of macrophages, particularly those with the M2 polarization 

phenotype, is associated with increasingly aggressive tumors and poor prognosis in 

breast cancer patients.  To establish that these gene expression changes were significant 

in the progression of breast cancer in patients, we looked at the survival of patients with 

high expression of the identified cytokines.  Once again increased expression of these 

genes was predictive of better survival compared to patients with low expression 

(Figure 18C).  Although similar to the altered ECM genes, increased expression of these 

cytokines did predict for poor prognosis in patients with LN+ disease (Figure 18C).  While 

we are unable to correlate differential expression of these genes with infiltration of 

myeloid cells in breast cancer patients, this data does support that the cytokine gene 

expression changes in FibroR2KO fibroblasts promotes disease progression in both mouse 

model of cancer as well as breast cancer patients.  

 

Discussion 

 Previous studies have established that Tgfbr2 expression is decreased as many 

tumors progress (Achyut et al. 2013; Paiva et al. 2012).  Here we present a similar 
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finding showing that phosphorylated SMAD levels in fibroblastic cells in the stroma of 

breast cancers decreases as the disease progresses.  However, there is no data 

correlating stromal expression of Tgfbr2 with patient prognosis.  This has been shown by 

immunohistochemistry in oral and squamous cell carcinoma and now we have shown 

that decreased expression of Tgfbr2 in the stroma is predictive of poor prognosis in 

breast cancer patients (Bacman et al. 2007).  Interestingly, our data shows that low 

Tgfbr2 expression not only predicts poor patient outcome but also predicts disease 

recurrence.  This data supports the functional significance of fibroblast TGF-β signaling 

in tumor progression, potentially acting as a tumor suppressor in more advanced 

disease (Figure 19).  Also, with Tgfbr2 low stroma being associated with recurrence 

there is the potential for fibroblast TGF-β signaling to play a role in the regulation of 

tumor cell dormancy or cancer stem cells, both implicated in breast cancer recurrence.   

 Using implantation of tumor cells and Fibrofl/fl and FibroR2KO fibroblasts as a 

model for the effects of fibroblast TGF-β signaling, we were able to study the effects of 

modifying this signaling on tumor progression.  Contrary to previous reports, we do not 

see any significant differences in tumor cell proliferation or cell death both by analysis of 

gross tumor weight as well as quantification of Ki67 and cleaved caspase3 

immunohistochemistry (Cheng et al. 2005).  However, as there was a difference in 

tumor cell metastasis, we looked into the effects of Fibrofl/fl and FibroR2KO fibroblasts on 

epithelial cell migration.  Not surprisingly, given our in vivo data, fibroblasts lacking TGF-

β responsiveness induced more tumor cell migration compared to fibroblasts with intact 

TGF-β signaling.  We performed microarray analysis to address gene expression  
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Figure 19. Proposed model for FibroR2KO fibroblast promotion of tumor cell 

metastasis. Fibroblasts lacking the ability to respond to TGF-B have lost the 

functional characteristics demonstrated by fibroblasts with TGFBR2 

expression, notably the ability to secrete collagen and fibronectin as well as 

contract a collagenous matrix.  Additionally, these cells have a significantly 

altered secretome such that expression of growth factors and other 

cytokines are enhanced.  This altered secretome is associated with the 

phenotypic response of enhanced infiltration of myeloid cells into the tumor 

microenvironment as well as the induction of tumor cell migration.  

Ultimately, these phenotypic changes are associated with increased 

metastasis seen in mice upon implantation of tumor cells with FibrobR2KO 

cells compared with Fibrofl/fl cells. 
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differences in gene expression in these fibroblasts which may lead to these phenotypic 

changes in epithelial cells.  Pathway analysis of gene expression changes in FibroR2KO 

fibroblasts revealed enrichment in several functional categories, but of particular 

interest to us, based on previously published reports on the function of TGF-β in 

fibroblasts, is alterations of extracellular matrix interactions as well as cytokine 

interactions.  With these two areas of focus in mind, we were able to show that not only 

does gene expression in these categories significantly change, but that these changes 

are associated with poor prognosis of LN+ patients.  While this significance does not 

remain true for all patients, this could be indicative of this gene expression signature’s 

importance in invasive disease.   
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Chapter IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Tumor Microenvironment in the Progression of Breast Cancer 

Similar to the evolution of the study of epithelial tumor cells, we are beginning to 

appreciate the numerous effects stromal cells have on tumor progression and 

breakdown essential pathways in regulating their pro- or anti-tumorigenic function 

(Hanahan and Coussens 2012).  The majority of studies into the stromal tumor 

microenvironment focus on a particular cell type and how a specific gene expression 

change in that cell type alters epithelial tumor cell biology. However, the field is moving 

towards an understanding that interactions of stromal components are an essential 

aspect in understanding what drives differential gene expression programs identified in 

particular stromal cell populations.  Interactions and influences of immune cells on each 

other have been established for a long time.  The results of these interactions have 

significant roles in determining cellular functions as well as influence the progression of 

numerous disease states.  While not centered on immune cell interactions, bleomycin 

induced lung fibrosis is a prime example of how stromal interactions can drive disease 

progression.  In this model, bleomycin treated lungs in mice undergo a characteristic 

infiltration of immune cells leading to the activation of stromal fibroblasts and excessive 

deposition of a collagenous matrix (Wynn 2011).  It is not a stretch to imagine that such 
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interactions could also be found in the tumor microenvironment driving many 

characteristics of tumor progression.  In our studies we present data that indicate that 

infiltrating myeloid cells can drive the activation of stromal fibroblasts and the 

expression of matrix remodeling proteins which are associated with increased tumor 

progression (Pickup et al. 2013).  Similar to our studies, work in murine models of 

scleroderma shows that fibroblasts in this system have increased TGF-β signaling activity 

as described by nuclear localization of Smad3 (Takagawa et al. 2003).  While our work 

currently stands as a correlative interaction, future studies in which myeloid cell 

infiltration or functions are modulated would provide invaluable mechanistic insight into 

these cellular interactions.  Such interactions are important in order to fully understand 

cancers from a systems level and implement therapeutics which account for and exploit 

the interactions promoting the observed phenotypes. 

One particular aspect of the tumor microenvironment which could be promoted 

through the interaction of stromal cells is the desmoplastic response seen in many 

tumors.  The drivers of collagenous expansion in mammary tissue and tumors are an 

important consideration due to the significance this phenotype has on tumor 

progression.  Dr. Norman Boyd has pioneered work which identifies dense 

mammographic tissue as a predictive factor in the development of breast cancer.  High 

mammographic density, as determined by routine mammography, correlates with a 

12.2% increased risk in developing ductal hyperplasia and a 9.67% increased risk in 

ductal carcinoma in situ (Boyd et al. 2007).  Patricia Keely’s group has extended this 

work showing that mouse models of breast cancer which present with a high degree of 
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stromal collagen deposition have increased disease incidence and progression of cancer 

towards metastasis (Provenzano et al. 2008).  While this is in a genetically engineered 

mouse model, it would be interesting if high mammographic density breast tissue and 

human breast cancer, which presents with increased collagen deposition, are correlated 

with increased presence of myeloid cells.  It should be noted that this type of stromal 

interaction influencing tissue homeostasis and disease progression is not a de novo idea, 

but rather an idea co-opted from the proposed interaction that drive the stages of 

wound healing.  Modulating the presence or function of various microenvironmental 

components can have dramatic effects on re-epithelialization and wound closure in 

experimental models such as depletion of macrophage populations which results in a 

significant loss of fibroblast activation and collagen deposition in wound healing (Rodero 

and Khosrotehrani 2010).  Interesting with regards to the work presented above, 

recombination of Tgfbr2 in murine dermal fibroblasts inhibits fibroblast function of 

collagen deposition and remodeling and also inhibits the infiltration of macrophages 

into experimental wounds (Martinez-Ferrer et al. 2010).  The crosstalk between stromal 

fibroblasts and infiltrating myeloid cells is only one example of a multitude of stromal 

interactions which could potentially influence the progression of numerous cancers. 

Given the pleotropic nature of many of the potential mediators of these interactions, it 

is important to elucidate the function of these interactions in terms of tumor 

progression to determine whether therapeutic intervention will have an overall positive 

effect for the patient.  The potential for these interactions to have a significant impact 
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on tumor progression underlies the importance of approaching not only the tumor 

microenvironment but all aspects of tumor biology from a systems approach. 

Pro and Anti Tumorigenic Functions of TGF-β Signaling in Fibroblasts 

A key concept emphasized by the data presented above is that TGF-β signaling has 

dichotomous roles in tumor progression.  Given that this is the established dogma for 

epithelial TGF-β signaling, it is interesting to note similar findings in stromal fibroblasts 

(L. Yang and Moses 2008).  Numerous studies have expounded the role of TGF-β in 

fibroblast function.  TGF-β signaling in fibroblasts promotes the induction of 

myofibroblast differentiation, stimulation of collagen synthesis, and expression of 

cytokines and chemokines to drive immune cell infiltration (Bierie and Moses 2006a).  

Independently, each of these functions has been linked to the progression of numerous 

diseases, but in particular TGF-β driven overactivation of fibroblasts is essential in 

fibrosis (Border and Noble 1994; Leask and Abraham 2004).  Sustained production or 

release of bioactive TGF-β ligands in sites of wound healing is a major contributor to the 

excessive deposition of collagen fibers characteristic of fibrosis in many organ sites.  

Supporting this notion, TGF-β1 deficient mice show a lack of collagen deposition in late 

stage cutaneous wound healing (Kulkarni et al. 1993).  With so many similarities 

between aberrant wound healing and cancer, it is not surprising that activation of TGF-β 

signaling in fibroblasts has been shown to influence the progression of each.   

As shown above, we have identified Lysyl Oxidase as a key target for active TGF-β 

signaling in fibroblasts that influences metastatic progression in our PyMTmgko model.  
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Individually, LOX has been linked to both stromal expression in invasive breast cancer as 

well as a key component in metastasis (Erler et al. 2006; Peyrol et al. 1997).  However, 

given that more recently LOX has been mainly studied in the context of hypoxic tumor 

microenvironments, these studies should now expand into tumors that lack a high 

degree of tumor hypoxia but have a large degree of stromal infiltration and expansion of 

collagenous matrix deposition.  Use of LOX inhibitors in patients that have a large 

degree of stromal expansion and high LOX expression could be of benefit due to the 

effects identified in our studies as well as others.  An interesting, yet to be observed, 

effect from the use of LOX inhibitors could be the improvement of therapeutic efficacy.  

Given that TGF-β inhibitors have been identified by Rakesh Jain as a stromal normalizer, 

it is possible that LOX inhibitors could fall into the same category, particularly since LOX 

is a TGF-β target (J. Liu et al. 2012a).  One of the primary components identified by Dr. 

Jain’s lab is that therapeutic targets that affect the vasculature of tumors significantly 

enhance therapeutic delivery.  This hypothesis works well with the known actions of 

LOX which have been shown to promote VEGF secretion as well as promote the 

migration of endothelial cells and angiogenic sprouting in subcutaneous tumors (Baker 

et al. 2013).  Combining the previously identified angiogenic phenotype with the 

identification of LOX mediated matrix crosslinking as a factor in the expansion of a basal 

cell population in breast cancers, LOX inhibitors could not only enhance delivery of 

chemotherapeutic agents but also slow the expansion of a cell population which 

correlates with worse prognosis in breast cancer patients. 
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Despite the fact that the effects of active TGF-β signaling in fibroblasts have been 

shown to promote the progression and metastasis of breast cancers, experimental and 

informatics data show that loss of TGFBR2 expression in stromal fibroblasts correlates 

with more advanced cancer progression (Achyut et al. 2013; Bhowmick et al. 2004).  

Importantly, analysis of expression data from human breast cancer stroma shows that 

those patients with lower stromal expression of TGFBR2 have a significantly worse 

prognosis as well as an increased risk of cancer recurrence.  The pro-tumorigenic effects 

of fibroblasts lacking TGF-β responsiveness seem to stem from manipulation of immune 

cell infiltration as well as induction of changes to neighboring epithelial cell populations.  

Previous studies from our laboratory have shown that loss of TGF-β responsiveness 

enhances the expression of HGF to drive epithelial proliferation and migration (Cheng et 

al. 2008).  Additionally, abrogation of TGF-β responsiveness induces changes to the 

infiltration of inflammatory cells through enhanced chemokine expression, similar to the 

effects of abrogation of TGF-β signaling in epithelial tumor cells (Achyut et al. 2013).  

The data presented above supports our previous work showing that fibroblasts lacking 

Tgfbr2 expression promote the migration and metastasis of tumor cells.  And while not 

yet established, our data supports TGF-β suppressing a secreted factor in fibroblasts 

which promotes migration and invasion through the induction of changes to epithelial 

cell morphology and signaling.  Based on previously published data as well as data 

shown above, it is clear the abrogation of TGF-β signaling in stromal fibroblasts 

promotes the progression of breast cancer.  This is an intriguing and important concept 
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as such data could confound results from pre-clinical and clinical trials using systemic 

inhibitors of the TGF-β signaling pathway.   

A potential resolution to these seemingly dichotomous results lies in the distinct 

mechanisms by which fibroblasts with and without TGF-β signaling promote tumor cell 

metastasis.  Specifically, I have shown that active TGF-β signaling can promote tumor 

cell metastasis through modifications of the extracellular matrix while suppressing TGF-

β signaling in fibroblasts promotes an altered secretome to act on myeloid cells 

promoting their infiltration as well as directly on epithelial cells promoting a migratory 

phenotype.  These two different paths by which fibroblasts promote tumor cell 

metastasis also underlie a clinically relevant situation given that suppression of 

fibroblast TGF-β signaling is not a homogenous event.  As we see in our analysis of 

stromal TGF-β signaling, while there is an enrichment of fibroblastic cells lacking active 

TGF-β signaling in advanced tumors, there are also fibroblastic cells with active TGF-β 

signaling.  Given this, these two distinct mechanisms of action could not only promote 

tumor cell metastasis on their own, but work synergistically to ultimately lead to an 

even greater metastatic event (Figure 20).  Supporting this is data from the Bhowmick 

lab in which a 50/50 mixture of fibroblasts with and without TGF-β signaling lead to a 

significant enhancement of tumor growth when compared with each population on its 

own (Kiskowski et al. 2011).  This suggests that distinct mechanisms of tumor 

progression work either independently or synergistically to drive enhanced tumor 

growth.  Applying this concept to the work presented here, the potential for 

cooperation by these fibroblasts in promoting tumor metastasis is apparent. 
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Figure 20. Proposed model for synergistic effects of fibroblasts with and 

without TGF-β signaling on the promotion of tumor cell metastasis.  TGF-β 

responsive fibroblasts can secrete ECM components as well as enzymes 

which remodel collagen fibers, such as lysyl oxidase, which promote have 

been shown to promote tumor progression.  TGF-β non-responsive 

fibroblasts promote tumor metastasis through an altered secretome which 

promote myeloid cell infiltration as well as tumor cell migration.  It appears 

that this mechanism acts to promote metastasis to a greater degree than 

TGF-β responsive fibroblasts given that fibroblasts lacking Tgfbr2 expression 

increased metastasis over TGF-β responsive fibroblasts upon implantation.  

As crosslinked collagen has been shown to promote tumor cell EMT and 

metastasis, there is a potential for these two mechanisms to act 

synergistically.  Thus when combined, the crosslinked collagen from TGF-β 

responsive fibroblasts acts as a track promoting the invasion of the high 

migratory tumor cells which are stimulated by TGF-β non-responsive 

fibroblasts. 
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  Specifically, fibroblasts with intact TGF-β signaling create a microenvironment which 

allows for enhancement of a basal cell population and fibroblasts lacking TGF-β signaling 

secrete growth factors which promote the migratory ability of those cells (Figure 21).  

With this in mind, it will be interesting to observe if in a tumor in which there are 

fibroblasts that can and cannot respond to TGF-β, whether inhibition of phenotypic 

changes associated with either population, either matrix crosslinking or secretome 

changes, would modulate the promotion of metastasis by the other fibroblast 

population. 

Microenvironmental consideration for therapeutic targeting of TGF-β 

The data presented above supports targeting genes suppressed by TGF-β in 

fibroblasts.  However, while there is a significant enrichment for poor prognosis in 

patients with lower levels of stromal TGFBR2 expression, there are also a large number 

of patients with low TGFBR2 expression in the stroma which do not succumb to the 

disease.  Such data implies that further segregation of these patients could refine those 

that would benefit from treatment with a TGF-β targeting agent.  This is an important 

consideration, as mentioned above, for the dynamic range of effects TGF-β has on 

numerous cells in the tumor microenvironment can confound the efficacy of systemic 

treatment TGF-B treatment.  Thus, successful implementation of TGF-β targeted 

therapies will rely on finding those patients who present with phenotypic characteristics 

of active TGF-β signaling whose abrogation will outweigh the potentially pro-

tumorigenic effects of abrogating TGF-β.   
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As such delineation of patients has yet to be achieved, work has progressed on 

targeting TGF-β signaling specifically in cell populations which would benefit from TGF-β 

abrogation.  A prime example of this is the adoptive transfer of T cells expressing a 

dominant negative TGFBR2 to eliminate the suppressive function of TGF-β on T cell 

activity (Q. Zhang et al. 2005).  As the fibroblast population in tumors are not as clearly 

defined as immune cells and abrogation of TGF-β signaling has yet to show any anti-

tumorigenic function in fibroblasts, it is unlikely that such a therapeutic strategy would 

be beneficial.  Even if such targeting was possible, evidence shows that maximal 

promotion of tumorigenic features does not occur upon complete knockdown of 

TGFBR2 in all stromal fibroblasts, but rather when fibroblasts have a mixed percentage 

of cells that can and cannot respond to TGF-β (Kiskowski et al. 2011).  This would 

suggest that while both active TGF-β signaling and loss of TGF-β signaling have tumor 

promoting effects, these effects act in distinct mechanisms to allow for a potentially 

additive effect upon combination of these two cell populations.  It is also feasible that 

these tumor promoting activities are not only additive but rather supportive of the 

activities of the other.  For instance, above we have shown that myeloid derived TGF-β1 

can drive fibroblast activation and secretion of LOX (Pickup et al. 2013).  If fibroblasts 

lacking Tgfbr2 expression promote immune cell infiltration, these immune cells could 

secrete high levels of TGF-β1 which could active those fibroblasts in the tumor 

microenvironment which can still respond to TGF-β.  However, such data do not 

preclude the implementation of TGF-β targeted therapeutics but rather emphasizes the 

need for a thorough understanding of the crosstalk between different populations of 
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stromal cells as well as delineation of patients and tumor characteristics prior to 

treatment selection. 
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