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CHAPTER I 

 

INTRODUCTION AND SUMMARY 

 

 Introduction 

 The demand for automation in modern society has been increasing steadily during the 

last few decades. Robotic systems have played an important role in automation that 

includes manufacturing, assembly, and biotechnology to name a few. In addition, there is 

a growing need for unmanned operation in different service and research sectors such as 

search and rescue, nuclear waste clean up, planetary exploration and others. Such 

complex applications increase the possibility of the system faults that are characterized 

by critical and unpredictable changes in the system dynamics. The consequences of the 

system faults can be extremely serious in terms of not only economic loss, but also 

environmental impact and even human lives.  Therefore the ability to adapt to faults is 

important for the reliability and safety of the system. One way to address these needs is to 

design a fault tolerant control system (FTCS). Generally, the way to make a system fault 

tolerant consists of two steps:  

(1) Fault diagnosis: The existence of a fault has to be detected and the fault needs to 

be isolated.  

(2) Fault accommodation: The controller has to be able to adapt to the faulty 

situation so that the overall system continues to satisfy its goal.  
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 There are significant research activities in the development of new methodologies for 

automated fault diagnosis and fault-tolerant control. However, unlike the fault diagnosis 

for linear systems, which has been investigated extensively in the literature, the fault 

diagnosis problem for nonlinear uncertain systems has received less attention.  

 The motivation for this dissertation stems from the above significant issues. We focus 

on the fault diagnosis of nonlinear uncertain systems. First, we investigate the problem of 

robust fault detection for a class of input affine nonlinear systems that include most 

robotic systems. In this research, a model-based fault detection method is used. A 

successful fault detection scheme should be robust to unavoidable modeling uncertainty, 

such as external disturbance and model-plant-mismatch (MPM), thus preventing any 

false alarm. We develop a new robust nonlinear fault detection methodology using 

nonlinear analytic redundancy technique. The detailed theoretical development along 

with the simulation results are presented in Manuscript 1. We investigate both the sensor 

and actuator faults and experimentally verified the robust nonlinear analytic redundancy 

(RNLAR) method on a PUMA 560 robotic manipulator. The experimental results are 

given in Manuscript 2. We further investigate the relationship between the order of 

redundancy and the robustness. We proposed a theorem in this regard and experimentally 

confirmed the claim in Manuscript 3. Finally, we investigate the problem of fault 

isolation, which is discussed is Manuscript 4.  A Pioneer 3DX mobile robot is used to 

experimentally verify the fault detection and isolation mechanism.  
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Manuscript 1:   A Robust Nonlinear Analytic Redundancy Framework for Actuator Fault 
Detection and its Application to Robotics  

 

Background 

 Fault detection and isolation (FDI) techniques are broadly classified into two classes: 

model-free approaches and model-based approaches. Traditionally, model-free 

approaches use hardware redundancy method for FDI. The major problems with the 

hardware redundancy method are the extra cost and the additional space required to 

accommodate the equipment. Model-based fault detection, on the other hand, utilizes the 

mathematical model of the plant to generate residuals. Residuals are measures of 

discrepancy between the expected and the measured system behavior. A substantial 

research effort has been invested in model-based FDI during the last few decades. Given 

the success of model-based approach and the powerful mathematical tools it provides, we 

choose to concentrate on model-based methods. Model-based method gives better results 

for robotic systems where an approximate model is available.   

Some important survey papers in the model-based fault detection methods are [2-4]. 

The fundamental concept of model-based fault detection is analytical redundancy (AR). 

The basic idea of AR is the comparison between the actual behavior of the monitored 

plant and the behavior of a mathematical plant. AR is an especially interesting and useful 

technique as it allows us to explicitly derive the maximum number of model-based 

linearly independent consistency tests for a system [1]. Another important feature of AR 

is that it guarantees that the test residuals generated by the techniques will test the entire 

space of “observable” faults [1]. Implementation methods of AR can be classified into 

two groups: 1) indirect implementation, based on diagnostic observers, and 2) direct 
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implementation based on the parity relation technique. Conceptually, the direct 

implementation based on parity relation is more straightforward than the observer-based 

method.  

The origin of parity relation based AR can be found in [1] for linear systems. The 

detail description of parity relation for linear systems is given in [5]. The standard AR 

fault detection technique is effectively limited to linear systems. It is worth noting that 

most robotic systems are modeled as nonlinear systems. The linear AR concept was later 

extended to nonlinear systems in [6]. The authors in [6] named this new technique 

nonlinear analytic redundancy (NLAR) for fault detection. Note that [6] did not consider 

fault detection in the presence of MPM and process disturbance. However, MPM and 

process disturbances almost always exist in practical systems. A model dependent fault 

detection scheme may not be useful under considerable MPM and process disturbances. 

Thus a robust fault detection method that does not require a perfect model will be 

valuable.  

In the AR literature robustness issue is discussed mostly for linear systems. In [1] 

robust residual generation was considered for linear systems based on an optimization 

technique. Recently, in [7], [8] the authors extended the method presented in [1] to design 

the primary residual considering both the MPM and process disturbances in linear 

systems. As far as nonlinear systems are concerned, there is a lack of literature on parity 

relation based robust fault detection method.  

In summary, the majority of robust FDI methods are applicable only for linear 

systems. But, most robotic systems are modeled as nonlinear systems to capture their 

complex dynamics. Therefore, there is a need for robust FDI method for nonlinear 
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systems. We propose a new robust nonlinear analytic redundancy (RNLAR) fault 

detection technique. The proposed RNLAR fault detection technique accommodates both 

the MPM and process disturbances for multivariable dynamic systems. In this technique, 

we extend the robustness idea, used in [7] for linear systems, into the nonlinear domain.  

   

Summary of Contribution 

 The main contribution of this part is the development of a rigorous method for 

deriving robust nonlinear analytic redundancy (RNLAR) test residual that can be applied 

to a wide range of nonlinear systems. RNLAR technique is applicable to systems 

described by input affine nonlinear ordinary differential equations. The RNLAR method 

extends the linear AR into nonlinear systems. It also extends the NLAR to include the 

MPM and uncertainty of the system. The effectiveness of the method is verified by 

simulation on a mobile robot. Manuscript 1 is based on the following papers:  

 

• Halder. B and Sarkar. N, “Robust Fault Detection Based on Nonlinear Analytic 

Redundancy Techniques With Application to Robotics,” Proceedings of 

International Mechanical Engineering Congress and Exposition (IMECE), 

Orlando, Florida, November 5-11, 2005-81098. 

• (Submitted) Halder. B and Sarkar. N, “A Robust Nonlinear Analytic Redundancy 

Framework for Actuator Fault Detection and its Application to Robotics,” Journal 

of Automatica. 
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Manuscript 2:   Robust Fault Detection of Robotic Manipulator 

 

Background 

 Robotic manipulation systems played an important role in automation industries that 

include manufacturing, assembly, biotechnology to name a few. However, 

notwithstanding their widespread applicability and use, robotic manipulators are known 

to fail under normal operations [9] due to various faults that include sensor and actuator 

faults, and component failure. Typical faults are caused by broken or bias sensor, wear in 

mechanical components, overheating, and locked or damaged actuator. The likelihood of 

developing fault increases both with the complexity and versatility of the manipulator 

mechanism and the uncertainty of application domains. Consequently, fault detection is 

important for the reliability and safety of robotic manipulators. A nonlinear fault 

detection method is needed for robotic manipulator.  

 Various nonlinear diagnostic observer designs are proposed and implemented on 

robotic manipulators to detect sensor and actuator faults [10-13]. Most of the works in 

fault detection consider either a sensor fault or an actuator fault. In [10], the authors 

proposed a method based on generalized momenta for actuator fault detection. However, 

the proposed method could not detect sensor faults and was not robust in the presence of 

disturbance, noise and model-plant-mismatch (MPM). In [14] the partial actuator fault 

was considered in detail but sensor fault detection method was not discussed. In papers 

[15-16] only sensor fault detection for robot manipulator was considered. 

 In summary, a fault detection method that includes both the sensor and actuator faults 

and considers the modeling uncertainty is still lacking in the literature but will be helpful 
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for fault detection of the robotic manipulators. We implement our RNLAR method to 

detect sensor and actuator faults of the robotic manipulator.     

 

Summary of Contribution 

 In this part of the research, the RNLAR method is extended to encompass the sensor 

fault detection. The RNLAR method is implemented on a PUMA 560 robotic 

manipulator. We present the experimental results under different sensor and actuator 

faults. Manuscript 2 is based on the following papers: 

• (Accepted) Halder. B and Sarkar. N, “Robust Fault Detection of Robotic 

Manipulator,” International Journal of Robotics Research. 

• Halder. B and Sarkar. N, “Robust Fault Detection of Robotic Systems: New 

Results and Experiments,” Proceedings of International Conference on Robotics 

and Automation (ICRA), Orlando, Florida, May 15-19, 2006, pp. 3795-3800. 

 

Manuscript 3:   Impact of the Order of Redundancy Relation in Robust Fault Detection of 
Robotic Systems  

 

Background 

 Robust fault detection is important for safe and reliable robotic applications. The first 

step to successful fault detection is residual generation. Various model-based methods 

have been developed in the literature using the analytic redundancy (AR) method [1-3]. 

The AR method is suitable for robotic application where approximate model is available. 

To address the robustness issue, given in [1] the authors have proposed an optimization 

method to select a parity vector from the parity space. They described the order of 



8 

redundancy relation as the ‘memory span’ of the redundancy relation. This work was 

later extended by various researchers in [17], [18]. Most recently in [7], [8] the authors 

designed optimal primary residual, which considered both the model-plant-mismatch 

(MPM) and process disturbances for linear systems. In a number of works [18], [19], it is 

pointed out that the selection of the order of the redundancy relation has an influence on 

the optimization performance. In fact, it is proved in [20] that increasing the order of 

redundancy relation leads to an increase in the dimension of the parity space, which in 

turn provides greater flexibility in residual generation as well as improves robustness. 

Note that the above-discussed conclusions regarding the increase in order of redundancy 

relation have been proven for linear systems. There are no equivalent results available in 

the literature for nonlinear systems.  The objective of this work is to extend the above 

results for nonlinear systems.  

   

Summary of Contribution 

 In this work, we have studied the relation between order of redundancy relation and 

robustness of the residual generation. The main contribution is to formulate and prove the 

theorem that increasing the order of redundancy relation improves the system robustness. 

The proposed theorem is an extension of the similar results obtained in linear systems 

[20]. Based on the theorem, an algorithm has been proposed to determine the optimal 

redundancy relation order. We have experimentally verified the claim on a PUMA 560 

robotic arm. A comparative experimental study is presented to demonstrate the effect of 

robust residuals. Manuscript 3 is based on the following papers:  
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• Halder. B and Sarkar. N, “Impact of the Order of Redundancy Relation in Robust 

Fault Detection of Robotic Systems,” Proceedings of Conference on Decision and 

Control (CDC), San Diego, California, December 13-15, 2006.  

• (Submitted) Halder. B and Sarkar. N, “Study the Order of Redundancy Relation 

for Nonlinear Systems,” Journal of Control Engineering Practice.  

 

Manuscript 4:  Robust Fault Detection and Isolation in Mobile Robot  

 

Background 

 Fault detection and isolation are important problems in the development of reliable, 

robust mobile robots. Both the fault detection and isolation is needed for a successful 

fault diagnosis system. Residual generator for fault diagnosis needs to be designed to 

support the isolation of faults. To facilitate fault isolation, the residual set needs to have 

distinctive properties and unique characteristics of particular faults. There are two 

fundamental approaches to enhance the residual for fault isolation: structured residuals 

and directional residuals [5]. Structured residuals are so designed that each residual 

responds to a different subset of faults and is insensitive to the others.   

 Structure residual method is used in the literature for fault diagnosis of mobile robot 

[21-22] and other systems [7]. All the above methods does not account for the modeling 

error and uncertainty of the system. We designed the primary residual vectors (PRV) 

based on the robust nonlinear analytic method (RNLAR) in Manuscript 1. RNLAR 

method is further developed to generate robust structured residual vectors (SRV), which 

is fault-accentuated signal, for fault isolation in a mobile robot.  
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Summary of Contribution 

 A robust method for the detection and isolation of sensor and actuator faults is 

presented in this work. The main contribution of this paper is to extent the RNLAR 

method to design robust fault isolation method. The proposed robust nonlinear analytic 

redundancy method was experimentally verified on a Pioneer 3-DX mobile robot. The 

results show that both sensor and actuator fault detection and isolation are possible in the 

presence of model-plant-mismatch (MPM) and disturbances. Manuscript 4 is based on 

the following papers: 

• (Accepted)Halder. B and Sarkar. N, “Experimental Results of Fault Detection and 

Isolation in Mobile Robot,” International Journal of Automation and Computing. 

• Halder. B and Sarkar. N, “Robust fault detection and isolation in mobile robot,” 

Proceedings of International Federation of Automatic Control (IFAC), Beijing, 

China, August 30- September 01, 2006, pp. 1483-1488. 

 

References 

[1] E. Chow, and A. Willsky, “Analytic redundancy and the design of robust failure 
detection systems”, IEEE trans. on Automatic Control, Vol. AC-29, No. 7. July 
1984.  

 
[2] P.M Frank, and X. Ding, “Survey of robust residual generation and evaluation 

method in observer-based fault detection system,” J. Proc. Cont. Vol. 7. No. 6. pp 
403-424, 1997. 

 
[3] J. J Gertler, “Analytic redundancy methods in fault detection and isolation – survey 

and synthesis”, Preprints of IFAC Safeprocess conference, vol. 1, pp. 9-22. 1991. 
 
[4] R. Isermann, “Process fault detection based on modeling and estimation methods- a 

survey,” Automatica, 20, 387-404. 
 
[5] J. J Gertler, “Fault Detection and Diagnosis in Engineering systems”, 1 ed. Marcel 

Dekker , Inc. 



11 

 
[6] M. L. Leuschen, “Derivation and application of nonlinear analytic techniques with 

application on robotics”, PhD, dissertation, Rice University. Texas, 2001. 
 
[7] Z. Han, W. Li, and S. L. Shah, “Fault detection and isolation in the presence of 

process uncertainties”, Control engineering practice, 13, 587-599, 2005. 
 
[8] C. Kwan and R. Xu, “A note on simultaneous isolation of sensor and actuator 

faults,” IEEE transaction of control systems technology, vol. 1, no. 1, Jan 2004. 
 
[9] J. F. Engelberg, “Three million hours of robot field experience,” The industrial 

robot, pp. 164-168, June 1974. 
 
[10] A. De. Luca and R. Mattone, “Actuator failure detection isolation using generalized 

momenta,” proceedings of the 2003 IEEE, ICRA, 634639, 2003. 
 
[11] A. De Luca and R. Mattone, “An adapt-and-detect actuator FDI scheme for robot 

manipulators,” Proc. IEEE, ICRA, New Orleans, LA, April 2004.  
 
[12] G. Antonelli, F. Caccavale, and L. Villani, “Adaptive discrete-time fault diagnosis 

for a class of nonlinear systems: application to a mechanical manipulator,” Proc. 
IEEE, ISIC, Houston, Texas, October 5-8, 2003. 

 
[13] M. L. McLntyre, W. E. Dixon, D. M. Dawson, and I. D. Walker, “Fault detection 

and identification for robot manipulators,” Proc. IEEE ICRA, New Orleans, LA, 
2004. 

[14] G. Liu, “Control of robotic manipulators with consideration of actuator 
performance degradation and failure,” Proc. IEEE ICRA, Seoul, Korea, May 21-26, 
2001.  

 
[15] L. Notash, “Kinematic solution for the effective implementation of parallel 

manipulators,” PhD Dissertation, Dept of Mech Engg, Univ of Victoria, June 1995. 
  
[16] G. Paviglianiti, F. Caccavale, M. Mattei, and F. Pierri, “Sensor fault detection and 

isolation for robot manipulator,” Proc 13th Mediterranean conference on control and 
automation, Limassol, Cyprus, June 27-29, 2005.  

 
[17] J. J Gertler, “Diagnosis parametric fault – from identification to parity relations”, 

Proc. American Control Conference, pp. 143-156. 
 
[18] X. C. Lou, A. S. Willsky, and G. L. Verghese, “Optimally robust redundancy 

relation for failure detection in uncertain systems,” Automatica, vol. 22, pp. 333-
344, 1986. 

[19] J. Wuennenberg, “Observer-based fault detection in dynamic system,” Ph.D. 
dissertation, University Duisburg, 1990.  

 



12 

[20] X. Ding, L. Guo, and T. Jeinsch, “A characterization of parity space and its 
application to robust fault detection,” IEEE transaction on automatic control, VOL. 
44, No. 2, February 1999. 

 
[21] M. Hasimoto, H. Kawashima, T. Nakagami, and F. Oba, “Sensor fault detection and 

identification in dead-reckoning system of mobile robot: interacting multiple modal 
approach,” Int’l Conf. on Intelligent Robots and Systems, pp. 1321-1326, 2001. 

 
[22] B. N. Umesh, “A fault diagnostic system for an unmanned autonomous mobile 

robot,” University of Cincinnati, 1997.  
 



 13

CHAPTER II:           MANUSCRIPT 1 

 

A ROBUST NONLINEAR ANALYTIC REDUNDANCY FRAMEWORK FOR 
ACTUATOR FAULT DETECTION AND ITS APPLICATION TO ROBOTICS 

 

Bibhrajit Halder1   Nilanjan Sarkar2    

 

(Submitted to Journal of Automatica) 
 

Abstract 

 A new approach to actuator fault detection in the presence of model uncertainty and 

disturbances, and its application to a wheeled mobile robot (WMR) are presented in this 

paper. Robust fault detection is important because of the universal existence of model 

uncertainties and process disturbances in most systems. This paper proposes a new 

approach, called robust nonlinear analytic redundancy (RNLAR) technique, to actuator 

fault detection for input-affine nonlinear multivariable dynamic systems in the presence 

of model-plant-mismatch (MPM) and process disturbance. Analytic redundancy, which is 

a basis for residual generation to detect fault, is primarily used in the linear domain. The 
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2Associate Professor, Department of Mechanical Engineering, Vanderbilt University, 

2301 Vanderbilt Place, Nashville, TN-37235. Email: nilanjan.sarkar@vanderbilt.edu 

Phone: 1-615-343-7219, Fax: 1-615-343-6687. 
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proposed RNLAR can be used to design primary residual vectors (PRV) for nonlinear 

systems to detect actuator faults. The proposed methodology is applied to the actuator 

fault detection of a WMR and the simulation results are presented to demonstrate its 

effectiveness. 

Keywords: Fault detection, analytical redundancy, robustness, nonlinear systems, mobile 

robots. 

 

1. Introduction 

 Recent technological advances in hardware and control techniques have allowed us to 

design increasingly complex robots. However, it is unlikely that these complex robots 

could be immune to system faults. Faults may result in mission failures that are costly in 

mission critical enterprises such as planetary exploration, search and rescue, mine 

mapping, demining and nuclear waste cleanup. Therefore the ability to adapt to faults can 

be important for a robot in mission critical operations. One way to address these needs is 

to design a fault tolerant control system (FTCS). Generally, a FTCS consists of two major 

components: a fault detection and isolation (FDI) scheme, and a fault accommodation 

mechanism. In this work we focus on actuator fault detection for a class of input affine 

nonlinear systems that include robotic systems.  

 FDI techniques are broadly classified into two classes: model-free approaches and 

model-based approaches. In a model-free approach, the system model is constructed 

without the use of any knowledge obtained from physical laws [26] [28]. Recent model-

free techniques include the use of neural networks [34], Bayesian belief network [25], 

and genetic programming [39] among others. Model-based fault detection, on the other 
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hand, utilizes the mathematical model of the plant to generate residuals. Residuals are 

measures of discrepancy between expected and the measured system behavior. A 

substantial research effort has been invested in model-based FDI during the last few 

decades. Given the success of the model-based approach and the powerful mathematical 

tools it provides, we choose to concentrate on this method. Some important survey papers 

in this area are [6] [9] [13]. The fundamental concept of model-based fault detection is 

analytical redundancy (AR). The basic idea of AR is the comparison between the actual 

behavior of the monitored plant and the behavior of a mathematical plant. 

Implementation methods of AR can be classified into two groups: 1) indirect 

implementation, based on diagnostic observers, and 2) direct implementation based on 

the parity relation technique.  

 The origin of observer-based fault detection can be traced back to [1] [15]. A survey 

paper [7] gives the details about this method. In [24] the authors introduced a geometric 

approach to designing observers for linear systems. Later it was extended to nonlinear 

systems [3]. More details on the use of observer-based method can be found in [21] and 

the references therein. Robust fault detection for nonlinear systems is mostly based on 

nonlinear observer design approaches [32] [38] [40]. The authors in [38] proposed an 

existence criterion for an observer-based robust residual design approach that can 

accommodate disturbances in the system.  This formulation, however, makes it more 

difficult to be satisfied under considerable model-plant-mismatch (MPM). Various 

methods are used to design the nonlinear observer to accommodate the MPM that include 

sliding mode [35], adaptive/learning [16] and neural network approaches [23].  

 There exists a rich literature in parity relation based residual generation. In [2] the 
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fundamental formulation of a parity relation was presented for linear systems. Various 

researchers have combined linear AR with nonlinear systems [36] [41], by using the 

method of linearization of the nonlinear system. The AR concept was later extended in 

[19] [20] to nonlinear systems without linearization. They [19] introduced the idea of 

nonlinear analytic redundancy (NLAR) for fault detection.  

 In [19], the authors assumed the existence of a perfect system model for fault 

detection. However, MPM and process disturbances almost always exist in practical 

systems. A model dependent fault detection scheme may not be useful under considerable 

MPM and process disturbances. Thus a robust fault detection method that does not 

require a perfect model will be valuable. However, robustness issues have mostly been 

addressed for linear systems in the literature. In [2] a method is proposed for robust 

residual generation based on an optimization technique. Several other researchers applied 

the method given in [2], to minimize the effect of the disturbances or to minimize the 

effect of MPM [10]. Recently, in [12] both the MPM and process disturbances are 

considered. Also, in [18] a method is proposed for isolating sensor and actuator faults 

with least sensitivity to the MPM and process disturbances. All the above robust FDI 

methods are applicable to linear systems. As far as nonlinear systems are concerned, in 

[33] the authors proposed an analytical redundancy based robust fault detection method 

using a mathematical technique, called algebra of functions, to transfer the nonlinear 

model into a weakly nonlinear model as the main step in designing the residuals. This 

method provides satisfactory results but it assumes that modeling uncertainty can be 

specified in the form of unknown constant or slowly varying system parameters.  
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 In this paper, we develop a new robust nonlinear analytic redundancy (RNLAR) fault 

detection technique. The proposed RNLAR fault detection technique accommodates both 

the MPM and process disturbances for multivariable dynamic systems to detect actuator 

faults. We extend the robustness idea, used in [12] for linear systems, into the nonlinear 

domain.  

  

2. Problem Formulation 

 Consider a multivariable input-affine nonlinear dynamic system of the form: 

 ( ) ( ) ( ) oCxyuxduxgxfx
q

i
ii +=++= ∑

=
,,

1
&  (1) 

where the state x is defined on an open subset U of nℜ ; [ ] qT
qu...uuu ℜ∈= 21  is the 

input; my ℜ∈ is the process output; C is the nm × output matrix; ),( uxd  represents an 

unmeasured deterministic process disturbance vector [11]; o represents a Gaussian-

distributed white noise vector. The functions f, g1,…, gq are nℜ  valued smooth mappings 

defined on the open set U, and define [ ] qn
qgggg ×ℜ∈= ...21 . 

 In the presence of faults, the input can be represented by 

 fg uuu +=  (2) 

where qgu ℜ∈ represents the fault-free input vector and qfu ℜ∈ represents the 

actuator fault vector. It is assumed that gu  is available for computation but fu and o are 

not. The magnitude of the noise is assumed to be significantly smaller then the magnitude 

of faults. Under the nominal fault-free condition, fu is a zero vector. However, when an  
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actuator fault occurs in the system, fu  will become non-zero. A schematic diagram of the 

overall system is given in Figure 2-1. 

 

  
 Figure 2-1.  Schematic diagram of the FDI system 

 Model-plant-mismatch is represented by  

 ( ) ( ) ( ) ( ) ( ) ( )xgxgxgxfxfxf unun +=+= ,  (3) 

where ( ) ( ) ( )xgxfxf nun ,, , and ( )xg u  represent the nominal and uncertain part of the 

mappings f and g, respectively. Combining (1), (2) and (3), the overall system with faults 

is represented by  

 ( ) ( ) ( ) ( )( ) ( ) ( ) oCxyuxduuxgxgxfxfx fgunun +=+++++= ,,&  (4) 
 
Simplifying (4) we get  

 ( ) ( ) ( ) ( ) oCxyuxguxeuxgxfx ofg nnn +=+++= ,,&  (5) 
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where ( ) ( ) ( ) ( ) ( )uxduuxgxfuxe fguu ,, +++= . The vector ( )uxe ,  is called an error 

vector, which contains both the uncertainty of the model and the disturbances. The 

following assumptions will be used in this paper in order to design the robust actuator 

fault detection method:  

 Assumption 1: The fault-free system is asymptotically stable. This is a general 

assumption in the FDI literature [12] [20].  

  Assumption 2: The system in (1) is observable. This assumption is needed in order 

to guarantee the ability to find all the states from the system outputs and is also common 

in the literature [2] [19] . We should note that the observability assumption does not mean 

that we can (or we need to) find the fault-free states from faulty output measurements. 

 Assumption 3:  The modeling uncertainty, denoted by ( )xf u  and ( )xg u  in (3), 

which are unknown nonlinear vector functions of x, is bounded. We also assume that both 

the inputs and the disturbances are bounded, which is similar to the assumption made in 

[12]. Define fault-free error part, *e , as ( ) ( ) duxgxfe guu ++=* . We assume that 

( ) ( ) ( ){ } ( )g
o

guu uxFxduxgxf ,,,max < where ( )g
o uxF ,  is a known bounded 

function. Now, ( ) ( ) duxgxfe guu ++≤* . Thus we can say  *e  is bounded, 

e.g., Le ≤* , where stands for the 2L norm and  ( )guxFL ,3= .  

Thus the problem we seek to solve in this paper becomes: design robust residuals for 

actuator faults for the nonlinear systems given by (5). By robust we mean the residual 

will need to be sensitive to the faults but insensitive to the MPM and disturbances of the 

system, i.e., insensitive to error as much as possible.  
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3. Background Information 

 Consider the nonlinear system (1) without disturbance and noise:  

 ( ) ( ) Cxyuxgxfx
q

i
ii =+= ∑

=1
;&  (6) 

We briefly describe the basic steps of the NLAR technique as given in [19] to motivate 

the design of a robust nonlinear analytic redundancy technique. For detailed information 

on the NLAR technique, please refer to [19]. Two vectors  ∆Ο  and DD∆Ο  were defined as 

follows: 
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where q is the number of inputs and  

( ) ( )
( )

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

==

=

0,
0,

,1

.......,...,,

0

)()()(

jg
jf

jku
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The Lie derivative [14] [17] is defined as ∑
= ∂

∂=
n

i
i

i
f f

x
hhL

1
and the repeated Lie derivative 

in (7) is written in the following ways: hLhLLLhLLL ijkkjikji ==))(( . 
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⎣
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gDD Luy
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&&&
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 (8) 

where gCCxLL gg ==                  

 The general NLAR method works in the following manner:  

1. Calculate ∆Ο from (7). 

2. From ∆Ο  calculate the left null matrix, ΓΩ , such that 0=ΟΩ ∆
Γ .  

3. Next calculate DD∆Ο  using (8).  

4. Finally, apply the NLAR equation: PRVDD =ΟΩ ∆
Γ , where PRV is the primary residual 

vector of the NLAR.  

 It is worth noting that the following important issues are not addressed in the method 

mentioned above.  

• It is not clear how to calculate ΓΩ  given ∆Ο . This question is not a trivial one. It was 

originally discussed for linear systems in [2] and later in [12] and [18]. 

Computationally, the PRV  is given by DD∆
ΓΟΩ , and as a consequence, the design of 

PRV is equivalent to finding a TΩ . Clearly, there are number of choices for ΓΩ for a 

given ∆Ο . We will show that the multiple choices for ΓΩ  can be utilized to design the 

robust PRV. We will address this issue in detail in the subsequent sections.  

• The effect of model uncertainty and the process disturbances are not taken into 

account while designing the PRV. 
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4. Robust Fault Detection Method 

 The two important mathematical structures for the NLAR technique are 

∆Ο and DD∆Ο . ∆Ο and DD∆Ο  are defined based on (6) that does not include the MPM and 

the process disturbances. The design of RNLAR technique, on the other hand, is based on 

(5). In order to effectively analyze and account for the MPM and disturbance terms we 

develop new mathematical structures that are analogous to ∆Ο and DD∆Ο  but are more 

appropriate for the RNLAR technique. In addition, we define an error matrix, sG .  

 We describe the theoretical development of the RNLAR technique here. Some 

practical implementation issues will be discussed later along with the simulation results. 

Starting with the output y  from (5), take the derivative of y for s times and stack them 

together in (9), where s is the order of the redundancy relation as defined in [2]. s 

describes the ‘memory span’ of the redundancy relation.  
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Define the stacked output vectors, [ ] ( )1... +∈= smT
s Ryyyyy &&&&&& . Similarly, we define the 

input stack vector, su , the error stack vector, se , actuator fault stack vector, f
su , and the 

noise stacked vector, so  as follows: 

[ ] [ ] [ ] ( )1...,...,... +∈=∈=∈= smT
s

nsT
s

qsTggg
s RooooReeeeRuuuu &&&&&&&&&     

[ ] qsTffff
s Ruuuu ∈= ...&&&  

The right-hand side of (10) can be grouped into three major components: collection of the 

error terms, collection of the input terms, and collection of the states. This leads to the 

following compact form:  

 s
f

ssssssss ouHeGuHy +++Γ+=  (11) 

where,  
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The terms Λ  and hΛ contain higher order derivatives of the vector functions f and ig . 

The term sΓ  replaces ∆Ο  in (7). We define new group formation, NDDΟ for the RNLAR 

technique as follows: 

 sssNDD uHy −=Ο  (12) 

Using (11) and (12), we get 

 ouHeG f
sssssNDD +++Γ=Ο  (13) 

Equations (11) and (13) will be used to derive the residuals for actuator faults. Note that 

in (12) sy  and su are outputs and inputs of the system described in (5) (i.e., which 

represents the actual plant).  In (13) sH , sΓ  and sG  are computed from the nominal 

system given in (6) (i.e., the mathematical model of the plant). 

 

4.1 Robust Actuator Fault Detection 

 Our objective is to design a residual vector that is less sensitive to the error vector and 

most sensitive to the actuator fault. The ideal outcome would be to design a residual 

vector that is only sensitive to the actuator fault and completely insensitive to the error 

vector. Let us investigate whether we can achieve the ideal outcome. We rearrange (13) 

to obtain 

 s
f

ssssNDD ouHE ++Ω=Ο  (14) 

where [ ]sss GΓ=Ω and ⎥
⎦

⎤
⎢
⎣

⎡
=

s
s e

E
1  

Select a transformation matrix, sc , from the space sC defined by [ ]{ }0: ≡Ω= s
T
sss ccC . 

Pre-multiplying both sides of (14) with T
sc results: 
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 s
f

ss
T
sNDD

T
sa ouHcOcR +==  (15) 

aR is called the primary residual vector (PRV) for actuator fault. It appears that aR is 

completely insensitive to the error vector. But note that, for a full rank C matrix sc  can 

only have its first m columns to be nonzero and the rest of the elements to be zero due to 

the block-triangular structure of the matrix sG  since 0=s
T
s Gc . Also note that the first m 

rows of sH matrix are zero. Hence [ ]0≡s
T
s Hc . Substituting this in (15) gives 

 s
T
sNDD

T
sa ocOcR ==  (16) 

Hence both the error vector and the fault contributing term f
ss

T
s uHc are annihilated at 

the same time. This implies that the actuator residual is insensitive to not only the error 

vector but also to the fault. Therefore, no actuator fault can be detected if the error vector 

is completely removed when the outputs are non-redundant (i.e., C is a full row rank 

matrix). 

 
4.2 Generating PRV for Actuator Fault 

 Faced with the above problem, it can be concluded from (16) that complete 

elimination of the effect of the error vector from the PRV is not possible 

when [ ] [ ]00 =⇒≡Ω s
T
ss

T
s Hcc . This result is consistent with actuator fault detection 

results obtained for linear systems. In this case, we present a design methodology for the 

PRV that makes it insensitive to the error vector but sensitive to the actuator faults as 

much as possible. Select a transformation vector, sw , from the parity space sW defined by 

[ ]{ }0: ≡Γ= s
T
sss wwW . Pre-multiplying both sides of (13) with T

sw  results:   

 ( ) ( )s
f

ssss
T
ssss

T
sa ouHeGwuHywR ++=−=  (17) 
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 It can be observed from (17) that the actuator residual, aR , is sensitive to both the 

actuator faults and the uncertainty of the system. It is desirable that aR  should be highly 

sensitive to the actuator faults and mostly insensitive to the error terms in order to be able 

to detect actuator fault in the presence of error term. The above desired property can be 

translated mathematically into the statement, s
T
s Gw  is less than s

T
s Hw , where the 

coefficient of the error vector is s
T
s Gw and the coefficient of the fault vector is s

T
s Hw .  

Both sG and sH are system dependent matrices. However, sw can be chosen 

independently from the parity space to satisfy the above requirement. Hence the problem 

becomes, select a transformation vector sw  for the parity space in such a way that 

s
T
s Gw  is less than s

T
s Hw . In the literature this problem is discussed for linear systems. 

Both [2] and [12] frame this problem as a linear optimization problem and use the 

linearity property to determine sw . For a nonlinear system, which is the case here, this 

translates into solving a nonlinear optimization problem where the functional structure of 

sw is unknown. In other words, we do not know the functional form of each element of 

sw (e.g., whether they are polynomial, exponential etc.) and we cannot realistically guess 

them without any other knowledge.  This makes the nonlinear optimization problem very 

difficult to solve. In order to overcome this problem,  we propose a novel method for 

designing aW for nonlinear systems. 
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4.3 Design Methodology 

 Given the states nx ℜ∈ and inputs qu ℜ∈ , consider an open set qn
rU +ℜ∈  such that 

the states and the inputs are restricted on rU , i.e., ( ) re Uuxx ∈= , . We define the 

following performance function, 
s

T
ss

T
s

s
T

ss
T

s
s

wHHw
wGGw

uxJ =),( . 

We formulate the robust problem as follows: Find a sw from the parity space such that 

( ) ree UxxKJ ∈∀≤ for some predefined ( ) 10 << exK . The choice of ( )exK will 

determine the sensitivity of actuator residual to the actuator fault and insensitivity to the 

error term. A small value of K  will guarantee the sensitivity requirement of sw . Here we 

omit the subscripts from sw and other terms for notational simplicity. 

Define T
G GGS = , T

H HHS = and HG KSSR −= . Now using the newly defined notation, 

the above problem becomes:  

Given Γ , G , and H , produce a vector function 
( )1+

∈
sm

Rw  such that the following 

conditions are satisfied: 

 
[ ] [ ]

re
T

TT

UxRww

Hww

∈∀≤

≠≡Γ

0.2

0,0.1
 (18) 

We propose the following theorem in order to solve the above problem.  

Theorem:  

Part (i): Let ( )R−µ  be the number of distinct, non-positive, eigenvalues of R. If, 

( ) 2≥− Rµ  then w∃  that satisfies both Conditions 1 and 2 in (18). Also if iλ are the non-

positive eigenvalues of R and iV  are the corresponding eigenvectors, for { }ni ...,2,1∈ , then 
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( ) ( ) ( )e
i

ieie xVxxw ∑
−

=
=

µ
α

1
satisfies Condition 2. For 2≥i , we can always choose ( )ei xα  

such that Condition 1 satisfies.  

Part (ii): When ( ) 1=− Rµ then there exists w such that Vw α= , only if [ ]0≡ΓTw  where V is 

the eigenvector corresponding to the non-positive eigenvalue of R.   

Part (iii): If ( ) 0=− Rµ , i.e., all the eigenvalues of R are positive, then there is no such 

w that satisfies both Conditions 1 and 2. The proof of the above theorem is given in the 

Appendix I.  

Here, we give a few simple examples of both linear and nonlinear systems to illustrate the 

design method.  

Example 1. (Linear system) Let us consider the following matrices:  

 [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

==Γ

0523041
0051534
00052
00000

1523
0115
001
000

2135 HGT  (19) 

 
and let 05.=K  

The matrix R is easy to calculate and so are the eigenvalues and the corresponding 

eigenvectors of R 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−=

424.50258.30 11.400
258.30155.70 7.85000

11.4000 7.8500 0.4500-0
0    0 00

TT KHHGGR  

[ ]
[ ]

[ ] [ ]TT

T

T

VV

V

V

8546.5187.023.0,602.581,0001,0

347.537.7688.0

,1168.0,386.665.639.0,7351.1

4433

2

211

−====

−−=

−=−−=−=

λλ

λλ

 



 29

Here ( ) 23 ≥=− Rµ , hence w∃  that satisfies the sensitivity condition, which can be 

represented by 332211 VVVw ααα ++= . Pick 9419.0,1 21 == αα and 03 =α to satisfy the 

condition 0=ΓTw . To check that this choice of si 'α also satisfies the inequality of 

Condition 2, we calculate the performance function J. 

K0.050.0405
192.7911

7.8008 =<===
wHHw
wGGwJ TT

TT  

Once w is determined then the residual can be calculated using the 

relation ( )ss
T

a HuywR −= . Next we give a nonlinear example. 

Example 2. (Nonlinear system) Consider the following matrices:  

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
==Γ

11
21 0

01
002.
01.00

85
x

H
x

Gxx T  (20) 

and let 2.=K  

Here the eigenvalues and the corresponding eigenvectors of R are given as follows:  

[ ]
[ ]T

T

TT

Vx

V

x
KHHGGR

10,)25/4(

01,19.0

)25/4(0
019.0

2
2

12

11

2
1

=−=

=−=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−=

λ

λ  

We chose ( ) ( ) 2211 VxVxw αα += where 21 x=α and ( ) 12 8/5 x−=α . To check that this 

choice of siα also satisfy the inequality condition, we calculate the performance function 

J. 

( )
( )

K0.2
64/25x
64/1.01x

4
1

2
2

4
1

2
2 =≤
+

+
==

x
x

wHHw
wGGwJ TT

TT
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 The above two simple examples demonstrate the design methodology. Next, we make 

some comments on the choice of K. The choice of K will determine the sensitivity of 

PRV to the actuator fault and insensitivity to the error term. The desired value of K  

is 10 << K . Any value of K > 1 will amplify the error term.   A small value of K , 

i.e., 1<K , guarantees a robust PRV. The following question arises naturally. What is 

the minimum possible value of K? The optimization problem solved in [12] indirectly 

answers this question for linear systems. For nonlinear systems, the general approach of 

our method is as follows:  

Step 1. Choose a small value for K. 

Step 2. Find the nature of eigenvalues of R based on the       choice of K. 

Step 3. If there are more then two distinct non-positive eigenvalues, then calculate W.  

Step 4. If the above condition does not satisfy, then increase the value of K and go to Step 

2.  

Below, we give a simple example to demonstrate the effect of K on the eigenvalue of R. 

Consider the following linear matrices 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

10
37
32

223
116

101
HG  (21) 

We calculate the value of R by keeping K as variable 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−−
=−=

KKK
KKK

KKK
KHHGGR TT

1732231
3225838235

31235132
 

Figures 2-2, 2-3, and 2-4 show the nature of the three eigenvalues for 10 << K . As 

observed from the figures that for 1.0=K there is only one non-positive eigenvalue. As 
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we increase the value of K to 2.0=K , the number of non-positive eigenvalues increases 

to two and we can design the robust PRV. 

Figure 2-2.  Nature of first eigenvalue 

 

 Figure 2-3. Nature of second eigenvalue 
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Figure 2-4. Nature of third eigenvalue 

 

5. Simulation Results 

 We performed computer simulation on a wheeled mobile robot (WMR) to support our 

theoretical results.  A Simulink model of WMR was used to examine the effect of 

actuator faults using the RNLAR residuals. Before presenting the results, a dynamic 

model of the WMR is presented.  

  The WMR is subject to both holonomic and nonholonomic constraints. A detailed 

discussion on modeling of WMR can be found in the literature [31]. As a result, only the 

relevant equations are briefly mentioned here. It is assumed that the WMR is driven by 

two differential wheels (the front passive caster is omitted). The relevant parameters for 
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 ( ) ( ) ( ) ( ) 0,, ==+ xx
g

xxxxx qqAuqEqqVqqM &&&&  (22) 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

2/2/sincos
cossin

rr
cdcd

qA x φφ
φφ

,
T

xqE ⎥
⎦

⎤
⎢
⎣

⎡
=

1000
0100

)( and 

[ ]T
lrccx yxq θθ= where ),( cc yx  is the center of mass of mobile robot,φ  is the 

heading angle measured from the x-axis, lr θθ ,  are angular positions of the two driving 

wheels as shown in Fig. 2-5.  [ ]Tg
l

g
r

gu ττ= are the given torques applied to the two 

wheels. ( ) 44×∈ RqM x is the symmetric, positive definite inertia matrix and ( )xx qqV &, is 

the vector of centrifugal and Coriolis forces. The elements of ( )xqM  and ( )xx qqV &,  are 

given in Appendix II.    

 

 

 

Figure 2-5. Schematic diagram of the mobile robot 
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Equation (22) can be represented into the state space as follows: 

 gnn uxgxfx )()( +=&  (23) 

where [ ]Tlrlrcc yxx θθθθ &&= is the state vector. The details of each term of (23) are 

given in Appendix II.  Equation (23) represents the nominal model of the WMR. We 

introduce model-plant-mismatch in the system by varying the mass of mobile robot by 

25%. This changes the actual value of matrix M and V as follows:  

 VVVMMM aa ∆+=∆+= ;  (24) 

The detail of M∆ and V∆ are given in Appendix II. We also introduce a friction, F, and 

disturbance terms, d, in the actual system. The WMR in the presence of MPM and 

disturbances can be represented as: 

 ( ) ( ) ( )uqEdFqqVqqM xxx
a

xx
a =+++ &&& ,  (25) 

Equation (25) can be represented into the state space as follows: 

 

 ( ) ( ) ( ) ( ) fg uxguxeuxgxfx

uxgxfx
nnn +++=⇒

+=

,

)()(

&

&
 (26) 

where ( ) ( ) ( )( )uxgxfuxe uu +=, . The details of each term of (26) are given in Appendix II. 

The following output equation is used: 

 x
c
c

xy ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

000010
000001

 (27) 

We make the following remarks to explain the simulation results:    

1) The nominal WMR model does not include the friction term. However, in the 

Simulation a coefficient of Coulomb friction of 0.1 and a coefficient of viscous 

friction of 0.001 are used as MPM.  
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2) The mass of the WMR in nominal model is 7Kg. We alter the mass value up to 

25% to introduce another MPM.  

3) To calculate the residuals as in (17) we run the nominal and actual model in 

parallel. We use the nominal model as in (23) to calculate the terms, sG , sH , 

and sΓ  while sy  and su comes from model (26) with the friction term.  

4) We have used a band-limited white noise block in Simulink to add noise in the 

simulation. The specific values that we have used in the noise block for 

simulation were: noise power= 0.008, sample time= 0.1 and speed=23341, 

which corresponded to a mean of 0.019 and variance of 0.0918.  

5) In the simulation we have used numerical differentiation using the derivative 

block available in Matlab. The derivative block in Matlab uses forward 

differentiation technique for numerical differentiation. We should mention that 

numerical differentiation of noisy sensor signal is well-known to be ill-posed in 

the sense that a small noise in measurement data can induce a large error in the 

approximate derivatives [37]. In the simulation we obtained reasonable results 

using standard numerical differentiation. However, in other instances when the 

standard numerical differentiation is not sufficient, one can use various low-

pass-filters and regularization methods such as Savitzky-Golay smoothing 

filters [29] to reduce the effect of noise in differentiation.  

6) Faults are considered detected if the magnitudes of the residuals cross some pre-

determined threshold value. We design the threshold value as twice the absolute 

maximum value achieved in a fault-free run with the same parameters to 

demonstrate the effectiveness of the proposed RNLAR technique.  
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7) Generating the RNLAR residuals for WMR has been automated using the 

Matlab symbolic toolbox and Mathematica.  

 

5.1 Actuator Fault Detection Results 

 We present actuator fault detection results when the WMR is tracking i) a straight-

line trajectory with desired velocity of 2cm/sec along the x-direction and ii) a circular 

trajectory of radius 25 cm and angular velocity pi/30 radian/sec. The desired x-axis for 

the straight-line trajectory is given in Fig. 2-6. The x-axis and y-axis for the circular task 

trajectories are given in Figs. 2-7 and 2-8. These two sets of trajectories were chosen 

because it was shown by Dubin [5] that a WMR can reach any arbitrary final position and 

orientation starting from any arbitrary initial position and orientation using trajectories 

that are composed of only straight-line and circular segments. In [22] various types of 

actuator faults have been discussed that are relevant for a WMR operation. We choose 

two common actuator faults among them to demonstrate the proposed fault detection 

methodology. First, we consider a partial actuator fault where one actuator generates only 

a part of the desired torque. This type of fault represents degradation in the actuator 

system (e.g., friction due to jamming, problems in transmission etc.). The second actuator 

fault that we consider is a constant torque output. This may occur due to constant 

polarization of the actuator, called actuator bias.  

 In order to demonstrate the robustness of the proposed RNLAR technique, we 

compare fault residuals generated from our proposed technique with that of the NLAR 

technique as presented in [20] for the same fault conditions. We followed the procedure 

presented in [24] to design NLAR residuals for this comparison. First, we present results 



 37

when there is no MPM and disturbances. We consider a partial fault in the right actuator 

for the straight-line trajectory. An 80% partial fault is introduced to the right actuator in 

the simulation at t=7s. Under no MPM and disturbance condition we run the two nominal 

models in parallel and calculate the PRV using NLAR and RNLAR methods. The 

residual result using a NLAR and RNLAR test under no MPM and disturbances is 

presented in Fig. 2-9 (a) and (b) respectively. As expected, both NLAR and RNLAR 

detect the fault. Next, we introduced the MPM, disturbance and noise as discussed 

earlier. The fault detection result with the NLAR residual is presented in Fig. 2-10(a) and 

that with the RNLAR residual is presented in Fig. 2-10(b). The absolute maximum value 

of the NLAR signal in a fault-free run, which was obtained separately, was 246.05. Thus 

the magnitude of the threshold value for NLAR residual was chosen as 492.1. It can be 

seen that before the fault occurred, the maximum value of the residual stayed 

within 05.246± . Now observe that, in 2-10(a) the absolute maximum value of NLAR 

signal is 473.56, which is less than the threshold value, 492.1. Hence, we can conclude 

that the fault is not detected for the given threshold. On the other hand, the absolute 

maximum value of RNLAR signal in a fault-free run was 4.02 and in faulty run was 

77.44. Magnitude of the threshold value is 8.04. Hence, the fault is detected clearly and 

rapidly (i.e., almost instantaneously) in the RNLAR test. It can be seen that the RNLAR 

residual is significantly more sensitive to the partial actuator fault when there exist both 

the MPM and disturbance in the system.  

 We conducted another straight-line trajectory simulation with the bias actuator fault. 

A constant right wheel torque 14.0=rτ  was introduced to the right actuator at t=7s. The 

residual test results are presented in Fig. 2-11 (a) for the NLAR technique, and in Fig. 2-
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11 (b) for the RNLAR technique for the bias actuator fault. In this case, the absolute 

maximum value of the NLAR signal in a fault-free run was 246.005 and in faulty run 

were 349.7. The absolute maximum values for the RNLAR signal were 7.712 and 526.4 

in a fault-free run and in a faulty run, respectively. From these values we can conclude 

that with the chosen threshold the NLAR residual cannot detect the faults while RNLAR 

residual detects the fault clearly and quickly (i.e., almost instantaneously). We conclude 

that the RNLAR residual is more sensitive to the bias actuator fault detection in the 

presence of MPM and disturbance.  

 Next, we conducted the circular trajectory simulation for both partial and bias faults 

in the left actuator. First, a 75% partial fault was introduced to the left actuator in the 

simulation at t=5s. The fault detection result with the NLAR and RNLAR residuals are 

presented in Fig. 2-12 (a) and (b), respectively. Here the absolute maximum value of the 

NLAR signal in a fault-free run was 91.60. The maximum value of the NLAR residual in 

a faulty run was 170.35, which was less than the threshold value, 183.2. Hence the fault 

was not detected. For the RNLAR residual, the absolute maximum value in a fault-free 

run was 23.58 and with fault were 1221.62. Hence, the fault was detected clearly and 

rapidly (i.e., almost instantaneously) in the RNLAR test. 

 Finally, simulation with a bias left actuator fault was conducted for the circular 

trajectory. A constant left wheel torque 13.0=rτ  was introduced to the left actuator at 

t=5s.  With the bias actuator fault, the residual test results are presented in Fig. 2-13 (a) 

for the NLAR test and in Fig. 2-13 (b) for the RNLAR test. In this case, the absolute 

maximum values of the NLAR signal were 49.212 and 86.48 in a fault-free run and in the 

faulty run, respectively. On the other hand, the absolute maximum values for RNLAR 
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signal were 1.435 and 30.31 in a fault-free and the fault run, respectively. Thus we can 

conclude that with the chosen threshold the NLAR residual can not detect the fault while 

the RNLAR residual detects the fault clearly and quickly.  

 It is clear from the above set of results that the presented RNLAR technique is useful 

in detecting actuator faults in the presence of MPM and disturbance. The fault detection 

using RNLAR technique is clear and fast. 

 
6. Conclusion 

 A robust methodology for detecting the actuator faults in multivariable input-affine 

nonlinear dynamic systems has been proposed in this paper. The presented robust 

nonlinear analytic redundancy (RNLAR) technique is an extension to the robustness idea 

used in the linear domain into the nonlinear domain. It also extends the current state-of-

the-art of nonlinear analytic redundancy (NLAR) techniques used for fault detection of 

nonlinear systems. For actuator faults, it is shown that PRV cannot be made perfectly 

insensitive to the MPM and disturbances. We proposed a new design methodology that 

produces PRV, which are significantly more sensitive to the actuator fault then they are 

to MPM and disturbances. We applied the RNLAR technique to the fault detection of a 

wheeled mobile robot in computer simulation. A comparative study was presented 

between the NLAR and the RNLAR techniques. It was shown that RNLAR residuals 

perform significantly better under MPM and disturbances.  
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Figure 2-6. Desired X-axis for straight line trajectory 
 
 
 
 
 

 
 
 

Figure 2-7. Desired X-axis for circular trajectory 
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Figure 2-8. Desired Y-axis for circular trajectory 
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NLAR residual RNLAR residual 

 
Figure 2-10(a). Under partial fault in the 

right actuator 

 
Figure 2-10(b). Under partial fault in the 

right actuator 

 
Figure 2-11(a). Under bias right actuator 

fault 

 
Figure 2-11(b). Under bias right actuator 

fault 
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NLAR residual RNLAR residual 

 
Figure 2-12(a). Under partial fault in the 

left actuator 

 
Figure 2-12(b). Under partial fault in the 

left actuator 

Figure 2-13(a). Under bias left actuator 
fault 

Figure 2-13(b). Under bias left actuator 
fault 
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APPENDIX I 

Proof:  

Part (i): The eigenvalues of R, ( )ei xλ , is a function of ex . We say ( )ei xλ  is positive 

if ( ) reei Uxx ∈∀> 0λ , and negative if ( ) reei Uxx ∈∀< 0λ .  

Let us consider the case where ( ) 2≥− Rµ . First we prove that ∑
−

=
=

µ
α

1i
iiVw satisfies 

Condition 2. Without loss of generality consider 2=i , let 1λ  and 2λ be the non-positive 

eigenvalues and 1V  and 2V  be the corresponding eigenvectors. 

Then ( ) ( ) ( ) ( ) ( )eeeee xVxxVxxw 2211 αα += , where ( )ex1α  and ( )ex2α are the chosen 

coefficients. 

Observe that R is a symmetric matrix. To see this,   

( ) ( ) G
TTTTTTT

G SGGGGGGS ====    

This implies GS  is symmetric. For similar reason HS  is also symmetric. R is the linear 

combination of GS and HS , hence R is also symmetric.   

Now, 

( ) ( )
( ) ( )22112211

22112211

RVRVVV

VVRVVRww
TT

TTT

αααα
αααα

++=

++=
 

( ) ( )
( )12121221222

2
2111

2
1

2221112211

VVVVVVVV

IVIVVV
TTTT

TT

λλααλαλα
λαλααα

+++=

++=
 

where I is the identity matrix and TV1 and TV2 represent the transpose of 1V and 2V , 

respectively. Since R is a symmetric matrix, it implies 012 =VV T and 021 =VV T . Hence  
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22
2
2211

2
11 VVVVRww TTT αλαλ += But 11

2
1 VV Tα and 22

2
2 VV Tα  are always positive, hence 

0≤RwwT for 0, 21 ≤λλ . 

This proves the first part of Part (i).  

The second part of the claim, i.e., for 2≥i we can always choose )( ei xα  such that the 

Condition 1 is satisfied. This is obvious because there is only one constraint and more 

than one variable. This completes the proof of first claim.  

Part (iii): Lets assume that ∃ nonzero w that satisfies Conditions 1 and 2 when 

0)( =− Rµ . More specifically w  satisfies xRwwT ∀≤ 0 . R is a symmetric matrix with all 

positive eigenvalues. That implies R is a positive definite matrix, which then means 

00 ≠∀> XRXX T , where X is an arbitrary nonzero vector.  This is a contradiction. This 

completes the proof. 

Part (ii): This is a direct consequence of the other two claims. This completes the proof 

of the theorem. 

APPENDIX II: 

Part A:  

Table 2-1. Parameters for WMR 

oP  the intersection of the axis of symmetry with the driving wheel axis

cP  the center of mass of the platform with coordinates ),( cc yx  

yx,  the world coordinate system 

φ  the heading angle measured from the x-axis 

ji,  the local coordinate system fixed with the WMR with (0 ,0) at oP  

d  the distance between oP  and cP  

b  the distance between either driving wheel and the axis of symmetry 
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r  radius of each driving wheel 

c  br 2/  

cM  the mass of the WMR 

cJ  the rotation inertia of the WMR about a vertical axis through cP  

wm  mass of each wheel 

wI  inertia of each wheel 

lr θθ ,  angular positions of the two driving wheels, respectively 

 

 

Part B: Description of matrixes M and V and the error term 
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Actual mass of the mobile robot, cc

a
c MMM ∆+= . Substituting this in the overall mass 

of the robot we get w
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Abstract 

 In this paper, a new robust fault detection technique for robotic manipulators is 

developed. The new approach called robust nonlinear analytic redundancy (RNLAR) 

technique detects both the sensor and actuator faults in robotic manipulator. The 

proposed RNLAR technique can compensate for the effects of model-plant-mismatch 

(MPM) and process disturbance. The RNLAR can be used to design primary residual 

vectors (PRV) for nonlinear robotic systems to detect sensor and actuator faults. A 

nonlinear PRV design method to detect faults is proposed where the PRVs are highly 

sensitive to the faults and less sensitive to MPM and process disturbance. Experimental 
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results on a PUMA 560 are presented to justify the effectiveness of the RNLAR scheme. 

Keywords: Fault detection, analytical redundancy, robustness, nonlinear system 

 

1. Introduction 

 The demand for automation in modern society has been increasing steadily during the 

last few decades. Robotic manipulation systems played an important role in automation 

industries that include manufacturing, assembly, biotechnology to name a few. In 

addition, there is a growing need for unmanned operation in different service and 

research sectors such as search and rescue, nuclear waste clean up, planetary exploration 

and others where robotic manipulators play an equally important role. However, 

notwithstanding their widespread applicability and use, robotic manipulators are known 

to fail under normal operations [1] due to various faults that include sensor and actuator 

faults, and component failure. Typical faults are caused by broken or bias sensor, wear in 

mechanical components, overheating, and locked or damaged actuator. The likelihood of 

developing fault increases both with the complexity and versatility of the manipulator 

mechanism (e.g., the more the number of components, the more the possibility of 

developing faults) and the uncertainty of application domains (e.g., operating in 

hazardous unstructured situations). Consequently, the reliability and safety of robotic 

manipulators have received significant interest in recent years. One way to address these 

needs is to design a fault tolerant control system (FTCS) for robotic manipulators. 

Generally, a FTCS consists of two major components: fault detection and isolation (FDI) 

scheme, and a fault accommodation mechanism. In this work, we focus on the 

development of a new fault detection technique for robotic manipulators that can be 
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effective in the presence of modeling uncertainties and disturbances.  

 There are significant research works on robot fault detection in the literature.  Fault 

detection techniques are broadly classified into two classes: model-free [2-7] approaches 

and model-based approaches [8-18]. Model-free approaches to manipulator fault 

detection include neural networks and fuzzy logic to generate the residuals. Residuals are 

measures of discrepancy between the expected and the measured system behaviors. 

Model-based fault detection techniques, on the other hand, utilize mathematical models 

of the plant to generate residuals. Given the previous research [27] on the modeling of 

robotic manipulators as well as the success of model-based approach, we choose to 

concentrate on designing a new fault detection mechanism using model-based techniques. 

Some important survey papers in the model-based fault detection method are [8-10]. The 

fundamental concept of model-based fault detection is analytical redundancy (AR). The 

basic idea of AR is the comparison between the actual behavior of the monitored plant 

and the behavior of a mathematical plant. Implementation methods of AR can be 

classified into two groups: 1) indirect implementation, based on diagnostic observers, and 

2) direct implementation based on parity relation technique [11]. In [38] fundamental 

equivalence between parity relation and diagnostic observer based method was presented. 

In this work, we present a new fault detection mechanism that is based on parity relation 

technique. As a result, we only mention a few major works on fault detection based on 

diagnostic observers and concentrate primarily on the relevant literature on fault 

detection using parity relation technique. 

 Various nonlinear diagnostic observer designs are proposed and implemented on 

robotic manipulators to detect sensor and actuator faults [12-16]. Most of the works in 
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fault detection consider either a sensor fault or an actuator fault. In [12], the authors 

proposed a method based on generalized momenta for actuator fault detection. However, 

the proposed method could not detect sensor faults and was not robust in the presence of 

disturbance, noise and model-plant-mismatch (MPM). The authors of [12] later presented 

[13] an adaptive scheme to encompass the uncertain robot dynamics. A discrete-time 

diagnostic observer was designed in [14], where MPM, disturbance and noise were 

included in the system. They experimentally tested the proposed adaptive method on an 

industrial manipulator. For more observer design methods for FDI please refer to [15-16] 

and the reference therein. In [17] an observer-based fault detection approach was 

demonstrated experimentally for total actuator failure (i.e., the actuator was considered to 

be completely damaged).  In [18] the partial actuator fault was considered in detail but 

sensor fault detection method was not discussed. In papers [19-20] only sensor fault 

detection for robot manipulator was considered. 

Conceptually, the direct implementation based on parity relation is more 

straightforward than the observer based approach [11].  But the literature on parity 

relation based fault detection of robot manipulator is not rich. This is mainly due to lack 

of theoretical work on parity relation for nonlinear systems.  Most research results on 

parity based fault detection techniques are for linear systems.  The origin of parity 

relation that was based on analytic redundancy (AR) can be found in [28] for linear 

systems. The detail description of parity relation for linear systems is given in [25]. 

However, since a robotic manipulator is a highly nonlinear system, the above-mentioned 

results cannot be directly applied here.  

 Various researchers have combined linear AR with nonlinear systems [39] [40], by 
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using the method of linearization of the nonlinear system. The AR based parity relation 

was later extended to nonlinear systems in [21-22]. This work assumed the existence of a 

perfect system model for fault detection and did not consider the presence of disturbance. 

We argue that model-plant-mismatch (MPM) and disturbances exist in most practical 

systems and therefore require explicit analysis of these issues in the context of parity 

relation based approach to fault detection of robotic manipulators.  

 In the AR literature robustness issue is discussed only for linear systems. In [28] 

robust residual generation was considered for linear system based on an optimization 

technique. Later, the authors in [29] extended the method given in [28], where the effect 

of the disturbances was minimized through the use of an unknown input observer.  In 

papers [29-31] the robust residuals were designed but they all considered only MPM in 

residual generation. Recently, in [32-33] the authors extended the method presented in 

[28] to design the primary residual, which considered both the MPM and process 

disturbances in linear systems. As far as nonlinear systems are concerned, there is a lack 

of literature on parity relation based robust fault detection method. One notable work in 

this context is [33], where a mathematical technique, called algebra of functions is used 

for robust fault detection. However, it assumes that modeling uncertainty can be specified 

in the form of unknown constant or slowly varying system parameters.   

 It is worth mentioning at this point that there exists a body of work on the fault 

tolerance of robotic manipulators that seek to determine fault tolerance measures (mostly 

using kinematic redundancies of the systems) with the assumption of existence of fault 

detection method [24-26]. The success of such an approach depends on robust and 

reliable fault detection techniques [23]. We believe that our proposed technique will 
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complement this body of literature.  

 The new robust nonlinear analytic redundancy (RNLAR) method accommodates 

MPM and process disturbances. The RNLAR method can detect both the sensor and 

actuator fault. We extend the robustness idea, given in [32] for linear systems, into the 

nonlinear domain. The RNLAR scheme is experimentally tested on a PUMA 560 robotic 

manipulator.    

  

2. Dynamic Model of Robot Manipulator 

 We used a Unimate PUMA 560, as shown in Figure 3-1, for experiment. PUMA is 

well-characterized industrial manipulator that has been utilized in numerous industrial 

and robotic research applications. PUMA is a three degree-of-freedom harmonic-drive 

manipulator with a three degree-of-freedom wrist attached at its endpoint.  

  

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Unimate PUMA 560 robot manipulator 
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 Armstrong et al. [27] derived an explicit dynamic model of the PUMA 560 arm and 

measured the parameters necessary to implement model-based control. We mention the 

equation of motion that is expressed in generalized coordinates of the PUMA arm, 

,, 21 θθ and 3θ , where 

1θ  : the angle of rotation of the Link 1 about the vertical axis 

2θ  : the angle measured from horizontal to Link 2 

3θ  : the angle measured from Link 2 to Link 3 

They are represented in vector form by:  

 [ ]T
321 θθθθ =  (1) 

 
In the absence of joint friction, the equation of motion for the robot manipulator is: 

 ( ) ( )[ ] ( )[ ] ( ) TGPNM =+++ θθθθθθθθ 2&&&&  (2) 
 
where ( )θM  represents the inertia matrix, ( )θN is the matrix of Coriolis torques, ( )θP  is 

the matrix of centrifugal torques, ( )θG is the vector of gravity torques, [ ]θθ & are notation 

for the vector of velocity products, [ ]2θ&  are vectors of squared velocities and T is the 

generalized joint force torques. The details of each term and the numeric parameters for 

the components of the model of the PUMA arm are given in [27]. 

 Equation (2) can be expressed in state space form as follows: 

 ( ) ( ) [ ]T
i

ii Cxyuxgxfx 321

3

1
, θθθ==+= ∑

=
&  (3) 

where [ ] Tx 321321 θθθθθθ &&&= ,  
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( ) [ ] [ ]( )[ ]TGPNMxf −+−= − 21
321 θθθθθθ &&&&& , ( ) [ ]

36
1
33

321
0

×
−
×
⎥
⎦

⎤
⎢
⎣

⎡
==

M
gggxg  

[ ] Tuuuu T =ℜ∈= 3
321 , C is a 63 × output matrix and 3ℜ∈y  is the fault-free actual 

process output. It is worth mentioning that (3) represents the nominal model of a PUMA 

560.   

 In the presence of faults, the actuator input and the sensor output can be represented 

as: 

 oyCxyuuu fofg ++=+= ,  (4) 
  
where 3ℜ∈gu represents the fault-free input vector, 3ℜ∈fu represents the actuator fault 

vector, 3ℜ∈oy  represents the observed output vector, 3ℜ∈fy  represents the sensor 

fault vector and o represents a Gaussian-distributed white noise vector. It is assumed that 

gu  and oy  are available for computation but ff yu , and o are not. The magnitude of the 

noise is assumed to be significantly smaller then the magnitude of faults. Under the 

nominal fault-free condition, fu and fy are zero vectors. However, when either a sensor 

and/or an actuator fault occur in the system, fu and fy will become non-zero.  

 Model-plant-mismatch is represented by  

 ( ) ( ) ( ) ( ) ( ) ( )xgxgxgxfxfxf unun +=+= ,  (5) 
 
where ( ) ( ) ( )xgxfxf nun ,, , and ( )xg u  represent the nominal and uncertain part of the 

mappings f and g, respectively. Combining (3), (4), (5), and an unmeasured deterministic 

process disturbance vector, ),( uxd , the overall system with faults is represented by  

 ( ) ( ) ( ) ( )( ) ( ) ( ) oyCxyuxduuxgxgxfxfx fofgunun ++=+++++= ,,&  (6) 

Simplifying (6) we get  
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 ( ) ( ) ( ) ( ) oyCxyuxguxeuxgxfx fofg nnn ++=+++= ,,&  (7) 

where ( ) ( ) ( ) ( ) ( )uxduuxgxfuxe fguu ,, +++= .  

 For a general system, we represent number of states by n , number of inputs by q , and 

number of outputs by m . The vector ( )uxe , , called an error vector, contains both the 

uncertainty of the model and the disturbances.  

 The following assumptions will be used in this paper in order to design the robust 

fault detection method:  

 Assumption 1: The fault-free robotic manipulator is asymptotically stable. This is 

a general assumption in the literature [22] [32].  

  Assumption 2: System (3) is observable. This assumption is needed in order to 

guarantee the ability to find all the states from the system outputs. We should note that 

observability assumption does not mean that we can (or we need to) find the fault-free 

states from faulty output measurements. 

 Assumption 3:  The modeling uncertainties denoted by ( )xf u  and ( )xg u  in (4), 

which are unknown nonlinear vector functions of x, are bounded. We also assume that 

both the inputs and the disturbances are bounded. Define fault-free error part, *e , as 

( ) ( ) duxgxfe guu ++=* . We assume that 

( ) ( ) ( ){ } ( )g
o

guu uxFxduxgxf ,,,max < where ( )g
o uxF ,  is a known bounded 

function. Now, ( ) ( ) duxgxfe guu ++≤*    Thus we can say  *e  is bounded, 

e.g., Le ≤* , where stands for the 2L norm and  ( )guxFL ,3= .  
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 Thus the problem we seek to solve becomes: design robust residuals for sensor and/or 

actuator faults for the robotic manipulator given by (6). By robust we mean the residual 

will need to be sensitive to the faults but insensitive to the MPM and disturbances of the 

system, i.e., insensitive to ( )uxe ,  as much as possible. 

 

3. Robust Nonlinear Analytic Redundancy 

 The analytic redundancy (AR) method for linear systems is given in [28]. The major 

issue in the use of analytic redundancy technique is how to deal with the presence of 

MPM and process disturbances, and their effect on the robustness of the resulting fault 

detection algorithm. In this work, we address the above issue for nonlinear systems. In 

order to present our mathematical framework, we first define several key matrices that 

will be needed in the subsequent development. We define the following matrices: a state 

matrix, sΓ , an error matrix, sG , and an input matrix, sH  
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The Lie derivative is defined as ∑
= ∂

∂=
n

i
i

i
f f

x
hhL

1
and the repeated Lie derivative [34] [35] is 

written in the following ways: hLhLLL))hL(L(L ijkkjikji == . s is the order of the 

redundancy relation as defined in [28].  s describes the ‘memory span’ of the redundancy 

relation. The terms Λ  and hΛ contain higher order derivatives of the vector functions 

nf and n
ig .  

Next, we define a new group formation, NDDΟ , which is based on the sensor reading 

and given control inputs. We start with the output oy as given in (7). We take the 

derivative of oy for s times and stack them together in (11),  
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Define the stacked vectors, [ ] ( )1... +∈= smToooo
s Ryyyyy &&&&&& , Similarly, we define the 

input stack vector, su , the error stack vector, se , actuator fault stack vector, f
su , sensor 

fault stack vector f
sy , and the noise stacked vector, so  as follows: 

[ ] [ ]
[ ] ( ) [ ] )1(1 ...;...

...;...
++ ∈=∈=

∈=∈=
smTffff

s
smT

s

nsT
s

qsTggg
s

RyyyyRoooo

ReeeeRuuuu

&&&&&&

&&&&&&      

[ ] qsTffff
s Ruuuu ∈= ...&&&  

Using the definitions of sΓ , sG , and sH  we rearrange (12) as follows: 

 s
f

ssss
f

sssss ouHeGyuHy ++++Γ+=  (13) 

We define NDDΟ  for RNLAR as follows:  

 sssNDD uHy −=Ο  (14) 

Equation (14) together with the definition of NDDΟ  implies  
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 s
f

ssss
f

ssNDD ouHeGy ++++Γ=Ο  (15) 

 
Equations (13) and (15) will be used to derive the residuals for sensor and actuator faults. 

Note that in (14) sy and su are outputs and inputs of the actual system.  In (15) sH , sΓ  

and sG  are computed from the nominal system (i.e., the mathematical model of the 

plant). 

 

4. Robust Fault Detection Method 

 In this section, we discuss the design procedure for robust fault detection for both 

actuator and sensor fault. The detail of robust actuator fault detection residual method 

was discussed in Manuscript I. The robust sensor fault detection residual method is 

discussed here.  

4.1 Robust Sensor Fault Detection Method 

 We consider the sensor fault, hence the stacked actuator fault vector, f
su , is assumed 

to be zero. This simplifies (15) into  

 sss
f

ssNDD oeGy +++Γ=Ο  (16) 

We would like to design the residual such that the sensor residual is completely 

insensitive to the error vector. To achieve this, we rearrange (16) to obtain 

 [ ] s
f

ssss
f

s
s

sxsssNDD oyoy
e

GuHy ++ΕΩ=++⎥
⎦

⎤
⎢
⎣

⎡
Γ=−=Ο

1
 (17) 

where =Ω s  [ sx GΓ ] and ⎥
⎦

⎤
⎢
⎣

⎡
=

s
s e

E
1
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We select a transformation matrix, sw , which is located in the left null space of sΩ , i.e., 

[ ]0≡Ω s
T
sw . Pre-multiplying both sides of (17) with sw  results:  

 s
T
s

f
s

T
sNDD

T
ss owywwR +=Ο=  (18) 

 
It appears that sR is completely insensitive to the error vector. But note that, for a full 

rank C matrix sw  can only have its first m columns to be nonzero and the rest of the 

elements to be zero due to the block-triangular structure of the matrix sG  

since 0=s
T
s Gw . This implies that redundant sensors are needed to detect the sensor 

faults. Therefore, no sensor fault can be detected if the error vector is completely 

removed when the outputs are non-redundant (i.e., C is a full row rank matrix).  

 Faced with the above problem, we present a design methodology for the PRV that 

makes it insensitive to the error vector but sensitive to the sensor faults as much as 

possible. Select a transformation matrix, rW  that is located in the left null space of sΓ , 

i.e., [ ]0≡Γs
T
rW . Pre-multiplying both sides of (16) with T

rW  result: 

 s
T
rss

T
r

f
s

T
rNDD

T
rr oWeGWyWWR ++=Ο=  (19) 

 
 

It can be observed that both the sensor fault and the error vector affect the PRV. It is 

desirable that rR  should be highly sensitive to the sensor faults and mostly insensitive to 

the error terms. The above desired property can be translated mathematically into the 

following statement: s
T

r GW  is less than T
rW , where the coefficient of the error vector 

is s
T
r GW and the coefficient of the fault vector is T

rW . A similar problem arises during the 

design of PRV for actuator faults. In the literature this problem was discussed for linear 
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systems. In [32] they frame this problem as a linear optimization problem and use the 

linearity property. For a nonlinear system, which is the case here, this translates into 

solving a nonlinear optimization problem where the functional structure of rW  is 

unknown. In other words, we do not know the functional form of each element of rW  

(e.g., whether they are polynomial, exponential etc.) and we cannot realistically guess 

them without any other knowledge.  This makes the nonlinear optimization problem very 

difficult to solve. In order to overcome this problem,  we propose a novel method for 

designing rW  for nonlinear systems. Given the states nx ℜ∈ and inputs qu ℜ∈ , consider 

an open set qn
rU +ℜ∈  such that the states and the inputs are restricted on rU , i.e., 

( ) re Uuxx ∈= , . Here we omit the subscripts from W and other terms for notational 

simplicity. Define two performance functions, 

WHHW
WGGWJ

TT

TT
=  for actuator fault residual, aR   and  

WIIW
WGGWJ

TT

TT
=  for sensor fault residual, rR , where I is the identity matrix. We 

formulate the robust problem for actuator performance index in Manuscript I. The same 

procedure will be applicable to sensor performance index where H will be substituted by 

I.  

 

5. Experimental Results 

 We use the first three joints of a Unimation PUMA 560 to verify the presented fault 

detection algorithm. We replaced the microcontroller board of the PUMA to develop an 
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open architecture system. This allows us to implement the controllers that are essential 

for this experiment. In addition, we interfaced the robot with Matlab and Real-time 

Workshop to allow fast and easy system development. The joint angles of the robot are 

measured using encoders. The encoder readings are acquired with a sample time of 

0.001seconds from a Measurement Computing PCI-QUAD04 card. The torque output to 

the robot is given with a Measurement Computing PCIM-DDA06/16 card with the same 

sample time. The encoder outputs are used for calculating the residuals in the experiment. 

 

5.1 Experimental Set-up 

 We designed experiments to detect both actuator and sensor faults. In these 

experiments the PUMA was asked to track a circular trajectory in the x-y plane. The x-

axis and y-axis for the circular task trajectories are given in Figures 3-2 and 3-3.  

 

Figure 3-2. Desired X-axis trajectory 
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Figure 3-3. Desired Y-axis trajectory 
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that a small noise in measurement data can induce a large error in the 

approximate derivatives [41]. Although we obtained reasonable results in the 

experiments using the standard numerical differentiation block provided by 

Matlab but one can use various low-pass-filters and regularization methods such 

as Savitzky-Golay smoothing filters [42] to reduce the effect of noise in 

differentiation if needed.  

3) To calculate the residuals as in (19) we run the nominal model in parallel with 

the PUMA. We use the nominal model as in (3) to calculate the terms, sG , sH , 

and sΓ  while sy  and su are obtained directly from the experimental data.  

4) Faults are considered detected if the magnitudes of the residuals cross some pre-

determined threshold value. We design a threshold value as twice the absolute 

maximum value achieved in a fault-free run with the same parameters to 

demonstrate the effectiveness of the proposed RNLAR technique. Note that in 

order to minimize false alarms one would possibly choose an even larger 

threshold. In such a case, as will be seen from the results (described later), the 

RNLAR technique will outperform the NLAR technique even more significant 

manner.  

5) Generating the RNLAR residuals for WMR require mathematical calculation of 

various terms. We use the Matlab symbolic toolbox and Mathematica to 

generate all the terms and combine them appropriately to create the RNLAR 

tests. 
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5.2 Actuator Fault Detection Results 

 Various types of actuator faults are discussed in [12]. We choose a partial actuator 

fault where one actuator generates only a part of the desired torque. This type of fault 

represents degradation in the actuator system (e.g., friction due to jamming, problems in 

transmission etc.).  We introduced two kinds of partial fault: sudden partial fault and slow 

partial fault.   

 In the experimental set-up the sudden partial actuator faults were introduced by 

multiplying the controller calculated output by 0.75 after 11 seconds of operation. In 

order to demonstrate the robustness of the proposed RNLAR technique, we compare fault 

residuals generated from our proposed technique with that of the NLAR technique [21] 

for the same fault conditions. First, we present results when there is no fault. The NLAR 

and RNLAR residual results are given in Figures 3-4 and 3-5, respectively. These figures 

demonstrate the effect of error vector that captures MPM and disturbance on NLAR and 

RNLAR residuals, respectively. Next, we introduced a sudden partial fault on the first 

actuator. The fault detection result with the NLAR residual is presented in Figure 3-6 and 

that with the RNLAR residual is presented in Figure 3-7. The absolute maximum value of 

the NLAR signal in a fault-free run was 81.4. Thus the magnitude of the threshold value 

for NLAR residual was chosen as 162.8. It can be seen that before the fault occurred, the 

maximum value of the residual stayed within 4.18± . Now observe that, in Figure 3-6 the 

absolute maximum value of NLAR signal was 143.56, which was less than the threshold 

value, 162.8. Hence, we can conclude that the fault was not detected for the given 

threshold. On the other hand, the absolute maximum value of RNLAR signal in a fault-

free and faulty run was 11.32 and 3671.11 respectively. The magnitude of the threshold 
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value was 22.64. Hence, the fault was detected clearly and rapidly (i.e., almost 

instantaneously) in the RNLAR test. It can be seen that the RNLAR residual is 

significantly more sensitive to the sudden partial actuator fault.  

 Next, the same experiment was repeated with slow partial fault in the first actuator. 

The slow partial actuator faults were introduced by multiplying the controller-calculated 

output with the function given in Figure 3-8. The residual test results are presented in 

Figure 3-9 for the NLAR technique and in Figure 3-10 for the RNLAR technique. In this 

case, the absolute maximum value of the NLAR signal in faulty run was 89.7, which was 

less than the threshold value, 162.8.  The absolute maximum value for the RNLAR signal 

was 42.12 in a faulty run, which was more than the threshold value, 22.64. From these 

values we can conclude that with the chosen threshold the NLAR residual cannot detect 

the faults while RNLAR residual detects the fault with a time delay.  

 Next, we performed similar experiments with fault in the second actuator. Here we 

only present the comparison results for sudden second actuator fault. The fault detection 

result with the NLAR residual is presented in Figure 3-11 and that with the RNLAR 

residual is presented in Figure 3-12. In this case, the absolute maximum value of the 

NLAR signal in a faulty run was 92.7. The absolute maximum value for the RNLAR 

signal was 30800 in a faulty run. From these values we can conclude that with the chosen 

threshold the NLAR residual cannot detect the faults while RNLAR residual detects the 

fault clearly and quickly (i.e., almost instantaneously).  

 Finally, we introduced a fault in third actuator. Here, we present the RNLAR 

residuals under both the sudden and slow partial third actuator fault. The RNLAR 

residuals under sudden and slow partial actuator faults are shown in Figure 3-13 and 3-
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14. We can observe that the fault was detected in both cases. It is clear from the above set 

of results that the presented RNLAR technique is useful in detecting actuator faults in the 

presence of MPM and disturbance. The fault detection using RNLAR technique is clear 

and fast. 

 

5.3 Sensor Fault Detection Results 

 Various kinds of sensor faults in robotics are discussed in [36-37]. For experimental 

purpose partial sensor fault was considered where one encoder reflected only a fraction of 

the actual value. This type of fault occurs when there is an offset or bias in the sensor 

reading.  We introduced two kinds of partial fault: sudden partial fault and slow partial 

fault.   

 In the experimental set-up the sudden partial sensor faults were introduced by 

multiplying the joint encoder with 0.80 after 11 seconds of operation. Here also, we 

compared both the NLAR and the RNLAR residuals. We introduced the sudden partial 

fault on first encoder. The residual test results are presented in Figure 3-15 for the NLAR 

technique and in Figure 3-16 for the RNLAR technique for the first encoder fault. In this 

case, the absolute maximum value of the NLAR signal in a fault-free run was 68.13 and 

in faulty run was 73.54. The magnitude of the threshold value for NLAR residual was 

chosen as 136.26; hence we conclude that the fault was not detected for the given 

threshold.  The absolute maximum values for the RNLAR signal were 15.87 and 972.4 in 

a fault-free run and in a faulty run, respectively. From these values we can conclude that 

with the chosen threshold the NLAR residual cannot detect the sensor fault while 

RNLAR residual detects the fault clearly and quickly (i.e., almost instantaneously). 
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 We repeated the same experiment with slow partial fault in the first encoder. The 

slow encoder fault was introduced in the same way as we did for the slow actuator fault. 

The fault detection results with the NLAR and RNLAR residuals are presented in Figure 

3-17 and 3-18, respectively. The maximum value of the NLAR residual in a faulty run 

was 70.01, which was less than the threshold value, 142.19. Hence the fault was not 

detected. For the RNLAR residual, the absolute maximum value with fault was 69.84. 

Hence, the fault was detected with a time delay in the RNLAR test. 

 We introduced sudden partial fault in the second encoder. Here we only present the 

comparison results for sudden second encoder fault. The fault detection result with the 

NLAR residual is presented in Figure 3-20 and that with the RNLAR residual is 

presented in Figure 3-20. In this case, the absolute maximum value of the NLAR signal 

in a faulty run was 78.21. The absolute maximum value for the RNLAR signal was 

29102 in a faulty run. From these values we can conclude that with the chosen threshold 

the NLAR residual cannot detect the faults while RNLAR residual detects the fault 

clearly and quickly. 

 Finally, we introduced a fault in third encoder. Here, we present the RNLAR 

residuals under both the sudden and slow partial third encoder fault. The RNLAR 

residuals under sudden and slow partial actuator faults are shown in Figures 3-21 and 3-

22, respectively. We can clearly observe that the fault was detected in both cases. In 

conclusion, we have performed experiments with actuator and sensor faults on a PUMA 

560. We presented the comparison results of NLAR and RNLAR. We observe that the 

RNLAR residuals successfully detected both the sensor and actuator faults for all cases 

under MPM and disturbances.  
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Figure 3-4.  NLAR residual under no fault condition 

 

 
Figure 3-5.  RNLAR residual under no fault condition 
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Figure 3-6. NLAR residual under sudden first actuator fault 

 

 
 

Figure 3-7.  RNLAR residual under sudden first actuator fault 
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Figure 3-8. Multiplier for slow fault generation 
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Figure 3-9. NLAR under slow first actuator fault 

 
 

 Figure 3-10.  RNLAR under slow first actuator fault 
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  Figure 3-11. NLAR under sudden second actuator fault 

 
 
 

Figure 3-12. RNLAR under sudden second actuator fault 
 
 

 

0 5 10 15 20 25

-200

-150

-100

-50

0

50

100

150

200

Time (sec)

R
es

id
ua

l

0 5 10 15 20 25
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 104

Time (sec)

R
es

id
ua

l



 78

Figure 3-13. RNLAR under sudden third actuator fault 
 

 

 
  Figure 3-14. RNLAR under slow third actuator fault 
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Figure 3-15. NLAR under sudden first encoder fault 

Figure 3-16. RNLAR under sudden first encoder fault 
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Figure 3-17. NLAR under slow first encoder fault 

  
 
 

Figure 3-18.  RNLAR under slow first encoder fault 
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Figure 3-19.  NLAR under sudden second encoder fault 

 
 

 Figure 3-20.  RNLAR under sudden second encoder fault 
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Figure 3-21. RNLAR under sudden third encoder fault 

 
 

 
Figure 3-22.  RNLAR under slow third encoder fault 
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6. Conclusion 

 A robust methodology for detecting sensor and actuator faults in multivariable input-

affine nonlinear dynamic systems has been proposed in this paper. The presented robust 

nonlinear analytic redundancy (RNLAR) technique is an extension of the robustness idea 

used in linear domain into the nonlinear domain. It also extends the current state-of-the-

art of nonlinear analytic redundancy (NLAR) techniques used for fault detection of 

nonlinear systems. We have shown that although residual output for actuator and sensor 

faults could not be made completely insensitive the MPM and disturbances, our presented 

RNLAR technique could minimize their effects to detect faults. We have presented a new 

theorem to this effect that provides a constructive technique to design such a PRV. We 

experimentally verified the presented methodology in relation to the sensor and actuator 

fault detection of a PUMA 560 manipulator. 
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CHAPTER IV:           MANUSCRIPT 3 

 

IMPACT OF THE ORDER OF REDUNDANCY RELATION IN ROBUST FAULT 
DETECTION OF ROBOTIC SYSTEMS 

 

Bibhrajit Halder1   Nilanjan Sarkar2    

 

(Submitted to Journal of Control Engineering Practice) 

 

Abstract 

 This paper presents a new approach, called robust nonlinear analytic redundancy 

(RNLAR) technique to actuator fault detection for input-affine nonlinear multivariable 

dynamic systems that include most robotic systems. Robust fault detection is important 

because of the universal existence of model uncertainties and process disturbances in 

most systems. Analytic redundancy, which is a basis for residual generation to detect 

fault, is primarily used in the linear domain. In this paper, we characterize the order of 

redundancy relation for nonlinear systems in terms of robustness. We propose and prove 

that an increase in the order of redundancy relation increases the robustness in the sense 
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of a performance index defined in this paper. We further develop an algorithm to select 

the redundancy relation order and design robust nonlinear fault detection residuals. 

Experimental results on a PUMA 560 robotic arm are presented to verify the claim. 

Keywords: Nonlinear fault detection, order of redundancy, robustness, robotic systems 

 

1. Introduction 

 During the last decade, as the applications of robots steadily expanded, there is 

significant research activity in the area of robot reliability and fault tolerance [1]. One 

way to address these needs is to design a fault tolerant control system (FTCS) for robotic 

systems. Generally, a FTCS consists of two major components: a fault detection and 

isolation (FDI) scheme, and a fault accommodation mechanism. In this paper we focus on 

the fault detection part of FTCS.  

 Considerable research effort has been invested in model-based fault detection 

methods since 1970s. Among them the parity relation-based schemes have been very 

successful. Some important survey papers in this area are given in [2]-[5]. The 

fundamental formulation of parity relation for linear systems is presented in [6], which 

was based on analytic redundancy (AR) of the system. More detail is given in [7]. 

Robustness is an important aspect in the fault detection method. To address the 

robustness issue, in [6] the authors have proposed an optimization method to select a 

parity vector from the parity space. This work was later extended by various researchers 

in [8][9]. Most recently in [10][11] the authors designed optimal primary residual, which 

considered both the model-plant-mismatch (MPM) and process disturbances for linear 

systems.  
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 The journey from linear AR residual generation methods to nonlinear analytic 

redundancy (NLAR) residual generation methods started with the use of linearized model 

of the nonlinear system to derive the AR residuals [14][15]. The AR concept was later 

extended to nonlinear systems without linearization. In [16] the authors proposed a 

nonlinear analytic redundancy scheme based on parity relation method.  

 It was pointed out in [9] that the selection of the order of redundancy relation has an 

influence on the optimization performance. In fact, it is proved in [12] that increasing the 

order of redundancy relation leads to an increase in the dimension of the parity space, 

which in turn provides greater flexibility in residual generation as well as improves 

robustness. Note that the above-discussed conclusions regarding the increase in order of 

redundancy relation have been proven for linear systems. There are no equivalent results 

available in the literature for nonlinear systems.  The objective of this paper is to extend 

the above results for nonlinear systems.  

 Recently we proposed a new approach, called robust nonlinear analytic redundancy 

(RNLAR) technique [13]. We extended the robustness idea, used in [10] for linear 

systems, into the nonlinear domain. In this paper we prove that an increase in the order of 

redundancy relation increases the robustness of the nonlinear residuals. This result is 

compatible with its linear counter part as given in [9] [12]. We further provide 

experimental verification of this claim using a Unimation PUMA 560 robotic arm as a 

test-bed. Finally, we summarize our contributions.  
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2. RNLAR Residual Generation 

 Consider the nonlinear system (1)  

 ( ) ( ) ( ) Cxyuxduxgxfx
q

i
ii =++= ∑

=
;,

1
&  (1) 

where the state x is defined on an open subset U of nℜ ; [ ] qT
qu...uuu ℜ∈= 21  is the 

process input; my ℜ∈  is the process output; C is nm ×  output matrix; )u,x(d  represents an 

unmeasured deterministic process disturbance vector. The functions f, g1,…, gq are nℜ  

valued smooth mappings defined on the open set U, and [ ]qg...ggg 21= . In the presence 

of faults the system is represented by  

 ( ) ( ) ( ) ( ) oCxyuxguxeuxgxfx fg nnn +=+++= ,,&  (2) 

where ( ) ( ) ( ) ( ) ( )uxduuxgxfuxe fguu ,, +++= , ( ) ( ) ( )xgxfxf nun ,, , and ( )xg u  

represent the nominal and uncertain part of the mappings f and g, respectively. 

qgu ℜ∈ represents the fault-free input vector, qfu ℜ∈ represents the actuator fault 

vector, and o represents a Gaussian-distributed white noise vector. It is assumed that gu  

is available for computation but fu and o are not. The magnitude of the noise is assumed 

to be significantly smaller than the magnitude of faults. We design robust residuals for 

the nonlinear systems given by (2). By robust we mean the residual will need to be 

sensitive to the faults but insensitive to the MPM and disturbances of the system, i.e., 

insensitive to ( )uxe ,  as much as possible. We proposed a new approach, called robust 

nonlinear analytic redundancy (RNLAR), to minimize the effect of error and accentuate 

the effect of faults. The details of RNLAR method are given in chapter II and III. Here 

we mention the steps that are important in this work. We take the derivative of the system 
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output for s times, where s is the order of the redundancy relation as defined in [102]. s 

describes the ‘memory span’ of the redundancy relation. We define a performance, 

index, sJ , to quantify the robustness, as follows: 

 
s

T
ss

T
s

s
T

ss
T

s
s wHHw

wGGw
uxJ =),(  (3) 

where sw , from the parity space sW defined by [ ]{ }0: ≡Γ= ssss wwW , The matrices 

,, ss GΓ and sH are defined in chapter II and III. The subscript s represents the order of 

redundancy relation. We formulate the robust problem as follows: Find a sw from the 

parity space such that ( ) ree UxxKJ ∈∀≤ for some predefined ( ) 10 << exK  re Ux ∈∀ . 

The choice of ( )exK  determines the sensitivity of residual to the actuator fault and 

insensitivity to the error term. A smaller values of K  implies more robustness. We 

propose a constructive theorem to find a sw , under suitable condition. It was pointed out 

in chapter II that an increase in the order of redundancy relation, s, increases the 

robustness.  

 

3. Robustness Theorem 

 We formulate the theorem that shows that increasing the order of redundancy 

relations improves the system robustness in the sense of performance index sJ , where the 

subscript s represents the order of the redundancy relation. This is the main contribution 

of this paper. We state the theorem as follows: 

Theorem I: 

Given the states nx ℜ∈ and inputs qu ℜ∈ , consider an open set qn
rU +ℜ∈  such that the 
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states and the inputs are restricted in, rU  i.e., rUuxX ∈= ),( . Let 

 )(maxmin,)(maxmin 11
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rssrss

+
∈∈+

∈∈ ++

== αα  (4) 

then 1+> ss αα  for all s>0. 

Proof:  

 For a given s, let rcs UX ∈ and scs Ww ∈  be the optimal choice such that  
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To prove the inequality 1+> ss αα , it is sufficient to show that there exists a vector 

11 ++ ∈ ss Ww  such that  
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for rcs UX ∈ . That implies  

 ( ) 0111111 <− ++++++ s
T
sss

T
ss

T
s wHHGGw α  (7) 

We can express 1+sG  and 1+sH  in terms of sG and sH , respectively. sG is a ( ) nssm ×+ 1  

matrix while the dimension of  1+sG  is ( ) ( )12 +×+ snsm . 1+sG has m more rows and n 

more columns than that of sG , which carries the information of ( s+1)th  order 

differentiation of the output equation. Hence, we can express 1+sG as follows:  
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where gΛ and g∆ contain the ( s+1)th order differentiation of the output equation that is 
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used with the error term. In a similar fashion, 1+sH can be expressed in terms of sH as 

follows: 
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where hΛ and h∆  contain the (s+1)th order differentiation. Substituting (8) and (9) into 

(7) gives  
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We construct 1+sw  as follows 
( ) 12

1
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sme
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s w

w
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γ
 where γ is a scalar constant and ew is a 

1×m vector. We will construct ew such a way that (7) is satisfied and 011 =Γ ++ s
T
sw . 

Substituting the above choice of 1+sw in (10) gives (11).  
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For 1=m , ew is a scalar quantity. Hence we can write (14) as  

 CwwAwwBww ee
T

ecse cs

2γγγ ++  (16) 
 
 
We can choose the constant γ  such a way that 02 <++ CwwAwwBww ee

T
ecse cs

γγγ  when 

both A and B are non zero, which is the case here. Then we can select ew such a way 
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that 011 =Γ ++ s
T
sw . With the above choices we get (15) for 1=m  as well. This concludes 

the proof of Theorem I.  

 Based on Theorem I, we give a step-by-step procedure for optimal search of parity 

vector in the parity space for actuator fault detection.  

Step 1: Set the order of redundancy relation s and choose a desired value for K as defined 

before. 

Step 2: Find the nature of eigenvalues of R based on the  choice of K and s. 

Step 3: If there are more then two distinct non-positive eigenvalues, then calculate sw .  

Step 4: If the above condition does not satisfy, then increase the value of s and go to Step 

2. 

 

4. Experimental Results 

 A Unimation PUMA 560 is used to experimentally verify the claim of Theorem I. We 

use the first three joints of the manipulator for our experiments. We have replaced the 

microcontroller board of the PUMA to develop an open architecture system. This allows 

us to implement the controllers that are essential for this experiment. In addition, we have 

interfaced the robot with Matlab and Real-time Workshop to allow fast and easy system 

development. The joint angles of the robot are measured using encoders. The encoder 

readings are acquired with a sample time of 0.001seconds from a Measurement 

Computing PCI-QUAD04 card. The torque output to the robot is given with a 

Measurement Computing PCIM-DDA06/16 card with the same sample time. The 

encoder outputs are used for calculating the residuals in the experiment. Armstrong et al. 

[20] experimentally determined the relevant parameters of the PUMA 560 and derived its 



 96

dynamic model. The dynamic equation of the PUMA 560 is given in Chapter III. The 

output of the system are the joint angles and is represented as 

 [ ]Ty 321 θθθ=  (17) 

We run the model in parallel to the Puma 560 and use the model to calculate the 

terms, sG , sH , and sΓ  while sy  and su comes from Puma 560.  

 

4.1 Results 

 We design experiments to detect actuator faults using different residuals: one 

RNLAR residual with 2=s ; and one RNLAR residual with 3=s . In these experiments, 

the PUMA was asked to track a straight-line trajectory in the x direction with y and z 

coordinates were kept constant at -.029m and -.034m, respectively. Thus Joint 1 did not 

need to move in these experiments. The trajectory for x direction starts after 5 seconds. 

While it tracked the trajectory we introduced actuator faults and monitored the residuals. 

The endpoint of PUMA was controlled by a PID controller with the following PID gains:  

p=400, I=5 and D=15. We should mention that the residuals are independent of the 

choice of controller. Since Joint 1 did not need to move in our experiments, we only 

present the residuals for the Joints 2 and 3. For each actuator 2 and 3, we present four 

results: one RNLAR residual output without any faults and three different residual 

outputs as described before in the presence of fault.  

 Various types of actuator fault are discussed in [21]. We chose two common actuator 

faults for the experiments. First one is a partial actuator fault where one actuator 

generates only a part of the desired torque. This type of fault represents degradation in the 

actuator system (e.g., friction due to jamming, problems in transmission etc.).  The 
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second actuator fault that we consider is a constant torque output. This may occur due to 

constant polarization of the actuator, called actuator bias. We apply the partial actuator 

fault in the second joint and bias actuator fault in the third joint but not at the same time.  

 In the experimental set-up the partial actuator faults were introduced in the second 

joint where the joint torque was reduced by 80% after 11 seconds of operation. Faults are 

considered detected if the magnitudes of the residuals cross some pre-determined 

threshold value. We use a standard threshold design as outlined in [16] where the 

threshold value is considered twice the absolute maximum value achieved in a fault-free 

run with the same parameters First, we present the output of RNLAR residual with 

2=s and 3=s without any fault in the system to demonstrate the effect of the MPM and 

process disturbance on the residuals. The residual output is shown is Figure 4-1 and 

Figure 4-2. We can observe that the absolute maximum value of the residual under no-

fault condition with 2=s is 3.15 and with s=3 is 11.63. We set the threshold value as 

6.30 for residual with 2=s  and 23.26 with 3=s .  RNLAR residuals with 2=s , and 

3=s  under partial second actuator fault are shown is Figure 4-3 and 4-4, respectively. In 

Figure 4-3, the threshold value is shown in red dotted line. The peak value of the residual 

output for 2=s is 33.67, which is more than the threshold value. Hence the fault is 

considered detected. Finally, the peak value for RNLAR residual with 3=s  is 3612, 

which is 100 times more than the threshold value. We conclude from the above results 

that among the two residuals, the residual with 3=s  is more sensitive to fault in the 

presence of identical MPM and disturbance and hence more robust.. As can be seen, our 

experimental results support the claim of Theorem I that increasing the redundancy order 

increases the robustness in fault detection. 
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Figure 4-1. First RNLAR residual for 2=s  without any fault  
 

 
 
 

Figure 4-2. First RNLAR residual for 2=s  under partial second actuator fault 
 

 



 99

0 5 10 15 20 25
-500

0

500

1000

1500

2000

2500

3000

3500

4000

Time (sec)

R
es

id
ua

l

 
 

Figure 4-3. First RNLAR residual for 3=s  under partial second actuator fault 
 

 Next, we design another RNLAR residual to detect the fault in third actuator. We 

introduce the bias fault in the third joint actuator. A constant 1.03 =τ  is introduced to the 

third actuator at t=11s. The output of RNLAR residual with 2=s without any fault is 

shown in Figure 4-4. The absolute maximum value of the residual in no-fault condition is 

4.68. Thus we set the threshold value to be 9.36. RNLAR residuals with 2=s , and 3=s  

under partial second actuator are shown is Figure 4-5 and 4-6 respectively. The peak 

value of the residual output for 2=s is 42.19, which is more than the threshold value. 

Hence the fault is detected. Finally, the peak value for RNLAR residual with 3=s  is 

274.94. Thus once again we notice that increasing the redundancy order increases the 

robustness in fault detection. 
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Figure 4-4. Second RNLAR residual for 2=s  without any fault  
 

 
 
 

Figure 4-5. Second RNLAR residual for 2=s  under bias third actuator fault 
 

 
 



 101

 
 
 

Figure 4-6. Second RNLAR residual for 3=s  under bias third actuator fault 

 

5. Conclusion 

 In this paper, we have studied the relation between order of redundancy relation and 

robustness of the system. We have presented the RNLAR residuals generation procedure 

for multivariable input-affine nonlinear dynamic systems. The main contribution of this 

paper has been to formulate and prove the theorem that increasing the order of 

redundancy relation improves the system robustness. The proposed theorem is an 

extension of the similar results obtained in linear systems. Based on the theorem, an 

algorithm has been proposed to determine the optimal redundancy relation order. We 

have experimentally verified the claim on a PUMA 560 robotic arm. A comparative 

experimental study has been presented to demonstrate the effect of robust residuals. 
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Abstract 

 Robust nonlinear analytical redundancy (RNLAR) technique is used to detect and 

isolate actuator and sensor faults in a mobile robot. Both model-plant-mismatch (MPM) 

and process disturbance are considered during fault detection. The RNLAR is used to 

design primary residual vectors (PRV), which are highly sensitive to the faults and less 

sensitive to MPM and process disturbance, for sensor and actuator fault detection. The 

PRVs are transformed into set of structured residual vectors (SRV) for fault isolation. 

Experimental results on a Pioneer 3-DX are presented to justify the effectiveness of the 

RNLAR scheme. 
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1. Introduction 

 The demand for automation in modern society is increasing steadily during the last 

few decades. Mobile robots play an important role in automation industries that include 

planetary exploration, search and rescue, mine mapping, demining and nuclear waste 

cleanup to name a few. With this widespread applicability of mobile robots, a major 

concern is the reliability of the system. Fault detection and identification (FDI) are 

important problems in the development of reliable, robust mobile robots.  

 A substantial research effort has been invested in model-based FDI during the last 

few decades. Some important survey papers in this area are given in [1-3]. The 

fundamental concept of model-based fault detection is analytical redundancy (AR). The 

basic idea of AR is the comparison of the actual behavior of the monitored plant with the 

behavior of a mathematical plant. Implementation methods of AR can be classified into 

two groups: 1) indirect implementation, based on diagnostic observers, and 2) direct 

implementation based on parity relation technique [4].    

 The original idea of observer-based fault detection came from [5]. A survey paper [6] 

and the book [7] give the details about this method. Most of the methods were proposed 

for linear systems. Also, early FDI methods assumed the existence of an accurate model 

of the monitored system. However, model-plant-mismatch (MPM) and process 

disturbances almost always exist in practical systems. A model dependent fault detection 

scheme may not be useful under considerable MPM and process disturbances. Recently, 
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various methods are used to design the observer for nonlinear system to accommodate the 

MPM and process disturbances [8-9]. 

 Conceptually, the direct implementation based on parity relation is more 

straightforward than the observer based approach. Most research results on parity based 

fault detection techniques are for linear systems [9-14]. In [15] the authors proposed a 

nonlinear analytic redundancy scheme based on parity relation method. A robust fault 

detection method for nonlinear systems using a mathematical technique, called algebra of 

functions, was presented in [16]. It is assumed in this work that modeling uncertainty can 

be specified in the form of unknown constant or slowly varying system parameters.  

 Recently, a new robust nonlinear analytic redundancy (RNLAR) technique for fault 

detection was developed [17], which accommodates both the MPM and process 

disturbances for nonlinear multivariable dynamic systems. In this paper, RNLAR method 

is further developed to generate robust PRV, which is fault-accentuated signal, for fault 

detection in a mobile robot. In addition, we present results on fault isolation by 

generating a set of robust SRVs from these PRVs. We also verify the theoretical results 

by conducting experiments on a Pioneer 3-DX mobile robot.  

  

  2. Mobile Robot Model 

 The three-wheeled robot, Pioneer 3-DX (Figure 5-1), is used for experiments. The 

front two wheels are actuated independently by high-speed, high-torque, reversible-DC 

motors, which enable differential steering. The rear wheel is a passive caster. The Pioneer 

3-DX has both holonomic and nonholonomic constraints. The kinematics of the Pioneer 

3-DX is characterized by three constraints on the coordinates. The first one is the knife-
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edge constraint, i.e., the mobile robot cannot move in a lateral direction. We can 

represent this constraint as follows:  

 0sincos =⋅−− dxy cc φφφ &&&  (1) 

 

 

Figure 5-1. Pioneer 3-DX mobile robot 

The other two constraints are that the two driving wheels satisfy pure rolling and do not 

slip, which implies:  

 rcc rbyx θφφφ &&&& =++ sincos  (2) 

 lcc rbyx θφφφ &&&& =−+ sincos  (3) 

where, ( )cc yx , is the center of mass of mobile robot,φ  is the heading angle measured 

from the x-axis, mmd 46=  is the distance from the center of mass of the mobile robot to 

the intersection of the axis of symmetry with the driving wheel axis, rθ and lθ  are angular 

positions of the two driving wheels, mmr 5.97=  is the radius of the wheel, mmb 190=  is 
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the distance between the driving wheel and the axis of symmetry. Each DC motor is 

equipped with a high-resolution optical quadrature shaft encoder for precise position and 

speed sensing. The total linear speed, v , and the angular velocity, φω &= , are two 

kinematic inputs to the Pioneer 3-DX. 

 The dynamic model of Pioneer 3-DX mobile robot is formulated using Lagrangian 

formulation. From the Lagrangian method we get the following 

 s
sss

QPKK
dt
d =

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂−

∂
∂

θθθ&
 (4) 

where K  is the kinematic energy of the system, sθ  is the s-th generalized coordinate of 

the system, P  is the potential energy and sQ  is the corresponding generalized force. 

Neglecting the wheel dynamics, which is small, compared to the dynamics of the body of 

the robot, we write the kinematic energy of the Pioneer mobile robot.  

 22 )(
2
1)sincos)(( lrcoolrc cJyxcdMK θθφφθθ &&&&&& ++−−=  (5) 

The detail of each term of (5) is given in Appendix I. Substituting the kinetic energy to 

(4), we obtain 

 λ)()(),()( qAuqEqqVqqM Tg −=+ &&&  (6) 

where [ ]Tlrccx yxq θθ= , [ ]Tg
l

g
r

gu ττ= are the given torques applied to the two 

wheels, λ  is the Lagrangian multiplier ( ) 44×∈ RqM x is the symmetric, positive definite 

inertia matrix and ( )xx qqV &, is the vector of centrifugal and Coriolis forces.  

 Equation (6) can be represented into the state space as follows: 

 uxgxfx nn )()( +=&  (7) 
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where [ ]Tlrlrcc yxx θθθθ &&= is the state vector. The details of each term of (7) 

are given in Appendix II. Equation (6) represents the nominal model of the Pioneer 3-DX 

mobile robot. We use the nominal model as in (7) to calculate the fault detection and 

isolation residuals.  

 It is worth to mention that (7) represent the nominal model of mobile robot. In the 

presence of faults, the actual actuator input and the observed sensor output can be 

represented in general form by 

 oyCxyuuu fofg ++=+= ;  (8) 

where 2ℜ∈gu represents the fault-free input vector, 2ℜ∈fu represents the actuator 

fault vector, 3ℜ∈oy  represents the observed output vector, 3ℜ∈fy  represents the 

sensor fault vector and o represents a Gaussian-distributed white noise vector and C is the 

output matrix. It is assumed that gu  and oy  are available for computation but ff yu , , 

and o are not. Magnitude of the noise is assumed to be significantly smaller then the 

magnitude of faults. Under the nominal fault-free condition, fu and fy are zero vectors. 

However, when either a sensor and/or an actuator fault occur in the system, fu and 

fy will become non-zero. Model-plant-mismatch is represented by  

 ( ) ( ) ( ) ( ) ( ) ( )xgxgxgxfxfxf unun +=+= ,  (9) 

where ( ) ( ) ( )xgxfxf nun ,, , and ( )xg u  represent the nominal and uncertain part of the 

mappings f and g, respectively. Combining (7), (8) and (9), the overall system with faults 

is represented by  

 ( ) ( ) ( ) fg uxguxeuxgx nn ++= ,&  (10) 
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where ( ) ( ) ( ) ( ) ( )uxduuxgxfuxe fguu ,, +++= . The vector ( )uxe ,  is called an error 

vector, which contains both the uncertainty of the model and the disturbances. 

 

3. Robust Fault Detection 

 We use robust nonlinear analytic redundancy (RNLAR) method to design the primary 

residual vectors (PRV) to detect sensor and actuator faults in mobile robot. The detail of 

this method is given in Chapter II and III. Here we mention the important steps and 

equations that would be used for fault isolation as well.  

 We take the derivative of oy for s times and stack them together, where s is the order 

of the redundancy relation.  
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The right-hand side of (11) is grouped into three major components: collection of the 

error terms, collection of the input terms, and collection of the states. This leads to the 

following compact form:  

 s
f

ssss
f

sssss ouHeGyuHy ++++Γ+=  (12) 

where sG , and sH are the coefficient of error terms and input terms respectively. For the 

detail expression of sH , xΓ , and sG , please refer to Chapter II and III. We defined 

NDDΟ  for RNLAR as follows: 

 sssNDD uHy −=Ο  (13) 
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 First we only consider the sensor fault, this simplifies (12) into  

 sss
f

sxNDD oeGy +++Γ=Ο  (14) 

We select a transformation matrix, rW , which is located in the left null space of xΓ , i.e., 

[ ]0≡ΓxrW . Pre-multiplying both sides of (14) with rW  results: 

 srssr
f

srNDDrr oWeGWyWWR ++=Ο=  (15) 

rR  is defined as the PRV for sensor fault detection.  

 Under the actuator fault (12) can be simplifies as  

 s
f

ssssxNDD ouHeG +++Γ=Ο  (16) 

We select a transformation matrix, aW , which is located in the left null space of xΓ , i.e., 

[ ]0≡ΓxaW . Pre-multiplying both sides of (16) with aW  results:  

 ( ) ( )s
f

ssssasssaa ouHeGWuHyWR ++=−=  (17) 

aR  is defined as the PRV for actuator fault detection.  

 We can observe from (15) and (17) that both the sensor and actuator residuals are 

sensitive to the faults and the uncertainty of the system. It is desirable that rR and aR  

should be highly sensitive to the sensor and actuator faults respectively and mostly 

insensitive to the error terms in order to be able to detect actuator fault in the presence of 

modeling uncertainty. The above desired property can be translated mathematically into 

the following statement: saGW  is less than sa HW  for actuator residuals and srGW  

is less than rW  for sensor residuals. Both sG and sH are system dependent matrices. 

However, aW  can be chosen independently from the feasible options to satisfy the above 

requirement. Hence the problem becomes, select aW  in such a way that saGW  is less 
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than sa HW  for actuator residuals and srGW  is less than rW  for sensor residuals. We 

proposed a constructive theorem for designing the residuals in Chapter II and III. We 

define two performance functions, 

WHHW
WGGWJ TT

TT
=  for actuator fault residual, aR   and  

WIIW
WGGWJ TT

TT
=  for sensor fault residual, rR , where I is the identity matrix.   

Based on the theorem we can state the following algorithm to findW :  

Step 1. Choose a small value for K, such that KJ ≤ . 

Step 2. Using the theorem check there exists any W that satisfy the conditions for the 

choice of K. 

Step 3. If there exists any W that satisfy KJ ≤ , then calculate W using the method given 

in the theorem.  

Step 4. If the above condition is not satisfied, then increase the value of K and go to Step 

2.  

 We design five PRVs for sensor faults, i
rR , and five PRVs for actuator faults, i

aR , for 

Pioneer 3-DX using the nominal model as given in (7). We stack the RPVs into a vector 

as follows:  

 [ ]Trrrrr
PRV
r RRRRRR 54321=  (18) 

 [ ]Taaaaa
PRV
a RRRRRR 54321=  (19) 

 
We use the PRVs in the next step for fault isolation.  
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4. Robust Fault Isolation 

 Once faults were detected, we need to isolate the faults. This is achieved by 

transforming the set of PRV into a set of structured residual vector (SRV). The SRVs are 

designed such that each SRV is insensitive to a subset of faults but most sensitive to the 

other faults. We discuss the sensor fault isolation first. 

 We select an incidence matrix to characterize the SRVs. It is pointed out in [13] that 

the selection of incidence matrix is dependent on the number of faults to be isolated, the 

system order n, and the number of outputs m, and is not unique. For faults, we assume 

that only one is present in the system at a time. The occurrence of faults, in general, is not 

very frequent, and also we assume that any fault gets repaired before another one appears. 

The Pioneer mobile robot is represented using six states as in (7) and has two inputs. For 

Pioneer sensor fault detection we chose an incidence matrix as given in Table 5-1. A 

“0”at an intersection in the incidence matrix indicates that one SRV is insensitive to a 

specific sensor fault, while “1” indicates that the SRV is most sensitive. The number of 

rows corresponding to the SRVs is selected to be three, because there are three sensors in 

the Pioneer mobile robot. It is pointed out in [14] that for the isolation of a single faulty 

sensor the number of SRVs is usually selected to be equal to be the number of total 

sensors. If the former is less than the latter, each faulty sensor may not be isolated. With 

such an incidence matrix, a faulty sensor can be isolated by observing how the three 

SRVs respond to the fault. For instance, if SRV1 is unaffected but SRV2 and SRV3 are 

affected by the fault, then it can be inferred that the first sensor is faulty.  
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Table 5-1: Incidence matrix for sensor fault isolation 

 Sensor 1 Sensor 2 Sensor 3 

SRV 1 
 
SRV2 
 
SRV3 

0 
 
1 
 
1 

1 
 
0 
 
1 
 

1 
 
1 
 
0 
 

 

The SRVs are calculated by pre-multiplying a transformation matrix, sS  with (18) 

 s
PRV

r
i
sss

PRV
r

i
s

f
s

PRV
r

i
sNDD

PRV
r

i
s

PRV
r

i
s

i
s oWSeGWSyWSWSRSr ++=Ο==  (20) 

 
where PRV

rW is the stacked vector and the indices i indicates the ith SRV. Designing a set 

of SRVs is equivalent to selecting a transformation matrix, sS  such that ith SRV is 

unaffected by the ith sensor fault, highly sensitive to the rest of the sensor faults and 

mostly insensitive to the error terms. For a general system define,  

( ) ( ) ( )[ ] [ ]m,imsi:,Wmi:,Wi:,WW rrri,r 1=∀++=  where ( )jWr :,  for msj ≤≤1 is the jth 

column of rW . Also, ⊥
i,rW represent the rW matrix without irW , columns. Mathematically, 

we can write the SRV design conditions as follows: 

1) 0, =PRV
ir

i
sWS , i.e., ith SRV is unaffected by the ith sensor fault 

2) s
PRV

r
i
s GWS  is less than ⊥

i,r
i
sWS , i.e., transformation matrix, sS  is more sensitive 

to the rest of the sensor faults and mostly insensitive to the error terms. 

The condition (2) is the robustness problem in SRV design. We define a performance 

index, sJ  given as below, to characterize this robust problem.  
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⊥
=

ir
i
s

s
PRV

r
i
s

s
WS

GWS
J

,

 

We need to find a suitable i
sS that minimizes sJ and satisfy the condition (1). The 

algorithm of calculating rW can be directly applied here to the calculation of a suitable 

i
sS with W , G , and I replaced with i

sS , s
PRV

r GW , and ⊥
irW ,  respectively.  

 A similar idea is used for actuator fault isolation. There are two inputs to the Pioneer 

mobile robot. Hence, two SRVs will be sufficient to isolate two actuator faults. The 

incidence matrix we chose for actuator fault isolation is given in Table 5-2. The SRVs for 

actuator fault isolation are calculated by pre-multiplying a transformation matrix, aS  of 

(19) 

 s
PRV

a
i
ass

PRV
a

i
a

f
ss

PRV
a

i
aNDD

PRV
a

i
a

PRV
a

i
a

i
a oWSeGWSuHWSWSRSr ++=Ο==  (21) 

where PRV
aW is the stacked vector and the indices i indicates the ith SRV.  

 

Table 5-2: Incidence matrix for actuator fault isolation 

 Actuator 1 Actuator 2 

SRV1 
 
SRV2 

0 
 
1 

1 
 
0 

 

 We Define, QHW s
PRV

a = , ( ) ( ) ( )[ ] [ ]mimsiQmiQiQQ PRV
i ,1:,:,:, =∀++= , and 

⊥
iQ  represent the Q matrix without iQ columns. The SRV design conditions for actuator 

fault isolation are as follows:  
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1) 0=PRV
i

i
aQS  i.e., ith SRV is unaffected by the ith actuator fault 

2) ⊥< ias
PRV

a
i
a QSGWS 1  i.e., transformation matrix aS  is more sensitive to the 

rest of the actuator faults and mostly insensitive to the error terms. 

We define the following performance index for actuator fault isolation 

⊥
=

i
i
a

s
PRV

r
i
a

a
QS

GWS
J  

The algorithm of calculating i
sS can be directly applied here to the calculation of a 

suitable i
aS  with i

sS , s
PRV

r GW , and ⊥
irW , replaced with i

aS , PRV
iQ , and ⊥

iQ  respectively.  

 

5. Experimental Results 

 We perform experiments on Pioneer 3-DX mobile robot to detect both the sensor and 

actuator faults. We make the following remarks before presenting the results:   

1) We assume only one fault happen at a time, be it sensor or actuator fault. 

2) We developed the dynamic model of the mobile robot in Section 2 as given in (7). 

We use (7) to calculate the PRV and SRV for fault detection and isolation 

respectively. The imprecise calculation of kinematic value of mobile robot, and the 

mismatch dynamics contribute to the error term and the friction in the system 

contributes to the disturbances.  

3) To calculate the residuals as in (15) and (17) we run the model (7) in parallel with 

the Pioneer mobile robot. We use the nominal model (7) to calculate the 

terms, sG , sH , and sΓ  while the input and the output are obtained directly from 

the experimental data. The input to the mobile robot is velocity but we need the 
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torque input for the residual calculation. The controller in the mobile robot server 

calculates the error velocity based on the desired and actual velocity and multiple 

with constant for PID controller to generate the input to the driving motors. We 

select the following PID gains:  P=20, I=15 and D=7 for the experiments. Based 

on this PID gains and the velocity error term we calculate the input torque to the 

mobile robot and use that value for residual calculation.  

4) Player [18] is used to control Pioneer 3-DX mobile robot. 

5) In the experiments, the mobile robot performed a straight-line trajectory-tracking 

task.  

6) In the experiments the mobile robot tracks a straight line trajectory using a 

kinematic level PID controller with the following PID gains: P=12, I=0 and D=0. 

We should mention that the residuals are independent of the choice of the 

controller. 

 

5.1 Sensor Fault Isolation Results 

 There can be different kind of faults in the sensor. In [13] some of the common sensor 

faults are mentioned. We consider partial sensor faults, which is very common in 

practical situation, to demonstrate the fault detection and isolation methods describe in 

this paper. A partial sensor fault is the one where encoder reflects only a fraction of the 

actual value. This type of fault occurs when there is an offset or bias in the sensor 

reading.  

 There are three sensor outputs, cx , cy , and φ . We introduce partial sensor faults in 

each of them but not at the same time. The partial sensor faults were introduced by 
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multiplying the sensor outputs with 0.75 after 11 seconds of operation. We design five 

different fault detection residuals for sensor faults using the dynamic model of the mobile 

robot. Based on the fault detection residual we design three different SRVs. We present 

the SRV outputs under each sensor faults. A threshold value is assigned for each SRV. 

 First we introduce partial fault in the cx output at 11 seconds. The three SRV outputs 

are shown in Figure 5-2. The response of the three SRVs to the first sensor fault can be 

characterized by the [ ]110 , where “0” indicates SRV values are under the threshold 

value, and “1” indicates that the SRV values are above the threshold value. Using Table 

5-1, we can conclude that the first sensor is faulty.  

 

Figure 5-2. SRV outputs with first sensor fault 
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 Next, we introduce the fault at 11 seconds in second sensor, i.e. cy . We run the 

experiments under the same condition as before and register the output from the three 

SRVs. The SRV outputs are given in Figure 5-3. We characterize the response of the 

three SRVs to the second sensor fault by [ ]101 , where “0” and “1” indicate that the 

SRV values are under and above the threshold value respectively. Based on Table 5-1, we 

can conclude that the fault in second sensor is isolated correctly.  

 

Figure 5-3. SRV outputs with second sensor fault 

 Finally, we introduce the fault in third sensor, φ . The three SRV outputs for third 

sensor fault are shown in Figure 5-4. The response of the three SRVs to the third sensor 

fault can be characterized by the [ ]011 . In this case as well we isolate the third sensor 
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fault correctly. The above results successfully demonstrate the effectiveness of the fault 

isolation method in a mobile robot.  

 

Figure 5-4. SRV outputs with third sensor fault 

 

5.2 Actuator Fault Isolation Results 

 In [19] various types of actuator faults are discussed that are relevant for a mobile 

robot operation. We choose partial actuator fault where one actuator generates only a part 

of the desired torque to demonstrate the proposed fault isolation method. This type of 

fault represents degradation in the actuator system (e.g., friction due to jamming, 

problems in transmission etc.). Two DC motors are used to actuate the Pioneer mobile 

robot. We introduce partial actuator faults both in right and left motors but not at the 

same time. In the experimental set-up the partial actuator faults were introduced by 
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changing the velocity inputs by 0.85% after 11 seconds of operation. We design two 

SRVs to isolate two actuator faults.  

 We introduce the fault at 11 seconds in the first actuator, which is the right side 

motor. The two SRV outputs are shown in Figure 5-5. We characterize the SRV outputs 

as [ ]10 . Based on the SRV outputs and Table 5-2 we can observe that the first actuator 

fault is clearly isolated.  

 

Figure 5-5. SRV outputs with first actuator fault 

 Finally, we introduce the fault in second actuator at 11 seconds. The SRV outputs 

under second actuator fault are given in Figure 5-6. Under the second actuator fault the 

SRV outputs is characterized as [ ]10 . The results demonstrate that the second actuator 
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fault is isolated clearly. We conclude that the presented fault detection and isolation 

method is effective under MPM and disturbance and applicable to the mobile robot.  

 

 
Figure 5-6. SRV outputs with second actuator fault 

 

6. Conclusion 

 A robust method for the detection and isolation of sensor and actuator faults is 

presented in this paper. The proposed robust nonlinear analytic redundancy method was 

experimentally verified on a Pioneer 3-DX mobile robot. The results show that both 

sensor and actuator fault detection and isolation are possible in the presence of MPM and 

disturbances. Future work includes detection and isolation of multiple and incipient 

faults. 
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