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CHAPTER I 
 
 
 

INTRODUCTION: 
 
 
   

INTEGRATED ANALYSIS OF GENETIC AND PROTEOMIC DATA 
 
 
 

 Biological organisms are complex systems that dynamically integrate 

inputs from a multitude of physiological and environmental factors.  Complex 

clinical outcomes arise from the concerted interactions among the myriad 

components of a biological system.  Therefore, in addressing questions 

concerning the etiology of phenotypes as complex as common human diseases 

or systemic reaction to vaccination, it is essential that the systemic nature of 

biology is taken into account.  Analysis methods must integrate the information 

provided by each data type in a manner analogous to the operation of the body 

itself.  It is hypothesized that such integrated approaches will provide a more 

comprehensive portrayal of the mechanisms underlying complex phenotypes and 

lend confidence to the biological interpretation of analytical conclusions. 

 This dissertation concerns the development of the paradigm outlined 

above and applies it to genetic and proteomic data in both simulated and real 

analysis situations.  Chapters two through six are presented as self-contained 

studies that review our philosophy and its initial applications, describe analysis of 

real proteomic data alone, describe analysis of real genetic data alone, describe 

analysis of simulated proteomic and/or genetic data, and apply all the lessons 
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learned to combined analysis of real genetic and proteomic data.  Regarded in its 

entirety, this dissertation progresses from philosophical underpinnings to 

successful applications in a real-world analysis setting. 

 Chapter II lays out the rationale behind integrated analysis strategies, 

reviews the current state of the art in combined analysis, and details a simulation 

study that addresses our hypothesis concerning situations in which the analysis 

of multiple data types is beneficial.  The intuitive, intellectual appeal offered by 

joint analysis of multiple data types includes the integration of information that is 

insensitive to spatial and temporal flux (e.g. stable genetic polymorphisms found 

throughout the human genome) with information subject to dynamic changes 

(e.g. protein concentrations measured at multiple time points), the amelioration of 

possible methodological unreliability by the partial redundancy between biological 

levels, and the improved generalizability of results that are robust to 

nonsystematic variability in data from any one source.  Our review of the initial 

forays into the joint analysis of multiple data types finds that these studies, while 

limited in scope, have yielded interesting results that would have been missed 

had only one type of data been considered.  From the simulation studies, we 

conclude that the analysis of multiple data types is beneficial when the underlying 

etiological model is complex and functional biomarkers of any particular data type 

are missing. 

 Chapter III introduces the smallpox vaccine trial data to which the data-

integration philosophy will be applied.  In this chapter, the proteomic portion of 

the analysis is discussed.  The proteomic data are measured concentrations of a 
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panel of immunological cytokines collected from serum samples at pre- and post-

vaccination time points.  The analysis identified cytokines whose changes in 

dynamic concentration after vaccination accurately discriminated between 

subjects who suffered a vaccine-related adverse event (AE) and those who did 

not.  We developed a model of systemic AEs that implicates a cytokine signature 

characterized by protraction and/or hyper-activation of inflammatory pathways.     

 Chapter IV describes the analysis of genetic data gathered as part of the 

smallpox vaccine trials.  In this chapter, the same panel of single-nucleotide 

polymorphisms (SNPs) was analyzed in two independent studies to investigate 

the relationship between AEs and stable genetic factors.  The second study was 

held out of our original statistical analysis for use as a validation data set.  The 

significant AE-associated genetic factors that replicated in the validation data set 

complement the conclusions drawn from the proteomic data.  The validated 

SNPs are within genes involved in processes consistent with previously 

hypothesized mechanisms relating the development of AEs to prolonged 

stimulation of inflammatory pathways and imbalance of normal tissue damage 

repair pathways. 

 Chapter V introduces random forests (RF) as promising solution to the 

analysis challenge posed by high-dimensional datasets including interactions 

among biomarkers of multiple data types.  This chapter characterizes the 

performance of RF on a range of simulated datasets when given genetic data 

alone, proteomic data alone, or a combined dataset of genetic plus proteomic 

data.  The results indicate that utilizing multiple data types is beneficial when the 
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disease model is complex and the phenotypic outcome-associated data type is 

unknown.  This study also shed light on the nature of effects that could be 

detected by random forests analysis.  The simulation results were used to refine 

the parameters of RF implemented for analysis of the combined genetic and 

proteomic vaccine trial data in Chapter VI.   

 Chapter VI applies the lessons learned in previous chapters to the 

analysis of high-dimensional, combined genetic and proteomic data collected to 

elucidate mechanisms underlying development of adverse events (AEs) in 

patients following smallpox vaccination.  In a two-stage analysis strategy, 

Random Forests were used to identify the most important genetic and proteomic 

biomarkers from a combined dataset, then the selected attributes were used to 

build a final decision tree model of AE development.  Combining information from 

previous studies on AEs related to smallpox vaccination with the genetic and 

proteomic attributes identified by RF, we built a comprehensive model of AE 

development that includes both genetic and proteomic biomarkers.  These 

results demonstrated the utility of the RF for integrated analytical tasks, while 

both enhancing and reinforcing our working model of AE development following 

smallpox vaccination.  

Chapter VII discusses future directions for integrated analysis strategies 

that capitalize on the lessons learned in this dissertation.  It is hoped that this 

body of work lends credence to the notion that integration of multiple data types 

is the only way to truly represent a complex system.  Given the rapid expansion 

of technologies able to generate immense quantities of data, it is anticipated that 
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the incorporation of multiple data types will become the standard—rather than 

the exception—for studies of complex human health and disease.  
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CHAPTER II 

 

INTEGRATED ANALYSIS OF GENETIC, GENOMIC, AND PROTEOMIC DATA 

 

The rapid expansion of methods for measuring biological data ranging 

from DNA sequence variations through mRNA expression through protein 

abundance presents the opportunity to utilize multiple types of information jointly 

in the study of human health and disease.  Organisms are complex systems that 

integrate inputs at myriad levels to arrive at an observable phenotype.  

Therefore, it is essential that questions concerning the etiology of phenotypes as 

complex as common human diseases take the systemic nature of biology into 

account and integrate the information provided by each data type in a manner 

analogous to the operation of the body itself.  While limited in scope, the initial 

forays into the joint analysis of multiple data types have yielded interesting 

results that would not have been reached had only one type of data been 

considered.  These early successes, along with the aforementioned theoretical 

appeal of data integration, provide impetus for the development of methods for 

the parallel, high-throughput analysis of multiple data types.   We present as a 

working hypothesis the idea that the integrated analysis of multiple data types will 

improve the identification of biomarkers of clinical endpoints such as disease 

susceptibility.     



7 

A Case for integrated analysis of multiple data types 

 

Technology has advanced to the point that variations in DNA sequence, 

mRNA expression levels, and a wide spectrum of protein abundance can each 

be measured with manageable efficiency.  The development of single nucleotide 

polymorphism (SNP) typing technology can identify minute DNA sequence 

variations between samples [1-5].  Oligonucleotide and cDNA microarrays can 

simultaneously measure the expression (mRNA) levels of thousands of genes 

simultaneously [6-8].  Mass spectrometry (MS) techniques can characterize huge 

swatches of the spectrum of proteins in a given sample [9-13].  Taken together, 

these technologies provide a veritable flood of information to the researcher.  

Given the wealth of publications devoted to extending these methods, as well as 

their becoming less expensive and more accessible, it is expected that the 

availability of such data will continue to expand [14-16].    

Here, we present a working hypothesis that the joint analysis of multiple 

data types will improve the detection of biomarkers diagnostic of clinical 

endpoints.  The expected benefits offered by joint analysis of multiple data types 

over singular analysis include provision of surrogate data to fill gaps in data from 

any one biological level, amelioration of some methodological unreliability via the 

partial redundancy between stages, integration of information that is insensitive 

to spatial and temporal flux (e.g. SNPs) with information subject to dynamic 

changes (mRNA, protein), and recognition that organisms are systems 

comprising many layers of complexity.  We review the state of the art in joint 
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analysis of multiple data types and then present a preliminary simulation study 

that addresses our working hypothesis.   

 

Organisms as Complex Systems 

 

The huge bodies of data generated by high-throughput experiments have 

given rise to the notion that analysis methods for “omic” data are needed [14, 17].  

Presently, the analysis methods concentrate on mining data generated by a 

single type of experiment.  Ge et. al [14] call for the integration of functional 

genomic and proteomic techniques with annotation information, signaling a step 

toward joint analysis—transitioning from traditional, stand-alone biology towards 

a systemic “modular biology” approach.  A modular biology approach studies 

biological processes of interest (modules) as complex systems of functionally 

interacting components.  Incorporating annotation information provides a more 

complete picture of the organismal system, complementing and extending the 

information provided by raw experimental data.  While the use of annotation 

information is attractive, limiting factors include the unreliability of available 

annotation databases and the wide variability of information provided by such 

data sources [18, 19].   

 Initial attempts aimed at developing methods for incorporating multiple 

types of experimental data into analysis of a biological system have met with 

some success.  For example, Perrin et al. have developed an array method to 

measure a limited collection of nucleic acids and proteins in a single experiment 
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[20].  Yeger-Lotem and Margalit have integrated information from various cellular 

networks to detect regulatory circuits in S. Cerevisiae [21].  Other groups, using 

lower animals as experimental models, have made strides toward an integrative 

analysis of multiple data types on a small scale [22, 23].  However, at present, 

high-throughput analysis methods for human data have not been put forth, and 

most studies thus far have concentrated on development of methodological 

measurement reliability, rather than procedures for the analysis itself.                    

 

Biological complexity along the progression from genotype to phenotype 

 

The central dogma of biology states that information progresses from DNA 

to mRNA to protein [24].  At each stage in this hierarchy, variation is introduced, 

meaning that inferences made about a later stage based upon measurements 

taken at an earlier stage will have an inherent amount of uncertainty.  Indeed, 

there have been many studies published regarding the poor correlation of mRNA 

levels with protein [8].  Additionally, an enormous diversity of RNA transcripts and 

proteins is encoded by a given DNA sequence [24].  Since living organisms are 

complex systems, it follows that the study of their inner workings will be replete 

with emergent properties that are not predictable from the simple sum of parts 

[25].  The dynamic flux of protein levels is more complex than can be inferred by 

examining simple mRNA transcripts, and far more complex than can be inferred 

by examining DNA sequence.  The same holds for the prediction of mRNA levels 

from DNA.  While it may be possible to characterize certain SNPs as up- or 
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down-regulating expression, mRNA levels in the organism as a whole cannot be 

perfectly predicted at this time.  Thus, examination of only a single type of data 

does not provide a valid description of any biological system. 

 The sources of introduced variation are myriad (see Figure 1).  Between 

DNA sequence and production of mRNA transcripts, there exists transcriptional 

control by proteins, proximal and distal control elements, imprinting via 

methylation, action by enzymes such as histone acetylases/deacetylases, and 

differences in stability of transcripts [24, 26].  For example, DNA methylation is 

known to affect gene expression and genomic stability, with major implications in 

human disease [27].  The initial mRNA transcript is still subject to multiple layers 

of modification before it is translated into protein.  Recent studies have 

highlighted the prevalence of alternative splicing and A to I editing [28].  Many 

transcripts are cleaved into multiple bioactive products [29].  Additionally, there 

are translational controls that determine first if, then the abundance of, translation 

of a particular messenger RNA into peptide.  Upon translation, the polypeptide 

chain must still fold into its functional conformation.  Folding is a complex process 

requiring the interplay of intracellular conditions, chaperones, and other factors 

that vary by cell.  Once a protein has reached its native conformation (folded 

state), it has a finite lifetime subject to cellular conditions, targeted degradation 

by ubiquitination, and enzymatic modification—all of which create wide temporal 

flux in protein levels.  Proteins must be transported to the proper location, then 

correctly processed by the cell in which they are needed, adding spatial 

variability to protein levels within multicellular organisms.  Thus, the simple 
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presence of a protein at any one experimental point in time and space may not 

be representative of the true biology of an organism. 

 

Biological Level Biomolecule Sources of Biological Variation Between Levels

Genetic DNA
Chromatin Conformation

Genetic Imprinting
Differential Transcription

Genetic Mosaicism
Multiple Open Reading Frames

Functional Intronic Sequences  (Enhancers , etc.)

Genomic mRNA
Alternative Splicing

A to I Editing
Differential Translation

Varying Half-Life of Transcripts
Proper Transport from Nucleus  to Cytoplasm

Enzymatic Cleavage or Modification of Transcripts

Proteomic Protein
Degredation (by Ubiquitination, etc.)

Post-Translational Modification
Folding Ability (Intracellular Conditions , Chaperones , etc.)

Proper Process ing and Targeting of Folded ProteinMet

Arg Ser Arg Phe

 
Figure 1.  Sources of variation along the biological progression from gene to 
protein.  For each biological level, those phenomena listed introduce variability 
from 1) DNA sequence through nascent mRNA transcript, 2) immature RNA 
transcript through nascent polypeptide, and 3) unfolded polypeptide through 
protein in its native conformation. 
 
 
                      

A typical simplifying corollary of the central dogma is that phenotype is 

determined solely by the action of proteins.  Adhering to such a model, 

measuring protein levels alone would be perfectly predictive of disease.  In vivo, 

each step in the progression exerts influence over the other steps, both along the 
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normal progression and in a feedback manner.  The idea of deviations from the 

central dogma is well documented [24, 30].  Proteins such as transcription factors 

regulate the expression of genes.  Members of the mammalian LINE-1 family 

encode the necessary products to ensure retrotranscription.  Small interfering 

RNAs mediate post-transcriptional gene silencing via the RNA interference 

pathway [31].  Proteins regulate other proteins via ubiquitins functioning in 

degredation.  Outside environmental influences may also alter the normal 

progression.  Given these deviations from the central dogma, it is important to 

obtain information from multiple levels of the hierarchy.  It is evident that 

measuring proteins alone could miss vital information regarding the enormous 

complexity of biological systems. 

 

Methodology concerns and missing data 

 

Useful data is currently measurable at each of the three main stages along 

the biological progression from DNA to mRNA to protein.  However, the 

techniques used to gather data at each stage introduce experimental error in 

excess of the inherent biological variation in measurement.  Current SNP typing 

methods can accurately and rather efficiently identify differences in nucleotide 

sequences.  The primary limitation to gathering SNP data is the cost—in terms of 

both time and money—of sample acquisition.  Although the monetary cost of 

SNP typing is steadily decreasing, there remain technical issues with such 

popular methods as Matrix Assisted Laser Desorption/Ionization Mass 
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Spectrometry (MALDI-MS), where efficiency is limited by the size of DNA 

products that can be analyzed and the stringent purification necessitated 

because of adduct formation of alkali ions with the phosphate linkages of DNA 

[5].  Techniques such as Serial Analysis of Gene Expression (SAGE), RT-PCR, 

and Oligonucleotide or cDNA microarrays can quantitatively measure gene 

expression levels.  Microarrays and SAGE can measure expression levels for 

thousands of genes simultaneously.  Nonetheless, substantial question marks 

with these high-throughput methods include the binding behavior of promiscuous 

probes in a convoluted solution, quantitative reliability, and the fact that gene 

expression is both temporally and spatially variable—meaning that microarray 

results only represent conditions at a particular time point in a particular 

population of cells.  The various flavors of mass spectrometry are adept at 

identifying proteins in a sample.  However, there are important sources of 

unreliability in MS experiments, including the complex physicochemistry of 

samples with differing ionization tendencies and structural complications, the 

difficulty in tuning the instrument to accurately measure a broad mass range of 

samples, and the correct separation of peaks in spectra [32-35].  Of vital 

importance is the fact that the wide spatial and temporal flux of proteins in an 

organism means that even a perfect measurement is at best a chance snapshot 

of proteomic action.   

 Outside of data that may be missing due to technical errors, it is very 

probable that important data could be missing because researchers chose not to 

collect it.  For example, SNP typing usually focuses on coding sequences, yet 
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involvement of distal control elements or other non-coding regions of DNA is 

commonplace [36].  Additional monetary concerns govern any experiment, 

limiting the amount and types of data that may be collected.  Time is also a 

factor, as the pressure to publish and the transiency of personnel put effective 

limits on the duration of a study.  These factors may limit the collection of data at 

a given level.  Missing data, whether arising from methodological error or holes in 

experimental design, can confound any analysis and thus inferences made about 

molecular etiology.  Such a scenario presents an excellent case for the 

integration of information from multiple biological levels.     

 

Joint analysis simulation study 

 

 We anticipate that the collection of suitable data for joint analysis will 

become commonplace in the near future.  As preparation for the availability of 

such data, we have developed a simulation to test our working hypothesis that 

the integrated analysis of multiple data types will improve the identification of 

biomarkers of clinical endpoints.  The simulation represents an experiment in 

which SNP and protein data have been collected for two hypothetical diseases.  

Certain variables are then selectively deleted from the complete SNP and protein 

dataset to represent a situation in which relevant information is missing from the 

data to be analyzed.  These “missing data” variants of only SNP, only protein, or 

partially missing protein data are evaluated to discern whether joint analysis 

offers benefits in any of these situations.  Details of the simulation study—
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including the simulation models generated, the datasets analyzed, the analysis 

method chosen, the software and hardware used, and the results—are presented 

in subsequent sections of this chapter.  A discussion of the relevance of this 

study and its application to real data is also presented.        

 

Simulation models 

 Figure 2 illustrates the general modeling strategy.  We begin by simulating 

two unlinked and uncorrelated SNPs with equal allele frequencies and genotypes 

consistent with Hardy-Weinberg proportions.  Each SNP additively explains 30% 

or 60% of the variation in its respective protein levels.  Thus, the mean protein 

level associated with the heterozygotes is midway between the two 

homozygotes.  Genotypes and protein levels were simulated using the 

Genometric Analysis Simulation Package or GASP [37]. Each protein level is 

then categorized as high, medium, or low with frequencies of 0.25, 0.50, and 

0.25, respectively.  Disease susceptibility is dependent on an interaction between 

the two proteins.  Under disease model A, subjects affected with the disease 

have medium or high protein levels for both proteins while those that are 

unaffected have low protein levels for at least one of the proteins.  Under disease 

model B, subjects are affected if they have medium protein levels for the first 

protein or the second protein but not both.  This is based on the nonlinear XOR 

function that is not linearly separable.  The difference between these two models 

is that the two proteins in model A each have an independent main effect on 

disease susceptibility in addition to an interaction effect while the proteins in 
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model B only have an interaction effect.  Models similar to A and B have been 

described previously by Li and Reich [38] and Moore et al. [39].  A total of four 

different simulation models were used in the present study.  Each model 

combined the amount of protein variation explained (30% or 60%) with each 

disease model (A or B). 

 

 

Figure 2.  Summary of the simulation models.  Protein levels are simulated using 
an additive genetic model that explains either 30% or 60% of their variation.  
Protein levels are then discretized into high, medium, and low groups.  Under 
disease models A and B, the probability (P) of disease (D) is dependent on the 
combination of protein levels (PL) present.  Here, P(D|PL) = 0 or 1. 
 
 
 



17 

Datasets 

 Each dataset consisted of a total of 100 subjects that were simulated 

using each of the four models.  Approximately half of the subjects were affected 

and half unaffected.  A total of 100 datasets were simulated using each of the 

four models.  We then took each dataset and created seven new datasets that 

consisted of 1) all the SNP and protein variables, 2) both SNPs and protein 1, 3) 

both SNPs and protein 2, 4) just the two SNPs, 5) just the two proteins, 6) just 

protein 1, and 7) just protein 2 (Figure 3).  This study design allows us to 

evaluate the benefit of having multiple data types when all the functional 

variables are present in the dataset or only certain subsets of variables are 

present. 
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Figure 3.  Summary of the dataset variations analyzed.  Variables included in 
each dataset variation are shaded 
 
 
 
Data analysis 

 The test of our working hypothesis that the integrated analysis of multiple 

data types will improve the identification of biomarkers of clinical endpoints 

involved two primary analysis goals.  The first goal was to model the relationship 

between each set of genetic and proteomic variables and the clinical endpoint.  

While many analysis methods, such as Neural Networks, Regression, 

Generalized Additive Models, and others may prove useful for accomplishing this 

goal, the symbolic discriminant analysis method, or SDA [40-43], was selected 

for use here because of its flexibility for modeling different data types.  SDA is a 
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supervised pattern mining approach that carries out variable selection and model 

selection simultaneously and automatically.  Using evolutionary computation as 

the parallel search strategy, SDA builds discriminant functions from a list of 

mathematical operators and explanatory variables that can distinguish between 

disease classes in the data.  In this study, we provided the selected genetic and 

proteomic explanatory variables, plus basic model building blocks consisting of 

arithmetic functions (e.g. +, -, *, /) and additional mathematical functions (e.g. log, 

exp, sqrt, abs, sine, cos) as has been suggested by Reif et al. [43].  SDA was 

thus free to construct classification models consisting of any combination of the 

above mathematical functions and biological variables, without any further a 

priori specification of model structure.  Therefore, no assumptions about the 

relationships among the variables need be pre-specified, and since it has the 

flexibility to operate on continuous or discrete variables, SDA is a logical choice 

for handling multiple data types.  The goal of the evolutionary search is to identify 

the combination of variables and functions that minimizes the overlap of the 

distributions of symbolic discriminant scores among affected and unaffected 

subjects.    A classification error of zero indicates there is no overlap among the 

symbolic discriminant score distributions.  Because we are modeling only 

functional variables in this study, we applied SDA directly to the entire dataset to 

get an estimate of the classification error.  Thus, overfitting (spurious selection of 

noise variables) is not a concern here and the cross-validation and permutation-

testing methods suggested by Moore [44] are not necessary. 
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The second goal of the data analysis was to determine whether there are 

differences in classification error when different subsets of variables are used in 

the analysis, simulating a situation wherein data are missing.  Mean classification 

errors between dataset types defined in Figure 3 were evaluated using a paired t-

test.  The resulting p-values for the differences in the mean classification errors 

between datasets were compared to determine which types of missing data had 

the most significant effect on disease classification and to identify situations in 

which integrating multiple data types was beneficial.   

 

Software and hardware 

 The SDA algorithms are programmed in C and integrated into the lil-gp 

software package (http://garage.cps.msu.edu/software/software-index.html) that 

was used to carry out genetic programming.  In this study, we carried out the 

parallel search using grammatical evolution, a variation on genetic programming 

that utilizes Backus-Naur Form grammars to specify construction of SDA models 

[45].  The SDA modeling was carried out on the VAnderbilt Multi-Processor 

Integrated Research Engine or VAMPIRE, a 380-processor Beowulf-style parallel 

computer system running the Linux operating system.  Each population consisted 

of 100 individuals.  We allowed the genetic programs to run a total of 100 

iterations.  A recombination frequency of 0.6 was used along with a mutation 

frequency of 0.02.  These parameters are standard for evolutionary searches 

[46].  
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Simulation results and discussion 

Table 1 summarizes the average classification errors across the 100 

datasets for each of the four models and each of the combinations of variables 

analyzed.  Figure 4 illustrates the statistical comparison of the mean 

classification errors resulting from the analysis of each combination of variables 

for each of the four models.  As in real-world data, there was overlap in the 

distribution of continuous protein values, thus precluding SDA from achieving 

perfect classification.  For model A, SDA achieved the lowest classification error 

when given both functional proteins alone.  This is expected because disease 

status was assigned based upon protein levels, meaning there is no noise in this 

dataset.  The phenomenon of increased classification error in datasets with both 

SNP and protein data compared with both proteins alone would have been 

mitigated using models with higher heritability between genotype and protein 

level.  The mean classification errors for those datasets consisting of only SNPs 

was significantly higher than those including protein data as the variation 

explained by SNPs decreased to 30%.  Such a result is expected since there 

was not a deterministic relationship between the SNPs and the protein levels.  

SNP data was of increasing utility for classification as the percent variation in 

protein levels explained by the SNPs increased from 30% to 60%.  In the case 

where SNP variation explained 60% of variation in protein levels, the inclusion of 

SNP data with either protein classified significantly better than either protein 

alone.  The mean classification error associated with either protein (P1 or P2) 

alone was consistently high, indicating that information (in SNP or protein form) 
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on both functional proteins is necessary for classification of the disease endpoint.  

The results for model A suggest that having multiple types of data is beneficial 

when the etiological model is complex and one or more variables may be 

missing.   

 

Table 1. Summary of the average classification errors across 100 datasets for 
each model and each type of dataset analyzed. 
 

S1S2P1P2 S1S2P1 S1S2P2 S1S2 P1P2 P1 P2

A 30% 0.1438 0.1981 0.1877 0.3098 0.1133 0.1891 0.1855
A 60% 0.1359 0.1584 0.1550 0.2108 0.1008 0.1913 0.1937
B 30% 0.3313 0.3567 0.3573 0.3946 0.2900 0.3532 0.3517
B 60% 0.3068 0.3231 0.3226 0.3673 0.2848 0.3468 0.3518

Mean classification error for each type of dataset1Model2

 
 

1 Combination of variables analyzed where S1 = SNP1, S2 = SNP2, P1 = Protein1, 
P2 = Protein2 
 

2 A = disease model A (interaction plus main effect), B = disease model B (just 
interaction), 30% = 30% of the protein variation explained by additive genetic 
model, 60% = 60% of the protein variation explained by additive genetic model. 

 
 

The results for model B mirror the pattern seen with model A.  The major 

difference is that the raw classification errors across model B datasets are higher 

because the underlying disease model is more complex.  The best results were 

for dataset variants in which both proteins were present because other variants 

are missing a critical variable for modeling the interaction.  This is expected since 

model B is not linearly separable, and there is thus a deterministic relationship 

between both protein levels and disease risk.  As in model A, the inclusion of 

SNP data was of additional utility as the variation in protein levels explained by 
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the SNPs increased.  These results suggest that the joint analysis of multiple 

data types—in this case, SNP and protein—improves modeling when one of the 

functional proteins is absent and the etiological model consists of a nonlinear 

interaction in the absence of main effects. 
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Figure 4.  Summary of the statistical comparison of mean classification errors for 
each type of dataset for a given heritability (30% or 60%) and model (A or B).  
Mean classification errors between dataset types defined in Figure 3 were 
evaluated using a paired t-test.  The resulting p-values for the differences in the 
mean classification errors between datasets are shaded according to the level of 
statistical significance.   
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Relevance of the joint analysis simulation study and application to real data 

 

How realistic are the disease models? 

For this study we assumed that disease risk was determined by an 

interaction between two proteins.  The primary difference between interaction 

models A and B is that each protein in model A also has an independent main 

effect on disease risk whereas the proteins in model B only influence disease 

through a nonlinear interaction.  The ultimate utility of this study depends on how 

realistic these models are.  While it is unlikely that any human disease follows 

either of these models exactly, Moore [47] has made the argument that nonlinear 

interactions among biomarkers are likely to play a more important role in the 

etiology of common diseases than the independent main effects of any one 

biomarker.  This argument is based on several key ideas.  First, the idea that 

interactions are important has been around for nearly 100 years [48].  Second, 

the ubiquity of biomolecular interactions at the transcriptional, translational, and 

biological network levels suggests that interactions are likely to play a very 

important role in disease susceptibility.  Third, studies of single biomarkers 

typically don’t replicate.  Finally, nonlinear interactions are commonly found when 

properly investigated.  Thus, while model B may not be an accurate model for 

any one disease, it does fall into a category of models that are likely to represent 

the complexity of the genotype to phenotype mapping relationship. 
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How realistic is the scenario in which key functional proteins will be missing from 
the data analyzed? 
 

The models used in this study assume that proteins are the key etiological 

agents for determining disease susceptibility.   How likely is it that one or more of 

the functional proteins might be missing from a given dataset?  Given the 

technical difficulties in accurately measuring and reliably identifying large 

numbers of proteins in a single experiment, it is very likely that there may be 

holes in the protein profile.  The current state of the art is to employ some 

combination of methods such as 2-D gels, HPLC, tryptic digestion, and one of 

the variety of mass spectrometric methods.  Each of these procedures introduces 

its own set of methodological biases and is ideally honed to precisely identify 

proteins meeting a narrow range of criteria. Thus obtaining a reliable portrait of a 

wide range of proteins—both within and across samples—is a vexing problem.  

In a mass spectrometric analysis, the chemical noise characteristic of the raw 

data is normalized away—often obscuring or deleting peaks representing 

proteins in low abundance, which may be important players in protein-protein 

interactions.  The correct identification of a particular protein species’ spectral 

peak in large-scale spectrometric analyses is an active area of research for both 

academics and instrumentation providers [35].  Aside from the procedural 

difficulties of proteomics, the dynamic nature of proteins in tissue provides a 

daunting challenge.  Proteins are in continual spatial and temporal flux; thus even 

an experimentally perfect profile of proteins would represent only a snapshot of 

protein action in the organism for a given region and a given time slice.  

Additionally, preserving the native state of protein molecules subject to 
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denaturation, post-translational modification, and other physico-chemical 

alterations until they can be processed can confound any analysis.   

 

How realistic is the scenario in which functional SNPs are measured when key 
functional proteins are not? 
 

SNPs hold great promise as biomarkers of human disease for several 

reasons.  First, more than 10 million SNPs have been described throughout the 

human genome.  Efforts are underway to determine the minimal subset 

necessary to capture all the common variation in the genome.  Second, they are 

relatively easy to measure using a variety of high-throughput technologies.  As 

these methods become less expensive over the next several years it will be 

possible to measure hundreds of thousands to millions of SNPs in each of 

thousands of samples.  One can envision a time in the near future when it will be 

possible to measure a set of non-redundant SNPs in every gene in the 

genome—although the availability of genome-wide SNP data presents its own 

set of computational challenges [49].   Third, barring somatic mutations, SNPs do 

not change in time and space in an individual.  This is in contrast to both mRNA 

and protein expression levels that are highly variable across both time and 

space.  Fourth, SNPs can have functional consequences on both the levels and 

types of proteins expressed.  Given the limitations of proteomic technologies as 

described above, SNPs hold great promise as biomarkers of human disease.  

This study indicates that the addition of SNPs to protein information may be 

beneficial.  It is reasonable to assume that it will be easier,  and perhaps even 

less expensive, to measure a comprehensive set of SNPs than a comprehensive 
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set of expressed proteins due to technological limitations and the enormous 

variability of protein expression.  If this is true, combining SNPs with proteomics 

data will be a powerful strategy. 

 

Conclusions and future directions 

 

In the present study, we present a working hypothesis that the joint 

analysis of genetic and proteomic data will provide more information for modeling 

disease susceptibility than either alone.  In the context of the simulations 

performed, we conclude that the availability of multiple types of data is beneficial 

when the underlying etiological model is complex and one or more of the 

functional variables are missing.  These results provide a baseline for those 

planning to collect and/or analyze genetic, genomic, and proteomic data from the 

same samples. 

This study represents a first step towards evaluating the merits of 

combining genetic, genomic, and proteomic data from the same samples for the 

detection and characterization of biomarkers of human disease susceptibility.  

From these initial simulation studies, we make the following recommendations.  

First, when the underlying etiology of the disease is likely to be complex, 

measuring multiple types of data is advantageous, especially if it is also likely 

that the technologies are limited in their ability to measure all biomarkers.  Thus, 

we recommend that SNP data be measured in addition to gene expression 

and/or protein data.  Second, we recommend that the multiple types of data be 
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analyzed jointly.  In the present study, a SNP-protein interaction was found when 

the etiological model consisted of two interacting proteins and one of the two 

proteins was missing for technical reasons from the datasets.  It is interesting to 

note that the analysis of each type of data separately may also be beneficial.  For 

example, in the case that the functional SNPs and the functional proteins are all 

present in their respective datasets, separate analyses may provide a type of 

cross-validation.  That is, confidence in the inferences made about the functional 

biomarkers could be increased if the SNPs and proteins discovered through 

statistical modeling are related to the same set of genes.  Finally, we recommend 

that additional simulations be carried out under a wider array of etiological 

models and dataset variations to fully evaluate the usefulness of the joint 

analysis of multiple types of data.  These types of studies should prove 

invaluable to those planning to measure genomic and proteomic data from the 

same samples.   

The next five years will see the joint analysis of multiple data types 

become the standard, rather than the exception, in the study of complex human 

health and disease.  Given the rapid expansion of technologies able to generate 

huge bodies of data, as well as their increasing acceptance in the biomedical 

research community, we anticipate real datasets appropriate for joint analysis will 

become increasingly common in the near future.  The burgeoning field of 

research into high-throughput technologies will lead to continued improvements 

in cost-efficiency and reliability and make their use even more widespread.  With 

these data in hand, joint analysis of multiple biological levels becomes a viable 
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option.  The notion that integration of multiple data types is the only way to truly 

represent a complex system flows naturally from the complexity revealed as 

biologists gain a deeper understanding of common disease etiologies.  

 

Summary of key issues 

 

• Biological organisms are complex systems integrating information at 

myriad levels to arrive at observable phenotypes. 

• Achieving a meaningful understanding of complex phenotypes demands 

the joint analysis of multiple types of information.  

• Development of high-throughput technologies will continue; nonetheless, 

there will always be issues—whether reflecting biological flux or 

methodological error—with data collected from any single experiment. 

• Benefits offered by joint analysis of multiple data types over singular 

analysis include provision of surrogate data to fill gaps in data from any 

one biological level, amelioration of some methodological unreliability via 

the partial redundancy between stages, integration of information that is 

insensitive to spatial and temporal flux (e.g. SNPs) with information 

subject to dynamic changes (mRNA, protein), and evaluation of organisms 

as systems comprising many layers of complexity. 

• Datasets amenable to integrated analysis will become increasingly 

common in the near future, and the joint analysis of multiple data types will 

become the norm, rather than the exception. 
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CHAPTER III 

 

PROTEOMIC BIOMARKERS ASSOCIATED WITH ADVERSE EVENTS 

FOLLOWING SMALLPOX VACCINATION 

 

The complication rate of smallpox vaccine is higher than any other vaccine 

currently in widespread use.  The live vaccinia virus used is reactogenic in a 

significant number of vaccinées.  While the most common adverse events (AEs) 

following inoculation are fever, lymphadenopathy, and rash, severe, life-

threatening AEs including encephalitis and myopericarditis have been observed.  

Given that an unacceptably high rate of adverse reactions occurred in limited, 

pre-screened healthy populations, the complications resulting from a population-

wide vaccination program are potentially disruptive on a vast economic and 

social scale.  Studies are needed to elucidate the underlying immunological 

mechanisms contributing to the development of AEs.  It is hypothesized that 

many systemic AEs, such as fever, lymphadenopathy, and generalized rash, 

share common etiologies involving the inflammatory response.  These systemic 

AEs likely have a proteomic signature in the serum that involves the action of 

cytokines and chemokines.  Therefore, to capture this signature, we used a 

protein microarray technique to measure circulating (serum) levels of 108 

cytokines and chemokines in vaccinées before and one week after primary 

immunization with Aventis-Pasteur smallpox vaccine (APSV).  Of the 74 

individuals with measured proteomic data, 22 suffered a systemic adverse event 
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and 52 did not.  We employed a committee of machine learning and statistical 

methods to identify proteomic biomarkers whose post-vaccination changes were 

associated with adverse events [1].  The committee identified a consensus 

subset of cytokines, which were used to train a final decision-tree model.  Our 

final model included six cytokines:  G-CSF (CSF-3), SCF, MIG (CXCL9), ICAM-1 

(CD54), eotaxin, and TIMP-2.  Changes in dynamic levels of these cytokines 

after vaccination accurately discriminated between AE status classes.  The final 

model points to a cytokine signature associating adverse events with prolonged 

or hyper-activated inflammatory pathways.  This proteomic signature also 

indicates a significant impact of cytokine secretion by fibroblasts in the 

development of adverse events following vaccination.     
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Introduction 

 

Smallpox is a potentially lethal disease caused by the variola virus.  In 

addition to its high mortality rate, smallpox is highly contagious, and its 

successful control through vaccination is one of the greatest triumphs of human 

medicine.  Vaccination against smallpox involves inoculation with live vaccinia 

virus (VV) in the skin.  In most healthy adults, vaccination induces a protective 

response.  The protective response induced by VV may even lessen the severity 

of illness if given within four days after variola virus infection.  Studies 

demonstrate that vaccinia-specific T lymphocytes secrete IFN-γ after 

immunization, and that these cells may be long-lived [2-4].  In a previous study, 

we investigated the effect of the Aventis Pasteur smallpox vaccine (APSV) on a 

limited panel of systemic cytokine concentrations in a cohort of previously 

vaccinia-naïve individuals [5].  Systemic cytokines representing lymphocyte 

functional subsets of Th1 cells (IFN-γ, TNF-α, and IL-2) and Th2 cells (IL-4, IL-5, 

and IL-10) were measured using a sensitive flow cytometric bead array assay 

that allowed multiple cytokine analyses from a single sample [6].  In the systemic 

compartment, smallpox immunization induces an IFN-γ-dominant response one 

week after immunization, with concentrations returning to baseline during 

convalescence.  However, systemic IFN-γ concentration was not discriminatory 

between AE status groups. 

To identify proteomic biomarkers responsible for systemic AEs following 

smallpox vaccination, we precisely quantitated 108 serum cytokines and 
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chemokines using rolling-circle amplification technology (RCAT) [7-13] just 

before (baseline), and one week after (acute phase), immunization with APSV.  

Of 74 individuals studied following primary vaccination, 22 suffered a systemic 

AE.  We employed an unweighted voting strategy among a committee of 

machine learning methods and statistical procedures to limit the number of false 

discoveries while maintaining statistical power.  We used support vector 

machines (SVMs), nearest shrunken centroids (NSCs), and a false discovery 

rate (FDR) corrected Wilcoxon rank-sum test to select the soluble factors most 

associated with AEs.  We then used a decision tree to model the functional 

relationship between the selected cytokines and systemic AEs.  In this analysis, 

we find systemic cytokine patterns characteristic of inflammation marked by the 

prominent induction of IL-17 and IFN-γ related cytokines, as well as patterns 

characteristic of tissue inflammation and moderate destruction.   

 

Subjects, materials, and methods 

 

Study subjects 

Healthy adult subjects 18-32 years of age were enrolled in a multi-center 

study of primary immunization against smallpox using the APSV in the National 

Institutes of Health Vaccine and Treatment Evaluation Units.  At the Vanderbilt 

University Medical Center site, 148 volunteers were enrolled in this NIH-

sponsored APSV immunization trial (NIH-DMID Protocol 02-054).  Vaccines, 

study subjects, and study design were previously described in detail [14].  All 



39 

subjects participating in the main smallpox immunization study at the Vanderbilt 

University Medical Center were invited to participate in the cytokine substudy.  

Serum samples for cytokine analysis were obtained following informed consent 

under approval from the Vanderbilt University Institutional Review Board from 

107 of the 148 subjects vaccinated in this study at Vanderbilt.  All 22 subjects 

suffering systemic AEs among the 107 who donated serum were included in this 

analysis, and 52 subjects who did not experience any AE were used as a control 

group.  

 
 
Clinical assessments 

Trained physicians and nurse providers examined the subjects by history 

and physical examination for indications of vaccine take (presence of a vesicle or 

pustule at the inoculation site) and AEs at five post-immunization visits in the first 

month (on days 3-5, 6-8, 9-11, 12-15, and 26-30).  For the purposes of the 

current study, we considered the occurrence of three systemic AEs: generalized 

rash, fever, and lymphadenopathy.  Fever was defined as an oral temperature > 

38.3 ºC.  A generalized rash was defined as skin eruptions in regions not 

contiguous with the site of vaccination.  The frequent acneiform rashes seen in 

this trial have been described elsewhere [15].  Lymphadenopathy was defined as 

tenderness or enlargement of regional lymph nodes associated with vaccination. 
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Sample collection 

Pre-vaccination serum samples (baseline) were collected during a 

screening visit immediately prior to vaccination, and post-vaccination samples 

were obtained 6-9 days after vaccination (acute phase).  Serum samples were 

collected in 5 ml Vacutainer serum separator tubes (Becton Dickinson, San Jose, 

CA) and were centrifuged at 700 x g for 10 minutes.  The serum then was 

collected, aliquoted into cryovials (Sarstedt Inc., Numbrecht, Germany) and 

stored at –80 ºC until assayed for cytokine concentrations.  RCAT was used to 

measure 108 serum cytokines and chemokines for all 22 subjects who 

experienced a systemic AE and 52 subjects who did not experience an AE.  

Because we are studying cytokine expression in the serum compartment, we 

focus on systemic AEs, which we expected to be more strongly associated with 

serum cytokine expression than would a local AE. 

 

Proteomic assay 

The expression levels of 108 protein analytes were measured in 100 μL 

serum aliquots from the patient samples using custom dual antibody sandwich 

immunoassay arrays, as described in [7-13].  The list of analytes is shown in 

Table 1.  Briefly, monoclonal capture antibodies specific for each analyte were 

fixed to glass slides, with 12 replicate spots for each analyte.  Duplicate samples 

of sera were incubated for 2 hours, and then washed.  Slides were then 

incubated with secondary biotinylated polyclonal antibodies, and signals were 

amplified using a ‘rolling circle’ method [10].  Quality control measures included 
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optimization of antibody pairs, the use of internal controls to minimize array-to-

array variation, and standardized procedures of chip manufacturing [10].  Arrays 

were scanned using a Tecan LS200 unit and mean fluorescence intensities 

(MFIs) were generated with customized software.  To ensure a dynamic working 

range for each assay, 15 serial dilutions of recombinant analytes at known 

concentrations (studied in parallel on each slide) were used to develop best-fit 

equations for each analyte and the upper and lower limits of quantitation were 

defined.  Because of the broad individual range of systemic cytokine expression 

before and after immunization, changes in serum cytokine concentrations during 

the early post-immunization phase were calculated as the percent of the 

corresponding individual’s baseline expression at the pre-vaccination visit.  

 
 
Table 1.  Gene names and symbols of 108 protein analytes measured in 100 μL 
serum aliquots from the patient samples using custom dual antibody sandwich 
immunoassay arrays.  (Continued on following pages) 
 

Gene Symbol Gene Name 

CSF3 (G-CSF) Colony stimulating factor 3 (granulocyte) 
IL-10 Interleukin 10 
IFNG Interferon, gamma 

ALCAM Activated leukocyte cell adhesion molecule 
ANGPT4 Angiopoietin 4 

BDNF Brain-derived neurotrophic factor 
CXCL13 (BLC) Chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant) 
CCL28 (MEC) Chemokine (C-C motif) ligand 28 

TNFSF7 (CD27) Tumor necrosis factor (ligand) superfamily, member 7 
TNFSF8 (CD30) Tumor necrosis factor (ligand) superfamily, member 8 
CCL27 (CTACK) Chemokine (C-C motif) ligand 27 
TNFRSF21 (DR6) Tumor necrosis factor receptor superfamily, member 21 

EGF Epidermal growth factor (beta-urogastrone) 
CXCL5 (ENA78) Chemokine (C-X-C motif) ligand 5 

CCL11 (Eot) Chemokine (C-C motif) ligand 11 
CCL26 (Eot3) Chemokine (C-C motif) ligand 26 
CCL24 (Eot2) Chemokine (C-C motif) ligand 24 
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FGF4 Fibroblast growth factor 4 (heparin secretory transforming protein 1) 
FGF7 Fibroblast growth factor 7 (keratinocyte growth factor) 
FGF9 Fibroblast growth factor 9 (glia-activating factor) 

FGF2 (FGFB) Fibroblast growth factor 2 (basic) 
FGF1 Fibroblast growth factor 1 (acidic) 
FAS Fas (TNF receptor superfamily, member 6) 

FASLG Fas ligand (TNF superfamily, member 6) 
FLT3LG Fms-related tyrosine kinase 3 ligand 

FST Follistatin 
CX3CL1 Chemokine (C-X3-C motif) ligand 1 (fractalkine, neurotactin) 

CXCL6 (GCP2) Chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2) 
GDNF Glial cell derived neurotrophic factor 

CSF2 (GMCSF) Colony stimulating factor 2 (granulocyte-macrophage) 
CXCL3 (GRO3) Chemokine (C-X-C motif) ligand 3 
CXCL2 (GRO2) Chemokine (C-X-C motif) ligand 2 
CCL14 (HCC1) Chemokine (C-C motif) ligand 14 
CCL16 (HCC4) Chemokine (C-C motif) ligand 16 

HGF Hepatocyte growth factor (hepapoietin A; scatter factor) 
TNFRSF14 

(HVEM) 
Tumor necrosis factor receptor superfamily 14 (herpesvirus entry mediator) 

CCL1 (I309) Chemokine (C-C motif) ligand 1 
CXCL11 (ITAC) Chemokine (C-X-C motif) ligand 11 

ICAM1 Intercellular adhesion molecule 1 (CD54), human rhinovirus receptor 
ICAM3 Intercellular adhesion molecule 3 
IGF2 Insulin-like growth factor 2 (somatomedin A) 

IGF1R Insulin-like growth factor 1 receptor 
IGFBP1 Insulin-like growth factor binding protein 1 
IGFBP3 Insulin-like growth factor binding protein 3 
IGFBP4 Insulin-like growth factor binding protein 4 
IGFBP2 Insulin-like growth factor binding protein 2, 36kDa 
IL10RB Interleukin 10 receptor, beta 
IL-13 Interleukin 13 
IL-15 Interleukin 15 
IL-17 Interleukin 17 (cytotoxic T-lymphocyte-associated serine esterase 8) 
IL-1A Interleukin 1, alpha 
IL-1B Interleukin 1, beta 

IL1-RN Interleukin 1 receptor antagonist 
IL1RL2 Interleukin 1 receptor-like 2 

IL-2 Interleukin 2 
IL2RB Interleukin 2 receptor, beta 
IL2RA Interleukin 2 receptor, alpha 
IL-3 Interleukin 3 (colony-stimulating factor, multiple) 
IL-4 Interleukin 4 
IL-5 Interleukin 5 (colony-stimulating factor, eosinophil) 
IL-6 Interleukin 6 (interferon, beta 2) 
IL-7 Interleukin 7 
IL-8 Interleukin 8 

IL2RG Interleukin 2 receptor, gamma (severe combined immunodeficiency) 
IL5RA Interleukin 5 receptor, alpha 
IL-9 Interleukin 9 
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SELL Selectin L (lymphocyte adhesion molecule 1) 
CSF1 Colony stimulating factor 1 (macrophage) 

CSF1R Colony stimulating factor 1 receptor 
CCL2 (MCP1) Chemokine (C-C motif) ligand 2 
CCL8 (MCP2) Chemokine (C-C motif) ligand 8 
CCL7 (MCP3) Chemokine (C-C motif) ligand 7 
CCL13 (MCP4) Chemokine (C-C motif) ligand 13 
CXCL9 (MIG) Chemokine (C-X-C motif) ligand 9 (monokine induced by gamma interferon)
CCL3 (MIP1A) Chemokine (C-C motif) ligand 3 
CCL4 (MIP1B) Chemokine (C-C motif) ligand 4 
CCL5 (MIP1D) Chemokine (C-C motif) ligand 5 
CCL20 (MIP3A) Chemokine (C-C motif) ligand 20 
CCL19 (MIP3B) Chemokine (C-C motif) ligand 19 

MMP7 Matrix metalloproteinase 7 (matrilysin, uterine) 
MMP9 Matrix metalloproteinase 9 (gelatinase B, 92kDa gelatinase) 

CCL23 (MPIF1) Chemokine (C-C motif) ligand 23 
NTF3 Neurotrophin 3 
NTF5 Neurotrophin 5 (neurotrophin 4/5) 
OSM Oncostatin M 
PARC P53-associated parkin-like cytoplasmic protein 

PDGFRA Platelet-derived growth factor receptor, alpha polypeptide 
PECAM1 Platelet/endothelial cell adhesion molecule (CD31 antigen) 

PGF Placental growth factor, vascular endothelial growth factor-related protein 

TNFRSF11A Tumor necrosis factor receptor superfamily, member 11a, activator of 
NFKB 

CCL5 (RANTES) Chemokine (C-C motif) ligand 5 
KITLG (SCF) KIT ligand 
KIT (SCFR) V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 

CXCL12 (SDF1) Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 
IL1RL1 Interleukin 1 receptor-like 1 

CCL17 (TARC) Chemokine (C-C motif) ligand 17 
TGFA Transforming growth factor, alpha 

TIMP-2 Tissue inhibitor of metalloproteinase 2 
TIMP1 Tissue inhibitor of metalloproteinase 1  

TNFRSF1A Tumor necrosis factor receptor superfamily, member 1A 
TNF Tumor necrosis factor (TNF superfamily, member 2) 
LTA Lymphotoxin alpha (TNF superfamily, member 1) 

TNFRSF10A Tumor necrosis factor receptor superfamily, member 10a 
TNFRSF10D Tumor necrosis factor receptor superfamily, member 10d 

VEGF Vascular endothelial growth factor 
KDR Kinase insert domain receptor (a type III receptor tyrosine kinase) 
BTG2 BTG family, member 2 
NM Neutrophil migration 
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Statistical analysis methods 

Because the types of proteomic effects contributing to systemic AEs after 

vaccination have not been fully characterized, as well as the fact that changes in 

the cytokine concentrations measured followed non-standard distributions, we 

employed a committee of machine learning and statistical methods to identify 

AE-associated proteomic biomarkers.  Since each method in the committee was 

chosen for its unique analytical perspective, agreement (consensus) between 

methods on the importance of particular variables indicates that the association 

of that variable with AEs is more than a single method-specific bias.  Consensus 

cytokines were defined as those identified by at least two of the three committee 

methods.  After using the committee to identify a consensus subset of cytokines 

whose post-vaccination changes were associated with adverse events, a final 

decision-tree model was built from these variables.  Descriptions of each method 

in our committee are given below. 

Modern high-throughput experimental techniques allow for the 

simultaneous testing of multitudes of statistical hypotheses.  The issue of 

multiple-testing arises in such situations, with the probability of false-positive 

results in a raft of tests increasing with the total number of tests (N) performed.  

For a single statistical hypothesis test in the context of this study, the discrepancy 

in cytokine levels between the two AE groups is declared significant if the p-value 

is < α.  Traditionally, α is set to 0.05, meaning that the probability of making a 

Type I (false-positive) error is approximately α.  A naïve solution to the multiple-

testing problem is the Bonferroni correction, which chooses a significance level of 
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α* = α / N.  This method takes the number of hypotheses tested into account, but 

the significance level required to declare a positive association becomes 

prohibitively stringent as N grows large. 

An alternative statistical procedure that controls the number of type I 

errors while providing reasonable power when performing multiple hypothesis 

tests is the false-discovery rate (FDR) method [16].  The FDR procedure returns 

a significance threshold linked to the distribution of p-values generated by a 

statistical test, controlling the average fraction of false discoveries made among 

the multiple hypothesis tests whose null hypotheses were rejected.  The q-value 

measures the proportion of false-positive occurrences (i.e. the false-discovery 

rate) when a particular test is declared significant.  We used the non-parametric 

Wilcoxon rank-sum test to compare means between systemic AE and non-AE 

groups.  Using a false discovery rate q = 0.3, we found the significance threshold 

to be 0.02.  The unweighted voting procedure involving SVM and NSC 

(described below) was used to further filter out spurious associations.  Unless 

otherwise stated, methods were implemented in the MATLAB programming 

language Version 7.1 (release 13). 

The other two methods in our committee were NSC and SVM, both of 

which are supervised machine learning methods, meaning that the outcome 

classes are known to the method.  In this study, we considered two classes of 

individuals:  those experiencing systemic adverse events (AE) versus those 

without a reported adverse event (non-AE), although the particular AE subsets 



46 

could be treated as multiple classes in multi-class implementations of these 

algorithms.   

For binary classification tasks, a Support Vector Machine (SVM) finds a 

hyper-plane that maximally separates training data from the two classes.  The 

optimal hyper-plane maximizes the separation (margin) between individuals from 

each class.  Individuals (each representing a vector of measured proteomic 

variables) closest to the hyper-plane are referred to as support vectors.  SVMs 

create non-linear separations by using a kernel technique to automatically realize 

a non-linear mapping to a feature space.  The hyper-plane found by the SVM in 

feature space corresponds to a non-linear decision boundary in input space [17].  

We implemented SVM using the GEMS (Gene Expression Model Selector 

Version 2.0.2) [18] analysis software.  Parameters included a radial basis 

function kernel, Markov blanket feature selection [19], and ten-fold cross-

validation (CV).  Prediction accuracy was calculated on each test set created 

during the ten stage CV procedure, achieving an average prediction accuracy of 

69%.  SVM found seven cytokines predictive of AE status, five of which passed 

our inclusion criterion of consensus with the other committee methods.  

Nearest Shrunken Centroids (NSC) [20] was the final statistical learning 

method used in our committee strategy to identify consensus proteomic 

biomarkers.  NSC is appropriate for such a task because of its ability to perform 

automatic feature selection.  For each cytokine i, the k components of the class 

centroids ikx  (the mean change of cytokine i for individuals in class k) are shrunk 

toward the overall centroid ix  (the mean change of cytokine i across all 
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individuals).  Here, k = 2, corresponding to the two AE classes.  The centroids 

are shrunk by a t-statistic-like quantity ikd ′ , which is a measure of the ability of 

cytokine i to distinguish the class-k centroid from the overall centroid.  If ikd ′  is 

zero, then the cytokine-i component of the class-k centroid is equal to the 

component of the overall centroid, and this cytokine does not contribute to 

classification for class-k.  We used the same discriminant score as in Tibshirani 

et al. [20].  Ten-fold CV was used to tune the regularization term 0s  as well as the 

shrinkage Δ .  We found an average prediction accuracy of 70% with 2.1Δ =  and 

0 0.002s = .  NSC required less computational time than SVMs.  Four out of five 

cytokines selected by NSC overlapped with those selected by SVM.   

The final step of our analysis strategy was to create an interpretable 

model from the cytokines found by consensus among the three feature-selection 

methods (FDR-Wilcoxon, SVM, and NSC).  Decision trees were chosen to build 

the final AE model because of their ready interpretability and explicit modeling of 

variable interactions.  We used the implementation of the C4.5 decision-tree 

algorithm provided in the Weka machine learning software package [21] to obtain 

the model in Fig. 1 (see Results section).  Individuals are classified into AE or 

non-AE groups by sorting down a dichotomous tree toward terminal leaves.  

Starting from the root, the tree splits at a cytokine according to how well the 

relative change of a given cytokine separates individuals into the appropriate 

classes.  The relative change threshold is calculated by choosing among a set of 

possible values for each particular split.  Using information gain to rank 

cytokines, we place cytokines at tree nodes with the greatest gain among 
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attributes not yet considered in the path from the root node.  We used a 25% 

confidence value for pruning branches that do not improve training accuracy—

finding the CV accuracy to be insensitive to changes in this value.  We optimized 

the minimum number of instances that must be present from each AE class in 

the training data for a new leaf to be created to handle those instances.  For 

these data, a minimum of 5 instances resulted in a more parsimonious tree that 

more readily generalizes to test sets.  

 

Results 

 

This study aimed to shed light on the proteomic mechanisms underlying 

the high rate of AEs reported in subjects receiving smallpox vaccine [15].  We 

measured serum concentrations of cytokines in vaccinia-naïve adults at two time 

points:  pre-vaccination (baseline) and one week post-vaccination (acute phase). 

Since AEs of a systemic nature, such as fever, generalized rash, and 

lymphadenopathy are likely related to circulating immune mediators, this study 

sought to determine whether systemic alterations of serum cytokines are 

associated with these AEs.  In our clinical study, systemic AEs were reported in 

22 subjects.  There were no subjects reporting serious AEs—defined by the need 

for clinic or emergency visits or for hospitalization related to vaccination.  

Subjects without a reported AE (n = 52) exhibited significantly different serum 

cytokine signatures than subjects with a reported systemic AE (n = 22). 
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The committee strategy identified six consensus cytokines that accurately 

discriminated the two AE status classes:  stem cell factor (SCF), monokine 

induced by interferon-γ (MIG), tissue inhibitor of metalloproteinases-2, 

granulocyte colony stimulating factor (G-CSF or CSF-3), intercellular adhesion 

molecule-1 (ICAM-1 or CD54), and eotaxin.  The feature selection results from 

the committee are summarized in Table 2, with cytokines ordered by Wilcoxon p-

values.   

The committee consensus strategy aims to reduce spurious associations 

due to method-specific biases.  Our results indicate that such a strategy may be 

beneficial, even when using corrective procedures such as the FDR.  While a q-

value of 0.3 can be interpreted to mean that up to 30% of the consensus 

cytokines are false discoveries, it does not mean that the false discoveries are 

the 30% with the highest p-values.  The unweighted committee voting method 

eliminated two of the seven cytokines selected by the FDR-Wilcoxon procedure.        
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Table 2.  Cytokines listed in the first column were found to discriminate between 
AE and non-AE individuals by at least one of the three statistical methods: false 
discovery rate (FDR) correction to the Wilcoxon rank-sum test, nearest shrunken 
centroids (NSC), and support vector machines (SVM).  For each cytokine row 
listed, an X in an FDR, NSC, or SVM column indicates that this cytokine was 
selected by the corresponding method. Highlighted in bold are cytokines 
identified by consensus of at least two of the three statistical methods.  These 
highlighted cytokines were used to train a final decision-tree model (see Figure 
1).  The cytokines are ordered by Wilcoxon rank-sum p-value, listed in the fifth 
column.  The last two columns show the mean relative percent change from 
baseline for the AE and non-AE groups, respectively. 

 
Gene 

Symbol FDR NSC SVM 
Wilcoxon 
p-value 

Change 
(AE) 

Change 
(non-AE) 

ICAM-1 X X   0.0013 37.2% 17.8% 
G-CSF (CSF3) X   X 0.0029 994.5% 48.3% 

TIMP-2 X X X 0.0054 27.5% 10.0% 
IL-10 X     0.0124 378.0% -2.9% 

MIG (CXCL9) X X X 0.0128 53.2% 19.4% 
ALCAM X     0.0151 21.2% 10.1% 

SCF X X X 0.0166 19.4% -12.7% 
MPIF1 (CCL23)   X   0.0274 75.8% 36.2% 

Eotaxin   X X 0.0463 4.0% -6.6% 
IL-4     X 0.0476 21.8% 7.8% 
IL-8   X   0.0577 12.4% -3.7% 

NTF3   X   0.0990 17.8% -1.3% 
 
 
 
To obtain a descriptive, interpretive model of the functional relationship 

between the set of cytokines selected by our committee method and systemic 

AEs, the final decision-tree in Figure 1 was trained on the full data.  This model 

correctly classifies 92% of individuals in the data.  Using ten-fold CV and 

specifying a minimum of five individuals for creation of new branches, we 

estimated the prediction accuracy of the final decision-tree model to be 77%.  

The final model includes the cytokines ICAM-1, G-CSF, eotaxin, and TIMP-2. 
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Figure 1.  Final pruned decision-tree model for predicting AE status from 
cytokine expression changes after vaccination.  Cytokines identified by the 
unweighted voting filter (SCF, MIG, TIMP-2, G-CSF, ICAM-1, and eotaxin) were 
selected to train the decision-tree classifier.  Input (ovals) for the if-then rules is 
the percentage change of the subject’s cytokine level during the acute phase 
relative to the baseline cytokine level. Based on the value of the input, the 
inequalities guide the decision of which branch to follow. Given an individual’s 
cytokine profile, one follows the decision branches from the root (ICAM-1) 
downward to one of the six terminal nodes (AE or non-AE boxes).  When one of 
the following decision branches is reached, an individual is predicted to be 
classified as AE or non-AE depending on which inequality is satisfied:  ICAM-1 ≤ 
11% (non-AE), Eot ≤ -10% (non-AE), TIMP-2 ≤ 51% (AE), TIMP-2 > 51% (non-
AE), TIMP-2 ≤ 37% (non-AE), TIMP-2 > 37% (AE).   The misclassification rates 
are given in parentheses below each terminal node. 
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Discussion 

 

Immune responses involve an intricate network of both local and systemic 

signaling proteins.  These cytokine and chemokine signals direct both the action 

and localization of immunological effectors.  Dysfunction within any of these 

communication networks—whether upregulation of activating signals or lack of 

proper inhibitory signals—can tip the balance of a normally appropriate response 

towards one in which the immune effectors actually contribute to illness.  Adverse 

events in response to smallpox vaccination may represent such a situation.  

Since subjects in the present study were successfully vaccinated, it is thought 

that the development of AEs represents excessive and/or protracted activity of 

appropriate immune responses. 

Since comprehensive data concerning serum cytokine concentrations 

following smallpox vaccination have not been gathered previously, there is a 

major knowledge gap in our understanding of the systemic mechanisms 

contributing to AEs associated with vaccination.  Filling this knowledge gap will 

provide important details regarding the pathophysiology of AEs and the 

successful control of poxvirus infections.  The present study contributes to this 

learning process by identifying patterns of serum cytokine expression changes 

associated with systemic AEs after vaccination. 

Previous studies have shown that nearly all subjects with vesicle formation 

exhibit strong VV-specific cytotoxic T lymphocyte (CTL) responses and increased 

counts of IFN-γ-producing T cells following vaccination with APSV [4].  These 
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findings suggested that vigorous T-cell and humoral responses are induced if a 

vesicle forms, independent of vaccine dose.  The clinically observable lesions at 

the inoculation site in subjects receiving APSV suggests the possibility that 

biologically significant cytokine production occurred locally in our subjects without 

presenting dramatic increases in the systemic compartment.  Since our aim was 

to identify serum cytokine patterns predictive of systemic AEs, relevant local 

cytokine dynamics could have been missed.  However, serum cytokine 

expression is more readily and reproducibly measured for rapid clinical 

diagnostic purposes. 

In the present study, we precisely measured systemic concentrations of 

108 cytokines and chemokines in serum samples obtained prior to vaccination, 

and one week post-vaccination, using a sensitive protein microarray technique 

incorporating RCAT [7-13, 22].  To extract a useful subset of cytokines that 

discriminates between subjects who suffered at least one systemic AE (fever, 

lymphadenopathy, or generalized rash) from those who did not experience an 

AE, we employed three different class comparison methods: FDR-Wilcoxon, 

SVM, and NSC.  A cytokine was selected for building the final decision-tree 

model if it was identified by at least two of these three methods.  Decision trees 

were used to derive a descriptive, interpretable model of the functional 

relationships between the six selected cytokines and AE status.  It should be 

noted that these serum cytokine/chemokine expression levels were measured 

early in the period following vaccination, well before most AEs had occurred.  

Therefore, the model could be considered predictive of subsequent AEs.  
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Profiling at early time points following immunization may be useful in predicting 

AE risk and directing at-risk subjects to properly recognize vaccine-related 

symptoms. 

Considering the cytokines selected by our consensus strategy, three are 

in the pro-inflammatory interleukin-17 (IL-17) signaling pathway.  In this pathway, 

fibroblasts, stimulated by IL-17, are induced to secrete inflammatory and 

hematopoietic cytokines, including G-CSF, SCF (both identified in our committee 

method), and IL-8 (also known as CXCL8; identified by the NSC method).  These 

cytokines incite a range of activities that include neutrophil proliferation and 

differentiation.  IL-17 has been shown to enhance cell surface expression of the 

endothelial cell adhesion molecule ICAM-1 on human fibroblasts [23].  In turn, 

increased expression of ICAM-1 was shown to aid in T-cell recruitment during 

contact hypersensitivity (related to delayed-type hypersensitivity) [24].  In the 

present study, soluble ICAM-1 was a strong discriminator of smallpox vaccine-

related AE status.  In fact, ICAM-1 was the root node of the decision-tree model 

in Figure 1, meaning that the effect of other cytokines in our model on AE status 

was conditionally dependent on changes in serum concentration of ICAM-1.  

While key cytokines in the IL-17 pathway play an important role in our analysis, 

changes in circulating levels of IL-17 itself were not found to be differentially 

expressed between AE status groups.  Had different time points been chosen for 

cytokines measurement, IL-17 may have been selected as important.  While the 

one-week post-immunization time point captures the peak concentration for most 

cytokines, it may not be representative of all AE-relevant cytokines. 
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Another cytokine selected was Eotaxin, which is a chemokine ligand for 

CCR3 (also known as CD193) that activates and recruits eosinophils to the site 

of inflammation and stimulates macrophage activation.  Activated eosinophils can 

release reactive oxygen species that contribute to host tissue damage during 

chronic inflammatory responses.   

The committee also selected monokine induced by IFN-γ (MIG or CXCL9), 

a member of the C-X-C subfamily of chemokines and an attractor of activated T 

cells expressing chemokine receptor CXCR3 [25].  The IFN-γ-induced MIG is 

produced by macrophages and may play a crucial role in enhancing the 

recruitment and activation of T cells [26].   

The dual function of TIMP-2 in the final model highlights an important 

property of decision trees in allowing a flexible modeling framework.  TIMP-2 was 

found to be associated with AEs by all three statistical learning methods, and its 

placement in the decision tree (Fig. 1) points to a complex role in AE 

development.  TIMP-2 appears in two branches of the decision tree, and its effect 

on the prediction of AE status depends on the context of other cytokines in the 

tree.  Proteins in the TIMP family inhibit the matrix metalloproteinases (MMP), a 

group of peptidases involved in degradation of extracellular matrix (ECM).  

Normally, TIMP-2 accelerates wound healing by enhancing the proliferation of 

epidermal keratinocytes and dermal fibroblasts.  Following the branches toward 

TIMP-2 on the right, when an individual’s increase in TIMP-2 expression is less 

than 51%, then that individual experiences an AE.  This is presumably because 

the balance between the MMP and its inhibitor tips toward the MMP—promoting 
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excess ECM destruction and further inflammation.  However, this situation only 

occurs when G-CSF expression is substantially increased, relative to baseline.  

When the increase in G-CSF is less than 97% and the expression of eotaxin 

does not decrease by more than 10%, then the role of TIMP-2 is qualitatively 

different.  Hence, accurate predictions of AE status based on the expression of 

TIMP-2 must be taken in the context of other cytokines.  This finding 

demonstrates a salient challenge in complex molecular investigations of clinical 

populations:  statistical interactions between variables must be taken into 

account when testing association with a phenotype.  Although it is possible that 

the right-hand branch of the decision tree is the result of over-fitting, this type of 

complex TIMP-2 behavior has been observed previously—where the 

physiological concentration and proteomic context affects whether TIMP-2 has 

an inhibitory versus activating effect on MMPs [27].           

Application of our consensus analysis strategy to protein microarray data 

indicates a cytokine signature for the pathogenesis of AEs involving stem cell 

factor (SCF), monokine induced by IFN-γ (MIG), tissue inhibitor of 

metalloproteinases 2 (TIMP-2), granulocyte colony stimulating factor (G-CSF or 

CSF-3), intracellular adhesion molecule 1 (ICAM-1), and eotaxin.  This signature 

suggests that the development of AEs involves excess stimulation of 

inflammatory pathways and the imbalance of tissue damage repair pathways.   

Our model of adverse event development following smallpox vaccination 

involves interactions among soluble cytokines whose excess local secretion 

leads to remote diffusion and subsequent detection in circulation.  It is 
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hypothesized that the initial local tissue injury in subjects suffering AEs after 

vaccination triggers an acute inflammatory response not unlike a delayed-type 

hypersensitivity (DTH) reaction.  During the elicitation phase of DTH, antigen 

presentation to Th1 cells in the dermis leads to the release of T-cell cytokines 

such as IFN-γ and IL-17 [28, 29].  A cascade of cytokines and chemokines is 

then released—enhancing the inflammatory response by inducing the migration 

of monocytes into the lesion and their maturation into macrophages.  This signal 

cascade attracts additional T cells as well.  The dominant cytokine responses in 

the systemic compartment were characteristic of robust macrophage recruitment 

and activation.  Taken together, the prevalence of inflammatory cytokines in AE 

development, coupled with previous work demonstrating the importance of T-cell 

derived factors and the similarities of systemic AEs recorded after smallpox 

vaccination with the clinical presentation of macrophage activation syndrome 

(MAS) [30], suggests that systemic AEs following smallpox vaccination may be 

consistent with low-grade MAS caused by virus replication and hyperactive tissue 

injury and repair mechanisms.  

 



58 

Acknowledgments 

 

We would like to thank Jennifer Hicks, Karen Adkins (Vanderbilt Pediatric 

Clinical Research Office) and the Vanderbilt General Clinical Research Center 

staff for nursing support, and Molecular Staging Inc. for providing RCAT data. 

This work was supported by the NIH/NIAID Vaccine Trials and Evaluation Unit 

contract number NO1-AI-25462, by NIH grants K25-AI-64625, AI-59694 and RR-

018787, and by infrastructure from the Vanderbilt NIH General Clinical Research 

Center (RR-00095).  Generous support was also provided by the Vanderbilt 

Program in Biomathematics. 

 

References 

 

1.  McKinney BA, Reif DM, Rock MT, Edwards KM, Kingsmore SF, Moore 
JH, Crowe JE, Jr. Cytokine expression patterns associated with systemic 
adverse events following smallpox immunization. J Infect Dis 
2006;194:444-53 

2.  Ennis FA, Cruz J, Demkowicz WE, Jr., Rothman AL and McClain DJ. 
Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-
gamma-producing T cells after smallpox vaccination. J Infect Dis 
2002;185:1657-9 

3.  Demkowicz WE, Jr., Littaua RA, Wang J and Ennis FA. Human cytotoxic 
T-cell memory: long-lived responses to vaccinia virus. J Virol 
1996;70:2627-31 

4.  Rock MT, Yoder SM, Wright PF, Talbot TR, Edwards KM and Crowe JE, 
Jr. Differential regulation of granzyme and perforin in effector and memory 
T cells following smallpox immunization. J Immunol 2005;174:3757-64 

5.  Rock MT, Yoder SM, Talbot TR, Edwards KM and Crowe JE, Jr. Adverse 
events after smallpox immunizations are associated with alterations in 
systemic cytokine levels. J Infect Dis 2004;189:1401-10 



59 

6.  Chen R, Lowe L, Wilson JD, et al. Simultaneous Quantification of Six 
Human Cytokines in a Single Sample Using Microparticle-based Flow 
Cytometric Technology. Clin Chem 1999;45:1693-1694 

7.  Schweitzer B RS, Grimwade B, Shao W, Wang M, Fu Q, Shu Q, Laroche 
I, Zhou Z, Tchernev VT, Christiansen J, Velleca M, Kingsmore SF. 
Multiplexed protein profiling on microarrays by rolling-circle amplification. 
Nature Biotechnology 2002;20:359-365 

8.  Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of 
ovarian cancer. Proc Natl Acad Sci U S A 2005;102:7677-82 

9.  Kader HA, Tchernev VT, Satyaraj E, et al. Protein microarray analysis of 
disease activity in pediatric inflammatory bowel disease demonstrates 
elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn's 
disease and ulcerative colitis patients in remission versus active disease. 
Am J Gastroenterol 2005;100:414-23 

10.  Perlee L, Christiansen J, Dondero R, et al. Development and 
standardization of multiplexed antibody microarrays for use in quantitative 
proteomics. Proteome Sci 2004;2:9 

11.  Yang D, Chen Q, Rosenberg HF, et al. Human ribonuclease A superfamily 
members, eosinophil-derived neurotoxin and pancreatic ribonuclease, 
induce dendritic cell maturation and activation. J Immunol 2004;173:6134-
42 

12.  Kaukola T, Satyaraj E, Patel DD, et al. Cerebral palsy is characterized by 
protein mediators in cord serum. Ann Neurol 2004;55:186-94 

13.  Schweitzer B, Wiltshire S, Lambert J, et al. Inaugural article: 
immunoassays with rolling circle DNA amplification: a versatile platform for 
ultrasensitive antigen detection. Proc Natl Acad Sci U S A 2000;97:10113-
9 

14.  Talbot TR, Stapleton JT, Brady RC, et al. Vaccination success rate and 
reaction profile with diluted and undiluted smallpox vaccine: a randomized 
controlled trial. Jama 2004;292:1205-12 

15.  Talbot TR, Bredenberg HK, Smith M, LaFleur BJ, Boyd A and Edwards 
KM. Focal and generalized folliculitis following smallpox vaccination 
among vaccinia-naive recipients. Jama 2003;289:3290-4 

16.  Benjamini YaH, Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. Journal of the Royal Statistical 
Society B 1995;57:289-300 

17.  Vapnik V. Statistical Learning Theory. New York: Wiley, 1998 



60 

18.  Statnikov A, Aliferis CF and Tsamardinos I. Methods for multi-category 
cancer diagnosis from gene expression data: a comprehensive evaluation 
to inform decision support system development. Medinfo 2004;11:813-7 

19.  Aliferis CF, Tsamardinos I and Statnikov A. HITON: a novel Markov 
Blanket algorithm for optimal variable selection. AMIA Annu Symp Proc 
2003:21-5 

20.  Tibshirani R, Hastie T, Narasimhan B and Chu G. Diagnosis of multiple 
cancer types by shrunken centroids of gene expression. Proc Natl Acad 
Sci U S A 2002;99:6567-72 

21.  Witten IHaF, E. Decision Trees in Data Mining: Practical machine learning 
tools and techniques. San Francisco: Morgan Kaufmann, 2005 

22.  Kingsmore SF, Patel DD. Multiplexed protein profiling on antibody-based 
microarrays by rolling circle amplification. Curr Opin Biotechnol 
2003;14:74-81 

23.  Z. Yao SLP, W.C. Fanslow, D. Ulrich, B.M. Macduff, M.K. Spriggs, R.J. 
Armitage. Human Il-17: A novel cytokine derived from T-cells. Journal of 
Immunology 1995;155:5483- 

24.  McHale JF, Harari OA, Marshall D, Haskard DO. Vascular Endothelial Cell 
Expression of ICAM-1 and VCAM-1 at the Onset of Eliciting Contact 
Hypersensitivity in Mice: Evidence for a Dominant Role of TNF-alpha. 
Journal of Immunology 1999;162:1648 - 1655 

25.  Weng Y SS, Waldburger KE, et al. Binding and functional properties of 
recombinant and endogenous CXCR3 chemokine receptors. Journal of 
Biological Chemistry 1998;273:18288-18291 

26.  Loetscher M GB, Loetscher P, et al. Chemokine receptor specific for IP10 
and mig: structure, function, and expression in activated T-lymphocytes. 
Journal of Experimental Medicine 1996;184:963-9 

27.  Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF and Mischel PS. 
Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes 
matrix metalloproteinase (MMP)-2 activation and cell invasion in a human 
glioblastoma cell line. Lab Invest 2004;84:8-20 

28.  Fong TA, Mosmann TR. The role of IFN-gamma in delayed-type 
hypersensitivity mediated by Th1 clones. J Immunol 1989;143:2887-93 



61 

29.  Susumu Nakae YK, Aya Nambu, Katsuko Sudo, Michiko Iwase, Ikuo 
Homma, Kenji Sekikawa, Masahide Asano, Yoichiro Iwakura. Antige-
specific T cell sensitization is impaired in IL-17-deficient mice, causing 
suppression of allergic cellular and humoral responses. Immunity 
2002;17:375-387 

30.  Grom AA, Passo M. Macrophage activation syndrome in systemic juvenile 
rheumatoid arthritis. J Pediatr 1996;129:630-2 

 

 



62 

CHAPTER IV 

 

GENETIC POLYMORPHISMS ASSOCIATED WITH ADVERSE EVEENTS 

FOLLOWING SMALLPOX VACCINATION 

 

Immunization with vaccinia virus is highly effective against smallpox, but 

adverse reaction to vaccination is an unfortunately common occurrence.  

Population-wide vaccination programs could put many people at risk, given the 

high reactogenicity of certain vaccines.  Identifying stable genetic factors 

associated with adverse events (AEs) may allow more effective pre-vaccine 

screening and even direct vaccine development.  To investigate the relationship 

between adverse events following smallpox vaccination and genetic factors, a 

panel of candidate single-nucleotide polymorphisms (SNPs) was genotyped in 

two independent study samples.  Systemic adverse events, such as fever, 

prolonged rash, and lymphadenopathy were recorded for all vaccinées.  After 

identifying candidate genetic factors in the first study sample, the statistically 

significant findings were validated in the second, independent study.  We 

identified multiple AE-associated SNPs in three candidate genes:  Interleukin 4 

(IL-4), Interferon Regulatory Factor 1 (IRF-1), and Methylenetetrahydrofolate 

reductase (MTHFR).  The odds ratios associating each of these polymorphisms 

with AEs were consistent across both the original and validation studies.  The 

demographics of both study samples were statistically similar, and the allele 

frequencies for each significantly associated SNP were comparable between 
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samples.  Confidence in these results is augmented by the fact that they have 

been validated in an independent study sample.  Since all of the patients under 

study were successfully vaccinated, the AE outcomes reported represent 

immune reactions either beyond the necessary magnitude or sustained longer 

than necessary.  The candidate genes validated in both studies include a major 

anti-inflammatory cytokine (IL-4), an immunological transcription factor (IRF-1), 

and a metabolism gene previously associated with adverse reactions to a variety 

of pharmacologic agents (MTHFR).  Since the outcome of interest is the 

aggregation of specific symptoms, it is logical that more than one gene may be 

involved.  These genes are all involved in processes that are consistent with 

previously hypothesized mechanisms for the development of AEs involving 

prolonged stimulation of inflammatory pathways and imbalance of normal tissue 

damage repair pathways.  While the immune modulatory roles of IL-4 and IRF-1 

have been thoroughly studied in a variety of contexts, the association of 

polymorphisms in these genes with systemic AEs is exciting.  The non-

synonymous polymorphism in MTHFR is a novel result with promising clinical 

significance. 
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Introduction 

 

Adverse reaction following vaccination with vaccinia virus, the live 

attenuated vaccine for smallpox, is a common occurrence that can have 

significant health effects.  Amid recent geopolitical concerns, there has been 

renewed interest in protection against infectious agents such as smallpox, which 

is considered a potential agent of bioterrorism.  Population-wide vaccination 

programs may put many people at risk, given the high reactogenicity of 

conventional smallpox vaccines [1].  Given that the biological mechanisms 

underlying such adverse events (AEs) are not well-understood, there is a need to 

elucidate the molecular and cellular pathways and highlight pharmacological 

targets for intervention. 

 Vaccination of healthy adults with vaccinia virus induces a protective 

response in the majority of individuals who are immunized—indicated by a 

significant rise in vaccinia virus–neutralizing antibodies in the serum and clinically 

observable features such as the development and expansion of a papule at the 

site of vaccination.  The papule generally develops into an inflammatory vesicular 

lesion termed a “pock”, and resolves into a scar, which is a marker of “vaccine 

take” that correlates with protection.  Since all of the patients under study were 

successfully vaccinated, the AE outcomes reported represent immune reactions 

either beyond the necessary magnitude or sustained longer than necessary.  

Poxviruses have evolved multiple mechanisms to evade host immune responses, 

such as targeting of primary innate immunity mediators (including interferons, 
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interleukins, chemokines, and others) and manipulating intracellular signal 

transduction pathways [2].  These mechanisms also may contribute to AE 

development by creating a state of altered innate or adaptive immune 

stimulation.   

Previously, we have investigated smallpox vaccine with respect to its 

effects on the humoral and cellular immune response, reactogenicity, and 

patterns of systemic cytokine expression [3-8].   In the current report, we utilize 

data collected for two independent studies to identify stable genetic factors 

associated with adverse events (AEs) in hopes that this may contribute to more 

effective screening and help direct vaccine development.  To investigate the 

relationship between adverse events following smallpox vaccination and 

genetics, a panel of candidate single-nucleotide polymorphisms (SNPs) was 

genotyped in two independent clinical studies of the same vaccine, in which a 

significant proportion of vaccinees suffered systemic AEs—including fever, 

lymphadenopathy, and prolonged acneiform rash.  For both studies, the data are 

genotypes at 1536 SNPs across roughly 500 candidate genes.  The second 

study was used to validate the most promising results from the initial study.  Most 

genetic association studies fail to replicate [9,10], thus, independent validation 

can be seen as the “gold standard” for genetic association studies.  Results that 

successfully replicate are excellent candidates for in-depth follow-up via 

functional studies and deep resequencing in candidate genomic regions. 
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Subjects, materials, and methods 

 

Study subjects 

 Vaccines, study subjects, and study design for the original study have 

been described in detail [4].  Briefly, the original study enrolled 148 (116 with 

recorded AE information) healthy adults at the Vanderbilt University Medical 

Center as part of a multi-center study of primary immunization against smallpox 

using the Aventis-Pasteur Smallpox Vaccine (APSV) at the Vanderbilt National 

Institutes of Health (NIH) Vaccine and Treatment Evaluation Units [7].  NIH-DMID 

Protocol 02-054 was implemented.  

 The study subjects for the validation sample also were collected at 

Vanderbilt University Medical Center, as a part of NIH-DMID Protocol 03-044, 

also using the APSV at the Vanderbilt NIH Vaccine and Treatment Evaluation 

Units [7].  A total of 102 healthy adults (all with recorded AE information) were 

enrolled as part of the validation study. 

 In both studies, individuals were asked to self-identify race, with White 

(96%), Black (2%), and Asian (2%) as the most common categories reported.  

Both studies complied with the internal review board policies of Vanderbilt 

University and the NIH, and written consent was obtained for all individuals 

participating. 
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Clinical assessments 

 For both studies, the same team of trained physicians and nurse providers 

examined the medical history and clinical symptoms of the subjects to insure 

consistent clinical assessment across studies.  Subjects were examined on 5 

visits within the first month post-vaccination and were assessed for occurrence of 

an adverse event.  For all subjects, the first visit occurred during days 3-5 post-

vaccination, the second during days 6-8, the third during days 9-11, the fourth 

during days 12-15, and the final during days 26-30.  Systemic adverse events 

were considered for both studies, including fever, generalized rash, and 

lymphadenopathy.  More specifically, fever was defined as an oral temperature of 

greater than 38.3° C. Generalized rash was defined as skin eruptions on non-

contiguous areas in reference to the site of vaccination.  Detailed descriptions of 

the acneiform rashes considered in this study can be found in Talbot et al. [11].  

Finally, lymphadenopathy was defined as enlargement or tenderness of regional 

lymph nodes due to vaccination. 

 

Identification of genetic polymorphisms 

 The custom SNP panel used in this study targets investigation of soluble 

factor mediators and signaling pathways, many of which have known 

immunological significance.  Genotyping for single nucleotide polymorphisms 

(SNPs) was performed using DNA amplified directly from EBV-transformed B 

cells generated from peripheral blood samples collected from each subject.  

Genotyping was performed at the Core Genotyping Facility of the National 
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Cancer Institute (NCI) in Gaithersburg, Maryland 

(http://cgf.nci.nih.gov/home.cfm).  Genotypes were generated using the 

IlluminaTM GoldenGate assay technology.  Of the 1536 SNPs assayed, a total of 

1442 genotypes passed quality control filters (genotyping efficiency > 80%) for 

both the original and validation samples.  The list of all 1442 SNPs is given in 

Table 1.   

 

Table 1.  List of all 1442 SNPs analyzed, organized according to location.  SNP 
names are taken from http://snp500cancer.nci.nih.gov.  
 

SNP Name 
dbSNP ID 

(rs#) SNP Region  
SNP Location 

(Base Pair) 
RXRA-03 rs1805352 IVS1-46A>C 15414 
RXRA-01 rs1536475 IVS6+70A>G 36621 
APOB-01 rs1042034 Ex29+926G>A 41215 
CCR2-01 rs1799864 Ex2+241G>A 46295 
CCR2-02 rs1799865 Ex2+831C>T 46885 
CCR2-06 rs3138042 IVS2+118A>G 48119 
CCR5-02 rs2734648 IVS1+151G>T 58934 
CCR5-04 rs1799987 IVS1+246A>G 59029 
CCR5-07 rs1800024 IVS2+80C>T 59653 
APOB-21 rs3791981 IVS18+336T>C 61301 
APOB-08 rs1469513 IVS6+410G>A 75496 
APOB-04 rs1367117 Ex4+56C>T 79834 
APOB-07 rs1800481 -392C>T 83144 
ZFPM1-07 rs904797 IVS1+9545A>G 90248 
CCND1-02 rs603965 Ex4-1G>A 323109 
CCND1-03 rs7177 Ex5+230C>A 326314 
CCND1-01 rs678653 Ex5+852C>G 326936 
OPRD1-03 rs760589 IVS1-23001G>A 355421 
IL15RA-02 rs2296135 Ex8-361A>C 357590 
IL15RA-05 rs2296141 IVS6-242A>G 361555 
IL15RA-04 rs2228059 Ex5-39A>C 365264 
IL15RA-06 rs3136614 IVS4+32C>T 368570 
OPRD1-05 rs204076 594bp 3' of STP T>A 383346 

IL10-06 rs3024496 Ex5+210C>T 404971 
IL10-05 rs3024509 IVS3-58C>T 406404 
IL10-13 rs3021094 IVS1-192A>C 408059 
IL10-07 rs3024491 IVS1-286G>T 408153 
IL10-01 rs1800871 -7334T>C 409741 
IL10-03 rs1800896 -1116A>G 410004 
IL10-17 rs1800890 -3584T>A 412472 
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TFRC-01 rs3817672 Ex4-11G>A 420545 
AHRR-10 E1518_63 2912bp 3' of STP G>C 427862 
AHRR-02 rs10078 3152bp 3' of STP T>G 428102 
SFTPD-03 rs2243639 Ex5-13A>G 450238 
SFTPD-01 rs721917 Ex2+95T>C 454840 
BCL2L1-03 rs1994251 IVS2+22130A>C 483420 
CYBB-12 rs6610650 -2820A>G 486282 
CYBB-09 rs4422908 IVS2+90A>C 491298 

CYP2E1-31 rs8192766 -1514G>T 494964 
BCL2L1-02 rs1484994 IVS2+3483C>T 502067 
BCL2L1-01 rs3181073 IVS2+2259G>T 503291 
CYP2E1-02 rs2070676 IVS7-118G>C 506716 
CYBB-11 rs5964125 IVS7+118A>G 508223 
CYBB-27 rs5964149 IVS12-350A>G 519466 
CYBB-28 rs5964151 Ex13+686G>T 520501 

RAD54L-04 rs1048771 Ex18+157C>T 563292 
DRD4-15 rs4987059 -870A>G 576433 
DRD4-07 rs916457 -290C>T 577014 

UGT1A1-24 rs1042640 Ex5-402G>C 614298 
OCA2-23 rs1900758 IVS13+113A>G 633086 
OCA2-07 rs1800407 Ex13+17G>A 633307 
OCA2-03 rs1800404 Ex10+21G>A 638762 
TYMS-10 rs1059394 IVS7-68T>C 662792 
TYMS-01 rs699517 Ex8+157C>T 663016 
TYMS-05 rs2790 Ex7+227A>G 663086 
TFF3-02 rs2236705 IVS2-449T>G 727269 
IGF1R-05 rs2137680 IVS2+61405G>A 762592 
IGF1R-18 rs2175795 IVS2+61518G>A 762705 
TFF1-01 rs2839488 IVS1+334G>C 780627 
IGF1R-06 rs907806 IVS2-89673G>A 794732 
NOS2A-07 rs9282801 IVS16+88T>G 833467 
NOS2A-02 rs2297518 Ex16+14C>T 833591 
APEX1-09 rs3136814 Ex1+8A>C 843425 
RAD52-01 rs11226 Ex11-571C>T 876074 
RAD52-07 rs6413436 IVS10-61C>T 876940 
IGF1R-26 rs3743259 IVS5+311A>G 893012 
IGF1R-27 rs3743260 IVS5+442A>G 893143 
IGF1R-01 rs2229765 Ex16-58G>A 928076 
IGF2-09 rs2230949 Ex4-233C>T 941429 
IGF2-02 rs734351 IVS2+384C>T 943454 
IGF2-22 rs3213223 IVS1-171C>T 944171 
IGF2-16 rs3213221 IVS1-285C>G 944285 
IGF2-03 rs3213216 IVS1+1280A>G 945420 

IGF2AS-04 rs3741212 Ex1+112A>G 949099 
IGF1R-12 rs9282715 3164bp 3' of STP C>T 953687 

IGF2AS-01 rs1003483 Ex2+69T>G 954784 
IGF2AS-03 rs3741211 Ex3+563A>G 956351 
ABCA7-05 rs3764651 IVS20+166A>G 991751 
ABCA7-06 rs3752241 Ex23-7C>G 993524 

RET-01 rs1800858 Ex2+62A>G 999281 
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RET-02 rs1800860 Ex7+33A>G 1010000 
ABCA6-05 rs9282553 Ex16-39G>C 1034634 
ABCA6-01 rs9282552 IVS13-16G>A 1036166 
GPX4-09 rs757228 -2050A>G 1041992 
GPX4-06 rs3746165 -1831G>A 1042211 
GPX4-08 rs4807542 Ex1-49G>A 1044078 
GPX4-12 rs8178977 IVS6+19C>G 1046477 
SRA1-04 rs801460 NC_A>G 1094857 
SRA1-03 rs801459 NC_A>C 1096550 
SRA1-05 rs10463297 NC_G>A 1099166 
GC-02 rs7041 Ex11+34T>G 1125344 

STK11-03 rs741764 IVS6+145T>C 1161484 
ABCA5-01 rs15886 Ex39+497T>A 1169561 
CD14-03 rs2569190 -1994T>C 1175843 
CD81-04 rs708155 -1784A>G 1184236 
CD81-06 rs810225 IVS1+5757A>C 1191843 
PIN1-01 rs2233678 IVS1-834C>G 1207981 
PIN1-16 rs2233679 IVS1-659C>T 1208156 
PIN1-21 rs889162 IVS3+2592T>C 1214718 
PIN1-02 rs1985604 IVS3+3419G>A 1215545 
PIN1-17 rs2010457 IVS3+62A>G 1221680 

SLC6A18-13 E3563_106 IVS8+267C>T 1233245 
WRN-01 rs2230009 Ex4-16G>A 1242709 
TERT-03 rs2853690 Ex16+203C>T 1243744 
WRN-07 rs2725349 Ex6+9C>T 1245331 
TERT-02 rs2075786 IVS10+269T>C 1256310 
TERT-15 rs13167280 IVS3-24T>C 1270477 
TYR-02 rs1393350 IVS3-6895A>G 1272668 

TERT-14 rs2853677 IVS2-4455C>T 1277194 
TYR-08 rs1800422 Ex4+21G>A 1279583 

TERT-08 rs2735940 Ex2T>C 1286486 
ARNT-07 rs1889740 IVS12-662A>G 1290110 
WRN-08 rs1800392 Ex20-88G>T 1294731 
ARNT-01 rs2228099 Ex7+81G>C 1299244 
ARNT-01 rs2228099 Ex7+81G>C 1299244 
ARNT-10 rs1027699 IVS6+205G>A 1302067 
ARNT-06 rs2256355 IVS6+123G>A 1302149 
ARNT-06 rs2256355 IVS6+123G>A 1302149 
ARNT-05 rs2864873 IVS5+726T>C 1304529 
ARNT-05 rs2864873 IVS5+726T>C 1304529 
TERT-54 rs3816659 -22715C>T 1307820 
TERT-21 rs1801075 -22844G>A 1307949 
WRN-03 rs1801195 Ex26-12G>T 1320054 
ARNT-23 rs7517566 -991T>C 1340390 
WRN-04 rs1346044 Ex34-93T>C 1345428 

FANCA-03 rs1061646 IVS39-16C>T 1366594 
FANCA-37 rs7195906 IVS39+55T>A 1366964 
FANCA-28 rs17227099 IVS32-42A>G 1375834 
FANCA-25 rs12931267 IVS30-102G>C 1379349 
FANCA-34 rs2159116 IVS27-36G>T 1392127 
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FANCA-39 rs7203907 IVS26-129G>C 1394391 
FANCA-22 rs886951 IVS24+107C>T 1397482 
SLC6A3-10 rs6347 Ex9-55A>G 1401412 
FANCA-35 rs3785275 IVS21+121C>G 1402646 
FANCA-16 rs2016571 IVS20+933C>G 1404893 
FANCA-02 rs2239359 Ex16+31C>T 1410097 
FANCA-12 rs2239360 IVS15-73G>A 1410200 
SLC6A3-14 rs460700 IVS4+2610A>G 1419969 

TNFRSF10A-02 rs2235126 IVS7+218G>A 1431494 
TNFRSF10A-06 rs4871857 Ex4-4G>C 1433637 

SLC6A3-05 rs2652511 -3076C>T 1436389 
SLC6A3-03 rs6413429 -3714G>T 1437027 
SEPT2-01 rs7568 Ex13+362A>G 1466347 

CBS-03 rs12613 Ex18-391A>G 1468132 
ERCC6-04 rs2228529 Ex21+176A>G 1471569 

CBS-07 rs6586282 IVS15-134G>A 1472938 
CBS-01 rs234706 Ex9+33C>T 1479791 

ERCC6-12 rs2228527 Ex18-142A>G 1482833 
VIL2-03 rs3123109 IVS6+2368G>A 1489523 
VIL2-02 rs901369 IVS2-977T>C 1496551 

FOXC1-23 rs6928414 -3906C>T 1546773 
FOXC1-22 rs2235716 -3564C>T 1547115 
FOXC1-02 rs2235718 -3077C>T 1547602 
FOXC1-13 rs9405496 -2049A>C 1548630 
FOXC1-06 rs984253 1186bp 3' of STP A>T 1553528 
FOXC1-07 rs2745599 1343bp 3' of STP A>G 1553685 
ERBB2-03 rs1810132 IVS4-61C>T 1590301 
ICAM1-19 rs5030390 IVS1+635G>A 1645339 
ICAM1-15 rs281432 IVS2-3499C>G 1653460 
ICAM1-06 rs5498 Ex6-22A>G 1658485 
ICAM1-16 rs3093032 Ex7+546C>T 1659138 

CDKN1C-09 rs431222 -1679G>A 1695640 
NUBP2-01 rs344357 IVS1-283C>G 1776256 
IGFALS-84 rs1065663 Ex7-164A>G   1779024 
IGFALS-91 rs344360 505bp 3' of STP C>T   1779222 

MTR-01 rs1805087 Ex26-20A>G 1806289 
MTR-01 rs1805087 Ex26-20A>G 1806289 
MTR-06 rs2275566 IVS26+43G>A 1806351 
MTR-05 rs2275565 IVS26+157T>G 1806465 
TEP1-03 rs1713449 Ex45+36G>A 1841547 
TEP1-02 rs1760904 Ex24+49T>C 1851869 
TEP1-10 rs872072 IVS13+84C>T 1858853 
TEP1-11 rs872074 Ex13+51G>A 1859045 
TEP1-01 rs1760898 Ex4+51C>A 1872721 
TEP1-08 rs1760897 Ex1-222T>C 1876093 
TNKS-01 E5132_301 Ex1-74G>A 1889400 
TNKS-03 E5132_489 IVS1+115C>T 1889588 
TNKS-05 E5133_300 IVS1+381C>T 1889854 
TNKS-46 E5133_164 IVS1+517C>G 1889990 
CSF3-06 rs2227338 IVS3+58A>G 1897238 
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CSF3-02 rs1042658 Ex4-165C>T 1898198 
APEX1-16 rs1760944 -655T>G 1922989 
APEX1-03 rs3136820 Ex5+5T>G 1924994 
TNKS-33 rs7462102 IVS2-11724C>T 1936719 
TNKS-34 rs7464476 IVS2-11659A>C 1936784 
TNKS-64 E5135_413 IVS3+238C>T 1948776 
TNKS-35 E5153_301 IVS3+11245A>T 1959783 
TNKS-36 E5154_301 IVS3+21545G>T 1970083 
TNKS-76 rs13276464 IVS3-25352G>T 1987460 
TNKS-11 E5137_301 IVS3-25329G>T 1987483 
TNKS-12 E5138_301 IVS3-23879C>T 1988933 
TNKS-13 rs6985140 IVS3-34A>G 2012778 
BPI-01 rs1131847 Ex15+70A>G 2018532 

TNKS-38 rs11249938 IVS5+6476A>G 2020137 
TNKS-15 rs7006985 Ex8-71A>G 2039788 
TNKS-18 rs12542457 IVS8+93C>T 2039951 
TNKS-20 rs7462910 IVS12+1931C>T 2055337 
TNKS-22 rs7001395 IVS14-34A>T 2066106 
TNKS-23 rs9644708 IVS17-4617T>C 2076268 
TNKS-26 E5147_301 IVS23-32A>C 2098521 

EPHX1-15 rs2854461 -4786A>C 2187838 
EPHX1-14 rs2671272 IVS1-1310G>A 2191310 
EPHX1-18 rs3738043 IVS1-1127A>G 2191493 
EPHX1-17 rs2854456 IVS1-1067C>T 2191553 

COL18A1-02 rs2236451 Ex3-8A>G 2193419 
EPHX1-06 rs1051740 Ex3-28T>C 2195827 
EPHX1-10 rs2260863 IVS3+114C>G 2195968 
EPHX1-01 rs2234922 Ex4+52A>G 2202600 
EPHX1-12 rs1051741 Ex8+31C>T 2208423 
CASP9-27 rs2020898 IVS7-122C>T 2213456 

COL18A1-03 rs2236467 Ex13-25C>T 2217746 
CASP9-01 rs1052576 Ex5+32A>G 2225381 
CASP9-03 rs2020902 IVS3+8T>C 2227198 

IL1A-01 rs17561 Ex5+21G>T 2244966 
IL1A-04 rs2071374 IVS4-109A>C 2245095 

COL18A1-01 rs7499 Ex43+227A>G 2249664 
SLC19A1-05 rs1051298 Ex8-198C>T 2252162 
SLC19A1-01 rs1051266 Ex4-114T>C 2275130 

IL1B-08 rs1071676 Ex7-97C>G 2295176 
IL1B-02 rs1143634 Ex5+14C>T 2298133 
IL1B-12 rs3136558 IVS3-123C>T 2299018 
IL1B-03 rs1143627 -580C>T 2302130 

SOD2-01 rs1799725 Ex2+24T>C 2401213 
SOD2-06 rs5746081 -1254C>T 2402795 

FLJ45983-03 rs1149901 Ex1-425G>A 2457683 
FLJ45983-16 rs1269486 -2994T>C 2459095 

GATA3-46 rs10905277 -250A>G 2460264 
GATA3-10 rs2229359 Ex2-158C>T 2463543 
GATA3-76 rs3781093 IVS2+1123T>C 2464823 

SLC39A2-10 rs945352 -824T>C 2466621 
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SLC39A2-07 rs2149666 IVS2-119G>T 2467996 
SLC39A2-05 rs2234636 Ex4+46T>C 2468991 
GATA3-21 rs570730 IVS3+358T>C 2469355 
GATA3-68 rs10752126 IVS3+646C>G 2469643 
GATA3-23 rs569421 IVS3+2491C>T 2471488 
GATA3-25 rs520236 IVS3-2162C>G 2472170 
GATA3-27 rs422628 IVS3-27C>T 2474305 
GATA3-28 rs406103 IVS4+60C>T 2474517 
GATA3-29 rs528778 IVS4+582C>T 2475039 
LDLR-01 rs1003723 IVS9-30C>T 2486983 
LDLR-12 rs5930 Ex10+55A>G 2487067 
LDLR-18 rs5925 Ex13-29T>C 2493683 
MGMT-12 rs16906252 N/A 2499476 
LDLR-08 rs2116898 IVS17-147G>A 2504612 
LDLR-03 rs14158 Ex18+88A>G 2504846 
IL1RN-05 rs419598 Ex5-35T>C 2594950 
IL1RN-02 rs454078 IVS6+59A>T 2596536 
IL1RN-04 rs380092 IVS6+166A>T 2596643 

SCARB1-09 rs989892 IVS7-2428G>T 2697149 
SCARB1-08 rs865716 IVS7+1451A>T 2700789 
PARP1-14 rs747659 IVS21+59G>A 2726935 
PARP1-13 rs747657 IVS20-63G>C 2727118 

SCARB1-03 rs4765621 IVS1-18462G>A 2730648 
PARP1-01 rs1136410 Ex17+8T>C 2731496 

SCARB1-01 rs3924313 IVS1+19766T>C 2738308 
MGMT-06 rs12917 Ex2-25C>T 2740214 
IGF2R-05 rs1570070 Ex9+5A>G 2741319 
PARP1-12 rs1805415 Ex8+45A>G 2747034 

SCARB1-02 rs4765181 IVS1+8913T>G 2749161 
PARP1-10 rs1805414 Ex7+18T>C 2749558 
IGF2R-02 rs998075 Ex16+88A>G 2755619 
IGF2R-11 rs998074 IVS16+15T>C 2755724 
PARP1-06 rs1805407 IVS2+82A>G 2766027 
ALDH2-08 rs2238151 IVS1+6933C>T 2781342 
IGF2R-04 rs629849 Ex34-93A>G 2781750 
IGF2R-07 rs2282140 IVS34+20C>T 2781862 
MGMT-19 rs2296675 IVS3-54A>G 2798929 
MGMT-03 rs2308327 Ex4+119A>G 2799101 
IGF2R-03 rs1803989 Ex45+11C>T 2804822 
KRT23-03 rs2269858 Ex2+338C>T 2817164 
LITAF-01 rs7102 1050bp 3' of STP T>C 2955321 
LITAF-02 rs4280262 Ex3+54A>G 2960571 
BCR-01 rs12233352 IVS8-20A>G 3006370 
BCR-02 rs140504 Ex11-20A>G 3017938 

TXNRD2-76 rs6518591 IVS2+1485T>C 3076171 
MBL2-30 rs2099902 Ex4-710G>A 3077004 
MBL2-27 rs10082466 Ex4-1483T>C 3077777 
MBL2-09 rs930508 IVS3-28G>C 3079453 

TXNRD2-83 rs9306230 IVS1+1202T>C 3080172 
MBL2-06 rs1838066 IVS2-250T>C 3080480 
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MBL2-46 rs10824793 IVS2-405T>C 3080635 
TXNRD2-88 rs4646310 IVS1+418T>C 3080956 

MBL2-03 rs5030737 Ex1-34C>T 3082397 
MBL2-12 rs7096206 -289G>C 3082840 
MBL2-44 rs11003124 -495C>A 3083046 
MBL2-11 rs11003125 -618G>C 3083169 
MBL2-38 rs1031101 -1964T>C 3084515 
MBL2-65 rs12264958 -2200T>C 3084751 
COMT-29 rs7290221 IVS1-6042C>G 3094830 
COMT-16 rs4646312 IVS1-385C>T 3100487 
COMT-03 rs6269 IVS2-98A>G 3102102 
COMT-01 rs4680 Ex4-12G>A 3103421 

IL8-01 rs4073 -351A>T 3113034 
IL8-11 rs2227549 IVS1+298A>G 3113747 
IL8-05 rs2227306 IVS1-204C>T 3114065 

TP53I3-03 rs2303287 IVS4+68G>A 3118179 
TP53I3-12 rs4149372 IVS2+243A>C 3121445 
ARVCF-05 rs2240716 IVS3-82A>G 3121846 
TP53I3-18 rs4149371 -578A>G 3123708 
TP53I3-10 rs10170774 -931G>A 3124061 
TP53I3-13 rs7603220 -2503T>C 3125633 

PLA2G2A-03 rs2236771 Ex4+56G>C 3129304 
EDN1-01 rs5369 Ex3-72A>G 3152516 
EDN1-02 rs5370 Ex5+61G>T 3154513 
NINJ1-03 rs1127857 Ex4-86C>G 3205070 
NINJ1-01 rs1127851 Ex4-179A>T 3205163 
ALOX5-02 rs4986832 -1699A>G 3271341 
ALOX5-06 rs4987105 Ex1+63C>T 3273061 
ALOX5-10 rs2029253 IVS3+100A>G 3294797 
ALOX5-12 rs1369214 IVS3-6910A>G 3304042 
ALOX5-15 rs892691 IVS4-2397A>G 3320405 
ALOX5-28 rs1565097 IVS7+44C>T 3327569 
ALOX5-26 rs2242332 IVS9-247C>T 3341552 
IL12B-04 rs3212227 Ex8+159A>C 3552508 
IL12B-11 rs730690 IVS1+1274G>A 3565724 

CDC25B-06 rs910656 1887bp 3' of STP G>A 3727496 
MSR1-02 rs971594 IVS7+563G>C 3852196 
MSR1-01 rs414580 IVS2+93A>T 3880321 
UCP3-01 rs2075577 Ex5-14C>T 3938291 
UCP3-02 rs1800849 -2077C>T 3942914 

ALOX15-02 rs2664593 -11273G>C 4148505 
ALOX15-12 rs7220870 -271T>G 4148591 

NBN-04 rs1063053 Ex16+304C>T 4165710 
CTSB-03 rs1065712 Ex12-296C>G 4177472 
NBN-13 rs867185 IVS8+1488T>C 4193323 
NBN-01 rs1805794 Ex5-32C>G 4208652 
NBN-02 rs1063045 Ex2+65G>A 4213192 

CARD15-04 rs2066850 -925A>C>G>T 4344428 
CARD15-19 rs2067085 Ex2-7C>G 4348058 
CARD15-05 rs2066843 Ex4+731C>T 4359398 
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CARD15-09 rs748855 IVS6+513A>G 4365597 
CARD15-10 rs1077861 IVS10+64T>A 4373746 
HSD17B1-06 rs597255 IVS1-42C>T 4429396 
HSD17B1-10 rs676387 IVS4-150C>A 4430569 
COASY-01 rs598126 Ex3+57A>G 4440816 

PGR-18 rs1870019 8373bp 3' of STP C>T 4463889 
PGR-23 rs561650 IVS6-3061G>A 4478310 
PGR-01 rs1042839 Ex5-48C>T 4484618 
PGR-12 rs492457 IVS4-4561T>C 4489276 
PGR-07 rs9282823 IVS4+566G>A 4495028 
PGR-11 rs1042838 Ex4+72G>T 4495828 
PGR-26 rs660541 IVS3-884T>C 4496783 
PGR-14 rs516693 IVS2-1136A>G 4526159 
PGR-17 rs572483 IVS2-4965A>G 4529988 
PGR-16 rs543215 IVS2-11426G>A 4536449 
PGR-05 rs613120 IVS2-11671T>C 4536694 
PGR-28 rs565186 IVS2+13109G>A 4546045 
PGR-15 rs529359 IVS2+2892A>G 4556262 
PGR-21 rs481775 IVS2+2063T>C 4557091 
PGR-27 rs10895068 Ex1+1042A>G 4562630 
PGR-20 rs474320 -14747A>T 4576965 
PGR-24 rs568157 -24480T>C 4586698 

SLC23A2-02 E1028_301 Ex17-1890G>A 4774894 
SLC23A2-01 rs1110277 Ex11+57T>C 4794682 
SLC23A2-05 rs4987219 IVS8+453C>G 4804946 
SLC23A2-03 rs1776964 Ex6+51C>T 4820308 
SLC23A2-25 rs1715364 IVS3-5272G>A 4838896 
SLC23A2-33 rs4813725 IVS2-4623G>A 4857985 

IL6R-04 rs8192284 Ex9+7A>C 4917325 
SLC23A2-48 rs6084957 IVS1+1547G>A 4920505 
SLC23A2-31 rs12479919 IVS1+1312G>A 4920740 
BRCA1-21 rs1799966 Ex17-150A>G 4947390 
BRCA1-32 rs8176212 IVS15-63C>G 4950897 
BRCA1-05 rs1060915 Ex14-50T>C 4958766 
BRCA1-20 rs4986852 Ex12-978G>A 4968725 
BRCA1-01 rs16940 Ex12+1641T>C 4969533 
BRCA1-06 rs1799949 Ex12+1412C>T 4969762 
BRCA1-18 rs1799950 Ex12+397A>G 4970777 
BRCA1-26 rs799923 IVS8-34C>T 4976227 
PCNA-10 rs17352 IVS5+140A>C 5037976 
PCNA-07 rs17349 IVS2-4C>T 5039516 
PCNA-06 rs25406 IVS2-124C>T 5039636 

AKR1C3-31 rs10795241 -32346T>C 5044290 
LRP6-03 rs2075241 IVS15-11G>C 5050453 

AKR1C3-29 rs28943575 -23066G>C 5053570 
AKR1C3-33 rs6601899 -18314A>C 5058322 
AKR1C3-30 rs17134288 Ex2C>T 5072588 
AKR1C3-28 rs28942669 -1632C>T 5075004 
AKR1C3-17 rs11252937 -1423T>C 5075213 
AKR1C3-19 rs1937845 -488A>G 5076148 
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AKR1C3-24 rs3763676 -137A>G 5076499 
AKR1C3-01 rs12529 Ex1-70C>G 5076651 
AKR1C3-08 rs2245191 IVS3+73C>A 5079815 
AKR1C3-11 rs2275928 IVS8+40A>G 5087909 
AKR1C3-21 rs10904422 1532bp 3' of STP G>C 5091228 
AKR1C3-26 rs7070041 1875bp 3' of STP A>G 5091571 
AKR1C3-36 rs7921327 9757bp 3' of STP A>G 5099453 
AKR1C3-35 rs1937920 12259bp 3' of STP G>A 5101955 

AR-12 rs1204038 IVS1+21621G>A 5106213 
LRP6-02 rs3782528 IVS3+4071A>T 5111040 

AR-15 rs2361634 IVS1-255A>G 5180831 
AKR1C4-01 rs3829125 Ex4-14C>G 5187784 

AR-13 rs1337080 IVS2+15670A>G 5196907 
SLC30A1-01 rs2278651 IVS1+273C>T 5214167 
HADHA-05 rs1049987 Ex20-309A>G 5229750 
HADHA-01 rs7260 Ex20+348A>G 5229850 
HADHA-10 rs2289019 IVS13-163C>G 5236742 

AR-14 rs1337082 40331bp 3' of STP A>G 5302003 
ERCC4-01 rs1800067 Ex8+31G>A 5342112 
ERCC4-15 rs1799800 IVS9-28A>G 5351631 
RB1CC1-24 rs17845549 Ex23+32T>C 5390668 

PMS2-11 rs6463524 Ex7-24G>C 5394028 
PMS2-10 rs2345060 IVS5-223T>C 5396177 
PMS2-01 rs3735295 IVS1+72G>A 5405604 

RB1CC1-10 rs2305427 Ex18+83T>C 5408421 
JTV1-01 rs2009115 IVS1-2221G>A 5409604 

RB1CC1-40 rs17337252 Ex7+129T>C 5440058 
RB1CC1-50 Poly-0014935 -29373T>C 5480755 
CDKN1B-04 rs7330 Ex3-387C>A 5633891 

TGM1-01 rs2229463 Ex15-194C>T 5718355 
TGM1-02 rs2855006 Ex7-14C>A 5728134 
BIRC3-02 rs3758841 IVS6+879C>T 5765267 
BIRC3-03 rs3460 Ex9-76C>G 5770806 
EPHX2-04 rs1126452 Ex19+4A>C 5776249 
BIRC2-01 rs1943781 IVS5+694G>A 5797557 
RAC1-03 rs2303364 IVS7+30C>T 5798751 

PARP4-01 rs13428 Ex31+172G>C 5989441 
PARP4-03 rs6413414 Ex20-19A>T 6013200 
PARP4-19 rs750771 IVS17-110A>G 6014384 
PARP4-23 rs1807111 IVS15-995C>T 6025158 
PARP4-17 rs1539096 Ex3-89G>A 6055859 

PHB-02 rs4987082 979bp 3' of STP A>G 6134652 
MMP1-03 rs5854 Ex10-224C>T 6223290 
MMP1-09 rs2071230 Ex10+294T>C 6223375 
MMP1-05 rs5031036 IVS5+19A>G 6228580 
MMP1-01 rs10488 Ex2-36G>A 6230438 
BLM-02 rs2238335 IVS1-253G>C 6255893 
BLM-05 rs2072352 IVS15+105G>A 6299706 
BLM-22 rs2072351 IVS15+184T>A 6299785 

TNFRSF1A-02 rs887477 IVS1-2572G>T 6300243 
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BLM-25 rs16944831 IVS16-479C>T 6306468 
BLM-03 rs2270132 IVS19-499A>C 6317395 
BLM-16 rs389480 IVS19-437G>A 6317457 
BLM-06 rs2073919 IVS20+630G>A 6318646 

HTR1D-01 rs605367 Ex1-137G>A 6342866 
HTR1D-04 rs6300 Ex1-1246T>C 6343975 
HTR1D-03 rs676643 -627T>C 6345682 
GSTM3-05 rs2234696 Ex8+190A>C 6365717 
GSTM3-01 rs7483 Ex8+91G>A 6365816 
GSTM3-06 rs1537234 IVS7-30G>T 6365936 
MTHFR-07 rs12121543 IVS7-76T>G 6392038 
MTHFR-02 rs1801133 Ex5+79C>T 6393745 
MTHFR-02 rs1801133 Ex5+79C>T 6393745 
MTHFR-03 rs2066470 Ex2-120C>T 6400424 
MAOA-01 rs6323 Ex2-65G>T 6440845 

ALOX12-02 rs1126667 Ex6-26A>G 6500108 
CD4-03 rs3213427 Ex10+283T>C 6783008 

SLC2A4-02 rs5435 Ex4-59T>C 6784471 
EXO1-02 rs735943 Ex11+20A>G 6787940 
EXO1-01 rs4149963 Ex12+49C>T 6793171 
INSR-28 rs3745551 2778bp 3' of STP A>G 7054288 
INSR-06 rs1051690 Ex22-326T>C 7056963 
INSR-01 rs1799817 Ex17-4C>T 7065297 
INSR-07 rs2860175 IVS14+88A>G 7072081 
INSR-30 rs8110533 IVS13+2860C>A 7078828 

MPDU1-01 rs4227 Ex7-334G>T 7088525 
INSR-19 rs3815901 IVS7-126C>T 7106541 
INSR-05 rs891087 Ex3+131C>T 7124518 
SAT2-01 rs13894 Ex6+31C>T 7127251 
SAT2-03 rs858520 Ex4-11G>A 7127620 
SHBG-05 rs6257 IVS1-17T>C 7131066 
SHBG-13 rs858517 IVS3+84C>T 7131620 
SHBG-01 rs6259 Ex8+6G>A 7133876 
SHBG-12 rs727428 1121bp 3' of STP T>C 7135141 
INSR-11 rs1035942 IVS2-15155C>T 7139803 
INSR-51 rs1035940 IVS2-15330C>G 7139978 

ATP1B2-13 rs1641535 -8703T>C 7143482 
ATP1B2-04 rs1624085 Ex2G>C 7151092 

INSR-61 rs3745545 IVS2-27193A>G 7151841 
INSR-59 E1424_156 IVS2-27322G>A 7151970 

ATP1B2-01 rs1641512 Ex7+414G>A 7156811 
TP53-14 rs1614984 21226bp 3' of STP C>T 7168801 
TP53-11 rs12951053 IVS7+92T>G 7174756 
TP53-66 rs2909430 IVS4-91A>G 7175994 
TP53-09 rs8079544 IVS1-112G>A 7177401 
TP53-69 rs2078486 IVS1-3143C>T 7180432 

WDR79-11 rs2287499 Ex1-230C>G 7189517 
WDR79-09 rs17885803 IVS1-60C>T 7189831 
WDR79-08 rs2287498 Ex2+19C>T 7189909 
WDR79-06 rs17886268 IVS2-106C>T 7190151 
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INSR-13 rs919275 IVS2+5915A>G 7201441 
EFNB3-01 rs3744263 Ex5-986T>C 7211057 
EFNB3-02 rs3744262 Ex5-929G>A 7211114 
MYBL2-19 rs385345 -3962C>T 7344876 
MYBL2-30 rs619289 -1310C>T 7347528 
MYBL2-31 rs826950 IVS1-75C>T 7355286 
MYBL2-06 rs419842 IVS3+316A>T 7363726 
MYBL2-36 rs285164 IVS7+92C>T 7381691 
MYBL2-03 E3013_458 IVS9+172A>G 7387085 
MYBL2-46 rs420755 IVS9-1919C>G 7389599 
MYBL2-09 rs285171 IVS9-728C>G 7390790 

LPL-01 rs263 IVS5-540C>T 7657740 
LPL-04 rs316 Ex8+25C>A 7663364 
LPL-08 rs325 IVS8-298C>T 7664256 
LPL-03 rs326 IVS8-187A>G 7664367 
LPL-09 rs327 IVS8-90G>T 7664464 
LPL-05 rs328 Ex9-7C>G 7664652 
LPL-06 rs1059507 Ex10-807C>T 7668891 
XPA-02 rs1800975 Ex1+62T>C 7780783 

SCUBE2-13 rs3751058 IVS18+25A>G 7838647 
ARHGDIB-01 rs921 Ex6-198C>T 7854136 
SCUBE2-02 rs3751052 IVS13+13G>A 7859381 
ARHGDIB-03 rs2075267 -11454C>A 7874075 
ARHGDIB-03 rs2075267 -11454C>A 7874075 
SCUBE2-03 rs2003906 IVS6-6T>C 7874774 

MTRR-22 rs2287779 Ex9+9G>A 7879216 
MTRR-05 rs2287780 Ex9-85C>T 7879304 
MTRR-10 rs10380 Ex14+14C>T 7887191 
MTRR-11 rs1802059 Ex14-42G>A 7887319 
MTRR-07 rs9332 Ex15-526G>A 7890712 
MTRR-19 rs8659 Ex15-405A>T 7890833 
RERG-31 rs1045733 Ex5-277T>C 8019967 
RERG-10 rs17834986 Ex5-721A>T 8020411 
RERG-41 rs1055151 Ex5+273C>T 8021153 
RERG-44 rs2193174 IVS2-30357C>T 8063384 
RERG-36 rs3748302 IVS2-30974G>A 8064001 
LIG3-08 rs1052536 Ex21-250C>T 8068555 

RERG-37 rs715398 IVS2-36011A>C 8069038 
RERG-29 E3288_225 IVS2-36221T>G 8069248 
RERG-30 rs10160846 IVS2-36286G>A 8069313 
RERG-33 rs2216225 IVS2+27493C>T 8101844 
RERG-47 rs767201 IVS1-341T>C 8129852 
RERG-24 rs6488766 -4206G>A 8133604 
RERG-03 E3265_338 -6205A>G 8135603 
DIO1-01 rs1883454 -850G>T 8178426 
DIO1-05 rs2235544 IVS3-34A>C 8194963 
PTEN-10 rs1903858 IVS1-96G>A 8402202 
PTEN-01 rs701848 1515bp 3' of STP C>T 8475261 
XBP1-02 rs2267131 1062bp 3' of STP G>A 8581040 
XBP1-01 rs2097461 IVS4+156G>A 8582448 



79 

XBP1-09 rs2239815 IVS3+395G>A 8583239 
XBP1-10 rs3788409 -1638C>A 8588720 

ABCC4-04 rs3765535 IVS17-65T>C 8905211 
CCL5-04 rs2280789 IVS1+231C>T 8943983 
CCL5-03 rs2107538 -10155G>A 8944760 

ABCC4-07 rs2274406 Ex8+40A>G 8948672 
JAK3-01 rs3008 Ex23+291A>G 9200231 
JAK3-12 rs3212752 IVS12+9A>G 9211534 
JAK3-02 rs3212711 IVS2+22C>T 9217823 

TGFBR1-03 rs928180 IVS3-2409A>G 9218937 
TGFBR1-04 rs334358 IVS8+547G>T 9231818 
TGFBR1-01 rs868 Ex9+195A>G 9232861 

FAS-09 rs2234768 -690C>T 9498459 
FAS-01 rs1324551 IVS1+853T>C 9500032 
FAS-04 rs1468063 Ex9-252T>C 9523807 

OGG1-12 rs125701 -1492G>A 9730478 
OGG1-13 rs2304277 IVS7+110G>A 9741080 
GDF15-01 rs1059519 Ex2+42G>C 9759826 
GDF15-02 rs1059369 Ex2-136T>A 9759943 
CD40-01 rs1535045 IVS1+1066C>T 9801007 
CD40-03 rs3765459 IVS8-114G>A 9810315 
CRP-03 rs1205 3431bp 3' of STP G>A 10172588 
CRP-02 rs1800947 Ex2+491G>C 10173793 

SEC14L2-01 rs1010324 IVS2+182A>G 10186458 
SEC14L2-04 rs2267154 IVS5-314A>G 10195431 
SEC14L2-05 rs2267155 IVS8-1361C>T 10200956 
HSPB8-01 rs11038 Ex3-245A>G 10201816 

VDR-12 rs757343 IVS8+443G>A 10382981 
VDR-07 rs2239185 IVS6-3968C>T 10387865 

CSF1R-05 rs10079250 Ex8+3A>G 10613068 
CETP-08 rs820299 IVS2-3014T>G>C>A 10614483 

CSF1R-03 rs3829987 IVS6+28C>T 10619747 
CSF1R-02 rs2228422 Ex5-4C>T 10620614 
CETP-23 rs289717 IVS10+325G>A 10623587 
CETP-21 rs1801706 Ex16-95A>G 10631861 

SLAMF1-04 rs1061217 Ex7-127C>T 11070370 
SLAMF1-03 rs164283 IVS4-1126G>A 11081120 
SLAMF1-02 rs2295612 Ex1-44C>A 11107058 
NCOA3-04 rs2076546 Ex15-74A>G 11321401 
PAK6-43 rs900055 IVS1-216G>A 11323141 

NCOA3-01 rs396221 IVS17-1728T>G 11326997 
NCOA3-02 rs427967 IVS17-1632A>G 11327093 
PAK6-24 rs11636097 Ex3-53A>G 11335995 
PAK6-19 rs936216 IVS4+78C>A 11347825 
PAK6-16 rs748556 IVS5+48A>G 11349301 
PAK6-14 rs2242120 Ex11+558T>A 11359242 
PAK6-13 rs2242119 Ex11+696C>A 11359380 
GPX3-21 rs2042235 Ex2T>C 11560850 
GPX3-04 rs1946234 -1005A>C 11562146 
GPX3-25 rs8177404 -631C>T 11562520 



80 

GPX3-28 rs8177426 IVS1-1961A>G 11565876 
GPX3-18 rs869975 IVS2-89A>G 11569308 
GPX3-16 rs8177447 IVS4-14T>C 11570392 
TNIP1-02 rs2277940 796bp 3' of STP T>C 11572413 
NPAT-01 rs228589 IVS1+19A>T 11655624 
ATM-06 rs189037 -4518A>G 11656249 

APOA2-04 rs6413453 IVS3-4C>T 11682671 
APOA2-06 rs5085 IVS3+197G>C 11682866 
APOA2-02 rs5082 -756C>T 11684038 

ATM-27 rs664677 IVS21-77C>T 11705598 
ATM-02 rs1800889 Ex31-34C>T 11725903 
ATM-03 rs1801516 Ex38+61G>A 11737878 

RAD51-22 rs2619679 -4719T>A 11776794 
RAD51-01 rs1801320 Ex1-96G>C 11778085 
RAD51-01 rs1801320 Ex1-96G>C 11778085 
RAD51-23 rs2619681 IVS1+1398T>C 11779578 
RAD51-15 rs2304579 IVS2+110A>G 11781710 
RAD51-17 rs4924496 IVS3+1932T>C 11785892 
ATM-01 rs664143 IVS62+60G>A 11788077 
ATM-01 rs664143 IVS62+60G>A 11788077 

RAD51-16 rs2412546 IVS5-4480G>A 11797080 
ATM-37 rs170548 IVS62-973A>C 11797252 
ATM-38 rs3092993 IVS62-694C>A 11797531 

RAD51-24 rs4144242 IVS5-4016G>A 11797544 
MGC33948-02 rs4585 IVS10-12792C>A 11802044 

RAD51-21 rs2412547 IVS6+1598C>A 11803252 
RAD51-20 rs11852786 1131bp 3' of STP G>C 11815065 
GRPR-01 rs4986945 Ex2+40T>C 12135032 
GRPR-02 rs4986946 Ex2-103T>C 12135242 
P2RX7-10 rs3751144 Ex13+132C>T 12191748 

PTH-01 rs6256 Ex3+161C>A 12301294 
PTH-04 rs6254 IVS2-50A>G 12301504 
PTH-03 rs177706 IVS1-98A>G 12301746 

PPARG-11 rs1801282 Ex4-49C>G 12333125 
PPARG-06 rs2938392 IVS7+357G>A 12374608 
PPARG-07 rs1175541 IVS9+6835A>C 12405488 
ABCB1-12 rs1211152 IVS4-118G>T 12448786 
ABCB1-01 rs2235074 IVS4+36C>T 12458715 
ABCB1-09 rs9282564 Ex3-8G>A 12463109 
PCTP-01 rs2114443 -1212A>G 12480530 
PCTP-03 rs12948867 -1148A>G 12480594 
POLB-05 rs3136717 IVS1-89C>T 12516830 
POLB-16 rs2979895 IVS2-2264G>A 12520596 
POLB-08 rs2953983 IVS7+171G>A 12533645 
BIC-21 E5157_511 NC_G>T 12597384 
BIC-33 rs4143370 NC_G>C 12598844 
BIC-15 rs12482371 NC_C>T 12600224 
BIC-04 rs915860 NC_C>G 12600356 
BIC-34 rs4817027 NC_A>G 12600860 
BIC-07 rs1893650 NC_C>T 12602686 
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BIC-01 rs928883 NC_A>G 12605896 
BIC-10 rs2829801 NC_G>T 12606176 
BIC-11 rs767649 NC_A>T 12606593 
BIC-32 rs2829803 NC_A>G 12610181 

GSTP1-01 rs947894 Ex5-24A>G 12658484 
GSTP1-02 rs1799811 Ex6+5C>T 12659374 
SLC2A1-01 rs1770810 IVS2+2784C>T 13378031 

LRP5-01 rs312016 IVS1+2130T>C 13388198 
LRP5-04 rs491347 IVS7-1263G>A 13475483 
LRP5-15 rs608343 IVS16-213T>C 13502625 
LRP5-06 rs607887 IVS16-82C>T 13502756 
LRP5-07 rs3736228 Ex18-12C>T 13507090 
RGS5-01 rs15049 Ex5+416A>C 13525818 

BRCA2-25 rs1799943 Ex2+14A>G 13870572 
BRCA2-01 rs144848 Ex10+321A>C 13886729 
BRCA2-02 rs1801406 Ex11+1487A>G 13891888 
BRCA2-03 rs543304 Ex11+1898T>C 13892299 
BRCA2-04 rs1799955 Ex14-194A>G 13909232 
BRCA2-32 rs206147 IVS24+5507C>T 13939789 
BRCA2-06 rs15869 Ex27-336A>C 13953012 
CG018-03 rs1207953 IVS6-195G>C 13957532 

MGC20255-03 rs2241719 Ex5+1082T>A 14097799 
TGFB1-03 rs1800471 Ex1-282C>G 14127094 

XPC-01 rs2228001 Ex16+211A>C 14127450 
MGC4093-03 rs1800469 308bp 3' of STP C>T 14128514 

XPC-08 rs3731151 Ex11+28A>G 14133890 
XPC-03 rs2228000 Ex9-377C>T 14139889 
APC-09 rs2229992 Ex12+50T>C 14577867 
APC-19 rs2909786 IVS14-2583A>G 14583078 
APC-03 rs41115 Ex16+2521G>A 14590783 
APC-26 rs866006 Ex16+3310T>G 14591572 
APC-13 rs459552 Ex16+3507T>A 14591769 

ABCA1-17 rs2230808 Ex35-14A>G 14884009 
ABCA1-31 rs2297404 IVS33-26C>G 14885671 
ABCA1-15 rs2777801 IVS32+30T>G 14888082 
ABCA1-12 rs4149313 Ex18-8A>G 14907958 
ABCA1-26 rs7031748 Ex15-76C>A 14912477 
ABCA1-04 rs2230806 Ex7-65G>A 14942072 
MPO-04 rs2071409 IVS11-6A>C 15001508 
PLK1-15 rs40076 IVS3+26A>G 15005484 

CYP2C19-08 rs4986894 -97C>T 15270891 
CYP2C19-03 rs4244285 Ex5+39G>A 15290142 

SOD3-05 rs2855262 Ex3-489C>T 15477334 
CAV1-29 rs6950798 -3533C>T 15588122 
CAV1-19 rs10257125 -2812A>T 15588843 
CAV1-23 E5097_419 -2499C>G 15589156 
CAV1-02 rs2215448 -1164A>G 15590491 

IGFBP6-18 rs7974876 -18227T>C 15622440 
CAV1-05 rs8713 Ex3+798A>C 15626340 
CAV1-07 rs1049334 Ex3-851A>G 15626923 
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CAV1-09 rs1049337 Ex3-644C>T 15627130 
IGFBP6-17 rs12821902 -3308C>T 15631499 
IGFBP6-19 rs822688 IVS1-1109C>T 15636693 
SOAT2-21 rs2280698 -73A>G 15640594 
SOAT2-01 rs2280699 IVS1-237A>G 15641004 
SOAT2-09 rs17123210 IVS1-8C>G 15641233 

MET-13 rs11762213 Ex2+158G>A 15765817 
MET-26 E4094_67 Ex2+548C>T 15766207 
GGH-02 rs1031552 IVS7-3001C>T 15786543 
GGH-01 rs719235 -353C>A 15805034 
MET-04 rs13223756 Ex7-22A>G 15824125 
MET-01 rs41736 Ex20+60C>T 15862321 

HTR1B-02 rs6296 Ex1-313G>C 15992431 
HTR1B-07 rs130058 -160A>T 15993452 
AKR1A1-02 rs2088102 IVS5+282T>C 16004892 
HAO2-01 rs1417604 IVS4+707G>A 16014498 

HSD3B2-25 rs879332 -17124G>A 16027033 
HSD3B2-19 rs4659175 -1569T>C 16042588 
HSD3B2-14 rs12411115 IVS2-1665G>T 16046491 
HSD3B2-07 rs1361530 Ex4-88C>G 16051679 

LOC391073-01 rs1417608 10174G>A 16063948 
HSD3B1-23 rs2064902 -31680A>C 16104534 
HSD3B1-26 rs6667572 -27428A>G 16108786 
HSD3B1-24 rs4659182 -24247G>T 16111967 
HSD3B1-22 rs1998182 -12386A>G 16123828 
HSD3B1-25 rs6428830 IVS3+485A>G 16140890 
HSD3B1-18 rs10754400 713bp 3' of STP G>T 16144097 
XRCC1-01 rs25487 Ex10-4A>G 16323944 

SLC30A4-01 rs1153829 Ex8-66G>A 16567901 
ERCC5-01 rs1047768 Ex2+50T>C 16594193 
ERCC5-05 rs2227869 Ex8-369G>C 16604761 
ERCC5-02 rs17655 Ex15-344G>C 16617678 

AHR-19 rs7796976 Ex1+185A>G 16704367 
AHR-17 rs2074113 IVS7+33T>G 16739720 

ERCC3-04 rs4150474 IVS10-2790G>T 16741069 
AHR-01 rs2066853 Ex10+501G>A 16745061 

ERCC3-02 rs4150416 IVS6-108G>T 16754290 
ZNF230-01 rs12753 Ex5-284C>A 16783732 
ANKK1-01 rs1800497 Ex8-313G>A 16833244 
DRD2-03 rs1079597 IVS1-882A>G 16858702 
DRD2-01 rs1799978 -50977T>C 16908767 
HFE-01 rs1799945 Ex2+111C>G 16949430 
HFE-07 rs1572982 IVS5-47A>G 16952618 
HFE-08 rs707889 IVS6+462G>A 16954182 

SSTR3-01 rs229569 Ex2-807C>T 16993566 
SSTR3-03 rs86582 Ex1+453G>A 16993905 

FAM82A-01 rs163077 IVS10-8520T>C 17101538 
FAM82A-08 rs1367696 IVS10-7211A>G 17102847 
FAM82A-02 rs163086 IVS10-1363T>C 17108695 
CYP1B1-08 rs10916 Ex3+1284G>T 17113103 
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CYP1B1-31 rs162562 Ex3+939A>C 17113448 
CYP1B1-07 rs1800440 Ex3+315A>G 17114072 
CYP1B1-27 rs162556 -3922C>T 17122387 
CYP1B1-28 rs162555 -4977A>G 17123442 
CYP1B1-18 rs10175368 -5329G>A 17123794 
TSG101-30 rs2291752 364bp 3' of STP G>A 17288969 
TSG101-40 rs2279900 IVS9+18G>A 17290400 
TSG101-28 rs2279902 IVS7-13T>C 17292873 
TSG101-33 rs2292176 IVS5+61G>T 17318269 
TSG101-07 rs12574333 IVS4+10C>A 17323456 
TSG101-36 rs2292179 -182T>C 17335787 
CYP7B1-03 rs1451868 9712bp 3' of STP C>T 17352839 
CYP7B1-02 rs1376772 9625bp 3' of STP C>T 17352926 
CYP7B1-06 E3566_386 IVS4-1678T>C 17372445 
CYP7B1-01 rs3779870 IVS4-1752T>C 17372519 
RAD23B-02 rs1805335 IVS5-15A>G 17402223 
RAD23B-03 rs1805330 IVS6-3C>T 17405466 
RAD23B-04 rs1805329 Ex7+65C>T 17405533 
RAD23B-05 rs1805334 IVS7-22A>G 17407354 

APOE-03 rs440446 IVS1+69C>G 17677385 
CYP24A1-08 rs751087 IVS7-1255A>G 17829825 
CYP24A1-05 rs2296241 Ex4+9T>C 17839127 
CYP24A1-03 rs2259735 IVS2-105T>C 17841222 
CYP24A1-01 rs2248359 Ex2G>A 17844426 
PLA2G6-08 rs2016755 IVS3-309T>C 17930119 
PLA2G6-10 rs84473 IVS2+7899A>G 17947841 
PLA2G6-02 rs4376 IVS2+4480G>A 17951260 
PLA2G6-12 rs132987 IVS2+1653T>C 17954087 
CASP3-09 rs6948 Ex8-280C>A 17961070 
CASP3-08 rs1049216 Ex8+567T>C 17962029 
CASP3-07 rs1405938 IVS3-46A>G 17968558 
CASP3-02 rs3087455 IVS2-1555A>C 17973117 
KRAS-12 rs1137196 Ex6-790T>G 18117943 
KRAS-05 rs13096 Ex6-1662T>C 18118815 
KRAS-22 rs9266 Ex6+629A>G 18121191 
KRAS-08 rs712 Ex6+294A>C 18121526 
KRAS-04 rs17473423 Ex6+69A>G 18121751 

ERCC2-03 rs28365048 Ex23+61A>C 18123137 
ERCC2-09 rs1799787 IVS19-70C>T 18124362 
KRAS-06 rs4246229 IVS5+702G>A 18126643 
KRAS-19 rs6487461 IVS5+287T>C 18127058 
KRAS-10 rs11047902 IVS3+375C>T 18138767 
KRAS-17 rs17388148 IVS2-1840T>G 18141160 
KRAS-15 rs17329025 IVS2-3467A>G 18142787 
KRAS-07 rs4623993 IVS2-5082C>T 18144402 
KRAS-20 rs7133640 IVS2-7970G>C 18147290 
KRAS-16 rs17329424 IVS2+7144A>C 18150038 
KRAS-21 rs7973746 IVS2+6969G>C 18150213 

PPP1R13L-01 rs6966 Ex6-67A>T 18151180 
KRAS-03 rs10505980 IVS2+5765C>T 18151417 
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KRAS-01 rs10842515 IVS2+4685T>C 18152497 
KRAS-02 rs2970532 IVS2+2173C>T 18155009 
KRAS-11 rs11047918 IVS2+1176G>A 18156006 
KRAS-13 rs12226937 IVS2+506C>T 18156676 
KRAS-14 rs12228277 IVS2+190T>A 18156992 
KRAS-09 rs10842518 IVS1-1877G>T 18159180 
KRAS-18 rs4368021 IVS1+1863T>C 18160796 

ERCC1-30 rs3212986 196bp 3' of STP G>T 18180954 
ERCC1-05 rs11615 Ex4+33A>G 18191871 
ERCC1-06 rs3212948 IVS3+74C>G 18192580 
CALCR-01 rs1801197 Ex13+149T>C 18286270 
CALCR-03 rs2074122 IVS8+245C>A 18303190 
BRIP1-05 rs4986763 Ex20+506T>C 18414057 
BRIP1-02 rs4986764 Ex19-151T>C 18416408 
BRIP1-03 rs4986765 Ex19+62A>G 18416526 
BRIP1-09 rs1015771 IVS14+3238T>C 18503585 
BRIP1-15 rs4988340 IVS1+12A>G 18593694 
BRIP1-01 rs2048718 -1918G>A 18593880 
IL4R-24 rs2057768 -29429C>T 18635174 
IL4R-27 rs3024544 IVS3-85C>T 18666436 
IL4R-02 rs1805011 Ex10+300A>C 18686951 
IL4R-03 rs1805012 Ex11+392T>C 18687043 
IL4R-05 rs1805015 Ex10+608T>C 18687259 
IL4R-07 rs1805016 Ex10-1169T>G 18688006 
IL4R-10 rs8832 Ex10-309A>G 18688866 

SOD1-01 rs2070424 IVS3-251A>G 18701191 
FOXA1-41 E3074_384 N/A 19066999 
CDK7-01 rs2972388 Ex2-28C>T 19125611 
RPA4-01 rs2642219 Ex1+500G>A 19435714 
DRD1-02 rs5326 IVS2-90A>G 19679782 
LEPR-08 rs1887285 IVS2+6686G>A 19717140 
LEPR-03 rs7602 IVS2+6890A>G 19717344 
LEPR-01 rs1137100 Ex4-45A>G 19855834 
LEPR-04 rs1137101 Ex6-36A>G 19877906 

SULT1A2-09 rs3194168 336bp 3' of STP T>C 19916091 
AURKA-08 Poly-0014870 800bp 3' of STP G>C 19997321 
AURKA-15 rs8173 Ex11-347G>C 19997699 
AURKA-16 rs10485805 IVS9-68T>C 19998691 
AURKA-06 rs6024840 IVS7-80T>C 20009615 
ABCB11-08 rs853785 IVS19-1123A>G 20012011 
AURKA-04 rs2298016 IVS6+30G>C 20012204 
AURKA-02 rs1047972 Ex5+127A>G 20014371 
AURKA-03 rs2273535 Ex5+49T>A 20014449 
CSTF1-21 rs16979877 IVS1+269G>A 20020946 
CSTF1-22 rs6064387 IVS1+390A>G 20021067 
CSTF1-10 rs6099129 IVS1+870G>T 20021547 
CSTF1-08 rs6064389 IVS1+966G>T 20021643 

ABCB11-02 rs3770603 IVS1+4517G>A 20092635 
SELE-01 rs5361 Ex4+24A>C 20110000 

APOA4-07 rs5100 IVS2-97T>C 20255110 
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APOA4-02 rs5092 Ex2+38G>A 20255880 
IFNAR2-01 rs3153 IVS1-4640G>A 20271375 
IFNAR2-06 rs7279064 Ex2-28T>G 20276125 
IFNAR2-10 rs2236757 IVS6-50A>G 20286787 
CDK4-01 rs2072052 -1218T>G 20290025 

ABCC2-01 rs717620 Ex1+8C>T 20291104 
METTL1-01 rs703842 Ex7+196C>T 20306045 
ABCC2-02 rs2273697 Ex10+40G>A 20312341 
ABCC2-03 rs3740074 IVS15+169T>C 20320054 
ABCC2-10 E3510_102 IVS27-73A>G 20352532 
IFNGR2-03 rs1059293 Ex7-128C>T 20471563 

LIG1-02 rs13436 Ex26+3G>C 20889226 
LIG1-18 rs3729512 IVS25+19A>G 20890565 
LIG1-29 rs156641 IVS19-131A>G 20899598 
LIG1-01 rs20580 Ex7+44C>A 20922743 
LIG1-03 rs20579 Ex2-24C>T 20937020 

HIF1AN-02 rs2295780 IVS5+159A>G 21054491 
HSD17B4-15 rs2451818 -27855G>T 21175428 
HSD17B4-19 rs384346 -18796A>T 21184487 
HSD17B4-01 rs28943585 -2124A>T 21201159 
HSD17B4-21 rs7737181 IVS8+4959C>G 21234688 
HSD17B4-10 rs2546210 IVS9-194C>T 21242614 
HSD17B4-17 rs32659 IVS15+428A>G 21258025 
HSD17B4-03 rs17145464 IVS22+74G>C 21282186 
HSD17B4-18 rs3797372 IVS22-1666G>A 21285465 
HSD17B4-08 rs28943596 Ex24-76A>G 21292962 
HSD17B4-16 rs246965 13225bp 3' of STP A>G 21305928 
IL10RA-08 rs2229114 Ex7+449C>T 21432294 
IL10RA-02 rs9610 Ex7-109G>A 21434502 
FUT2-05 rs603985 11bp 3' of STP C>T 21475447 
LCAT-03 rs5923 Ex6-167C>T 21588152 
LCAT-05 rs1109166 IVS1-267A>G 21591581 
DHDH-02 rs4987162 IVS2+65C>G 21706623 
DHDH-03 rs2270939 Ex4-26T>C 21711123 
BAX-03 rs4645887 IVS4+286A>T 21728066 
BAX-05 rs905238 490bp 3' of STP A>G 21733574 

ROS1-20 rs498251 IVS37+85A>T 21808695 
ROS1-18 rs497186 IVS36-4A>G 21808848 
ROS1-03 rs581235 IVS32+504A>G 21819417 
ROS1-12 rs574664 IVS32+361A>T 21819560 

CYP2D6-65 rs2854741 IVS6-56C>G 21834300 
ROS1-15 rs1998206 Ex5-6A>C 21894877 
ROS1-14 rs2243377 IVS4-31C>T 21895051 
ROS1-04 rs2243 IVS3+31C>T 21906819 
LIG4-01 rs1805386 Ex2-1349T>C 21951589 

CDKN2A-03 rs3088440 Ex4+83C>T 21958159 
CDKN2A-09 rs2518719 IVS3+474T>C 21960427 
CDKN2A-11 rs3731246 IVS2-682C>G 21961989 
CDKN2A-14 rs2811708 IVS2+981C>A 21963422 
CDKN2A-12 rs3731239 IVS2+185C>T 21964218 
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CDKN2A-13 rs2518720 IVS1-3882G>A 21968979 
CDKN2A-20 rs3731217 IVS1+9477G>T 21974661 
CDKN2A-19 rs3731211 IVS1+7291A>T 21976847 
CDKN2A-18 rs3731198 IVS1+4661A>G 21979477 
CDKN2A-16 rs3218020 -3418C>T 21987872 

IL6-04 rs1800797 -660A>G 22162516 
IL6-01 rs1800795 Ex2C>G 22162940 

AXIN2-09 rs11868547 2490bp 3' of STP G>C 22252344 
AXIN2-12 rs7210356 IVS9+1080A>G 22257691 
AXIN2-14 rs4128941 IVS8+413G>A 22260072 
AXIN2-11 rs4541111 IVS3-77C>A 22263279 
AXIN2-13 rs11867417 IVS2-223T>C 22266639 
AXIN2-10 rs3923087 IVS1-3483T>C 22278002 
AXIN2-03 rs2240308 Ex1+237G>A 22283332 

CYP19A1-08 rs4646 Ex11+410G>T 22293401 
CYP19A1-09 rs10046 Ex10+268C>T 22293543 
CYP19A1-06 rs1065779 IVS8-53T>G 22295368 
CYP19A1-04 rs2304463 IVS7-106T>G 22298677 
CYP19A1-01 rs700518 Ex4-57A>G 22319669 
CYP19A1-34 rs2414096 IVS3-573T>C 22320336 
CYP19A1-40 rs727479 IVS3+418G>T 22325104 
CYP19A1-14 rs767199 IVS2-5240T>C 22330944 
CYP19A1-29 rs12907866 IVS2-10307T>C 22336011 
CYP19A1-39 rs6493494 IVS2-14688T>C 22340392 
CYP19A1-41 rs749292 IVS2-23584T>C 22349288 
CYP19A1-16 rs730154 IVS2+24809A>G 22381761 
CYP19A1-30 rs28566535 IVS2+14872T>G 22391698 

LTA-05 rs3093546 Ex1+50A>G 22398393 
LTA-01 rs909253 IVS1+90G>A 22398564 
TNF-12 rs1799964 -1210C>T 22400559 
TNF-09 rs1800630 -1042A>C 22400727 
TNF-02 rs1800629 -487A>G 22401282 
TNF-13 rs3093661 IVS1+54G>A 22402009 

CYP19A1-15 rs1004984 IVS2+2484C>T 22404086 
CYP19A1-27 rs1004983 IVS2+2361G>T 22404209 
CYP19A1-38 rs2470144 -86615T>C 22412282 

CDH1-06 rs9282650 IVS2-25933A>T 22423839 
CYP19A1-36 rs2445765 -99788G>C 22425455 

IRF3-02 rs7251 Ex8-81G>C 22431099 
IRF3-12 rs2304206 IVS1+17C>T 22437061 
IRF3-01 rs2304204 -924A>G 22437210 

CYP19A1-37 rs2446405 -111683A>T 22437350 
CDH1-09 rs1801026 Ex16+264A>C>G>T 22481655 
APAF1-03 rs2278361 IVS3-58G>A 22525398 
APAF1-04 rs2288729 IVS12+2093G>A 22549781 
APAF1-07 rs1007573 IVS16-565G>A 22574812 
APAF1-09 rs1866477 IVS25+515T>G 22602024 
ABCG8-06 rs9282575 Ex5-20G>A 22895539 
ABCG8-01 rs9282572 IVS5+46C>T 22895604 
ABCG8-02 rs6544718 Ex13+11T>C 22920858 
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BZRP-09 rs3937387 IVS1-22C>G 22945707 
BZRP-03 rs113515 IVS2-136C>G 22947435 
BZRP-05 rs6971 Ex4+118A>G 22949439 
TERF2-14 rs251796 IVS7-42T>C 23009633 
TERF2-01 rs153045 IVS7-2001A>G 23011592 
TERF2-03 E3673_301 IVS6+27G>A 23016451 
FASLG-01 rs929087 IVS2-1417A>G 23040996 
CBR1-01 rs25678 Ex1-71G>C 23104502 
CBR1-10 rs1005695 IVS2+210G>C 23105435 
CBR1-11 rs2156406 IVS2+316A>G 23105541 
CBR3-01 rs881712 Ex1-11C>T 23169639 

POLD1-13 rs1726787 IVS2+21C>T 23170521 
CYP17A1-13 rs619824 9170bp 3' of STP G>T 23329814 
CYP17A1-08 rs10883782 6526bp 3' of STP T>C 23332458 
CYP17A1-11 rs4919682 6128bp 3' of STP G>A 23332856 
CYP17A1-10 rs284849 IVS7+83C>A 23339708 
CYP17A1-12 rs4919687 IVS1-99T>C 23343774 
CYP17A1-01 rs743572 Ex1+27T>C 23345678 

NQO1-15 rs10517 Ex6-452T>C 23357959 
NQO1-08 rs689453 Ex2+65G>A 23366572 
NQO1-07 rs689452 IVS1-27C>G 23366663 

MYO5A-01 rs1058219 Ex29-114C>T 23434121 
MYO5A-06 rs2290336 IVS20-78G>A 23458292 
MYO5A-07 rs2242058 IVS19+38G>A 23462341 
ALAD-03 rs1805313 IVS11+66C>T 23472395 
ALAD-10 rs8177806 Ex6+17C>T 23474144 
ALAD-01 rs1139488 Ex4+4T>C 23475104 
POT1-37 E5058_689 22999bp 3' of STP T>C 23862828 
POT1-18 rs1034794 22614bp 3' of STP A>T 23863213 
POT1-02 rs727506 1988bp 3' of STP C>T 23883839 
POT1-11 rs10250202 IVS13-98T>G 23887321 
POT1-10 rs10244817 IVS12-111G>A 23889286 
POT1-09 rs10263573 IVS12+41T>A 23891083 
POT1-07 rs7784168 IVS6-33G>A 23913853 
POT1-05 rs6959712 IVS5+8T>A 23920819 
POT1-03 E5047_301 -1386G>A 23960442 

LOC401398-01 rs6466966 IVS1-7C>T 24002124 
RXRB-11 rs2072915 Ex10+525T>A 24020332 
RXRB-02 rs2076310 IVS3+51C>T 24024284 
BAK1-05 rs210135 Ex6-364T>A 24398942 
BAK1-06 rs513349 IVS5-35T>C 24399969 

NR1H4-18 E3706_375 IVS4-3518G>A 24404909 
BAK1-07 rs210145 IVS1+362G>C 24405690 

NR1H4-05 rs35724 IVS9-285G>C 24437569 
CYP3A7-01 rs12360 Ex13+125C>T 24565711 
CYP3A4-57 Poly-0014748 -17677G>A 24653205 

CTH-01 rs663465 -340A>G 24696151 
CTH-07 rs6413471 IVS3-66A>C 24706576 
CTH-10 rs473334 IVS7-799A>G 24716360 
CTH-03 rs663649 IVS7-583G>T 24716576 
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CTH-14 rs559062 IVS10-430C>T 24723334 
CTH-13 rs515064 IVS10-303A>G 24723461 

ZNF350-08 rs2278414 Ex5-229T>C 24736012 
ZNF350-04 rs2278415 Ex5-610A>T 24736393 
ZNF350-06 rs4988334 Ex5+470T>C 24737188 
ADH1C-01 rs698 Ex8-56A>G 24755493 
ADH1C-16 rs2009181 IVS6-680T>C 24757251 
ADH1C-15 rs283411 IVS5+62G>T 24760661 
ADH1C-18 rs17526590 IVS1-42C>T 24763749 
HMGCR-01 rs2241402 IVS8+56T>A 25240613 
HMGCR-02 rs2303151 IVS18+70T>C 25249809 

CGA-03 rs4986869 292bp 3' of STP A>G 25615352 
CGA-02 rs6631 Ex4-38T>A 25615430 
CGA-05 rs6155 Ex2+22A>G 25618075 
CGA-06 rs932742 IVS1+46A>G 25624856 

TERF1-27 rs10106086 -27187A>G 25747287 
CD80-01 rs2228017 Ex3+35G>A 25758826 
CD80-04 rs9282638 IVS2-56G>A 25758916 
CD80-02 rs1385520 IVS2+851C>T 25770771 

TERF1-02 E3663_301 IVS7+82C>T 25796065 
TERF1-04 rs2306494 IVS8-124G>A 25804580 
TERF1-01 rs2306492 IVS9+448G>A 25805255 
TERF1-06 rs3863242 IVS9-163C>T 25811386 
GSK3B-37 rs3732361 3337bp 3' of STP A>G 26037443 
GSK3B-09 rs2873950 IVS11-1360T>G 26042208 
GSK3B-22 rs10934500 IVS10-5923T>C 26063269 
GSK3B-14 rs4624596 IVS10-9341G>A 26066687 
GSK3B-05 rs1719889 IVS10+3478A>T 26073934 
GSK3B-04 rs1719888 IVS10+3386A>G 26074026 
GSK3B-08 rs1732170 IVS9-1224A>G 26078822 
GSK3B-07 rs1719895 IVS7-148C>T 26090649 
GSK3B-35 rs2319398 IVS7+11660C>A 26108088 
GSK3B-18 rs7617372 IVS7+5272T>C 26114476 
GSK3B-25 rs1574154 IVS6-2548T>C 26122393 
GSK3B-38 rs4072520 IVS4-372C>A 26130539 
GSK3B-20 rs6438553 IVS4+2191T>A 26135175 
GSK3B-41 rs7620750 IVS3-851G>A 26138327 
GSK3B-43 rs9873477 IVS3-3646A>G 26141122 
GSK3B-19 rs9878473 IVS3-8458G>A 26145934 
GSK3B-15 rs4688046 IVS3+2245G>A 26159016 
GSK3B-31 rs17810235 IVS2-8853C>T 26170197 
GSK3B-03 rs1381841 IVS2-12604T>C 26173948 
GSK3B-39 rs4688047 IVS2-16563C>T 26177907 
GSK3B-32 rs17810302 IVS2-19279A>G 26180623 
GSK3B-23 rs10934503 IVS2-24969T>C 26186313 
GSK3B-29 rs17204605 IVS1-12578G>A 26228810 
GSK3B-01 rs1154597 IVS1-15747T>C 26231979 
GSK3B-40 rs6770314 IVS1-21635G>A 26237867 
GSK3B-42 rs9851174 IVS1-28325G>A 26244557 
GSK3B-34 rs1870931 IVS1-35927C>G 26252159 
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GSK3B-21 rs6781942 IVS1-36963T>C 26253195 
GSK3B-27 rs16830683 IVS1-39082C>T 26255314 
GSK3B-02 rs12630592 IVS1+43948C>A 26263392 
GSK3B-28 rs16830689 IVS1+40923G>C 26266417 
GSK3B-17 rs6779828 IVS1+37047G>A 26270293 
GSK3B-30 rs17204878 IVS1+35314G>T 26272026 

IGF1-24 rs5742714 Ex4-177C>G 26272042 
GSK3B-33 rs17810676 IVS1+31645T>C 26275695 

IGF1-22 rs5742694 IVS3-2892C>A 26281426 
IGF1-27 rs978458 IVS3-5895A>G 26284429 

GSK3B-36 rs334535 IVS1+19890C>T 26287450 
IGF1-16 rs4764883 IVS3+6982G>A 26288495 

GSK3B-11 rs334555 IVS1+8058G>C 26299282 
GSK3B-12 rs334559 IVS1+2589T>C 26304751 

IGF1-44 rs5742667 IVS2-10010C>T 26305668 
IGF1-46 rs5742665 IVS2-10082C>G 26305740 
IGF1-15 rs2373721 IVS2-13577G>C 26309235 

GSK3B-45 rs3755557 N/A 26310103 
IGF1-11 rs5742629 IVS2+12158A>G 26339453 
IGF1-04 rs2162679 IVS1-1682A>G 26353449 
MSH2-08 rs1863332 -432T>G 26445831 
MSH2-15 rs4952887 IVS6+3400C>T 26462901 
MSH2-06 rs17036577 IVS7-5849T>C 26482771 
MSH2-21 rs7607076 IVS7-1122A>G 26487498 
MSH2-09 rs1981928 IVS7-212T>A 26488408 
MSH2-19 rs7602094 IVS8+719T>C 26489448 
MSH2-18 rs7585925 IVS8+1488T>G 26490217 
MSH2-12 rs3771281 IVS9-1516C>T 26508214 
MSH2-20 rs17036614 IVS11+501A>G 26514635 
MSH2-13 rs3821227 IVS11-1207C>T 26516890 
MSH2-03 rs2303428 IVS12-6C>T 26519433 
MSH2-03 rs2303428 IVS12-6C>T 26519433 
MSH2-14 rs4608577 IVS13+274T>G 26519917 
MSH2-10 rs2042649 IVS15-214T>C 26525637 
MSH2-16 rs6544991 2691bp 3' of STP A>C 26528713 
MSH6-01 rs3136228 -556G>T 26825749 
MSH6-04 rs1800935 Ex3+83T>C 26839048 
LEP-01 rs2167270 Ex1-11A>G 27296893 

NFKB1-01 rs3774932 IVS1+1246A>G 27918904 
NFKB1-02 rs3774937 IVS1+11306C>T 27928964 
NFKB1-33 rs230532 IVS2-826T>A 27944878 
NFKB1-09 rs230496 IVS6+199A>G 27983208 
PIM1-03 rs262933 -3975A>G 27992626 
PIM1-17 rs1757000 -3185A>G 27993416 
PIM1-25 rs12197850 Ex6+253C>A 28000212 
PIM1-01 rs10507 Ex6+713C>T 28000672 

NFKB1-21 rs4648059 IVS12-452C>G 28010316 
NFKB1-14 rs230547 IVS23-1330T>C 28030988 
CD86-03 rs9282641 Ex2+19A>G 28291914 
CD86-02 rs1129055 Ex8+35G>A 28333465 
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CASR-11 rs4678045 IVS1+20204A>G 28418009 
CASR-05 rs1965357 IVS1-4243C>T 28463698 
MX1-04 rs458582 IVS5+404G>T 28466376 
MX1-28 rs455599 IVS5+577A>G 28466549 

CASR-15 rs3749208 IVS3-91C>T 28475430 
MX1-07 rs469270 IVS11-198G>A 28479047 
MX1-08 rs469390 Ex13+4G>A 28479800 
MX1-22 rs2070229 Ex14+50T>C 28482983 
MX1-03 rs2280807 IVS14+43A>G 28483135 
MX1-10 rs2072683 IVS15-99C>T 28486319 
MX1-01 rs1050008 Ex16+114A>G 28486531 
MX1-11 rs469304 Ex16-64G>A 28486603 

CASR-07 rs2279802 IVS5+52A>G 28490087 
CASR-06 rs2270916 IVS6+16C>T 28496245 
CASR-09 rs2270917 IVS6+163C>T 28496392 
CASR-01 rs1042636 Ex7+1236A>G 28498915 
BHMT-02 rs567754 IVS4+52C>T 29010774 
BHMT-01 rs585800 Ex8+453A>T 29021566 
BHMT-04 rs617219 2654bp 3' of STP A>C 29023952 
CHEK1-01 rs558351 -1399T>C 29057680 
CHEK1-03 rs491528 IVS2-36G>T 29059882 
CHEK1-02 rs506504 Ex13+76A>G 29087611 

LIPC-17 rs1077834 -752C>T 29514036 
LIPC-01 rs1800588 -556C>T 29514232 
LIPC-02 rs3825776 IVS1+22511T>C 29537387 
MEST-03 rs2072574 IVS5-85A>G 29555519 
LIPC-25 rs1869145 IVS1-33033C>T 29588056 
LIPC-04 rs1968687 IVS1-7835G>T 29613254 
LIPC-37 rs1968689 IVS1-7747C>T 29613342 
LIPC-06 rs6083 Ex5+70A>G 29628567 
LIPC-08 rs2242064 IVS5+1098G>T 29629829 
LIPC-23 rs2242066 IVS5+1163A>G 29629894 
LIPC-09 rs6074 Ex9+49C>A 29651520 
DHFR-07 E5043_337 IVS3+2979C>G 30536587 
DHFR-11 rs865646 IVS3+2851A>C 30536715 
DHFR-18 rs1650697 Ex1-3G>A 30545139 
MSH3-02 rs1805355 Ex4-100A>G 30560387 
MSH3-29 rs1677649 IVS4+69A>G 30560555 
MSH3-03 rs836802 IVS8+8888G>C 30578158 
MSH3-07 rs3797896 IVS19+5137C>G 30688158 
IFNG-07 rs1861494 IVS3+284G>A 30694715 
MSH3-12 rs32983 IVS20+10801C>T 30714719 
MSH3-09 rs26279 Ex23+3A>G 30763295 
MDM2-01 rs769412 Ex12+162A>G 31376521 

ALDH1L1-06 rs9282690 IVS21+46G>A 32321092 
ALDH1L1-03 rs1127717 Ex21+31A>G 32321213 
ALDH1L1-01 rs2305230 Ex10-40G>T 32351849 
PTGS1-02 rs5788 Ex6-40C>A 32464996 
LMO2-08 rs3740616 Ex6+226T>A 32668137 
LMO2-01 rs3740617 Ex6+106A>G 32668257 
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LMO2-04 rs3781577 IVS1-3051T>C 32693725 
CCND3-01 rs9529 Ex5-337A>G 32761257 
CCND3-02 rs2479717 IVS2-42T>A 32763424 
RNASEL-01 rs11072 Ex6-560A>G 32952270 
RNASEL-02 rs486907 Ex1-96G>A 32963496 
XRCC4-05 rs2075685 Ex2G>T 32967023 
XRCC4-07 rs2662238 IVS4-64A>G 33093665 
MBD2-01 rs7614 Ex8+438A>G 33170346 
MBD2-02 rs1145315 IVS6+1938A>G 33178057 
MBD2-03 rs609791 IVS3-3743G>C 33208228 

XRCC4-10 rs2891980 IVS7-6281C>T 33237021 
MBD2-04 rs603097 -2176C>T 33242208 

XRCC4-04 rs3777015 IVS7-61G>A 33243241 
XRCC4-01 rs1805377 IVS7-1A>G 33243301 

CAT-07 rs9282626 -1042C>T 33246759 
CAT-02 rs769214 -843G>A 33246958 
CAT-15 rs1049982 Ex1+49T>C 33247782 
CAT-05 rs769218 IVS1-60A>G 33257920 
CAT-03 rs769217 Ex9-29C>T 33270149 
CAT-06 rs475043 820bp 3' of STP C>T 33281042 
IL3-01 rs40401 Ex1-84C>T 33811491 

CSF2-02 rs25882 Ex4+23T>C 33826473 
NCF2-05 rs699244 IVS15-87C>A 33934391 
NCF2-04 rs2296164 IVS10-21C>T 33943874 
NCF2-03 rs2274064 Ex6+41T>C 33951326 

AMACR-01 rs2278008 Ex5+90G>A 33962275 
AMACR-08 rs6863657 IVS4+4012T>C 33967491 
AMACR-09 rs840409 IVS4+3803C>G 33967700 
AMACR-02 rs34677 Ex4-23G>T 33971525 
AMACR-17 rs10941112 Ex3-29A>G 33977464 
AMACR-03 rs34689 IVS1+169G>T 33980466 
AMACR-05 rs3195676 Ex1+114A>G 33980857 

IRF1-05 rs839 Ex10-347C>T 34234139 
IRF1-03 rs9282763 IVS6-68G>A 34237146 
IL13-02 rs1881457 -1469A>C 34407422 
IL13-03 rs1800925 -1069C>T 34407822 
IL13-06 rs1295686 IVS3-24T>C 34410856 
IL13-01 rs20541 Ex4+98A>G 34410977 
IL4-02 rs2243248 Ex2T>G 34423657 
IL4-01 rs2243250 -588C>T 34424167 
IL4-03 rs2070874 Ex1-168C>T 34424723 
IL4-11 rs2243268 IVS2-1443A>C 34428976 
IL4-10 rs2243290 IVS3-9A>C 34433182 

VEGF-19 rs1005230 -2487C>T 34594746 
VEGF-05 rs25648 Ex1-73C>T 34597227 
VEGF-04 rs3025039 236bp 3' of STP C>T 34610786 

NFKBIE-03 rs2282151 8321bp 3' of STP A>G 35084445 
NFKBIE-02 rs730775 IVS1+645T>C 35090324 
NFKBIE-08 rs513688 IVS1-2163C>A 35093940 
NFKBIE-01 rs483536 -14107A>T 35094103 



92 

EGF-08 rs4444903 Ex1+61A>G 35329240 
RAG1-01 rs2227973 Ex2+2473A>G 35384554 
EGF-02 rs2237051 Ex14+71G>A 35396328 
EGF-04 rs971696 IVS22-1443T>A 35422995 

MBD4-02 rs140696 Ex6+2C>T 35647243 
HSD17B2-02 rs723012 IVS3-5735C>T 35732971 
HSD17B2-01 rs1424151 IVS4-2328A>G 35743551 

IL7R-01 rs1494555 Ex4+33G>A 35843947 
IL7R-08 rs7737000 Ex4-43C>T 35844030 

ENPP1-04 rs1044582 Ex25-243A>T 36316537 
MLH1-02 rs1799977 Ex8-23A>G 36993572 
MLH1-05 rs2286940 IVS12-169C>T 37010110 

PTGS2-33 rs5275 Ex10+837T>C 37051997 
PTGS2-44 rs4648276 IVS7+111C>T 37054427 
PTGS2-19 rs5277 Ex3-8G>C 37057136 
PTGS2-08 rs20417 -898G>C 37059260 
PTGS2-05 rs689466 Ex2A>G 37059690 
CCNH-01 rs2266690 Ex8+49T>C 37289632 
CCNH-04 rs3093816 IVS7+132C>T 37291745 
ENG-06 rs1330684 IVS12-117A>G 37900803 

CX3CR1-02 rs3732378 Ex2+848C>T 39247166 
CX3CR1-01 rs3732379 Ex2+754G>A 39247260 
CDC25C-01 rs1042124 Ex1-62G>T 40082358 

PMS1-56 rs5742926 Ex2G>T 40858221 
PMS1-57 rs5742938 IVS1+639G>A 40859374 
PMS1-49 rs1233299 IVS3+3961A>C 40874054 
PMS1-15 rs1233302 IVS3-1498C>A 40878296 
PMS1-24 rs5743030 IVS4-4198G>A 40887961 
PMS1-48 rs1233284 IVS5+6865G>A 40899187 
PMS1-27 rs1233288 IVS5+7819C>T 40900141 
PMS1-63 rs1233291 IVS5+8045G>C 40900367 
PMS1-28 rs1233297 IVS5+11269C>T 40903591 
PMS1-60 rs5743072 IVS5-11766A>G 40906340 
PMS1-47 rs1233255 IVS5-2598A>C 40915508 
PMS1-26 rs1233258 IVS5-1656C>T 40916450 
PMS1-50 rs12618262 IVS5-617C>T 40917489 
PMS1-61 rs5743112 IVS6+176C>A 40918398 
PMS1-62 rs5743116 IVS6-3413T>C 40923384 
PMS1-54 rs256567 IVS9-938C>T 40936947 
PMS1-31 rs256564 IVS10+1095A>G 40939465 
PMS1-53 rs256563 IVS10-693A>G 40941248 
PMS1-52 rs256552 211bp 3' of STP A>G 40951790 
PMS1-51 rs256550 2575bp 3' of STP T>C 40954154 

MATR3-01 rs11738738 3101bp 3' of STP A>T 41083199 
SLC23A1-20 rs6596471 IVS14+2088T>C 41120601 
SLC23A1-09 rs4257763 IVS10+109T>C 41129172 
SLC23A1-05 E3359_310 Ex8+22G>A 41130515 
SLC23A1-18 rs10063949 -583G>A 41134539 

SEP15-04 rs540049 Ex5-176C>T 41147701 
SEP15-02 rs5845 Ex5+450T>C 41148232 
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DNAJC18-01 rs4315920 4151bp 3' of STP T>C 41160698 
CTNNB1-11 rs3864004 -25382A>G 41180181 
CTNNB1-01 rs11564437 IVS1+832A>G 41181997 
CTNNB1-14 rs4533622 IVS1+1177A>C 41182342 
CTNNB1-07 rs2371452 IVS1+1702A>G 41182867 
CTNNB1-05 rs1798794 IVS1-10154G>T 41195362 
CTNNB1-16 rs9813198 IVS1-7464A>G 41198052 
CTNNB1-15 rs5743395 IVS7+309A>T 41209156 
CTNNB1-19 rs1880481 IVS7-2751C>A 41212085 
CTNNB1-02 rs11564452 IVS7-562A>T 41214274 
CTNNB1-03 rs11564465 IVS10-175C>T 41217044 
CTNNB1-13 rs4135385 IVS13-67A>G 41219444 
CTNNB1-08 rs2953 Ex15-547G>T 41221392 
CTNNB1-17 rs11129895 2548bp 3' of STP A>G 41223386 
CTNNB1-21 rs9883073 3702bp 3' of STP C>A 41224540 
IFNGR1-01 rs11914 Ex7+189T>G 41624017 
IFNGR1-05 rs3799488 IVS6-4G>A 41624209 

MYC-02 rs3891248 IVS1-355T>A 41968318 
STAT1-01 rs2066804 IVS21-8C>T 42051175 
GHR-31 rs2972395 -165670C>T 42373063 
GHR-28 rs2940930 -160465G>A 42378268 
GHR-16 rs7732059 -142504C>G 42396229 
GHR-11 Poly-0009029 -142290T>C 42396443 
GHR-11 Poly-0009029 -142290T>C 42396443 
GHR-214 rs1858136 N/A 42408866 
GHR-33 rs2972418 -82283T>C 42456450 
GHR-79 rs2972419 Ex2G>A 42456634 
GHR-29 rs2940944 IVS1+65085C>A 42461899 
GHR-30 rs2972392 Ex2A>C 42468592 
GHR-27 rs2940913 -66359G>T 42472374 
GHR-50 rs7735889 IVS1-3767A>G 42534956 
GHR-47 rs7712701 IVS2+4144A>C 42542947 
GHR-21 rs28943882 IVS2+29065C>T 42567868 
GHR-45 rs6873545 IVS3+2059C>T 42604021 
GHR-90 rs28943889 IVS2+16453T>C 42618415 
GHR-77 rs6878512 IVS3-21121C>T 42640628 
GHR-46 rs6897530 IVS3-21055C>T 42640694 
GHR-01 rs6179 Ex6-61A>G 42672801 
GHR-34 rs2972780 IVS8+1229C>T 42687607 
GHR-03 rs6180 Ex10+685A>C 42691996 

SEPP1-02 rs6413428 Ex5+710T>C 42773481 
SEPP1-01 rs7579 Ex5+626C>T 42773565 
GSTA4-01 rs405729 Ex7-31A>G 43701012 
GSTA4-02 rs367836 Ex7+260C>A 43701362 
GSTA4-07 rs543613 IVS6-134A>G 43701755 
GSTA4-04 rs4986947 IVS5+32C>T 43707461 
IGFBP1-01 rs4619 Ex4+111A>G 45304115 
IGFBP3-04 rs2471551 IVS2-17G>C 45328495 
ESR2-02 rs4986938 38bp 3' of STP C>T 45699569 
ESR2-05 rs3020450 -18598A>G 45768055 
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CYP1A1-78 rs2198843 11599bp 3' of STP C>G 45791548 
CYP1A1-15 rs4646421 IVS1-728C>T 45806510 
CYP1A1-14 rs2606345 IVS1+606T>G 45807494 
CYP1A1-91 rs17861115 -9893G>A 45815650 
CYP1A1-81 rs2472299 -17961T>C 45823718 
CCR3-01 rs4987053 Ex3+62T>C 46246704 
CCR3-05 rs3091312 754bp 3' of STP A>T 46248476 
GPX2-07 Poly-0014684 2680bp 3' of STP T>A 46403278 
GPX2-19 rs4902345 2301bp 3' of STP G>A 46403657 
GPX2-13 rs10133054 2089bp 3' of STP G>C 46403869 
GPX2-14 rs10133290 1763bp 3' of STP T>G 46404195 
GPX2-09 rs17880380 1306bp 3' of STP G>A 46404652 
GPX2-16 rs12172810 823bp 3' of STP G>A 46405135 
GPX2-17 rs2071566 IVS1-444C>T 46406753 
GPX2-21 rs2737844 IVS1+714C>T 46408262 
GPX2-02 rs1800669 IVS1+19T>A 46408957 
GPX2-18 rs2296327 -6793G>A 46410300 
RAB15-04 rs3825644 3715bp 3' of STP T>G 46411252 
RAB15-03 rs3742599 3306bp 3' of STP C>A 46411661 
RAB15-02 rs2277502 2936bp 3' of STP A>G 46412031 

CFH-01 rs800292 Ex2-61G>A 47051172 
CFH-06 rs1329423 IVS4-219T>C 47055326 
CFH-07 rs2300430 IVS7+1346T>C 47064652 
CFH-03 rs2274700 Ex10+83G>A 47091886 
CFH-05 rs1065489 Ex18+26G>T 47118713 

CCNA2-12 rs3217773 IVS7+78C>T 47234252 
CCNA2-06 rs1396080 IVS5+73A>C 47235585 
CCNA2-01 rs769242 Ex3+30A>G 47237348 
HUS1-01 rs1056663 Ex8+74G>A 47376947 
HUS1-05 rs2242478 IVS3+25G>A 47389981 

IL2-03 rs2069763 Ex2-34G>T 47872613 
IL2-01 rs2069762 Ex2T>G 47873111 

CDC25A-04 rs936426 IVS9+521T>C 48155257 
GPX1-06 rs1800668 Ex1+35C>T 49335761 
GPX1-28 rs3448 -39303A>G 49336755 
TCTA-04 rs6784820 IVS2+321A>G 49390868 
TCTA-02 rs6997 Ex3-75T>C 49393838 
NICN1-01 rs8897 Ex7-28G>A 49400411 
CTSH-01 rs3129 Ex12-109G>A 50004535 
NOS3-34 rs3918226 IVS1-665C>T 50051985 
NOS3-01 rs1799983 Ex8-63G>T 50058257 
CDK5-08 rs2069456 IVS7+11A>C 50114701 
CDK5-16 rs1549760 -903G>A 50117932 

SLC4A2-01 rs6464120 IVS1+549A>G 50119491 
SLC4A2-02 rs10245199 IVS1-530A>G 50120576 
SLC4A2-04 rs13240966 IVS1-194C>G 50120912 
CASP10-02 rs3900115 Ex3-171A>G 52260093 
LMOD1-03 rs2820312 Ex2+623T>C 52278196 
CASP8-06 rs2349070 IVS4-876A>C 52339724 
CASP8-07 rs2293554 IVS5+73T>G 52341003 
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CASP8-22 rs1035142 1760bp 3' of STP G>T 52362494 
FZD7-17 rs1207955 -2321G>A 53106465 
FZD7-06 E7045_223 -2082G>A 53106704 
FZD7-10 rs13034206 Ex1-1926C>T 53110651 
FZD7-20 rs4673222 Ex1-1251G>A 53111326 
FZD7-15 E7064_389 2569bp 3' of STP G>A 53113081 
FZD7-16 rs12474408 2710bp 3' of STP A>G 53113222 

MTHFD2-01 rs1667627 IVS1+3323T>C 53245129 
RGS6-04 rs3784058 IVS1+12785G>A 53412557 
RGS6-02 rs2238284 IVS1-11668C>A 53419574 
RGS6-05 rs2238280 IVS1-5967T>C 53425275 
EGFR-05 rs2017000 IVS21+96A>G 54635882 
EGFR-03 rs1140475 Ex25+8C>T 54659689 
EGFR-04 rs2293347 Ex27+36C>T 54662188 
CTLA4-16 rs11571315 -1764T>C>G 54940317 
CTLA4-19 rs4553808 -1660A>G 54940421 
CTLA4-17 rs11571316 -1576G>A 54940505 
CTLA4-10 rs11571317 -657C>T 54941424 
CTLA4-25 rs5742909 -318C>T 54941763 
CTLA4-01 rs231775 Ex1-61A>G 54942130 
CTLA4-07 rs3087243 1383bp 3' of STP A>G 54948335 
VCAM1-02 rs1041163 -1591T>C 55003218 
VCAM1-38 rs2392221 IVS3-7C>T 55009566 
VCAM1-05 rs3176879 Ex9+149G>A 55023220 
ESR1-31 rs488133 Ex2T>C 56280294 
ESR1-14 rs2071454 -2223G>T 56281674 
ESR1-34 rs9340770 -945A>C 56282952 
ESR1-01 rs2077647 Ex1+392T>C 56283927 
ESR1-08 rs1801132 Ex4-122G>C 56420372 
ESR1-17 rs2273206 IVS6+52G>T 56537161 
ESR1-07 rs2228480 Ex8+229G>A 56574945 
ESR1-13 rs3798577 Ex8+1264T>C 56575980 
ESR1-30 rs3798758 Ex8+1988C>A 56576704 
FOS-02 rs7101 Ex1+96C>T 56745379 
FOS-06 rs1063169 IVS2-145G>T 56746871 
FOS-08 rs4645856 IVS2-5C>T 56747011 

RGS17-01 rs2295231 IVS1-170T>C 57520198 
RGS17-03 rs3870366 IVS1+12492C>T 57594617 
OPRM1-01 rs1799971 Ex1-173A>G 58515647 
OPRM1-02 rs607759 IVS1+11468C>T 58527287 
OPRM1-23 rs9282821 IVS3+1768A>C 58569225 
OPRM1-03 rs562859 IVS3+1966T>C 58569423 
GSTZ1-02 rs7972 Ex5-12G>A 58792990 
GSTZ1-03 rs1046428 Ex7+29T>C 58794036 
BARD1-18 rs5031011 IVS6+14T>C 65841608 
BARD1-04 rs2070094 Ex6-50G>A 65841671 
BARD1-11 rs2229571 Ex4-181G>C 65854880 
BARD1-22 rs2070096 Ex4-262G>C 65854961 
BARD1-02 rs1129804 Ex1+44C>G 65883738 
IL12A-09 rs582537 IVS2-701A>C 66205256 
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IL15-06 rs1493013 Ex3+163C>T 67135593 
IL15-01 rs2254514 Ex3-92T>C 67135669 
IL15-07 rs2857261 IVS3+8A>G 67135768 
IL15-10 rs1057972 Ex9-181A>T 67149563 
IL15-02 rs10833 Ex9-66T>C 67149678 

XRCC5-14 rs828910 IVS2-711A>G 67186444 
XRCC5-17 rs828702 IVS9+1081A>G 67202894 
XRCC5-19 rs207916 IVS17+789A>G 67236976 
XRCC5-02 rs1051685 Ex22+466A>G 67279792 
XRCC5-12 rs2440 Ex22-238G>A 67280182 
IGFBP2-26 rs1106037 -13556C>T 67694106 
IGFBP2-29 rs2372848 IVS1+5424A>G 67713528 
IGFBP2-25 rs2270360 IVS1-294A>C 67734402 
IGFBP5-05 rs2241193 IVS1+4949A>G 67763629 
IGFBP5-10 rs1978346 -1968C>T 67770883 
IL8RA-04 rs2854386 5661bp 3' of STP C>G 69236918 
MYNN-01 rs1317082 IVS4+236A>G 75992743 
FBXW7-01 rs2676330 IVS4+2575A>G 77760638 
FBXW7-05 rs2714804 IVS3+230T>C 77766095 
FBXW7-44 rs2676329 IVS1-1417A>G 77770526 
FBXW7-04 rs2714805 IVS1-20897G>A 77790006 
FBXW7-02 rs2292743 -144T>A 77828231 

IRS1-04 rs1366757 IVS1+12345G>C 77856775 
IRS1-08 rs9282766 IVS1+4357G>A 77864763 
IRS1-03 rs1801278 Ex1-840G>A 77869959 
TLR2-06 rs4696480 -16933A>T 79102257 
TLR2-04 rs3804099 Ex2+613T>C 79119787 
TLR2-05 rs3804100 Ex2-1122T>C 79120540 

XRCC3-03 rs1799796 IVS7-14A>G 85165680 
XRCC3-04 rs1799794 Ex2+2A>G 85179020 
AKT1-15 rs2498799 Ex10+24G>A 86240939 

MASP1-21 rs3733001 IVS15-34G>A 93434114 
MASP1-42 rs1001073 IVS12-397T>C 93439863 
MASP1-01 rs3774268 Ex11+32C>T 93449482 
MASP1-48 rs696405 IVS10-1868A>C 93451381 
MASP1-53 rs710459 IVS9+790C>T 93455640 
MASP1-50 rs698090 IVS8-2891G>A 93459458 
MASP1-45 rs3105782 IVS5-193T>C 93466454 
MASP1-44 rs1533593 IVS5-1224A>G 93467485 
MASP1-46 rs3864099 IVS2+4675A>C 93494096 
MASP1-49 rs698079 IVS2+3841T>G 93494930 
MASP1-47 rs4376034 IVS2+3257T>C 93495514 
MASP1-52 rs698105 IVS2+118A>G 93498653 
MASP1-43 rs13094773 IVS1-339A>G 93499341 
MASP1-54 rs7609662 IVS1+2718G>A>T 93501856 
MASP1-07 rs12635264 IVS1+2650G>A>C 93501924 
MASP1-09 rs13089330 -849C>T 93505428 
BCL6-07 rs1474326 IVS10+202G>T 93937685 
BCL6-09 rs3774309 IVS7-511C>T 93940355 
BCL6-06 rs1464645 IVS7-571G>A 93940415 
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BCL6-11 rs3774306 IVS7-643A>G 93940487 
BCL6-05 rs3172469 IVS1+4110A>C 93954246 
TP73L-03 rs17514215 IVS5+34T>G 96077399 
TP73L-17 rs7653848 IVS7+121C>T 96081010 
TP73L-15 rs6789961 IVS8-22A>G 96082249 
TP73L-16 rs6790167 IVS9+79A>G 96082432 
TP73L-13 rs9840360 IVS10+41A>G 96085983 
TP73L-28 rs7613791 IVS10-4859C>T 96094482 
TP73L-26 rs1345186 IVS10-23T>C 96099318 
TP73L-52 E4057_169 Ex14+342C>T 96107494 
TP73L-46 E4064_458 Ex14-559G>A 96109665 
TP73L-47 E4065_308 Ex14-430C>T 96109794 
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Statistical analysis 

 Demographic characteristics including age, gender, and race were 

compared between the original and validation studies using Student’s T-test (for 

age) and two-sample tests of proportions (for AE status, gender, and race).  

Allele frequencies were estimated from the total number of copies of individual 

alleles divided by the number of all alleles in the sample, and they were 

compared between the two studies using a two-sample test of proportions.  

Deviations in frequencies from Hardy-Weinburg Equilibrium were evaluated using 

the exact test described in Wigginton et al. [12]. 

 In the original study, potential associations were tested between each of 

the 1442 SNPs passing quality control filters and the occurrence of adverse 

events using logistic regression.  For each SNP in the initial sample, we recorded 

the odds ratio estimate and p-value of the likelihood ratio test for a univariate 

allelic logistic model.  No correction for multiple comparisons was made in our 

initial sample, because we reserved the validation sample for the purpose of 

weeding out false-positives.  In the validation sample, we tested only those SNPs 

having an AE-associated p-value ≤ 0.05 in the original sample.  We considered a 

significant SNP association in the initial sample to have replicated if it met the 

following criteria in the validation sample:  an odds ratio that consistently 

associated AE risk with the same genotypes and a p-value ≤ 0.10.  The more 

liberal p-value criterion was chosen to maintain power in the face of the smaller 

size of the validation sample compared to that of the original sample.  While this 
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approach may increase the chances of false-positive results, the trade-off in 

favor of power is appropriate given the exploratory scope of the current study.   

 Potential patterns of linkage disequilibrium (LD) between replicated SNPs 

on the same chromosome were assessed using Haploview [13].  Haplotypes 

were estimated for SNPs in high LD (r2 > 0.90) using the iterative approach 

described in Lake et al. [14].  The resulting haplotypes were tested for 

association with AEs using univariate logistic models.  Statistical analyses were 

performed using R version 2.2.1, Stata version 9, and Haploview version 3.32 

[13,15-17].  

 

Results 

 

Demographic characteristics of subjects included in genetic analysis 

In both studies, all participants were invited to donate genetic samples. In 

the original study, of the 148 participants enrolled, a total of 96 individuals 

consented for the genetic substudy.  Of those 96 subjects with genetic data, 27 

experienced adverse events relating to immunization.  Since systemic AEs were 

the outcome of interest, of the 27 individuals experiencing an AE, those 11 

reporting only a localized rash near the inoculation site were left out, and the 

other 69 reporting no AEs were used as controls. In the validation study, 102 

total healthy adults were enrolled and 90 gave consent for genotyping.  Of the 90 

individuals with genetic data, 46 were vaccine-naïve and 44 were vaccine-



100 

experienced.  Of the naïve individuals, 24 experienced systemic AEs, and of the 

experienced individuals, only 10 suffered systemic AEs. 

 There was a difference in vaccination history status between the two 

studies, with the original study including only vaccine-naïve participants and the 

validation study including both naïve and experienced individuals.  Pooling 

vaccination history status, there was a statistically significant difference in mean 

age between the two studies (p < 0.001).  However, when only the vaccine-naïve 

individuals in the validation study are compared to the original study sample, the 

mean difference in age was only one year (p = 0.15), indicating that the inclusion 

of vaccine-experienced individuals accounts for the age differential.  Because 

age stratification can have a profound effect on immune function (especially for 

the inflammatory responses thought to be important in AEs) [18-20], only the 

vaccine-naïve individuals in the validation study were considered in all 

subsequent analyses.  Table 2 summarizes age, race, gender, and AE status 

decompositions of both studies.  Table 2 also describes the results of the 

demographic comparisons between the original and validation studies—

considering only vaccine-naïve subjects.  As the table indicates, there was no 

statistical difference in age, gender, or race between the two vaccine-naïve study 

samples.  In the original study, 40 (47%) individuals were male, 84 (99%) were 

Caucasian and 1 (1%) was Asian.  In the validation study, 27 (59%) individuals 

were male, 44 (96%) were Caucasian, 1 (2%) was African American, and 1 (2%) 

was Asian. 
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Table 2.  Summary of AE status, age, gender, and race for both studies.  Only 
vaccine-naïve subjects are considered.  
 

AE/nonAE Agea Gender (M/F) Race (W/B/A)b

Original (N  = 85) 16/69 23.2 (3.9) 40/45 84/0/1
Validation (N  = 46) 24/22 24.2 (3.8) 27/19 44/1/1

P-value of Differencec < 0.01 0.15 0.20 0.25

Genetic (SNP) Data
Dataset/Study

 
a Mean (Standard Deviation) 
b W = “White”, B = “Black”, A = “Asian” 
c Two-sided p-value for t-test (Age) or two-sample test of proportions (AE status, 
Gender, Race) 
 
 
 
Genetic associations with adverse events 

Table 3 lists all SNPs with an AE-associated p-value ≤ 0.05 in the original 

sample.  The significant genetic association results from the original study that 

replicated in the validation study are listed in Table 4.  Two SNPs in the IRF-1 

gene, three SNPs in the IL-4 gene, and one SNP in the MTHFR gene met our 

significance criteria for association with the occurrence of systemic adverse 

events.   
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Table 3.  List of all SNPs with an AE-associated p-value ≤ 0.05 in the original 
sample, organized according to location.  SNP names are taken from 
http://snp500cancer.nci.nih.gov.  
 

SNP Name 
dbSNP ID   

(rs#) SNP Region  
SNP Location   

(Base Pair) 
IGF1R-26 rs3743259 IVS5+311A>G 893012 
SRA1-03 rs801459 NC_A>C 1096550 
PIN1-21 rs889162 IVS3+2592T>C 1214718 

SLC6A3-14 rs460700 IVS4+2610A>G 1419969 
CDKN1C-09 rs431222 -1679G>A 1695640 
EPHX1-01 rs2234922 Ex4+52A>G 2202600 
GATA3-46 rs10905277 -250A>G 2460264 

SLC39A2-07 rs2149666 IVS2-119G>T 2467996 
TXNRD2-83 rs9306230 IVS1+1202T>C 3080172 

MBL2-03 rs5030737 Ex1-34C>T 3082397 
BLM-02 rs2238335 IVS1-253G>C 6255893 
BLM-25 rs16944831 IVS16-479C>T 6306468 

MTHFR-02 rs1801133 Ex5+79C>T 6393745 
MPDU1-01 rs4227 Ex7-334G>T 7088525 
SAT2-03 rs858520 Ex4-11G>A 7127620 
TP53-14 rs1614984 21226bp 3' of STP C>T 7168801 

GDF15-02 rs1059369 Ex2-136T>A 9759943 
GGH-01 rs719235 -353C>A 15805034 
AHR-19 rs7796976 Ex1+185A>G 16704367 

CYP1B1-18 rs10175368 -5329G>A 17123794 
TSG101-40 rs2279900 IVS9+18G>A 17290400 
TSG101-07 rs12574333 IVS4+10C>A 17323456 
TSG101-36 rs2292179 -182T>C 17335787 
AURKA-02 rs1047972 Ex5+127A>G 20014371 

HSD17B4-19 rs384346 -18796A>T 21184487 
HSD17B4-21 rs7737181 IVS8+4959C>G 21234688 

LTA-05 rs3093546 Ex1+50A>G 22398393 
CDH1-06 rs9282650 IVS2-25933A>T 22423839 
CTH-03 rs663649 IVS7-583G>T 24716576 

NFKB1-14 rs230547 IVS23-1330T>C 28030988 
CASR-06 rs2270916 IVS6+16C>T 28496245 
IRF1-05 rs839 Ex10-347C>T 34234139 
IRF1-03 rs9282763 IVS6-68G>A 34237146 
IL4-03 rs2070874 Ex1-168C>T 34424723 
IL4-11 rs2243268 IVS2-1443A>C 34428976 
IL4-10 rs2243290 IVS3-9A>C 34433182 

CFH-03 rs2274700 Ex10+83G>A 47091886 
FZD7-20 rs4673222 Ex1-1251G>A 53111326 
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Table 4.  Significant genetic associations consistent across both studies. 

Gene SNP       
(rs#)

SNP Location   
(Base Pair)

Chromosomal 
Location

aOdds Ratio 
(95% C.I.)

bp-value   
( χ2 )

aOdds Ratio 
(95% C.I.)

bp-value   
( χ2 )

rs9282763 34237146 5q31.1 3.2 (1.1 - 9.8) 0.03 3.0 (1.1 - 8.3) 0.03
rs839 34234139 5q31.1 3.2 (1.1 - 9.8) 0.03 3.0 (1.1 - 8.3) 0.03

rs2070874 34424723 5q31.1 2.4 (1.0 - 5.7) 0.05 3.8 (0.9 - 16.6) 0.06
rs2243268 34428976 5q31.1 2.6 (1.1 - 6.0) 0.03 3.8 (0.9 - 16.6) 0.06
rs2243290 34433182 5q31.1 2.4 (1.1 - 5.4) 0.04 3.8 (0.9 - 16.6) 0.06

MTHFR rs1801133 6393745 1p36.3 2.3 (1.1 - 5.2) 0.04 4.1 (1.4 - 11.4) < 0.01

IRF-1

IL-4

Original Study Validation Study

 
a Estimated odds ratio (95% Confidence Interval) 
b Likelihood ratio chi-square test with one degree of freedom 
 

Only those 38 SNPs (within 31 genes) that showed significant 

associations in the original study were tested for potential associations in the 

validation study.  The statistical results that replicated in the second study are 

shown alongside those from the original study in Table 4.  The SNPs in IRF-1, IL-

4, and MTHFR met our statistical significance criterion in the validation sample (p 

= 0.03, p = 0.06, and p < 0.01, respectively), and maintained an AE risk effect 

associated with the variant genotypes.  While the SNPs in the IL-4 gene were not 

significant at a strict p ≤ 0.05 level in the smaller validation set, these SNPs had 

p-values just beyond the traditional threshold.  Considering the reduced size of 

the validation sample and the fact that the AE risk associated with variant 

genotypes was consistent across studies, these IL-4 SNPs warrant further study.  

The distribution of common versus variant genotypes at the replicated candidate 

SNPs is given in Table 5. 
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Table 5.  Distribution of common versus variant (pooled) genotypes at the 
replicated candidate SNPs. 
 

Gene SNP        
(rs #)

SNP 
Location    

(Base Pair)
Genotype

Original Study 
Sample          

Count (Percent)

Validation Study 
Sample          

Count (Percent)

AA 39 (46%) 17 (37%)
AG 43 (51%) 24 (52%)
GG 3 (4%) 5 (11%)
GG 39 (46%) 17 (37%)
AG 43 (51%) 24 (52%)
AA 3 (4%) 5 (11%)
CC 52 (62%) 34 (74%)
CT 28 (33%) 12 (26%)
TT 4 (5%) 0 (0%)
AA 52 (62%) 34 (74%)
AC 27 (32%) 12 (26%)
CC 5 (6%) 0 (0%)
CC 53 (62%) 34 (74%)
AC 26 (31%) 12 (26%)
AA 6 (7%) 0 (0%)
CC 36 (42%) 18 (39%)
CT 39 (46%) 21 (46%)
TT 10 (12%) 7 (15%)

MTHFR

rs2243290

rs1801133

IRF-1

IL-4

rs9282763

rs839

rs2070874

rs2243268

34237146

34234139

6393745

34433182

34428976

34424723

 
 
 
 
It is important to note that several of the significant SNPs (those located in 

the IRF-1 and IL-4 genes) were located in the same chromosomal region 

(5q31.1), suggesting an indirect association with one or more functional variants 

in that region.  Because of the close physical proximity of the associated variants 

in those two genes, Haploview [13] software was used to look at the patterns of 

linkage disequilibrium (LD) among those variants in each sample.  Figure 1 

shows that the LD plots for SNPs in these two genes follow the same pattern in 

each study sample.  While there is strong LD between SNPs within the two 

genes, there is no evidence for LD between the two genes, indicating that the 

associations for each gene are statistically separate signals. 
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Figure 1.  Haploview plot of SNPs at chromosome 5q31.1.  Panel A is the plot 
for the original study, and panel B is the plot for the validation study.  Dark 
squares are indicative of strong evidence for LD between the pairwise markers 
(r2 > 0.90), whereas lighter squares indicate no evidence (r2 < 0.01 for white 
squares) or very weak evidence (r2 < 0.10 for light gray squares) for LD.  The 
same two LD blocks, separated by 190 Kb, are apparent in both studies, 
encompassing SNPs in IRF-1 (rs839 and rs9282763) or IL-4 (rs2070874, 
rs2243268, and rs2243290). 
 
 

A B 
 

 
 
 

It has been demonstrated that this region of chromosome 5q31 contains 

discrete haplotype blocks [21].  Therefore, separate haplotypes were estimated 

for significant AE-associated SNPs in IRF-1 (rs839 and rs9282763) and IL-4 

(rs2070874, rs2243268, rs2243290).  In both study samples, two IRF-1 

haplotypes accounted for all subjects.  The common IRF-1 haplotype listed in 

Table 6 represented 71% of the original sample and 63% of the validation 

sample.  The rare IRF-1 haplotype was significantly associated with AEs in both 

samples (p = 0.03).  Across both studies, two different three-SNP haplotypes in 

IRF-1 IL-4 IRF-1 IL-4
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IL-4 accounted for 99% of subjects.  The common IL-4 haplotype listed in Table 6 

represented 78% of the original sample and 87% of the validation sample.  The 

rare IL-4 haplotype was significantly associated with risk of AEs in the original 

sample (p = 0.05) and marginally associated with risk of AEs in the validation 

sample (p = 0.06). 

 

Table 6.  Haplotypes estimated for significant AE-associated SNPs in IRF-1 and 
IL-4. 
 
 

Gene
cOdds Ratio 

(95% C.I.)

dp-value  
( χ2 )

cOdds Ratio 
(95% C.I.)

dp-value  
( χ2 )

aBaseline A - G
bRisk G - A

aBaseline C - A - C
bRisk T - C - A

Haplotype

3.8 (1.0 - 14.4) 0.06

Original Study Validation Study

3.2 (1.0 - 10.2) 0.03 3.0 (1.0 - 9.0) 0.03IRF-1

IL-4 2.4 (1.0 - 5.7) 0.05
 

 

a Most common haplotype considering 2 SNPs in IRF-1 (s839-rs9282763) or 3 
SNPs in IL-4 (rs2070874-rs2243268-rs2243290)  
b Rare (variant) haplotype considering 2 SNPs in IRF-1 (s839-rs9282763) or 3 
SNPs in IL-4 (rs2070874-rs2243268-rs2243290) 
c Estimated odds ratio comparing Risk haplotype to Baseline haplotype (95% 
Confidence Interval) 
d Likelihood ratio chi-square test with one degree of freedom 
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Discussion 

 

Biological mechanisms contributing to adverse events 

While statistical association in two independent samples is a highly 

convincing result, it is the biological implications of such findings that are 

clinically relevant.  These statistical results have strong biological plausibility and 

are in agreement with previous work on the topic of AEs following smallpox 

vaccination.  

The candidate genes validated in both studies include a major anti-

inflammatory cytokine (IL-4), an immunological transcription factor (IRF-1), and a 

metabolism gene previously associated with adverse reactions to a variety of 

pharmacologic agents (MTHFR).  Since the outcome of interest is the 

aggregation of specific AEs, it is logical that more than one gene may be 

involved.  These genes are all potentially involved in pathways that are in line 

with our previously hypothesized mechanism of adverse events involving excess 

stimulation of inflammatory pathways and the imbalance of tissue damage repair 

pathways.  This model was developed from studies of circulating cytokines and 

relevant immunological effector cells [3-5].  For subjects experiencing adverse 

events, vaccination appears to trigger an acute inflammatory response akin to a 

delayed-type hypersensitivity reaction.  Antigen presentation to Th1 cells in the 

dermis leads to the release of T-cell cytokines that trigger a cascade of cytokines 

and chemokines whose release enhances the inflammatory response by 

promoting the migration of monocytes into the lesion and their maturation into 
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macrophages and by further attracting T cells [22,23].  Taken together, these 

previous findings suggest that systemic adverse events following smallpox 

vaccination may be consistent with low-grade macrophage activation syndrome 

caused by virus replication and vigorous tissue injury and repair. 

 

Relationship between genetic results and proposed model of adverse events 

The 5,10-methylenetetrahydrofolate reductase (MTHFR) gene is located 

on chromosome 1.  A SNP in MTHFR (rs1801133) is strongly associated with AE 

risk in both datasets.  This non-synonymous SNP in the fifth exonic segment of 

the gene causes an amino acid change from Alanine to Valine.  Functional 

characterization of this SNP has demonstrated that it is thermolabile and affects 

both the quantity and activity of the MTHFR enzyme [24].     

The gene product catalyzes the conversion of 5,10-

methylenetetrahydrofolate to 5-methyltetrahydrofolate, which is a cosubstrate for 

homocysteine remethylation to methionine.  Proper MTHFR function provides 

pools of methyl groups that are crucial for the control of DNA synthesis and 

repair mechanisms [25].  It is a key enzyme in homocysteine metabolism, which 

plays a major role in regulating endothelial function. 

The MTHFR enzyme has been associated with many phenotypes, 

including cardiovascular function, transplant health, toxicity of 

immunosuppressive drugs, and systemic inflammation [26-29].  Elevated plasma 

homocysteine levels stimulate endothelial inflammatory responses, which could 

contribute to systemic adverse events.  Alternatively, since vaccination elicits 



109 

immune responses involving the rapid proliferation of cells, demand for DNA 

synthesis metabolites would be elevated, and alterations in the level or activity of 

MTHFR enzyme may exert significant influence over this process. 

The Interleukin-4 (IL4) gene is located in a gene cluster on chromosome 

5q31 that includes IL-13, IL-5, IRF-1, CSF-2, and IL-3.  IL-4 has been found to be 

coordinately regulated with IL-13 and IL-5 by several long-range regulatory 

elements on the chromosome [30].  In addition to genetic polymorphisms, two 

alternatively spliced transcript variants of IL-4 that encode distinct isoforms have 

been discovered [31,32].  We found three SNPs in the IL-4 gene that are 

significantly associated with AEs in both studies:  rs2070874 is a C>T 

substitution in the first exonic segment, rs2243268 is a A>C substitution in the 

second intronic segment, and rs2243290 is a A>C substitution in the third intronic 

segment.  

Interleukin-4 encodes a pleiotropic cytokine produced by a variety of cells, 

including activated T cells and mast cells.  The IL-4 cytokine is normally a major 

player in the activation of humoral immune responses, isotype switching to IgE, 

and suppression of Th1 (CTL) cell functions.  IL-4 is considered an anti-

inflammatory cytokine for its inhibition of monocyte and dendritic cell migration to 

inflamed tissue, as well as its promotion of Th2 effector pathways [33,34].  Naïve 

CD4+ T-cell differentiation away from the Th1 pathway renders them unable to 

activate macrophages.  There is also evidence that IL-4 cytokine secretion by T-

regulatory cells is associated with the inhibition of many inflammatory T-cell 

responses [35].       
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Upon immunological challenge by vaccination, the differentiation of naïve 

CD4+ T-cells into armed Th1 versus Th2 cells plays a vital role in determining 

whether the adaptive immune response will be dominated by humoral effectors 

or macrophage activation [35].  Thus, genetic polymorphisms related to 

inappropriate regulation of IL-4 expression and/or activity of IL-4 cytokine may 

over-stimulate inflammatory responses—leading to the development of AEs.  IL-4 

dysregulation may also play a role in AEs resulting from the inappropriate 

clearance of apoptotic immune effector cells after infection, as this function is 

normally carried out by macrophages. 

The Interferon Regulatory Factor-1 (IRF-1) gene is part of the 

immunological gene cluster on chromosome 5q31.  We found two SNPs in the 

IRF-1 gene that are significantly associated with AEs in both study samples:  

rs9282763 is an A>G substitution in the sixth intronic segment and rs839 is a 

G>A substitution in the tenth exonic segment.  The IRF-1 locus was initially 

mapped as a tumor suppressor, having genetic abnormalities associated with 

leukemia, myelodysplasia, and other cancers [36].   

The IRF-1 gene encodes the transcription factor Interferon Regulatory 

Factor-1, a member of the interferon regulatory transcription factor (IRF) family.  

The IRF family regulates interferons and interferon-inducible genes.  Many 

viruses use IRFs to evade host immune responses by binding to cellular IRFs 

and blocking transcriptional activation of IRF targets [37].  IRF-1 activates 

transcription of the Type I interferons alpha and beta as well as genes induced by 
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the Type II interferon gamma [38].  Type I interferon production by virus-infected 

cells enhances CTL and macrophage activity. 

Polymorphisms in the gene coding for a transcription factor with such far-

reaching effects as IRF-1 could have profound effects on the proper immune 

response and clearance of vaccinia virus.  Hyperactive IRF-1 may push 

macrophage activity beyond the threshold of AE development.  Hyperactive IRF-

1 may also prolong the life of immune cells that should be cleared following 

infection, protracting the period of inflammation and leading to AEs. 

Although the SNPs identified in IRF-1 and IL-4 do not change amino acids 

in the encoded proteins, recent evidence suggests that synonymous SNPs may 

exert functional influence over protein abundance [39,40].  Thus, the fact that 

multiple SNPs in high LD were identified in regions of IRF-1 and IL-4 presents 

three hypotheses for functional consequences of these SNPs.  In one scenario, 

these SNPs are evidence of indirect association—meaning that the functional 

variant lies somewhere within the regions of LD defined in these two genes.  In 

another scenario, one of the candidate polymorphisms identified here is the 

relevant variant; however, for these data, the LD between SNPs is too high to 

identify which one is functional.  Finally, accumulated variation of the haplotypes 

defined within these genes contributes to alterations in protein levels by altering 

transcript stability or transcriptional rate. 
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Summary and future directions 

These data present the rare opportunity to study two independent cohorts 

of smallpox vaccinées relating genetic factors to the occurrence of post-

vaccination adverse events.  Statistical analysis of the original study revealed 

potentially interesting associations between SNPs in biologically interesting 

candidate genes.  Of the AE-associated genes identified in the original study, 

three replicated in an independent validation cohort.  Genetic association studies 

are notorious for their failure to replicate, and validation studies are the 

epidemiological “gold standard” for reducing the risk of false positive findings.  

We avoid multiple testing issues by testing only the most promising  results in the 

validation sample.  Therefore, while all SNPs were tested in the original study, 

only those SNPs significantly associated with AEs were tested in the validation 

cohort.  The validation of SNPs in three genes across both studies and their 

biologically viable connection with AEs lends credence to the reproducibility of 

these associations. 

The results of this study demonstrate the importance and utility of 

validation in genetic studies of complex phenotypes.  As with any statistical 

association, follow-up studies are needed to identify the particular genetic 

susceptibility variants and examine the functional consequences of 

polymorphisms in the AE-associated genes.  Since we found multiple AE-

associated SNPs in regions of IL-4 and IRF-1, focused studies should be 

undertaken to characterize the genetic variability in these candidate regions.  

While the association of AEs with a non-synonymous polymorphism in the gene 
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for MTHFR points toward functional significance of this SNP, deep resequencing 

should determine whether this is indeed the case.  For all three candidate genes, 

functional studies are needed to connect genetic polymorphisms to variability in 

our hypothesized etiological pathways. 
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CHAPTER V 

 

FEATURE SELECTION USING RANDOM FORESTS FOR THE INTEGRATED 

ANALYSIS OF MULTIPLE SIMULATED DATA TYPES 

 

Complex clinical phenotypes arise from the concerted interactions among 

the myriad components of a biological system.  Therefore, comprehensive 

models can only be developed through the integrated study of multiple types of 

experimental data gathered from the system in question.  The Random Forests™ 

(RF) method is adept at identifying relevant features having only slight main 

effects in high-dimensional data.  This method is well-suited to integrated 

analysis, as relevant attributes may be selected from categorical or continuous 

data, and there may be interactions across data types.  RF is a natural approach 

for studying gene-gene, gene-protein, or protein-protein interactions because 

importance scores for particular attributes take interactions into account.  Thus, 

Random Forests is a promising solution to the analysis challenge posed by high-

dimensional datasets including interactions among attributes of different types.  

In this study, we characterize the performance of RF on a range of simulated 

genetic and/or proteomic datasets.  We compare the performance of RF in 

identifying relevant attributes when given genetic data alone, proteomic data 

alone, or a combined dataset of genetic plus proteomic data.  Our results indicate 

that utilizing multiple data types is beneficial when the disease model is complex 

and the phenotypic outcome-associated data type is unknown.  The results of 



119 

this study also show that RF is adept at identifying relevant features in high-

dimensional data with small main effects and low heritability.     
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Introduction 

 

Adverse drug reaction is one of the leading causes of hospitalizations in 

the Unites States. For example, in 1994 alone, adverse drug reactions accounted 

for more than 2.2 million serious hospitalizations [1]. Currently, there is no 

definitive way to determine how a person will respond to a medication—limiting 

pharmaceutical development to a "one size fits all" system.  This system allows 

for the development of drugs to which the "typical" patient will respond, but one 

size does not necessarily fit all, sometimes with dire consequences. The need to 

screen patients for biomarkers predictive of response a priori to prevent adverse 

reactions has created a subspecialty within the field of human genetics known as 

pharmacogenomics. 

The goal of pharmacogenomics is the identification and characterization of 

genes that predict drug response [2].  Due to the inherent complexity of the 

response phenotype, it is hypothesized that patient outcome is largely dependent 

upon interactions among genes and the environment.  These nonlinear genetic 

interactions, known as epistasis, quickly diminish the applicability of traditional 

statistical methods.  Taken together with the current explosion of genetic 

information as the field pushes towards genome-wide association studies, 

epistasis presents analytical challenges of an enormous combinatorial magnitude 

[3;4].  Traditional parametric analysis methods can be overwhelmed by datasets 

having huge numbers of attributes yet few samples.  In response to the complex 

nature of current genetic studies, a number of novel statistical and computational 
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methods have been developed, such as Monte Carlo logic regression, two-stage 

approaches, Combinatorial Partitioning Method, Multifactor Dimensionality 

Reduction, and Detection of Informative Combined Effects [5-9]. 

Even with suitable analytical methodology, considering experimental 

information gathered from only one type of biological data will not permit the 

capture of the enormous complexity of systemic response phenotypes.  Systems 

biology seeks to integrate multiple levels of information to understand how 

biological systems function [10].  By studying the relationships and interactions 

between various parts of a biological system, a more comprehensive model can 

be developed.  Furthermore, because biology operates through a hierarchy of 

levels, incorporating data from multiple levels can provide surrogate data to fill 

gaps from any one biological level, and the partial redundancy between levels 

can further mitigate methodological unreliability [11].   

For pharmacogenomic studies, an initial systems biology approach might 

measure variation in both genes and proteins in a patient to identify biomarkers 

that predict response to a given drug.  While there is intuitive appeal to such a 

strategy, adding pieces of information on different scales of measurement (i.e. 

continuous proteomic data as well as categorical genetic data) creates additional 

analytical challenges.  Therefore, appropriate computational analysis methods 

must not only traverse large numbers of input variables, but will also need to 

handle diverse data types.   

One such computational method is the Random Forests (RF) approach 

[12].  RF is a machine learning technique that builds a forest of classification 
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trees wherein each tree is grown on a bootstrap sample of the data, and the 

attribute at each tree node is selected from a random subset of all attributes.  

The final classification of an individual is determined by voting over all trees in 

the forest.  There are many advantages of the RF method that make it an ideal 

approach for the analysis of diverse biological data in pharmacogenomic studies.  

First, it can handle a large number of input attributes—both qualitative (e.g. 

Single Nucleotide Polymorphisms, or “SNPs”) and quantitative (e.g. microarray 

expression levels or data from high-throughput proteomic technologies).  

Second, it estimates the relative importance of attributes in determining 

classification, thus providing a metric for feature selection.  Third, RF produces a 

highly accurate classifier with an internal unbiased estimate of generalizability 

during the forest building process.  Fourth, RF is fairly robust in the presence of 

etiological heterogeneity and relatively high amounts of missing data [13]. Finally, 

and of increasing importance as the number of input variables increases, 

learning is fast and computation time is modest even for very large datasets [14]. 

In the current study, we use simulated data to investigate the potential of 

using a RF approach for the combined analysis of both genetic and proteomic 

data gathered in a study of adverse events associated with trials of a new 

smallpox vaccine [15;16].  The simulations are based on data collected from 

recent clinical trials of the Aventis-Pasteur Smallpox Vaccine (APSV), in which a 

significant proportion of vaccinees suffered systemic adverse events (AEs)—

including fever, lymphadenopathy, and generalized rash.  The data include 

genotypes at 1442 SNPs and measured circulating levels of 108 immunological 
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proteins.  This dataset was chosen for its complex phenotype, the large number 

of attributes, and the multiple types of data collected.  By using the actual data 

collected as the basis for our simulations, we reduce the number of over-

simplifying assumptions and hope to better model the complexity inherent in real 

data.  Because adverse reaction to vaccination is a complex phenotype, it is 

likely due to the coordinated action of multiple biological factors.  Therefore, our 

simulated outcome (adverse event) models involve attribute interactions with only 

slight main effects. 

In this study, we evaluate the ability of RF to detect outcome-associated 

simulated attributes by analyzing genetic data alone, proteomic data alone, or 

combined genetic and proteomic data.  We address several questions with this 

study.  First, to address the unresolved issue of where to set the importance 

cutoff for relevant attributes [13], can an appropriate threshold be set for the 

calculated RF importance relative to all attributes in the particular dataset 

analyzed that includes our simulated functional attributes?  Second, how does 

RF perform when given different types of simulated biological data as input?  

Third, is there a relationship between the degree of informational redundancy 

and the ability of RF to select proteomic attributes related to the functional 

genetic attributes?  Fourth, are there situations in which the analysis of multiple 

data types proves beneficial?  In brief, our results indicate that utilizing multiple 

data types is beneficial when the disease model is complex and the outcome-

associated data type is unknown.  Importantly, using RF, we do not observe any 

significant disadvantage to an analysis strategy integrating both data types.   
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Methods 

 

Random Forests 

 A Random Forest is a collection of decision tree classifiers, where each 

tree in the forest has been trained using a bootstrap sample of individuals from 

the data, and each split attribute in the tree is chosen from among a random 

subset of attributes.  Classification of individuals is based upon aggregate voting 

over all trees in the forest. 

Each tree in the forest is constructed as follows from data having N 

individuals and M explanatory attributes: 

1. Choose a training sample by selecting N individuals, with replacement, 

from the entire dataset. 

2. At each node in the tree, randomly select m attributes from the entire 

set of M attributes in the data.  The absolute magnitude of m is a 

function of the number of attributes in the dataset (m = M ) and 

remains constant throughout the forest building process.  

3. Choose the best split at the current node from among the subset of m 

attributes selected above.   

4. Iterate the second and third steps until the tree is fully grown (no 

pruning of lower branches with lesser predictive value). 

Repetition of this algorithm yields a forest of trees, each of which have been 

trained on bootstrap samples of individuals (see Figure 1).  Thus, for a given 
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tree, certain individuals will have been left out during training.  Prediction error 

and attribute importance is estimated from these “out-of-bag” individuals.   

The out-of-bag (unseen) individuals are used to estimate the importance 

of particular attributes according to the following logic:  If randomly permuting 

values of a particular attribute does not affect the predictive ability of trees on 

out-of-bag samples, that attribute is assigned a low importance score.  If, 

however, randomly permuting the values of a particular attribute drastically 

impairs the ability of trees to correctly predict the class of out-of-bag samples, 

then the importance score of that attribute will be high.  By running out-of-bag 

samples down entire trees during the permutation procedure, attribute 

interactions are taken into account when calculating importance scores, since 

class is assigned in the context of other attribute nodes in the tree. 
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Figure 1.  Construction of individual trees using the Random Forest method from 
a full dataset of N individuals and M attributes.  The steps correspond to those 
described in the Methods section.  

 

The recursive partitioning trees comprising a RF provide an explicit 

representation of attribute interaction that is readily applicable to the study of 

interactions among multiple data types [17;18].  These models may uncover 

interactions among genes, proteins, and/or environmental factors that do not 

exhibit strong marginal effects.  Additionally, tree methods are suited to dealing 

with certain types of genetic heterogeneity, since splits near the root node define 
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separate model subsets in the data.  Random Forests capitalize on the solid 

benefits of decision trees and have demonstrated excellent predictive 

performance when the forest is diverse (i.e. trees are not highly correlated with 

each other) and composed of individually strong classifier trees [12;19].  Diversity 

is achieved by finding an optimal m (the number of attributes tried at each node) 

that is considerably less than M (the total number of attributes in the data), which 

introduces variation into the forest building process; the optimal m will also build 

strong classifier trees by providing a sufficiently complete search through 

attributes in the data.  The RF method is a natural approach for studying gene-

gene, gene-protein, or protein-protein interactions because importance scores for 

particular attributes take interactions into account without demanding a pre-

specified model [20].   

 
 
Data simulation 

 Simulation studies were designed to assess whether a Random Forests 

classifier is able to select the appropriate (outcome-associated) attributes from 

datasets consisting of categorical genetic (SNP) attributes, continuous proteomic 

(cytokine) attributes, or both.  The results of this study will be used to develop an 

analysis strategy that effectively combines information gathered on diverse 

biological data types for the vaccine trial described below.  

As mentioned previously, the simulations are based on data collected from 

recent clinical trials of the Aventis-Pasteur Smallpox Vaccine (APSV), where a 

high proportion of vaccinees suffered systemic adverse events (AEs).  These 
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AEs included fever, lymphadenopathy, and generalized rash.  The data collected 

include genotypes at 1442 SNPs (selected from genomic regions within or near 

candidate genes) and circulating levels of 108 immunological proteins 

(cytokines).  For the APSV data, some proteomic attributes are also represented 

by genetic data in the corresponding gene.  Thus, there is biological overlap 

between the two data types.  Following the protocol described below, the 

simulated datasets mirrored the actual (APSV) trial data in terms of allele 

frequencies, SNP distribution across proteins, case (AE)/control (non-AE) ratio, 

potential patterns of linkage disequilibrium between SNPs, covariance structure 

across protein levels, etc.   

To create simulated data reflecting the complex properties of that 

collected for the APSV study, those data were used as the basis for the 

simulations.  First, the AE status was stripped from the APSV data.  Next, a new 

AE status was assigned according to genetic attributes in the data consistent 

with our simulated genetic models and maintaining the overall case/control 

(AE/nonAE) ratio.  Then, to represent the biological transfer of information 

between genes and proteins, proteomic attributes related to the functional 

genetic attributes were added.  The related proteomic attributes simulate a range 

of gene protein information transfer proportions.  For example, to simulate a 

functional (outcome-associated) genetic attribute that is represented by the 

corresponding protein in the proteomic data, a related proteomic attribute is 

added to the proteomic data.  However, to account for biological variation 

between genotype and protein level, the functional genetic attribute is only 
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responsible for a portion of the variation in protein level for the related attribute 

(see Figure 2).  Thus, information is not transferred between related attributes 

with perfect fidelity. 

 

Information 
Loss

Proteomic Data (Cytokines)

Genetic Data ( SNPs) 

Information
Transfer (%)

 

Figure 2.  Information transfer between simulated genetic and proteomic 
attributes.  For a particular attribute, the information transfer is the proportion (%) 
of variation in the simulated proteomic attribute explained by the corresponding 
genetic attribute.  
 
 

Penetrance functions are used to represent our partially epistatic genetic 

models. As in Table 1, penetrance defines the probability of experiencing an 

adverse event given a particular genotype combination.  For these models, two 

genetic attributes (GeneticA + GeneticB) have a joint (epistatic) effect upon 

outcome class, and each attribute also has a very slight marginal effect (M) 

above the population prevalence (K).  For a particular combination of genotypes 

at i=GeneticA and j=GeneticB, the probability of belonging to the outcome class 

AE = fij in Table 1.  A range of heritability values was selected for our simulations, 

including 10%, 20%, and 40%. Roughly, heritability is the proportion of the total 

variation in outcome that is due to genetic effects.  Although the heritability 
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values used here translate to weak signals in the data, these values would 

classify as low to moderate genetic effects.  Since there is scant data relating 

adverse events after vaccination with APSV to serum proteomic data or SNP 

data, heritability values in the low- to mid-range of those estimated for common 

complex phenotypes were used in these simulations.  For a more thorough 

explanation of the heritability calculations used in this study, see [21].  An 

example of the penetrance functions used for the models generated in this study 

is given in Table 2.   

Datasets with a range of genetic proteomic information transfer (see 

Figure 2) were created for each genetic model.  For each combination defined in 

Table 3 by a genetic model heritability (10%, 20%, 40%), a proportion of 

genetic proteomic information transfer (15%, 30%, 45%, 60%, 75%, 90%), and 

a data type (Genetic, Proteomic, Genetic+Proteomic), 100 datasets were 

simulated for analysis, resulting in 5400 total datasets.  The data simulation 

strategy is summarized in Figure 3.    
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Information 
Loss

Proteomic Data (Cytokines)

Genetic Data (SNPs)

Information Transfer (%)

Status

nonAE AE

Vs.

Heritability (%)

AE Model

{10, 20, 40}

{15, 30, 45, 60, 75, 90}

 

Figure 3.  Summary of the data simulation strategy.  First, the AE status was 
stripped from the APSV data.  Next, a new AE status was assigned according to 
simulated genetic models with a range of heritability.  Then, proteomic attributes 
related to the functional genetic attributes were added with a range of information 
transfer percentages, resulting in proteomic attributes that are indirectly related to 
AE status (represented by the dashed line). 
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Table 1.  Penetrance function for a model of AE status associated with two 
functional genetic attributes: A and B.   
 

                      Genetic Attribute B 

    BB Bb bb   

  AA f11 f12 f13 MA1  

  Aa f21 f22 f23 MA2  

  

G
en

et
ic

 
A

ttr
ib

ut
e 

A
 

aa f31 f32 f33 MA3  

     MB1 MB2 MB3 K  
 
 
 
Table 2.  Example penetrance function for a simulated genetic AE model with 
10% heritability.  Allele frequencies for each attribute are equal (p = q = 0.5). 
 

                    Genetic Attribute B 

    BB Bb bb   

  AA 0 0 0 MA1  

  Aa 0 0.2 0.2 MA2  

  

G
en

et
ic

 
A

ttr
ib

ut
e 

A
 

aa 0 0.2 0.2 MA3  

     MB1 MB2 MB3 K  
 
 
 
Table 3.  Overview of simulated datasets.  For each combination of genetic 
heritability and genetic proteomic information transfer, 100 datasets were 
simulated, each containing one of the following data types: Genetic data alone = 
G; Proteomic data alone = P; Genetic + Proteomic data combined = GP.  
 

  Genetic-Proteomic Information Transfer 

  15% 30% 45% 60% 75% 90% 

10% G,P,GP G,P,GP G,P,GP G,P,GP G,P,GP G,P,GP 

20% G,P,GP  G,P,GP  G,P,GP  G,P,GP  G,P,GP  G,P,GP  

G
en

et
ic

 
H

er
ita

bi
lit

y 

40% G,P,GP G,P,GP G,P,GP G,P,GP G,P,GP G,P,GP 
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Data analysis 

The analysis was performed using the freely available R package 

randomForest [22;23].  This package is based on the original Fortran code 

available at [24]. 

Given a dataset having a particular combination of genetic model 

heritability and genetic proteomic information transfer (see Table 3), RF was 

used to analyze datasets containing each simulated biological data type 

separately and in parallel.  Genetic attributes were treated as categorical while 

proteomic attributes were treated as continuous values.  For each of the 100 

genetic, proteomic, or combined datasets, forests comprised of 10,000 trees 

were grown.  Attribute importance was calculated using the out-of-bag 

permutation test.  The relative importance (rank) of functional genetic attributes 

and related proteomic attributes was determined from the mean decrease in Gini 

index using the out-of-bag permutation testing procedure [17].  The Gini diversity 

index, i, at a tree node, t, has the form ∑
≠ij

tiptjp )|()|( , where p(j|t) and p(i|t) are 

the probabilities of assigning a subject to classes j or i, respectively [17].  The 

relative importance determined from the mean decrease in classification 

accuracy produced statistically similar results.    
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Results 

 

Figure 4 shows the relative importance rank (expressed as a percentile) of 

the two functional genetic attributes calculated by the RF over all datasets.  Each 

data point on the graph represents the mean relative importance rank calculated 

over 100 datasets, with the bars representing 95% confidence intervals about the 

mean.  This figure demonstrates several important trends regarding the relative 

importance of the functional genetic variables with the three possible 

combinations of data types analyzed (Genetic alone = G, Proteomic alone = P, 

Genetic + Proteomic combined = GP).  Analyzing the genetic data alone 

consistently demonstrated the highest relative importance for the functional 

genetic attributes.  Analyzing the combined genetic + proteomic data 

demonstrated relative importance that was very near to that of the genetic alone.  

This slight discrepancy may be due to the increased number of noise attributes 

(the combined dataset has 1550 attributes while the genetic data alone has only 

1442).  It is interesting to note that as the heritability of the model increases, the 

gap in functional attribute importance between the genetic and combined 

analyses narrows.  Of course, regardless of heritability or genetic proteomic 

information transfer, analyzing the proteomic data alone makes it impossible to 

identify the correct genetic attributes since they are not present in the proteomic 

datasets.  Also, as expected, the relative importance of the genetic attributes is 

not influenced by the amount of information transfer between genetic and 

proteomic data. 



135 

Additionally, it is clear from Figure 4 that as the heritability of the model 

increases (across the panels from 10-20-40%), the relative rank of the functional 

genetic attributes increases.  This is expected, since increased heritability 

increases the signal strength in the data.  It is also important to note that even at 

the lowest heritability simulated (10%), RF successfully identifies the functional 

variables as relatively important (above the 80th percentile for all models).  The 

fact that the functional variables are not always ranked at the top of all 

importance scores means that RF is also finding chance AE associations in 

datasets with weak simulated genetic signals. 
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Figure 4.  Relative importance of functional genetic outcome-associated 
attributes for each data type analyzed: Genetic data alone = G; Proteomic data 
alone = P; Genetic data + Proteomic data combined = GP.  Each labeled point 
represents the mean (plus 95% confidence interval) importance over 100 
datasets.  Note:  the functional genetic attributes are not present in datasets 
comprised of only proteomic data (P). 
 
 

Figure 5 shows the RF relative importance rank of the proteomic variables 

related to the functional genetic variables (by the % information transfer given 

along the horizontal axis).  Again, each data point represents the mean relative 

importance rank of the related proteomic attributes calculated over 100 datasets, 

with the bars representing 95% confidence intervals about the mean.  The results 

are shown for all models, and several significant trends are clear.  As expected, 

when just the genetic datasets are analyzed, it is impossible to identify any 

proteomic variables as important since they are excluded from those data.  Also 

apparent from Figure 5 are the wider confidence intervals associated with 

analysis of the proteomic datasets alone.    

As in Figure 4, increased heritability of the underlying genetic models 

generally increases the relative importance of outcome-associated attributes 
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(which are the related proteomic attributes in Figure 5).  Unlike the relative 

importance of genetic attributes considered in Figure 4, where the results were 

unaffected by the amount of information transfer between the genomic and 

proteomic data, when considering the related proteomic attributes in Figure 5, it 

is clear that the degree of relatedness between the functional genetic attributes 

and the related proteomic attributes (information transfer) exerts significant 

influence over the relative importance.  This trend is very pronounced in the 

analysis of the proteomic data alone.  As the information transfer increases, the 

relative importance of the related proteomic attributes increases.  The same is 

true, although to a lesser degree, for the combined genetic + proteomic analyses.  

Since the disease models are genetic, it is intuitive that as the amount of 

information transfer between genetic and proteomic attributes increases, the 

stronger the signal in the proteomic data.   
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Figure 5.  Relative importance of proteomic attributes related (according to the 
amount of genetic-proteomic information transfer along the horizontal axis) to 
functional genetic attributes for each data type analyzed: Genetic alone = G, 
Proteomic alone = P, Genetic + Proteomic combined = GP.  Each labeled point 
represents the mean (plus 95% confidence interval) importance over 100 
datasets.  Note:  functional proteomic attributes are not present in datasets 
comprised of only genetic data (G). 
 
 
 

The most striking trend shown in Figure 5 is the large difference between 

the proteomic and the combined genetic + proteomic analysis strategies.  The 

combined genetic + proteomic analysis strategy is substantially more successful 

at identifying the related proteomic attributes as important than analysis of the 

proteomic data alone, especially for models with lower heritability and information 

transfer.  This performance gap may arise out of the partially epistatic nature of 

the models and the stochastic nature of the RF methodology.  Considering 

models with only slight marginal effects, for RF to assign high attribute 

importance scores, trees must consistently contain both of the relevant 

interacting attributes.  For the combined dataset (containing two functional 

genetic attributes and two related proteomic attributes), there are more 

opportunities to choose one of the interacting relevant attributes nearer the root 
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of the tree and then choose the complementary attribute at subsequent splits 

than for the proteomic data alone (containing only two related proteomic 

attributes).  The performance gap between genetic versus combined datasets in 

identifying relevant proteomic attributes narrows as both information transfer and 

heritability increase. 

 

Discussion 

 

The results of this study demonstrate that there is a marked advantage to 

an integrated analysis approach incorporating multiple data types.  While the 

genetic analysis was appropriate for identifying the functional genetic features, 

the combined strategy analyzing both genetic and proteomic data performed 

nearly as well at identifying functional genetic attributes and provides another 

distinct advantage—the identification of important related proteomic variables.  

This property would be beneficial in situations where the functional outcome-

associated data type is unknown or not appropriately measured.  For example, 

our simulated models are not determined by protein abundance, as is often 

measured experimentally.  Instead, our simulations represent a situation wherein 

genotype codes for some unmeasured proteomic aspect (e.g. enzymatic activity) 

that determines phenotype.  Still, if protein abundance is also related to 

genotype, even with some loss of information, the proteomic data can be 

analytically useful.  The convergence of genetic and related proteomic attributes 

receiving high importance scores could serve as a strategy for limiting false 
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positive results.  Also, including multiple data types has the intangible advantage 

of allowing for better biological interpretation of a resulting model.  These results 

show no substantial disadvantage to the joint analysis of multiple data types.   

With respect to setting an appropriate cutoff for selection of relevant 

features using RF, our results indicate that the choice of threshold depends upon 

the strength of the signal in the data.  From Figures 4 and 5, it appears that the 

importance threshold may need to be relaxed to identify relevant attributes in 

datasets with low signal and a low degree of information transfer between related 

data types.  However, RF seems largely robust to the addition of noise variables 

in the larger datasets—so long as relevant attributes are present in the data.  The 

results of this study also show that RF is adept at identifying relevant features in 

high-dimensional data containing attributes on multiple scales of measurement.  

RF identifies features with small marginal effects and low heritability.  Relevant 

attributes may be selected from either data type, and there may be interactions 

across data types.  RF is thus well-suited to the study of phenotypes with 

complex underlying etiologies, where the biological features of interest have yet 

to be elucidated. 

While the results of this study are promising, there are questions yet to be 

addressed.  The combined RF approach needs to be applied to a real dataset 

(and the results tested at the lab bench) to confirm the conclusions of the 

simulation study.  Currently, the dataset used as the template for the simulations 

is being analyzed using the integrated RF approach found to be successful with 

these simulations.  Additionally, work must be continued on modifications to RF 
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that allow for the discovery of purely epistatic genetic models [19].  Because RF 

chooses only one attribute at each tree split during construction, strictly epistatic 

(i.e. absence of even miniscule main effects) attributes will not be selected.  

Finally, strategies for automatically translating the features selected by RF into 

meaningful biological hypothesis need to be developed.  
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CHAPTER VI 
 
 
  

INTEGRATED ANALYSIS OF GENETIC AND PROTEOMIC DATA IDENTIFIES 
BIOMARKERS ASSOCIATED WITH ADVERSE EVENTS FOLLOWING 

SMALLPOX VACCINATION 
 
 
 

 Complex clinical outcomes, such as adverse reaction to vaccination, arise 

from the concerted interactions among the myriad components of a biological 

system.  Therefore, comprehensive etiological models can only be developed 

through the integrated study of multiple types of experimental data.  In this study, 

we apply this paradigm to high-dimensional genetic and proteomic data collected 

to elucidate the mechanisms underlying development of adverse events (AEs) in 

patients following smallpox vaccination.  Since vaccination was successful in the 

patients under study, the AE outcomes reported likely represent interactions 

among immune system components that either push immune responses beyond 

the necessary magnitude or sustain responses longer than necessary.  In the 

current study, we examined 1442 genetic variables (SNPs) and 108 proteomic 

variables (cytokine levels) to model AE risk.  To accomplish this daunting 

analytical task, we employed the Random ForestsTM (RF) method to filter out the 

most important attributes, then used the selected attributes to build a final 

decision tree model.  This strategy is well-suited to integrated analysis, as 

relevant attributes may be selected from categorical or continuous data.  

Importantly, RF is a natural approach for studying the type of gene-gene, gene-

protein, and protein-protein interactions we hypothesize to be involved in AE 
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development because importance scores for particular attributes take 

interactions into account, and there may be interactions across data types.  

Combining information from previous studies on AEs related to smallpox 

vaccination with the genetic and proteomic attributes identified by RF, we build a 

comprehensive model of AE development that includes the cytokines ICAM-1 

(CD54), IL-10, and CSF-3 (G-CSF), as well as a genetic polymorphism in IL-4.  

The biological factors included in the model support our hypothesized 

mechanism for the development of AEs involving prolonged stimulation of 

inflammatory pathways and the imbalance of normal tissue damage repair 

pathways.  This study demonstrates the utility of the RF for such analytical tasks, 

and both enhances and reinforces our working model of AE development 

following smallpox vaccination. 
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Introduction 

 

 Live attenuated vaccinia virus (VV), delivered intradermally, is the most 

common type of vaccine given to immunize individuals against smallpox.  While 

vaccination of healthy adults with VV induces a protective response in the 

majority of individuals immunized, VV is reactogenic in a significant number of 

vaccinées [1].  The most common adverse events (AEs) following vaccination 

include fever, lymphadenopathy (swelling and tenderness of lymph nodes), and a 

generalized acneiform rash.  Collectively, these reactions suggest that individuals 

suffering AEs have innate immune responses beyond the necessary magnitude 

or sustain the immune response longer than necessary.   

 To elucidate the complex pathophysiology underlying inappropriate 

response to vaccination, we gathered high-dimensional genetic and proteomic 

data in a cohort of subjects in which an unacceptably high proportion 

experienced an AE following primary immunization with Aventis Pasteur smallpox 

vaccine (APSV).  Through a comprehensive examination of systemic (serum) 

cytokine/chemokine changes combined with characterization of polymorphisms 

in a panel of candidate genes, we aim to provide a thorough portrayal of the 

complex genetic and proteomic interplay behind the development of adverse 

events.  Knowledge of how risk factors in a subject’s genetic background interact 

with dynamically changing levels of immunological proteins could shed light on 

important therapeutic targets or pathways to direct vaccine modification and pre-

vaccination screening procedures.   
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 Although there is considerable intuitive appeal to incorporation of multiple 

types of biological data, simultaneous analysis of information on different scales 

of measurement (i.e. continuous proteomic data as well as categorical genetic 

data) creates additional analytical challenges.  Therefore, appropriate 

computational analysis methods must not only traverse large numbers of input 

variables, but will also need to handle diverse data types.  For this study, we 

employed a two-stage analysis strategy.  The first step was to effectively filter a 

list of over 1500 genetic and proteomic attributes—taking interactions within and 

across data types into account—down to an analytically tractable subset of 

candidates.  The second step involved careful statistical and biological 

exploration of the filtered subset of candidate attributes, resulting in a final model 

of AE development. 

 For the first (filter) step, we implemented a Random ForestsTM (RF) 

approach [2].  RF is a machine learning technique that builds a forest of 

classification trees by sampling—with replacement—from the data and selecting 

the attribute at each tree node from a random subset of all attributes.  The RF 

method offers many advantages for the analysis of diverse biological data.  First, 

it can handle a large number of input attributes—both discrete (e.g. Single 

Nucleotide Polymorphisms, or “SNPs”) and continuous (e.g. microarray 

expression levels or data from high-throughput proteomic technologies).  

Second, it estimates the relative importance of attributes in discriminating 

between classes (AE status), thus providing a metric for feature selection.  Third, 

RF produces a highly accurate classifier with an internal unbiased estimate of 
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generalizability during the forest building process.  Fourth, RF is fairly robust in 

the presence of etiological heterogeneity and missing data [3]. Finally, learning is 

fast and computation time is modest even for very large datasets [4]. 

 In the second (modeling) step, we took advantage of the tractable number 

of attributes identified by the RF filter to thoroughly explore the statistical and 

biological relationships among the attributes and AE outcomes.  Decision trees 

were used to derive a descriptive, biologically interpretable model of the 

functional interactions among the attributes associated with systemic AEs.  Our 

final model justifies our multi-scale analysis strategy, in that it includes the 

cytokines ICAM-1, IL-10, and CSF-3 (G-CSF), as well as a SNP in IL-4.  

Evaluating our final model from an immunological perspective, we conclude that 

AEs in response to smallpox vaccination result from hyperactivation of innate 

inflammatory pathways leading to excess recruitment and stimulation of 

monocytes in peripheral tissues.  This model is consistent with work 

demonstrating over-stimulation of inflammatory and tissue damage repair 

pathways developed in previous studies of AEs following smallpox vaccination 

[5-8].  

 

Methods 

 

Study subjects 

 Vaccines, study subjects, and study design have been described in detail 

in [6].  Briefly, 148 (116 with recorded AE information) healthy adults were 
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enrolled at the Vanderbilt University Medical Center as part of a multi-center 

study of primary immunization against smallpox using the APSV at National 

Institutes of Health (NIH) Vaccine and Treatment Evaluation Units.  NIH-DMID 

Protocol 02-054 was implemented.  Volunteers were eligible if they had no 

smallpox vaccination scar, no history of vaccinia virus immunization, normal renal 

and hepatic serum chemistry values, no contraindications against immunization 

(pregnancy, immunosuppression, or eczema), and negative serum test results 

for:  hepatitis B surface antigen, hepatitis C virus antibody, rapid plasma reagin, 

and HIV-1 ELISA.  There were a total of 61 subjects for whom both genetic and 

proteomic data was gathered.  Individuals were asked to self-identify race, with 

White (60) and Asian (1) as the only categories.  There was no statistical 

difference in age, gender, or race according to AE status. 

 

Clinical assessments 

 For all study subjects, a team of trained physicians and nurse providers 

examined the medical history and clinical symptoms to insure consistent clinical 

assessment.  Subjects were examined on 5 visits within the first month post-

vaccination and were assessed for occurrence of an adverse event.  Collection of 

serum for cytokine measurements occurred at the evaluation just before 

vaccination (baseline) and at the evaluation between days 6-9 post-vaccination 

(acute phase).  While all adverse events were noted, only systemic AEs were 

considered in this study, since we expected these to be associated more strongly 

with serum cytokine expression than would an AE displayed only at the site of 
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inoculation.  Systemic AEs included fever, generalized rash, and 

lymphadenopathy.  Specifically, fever was defined as an oral temperature of 

greater than 38.3°C.  Generalized rash was defined as skin eruptions on non-

contiguous areas in reference to the site of vaccination.  Detailed descriptions of 

the acneiform rashes considered in this study can be found in [9].  

Lymphadenopathy was defined as enlargement or tenderness of regional lymph 

nodes attributed to vaccination.  For subjects on which both genetic and 

proteomic data was gathered, 16 subjects experienced a systemic AE and 45 

subjects did not experience an AE. 

 

Identification of genetic polymorphisms 

 The custom SNP panel used in this study was originally developed for 

genetic studies of human cancers.  Thus, the SNPs were chosen for genotyping 

based on their oncological relevance.  As such, the majority of SNPs included on 

the panel were involved in signaling pathways, many of which had immunological 

components.  Genotyping for single nucleotide polymorphisms (SNPs) was 

performed using DNA amplified directly from blood samples collected from each 

subject.  Genotyping was performed at the Core Genotyping Facility of the 

National Cancer Institute (NCI) in Gaithersburg, Maryland 

(http://cgf.nci.nih.gov/home.cfm) [10].  Genotypes were generated using the 

IlluminaTM GoldenGate assay technology.  Of the 1536 SNPs assayed, a total of 

1442 genotypes passed quality control filters.   
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Quantification of serum cytokine levels 

 Serum samples were obtained just prior to vaccination (baseline) and 6-9 

days after vaccination (acute).  Serum samples were collected in 5 ml Vacutainer 

serum separator tubes (Becton Dickinson, San Jose, CA) and were centrifuged 

at 700 x g for 10 minutes.  The serum then was collected, aliquoted into cryovials 

(Sarstedt Inc., Numbrecht, Germany) and stored at –80 ºC until assayed for 

cytokine concentrations using Rolling circle amplification technology (RCAT). 

 A custom dual antibody sandwich immunoassay array, as described in 

[11-14] was used to measure the expression levels of 108 protein analytes in 100 

μL serum aliquots from the patient samples.  Briefly, glass slides held 12 

replicate spots of monoclonal capture antibodies specific for each analyte.  

Duplicate samples of sera were incubated for 2 hours, washed, and then 

incubated with secondary biotinylated polyclonal antibodies.  The ‘rolling circle’ 

method was then used to amplify signals [12].  Quality control measures were 

used to optimize antibody pairs, minimize array-to-array variation, and 

standardize procedures of chip manufacturing [12].  A Tecan LS200 unit was 

used to scan arrays and customized software was used to determine mean 

fluorescence intensities (MFIs).  Additionally, 15 serial dilutions of recombinant 

analytes at known concentrations (studied in parallel on each slide) were used to 

develop best-fit equations for each analyte and the upper and lower limits of 

quantitation were defined. Changes in serum cytokine concentrations were 

calculated as percent change from baseline due to the broad individual range of 

systemic cytokine expression before and after immunization.  
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Random forests 

 A Random Forest is a collection of decision tree classifiers, where each 

tree in the forest has been trained using a bootstrap sample of individuals from 

the data, and each split attribute in the tree is chosen from among a random 

subset of attributes.  Classification of individuals is based upon aggregate voting 

over all trees in the forest. 

 Each tree in the forest is constructed as follows from data having N 

individuals and M explanatory attributes: 

1. Choose a training sample by selecting N individuals, with replacement, 

from the entire dataset. 

2. At each node in the tree, randomly select m attributes from the entire 

set of M attributes in the data.  The absolute magnitude of m is a 

function of the number of attributes in the dataset (m = M ) and 

remains constant throughout the forest building process.   

3. Choose the best split at the current node from among the subset of m 

attributes selected above.   

4. Iterate the second and third steps until the tree is fully grown (lower 

branches are not trimmed in the interest of generalizability). 

Repetition of this algorithm yields a forest of trees, each of which have been 

trained on bootstrap samples of individuals (see Figure-1).  Thus, for a given 

tree, certain individuals will have been left out during training.  Prediction error 

and attribute importance is estimated from these “out-of-bag” individuals 

according to the procedure described in Chapter V.   
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Figure 1:  Construction of individual trees using the random forest method from a 
full dataset of N individuals and M attributes.  Proceeding from the root node, 
individual subjects are classified into terminal AE status leaves according to the 
value of that individual’s genetic or proteomic attribute at each node.  The steps 
correspond to those described in the text.  

 

 The recursive partitioning trees comprising a RF provide an explicit 

representation of attribute interaction that is readily applicable to the study of 

interactions among multiple data types [15,16].  As discussed in Chapter V, RF 

have demonstrated excellent predictive performance when the forest is diverse 
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(i.e. trees are not highly correlated with each other) and composed of individually 

strong classifier trees [17,18].  The RF method is a natural approach for studying 

gene-gene, gene-protein, or protein-protein interactions because importance 

scores for particular attributes take interactions into account without a priori 

model specification [19].   

 

Decision trees 

 To represent the interactions among genetic and/or proteomic attributes 

associated with AEs, decision trees were chosen to build the final model because 

of their ready interpretability and explicit modeling of attribute interactions.  The 

tree classifies individual subjects into AE groups by proceeding down a 

dichotomous tree, where the genetic or proteomic attribute at each node (or split) 

is selected for the gain in information it provides (Essentially:  how well 

knowledge about the variation in this attribute separates subjects into appropriate 

AE classes).  When interpreting the tree, attributes at each node are taken in the 

context of attributes at nodes closer to the root—thus allowing an explicit 

representation of attribute interactions.  To augment the generalizability of our 

final model, we stipulated that at least five subjects must appear in each terminal 

(status) leaf.  While cross-validation accuracy was reduced by allowing trees with 

less than five subjects in terminal nodes, cross-validation accuracy proved to be 

insensitive to changes in other tree parameters for these data.  We used the 

implementation of the C4.5 decision-tree algorithm provided in the Weka 

machine learning software package to obtain our final model [20]. 
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Data analysis strategy 

 Random Forest analysis was performed using the freely available R 

package randomForest [21,22].  This package is based on the original Fortran 

code available at [23].  RF was used to analyze datasets containing each 

biological data type separately and in parallel.  Genetic attributes were treated as 

categorical while proteomic attributes were treated as continuous values.  For 

each genetic, proteomic, or combined dataset, forests comprised of 10,000 trees 

were grown.  This forest size gave stable estimates of attribute importance.  

Attribute importance was calculated using the out-of-bag permutation test 

described in Chapter V.  The relative importance (rank) of functional genetic 

attributes and related proteomic attributes was determined from the mean 

decrease in Gini index (see Chapter V) using the out-of-bag permutation testing 

procedure.  The relative importance determined from the mean decrease in 

classification accuracy produced nearly identical results both here and in 

extensive simulation studies [24]. 

 Results from simulation studies based on these data demonstrate high 

confidence that AE-associated attributes having low to moderate effects will be 

ranked in the top 10% of attributes in RF analysis [24].  Therefore, we chose the 

top 10% of attributes as ranked by RF as candidates for inclusion in our final 

model.  While this threshold may have missed attributes with very weak effects, it 

is unlikely that such effects would have been detectable given our sample size of 

61 subjects.  To represent the interactions among genetic and/or proteomic 
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attributes associated with AEs, we built a decision tree model, as previously 

described. 

 Biological interpretation of our final model was aided by the Chilibot (chip 

literature robot) knowledge mining software, as described in [25].  Chilibot 

inferred relationship networks among the attributes in the final model based upon 

linguistic analysis of relevant records from public biomedical literature databases.  

The natural language processing approach used by Chilibot is superior to 

standard co-occurrence text mining approaches, because parsing text into 

sentences can characterize the type of relationship (e.g. inhibition or stimulation) 

between input terms.   
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Results 

 

Filtering of important attributes using random forests 

 Table-1 lists all attributes having an importance rank in the top 10% 

relative to all attributes in the combined dataset.  Figure-2 depicts the attribute 

importance score landscape over the entire dataset.  This landscape proved 

robust to changes in RF parameters (such as attributes importance metrics and 

AE class-weighting schemes), provided that a sufficiently large forest was grown.  

RF identified both genetic and proteomic attributes as important discriminators of 

AE status.  Approximately one-third of the attributes identified as important were 

genetic, with the remaining two-thirds being proteomic.  While this distribution 

among data types may reflect systematic patterns concerning the etiology of AE 

outcomes, the bias toward proteomic attributes probably arises out of the fact 

that the cytokine array was specifically designed to capture variation in important 

systemic mediators.  In contrast, the genetic data include candidate SNPs in and 

around genes having a variety of immunological functions. Also, with multiple 

SNPs per gene, correlation (i.e. haplotypes) existing among polymorphisms 

could drive down RF importance scores for particular SNPs—as RF might select 

any SNP from within a haplotype at a particular node.  Indeed, the IL-4 SNP in 

our final model was part of a group of four SNPs in IL-4 having nearly identical 

importance scores, and Haploview analysis showed them to be in high linkage 

disequilibrium (LD), providing evidence that these genetic polymorphisms are 

inherited as a haplotype [26]. 
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 Considering the attributes included in our final model, all three proteomic 

attributes were ranked in the top 1% relative to all attributes in the combined 

dataset, and the IL-4 SNP (rs#2243290) was ranked in the top 5% relative to all 

attributes in the combined dataset.  Relative to its respective data type, the IL-4 

SNP was ranked in the top 1% among all attributes in the genetic dataset. 

 

Table 1:  List of all attributes having a Random Forest importance rank in the top 
10% relative to all attributes in the combined dataset.  The list is organized by the 
attribute symbol given in the first column.  (Continued on subsequent pages) 
 

Symbol         
[rs# for SNP] 

Data 
Type Attribute Name 

AHR [rs7796976] Genetic Aryl hydrocarbon receptor 
ALCAM Proteomic Activated leukocyte cell adhesion molecule 
ANGPT4 Proteomic Angiopoietin 4 
APAF1 [rs2288729] Genetic Apoptotic peptidase activating factor 
APOA4 [rs1042034] Genetic Apolipoprotein A-IV 
BDNF Proteomic Brain-derived neurotrophic factor 
BLC (CXCL13) Proteomic Chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant) 
BLM [rs235768] Genetic Bloom syndrome 
BRCA1 [rs144848] Genetic Breast cancer 1, early onset 
BTC Proteomic Betacellulin 
BTG2 Proteomic BTG family, member 2 
CASR [rs1001179] Genetic Calcium-sensing receptor (hypocalciuric hypercalcemia 1) 
CBR3 [rs881712] Genetic Carbonyl reductase 3 
CCL1  Proteomic Chemokine (C-C motif) ligand 1 
CCL14 Proteomic Chemokine (C-C motif) ligand 14 
CCL16 Proteomic Chemokine (C-C motif) ligand 16 
CCR2 [rs1799865] Genetic Chemokine (C-C motif) receptor 2 
CCR2 [rs4987053] Genetic Chemokine (C-C motif) receptor 2 
CDKN1C [rs3731249] Genetic Cyclin-dependent kinase inhibitor 1C (p57, Kip2) 
CSF1 (MCSF) Proteomic Colony stimulating factor 1 (macrophage) 
CSF1R Proteomic Colony stimulating factor 1 receptor 
CSF2 (GMCSF) Proteomic Colony stimulating factor 2 (granulocyte-macrophage) 
CSF3 (GCSF) Proteomic Colony stimulating factor 3 (granulocyte) 
CTACK (CCL27) Proteomic Chemokine (C-C motif) ligand 27 
CTH [rs473334] Genetic Cystathionase (cystathionine gamma-lyase) 
CTH [rs515064] Genetic Cystathionase (cystathionine gamma-lyase) 
CTH [rs663649] Genetic Cystathionase (cystathionine gamma-lyase) 
CX3CL1 Proteomic Chemokine (C-X3-C motif) ligand 1 
CYP1A1 [rs2472299] Genetic Cytochrome P450, family 1, subfamily A, polypeptide 1 
EGF Proteomic Epidermal growth factor (beta-urogastrone) 
EOT (CCL11) Proteomic Chemokine (C-C motif) ligand 11 
EOT2 (CCL24) Proteomic Chemokine (C-C motif) ligand 24 
EOT3 (CCL26) Proteomic Chemokine (C-C motif) ligand 26 
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ERCC5 [rs1047768] Genetic 
Excision repair cross-complementing rodent repair deficiency, 

complementation group 5 
FAS Proteomic Fas (TNF receptor superfamily, member 6) 
FASLG (TNFSF6) Proteomic Fas ligand (TNF superfamily, member 6) 
FASLG [rs929087] Genetic Fas ligand (TNF superfamily, member 6) 
FGF1 Proteomic Fibroblast growth factor 1 (acidic) 
FGF2 (FGFB) Proteomic Fibroblast growth factor 2 (basic) 
FGF4 Proteomic Fibroblast growth factor 4 (Kaposi sarcoma oncogene) 
FGF7 Proteomic Fibroblast growth factor 7 (keratinocyte growth factor) 
FST Proteomic Follistatin 
GATA3 [rs10905277] Genetic GATA binding protein 3 
GCP2 (CXCL6) Proteomic Chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2) 
GDNF Proteomic Glial cell derived neurotrophic factor 
GRO2 (CXCL2) Proteomic Chemokine (C-X-C motif) ligand 2 
GRO3 (CXCL3) Proteomic Chemokine (C-X-C motif) ligand 3 
HGF Proteomic Hepatocyte growth factor (hepapoietin A; scatter factor) 
HSD17B4 [rs384346] Genetic Hydroxysteroid (17-beta) dehydrogenase 4 
HSD17B4 [rs7737181] Genetic Hydroxysteroid (17-beta) dehydrogenase 4 
ICAM1 Proteomic Intercellular adhesion molecule 1 (CD54), human rhinovirus receptor 
ICAM3 Proteomic Intercellular adhesion molecule 3 
IFNG Proteomic Interferon, gamma 
IGF1R Proteomic Insulin-like growth factor 1 receptor 
IGF2 Proteomic Insulin-like growth factor 2 (somatomedin A) 
IGFBP1 Proteomic Insulin-like growth factor binding protein 1 
IGFBP2 Proteomic Insulin-like growth factor binding protein 2, 36kDa 
IGFBP3 Proteomic Insulin-like growth factor binding protein 3 
IGFBP4 Proteomic Insulin-like growth factor binding protein 4 
IL10 Proteomic Interleukin 10 
IL10 [rs1800871] Genetic Interleukin 10 
IL13 Proteomic Interleukin 13 
IL15 Proteomic Interleukin 15 
IL15RA [rs859] Genetic Interleukin 15 receptor, alpha 
IL17 Proteomic Interleukin 17 
IL1A Proteomic Interleukin 1, alpha 
IL1B Proteomic Interleukin 1, beta 
IL1RL1 Proteomic Interleukin 1 receptor-like 1 
IL1RN Proteomic Interleukin 1 receptor antagonist 
IL2 Proteomic Interleukin 2 
IL2 [rs2069762] Genetic Interleukin 2 
IL2 [rs2069763] Genetic Interleukin 2 
IL2RA Proteomic Interleukin 2 receptor, alpha 
IL2RB Proteomic Interleukin 2 receptor, beta 
IL2RG Proteomic Interleukin 2 receptor, gamma (severe combined immunodeficiency) 
IL3 Proteomic Interleukin 3 (colony-stimulating factor, multiple) 
IL4 Proteomic Interleukin 4 
IL4 [rs2070874] Genetic Interleukin 4 
IL4 [rs2243250] Genetic Interleukin 4 
IL4 [rs2243268] Genetic Interleukin 4 
IL4 [rs2243290] Genetic Interleukin 4 
IL5RA Proteomic Interleukin 5 receptor, alpha 
IL6 Proteomic Interleukin 6 (interferon, beta 2) 
IL7 Proteomic Interleukin 7 
IL8 Proteomic Interleukin 8 
IL9 Proteomic Interleukin 9 
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ITAC (CXCL11) Proteomic Chemokine (C-X-C motif) ligand 11 
KDR Proteomic Kinase insert domain receptor (a type III receptor tyrosine kinase) 
KIT (SCFR) Proteomic V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 
KITLG (SCF) Proteomic KIT ligand 
LEP Proteomic Leptin (obesity homolog, mouse) 
LMO2 [rs2273797] Genetic LIM domain only 2 (rhombotin-like 1) 
LTA Proteomic Lymphotoxin alpha (TNF superfamily, member 1) 
LTN (XCL1) Proteomic Chemokine (C motif) ligand 1 
MBL2 [rs11003125] Genetic Mannose-binding lectin (protein C) 2, soluble (opsonic defect) 
MBL2 [rs1838066] Genetic Mannose-binding lectin (protein C) 2, soluble (opsonic defect) 
MBL2 [rs5030737] Genetic Mannose-binding lectin (protein C) 2, soluble (opsonic defect) 
MCP1 (CCL2) Proteomic Chemokine (C-C motif) ligand 2 
MCP2 (CCL8) Proteomic Chemokine (C-C motif) ligand 8 
MCP3 (CCL7) Proteomic Chemokine (C-C motif) ligand 7 
MCP4 (CCL13) Proteomic Chemokine (C-C motif) ligand 13 
MEC (CCL28) Proteomic Chemokine (C-C motif) ligand 28 
MIG (CXCL9) Proteomic Chemokine (C-X-C motif) ligand 9 
MIP1A (CCL3) Proteomic Chemokine (C-C motif) ligand 3 
MIP1B (CCL4) Proteomic Chemokine (C-C motif) ligand 4 
MIP1D (MAPKAP1) Proteomic Mitogen-activated protein kinase associated protein 1 
MIP3A (CCL20) Proteomic Chemokine (C-C motif) ligand 20 
MIP3B (CCL19) Proteomic Chemokine (C-C motif) ligand 19 
MMP7 Proteomic Matrix metallopeptidase 7 (matrilysin, uterine) 

MMP9 Proteomic 
Matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV 

collagenase) 
MPDU1 [rs2333227] Genetic Mannose-P-dolichol utilization defect 1 
MPIF1 (CCL23) Proteomic Chemokine (C-C motif) ligand 23 
MSH3 [rs3136228] Genetic MutS homolog 3 (E. coli) 
MSH3 [rs32950] Genetic MutS homolog 3 (E. coli) 
MTHFD2 [rs1667627] Genetic Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2  
MTHFR [rs1801133] Genetic 5,10-methylenetetrahydrofolate reductase (NADPH) 
MTR [rs1801394] Genetic 5-methyltetrahydrofolate-homocysteine methyltransferase 
MTRR [rs1802059] Genetic 5-methyltetrahydrofolate-homocysteine methyltransferase reductase 
NM Proteomic Neutrophil migration 
NTF3 Proteomic Neurotrophin 3 
NTF5 Proteomic Neurotrophin 5 (neurotrophin 4/5) 
OSM Proteomic Oncostatin M 
PAK6 [rs1136410] Genetic P21(CDKN1A)-activated kinase 6 
PARC Proteomic P53-associated parkin-like cytoplasmic protein 
PECAM1 Proteomic Platelet/endothelial cell adhesion molecule (CD31 antigen) 
PGF Proteomic Placental growth factor, vascular endothelial growth factor-related protein 
PIN1 [rs4744] Genetic Protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting 1 
RANTES (CCL5) Proteomic Chemokine (C-C motif) ligand 5 
RERG [rs6488766] Genetic RAS-like, estrogen-regulated, growth inhibitor 
RERG [rs767201] Genetic RAS-like, estrogen-regulated, growth inhibitor 
SAT2 [rs3924313] Genetic Spermidine/spermine N1-acetyltransferase 2 
SCUBE2 [rs1010324] Genetic Signal peptide, CUB domain, EGF-like 2 
SDF1 (CXCL12) Proteomic Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 
SELL Proteomic Selectin L (lymphocyte adhesion molecule 1) 
SLC39A2 [rs2234636] Genetic Solute carrier family 39 (zinc transporter), member 2 
SLC6A3 [rs2070424] Genetic Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 
SLC6A3 [rs6347] Genetic Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 
TARC (CCL17) Proteomic Chemokine (C-C motif) ligand 17 
TEP1 [rs1760898] Genetic Telomerase-associated protein 1 
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TGFA Proteomic Transforming growth factor, alpha 
TIMP1 Proteomic TIMP metallopeptidase inhibitor 1 
TIMP2 Proteomic TIMP metallopeptidase inhibitor 2 
TNF Proteomic Tumor necrosis factor (TNF superfamily, member 2) 
TNFRSF10A Proteomic Tumor necrosis factor receptor superfamily, member 10a 
TNFRSF10D Proteomic Tumor necrosis factor receptor superfamily, member 10d 
TNFRSF11A Proteomic Tumor necrosis factor receptor superfamily, member 11a, NFKB activator 

TNFRSF14 (HVEM) Proteomic 
Tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry 

mediator) 
TNFRSF1A Proteomic Tumor necrosis factor receptor superfamily, member 1A 
TNFRSF21 (DR6) Proteomic Tumor necrosis factor receptor superfamily, member 21 
TNFSF7 (CD27) Proteomic Tumor necrosis factor (ligand) superfamily, member 7 
TNFSF8 (CD30) Proteomic Tumor necrosis factor (ligand) superfamily, member 8 
TSG101 [rs2045224] Genetic Tumor susceptibility gene 101 
TSG101 [rs2045224] Genetic Tumor susceptibility gene 101 
TSG101 [rs2045224] Genetic Tumor susceptibility gene 101 
VEGF Proteomic Vascular endothelial growth factor 
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Figure 2:  Attribute importance “landscape” showing the shape of the importance 
curve ranking all attributes in the combined (genetic plus proteomic) dataset.  
Attributes above the horizontal line indicate a relative importance rank in the top 
10% (90th percentile) of all attributes in the dataset.  Attributes of high importance 
resulted in greater reduction of impurity (Gini) than attributes of low importance, 
as measured by the out-of-bag importance procedure. 
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Modeling the association of genetic and proteomic biomarkers with adverse 
events 
 
 Having filtered out the noise using Random Forests, we used a decision 

tree representation to explore interactions among the attributes in our filtered list 

related to AE status.  The final decision tree model is shown in Figure-3.  Our 

final model included four variables—three proteomic attributes and one genetic 

attributes.  Change in ICAM-1 concentration comprises the root node of the tree, 

with subsequent nodes composed of change in IL-10 concentration, a SNP in IL-

4, and change in CSF-3 concentration.  Imposing our minimum of five individuals 

per terminal (AE status) leaf, this tree correctly classifies 89% of individuals (with 

5 AE misclassifications and 2 non-AE misclassifications). 
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(7/2) (6/1)

CSF-3

CC AC or AA

 

Figure 3:  Final model of genetic and proteomic factors contributing to AE 
development.  Each node (oval) constitutes a decision point based upon the 
genotype of genetic attributes (IL-4 SNP) or whether the concentration change 
from baseline in proteomic attributes (ICAM-1, IL-10, CSF-3) is above (upward-
pointing arrows) or below (downward-facing arrows) a threshold (calculated by 
choosing the most informative value from among a set of possible values 
generated for each particular split).  Starting at the root node (ICAM-1), subjects 
are classified into AE status leaves (rectangles) by proceeding along the decision 
points at each attribute node.  Given below each terminal leaf is the total number 
of subjects classified into that AE status group / the number of subjects 
incorrectly assigned to that AE status group. 

 
 

 
 Figure-4 characterizes the biological relationships among the attributes in 

the tree using Chilibot.  Interactive relationships are characterized into one of 

three types based upon the verbs connecting pairs of attributes in the biomedical 

literature:  1. stimulatory relationships are connected by verbs such as “activate”, 
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“stimulate”, or “enhance”, 2. inhibitory relationships are connected by verbs such 

as “decrease”, “attenuate”, or “inhibit”, and relationships are characterized as 

neutral when the nature of the relationship cannot be contextually determined.  

Mining the biomedical literature suggested interactive relationships connecting all 

of the attribute nodes in our final model.  Stimulatory, inhibitory, and neutral pair-

wise interactive relationships were identified between each of ICAM-1, IL-10, IL-

4, and CSF-3.  Thorough examination of the networks inferred facilitated the 

biological interpretation of the final model discussed below. 
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IL-4

ICAM-1

CSF-3

IL-10

 
 

Figure 4:  Biological relationships among the attributes in our final model 
characterized using Chilibot.  Connections between each attribute node (oval) 
are colored according to the type of interactive relationship they represent:  
stimulatory (green), both stimulatory and inhibitory (orange), or neutral (gray).  
Arrows indicate that interactions between particular biological attributes are bi-
directional.  For each connection, 50 abstracts containing both terms were 
processed to determine the nature of interactive relationship. 
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Discussion 
 

 Our final model provides an immunologically plausible and testable 

biological mechanism of AE occurrence after smallpox vaccination that includes 

both genetic and proteomic factors.  The analytical strategy used is appropriate 

for the study of complex phenotypes, since outcomes such as AE development 

likely result from the interplay of multiple genetic, proteomic, and environmental 

factors [27,28].  The decision tree trained on the attributes passing our RF filter 

proposes a solid biological model of adverse event development.     

 The attributes included in this tree point to an important role of one 

particular immune cell type: monocytes.   Monocytes are bone marrow-derived 

circulating blood cells that are precursors of tissue macrophages.  Monocytes are 

actively recruited to sites of inflammation, where they differentiate into 

macrophages in tissues.  These macrophages play important roles in both innate 

and adaptive immune responses.  Macrophages are activated by microbial 

products such as endotoxin and by T cell cytokines such as IFN-γ.  Activated 

macrophages phagocytose and kill microorganisms, secrete pro-inflammatory 

cytokines, and present antigen to helper T cells.  Macrophages assume different 

morphologic forms in different tissues, which might have an important impact in 

system-wide responses such as the AEs studied here. 

 The root node of the tree is ICAM-1 (CD54), where small changes from 

baseline concentration (<11%) of ICAM-1 predict a non-AE response to 

vaccination, and high changes from baseline concentration (>11%) point toward 

AE risk—depending on factors in subsequent nodes.  ICAM-1 is mainly 
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expressed on endothelial cells, T cells, B cells, and monocytes.  It functions in 

cell-cell adhesion, which plays a crucial role in monocyte differentiation into 

macrophages, as entry into tissues is necessary.  Additionally, ICAM-1 

expression is upregulated in mature monocytes [29], aiding in cell adhesion and 

the eventual differentiation into macrophages.  Circulating monocytes are in 

random contact with endothelial cells, and the adhesion molecule E-selectin 

slows the monocyte by inducing rolling of the monocyte along the endothelial 

surface before firm attachment to vascular cell adhesion molecule 1 (VCAM-1) or 

intercellular adhesion molecule 1 (ICAM-1), which interact with integrins on the 

monocyte surface. Once the monocyte is tightly bound, it then migrates between 

endothelial cells [30,31].  High levels of ICAM-1 might indicate an 

“overrecruitment” of monocytes into tissue, triggering an unnecessarily active 

innate inflammatory response. 

 For individuals with large positive changes in ICAM-1, the next node in the 

tree is IL-10, where changes from baseline greater than 85% are associated with 

AEs.  IL-10 is produced by activated macrophages and some helper T cells 

whose major function is to inhibit activated macrophages and therefore maintain 

homeostatic control of innate and cell-mediated immune reactions.  Changes in 

IL-10 levels may indicate an imbalance in this delicate homeostasis leading to 

AEs.  Since our cytokine levels are measured within one week of immunization, 

the high levels of IL-10 secreted into the systemic compartment (serum) might 

indicate an overabundance of activated macrophages during the acute phase 

contributing to AE development.  Eventually, sufficiently high levels of IL-10 
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should “calm” the macrophage response, so if cytokines were measured at a 

later time point (e.g. two weeks post-immunization), it is probable that IL-10 

levels would return toward baseline.  Additionally, high levels of IL-10 have been 

shown to inhibit the production of other cytokines by monocytes [32], implying 

that monocytes may not be recruiting proper T helper cell response to balance 

the acquired and innate reactions. 

 For individuals with mild changes in IL-10 concentration, the next node is 

a SNP in the gene encoding IL-4.  IL-4 is a cytokine produced mainly by the TH2 

subset of CD4+ helper T cells whose functions include induction of differentiation 

of TH2 cells from naïve CD4+ precursors, stimulation of IgE production by B cells, 

and suppression of IFN-γ-dependent macrophage functions [33,34].  While direct 

functional significance of the SNP is unknown, it is reasonable that the different 

genotypes could result in functionally different versions of the IL-4 protein, or in 

different bioavailability levels of IL-4.  The fact that multiple SNPs in IL-4 

achieved nearly identical importance scores indicates that there may be LD 

blocks of variation within the IL-4 gene region associated with AE development 

(see Chapter IV).  Because of the intricate cross-talk between macrophages and 

the TH2 response in maintaining homeostasis, it is plausible that the major IL-4 

genotype (CC) is associated with calming the activated macrophage response 

and directing the acquired immune system to progress in response to vaccine 

presentation, while the variant genotypes (AC or AA) fail to calm the innate 

response—presenting increased AE risk. 
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 For individuals having one of the variant genotypes at IL-4, the lowest 

node of the tree is CSF-3 (GCSF).  GCSF is a cytokine produced by activated T 

cells, macrophages, and endothelial cells at sites of infection that acts on bone 

marrow to increase production of and mobilize neutrophils to replace those 

consumed in inflammatory reactions.  In our model, increased levels of CSF-3 

after vaccination (change > 78%) indicated increased risk of suffering an AE.  

This implies another over-recruitment in the development of AEs, as neutrophils 

have been associated with host tissue damage and failure to terminate acute 

inflammatory responses [35].  This over-reaction is consistent with the types of 

AE symptoms observed in the current study and with the overall proposed 

biological mechanisms of AE development. 

 The results of this study provide a viable biological mechanism of AE 

occurrence after smallpox vaccination that is experimentally testable.  Our model 

includes both genetic and proteomic biomarkers.  Allowing for such an integrative 

model is an important strength of our analytical strategy.  It is increasingly 

recognized that the pathophysiology of complex clinical outcomes hinges on 

biological factors acting on multiple levels [36].  Therefore, the formulation of 

robust etiological models must take this inherent complexity into account and 

capitalize on the power of modern experimental data-generating techniques.  

 Together with previous studies on immunological response to smallpox 

vaccination, we conclude that AEs result from hyperactivation of inflammatory 

signals leading to excess recruitment and stimulation of monocytes in peripheral 

tissues.  Our analysis identifies a set of interacting genetic and proteomic 
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candidates associated with AEs:  ICAM-1, IL-10, IL-4, and CSF-3.  Since the 

proteomic measurements occurred early in the period after vaccination—before 

most AEs presented themselves clinically—our model could be used as a 

diagnostic tool in the prediction of adverse events.  Of course, the ultimate goal 

of such a study is the identification and characterization of biological risk factors 

contributing to the inappropriate immune response to vaccination.  We present a 

mechanism of AE development that targets specific players within the systemic 

inflammatory pathway for further study.   

 Future studies will test our hypothesis at the bench.  The functional 

consequences of genetic variability in IL-4 related to bioavailability and overall 

concentration must be fully characterized.  Time-series studies with dense 

measurement points are needed to shed light on the dynamic interplay between 

the signaling of ICAM-1, IL-10, and CSF-3.  Additional data is needed on the 

effects of these cytokines in other physiological compartments.  It is hoped that 

this study will convince all future work on this subject to adopt an experimental 

approach that rightfully takes the broader spatial and temporal physiological 

context of complex biological systems into account. 
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 This dissertation describes the development and implementation of a 

comprehensive analysis paradigm wherein experimental data of multiple types is 

integrated for the study of complex phenotypes.  This strategy was applied to 

genetic and proteomic data in both simulated and real analysis situations.  The 

successful application to combined genetic and proteomic data from smallpox 

vaccine studies supports the hypothesis that such integrated approaches provide 

a comprehensive portrayal of the mechanisms underlying complex phenotypes 

and lend confidence to the biological interpretation of analytical conclusions. 

The next steps in elucidating the development of adverse events after 

smallpox vaccination will involve testing the candidate biomarkers at the bench—

taking into account their respective genetic or proteomic context.  The functional 

consequences of genetic variability in IL-4, IRF-1, and MTHFR must be 

characterized with respect to bioavailability, activity, and overall concentration.  

Functional genetic studies should be carried out in experimental conditions that 

stimulate the inflammatory pathways highlighted by the work presented here.  

Focused studies should be undertaken to describe the variability in all of the AE-

associated genomic regions, especially for those in which multiple SNPs were 

identified.      
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Dense time-series studies are needed to clarify the dynamic interplay 

between the signaling of ICAM-1, IL-10, CSF-3, eotaxin, MIG, TIMP-2, and SCF, 

as well as the protein products of IL-4, IRF-1, and MTHFR.  Proteomic studies 

should be performed in environments wherein the relevant genetic background 

has been established.  Additional data is needed on the effects of these 

cytokines in other physiological compartments outside the serum.   

The ultimate test of these results will be their assessment in large-scale, 

independent cohorts.  From an epidemiological perspective, the studies 

discussed here involve relatively small samples and represent a very narrow 

slice of demographic characteristics such as race and age.  Future studies will 

need to evaluate whether these conclusions generalize to populations at-large, or 

if they only apply to certain subsets. 

Perhaps the most important aspect of future studies would be the 

collection of additional types of information on study subjects.  Besides the other 

types of data that could be collected on the genetic and proteomic levels (e.g. 

genomic methylation status and enzymatic activity, respectively), information on 

circulating mRNA concentrations, immunological effector cell morphologies, and 

spatial bioactivity may prove useful.  Outside of biological data, information on 

subjects’ lifestyles, dietary intakes, and any other plausible environmental factors 

should be gathered.  For any type of data collected, careful consideration must 

be given to the particular variables measured—these results are suggestive of 

particular immunological pathways, and variables should be selected to provide 

comprehensive coverage of variation in these pathways. 



179 

Once these additional data are available, extension and refinement of 

analytical methods can proceed.  Simulation studies should assess alternative 

variable selection strategies within the RF framework, such as joint variable 

permutation methods.  Other promising analytical methods, such as those 

employing evolutionary computation or prior domain knowledge, should also be 

explored as techniques for integrating multiple data types. 

As the number of data types increases, an important issue arises with 

respect to effectively integrating massive amounts of disparate information.  

Statistical modeling techniques aside, meaningfully interpreting the results of 

multifaceted models demands expertise in each of the experimental domains 

considered.  While this will foster the evolution of interdisciplinary research, tools 

will be needed that allow communication in a standardized manner.  The 

development of such tools depends on the adoption of consistent language so 

that databases can present information that is standardized across both 

experiments and disciplines.   

Considering the rapid progress in experimental technologies able to 

reliably generate vast quantities of data, as well as continual improvements in 

cost efficiency, it is expected that comprehensive datasets—including multiple 

types of experimental information—will become commonplace in the near future.  

It is hoped that the positive conclusions from this dissertation will help spur the 

adoption of an experimental approach that rightfully takes the broader spatial and 

temporal physiological context of complex biological systems into account. 

 


