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CHAPTER I

INTRODUCTION

 Current medical ability to diagnose and treat disease remains limited for many 

chronic diseases such as cancer, carcinoids, diabetes, and obesity. Basic research promises to 

advance our understanding of  such conditions and ultimately improve treatment. However, 

basic research relies upon models and assays that recreate in vitro a portion of  the enormous 

complexity found in vivo and that enable robust quantitative analysis. The tools of  research 

must combine biologically-relevant complexity with analytical ability. Development of  such 

tools requires skills and collaboration across disciplines. Furthermore successful implementa-

tion is most likely for tools that are versatile and easy-to-use. This dissertation presents re-

search on the development and implementation of  two versatile, combinable tools that allow 

portions of  in vivo complexity to be recreated in vitro in a scalable manner: magnetically 

attachable stencils (MAts) and magnetically sealed live-cell imaging chambers (MSLICs). By 

integrating these two tools a greater range of  complexity can be scaled. In combination these 

tools constitute a system of  scalable complexity ranging from simple 2D cell assays under 

static conditions to fluidically controlled 3D cell assays.

Historical Perspective on Scalable Complexity

 Scalable complexity is the ability to add in a controlled and analyzable manner im-

portant aspects of  the in vivo environment to in vitro models. It requires both the incorpo-

ration of  complexity into in vitro models and the ability to perform detailed analysis. Not all 

aspects of  biological complexity need to be or can be scalable in a given system; however, 

complexity outside of  experimental control needs to be reproducible and carefully consid-

1



ered when interpreting data. The objective of  this dissertation is the creation and implemen-

tation of  tools that provide such scalable complexity for cancer metastasis research. It 

should be noted that these tools are applicable to all fields involving cell migration and not 

just cancer metastasis. 

 Historically experimental models have been split between two extremes:  in vitro and 

in vivo models. Both present unique challenges or constraints to biological research. In vitro 

models oversimplify the biology in order to provide greater analytical ability (Fig. 1). This 

oversimplification may diminish relevance and can lead to false expectations and subsequent 

failure as research is translated into in vivo models and clinical use. On the other hand in 

vivo models provide complexity similar to a living human being but limit analytical capacity, 

often allowing only mere snapshots of  dynamic biological processes. The differences be-

Figure 1. The gap between standard in vitro and in vivo models. In vitro models provide 
superior analytical capacity but lack complexity and therefore may also lack relevance . Scal-
ing the complexity of in vitro and in vivo biology is possible without significant loss of ana-
lytical capacity. This dissertation specifically presents a system of integrated in vitro tools 
capable of 2D substrate, fluid, and 3D culture complexity thus filling the gap between in 
vitro and in vivo models.
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tween these two approaches represent a critical gap in society’s research capabilities.

 The purposes for creating scalable complexity are to fill the gap between simple in 

vitro models and complex in vivo models, improve translational research efficiency,  reveal 

the aspects of  in vivo complexity that are critical for a given area of  research, and ultimately 

increase society’s ability to prevent, diagnose, and treat disease. Many individual tools have 

already been created to fill this gap and are delivering results. For example, in 2009 the first 

long-term culture model of  intestinal epithelium was developed [1]. This model was capable 

of  sustaining intestinal stem cell niches for >350 days because it incorporated the necessary 

complexity into in vitro organoid culture. Specifically a 3D culture matrix of  collagen, a 

liquid-air interface, cellular myofibroblast architecture, and appropriate stimulation of  Wnt 

and Notch signaling were required [1]. Other technological advancements are filling this gap 

between in vitro and in vivo models and have illustrated the importance of  various parame-

ters to in vitro research such as mechanical matrix properties, fluid composition and dynam-

ics, cell-cell interactions, and intrinsic cellular properties [2-9]. Chapter II provides a review 

of  these advancements relevant to two-dimensional (2D) in vitro cell migration. However, 

none of  these advances alone constitutes a system capable of  scaling through multiple as-

pects of  biological complexity. The absence of  scalable complexity in existing models and 

the need for our laboratory to use such a tool for scientific inquiry motivated my pursuit to 

develop a system of  scalable complexity. 

Developing a System of  Scalable Complexity

 The objectives of  this dissertation research are development and implementation of  

tools that both fill the gap between in vitro and in vivo models and combine to form a sys-

tem of  scalable complexity. The product of  this thesis is a series of  tools including magneti-

cally attachable stencils (MAts), magnetically sealed live-cell imaging chambers (MSLICs), 
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and the angiogenesis disk. The biological focus of  this dissertation has been cancer cell mi-

gration as it relates to metastasis. However, the tools presented herein are applicable to all 

fields of  biological research utilizing cell migration and other live-cell assays. The develop-

ment phase of  the research involved numerous iterations and prototypes in order to achieve 

the capability and versatility essential to scalable complexity for cell migration. Implementa-

tion of  the developed tools resulted in more prototyping in order to achieve ease-of-use for 

endpoint users. Consequently, the tools presented herein are versatile delivering to cell mi-

gration studies scalable complexity of  2D substrate conditions, fluid conditions, and 3D ma-

trix conditions. Yet they remain easy-to-use. For this reason they have been implemented in 

laboratories throughout Vanderbilt University and beyond.

2D substrate complexity

 In order to scale the complexity of  substrate conditions for 2D migration of  densely 

organized cells, a tool is required that can create a void between cells without disruption or 

modification of  the matrix onto which the cells will migrate. Existing cell migration methods 

fail to accomplish this for a wide range of  substrate conditions. MAts fill this gap and enable 

migration analysis on various protein coatings and surface materials such as glass, plastic, 

nanofibers, and elastic hydrogels. This is possible because MAts utilize magnetic force to at-

tach to these substrates. The magnetic force can be tailored to the substrate in order to pro-

tect the substrate during placement and removal of  the MAts. Implementation of  MAts on 

various substrates and the resulting biological insights are reported in Chapter III. Notably, 

research with MAts revealed unexpected migratory inhibition as dense cell populations mi-

grated across an interface of  two matrix proteins. Such migration across matrix protein inter-

faces occurs regularly in the process of  cancer cell migration in vivo and represents an im-

portant component of  the biological complexity of  metastasis. 
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Fluid complexity

 Another component of  biological complexity oversimplified in vitro is fluid dynam-

ics. Many systems such as commercial bioreactors and microfluidics have been developed to 

incorporate fluid dynamics into cell growth and analysis. However most systems are de-

signed for specific applications and lack the versatility and ease-of-use essential to broad im-

plementation in life science research. In order to meet this need and create fluidic control in 

a platform compatible with MAts, we developed the magnetically sealed live-cell imaging 

chamber (MSLIC) which is presented in Chapter IV. Fluidically controlled systems are com-

plex by necessity because of  the required tubing and pumps. Efforts to make MSLICs as 

easy-to-use as possible led to the use of  magnetic force to seal the chambers. Furthermore 

the chambers can be used statically without tubing and pumps or syringes. MSLICs enable 

scalable complexity of  the fluid environment such as temporally controlled delivery of  

treatments, soluble factors, or oxygen and CO2.

3D complexity

 Incorporating 3D complexity into the tools of  this dissertation was extremely impor-

tant to achieving the desired range of  complexity. Extensive research and development of  

3D materials for cellular environments has been done. For this reason our efforts focused on 

simply incorporating already developed 3D culture techniques into MSLICs. The use of  

MSLICs for 3D culture is discussed in Chapter IV and in the Future Directions section of  

Chapter V.
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CHAPTER II

ESTABLISHED AND NOVEL METHODS OF INTERROGATING TWO- 
DIMENSIONAL CELL MIGRATION

Summary

 The regulation of  cell motility is central to living systems. Consequently, cell migra-

tion assays are some of  the most frequently used in vitro assays. This article provide a com-

prehensive, detailed review of  in vitro cell migration assays both currently in use and possi-

ble with existing technology. Emphasis is given to two-dimensional migration assays using 

densely organized cells such as the scratch assay. Assays are compared and categorized in an 

outline format according to their primary biological readout and physical parameters. The 

individual benefits of  the various methods and quantification strategies are also discussed. 

This review provides an in-depth, structured overview of  in vitro cell migration assays as a 

means of  enabling the reader to make informed decisions among the growing number of  

options available for their specific cell migration application.

Introduction

 Cell migration is a dynamic and complex process guided by a vast array of  chemical 

and physical signals. Controlled cell migration allows for normal development and function; 

whereas, misregulated motility potentates a multitude of  pathologies, including inflammation 

and cancer metastasis.   Not surprisingly, a variety of  cell migration assays have been de-
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signed in order to investigate the critical components that control cell movement.  These 

assays have unique strengths and weaknesses that define their utility. To judiciously select one 

assay from among the growing number of  assays, a knowledge of  both the assay’s capabili-

ties and the surrounding context are needed. This review expounds on the capabilities and 

shortcomings of  existing assays including a side-by-side comparison of  current 2D cell mi-

gration assays. More importantly by including potential methods for new assays, this review 

provides the full context needed to readily understand both existing and future assays.

Soluble
Cell-cellCell-cell

Cell 
auto.
Cell 
auto.

Matrix

MIGRATION
a

cytoskeletal 
protrusion traction proteolytic

cell-cell 
adhesion homotypic dynamic

densely    
coated oriented stiff 2D

chemotactic 
stimuli hyperoxic

nutrient     
rich

2.5D normoxic

cytoskeletal 
retraction

propulsion non-
proteolytic

 repulsion heterotypic static bare random soft 3D homogeneous 
stimuli

hypoxic nutrient    
poor

epithelial

mesenchymal

Figure 1. Parameters of cell migration. A multi-scale model presents multiple interdependent parameters classified under four distinct categories (cell 
autonomous ability, cell-cell interaction, matrix composition and soluble parameters.  (A) Cells are constantly integrating elements that contribute to their 
ability to migrate including those from within (cell autonomous ability), those created by interacting with neighboring cells (cell-cell interaction) or with the 
surrounding matrix and by those received as soluble stimuli (soluble parameters). The integration of these parameters determines the mode and capacity 
of migration. (B) The range of many migratory parameters can be displayed in a tuning model similar to those commonly used in audio equalizers 
(supplement).  The magnitude of any parameter influences its impact on the mode and means of migration as well as the influence of related parameters. 
Each migration mode is represented by a colored line and the position at which this line crosses each tuner represents the magnitude of that parameter 
for this migration mode. This enables a visual display of the general conditions for various types of cell migration including single isolated mesenchymal 
cells (red line) and ameboid cells (green line) as well as densely organized mesenchymal (blue line) and epithelial cells(brown line).
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Figure 2. Parameters of cell migration. A multi-scale model of cell migration presents mul-
tiple interdependent parameters classified under four distinct categories (cell autonomous 
ability, cell-cell interaction, matrix composition and soluble parameters. (a) Cells are con-
stantly integrating elements that contribute to their ability to migrate including those from 
within (cell autonomous ability), those created by interacting with neighboring cells (cell-cell 
interaction) or with the surrounding matrix composition and by those received as soluble 
stimuli (soluble parameters). The integration of these parameters determines the mode and 
capacity of migration. (b) The range of many migratory parameters can be displayed in a 
tuning model similar to those commonly used in audio equalizers (supplement). The magni-
tude of any parameter influences its impact on the mode and means of migration as well as 
the influence of related parameters. Each migration mode is represented by a colored line, 
and the position at which this line crosses each tuner represents the magnitude of that pa-
rameter for this migration mode. This enables a visual display of the general conditions for 
various types of cell migration including single isolated mesenchymal cells (red line) and 
ameboid cells (green line) as well as densely organized mesenchymal (blue line) and epithelial 
cells(brown line). For additional interpretation and definitions of terms see supplemental 
Figure C1 and Table CI.
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 The landscape of  cell migration consists of  numerous variables that fit into various 

categories (Fig. 2). Four broad categories useful for capturing the various influences on mi-

gration are 1) cell autonomous properties, 2) soluble factors, 3) matrix properties, 4) cell-to-

cell interactions [10]. To visualize these categories and further stratify the migratory land-

scape, we expanded Friedl’s tuning model of  migration to include variables within each of  

the four broad groups (Fig. 2B) [11]. The various conditions possible for each variable are 

represented as possible vertical positions which together constitute the bandwidth of  the 

tuning model. Specific conditions of  variables across these four categories result in specific 

modes of  migration. Unique modes of  migration such as dense and single cell mesenchymal 

migration, collective cell migration, and single cell ameboid migration are illustrated as lines 

cutting across the bandwidth of  the tuning model. This model helps convey the multifactor-

ial nature of  the various controls over cell migration.

 For a review of  cell migration itself  this landscape and the various migratory modes 

would be sufficient; however, understanding the context of  cell migration assays requires 

incorporation of  the assays’ physical means of  operation into this migration-focused land-

scape. These means of  operation are given in the two left-most columns of  Table 1. In two-

dimensional migration assays cells are either removed from the substrate or excluded. Cell 

removal methods utilize mechanical, electrical, chemical, and potentially thermal and optical 

means to remove or destroy cells and thus enable migration into the disrupted area. Exclu-

sion methods rely on solids, gels, liquids, air interfaces, and potentially electromagnetic forces 

to prevent cells from adhering to the area into which they later migrate. These physical 

modes of  operation each have limitations. Combining the cell migration landscape with the 

physical modes of  operation creates a full context for understanding 2D cell migration as-

says. 
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 With this complete context in mind the capabilities of  specific assays can be readily 

compared and understood even without prior knowledge of  the individual assays (Table 1). 

Just as a mode of  migration can be displayed by a line across the bandwidth of  the tuning 

model, each migration assay can be displayed as a custom bandwidth according to the assay's 

ability or lack of  ability to provide experimental control of  important variables such as ge-

ometry, cell-cell interaction, matrix composition, and soluble parameters. By comparing an 

assay's custom bandwidth (Table 1) to a mode-of-migration line (Fig. 2B), the ability of  a 

Table 1. Bandwidth of  2D migration assays.
GeometryGeometry Cell-cell InteractionCell-cell Interaction Matrix CompositionMatrix CompositionMatrix CompositionMatrix Composition Soluble ParametersSoluble ParametersSoluble Parameters

rectangular voids homotypic dynamic densely 
coated oriented stiff 2D chemotactic 

stimuli hyperoxic migration 
inducing factors

    2.5D normoxic

circular nests heterotypic static bare random soft 3D homogeneous 
stimuli hypoxic inhibiting 

factors

Isolated, Individual CellsIsolated, Individual CellsIsolated, Individual CellsIsolated, Individual Cells

Single Cell Tracking

Densely Organized Cells Densely Organized Cells Densely Organized Cells Densely Organized Cells 

Cell Removal (Wounding)Cell Removal (Wounding)Cell Removal (Wounding)Cell Removal (Wounding)

MechanicalMechanical Scratch Assay

Scratch Variations

ElectricalElectrical ECIS

ChemicalChemical Laminar Flow of 
Trypsin

ThermalThermal Thermal Damage

OpticalOptical Laser Ablation

Cell Exclusion (Void Filling)Cell Exclusion (Void Filling)Cell Exclusion (Void Filling)Cell Exclusion (Void Filling)

SolidsSolids Stencils

Stoppers

MAtS

GelsGels Barricade Gels

LiquidsLiquids Immiscible Solutions

Laminar Flow

AirAir Droplets

Microfluidic Surface 
Tension

ElectromagneticElectromagnetic Magnetic Particles

Electric Cell Repulsion

Optical Trapping

NA NA NA NA

or or

? ?

? ?

? ?

?

normoxic2.5D

? = unknown      NA = not applicable

U
nd
ev
el
op
ed

U
nd
ev
el
op
ed

Assay 
Bandwidth

Upper 
Range

------------ Lower 
Range

Full 
Range

------------
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given assay to study a specific mode of  migration can be crudely estimated.For example sin-

gle cell migration assays are, as expected, highly compatible with the single cell ameboid and 

single cell mesenchymal migration modes, and magnetically attachable stencil (MAts) assays 

are well-suited for studies of  dense mesenchymal and epithelial migration. Visually depicting 

the capability and limitations of  each assay facilitates rapid side-by-side comparison and thus 

selection of  suitable migration assays (see Fig. C2 for examples). This visual depiction can be 

readily expanded to accommodate new assays as they are developed. 

 In vivo, most migration occurs in three dimensions, and for this reason many three-

dimensional in vitro migration assays are in development. Unfortunately, there are currently 

few consistent guidelines regarding the set up and analysis of  3D assays. Furthermore, 3D 

assays require greater data collection and more advanced image analysis than 2D assays. 

Considering this, we have restricted our review to the more common two-dimensional in 

vitro migration assays. In this publication densely organized cell migration is used to refer to 

both collective epithelial cell migration and migration of  densely organized mesenchymal 

cells. 

Migration of  Densely Organized Cells 

1 Cell-Removing Methods

 Cell-removing methods are frequently referred to as “wound healing” assays because 

of  the damage caused by removing or destroying cells within a defined area of  the culture 

surface. Migration of  the cells into this denuded void can be recorded and analyzed under 

various experimental conditions. Cell removing (and cell excluding techniques) can be made 

with rectangular or circular voids or nests (see Fig. 3) and then quantified by various meth-

ods (see Fig. 4). 
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 Pros:  The main advantages of  cell-removing assays is their simplicity and ease. Few, 

if  any, modifications are made to the routine culture conditions under which cells are main-

tained and the experimenter can choose among a variety of  removal options ranging from 

simple mechanical removal to enzymatic detachment. In some instances the damage caused 

by cell removal is advantageous, since it may simulate a migratory response representative of 

in vivo processes such as wound healing [12].

 Cons:  Damage to the cells and the underlying matrix is a significant limitation of  

cell-removing assays. Generally physical cell removal damages and removes the matrix to 

which the migrating cells should adhere. Since the extent of  damage to cells and matrix can-

not be readily assessed its contribution to the migratory behavior is usually unknown. An-

other disadvantage is that as cells form a dense population they modify the underlying sub-

strate. As these cells are removed from the monolayer the composition of  the void into 

which they migrate will be influenced by 1) the culture surface material (glass or plastic), 2) 

the matrix protein coated onto this surface prior to cell plating, 3) the deposition, removal, 

and/or modification of  matrix by cells during monolayer formation, and 4) the irregular dis-

ruption of  the matrix during cell removal. For these reasons cell-removing methods though 

simple and easy to perform offer little control over underlying matrix conditions.

1.1 Mechanical Removal

Scratch Assay

Expertise: low    Throughput: single to 384-well plates  

Equipment: cultureware, camera, microscope (CCM)

 The scratch assay is by far the most published method discussed in this review (see 

Table 2). It is well-established, versatile, and easy to perform. The basic scratch assay is im-

plemented by creating a continuous monolayer of  cells and then manually scratching away a 
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portion of  the cells with a plastic pipette tip or similar mechanical pin [13]. The cells adja-

cent to the scratch remain attached and migrate into the void or “wound” which is generally 

300 to 900 µm wide. The primary advantage of  the scratch assay is compatibility with most 

lab cultureware and cell culture microscopes. Positioning plates or dishes for imaging is often 

done manually by making fiducial marks on the bottom of  the culture dish. The scratch as-

say is not restricted to specific culture dishes and can be performed on a variety of  plastic 

and glassware of  different sizes. Therefore, the assay is easily adaptable to standard cell cul-

ture protocols. 

 Beside damaging cells and matrix which is a limitation of  cell removing methods in 

general, scratch assays often create irregular voids with jagged edges and occasionally cause 

cells to pile-up densely alongside the void. Such piled-up cells rapidly expand back to normal 

density within a few hours. These variables decrease the accuracy  of  the scratch assay and 

Table 2. Comparison and publications of  cell migration assays.
Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays 

Migration AssayMigration Assay

Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays Table 2. Comparison and Publications of Cell Migration Assays 

Defining 
characteristic

Examples and 
(references)

Custom substratesCustom substrates
Compatible with 
variety of culture 

dishes

Compatible with 
variety of culture 

dishes

Google Scholar search 
term/s

Publications 
( 2011 )

Cell RemovingCell Removing

Scratch Assay

Electric Impedance

MiscellaneousMiscellaneous

Microfluidics

Colony Migration

Cell BlockingCell Blocking

Stencils

Stoppers

Barricade Gels

MAts

scraping pipette tip, silicone 
wedge, (4-9) no

scratch disrupts the 
substrate yes “scratch assay” 488

electric readout of cell 
adhesion and migration

electric cell-substrate 
impedance sensing 

(ECIS), (11-12)
no

confluent cells alter the 
substrate no

requires special 
plates with 
electrodes

migration "cell-substrate 
impedance sensing" 96

small fluidic channels 
and chambers

cell trypsinization, cell 
patterning via capillary 
force, (13-14, 35-36)

? varies with each device no

requires 
microfluidic 
device and 
equipment

microfluidic "wound healing" 
"cell migration" 214

growth of small cell 
population into 

collective colony for 
migration analysis

 oil drop assay, 
collective migration on 

elastic substrate, 
(16,34)

yes

requires either exposing 
substrate to atmosphere 

or to oil drops while 
cells attach

yes
colony expansion "collective 

migration" 17

contact between 
stencil and substrate 

relies on auto-adhesion

PDMS membrane,              
Culture-Inserts by Ibidi, 

(26-32)
no

substrate must be 
completely dry prior to 

attaching inserts
yes

requires 
uncoated or dry 

surface

"collective cell migration" OR 
"collective migration" PDMS 
membrane OR stencil  /  Ibidi 

culture inserts migration

121

wedging into specific 
size wells ensures 
contact of stopper    

and substrate

CytoselectTM Wound 
Healing Inserts, OrisTM 
Cell migration assay, 

teflon stoppers, (22-25)

?
physical insertion of 

stoppers may disrupt 
the substrate

no
requires specific 

dimensions
Oris cell migration / 

Cytoselect cell migration 211

blocking cell adhesion 
with a dissolvable gel

RadiusTM Gel,        
OrisTM Pro (NA) no

manufacturer 
determines substrate 

which must be dryable 
no

sold in limited 
variety of plates

"Radius gel" OR "Oris Pro" 
cell migration 6

magnetic force 
maintains contact 

between stencil and 
substrate

magnetically attachable 
stencils, MAts (33) yes

magnetic force attaches 
MAts without disrupting 

the substrate 
yes

n/a                               
published in 2012         

(reference 33) 
n/a
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confound analysis and interpretation of  the results. These complications have motivated 

many modifications of  the assays.

Variations of  the Scratch Assay

 Variations of  the scratch assay generally involve alternative scratch mechanisms and 

alternative cell patterns. The scratching mechanism can significantly alter the amount of  

damage to both cells and substrate. Because metal objects readily damage plastic, they are 

rarely used to make scratches. Plastic pipette tips are the standard tool; however, silicone tips 

and teflon wedges have been used to reduce damage to cells and substrate. Within these 

scratch variations rectangular voids are still most common. Drill presses have been used to 

create circular geometries by gently pressing spinning silicone tips against the cells [14,15]. 

By placing the silicone tip off-center in the drill press, circular nests can be created [16]. 

Scratch-making devices may reduce human error and improve reproducibility but are most-

often employed in order to achieve high throughput [17,18]. Although each of  these varia-

tions offers some improvement over the standard scratch assay, the basic strategy is the 

same, and maintaining a defined substrate is not possible.

Stamp Wound Assay

Expertise: low    Throughput: single to 24-well plates  

Equipment: CCM, PDMS stamps, and weights

 Rather than scraping a silicone tip across a surface, stamp wounds are created by 

pressing polydimethylsiloxane (PDMS) stamps against a dense cell population using weights. 

After several minutes the weights and PDMS stamps are removed leaving behind an area of  

cell debris into which the surrounding cells migrate [19]. By stamping rather than scratching, 

the matrix generally remains intact as do many parts of  the removed cells. Unfortunately 
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stamping still requires the formation of  a monolayer and therefore the underlying matrix 

may be modified by the occupying cells. This prevents analysis of  a clean homogeneous ma-

trix, In specific studies like those involving migration through dead or damaged tissue, the 

cell debris left after stamping may provide a more relevant environment. 

1.2 Electrical Removal of  Cells

Electric cell impedance sensing (ECIS)

Expertise: low-medium  Throughput:  multiwell plates  

Equipment: CCM, ECIS plates and control system

 Electric cell impedance sensing (ECIS) is an increasingly popular alternative to both 

traditional scratch and transwell migration assays. ECIS systems measure impedance which 

results from interactions between cells and an electrode-containing substrate. Changes in 

impedance occur as cells proliferate, migrate, spread, scatter, and alter cell-to-cell or cell-to-

matrix adhesions [20]. This makes ECIS useful in a broad range of  studies including epithe-

lial barrier function [21]. ECIS platforms are available in a variety of  formats; however, only 

the application of  ECIS to migration is directly relevant to this publication. After establish-

ing a dense cell population over the electrode-containing substrate, which can be coated with 

matrix proteins, pulses of  high voltage are applied to the electrode resulting in electropora-

tion and cell death after several seconds. The result is a a circular void (though other geome-

tries should be possible) over the electrode. As cells migrate and cover the electrode, the im-

pedance changes.  With proper calibration this impedance change can be used to indirectly 

measure cell migration.

 ECIS provides several advantages over scratch assays and introduces a few disadvan-

tages. ECIS measurements can be made in real-time without removing cells from a con-

trolled environment such as a cell culture incubator. The void for migration is automatically 
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created with a pulsating high voltage electric field eliminating human error. Irregularities in 

cells and substrate may still occur from this process but are much less likely than for scratch-

ing or stamping. However, special plates designed for ECIS-readout of  scratch assays are 

also available. 

 The major disadvantage of  ECIS migration studies is the diversity of  cell behaviors 

that change impedance. Changes in adhesion and cell density will alter the impedance. These 

changes are indistinguishable from changes due to migration. For this reason, the judicious 

use of  controls and microscopic verification of  cell migration are necessary to avoid misin-

terpreting impedance data.

1.3 Chemical Removal

Laminar Flow

Expertise: medium   Throughput:  varies with microfluidic design  

Equipment: CCM, microfluidic systems

 Cells are routinely removed by chemical means such as trypsin. Using laminar flow 

within microfluidic devices can create rectangular voids and nests of  cells when chemically 

removing cells with trypsin or other reagents [22,23]. Laminar flow is the flow of  two differ-

ent solutions side by side without mixing except by diffusion because of  the absence of  fluid 

velocity in the direction perpendicular to the flow.  It’s occurence depends on fluid viscosity 

and spatial dimensions. In the micrometer dimensions of  microfluidic devices, fluids such as 

water and cell culture medium undergo laminar flow. After flowing cells into a microfluidic 

channel and allowing them to attach, two or more inputs into the large channel establish the 

laminar flow of  trypsin (or another cell-removing agent) bounded by normal medium. As 

trypsin degrades cellular attachment proteins the cells detach from a portion of  the substrate 
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and are  subsequently flushed away with fresh medium. The remaining cells migrate into the 

trypsinized area. 

 In general microfluidics are especially useful for experiments requiring rare or costly 

reagents because they can utilize small volumes. An additional benefit of  chemically remov-

ing cells via laminar flow is that the matrix left in the cell-free void is more uniform and pre-

dictable than the scratch assay’s void. 

 The major disadvantage is that successful application of  microfluidic devices re-

quires expertise. Air bubbles, clumping of  cells, and maintaining proper cell culture medium 

conditions are challenges common to microfluidic cell-based experiments. Fortunately, these 

challenges have been surmounted by several groups. For example, VanderMeer et al. imple-

mented devices for migration analysis using pumps to exchange and thus maintain proper 

medium conditions.  Alternatively, Nie et al. implemented devices that use passive flow of  

medium which is driven by gravity, and evaporation and occupy little space in a cell culture 

incubator [22,23]. The latter devices are attractive options because they are easier to use.

1.4 New, Developing methods of  Cell Removal

 While organizing existing cell-removal methods, it became apparent that optical and 

thermal methods for initiating cell migration could be developed. A survey of  the scientific 

literature revealed potential techniques that could be but are not yet applied to the migration 

of  densely organized cells. 

Chemical Removal: Alternatives to Laminar Flow

 Although chemical removal is routinely achieved with microfluidic devices, it is also 

possible without them. Peterbauer et al. used a robotic clone selecting system (CellCelector, 

Aviso, Greiz-Gommla, Germany) to selectively remove small colonies of  cells [24]. This ap-
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proach should be adaptable to creating voids in densely organized cells. Alternatively, aque-

ous two-phase systems can pattern proteins or transfect cells with ~400 µm resolution [25]. 

Adaptation of  this approach to selectively remove patterns of  cells with trypsin or other 

chemical reagents should also be possible; however, a more promising approach would be to 

selectively pattern cells with aqueous two-phase solutions and thereby avoid cell-based sub-

strate alterations (see ”Immiscible Solutions”).

Thermal wounding 

 Thermal cell wounding is an undeveloped method, despite the existence of  two 

technologies that could be readily adapted for creating voids in densely organized cells. First, 

electrical current flowing through a thermoresistive material embedded on a culture surface 

could be used to wound a portion of  the cells. Existing ECIS systems already provide the 

needed electronics to controllably heat such thermoresistive strips. Although cells may not 

be removed by thermal damage, the subsequent migration of  cells into the lifeless void may 

be very informative for studies of  burn healing. The expertise and requirements for such a 

thermal cell “removing” migration assay would be very similar to those of  ECIS. The second 

technology capable of  thermal wounding cell populations is the heating of  small volumes 

using infrared laser light [26]. By scanning such a laser across a cell-coated dish countless 

patterns could be created for cell migration. Both techniques could be utilized to heat and 

wound small areas and possibly induce heat shock without ablating cells or causing apopto-

sis. The ability to modify existing ECIS systems to study migration or heat response make 

such thermal wounding systems an attractive candidate for future development.
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Optical Removal via Laser Ablation  

 Ultraviolet lasers are routinely used to perform microsurgery. These lasers success-

fully ablate cell monolayers in vitro [27] and in vivo in the drosophila embryo [28]. This laser 

ablation is significantly different from thermal wounding with infrared lasers because it relies 

on the brief  formation of  a plasma and cavitation bubbles to destroy individual cells [29]. 

Though already employed for cell migration and cell tension studies, the cost and mainte-

nance of  sophisticated lasers and optics currently prevent wide adoption. However, im-

provements in on-chip lasers and optics as found in micro-total analysis systems (µTAS) may 

enable wide adoption in the future.

2 Cell Excluding Methods

 The alternative to removing cells from an area is to exclude them from settling into 

an area. The past two decades have introduced a variety of  novel techniques for cell exclu-

sion ranging from elastomeric solid barriers to laminar flow in microfluidic devices. Like cell 

removing methods, methods for excluding cells also employ rectangular or cylindrical nests 

and voids (see Fig. 3). The resulting images are also quantified with the same approaches 

used for cell removing methods (see Fig. 4).

 Pros:  Cell excluding methods have significant advantages over cell removing meth-

ods and will undoubtedly prove beneficial to our understanding of  the role and effect of  the 

environment of  cells. The most significant advantage of  excluding cells is that the matrix in 

the void is not altered directly by the cells because they are not allowed to cover the void un-

til migration is initiated. Another important advantage is that certain methods can accom-

modate additional matrix complexity such as pliable surfaces, protein patterns and even tex-

tured surfaces. 
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 Cons:  The primary disadvantage of  cell exclusion methods is the additional compo-

nents required to exclude cells as they adhere and form dense populations. A disadvantage of 

certain cell excluding assays is that the barrier may leave residues on the matrix or in solution 

which may alter cell behavior. 

2.1  Solid Barriers

 The earliest documented method for excluding cells is the solid barrier. Originally, 

solid barriers were fabricated from nickel or stainless steel and could only exclude cells dur-

ing adhesion [30]. Modern solid barriers are fabricated from elastomers and are able to pre-

vent cell protrusion and migration until the barrier is removed [31]. These barriers are force-

fully held against the bottom of  a culture dish in order to successfully seal against the matrix, 

prevent cell protrusions, and protect the condition of  the matrix. The original metal stencils 

relied on gravity to maintain contact and remain immobile on the culture surface. Current 

barrier strategies are held in place with forces generated from wedging, autoadhesion, or 

magnetism rather than relying upon gravity. 

Wedging, Stoppers

Expertise: low    Throughput:  low-high  

Equipment:  CCM, specific cultureware, and stoppers 

 Stoppers utilize friction and compression to wedge into a dish and press against the 

bottom of  the dish. This wedging provides the force needed to seal against the substrate on 

the bottom of  the dish. For this reason stoppers are large (even when the void created is 

small ~1.5 mm). Because they must wedge against the walls of  a culture dish, they can func-

tion only in the specific dishes for which they were designed. They can be solid or hollow in 

the center [31,32]. 
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 The main advantage of  stoppers is that they can be sealed against wet, protein-

coated surfaces in order to study the effect of  matrix conditions on cell migration [31,33,34]. 

However, excessive force while inserting the stopper can disrupt matrix proteins coated onto 

the culture surface. To avoid this problem, preinserted stoppers can be purchased in protein-

coated plates. Alternatively, the risk of  matrix disruption can be minimized to a small pe-

rimeter using stoppers with a hollow center [31,33]. 

 Regardless of  being hollow or solid in the center, the main weakness of  stoppers is 

the need to insert them into the well which must be done manually for custom-made sub-

strates. Excessive force during insertion can disrupt matrix proteins and insufficient force 

will result in an incomplete seal allowing cells to enter into the void prior to the start of  the 

migration assay.

Adhesion, Stencils

Expertise: low   Throughput:  low-medium   

Equipment:  CCM, Stencils

 Most modern stencils rely on autoadhesion rather than gravity. Autoadhesion pro-

vides a tight seal against the matrix but limits the application to hydrophobic materials and in 

a few cases to dry matrix proteins. Rudimentary stencils have been cut out of  Parafilm [35]. 

High precision stencils are made using microfabrication techniques from PDMS [36,37] or 

parylene-c [38]. Though most stencils are thin membranes less than 200 µm in height, some 

are large such as Ibidi’s Culture Inserts, 5 mm tall [39]. Stencils can also be made from a hy-

brid of  rigid and conformal materials [40,41]. 

 Regardless of  height or composition, a major advantage of  stencils is their similarity 

to the scratch assay. The expertise and hardware for stencil assays is nearly identical to the 

scratch assay. 
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 The main weakness of  stencils is that autoadhesion requires a dry, generally clean. 

hydrophobic surface. Autoadhesion to wet protein-coated substrates is not possible and in 

many situations stencils placed on dry hydrophilic surfaces fail to successfully prevent cells 

from protruding into the void. 

Magnetic Attraction, Magnetically Attachable Stencils (MAts)

Expertise: low   Throughput:  low-high    

Equipment:  CCM, MAts, and magnets

 Magnetically Attachable Stencils (MAts) are fabricated from PDMS and magnetite. 

These stencils seal against a wide variety of  substrates via magnetic attraction to magnets 

placed underneath the culture dish. Although they can be produced in various geometries, 

the most commonly used MAts are star-shaped with four arms that are 7 mm in length and 5 

mm tall. Because MAts are attracted to magnets placed under the substrate, they seal suc-

cessfully on wet, protein-coated surfaces, elastic polyacrylamide substrates, and polycaprolac-

tone nanofibers (Nanofiber Solutions). 

 The highly controlled magnetic force minimizes user damage to the matrix and also 

improves reproducibility between experiments. By positioning MAts manually a few millime-

ters above the bottom of  a dish containing several millimeters of  solution and then releasing 

the MAts, the impact of  the MAts on the matrix becomes more dependent upon the mag-

netic force than the user. This eliminates the risk of  the user damaging the substrate during 

MAts attachment. Another advantage of  magnetic force is it can be customized to achieve 

similar compression on substrates of  varying elasticity. 

 The disadvantage of  MAts, which is shared by stencils and stoppers, is their manual 

removal. Like stencils and stoppers, careless MAt removal can damage cells or substrates, or 

possibly both. However, with proper care MAts successfully pattern densely organized cells 
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while protecting the underlying matrix. The matrix can have various conditions ranging from 

coated to uncoated, oriented to randomly oriented, and stiff  to soft (see Table 1). 

2.2  Gel Barriers

Degradable gel droplets

Expertise: low   Throughput: 24- to 384-well plates   

Equipment:  CCM, gel-containing plates

 Rather than placing and removing a solid barrier on a substrate, gels can be used to 

prevent cell adhesion to a defined area. Gels are printed onto the center of  multiwell plates 

and dried or polymerized prior to adding cells. After cells have adhered the gel is dissolved 

allowing migration into the void. These gels are currently proprietary technologies available 

as the Oris™Pro and Radius™ cell migration assays. Two strategies have been taken to dis-

solving gel barriers. One is to create gels which automatically dissolve in solution after a cer-

tain amount of  time. This enables an assay to be setup and left in an automated analyzer; 

however, the disadvantage is that the edges of  the gel which are thinner dissolve sooner re-

sulting in irregularities along cell boundaries. Alternatively, a dissolving reagent can be used 

to initiate the dissolution of  the gel. If  done after cells are well adhered, this dissolution 

technique results in crisper cell boundaries at the initial time-point [32]. 

 The advantage gels over solid barriers is that the gel dissolves without any manual 

manipulation other than adding solutions. This eliminates the human error inherent in the 

removal of  stencils, stoppers, and MAts. 

 The disadvantage of  gels revolves around application of  the gel before it polymer-

izes. This is currently done commercially with proprietary systems on 24, 96, and 384-well 

plates which are sold uncoated or collagen-coated. Other proteins and possibly custom-made 
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matrices may be available upon request. In any case the matrix proteins have to be dried lim-

iting the ability to investigate various cell-matrix interactions. 

2.3  Liquid Barriers

 Similar to gels, liquid barriers ensure that substrate conditions remain unchanged by 

physical damage from solid objects while excluding cells and preventing cell alteration of  the 

substrate. Considering the advantages of  liquid barriers, their limited use is surprising and 

may reflect lack of  awareness of  the technique or concerns of  affecting migration with the 

additional reagents required to create two-phase solutions. We anticipate increased use of  

liquid barriers in migration assays as two-phase aqueous systems are adapted to cell pattern-

ing and as microfluidics become more commonplace.

Immiscible Solutions

Expertise: low-med  Throughput: low-high   

Equipment:  CCM, immiscible solutions

 Liquids can function as barriers to cells. By placing cells in one part of  an immiscible 

or two-phase solution, cells can be patterned as they adhere to a substrate. Immiscible solu-

tions such as mineral oil and cell culture medium can create 2-3 mm diameter cell colonies 

[42]. However, better resolution is achievable. Tavana et al. recently used aqueous two-phase 

system consisting of  polyethylene glycol and dextran solutions to pattern droplets ranging 

from 400 to 1400 µm diameter for substrate coating and cell transfection. With this system 

complex patterns can be created by dispensing a stream of  dextran solution from a moving 

tip [25]. Adapting this approach to the patterning of  cells should enable sub-millimeter fea-

tures ranging from simple droplets to complex printed patterns on even softest of  substrates 

and can likely be applied repeatedly to pattern multiple protein and cell containing solutions. 
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 The major advantage of  these techniques is that with proper care cells can be pat-

terned on delicate matrices that would readily be altered by solid objects such as soft colla-

gen gels. 

 The main disadvantage is the requirement of  using solutions uncommon to cell cul-

ture which may affect cell behavior and migration or possibly alter matrix conditions. Fur-

ther research is needed to verify or dismiss the possibility of  such effects.

Laminar Flow in Microfluidics 

Expertise: medium  Throughput:  varies with microfluidic design 

Equipment:  CCM, microfluidic systems

 Because of  the small dimensions of  microfluidic devices, laminar flow can be 

achieved with various solutions such as cell culture medium. This has enabled chemical re-

moval of  cells as addressed earlier, patterning of  protein gradients [43], and patterning of  

cells for migration [44]. Utilizing liquids to pattern cells removes risks of  substrate damage 

that is inherent with solid barriers.  

 However, microfluidic flow provides additional advantages. Medium conditions can 

be controlled dynamically to deliver treatments or used to maintain very stable conditions 

regardless of  cell metabolism. Gradients in solution can be created and maintained, a feature 

that is important for many studies such as chemotaxis. 

 A disadvantage unique to excluding cells using laminar flow is that as cells adhere 

there is no surface tension or physical force to prevent cells from immediately migrating into 

the void after they adhere.
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2.4 Air Interface as a Barrier

Droplets

Expertise: low   Throughput:  low-med  

Equipment:  CCM

 One of  the simplest approaches to patterning cells in liquid is to add droplets of  

cells to a dry substrate. Essentially the air interface acts as a barrier because of  the surface 

tension of  the medium. After cells in droplets have begun to adhere (30-60 minutes), me-

dium is added to re-immerse the dry surface surrounding the droplet preventing evaporation 

or exhaustion of  the limited nutrients within the droplet, and subsequent cell death. 

 Key advantages of  using droplets are that they do not require novel tools and cells 

can easily be patterned on delicate materials. Though cell patterning achieved in this way is 

highly variable, the approach has enabled analysis of  cells migrating collectively on soft elas-

tic polyacrylamide gels [45]. This represents one of  the first investigations of  collective cell 

migration on materials capable of  recreating soft tissues such as breast.

 The major disadvantages of  this approach are that the cells used must be capable of  

adhering in a short period of  time, the matrix outside the cell-occupied zone must be dried 

temporarily, and the cell patterns achieved are variable.

Microfluidics 

Expertise: medium  Throughput:  varies with microfluidic design 

Equipment:  CCM, microfluidic systems

 Surface tension at the liquid air interface can also be used to create precise patterns 

of  cells inside microfluidic devices. Generally, a large, main channel bordered by several 

small channels is filled with cells. Liquid does not enter the small channels because of  sur-

face tension. After the cells have adhered, migration is initiated by applying sufficient vac-
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uum to the small channels to overcome the surface tension and fill them with culture me-

dium [46].

 This approach has multiple advantages. The cell patterns are precise and reproduci-

ble. The substrate remains untouched until migration is initiated. Cells have ample time to 

adhere and form stable monolayers because culture medium can be replenished without ini-

tiating migration.

 The disadvantages of  the approach are that the matrix must be temporarily dried 

while cells adhere and  unlike droplets microfluidic devices are not currently compatible with 

elastic surfaces such as polyacrylamide. 

2.5 New, Developing Methods for Excluding Cells

 Electric Fields. ECIS migration assays rely on the removal of  cells by brief, pulsed, 

intense electric fields that electroporate and disrupt cell monolayers. However, it may be pos-

sible to exclude cells from the void with a pulsating electric field, referred to as an “electric 

fence”, during the adhesion and growth of  cells. Turning off  the fence initiates migration 

into the void which can be measured by changes in impedance [47]. 

 There are three advantages of  the “electric fence” approach. First, it can be imple-

mented using existing ECIS dishes and controllers. Second, the matrix does not have to be 

dried. Third, the matrix in the void is not modified by physical contact with solids, gels, or 

cells.

 The main disadvantage is the unknown effect of  oscillating electric fields on nearby 

cells, substrate, and possibly cell culture medium. However, protein coatings are expected to 

remain intact in the presence of  the electric fence enabling densely organized cell migration 

onto custom, protein-coated substrates [47].

26



Magnetic Particles 

 Various magnetic beads are routinely used to manipulate cells and perform magnetic 

based separations. Two technologies exist that could be implemented for cell migration as-

says. First, cells in solution can be patterned by exposure to cationic liposomes containing 

magnetite followed by application of  static magnetic fields [48-50]. The second technology 

consists of, dynamic magnetic manipulators currently used in making force measurements 

on individual cells [51,52]. Both technologies could potentially enable magnetic particle-

based cell patterning for cell migration assays. 

Optical Traps 

 Since the introduction of  optical traps for manipulating viruses and cells in 1987 

[53], traps have found diverse applications ranging from subcellular and molecular manipula-

tion to label-free discrimination of  cancerous and non-cancerous cells [54,55]. State-of-the-

art holographic optical tweezers enable dynamic control of  the shape and position of  large 

traps or numerous small tweezers simultaneously. Such capabilities can exclude and sort cells 

in real-time [56] and should allow cell exclusion from a defined region during adhesion. This 

would enable analysis of  both single and densely organized cell migration on a variety of  

substrates including extremely soft materials. Another important application of  optical traps 

will be to dynamically manipulate and probe cells while they migrate.

3 Geometry

 Densely organized cells can be arranged to migrate towards one another or away 

from one another by creating voids or nests of  cells, respectively. Various shapes can also be 

created though generally only rectangles and circles are employed as shown in Fig. 3. Under-

standing the differences between geometries is important to choosing and properly executing 
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migration assays. Theoretically, the migration between void and nest geometries will be iden-

tical for rectangular geometries when experimental conditions and times are carefully se-

lected to avoid increased or decreased migration due to contact inhibition as a void closes or 

cell density changes as a nest expands. For the circular geometry, voids and nests behave dif-

ferently because migration causes the perimeter, and thus the cell density at the perimeter, to 

shrink or grow respectively.

3.1 Voids

 Voids are often created in large dense cell populations in order to measure migration. 

Generally culture surfaces are completely covered with cells except for the void. In this situa-

Figure 3. Common geometries of  cell migration assays. The geometries employed for ana-
lyzing in vitro two-dimensional migration of  densely organized cells are classified by direc-
tion of  migration or by shape. Generally cell migration is measured as an inward closure of  a 
void or outward expansion of  a nest of  cells. Both voids and nests can be created with rec-
tangular and circular shapes. However, average migration rates are generally only calculated 
from rectangles.

Rectangular Circular
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Figure 2. Common geometries. The geometries employed for analyzing in 
vitro two-dimensional migration of densely organized cells are classified by 
direction of migration or by shape. Generally cell migration is measured as an 
inward closure of a void or outward expansion of a nest of cells. Both voids and 
nests can be created with rectangular and circular shapes. However, average 
migration rates are generally only calculated from rectangles.
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tion a large number of  cells must be nourished by a limited volume of  medium. As a result 

migration can be affected by changes in medium condition. Furthermore, time points must 

be selected carefully for each cell type in order to minimize variations in migration rate that 

occur as voids begin to close and cells undergo contact inhibition of  migration.

Rectangular Voids

 Traditional scratch assays create rectangular voids. Many other assays also use this 

geometry. The width of  the void is generally less than 900 µm, and lengths may range from a 

few millimeters to a few centimeters. Acquisition of  rectangular voids should include both 

sides of  the void and employ fiducial marks or another positioning scheme. Alternatively 

time-lapse microscopy and automated microscope stages can be used to ensure proper posi-

tioning throughout all time points. This is necessary for precise quantitation of   migration 

rates or percent closure,. Fortunately, the rectangular geometry is forgiving of  minor mis-

alignment as long as both sides of  the void remain completely visible in the image. 

Circular Voids

 Circular voids are popular in high-throughput formats where space is limited and 

often the entire culture surface is imaged. In some situations acquisition is possible for only 

partial images of  the void and very precise alignment must be achieved using automated live-

cell microscope systems or fiducial marks combined with image registration. Circular voids 

are quantified almost exclusively by percent closure because converting circular closure to a 

linear migration rate is mathematically complex and the migration rate itself  is altered by the 

quadratic decrease in the area of  the void as cells migrate inward. In some instances cells 

capable of  rapidly closing a rectangular void may be seriously retarded when closing a circu-

lar void. Though this is most often considered a disadvantage, in some situations, this retar-
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dation may be beneficial by providing extra time to compare control and experimental 

groups.

3.2 Nests

 Nest assays overcome the spatial hindrance that retards migration cells as they fill 

voids. Nests are dense populations of  cells that migrate away from each other into a large 

open space. Nests use fewer cells for a given volume which can be beneficial when working 

with highly metabolic cell types but may result in dilution of  factors that stimulate migration. 

Like voids, nest migration rates may also decrease in migration after a period of  normal mi-

gration. The cause of  such retardation is primarily because the cell density decreases rapidly 

as the nest empties into the surrounding area. By judiciously selecting the time frame and 

conditions for migration, these differences can be minimized. 

Rectangular Nests 

 With proper care for medium conditions and time points, the migration of  rectangu-

lar nests is theoretically identical to rectangular voids. In fact, if  two or more rectangular 

nests are created side by side, one or more rectangular voids will be created between them. 

For many of  the stencil assays such patterns are purposefully created and migration can be 

viewed as a rectangular void or nest. Like voids, images generally contain both sides of  a nest 

in order to reduce the need for precise horizontal alignment. 

Circular Nests 

 Unlike rectangular geometries, circular voids and circular nests will behave differently 

despite giving careful consideration to medium conditions and time points. This difference 

occurs because circular nests experience a quadratic increase in available surface area as they 
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migrate outward whereas the area for circular voids decreases as cells migrate inward. Like 

circular voids, circular nests should be imaged in their entirety if  possible. This eliminates the 

need for precise image alignment. An advantage of  circular nests is their resemblance to the 

migration of  cells away from a dense population such as a tumor.

4. Quantification

 Equally important to the execution of  cell migration experiments is the quantitative 

analysis of  the resulting data. Generally, a couple pictures or time series of  pictures are taken 

Figure 4. Methods for quantifying migration data. (a) Cell covered areas are determined 
from corresponding images of  initial and final timepoints. (a´) The open area for each is 
calculated precisely or (a˝) the open average width is estimated by measuring lengths of  5 
lines. The percent closure or average migration rate are calculated from the values. (b) Indi-
vidual cells are tracked through all timepoints. The distance traveled is averaged and used to 
calculate average migration rate. (c) By substracting the current image and following image a 
movie is created showing movement of  cells both migrating into the void and mobilizing 
behind the initial cell boundary (red line). (d) Commonly used commercial and free software 
for migration analysis.

15 min, 30min, 45min, ...

hr 0 hr 8

18360 pixels
10710 
pixels

600µm 
average 
width

350µm 
avg 

width

hr 0, hr0.25, hr0.5, hr0.75, ...hr 8

-

-

=

=

38
25

 p
ix

el
s

+

+

38
25

 p
ix

el
s

12
5 

µm

12
5 

µm

a

b

=

á
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Figure 3. Quantification. Various 
methods are used to quantify migration 
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from corresponding images of initial and 
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is calculated precisely or A’’ the open 
average width is estimated by measuring 
lengths of 5 lines. The percent closure or 
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is averaged and used to calculate average 
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is created showing movement of cells both 
migrating into the void and mobilizing 
behind the initial cell boundary (red line).  
(D) Commonly used commercial and free 
software for migration analysis.
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and subsequently analyzed to determine widths between cells, migration rates, and/or per-

cent closure. The two simplest analyses consist of  determining the open area and the average 

width of  the void. Though such analyses are suitable for answering many biological ques-

tions, much more information can be obtained by tracking cells or performing image-based 

calculations on a time series. 

4.1 Area Analysis 

 The simplest and probably most common method of  analyzing densely organized 

cell migration is to compare the void area of  images from two time-points (Fig. 4a). This can 

be done by counting pixels uncovered  by cells for both time-points and then calculating the 

percent closure (Fig. 4a´). For rectangular geometries this percent closure can be converted 

to average migration rate if  the actual width of  the image is known. Alternatively, average 

widths between cells can be obtained by measuring multiple horizontal lines (Fig. 4a˝). From 

these widths the average migration rate or percent wound closure can be calculated which 

both represent the average productive movement into the void. The authors prefer average 

migration rate because percent closure varies depending on the initial size of  the void.

 For area analysis, TScratch stands out among the software platforms known by the 

authors (Fig. 4d). TScratch focuses on cell migration assays such as the scratch assay and 

therefor lacks the versatility of  other softwares. However, it can successfully distinguish be-

tween cells and background artifacts and provides a graphical user interface to facilitate user 

manipulation of  void areas as needed [57]. Alternatively, various standalone software as well 

as packages/algorithms for ImageJ [58], Cell Profiler [59], and Matlab (Mathworks) are read-

ily available.
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4.2 Individual Tracking 

 In order to obtain more information about the migratory behavior of  individual cells 

at the periphery and within the population, time series images can be used to track individual 

cells (Fig. 4b). After creating x,y coordinates of  the cell tracks, a variety of  parameters. such 

as turn angle, persistence, velocity,  and displacement can be extrapolated. To facilitate the 

extraction of  such parameters and to minimize the possibility of  human error, an open-

source, peer-reviewed software package called Cell_motility was created by Martens et al. 

[60]. Comparing behavior of  cells at various distances from the periphery will provide in-

sight into how and when cells in a dense population are mobilized. 

4.3 Image Calculations 

 To better understand how cells at the periphery and within a dense population mi-

grate and change, various image-based calculations have been implemented as alternatives to 

individual cell tracking. By calculating pixel by pixel the difference between phase contrast 

images separated by 15 minute increments, Matsubayashi, Razzell, and Martin visualized and 

quantified the mobilization of  periphery cells and cells within the population with a growing 

“white wave” (Fig. 4c) [61]. Similarly, Poujade et al. applied particle image velocimetry to 

phase contrast time-lapse images of  cell monolayers and created velocity fields showing 

complex motions among cells within the population and at the periphery [37]. Automated 

image calculations can provide quantification of  additional parameters such as the shape of  

both individual cells and the migratory front, proliferation rates, and cell turning [62,63]. 

These calculations provide insight into the behavior of  cells throughout the population not 

just at the periphery and enable visualization of  otherwise unnoticeable phenomenon.
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5. Assay Selection

Deciding on the migration assay that is most suitable for a specific experimental objective 

can be challenging. A decision diagram has been included (Fig. 5) to facilitate this process. 

The decisions are based on the primary research objective, cell density, the analytical re-

quirements, cost and available expertise.  Although the suitability of  any assay must be con-

firmed empirically, Fig. 5 provides an overview of  possible approaches suitable for specific 

research objectives. In all instances selection of  the specific assay will involve balancing the 

complexity of  the scientific question and the analytic requirements with the time, cost and 

resources available to the investigator. 

Figure 5. Assay selection.  The first step in assay selection is to consider the study's research 
objective (“Primary Objective”). Once the research objective is defined, the cell density at 
which migration is analyzed must be determined. Selecting the analytical parameters (“Analy-
sis Requirements”) guide the final selection of  an assay (“Potential Assays”) most appropri-
ate for the research objective. Frequently there are several options that are appropriate and 
the final choice is determined by the available resources and expertise (“Cost/Expertise”).
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Conclusions

 Migration assays have been and will continue to be important tools in our investiga-

tion of  the mechanisms that control both normal biology and pathology. The implementa-

tion and diversity of  methods for analyzing cell migration have increased dramatically over 

the past two decades. In vitro 2D densely organized cell migration assays often require less 

equipment and are generally simpler to analyze and quantify than single cell migration assays. 

Recent technological advances enable unprecedented 2D migration studies of  densely popu-

lated cells on a variety of  substrates ranging from custom-coated tissue culture plastics to 

pliable hydrogels and microfabricated surfaces. Such assays are able to integrate multiple as-

pects of  the four broad factors influencing migration:  1) cell autonomous properties, 2) 

soluble factors, 3) matrix properties, 4) cell-to-cell interactions (Fig. 2). This level of  control 

and integration enables more relevant in vitro investigation of  development, disease, and 

other biological processes that depend on cell migration.

 Of  the currently available densely organized cell migration assays, several demon-

strate unique strengths. ECIS is unsurpassed in ability to perform nearly real-time acquisi-

tion. To achieve similar time-lapse results with other assays would require live-cell micros-

copy systems capable of  observing multiple wells in parallel. The scratch assay remains unri-

valed in cost since it can be performed with standard equipment already available in labs per-

forming cell culture. However, as cell excluding methods, such as stencils, stoppers, MAts, 

and gels, become more common, their costs will decrease making them more and more 

competitive. Of  the cell excluding methods, the simplest and most versatile is the magneti-

cally attachable stencil, MAts. Any dish under which a magnet can be placed can be used 

with MAts and magnetic force can be customized to accommodate soft and stiff  substrates. 

 Analyzing the fundamental mode of  operation of  existing assays reveals undevel-

oped methods with promise. Though thermal wounding has been performed on animals to 
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better understand healing of  burns, the technique has not been applied in vitro to the migra-

tion of  cells. Such studies could provide insights into burn healing and also to other heat-

related conditions. Another promising method for studying cell migration is the application 

of  two phase aqueous solutions to form sub-millimeter diameter droplets or patterns of  

cells and proteins. Because contact between a solid material and substrate is completely 

avoided, two-phase aqueous solutions are an attractive approach to patterning cells on very 

delicate substrates. In terms of  control and ability to manipulate cells and even molecules 

during migration, the capabilities of  holographic optical tweezers are unrivaled. Implementa-

tion of  the above techniques for cell migration studies promise to provide significant, unique 

insights into the behavior of  individual and densely organized cells.  Furthermore, such stud-

ies are expected to reveal ways to improve the relevance of  2D migration assays to in vivo 

cell migration.

 By analyzing existing assays and areas for future assay development, this review illu-

minates the unique qualities of  individual assays and provides the necessary context for read-

ily understanding the strengths and weaknesses of  individual assays. Though the specific as-

says included in this review will evolve over time, the organization of  their fundamental 

modes of  operation provides a context that will remain important to understanding 2D cell 

migration assays far into the future.
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CHAPTER III

MAGNETICALLY ATTACHABLE STENCILS AND THE NON-
DESTRUCTIVE ANALYSIS OF THE CONTRIBUTION MADE BY THE 

UNDERLYING MATRIX TO CELL MIGRATION

Summary

 Cell migration is controlled by the integration of  numerous distinct components. 

Consequently, the analysis of  cell migration is advancing towards comprehensive, multifac-

eted in vitro models. To accurately evaluate the contribution of  an underlying substrate to 

cell motility in complex cellular environments we developed a migration assay using mag-

netically attachable stencils (MAts). When attached to a culture surface, MAts create a de-

fined void in the cell monolayer without disrupting the cells or damaging the underlying sub-

strate. Quantitative analysis of  migration into this void reveals the substrate’s contribution to 

migration. The magnetically-guided placement of  a microfabricated stencil allows for full 

experimental control of  the substrate on which migration is analyzed. MAts enable the 

evaluation of  intact, defined matrix, and make it possible to analyze migration on unique 

surfaces such as micropatterned proteins, nano-textured surfaces, and pliable hydrogels. 

These studies also revealed that mechanical disruption, including the damage that occurs 

during scratch assays, diminishes migration and confounds the analysis of  individual cell be-

havior. Analysis of  migration on increasingly complex biomaterials reveals that the contribu-

tion of  the underlying matrix depends not only on its molecular composition but also its 

organization and the context in which it is presented. 
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Introduction

 Cell migration is a multifactorial process controlled by many different molecular 

components that can be parsed into four distinct categories: 1) cell autonomous characteris-

tics, including the genetic and epigenetic regulation of  cell signaling molecules; 2) cell-matrix 

adhesion, including its regulation by the matrix composition and elasticity; 3) cell-to-cell in-

teractions through the formation of  cell-cell adhesions; and 4) soluble communication 

through factors such as small molecules, cellular metabolites, and secreted proteins (Fig. 6a 

and Fig. 2) [10,11]. The spatial and temporal integration of  these fundamentally different 

elements determines the successful initiation, progression, and eventual completion of  cell 

migration. 

 Because migration is the product of  a multifactorial integration of  many different 

mechanisms, the specific contribution of  any single factor can only be studied within the 

context of  the other participating components. The migratory response to a soluble cyto-

kine, for example, can be augmented by the presence of  mature cell-cell adhesions or the 

composition of  the matrix to which the cells adhere. Although migration in vitro is fre-

quently done with isolated cells, migration in vivo occurs within the context of  a physical 

tissue architecture and densely organized cellular populations [64]. In vivo single cells rarely 

have the opportunity to migrate alone across a cell-free expanse of  matrix because both the 

neighboring cells and the surrounding matrix inhibit motility. In vitro recreation of  these in 

vivo conditions is challenging because existing assays do not enable investigators to control 

matrix conditions while analyzing migration of  dense cell populations [65]. 

 Traditional scratch assays disrupt the matrix, and the accurate patterning of  cells on 

fragile, bioactive substrates is technically challenging and does not accommodate many exist-

ing experimental strategies. Therefore, depending on the importance of  cell-matrix interac-

tions versus cell-cell contact, in vitro cell migration studies have generally been divided into 
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two distinct approaches: 1) the analysis of  single cells on intact matrix and 2) the analysis of  

densely organized cells engaged in cell-cell contact on a wounded or modified monolayer 

Figure 6. Role of  matrix in cell migration and its protection using MAts. (a) A schematic 
depiction of  the elements that contribute to cell migration: Cell migration in tissues is de-
termined by the integration of  cell autonomous ability, soluble communication, cell-cell ad-
hesion and matrix interaction. The presentation of  a new or modified substrate and the ac-
quisition of  new matrix adhesive properties (lower right) have a powerful influence on cell 
migration. (b-e) Schematic depiction of  the MAt assay: (b) The culture surface, such as tis-
sue culture plastic or glass, is coated with relevant protein. (c) A magnet is placed under-
neath the culture surface and a MAt is subsequently attached. The magnet not only secures 
the MAt to the surface, it also provides sufficient force to seal the stencil on wet, protein-
coated surfaces without disrupting the underlying substrate. (d) Cells are plated around the 
MAt. (e) The MAt is removed, thereby creating a void adjacent to the cells, and cell migra-
tion into the void is analyzed by comparing pictures between initial and final time-points. (f) 
Comparison of  the MAt assay with scratch and single cell migration assays in their ability to 
address the four elements that contribute to migration.

b

Proteins

Glass or
Plastic

Prepare Surface

d Plate Cells

Magnet

MAt

c Attach MAts

Magnet

MAt

Original void

e Analyze Migration

Final void

 migration
soluble

cell-cell

cell-matrix

cell 
autonomous

a

f

MAt

In Vitro 
Migration

In Vitro 
Migration

Method AssayMethod Assay

Cell Auto- 
nomous Soluble

Cell-cell 
Interactions

Cell-cell 
Interactions Matrix CompositionMatrix CompositionMatrix CompositionCell Auto- 

nomous Soluble
Cell-cell 

Interactions
Cell-cell 

Interactions Matrix CompositionMatrix CompositionMatrix CompositionCell Auto- 
nomous Soluble

absent 
(single cell)

present   
(dense cells) proteins oriented elastic

Single 
Cell Migration

Wound 
Healing Scratch

Space   
Filling MAt

! ! ! X ! ! !

! ! X ! X X X

! ! X ! ! ! !

Figure 1. 
Role of matrix in cell migration and its protection using MAts. (a) A schematic depiction of the 
elements that contribute to cell migration: Cell migration in tissues is determined by the integration of cell 
autonomous ability, soluble communication, cell-cell adhesion and matrix interaction. The presentation of a new or 
modified substrate and the acquisition of new matrix adhesive properties (lower right) have a powerful influence on 
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wet, protein-coated surfaces without disrupting the underlying substrate. (d) Cells are plated around the MAt. (e) The 
MAt is removed, thereby creating a void adjacent to the cells, and cell migration into the void is analyzed by comparing 
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40



(Fig. 6f). A few exceptions to this general dichotomy are scatter assays [66], the dispersal of  

confluent populations from droplets [42,45], and the analysis of  collective cell migration us-

ing electrically controllable substrates [67].

 In order to overcome these limitations and study the permissive or non-permissive 

nature of  the underlying substrate during migration, we created a non-destructive space-

filling assay using magnetically attachable stencils (MAts). MAts are attached magnetically to 

a culture surface and kept in place during cell culture. The migration assay is initiated by re-

moving the MAt to create a void into which the cells migrate (Fig. 6b-e & Video C1). The 

rate at which cells migrate into the void is the product of  the composition of  the substrate 

in the void, cell autonomous properties, soluble factors, and cell-cell interactions. MAts pro-

vide the ability to accurately and non-destructively pattern cells on a wide variety of  sub-

strates, including culture surfaces coated with matrix proteins, micropatterned and nanofab-

ricated surfaces, pliable gels (Fig. 6f). In this way MAts integrate both cell-matrix and cell-cell 

interactions at high density and enable the investigator to determine the contribution of  the 

underlying matrix to cell migration.

Materials and Methods

 The following materials and methods were used unless specifically stated otherwise 

in the text.

Materials

 Rare-earth (NdFeB) magnets were obtained from K&J Magnetics. The 1/4˝x1/8˝x1/

8˝ grade N42 magnets (B422) were used to attach MAts to t.c. plastic dishes. Polyacrylamide 

gels used identical magnets for stiff  gels and 1/4˝x1/8˝x1/16˝ grade N42 magnets (B421) 

for soft gels. Standard MAts were cast in brass molds using polydimethylsiloxane (PDMS, 
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Sylgard 184, Dow Corning) mixed with magnetite (~2µm particle size, Pirox 200HP, Pitts-

burgh Iron Oxides LLC) at a 2:1 ratio by weight, homogenized in an AR-100 mixer (Thinky), 

and cured at 60ºC in an oven. Glass and t.c. plastic substrates, specifically 6- and 12-well 

plates (Costar 3516 and 3513, Corning) were coated with collagen (rat tail type I, 354249, 

BD Biosciences), human plasma fibronectin, murine laminin (L2020, Sigma), poly-D-lysine 

(P7280, Sigma), and FITC gelatin (G13187, Fisher). Collagen refers to collagen type I iso-

lated from rat tails unless stated otherwise. Alexa fluor 555-conjugated bovine serum albu-

min (A555-BSA, A34786, Invitrogen) and fraction V BSA (A8412, Sigma) were used for 

blocking substrates. DME medium (11965, Gibco), Roswell Park Memorial Institute 1640 

medium (RPMI, 21870, Gibco), Optimem (31985, Gibco) were used with cells. Polyacrylam-

ide (PAA) substrates were made using acrylamide (40%, 161-0140, BioRad), bis-acrylamide 

(2%, 161-0142, BioRad), ammonium persulfate (248614, Sigma), and TEMED (161-0800, 

BioRad) on 22 mm diameter #1.5 glass coverslips (Electron Microscopy Services). Gelatin 

(G1890, Sigma) and collagen (rat tail type I, 354249, BD Biosciences) were conjugated to 

polyacrylamide surfaces by activating N-Sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino) 

hexanoate (sulfo-SANPAH, 22589, Thermo Scientific) with black light blue UV bulbs (~340 

nm) 3-4 inches from the PAA surface in a UV Stratalinker 2400 (Stratagene). Solidworks 

(Dassault Systems) and GibbsCAM (Gibbs and Associates) software was used in the design 

and fabrication of  MAt molds for computer-numeric-control (CNC) milling. Images were 

calibrated to achieve actual distances using a micro-ruler (1 mm total length, 100 x 10 µm 

divisions, Graticules, Ltd., Tonbridge England). Nanofiber substrates came from Nanofiber 

Solutions LLC. 

42



Cell Culture

 Cell cultures of  human head and neck carcinoma HEp3, human lung carcinoma 

A549 cell lines, murine brain endothelial cells bEnd.3, and primary murine mammary carci-

noma cells (MMC) were cultured in DME medium, RPMI, DME medium and according to 

the procedures of  Ramirez et al. [68] DMEM and RPMI were supplemented with penn/

strep, HEPES buffer, non-essential amino acids, and 10% fetal bovine serum. Cells were cul-

tured at 37ºC in a humidified 5% CO2 incubator and passaged every 2-4 days.

Mold Production

 Brass molds were constructed in two layers in order to ensure a smooth contact sur-

face free of  tool marks that also transitions sharply without any curvature at the bottom 

edge. The bottom layer consists of  a 3˝ x 3˝ x 0.25˝ piece of  brass, with a 3 by 3 array of  

bolt holes surrounded by 2 reamed holes on each side that was later pressure-fitted with steel 

dowels serving as guide pins for the brass cubes. The top layer was made of  an outer frame 

and a 3 by 3 array of  0.5˝ x 0.5˝ x 0.25˝ cubes of  brass with rounded corners (3/32˝ diame-

ter), a 5º taper all around, a central threaded hole, and two holes to each side for the guide 

pins. After grinding and polishing the base to a mirror finish, dowels were pressed into the 

base. Then the brass cubes were inserted over the dowels and individually fastened into place 

with screws (Fig. C4a). MAts were cast in the void between the cubes, resulting in a 2 by 2 

array of  connected MAts (Fig. C4b-d). Molds for larger arrays are under development and 

will utilize a replaceable mirror-finish plastic sheet sandwiched between the base and brass 

cubes.
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Preparing and Sterilizing MAts

 MAts were fabricated according to the following steps. Polydimethylsiloxane prepo-

lymer was made by mixing 10 parts base to 1 part curing agent by weight, as recommended 

by the manufacturer. Then magnetite was measured into the prepolymer to achieve a 33% 

magnetite mixture by weight. The magnetite was mixed briefly by hand and then homoge-

nized in an AR-100 mixer. PDMS-magnetite mixture (PDMS-m) was poured into the brass 

molds and degassed by applying sufficient vacuum to cause large (2 mm) bubbles to rise, at 

which point the vacuum was released. This degassing procedure was repeated once. The 

PDMS-m was cured in the molds at 60ºC for at least 4 hours, after which the connected 2 by 

2 of  MAts was removed from the molds and cut with a clean razor blade (Fig. C4, b-d). As 

expected, cured PDMS-m was noticeably stiffer than plain PDMS [69]. MAts were stored 

with the contact surface against the bottom of  clean plastic petri dishes. To prepare MAts 

for use, the contact surface was sprayed vigorously with 70% ethanol to both remove dust 

and provide sterilization. Ethanol was immediately aspirated from the surfaces of  the MAts 

in the cell culture hood. After this, MAts were placed upside down to dry. For greater sterili-

zation MAts may be soaked in 70% ethanol for ≥ 10 minutes, following which they must be 

dried in an oven at 50-60ºC for ≥ 2 hours in order to evaporate and remove ethanol from 

within the PDMS-m.

Magnetic Attachment

 MAts were attached to a culture surface by placing magnets underneath, in direct 

contact with the t.c. plastic. The magnetic force is determined by the strength of  the magnet, 

amount and susceptibility of  the magnetite in the stencil, and the distance between the mag-

net and stencil. For simplicity we chose to maintain 33% magnetite in the MAts, though this 

concentration could be decreased to achieve less force. Different magnetic arrangements 
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were tested for their ability to facilitate alignment of  the MAts. The arrangement of  four 

small magnets rotated by 90º around a central point and pressed into plus-shaped grooves 

was chosen because it visually and magnetically facilitates alignment of  Star MAts (Fig. C4f-

g). Magnet arrangements for 6- and 12-well plates were created this way. Magnet arrang-

ments for 96-well plates were also created using a single 1/8˝ diameter 1/16˝ tall grade N52 

magnets (D21B-N52) for each well. An appropriate level of  force was determined empiri-

cally. The 1/4˝ x 1/8˝ x 1/8˝ grade N42 magnets (B422, K&J Magnetics, Inc.) were chosen 

based on their ability to prevent cell protrusions underneath MAts in 6-well plates by gener-

ating sufficient force to seal but not deform the MAts. The magnetic field across the contact 

surface of  the MAts using these magnets and 6- or 12-well plates was 0.17 ±0.01 T. Stiff  and 

soft PAA gels used fields calculated by the vendor of  0.14 ±0.01 T and 0.10 ±0.01 T by us-

ing arrangements of  1/4˝x1/8˝x1/8˝ and 1/4˝x1/8˝x1/16˝ grade N42 magnets (B422 and 

B421, K&J Magnetics, Inc.), respectively. These magnetic fields were calculated by the ven-

dor using product testing results, and the error was determined according to the error of  our 

measurements of  the distance between MAts and magnet arrangements. 

Protein Patterning

 Protein patterns were created around Star MAts (Fig. 8c-d) as follows. Tissue culture 

plastic was coated with 100 µg/ml FITC gelatin and rinsed three times with PBS. With PBS 

in the culture dish, the MAts were positioned near the culture surface and released, allowing 

the magnets to pull the MAts against the surface. A PBS solution containing 3 µg/ml human 

plasma fibronectin was added and allowed to incubate around the MAts for 2 hours at 37ºC. 

After rinsing three times with PBS, the plate was removed from the magnets, the MAts were 

detached, and the culture surface was rinsed twice more with PBS. Then rabbit antibodies 

against human fibronectin were added at 2 µg/ml in PBS containing 0.5% BSA and incu-
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bated for 1 hour at 37ºC. The surface was rinsed, and an anti-rabbit goat antibody labeled 

with Alexa-546 at 2 µg/ml in PBS containing 0.5% BSA was added for 1 hour at 37ºC. After 

rinsing three times with PBS, the surface was imaged. 

Micropatterned Proteins

 Microfluidic channels made of  PDMS-m by casting the prepolymer over SU-8 pat-

terns on silicon wafers provided by the Vanderbilt Institute for Integrative Biosystems Re-

search and Education were sealed against 6-well plates with custom magnet arrangements. In 

Fig. 9, the microchannels created alternating lanes of  collagen and A555-BSA. PBS contain-

ing 100 µg/ml collagen was pipetted into the microchannels and incubated for 2 hours at 

37ºC. The collagen solution was washed away by rinsing and aspirating fluid through the mi-

crochannels 3 times. After removal of  the microfluidic channels, the substrate was rinsed 

twice with PBS. The entire surface was subsequently blocked with 3 µg/ml Alexa555-BSA in 

PBS for 1 hour at 37ºC. Collagen bound to the surface in alternating lanes blocked most of  

the Alexa555-BSA binding and thus appears as dark red lanes in Fig. 9. The culture surface 

was rinsed twice, filled with cell culture medium, and MAts were attached perpendicular to 

the direction of  the lanes of  collagen for cell patterning.

Nanofiber Substrates

 Parallel and randomly oriented poly(ε-capralactone) nanofiber substrates (Fig. 10) in 

24-well plates were graciously provided by Nanofiber Solutions (Columbus, OH). Wells were 

coated with 100 µg/ml of  collagen (rat tail type I, BD) in PBS for 2 hours at 37ºC. The sub-

strates were rinsed twice, fresh cell culture medium was added, and MAts were magnetically 

attached. The assembly of  MAts, 24-well plate, and magnets was incubated at 37ºC and 5% 

46



CO2 for approximately 15 minutes while HEp3 GFP cells were trypsinized and counted. 

Cells were plated at a quantity of  250,000 cells per well (131,000 cells per cm2) and incu-

bated for 8 hours prior to MAt removal. Images were taken immediately after removal. 

Plates were then incubated for 8 hours, after which the final images were taken. 

Polyacrylamide Substrates of  Varying Elasticity

 Polyacrylamide substrates of  soft or stiff  rigidity (Fig. 11) were made following the 

protocol of  Pelham and Wang [70]. Briefly, 8% acrylamide and 0.05% bis-acrylamide (soft 

PAA) or 0.35% bis-acrylamide (stiff  PAA) were cross-linked using 0.05% ammonium persul-

fate and 0.05% TEMED solution on 22 mm diameter glass coverslips. Spacers were used to 

create 170 µm thick polyacrylamide gels. The polyacrylamide surface was coated with 1% 

gelatin for 3 minutes, then the gelatin was aspirated and dried in the vertical position for 45 

minutes. After this the gelatin on the polyacrylamide was cross-linked with 0.5% glutaralde-

hyde in PBS for 45 minutes and washed with repeated changes of  PBS over a 15-minute pe-

riod. Prior to plating cells, the prepared soft and stiff  substrates were incubated for 1 hour 

with cell culture medium. The elastic modulus of  soft polyacrylamide as made above has 

been reported as 1 kPa and the hard polyacrylamide has been reported as 10 kPa [71] which 

is similar to the elastic modulus of  muscle tissue [72]. In order to avoid distorting the soft 

substrate by compressing it significantly more than the stiff  substrates, magnetic arrange-

ments for soft substrates were assembled using 1/4˝ x 1/8˝ x 1/16˝ (length, width, height). 

The standard 1/4˝ x 1/8˝ x 1/8˝ magnets were used on stiff  PAA substrates. 
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Matrix Protein Interfaces

 Using large (8 mm x 4 mm x 5 mm) Block MAts, interfaces between matrix proteins 

were created (Fig. 14a-b). A Block MAt was attached to each well of  6-well plates using the 

standard magnet arrangement, fiducial marks were made with the tip of  stainless steel 

tweezers, and the wells were coated with the proteins onto which cells later migrated, specifi-

cally collagen 100 µg/ml, poly-D-lysine 0.05 mg/ml, fibronectin 10 µg/ml, and laminin 10 

µg/ml in PBS for 1 hour at 37ºC. Wells were rinsed thrice with PBS, blocked with 0.5% BSA 

for 2 hours at 37ºC, and rinsed twice with PBS. In each well a second Block MAt were 

placed adjacent to the first block MAt and the first Block MAt was carefully removed, expos-

ing an uncoated area of  t.c. plastic. Collagen (100 µg/ml), poly-D-lysine (0.05 mg/ml), fi-

bronectin (10 µg/ml), or laminin (10 µg/ml) were added to the wells thereby creating the 

matrix onto which the cells adhered. HEp3 cells were plated at 800,000 cells per well over-

night. The medium was changed to Optimem containing 0.5% BSA 1 hour prior to remov-

ing the MAts. Cell migration was documented at hour 0, 8, and 16 through a 10x 0.25NA 

objective on an Axiovert 135 (Zeiss) microscope. To analyze migration across these matrix 

interfaces, fiducial marks were created on each end of  the migration zone, individual 10x 

images were stitched together using the ImageJ plugin “Grid/Collection Stitching” [73], reg-

istered manually or registered automatically with the “Descriptor-based series registration” 

plugin [74], then cropped and quantified.

MAt Migration Assay

 Extracellular matrix proteins (collagen 100 µg/ml in PBS and/or fibronectin 10 µg/

ml in PBS) were coated onto glass or plastic culture surfaces for 1 hour at 37ºC and 5% CO2. 

After being coated, the culture dish was rinsed 3 times with PBS and securely affixed above 

an array of  magnets (Fig. C4f). Medium was added to the wells (1-2 ml for a 6-well plate), 
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MAts were lowered into position slightly above the culture surface and released, allowing the 

magnetic force to pull MAts against the wet protein-coated surface and thus avoiding scrap-

ing proteins off  the surface. Cells were added (800,000 - 100,000 cells per cm2 depending on 

cell type) and allowed to adhere. After incubating for 16 hours or more, the culture dish was 

released from the array of  magnets and MAts were subsequently removed to reveal the un-

derlying void. Fresh cell culture medium containing 10% FBS was added. Images were taken 

immediately after removal of  the MAts and at indicated times (generally 8, 12, 16, and/or 24 

hours). For further protocol details and notes refer to Appendix A. For a direct comparison 

between MAts and scratches, the scratch and MAt assays were performed in the same well, 

thereby ensuring that identical culture conditions were applied to each. For Fig. 13 MAts 

were attached to half  the wells of  12-well plates. Collagen was added to all wells for 1 hour 

at 37ºC. After rinsing thrice, the wells were blocked with 0.5% BSA and for Fig. 13b the 

wells were additionally coated with human plasma fibronectin 10 µg/ml in PBS for 1 hour at 

37ºC. Cells were serum-starved overnight and migration was analyzed in medium containing 

10% serum.

Scratch Migration Assay

 The culture surfaces were coated with matrix proteins as described for the MAt as-

say. Cells were added (800,000-100,000 cells per cm2 depending on cell type). After achieving 

a confluent cell population, a void or “scratch” was created by dragging a plastic 200 µl pi-

pette tip through dense cell population, according to the protocol of  Liang et al. [13]. The 

culture was rinsed with PBS or medium to remove debris. Fresh cell culture medium con-

taining 10% FBS was added. Images were taken immediately after void formation and at in-

dicated times (generally 8, 12, 16, and/or 24 hours). 
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Image Acquisition

 The microscope systems used to capture images are as follows unless specified oth-

erwise in the text:

 The upright microscope is a BX61 (Olympus). Images were taken using a 10x 0.4NA 

objective via DIC contrast or fluorescence using an ORCA-ER camera (Hamamatsu) and 

Volocity (PerkinElmer). 

 The shared spinning disk confocal consists of  a CSU-10 confocal unit (Yokogawa) 

on an Axiovert 200 (Zeiss). Images were recorded through the 63x 1.4NA oil-immersion 

objective with an ORCA-ER camera (Hamamatsu) using Metamorph (Molecular Devices).

 The cell culture microscope is a TMS-F (Nikon). Images were taken with a 10x 

0.25NA objective and recorded using a D90 SLR camera (Nikon) attached to the trinocular. 

 The shared inverted microscope is an Axiovert 135 (Zeiss). Images were taken via 

phase contrast or fluorescence with a 10x 0.25NA objective and recorded with with a Retiga 

200R camera (QImaging) using QCapture (QImaging)

 The stereomicroscope is a Lumar V12 (Zeiss). Images were recorded through a 

NeoLumar 1.5x objective at 80x magnification using a Retiga Exi camera (QImaging) and 

Volocity (PerkinElmer) unless specified otherwise 

Migration Quantified by Area Using TScratch

 For both MAt and scratch assays, we acquired data microscopically as digital images 

using phase contrast, differential interference contrast (DIC), and/or fluorescence. Gener-

ally, images captured the entire void and cells along both sides of  the void. The void between 

cell monolayers was quantified as a percentage of  the total image area using TScratch [57]. 

The average width of  the void was calculated by multiplying the percent area from TScratch 
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by the width (in µm) of  the image. This is only possible when the height of  the migration 

area is the same as the height of  the image so that  

can be reduced and rearranged to 

By orienting the edge of  the population of  migrating cells vertically in the field of  view, the 

height of  the image and wound were always equal. The migration rate was subsequently cal-

culated by dividing the difference of  the wound widths in microns by the time (in hours) and 

as needed dividing this result by 2 to account for the migration of  two cell boundaries to-

wards each other.

Migration Qantified by Area Using ImageJ

 For time-lapse data, ImageJ macros were written to automatically prepare images and 

determine the open area. Briefly, the contrast was adjusted, edges were detected, and the im-

ages were thresholded to create a binary image. These binary images were dilated in order to 

connect any disconnected edges before running ImageJ’s Analyze Particle command. Ana-

lyze Particle parameters were selected to identify the large cell population and ignore indi-

vidual cells. The open areas were converted to average widths as described, negative values 

resulting from improper area selection were omitted, and the results are shown in Fig. 12d. 

Cell boundaries (Fig. 15b) were created using the results of  this macro and then measured in 

ImageJ to get the width. The average area of  breakaway cells per image (Fig. 15f) was deter-

mined by modifying the Analyze Particle’s parameters to exclude the large cell population 
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and identify individual cells. Individual cell tracking was done manually (Fig. 12e) using Im-

ageJ’s Manual Tracking plugin.

Statistics and Graphs

 Umbrella plots in Fig. 12b and GFP intensity over distance in Fig. 9b and 9d were 

created in Microsoft Excel. All other plots and statistical analyses were produced using the 

free, open-source statistics language R (r-project.org) [75]. Box and whisker plots were made 

using R’s boxplot command (boxplot {graphics}). The box shows the 25th, 50th (median), 

and 75th percentiles, and the whiskers extend to the most extreme data point, which is no 

more than 1.5 times the interquartile distance. Individual data points were overlaid on the 

boxplots using the stripchart command (stripchart {graphics}) to visually show the number 

of  replicates for each experiment and any outliers. P-values were determined using all repli-

cates in an experiment with the R implementation of  the Welch Two Sample t-test (t.test 

{stats}). Asterisks were used to demonstrate significance: * for p-values ≤ 0.05, ** for p-

values ≤ 0.01, and *** for p-values ≤ 0.001. Datasets comparing voids created with scratches 

and MAts were screened for trends caused by user error. For the data on intra-experiment 

reproducibility with A549 cells (Fig. 8e), the direction of  scratching was found to influence 

the initial width of  the void. This source of  user-error was eliminated by restricting the data-

set to scratches made by pulling toward the user rather than pushing the pipette tip away 

from the user. Interaction plots in Fig. 13 display means ± standard deviation.

Supplemental Material

 Fig. C3 shows dimensions of  Star, Microwell, and Dot MAts. Fig. C4 shows current 

fabrication and usage of  MAts in 6-well plate format. Fig. C5 shows how submicron tool-
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marks on the MAt contact surface enable cell protrusions into the void. Fig. C6 shows the 

maintenance of  FITC gelatin substrates using MAt and scratch assays with A549 cells. Video 

C1 animates the steps of  the standard MAt assay. Video C2 shows void-filling migration of  

HEp3 cells patterned with MAts on collagen-coated glass. Video C3 shows wound healing 

migration of  HEp3 cells on collagen-coated glass that was scratched. Video C4 shows void-

filling migration of  HEp3 cells when MAts are attached before coating with collagen. 

Results

MAt Production

 Mat development was driven by the need for a migration assay in which the contri-

bution of  the underlying matrix can be defined by the investigator. The basic requirements 

of  such an assay include 1) the deposition of  a defined matrix, 2) plating cells adjacent to the 

defined substrate, 3) creating reproducible cell-free voids for accurate quantitation of  cell 

migration, 4) avoiding damage to the substrate during the creation of  the void, 5) adaptabil-

ity to a variety of  cell culture surfaces, and 6) ease of  use. MAt assays are the first method to 

meet each of  these requirements. MAts were designed to reproducibly create a void width 

similar to the typical void width of  an in vitro traditional scratch assay [13]. Four different 

designs were created: 1) a general purpose, star-shaped MAt with four individual arms 650 

µm wide, where each arm represents an individual void, 2) a microwell MAt composed of  4 

small chambers separated by thin sidewalls designed to create voids of  200, 400, and 800 

µm, 3) a dot MAt with an 800 µm radius created for use in high-throughput, 96-well format, 

and 4) a 2 mm wide block MAt that enables parallel coating of  different matrixes (Fig. C3). 

Because of  our prevalent use of  the star-shaped pattern, hereafter “MAt” refers to that de-

sign unless otherwise specified. 
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 MAts are molded in a one-step process from a mixture of  magnetite and PDMS pre-

polymer. A two-tiered mold was needed to eliminate tool marks and achieve a crisp transi-

tion from contact surface to sidewalls (Fig. C4 and Methods). The bottom tier consists of  a 

flat brass base polished to a flat, mirror finish. The top tier consists of  an outer frame and 

inner cubes with tapered sidewalls positioned so that the void or empty space between cubes 

creates the desired star design (Fig. C4). 

Patterning Cells with Microscale Precision

 Because MAts have a mirror finish on their contact surface and square edges at the 

transition from contact surface to sidewall, they can pattern cells with micron precision. Af-

ter coating matrix protein onto a culture surface (Fig. 6b), we place the dish directly on top 

of  an array of  magnets and gently lower the MAts onto the culture surface (Fig. 6c). The 

magnetite-containing MAts are held to the culture surface during cell plating (Fig. 6d) and 

adhesion by means of  the magnetic force generated by the underlying magnets. The field of  

the magnets is constant, but the force they apply on the MAt is readily adjusted by adjusting 

the distance of  the magnets from the surface, such that the force between the MAt and 

protein-coated surface excludes cells during adhesion and subsequent culture. Removal of  

the MAt creates a void in the monolayer which is imaged at the start, during, and/or after 

completion of  the assay in order to quantify migration (Fig. 6e). Star MAts (Fig. 7a) create 

cell-free voids even with aggressive cancer cells, such as the human epidermoid carcinoma 

cell line HEp3 (Fig. 7b,c). To confirm the ability of  a MAt to exclude submicron cell protru-

sions, confocal imaging was used to visualize the contact area between the MAt, the culture 

surface, and the adjacent cells. Three-dimensional reconstruction of  this interface revealed 

complete exclusion of  the GFP-expressing cells (green, Fig. 7c). In contrast, MAts generated 
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with an unfinished surface containing submicron tool marks are unable to exclude invasive 

cells protrusions (Fig. C5b-d).

Protection of  the Underlying Substrate

 The ability of  MAts to prevent damage to the underlying substrate and disruption of  

the adjacent cells was evaluated by comparing the integrity of  the void in a MAt assay with 

the integrity of  the void in a standard scratch assay [13]. For both assays the A549 cells (Fig. 

8a-b and Fig. C6) or fibronectin (Fig. 8c-d) were allowed to bind to a collagen or FITC 

gelatin-coated surface. In the scratch assay, mechanical surface abrasion removed the cells 

and most, but not all, of  the collagen substrate underlying the cells. This partial removal of  

the matrix left an irregular void (Fig. 8a, inset a´) where cellular debris (arrowhead) and dis-

rupted matrix (arrow) were clearly visible. The matrix disruption was very evident when 

Figure 7. MAts prevent cell protrusions into the void. (a) A Star MAt, inverted to show the 
surface that is pressed against the substrate, and (b) corresponding void created in a mono-
layer of  GFP-expressing cancer cells (HEp3) on t.c. plastic. Scale bars = 1 mm. Image ac-
quired on a Lumar stereomicroscope using the 0.8x objective at 12.5x total magnification. 
(c) GFP-expressing HEp3 cells (green) were plated on collagen-coated glass coverslips adja-
cent to a MAt labeled with Alexa-549. Confocal imaging was used to visualize the interaction 
between the MAt, the culture surface, and the adjacent cell monolayer. With the MAt in 
place, a z-stack of  images was captured with the shared spinning disk confocal (see Meth-
ods) and reconstructed in 3D. Scale bar, 50 μm.

c

Collagen

Glass

MAt’s
Outline

MAt z-stack Cells

3D Reconstruction

Cells (green)MAt’s Outline

Voidb

a MAt
bottom

top

Figure 2. 
MAts prevent cell protrusions into the void.  (a) A Star MAt, inverted to show the surface that is pressed 
against the substrate, and (b) corresponding void created in a monolayer of GFP-expressing cancer cells (HEp3) on t.c. 
plastic. Scale bars = 1 mm. Image acquired on a Lumar stereomicroscope using the 0.8x objective at 12.5x total 
magnification.  (c) GFP-expressing HEp3 cells (green) were plated on collagen-coated glass coverslips adjacent to a 
MAt labeled with Alexa-549. Confocal imaging was used to visualize the interaction between the MAt, the culture 
surface, and the adjacent cell monolayer. With the MAt in place, a z-stack of images was captured with the shared 
spinning disk confocal (see Methods) and reconstructed in 3D. Scale bar, 50 µm.
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scratching surfaces coated with both fluorescently labeled collagen and fibronectin (Fig. 8c). 

The disruption of  the matrix was irregular across the “wound” with streaks of  matrix re-

maining perpendicular to the void. Upon close examination the non-uniform disruption is 

Figure 8. MAts protect the matrix and improve reproducibility. A scratch was used to me-
chanically create a void in a monolayer of  A549 cells (a) or a matrix composed of  fi-
bronectin to collagen adsorbed to a glass surface (c + insets). Similarly a MAt was used to 
create a void in a monolayer of  A549 cells (b) or a fibronectin matrix (red) bound to a layer 
collagen (green) after placement of  the MAt (d + insets). Magnified inset a´ reveals the cell 
debris (arrowhead), disrupted matrix (arrow), and irregularities along the cell front (asterisk) 
that are created by the mechanical removal of  the cells in the scratch assay but which are ab-
sent in a void created by the MAt (b´).The ability of  a MAt to protect the underlying matrix 
while providing a high-precision seal is shown through the detection of  a fibronectin-free 
void when fibronectin (red) is adhered to the collagen after placing the MAt (d). (e) The 
intra-experimental variability of  void formation for MAt and scratch assays was quantified 
for independent repeat experiments (A549 A vs. A549 B) with ≥ 12 void measurements 
each. (f) The inter-experimental variability of  void formation for MAt and scratch assays was 
quantified using a parallel analysis of  A549 and mouse mammary epithelial cells (MMC) with 
≥ 45 void measurements each. For boxplot details and microscopy, see Methods. Scale bars, 
50 μm.
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Figure 3. 
MAts prevent damaging the matrix during void formation and improve its reproducibility. A 
scratch was used to mechanically create a void in a monolayer of A549 cells (a) or a matrix composed of fibronectin 
to collagen adsorbed to a glass surface (c + insets). Similarly a MAt was used to create a void in a monolayer of A549 
cells (b) or a fibronectin matrix (red) bound to a layer collagen (green) after placement of the MAt (d + insets). 
Magnified inset a’ reveals the cell debris (arrowhead), disrupted matrix (arrow), and irregularities along the cell front 
(asterisk) that are created by the mechanical removal of the cells in the scratch assay but which are absent in a void 
created by the MAt (b’). The ability of a MAt to protect the underlying matrix while providing a high-precision seal is 
shown through the detection of a fibronectin-free void when fibronectin (red) is adhered to the collagen after placing 
the MAt (d). (e) The intra-experimental variability of void formation for MAt and scratch assays was quantified for 
independent repeat experiments (A549 A vs. A549 B) with ≥ 12 void measurements each. (f) The inter-experimental 
variability of void formation for MAt and scratch assays was quantified using a parallel analysis of A549 and mouse 
mammary epithelial cells (MMC) with ≥ 45 void measurements each. For boxplot details and microscopy, see 
Methods. Scale bars, 50 µm. 
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particularly apparent in places where the fibronectin, but not the underlying collagen, were 

removed (insets c´ and c˝). In contrast, the voids created by MAts are uniform, without evi-

dence of  a disrupted matrix or dislodged cells (Fig. 8b,d). The uniformity of  fibronectin pat-

terned on the collagen surface is particularly striking (Fig. 8d and insets d´, d˝). Similar ob-

servations were made with collagen-coated surfaces covered with A549 cells (Fig. C6). These 

results demonstrate the unique ability of  MAts to provide a defined void with intact matrix 

for migration of  densely organized cells. 

Intra- and Inter-Assay Reproducibility in MAt and Scratch Migration Assays

 The intra-experimental reproducibility of  MAts was determined by evaluating the 

average void width in 92 images from two independent experiments (Fig. 8e). The median 

initial width for repeated MAt experiments with A549 cells (Fig. 8e) was highly reproducible 

(MAt experiment A: 665.5 ± 4.7 µm and B: 668.1 ± 12.3 µm; values are given as mean ± 

SEM), while manual scratching was highly variable (scratch experiment A: 617.6 ± 17.8 µm 

and B: 570.5 ± 12.8 µm) despite active precaution against user-induced error (see Methods). 

 The inter-experimental reproducibility of  MAts was determined by evaluating initial 

void widths (Fig. 8f) in parallel experiments of  A549 and murine mammary carcinoma cells 

(MMC). Both cell types display epithelial, pre-EMT (epithelial-to-mesenchymal transition) 

characteristics [76], but MMC cells exhibit greater cell-cell adhesion. This cell-cell adhesion 

can disrupt cells adjacent to the wound during void formation. Indeed, in scratch assays the 

initial void width for MMC cells was 300 µm greater than the void for A549 cells, compared 

to a mere 50 µm difference when using MAts (Fig. 8f). Considering the 600 µm width of  the 

pipette tip, the action of  scraping MMCs removed an additional 150 µm swath on each side 

of  the scratched surface. This was also observed in Fig. C6b, where the area devoid of  cells 

cells due to scratching was much wider than the area of  disrupted matrix. In contrast, MAts 
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created a consistent 650 µm void width with minimal (≤ 25 µm) removal of  cells adjacent to 

the stencil. Thus MAts significantly improve intra- and inter-experimental reproducibility.

Migration on Micropatterned and Microfabricated Substrates

 The structural complexity experienced by cells migrating in an in vivo microenvi-

ronment has been recreated in vitro using complex protein patterns [43,77-80] and complex 

physical topographies [5,81]. These features approximate the complexity of  an in vivo envi-

ronment, but the analysis of  migration on patterned and textured substrates has been re-

stricted to single cell migration because these delicate substrates are disrupted in scratch as-

says. MAts make it possible to analyze migration on patterned proteins and topographies 

because they are positioned with a gentle, controlled magnetic force and because the elasto-

meric stencil can conform to the textured surface.

Analysis of  Haptotaxis on Micropatterned Proteins (Fig. 9)

 Parallel, 100 µm wide lanes of  collagen and bovine serum albumin were printed mi-

crofluidically [82] onto a plastic culture surface using magnetically adhered channels. HEp3 

cells expressing green fluorescent protein (GFP) were patterned in serum-free medium with 

MAts placed perpendicular to the lanes of  protein (Fig. 9a). Cell culture medium was 

changed one hour prior to removing MAts in order to prevent HEp3 cells from detaching 

from the substrate. After removal of  the MAts, we monitored migration into the void in the 

absence of  serum. From the confluent populations, HEp3 cells migrated readily onto 

collagen-coated lanes but not onto BSA-coated lanes (Fig. 9c). Migration was quantified by 

tracking GFP-expressing cells in collagen vs. albumin-coated lanes. BSA-coated surfaces, that 

allowed for cell adhesion adjacent to the Mats, supported only limited migration when cells 

were given collagen as an alternate choice (Fig. 9b, d).
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Analysis of  Topography Orientation Sensing (Fig. 10) 

 The response to matrix topography and its orientation was evaluated on aligned and 

randomly oriented poly(ε-capralactone) nanofibers, a structural model that mimics the or-

ganization of  white matter of  the brain [5]. Using MAts, HEp3 cells were patterned on pla-

nar sheets of  collagen-coated nanofibers. In order to reduce protrusions and premature mi-

gration into the void on nanofiber substrates, MAts were removed after incubating 8 hours 

Figure 9. Micropatterned substrates reveal preferential cell migration. MAts were adhered 
perpendicular to 100 μm-wide alternating lanes of  BSA (bright red) and collagen (weakly 
red) micropatterned onto the t.c. surface using a magnetically adhered microfluidic channel 
network. HEp3 cells (green) were cultured adjacent to the MAts and their migration across 
the lanes was monitored at 0 and 8 hours after removal of  the MAts (a and b, respec-
tively). Motility was documented as the average cell intensity plotted over distance for both 
collagen-coated lanes (solid line) and BSA-coated lanes (dashed line) with the crisp cell 
boundary created by the MAts indicated with a blue line (c and d). Despite the cells’ ability 
to adhere to BSA-coated t.c. plastic, no cells were observed in these lanes, showing the 
strong preference of  HEp3 cells to migrate on collagen-coated t.c. plastic. Scale bars, 50 μm.
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Figure 4. 
Micropatterned substrates reveal preferential cell migration. MAts were adhered perpendicular to 100 
µm-wide alternating lanes of BSA (bright red) and collagen (weakly red) micropatterned onto the t.c. surface using a 
magnetically adhered microfluidic channel network. HEp3 cells (green) were cultured adjacent to the MAts and their 
migration across the lanes was monitored at 0 and 8 hours after removal of the MAts (a and b, respectively). Motility 
was documented as the average cell intensity plotted over distance for both collagen-coated lanes (solid line) and 
BSA-coated lanes (dashed line) with the crisp cell boundary created by the MAts indicated with a blue line (c and d).  
Despite the cells’ ability to adhere to BSA-coated t.c. plastic, no cells were observed in these lanes, showing the strong 
preference of HEp3 cells to migrate on collagen-coated t.c. plastic. Scale bars, 50 µm.
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rather than the normal 16 hours. The voids created by MAts were organized into three dis-

tinct configurations (Fig. 10a): 1) aligned: nanofibers = oriented perpendicular to the void 

and thus aligned with the direction of  cell migration into the void, 2) counter-aligned: nan-

ofibers oriented parallel to the void and thus orthogonal to the direction of  cell migration, 

and 3) random: nanofibers oriented randomly. Migration was the greatest when the direction 

of  migration was aligned with the nanofibers (61 ±7 µm/hr). This rate of  migration was 

comparable to migration on a continuous, flat surface (not shown). Migration on random 

fibers was intermediate in speed (29 ±9 µm/hr) but significantly faster than in the counter-

aligned configuration (15 ±7µm/hr, Fig. 10b). These observations suggest that a permissive 

Figure 10. Oriented nanofibers increase or decrease migration. (a) HEp3 GFP cells (green) 
were patterned onto collagen-coated nanofibers using MAts. Nanofibers were either oriented 
perpendicular to the void and with the direction of  migration (Aligned), oriented parallel to 
the void (Counter-aligned), or randomly distributed (Random). Migration into the void was 
imaged at 0 and 8 hours. (b) Migration rates were determined from the rate of  void closure. 
For boxplot details, see Methods. Scale bars, 50 μm.
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Figure 5. 
Oriented nanofibers increase or decrease migration. (a) HEp3 GFP cells (green) were patterned onto 
collagen-coated nanofibers using MAts. Nanofibers were either oriented perpendicular to the void and with the 
direction of migration (Aligned), oriented parallel to the void (Counter-aligned), or randomly distributed (Random). 
Migration into the void was imaged at 0 and 8 hours. (b) Migration rates were determined from the rate of void 
closure. For boxplot details, see Methods. Scale bars, 50 µm. 
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matrix (collagen type I) can be made non-permissive simply by organizing fibers perpendicu-

lar to the direction of  migration. 

Analysis of  Durotaxis (Fig. 11)

 Traditional in vitro cell culture surfaces such as glass are extremely rigid (elastic 

modulus = 1-100 GPa) compared to in vivo tissues (0.1-10 kPa, elastic modulus) [71,72,83]. 

Since the migratory behavior of  adherent cells is strongly influenced by matrix rigidity [6,84-

86] pliable hydrogels are increasingly replacing rigid surfaces for the analysis of  cell migra-

tion. However, the difficulty of  patterning cell populations without damaging the pliable 

Figure 11. Substrate elasticity alters morphology and migration rate. Using MAts, the migra-
tion of  A549 cells on FITC gelatin bound to polyacrylamide gels of  low and high elastic 
modulus (a, 1kPa and 10kPa) was compared with migration on t.c. plastic (b, 2-4 gPa). (c) 
Migration rates were determined based on void closure (n≥7). Images for (a) were acquired 
via differential interference contrast on the BX61 and phase contrast for (b) on the TMS-F. 
For boxplot and microscope details, see Methods. Scale bars, 50 μm.
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substrates limits their use in cell migration to the analysis of  single cells. MAts overcome this 

limitation and enable evaluation of  densely organized cell migration on pliable surfaces. 

MAts were placed directly onto soft (1 kPa) vs. hard (10 kPa) polyacrylamide (PAA) gels [87]. 

To compensate for the different elastic moduli and to prevent excessive compression of  soft 

PAA, proportionally weaker magnets were placed underneath soft PAA gels (see Methods), 

enabling patterning of  A549 cells on hydrogels of  any stiffness (Fig. 11a). Interestingly, tu-

mor cells displayed a more spindle-like morphology on pliable substrates than on rigid t.c. 

plastic (Fig. 11a-b). This spindle-like morphology is similar to the morphology of  invasive 

cancer cells in vivo [68,77,88]. Quantitative analysis revealed that A549 cells on soft PAA 

exhibited significantly slower migration rates (9 ±1 µm/hr) than stiff  PAA (11 ±1 µm/hr). 

Rapid Single Cell Dissemination on an Intact, Permissive Substrate

 Mechanical removal of  cells during a scratch assay not only disrupts the monolayer 

and damages the underlying matrix but also orients the matrix orthogonal to the path of  mi-

gration (Fig. 8). Orientation of  the substrate can strongly impact cell migration. Conse-

quently, we asked what specific impact matrix disruption had on cell migration. To answer 

this question, we used time-lapse microscopy of  HEp3 tumor cells migrating in MAt and 

scratch assays to evaluate the impact of  matrix disruption (Fig. 12). The undamaged matrix 

left in a void by the MAt allowed unrestricted migration on collagen-coated glass (Fig. 12a, 

left column and Video C2 vs. Video C4). Single cell tracking (colored lines) revealed individ-

ual cells migrating rapidly into the void. In contrast, migration across a scratch void was 

greatly diminished and occurred in two distinct phases (Fig. 12a, right column and Video 

C3). In the first 7.5 hours the cells migrated collectively into the void. In the 8th hour the 

cells began migrating parallel to the edge of  the monolayer without moving further into the 

void (Fig. 12b). Repeating the experiment with a FITC gelatin substrate verified that the sec-
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ond phase was due to disruption of  matrix proteins (Fig. 12c). Although void closure was 

not significantly different between the MAt assay and the scratch assay (Fig. 12d), single-cell 

tracking illustrated that the productive motility of  individual cells in a MAt assay was at least 

Figure 12. Consequences of  matrix disruption for cell migration. (a) HEp3 cells plated on 
collagen-coated glass coverslips were imaged every 5 minutes for 16 hours as they migrated 
into voids created with a MAt or a scratch. (b) Umbrella plots showing the trajectories of  
individually tracked HEp3 cells. (c) Substrate damage responsible for the inhibition of  pro-
ductive cell migration (upper panel) was visualized using FITC gelatin coated glass (lower 
panel) after 8 hours of  migration. (d) Average migration rates for HEp3 cells patterned with 
MAts or scratches on collagen-coated glass were equal using standard area-based analysis. (e) 
Migration rates as determined by individual cell tracking. Images were acquired via differen-
tial interference contrast and fluorescence microscopy using the upright microscope (see 
Methods). Frames were recorded every 5 minutes for 19 hours. For boxplot details, see 
Methods. Scale bars, 50 μm.
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Consequences of matrix disruption for cell migration. (a) HEp3 cells plated on collagen-coated glass 
coverslips were imaged every 5 minutes for 16 hours as they migrated into voids created with a MAt or a scratch. (b) 
Umbrella plots showing the trajectories of individually tracked HEp3 cells. (c) Substrate damage responsible for the 
inhibition of productive cell migration (upper panel) was visualized using FITC gelatin coated glass (lower panel) after 8 
hours of migration. (d) Average migration rates for HEp3 cells patterned with MAts or scratches on collagen-coated 
glass were equal using standard area-based analysis. (e) Migration rates as determined by individual cell tracking. Images 
were acquired via differential interference contrast and fluorescence microscopy using the upright microscope (see 
Methods). Frames were recorded every 5 minutes for 19 hours. For boxplot details, see Methods. Scale bars, 50 µm.
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twice the productive motility (i.e. the component of  migration perpendicular to the initial 

boundary of  the void) of  individual cells in a scratch assay (Fig. 12e). This implies that al-

though a similar number of  cells can migrate into the void for both assays, damage to both 

cells and substrate in the scratch assay prevents effective migration of  individual cells away 

from the leading edge. Indeed, a detailed analysis of  individual “break away” cells shows that 

MAts enable a far greater number of  cells to escape the leading edge and migrate into the 

void (Fig. 15c). These observations demonstrate that even in a densely organized cell popula-

tion, individual cell migration is heavily dependent upon the local matrix. Moreover, the in-

terpretation of  a migration assay can change dramatically when considering this contribution 

of  the matrix to cellular behavior. 

Cell-Autonomous Properties and the Underlying Matrix

 During the progression of  cancer, tumor cells frequently gain phenotypic plasticity, 

such as through an epithelial-to-mesenchymal transition (EMT). This transition dramatically 

changes the cell’s adhesive properties and autonomous migration behavior. HEp3 and A549 

are both epithelial cells, but HEp3 cells exhibit mesenchymal behavior while A549 cells ex-

hibit epithelial behavior. Although HEp3 cells would be expected to migrate faster than 

A549 cells, the divergence between the two cells lines is very matrix-dependent (Fig. 13). The 

cell lines exhibit opposing behaviors in response to the availability of  intact collagen matrix, 

and a 7-fold difference in their migration on collagen is reduced to less than 2-fold on plastic 

(Fig. 13a). 

 Similar to global phenotypic changes, the loss of  a singular molecular component 

(specifically the collagen receptor α2β1) can also have strong impacts on migration. MMCs 

that lack the α2 integrin subunit (MMC α2-/-) exhibited diminished adhesion to collagen 
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but continued to adhere and migrate normally on fibronectin-containing matrixes [68]. In-

terestingly, cells lacking integrin α2 migrated faster on t.c. plastic than on the fibronectin and 

collagen matrix (Fig. 13b). Conversely, wildtype cells expressing endogenous α2 migrated 

slower on t.c. plastic than on the fibronectin and collagen matrix. While a migration defi-

ciency on collagen-containing matrixes is not unexpected, the inverse disparity between 

wildtype and α2-null cells (i.e., α2-null cells migrated faster on t.c. plastic than wildtype cells) 

suggests that α2 can contribute to migration in a cell-autonomous, ligand-independent man-

ner. This is consistent with our previous in vivo studies demonstrating that α2 is a metastasis 

suppressor [68]. These results demonstrate that the availability of  a specific substrate can, in 

fact, strongly impact the interpretation of  cell-autonomous migratory behavior.

Figure 13. Correlation of  cell-autonomous mechanisms and the underlying matrix. (a) A549 
and HEp3 cells display pre- and post- EMT migratory behavior, respectively. Using MAts, 
the migration of  these cells on t.c. plastic was contrasted with their migration on collagen-
coated plastic (n ≥ 18). (b) The migration of  murine mammary carcinoma cells from 
wildtype (MMC wt) and integrin α2 knockout mice (MMC α2-/-) was similarly evaluated on 
a matrix of  collagen + fibronectin vs. t.c. plastic (n≥10).Values of  n are individual data 
points. Lines connect mean values. Error bars = SD.
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Figure 8. 
The contribution of cell-autonomous mechanisms to migration is strongly influenced by the 
underlying matrix. A549 and HEp3 cells display pre- and post- EMT migratory behavior, respectively. Using MAts, 
the migration of these cells on t.c. plastic was contrasted with their migration on collagen-coated plastic (n ≥ 18). (b) 
The migration of murine mammary carcinoma cells from wildtype (MMC wt) and integrin α2 knockout mice (MMC 
α2-/-) was similarly evaluated on a matrix of collagen + fibronectin vs. t.c. plastic (n≥10). Values of n are individual data 
points. Lines connect mean values. Error bars = SD.
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Matrix Switching

 Matrix switching during migration affects motility disproportionally. When a cell mi-

grates away from its point of  origin, it enters a new microenvironment and is exposed to 

new extracellular adhesive options. The nature of  this new matrix can determine the rate of  

migration and the type of  motility (i.e., collective vs. single cell motility, Fig. 12, 13, and 15). 

However, independent of  the permissive/non-permissive nature of  each individual matrix, 

Figure 14. Matrix switching during migration affects motility disproportionally to the nature 
of  the matrix (a) Using Star MAts HEp3 cell migration was analyzed on uniform substrates 
of  collagen (CN), fibronectin (FN), and laminin (LN). The migration rates are displayed in 
(b) as from CN onto CN, from FN onto FN, and so on. (c) Using Block MAts, two adja-
cent matrixes were created as described in Methods. Cells were seeded onto one matrix, cul-
tured to confluence, and subsequently allowed to migrate onto the adjacent matrix. Images 
taken at 0, 8, and 16 hours document migration and the morphological changes visible when 
HEp3 cells switch from CN onto adjacent poly-D-lysine (PDL), FN, and LN, or vice versa. 
(b) The quantitation of  migration rates across these interfaces revealed significant matrix-
specific effects and unexpected migration deficiencies that could only be contributed to ma-
trix switching and not the matrix itself  (CN vs. FN). Images were taken on the Axiovert 135 
microscope. Microscope and boxplot details are described in Methods. Scale bars, 50 μm.
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the act of  switching from one matrix to another may affect migration. To address this possi-

bility we created two adjacent areas coated with different matrix proteins (collagen, fi-

bronectin, or laminin) or poly-D-lysine (PDL) using block MAts and subsequently analyzed 

the migration of  HEp3 cells from one area to the other in a 16 hour period (Fig. 14a-c). The 

consequences of  matrix switching were revealed by comparing it with migration on uniform 

collagen, PDL, and laminin (Fig. 14a). 

 As might be anticipated, when two adjacent areas were coated with the same matrix 

proteins (laminin, fibronectin, or collagen) there was no reduction in migration when com-

pared to migration across a uniform coating of  matrix protein. However, this was not true 

when two dissimilar coatings were coated adjacent one another.

 When evaluating cells migrating to or from a PDL-coated area, we found that the 

cells moved at a rate similar to that seen on uniform PDL (approximately 6µm/hr, Fig. 14b) 

which is much less than the rate of  migration on collagen (26µm/hr). It appears that the lim-

ited HEp3 cell spreading on PDL (Fig. 14c, second column) and low motility on PDL limits 

the ability of  these cells not only when they move onto the PDL surface but also when they 

must leave the PDL to enter the collagen-coated surface.

 In contrast to PDL, fibronectin and laminin supported rapid migration onto adjacent 

collagen coated areas. However, when migrating cells switched from collagen to fibronectin 

or laminin there was an unexpected reduction in the rate of  migration. The reduced rate of  

migration was surprising because it was even less than the rate of  migration supported by a 

uniform matrix of  fibronectin (23.0 µm/hr) or laminin (13.4 µm/hr, Fig. 14b) which was 

already significantly less than the migration of  collagen (26µm/hr). The reduced migration 

indicates that switching from collagen to fibronectin or laminin adversely affected cell migra-

tion. Conversely the same is not true for cells switching from fibronectin or laminin to colla-

gen. 
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Discussion

MAts and Related Migration Assays

 The creation and design of  MAts was inspired by space-filling assays which exclude 

cells by various means such as stencils [36-38,89], stoppers [34,90], barricade gels [32], mi-

crofluidic barriers [46,91], and ligand switchable substrates [67]. After the cells have adhered, 

migration is initiated by removing the stencil or stopper, dissolving the barrier gel, releasing 

the microfluidic barrier, or switching the substrate. Unfortunately, current space-filling 

methods have significant limitations. Stencils and stoppers that auto-adhere to the plastic or 

glass culture surface cannot be applied to wet or protein-coated surfaces. Barriers that are 

manually forced onto the culture surface are difficult to apply without damaging an underly-

ing matrix. Furthermore, barrier gels, microfluidic barriers, and ligand switchable substrates 

place restrictions on the substrate used.

 By attaching MAts to a culture surface, an exclusion zone (void) is created in a cellu-

lar monolayer. Similar to a scratch assay, documenting the movement of  cells into this void 

provides a means to quantify the rate of  migration. However, MAts are unique because they 

protect the underlying surface in the void and thereby allow full control over the composi-

tion of  the matrix onto which the cells migrate. This application is not limited to classic 

analysis of  protein-coated plastic and glass surfaces but is readily extended to protein micro-

patterns, nanotextured surfaces, and pliable substrata such as hydrogels. In the past, migra-

tion on such substrates was limited to single cells or non-patterned colonies and droplets of  

cells [42,45]. Consequently, MAt assays are not merely an improvement over scratch assays, 

they provide a unique, versatile method to enable investigations into the contribution of  the 

substrata to cell migration. 
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Effects of  Matrix Context

 In several instances, providing a new substrate resulted in unexpected changes in mi-

gration. Switching from one matrix to another during migration (Fig. 14) caused a dispropor-

tionate reduction in motility. Such matrix-dependent phenotypes have been reported for 

primary cells during long-term culture [92] but have not been observed in established cell 

lines during such short temporal and spatial dimensions. Our observations suggest that at 

microscopic dimensions a change in the available matrix can influence migration in a dy-

namic manner that requires accounting for more than just the molecular identity and the 

supportive nature of  the matrix, but also accounting for the time prior to and after matrix 

switching. We expect further analysis of  the effect of  matrix switching on migration to re-

veal an unappreciated form of  biological hysteresis [93-96]. 

 Furthermore a single matrix protein (collagen) can mediate very different rates of  

migration depending on the context of  its presentation to the cell. When provided collagen 

as a choice adjacent to a non-permissive matrix such as BSA (Fig. 9), cells migrated rapidly 

on collagen (≥50 µm/hr) and were not observed migrating on BSA. Similar rates of  migra-

tion were achieved by physically aligning nanofibers (coated with collagen) with the direction 

of  migration into the void (“Aligned” Fig. 10). In contrast, orienting the nanofiber surface, 

and thereby the matrix, parallel to the void causes cells to migrate along, rather than into the 

void (“Counter-aligned” Fig. 10). These experiments show the rate of  productive motility 

depends upon the organization of  the extracellular matrix.as well as the molecular composi-

tion. 

MAts and Migratory Companion Cells

 Migration on a non-permissive matrix or adversely organized substrate can be facili-

tated by companion cells. For this reason (and others) the role of  tumor-associated cells is 

69



under intense investigation. While it is generally accepted that fibroblast and immune cells 

can modify the tumor-associated matrix, MAts enables the analysis of  this modification and 

its contribution to migration in vitro. Fig. 15 displays proof  of  this concept, HEp3 cells were 

sparsely interspersed within a monolayer of  A549 cells and allowed to migrate collectively 
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Inhibition of tumor cell dissemination on non-permissive substrates. (a) Representative images of 
mixed cell populations (A549:HEp3 at 100:1) on BSA-coated t.c. plastic. BSA is non-permissive to HEp3 migration but 
not A549 migration. This is contrasted with migration on collagen-coated t.c. plastic, which is permissive to HEp3 
migration. Boundary tracing highlights the extent to which the cells migrate uniformly (yellow). (b) Boundary traces on 
non-permissive and permissive substrates are compared to evaluate frequency of dissemination from the leading edge. 
(c) The expression of mCherry-H1 in HEp3 cells is used to detect and quantify disseminating HEp3 cells that escape 
into the void as isolated single cells (d). (e) Migration of the collective cell population (A549 and HEp3) is only 
moderately increased on a permissive matrix (1.3 fold) while the dissemination of individual HEp3 cells is increased 
dramatically (c, 5.2 fold). (f) Scratching can also create non-permissive regions diminishing the number of breakaway 
cells from a pure HEp3 population compared to MAts which maintain the permissive collagen substrate. Images were 
acquired on the inverted microscope (a) and upright microscope (b) as described in Methods. Scale bars, 50 µm.

Figure 15. Inhibition of tumor cell dissemination on non-permissive substrates. (a) Repre-
sentative images of mixed cell populations (A549:HEp3 at 100:1) on BSA-coated and 
collagen-coated t.c. plastic. BSA is non-permissive to HEp3 migration but not A549 migra-
tion, whereas migration on collagen-coated t.c. plastic is permissive to HEp3 migration. 
Boundary tracing highlights the extent to which the cells migrate uniformly (yellow). (b) 
Multiple boundary traces are overlaid and aligned to determine the average ruffling wdith for 
the mixed cells on HEp3-non-permissive and HEp3-permissive substrates. (c) HEp3 dis-
semination is quantified displaying a significant increase in dissemination on the collagen-
coated substrate. (d) Representative images of HEp3 dissemination. HEp3 cells express 
mCherry-H1 enabling fluorescent detectiong. (e) Migration of the collective mixed cells is 
only moderately increased on a permissive matrix (1.3 fold). Images were acquired on the 
inverted microscope (a) and upright microscope (d) as described in Methods. Scale bars, 50 
μm.
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with the A549 cells into a void containing a BSA-coated surface (“Non-permissive” Fig. 15) 

or a collagen-coated surface (“Permissive”). HEp3 cells migrated across the BSA-coated sur-

face because of  the A549 cells. When presented with collagen numerous HEp3 cells dis-

seminated away from the edge of  the monolayer of  cells. Similar future studies will illumi-

nate the role of  such cell-cell interactions in development, normal physiology, and disease.

Conclusion

 MAts provide experimental accuracy and versatility. The use of  magnetic force to 

attach a stencil onto a substrate represents a new strategy in the arena of  space-filling assays. 

This strategy works well on wet and dry surfaces, on simple and complex protein coatings, 

on rigid and pliable substrates, and on microfabricated textures. The strategy is applicable to 

standard culture wares, high-throughput plates, and microculture models by simply using 

different shapes of  MAts (Fig. C3). Such versatility is crucial in the early stages of  discovery 

when experimental conditions and parameters are routinely refined and must be controlled 

fully by the investigator.

 MAts open up exciting new approaches to analyzing the migration of  densely organ-

ized cells. These studies can range from the analysis of  migration on defined, intact sub-

strates to the evaluation on complex engineered substrata such as protein-coated hydrogels. 

Using MAts we identified specific migratory responses contributed by matrix modifications 

including inadvertent damage and specific matrix orientation, and by matrix switching. MAts 

can be customized to meet a wide variety of  applications (Fig. C3). MAts readily incorporate 

microfluidic designs and microfabrication techniques, creating opportunities for protein pat-

terns and interfaces that enable innovative investigations of  cellular behavior. Unique prob-

lems that can be addressed with MAts include: a) determining the contribution of  complex 

protein patterns and protein complexes to migration, b) evaluating the migration of  densely 

71



organized cells on pliable substrata with defined matrix adhesions, c) determining the contri-

bution of  tumor-associated cells to migration onto substrate not permissive to tumor cells, 

d) deciphering how cells choose among the adhesive substrata available during migration, 

and e) evaluating the cryptic epitopes in the extracellular matrix. Most important, MAts allow 

the experimenter to define the composition of  the substrate onto which the cells migrate. 

This control makes it possible to quantitatively determine the contribution that a defined 

matrix makes to cell migration in the context of  complex microenvironment. 
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CHAPTER IV

MAGNETICALLY SEALED LIVE CELL IMAGING CHAMBERS 
(MSLICs)

Introduction

 Various platforms have been developed to facilitate live-cell imaging, especially of  

mammalian cells. Mammalian cells have some of  the strictest environmental requirements 

and are generally maintained at 37 ºC in a culture medium having a pH of  7.2-7.4 in equilib-

rium with an atmosphere of  5% CO2 in air [97]. Consequently, most live-cell imaging plat-

forms consist of  a chamber to hold and image the cells and control systems to maintain 37 

ºC, 5% CO2 levels, and high humidity to avoid evaporation. Successful live-cell imaging re-

quires expertise in microscopy, the live-cell imaging platform, and the biology of  interest in 

order to recognize and eliminate artifacts due to improper conditions and analyze clearly the 

biology of  interest. To facilitate maintenance of  successful cell culture conditions on the mi-

croscope, we present magnetically sealed live-cell imaging chambers (MSLICs). MSLICs fit in 

multi-well plate microscope stage mounts and can be sealed quickly by hand without dirtying 

the imaging windows. Furthermore, MSLICs are versatile, enabling static or dynamic fluidic 

investigations such as cell migration assays, analysis of  the effects of  pulsed delivery of  

treatments, 3D culture of  acini, and so on.
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 Live-cell imaging platforms vary according to the type of  chamber used (see Table 

3). Live-Cell imaging chambers are either open to the surrounding environment or closed. 

However, some closed chambers, including the MSLICs presented herein, can be operated in 

the open configuration. Each requires certain control systems in order to maintain appropri-

ate culture conditions (Fig. 16).

 Open chambers require greater control of  the surrounding environment in order to 

maintain conditions appropriate for living cells (Fig. 16a). Consequently, they are combined 

with temperature, CO2, and often humidity control systems in order to maintain 37 ºC and 

5% CO2 levels, and minimize evaporation and the resulting change in osmolarity [97-99]. 

These control systems are costly, yet crucial to experiments requiring direct access to cells 

and medium such as patch clamp and chemotaxis studies using micropipettes. 

 Many experiments do not require direct access to the cells and medium. For such 

experiments, closed chambers can be used. By preventing contact between the surrounding 

atmosphere and contents of  the chamber, closed chambers eliminate the need for CO2 and 

humidity control systems (Fig. 16b) [99]. Generally, the cell culture medium is incubated in 

Table 3. Live-cell imaging chambers.

ChambersChambers Example Pros Cons

OpenOpenOpenOpen

Closed

Permanently

Closed

Temporarily

Closed

Temporarily

Closed

Temporarily

glass-bottomed dish direct access to cells and 
medium requires CO2 control system 

multi-well plate lower volume requires CO2 control system 

bonded glass and PDMS 
microfluidics unlikely to leak must flow cells into position

auto-adhesive low physical profile,       
versatile

prone to leak or drift if glass is 
protein- or cell-coated

clamped large variety, commercially 
available

bulky clamps may interfere 
with microscope movement

magnetically sealed
low physical profile, versatile,            

seals wet protein- or cell-
coated glass

magnetic fields may disturb 
electronics in close proximity
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the laboratory’s cell culture incubator until its CO2 levels reach equilibrium with the 5% CO2 

in the atmosphere of  the incubator. Then the MSLIC is sealed in order to maintain appro-

priate CO2 levels and osmolarity.

 Closed chambers are either permanently closed such that cells must be introduced 

through ports and channels or temporarily sealed (see Table 3). The most common perma-

nently closed chambers are glass or PDMS microfluidic devices. Being permanently sealed 

the chance of  leaking is extremely low; however, fluidic connections may be prone to leak if  

poorly made [100]. Temporarily closed chambers vary in their sealing mechanism. Chambers 

can be temporarily sealed via adhesion. Often the auto-adhesive nature of  silicone and glass 

are used to close the chamber. Two examples of  this are auto-adhesion of  PDMS microflu-

Figure 16. Strategies for maintaining an appropriate environment for live-cell imaging. Live-
Cell imaging can be performed with (a) open chambers or (b) closed chambers. (a) Open 
chambers require control of temperature, CO2 levels and humidity. (b) Closed chambers are 
usually equilibrated to 5% CO2 before being sealed and thus require only temperature regula-
tion by heating a microscope enclosure (shown) or alternatively a small area of the stage (not 
shown). (c) Flow is best suited for closed chambers but can also be used with open cham-
bers. Incorporating flow into live-cell imaging systems generally requires a reservoir of 
equilibrated medium such as the dish of medium in a sealed jar containing 5% CO2 shown; a 

37 ºC

5% CO2

a Open Chamber

b Closed Chamber

37 ºC

c Flow, optional

5% CO2

debubbler pump equilibrated
medium

~98% 
humidity

Figure 15. 
Strategies for maintaining an appropriate environment for live-cell imaging.  Live cell imaging can 
be performed with (a) open chambers or (b) closed chambers.  (a) Open chambers require control of temperature, 
CO2 levels and humidity.  (b) Closed chambers are usually equilibrated to 5% CO2 before being sealed and thus 
require only temperature regulation.  (c) Flow is best suited for closed chambers but can also be used with open 
chambers.  Incoporating flow into live-cell imaging systems generally requires a reservoir of equilibrated medium such 
as the dish of medium in a sealed jar containing 5% CO2 shown, a pump such as the peristaltic tubing pump shown or 
a syringe pump, and a debubbler. 

Control Systems

Control Systems

37 ºC
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idic devices onto glass and sealing glass cover slips onto silicone vacuum grease as in Fig. 17a 

and a´. Unfortunately, these strategies are prone to leak or drift if  the glass cover slips have 

been completely coated with cells or hydrophilic proteins making them slippery. Alterna-

tively, many chambers are temporarily closed via a clamping mechanism. These mechanisms 

are difficult to create in a low profile so as to avoid interfering with the microscope while 

moving positions. We fabricated a clamped array of  fluidic live-cell imaging chambers (see 

Fig. 17b) with a low profile for simultaneously imaging multiple chambers. However, tighten-

ing the fifteen screws was a time-consuming process.

Figure 17. Various temporarily closed live-cell imaging chambers. (a) Auto-adhesive materi-
als such as glass and silicone can be used to form closed chambers. The aluminum base 
shown enables creation of 24 live-cell imaging chambers. (a´) Silicone vacuum grease is used 
to seal glass cover slips against the aluminum base. (b) Clamping provides force to counter 
pressure from fluidic systems. (b´) Glass cover slips were sealed with silicone vacuum grease 
and then clamped onto the aluminum base by bolting on a brass lid containing rubber o-
rings. (b˝) A fluidic chamber cast into the aluminum base using PDMS facilitates the intro-
duction and removal of fluids by reducing the volume from 1.5 to 0.2 mL. (c-d) Magneti-
cally sealed live-cell imaging chambers (MSLICs) provide force using magnets (c, arrows). 
(c´) Static magnetically sealed live-cell imaging chambers (MSLICs) compress glass cover 
slips against auto-adhesive materials using magnetic force in order to form a sealed chamber. 
(d) Side holes enable fluidic connections. (d´) Fluidic chambers can be cast in the MSLIC 
using PDMS. Scale bars, 1 cm. 

b

a

in

out

c d

Auto-adhesion

Clamping

Magnetically Sealed with Fluidic Connections

Scale bar 1 cm

in

out

a’

b’
b’’

d’c’

76



 Magnetically sealed live-cell imaging chambers (MSLICs, Fig. 17c-d) overcome sev-

eral limitations of  closed live-cell imaging chambers. Utilizing magnetism, MSLICs provide 

force similar to standard clamping mechanisms but without being obtrusive or time-

consuming. This is accomplished by gluing magnets into the aluminum frame of  the cham-

bers (Fig. 17c, yellow arrows). Then glass cover slips are placed into thin ferromagnetic steel 

lids which are attracted to the magnets held into the frame (see Fig. 19). Currently, silicone 

vacuum grease is used to ensure a leak free seal (Fig. 17c´). However, o-rings or gaskets 

could also be used. This combination of  clamping via magnetic force and auto-adhesion 

overcomes the primary limitation of  auto-adhesive devices and enables successful imaging of 

glass cover slips even when they are completely coated with cells or proteins. Furthermore, 

MSLICs can be outfitted with fluidic systems (Fig. 16c and 17d), millifluidic chambers (Fig. 

17d´) and potentially microfluidic devices.

 Only a few other magnetically sealed chambers have been developed and to the best 

of  our knowledge, none of  them provide the versatility of  MSLICs. Tkachenko et al. devel-

oped a magnetically sealed perfusion chamber used to investigate effects of  hydrodynamic 

stresses [101]. Rafat et al. demonstrated successful sealing of  microfluidic devices using mag-

netic force [102]. However, neither present a versatile chamber readily compatible with mi-

croscopes equipped to hold a multi-well plate. MSLICs fit into multi-well plate microscope 

stage mounts, are versatile, can be connected to fluidic control systems, and customized by 

casting various PDMS chambers including microfluidics into the aluminum MSLIC base. In 

this publication, we present initial proofs of  concept for the MSLICs, specifically pulsed 

treatment of  cells on glass cover slips and 3D culture of  acinar structures. 
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Materials and Methods

Fabrication of  MSLICs

 MSLICs were designed to be assembled by hand and fit into common multiwell stage 

inserts. Their basic dimensions are 5˝ by 1.5˝ by 5/16˝ as shown in Fig. 18 which gives di-

mensions in millimeters. For details on MSLIC lid dimensions refer to Fig. C7. As currently 

designed, MSLICs accommodate 22 mm diameter cover slips. CNC milling was used to cre-

ate the final shape of  the base in aluminum which was then anodized or coated with a con-

tinuous 0.0005˝ layer of  parylene-C (Paratronix, Inc. Attleboro, MA) to prevent adverse reac-

tions with cell culture medium. After anodizing or coating the base, neodymium-iron-boron 
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Figure 18. MSLIC dimensions. (a) Top view shows dimensions of through holes for mag-
nets and MSLIC chambers as well as recesses along the edge designed to facilitate manually 
attaching MSLIC lids. (b) Side view reveals thickness of original stock (7.9 mm) and reduced 
size to accomodate lids (3.3 mm) and our microscope stage (5.9 mm). All dimensions are in 
millimeters.  Tolerances are 0.1 mm.
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magnets 1˝ by 1/8˝ by 1/8˝ (BX022, K&J Magnetics) were glued (DP460, 3M) into the five 

narrow slots adjacent to the holes of  the chambers (Fig. 18). For fluidic MSLICs three 0.09˝ 

diameter holes were drilled through the sides into each of  the four chambers (Fig. C7). The 

hole diameter was chosen to enable pressure fitting of  3/32˝ outer diameter Tygon® tubing 

as described in “Fluidic Setup” below.

 To seal the MSLIC, eight lids per array were machined from ferromagnetic steel. The 

lids consist of  a rectangle with both an 18 mm diameter hole cut through the center for 

viewing and a 22.2 mm square recess into which standard cover slips (#1.5, 22 mm  diame-

ter) can be seated (Fig. 17c and Fig. C7). To make the inside of  the lids compatible with cell 

culture and prevent corrosion, the outside of  the lids were painted with high-temperature 

paint (7832T1, McMaster-Carr) and heated twice from room temperature to 65-70 ºC ac-

cording to the manufacturer’s instructions. Then the lids and fluidic MSLIC base were 

coated with a 0.0005” layer of  parylene-C (Paratronix, Inc. Attleboro, MA) in order to pre-

vent adverse reactions with the cell culture medium. Parylene-C coating creates a continuous 

protective layer except in areas of  contact necessary for fixturing. During the coating MSLIC 

lids lay on a metal grate with the inside facing up so that the inside would receive a continu-

ous paylene-c coating and any breaks due to contact would occur on the protected, painted 

outside.

Sterilization

 After each use glass cover slips and silicone vacuum grease were removed from the 

MSLIC base and ferromagnetic lids.  The base and lids were wiped clean with wet paper 

towels and soaked in distilled water for at least one hour. Immediately prior to an experiment 

the needed parts were soaked for 30 minutes or more in 70% ethanol and then dried in a 150 

mm culture dish (351058, BD Falcon) in the cell culture hood. Aproximately, every sixth use 
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or after contamination with yeast, the MSLICs were soaked in dilute bleach (1:1000 dilution 

of  a 6.3% stock) for at least 1 hour and then rinsed by immersion 7-8 times in pure distilled 

water. 

Assembly

 After sterilizating the MSLIC base and lids, two glass cover slips for each MSLIC 

chamber being used were rubbed with 70% ethanol using a Kimwipe (34155, Kimberly-

Clark) and then dried with another Kimwipe. As shown in Fig. 19a The MSLIC base and lids 

were coated with a thin (<1 mm) layer of  silicone high vacuum grease (1597418, Dow 
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b MSLIC,
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plug-n-play 

device

d Plumb e Load & Prime

PDMS
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Cells
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apply vacuum 
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pivot lid on shimattach shim 
to magnet 

remove shim flip & apply 
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~98% 
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Figure 19. MSLIC assembly. (a) Prior to assembly glass cover slips are cleaned and the 
MSLIC base and lids are coated with a thin (<1 mm) layer of silicone vacuum grease. (b) To 
avoid cracking glass cover slips on the MSLIC, a shim was placed on the base and used as a 
pivot point. After attaching one glass cover slip, the MSLIC is flipped over in order to coat 
the other side with vacuum grease prior to incubation. (c) Cell culture medium and/or cells 
(not shown) were incubated in the lid and/or the MSLIC at 37ºC, 5% CO2, and 98-99% 
humidity). The MSLIC is closed by repeating the first three steps in (b).
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Corning). The clean glass cover slips were carefully pressed into the MSLIC lids. To avoid 

cracking the glass cover slip during assembly, a shim was attached. Then the lid was pivoted 

on the shim rather than on the glass cover slip until flush with the MSLIC base (Fig. 19b). 

This created a chamber that was filled with cell culture medium and cells as needed. The 

open MSLIC and lid were incubated at 37ºC, 5% CO2, and 98-99% humidity in order to 

equilibrate the medium and/or allow cells to adhere (Fig. 19c). The MSLIC was sealed im-

mediately after removal from the incubator by quickly aspirating medium from the MSLIC 

lid, but not from the chamber, and then repeating the process shown in Fig. 19b.  While 

closing the chamber, the meniscus of  medium protruding above the MSLIC base prevented 

air entrapment. 

Cell Culture and Acini Formation

 Human head and neck carcinoma HEp3 and MCF10A cells were cultured in DME 

medium supplemented with penn/strep, HEPES buffer, non-essential amino acids, and 10% 

fetal bovine serum and according to the procedures of  Ramirez et al. accordingly [68]. Cells 

were cultured at 37ºC in a humidified 5% CO2 incubator and passaged every 3-4 days. Acini 

were formed by sandwiching MCF10A cells between two layers of  matrigel according to the 

protocol of  Debnath et al. [103]. However, instead of  exchanging medium every 4 days, cells 

were grown in fluidic live-cell imaging chambers (Fig. 17b) with a recirculating supply of  20 

mL changed weekly.

Microfluidics

 Microfluidic devices were fabricated inside MSLICs (not shown) and fluidic live-cell 

imaging chambers by clamping a fluidic or microfluidic master mold against the chamber, 
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taping over holes in the sides, and pouring degassed polydimethylsiloxane prepolymer (Syl-

gard 184, Dow Corning) into the chamber. The polymer was then cured in an oven at 50 or 

60 ºC for at least 3 hours or at room temperature for >24 hours. After carefully removing 

the master mold and tape from MSLICs, holes were partially punched through the top of  

the PDMS and through the side holes to create an elbow channel within the cured PDMS. 

This elbow channel was used to connect tubing into the sides of  the chamber (Fig. 17d). For 

3D cultures such as acini formation, the simple millifluidic chamber shown in Fig. 17b˝ (ap-

proximately 9 mm by 9 mm  x 2 mm) was cast in PDMS in the MSLIC base.

Temperature Control

 Temperature controllers are required to maintain a steady 37ºC (±1 ºC or less) for 

live-cell imaging. To achieve this microscope boxes were created. Initial designs were created 

from corrugated plastic crate material. After successfully maintaining temperatures, the plas-

tic crate material was replaced with 1/2˝ transparent acrylic. By encasing the microscope 

base and most of  the filter wheel chamber (upright microscope) or brightfield light source 

(inverted microscope), the stage and objectives were maintained at 37ºC as needed to avoid 

focal drift. Experimentation revealed that boxes with a large area (>1 ft3) to the side of  the 

microscope maintain a more constant temperature since they have a larger reservoir of  air to 

dissipate the on and off  switching of  the heating element.

 Temperature controllers were assembled from readily available components. A fan 

(4840N, Ebmpapst) and matching heating element (AF20-200-120-1AD10-4.7, Farnam) 

were bolted together and mounted from the top of  the microscope box. The fan was 

plugged into an electrical outlet so as to continually circulate the air. A simple temperature 

controller (BAH-1000-SC, Big Apple Pet Supply) was purchased locally from a hardware 

store and used to power the heating element whenever the temperature at the probe dropped 
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below 37ºC. The probe was suspended near the stage of  the microscope. Blowing air directly 

onto the stage caused fluctuations in focal distance corresponding to the on and off  switch-

ing of  the heating element. Therefore, air from the fan was directed toward the side or back 

of  the microscope box.

Fluidic Setup

 Tygon® tubing of  3/32˝ OD (S-50-HL, Saint-Gobain Performance Plastics) was 

used to connect fluidic MSLICs. The stainless steel tubing from 18G needles (305195, Bec-

ton Dickinson) was seperated from the Luer connector and blunted using a Dremel® tool 

with a cut-off  blade. To prevent leakage we pressure fitted Tygon® tubing into the side 

holes of  the MSLIC by first inserting  4-6 mm pieces of  tubing into the side hole and then 

pressing 18G stainless steel tubing into the tubing causing it to expand and seal tightly 

against the hole. The excess stainless steel tubing protruding from the sides of  the MSLIC 

was connected to long (~3´) pieces of  Tygon® tubing in order to connect the MSLIC to a 

debubbler, an IPC tubing pump (Ismatec, Glattbrugg, Switzerland), and a cell culture me-

dium reservoir (Fig. 17b-c).

Image Analysis

 Analysis of  the localization of  fluorescent antibodies to membrane proteins was de-

signed to include a human in the loop of  analysis. First batch, automatic thresholding of  the 

fluorescent images identified bright spots of  antibody (see Appendix B the ImageJ macro 

entiteld “HILParticleAnalysis MeFirst”). After automatically identifying spots of  antibody 

localization, manual screening was performed with the assistance of  a second ImageJ macro 

“HILParticleAnalysis MeLast” (see Appendix B) in order to put a human in the loop of  
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analysis. This macro overlaid the bright spots onto the original DIC images allowing quick 

visualization and selection of  specific spots. By running this second macro twice, we selected 

spots corresponding to areas of  cell-cell contact and spots free of  cell-cell contact. The 

bright spots corresponding to the cell-cell contact areas were divided by the sum of  all the 

manually selected spots and multiplied by 100 in order to achieve a percentage (Fig. 20b-c). 

Average fluorescent intensity measurements were recorded for each image ImageJ and then 

converted into percentages by dividing each fluorescent intensity measurement by the 

brightest average measurement in the time series and multiplying by 100 (Fig. 20a,c).

Results and Discussion

 Avoiding exposure to atmosphere and room temperature is key to successful assem-

bly and analysis of  cell phenomenon using closed live-cell imaging chambers. Fluidic cham-

bers are more forgiving than closed non-fluidic chambers because improperly equilibrated 

medium due to atmosphere exposure can be replaced. In both cases exposure to room tem-

perature should be minimized. To avoid such exposure MSLICs were designed to be quickly 

sealed after removal from the incubator and if  properly handled require no cleaning. As 

shown in Fig. 19, glass cover slips can be cleaned, lids and the MSLIC base can be greased, 

MSLIC chambers can be sealed via magnetic force, cells can be incubated in this chamber or 

the MSLIC lid, and after incubation the MSLIC can be sealed quickly without breaking or 

dirtying glass cover slips. By carefully handling the ferromagnetic lids, the glass cover slips 

remained clean eliminating the need for cleaning after assembly and thus reducing assembly 

time and exposure to room environment. Furthermore the MSLIC can be filled with culture 

medium and incubated 60 minutes or more in order to achieve proper CO2 concentrations 

in the medium. By sealing the chamber within a couple minutes of  removal from the incuba-
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tor the medium’s pH remained equilibrated as observed via the phenol red pH indicator in 

the medium. 

 MSLICs facilitated time-lapse microscopy by stabilizing the cover slips, an unex-

pected result of  sealing cover slips with magnetic force. Wet, slippery cover slips (e.g. cover 

slips covered densely with matrix proteins or cells) are difficult to seal against silicone vac-

uum grease and prone to drift in temporarily closed, auto-adhesive live-cell imaging cham-

bers (as an example see Fig. 17a and a´). Magnetic force helped seal and stabilize slippery, 

wet cover slips on the MSLIC reducing drift in x, y, and z (data not shown).

 MSLICs are adaptable to fluidic and 3D culture applications on the microscope. We 

fabricated MSLICs with holes through the side in order to connect tubing horizontally rather 

than vertically which would potentially interfere with maneuvering the microscope. (Fig. 

17d). Three-dimensional cell culture experiments were performed after casting millifluidic 

chambers (Fig. 17d´) into the MSLIC base. Fluid flow helped maintain stable and viable 3D 

cultures for experiments such as the acini assay.

Cell Migration

 MSLICs are compatible with MAts assays and single cell migration assays. The use of  

MSLICs with MAts enabled individual cell tracking as reported in Chapter 3, Fig. 12. Briefly, 

HEp3 cell migration was recorded in 5 minute intervals for 16 hours in MSLICs for both 

scratch assays and MAt migration assays (Fig. 12a-b). Quantifying migration via area analysis 

resulted in equal migration rates for MAts and scratches (Fig. 12d). However, the time-lapse 

images showed distinct differences (Fig. 12a-b). Individual cells in the MAts assay migrated 

very rapidly or very little, whereas the cells in the scratch assay migrated up to a certain point 

and then turned 90 degrees. Quantifying these differences required tracking individual cells 

and calculating their productive migration, i.e. migration directed into the void (Fig. 12e). 
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This single-cell level of  migration analysis was possible because of  the combination of  

MAts, MSLICs, and video-microscopy.

Pulsed Treatment

 Using MSLICs, we also observed the dynamic cellular response to a pulse of  solu-

tion containing an antibody mAb1A5 against membrane protein CD-151 versus a control 

antibody mAb29-7 which binds a membrane protein (CD44) without impacting cellular be-

havior (Fig. 20) [88]. The pulse of  antibody was visualized via fluorescence (Fig. 20a and c, 

red line). After the intensity rose to its maximum level, we stopped the flow for 5 minutes. 

Then the medium containing treatment was replaced with fresh medium as seen by the de-
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Figure 20. MSLICs deliver pulsed treatment of fluorescent antibodies. (a) Fluorescently 
labelled antibodies produce a strong signal while treating cells and being washed out over a 
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crease in intensity in Fig 18a and c, red line. Clustering of  the antibody was observed within 

15 minutes (Fig. 20a-b) and continued throughout the three hours of  observation.

 We anticipated that mAb1A5 would cluster in areas of  cell-cell contact because it is 

known to inhibit cell migration in vitro and prevent metastasis in vivo [88,104]. This is cur-

rently thought to occur through the cell-cell adhesion molecule ALCAM. Using a human in 

the loop algorithm (see Appendix B), antibody clusters occurring in areas of  cell-cell contact 

were analyzed for mAb1A5 and mAb29-7 (Fig. 20b-c). Conditions were observed in dupli-

cate for each antibody. The resulting percentages for each set of  images are shown in Fig. 

20c.  During the roughly 30 minute period in which excess antibody was being washed out, 

trends were not clear. This may be due to noise and improper detection of  antibody clusters 

(Fig. 20b, mAb1A5 at 20 min.). During the second hour mAb1A5 clustering in areas of  cell-

cell contact was nearly 100% whereas mAb29-7 was only 60-70%. 

3D Culture of  Acini Under Long-Term Flow

 MCF-10A cells were grown in matrigel on glass cover slips and sealed via clamping 

in millifluidic chambers (Fig. 17b). Acini were cultured with 20 mL of  medium which was 

continuously recirculated and replaced weekly. After 16 days of  culture, time-lapse images 

were recorded revealing cell motion within the non-invasive acini (Fig. 21a, arrow). Such mo-

tility was also observed and published by Pearson and Hunter [105]. After recording cell mo-

tility for 4 hours, the chambers were opened. The acini were removed, fixed, sectioned, and 

stained with H&E. This revealed that the acini were not hollow as expected but filled with 

dead cells (Fig. 21b). This may be related to providing continuous replenishment of  medium 

or other unknown factors.
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 MSLICs were designed to facilitate live-cell microscopy and provide control via flu-

idics over the soluble microenvironment of  the cells being studied. Non-fluidic and fluidic 

versions were created. Both versions are compatible with MAts assays as well as other cell-

based assays. Fluidic MSLICs provide dynamic control of  medium conditions and are oper-

able with a variety of  pumps and handheld syringes. 

Future Directions

 Hands-on experience with MSLICs has uncovered two potential improvements. 

First, MSLICs should be designed for autoclave sterilization. Current MSLICs and fluidic 

MSLICs contain permanently embedded NdFeB magnets. These magnets would lose mag-

netization in the temperatures of  autoclave sterilization. Future versions fitted with magnets 

in a silicone or other removable glue would enable sterilization. Magnets would be removed 

and sterilized with 70% ethanol or ultraviolet light while the MSLIC frame and lids were 

Figure 21. MCF10A acini formed solid cores in MSLICs. (a) After culturing MCF10A 
mammary epithelial cells in matrigen for 16 days, time-lapse microscopy recorded significant 
cell motion in the acini over a 4 hour period (arrow). (b) Subsequent fixation and histology 
revealed a solid core of dead cells whereas acini experiments in culture dishes which have 
their medium changed every 4 days are hollow. Scale bars, 0.1 mm.
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autoclaved and afterward be reattached to the MSLIC frame. This would enable autoclave 

sterilization of  the assembled fluidic system and greatly reduce the risk of  contamination. 

 Second, PDMS microfluidic devices should be designed specifically for the fluidic 

MSLIC.  Microfluidic channels and chambers were tested in MSLICs using existing PDMS 

microfluidic designs which are flat except for the microfluidic channels and chambers (data 

not shown). However, these microfluidic devices were prone to leakage presumably due to 

the low breakthrough pressure between the PDMS and glass cover slips.  Glass cover slips 

were pressed against the PDMS via magnetic force (Fig. 22a) whereas conventional PDMS 

microfluidic devices are permanently bonded to the glass. To increase the breakthrough 

pressure and prevent leakage, future MSLIC microfluidic devices should contain a raised 
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Figure 22. Incorporation of microfluidic devices into MSLICs. (a) PDMS Microfluidic de-
vices are mostly flat creating a large contact area (top view, bright yellow). Magnetic attrac-
tion between the lids and magnets creates force (blue arrows). The pressure between the 
glass and PDMS microfluidic device is this force divided by the contact area. (b) Microflu-
idics can be designed with a raised ridge around the channels and chambers and ridges near 
the edge of the glass as needed to avoid cracking. The reduced contact area results in higher 
pressure. (c) Microfluidic and other devices can be prefabricated to the dimensions of the 
MSLIC enabling plug-n-play capability.
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PDMS ridge around the fluidic passageways (Fig. 22b). By reducing the direct contact area, 

this ridge will experience a significantly higher pressure and thus raise the breakthrough 

pressure eliminating leaks between the PDMS and glass. Furthermore, these microfluidic 

devices can be fabricated independently to the dimensions of  the MSLIC and then pressed 

into place, plumbed, and used (Fig. 22c). This “plug-n-play” approach eliminates the need to 

mix and cast PDMS in the MSLIC and the challenge of  removing cast PDMS in order to 

switch to another device. Furthermore, the concept promotes MSLIC use with a wider vari-

ety of  devices since third parties could fabricate their devices to the dimensions of  the 

MSLIC. 

 With or without these design improvements, MSLICs enable control of  the soluble 

environment surrounding cells which includes nutrients, cellular waste, stimulatory factors, 

and even dissolved gases such as oxygen and carbon dioxide. Cells in vivo may experience 

various conditions such as acidity, hypoxia, and nutrient deprivation which often fluctuate. 

For example, intermittent hypoxia occurs in the tumor microenvironment in vivo and has 

been shown to have significant effects on cells in vitro [106,107]. Fluidic MSLICs can recre-

ate such fluctuations.  For example, by switching between normoxic and hypoxic medium, 

intermittent or cyclic hypoxia can be simulated enabling nearly immediate observation of  

biological effects via live-cell microscopy. Because MSLICs are completely sealed, oxygen 

and other gases cannot escape even though PDMS itself  is gas-permeable. Studying the bio-

logical effects of  switching soluble conditions is an important future direction for fluidic 

MSLICs, and we have already shown that medium can be switched to antibody containing 

medium within 5 minutes and washed out within 45 minutes using a millimeter scale cham-

ber (Fig. 16). With a microfluidic chamber delivery and washout times should be reduced by 

a few orders of  magnitude. Regardless of  chamber size washout is expected to take longer 

than delivery for medium containing soluble factors including oxygen [107].
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Conclusion

 MSLICs enable rapid assembly of  cell-based assays with the advantage of  being a 

closed chamber and only require temperature regulation on the microscope. With MSLICs 

the pulsed delivery and subsequent clustering of  antibodies targeting two cell-membrane 

proteins were investigated. Additionally, 3D cultures of  acini were grown for 16 days after 

which cell motility on the surface of  the acinar structure was observed via video-microscopy. 

MSLICs provide significant versatility by functioning as static or dynamic fluidic devices. 

Furthermore, millifluidic and microfluidic chambers can be fabricated into the large opening 

of  the MSLIC enabling a wide variety of  2D and 3D assays. A promising direction for 

MSLIC research is the investigation of  cellular responses to dynamically controlled medium 

fluctuations of  oxygen levels and/or acidity. The clever use of  magnetic force to seal a live-

cell imaging chamber combines the benefits of  both clamping and auto-adhesive temporarily 

closed chambers.  Using MSLICs drift was reduced without sacrificing ease of  assembly. 

Consequently, MSLICs represent a highly versatile base for numerous static and fluidic cell-

based experiments. 
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CHAPTER V

CONCLUSION

 When tools for biological studies are designed to compliment and integrate with each 

other, the range of  complexity controlled by the user can be increased in a stepwise or scal-

able manner without sacrificing significant analytical ability. Such tools constitute systems of  

scalable complexity and are greatly needed in order to fill the gap between simple in vitro 

and in vivo models. The development and implementation of  systems of  scalable complex-

ity will facilitate discovery, accelerate translational research, and ultimately improve preven-

tion, detection, and treatment of  disease. The overarching goal of  this dissertation research 

has been the development and implementation of  an easy-to-use system of  scalable com-

plexity. Pursuit of  this goal resulted in the complimentary and synergistic  MAts and MSLIC 

tools. 

Impact of  this Work 

 On their own, MAts and MSLICs have already made significant contributions to the 

fields of  cell migration, microfluidics, and live-cell microscopy. As a system their impact is 

still in its infancy but is expected to greatly surpass all current accomplishments. This expec-

tation is justifiable. MAts have already been implemented in over six Vanderbilt laboratories. 

At the time of  writing, the laboratories of  Dr. Coffey, Dr. Kaverina, Dr. Moses, Dr. Pieten-

pol, Dr. Zijlstra, and Dr. Zutter have utilized MAts in place of  scratch and other cell migra-

tion assays. Additionally, MAts are patent pending and have attracted the attention of  various 

suppliers of  biological materials and assays. 
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 Nevertheless, if  MAts and MSLICs only inspire development of  other systems of  

scalable complexity, their impact will have been significant and important. Technology has 

provided the capability to create scalable complexity and fill the gap between in vitro and in 

vivo models. With creativity, research, and development; more easy-to-use systems of  scal-

able complexity will be developed filling the gap and improving the relevance of  basic bio-

logical research to clinical disease.

2D Migration

 MAts enable studies normally carried out with single cells such as chemotaxis, hapto-

taxis, and durotaxis to be executed with densely organized cells. Using a dense cancer cell 

population and MAts we revealed an unexpected chemotactic inhibition of  migration. Block 

MAts placed side-by-side created areas of  collagen and fibronectin forming an interface. 

Cells patterned around block MAts adhered to one protein and were allowed to migrate onto 

the other protein when the MAts were removed. On either collagen or fibronectin alone, the 

cells migrated robustly (Fig. 14a-b). Surprisingly, migration was significantly inhibited when 

cells adhere to collagen and were allowed to migrate onto fibronectin. This study demon-

strates not only that the collagen-fibronectin interface can act as a chemotactic inhibitor of  

migration in only one direction but also that using MAts common single cell migration stud-

ies such as chemotaxis can be extended to dense or confluent cells.

 Furthermore, MAts and MSLICs together have revealed significant differences be-

tween “wound healing” assays such as the scratch assay and “space-filling” assays such as the 

MAts migration assay. Initial widths were more reproducible using MAts than scratches (Fig. 

8e-f); however, the migration rate of  MAts was more varied than for scratches (Fig. 12d-e). 

This increased variation corresponds directly to the less-damaging and less-stimulating proc-

ess of  removing MAts versus scratching and is currently attributed to the naturally-occurring 
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heterogeneity within a cell population. Scratching appears to mask this heterogeneity by 

damaging the cells, orienting the substrate, or possibly both. Understanding this heterogene-

ity is important to our understanding of  therapeutic efficacy or failure and represents a form 

of  biological complexity of  great relevance to in vivo biology [108,109].

3D Culture

 MSLICs on their own revealed motility of  non-invasive epithelial cells on acini in 

matrigel (Fig. 21a). This was also observed by Pearson and Hunter and published only 

months ahead of  our discovery [105]. Consequently, out investigations were not pursued 

further. Nevertheless, these observations demonstrate the high spatial and temporal resolu-

tion possible in 3D assays using MSLICs.

 

Future Directions

The System: MAts and MSLICs together

 Various areas of  biological research will benefit from systems of  scalable complexity 

such as the system presented in this dissertation. Several areas revolve around simulating 

fluctuations that occur in vivo. For example the effect of  intermittent hypoxia on cell migra-

tion, angiogenesis, and cancer are being intensely investigated [106,107,110,111]. However, 

most of  these studies focus on large-scale effects rather than direct cellular responses to 

fluctuations. Observing these cellular responses requires making observations at or above 

the Nyquist frequency, which is twice the frequency of  the fluctuation. For example, fluctua-

tions in oxygen partial pressure in vivo have been observed to cycle once to thrice per hour 

[106]. Observing such phenomenon generally requires live-cell microscopy. MSLICs enable 
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live-cell microscopy while controlling fluid conditions in order to create the desired fluctua-

tions. This can be achieved on any microscope with a temperature controlled environment. 

MSLICs and MAts are ideal tools for in vitro investigations of  the cellular effects of  fluctua-

tions because they are easily implemented and enable high temporal resolution of  the related 

cellular processes as well as a functional measure of  cell behavior: migration.

 Another promising area of  research for MAts and MSLICs is heterogeneity within 

cell populations. Although it is well-documented that a population of  cells from a single cell 

type will display heterogeneous properties and behavior in 2D culture, these studies need to 

be extended into 3D [107,112,113]. MSLICs may help answer questions such as, “Will cell-

to-cell phenotypic heterogeneity increase or decrease in 3D?” Because MSLICs enable perfu-

sion of  3D culture, the 3D environment can be controlled precisely, fluorescently labelled, 

and even fixed in place on the microscope. These capabilities will facilitate studies of  cellular 

heterogeneity in 3D. Additionally, MAts can provide a needed functional readout: cell migra-

tion.

MAts Alone

 Some promising future directions for MAts independent of  MSLICs are protein 

printing and bead or 3D matrix overlays. Various approaches using PDMS stamps have been 

developed for the purpose of  printing or transferring via contact a pattern of  proteins onto 

a substrate such as glass or plastic [79,114-116]. Since MAts are made of  PDMS, standard 

microcontact printing techniques should be readily implementable with MAts. The result 

would enable simultaneous protein printing and cell adhesion. While proteins were printed 

by the MAt, cells could be plated and allowed to adhere around the MAt. Preliminary inves-

tigations by Eric Bankaitis revealed the ability of  MAts to print proteins with existing MAts. 

The printed proteins patterns were irregular. Developing a homogenous protein print using 
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MAts would greatly simplify the process of  creating matrix protein interfaces. Currently, cre-

ating matrix protein interfaces requires multiple steps and involves moving block MAts 

manually as done for Fig. 14. 

 Though MAts are designed for 2D surfaces, they can also be overlaid to create a 

quasi 3D environment which is sometimes referred to as 2.5D. After removing MAts, we 

overlaid cells with collagen which subsequently polymerized forming a 3D matrix. However, 

the jostling involved in moving the cells from incubator to microscope caused the 3D colla-

gen to detach. MAts successfully pattern cells on textured 2D surfaces such as nanofibers 

(Fig. 10). In order to avoid 3D matrix detachment in future studies, the cells could be pat-

terned on a textured surface around which the collagen would polymerize and thus anchor 

itself  preventing detachment. A more interesting potential approach to overlaying cells in-

volves magnetic beads. Magnetic beads large enough to avoid being endocytosed could be 

overlaid in place of  MAts utilizing the same magnets that originally secured the MAts. Mag-

netic beads completely coated with polystyrene are currently used to bind a variety of  impor-

tant biological proteins and are compatible with living cells. By attaching cell-cell adhesion 

molecules to these beads and overlaying them on MAts migration assays, the role of  cell-cell 

contacts could be investigated while still providing a standard substrate for cell migration. 

Essentially, overlaying MAts migration assays with collagen on textured surfaces and with 

magnetic beads adds to the range of  complexity achievable with MAts 3D migration and 

simulated cell-cell interactions respectively.

 MAts have also found application in the field of  microfabrication. Common, readily 

accessible microfabrication techniques create micrometer and even sub-micrometer features. 

However, these features must be integrated with larger ones in order to connect to the larger, 

centimeter and meter scale world of  humans. Common microfabrication techniques are un-

able to create the large required features. By sealing MAts against a microfabricated surface, 
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MAts can exclude polymers and resins as they cure and thus create interfaces between the 

micro- and macro-scales (see Appendix D). These MAts-made interfaces represent a signifi-

cant improvement over the common practice of  punching holes through PDMS microflu-

idic devices (Fig. D3). The use of  MAts in microfabrication should overcome many current 

limitations of  interfacing microscale features with the macroscale features needed for manual 

handling.

Build Bridges: The need for systems of  scalable complexity

 The system of  scalable complexity presented herein represents a bridge that begins 

with in vitro models and extends towards in vivo models. In engineering terminology this 

system represents a bottom-up approach. However, the top-down approach is also applica-

ble to the creation of  systems of  scalable complexity. Certain model organisms are readily 

amenable to integration with microfluidics and even-high throughput analysis. For example 

microfluidic devices have been developed for studying both the nematode Caenorhabditis 

elegans and zebrafish Danio rerio [117-120]. Similarly, we have incorporated simple micro-

fabricated structures on the chick embryo for analysis of  angiogenesis and tumor-host inter-

actions. This device, called the angiogenesis disk, improves analytical capacity for angiogene-

sis studies on the chick embryo by orienting the interaction between tumor and host into the 

optical plane of  the microscope (Fig. 23). Because the angiodisk is thin (0.5-1.5 mm) analysis 

can be performed on common fluorescent microscopes. The angiodisk and fish and worm 

microfluidic devices represent important steps towards a top-down system of  scalable com-

plexity.

 Regardless of  the engineering approach taken, the development of  systems of  scal-

able complexity is crucial to improving biomedical research. Systems of  scalable complexity 

provide versatility and reduce barriers to translating research from simple to more complex 
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studies or vice versa. They represent bridges across the great divide between in vitro and in 

vivo models. Unfortunately, too often research and development of  new tools and tech-

niques only serves to place stepping stones in this great divide. Great effort is given to 

achieving a technological advancement. Unfortunately, less effort is given to integration and 

broad implementation. As a result many incredible tools become orphaned remaining unim-

plemented in biological research. Transforming stepping stones into bridges requires the ef-

fort of  both engineers and biologists and their willingness to reach across the differences 

between their respective fields. Technology has given us the possibility of  creating systems of 

scalable complexity providing the versatility and ease of  use essential to enable more 

groundbreaking research. It is now up to us to put forth the effort, find the necessary crea-

tivity, and make these bridges a reality. The building of  bridges across the in vitro to in vivo 

divide will accelerate biological research and discovery and ultimately improve society’s abil-

ity to prevent, diagnose, and treat disease.

Figure 23. The angiodisk aligns the tumor-host interaction enabling simple image aquisition 
and analysis. (a) The angiodisk rests on the highly vascularized chorioallantoic membrane of 
the ex ovo chick embryo and contains tumor cells initially in a chamber separate from the 
host chamber into which new vessels form. (b) At day 0 tumor cells are visible via fluores-
cence (left image) in the tumor chamber (lower left) and the host chamber is void of blood 
vessels (magnified right image). After 4 days the tumor cells have migrated into the host 
chamber (left image) and blood vessels have also formed there (right image).
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APPENDIX

A. PROTOCOL FOR THE BASIC MAGNETICALLY ATTACHABLE 
STENCIL MIGRATION ASSAY

 Materials

Magnetically Attachable Stencils (MAts)

Magnet arrangements

Spray bottle with 70% ethanol

Extra-cellular matrix (ECM) proteins

Cell culture medium

Phosphate Buffered Saline (PBS)

Growth factors, inhibitors, or other treatments

Procedure 

Preparation of  MAtS

1| MAtS need to be primed for 24 hours by immersion in deionized water. Clean and 

sterilize MAtS with 70% ethanol. Spray ethanol directly against the contact surface of  the 

MAtS to remove unwanted dust or debris. Then soak the MAtS in 70% ethanol for 10 min-

utes. Dry the MAtS in an oven (~60 ºC) or under vacuum (-20 mm Hg) to remove any etha-

nol that may have been absorbed into the MAtS. 

▲ CRITICAL STEP  If  simply removed from soaking in Ethanol and left at room tempera-

ture, MAtS may look dry and still retain ethanol within which will slowly diffuse out into the 

cell culture medium altering normal cell behavior. For this reason it is important to use a 
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source of  heat or vacuum or combination of  the two such as a vacuum oven. However, high 

temperatures (>70ºC) may create distortions in the MAtS as the elastomer shrinks.

Coating of  cell culture dishes 

2| Coat 6 (or 12 well plates) with proper ECM substrates (generally Collagen at 100 µg/

ml in PBS) by incubating the dishes overnight at 4 ºC or for 2 h at 37 ºC without rotation or 

shaking. 

3| Remove the unbound ECM substrate. (Optional, block the coated dishes with PBS 

containing 0.5% bovine serum albumin for 1 h at 37 ºC.)  Then, wash twice with PBS and 

refill the wells with 1.5 ml or more (750 µl or more for 12-well plates) of  media before plat-

ing the cells. (It is recommended to either use a lower percentage of  serum than that used in 

the growth media to minimize cell proliferation or plate cells in full growth medium until 

they adhere to the dish, usually 5-6 hours, followed by overnight serum starvation.)  

▲ CRITICAL STEP  Apart from the serum, if  the assay is to study the effects of  growth 

factors or other compounds, these soluble factors may need to be included in the media be-

fore addition of  cells or added to the serum free medium during serum starvation.

Applying the cells 

4| Attach the multi-well plate to the magnet arrangement and place the MAtS into the 

multi-well plate. Incubate at 37 ºC and 5% CO2 in order to maintain proper pH in the me-

dium while preparing the cells.

5| Resuspend subconfluent growing cells in a tissue culture dish by washing cells twice 

with PBS, adding trypsin, and incubating until cells have detached. Then mix cells with me-

dium containing serum. Gently pipette the solution and rock the dish to disperse the cells 
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equally. Take an aliquot from the cell suspension and determine the cell count using a hemo-

cytometer.

6| Plate sufficient cells onto the prepared 6 or 12-well plate to create a confluent mono-

layer (for 6-well plate:  0.8 M actively growing HEp3 cells, 1 M A549 cells). The required 

number of  cells for a confluent monolayer depends on both the particular cell type and the 

size of  the dish and should be adjusted accordingly. Incubate the dishes properly for 5-16 hr 

at 37 ºC and 5% CO2, allowing cells to adhere and spread across the substrate. (Optional, 

cells may be subjected to serum starvation or other conditions for multiple days prior to the 

initiating the assay)  

Initiating the MAtS assay (and optional simultaneous scratch assay)

7| Remove magnets from the multiwall plate being careful to lift the multiwall plate 

straight up until it is away from the magnets. Then remove MATs by carefully lifting the at-

tached plastic tag fastener or an arm of  the MAtS so as to avoid any twisting or sliding of  

the MAtS that would remove cells from the substrate. When grabbing the arm of  the MAtS 

a broad-tipped tweezer seem to work better than fine-tipped tweezers. (Optional, scrape the 

cell monolayer in a straight line to create a ‘‘scratch’’ with a p200 pipet tip. Remove the de-

bris and smooth the edge of  the scratch by washing the cells once with 2 ml of  medium or 

PBS and then replace with 2-3 ml of  medium specific for the assay.) 

▲ CRITICAL STEP  Proper removal of  the MAtS results in precise widths between cell 

monolayers. Wider than normal (>700 µm wide) cell-free areas especially near the tips of  the 

star MAtS or on only one or two arms suggest that the MAtS were not removed properly 

and scraped some cells away. 
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8| Acquire the initial images. To repeatedly obtain the same field of  view during image 

acquisition, start from either the end of  an arm or the center of  the MAtS and capture im-

ages of  adjacent areas. Using a 10x objective, capture 3 or 4 adjacent pictures on each of  the 

4 arms of  the MAtS. Always start from either the ends or the center and capture adjacent 

images in a specific order, for example top, left, right, and bottom arm. (Optional, scratches 

can similarly be referenced from the end of  the scratch or the intersection of  two scratches 

that cross in order to ensure that the same area is imaged for each timepoint.)  

9| Place the dish in a tissue culture incubator at 37 ºC until the next timepoint, (gener-

ally 8-18 hours). The time frame for incubation should be determined empirically for the 

particular cell type used. Multiple timepoints can be taken as needed. 

▲ CRITICAL STEP  Allowing cells to completely close the open area (or scratch) creates 

imprecise data since it cannot be determined what timepoint the open area closed. For this 

reason it is best to choose a final timepoint that allows the cells under the fastest migrating 

condition to close between 60% and 80% of  the original open area. 

10| Acquire additional images following the same order as before. Incubate and repeat 

steps 9 and 11 until all timepoints have been imaged.

Analysis of  Images

11| Analysis of  the images can be performed with a variety of  software. Our lab uses 

TScratch for quantification [57]. Images should be placed in subfolders for each timepoint 

and then renamed so that corresponding images in each timepoint have the same name. For 

each image, TScratch determines what area are covered with cells and then calculates the 

percent of  the total pixels that are not covered. This is the percent open area. Each image 

can be manually adjusted, though having to adjust the majority of  the images manually sug-
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gests that the analysis parameters need to be modified. For more details on analysis see the 

Calculations section.

 ▲ CRITICAL STEP  MAtS enable powerful statistical analysis of  collective cell migration 

with the ability to resolve fine differences in cell conditions. This requires capturing clean 

images suitable for automated analysis from multiple points (8-12) on each MAtS.

Timing 

Step 1: 40 min

Step 2: 2 h or overnight 

Step 3: 1.5 h 

Step 4: 5 min

Step 5: 30 min 

Step 6: 5-16 h (as needed)

Step 7: 10 min 

Step 8: 30 min 

Step 9: 8–18 h (as needed) 

Step 10: 30 min 

Step 11: 30-60 min (as needed) 

Calculations

Calculating rate of  migration in µm/hr

 Since, scratches vary widely in initial size, a comparison of  the actual microns trav-

eled per unit time may be more informative. The open areas determined by TScratch can be 
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used for this calculation providing that the following assumption is true:  the height of  the 

wound area equals the height of  the image. This being true it is easy to go from

to

to 

Now take the difference of  the widths of  the wounds and divide by time to get your rate. 

Use the appropriate calibration to get µm/hr rather than pixels/hr.

 Rotating the camera so that the boundary between cells and wound area is often nec-

essary, especially when dealing with scratches, in order to keep the height of  the wound 

equal to the height of  the image.

 It is also important to note that the width of  the wound closes twice as fast as the 

cells migration rate because there are two monolayers of  cells migrating towards each other 

to close the wound.

Calculating Percent Closure

 The % wound closure is calculated using the percent open area of  two different 

timepoints as follows. 
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B. IMAGEJ MACROS TO FACILITATE IMAGE ANALYSIS

Scratch Assay Analysis Macro

 This macro has two highly similar variations. One method uses ImageJ’s edge detec-

tion algorithms to help create the contrast needed to successfully run ImageJ’s particle ana-

lyzer. The second method uses a background subtraction instead. [121]

Code for Edge Detection and Thresholding Method

//This macro was designed to measure the size of  the scratch wound in a wound scratch 
assay. It uses an edge-detection and thresholding technique.
// It will batch process all images in a directory. Images captured by time-lapse should be 
compiled into stacks using a tool similar to "Metamorph nd & ROI files importer (nd stack 
builder)" by Fabrice P. Cordelières
//Images to be analyzed should be placed in one directory (Source Directory)
//A second directory should be created to save results files and images (Destination Direc-
tory)
//Setting correct Lower and Upper thresholds is important to obtain a good result.
 
// Developed by: Stuart J Gallagher; William J Ashby; Fabrice P Cordeliéres; Lionel Larue.
//Institut Curie; Vanderbilt University.
 
//This program is free software; you can redistribute it and/or modify it under the terms of 
the GNU General Public License as published by the Free Software Foundation; either ver-
sion 3 of  the License, or (at your option) any later version. This program is distributed in the 
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 
the GNU General Public License for more details. You should have received a copy of  the 
GNU General Public License along with this program. If  not, see 
http://www.gnu.org/licenses/.
 
dir1 = getDirectory("Choose Source Directory "); 
dir2 = getDirectory("Choose Destination Directory"); 
list = getFileList(dir1); 
x = getNumber("Input lower threshold", 0);
y = getNumber("Input upper threshold", 80);
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//This generates a message box to generate the lower (x) and upper (y) bounds for thresh-
olding later on. 
 
setBatchMode(true);    //use this to save time by not displaying images 
 
 for (i=0; i<list.length; i++){ 
 showProgress(i+1, list.length); 
 open(dir1+list[i]); 
 
 run("8-bit");   //my experience is that I get better results in 8-bit. 
 run("Duplicate...", "title=copy duplicate"); 
 selectWindow(list[i]); 
 run("Sharpen", "stack");  //this step really helps a lot for thin cells with thin lamel-
lopodia 
 run("Find Edges", "stack"); 
 
 setThreshold(x,y); 
 
//very important to get an appropriate threshold 
 
 run("Convert to Mask", " "); 
 run("Analyze Particles...", "size=12000-Infinity circularity=0.00-1.00 show=Outlines 
summarize stack"); 
 selectWindow("Summary of  "+list[i]); 
 saveAs("Text", dir2+list[i]); 
 run("Close"); //This saves and closes the Analyze Particles results
 
 selectWindow("Drawing of  "+list[i]); 
 run("Red"); 
 run("Invert LUT"); 
 run("RGB Color");
 selectWindow("copy"); 
 run("RGB Color"); 
 imageCalculator("Add stack", "copy", "Drawing of  "+list[i]); 
 run("Size...", "width=600 constrain interpolate"); 
 saveAs("Tiff", dir2+"Drawing "+list[i]); 
 //The above makes and saves an file containing the original image overlaid with the outline 
of  the wound that was fitted by the program.
 
 
 close(); 
 close(); 
 close(); 
 } 
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Code for Background Subtraction and Thresholding Method

//This macro was designed to measure the size of  the scratch wound in a wound scratch 
assay. It uses a back-ground subtraction technique.
// It will batch process all images in a directory. Images captured by time-lapse should be 
compiled into stacks using a tool similar to "Metamorph nd & ROI files importer (nd stack 
builder)" by Fabrice P. Cordelières
//Images to be analyzed should be placed in one directory (Source Directory)
//A second directory should be created to save results files and images (Destination Direc-
tory)
//Setting correct Lower and Upper thresholds is important to obtain a good result.
 
// Creator: Stuart J Gallagher; William J Ashby; Fabrice P Cordeliéres; Lionel Larue.
//Institut Curie; Vanderbilt University.
 
//This program is free software; you can redistribute it and/or modify it under the terms of 
the GNU General Public License as published by the Free Software Foundation; either ver-
sion 3 of  the License, or (at your option) any later version. This program is distributed in the 
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 
the GNU General Public License for more details. 

dir1 = getDirectory("Choose Source Directory "); 
dir2 = getDirectory("Choose Destination Directory"); 
list = getFileList(dir1); 
 
x = getNumber("Input lower threshold", 0);
y = getNumber("Input upper threshold", 80);
//This generates a message box to generate the lower (x) and upper (y) bounds for thresh-
olding later on. 
setBatchMode(true);    //use this to save time by not displaying images 
 
 for (i=0; i<list.length; i++){ 
 showProgress(i+1, list.length); 
 open(dir1+list[i]); 
 run("8-bit");   //my experience is that I get better results in 8-bit. 
 run("Duplicate...", "title=copy duplicate"); 
 selectWindow(list[i]); 
 
 run("Subtract Background...", "rolling=30 light stack");
 run("Enhance Contrast", "saturated=5");
 run("Invert", "stack");

 setThreshold(x,y);
  
 run("Convert to Mask", " "); 
 run("Analyze Particles...", "size=12000-Infinity circularity=0.00-1.00 show=Outlines 
summarize stack"); 
 selectWindow("Summary of  "+list[i]); 
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 saveAs("Text", dir2+list[i]); 
 run("Close");  //This saves and closes the Analyze Particles results
 
 selectWindow("Drawing of  "+list[i]); 
 run("Red"); 
 run("Invert LUT"); 
 run("RGB Color");
 selectWindow("copy"); 
 run("RGB Color"); 
 imageCalculator("Add stack", "copy", "Drawing of  "+list[i]); 
 run("Size...", "width=600 constrain interpolate"); 
 saveAs("Tiff", dir2+"Drawing "+list[i]); 
 
//The above makes and saves an file containing the original image overlaid with the outline 
of  the wound that was fitted by the program.
  
 close(); 
 close(); 
 close(); 
 } 

Human-in-the-Loop Particle Analysis

Features

 This pair of  macros runs FIJI’s particle analysis algorithm on a batch of  images and 

then enables a user to screen through the automatic analysis and select the relevant images 

[122]. The first macro performs batch particle analysis and requires user input of  the source 

directory and results directory and enables modification of  parameters for the analysis. The 

second macro enables the user to click on particles which are then boxed in red and included 

in the text file containing the filename, number in the list, and particle area. Right clicking 

essentially undoes the selection and turns the surrounding box to black. The selected parti-

cles are output in a text file containing the filename, list number which is used to keep track 

of  the individual particle, and area of  the particle. Additionally the original spreadsheet “ZZ 

Results.xls” found in the results folder is amended to contain a column with the heading 

“Focused” and saved as “Results With Focus Info.xls” in the parent directory. A value of  1 
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in this “Focused” column indicates that the particle was selected. Simply sorting the spread-

sheet using this list will facilitate elimination of  the unselected particles. This pair of  macros 

greatly improves automated analysis by efficiently putting a human in the loop of  automated 

image analysis. I recommend testing the macros against a small dataset to verify proper func-

tionality before moving to a large dataset. 

Code for the Automated Analysis

  //HumanInLoop ParticleAnalysis MeFirst.ijm
  //This macro was designed to facilitate particle analysis of  a folder of  images by automat-
ing the processing of  the images in the folder. It is designed to work with the HumanInLoop 
ParticleAnalysis MeLast.ijm macro which then facilitates manual selection of  desired parti-
cles by the user.
//Images to be analyzed should be placed in one directory (Source Directory)
//A second directory should be created to save results files and images (Destination Direc-
tory)
//Setting correct Lower and Upper thresholds is important to obtain a good result.
 
// Developed by William J Ashby.
// Vanderbilt University.
 
//This program is free software; you can redistribute it and/or modify it under the terms of 
the GNU General Public License as published by the Free Software Foundation; either ver-
sion 3 of  the License, or (at your option) any later version. This program is distributed in the 
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 
the GNU General Public License for more details. 
 
  //get appropriate directories from user
  dir1 = getDirectory("Choose Source Directory ");
  dir2 = getDirectory("Choose Destination directory");
  list = getFileList(dir1);
 
 //give user an opportunity to adjust default parameters to better fit their application
 Dialog.create("Adjust for objective magnification");
 Dialog.addNumber("Objective Magnification (use 10 if  unknown)", 10);
 Dialog.addMessage("\tIf  needed particle size limits can be adjusted below \nLeave 
mag. at 10 if  customizing particle size limits\n");
 Dialog.addNumber("Minimum particle size (pixels^2)",10000);
 Dialog.addNumber("Maximum particle size (pixels^2)",1000000);
    Dialog.addMessage("\tIn the following dialogs select \n first the Source Directory, 
\nthen a Destinaion directory for Results");
    Dialog.show();  
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 //Assigning the entered values to variables   
 magnification=Dialog.getNumber();
 userMin=Dialog.getNumber();
 userMax=Dialog.getNumber();
 sMin=magnification*magnification/100*userMin;
 sMax=magnification*magnification/100*userMax;
 
setBatchMode(true);
 
for (i=0; i<list.length; i++){
 //print (list[i]);
 open(dir1+list[i]);
 name=File.nameWithoutExtension;
 //Prepare the image by removing any scale and making 8-bit
 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
 run("8-bit");
 saveAs("Tiff", dir2+i+" Original "+name);//Saving with this naming scheme is re-
quired for the MeLast macro to function
 //Threshold
 setAutoThreshold("Default");
 run("Convert to Mask");
 //Dilate to close little openings in spheres
 run("Dilate");
 run("Dilate");
 //Analyze particles
 run("Analyze Particles...", "size="+sMin+"-"+sMax+" circularity=0.00-1.00 
show=[Count Masks] display exclude include summarize");
 //Save the masks file
 saveAs("Tiff", dir2+i+" CountMask "+name);//Saving with this naming scheme is 
required for the MeLast macro to function
 close();
 //Save the thresholded image
 saveAs("Tiff", dir2+i+" Thresholded "+name);//Saving with this naming scheme is 
required for the MeLast macro to function
 
}
//Save the results
selectWindow("Results");
saveAs("Results", dir2+"ZZ Results.xls");
 
//Save the summary
selectWindow("Summary");
saveAs("Text", dir2+"Z Summary.txt");

Code for the Human-in-the-Loop Analysis

//HumanInLoop ParticleAnalysis MeLast.ijm
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  //This macro was designed to facilitate particle analysis of  a folder of  images by being run 
after automatically processing  the images in a folder using the HumanInLoop ParticleAnaly-
sis MeFirst.ijm macro. It facilitates manual selection of  desired particles by the user. Selected 
images are surrounded by a red box. Right-clicking removes the particle from those selected 
and turns the box black.
//The results directory needs to be the same as the results directory used with HumanIn-
Loop ParticleAnalysis MeFirst.ijm
//The macro also asks for the parent directory which contains both the original data direc-
tory and the results directory.
//A brief  text file will be saved with only the selected particles, their areas, and their file-
names. The original spreadsheet of  all the particles will be amended and saved as "Results 
With Focus Info.xls". This spreadsheet indicates selected particles by a value of  1 in the col-
umn labelled "Focused". 
 
// Developed by William J Ashby.
// Vanderbilt University.
 
//This program is free software; you can redistribute it and/or modify it under the terms of 
the GNU General Public License as published by the Free Software Foundation; either ver-
sion 3 of  the License, or (at your option) any later version. This program is distributed in the 
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 
the GNU General Public License for more details.
 
//Values for different Cursor Loc input
      shift=1;
      ctrl=2; 
      rightButton=4;
      alt=8;
      leftButton=16;
 
//Ask user for the previous Results directory
  dir1 = getDirectory("Choose Results Directory ");
//Ask user for the parent directory which should contain both the original data folder and 
results folder 
  dir2 = getDirectory("Choose Parent Directory ");
 
  list = getFileList(dir1);
//This Text window creates the list matching the numbers to filenames and is essential to 
making sense of  the excel data file
  run("Text Window...","name=Filenames"); 
  print("[Filenames]","Filename\tNumber\tArea\n");
 
//check that a results list is included
  open(dir1+"ZZ Results.xls");
 
  print("Number of  items in list "+list.length);
 
for (i=0; i<list.length-2; i=i+3){
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 print("Now on list number "+i);
 open(dir1+list[i+1]);
 myImage=File.name;
 run("8-bit");
 open(dir1+list[i]);
 print(File.name);
 rename("CountMask");
 
 
//Crop image using the mask
 //duplicate the count mask then 
 run("Duplicate...","title=cropMask");
 //make regular mask from count masks
 run("8-bit");
 run("Auto Threshold", "method=Default white");
 //Create extra space in order to see the edges
 for(ii=0; ii<30; ii++)
  run("Erode");
 run("Divide...", "value=255");
 setMinAndMax(0, 1);
 //Crop the original image
 imageCalculator("Multiply", myImage, "cropMask");
 
 rename("2Display");
 run("RGB Color");
 //Show the cropped image
 
//Ask for user to select focused spheres
      x2=-1; y2=-1; z2=-1; flags2=-1;
      setLineWidth(6);
      xNew=0;
      yNew=0;
      logOpened = false;
 
      print("Click particles you want to keep in your analysis\nClose Log Window to Move to 
NEXT IMAGE");
      selectWindow("2Display");
      if  (getVersion>="1.37r")
          setOption("DisablePopupMenu", true);
      while (!logOpened || isOpen("Log")) {
          getCursorLoc(x, y, z, flags);
          if  (x!=x2 || y!=y2 || z!=z2 || flags!=flags2) {
  //lookup the value at x,y, in the count mask
  if  (flags&leftButton!=0) {
   selectWindow("CountMask");
   xyVal=getPixel(x,y);
   //If  non-zero the get the related data
   if(xyVal!=0){
    xNew=x;
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    yNew=y;
    valNew=xyVal-1;
    selectWindow("2Display");
    setColor(255,0,0);
    drawRect(getResult("BX", valNew),getResult("BY", valNew), 
getResult("Width", valNew), getResult("Height", valNew));
///    //Get the data
    setResult("Focused",valNew, 1);
    print("Getting "+xyVal);
    
print("[Filenames]",myImage+"\t"+xyVal+"\t"+getResult("Area",valNew)+"\n");  
 
   }
   selectWindow("2Display");
   print("Close Log Window to Move to NEXT IMAGE");
  }
  if  (flags&rightButton!=0) {
   selectWindow("CountMask");
   print("Close Log Window to Move to NEXT IMAGE");
   xyVal=getPixel(x,y);
   valNew=xyVal-1;
   selectWindow("2Display");
   setColor(0,0,0);
   drawRect(getResult("BX", valNew),getResult("BY", valNew), getRe-
sult("Width", valNew), getResult("Height", valNew));
///   //Remove xyVal from data list
   setResult("Focused",valNew, 0);
   print("Removing "+xyVal);
  }
  logOpened = true;
               startTime = getTime();
          }
          x2=x; y2=y; z2=z; flags2=flags;
          wait(5);
     } //Closing the log window proceeds to next image
 
     run("Close All");
 
}//end of  for loop for processing images in directory
 
selectWindow("Results");
saveAs("Results", dir2+"Results With Focus Info.xls");
 
selectWindow("Filenames");
saveAs("Text",dir2+"Filenames and numbers");

114



Hyper with Stacks: An ImageJ Toolset

Features

 This toolset was created to facilitate extraction of  in focus time series from five di-

mensional (x,y,z,t,color) microscope datasets [123]. The toolset provides buttons on the Im-

ageJ or FIJI toolbar to do the following:  1) Convert a stack to hyperstack (In order to save 

time, the default values can be adjusted in the code). 2) Set the focus point F1 (i.e. index your 

z position) for all the timepoints in between the previously indexed (or first) timepoint and 

the current timepoint. 3) Split out the currently selected channel from your hyperstack using 

the index of  focused z positions. 4) Re-initialize F2, which sets the entire z index to the cur-

rent z position and resets the previous timepoint to 0.

Installation

 Simply save the code as a text file in the >Macros>Toolsets folder and restart ImageJ 

or FIJI. It will show up in the toolsets dropdown under the name of  the text file, i.e. Hyper 

with Stacks or whatever you named it. Using FIJI on a Mac this folder is found by selecting 

show package contents on the FIJI application.

Code

// Hyper with Stacks.txt --version--1.5  2011-09-23
// Initial Toolset for manually extracting focused time series from hyperstacks by William J. 
Ashby, Vanderbilt University, Chemical and Physical Biology
//
 var v=versionCheck();
function versionCheck() {
    requires("1.41f");
    return 1;
}
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var stackOrder = newArray("xyzct", "xyczt(default)", "xyctz", "xyztc", "xytcz","xytzc");
var displayMode = newArray("Color", "Composite", "Grayscale");
var zNum=0; var cNum=0; var tNum=0; var zz=0; var cc=0; var tt=0;
var zArray; var width;  var height;
var initialize = true;
var t0=0;
 
macro "Blank Action Tool - "{
}
 
macro "Stack to Hyperstack Action Tool - 
C000D00D01D02D03D04D05D06D07D08D09D0aD0bD0cD0dD0eD0fD10D11D12D13
D15D16D1bD1cD1dD1eD1fD20D21D22D23D2bD2cD2dD2eD2fD30D31D32D33D34
D38D39D3aD3bD3dD3eD3fD40D41D42D43D44D48D49D4aD4dD4eD4fD50D51D52
D53D54D57D58D59D5aD5dD5eD5fD60D61D62D63D64D67D68D69D6aD6dD6eD6f
D77D78D79D85D86D87D88D89D8aD8bD96D97D98D99D9aDa7Da8Da9Db0Db8Cfff
D14D17D18D19D1aD24D2aD3cD47D70D71D80D81D82D8fD90Da0Da1Da2Da3Da4
DadDaeDafDb1Db2Db3Db4Db5DbcDbdDbeDbfDc0DccDcdDd0DdaDdcDddDe0De8
De9DeaDecDedDf0Df8Df9DfaDfcDfdCf00D91D92D93Dc1Dc2Dc3Dc4Dc5Dc6Dd1Dd
2Dd3Dd4Dd5Dd6Dd7De1De2De3De4De5De6De7Df1Df2Df3Df4Df5Df6Df7C00fD29
D8cD9eD9fDcbDceDcfDdbDdeDdfDebDeeDefDfbDfeDffC0f0D25D26D27D28D35D3
6D37D45D46D4bD4cD55D56D5bD5cD65D66D6bD6cD72D73D74D75D76D7aD7bD7
cD7dD7eD7fD83D84D8dD8eD94D95D9bD9cD9dDa5Da6DaaDabDacDb6Db7Db9Dba
DbbDc7Dc8Dc9DcaDd8Dd9"{
 
// In order to make my personal defaults automatically appear in the "Stack to Hyperstack" 
command, the following recreates the dialog window allowing user to modify the values as 
necessary without having to change the macro code
//  The defaults should be customized to match common numbers of  channels, z-slices, and 
timepoints in your data
 Dialog.create("Convert to Hyperstack");
      Dialog.addChoice("Order", stackOrder);  //the stackorder is found a few lines above 
and can be rearranged in order to put your default order first
 
 // To make this macro use your default number of  channels, slices, and time frames
 // simply change the numbers 2, 5, and 1 in the following 3 lines of  code.
 Dialog.addNumber("Channels (c):", 2);  
 Dialog.addNumber("Slices (z):", 5);  
 Dialog.addNumber("Frames (t):", 1);
 
 Dialog.addChoice("Display Mode:", displayMode); 
    Dialog.show();  //Displays the dialog box in order to get user input for the conver-
sion from stack to hyperstack 
   //or hyperstack to hyperstack if  you already have the data in a hyper-
stack 
 
 //Assigning the entered values to variables   
  ans1=Dialog.getChoice();
 cNum=Dialog.getNumber(); 
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 zNum=Dialog.getNumber(); 
 tNum=Dialog.getNumber(); 
 ans2=Dialog.getChoice();
 
 zArray = newArray(tNum); //Initializing zArray which stores the index of  in-focus 
z values over time
 
 run("8-bit");  //This line could possibly be omitted after testing for compatibility 
with other size stacks
 run("Stack to Hyperstack...", "order="+ans1+" channels="+cNum+" 
slices="+zNum+" frames="+tNum+" display="+ans2+"");
//End of  dialog section
 
 initialize=true;
 print("\nInitialized");
}
 
 
macro "F1 Set Focus Action Tool - 
C000C111C222D34D35D36D37D38D39D3aD3bD3cD44D48D54D58D64D68D74Da4D
a5Da6Da7Da8Da9DaaDabDacC222C333C444C555C666C777C888C999CaaaCbbbCcccCd
ddCeeeCfffD00D01D02D03D04D05D06D07D08D09D0aD0bD0cD0dD0eD0fD10D11D
12D13D14D15D16D17D18D19D1aD1bD1cD1dD1eD1fD20D21D22D23D24D25D26D
27D28D29D2aD2bD2cD2dD2eD2fD30D31D32D33D3dD3eD3fD40D41D42D43D45D4
6D47D49D4aD4bD4cD4dD4eD4fD50D51D52D53D55D56D57D59D5aD5bD5cD5dD5
eD5fD60D61D62D63D65D66D67D69D6aD6bD6cD6dD6eD6fD70D71D72D73D75D76
D77D78D79D7aD7bD7cD7dD7eD7fD80D81D82D83D84D85D86D87D88D89D8aD8b
D8cD8dD8eD8fD90D91D92D93D94D95D96D97D98D99D9aD9bD9cD9dD9eD9fDa0
Da1Da2Da3DadDaeDafDb0Db1Db2Db3Db4Db5Db6Db7Db8Db9DbaDbbDbcDbdDbe
DbfDc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9DcaDcbDccDcdDceDcfDd0Dd1Dd2Dd3D
d4Dd5Dd6Dd7Dd8Dd9DdaDdbDdcDddDdeDdfDe0De1De2De3De4De5De6De7De8De
9DeaDebDecDedDeeDefDf0Df1Df2Df3Df4Df5Df6Df7Df8Df9DfaDfbDfcDfdDfeDff"{
 run("Set Focus [F1]");
}
 
 
macro "Set Focus [F1]" {
 Stack.getPosition(cc,zz,tt);
 if(initialize){
  initialize=false;
  if  (zArray==0){
   if  (Stack.isHyperstack) {
    Stack.getDimensions(width, height, cNum, zNum, tNum);
    zArray=newArray(tNum);
    print("\nInitialized");
   } else {
    print("Close the error window and click the Run Stack to Hy-
perstack button");
   } 
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  }
 
  Array.fill(zArray, zz);
  t0=0;
 }
 for (i=t0; i<tt; i++){
  zArray[i]=zz;
 }
 if  (t0<tt) 
  print("z is set to: "+zz+"  for t: "+t0+" through "+tt);
 if  (t0>=tt) 
  print("current t="+tt+"  Proceed to t>"+t0+" or re-initialize");
 else 
  t0=tt;
}
 
 
macro "Split Stack Action Tool - R9077C888R9977R0977"{
    if  (nSlices==1)
        exit("Stack required");
    setBatchMode(true);
    stack1 = getImageID;
    w = getWidth; h = getHeight;  title = getTitle;
    stack2 = 0;
    n = zArray.length+1;
    Stack.getPosition(c,z,t);
    for (i=1; i<n; i++) {
        showProgress(i, n);
        selectImage(stack1);
        Stack.setPosition(c,zArray[i-1],i);
        run("Copy");
        if  (stack2==0) {
            newImage("Focused_C"+c+"_"+title, "8-bit", w, h, 1);
            stack2 = getImageID;
        } else {
            selectImage(stack2);
            run("Add Slice");
        }
        run("Paste");
    }
    setSlice(1);
    setBatchMode(false);
    print("Successfully split out channel "+c+"\nTo split out a different channel using this z-
index, \nsimply change the channel in the hyperstack and repeat"); 
}
 
macro "F2 ReInitialize Action Tool - 
C000C111C222D14D15D16D17D18D19D1aD1bD1cD24D28D34D38D44D48D54D85D
86D8bD8cD94D9aD9cDa4Da9DacDb4Db8DbcDc5Dc6Dc7DccC222C333C444C555C66
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6C777C888C999CaaaCbbbCcccCdddCeeeCfffD00D01D02D03D04D05D06D07D08D09D
0aD0bD0cD0dD0eD0fD10D11D12D13D1dD1eD1fD20D21D22D23D25D26D27D29D2
aD2bD2cD2dD2eD2fD30D31D32D33D35D36D37D39D3aD3bD3cD3dD3eD3fD40D41
D42D43D45D46D47D49D4aD4bD4cD4dD4eD4fD50D51D52D53D55D56D57D58D59
D5aD5bD5cD5dD5eD5fD60D61D62D63D64D65D66D67D68D69D6aD6bD6cD6dD6e
D6fD70D71D72D73D74D75D76D77D78D79D7aD7bD7cD7dD7eD7fD80D81D82D83
D84D87D88D89D8aD8dD8eD8fD90D91D92D93D95D96D97D98D99D9bD9dD9eD9f
Da0Da1Da2Da3Da5Da6Da7Da8DaaDabDadDaeDafDb0Db1Db2Db3Db5Db6Db7Db9D
baDbbDbdDbeDbfDc0Dc1Dc2Dc3Dc4Dc8Dc9DcaDcbDcdDceDcfDd0Dd1Dd2Dd3Dd
4Dd5Dd6Dd7Dd8Dd9DdaDdbDdcDddDdeDdfDe0De1De2De3De4De5De6De7De8De9
DeaDebDecDedDeeDefDf0Df1Df2Df3Df4Df5Df6Df7Df8Df9DfaDfbDfcDfdDfeDff"{
 run("Re-Initialize [F2]");
}
 
macro "Re-Initialize [F2]" {
     initialize=true;
 print("Re-initialized, proceed with selection of  focused z slices");
}
 
 
var pmCmds = newMenu("Popup Menu",
        newArray("Set Focus [F1]", "Re-Initialize [F2]","-","Copy", "Paste","Rename...")
 );
 
macro "Popup Menu" {
    cmd = getArgument;
    run(cmd);
}

Boundary Tracing and Analysis

Features

 This toolset was created to determine the linearity of  the cell boundary of  cell mi-

grating in a MAts or scratch assay. After thresholding an image, the area identified as con-

taining cells is dilated in order to connect individual cells or groups close to the boundary. 

The resulting traces are easily aligned by rotating and translating in order to compare the to-

tal displacement along the boundary between control and experimental conditions. Visual 

depictions of  multiple traces overlaid in different colors can also be very powerful (see Fig. 

15b).
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Installation

 Simply save the code of  the two macros as separate text file on you computer and 

open it with ImageJ or FIJI. It will ask for source and results directories then process the 

images.

Code for Boundary Tracing

//Batch Boundary Analysis draw trace.ijm

dirData = getDirectory("Select directory of  data to process")
dirSave = getDirectory("Select location to save data")

list = getFileList(dirData);
setBatchMode(true);    //use this to save time by not displaying images

run("Set Measurements...", "area mean standard modal perimeter bounding shape median 
skewness kurtosis redirect=None decimal=3");
print("lengthTotal,"+list.length);

for (i=0; i<list.length; i++){
 showProgress(i+1, list.length);
 open(dirData+list[i]);
 title = getTitle();
 print((i+1)+","+title);
 name = File.nameWithoutExtension;
 //print(name+"   That's the name");
 
run("8-bit");
run("Enhance Contrast", "saturated=0.35");
//setMinAndMax(40, 140);

//call("ij.ImagePlus.setDefault16bitRange", 0);
//run("Find Edges");
run("Apply LUT", "stack");
run("Find Edges", "stack");

//setTool("zoom");
//setAutoThreshold("Default");
//run("Threshold...");
//setAutoThreshold("Default");
setAutoThreshold("Default dark stack");
setThreshold(60, 255);  //USE 60,255 for XY 40
run("Convert to Mask", " ");
//setAutoThreshold("Default dark");
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//run("Convert to Mask");

run("Smooth", "stack");
run("Despeckle", "stack");
run("Invert LUT");

//run("8-bit");

//run("Threshold...");
setAutoThreshold("Default dark stack");
//setThreshold(5, 255);
run("Convert to Mask", " ");
run("Dilate", "stack");
run("Dilate", "stack");
run("Dilate", "stack");
run("Dilate", "stack");
run("Dilate", "stack");

run("Analyze Particles...", "size=30001-Infinity circularity=0.00-1.00 show=Outlines sum-
marize stack");
saveAs("Tiff", dirSave + name + "_Boundary.tif");
doWand(32, 86);
run("Measure");

run("Close All");

}

selectWindow("Results");
saveAs("Results", dirSave+"/Boundary Stats.xls");

selectWindow("Log");
saveAs("Text", dirSave+"/Boundary Name Log.txt");

Code for Analysis

//Batch Boundary Analysis STATSonly.ijm

dirData = getDirectory("Slect directory of  data to process")
dirSave = getDirectory("Select location to save data")

list = getFileList(dirData);
setBatchMode(true);    //use this to save time by not displaying images

run("Set Measurements...", "area mean standard modal perimeter bounding shape median 
skewness kurtosis redirect=None decimal=3");
print("lengthTotal,"+list.length);
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for (i=0; i<list.length; i++){
 showProgress(i+1, list.length);
 open(dirData+list[i]);
 title = getTitle();
 print((i+1)+","+title);
 name = File.nameWithoutExtension;
 //print(name+"   That's the name");
 
run("8-bit");
run("Enhance Contrast", "saturated=0.35");
//setMinAndMax(40, 140);

//call("ij.ImagePlus.setDefault16bitRange", 0);
//run("Find Edges");
run("Apply LUT", "stack");
run("Find Edges", "stack");

//setTool("zoom");
//setAutoThreshold("Default");
//run("Threshold...");
//setAutoThreshold("Default");
setAutoThreshold("Default dark stack");
setThreshold(60, 255);  //USE 60,255 for XY 40
run("Convert to Mask", " ");
//setAutoThreshold("Default dark");
//run("Convert to Mask");

run("Smooth", "stack");
run("Despeckle", "stack");
run("Invert LUT");

//run("8-bit");

//run("Threshold...");
setAutoThreshold("Default dark stack");
//setThreshold(5, 255);
run("Convert to Mask", " ");
run("Dilate", "stack");
run("Dilate", "stack");
run("Dilate", "stack");
run("Dilate", "stack");
run("Dilate", "stack");

//run("Analyze Particles...", "size=30001-Infinity circularity=0.00-1.00 show=Outlines 
summarize stack");
//saveAs("Tiff", dirSave + name + "_Boundary.tif");
doWand(50, 286);
run("Measure");
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run("Close All");

}

selectWindow("Results");
saveAs("Results", dirSave+"/Boundary Stats.xls");

selectWindow("Log");
saveAs("Text", dirSave+"/Boundary Name Log.txt");
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C . SUPPLEMENTAL FIGURES AND TABLES

Figures

Figure C1. The multi-scale tuning model. A multi-scale model presents multiple interde-
pendent parameters classified under four distinct categories (cell autonomous ability, cell-cell 
interaction, matrix composition and soluble parameters). Individual migratory parameters are 
displayed in a tuning model in which the tuner (
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Supplemental Figure S1. The multi-scale tuning model. A multi-scale model 
presents multiple interdependent parameters classified under four distinct 
categories (cell autonomous ability, cell-cell interaction, matrix composition and 
soluble parameters). Individual migratory parameters are displayed in a tuning 
model in which the tuner (  ) represents the continuous range between two 
opposing properties for the same parameter. The magnitude of any parameter 
influences its impact on the mode and means of migration as well as the 
influence of related parameters. This example demonstrates the utility of the 
tuning model: (A) Proteolytic modification of the microenvironment promotes 
mesenchymal migration while non-proteolytic properties perpetuate ameboid 
movement. (B) Heterotypic interactions with adjacent cells facilitate the 
movement of individual cells while homotypic interactions generally suppress 
single cell movement and are associated with collective movement. (C) Stiff 
substrates promote movement in a mesenchymal fashion while soft substrates 
facilitate ameboid movement. (D) Mesenchymal motility benefits greatly from a 
chemotactic stimulus while ameboid movement is supported by both chemotactic 
and homogeneous stimuli.
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) represents the continuous range between 
two opposing properties for the same parameter. The magnitude of any parameter influ-
ences its impact on the mode and means of migration as well as the influence of related pa-
rameters. This example demonstrates the utility of the tuning model: (a) Proteolytic modifi-
cation of the microenvironment promotes mesenchymal migration while non-proteolytic 
properties perpetuate ameboid movement. (b) Heterotypic interactions with adjacent cells 
facilitate the movement of individual cells while homotypic interactions generally suppress 
single cell movement and are associated with collective movement. (c) Stiff substrates pro-
mote movement in a mesenchymal fashion while soft substrates facilitate ameboid move-
ment. (d) Mesenchymal motility benefits greatly from a chemotactic stimulus while ameboid 
movement is supported by both chemotactic and homogeneous stimuli.
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Supplemental Figure S1. The multi-scale tuning model. A multi-scale model 
presents multiple interdependent parameters classified under four distinct 
categories (cell autonomous ability, cell-cell interaction, matrix composition and 
soluble parameters). Individual migratory parameters are displayed in a tuning 
model in which the tuner (  ) represents the continuous range between two 
opposing properties for the same parameter. The magnitude of any parameter 
influences its impact on the mode and means of migration as well as the 
influence of related parameters. This example demonstrates the utility of the 
tuning model: (A) Proteolytic modification of the microenvironment promotes 
mesenchymal migration while non-proteolytic properties perpetuate ameboid 
movement. (B) Heterotypic interactions with adjacent cells facilitate the 
movement of individual cells while homotypic interactions generally suppress 
single cell movement and are associated with collective movement. (C) Stiff 
substrates promote movement in a mesenchymal fashion while soft substrates 
facilitate ameboid movement. (D) Mesenchymal motility benefits greatly from a 
chemotactic stimulus while ameboid movement is supported by both chemotactic 
and homogeneous stimuli.
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Figure C2. Assay bandwidth. In Table 1 a panel of assays is represented with the respective 
ability to assay across different geometries, and assess the contributions of cell-cell interac-
tions, matrix composition, and soluble stimuli. The tuning model introduced in Figure 1 is 
used to represent the continuous range between two opposing properties for each parameter. 
The ability of each assay to assess a given parameter is represented as a tuner where the visi-
ble range represents the bandwidth associated with that assay. In this example the scratch 
assay and the MAtS assay are shown. The display of tuners for each assay readily reveal the 
limited range of the scratch assay: Scratch assays provide only rectangular voids which allow 
for analysis of migration of cells experiencing homotypic interactions under relatively static 
conditions. The matrix underlying the cells is damaged and largely removed by the act of 
scratching. Consequently, the matrix composition during this migration is “bare” and mostly 
“random”. This assay also requires either glass or plastic as a culture surface thereby limiting 
the analysis of migration of “stiff ” substrates. Like most assays described herein, the scratch 
assay is limited to 2D arrangements of cells responding to a homogeneous stimulus of solu-
ble factors. In contrast, the MAtS assay uses a non-destructive stencil to exclude cells rather 
than remove them. Consequently this assay distinguishes itself from the scratch assay pri-
marily by the geometries that are possible and the ability to evaluate the contribution of the 
underlying matrix (outlined in red).
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MAts Star Block Dot Microwell

Length 12 mm 6 mm 1.6 / 2.0 mm 
(bottom/top)

20 mm

Width 12 mm 2.5 mm 1.6 / 2.0 mm 
(bottom/top)

15 mm

Height 5.5 mm 5 mm 5 mm 2 mm

Initial Width            
for Migration

0.7 mm 2.5 mm 1.63 mm (diameter) 0.8, 0.4, & 0.2 mm

Purpose general use matrix switching high-throughput low cell-quantities

Figure S1. 
Dimensions of star-shaped, block, dot, and microwell MAts. Dimensions of different MAts for migration 
assays. Images are at the same scale and were acquired using the stereomicroscope and a Neolumar 0.8x objective at 
6.4x magnification.

Figure C3. Dimensions of different MAts for migration assays. Images are at the same scale 
and were acquired using the stereomicroscope and a Neolumar 0.8x objective at 6.4x magni-
fication.
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Figure S2. 
Fabrication and basic usage of MAts. (a) Polished brass was machined to create a two-tier mold consisting of 
a mirror-finish base onto which the outer dike and the 3 by 3 of individual squares were fastened. The squares were 
precisely positioned with steel dowels pressed into the base. The sides of the squares and dike were tapered by 5º to 
facilitate removal of the MAts. (b) PDMS prepolymer was mixed with magnetite (33% magnetite by weight), poured 
into the mold, and cured at 60ºC for 3 hours. (c) The resulting MAts were removed as a single unit and cut with a 
razor blade along the dotted red lines. (d) This created 4 individual MAts shown with their contact surface up. (e) Basic 
dimensions are given on a 3D model of the MAt (inverted). The stars fit in a 12 x 12 mm square, are 5.5 mm tall, and 
have a contact surface that is 650 μm wide in order to create a 650 μm void for cell migration. (f) Rare earth magnets 
were arranged on a 1/8” thick sheet of acrylic in order to (g) attach MAts to a 6-well plate. (h) After incubating HEp3 
GFP cells overnight, MAts were removed, resulting in a star-shaped void in the confluent cells, as seen by fluorescent 
stereomicroscopy (see Methods). Widths between cell populations averaged 650 μm along the 4 arms of the MAt. 

Figure C4. Fabrication and basic usage of MAts. (a) Polished brass was machined to create 
a two-tier mold consisting of a mirror-finish base onto which the outer dike and the 3 by 3 
of individual squares were fastened.The squares were precisely positioned with steel dowels 
pressed into the base.The sides of the squares and dike were tapered by 5o to facilitate re-
moval of the MAts. (b) PDMS prepolymer was mixed with magnetite (33% magnetite by 
weight), poured into the mold, and cured at 60oC for 3 hours. (c) The resulting MAts were 
removed as a single unit and cut with a razor blade along the dotted red lines. (d) This cre-
ated 4 individual MAts shown with their contact surface up. (e) Basic dimensions are given 
on a 3D model of the MAt (inverted).The stars fit in a 12 x 12 mm square, are 5.5 mm tall, 
and have a contact surface that is 650 μm wide in order to create a 650 μm void for cell mi-
gration. (f) Rare earth magnets were arranged on a 1/8˝ thick sheet of acrylic in order to (g) 
attach MAts to a 6-well plate. (h) After incubating HEp3 GFP cells overnight, MAts were 
removed, resulting in a star-shaped void in the confluent cells, as seen by fluorescent stereo-
microscopy (see Methods). Widths between cell populations averaged 650 μm along the 4 
arms of  the MAt.
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Figure C5. Tooling marks permit cell protrusions. (a) Schematic of a MAt coated with Al-
exa 546-conjugated IgG attached to a collagen-coated glass coverslip with adjacent GFP-
expressing HEp3 cells (green). A MAt (b), inverted to show the surface that seals against the 
substrate, with submicron toolmarks from CNC milling is compared to (e) a MAt with a 
mirror-finish contact surface. HEp3 cells were used because they are an aggressive human 
epidermoid carcinoma capable of penetrating into submicron cracks and crevices. Confocal 
z-stacks of the contact area between the HEp3 cells, the MAt, and the culture surface were 
acquired for 60 μm with 1 μm spacing using the spinning disk confocal (see Methods). (d & 
g) 3D reconstruction of the interface was created using Volocity in order to provide a 3D 
perspective of this crucial intersection of the MAt, cells and substrate. (b-d) Submicron tool 
marks allowed HEp3 cells to penetrate underneath the MAt on collagen-coated glass, creat-
ing long, full body extensions (arrow) or small cell protrusions (arrowheads). (e-g) The pol-
ished contact surface and crisp edge of the finished MAt successfully excluded HEp3 cells. 
Scale bars, 50 μm.
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Figure S3.
Tooling marks permit cell protrusions. (a) Schematic of a MAt coated with Alexa 546-conjugated IgG 
attached to a collagen-coated glass coverslip with adjacent GFP-expressing HEp3 cells (green). A MAt ((b) inverted to 
show the surface that seals against the substrate) with submicron toolmarks from CNC milling is compared to (e) a 
MAt with a mirror-finish contact surface (e). HEp3 cells were used because they are an aggressive human epidermoid 
carcinoma capable of penetrating into submicron cracks and crevices. Confocal z-stacks of the contact area between 
the HEp3 cells, the MAt, and the culture surface were acquired for 60 µm with 1 µm spacing using the spinning disk 
confocal (see Methods). (d & g) 3D reconstruction of the interface was created using Volocity in order to provide a 3D 
perspective of this crucial intersection of the MAt, cells and substrate. (b-d) Submicron tool marks allowed HEp3 cells 
to penetrate underneath the MAt on collagen-coated glass, creating long, full body extensions (arrow) or small cell 
protrusions (arrowheads). (e-g) The polished contact surface and crisp edge of the finished MAt successfully excluded 
HEp3 cells.  Scale bars, 50 µm.
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FITC Gelatin and A549 Cells on T.C. Plastic
Gelatin Fibronectin Merge
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Figure S4.
MAts maintain protein-coated substrates during void formation. Voids were created in a confluent 
A549 monolayer by means of mechanical scratching with a plastic pipette tip (a) or formed without substrate damage 
with MAts (b). To visualize aberrations in the matrix and cell monolayer, representative images of collagen matrix 
(green) and A549 cells (red, CellTracker) were taken on the fluorescent stereomicroscope at the periphery and in the 
center of the void (insets a’, a”, b’ and b”). In contrast to voids created by mechanical scratching, voids created with 
MAts retained a uniform collagen-coated surface without undo disruption of cells at the edge of the void. Scale bars, 
50 µm.

Figure C6. MAts maintain protein-coated substrates during void formation. Voids were cre-
ated in a confluent A549 monolayer by means of mechanical scratching with a plastic pipette 
tip (a) or formed without substrate damage with MAts (b). To visualize aberrations in the 
matrix and cell monolayer, representative images of collagen matrix (green) and A549 cells 
(red, CellTracker) were taken on the fluorescent stereomicroscope at the periphery and in the 
center of the void (insets a´, a˝, b´ and b˝). In contrast to voids created by mechanical 
scratching, voids created with MAts retained a uniform collagen-coated surface without 
undo disruption of  cells at the edge of  the void. Scale bars, 50 μm.
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Figure C7. Dimensions of  MSLIC lids and fluidic MSLICs.
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Tables

Table C1. Terms and definitions.Supplemental Table SI: Terms and definitionsSupplemental Table SI: Terms and definitionsSupplemental Table SI: Terms and definitions

Term Definition (in relation to morphology and migration.)

Ameboid
Cells that exhibit an asymmetric morphology with poorly discernible leading front. These cells are generally poorly adherent to the matrix 
and other cells. Their migration is exclusively as isolated, individual cells.

Cell autonomous ability The intrinsic ability of a cell to move independent of external stimuli.

Cell-cell interaction Direct contact between adjacent cells

Densely Organized Refers to the migration of a group of cells engaged in continuous-to-intermittent cell-cell contact.

Epithelial
Cells that exhibit a broad and flat morphology often seen as cuboidal when cells are confluent. These cell migrate with a broad leading 
front. These cells are typified by strong cell-cell adhesions and exhibit collective migration in sheets and strands.

Matrix composition The composition of the extracellular matrix and substrate onto which the cells are adherent.

Mesenchymal
Cells that exhibit an elongated fibroblast-like appearance with a discernible leading front and trailing back. These cells possess weaker 
cell-cell adhesions and do not exhibit the collective migration than might be seen in epithelial cells.

Migration Refers to the movement adherent cells use to mobilize themselves.

Nest
Refers to the formation of a cell population with defined dimensions in order to monitor migration from this “nest” onto adjacent cell-free 
surface.

Single Cell Refers to the migration of an individual, isolated cell free of cell-cell adhesions.

Soluble Parameters
The condition and composition of the soluble environment surrounding the cell. This includes the traditional growth factors and their 
presentation (e.g. chemotactic gradient vs homogeneous availability) as well as gases (oxygen) and nutrients (glucose).

Void
Refers to an area on the culture surface that is left devoid of cells for the purpose of of creating an empty space into which adjacent cells 
can migrate.
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Videos

Notice:  Videos may not display in some applications.

Video C1. Animation of MAtS space-filling assay. MAtS attach to protein-coated surfaces 
via magnetic force, pattern cells, and are removed. Images are acquired immediately and at 
defined time-points. Migration rates or percent closure are quantified from the captured im-
ages.
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Video C2. HEp3 migration on intact collagen. MAtS were used to pattern HEp3 cells on 
collagen-coated glass. Cells migrated freely across the substrate after removal of MAtS. This 
16-second video shows 16 hours of  migration.
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Video C3. HEp3 migration across scratched collagen on glass. HEp3 cells plated on 
collagen-coated glass were scratched. After migrating 7.5 hours, cell migration was inhibited 
by the lack of matrix caused by scratching. This 16-second video shows 16 hours of migra-
tion.
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Video C4. Lack of collagen-coating inhibits HEp3 cell migration onto glass. MAtS were 
used to pattern first collagen and then HEp3 cells on glass cover slips creating a void that 
lacked collagen. HEp3 cells were unable to migrate into this uncoated void. Images were 
captured every 10 minutes for 16 hours which are presented here in a 16-second video.
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D. MAGNETICALLY ATTACHABLE TEMPLATES FOR FABRICAT-
ING PDMS MICROFLUIDIC INTERCONNECTS

Summary

 Magnetically Attachable Templates (MATs) provide a simple, reliable method to cre-

ate the large (mm or cm) features necessary for manual loading and operation of  microflu-

idic devices, and can be readily customized to meet specific applications. By combining a 

smooth surface, conformal contact, and magnetic force, MATs prevent polydimethylsiloxane 

(PDMS) from seeping between the mold and the MAT. MATs are fabricated by machining 

an initial mold, casting a set of  toolmarked MATs, and then casting a second mold around 

these toolmarked MATs thus removing the toolmarks from the MATs’ contact surface. The 

resulting smooth contact surface is critical to formation of  seemless interconnects between 

microscopic features of  microfluidic molds and the macroscopic features of  MATs. MATs 

enable reproducible fabrication of  microscopic-to-macroscopic interconnects, reduce the 

risk of  tearing or introducing debris compared to punching, and are readily implementable in 

laboratories currently fabricating PDMS microfluidic devices.

Introduction

 As microfluidic devices become increasingly important to biomedical research, there 

is an increasing need for a simple, reliable method of  macroscopic, through-chip penetra-

tions, such as covered fluidic reservoirs, open wells, interconnects and large vias that operate 

in conjunction with microfabricated features. Simple, cost effective, and efficient methods 

for creating polydimethylsiloxane (PDMS) microfluidic devices have been developed 

[124,125], primarily using SU-8 or other photoactivated epoxies. Unfortunately, using these 

techniques, it is difficult to create the large (>1 mm ) interconnects and reservoirs that are 

necessary for manual loading and operation of  the microfluidic devices, primarily because 
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the scattering and absorption of  the UV light required for photolithograpy limits the thick-

ness of  an SU-8 layer that can be accurately patterned. Thick SU-8 structures require multi-

ple layers of  SU-8 that have to be exposed individually, presenting serious problems in as-

pect ratio, alignment, exposure, development, and mold robustness. Creating such large 

structures in SU-8 is challenging, time consuming and generally requires specialized equip-

ment [126-128]. For these reasons large microfluidic structures are often made by punching 

or coring already-cast PDMS microfluidic devices. Repeatedly obtaining high-quality 

punched or cored interconnects requires significant skill. The punched or cored intercon-

nects are often fluted, tapered, and irregular sizes. They vary greatly in quality and function-

ality and can be difficult to position accurately [129]. We show that punching interconnects 

can be avoided by simply casting PDMS around magnetically attached templates (MATs). 

Using magnetic force, these templates seal against the microfabricated structures of  molds 

and create smooth, precise interconnects as the PDMS cures around them.

 Few methods exist for creating interconnects during the casting of  PDMS over mi-

crofluidic molds because of  the difficulty of  preventing PDMS from seeping into cracks or 

forming thin films between components. To overcome these problems John Wikswo and his 

colleagues have developed a method for machining small screw holes through or around SU-

8 patterns on brass (which can be more readily drilled than a silicon wafer) and then attach-

ing large, plastic posts and other features to the micropatterned brass mold with screws (per-

sonal communication with Dr. John Wikswo). The screws provide the needed force to seal 

the plastic posts against the SU-8 micropatterns. However, such machining is technically 

challenging and time-consuming, and SU-8 may fracture or chip away during the process. 

Alternatively, NdFeB magnets have been attracted to molds to successfully create intercon-

nects [130], and excluding PDMS has also been achieved by clamping 30-100 μm tall micro-

structures in a press [37]. From these approaches it is clear that creating successful intercon-
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nects while curing PDMS requires smooth surfaces, conformal contact, and force to prevent 

PDMS from seeping into cracks or forming thin films between parts.

 In order to integrate the formation of  interconnects and reservoirs into the casting 

step of  PDMS microfluidic fabrication, we developed Magnetically Attachable Templates 

(MATs). MATs are created by mixing PDMS prepolymer with magnetite powder and then 

curing it in molds. The molds can be created with standard machining, and the resulting 

toolmarked MATs used to create molds with smooth bottom surfaces (see Materials and 

Methods). By combining a smooth contact surface and the conformal or compliant proper-

ties of  PDMS with magnetic force, MATs successfully seal against molds and thus prevent 

films of  PDMS from forming in the interconnects. Laboratories currently fabricating PDMS 

microfluidic devices can readily implement MATs because only two new materials are re-

quired: magnetite and polyvinyl alcohol. MATs provide a simple, versatile, and reusable 

method to successfully integrate macro features into the casting process of  PDMS microflu-

idic fabrication.

Materials and Methods

Materials. 

NdFeB magnets (K&J Magnets), PDMS (Sylgard 184, Dow Corning), magnetite (Py-

rox200HP, Pyrox LLC), polyvinyl alcohol (PVA, PartAll Film #10, RexCo), polyurethane 

two-part resin (Crystal Clear 200, Smooth-On), brass, SU-8 (Microchem), SU-8 developer 

(Microchem), silicon wafer, mirror-finish stainless steel (Type 304 #8 Finish, McMaster-

Carr). 

138



Polydimethylsiloxane Formulations. 

 We use polydimethylsiloxane (PDMS) from the Sylgard 184 Silicone Elastomer Kit 

(Dow Corning). PDMS prepolymer is made by mixing 10 parts base to 1 part curing agent 

by weight as recommended by the manufacturer. This PDMS prepolymer may be degassed 

at this point by vacuum or centrifugation or used as is. To make MATs, this prepolymer is 

immediately mixed with magnetite powder at a 2 to 1 ratio, resulting in a mixture that is 33% 

magnetite by weight. The PDMS-magnetite mixture (PDMS-M) can be mixed by hand, but a 

more homogenous mixture is achieved by using a rotary mixer (AR-100, Thinky). When 

cured, the PDMS-M is noticeably stiffer than plain PDMS. The PDMS or PDMS-M is cured 

according to the manufacturer’s recommendations.

Removing Toolmarks from Custom-Made MATs’ Contact Surfaces Using a Sacrifi-
cial PVA Layer

 It is possible to cast PDMS in molds fabricated by computer numerical control 

(CNC) milling in brass, wax or acrylic. We use brass molds to create the positive relief  of  the 

desired MAT (Fig. D1a). After carefully coating non-critical areas of  the brass with PVA, 

polyurethane resin was cast into the brass relief  to create a negative mold (Fig. D1b). From 

the polyurethane mold an initial set (≥ 6) of  MATs with toolmarks was created (Fig. D1c). 

These MATs had tooling marks on all surfaces. (The MATs were not treated with PVA be-

cause such treatments resulted in strong polyurethane-to-PDMS adhesion.) To remove tool-

ing marks from the contact surfaces, PVA was poured onto mirror-finish stainless steel and 

spread into a thin film via a stream of  air, and then dried. The toolmark-bearing MATs were 

subsequently sealed against the PVA film with magnets underneath the mirror-finish stain-

less steel (Fig. D1d). Then the assembly was washed for 2-3 minutes in slowly running dis-

tilled water to remove any uncovered PVA. After drying, the assembly was cast in polyure-
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thane resin, the MATs were subsequently removed, and the remaining PVA was rinsed away. 

These molds replaced the toolmarked contact surface with a mirror-finish contact surface 

(Fig. D1e-f). The downside was that after several cycles of  heating and cooling, the polyure-

thane began separating from the stainless steel, destroying the mold, so the initial toolmark-

free MATs cast in the mold were recast in polyurethane to create entirely polyurethane 

molds. To facilitate removal and storage of  MATs, glass microscope slides were laid on top 

Figure D1. Hybrid mold using sacrificial PVA layer on mirror-finish stainless steel. (a) CNC 
milling in brass created the positive relief of the desired star shape. Polyurethane resin cast 
over the brass relief creates (b) a negative mold. From this negative, polyurethane mold (c) 
toolmarked MATs were created. (d) To remove tooling marks from the criti- cal contact sur-
face, a thin film of PVA (arrow) was poured onto mirror-finish stainless steel and then dried. 
MATs were subsequently sealed against the PVA film via magnetic force provided by mag-
nets (arrowhead) underneath the non-magnetic stainless steel. Then the assembly was 
washed for 2 minutes in slowly-running distilled water to remove all the exposed PVA. Ex-
cessive water was genlty blown off the surface, and the assembly was left to air dry. (e) A 
hybrid, stainless steel and polyurethane, mold was created by casting polyurethane over the 
stainless steel and around the MATs. After the polyurethane cured. the MATs were removed 
and water was introduced into the voids left by the MATs in order to dissolve the PVA film 
on the stainless steel. (f) PDMS-magnetite cast into the hybrid molds produced MATs with 
mirror-finish contact surfaces.
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of  the mold using ~1 mm spacers in such a way that the PDMS-M cured onto the glass (not 

shown).

Microfluidic Masters

 We often use macroscopic MATs in conjunction with SU-8 photolithographic micro-

fluidic masters on silicon wafers. For this study, we utilize masters with 100 μm wide and 100 

μm tall microfluidic channels that were obtained from the Vanderbilt Institute for Integrative 

Biosystems Research and Education (VIIBRE). Desired heights of  SU-8 were created on 

silicon wafers or glass slides by spinning a certain formulation, for example, SU-8 2100 at 

3000 RPM to achieve 100 µm features. The desired pattern was applied to the film of  SU-8 

by placing a mask or stencil over the SU-8 and then exposing it to UV light at an exposure 

dose appropriate to the thickness. The UV-activated SU-8 was then baked resulting in po-

lymerization of  the exposed SU-8. The desired 3-D structures were “developed” by placing 

the wafer in a special solvent called “developer” which dissolved all the unexposed SU-8. A 

detailed protocol for SU-8 photolithography can be found in References [131,132]. Fre-

quently, low-profile SU-8 structures would mark the location where the larger MATs were to 

be positioned prior to PDMS casting.

Design and Dimensions

 MATs can be fabricated in numerous shapes and sizes (Fig. D1g). Star MATs are 10 

mm in diameter and have 4 arms that are 4 mm long. The contact surface of  each arm is 700 

μm wide, creating 700 μm spaces between the two cell monolayers. This spacing is similar to 

the mean width of  scratches made with a 200 μl capacity pipette tip and visible with 10x ob-
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jectives on most microscopes. Rectangle MATs are 20 mm long, 13 mm wide, and 2-2.5 mm 

tall. Dot MATs are 2 mm diameter and 4 mm tall.

Preventing PDMS-PDMS Bonding

 In order to prevent the PDMS-M of  MATs from bonding to the PDMS of  microflu-

idic devices, MATs are oxygen plasma treated for about 20-40 seconds, as is commonly done 

to irreversibly bond PDMS to glass, then immediately immersed in PVA for at least 2 hours 

[133,134]. Excess PVA is aspirated, and the treated MATs are dried. PVA-treated MATs are 

then used to create posts, interconnects, or reservoirs on microfluidic devices.

Results and Conclusions

 MATs can create interconnects in various shapes by sealing against a microfluidic 

mold via magnetic force, after which the PDMS microfluidic device is cast. This is accom-

plished with the following steps. First the desired MATs are fabricated with a mirror-finish 

contact surface as described in Methods (Fig. D1). After acquiring or creating replica molds 

containing microfluidic patterns on glass, silicon wafers, or other suitable substrates, magnets 

are positioned underneath the areas of  the master to which MATs will be attached. MATs 

are subsequently placed onto these areas (Fig. D2a). The magnetic force attaches the mag-

netic template to the micropatterns and/or substrate, creating a seal that prevents PDMS 

seepage into the space between the MATs and the underlying microfluidic master. PDMS 

prepolymer is cast around and/or over this assembly, which is subsequently placed in an 

oven at 60ºC for 3-4 hours until cured (Fig. D2b). After the PDMS has cured, the MATs are 

removed with the PDMS of  the device (Fig. D2c). Then the MATs are carefully removed 

from the PDMS device, resulting in a well-defined interconnect and/or macroscopic feature 

in the PDMS device which can now be sealed to glass or PDMS (Fig. D2d). This process can 
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be used to make various shapes of  interconnects and reservoirs in PDMS microfluidic de-

vices, eliminating the need for punching.

 The quality of  MAT-made interconnects was compared to interconnects punched 

with sharpened stainless steel tubing (Fig. D3a). Punching can introduce debris which may 

fall into and obstruct part of  the device (arrows, Fig. D3a and b). Punching can also cause 

tearing that results in misshaped, dysfunctional interconnects (not shown), particularly after 

inserting tubing into punched holes. In contrast, MATs are not prone to tearing, create inter-

connects free of  debris, and produce sidewalls that are square to the contact surface (Fig. 

D3d-f). Furthermore, analysis of  the  cross-sections of  these interconnects reveals the taper-

ing and rough vertical fluting created by punching (Fig. D3c and c´). In contrast, the MAT-

created interconnects have smooth sidewalls with only subtle horizontal striations and are 

free of  taper (Fig. D3f  and f´). MATs’ horizontal striations result from machining of  the 

Figure D2. Interconnect fabrication. (a) MATs are attached via magnetic force to micro-
patterns. (b) PDMS is cast around the MATs. (c) After PDMS has cured and been removed 
from the mold, the MATs are gently removed. (d) The resulting interconnect has precise 
dimen- sions as defined by the MAT. Scale bars, a-b 2 mm , c-d 0.5 mm.

MAT on SU-8 on glass Curing PDMS

Removing MAT

Resulting 2mm diam. hole

a b c d
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original molds and may not be present in MATs created using 96-well plates or other means. 

Regardless, the reproducibility, smoother sidewalls, and control of  dimensions make MAT’s 

interconnects superior to common punching techniques.

 The primary difference between MAT-made and punched interconnects is that 

PDMS wicks up MATs. This wicking may be beneficial when interconnects taller than their 

surroundings are desired. However, curvature due to wicking can be detrimental to bright-

field imaging such as phase contrast or differential interference contrast. To avoid meniscus-

related imaging effects, microfluidic devices should be designed so that either the intercon-

Figure D3. Comparison of punched and MATs’ interconnects. (a-b) Punching often cre-
ates debris (arrowheads). (c) Punches also cause fluting and often tapered holes. (d-f) On 
the other hand, MATs’ interconnects are reproducible, smooth, and have only subtle hori-
zontal striations compared to punching. Scale bars 0.2 mm, except c´ and f  ́which are 0.05 
mm.

a

b

c

d

e

f

c’ f’
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nects are sufficiently far away from MATs (~5 mm ) or so that the imaging area is kept flat 

by designing MATs to be nearly the same height as the PDMS device itself.

 MATs are superior to other methods of  creating interconnects in several ways. First, 

MATs can be reused. Second, they are attached directly to the mold before casting the device 

rather than being attached to a cast device. Third, the resulting interconnects have shapes 

and dimensions equal to those of  the MATs. Fourth, the machining of  molds that are used 

to cast the MATs creates subtle horizontal striations rather than harsh vertical fluting pro-

duced by punching. 

 Furthermore, MATs are compatible with standard PDMS microfabrication proce-

dures. MATs can be temporarily attached to micropatterned photoresists on glass, plastic, 

silicon wafers, or even PDMS. Potentially, MATs could be permanently attached to SU-8 us-

ing the nitrogen plasma cleaning technique of  Zhang et al. [135]. Standard oxygen plasma 

cleaning is utilized to attach polyvinyl alcohol to the PDMS surface and prevent PDMS-

PDMS bonding as the microfluidic device is cast [134]. Laboratories already fabricating 

PDMS microfluidic devices can readily implement MATs by simply acquiring the needed 

magnetite and PVA and suitable molds for creating MATs.

 The design and implementation of  MATs is flexible enabling creativity. Functional 

star, cylinders, and rectangular posts have been created. Currently, we are focused on reus-

able, broadly-applicable designs such as cylinders for interconnects. However, single-use de-

signs are possible. By omitting the PVA-treatment, MATs containing interconnects or reser-

voirs in themselves would bond to the cast PDMS microfluidic device. This would eliminate 

the time and effort required to remove MATs while still providing a reproducible, high qual-

ity interconnect. A highly reliable design for such an interconnect was recently characterized 

by Chang et al. and represents a good candidate for a single use MAT [136]. MATs can also 

be used to create reservoirs or large chambers not suitable for fabrication on microfluidic 
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molds using microfabrication techniques. Though generally MATs create an interface per-

pendicular to the mold surface, designs with various angles could also be created and used to 

reproducibly create interconnects at precise angles. Complex shapes are possible with MATs 

that are either difficult or impossible to create by punching such as a star shape. MATs not 

only improve reproducibility and reliability but also enable greater creativity while taking the 

punch out of  PDMS microfluidic fabrication.
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