
ADAPTIVE RESOURCE MANAGEMENT ALGORITHMS, ARCHITECTURES,AND

FRAMEWORKS FOR DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

By

Nishanth Shankaran

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

December, 2008

Nashville, Tennessee

Approved:

Dr. Douglas C. Schmidt

Dr. Xenofon D. Koutsoukos

Dr. Gautam Biswas

Dr. Chenyang Lu

Dr. Janos Sztipanovits

To Amma and Appa for their love, support, motivation, and guidance

To Sujata for all the encouragement

ii

ACKNOWLEDGMENTS

I am grateful to the following individuals for their guidance, support, and encourage-

ment during my graduate education at the University of California, Irvine and Vanderbilt

University. Without their help, this dissertation would not have been possible.

I would like to begin by thanking Prof. Douglas C. Schmidt, myadvisor and mentor, for

giving me an opportunity for working with him at the Distributed Object Computing (DOC)

group at Vanderbilt University. During my graduate education at Vanderbilt University,

Doug has been my biggest source of encouragement, guidance,support, and inspiration,

and I am ever grateful to him for that. I have learned a lot fromDoug on a wide genre

of topics, not limited to just academic ones. Although my role as one of his advisees is

coming to an end, I hope my role as one of his protégés would continue in the future. Next,

I would like to thank my co-advisors, Dr. Xenofon D. Koutsoukos, Prof. Gautam Biswas,

and Dr. Chenyang Lu, for their guidance and collaboration over the past four years. I

am thankful to Prof. Janos Sztipanovits for serving on my dissertation committee and Dr.

Raymond Klefstad for giving me an opportunity to work at the DOC group at University

of California, Irvine.

My graduate education has been supported by various organizations and agencies. I

would like to take this opportunity to thank the following people: Richard Schantz and

Joe Loyall at BBN Technologies, Boston, for providing us with the UAV scenario used in

this dissertation; Patrick Lardieri, Ed Mulholland, and Tom Damiano at Lockheed Martin

Advanced Technology Labs, Cherry Hill, for providing the initial motivation for RACE;

Dipa Suri and Adam S. Howell at Lockheed Martin Advanced Technology Center, Palo

Alto, for collaborating with us on numerous projects, and providing us with many interest-

ing and challenging scenarios such as the MMS mission systemand the SEAMONSTER

sensor-web used as case studies in this dissertation.

Over the past six years, I have learned a lot from both past andpresent DOC group

iii

members, both at Vanderbilt University and University of California, Irvine. I would like

to thank Mark Panahi and Krishna Raman at the DOC group at UC Irvine for bringing me

up to speed on CORBA and ZEN. I would like to thank Krishnakumar Balasubramanian,

John S. Kinnebrew, Arvind Krishna, Jeff Parsons, and Nilabja Roy at the DOC group at

Vanderbilt University for many fruitful discussions and brain-storming sessions over the

years.

I am thankful to the following people for making my stay at Irvine enjoyable: Yo-

gita Bhasin, Nirupama Srinivasan, Vinay Chandrasekhar, Narayan Vishvanathan, Srini-

vas Kollu, and Ashish Bhargave. When I moved from Irvine to Nashville in the summer

of 2004, Jaiganesh Balasubramanian eased my transition andhelped me to settle down;

I’m grateful to him for that. Ever since I moved to Nashville,the time I spent with the

following people were always enjoyable and memorable: Krishnakumar Balasubramanian,

Abhishek Dubey, Amogh Kavimandan, Arvind Krishna, Manish Kushwaha, and Anan-

tha Narayanan.

Last but not the least, I would like to thank my family: my parents for their love,

support, motivation, and guidance through all these years;my fiancé, Sujata, for all the

encouragement. But for their support and encouragement, this dissertation would have

been nothing but a figment of my imagination.

Nishanth Shankaran

Vanderbilt University

24thOctober 2008

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS .iii

LIST OF TABLES .ix

LIST OF FIGURES .xi

Chapter

I. Introduction . 1

I.1. Evolution of Middleware Technology1
I.1.1. Distributed Object Computing (DOC) Middleware . . .1
I.1.2. QoS-enabled DOC Middleware2
I.1.3. Conventional Component Middleware4
I.1.4. QoS-enabled Component Middleware6

I.2. Overview of Research Challenges7
I.3. Research Approach .9
I.4. Research Contributions .10
I.5. Dissertation Organization .11

II. Adaptive Resource Management Algorithms and Architectures 12

II.1. Case Study: Target Tracking DRE System14
II.2. Related Research .16
II.3. Unresolved Challenges .19
II.4. The Hierarchical Distributed Resource-management Architecture

(HiDRA) .20
II.5. Control Design and Analysis .23

II.5.1. Problem Formulation23
II.5.2. Stability Analysis .31

II.6. Performance Results and Analysis35
II.6.1. Hardware and Software Testbed35
II.6.2. Target Tracking DRE System Implementation36
II.6.3. Experiment Configuration37
II.6.4. Experiment 1 : Constant Bandwidth Availability and

Constant Workload .40
II.6.5. Experiment 2: Decoupled Independent Feedback Con-

trol Loops .43
II.6.6. Experiment 3: Constant Bandwidth Availability and

Varying Workload .48

v

II.6.7. Experiment 4 : Varying Bandwidth Availability and
Constant Workload .53

II.6.8. Experiment 5: Varying Bandwidth Availability and Vary-
ing Workload .57

II.6.9. Summary .63
II.7. Summary .64

III. Adaptive Resource Management Frameworks 65

III.1. Related Research .68
III.1.1. Conventional and QoS-enabled DOC Middleware . . .68
III.1.2. Conventional and QoS-enabled Component Middleware 70
III.1.3. Unresolved Challenges72

III.2. Structure and Functionality of RACE 74
III.3. Empirical Results and Analysis84

III.3.1. Hardware and Software Testbed84
III.3.2. Evaluation of RACE’s Scalability85
III.3.3. Summary of Experimental Analysis89

III.4. Summary .90

IV. Case Study: Magnetospheric Multi-scale Mission DRE System 92

IV.1. MMS Mission System Overview92
IV.2. Adaptive Resource Management Requirements of the MMSMis-

sion System .94
IV.2.1. Requirement 1: Resource Allocation To Applications . 95
IV.2.2. Requirement 2: Configuring Platform-specific QoS Pa-

rameters .96
IV.2.3. Requirement 3: Enabling Dynamic System Adaptation

and Ensuring QoS Requirements are Met96
IV.3. Addressing MMS Mission Requirements Using RACE 97

IV.3.1. Addressing Requirement 1: Resource Allocation to Ap-
plications .97

IV.3.2. Addressing Requirement 2: Configuring Platform-specific
QoS Parameters .98

IV.3.3. Addressing Requirement 3: Monitoring End-to-end QoS
and Ensuring QoS Requirements are Met99

IV.4. Empirical Results and Analysis100
IV.4.1. Hardware and Software Testbed100
IV.4.2. MMS DRE System Implementation101
IV.4.3. Evaluation of RACE’s Adaptive Resource Management

Capabilities .102
IV.4.4. Summary of Experimental Analysis109

V. Case Study: Configurable Space Mission Systems 111

V.1. CSM System Overview .111

vi

V.2. Challenges Associated with the Autonomous Operation of a CSM
System .112

V.2.1. Challenge 1: Dynamic Addition and Modifications of
Mission Goals .112

V.2.2. Challenge 2: Adapting to Fluctuations in Input Work-
load, Application Resource Utilization, and Resource
Availability .113

V.2.3. Challenge 3: Adapting to Complete or Partial Loss of
System Resources .114

V.3. Addressing CSM System Challenges114
V.3.1. Addressing Challenge 1: Dynamic Addition and Mod-

ification of Mission Goals115
V.3.2. Addressing Challenge 2: Adapting to Fluctuations in

Input Workload and Application Resource Utilization .116
V.3.3. Addressing Challenge 3: Adapting to Complete or Par-

tial Loss of System Resources116
V.4. Performance Results and Analysis117

V.4.1. Hardware and Software Testbed117
V.4.2. Prototype CSM System Implementation118
V.4.3. Experiment Design .119
V.4.4. Experiment 1: Addition of Goals at Runtime120
V.4.5. Experiment 2: Varying Input Workload127
V.4.6. Experiment 3: Varying Resource Availability133

VI. Case Study: SEAMONSTER Sensor-web137

VI.1. SEAMONSTER Sensor-web Overview137
VI.2. Adaptive Resource Management Requirements of the SEAMON-

STER Sensor-web .138
VI.2.1. Requirement 1: Online Resource Allocation To Data

Processing Applications139
VI.2.2. Requirement 2: Enabling the Sensor-web to Dynami-

cally Adapt to Fluctuations in Input Workload139
VI.3. Addressing SEAMONSTER Requirements Using RACE140

VI.3.1. Addressing Requirement 1: Online Resource Allocation 140
VI.3.2. Addressing Requirement 2: Runtime System Adaptation 141

VI.4. Performance Results and Analysis142
VI.4.1. Hardware and Software Testbed142
VI.4.2. System Implementation and Experiment Design142
VI.4.3. Evaluation of RACE’s Adaptive Resource Management

Capabilities .143

VII. Concluding Remarks .149

VII.1.Lessons Learned .150

vii

VII.1.1.Adaptive Resource Management Algorithms and Ar-
chitectures .150

VII.1.2.Adaptive Resource Management Frameworks151
VII.2.Future Research Directions .153

Appendix

A. List of Publications .156

A.1. Refereed Journal Publications156
A.2. Refereed Conference Publications156
A.3. Refereed Workshop Publications158

REFERENCES .160

viii

LIST OF TABLES

Table Page

1. Summary Of Research Contributions11

2. Lines of Source Code for Various System Elements 37

3. Application Parameters Chosen in Advance 40

4. Exp 1: Comparison of End-to-End Delay43

5. Objects of Interest as a Function of Time 44

6. Exp 2: End-to-End Delay .47

7. Exp 3: Comparison of End-to-End Delay52

8. Channel Capacity and Bandwidth Utilization Set-Point asa Function of
Time .53

9. Exp 4: Comparison of End-to-End Delay57

10. Exp 5: Comparison of End-to-End Delay 62

11. Lines of Source Code for Various System Elements 85

12. Characteristics of Science Application 94

13. Estimated Execution Times for Various Application Components102

14. Lines of Source Code for Various System Elements 102

15. Application Configuration under Moderate Workload 105

16. Application Configuration under Heavy Workload 108

17. Utility of Mission Goals .118

18. Lines of Source Code for Various System Elements 118

19. Set of Goals and Corresponding Applications as a Function of Time . . . 121

20. Application Configuration .122

ix

21. Allocation of Applications 1 - 5 using Average Case Utilization124

22. Allocation of Applications 1 - 5 using Wost Case Utilization 124

23. Allocation of Applications 1 - 7 using Average Case Utilization124

24. Allocation of Applications 1 - 7 using Wost Case Utilization 125

25. Experiment 1: Comparison of System QoS 126

26. Allocation of Applications 1 - 8 using Average Case Utilization128

27. Allocation of Applications 1 - 8 using Wost Case Utilization 128

28. Input Workload as a Function of Time 129

29. Experiment 2: Comparison of System QoS 132

30. Experiment 3: Comparison of System Utility 135

31. Lines of Source Code for Various System Elements 143

32. Application Configuration .144

33. Input Workload as a Function of Time 145

34. Comparison of System QoS .148

x

LIST OF FIGURES

Figure Page

1. Model of an Application Built atop CORBA Middleware 2

2. Model of an Application Built atop RT-CORBA Middleware 3

3. Entities of a CORBA Component Middleware4

4. Entities of QoS-Enabled CORBA Component Middleware 6

5. Taxonomy of Related Research .8

6. Target Tracking DRE System Architecture 14

7. Taxonomy of Related Research .17

8. The HiDRA Control Framework .20

9. HiDRA’s Control Architecture .21

10. Processor Control Feedback Loop .. 21

11. Bandwidth Control Feedback Loop .22

12. Linearization ofφ(q) .29

13. Exp 1: Comparison of Processor Utilization 41

14. Exp 1: Comparison of Bandwidth Utilization 42

15. Exp 1: Comparison of Target-tracking Error 43

16. Exp 2: Resource Utilization .44

17. Exp 2: Target-tracking Error .. 46

18. Exp 3: Comparison of Processor Utilization 48

19. Exp 3: Comparison of Bandwidth Utilization 49

20. Exp 3: Comparison of Target-tracking Error 51

21. Exp 4: Comparison of Processor Utilization 54

xi

22. Exp 4: Comparison of Normalized Bandwidth Utilization 55

23. Exp 4: Comparison of Target-tracking Error 56

24. Exp 5: Comparison of Processor Utilization 58

25. Exp 5: Comparison of Normalized Bandwidth Utilization 59

26. Exp 5: Comparison of Target-tracking Error 61

27. A Resource Allocation and Control Engine (RACE) for OpenDRE Sys-
tems .67

28. Taxonomy of Related Research .69

29. Detailed Design of RACE .74

30. PICML Model of RACE .75

31. Resource Allocation to Application Components Using RACE 77

32. Main Entities of RACE’s E-2-E IDL Structure 77

33. Architecture of Monitoring Framework 79

34. QoS Parameter Configuration with RACE 81

35. RACE’s Feedback Control Loop .83

36. Impact of Increase in Number of Nodes on Monitoring Delay. 87

37. Impact of Increase in Number of Nodes on Actuation Delay 87

38. Impact of Increase in Number of Application on Monitoring Delay . . . 89

39. Impact of Increase in Number of Application on ActuationDelay 90

40. MMS Mission System .93

41. RACE’s Feedback Control Loop .99

42. Deadline Miss Ratio Under Moderate Workload 106

43. Deadline Miss Ratio under Heavy Workload 109

xii

44. An Integrated Planning, Resource Allocation, and Control (IPAC) Frame-
work for Open DRE Systems .114

45. Experiment 1: Comparison of Processor Utilization 123

46. Experiment 2: Comparison of Processor Utilization 130

47. Experiment 2: Comparison of Application Execution Rates131

48. Experiment 3: Comparison of Processor Utilization 134

49. Comparison of Processor Utilizations 146

50. Comparison of Application Execution Rates 147

51. Hierarchical Composition of RACE 153

xiii

CHAPTER I

INTRODUCTION

Distributed real-time and embedded(DRE) systems form the core of many mission-

critical domains, such as shipboard computing environments [68], avionics mission com-

puting [72], multi-satellite missions [78], and intelligence, surveillance and reconnaissance

missions [71]. Quality of service (QoS)-enabled distributed object computing (DOC) mid-

dlewarebased on standards like Real-time Common Object Request Broker Architecture

(RT-CORBA) [62] and the Real-Time Specification for Java (RTSJ) [10] have been used

to develop such DRE systems. More recently,QoS-enabled component middleware, such

as the Lightweight CORBA Component Model (CCM) [57] and PRiSm [73], have been

used to build such systems [72]. As middleware technologies are being used extensively to

develop such complex systems, a summary of the evolution of middleware technology is

presented next.

I.1 Evolution of Middleware Technology

This section summarizes the evolution of various middleware technologies used to build

DRE systems, primarily focusing on their contributions andlimitations.

I.1.1 Distributed Object Computing (DOC) Middleware

Commercial-off-the-shelf (COTS) middleware technologies for DOC based on stan-

dards such as The Object Management Group (OMG)’s CORBA [58] and Sun’s Java

RMI [89], encapsulates and enhances native OS mechanisms to createreusable network

programming components. These technologies provide a layer of abstraction that shields

application developers from the low-level platform-specific details and define higher-level

1

distributed programming models whose reusable APIs and components automate and ex-

tend native OS capabilities. Figure1 shows the architectural layout of a DOC application

built atop CORBA based middleware.

Figure 1: Model of an Application Built atop CORBA Middleware

Conventional DOC middleware technologies, however, address onlyfunctionalaspects

of system/application development such as how to define and integrate object interfaces

and implementations. They do not address QoS aspects of system/application develop-

ment such as how to (1) define and enforce application timing requirements, (2) allocate

resources to applications, and (3) configure OS and network QoS policies such as priorities

for application processes and/or threads. As a result, the code that configures and manages

QoS aspects often become entangled with the application code.

I.1.2 QoS-enabled DOC Middleware

Limitations of conventional DOC middleware identified above have been addressed by

middleware standards such as RT-CORBA [62] and RTSJ [10]. As shown in Figure2,

middleware based on these technologies support explicit configuration of QoS middleware

2

aspects such as priority and threading models, provide manyreal-time features including

end-to-end priority propagation, scheduling service, andexplicit binding of network con-

nections.

Client
OBJ

REF

Object

(Servant)

in args

operation()

out args + return

IDL

STUBS

IDL

SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority

Propagation

Thread

Pools

Standard

SynchronizersExplicit

Binding

Portable Priorities

Scheduling

Service

Figure 2: Model of an Application Built atop RT-CORBA Middleware

However, these technologies do not provide a higher level abstraction that separates

real-time policy configuration from the application functionality. Thus, they lacks support

for system design and development of large-scale systems. QoS-enabled DOC middle-

ware support only the design and development of individual application objects. They lack

generic standards for (1) distributing object implementations within the system, (2) in-

stalling, initializing, and configuring objects, and (3) interconnection between independent

objects, all of which are crucial in development of a large-scale DRE system. Therefore,

when large-scale distributed systems are built using QoS-enabled DOC middleware tech-

nologies, system design and development is tedious, error prone, hard to maintain and/or

evolve, and results in a brittle system.

3

I.1.3 Conventional Component Middleware

Component middleware technologies, such as the CORBA Component Model (CCM) [60]

and Enterprise Java Beans [5, 77] provide capabilities that addresses the limitation of DOC

middleware technologies in the context of system design anddevelopment. Examples of

additional capabilities offered by conventional component middleware compared to con-

ventional DOC middleware technology include (1) standardized interfaces for application

component interaction, (2) model-based tools for deploying and interconnecting compo-

nents, and (3) standards-based mechanisms for installing,initializing, and configuring ap-

plication components, thus separating concerns of application development, configuration,

and deployment.

Container

COMPONENT
EXECUTORS

Component
Home

POA

Transaction

Security Notification

Persistent

Callback

Interfaces

In
t e

rn
a

l

In
te

rf
a

c
e

s

E
v
e

n
t

S
i n

k
s

F
a

c e
ts

R
e

c
e

p
ta

c
le

s
E

v
e

n
t

S
o

u
rc

e
s

Component

Reference

C
o

m
p

o
n

e
n

t
C

o
n

t e
x

t

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback

Interfaces

In
t e

rn
a

l

In
t e

rf
a

c
e

s

E
v
e

n
t

S
in

k
s

F
a

c
e

ts

R
e

c
e

p
ta

cl
e

s
E

ve
n

t
S

o
u

rc
e
s

Component

Reference

C
o

m
p
o

n
e
n

t
C

o
n

t e
x
t

COMPONENT SERVER 1 COMPONENT SERVER 2

ORB

Container

COMPONENT
EXECUTORS

Component
Home

POA

Transaction

Security Notification

Persistent

Callback

Interfaces

In
t e

rn
a

l

In
te

rf
a

c
e

s

E
v
e

n
t

S
i n

k
s

F
a

c e
ts

R
e

c
e

p
ta

c
le

s
E

v
e

n
t

S
o

u
rc

e
s

Component

Reference

C
o

m
p

o
n

e
n

t
C

o
n

t e
x

t

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback

Interfaces

In
t e

r

Container

COMPONENT
EXECUTORS

Component
Home

POA

Transaction

Security Notification

Persistent

Callback

Interfaces

In
t e

rn
a

l

In
te

rf
a

c
e

s

E
v
e

n
t

S
i n

k
s

F
a

c e
ts

R
e

c
e

p
ta

c
le

s
E

v
e

n
t

S
o

u
rc

e
s

Component

Reference

C
o

m
p

o
n

e
n

t
C

o
n

t e
x

t

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback

Interfaces

In
t e

rn
a

l

In
t e

rf
a

c
e

s

E
v
e

n
t

S
in

k
s

F
a

c
e

ts

R
e

c
e

p
ta

cl
e

s
E

ve
n

t
S

o
u

rc
e
s

Component

Reference

C
o

m
p
o

n
e
n

t
C

o
n

t e
x
t

COMPONENT SERVER 1 COMPONENT SERVER 2

ORB

Portable
Interceptor

Portable
Interceptor

Figure 3: Entities of a CORBA Component Middleware

CCM is built atop CORBA object model, and therefore, system implementors are not

tied to any particular language or platform for their component implementations. As shown

in Figure3, key entities of CCM-based component middleware include:

4

• Component, which encapsulates the behavior of the application. Components in-

teract with clients and each other viaports, which are of four types: (1)facets, also

known as provided interfaces, which are end-points that implement CORBA inter-

faces and accept incoming method invocations, (2)receptacles, also known as re-

quired connection points, that indicate the dependencies on end-points provided by

another component(s), (3)event sources, which are event producers that emit events

of a specified type to one or more interested event consumers,and (4)event sinks,

which are event consumers and into which events of a specifiedtype are pushed. The

programming artifact(s) that provides the “business logic” of the component is called

anexecutor.

• Container, which provides an execution environment for components with common

operating requirements. The container also provides an abstraction of the underlying

middleware and enables the component to communicate via theunderlying middle-

ware bus and reuse common services offered by the underlyingmiddleware.

• Component Home,which is a factory [32] that creates and manages the life cycle

for instances of a specified component type.

• Component Implementation Framework (CIF), which defines the programming

model for defining and constructing component implementations using the Compo-

nent Implementation Definition Language (CIDL). CIF automates the implementa-

tion of many component features which include generation ofprogramming skele-

tons and association of components with component executors with their context and

homes.

• Component Server,which is a generic server process that hosts application contain-

ers. One or more components can be collocated in one component server.

Component middleware provides a standard “virtual boundary” around application com-

ponents, defines standard container mechanisms needed to execute components in generic

5

component servers, and specifies a reusable/standard infrastructure needed to configure

and deploy components throughout a distributed system. Although conventional compo-

nent middleware support design and development of large scale distributed systems, they

do not address the address the QoS limitations of DOC middleware. Therefore, conven-

tional component middleware can support large scale enterprise distributed systems, but

not DRE systems that have the stringent QoS requirements.

I.1.4 QoS-enabled Component Middleware

To address the limitations with various middleware technologies listed above, QoS-

enabled component middleware based on standards such as theOMG Lightweight CCM [57]

and Deployment and Configuration (D&C) [61] specifications have evolved. One such

middleware is the Component Integrated ACE ORB (CIAO) [81], which combines the ca-

pabilities of conventional component middleware and QoS-enabled DOC middleware.

in args

out args + return value

operation ()

QoS
Mechanism

Plug-ins

QoS
Mechanism

Plug-ins

Container

CORBA
Component

Component

Home

Real-Time POA

QoS Policies
QoS Policy
Aggregate

Object

Reference

Figure 4: Entities of QoS-Enabled CORBA Component Middleware

As shown in Figure4, QoS-enabled component middlewares offer explicit configura-

tion of QoS middleware parameters that affect the real-timeperformance of the system.

6

Since QoS-enabled component middleware technologies are built atop conventional com-

ponent middleware technologies, QoS-enabled component middlewares inherit the capabil-

ities that aid in design and development of large scale distributed systems from conventional

component middlewares. In summary, QoS-enabled componentmiddleware capabilities

enhance the design, development, evolution, and maintenance of DRE systems [80].

I.2 Overview of Research Challenges

Middleware technologies provide capabilities that address some, but by no means all,

important DRE system development challenges. Some of the remaining key challenges in

developing, deploying, configuring, and managing large-scale DRE systems using middle-

ware technologies include:

Runtime Management ofMultiple System Resources.Many mission-critical DRE sys-

tems execute inopenenvironments where system operational conditions, input workload,

and resource availability cannot be characterized accurately a priori. Achieving high end-

to-end quality of service (QoS) is an important and challenging issue for these types of

systems due to their unique characteristics, including (1)constraints in multiple resources

(e.g., limited computing power and network bandwidth) and (2) highly fluctuating resource

availability and input workload. Conventional resource management approaches, such as

rate monotonic scheduling [42], are designed to manage system resources and providing

QoS in closedenvironments where operating conditions, input workloads, and resource

availability are known in advance. Since these approaches are insufficient for open DRE

systems, there is an increasing need to introduce resource management mechanisms that

canadaptto dynamic changes in resource availability and requirements.

A promising solution isfeedback control scheduling(FCS) [2, 22], which employs soft-

ware feedback loops that dynamically control resource allocation in response to changes

in input workload and resource availability. These techniques enable adaptive resource

management capabilities in DRE systems that can compensatefor fluctuations in resource

7

availability and changes in application resource requirements at run-time. When FCS tech-

niques are designed and modeled using rigorous control-theoretic techniques and imple-

mented using QoS-enabled software platforms, they can provide robust and analytically

sound QoS assurance.

PER
TS

Sin
gl
e

M
ul
tip

le
D

e
s
ig

n
 T

im
e

R
u
n
 T

im
e

Distributed Objects

Middleware Technology

A
p
p
lic

a
b
ili

ty

N
o.

 o
f R

es
ou

rc
es

/

R
eq

ui
re

m
en

ts

R
ap

id
Sch

ed

K
ok

yu
QARM

A
FC

ORB

PIC
M

L

C
ad

en
a

VEST

AIR
ES

Components

FC
-U

/
FC

-M
CAM

RIT

HyS
UCON

Q
os

ke
ts

Q
uO

Figure 5: Taxonomy of Related Research

As shown in Figure5, although existing research have been shown to be effectivein

managing a single type of resource, they have not managed multiple types of resources.

It is still an open issue, therefore, to extend individual resource management algorithms

to work together to manage multiple types of resources in acoordinatedway, such as

managing computational power and network bandwidth simultaneously.

Complexity of Deploying and Configuring Resource Management Algorithms in DRE

Systems.In the past, significant research has been done in designing and developing gen-

eral purpose, as well as domain specific, resource management algorithms for dynamic sys-

tems. Example of general purpose resource management algorithms include EUCON [52],

8

HySUCON [41], and FC-U/FC-M [51]. Examples of domain/use-case specific resource

management algorithms include CAMRIT [82] and HiDRA [70].

Since domain specific resource management algorithms are (usually) built for a specific

use-case/domain, such resource management algorithms andmechanisms may be effective

for that domain; however, they cannot be easily reused in another domain. On the other

hand, in order for general purpose resource management algorithms to be used in real world

systems in a portable way, they have to be implemented eitherin the middleware or the OS.

However, this requires solid understanding of both the middleware/OS and the algorithm,

which is hard. Moreover, the cost of employing another algorithm might be high since it

might involve reimplementation of significant portions of the middleware/OS.

As a result, many resource management algorithms have been developed based on

strong theoretical foundations; however, only a few algorithms “see the light of day”,i.e.,

evaluated in real systems. Therefore, what is missing is a easily customizable resource

management framework that reuses entities of a resource management mechanism – moni-

tors, resource management algorithm(s), and effectors – across domains in a portable man-

ner and enables “plug & play” of new/domain-specific entities.

I.3 Research Approach

To address the challenges identified in SectionI.2, this dissertation presents a detailed

overview of (1) adaptive resource algorithms and architectures to manage multiple resource

in DRE systems and (2) a fully configurable middleware based adaptive resource manage-

ment framework. A brief summary of the different aspects of this dissertation is presented

below.

1. Hierarchical Distributed Resource-management Architecture

To address the challenges identified in SectionI.2 in the context of adaptive manage-

ment of multiple system resources, this dissertation presents a control-based multi-

resource management architecture – Hierarchical Distributed Resource-management

9

Architecture (HiDRA). HiDRA employs a control-theoretic approach featuring two

types of feedback controllers that coordinate the utilization of computational power

and network bandwidth to prevent over-utilization of system resources. This capa-

bility is important because processor overload can cause system failure, and network

saturation can cause congestion and severe packet loss. Subject to the constraints

of the desired utilization, HiDRA improves system QoS by modifying appropriate

application parameters. ChapterII describes HiDRA in detail.

2. Resource Allocation and Control Engine

To address the challenges identified in SectionI.2 in the context of deploying and

configuring resource management algorithms in DRE systems,this dissertation presents

theResource Allocation and Control Engine(RACE), which is an adaptive resource

management framework built atop CIAO. RACE provides reusable entities – re-

source monitors, application/system QoS monitors, resource allocators, controllers,

and effectors – that can be reused across domains. Moreover,RACE can be config-

ured with domain specific implementation of the above mentioned entities. Chap-

ter III describes RACE in detail.

I.4 Research Contributions

Our research on adaptive resource management for DRE systems has resulted in algo-

rithms and architectures that perform adaptive managementof multiple resourcesat run-

time and a fully configurable resource management frameworkthat compliments theoreti-

cal research on adaptive resource management and enables the deployment and configura-

tion of feedback control loops in DRE systems. The key research contributions of our work

on HiDRA and RACE are shown in Table1.

10

Category Benefits

Adaptive Resource Management Algorithms and
Architectures (HiDRA)

1. A novel algorithm and architecture for runtime management of multiple sys-
tem resources using control theoretic techniques.

2. Provides a resource management architecture that ensures utilization of mul-
tiple resources converge to the specified set-point.

3. Improves system QoS.

Adaptive resource management framework
(RACE)

1. A fully configurable adaptive resource management framework for DRE sys-
tems,

2. Enables the deployment and configuration of resource management feedback
control loops in DRE systems,

3. Details three case-studies where RACE has been successfully applied.

Table 1: Summary Of Research Contributions

I.5 Dissertation Organization

The remainder of this dissertation is organized as follows:ChapterII focuses on adap-

tive resource management algorithms and architectures anddescribes the related research,

the unresolved challenges, our research approach to solve these challenges, and empirical

evaluation of our research on runtime management of multiple system resources. Chap-

ter III focuses on adaptive resource management frameworks for DREsystems, describes

the related research, the unresolved challenges, our resource management framework –

RACE – and how RACE addresses these unresolved challenges, and an empirical evalu-

ation of RACE. ChaptersIV, V, andVI , focus on three DRE system case studies where

RACE has been successfully applied and presents an overviewof the resource manage-

ment requirement of each system, description of how RACE addressed these requirements,

and an empirical evaluation of the resource management capabilities of RACE in each of

the case studies. ChapterVII presents concluding remarks, provides a summary of lessons

learned from our research on adaptive resource management for DRE systems, and outlines

future research.

11

CHAPTER II

ADAPTIVE RESOURCE MANAGEMENT ALGORITHMS AND
ARCHITECTURES

As described in ChapterI, DRE systems form the core of many mission-critical do-

mains, including autonomous air surveillance [71], total ship computing environments [68],

and supervisory control and data acquisition systems [11, 17, 29]. Often, these systems

execute inopenenvironments where system operating conditions, input workload, and re-

source availability cannot be characterized accuratelya priori. These characteristics are

beginning to emerge in today’s large-scale systems of systems [21], and they will dominate

in the next-generation of ultra-large-scale DRE systems [38]. Achieving high end-to-end

quality of service (QoS) is important and challenging for these types of systems due to

their unique characteristics, including (1) constraints in multiple resources (e.g., limited

computing power and network bandwidth) and (2) highly fluctuating resource availability

and input workload.

Conventional resource management approaches, such as ratemonotonic scheduling [42,

45], are designed to manage system resources and providing QoSin closedenvironments

where operating conditions, input workloads, and resourceavailability are known in ad-

vance. Since these approaches are insufficient for open DRE systems, there is a need

to introduce resource management mechanisms that canadaptto dynamic changes in re-

source availability and requirements. A promising solution is feedback control scheduling

(FCS) [2, 22, 50], which employs software feedback loops that dynamically control re-

source allocation to applications in response to changes ininput workload and resource

availability. These techniques enable adaptive resource management capabilities in DRE

systems that can compensate for fluctuations in resource availability and changes in appli-

cation resource requirements at runtime. When FCS techniques are designed and modeled

12

using rigorous control-theoretic techniques and implemented using QoS-enabled software

platforms, they can provide robust and analytically sound QoS assurance.

Although existing FCS algorithms have been shown to be effective in managing a sin-

gle type of resource, they have not been enhanced to manage multiple types of resources.

It is still an open issue, therefore, to extend individual FCS algorithms to work together in

acoordinatedway to manage multiple types of resources, such as managing computational

power and network bandwidth simultaneously. To address this issue, we have developed a

control-based multi-resource management framework called Hierarchical Distributed Re-

source management Architecture(HiDRA). HiDRA employs a control-theoretic approach

featuring two types of feedback controllers that coordinate the utilization of computational

power and network bandwidth to prevent over-utilization ofsystem resources. This capabil-

ity is important because processor overload can cause system failure and network saturation

can cause congestion and severe packet loss. HiDRA improvessystem QoS by modifying

appropriate application parameters, subject to the constraints of the desired utilization.

This dissertation provides contributions to both theoretical and experimental research

on FCS. Its theoretical contribution is its use of control theory to formally prove the stability

of HiDRA. Its experimental contribution is to evaluate empirically how HiDRA works for

a real-time distributed target tracking application builtatop The ACE ORB(TAO) [67],

which is an implementation of Real-time CORBA [62]. Our experimental results validate

our theoretical claims and show that HiDRA yields desired system resource utilization and

high QoS despite fluctuations in resource availability and demand by efficient resource

management and coordination for multiple types of resources.

The remainder of the chapter is organized as follows: Section II.1 describes the archi-

tecture and QoS requirements of our DRE system case study; Section II.2 compares our

research on HiDRA with related work; SectionII.4 explains the structure and functionality

of HiDRA; SectionII.5 formulates the resource management problem of our DRE system

13

case study described in SectionII.1 and presents an analysis of HiDRA; SectionII.6 em-

pirically evaluates the adaptive behavior of HiDRA for our DRE system case study; and

SectionII.7 concludes the chapter by presenting a summary.

II.1 Case Study: Target Tracking DRE System

This section describes a real-time distributed target tracking system that we use as a case

study to investigate adaptive management of multiple system resources in a representative

open DRE system. The tracking system provides emergency response and surveillance

capabilities to help communities and relief agencies recover from major disasters, such as

floods, hurricanes, and earthquakes. In this system, multiple unmanned air vehicles (UAVs)

fly over a pre-designated area (known as an “area of interest”) capturing live images. The

architecture of this distributed target tracking system, which is similar to other reconnais-

sance mission systems [49] and target tracking systems [19, 20], is shown in Figure6.

Wireless
Network

Receiver

Target Tracker

UAV

Camera
Image

Compressor

Image

Transmitter

Target
Coordinates

Figure 6: Target Tracking DRE System Architecture

Each UAV serves as a data source, captures live images, compresses them, and transmits

them to a receiver over a wireless network. The receiver serves as a data sink, receives the

images sent from the UAVs, and performs object detection. Ifthe presence of an object of

interest is detected in the received images, the tracking system determines the coordinates

of the objects automatically and keeps tracking it. The coordinates of the object is reported

to responders who use this information to determine the appropriate course of action,e.g.

14

initiate a rescue, airlift supplies, etc. Humans, animals,cars, boats, and aircraft are typical

objects of interest in our tracking system.

The QoS of our resource-constrained DRE system is measured as follows:

• Target-tracking precision, which is the distance between the computed center of mass

of an object and the actual center of mass of the object, and

• End-to-end delay, which is the time interval between image capture by the UAV and

computation of the coordinates of an object of interest. End-to-end delay includes

image processing delay at the UAV, network transmission delay, and processing delay

of the object detection and tracking sub-system at the receiver.

Just as any real-time system, end-to-end delay is a crucial QoS in our emergency response

system and must be as low as possible. A set of coordinates computed with a lower pre-

cision and lower end-to-end delay is preferred over a set of coordinates computed with a

higher precision and/or higher end-to-end delay.

There are two primary types of resources that constrain the QoS of our DRE system:

(1) processorsthat provide computational power available at the UAVs and the receiver

and (2) thewireless network bandwidththat provides communication bandwidth between

the UAVs and the receiver. To determine the coordinates accurately, images captured by

the UAVs must be transmitted at a higher quality when an object is present. This in turn

increases the network bandwidth consumption by the UAV. To increase the utility of the

system, images are transmitted at a higher rate by the UAVs when objects of interest are

present in the captured images. This in-turn increases the processor utilization at the re-

ceiver node, and thus increases the processing delay of the object detection and tracking

sub-system. Moreover, transmission of images of higher quality at a higher rate increases

the bandwidth consumption by the UAV. If the network bandwidth is over-utilized consid-

erably, the network transmission delay increases, which in-turn increases the end-to-end

delay.

15

Utilization of system resources (i.e., wireless network bandwidth and computing power

at the receiver) are therefore subject to abrupt changes caused by the presence of varying

numbers of objects of interest. Moreover, the wireless network bandwidth available to

transmit images from the UAVs to the receiver depends on the channel capacity of the

wireless network, which in-turn depends on dynamic factors, such as the speed of the UAVs

and the relative distance between UAVs and the receiver due to adaptive modulation [1, 36].

The coupling between the utilization of multiple resources, varying resource availabil-

ity, and fluctuating input workloads motivate the need for adaptive management of mul-

tiple resources. To meet this need, the captured images in our system are compressed

using JPEG, which supports flexible image quality [79]. Likewise, we choose to use im-

age streams rather than video because video compression algorithms are computationally

expensive, the computation power of the on-board processoron the UAVs is limited, and

emergency response and surveillance applications and operators do not necessarily need

video at 30 frames per sec. However, the computational powerof the UAV on-board pro-

cessor is large enough to compress images of the highest quality and resolution and transmit

them to the receiver without overloading the processor.

In JPEG compression, a parameter called thequality factor is provided as a user-

specified integer in the range 1 to 100. A lower quality factorresults in smaller data size of

the compressed image. The quality factor of the image compression algorithm can there-

fore be used as acontrol knobto manage the bandwidth utilization of an UAV. To manage

the computational power of the receiver, end-to-end execution rate of applications is used

as the control knob.

II.2 Related Research

Resource management algorithms and architectures have been studied extensively in

the research community. As shown in Figure7, this research can be broadly categorized

16

into two categories based on their applicability: (1) design time solutions and (2) runtime

solutions. These two categories are discussed in detail below.

PER
TS

Sin
gl
e

M
ul
tip

le

D
e
s
ig

n
 T

im
e

R
u
n
 T

im
e

Distributed Objects

Middleware Technology

A
p
p
lic

a
b
ili

ty
N
o.

 o
f R

es
ou

rc
es

/

R
eq

ui
re

m
en

ts

R
ap

id
Sch

ed

K
ok

yu
QARM

A
FC

ORB

PIC
M

L

C
ad

en
a

VEST

AIR
ES

Components

FC
-U

/
FC

-M
CAM

RIT

HyS
UCON

Q
os

ke
ts

Q
uO

Figure 7: Taxonomy of Related Research

• Design time solutions.

Design time resource management solutions have been historically studied under the

context of scheduling algorithms and feasibility analysis. Classical scheduling algo-

rithms include rate monotonic scheduling [42], fixed priority scheduling algorithm,

deadline driven scheduling algorithm, and a mixed scheduling algorithm presented

in [45]. These algorithms assume that the deadline of a periodic tasks is equal to it

period. The work presented in [7] relaxes this assumption and presents a scheduling

algorithms where the deadline of tasks can be less than theirperiods. The research

presented in [63] describes a feasibility analysis for hard real-time periodic tasks.

Classical bin-packing algorithms [46] can also be viewed as resource management

algorithms since they can be used to allocate resource to applications. The research

17

presented in [24] describes a heuristic based approach to solve the multi-dimension

bin-packing problem.

• Runtime solutions.

A number of control-theoretic approaches have been appliedto DRE systems to over-

come limitations with traditional scheduling approaches that are not suited to handle

dynamic changes in resource availability and result in a rigidly scheduled system that

adapts poorly to change. A survey of these techniques is presented in [2].

Feedback control scheduling (FCS) [50] is designed to address the challenges of ap-

plications with stringent end-to-end QoS executing in openDRE systems. These al-

gorithms provide robust and analytical performance assurances despite uncertainties

in resource availability and/or demand. FC-U and FC-M [51] and HySUCON [41]

employ control-theoretic techniques to manage the processor utilization on a single

node. EUCON [52] presents a control-theoretic approach to manage processor uti-

lization on multiple nodes simultaneously.

A hierarchical control scheme that integrates resource reservation mechanisms [22,

44] with application specific QoS adaptation [12] is proposed in [3]. This control

scheme features a two-tier hierarchical structure: (1) a global QoS manager that

is responsible for allocating computational resources to various applications in the

system and (2) application-specific QoS managers/adaptersthat modify application

execution to use the allocated resources efficiently and improves application QoS.

The middleware control framework is presented in [43] manages the performance of

a distributed multimedia application. The objective of this framework is to ensure

that global system wide properties, such fairness between competing applications, as

well as QoS requirement of individual applications are met,without over utilizing

system resources. This research utilizes task control model and fuzzy control model

to enhance the QoS adaptation decision of multimedia DRE systems. However, the

18

control framework established in this work is still confinedto single type of resource,

(i.e.), transmission rate in a distributed visual tracking system.

CAMRIT [82] applies control-theoretic approaches to ensure transmission deadlines

of images over an unpredictable network link and also presents analytic performance

assurance that transmission deadlines are met.

II.3 Unresolved Challenges

Design time solutions are efficient at managing system resources and QoS inclosed

environments where operating conditions, input workloads, and resource availability are

known in advance. These approaches, however, cannot be applied to DRE systems that

execute inopenenvironments where system operational conditions, input workload, and

resource availability cannot be characterized accuratelya priori.

As shown in Figure7, existing runtime solutions perform resource management of

only one type of system resource,i.e., either computing poweror network bandwidth.

For DRE systems, these approaches are insufficient since multiple types of resources are

to be managed simultaneously, and in a coordinated fashion.One approach to manage

both computing power and network bandwidth might use eitherthe hierarchical control

structure proposed in [3], FC-U/FC-M, HySUCON, or EUCON to manage the processor

utilization, and use CAMRIT to manage the network bandwidthutilization. Unfortunately,

this approach does not take into consideration the couplingbetween the two types of system

resources and does not necessarily guarantee system stability.

To address these challenges, this dissertation presents a detailed overview of the de-

sign and implementation of a distributed adaptive resourcemanagement architecture that

yields predictable and high performance resource management and coordination for multi-

ple types of system resources.

19

II.4 The Hierarchical Distributed Resource-management Architecture (HiDRA)

This section presents theHierarchical Distributed Resource-management Architecture

(HiDRA), which employs a control-theoretic approach to manage processors and network

bandwidth simultaneously. Our control framework is shown in Figure8 and consists of

three entities:monitors, controllers, andeffectors. A monitor is associated with a specific

Monitor Effector Application

System
Resource

Utilization

Application Resource Utilization

Application

Parameters
Controller

Adaptation

Decisions

Figure 8: The HiDRA Control Framework

system resource and periodically updates the controller with the current resource utiliza-

tion. The controller implements a particular control algorithm and computes the adapta-

tions decisions for each application (or a set of applications) to achieve the desired system

resource utilization. Each effector is associated with an application and modifies applica-

tion parameters to achieve the controller-recommended application adaptation.

We proceed to instantiate the HiDRA control framework for the domain of target track-

ing described in SectionII.1. Each application in our DRE system is composed of two

subtasks:image compressionand target tracking. To ensure end-to-end QoS, therefore,

resource utilization of both subtasks must be controlled. As shown in Figure9, HiDRA

consists of two types of feedback control loops: (1) a processor control loop located at the

receiver that manages the processor utilization and (2) a bandwidth control loop located at

each UAV that manages the bandwidth utilization. These loops control the utilization of the

critical system resources and coordinate the execution of the image compression and target

tracking subtasks. One approach to manage these system resources is to designindepen-

dentfeedback control loops. Unfortunately, this approach doesnot take into consideration

the coupling between the two types of system resources and does not necessarily assure

20

Processor

Controller

Processor
Utilization

Set-point
Bandwidth

Controller
JPEG Compressor

Bandwidth Utilization Monitor

Target

Tracker

Bandwidth

Allocator

Processor Utilization Monitor

Bandwidth Allocation

Target

Coordinates

Number of Targets

Rate

Adapter

UAV

Image

Transmitter

Receiver

Figure 9: HiDRA’s Control Architecture

system stability. Therefore, we structure these control loops in ahierarchical fashion so

that the processor control loop at the receiver is viewed as theoutercontrol loop and the

bandwidth control loop at each UAV is viewed as theinnercontrol loop.

As shown in Figure10, the processor utilization monitor and processor controller serve

as the resource monitor and controller of the processor control loop, respectively. The

Processor

Controller

Target

Tracker

Receiver

Processor Utilization Monitor

Target

Coordinates

Processor

Utilization

Set-point

Image

Transmission

Rate

Processor

Utilization

UAV

Figure 10: Processor Control Feedback Loop

objective of the processor controller is to ensure that the processor utilization is maintained

at a specified set-point despite variations in resource availability and input workload. The

utilization set-point of the receiver processor is an inputto the processor controller and is

specified during system initialization. The controlled variable for this loop is the processor

utilization of the receiver, and the control input from the processor controller to the system

are the image transmission rates, which are fed to the rate adapter in the UAVs. For the

processor control loop, therefore, rate adapters serve as effectors.

The bandwidth allocator shown in Figure9 is responsible for dynamically computing

21

the bandwidth allocation to each UAV based on (1) presence/absence of objects of interest

in the images received from the corresponding UAV and (2) variations in available wire-

less network bandwidth. The bandwidth controller of each UAV views this allocation as

the bandwidth utilization set-point. The bandwidth allocator ensures that the bandwidth

requirement of UAVs capturing images of one or more objects of interest is met.

As shown in Figure11, the bandwidth utilization monitor and the bandwidth controller

serve as the monitor and controller of the bandwidth controlloop, respectively. The ob-

Bandwidth

Controller
JPEG Compressor

Bandwidth Utilization Monitor

Bandwidth

Utilization

Set-point

Image

Transmission

Rate

Bandwidth

Utilization

Quality

Factor

Figure 11: Bandwidth Control Feedback Loop

jective of the bandwidth controller is to ensure that the bandwidth utilization of the UAV

is maintained at the specified set-point despite variationsin resource availability and input

workload. Inputs to the bandwidth controller include the bandwidth utilization set-point,

which is provided by the bandwidth allocator, and image transmission rate, a model param-

eter of the bandwidth controller which is provided by the processor controller. Based on

these inputs, the bandwidth controller computes an appropriate value of the JPEG quality

factor to transmit the image of the highest quality, subjected to the specified bandwidth lim-

itation. The controlled variable is the network bandwidth utilization of each UAV and the

control input from the bandwidth controller to the system isthe quality factor of the JPEG

compression algorithm. This input is fed to the implementation of the JPEG compression

algorithm, which serves as the effector for this control loop. The coupling between the two

22

types of system resources is captured by using the image transmission rates computed by

the processor controller as an input parameters to the bandwidth controllers.

II.5 Control Design and Analysis

This section first formalizes the resource management problem of our real-time dis-

tributed target tracking system. We then map HiDRA to this system to show how it ad-

dresses key resource management challenges of our DRE system. Finally, we present

analysis that shows how HiDRA ensures the stability of our system. The formalism de-

scribed below forms the foundations for the design and implementation of HiDRA. It also

provides analytical assurance about system performance under fluctuating workload and

varying resource availability.

II.5.1 Problem Formulation

The following notations are used throughout the remaining of the paper. The target

tracking system consists ofn UAVs, and therefore,n end-to-end tasks{Ti|1≤ i ≤ n}, each

with two subtasks,i.e., an image compression subtask executing at UAVi and a target-

tracking subtask executing at the receiver. The sampling period of the processor controller

(outer feedback loop) and the bandwidth controller (inner feedback loop) are represented by

Tout
s andT in

s , respectively. The sampling periodsTout
s andT in

s are selected to be larger than

the maximum task period. All the entities that make up the bandwidth control loop (such as

monitor, controller, and effector) are collocated on each UAV. However, for the processor

control feedback loop, the monitor and the controller are collocated on the receiver, whereas

the effectors are located at each UAV. As a result, in the processor control feedback loop,

the communication between the controller and the effectorsis over a wireless network.

Although there are no theoretical constraints on the sampling periods, for these practical

reasons,Tout
s is selected to be greater thanT in

s . In our model,kth andκ th sampling period

23

represent thekth sampling period of the processor controller and theκ th sampling period

of the bandwidth controller, respectively.

Each end-to-end taskTi is invoked periodically at a rater i(k) at thekth sampling in-

stant of the processor controller. The rater i(k) is assumed to take values within the range

[rmin
i , rmax

i]. During thekth sampling instant of the processor controller, images are com-

pressed and transmitted byTi ’s data source, UAVi , to the receiver at the rate ofr i(k) im-

ages/second.C(k) represents the channel capacity (available bandwidth) of the wireless

network during thekth sampling period. For example, in a 802.11b wireless network, C(k)

can vary from 1 Mbps to 11 Mbps. The channel capacity can be obtained form the wireless

network card using operating system tools/commands such asiwlist.

II.5.1.1 Bandwidth Allocator

During each sampling period of the processor controller, the bandwidth allocator com-

putes a desirable bandwidth allocation for each taskTi. The wireless network bandwidth

allocation to each taskTi is recomputed by the bandwidth allocator if the presence of an

object of interest was detected by any of the target-tracking subtasks or a variation in the

available bandwidth was detected during the previous sampling period. For each task,

bandwidth is allocated such that the net bandwidth utilization is below the set-pointBs, i.e.:

n

∑
i=1

bs
i (k) ≤ BsC(k) (II.1)

wherebs
i (k) is the bandwidth allocation (utilization set-point) for task Ti during thekth

sampling period of the processor controller.

Let p(k) andpi(k) represent the total number of objects of interest tracked bythe system

and the number of objects being tracked byTi during thekth sampling period, respectively.

Let bmin represent the minimum bandwidth allocation to each task so that images of the

24

lowest quality can be transmitted to the receiver. Bandwidth is thus allocated to each end-

to-end task as a function ofp(k) andpi(k) as follows:

bs
i (k) =

BsC(k)/n if p(k) = 0

bmin+
(BsC(k)−nbmin)pi(k)

p(k) if p(k) > 0
, ∀ Ti | 1≤ i ≤ n. (II.2)

If the total number of objects of interest tracked by the system is 0, bandwidth is equally

allocated to each task. If the total number of objects of interest tracked by the system is

greater than 0, we assume all objects of interest are of equalimportance, and bandwidth

allocation to tasks is based on the number of objects currently being tracked by that task.

This design ensures that a greater amount of bandwidth is allocated to tasks that are cur-

rently tracking objects of interest as compared to the ones that are not. If objects of interest

are of varying importance, a bandwidth allocation policy that takes into consideration the

importance of object of interest can be employed without anymodifications to HiDRA.

II.5.1.2 Processor Utilization Controller

We use the approach in [50] to model processor utilization. SectionII.5.2 uses the

following model in the stability analysis of HiDRA. The target-tracking subtask of each

end-to-end taskTi has anestimatedexecution time ofci known at design time. The esti-

mated processor utilization by the target-tracking subtask of taskTi during thekth sampling

period is denoted asEi(k) and is computed as

Ei(k) = cir i(k) (II.3)

wherer i(k) is the invocation rate of end-to-end taskTi during thekth sampling period. The

net estimated processor utilization during thekth sampling period is therefore

E(k) =
n

∑
i=1

cir i(k). (II.4)

25

At runtime, however, theactualexecution times may be different since they depend on the

presence (and number) of objects in the images. At runtime, therefore, the actual processor

utilizationU(k) can be written as

U(k) = Gp(k)E(k) (II.5)

whereGp(k) is the processor utilization ratio. Although,Gp(k) is unknown, it is reason-

able to assume that the worst case utilization ratioGp = maxk{Gp(k)} is known. Let the

processor utilization set-point of the receiver node be represented asUs. From (II.5), the

process utilization model can be written as

∆U(k+1) = ∆U(k)+Gp(k)vp(k) (II.6)

where∆U(k) =U(k)−Us andvp(k) = E(k+1)−E(k). The task of the feedback controller

is to computevp(k) so thatU(k) converges toUs (or ∆U(k)→ 0).

We consider a linear proportional controller

vp(k) = Kp∆U(k) (II.7)

whereKp is a control gain which will be selected so that the system is stable. A proportional

controller is used because of the simplicity in the derivation of the control gain that ensures

stability and in the implementation that incurs minimal computational overhead. Actuators

implement the control signalvp(k) by changing the invocation rate of end-to-end tasks.

The closed-loop system is described by

∆U(k+1) = [1+KpGp(k)]∆U(k). (II.8)

The control algorithm is implemented as follows. During each sampling period, the

26

controller compares the current processor utilizationU(k) with the utilization set-pointUs,

and computes the net estimated utilizationE(k+ 1) for the next sampling period based

on the equationE(k+ 1) = E(k)+ Kp∆U(k). Since the presence of one or more objects

of interest in the received images increases the execution time the target-tracking subtask,

computational power is allocated to target tracking subtasks based on the number of objects

of interest that are present in the received images. We therefore have

Ei(k+1) =

E(k+1)
n if p(k) = 0

Emin+ (E(k+1)−nEmin)pi(k)
p(k) if p(k) > 0

, ∀ Ti | 1≤ i ≤ n (II.9)

wherep(k) represents the total number of objects of interest capturedby all the tasks in the

system,pi(k) represents the number of objects of interest being capturedby Ti during the

kth sampling period, andEmin represents the minimum processor allocation to each task so

that images can be processed by the receiver at the lowest rate.

If the total number of objects of interest tracked by the system is 0, computational power

is equally allocated to each task. If the total number of objects of interest tracked by the

system is greater than 0, however, allocation of computational resource to tasks is weighted

based on the number of objects currently being tracked by that task. This design ensures

that a greater amount of computational power is allocated totasks that are currently tracking

objects of interest as compared to the ones that are not. Fromequations (II.3), (II.7), and

(II.9) we derive the task execution rate as follows:

r i(k+1) =

E(k)+(U(k)−Us)Kp/Gp
nci

if p(k) = 0

Emin
ci

+
pi(k)(E(k)+(U(k)−Us)Kp/Gp−nEmin)

p(k)ci
if p(k) > 0

, ∀ Ti | 1≤ i ≤ n.(II.10)

27

II.5.1.3 Bandwidth Utilization Controller

We next present the analytical model of the bandwidth controller for each UAV. The

following notations are used in this model where the symbolscorrespond to each UAV and

the subscript is omitted for simplicity:

• b(κ): Actual bandwidth utilization in theκ th sampling period.

• bs(k): Desired bandwidth utilization (set-point) computed by the bandwidth allocator

in thekth sampling period as shown in equation (II.2).

• r(k): Task rate computed by the processor controller in thekth sampling period, as

shown in equation (II.10).

• s: Size of an uncompressed image, which is a constant and knownat design time.

• q(κ): Quality factor of image compression algorithm (JPEG) computed by the band-

width controller in theκ th sampling period.

• φ(q) : Estimated size of the compressed image compressed with quality factor q.

To simplify our notation, we expressr(k) and bs(k) with respect to the indexκ by

definingr(κ) = r(k),bs(κ) = bs(k),k≤ κ < k+1.

The controlled variable of this feedback control loop is thebandwidth utilization,b(κ),

and the control input from the controller to the UAV is the quality factor of the image

compression algorithm,q(κ). The controller computes an appropriate value of quality

factor, q(κ), to ensure that the bandwidth utilization of the UAV,b(κ), converges to the

set-point,bs(κ), computed by equation (II.2).

The average size of the compressed image,φ(q), is related to the quality factor of the

image compression algorithm,q, by a non-linear function as shown in Figure12. For the

purpose of our control design, however, we chooseq within the range[10,70] where this

function can be approximated by a linear one. A piecewise linear function can also be used.

28

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

70605040302010

C
om

pr
es

si
on

 R
at

io
Quality Factor (q)

Actual

Aproximate

Figure 12: Linearization of φ(q)

For 10≤ q≤ 70, we have

φ(q) = sgq+ω (II.11)

whereg is the slope andω is they-intersect of the linear approximation of the function in

Figure12.

Images are compressed with a quality factorq and transmitted at the rater from the

UAV to the receiver. Therefore, the bandwidth utilization contributed by the UAV is

b(κ) = r(κ)φ(q)

= r(κ)sgq(κ)+ r(κ)ω.

Let ∆b(κ) = b(κ)−bs(κ) andvb(κ) = q(κ +1)−q(κ), then the bandwidth utilization can

be described by the dynamical model

∆b(κ +1) = ∆b(κ)+ r(κ)sgvb(κ). (II.12)

The objective of the feedback controller is to determinevb(κ) as a function of∆b(κ)

so that the bandwidth utilization converges to the set-point. However, the bandwidth uti-

lizationb(κ) is not directly available due to measurement noise. The bandwidth utilization

monitor measures the bandwidth utilization as the rate at which data is written by the image

29

compression subtask to the underlying network stack. It must be noted that the bandwidth

utilization monitor measures the bandwidth utilization ofthe UAV and not the channel ca-

pacity or the utilization of the wireless network. Therefore, the resolution of the bandwidth

utilization monitor is in the order of the size of the compressed image. Hence, even a small

variation in the sampling period and the image transmissionrate will considerably affect

the measured bandwidth utilization. Although the samplingperiod of the bandwidth con-

troller is a constant, from a practical standpoint, the sampling period might vary marginally

due to the jitter associated with the timer that is employed to implement the periodic task.

Moreover, the image transmission rate varies significantlyat runtime since it is dynamically

computed by the processor controller.

Let b̃(κ) denote the measured bandwidth utilization in theκ th sampling period. We

assume that the effect of the measurement noise can be described by

b̃(κ) = b(κ)+n(κ)

where the measurement noisen(κ) is assumed to be a discrete-time Gaussian process with

zero mean and varianceE[n2(κ)]. The variance can be approximated experimentally by

transmitting images with a known rate and computing the square of the rms value of the

difference between the predicted utilizationb(κ) and the measured utilizatioñb(κ) [31].

To remove the measurement noise in the measured bandwidth utilization, we employ

a Kalman filter [85] to estimate the actual bandwidth utilization. Alternatively, a simple

low-pass measurement filter can be used. We select a Kalman filter because it provides

good transient and steady-state performance, it is optimalin the sense that the variance of

the estimation error is minimized, and it allows the stability analysis of the closed loop

system based on the certainty equivalence principle (or separation principle) [6]. It should

be noted that the processor utilization monitor obtains theprocessor utilization directly

30

from the underlying operating system, and therefore is of higher resolution compared to

the bandwidth utilization monitor.

The Kalman filter computes recursively the estimated bandwidth utilizationb̂(κ) based

on the measured bandwidth utilizationb̃(κ) and the bandwidth utilization model (II.12).

Let b̂−(κ) the predicted bandwidth utilization in theκ th sampling period given by

b̂−(κ) = b̂(κ −1)+ r(κ −1)sgvb(κ −1).

The output of the Kalman filter is

b̂(κ) = b̂−(κ)+K(κ)(b̃(κ)− b̂−(κ)) (II.13)

whereK(κ) is a filter gain that is computed recursively in order to minimize the variance

of the estimation errorε(κ) = b(κ)− b̂(κ) [6, 85].

The output of the Kalman filter,̂b(κ), is used by the bandwidth controller as the current

bandwidth utilization. We consider a linear controller

vb(κ) = Kb∆b̂(κ) (II.14)

whereKb is the control gain that will be selected so that the system isstable. During each

sampling period, the controller compares the estimated bandwidth utilizationb̂(κ) with the

utilization set-pointbs(κ), and computes the quality factorq(κ +1) by

q(κ +1) = q(κ)+Kb∆b̂(κ). (II.15)

II.5.2 Stability Analysis

A control system is said to be stable if and only if the system converges to an equi-

librium for any set of initial conditions. In our case study,the initial conditions are used

31

to represent the changes in workload (due to the change of theimages’ content) and/or

resource availability. Our target tracking system is therefore stable if resource utilization

of both the system resources (i.e., processor utilization at the receiver and the network

bandwidth utilization) converge to their respective utilization set-points in the presence of

workload changes and/or resource availability. Although the controller is designed based

on a time-invariant model (constant upper bounds on resource utilization), we show that

the system is stable even when resource availability and/orutilization changes at runtime,

i.e., the system is time-varying.

A feedback control loop can be stabilized by selecting the controller so that the poles of

the closed loop system are in the unit circle [6, 31]. The bandwidth utilization control loop

includes the Kalman filter (II.13) and the linear controller (II.14). A consequence of the

separation principle is that the control synthesis problemcan be solved separately and the

dynamics of the closed-loop system are determined by the dynamics of the controller and

the optimal filter [6]. Specifically, the poles of the closed loop system are determined by

the poles of the controller and the poles of the Kalman filter.At steady-state the gain of the

Kalman filter converges to a stationary value that ensures stability for the estimation error

ε(κ). Therefore, in our analysis we can focus on imposing conditions on the bandwidth

utilization control gainKb to ensure that the pole of the bandwidth utilization controller is

inside the unit circle.

We can stabilize each of the two types of feedback control loops by selecting the gains

Kp andKb so that the corresponding poles are in the unit circle. Such adesign, however,

does not necessarily ensure the stability of the hierarchical control architecture since it does

not take into consideration the interaction between the feedback loops (due to the presence

of r(κ) in equation (II.12)). We next present an analysis result that allows us to select the

control gains so that the overall stability is assured.

Assuming that the input buffer of the receiver is never empty, it is clear that the pro-

cessor utilization is independent of the bandwidth utilization. If we selectKp so that

32

−2/Gp < Kp < 0 then

∆U(k) = [1+KpGp(k)]
k∆U(k0),k≥ k0

and∆U(k)→ 0 since|1+KpGp(k)| < 1.

From equation (II.10), it follows that in the steady state the utilization for each task

Ui(k) will be stable (it will converge to a set-pointUs
i that depends on the presence of

objects in the image data) and we can write

∆Ui(k+1) = αi(k)∆Ui(k) (II.16)

where the functionαi(k) satisfies|αi(k)| < 1.

Let rs
i denote the rate of theith task at the steady state, thenr i(k) = rs

i +∆r i(k) where

∆r i(k) → 0. The bandwidth utilization model for theith UAV is

∆bi(κ +1) = [1+(rs
i +∆r i(κ))sgKi

b]∆bi(κ) (II.17)

The primary challenge of the stability analysis of our framework is the coupling be-

tween the processor and bandwidth controllers. As it can be seen in equation (II.17), the

control input from the processor controller to the system,∆r i(κ), is used by the bandwidth

controller. Our objective is to deduce the stability properties of the system (II.16-II.17) by

studying theisolated system

∆Ui(k+1) = αi(k)∆Ui(k) (II.18)

∆bi(κ +1) = [1+ rs
i sgKi

b]∆bi(κ) (II.19)

where the equations have been decoupled by setting∆r i(κ) = 0.

33

Theorem 1. The system (II.16-II.17) is stable if and only if the isolated system (II.18-II.19)

is stable.

Proof. Define the norm||[x1,x2]||= ||[x1,x2]||∞ = max{|x1|, |x2|} and denote∆Ui(k),∆bi(κ)

and∆U I
i (k),∆bI

i (κ) the solutions of (II.16-II.17) and (II.18-II.19) respectively.

"Only-if": If the system (II.16-II.17) is stable, then there exists functionα(κ) with α(κ)→

0 such that

||[∆Ui(κ),∆bi(κ)]T || ≤ α(κ)||[∆Ui(κ0),∆bi(κ0)]
T || (II.20)

∀κ ≥ κ0 and for every initial condition[∆Ui(κ0),∆bi(κ0)]
T where∆Ui(κ) = ∆Ui(k),k ≤

κ < k+1.

In particular, suppose that the initial condition is[0,∆bi(κ0)]
T , then by equation (II.20)

∀κ ≥ κ0, |∆bI
i (κ)| ≤ α(κ)|∆bI

i (κ0)|, which shows that the system (II.18-II.19) is stable.

"If": It is easy to see that∆Ui(k) = ∆U I
i (k) so we have to analyze only∆bi(κ). Define

ηI (κ) = 1+ rs
i gKi

b andη(κ,∆r i(κ)) = 1+(rs
i +∆r i(κ))gKi

b. From the stability of (II.18-

II.19), we have that|ηI (κ)|< 1 and there exists a functionα2(κ) with 0≤ α2(κ)→ 0 such

that

∆b2
i (κ)(η2

I (κ)−1) ≤−α2(κ)∆b2
i (κ0)

for every∆bi(κ0) andκ ≥ κ0. But we can write

∆b2
i (κ +1)−∆b2

i (κ) = ∆b2
i (κ)(η2

I (κ)−1)+∆b2
i (κ)(η2(κ,∆r i(κ))−η2

I (κ))

≤ −α2(κ)∆b2
i (κ0)+ γ(κ)

whereγ(κ) → 0 since∆r i(κ) → 0. ∆bi(κ) → 0 and the system (II.16-II.17) is therefore

stable.

Using the above theorem, we can select the control gains so that our hierarchical control

architecture is stable. For the processor utilization feedback loop, the gain could be selected

to satisfy−2/Gp < Kp < 0 that ensures stability [3, 50]. Similarly, for the bandwidth

34

utilization control loop, the gain should be selected so that (II.19) is stable. Sincers
i is not

known at design time, we can select the gain to satisfy−2/(rmax
i) < K i

b < 0. A reasonable

choice for selecting the control gains is to use deadbeat control [31] based on the worst

case utilization ratio and maximum task rate respectively,i.e. Kp = −1/Gp and K i
b =

−1/rmax
i . This selection tries to minimize the settling time keepingthe overshoot equal

to zero. Although deadbeat control may introduce saturation if the ranges for the control

effectors, i.e. the rate and the quality factor are small, its performance was satisfactory for

our case study. Other criteria for selection of the gain can be found in [50].

II.6 Performance Results and Analysis

This section first presents the testbed for our target tracking system, which was used to

evaluate the performance of HiDRA in the context of a representative open DRE system.

We then describe our experiments and analyze the results obtained to evaluate the per-

formance of our DRE system empirically with and without HiDRA under varying wireless

bandwidth availability and input workload. The goal of our experiments was to validate our

theoretical claims and show that HiDRA yields predictable and high-performance resource

management and coordination for multiple types of resources.

II.6.1 Hardware and Software Testbed

Our experiments were performed on the Emulab [87] testbed at University of Utah

(www.emulab.net). The hardware configuration consists of three nodes actingas UAVs

and one receiver node. Images from the UAVs were transmittedto a receiver via a wireless

LAN configured with a maximum channel capacity of 2 Mbps. The hardware configuration

of all the nodes was a 3 GHz Intel Pentium IV processor, 1 GB physical memory, 802.11

a/b/g WIFI interface (Atheros 5212 chipset), and 120 GB harddrive. The Redhat 9.0

operating system with wireless support was used for all the nodes.

The following software packages were also used for our experiments: (1)TAO 1.4.7,

35

www.emulab.net

which is our open-source implementation of Real-time CORBA[62] that HiDRA and our

DRE system case study are built upon, (2)Ffmpeg 0.4.9-pre1with Fobs-0.4.0front-end,

which is an open-source library that decodes video encoded in MPEG-2, MPEG-4, Real

Video, and many other video formats to yield raw images, and (3) ImageMagick 6.2.5,

which is an open-source software suite that we used to compress the raw images to JPEG

image format.

II.6.2 Target Tracking DRE System Implementation

The entities in our target tracking DRE system are implemented as CORBA objects

and communicate over theTAO [67] Real-time CORBA Object Request Broker to achieve

desired real-time performance. The end-to-end application consists of pairs of CORBA

objects: the UAV data source and the receiver data sink. The UAV data source object that

executes on each UAV’s on-board processor performs the following actions: (1) extracts

raw images from an on-disk video file using Ffmpeg with Fobs front end1, (2) compress the

raw image into JPEG format using ImageMagick, and (3) “pushes” the compressed images

over the wireless link to the data sink object via a CORBA oneway method invocation.

A data sink object at the receiver processes the images received from the correspond-

ing UAV. Each data sink object contains two functional modules: one that determines the

presence of one or more objects of interest in the received images, and the other tracks the

coordinates of objects of interest in the received image, ifpresent. The second functional

module is executed only if the presence of one or more objectsof interest is detected by the

first module.

To perform target tracking, received images are compared with a reference image, that

is given during system initialization. To obtain the reference image, a raw image is ex-

tracted from a frame in the video that contains the object of interest. This raw image is then

compressed using JPEG compression algorithm with a qualityfactor of 100 and used as

1We used pre-recorded video which was made available on each UAV node as our source of “live” video.

36

the reference image. The received images are converted fromcolor to gray-scale, and the

processed image is “subtracted” from the reference image toobtain the difference image. If

the average pixel value of the difference image is greater than a threshold (which indicates

the presence of one of more objects of interest), the center of mass of the objected is com-

puted. This approach is common and the coordinates of a moving object can be tracked

using a Kalman filter [26].

Table2 summarizes the number of lines of code of various entities inour middleware

and DRE multimedia system case study.2

Entity Total Lines of Source Code
HiDRA 12,243

DRE Target Tracking System 19,875
Ffmpeg + Fobs 214,092
ImageMagick 253,270

The ACE ORB (TAO) 907,035

Table 2: Lines of Source Code for Various System Elements

II.6.3 Experiment Configuration

Our experiments consisted of three (emulated) UAVs containing the data source object

that (1) decoded the video from a file, (2) extracted the raw images, (3) compressed them

using JPEG compression, and (4) transmitted the compressedimages to the corresponding

data sink object at the receiver node. Wireless network bandwidth was shared between the

three data source/data sink object pairs, and the computational power at the receiver node

was shared between the three data sink CORBA objects.

We evaluated the adaptive resource management capabilities of HiDRA under the fol-

lowing operational conditions: (1) constant bandwidth availability and constant workload,

2Lines of source code was measured using SLOCCount (http://www.dwheeler.com/sloccount/).

37

http://www.dwheeler.com/sloccount/

(2) constant bandwidth availability and varying workload,(3) varying bandwidth availabil-

ity and constant workload, and (4) varying bandwidth availability and varying workload.

These experimental configurations were chosen to evaluate the performance of HiDRA

under all possible combinations of fluctuations in bandwidth availability and input work-

load. We evaluate the performance of the system when it was operated with independent

feedback control loops to demonstrate the advantages of theproposed hierarchical archi-

tecture. In all operating conditions, we monitored the processor utilization at the receiver

and wireless network bandwidth utilization between the UAVs and the receiver. Processor

utilization at each UAV node was not monitored since the computational power of the UAV

on-board processor was sufficiently large to compress images of the highest quality and

resolution and transmit them to the receiver without overloading the processor.

Bandwidth consumption by each UAV was measured as the rate atwhich data was

written to the underlying network stack by the UAV data source CORBA object. The band-

width utilization can also be measured at the receiver node using the techniques described

in [69]. Since our measurement of bandwidth consumption by each UAV was noisy, we

used a Kalman filter to suppress the disturbances in the measured bandwidth utilization.

Processor utilization at the receiver was measured using the data from the/proc/stat

file. In our experiments, we also measured application QoS properties, such as target-

tracking precision and average end-to-end delay.

We defined target-tracking precision as the inverse oftarget-tracking error, which is the

distance between the computed center of mass of an object andthe actual center of mass

of the object. To compute the actual center of mass of the object, we identified an object

present in the video as the object of interest, performed target-tracking on the raw images

extracted from the video, and used this value as a reference.At the data sink object, the

target-tracking results were then compared with this reference value.

End-to-end delay consists of (1) processing delay at the UAV, (2) network transmission

delay from the UAV node to the receiver and (3) processing delay at the receiver node. To

38

measure the end-to-end delay, an image was timestamped by the data source object when

the raw image was extracted from the pre-recorded video file,before it was compressed

and transmitted to the corresponding data sink object. Uponcompletion of processing of

the received image by the data sink object, the time-stamp ofthe image was compared with

the current time on the receiver node to obtain the end-to-end delay. To eliminate time

skews, physical clocks on all the nodes in our hardware testbed were synchronized using

NTP [55].

In all the above listed operational conditions, we compare the performance of our DRE

system when it was operated with and without HiDRA. Comparison of system performance

is decomposed into comparison of resource utilization and application QoS. For system re-

source utilization, we compare (1) wireless network bandwidth utilization and (2) proces-

sor utilization of the receiver node. For application QoS, we compare (1) target-tracking

precision and (2) average end-to-end delay.

For all our experiments, we chose the sampling period of the processor controller and

the bandwidth controller as 10 seconds and 1 second, respectively. The minimum and

maximum image transmission rate [rmin, rmax] was 5 and 15 images/second. Therefore, as

explained in SectionII.5.2, the control gain for the bandwidth controller (Kb) was computed

to be -0.06 (−1/15). SinceGp was measured to be 2, the control gain for the processor

controller (Kp) was computed to be -0.5 (−1/2). The processor utilization set-point was

selected to be 0.7. The goal of utilization control is to (1) prevent processor overload (which

can cause system instability), and (2) avoid unnecessarilyunder utilizing the processor

(which leads to a low task rate). The choice of 0.7 as the set point achieves the desired

trade off between overload protection and high task rate in our system. Since an IEEE

802.11 DCF-based network has a utilization of approximately 0.7 with 20 active nodes [9],

the wireless bandwidth utilization set-point was also configured at 0.7. Although for a

system with four nodes the achievable channel utilization could be higher than 0.7 (e.g., as

39

high as 0.8), this value varies depending on many other factors such as packet size, channel

bit rate, etc. Considering all these factors, we set the bound to 0.7 conservatively.

II.6.4 Experiment 1 : Constant Bandwidth Availability and C onstant Workload

We now present the results obtained from running the experiment under a constant

channel capacity of 2 Mbps and a constant 2 objects of interest tracked by the system.

This experimental setup provides an operational conditionwhere resource availability and

input workload are knowna priori and not subjected to change during the course of the

experiments. Images containing objects of interest were captured by UAVs 1 and 2. This

experiment serves as the baseline for all other experiments. It validates that when the track-

ing system is operated with HiDRA the following behavior occurs: (1) utilization of system

resources converge to their respective set-points and (2) application QoS converges to the

values that were obtained when the system was operated without HiDRA and application

parameters were chosena priori.

UAV Image Transmission Rate (images/sec)Quality Factor
UAV 1 10 40
UAV 2 10 40
UAV 3 10 40

Table 3: Application Parameters Chosen in Advance

We compare the performance against a static configuration. In the static configuration,

application parameters, such as image transmission rates and quality factor of the JPEG im-

age compression algorithm, were chosena priori. Values of these parameters were selected

such that (1) both processor utilization of the receiver node and the wireless bandwidth uti-

lization is equal to the set-point of 0.7 and (2) applicationQoS are maximized. The settings

of the static configuration of the system are shown in Table3.

40

II.6.4.1 Comparison of Resource Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(a) Processor Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(b) Processor Utilization without HiDRA

Figure 13: Exp 1: Comparison of Processor Utilization

Figures13 and14 compare the processor utilization at the receiver node and the wire-

less network bandwidth utilization when the system was operated with and without HiDRA.

The output of the bandwidth utilization monitor, shown in Figure14b, was processed with

a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

Figures13band14cshow that when the system was operated without HiDRA, resource

utilization of both the resources is 0.7 during the course ofthe experiment. Similarly,

Figures13a, 14a, and14bshow that when the system was operated with HiDRA, resource

utilization converges to the set-point of 0.7 and in maintained at 0.7 for the remaining

duration of the experiment. These results show that when thesystem is operated using

HiDRA, system resource utilization converges to the respective utilization set-points.

II.6.4.2 Comparison of QoS

We now compare the application QoS – (1) target-tracking precision, and (2) average

end-to-end delay.

Figure15 compares the target-tracking error obtained when the system was operated

41

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(a) Bandwidth Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(b) Bandwidth Utilization with HiDRA (estimates using
a Kalman Filter)

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(c) Bandwidth Utilization without HiDRA

Figure 14: Exp 1: Comparison of Bandwidth Utilization

with and without HiDRA. Figures15aand15bshow that average target-tracking error—

and therefore target-tracking precision—is nearly the same when the system was operated

with and without HiDRA.

Table 4, which compares the end-to-end delay when the system was operated with

and without HiDRA, shows that average end-to-end delay is the same as when the system

was operated with and without HiDRA. Based on these results,we conclude that QoS of

applications in our DRE system converges to the values obtained when the system was

operated without HiDRA and application parameters were chosena priori.

From our comparison of resource utilization and system QoS,we conclude that when

42

 1

 1.5

 2

 2.5

 3

180012006000

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 1 Target Tracking Error

Without HiDRA

With HiDRA

(a) UAV-1

 1

 1.5

 2

 2.5

 3

180012006000

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 2 Target Tracking Error

Without HiDRA

With HiDRA

(b) UAV-2

Figure 15: Exp 1: Comparison of Target-tracking Error

Number of Objects End-to-End Delay (msec)
With HiDRA Without HiDRA

2 117 117

Table 4: Exp 1: Comparison of End-to-End Delay

the system is operated with HiDRA (1) utilization of system resources converge to their

respective set-points and (2) application QoS converge to the values that were obtained

when the system was operated without HiDRA and application parameters were chosena

priori .

II.6.5 Experiment 2: Decoupled Independent Feedback Control Loops

We now demonstrate the effect of employing the processor control loop and bandwidth

control loops in an independent fashion. To decouple these two types of feedback control

loops, the bandwidth controller of all the UAVs assume a constant image transmission rate

of 10 images per second. However, the actual image transmission rates are dynamically

modified by the processor controller and the rate adapter at runtime.

In this section, we present the results obtained from running the experiment under a

43

constant channel capacity of 2 Mbps and varying number of objects of interest in the sys-

tem. This experiment demonstrates the need for an hierarchical architecture by analyzing

the effect of employing multiple independent feedback loops under constant resource avail-

ability and varying input workload. Table5 summarizes the number of objects of interest

that were tracked as a function of time.

Time (sec) Number of Objects
UAV 1 UAV 2 UAV 3 Total

0 - 300 0 0 0 0
300 - 500 1 0 0 1
500 - 700 1 1 0 2

700 - 1,100 1 1 1 3
1,100 - 1,300 0 1 1 2
1,300 - 1,500 0 0 1 1
1,500 - 2,000 0 0 0 0

Table 5: Objects of Interest as a Function of Time

II.6.5.1 Analysis of Resource Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(a) Processor Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(b) Bandwidth Utilization

Figure 16: Exp 2: Resource Utilization

Figure16ashows the processor utilization at the receiver node when the system was

44

operated with independent feedback loops. Figure16aand Table5 show that the increase

in the processor utilization atT = 300s is due to the presence of the first object of interest.

Figure16ashows that although the processor utilization increased above 0.7, within the

next several sampling periods, the processor control loop restored the processor utilization

to the desired set-point of 0.7. This was achieved as a resultof reducing the execution rates

of data-source/receiver pair(s) deemed less important,i.e., ones that captured images where

objects of interest were absent. AtT = 500s andT = 700s, the presence of the second

and third object of interest were detected. As Figure16ashows, the processor utilization

quickly re-converges to the set-point after a transient increase. AtT = 1,100s the total

number of objects being tracked by the system reduced from 3 to 2. Although there was

a decrease in the processor utilization, the processor control loop restored the processor

utilization to the set-point by increasing the execution rate of important data-source/data

sink pair(s). Similarly, the processor control loop ensured that the processor utilization

converges to the desired set-point for the remaining duration of the experiment.

From Figure16b, which shows the wireless network bandwidth utilization when the

system was operated with independent feedback loops, it canbe seen that the bandwidth

utilization is significantly below the set-point of 0.7 during the entire course of the experi-

ment. This is because the bandwidth controller assumes thatthe image transmission rate to

be a constant 10 images per second, where as the image transmission rate is dynamically

varied by the processor controller and the rate adapter at runtime in order to maintain the

processor utilization at the desired value of 0.7. The bandwidth controller does not have

complete knowledge of the state of the system, namely the image transmission rate, and as

a result, the quality factor computed by the bandwidth controller does not aid the UAV in

achieving the desired bandwidth utilization.

45

II.6.5.2 Analysis of QoS

We now analyze the application QoS – (1) target-tracking precision and (2) average end-

to-end delay. From Figure17, which shows the target-tracking errors that was obtained

 1

 1.5

 2

 2.5

 3

 3.5

 4

1100700500300

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 1 Target Tracking Error

(a) UAV-1

 1

 1.5

 2

 2.5

 3

 3.5

 4

1100700500

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 2 Target Tracking Error

(b) UAV-2

 1

 1.5

 2

 2.5

 3

 3.5

 4

150013001100700

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 3 Target Tracking Error

(c) UAV-3

Figure 17: Exp 2: Target-tracking Error

when the system was operated with independent feedback loops, it can be seen that the

target tracking error is high when the system was operated with independent feedback

loops. This is because the bandwidth control loops compute images quality factors that

do not utilize the bandwidth allocated to each UAV effectively. Therefore, as shown in

Figure16b, the wireless network bandwidth was severely under-utilized. This accounts for

46

the high target tracking error when the system was operated with independent feedback

loops.

These results demonstrate that when the system was operatedwith independent feed-

back loops, wireless network bandwidth was severely under-utilized, which therefore leads

to a high target tracking error, or a low QoS.

Number of Objects End-to-End Delay (msec)
0 20
1 60
2 117
3 157

Table 6: Exp 2: End-to-End Delay

Table6 shows the end-to-end delay when the system was operated withindependent

feedback loops. From Tables4 and6 it can be seen that when the system tracked 2 objects

of interest, the same end-to-end delay was achieved when thesystem was operated with

independent feedback loops, with HiDRA, and without HiDRA as the system resource

utilization was maintained below the specified utilizationset-point. This is because the

wireless network begins to experience packet losses and re-transmissions when the utiliza-

tion is above 0.7 [9]. When the system was operated with HiDRA, without HiDRA, and

with independent feedback loops, since the bandwidth utilization was below 0.7, the net-

work transmission delays are nearly equal. Moreover, sincethe processor utilization in

both the cases were below the utilization set-point (as shown in Figures13a, 13band16a),

the end-to-end delays are equal.

These results show the effect of employing multiple feedback loops— processor control

loop and bandwidth control loops—in an independent fashion. Although the processor

utilization converges to the desired value, the bandwidth utilization is significantly lower

than the desired value. This results in severe under utilization of system resources and low

47

QoS, both of which are undesirable. Therefore, we now demonstrate how HiDRA, using

an hierarchical approach, achieves desired system resource utilization and improves QoS.

II.6.6 Experiment 3: Constant Bandwidth Availability and V arying Workload

We next present the results obtained from running the experiment under a constant

channel capacity of 2 Mbps and varying number of objects of interest in the system. This

experiment demonstrates the adaptive resource managementcapabilities of HiDRA under

constant resource availability and varying input workload. Table5 summarizes the number

of objects of interest that were tracked as a function of time. In this experiment, when the

system was operated without HiDRA, the static system configuration shown in Table3 was

used.

II.6.6.1 Comparison of Resource Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(a) Processor Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(b) Processor Utilization without HiDRA

Figure 18: Exp 3: Comparison of Processor Utilization

Figures18 and19 compare the processor utilization at the receiver node and the wire-

less network bandwidth utilization when the system was operated with and without HiDRA.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(a) Bandwidth Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(b) Bandwidth Utilization with HiDRA (processed us-
ing a Kalman Filter)

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Wireless Network Bandwidth Utilization

(c) Bandwidth Utilization without HiDRA

Figure 19: Exp 3: Comparison of Bandwidth Utilization

The output of the bandwidth utilization monitor, shown in Figure19b, was processed with

a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

Figures18a and18b and Table5 show that the increase in the processor utilization

at T = 300s is due to the presence of the first object of interest. Figure18ashows that

although the processor utilization increased above 0.7, within the next several sampling

periods, HiDRA restored the processor utilization to the desired set-point of 0.7. HiDRA

achieved this result by reducing the execution rates of data-source/receiver pair(s) deemed

less important,i.e., ones that captured images where objects of interest were absent. As

49

shown in Figure18b, when the system was operated without HiDRA, the processor utiliza-

tion remained at 0.85, which is significantly higher than theutilization set-point of 0.7.

At T = 500s, the presence of the second object of interest was detected.The processor

utilization thus increased to 0.9 when the system was operated without HiDRA, as shown

in Figure18b. As Figure18ashows that the processor utilization quickly re-convergesto

the set-point after a transient increase when the system wasoperated with HiDRA.

At T = 700s, the presence of the third object of interest was detected. As a result,

when the system was operated without HiDRA, the processor utilization increased to 1, as

shown in Figure18b. Once again, Figure18ashows that the processor utilization quickly

re-converges to the set-point after a transient increase when the system was operated with

HiDRA.

At T = 1,100s the total number of objects being tracked by the system reduced from

3 to 2. Although there was a decrease in the processor utilization, HiDRA restored the

processor utilization to the set-point by increasing the execution rate of important data-

source/data sink pair(s). Similarly, HiDRA ensured that the processor utilization converges

to the desired set-point for the remaining duration of the experiment. Similarly, Figures19a

and19b shows how HiDRA ensures that the wireless bandwidth utilization converges to

the desired set-point of 0.7 within bounded time, even underfluctuating workloads.

These results show how HiDRA ensures that the processor utilization of the receiver

node—as well as the wireless bandwidth of the network—converges to the desired set-

point within bounded time, even under fluctuating workloads. We therefore conclude that

HiDRA ensures utilization of multiple system resources is maintained within the specified

bounds, thereby ensuring system stability.

II.6.6.2 Comparison of QoS

We now compare the application QoS – (1) target-tracking precision and (2) average

end-to-end delay.

50

 1

 1.5

 2

 2.5

 3

1100700500300

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 1 Target Tracking Error

With HiDRA

Without HiDRA

(a) UAV-1

 1

 1.5

 2

 2.5

 3

13001100700500

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 2 Target Tracking Error

With HiDRA

Without HiDRA

(b) UAV-2

 1

 1.5

 2

 2.5

 3

150013001100700

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 3 Target Tracking Error

With HiDRA

Without HiDRA

(c) UAV-3

Figure 20: Exp 3: Comparison of Target-tracking Error

Figure20 compares the target-tracking errors that were obtained when the system was

operated with and without HiDRA. Table5 shows that duringT ∈ [300s,500s], there was

only one object of interest that was tracked by the system, and this object was tracked

by UAV 1. When the system was operated without HiDRA, the static configuration of

the system (shown in Table3) assumed that there was a total 2 objects of interests being

tracked by the system. As a result, the Figure20ashows that the target tracking error during

T ∈ [300s,500s] is lower when the system was operated with HiDRA than withoutit.

DuringT ∈ [500s,700s], a total of 2 objects of interest that were tracked by the system,

and these objects were tracked by UAV 1 and UAV 2. This input workload is the same as

the static configuration of the system. As a result, Figures20aand20bshow that the target

51

tracking error duringT ∈ [500s,700s] is nearly the same when the system was operated

with and without HiDRA.

DuringT ∈ [700s,1100s], however, a total of three objects of interest were being tracked

by the system, one by each UAV. This input workload is higher than the input workload

under which the static configuration of the system was selected. To maintain the band-

width utilization within specified bounds, therefore, HiDRA lowers the quality factor of

the images transmitted by the UAVs to the receiver duringT ∈ [700s,1100s]. As a result,

Figures20a, 20b, and20c show that the target tracking error duringT ∈ [700s,1100s] is

higher when the system was operated with HiDRA than without it. Similarly, the target

tracking precision of the received images for the remainingtime intervals can be analyzed.

These results demonstrate that HiDRA effectively maintains utilization of system re-

source below the specified set-points despite fluctuations in input workload by gracefully

adjusting application QoS.

Number of Objects End-to-End Delay (msec)
With HiDRA Without HiDRA

0 20 20
1 60 60
2 117 117
3 160 250

Table 7: Exp 3: Comparison of End-to-End Delay

Table7 compares the end-to-end delay when the system was operated with and without

HiDRA. This table shows that when the total number of objectsof interest tracked by the

system was 2 or less, the end-to-end delay was the same when the system was operated with

and without HiDRA. This result occurred because the static configuration of the system

was selected assuming 2 objects of interest were being tracked by the system. When the

number of objects tracked by the system increased to 3, however, system resource were

over-utilized considerably when the system was operated without HiDRA, as compared to

52

when the system was operated with it. As a result, when the system was operated without

HiDRA, the end-to-end delay is significantly higher than when the system was operated

with HiDRA.

HiDRA reacts to fluctuations in input workload by modifying application parameters

such as JPEG quality factor. These adaptations ensure that system resources are not over-

utilized and thus lowers average end-to-end delay.

II.6.7 Experiment 4 : Varying Bandwidth Availability and Co nstant Workload

We now present the results obtained from running the experiment under varying channel

capacity of the wireless network and a constant 2 number of objects of interest tracked by

the system. This experiment demonstrates the adaptive resource management capabilities

of HiDRA under varying resource availability and constant input workload. We normalize

the channel capacity, bandwidth utilization, and bandwidth utilization set-point to the max-

imum channel capacity of 2Mbps. Table8 summarizes the variation in channel capacity

and bandwidth utilization set-point as a function of time. As it can be seen in Table8, the

Time (sec) Channel Bandwidth Utilization Normalized Normalized Bandwidth
Capacity (Mbps) Set-Point (Mbps) Channel Capacity Utilization Set-point

0 - 480 2.0 0.7 * 2.0 = 1.4 2.0 / 2.0 = 1.0 1.4 / 2.0 = 0.7
480 - 1,480 1.0 0.7 * 1.0 = 0.7 1.0 / 2.0 = 0.5 0.7 / 2.0 = 0.35

1,480 - 2,000 2.0 0.7 * 2.0 = 1.4 2.0 / 2.0 = 1.0 1.4 / 2.0 = 0.7

Table 8: Channel Capacity and Bandwidth Utilization Set-Point as a Function of
Time

variation in the channel capacity represents a “step function”. A step function is selected

because it is one of the most severe form of variation (or disturbance) that a control system

can be subjected to. This experiment validates that HiDRA can maintain system stability

even under such severe variation in channel capacity. Images containing objects of interests

53

were captured by UAVs 1 and 2. In this experiment, the static configuration of the system

shown in Table3 was used when the system was operated without HiDRA.

II.6.7.1 Comparison of Resource Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(a) Processor Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500
U

til
iz

at
io

n
Time (sec)

Processor Utilization

(b) Processor Utilization without HiDRA

Figure 21: Exp 4: Comparison of Processor Utilization

Figures21 and22 compare the processor utilization at the receiver node and the nor-

malized bandwidth utilization when the system was operatedwith and without HiDRA.

The output of the bandwidth utilization monitor, shown in Figure22b, was processed with

a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

From Figures21aand21bit can be seen that under this experimental scenario, processor

utilization is equal to the set-point of 0.7 when the system was operated both with and

without HiDRA.

Figure22cshows that when the system was operated without HiDRA, the normalized

bandwidth utilization duringT ∈ [0s,480s] andT ∈ [1480s,2000s] was 0.7, which is equal

to the set-point. DuringT ∈ [480s,1480s] the normalized bandwidth utilization was 0.5,

which is equal to the normalized channel capacity and significantly greater than the nor-

malized set-point of 0.35. From Figures22aand22b, however, it can be seen that when the

54

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Normalized Bandwidth Utilization

Available Bandwidth

Current Uitlization

(a) Normalized Bandwidth Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Normalized Bandwidth Utilization

Available Bandwidth

Current Uitlization

(b) Normalized Bandwidth Utilization with HiDRA
(processed using a Kalman Filter)

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Normalized Bandwidth Utilization

Available Bandwidth

Current Uitlization

(c) Normalized Bandwidth Utilization without HiDRA

Figure 22: Exp 4: Comparison of Normalized Bandwidth Utilization

system was operated with HiDRA, the normalized bandwidth utilization converged to the

normalized utilization set-point even under varying channel capacity. HiDRA achieved this

behavior by lowering the quality factor of the images in response to fluctuations in network

bandwidth.

These results show that HiDRA ensures the wireless bandwidth utilization converges to

the desired set-point within bounded time, even under varying network bandwidth availabil-

ity. We therefore conclude that HiDRA ensures system resource utilization is maintained

within the specified bounds, thereby ensuring system stability.

55

II.6.7.2 Comparison of QoS

We now compare the application QoS, which includes (1) target-tracking precision and

(2) average end-to-end delay.

 1

 1.5

 2

 2.5

 3

180012006000

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 1 Target Tracking Error

With HiDRA

Without HiDRA

(a) UAV-1

 1

 1.5

 2

 2.5

 3

180012006000

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 2 Target Tracking Error

With HiDRA

Without HiDRA

(b) UAV-2

Figure 23: Exp 4: Comparison of Target-tracking Error

Figure23 compares the target-tracking error that was obtained when the system op-

erated with and without HiDRA. As shown in Table8, during T ∈ [0s,480s] and T ∈

[1,480s,2000s] the channel capacity of the wireless network was 2 Mbps, which is the

resource availability under which the static configurationof the system was selected. As a

result, Figures23aand23bshow that the target tracking error during duringT ∈ [0s,480s]

andT ∈ [1,480s,2000s] is nearly the same when the system was operated with HiDRA and

without HiDRA.

During T ∈ [480s,1480s], however, the channel capacity of the wireless network was

1 Mbps. Within this time interval, the wireless bandwidth resource availability is half the

wireless bandwidth resource availability under which the static configuration of the sys-

tem was selected. To maintain the bandwidth utilization within specified bounds, HiDRA

lowers the quality factor of the images transmitted by the UAVs to the receiver during

56

T ∈ [480s,1480s]. As a result, Figures23aand23bshow that the target tracking error dur-

ing T ∈ [480s,1480s] was higher when the system was operated with HiDRA than when

the system was operated without it. These results demonstrate that HiDRA effectively

maintains utilization of system resource below the specified set-points despite variations in

bandwidth resource availability by gracefully adjusting application QoS.

Table9 compares the end-to-end delay when the system was operated with and without

HiDRA. This table shows that end-to-end delay was much lowerwhen the system was op-

Number of Objects End-to-End Delay (msec)
With HiDRA Without HiDRA

2 185 276

Table 9: Exp 4: Comparison of End-to-End Delay

erated with HiDRA than without it. When the system was operated without HiDRA, during

T ∈ [480s,1480s], the utilization of the wireless network bandwidth is equalto its channel

capacity, which increased packet loss, retransmission delays, and in turn network transmis-

sion delay. This behavior accounts for the increase in the average end-to-end delay because

the static configuration of the system was selected assuming2 objects of interest were be-

ing tracked by the system and a constant channel capacity of 2Mbps. When the system

was operated with HiDRA, however, HiDRA reacts to variations in channel capacity by

modifying application parameters such as JPEG quality factor. These adaptations ensure

that system resources are not over-utilized and thus lowersaverage end-to-end delay.

II.6.8 Experiment 5: Varying Bandwidth Availability and Va rying Workload

We finally present the results obtained from running the experiment under varying chan-

nel capacity of the wireless network, as well as varying number of objects of interest in the

system. This experiment demonstrates the adaptive resource management capabilities of

HiDRA under varying resource availability and fluctuating input workload. We, once again,

57

normalize the channel capacity, bandwidth utilization, and bandwidth utilization set-point

to the maximum channel capacity of 2Mbps. Table5 summarizes the number of objects

of interests that were tracked as a function of time. Table8 summarizes the variation of

channel capacity as a function of time. In this experiment, when the system was operated

without HiDRA, the static configuration of the system shown in Table3 was used.

II.6.8.1 Comparison of Resource Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(a) Processor Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Processor Utilization

(b) Processor Utilization without HiDRA

Figure 24: Exp 5: Comparison of Processor Utilization

Figures24 and25 compare the processor utilization at the receiver node and the wire-

less network bandwidth utilization when the system was operated with and without HiDRA.

The output of the bandwidth utilization monitor, shown in Figure25b, was processed with

a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

Figure24 and Table5 show that the increase in the processor utilization atT = 300s

is due to the presence of the first object of interest. From Figure 24ait can be seen that

although the processor utilization increased above 0.7, within the next several sampling

periods, HiDRA restored the processor utilization to the desired set-point of 0.7. This be-

havior was achieved by reducing the execution rates of data-source/receiver pair(s) deemed

58

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Normalized Bandwidth Utilization

Available Bandwidth

Current Uitlization

(a) Normalized Bandwidth Utilization with HiDRA

 0

 0.2

 0.4

 0.6

 0.8

 1

200015001000500

U
til

iz
at

io
n

Time (sec)

Normalized Bandwidth Utilization

Available Bandwidth

Current Uitlization

(b) Normalized Bandwidth Utilization with HiDRA
(processed using a Kalman Filter)

 0

 0.2

 0.4

 0.6

 0.8

 1

15001000500

U
til

iz
at

io
n

Time (sec)

Normalized Bandwidth Utilization

Available Bandwidth

Current Uitlization

(c) Normalized Bandwidth Utilization without HiDRA

Figure 25: Exp 5: Comparison of Normalized Bandwidth Utilization

less important,i.e., ones that captured images where objects of interest were absent. As

shown in Figure24b, when the system was operated without HiDRA, the processor utiliza-

tion remained at 0.85, which is significantly higher than theutilization set-point of 0.7.

At T = 500s, the presence of the second object of interest was detected.As a result,

Figure24bshows that processor utilization increased to 0.95 when thesystem was operated

without HiDRA. As shown in Figure24a, however, the processor utilization quickly re-

converges to the set-point after a transient increase when the system was operated with

HiDRA.

At T = 700s the presence of the third object of interest was detected. When the system

59

was operated without HiDRA, Figure24b shows how the processor utilization increased

to 1. As shown in Figure24a, however, once again the processor utilization quickly re-

converges to the set-point after a transient increase when the system was operated with

HiDRA.

At T = 1100s the total number of objects currently being tracked by the system reduced

from 3 to 2, although there was a decrease in the processor utilization, HiDRA restored the

processor utilization of 0.7 by increasing the execution rate of important data-source/data

sink pair(s). Similarly, HiDRA ensured that the processor utilization converges to the de-

sired set-point for the remaining duration of the experiment.

These results show that HiDRA ensures that the processor utilization of the receiver

node converges to the desired set-point within bounded time, even under fluctuating work-

loads.

Figure25cshows that when the system was operated without HiDRA, the normalized

bandwidth utilization duringT ∈ [0s,480s] andT ∈ [1480s,2000s] was below the normal-

ized set-point of 0.7. DuringT ∈ [480s,1480s] the normalized bandwidth utilization was

0.5, which is equal to the channel capacity and significantlygreater than the normalized

set-point of 0.35. From Figures25aand25b, however, it can be seen that when the system

operated with HiDRA, the normalized bandwidth utilizationconverged to the normalized

utilization set-point even under varying channel capacity. This behavior was achieved by

lowering the quality factor of the images in response to the variations in network bandwidth

availability and input workload.

These results show that HiDRA ensures that the wireless bandwidth utilization con-

verges to the desired set-point within bounded time, even under varying channel capacity

and input workload. We therefore conclude that HiDRA ensures utilization of system re-

sources is maintained within the specified bounds, even under varying resource availability

and input workload, thereby ensuring system stability.

60

II.6.8.2 Comparison of QoS

We now compare the application QoS – (1) target-tracking precision, and (2) average

end-to-end delay.

 1

 1.5

 2

 2.5

 3

1100700500300

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 1 Target Tracking Error

With HiDRA

Without HiDRA

(a) UAV-1

 1

 1.5

 2

 2.5

 3

13001100700500

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 2 Target Tracking Error

With HiDRA

Without HiDRA

(b) UAV-2

 1

 1.5

 2

 2.5

 3

150013001100700

E
rr

or
 (

pi
xe

l)

Time (sec)

UAV 3 Target Tracking Error

With HiDRA

Without HiDRA

(c) UAV-3

Figure 26: Exp 5: Comparison of Target-tracking Error

Figure26 compares the target-tracking error that were obtained whenthe system was

operated with and without HiDRA. Table5 shows that duringT ∈ [300s,500s] there was

only one object of interest tracked by the system using UAV 1.When the system was oper-

ated without HiDRA, the static configuration of the system (as shown in Table3) assumed

(1) that there were a total of 2 objects of interests being tracked by the system and (2) a

constant channel capacity of 2 Mbps. As a result, Figure26ashows that the target tracking

61

error duringT ∈ [300s,480s] is lower when the system was operated with HiDRA than

without it.

During T ∈ [480s,1480s], however, the channel capacity of the wireless network was

1 Mbps. During Within this time interval, the wireless network bandwidth availability

was half the bandwidth availability under which the static configuration of the system was

selected. To maintain the bandwidth utilization within specified bounds, therefore, HiDRA

lowers the quality factor of the images transmitted by the UAVs to the receiver during

T ∈ [480s,1480s]. As a result, Figures26a, 26b, and26c show that the target tracking

error duringT ∈ [480s,1480s] was higher when the system was operated with HiDRA than

without it.

These results demonstrate that HiDRA effectively maintains utilization of system re-

source below the specified set-points despite fluctuations in input workload and variations

in bandwidth resource availability by gracefully adjusting application QoS.

Table10compares the end-to-end delay when the system was operated with and without

HiDRA. This table shows that end-to-end delay is much lower when the system operates

Number of Objects End-to-End Delay (msec)
With HiDRA Without HiDRA

0 20 20
1 80 123
2 137 235
3 206 327

Table 10: Exp 5: Comparison of End-to-End Delay

with HiDRA than without it. When the system was operated without HiDRA the utilization

of the wireless network bandwidth is equal to its channel capacity duringT ∈ [480s,1480s],

which resulted in increased packet loss, retransmission delays, which in turn increased

network transmission delay. This behavior accounts for theincrease in the average end-to-

end delay because the static configuration of the system was selected assuming 2 objects

62

of interest were being tracked by the system and a constant channel capacity of 2 Mbps.

When the system was operated with HiDRA, however, it reacts to variations in channel

capacity and number of objects by modifying application parameters, such as the JPEG

quality factor. These adaptations ensures that system resources are not over-utilized and

thus lowers average end-to-end delay.

II.6.9 Summary

HiDRA responds to fluctuation in input workload and the most severe form of variation

in resource availability by periodically monitoring and control of resource utilization. Both

our theoretical and empirical analysis assures that the utilization of system resources con-

verge to their specified utilization set-points even if a set-point is specified as a time-varying

reference signal. However, the only assumption is that the variation in the reference signal

is slower than the sampling period.

Our results show that when resources utilization increasesabove the desired set-point,

HiDRA lowers the utilization by modifying application parameters, such as execution rates

and JPEG quality factor. These adaptations ensure that (1) system resources are not over-

utilized and (2) enough resources are available for important applications. Our results

also show that when the system was operated with independentfeedback loops, system

resources are severely under-utilized, and as a result application QoS are significantly re-

duced.

Our analysis of the results described above suggests that applying hierarchical adaptive

resource management to our target tracking system helps to (1) maintain system resource

utilization within specified bounds and (2) improve overallsystem QoS. These improve-

ments are achieved largely due to monitoring of system resource utilization, adaptive re-

source provisioning, and efficient system workload management by means of HiDRA’s

resource monitors, hierarchical controllers, and effectors, respectively.

63

II.7 Summary

This chapter described HiDRA, which is our hierarchical distributed resource man-

agement architecture based on control-theoretic techniques that provides adaptive resource

management, such as resource monitoring and application adaptation, that are key to sup-

porting open DRE systems. We first presented the theoreticalanalysis that shows how

HiDRA ensures stability in our DRE system. We then evaluatedthe performance of HiDRA

using a representative target tracking DRE system implemented using Real-time CORBA

and composed of two types of system resources (i.e., computational power at the receiver

and wireless network bandwidth) and three applications (i.e., UAV data sender/receiver

pairs). Our theoretical analysis and empirical results show that HiDRA delivers efficient re-

source utilization by maintaining system resource utilization within specified bounds even

under fluctuating work loads, thereby ensuring system stability and delivering effective

QoS. However, as HiDRA tries to achieve the desired utilization set-point of system re-

sources at all times, where there is no resource contention between applications executing

in the system, the system can be operated without HiDRA to conserve system resources.

When resource contention arises, the system can be operatedwith HiDRA to ensure that

the utilization of system resources is maintained within the specified set-point.

64

CHAPTER III

ADAPTIVE RESOURCE MANAGEMENT FRAMEWORKS

Achieving end-to-end quality of service (QoS) in DRE systems requires integrating a

range of real-time capabilities, such as QoS-enabled network protocols, real-time operating

system scheduling mechanisms and policies, and real-time middleware services, across the

system domain. Although existing research and solutions [13, 54] focus on improving the

performance and QoS of individual capabilities of the system (such as operating system

scheduling mechanism and policies), they are not sufficientfor DRE systems as these sys-

tems require integrating a range of real-time capabilitiesacross the system domain. Con-

ventional QoS-enabled middleware technologies, such as Real-time CORBA [62] and the

Real-time Java [10], have been used extensively as an operating platforms to build DRE

systems as they support explicit configuration of QoS aspects (such as priority and thread-

ing models), and provide many desirable real-time features(such as priority propagation,

scheduling services, and explicit binding of network connections).

QoS-enabled middleware technologies have traditionally focused on DRE systems that

operate inclosedenvironments where operating conditions, input workloads, and resource

availability are known in advance and do not vary significantly at runtime. An example

of a closed DRE system is an avionics mission computer [72], where the penalty of not

meeting a QoS requirement (such as deadline) can result in the failure of the entire system

or mission. Conventional QoS-enabled middleware technologies are insufficient, however,

for DRE systems that execute inopenenvironments where operational conditions, input

workload, and resource availability cannot be characterized accuratelya priori. Exam-

ples of open DRE systems include shipboard computing environments [68], multi-satellite

missions [78], and intelligence, surveillance and reconnaissance missions [71].

Specifying and enforcing end-to-end QoS is an important andchallenging issue for

65

open systems DRE due to their unique characteristics, including (1) constraints in multiple

resources (e.g., limited computing power and network bandwidth) and (2) highly fluctu-

ating resource availability and input workload. At the heart of achieving end-to-end QoS

are resource management techniques that enable open DRE systems toadaptto dynamic

changes in resource availability and demand. In earlier work we developed adaptive re-

source managementalgorithms(such as EUCON [52], DEUCON [83], HySUCON [41],

and FMUF [18]) and architectures, such as HiDRA [70] based on control-theoretic tech-

niques. We then developed FC-ORB [84], which is a QoS-enabled adaptive middleware

that implements the EUCON algorithm to handle fluctuations in application workload and

system resource availability.

A limitation with our prior work, however, is that it tightlycoupled resource manage-

ment algorithms within particular middleware platforms, which made it hard to enhance

the algorithms without redeveloping significant portions of the middleware. For exam-

ple, since the design and implementation of FC-ORB was closely tied to the EUCON

adaptive resource management algorithm, significant modifications to the middleware was

needed to support other resource management algorithms, such as DEUCON, HySUCON,

or FMUF. Object-oriented frameworks have traditionally been used to factor out many

reusable general-purpose and domain-specific services from DRE systems and applications

[66]; however, to alleviate the tight coupling between resource management algorithms and

middleware platforms and improve flexibility, this paper presents aadaptive resource man-

agement frameworkfor open DRE systems. Contributions of this chapter to the study of

adaptive resource management solutions for open DRE systems include:

• The design of a Resource Allocation and Control Engine (RACE), which is a fully

customizable and configurable adaptive resource management framework for open DRE

systems. RACE decouples adaptive resource management algorithms from the middleware

implementation, thereby enabling the usage of various resource management algorithms

without the need for redeveloping significant portions of the middleware. RACE can be

66

configured to support a range of algorithms for adaptive resource management without

requiring modifications to the underlying middleware. To enabling the seamless integra-

tion of resource allocation and control algorithms into DREsystems, RACE enables the

deployment and configuration of feedback control loops. RACE therefore complements

theoretical research on adaptive resource management algorithms that provide a model and

theoretical analysis of system performance.

As shown in Figure27, RACE provides (1)resource monitorsthat track utilization of

various system resources, such as CPU, memory, and network bandwidth, (2)QoS monitors

that track application QoS, such as end-to-end delay, (3)resource allocatorsthat allocate

resource to components based on their resource requirements and current availability of

system resources, (4)configuratorsthat configure middleware QoS parameters of appli-

cation components, (5)controllersthat compute end-to-end adaptation decisions based on

control algorithms to ensure that QoS requirements of applications are met, and (6)effec-

tors that perform controller-recommended adaptations.

Allocators Controllers

Applications with time-varying
resource and QoS requirements

System
Resource
Utilization

Application
QoS

System domain with time-varying
resource availability

QoS-enabled Component Middleware
Infrastructure (CIAO/DAnCE)

RACE
Configurators

Component Deployment Plan

Deploy Components

Effectors

Resource
Monitors

QoS
Monitors

Figure 27: A Resource Allocation and Control Engine (RACE) for Open DRE Sys-
tems

• The empirical evaluation of RACE’s scalability as the number of nodes and ap-

plications in a DRE system grows. Scalability is an integralproperty of a framework as it

67

determines the framework’s applicability. Since open DRE systems comprise large number

of nodes and applications, to determine whether RACE can be applied to such systems,

we empirically evaluate RACE’s scalability as the number ofapplications and nodes in the

system increases. Our results demonstrate that RACE scaleswell as the number of appli-

cations and nodes in the system increases, and therefore canbe applied to a wide range of

open DRE systems.

The remainder of the chapter is organized as follows: Section III.1 compares our re-

search on RACE with related work; SectionIII.2 describes the architecture of RACE; Sec-

tion III.3 presents an empirical measure of RACE’s scalability as the number of applica-

tions and nodes in the system grows; and SectionIII.4 concludes the chapter by presenting

a summary.

III.1 Related Research

This section presents an overview of existing middleware technologies that have been

used to develop open DRE system. As in Figure28 and described below, we classify

this research along two orthogonal dimensions: (1) QoS-enabled DOC middleware vs.

QoS-enabled component middleware and (2) design-time vs. run-time QoS configuration,

optimization, analysis, and evaluation of constraints, such as timing, memory, and CPU.

III.1.1 Conventional and QoS-enabled DOC Middleware

Conventional middleware technologies for distributed object computing (DOC), such

as The Object Management Group (OMG)’s CORBA [59] and Sun’s Java RMI [76], en-

capsulates and enhances native OS mechanisms to create reusable network programming

components. These technologies provide a layer of abstraction that shields application

developers from the low-level platform-specific details and define higher-level distributed

programming models whose reusable APIs and components automate and extend native

OS capabilities.

68

PER
TS

Sin
gl
e

M
ul
tip

le

D
e
s
ig

n
 T

im
e

R
u
n
 T

im
e

Distributed Objects

Middleware Technology

A
p
p
lic

a
b
ili

ty

N
o.

 o
f R

es
ou

rc
es

/

R
eq

ui
re

m
en

ts

R
ap

id
Sch

ed

K
ok

yu
QARM

A
FC

ORB

PIC
M

L

C
ad

en
a

VEST

AIR
ES

Components
FC

-U
/

FC
-M

CAM
RIT

HyS
UCON

Q
os

ke
ts

Q
uO

Figure 28: Taxonomy of Related Research

Conventional DOC middleware technologies, however, address onlyfunctionalaspects

of system/application development such as how to define and integrate object interfaces

and implementations. They do not address QoS aspects of system/application develop-

ment such as how to (1) define and enforce application timing requirements, (2) allocate

resources to applications, and (3) configure OS and network QoS policies such as priorities

for application processes and/or threads. As a result, the code that configures and manages

QoS aspects often become entangled with the application code. These limitations with con-

ventional DOC middleware have been addressed by the following run-time platforms and

design-time tools:

Run-time. Early work on resource management middleware for shipboardDRE systems

presented in [64, 86] motivated the need for adaptive resource management middleware.

This work was further extended by QARMA [30], which provides resource management

as aservicefor existing QoS-enabled DOC middleware, such as RT-CORBA.Kokyu [33]

also enhances RT-CORBA QoS-enabled DOC middleware by providing a portable middle-

ware scheduling framework that offers flexible scheduling and dispatching services. Kokyu

69

performs feasibility analysis based on estimated worst case execution times of applications

to determine if a set of applications isschedulable. Resource requirements of applications,

such as memory and network bandwidth, are not captured and taken into consideration by

Kokyu. Moreover, Kokyu lacks the capability to track utilization of various system re-

sources as well as QoS of applications. To address these limitations, research presented

in [15] enhances QoS-enabled DOC middleware by combining Kokyu and QARMA.

Design-time. RapidSched [88] enhances QoS-enabled DOC middleware, such as RT-CORBA,

by computing and enforcing distributed priorities. RapidSched uses PERTS [47] to specify

real-time information, such as deadline, estimated execution times, and resource require-

ments. Static schedulability analysis (such as rate-monotonic analysis) is then performed

and priorities are computed for each CORBA object in the system. After the priorities are

computed, RapidSched uses RT-CORBA features to enforce these computed priorities.

III.1.2 Conventional and QoS-enabled Component Middleware

Conventional component middleware technologies, such as the CORBA Component

Model (CCM) [60] and Enterprise Java Beans [5, 77], provide capabilities that addresses

the limitation of DOC middleware technologies in the context of system design and de-

velopment. Examples of additional capabilities offered byconventional component mid-

dleware compared to conventional DOC middleware technology include (1) standardized

interfaces for application component interaction, (2) model-based tools for deploying and

interconnecting components, and (3) standards-based mechanisms for installing, initializ-

ing, and configuring application components, thus separating concerns of application de-

velopment, configuration, and deployment.

Although conventional component middleware support the design and development of

large scale distributed systems, they do not address the address the QoS limitations of DOC

middleware. Therefore, conventional component middleware can support large scale enter-

prise distributed systems, but not DRE systems that have thestringent QoS requirements.

70

These limitations with conventional component-based middleware have been addressed by

the following run-time platforms and design-time tools:

Run-time. QoS provisioning frameworks, such as QuO [90] and Qoskets [53, 65, 71] help

ensure desired performance of DRE systems built atop QoS-enabled DOC middleware and

QoS-enabled component middleware, respectively. When applications are designed using

Qoskets (1) resources are dynamically (re)allocated to applications in response to changing

operational conditions and/or input workload and (2) application parameters are fine-tuned

to ensure that allocated resource are used effectively. With this approach, however, applica-

tions are augmented explicitly at design-time with Qosket components, such as monitors,

controllers, and effectors. This approach thus requires redesign and reassembly of existing

applications built without Qoskets. When applications aregenerated at run-time (e.g., by

intelligent mission planners [39]), this approach would require planners to augment the ap-

plications with Qosket components, which may be infeasiblesince planners are designed

and built to solve mission goals and not perform such platform-/middleware-specific oper-

ations.

Design-time. VEST [74] is a design assistant tool based on theGeneric Modeling Environ-

ment[4] that enables embedded system composition from component libraries and checks

whether timing, memory, power, and cost constraints of real-time and embedded applica-

tions are satisfied. AIRES [40] is a similar tool that provides the means to map design-time

models of component composition with real-time requirements to run-time models that

weave together timing and scheduling attributes. The research presented in [48] describes

a design assistant tool, based on MAST [34], that comprises a DSML and a suite of anal-

ysis and system QoS configuration tools and enables composition, schedulability analysis,

and assignment of operating system priority for application components. Cadena [35] is

an integrated environment for developing and verifying component-based DRE systems

by applying static analysis, model-checking, and lightweight formal methods. Cadena also

71

provides a component assembly framework for visualizing and developing components and

their connections.

Some design-time tools, such as AIRES, VEST, and those presented in [48], useesti-

mates, such as estimated worst case execution time, estimated CPU, memory, and/or net-

work bandwidth requirements. These tools are targeted for systems that execute inclosed

environments, where operational conditions, input workload, and resource availability can

be characterized accuratelya priori. Since RACE tracks and manages utilization of various

system resources, as well as application QoS, it can be used in conjunction with these tools

to build open DRE systems.

III.1.3 Unresolved Challenges

We now describe the shortcomings of existing research on resource management tools

and frameworks for large-scale DRE systems, focusing on thekey research challenges that

are still unresolved.

Design-time solutions.As described earlier in SectionII.3, design time solutions – for

both DOC middleware and component middleware – perform analysis and resource man-

agement usingestimates, such as estimated worst case execution time, estimated CPU,

memory, and/or network bandwidth requirements. These tools and techniques are targeted

for systems that execute inclosedenvironments, where operational conditions, input work-

load, and resource availability can be characterized accuratelya priori. What is needed is

a resource management framework that tracks and manages utilization of various system

resources, as well as application QoS, that can be used in conjunction with these tools to

build DRE systems that execute in open environments.

Runtime solutions for QoS-enabled DOC middleware.As these solutions are built atop

DOC middleware, they inherit the limitations of DOC middleware described inI.1. As

a result, these solutions do not provide higher level abstraction that separates the frame-

work configuration from framework functionality. Configuration and customization of

72

these frameworks are done via source code, and therefore is tedious and error-prone. With

existing solutions, incorporation of new resource management algorithms into the resource

management framework would involve reimplementation of significant portions of the mid-

dleware or framework. Moreover, existing solutions assumeresources are already allocated

to applications and do not perform on-line resource allocation or admission control.

Runtime solutions for QoS-enabled component middleware.With existing solution ap-

proaches, applications are augmented explicitly at design-time with Qosket components,

such as monitors, controllers, and effectors. This approach thus requires redesign and re-

assembly of existing applications built without Qoskets, which might not be feasible for

DRE systems with large number of legacy applications. Moreover, when applications are

generated at run-time (e.g., by intelligent mission planners [39]), this approach would re-

quire planners to augment the applications with Qosket components, which may be infea-

sible since planners are designed and built to solve missiongoals and to work atop any

component middleware, not just CCM.

In summary, what is missing is a resource management framework that provides adap-

tive resource and QoS management capabilities in an application transparent and non-

intrusive way. In particular, the framework should allocate CPU, memory, and networking

resources to application components and track and manage utilization of various system

resources, as well as application QoS. The framework shouldhave the capability to de-

ploy and manage applications that are composed at design-time by system designers (using

DSML tools such as PICML), as well as at run-time by intelligent mission planners. The

framework should provide reusable entities, such as resource monitors, QoS monitors, and

effectors, that can be configured to incorporate a range of existing control algorithms, such

as EUCON [52] and HySUCON [41], as well as future algorithms. Moreover, the frame-

work should provide higher level of abstractions that aid inconfiguring and customizing

the framework.

73

III.2 Structure and Functionality of RACE

This section describes the structure and functionality of RACE. RACE supports open

DRE systems built atop CIAO, which is an open-source implementation of Lightweight

CCM. All entities of RACE themselves are designed and implemented as CCM compo-

nents, so RACE’sAllocators andControllers can be configured to support a range

of resource allocation and control algorithms using model-driven tools, such as PICML.

Figure 29 elaborates the earlier architectural overview of RACE in Figure 27 and

shows how the detailed design of RACE is composed of the following components: (1)

CIAO/DAnCE

Allocators Controllers

Configurators

Central Monitor

System

Resource

Utilization

Input Adapter

System domain with time-varying

resource availability

QoS

Monitors
Resource

Monitors

DeploymentPlan

Deploy Components

RACE

Application

QoS

Applications with time-varying

resource and QoS requirements

Figure 29: Detailed Design of RACE

InputAdapter, (2)CentralMonitor , (3) Allocators, (4) Configurators,

74

(5) Controllers, and (6)Effectors. RACE monitors application QoS and system

resource usage via itsResource Monitors, QoS-Monitors, Node Monitors

andCentralMonitor. Each component in RACE is described below in the context

of the overall adaptive resource management challenge it addresses.

III.2.0.1 Challenge 1: Configuration and Customization of the Resource Manage-

ment Framework

Figure 30: PICML Model of RACE

Problem. Configuration and customization of existing resource management frameworks

described in SectionIII.1 are done via source code, and therefore is tedious and error-prone.

With existing resource management frameworks, incorporation of new resource manage-

ment algorithms into the resource management framework would involve reimplementation

of significant portions of the middleware or framework.

Solution. RACE’s novelty stems from its combination of design-time DSML tools and

QoS-enabled component middleware run-time platforms. RACE’s reusable entities, such

as resource monitors, QoS monitors, implementation of resource management algorithms,

and effectors, can be configured to incorporate a range of existing control algorithms, such

75

as EUCON and HySUCON, as well as future algorithms. The elements of RACE are

designed and implemented as CCM components, and therefore as shown in Figure30,

RACE can be configured using DSML tools such as PICML. RACE provides a higher level

of abstraction to configure/customize the framework compared to other existing resource

management frameworks, which are configured via source code.

Since system QoS monitors and effectors tend to be domain specific, RACE provides

the capability to “plug-in” domain specific entities. Moreover, as implementation of re-

source management algorithms in RACE are encapsulated as components, RACE separates

the concerns of resource management algorithms and the middleware.

III.2.0.2 Challenge 2: Domain Specific Representation of Application Metadata

Problem. End-to-end applications can be composed either at design time or at runtime. At

design time, CCM based end-to-end applications are composed using model-driven tools,

such as PICML; and at runtime, they can be composed by intelligent mission planners like

such as thespreading activation partial order planner(SA-POP) [39]. When an applica-

tion is composed using PICML, metadata describing the application is captured in XML

files based on thePackageConfigurationschema defined by the Object Management

Group’s Deployment and Configuration specification [61]. When applications are gener-

ated during runtime by SA-POP, metadata is captured in an in-memory structure defined

by the planner.

Solution: Domain-specific customization and configurationof RACE’s adapters. Dur-

ing design time, RACE can be configured using PICML and anInputAdapter appro-

priate for the domain/system can be selected. For example, to manage a system in which

applications are constructed at design-time using PICML, RACE can be configured with the

PICMLInputAdapter; and to manage a system in which applications are constructed

at runtime using SA-POP, RACE can be configured with theSAPOPInputAdapter. As

76

Application E-2-E
Input

Adapter
CIAO/DAnCE

Central
Monitor

Allocator

Resource

Utilization

Component
Node

Mapping

Comp 3 Comp 7Comp 5Comp 1

Comp 4 Comp 6Comp 2 Comp 8

Comp 7 Comp 8

Comp 1 Comp 2 Comp 3

Comp 4 Comp 5 Comp 6

Figure 31: Resource Allocation to Application Components Using RACE

shown in Figure31, theInputAdapter parses the metadata that describes the applica-

tion into an in-memory end-to-end (E-2-E) IDL structure that is internal to RACE. Key

entities of theE-2-E IDL structure are shown in Figure32.

+UUID : string(idl)
+name : string(idl)

+priority : long(idl)

E-2-E

+node : string(idl)

+name : string(idl)

Component

+type : string(idl)

+amount : double(idl)

ResourceRequirement

1

*

1*

+name : string(idl)

+value : any(idl)

Property

1 *

+name : string(idl)
+value : any(idl)

Property

1 *
+name : string(idl)
+value : any(idl)

+MonitorID : string(idl)

QoSRequirement
1*

Figure 32: Main Entities of RACE’s E-2-E IDL Structure

The E-2-E IDL structure populated by theInputAdapter contains information

regarding the application, including (1) components that make up the application and their

resource requirement(s), (2) interconnections between the components, (3) application QoS

properties (such relative priority) and QoS requirement(s) (such as end-to-end delay), and

77

(4) mapping components onto domain nodes. The mapping of components onto nodes need

not be specified in the metadata that describes the application which is given to RACE. If

an mapping is specified, it is honored by RACE; if not, a mapping is determined at runtime

by RACE’sAllocators.

III.2.0.3 Challenge 3: Efficient Monitoring of System Resource Utilization and Ap-

plication QoS

Problem. In open DRE systems, input workload, application QoS, and utilization and

availability of system resource are subject to dynamic variations. In order to ensure ap-

plication QoS requirements are met, as well as utilization of system resources are within

specified bounds, application QoS and utilization/availability of system resources are to be

monitored periodically. The key challenge lies in designing and implementing a resource

and QoS monitoring architecture that scales well as the number of applications and nodes

in the system increase.

Solution: Hierarchical QoS and resource monitoring architecture. RACE’s monitor-

ing framework is composed of theCentral Monitor,Node Monitors,Resource

Monitors, andQoS Monitors. These components track resource utilization by, and

QoS of, application components. As shown in Figure33, RACE’sMonitors are struc-

tured in the following hierarchical fashion. AResource Monitor collects resource

utilization metrics of a specific resource, such as CPU or memory. A QoS Monitor col-

lects specific QoS metrics of an application, such as end-to-end latency or throughput. A

Node Monitor tracks the QoS of all the applications running on a node as well as the

resource utilization of that node. Finally, aCentral Monitor tracks the QoS of all

the applications running the entire system, which capturesthe system QoS, as well as the

resource utilization of the entire system, which captures the system resource utilization.

Resource Monitors use the operating system facilities, such as/proc file sys-

tem inLinux/Unix operating systems and thesystem registryin Windows operating

78

Central
Monitor

Node
Node

Monitor
Resource
Monitor

QoS
Monitor

E-2-E
Application

System Resource Utilization & QoS

Figure 33: Architecture of Monitoring Framework

systems, to collect resource utilization metrics of that node. As the resource monitors are

implemented as shared libraries that can be loaded at runtime, RACE can be configured

with new/domain-specific resource monitors without makingany modifications to other

entities of RACE.QoS Monitors are implemented as software modules that collect end-

to-end latency and throughput metrics of an application andare dynamically installed into

a running system using DyInst [16]. This approach ensure rebuilding, re-implementation,

or re-starting of already running application components is not required. Moreover, with

this approach,QoS Monitors can be turned on or off on demand at runtime.

The primary metric that we use to measure the performance of our monitoring frame-

work is monitoring delay, which is defined as the time taken to obtain a snapshot of the

entire system in terms of resource utilization and QoS. To minimize the monitoring de-

lay and ensure that RACE’s monitoring architecture scales as the number of applications

and nodes in the system increase, the RACE’s monitoring architecture is structured in a

hierarchical fashion. We validate this claim in SectionIII.3.

79

III.2.0.4 Challenge 4: Resource Allocation

Problem. Applications executing in open DRE systems are resource sensitive and require

multiple resources such as memory, CPU, and network bandwidth. In open DRE systems,

resources allocation cannot be performed during design time as system resource availability

may be time variant. Moreover, input workload affects the utilization of system resources

by already executing applications. Therefore, the key challenge lies in allocating various

systems resources to application components in a timely fashion.

Solution:On-line Resource allocation.RACE’s Allocators implement resource al-

location algorithms and allocate various domain resources(such as CPU, memory, and

network bandwidth) to application components by determining the mapping of compo-

nents onto nodes in the system domain. For certain applications,staticmapping between

components and nodes may be specified at design-time by system developers. To honor

these static mappings, RACE therefore provides astatic allocatorthat ensures components

are allocated to nodes in accordance with the static mappingspecified in the application’s

metadata. If no static mapping is specified, however,dynamic allocatorsdetermine the

component to node mapping at runtime based on resource requirements of the compo-

nents and current resource availability on the various nodes in the domain. As shown in

Figure31, input toAllocators include theE-2-E IDL structure corresponding to the

application and the current utilization of system resources.

The current version of RACE provides the followingAllocators: (1) a single di-

mension bin-packer [42] that makes allocation decisions based on either CPU, memory,

or network-bandwidth requirements and availability, (2) amulti-dimensional bin-packer –

partitioned breadth first decreasing allocator [24] – that makes allocation decisions based

on CPU, memory, and network-bandwidth requirements and availability, and (3) a static al-

locator. Metadata is associated with each allocator and captures its type (i.e., static, single

80

dimension bin-packing, or multi-dimensional bin-packer)and associated resource over-

head (such as CPU and memory utilization). SinceAllocators themselves are CCM

components, RACE can be configured with newAllocators by using PICML.

III.2.0.5 Challenge 5: Accidental Complexities in Configuring Platform-specific QoS

Parameters

Problem. As described in SectionIV.2.2, real-time QoS configuration of the underlying

component middleware, operating system, and network affects the QoS of applications

executing in open DRE systems. Since these configurations are platform-specific, it is

tedious and error-prone for system developers or SA-POP to specify them in isolation.

Solution: Automate configuration of platform-specific parameters. As shown in Fig-

ure34, RACE’sConfiguratorsdetermine values for various low-level platform-specific

QoS parameters, such as middleware, operating system, and network settings for an ap-

plication based on its QoS characteristics and requirements such as relative importance

and end-to-end delay. For example, theMiddlewareConfigurator configures com-

Figure 34: QoS Parameter Configuration with RACE

ponent Lightweight CCM policies, such as threading policy,priority model, and request

81

processing policy based on the class of the application (importantandbest-effort). The

OperatingSystemConfigurator configures operating system parameters, such as

the priorities of theComponent Serversthat host the components based on Rate Mono-

tonic Scheduling (RMS) [42] or based on criticality (relative importance) of the applica-

tion. Likewise, theNetworkConfigurator configures network parameters, such as

diffserv code-points of the component interconnections. Like otherentities of RACE,

Configurators are implemented as CCM components, so new configurators can be

plugged into RACE by configuring RACE at design-time using PICML.

III.2.0.6 Challenge 6: Computation of System Adaptation Decisions

Problem. In open DRE systems, resource utilization of applications might be significantly

different than their estimated values and availability of system resources may be time-

variant. Moreover, for applications executing in these systems, the relation between input

workload, resource utilization, and QoS cannot be characterized a priori. Therefore, in

order to ensure that QoS requirements of applications are met, and utilization system re-

sources are within the specified bounds, the system must be able to adapt to dynamic

changes, such as variations in operational conditions, input workload, and/or resource avail-

ability.

Solution: Use of Control-theoretic adaptive resource management algorithms. RACE’s

Controllers implement various Control-theoretic adaptive resource management algo-

rithms such as EUCON [52], DEUCON [83], HySUCON [41], and FMUF [18], thereby

enabling open DRE systems to adapt to changing operational context and variations in

resource availability and/or demand. Based on the control algorithm they implement,

Controllersmodify configurable system parameters, such as execution rates and mode

of operation of the application, real-time configuration settings – operating system priori-

ties ofcomponent serversthat host the components – and networkdifserv code-points

of the component interconnections. As shown in Figure35, input to the controllers include

82

current resource utilization and current QoS. SinceControllers are implemented as

Controller Central Effector
Central

Monitor

Per Node

System

Parameters

System Resource Utilization & QoS

System Wide

Adaptation

Decisions

Node Effector Node Monitor
E-2-E

Application

Figure 35: RACE’s Feedback Control Loop

CCM components RACE can be configured with newControllers by using PICML.

III.2.0.7 Challenge 7: Efficient Execution of System Adaptation Decisions

Problem. Although control-theoretic adaptive resource managementalgorithms compute

system adaptation decisions, one of the challenges we facedin building RACE is the design

and implementation ofeffectors– entities that modify system parameters in order to achieve

the controller recommended system adaptation. The key challenge lies in designing and

implementing the effector architecture that scales well asthe number of applications and

nodes in the system increase.

Solution: Hierarchical effector architecture. Effectors modify application parameters,

including resources allocated to components, execution rates of applications, and system

parameters including OS, middleware, and network QoS setting for components, to achieve

the controller recommended adaptation. As shown in Figure35, Effectors are designed

hierarchically. TheCentral Effector first computes the values of various system

parameters for all the nodes in the domain to achieve theController recommended

adaptation. The computed values of system parameters for each node are then propagated

83

to Effectors located on each node, which then modify system parameters ofits node

accordingly.

The primary metric that is used to measure the performance ofa monitoring effectors

is actuation delay, which is defined as the time taken to execute controller recommended

adaptation throughout the system. To minimize the actuation delay and ensure that RACE

scales as the number of applications and nodes in the system increase, the RACE’s effectors

are structured in a hierarchical fashion. We validate this claim in SectionIII.3.

Since the elements of RACE are developed as CCM components, RACE itself can be

configured using model-driven tools, such as PICML. Moreover, new and/or domain spe-

cific entities such asInputAdapters, Allocators, Controllers, Effectors,

Configurators, QoS Monitors, andResource Monitors, can be plugged di-

rectly into RACE without modifying RACE’s existing architecture.

III.3 Empirical Results and Analysis

This section presents the design and results of experimentsthat evaluate the scalability

of RACE. These experiments validate our claims in SectionIII.2 that RACE is an scalable

adaptive resource management framework.

III.3.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed1 located at Vanderbilt Uni-

versity. The hardware configuration consists of six nodes and hardware configuration of

each nodes was the following: 2.8 GHz Intel Xeon dual processor, 1 GB physical memory,

1GHz Ethernet network interface, and 40 GB hard drive. The Redhat Fedora Core release

4 OS with real-time preemption patches [56] was used for all the nodes.

1http://www.dre.vanderbilt.edu/ISISlab

84

http://www.dre.vanderbilt.edu/ISISlab

Our experiments also used CIAO/DAnCE 0.5.10, which is our open-source QoS en-

abled component middleware that implements the OMG Lightweight CCM [57] and De-

ployment and Configuration [61] specifications. RACE and our applications used to mea-

sure the scalability of RACE are built upon CIAO/DAnCE.

Table11 summarizes the number of lines of C++ code of various entities in our mid-

dleware, RACE, and our test applications, which were measured using SLOCCount2.

Entity Total Lines of Source Code
Test Applications 19,875

RACE 157,253
CIAO/DAnCE 511,378

Table 11: Lines of Source Code for Various System Elements

III.3.2 Evaluation of RACE’s Scalability

SectionsIII.2.0.3 andIII.2.0.7 claimed that the hierarchical design of RACE’s moni-

tors and effectors enables RACE to scale as the number of applications and nodes in the

system grows. We validated this claim by studying the impactof increasing number of

nodes and applications on RACE’s monitoring delay and actuation delay when RACE’s

monitors and effectors are configured hierarchically and non-hierarchically. As described

in SectionsIII.2.0.3 andIII.2.0.7, monitoring delayis defined as the time taken to obtain a

snapshot of the entire system in terms of resource utilization and QoS andactuation delay

is defined as the time taken to execute controller recommended adaptation throughout the

system.

To measure the monitoring and actuation delays, we instrumented RACE’sCentral

Monitor andCentral Effector, respectively, with ACE High Resolution Timers [66].

The timer in theCentral Monitor measured the time duration from when requests

were sent to individualNode Monitors to the time instant when replies from allNode

2http://www.dwheeler.com/sloccount

85

http://www.dwheeler.com/sloccount

Monitors were received and the data (resource utilization and application QoS) were

assembled to obtain a snapshot of the entire system. Similarly, the timer in theCentral

Effector measured the time duration from when system adaptation decisions were re-

ceived from theController to the time instant when acknowledgment indicating suc-

cessful execution of node level adaption from individualEffectors (located on each

node) were received.

III.3.2.1 Experiment 1: Constant Number of Application and Varying Number of

Nodes

This experiment studied the impact of varying number of nodes in the system domain

on RACE’s monitoring and actuation delay. We present the results obtained from running

the experiment with a constant of five applications, each composed of six components

(plasma-sensor/camera-sensor, analysis, filter, analysis, compression, communication, and

ground), and a varying number of nodes.

Experiment configuration. We varied the number of nodes in the system from one to

six. A total of 30 application components were evenly distributed among the nodes in

the system. The experiment was composed of two scenarios: (1) hierarchical and (2) non-

hierarchical configuration of RACE’s monitors and effectors. Each scenario was comprised

of seven runs, and number of nodes in the system during each run was constant3. During

each run, monitoring delay and actuation delay was collected over 50,000 iterations.

Analysis of results. Figures36 and37 compare the impact of increasing the number of

nodes in the system on RACE’s monitoring and actuation delay, respectively, under the

two scenarios. Figures36 and37 show that monitoring and actuation delays are signifi-

cantly lower in the hierarchical configuration of RACE’s monitors and effectors compared

to the non-hierarchical configuration. Moreover, as the number of nodes in the system

increases, the increase in monitoring and actuation delaysare significantly (i.e., 18% and

3As we varied the number of nodes from one to six each scenario had a total of seven runs.

86

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

No of Nodes

T
im

e
 (

m
ic

ro
 s

e
c
)

Hierarchical Non Hierarchical

Figure 36: Impact of Increase in Number of Nodes on Monitoring Delay

29%, respectively) lower in the hierarchical configurationcompared to the non-hierarchical

configuration. This result occurs because individual node monitors and effectors execute

in parallel when monitors and effectors are structured hierarchically, thereby significantly

reducing monitoring and actuation delay, respectively.

0

500

1000

1500

2000

2500

1 2 3 4 5 6

No of Nodes

T
im

e
 (

m
ic

ro
 s

e
c
)

Hierarchical Non Hierarchical

Figure 37: Impact of Increase in Number of Nodes on Actuation Delay

87

Figures36 and37 show the impact on monitoring and actuation delay when the mon-

itors and effectors are structured hierarchically and the number of nodes in the system in-

crease. Although individual monitors and effectors execute in parallel, resource data aggre-

gation and computation of per-node adaptation decisions are centralized by theCentral

Monitor andCentral Effector, respectively. The results show that this configu-

ration yields a marginal increase in the monitoring and actuation delay (i.e., 6% and 9%,

respectively) as the number of nodes in the system increases.

Figures36 and37 show that when there is only one node in the system, the perfor-

mance of the hierarchical configuration of RACE’s monitors and effectors is worse than

the non-hierarchical configuration. This result measures the overhead associated with the

hierarchical configuration. As shown in Figures36 and37, however, as the number of

nodes in the system increase, the benefit of the hierarchicalconfiguration outweighs this

overhead.

III.3.2.2 Experiment 2: Constant Number of Nodes and Varying Number of Appli-

cations

This experiment studied the impact of varying the number of applications on RACE’s

monitoring and actuation delay. We now present the results obtained from running the

experiment with six nodes in the system and varying number ofapplications (from one

to five), each composed of six components (plasma-sensor/camera-sensor, analysis, filter,

analysis, compression, communication, and ground).

Experiment configuration. We varied the number of applications in the system from one

to five. Once again, the application components were evenly distributed among the six

nodes in the system. This experiment was composed of two scenarios: (1) hierarchical and

(2) non-hierarchical configuration of RACE’s monitors and effectors. Each scenario was

comprised of five runs, with the number of applications used in each run held constant. As

we varied the number of applications from one to five, for eachscenario we had a total of

88

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5

No. of Applications

T
im

e
 (

m
ic

ro
 s

e
c
)

Hierarchical Non Hierarchical

Figure 38: Impact of Increase in Number of Application on Monitoring Delay

five runs. During each run, monitoring delay and actuation delay was collected over 50,000

iterations.

Analysis of results. Figures38and39compare the impact on increase in number of appli-

cations on RACE’s monitoring and actuation delay, respectively, under the two scenarios.

Figures38 and39 show that monitoring and actuation delays are significantlylower un-

der the hierarchical configuration of RACE’s monitors and effectors compared with the

non-hierarchical configuration. These figures also show that under the hierarchical config-

uration, there is a marginal increase in the monitoring delay and negligible increase in the

actuation delay as the number of applications in the system increase.

These results show that RACE scales well with as the number ofnodes and applications

in the system increase. The results also show that RACE’s scalability is primarily due to

the hierarchical design of RACE’s monitors and effectors, there by validating our claims in

SectionsIII.2.0.3 andIII.2.0.7.

III.3.3 Summary of Experimental Analysis

This section evaluated the performance and scalability of the RACE framework by

studying the impact of increase in number of nodes and applications in the system on

89

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

No. of Applications

T
im

e
 (

m
ic

ro
 s

e
c
)

Hierarchical Non Hierarchical

Figure 39: Impact of Increase in Number of Application on Actuation Delay

RACE’s monitoring delay and actuation delay. Our results show that RACE is a scalable

adaptive resource management framework. From analyzing the results in SectionsIII.3.2

we observe that RACE scales well as the number of nodes and applications in the system

increases. This scalability stems from RACE’s the hierarchical design of monitors and

effectors, which validates our claims in SectionsIII.2.0.3 andIII.2.0.7.

III.4 Summary

This chapter described theResource Allocation and Control Engine(RACE), which

is our adaptive resource management framework that provides end-to-end adaptation and

resource management for open DRE systems built atop QoS-enabled component middle-

ware. Open DRE systems built using RACE benefit from the advantages of component-

based middleware, as well as QoS assurances provided by adaptive resource management

algorithms. We demonstrated how RACE helped resolve key resource and QoS man-

agement challenges of open DRE systems. As the elements of the RACE framework

are CCM components, RACE itself can be configured using model-driven tools, such as

PICML [8]. Moreover, newInputAdapters, Allocators, Configurators, and

90

Controllers can be plugged into RACE using PICML without modifying its architec-

ture. RACE can also be used to deploy, allocate resources to,and manage performance of,

applications that are composed at design-time and runtime.

91

CHAPTER IV

CASE STUDY: MAGNETOSPHERIC MULTI-SCALE MISSION DRE SYSTEM

This chapter presents an overview of NASA’s MagnetosphericMulti-scale (MMS) mis-

sion [23] as a case study. We describe the resource and QoS managementchallenges in-

volved in developing the MMS mission using QoS-enabled component middleware, how

we applied RACE to addresses these challenges, and we present an empirical evaluation of

the performance of the system when it was operated with RACE.

IV.1 MMS Mission System Overview

NASA’s MMS mission system is a representative open DRE system consisting of sev-

eral interacting subsystems (both in-flight and stationary) with a variety of complex QoS

requirements. As shown in Figure40, the MMS mission consists of a constellation of

five spacecrafts that maintain a specific formation while orbiting over a region of scien-

tific interest. This constellation collects science data pertaining to the earth’s plasma and

magnetic activities while in orbit and send it to a ground station for further processing. In

the MMS mission spacecrafts, availability of resource suchas processing power (CPU),

storage, network bandwidth, and power (battery) are limited and subjected to runtime vari-

ations. Moreover, resource utilization by, and input workload of, applications that execute

in this system can not be accurately characterizeda priori. These properties make the MMS

mission system an open DRE system.

Applications executing in this system can be classified as guidance, navigation, and

control (GNC) applications and science applications. The GNC applications are responsi-

ble for maintaining the spacecraft within the specified orbit. The science applications are

responsible for collecting science-data, compressing andstoring the data, and transmitting

the stored data to the ground station for further processing.

92

Science-Applications GNC-Applications

Figure 40: MMS Mission System

As shown in Figure40, GNC applications are localized to a single spacecraft. Sci-

ence applications tend to span the entire spacecraft constellation, i.e., all spacecrafts in the

constellation have to coordinate with each other to achievethe goals of the science mis-

sion. GNC applications are consideredhard real-timeapplications (i.e., the penalty of not

meeting QoS requirement(s) of these applications is very high, often fatal to the mission),

where as science applications are consideredsoft real-timeapplications (i.e., the penalty of

not meeting QoS requirement(s) of these applications is high, but not fatal to the mission).

Science applications operate in three modes:slow survey, fast survey, andburstmode.

Science applications switch from one mode to another in reaction to one or moreevents of

interest. For example, for a science application that monitors the earth’s plasma activity,

theslowsurvey mode is entered outside the regions of scientific interests and enables only

a minimal set of data acquisition (primarily for health monitoring). Thefastsurvey mode is

entered when the spacecrafts are within one or more regions of interest, which enables data

acquisition for all payload sensors at a moderate rate. If plasma activity is detected while

in fast survey mode, the application entersburstmode, which results in data collection at

93

the highest data rates. Resource utilization by, and importance of, a science application is

determined by its mode of operation, which is summarized by Table12.

Mode Relative Importance Resource Consumption
Slow survey Low Low
Fast survey Medium Medium

Burst High High

Table 12: Characteristics of Science Application

Each spacecraft consists of an on-board intelligent mission planner, such as thespread-

ing activation partial order planner(SA-POP) [39] that decomposes overall mission goal(s)

into GNC and science applications that can be executed concurrently. SA-POP employs

decision-theoretic methods and other AI schemes (such as hierarchical task decomposition)

to decompose mission goals into navigation, control, data gathering, and data processing

applications. In addition to initial generation of GNC and science applications, SA-POP

incrementally generates new applications in response to changing mission goals and/or de-

graded performance reported by on-board mission monitors.

We have developed a prototype implementation of the MMS mission systems in con-

junction with our colleagues at Lockheed Martin Advanced Advanced Technology Center,

Palo Alto, California. In our prototype implementation, weused theComponent-Integrated

ACE ORB(CIAO) [81] and Deployment and Configuration Engine(DAnCE) [27] as the

QoS-enabled component middleware platform. Each spacecraft uses SA-POP as its on-

board intelligent mission planner.

IV.2 Adaptive Resource Management Requirements of the MMS Mission System

As discussed in SectionIII.1.2, the use of QoS-enabled component middleware to de-

velop open DRE systems, such as the NASA MMS mission, can significantly improve the

design, development, evolution, and maintenance of these systems. However, when such

94

systems are built in the absence of a adaptive resource frameworks, several key require-

ments remain unresolved. To motivate the need for RACE, thissection presents the key

resource and QoS management requirements that we addressedwhile building our proto-

type of the MMS mission DRE system.

IV.2.1 Requirement 1: Resource Allocation To Applications

Applications generated by SA-POP areresource sensitive, i.e., QoS is affected sig-

nificantly if an application does not receive the required CPU time and network bandwidth

within bounded delay. Moreover, in open DRE systems like theMMS mission, input work-

load affects utilization of system resources and QoS of applications. Utilization of system

resources and QoS of applications may therefore vary significantly from their estimated

values. Due to the operating conditions for open DRE systems, system resource availabil-

ity, such as available network bandwidth, may also be time variant.

A resource management framework therefore needs to (1) monitor the current uti-

lization of system resources, (2) allocate resources in a timely fashion to applications

such that their resource requirements are met using resource allocation algorithms such

as PBFD [24], and (3) support multiple resource allocation strategiessince CPU and mem-

ory utilization overhead might be associated with implementations of resource allocation

algorithms themselves and select the appropriate one(s) depending on properties of the

application and the overheads associated with various implementations. SectionIV.3.1

describes how RACE performs on-line resource allocation toapplication components to

addresses this requirement.

95

IV.2.2 Requirement 2: Configuring Platform-specific QoS Parameters

The QoS experienced by applications depend on various platform-specific real-time

QoS configurations including (1)QoS configuration of the QoS-enabled component mid-

dleware, such as priority model, threading model, and request processing policy, (2)oper-

ating system QoS configuration, such as real-time priorities of the process(es) and thread(s)

that host and execute within the components respectively, and (3) networks QoS configu-

rations, such asdiffserv code-points of the component interconnections. Since these

configurations are platform-specific, it is tedious and error-prone for system developers or

SA-POP to specify them in isolation.

An adaptive resource management framework therefore needsto provide abstractions

that shield developers and/or SA-POP from low-level platform-specific details and define

higher-level QoS specification models. System developers and/or intelligent mission plan-

ners should be able to specify QoS characteristics of the application such as QoS require-

ments and relative importance, and the adaptive resource management framework should

then configure the platform-specific parameters accordingly. SectionIV.3.2 describes how

RACE provides higher a level abstractions and shield systemdevelopers and SA-POP from

low-level platform-specific details to addresses this requirement.

IV.2.3 Requirement 3: Enabling Dynamic System Adaptation and Ensuring QoS

Requirements are Met

When applications are deployed and initialized, resourcesare allocated to application

components based on theestimatedresource utilization and estimated/current availability

of system resources. In open DRE systems, however,actualresource utilization of applica-

tions might be significantly different than their estimatedvalues, as well as availability of

system resources vary dynamically. Moreover, for applications executing in these systems,

the relation between input workload, resource utilization, and QoS cannot be characterized

a priori.

96

An adaptive resource management framework therefore needsto provide monitors that

track system resource utilization, as well as QoS of applications, at run-time. Although

some QoS properties (such as accuracy, precision, and fidelity of the produced output)

are application-specific, certain QoS (such asend-to-end latencyand throughput) can be

tracked by the framework transparently to the application.However, customization and

configuration of the framework with domain specific monitors(both platform specific re-

source monitors and application specific QoS monitors) should be possible. In addition,

the framework needs to enable the system toadapt to dynamic changes, such as varia-

tions in operational conditions, input workload, and/or resource availability. SectionIV.3.3

demonstrates how RACE performs system adaptation and ensures QoS requirements of

applications are met to address this requirement.

IV.3 Addressing MMS Mission Requirements Using RACE

We now describe how RACE was applied to our MMS mission case study from Sec-

tion IV.1 and show how it addressed key resource allocation, QoS configuration, and adap-

tive resource management requirements that we identified inSectionIV.1.

IV.3.1 Addressing Requirement 1: Resource Allocation to Applications

RACE’sInputAdapter parses the metadata that describes the application to obtain

the resource requirement(s) of components that make up the application and populates

the E-2-E IDL structure. TheCentral Monitor obtains system resource utiliza-

tion/availability information for RACE’sResource Monitors, and using this infor-

mation along with theestimatedresource requirement of application components captured

in theE-2-E structure, theAllocators map components onto nodes in the system do-

main based on runtime resource availability.

RACE’sInputAdapter,Central Monitor, andAllocators coordinate with

one another to allocate resources to applications executing in open DRE systems, thereby

97

addressing the resource allocation requirement for open DRE systems identified in Sec-

tion IV.2.1.

IV.3.2 Addressing Requirement 2: Configuring Platform-specific QoS Parameters

RACE shields application developers and SA-POP from low-level platform-specific

details and defines a higher-level QoS specification model. System developers and SA-

POP specify only QoS characteristics of the application, such as QoS requirements and

relative importance, and RACE’sConfigurators automatically configures platform-

specific parameters appropriately.

For example, consider two science applications – one executing in fast survey mode

and one executing in slow survey mode. For these applications, middleware parame-

ters configured by theMiddleware Configurator includes: (1) CORBA end-to-

end priority, which is configured based on execution mode (fast/slow survey) and appli-

cation period/deadline, (2) CORBA priority propagation model (CLIENT_PROPAGATED

/ SERVER_DECLARED), which is configured based on the application structure and inter-

connection, and (3) threading model (single threaded / thread-pool / thread-pool with lanes),

which is configured based on number of concurrent peer-components connected to a com-

ponent. TheMiddleware Configurator derives configuration for such low level

platform-specific parameters from application end-to-endstructure and QoS requirements.

RACE’s Configurators provides higher level abstractions and shield system de-

velopers and SA-POP from low-level platform-specific details, thus addressing the re-

quirements associated with configuring platform-specific QoS parameters identified in Sec-

tion IV.2.2.

98

Controller Central Effector
Central

Monitor

Per Node

System

Parameters

System Resource Utilization & QoS

System Wide

Adaptation

Decisions

Node Effector Node Monitor
E-2-E

Application

Figure 41: RACE’s Feedback Control Loop

IV.3.3 Addressing Requirement 3: Monitoring End-to-end QoS and Ensuring QoS

Requirements are Met

When resources are allocated to components at design-time by system designers us-

ing PICML, i.e. mapping of application components to nodes in the domain arespecified,

these operations are performed based on estimated resourceutilization of applications and

estimated availability of system resources. Allocation algorithms supported by RACE’s

Allocators allocate resources to components based on current system resource utiliza-

tion and component’s estimated resource requirements. In open DRE systems, however,

there is often no accuratea priori knowledge of input workload, the relationship between

input workload and resource requirements of an application, and system resource availabil-

ity.

To address this requirement, RACE’s control architecture employs a feedback loop to

manage system resource and application QoS and ensures (1) QoS requirements of appli-

cations are met at all times and (2) system stability by maintaining utilization of system

resources below their specified utilization set-points. RACE’s control architecture features

a feedback loop that consists of three main components:Monitors, Controllers,

andEffectors, as shown in Figure41.

99

Monitors are associated with system resources and QoS of the applications and pe-

riodically update theController with the current resource utilization and QoS of ap-

plications currently running in the system. TheController implements a particular

control algorithm such as EUCON [52], DEUCON [83], HySUCON [41], and FMUF [18],

and computes the adaptations decisions for each (or a set of)application(s) to achieve

the desired system resource utilization and QoS.Effectors modify system parameters,

which include resource allocation to components, execution rates of applications, and OS/-

middleware/network QoS setting of components, to achieve the controller recommended

adaptation.

As shown in Figure41, RACE’s monitoring framework,Controllers, andEffectors

coordinate with one another and the aforementioned entities of RACE to ensure (1) QoS

requirements of applications are met and (2) utilization ofsystem resources are maintained

within the specified utilization set-point set-point(s), thereby addressing the requirements

associated with runtime end-to-end QoS management identified in SectionIV.2.3. We em-

pirically validate this in SectionIV.4.

IV.4 Empirical Results and Analysis

This section presents the design and results of experimentsthat evaluate the adaptive re-

source management capabilities of RACE in the context of ourMMS system. This section

also validates our claims in SectionIV.3 that RACE performs effective end-to-end adapta-

tion and yield a predictable and scalable DRE system under varying operating conditions

and input workload.

IV.4.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed1 at Vanderbilt University. The

hardware configuration consists of six nodes, five of which acted as spacecrafts and one that

1www.dre.vanderbilt.edu/ISISlab

100

www.dre.vanderbilt.edu/ISISlab

acted as a ground station. The hardware configuration of all the nodes was a 2.8 GHz Intel

Xeon dual processor, 1 GB physical memory, 1GHz Ethernet network interface, and 40 GB

hard drive. The Redhat Fedora Core release 4 OS with real-time preemption patches [56]

was used for all the nodes.

Our experiments also used CIAO/DAnCE 0.5.10, which is our open-source QoS en-

abled component middleware that implements the OMG Lightweight CCM [57] and De-

ployment and Configuration [61] specifications. RACE and our DRE system case study are

built upon CIAO/DAnCE.

IV.4.2 MMS DRE System Implementation

Science applications executing atop our MMS DRE system are composed of the fol-

lowing components:

• Plasma sensor component, which manages and controls the plasma sensor on the

spacecraft, collects metrics corresponding to the earth’splasma activity.

• Camera sensor component, which manages and controls the high-fidelity camera

on the spacecraft and captures images of one or more star constellations.

• Filter component, which processes the data from the sensor components to remove

any extraneous noise in the collected data/image.

• Analysis component, which processes the collected data to determine if the datais

of interest or not. If the data is of interest, the data is compressed and transmitted to

the ground station.

• Compression component, which uses loss-less compression algorithms to com-

presses the collected data.

• Communication component, which transmits the compressed data to the ground

station periodically.

101

• Ground component, which received the compressed data from the spacecrafts and

stores it for further processing.

Estimated execution times for these components on the system test-bed is shown in Ta-

ble 13. All these components—except for the ground component—execute on the space-

crafts.2 Table14 summarizes the number of lines of C++ code of various entities in our

middleware, RACE, and our prototype implementation of the MMS DRE system case

study, which were measured using SLOCCount3.

Component Estimated Execution Time (msec)
Plasma sensor 35
Camera sensor 40

Ground 50
Filter 55

Analysis 65
Compression 70

Communication 90

Table 13: Estimated Execution Times for Various Application Components

Entity Total Lines of Source Code
MMS DRE System 19,875

RACE 157,253
CIAO/DAnCE 511,378

Table 14: Lines of Source Code for Various System Elements

IV.4.3 Evaluation of RACE’s Adaptive Resource Management Capabilities

We now evaluate the adaptive resource management capabilities of RACE under two

scenarios: (1) moderate workload, and (2) heavy workload. Applications executing on our

2Our experiments used component emulations that have the same resource utilization characteristics as
the original components.

3http://www.dwheeler.com/sloccount

102

http://www.dwheeler.com/sloccount

prototype MMS mission DRE system were periodic, with deadline equal to their periods.

In both the scenarios, we use the deadline miss ratio of applications as the metric to evaluate

system performance. For every sampling period of RACE’sController, deadline miss

ratio for each application was computed as the ratio of number of times the application’s

end-to-end latency4 was greater than its deadline to the number of times the application

was invoked.

IV.4.3.1 Summary of Evaluated Scheduling Algorithms

We studied the performance of the prototype MMS system undervarious configura-

tions: (1) a baseline configuration without RACE and static priority assigned to application

components based on Rate Monotonic Scheduling (RMS) [42], (2) a configuration with

RACE’s Maximum Urgency First (MUF)Configurator, and (3) a configuration with

RACE’s MUFConfigurator and Flexible MUF (FMUF) [18] Controller. The goal

of these experiments is not to compare the performance of various adaptive resource man-

agement algorithms, such as EUCON [52], DEUCON [83], HySUCON [41], or FMUF.

Instead, the goal is to demonstrate how RACE can be used to implement these algorithms

and there by meet the system adaptation requirements of openDRE systems.

A disadvantage of RMS scheduling is that it cannot provide performance isolation for

higher importance applications [75]. During system overload caused by dynamic increase

in the workload, applications of higher importance with a low rate may miss deadlines.

Likewise, applications with medium/lower importance but high rates may experience no

missed deadlines.

In contrast, MUF provides performance isolation to applications of higher importance

by dividing operating system and/or middleware prioritiesinto two classes [75]. All com-

ponents belonging to applications of higher importance areassigned to the high-priority

4The end-to-end latency of an application was obtained from RACE’s QoSMonitors.

103

class, while all components belonging to applications of medium/lower importance are as-

signed to the low-priority class. Components within a same priority class are assigned

operating system and/or middleware priorities based on theRMS policy. Relative to RMS,

however, MUF may cause priority inversion when an higher importance application has a

lower rate than medium/lower importance applications. As aresult, MUF may unnecessar-

ily cause an application of medium/lower importance to missits deadline, even when all

tasks are schedulable under RMS.

To address limitations with MUF, RACE’s FMUFController provides performance

isolation for applications of higher importance while reducing the deadline misses of ap-

plications of medium/lower importance. While both RMS and MUF assign priorities stat-

ically at deployment time, the FMUFController adjusts the priorities of applications

of medium/lower importance dynamically based on performance feedback. The FMUF

Controller can reassign applications of medium/lower importance to the high-priority

class when (1) all the applications currently in the high-priority class meet their deadlines

while (2) some applications in the low-priority class miss their deadlines. Since the FMUF

Controller moves applications of medium/lower importance back to the low-priority

class when the high-priority class experiences deadline misses it can effectively deal with

workload variations caused by application arrivals and changes in application execution

times and invocation rates.

IV.4.3.2 Experiment 1: Moderate Workload

Experiment configuration. The goal of this experiment configuration was to evaluate

RACE’s system adaptation capabilities under a moderate workload. This scenario there-

fore employed two of the five emulated spacecrafts, one emulated ground station, and three

periodic applications. One application was initialized toexecute in fast survey mode and

the remaining two were initialized to execute in slow surveymode. As described in Sec-

tion IV.1, applications executing in fast survey mode have higher relative importance and

104

resource consumption than applications executing in slow survey mode. Each application

is subjected to an end-to-end deadline equal to its period. Table15summarizes application

periods and the mapping of components/applications onto nodes.

Application Component Allocation Period Mode
Spacecraft Ground (msec)

1 2 Station
1 Communication Analysis Ground 1000 Fast Survey

Plasma-sensor Compression
2 Analysis Communication Ground 900 Slow Survey

Camera-sensor Compression
Filter

3 Plasma-sensor Communication Ground 500 Slow Survey
Camera-sensor Compression

Filter

Table 15: Application Configuration under Moderate Workload

The experiment was conducted over 1,400 seconds, and we emulated variation in op-

erating condition, input workload and a mode change by performing the following steps.

At time T = 0sec, we deployed applications one and two. At timeT = 300sec, the input

workload for all the application were reduced by ten percent, and at timeT = 700secwe

deployed application three. AtT = 1000sec, application three switched mode from slow

survey to fast survey. To emulate this mode change, we increased the rate (i.e. reduced

the period) of application three by twenty percent. Since each application was subjected

to an end-to-end deadline equal to its period, to evaluate the performance of RACE, we

monitored thedeadline miss ratioof all applications that were deployed.

RACE’s FMUFController was used for this experiment since the MMS mission

applications described above do not support rate adaptation. RACE is a framework, how-

ever, so other adaptation strategies/algorithms, such as HySUCON [41], can be imple-

mented and employed in a similar way. Below, we evaluate the use of FMUF for end-to-

end adaptation. Since this paper focuses on RACE—and not thedesign or evaluation of

105

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(a) Baseline (RMS)

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(b) MUF Configurator

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(c) MUF Configurator + FMUF Controller

Figure 42: Deadline Miss Ratio Under Moderate Workload

individual control algorithms—we use FMUF as an example to demonstrate RACE’s abil-

ity to support the integration of feedback control algorithms for end-to-end adaptation in

DRE systems. RACE’s FMUF controller was configured with the following parameters:

sampling period = 10 seconds,N = 5, andthreshold = 5%.

Analysis of results. We now present the results obtained from running the experiment

described above on our ISISlab DRE system testbed describedin SectionIV.4.1. We use

deadline miss ratio as the metric to evaluate system performance under varying input work-

loads and operating conditions.

Figures42a, 42b, and42cshow the deadline miss ratio of applications when the system

was operated under baseline configuration, with RACE’s MUFConfigurator, and with

106

RACE’s MUF Configurator along with FMUFController, respectively. These

figures show that under all the three configurations, deadline miss ratio of applications

(1) reduced atT = 300secdue to the decrease in the input work load, (2) increased at

T = 700secdue to the introduction of new application, and (3) further increased atT =

1,000secdue to the mode change from slow survey mode to fast survey mode. These

results demonstrates the impact of fluctuation in input workload and operating conditions

on system performance.

Figure 42a shows that when the system was operated under the baseline configura-

tion, deadline miss ratio of medium importance applications (applications executing in

fast survey mode) were higher than that of low importance applications (applications ex-

ecuting in slow survey mode) due to reasons explained in Section IV.4.3.1. Figures42b

and42c show that when RACE’s MUFConfigurator is used (both individually and

along with FMUFController), deadline miss ratio of medium importance applications

were nearly zero throughout the course of the experiment. Figures42aand42bdemonstrate

that RACE improves QoS of our DRE system significantly by configuring platform-specific

parameters appropriately.

As described in [18], the FMUFController responds to variations in input work-

load and operating conditions (indicated by deadline misses) by dynamically adjusting the

priorities of the low importance applications (i.e., moving low importance applications

into or out of the high-priority class). Figures42aand42cdemonstrate the impact of the

RACE’sController on system performance.

IV.4.3.3 Experiment 2: Heavy Workload

Experiment configuration. The goal of this experiment configuration was to evaluate

RACE’s system adaptation capabilities under a heavy workload. This scenario therefore

employed all five emulated spacecrafts, one emulated groundstation, and ten periodic ap-

plications. Four of these applications were initialized toexecute in fast survey mode and

107

the remaining six were initialized to execute in slow surveymode. Table16 summarizes

the application periods and the mapping of components/applications onto nodes.

Application Component Allocation Period Mode
Spacecraft Ground (msec)

1 2 3 4 5 Station
1 Communication Analysis Filter Compression Ground 1000 Fast Survey

Plasma-sensor
2 Camera-sensor Filter Communication Ground 900 Slow Survey

Compression Analysis
3 Camera-sensor Plasma-sensor Communication Analysis Filter Ground 500 Slow Survey

Compression
4 Communication Filter Plasma-sensor Compression Ground 800 Slow Survey

Analysis
5 Communication Camera-sensor Analysis Compression Ground 1200 Slow Survey

Filter
6 Analysis Filter Communication Compression Plasma-sensor Ground 700 Slow Survey
7 Plasma-sensor Plasma-sensor Communication Analysis Filter Ground 600 Fast Survey

Compression
8 Communication Plasma-sensor Compression Ground 700 Slow Survey

Filter Analysis
9 Communication Camera-sensor Analysis Compression Ground 400 Fast Survey

Filter Plasma-sensor
10 Compression Communication Plasma-sensor Ground 700 Fast Survey

Filter Analysis

Table 16: Application Configuration under Heavy Workload

The experiment was conducted over 1,400 seconds, and we emulated the variation in

operating condition, input workload, and a mode change by performing the following steps.

At time T = 0sec, we deployed applications one through six. At timeT = 300sec, the

input workload for all the application were reduced by ten percent, and at timeT = 700sec

we deployed applications seven through ten. AtT = 1,000sec, applications two through

five switched modes from slow survey to fast survey. To emulate this mode change, we

increased the rate of applications two through five by twentypercent. RACE’s FMUF

controller was configured with the following parameters: sampling period = 10 seconds,

N = 5, andthreshold = 5%.

Analysis of results. Figure43ashows that when the system was operated under the base-

line configuration, the deadline miss ratio of the medium importance applications were

again higher than that of the low importance applications. Figures43band43cshow that

when RACE’s MUFConfigurator is used (both individually and along with FMUF

Controller), deadline miss ratio of medium importance applications were nearly zero

throughout the course of the experiment. Figures43aand43b demonstrate how RACE

108

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(a) Baseline (RMS)

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(b) MUF Configurator

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(c) MUF Configurator + FMUF Controller

Figure 43: Deadline Miss Ratio under Heavy Workload

improves the QoS of our DRE system significantly by configuring platform-specific pa-

rameters appropriately. Figures42a and 42c demonstrate that RACE improves system

performance (deadline miss ratio) even under heavy workload.

These results show that RACE improves system performance byperforming adaptive

management of system resources there by validating our claim in SectionIV.3.3.

IV.4.4 Summary of Experimental Analysis

This section evaluated the performance and scalability of the RACE framework by

studying the impact of increase in number of nodes and applications in the system on

RACE’s monitoring delay and actuation delay. We also studied the performance of our

109

prototype MMS DRE system with and without RACE under varyingoperating condition

and input workload. Our results show that RACE is a scalable adaptive resource manage-

ment framework and performs effective end-to-end adaptation and yields a predictable and

high-performance DRE system.

From analyzing the results presented in SectionIV.4.3, we observe that RACE signifi-

cantly improves the performance of our prototype MMS DRE system even under varying

input workload and operating conditions, thereby meeting the requirements of building

component-based DRE systems identified in SectionIV.2. These benefits result from con-

figuring platform-specific QoS parameters appropriately and performing effective end-to-

end adaptation, which were performed by RACE’sConfiguratorsandControllers,

respectively.

110

CHAPTER V

CASE STUDY: CONFIGURABLE SPACE MISSION SYSTEMS

In this chapter, we first presents an overview of configurablespace mission (CSM)

systems, such as the proposed Fractionated Space Mission [14], and uses CSMs as a case

study to showcase the challenges of open DRE systems. We thendescribe how we applied

RACE to addresses these challenges. We conclude this chapter by presenting an empirical

evaluation of the performance of the system when it was operated with RACE.

V.1 CSM System Overview

A CSM system consists of several interacting subsystems (both in-flight and stationary)

executing in an open environment. Such systems consist of a spacecraft constellation that

maintains a specific formation while orbiting in/over a region of scientific interest. In con-

trast to conventional space missions that involve a monolithic satellite, CSMs distribute the

functional and computational capabilities of a conventional monolithic spacecraft across

multiple modules, which interact via high-bandwidth, low-latency, wireless links.

A CSM system must operate with a high degree of autonomy, adapting to (1) dynamic

addition and modifications of user-specified mission goals/objectives; (2) fluctuations in

input workload, application resource utilization, and resource availability due to variations

in environmental conditions; and (3) complete or partial loss of resources such as com-

putational power and wireless network bandwidth. Moreover, the input workload of—and

resource utilization by—applications executing in a CSM system cannot be accurately char-

acterizeda priori.

The two primary sets of applications executing in an CSM system can be classified

as guidance, navigation, and control (GNC) applications and science applications. GNC

applications are responsible for maintaining the spacecraft within the specified formation.

111

Science applications are responsible for collecting science data, processing and analyzing

data, storing or discarding the data, and transmitting the stored data to ground stations

for further processing. These applications tend to span theentire spacecraft constellation

because the fractionated nature of the spacecraft requiresa high degree of coordination to

achieve mission goals.

GNC applications havehard real-time requirements that manage mission-critical at-

tributes of the spacecraft. These applications therefore execute on dedicated resources and

cannot countenance any significant adaptation at runtime. In contrast, science applications

are generallysoftreal-time applications that can execute on shared resources and can often

benefit from runtime adaptation such as fine-tuning of systemand/or application properties

and parameters.

QoS requirements of science applications can occasionallybe unsatisfied without com-

promising mission success. Moreover, science applications in a CSM system are often

periodic, allowing the dynamic modification of their execution rates at runtime. Resource

consumption by—and QoS of—these science applications are directly proportional to their

execution rates,i.e., a science application executing at a higher rate contributes a higher

value to the overall system QoS, but also consumes resourcesat a higher rate.

V.2 Challenges Associated with the Autonomous Operation ofa CSM System

Developing and validating autonomous, open DRE systems, such as CSM systems,

presents numerous challenges. This section provides an overview of key adaptation chal-

lenges in these systems.

V.2.1 Challenge 1: Dynamic Addition and Modifications of Mission Goals

An operational CSM system can be initialized with a set of goals related to the pri-

mary, on-going science objectives. These goals affect the configuration of applications

112

deployed on the system resources,e.g., computational power, memory, and network band-

width. During normal operation, science objectives could change dynamically and mission

goals would be dynamically added and/or modified. In response to dynamic additions/-

modifications of science goals, a CSM system must (re)plan its operation to assemble/-

modify one or more end-to-end applications (i.e., a set of interacting, appropriately con-

figured application components) to achieve the specified goal under current environmental

conditions and resource availability. After one or more applications have been assembled,

they will first be allocated system resources and then deployed/initialized atop system re-

sources. SectionV.3.1 describes how we resolved this challenge.

V.2.2 Challenge 2: Adapting to Fluctuations in Input Workload, Application Re-

source Utilization, and Resource Availability

To ensure the stability of open DRE systems, system resourceutilization must be kept

below specified limits, despite fluctuations in resource availability and demand. Significant

under-utilization of system resources is also unacceptable, however, since this can decrease

system QoS and increase operational cost. A CSM system must therefore reconfigure ap-

plication parameters appropriately for these fluctuations(e.g., variations in operational con-

ditions, input workload, and resource availability) to ensure that the utilization of system

resources converge to the specified utilization bounds (“set-points”). Autonomous opera-

tion of the CSM system therefore requires (1) monitoring of current utilization of system

resources, (2) (re)planning for mission goals, considering current environmental conditions

and limited resource availability, and (3) timely allocation of system resources to applica-

tions that are produced as a result of planning. SectionV.3.2 describes how we resolved

this challenge.

113

V.2.3 Challenge 3: Adapting to Complete or Partial Loss of System Resources

In open and uncertain environments, complete or partial loss of system resources—

nodes (computational power), network bandwidth, and power—may occur at some point.

The autonomous operation of a CSM system requires it to adaptto such failures at run-

time, with minimal disruption of the overall mission. Achieving this adaptation requires

the ability to optimize overall system expected utility (i.e., the sum of expected utilities

of all science applications operating in the system) through prioritizing existing science

goals, as well as modifying, removing, and/or redeploying science applications. Conse-

quently, autonomous operation of a CSM system requires (1) monitoring resource liveness,

(2) prioritizing mission goals, (3) (re)planning for goalsunder reduced resource availabil-

ity, and (4) (re)allocating resources to resulting applications. SectionV.3.3 describes how

we resolved this challenge.

V.3 Addressing CSM System Challenges

To address the challenges identified in SectionV.2, we developed an integrated plan-

ning and adaptive resource management architecture, IPAC,which combines an intelligent

mission planner [39] and RACE. IPAC, enables self-optimization, self-(re)configuration,

and self-organization in open DRE systems by providing decision-theoretic planning, dy-

namic resource allocation, and runtime system control services. IPAC integrates a planner,

resource allocator, a controller, and system monitoring framework, as shown in Figure44.

System
Domain

ApplicationsUser Planner
Mission

Goals

Resource
Monitors

QoS

Monitors

ControllerAllocator Application Parameters

Application QoS

Resource Allocation

System Resource Utilization

Figure 44: An Integrated Planning, Resource Allocation, and Control (IPAC) Frame -
work for Open DRE Systems

114

As shown in Figure44, IPAC uses RACE’s resource monitors to track system resource

utilization and periodically update the planner, allocator, and controller with current re-

source utilization (e.g., processor/memory utilization and battery power). RACE’sQoS

monitors tracks system QoS and periodically updates the planner and RACE’s controller

with QoS values, such as applications’ end-to-end latency and throughput. The planner

uses its knowledge of the available components’ functionalcharacteristics to dynamically

assemble applications (i.e., choose and configure appropriate sets of interacting application

components) suitable to current conditions and goals/objectives. During this application

assembly, the planner also respects resource constraints and optimizes for overall system

expected utility.

IPAC uses RACE’s allocators to allocate various domain resources (such as CPU, mem-

ory, and network bandwidth) to application components by determining the mapping of

components onto nodes in the system domain. After applications have been deployed,

IPAC uses RACE’s controller to periodically monitor and fine-tune application/system pa-

rameters/properties, such as execution rate, to achieve efficient use of system resources.

We now describe how the capabilities offered by IPAC addressthe system management

challenges for open DRE systems identified in SectionV.2.

V.3.1 Addressing Challenge 1: Dynamic Addition and Modification of Mission Goals

When IPAC’s planner receives a mission goal from a user it assembles an application

capable of achieving the provided goal, given current localconditions and resource avail-

ability. After the planner assembles an appropriate application, RACE’s allocator allocates

resources to application components and employs the underlying middleware to deploy and

configure the application.

After the application is deployed successfully, the planner updates RACE’s controller

with the application’s metadata including application structure, mapping of allocation com-

ponents to system resources, and minimum and maximum execution rates. The controller

115

uses this information to dynamically modify system/application parameters (such as execu-

tion rates of applications) to accommodate the new application in the system and ensure re-

sources are not over-utilized as a result of this addition. SectionV.4.4empirically evaluates

the extent to which IPAC’s planning, resource allocation, and runtime system adaptation

services can improve system performance in when mission goals are dynamically added to

the system or modifications to goals deployed earlier are performed.

V.3.2 Addressing Challenge 2: Adapting to Fluctuations in Input Workload and Ap-

plication Resource Utilization

IPAC tracks system performance and resource utilization via RACE’s resource and

QoS monitors. RACE’s controller and effectors periodically compute system adaptation

decisions and modify system parameters, respectively, to handle minor variations in sys-

tem resource utilization and performance due to fluctuations in resource availability, input

workload, and operational conditions. SectionV.4.5 empirically validates how RACE’s

controller enables the DRE system to adapt to fluctuations ininput workload and applica-

tion resource utilization.

V.3.3 Addressing Challenge 3: Adapting to Complete or Partial Loss of System Re-

sources

When RACE’s controller and effectors cannot compensate forchanges in resource

availability, input workload, and operational conditions(e.g., due to drastic changes in

system operating conditions like complete loss of a node), re-planning in the planner is

triggered. The planner performs iterative plan repair to modify existing applications to

achieve mission goals. Although this re-planning may result in lower expected utility of

some applications, it allows the system to optimize overallsystem expected utility, even in

cases of significant resource loss. SectionV.4.6 empirically evaluates the extent to which

IPAC enables open DRE systems to adapt to loss of system resources.

116

V.4 Performance Results and Analysis

This section describes experiments and analyzes results that empirically evaluate the

performance of our prototype of the configurable space mission (CSM) case study de-

scribed in SectionV.1. These experiments evaluate the extent to which IPAC performs

effective end-to-end adaptation, thereby enabling the autonomous operation of open DRE

systems. To evaluate how individual services, planning andresource management services,

offered by IPAC impact the performance of the system, we ran the experiments in several

configurations,e.g., (1) using IPAC with the full set of services (decision-theoretic plan-

ning service (planner) and dynamic resource management service (RACE)) enabled and

(2) with limited sets of IPAC services enabled.

V.4.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed1 at Vanderbilt University,

which is a cluster consisting of 56 IBM blades powered by Emulab software2. Each blade

node contains two 2.8 GHz Intel Xeon processors, 1 GB physical memory, 1GHz Ether-

net network interface, and 40 GB hard drive. The Redhat Fedora Core release 4 OS with

real-time preemption patches [56] was used on all nodes.

We used five blade nodes for the experiments, each acting as a spacecraft in our pro-

totype CSM system. Our middleware platform was CIAO 0.5.10,which is an open-source

QoS-enabled component middleware that implements the OMG Lightweight CORBA Com-

ponent Model (CCM) [57] and Deployment and Configuration [61] specifications. IPAC

and the test applications implementing in our CSM system prototype were written in C++

using the CIAO APIs.

1http://www.dre.vanderbilt.edu/ISISlab
2http://www.emulab.net

117

http://www.dre.vanderbilt.edu/ISISlab
http://www.emulab.net

V.4.2 Prototype CSM System Implementation

Mission goals of our prototype CSM system included (1) weather monitoring, (2) mon-

itoring earth’s plasma activity, (3) tracking a specific star pattern, and (4) high-fidelity

imaging of start constellations. The relative importance of these goals are summarized in

Table17.

Goal Importance
1 Weather Monitoring 100
2 Sunspot Activity Monitoring 80
3 Star Tracking 20
4 Hi-fi Terrestrial Imaging 40

Table 17: Utility of Mission Goals

Applications that achieved these goals were periodic (i.e., applications contained a

timer component that periodically triggered the collection, filtration, and analysis of science

data) and the execution rate of these applications could be modified at runtime. Table18

summarizes the number of lines of C++ code of various entities in our CIAO middleware,

IPAC framework, and prototype implementation of the CSM DREsystem case study, which

were measured using SLOCCount3.

Entity Total Lines of Source Code
CSM DRE system prototype 18,574

IPAC framework 80,253
CIAO middleware 511,378

Table 18: Lines of Source Code for Various System Elements

3http://www.dwheeler.com/sloccount

118

http://www.dwheeler.com/sloccount

V.4.3 Experiment Design

As described in SectionV.1, a CSM system is subjected to (1) dynamic addition of goals

and end-to-end applications, (2) fluctuations in application workload, and (3) significant

changes in resource availability. To validate our claim that IPAC enables the autonomous

operation of open DRE systems, such as the CSM system, by performing effective end-

to-end adaptation, we evaluated performance of our prototype CSM system performance

when (1) goals were added at runtime, (2) application workloads were varied at runtime,

and (3) a significant drop in available resources occurred due to node failure.

To evaluate the improvement in system performance due to IPAC, we initially indented

to compare the system behavior (system resource utilization and QoS) with and without

IPAC. However, without IPAC, a planner, a resource allocator, and a controller were not

available to the system. Therefore, dynamic assembly of applications that satisfy goals,

runtime resource allocation to application components, and online system adaptation to

variations in operating conditions, input workload, and resource availability were not pos-

sible. In other words, without IPAC our CSM system would reduce to a “static-system”

that cannot operate autonomously in open environments.

To evaluate the performance IPAC empirically, we structured our experiments as fol-

lows:

• Experiment 1 presented in SectionV.4.4 compares the performance of the system

that is subjected to dynamic addition of user goals at runtime when the full set of

services (i.e., planning, resource allocation, and runtime control) offered by IPAC

are employed to manage the system versus when only the planning and resource

allocation services are available to the system.

• Experiment 2 presented in SectionV.4.5 compares the performance of the system

that is subjected to fluctuations input workload when the full set of services offered

119

by IPAC are employed to manage the system versus when only planning and resource

allocation services are available to the system.

• Experiment 3 presented in SectionII.6.7 compares the performance of the system

that is subjected to node failures when the full set of services offered by IPAC are

employed to manage the system versus when only resource allocation and control

services are available to the system.

For all the experiments, IPAC’s planner was configured to useoverall system expected

utility optimization and respect total system CPU usage constraints. Likewise, the allocator

was configured to use a suite of bin-packing algorithms with worst-fit-decreasing and best-

fit-decreasing heuristics. Finally, the controller was configured to employ the EUCON [52]

control algorithm to compute system adaptation decisions.

V.4.4 Experiment 1: Addition of Goals at Runtime

This experiment compares the performance of the system whenthe full set of services

(i.e. planning, resource allocation, and runtime control) offered by IPAC are employed

to manage the system versus when only the planning and resource allocation services are

available to the system. This experiment also adds user goals dynamically at runtime. The

objective is to demonstrate the need for—and empirically evaluate the advantages of—a

specialized controller in the IPAC architecture. We use thefollowing metrics to compare

the performance of the system under the different service configurations:

1. System downtime,which is defined as the duration for which applications in the

system are unable to execute due to resource reallocation and/or application rede-

ployment.

2. Average application throughput, which is defined as the throughput of applications

executing in the system averaged over the entire duration ofthe experiment.

120

3. System resource utilization,which is measure of the processor utilization on each

node in the system domain.

We demonstrate that a specialized controller, such as EUCON, enables the system to

adapt more efficiently to fluctuations in system configuration, such as addition of appli-

cations to the system. In particular, we empirically show how the service provided by a

controller is complementary to the services of both the allocator and the planner.

V.4.4.1 Experiment Configuration

During system initialization, timeT = 0, the first goal (weather monitoring) was pro-

vided to the planner by the user, for which the planner assembled five applications (each

with between two and five components). Later, at timeT = 200sec, the second goal

(monitoring earth’s plasma activity) goal was provided to the planner, which assembled

two applications (with three to four components each) to achieve this goal. Next, at time

T = 400sec, the third goal (start tracking) was provided to the planner, which assembled

one application (with two components) to achieve this goal.Finally, at timeT = 600sec,

the fourth goal (hi-fi imaging) was provided to the planner, which assembled an application

with four components to achieve this goal. Table19 summarizes the provided goals—and

the applications deployed corresponding to these goals—asa function of time. Table20

Time (sec) Goal Application #
0 - 200 Weather Monitoring 1 - 5

200 - 400 Sunspot Activity Monitoring 6 - 7
400 - 600 Star Tracking 8
600 - 800 Hi-fi Terrestrial Imaging 9

Table 19: Set of Goals and Corresponding Applications as a Function of Time

summarizes the application configuration,i.e., minimum and maximum execution rates,

estimated average resource utilization of components thatmake up each application, and

121

the ratio of estimated resource utilization between the worst case workload and the average

case workload.

Application Exec. Rate (Hz) Net Estimated Component Average Resource Util. Util. Ratio
Min Max Init. Resource Util. 1 2 3 4 5 Average Case : Worst Case

1 15 155 60 0.3 0.15 0.1 0.05 0 0 1 : 1.86
2 35 165 85 0.1 0.05 0.05 0 0 0 1 : 3.00
3 10 140 50 0.5 0.2 0.1 0.1 0.05 0.05 1 : 1.22
4 30 170 80 0.3 0.25 0.05 0 0 0 1 : 3.00
5 35 180 90 0.45 0.2 0.1 0.1 0.05 0 1 : 1.22
6 10 140 65 0.35 0.15 0.1 0.05 0.05 0 1 : 3.00
7 35 170 95 0.35 0.25 0.05 0.05 0 0 1 : 1.86
8 60 95 80 0.35 0.3 0.05 0 0 0 1 : 1.86
9 40 85 60 0.40 0.15 0.10 0.10 0.5 0 1 : 1.20

Table 20: Application Configuration

For this experiment, the sampling period of the controller was set to 2 seconds. The

processor utilization set-point of the controller, as wellas thebin-size, of each node was

selected to be 0.7, which is slightly lower than RMS [42] utilization bound of 0.77. IPAC

allocator was configured to use the standard best-fit-decreasing and worst-fit-decreasing

bin-packing heuristics.

V.4.4.2 Analysis of Experiment Results

When IPAC featured the planner, the allocator, and the controller, allocation was per-

formed by the allocator using the average case utilization values due to the availability of

the controller to handle workload increases that would result in greater than average re-

source utilization. When IPAC featured only the planner andthe allocator, however, all

allocations were computed using the worst case resource utilization values (use of average

case utilizations can not be justified because workload increases would overload the system

without a controller to perform runtime adaptation). Tables21and22summarize the initial

allocation of components to nodes (for applications 1 - 5 at time T = 0 corresponding to

the weather monitoring goal), as well as the estimated resource utilization, using average

case and worst case utilization values, respectively.

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
ro

ce
ss

or
 U

til
is

at
io

n
Time (Sampling period = 2 seconds)

Set-point
Node 1

Node 2
Node 3

Node 4
Node 5

(a) Utilization with the Controller

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
ro

ce
ss

or
 U

til
is

at
io

n

Time (Sampling period = 2 seconds)

Set-point
Node 1

Node 2
Node 3

Node 4
Node 5

(b) Utilization without the Controller

Figure 45: Experiment 1: Comparison of Processor Utilization

At time T = 200sec, when the applications for the plasma activity monitoring goal were

deployed (applications 6 and 7 as specified in Table20), the system reacted differently when

operated with the controller than without it. With the controller, enough available resources

were expected (using average case utilization values), so the allocator could incrementally

allocate applications 6 and 7 in the system thus required no reallocation or redeployment.

123

Node Estimated Utilization Items (Application, Component)
1 0.35 (4,1) (2,1) (3,5)
2 0.35 (3,1) (5,2) (4,2)
3 0.35 (5,1) (5,3) (5,4)
4 0.30 (1,1) (3,3) (2,2)
5 0.30 (1,2) (3,2) (1,3) (3,4)

Table 21: Allocation of Applications 1 - 5 using Average Case Utilizati on

Node Estimated Utilization Items (Application, Component)
1 0.43 (4,1) (3,5)
2 0.40 (3,1) (5,3) (1,3)
3 0.39 (5,1) (5,2) (3,4)
4 0.44 (1,1) (3,3) (2,2) (5,4)
5 0.40 (1,2) (3,2) (2,1) (4,2)

Table 22: Allocation of Applications 1 - 5 using Wost Case Utilization

In contrast, when the system operated without the controller, a reallocation was nec-

essary as an incremental addition of applications 6 and 7 to the system was not pos-

sible (allocations were based on worst case utilization values). The reallocation of re-

sources requires redeployment of application components and, therefore, increases sys-

tem/application downtime. Tables23 and24 summarize the revised allocation of compo-

nents to nodes (for applications 1 - 7), as well as the estimated resource utilization, using

average case and worst case utilization values, respectively.

Node Estimated Utilization Items (Application, Component)
1 0.45 (4,1) (2,1) (3,5) (6,2)
2 0.45 (3,1) (5,2) (4,2) (6,3) (7,2)
3 0.45 (5,1) (5,3) (5,4) (6,4) (7,3)
4 0.55 (1,1) (3,3) (2,2) (7,1)
5 0.45 (1,2) (3,2) (1,3) (3,4) (6,1

Table 23: Allocation of Applications 1 - 7 using Average Case Utilizati on

At time T = 400sec, when the application corresponding to the star tracking goal was

provided (application 8), resources were insufficient to incrementally allocate it to the sys-

tem, both with and without the controller, so reallocation was necessary.

124

Node Estimated Utilization Items (Application, Component)
1 0.615 (4,1) (5,3) (6,4) (5,4)
2 0.575 (7,1) (3,2) (2,2) (7,2)
3 0.605 (6,1) (1,2) (3,3) (4,2) (7,3)
4 0.610 (3,1) (1,1) (2,1) (1,3) (3,4)
5 0.610 (5,1) (6,2) (5,2) (6,3) (3,5)

Table 24: Allocation of Applications 1 - 7 using Wost Case Utilization

When the IPAC was configured without the controller, the allocator was unable to find

a feasible allocation using the best-fit decreasing heuristic. However, IPAC’s allocator

was able to find a feasible allocation using the best-fit decreasing heuristic. Tables26

and27summarize the allocation of components to nodes, as well as the estimated resource

utilization, using average case and worst case utilizationvalues, respectively.

At time T = 600sec, application corresponding to the hi-fi imaging goal (application

9) had to be deployed. When operating without the controller, it was not possible to find

any allocation of all nine applications, and the system continued to operate with only the

previous eight applications. In contrast, when the system included the controller, average

case utilization values were used during resource allocation, and application 9 was incre-

mentally allocated and deployed in the system.

When the system was operated with the full set of services offered by IPAC the overall

system downtime4 due to resource reallocation and application redeploymentwas 8534.375

mscompared to 15613.162mswhen the system was operated without the system adaptation

service of IPAC. It is clear that the system downtime is significantly (50%) lower when the

system was operating with the full set of services offered byIPAC than when the system

was operating without the controller.

From Figure45, it is clear that system resources are significantly underutilized when

4To measure the system downtime, we repeated the experiment over 100 iterations and computed the
average system downtime.

125

operating without the controller but are near the set-pointwhen the controller is used. Un-

derutilization of system resources results in reduced QoS,which is evident from Table25,

showing the overall system QoS.5

Application Average Throughput (Hz)
With the Controller Without the Controller

1 149.973 59.871
2 159.236 84.802
3 100.700 49.624
4 116.453 79.814
5 175.156 89.653
6 25.076 63.212
7 37.370 94.876
8 89.620 79.894
9 40.514 N/A

Entire System 99.344 66.860

Table 25: Experiment 1: Comparison of System QoS

V.4.4.3 Summary

This experiment compared system performance under dynamicaddition of mission

goals when the full set of IPAC services (i.e., planning, resource allocation, and runtime

control) were employed to manage the system versus when onlythe planning and resource

allocation services were available. Significant difference in system evolution were observed

due to the fact that when the system was operated without the controller, resources were

reallocated more often than when the controller was available. Higher system downtime

resulted, further lowering average throughput and resource utilization. Moreover, when the

system was operated with the controller, additional mission goals could be achieved by the

system, thereby improving the overall system utility and QoS.

From these results, it is clear that without the controller,even dynamic resource allo-

cation is inefficient due to the necessary pessimism in component utilization values (worst

case values from profiling). Lack of a controller thus results in (1) under-utilization of

5In this system, overall QoS is defined as the total throughputfor all active applications.

126

system resources, (2) low system QoS, and (3) high system downtime. In contrast, when

IPAC featured the planner, the allocator, and the controller, resource allocation was signif-

icantly more efficient. This efficiency stemmed from the presence of the controller, which

ensures system resources are not over-utilized despite workload increases. These results

also demonstrate that when IPAC operated with a full set of services it enables the efficient

and autonomous operation of the system despite runtime addition of goals.

V.4.5 Experiment 2: Varying Input Workload

This experiment executes an application corresponding to the weather monitoring, mon-

itoring earth’s plasma activity, and star tracking goals (applications 1 - 8 described in Ta-

ble 20), where the input workload is varied at runtime. This experiment demonstrates the

adaptive resource management capabilities of IPAC under varying input workload. We

compare the performance of the system when the full set of services offered by IPAC (i.e.,

planning, resource allocation, and runtime control) are employed to manage the system

versus when only planning and resource allocation servicesare available to the system.

We use deadline miss ratio, average application throughputand system resource utiliza-

tion as metrics to empirically compare the performance of the system under each service

configuration.

V.4.5.1 Experiment Configuration

At time T = 0, the system was initialized with applications 1 - 8 as specified in Ta-

ble 20. Upon initialization, applications execute at their initialization rate specified in Ta-

ble 20. When IPAC featured the planner, the allocator, and the controller, allocation was

performed by the allocator using the average case utilization values due to the availability

of the controller to handle workload increases that would result in greater than average

resource utilization. When IPAC featured only the planner and the allocator, however,

all allocations were computed using the worst case resourceutilization values. Tables26

127

and27summarize the allocation of components to nodes, as well as the estimated resource

utilization, using average case and worst case utilizationvalues, respectively.

Node Estimated Items (Application, Component)
Utilization

1 0.55 (8,1) (3,3) (2,1) (3,4) (6,4)
2 0.55 (4,1) (1,2) (5,2) (3,5) (7,2)
3 0.55 (7,1) (3,2) (5,3) (4,2) (7,3)
4 0.55 (3,1) (1,1) (6,2) (5,4) (8,2)
5 0.50 (5,1) (6,1) (1,3) (2,2) (6,3)

Table 26: Allocation of Applications 1 - 8 using Average Case Utilizati on

Node Estimated Utilization Items (Application, Component)
1 0.69 (8,1) (6,1) (2,1)
2 0.70 (4,1) (7,1)
3 0.70 (3,1) (5,1) (1,1) (1,3)
4 0.685 (6,2) (1,2) (3,2) (3,3) (5,2) (2,2)
5 0.695 (5,3) (4,2) (6,3) (6,4) (7,2) (7,3) (8,2) (3,4) (3,5) (5,4)

Table 27: Allocation of Applications 1 - 8 using Wost Case Utilization

Each applicationsŠs end-to-end deadline is defined asdi = ni/r i(k), whereni is the

number of components in applicationTi andr i(k) is the execution rate of applicationTi in

thekth sampling period. Each end-to-end deadline is evenly divided into sub-deadlines for

its components. The resultant sub-deadline of each component equals its period, 1/r(k).

All application/components meet their deadlines/sub-deadlines if the schedulable utiliza-

tion bound of RMS [42] is used as the utilization set-point and is enforced on all the nodes.

The sampling period of the controller was set at 2 seconds andthe utilization set-point

for each node was selected to be 0.7, which is slightly lower than RMS utilization bound.

Table28summarizes the variation of input workload as a function of time. When the input

workload was low, medium, and high, the corresponding resource utilization by applica-

tion components were their corresponding best case, average case, and worst case values,

respectively.

128

Time (sec) Input Workload
0 - 150 Low

150 - 450 Medium
450 - 600 High
600 - 900 Medium

900 - 1,000 Low

Table 28: Input Workload as a Function of Time

V.4.5.2 Analysis of Experiment Results

When the IPAC controller is available to the system it dynamically modifies the execu-

tion rates of applications within the bounds[min,max] specified in Table20 to ensure that

the resource utilization on each node converges to the specified set-point of 0.7, despite

fluctuations in input workload. When IPAC isnotconfigured with the controller (i.e., only

the planner and the allocator are available), however, applications execute at their initial-

ization rate specified in Table20.

Figure46a, Figure47a, and Table28show the execution of the system when it contains

the IPAC controller. During 0≤ T ≤ 150, when the input workload is low, the controller

increases the execution rates of applications such that theprocessor utilization on each

node converges to the desired set-point of 0.7. This behavior ensures effective utilization of

system resources. When IPAC does not provide the controllerservice,however, Figures46b

and47bshow that the applications execute at a constant rate (initialization rate) and system

resources are severely underutilized.

When input workload is increased from low to medium, atT = 150s, the corresponding

increase in the processor utilization can be seen in Figure46. Figures46aand47ashow

that when IPAC included the controller, although the processor utilization increased above

the set-point, within a few sampling periods the controllerrestored the processor utilization

to the desired set-point of 0.7 by dynamically reducing the execution rates of applications.

Under both service configuration of IPAC, with the controller and without the controller,

the deadline miss ratio was 0 throughout the duration of the experiment. Figure46ashows

that the application deadline miss ratio was unaffected by the short duration during which

129

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
ro

ce
ss

or
 U

til
is

at
io

n
Time (Sampling period = 2 seconds)

Set-point
Node 1

Node 2
Node 3

Node 4
Node 5

(a) With the Controller

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
ro

ce
ss

or
 U

til
is

at
io

n

Time (Sampling period = 2 seconds)

Set-point
Node 1

Node 2
Node 3

Node 4
Node 5

(b) Without the Controller

Figure 46: Experiment 2: Comparison of Processor Utilization

processor utilization was above the set-point. Finally, Figure46b shows that without the

controller, the system resources remained under-utilizedeven after the workload increase.

At T = 450s, the input workload was further increased from medium to high. As a

result, the processor utilization on all the nodes increased, which is shown in Figure46.

Figures46aand47b show that the controller was again able to dynamically modify the

application execution rates to ensure that the utilizationconverged to the desired set-point.

Figure46bshows that when IPAC did not feature the controller, the processor utilization

130

was at the set-point under high workload conditions (corresponding to the worst case re-

source utilization used to determine the allocation of components to processors in that

case).

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

E
xe

cu
tio

n
R

at
e

(H
z)

Time (Sampling period = 2 seconds)

Task1
Task2

Task3
Task4

Task5
Task6

Task7
Task8

(a) With the Controller

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

E
xe

cu
tio

n
R

at
e

(H
z)

Time (Sampling period = 2 seconds)

Task1
Task2

Task3
Task4

Task5
Task6

Task7
Task8

(b) Without the Controller

Figure 47: Experiment 2: Comparison of Application Execution Rates

At T = 600s, when the input workload was reduced from high to medium, from Fig-

ure46 it can be seen that the processor utilization on all the nodesdecreased. When IPAC

included the controller, however, the controller restoredthe processor utilization to the de-

sired set-point of 0.7 within a few sampling periods. Without the controller, processor

utilization remained significantly lower than the set-point. Similarly, atT = 900s, the input

131

workload was further reduced from medium to low, and Figure46 shows another decrease

in processor utilization across all nodes. When IPAC featured the controller, processor uti-

lization again returned to the desired set-point within a few sampling periods. Without the

controller, processor utilization remained even further below the set-point.

Figure46 shows that system resources are significantly underutilized when operating

without the controller, but are near the set-point when the controller is used. Underutiliza-

tion of system resources results in reduced QoS, which is evident from Table29, showing

the overall system QoS.6 In contrast, when IPAC featured the controller, the application

execution rates were dynamically modified to ensure utilization on all the nodes converged

to the set-point, resulting in more effective utilization of system resources and higher QoS.

Application Average Throughput (Hz)
With the Controller Without the Controller

1 113.17 59.930
2 162.817 84.903
3 101.240 45.964
4 54.507 76.909
5 166.959 89.905
6 13.460 62.088
7 35.219 94.896
8 80.019 79.702

Entire System 90.923 74.287

Table 29: Experiment 2: Comparison of System QoS

V.4.5.3 Summary

This experiment compared system performance during input workload fluctuations when

the system was operated with the full set of IPAC services (i.e. planning, resource alloca-

tion, and runtime control) versus when only the planning andresource allocation services

were available to the system. The results show how IPAC and its controller (1) ensures

system resources are not over-utilized, (2) improves overall system QoS, and (3) enables

6In this system, overall QoS is defined as the total throughputfor all active applications.

132

the system to adapt to drifts/fluctuations in utilization ofsystem resources byfine-tuning

application parameters.

V.4.6 Experiment 3: Varying Resource Availability

This experiment demonstrate the need for—and advantages of—a planner in our IPAC

architecture. It also demonstrates that although a specialized controller can efficiently han-

dle minor fluctuations in the system, it is unable to handle major fluctuations in the system,

such as loss of one or more nodes in the system.

We compare the performance of the system when the full set of services offered by

IPAC (i.e., planning, resource allocation, and runtime control) are employed to manage

the system versus when only resource allocation and controlservices are available to the

system. We use system expected utility and system resource utilization as metrics to em-

pirically compare the performance of the system under each service configuration.

V.4.6.1 Experiment Configuration

For this experiment, the goals provided to the system were (1) weather monitoring, (2)

sunspot monitoring, (3) star-tracking, and (4) hi-fi imaging goals. The sampling period of

the controller was set to be 2 seconds. The processor utilization set-point of the controller,

as well as thebin-size, of each node was selected to be 0.7. Under both configurations of

IPAC (i.e., (1) when IPAC featured the planner, allocator, and controller and (2) when IPAC

featured only the allocator and the controller), allocation was performed by the allocator

using the average case utilization values due to the availability of the controller to handle

workload increases that would result in greater than average resource utilization.

When IPAC featured only the allocator and the controller, the allocator is augmented

such that if it is unable to allocate all applications given the reduced system resources, the

allocator incrementally removes applications from consideration by lowestutility density

133

until a valid allocation can be found. We define utility density as the expected utility of the

application divided by its expected resource usage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
ro

ce
ss

or
 U

til
is

at
io

n

Time (Sampling period = 2 seconds)

Set-point
Node 1

Node 2
Node 3

Node 4

(a) With the Planner

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
ro

ce
ss

or
 U

til
is

at
io

n

Time (Sampling period = 2 seconds)

Set-point
Node 1

Node 2
Node 3

Node 4

(b) Without the Planner

Figure 48: Experiment 3: Comparison of Processor Utilization

V.4.6.2 Analysis of Experiment Results

When IPAC featured only the allocator and the controller, the complete loss of a node

triggered reallocation by the allocator. With the reduced system resource, however, the

allocator was able to allocate applications correspondingto the weather monitoring, plasma

monitoring, and hi-fi imaging goals only.

134

In contrast, when IPAC featured the planner, the allocator,and the controller, the com-

plete loss of a node triggers re-planning in the planner. Theplanner then assembled a new

set of applications, taking into account the significant reduction in system resources. Al-

though some applications had a lower expected utility than the original ones, all four goals

were still achieved with the resources of the four remainingnodes.

Figure48 shows that both with and without the planner, the controllerensures that the

resource utilization on all the nodes are maintained withinthe specified bounds.

Table30 compares the utility of the system when IPAC did/did-not feature the planner.

This figure shows how system adaptations performed by the planner in response to failure

of a node result in higher system utility compared to the system adaptation performed by

just the allocator and the controller. The results Table30occur because IPAC’s planner was

Application Expected Utility
With Planner Without Planner

1 18 18
2 6 6
3 30 30
4 20 20
5 26 26
6 38 40
7 36 40
8 16 –
9 40 40

Entire System 230 220

Table 30: Experiment 3: Comparison of System Utility

able to assemble modified applications for some mission goals (corresponding to applica-

tions 6, 7, and 8), albeit with somewhat lower expected utility, whereas the allocator had to

completely remove an application to meet the reduced resource availability.

135

V.4.6.3 Summary

This experiment shows that although a specialized controller can efficiently handle mi-

nor fluctuations in resource availability, it may be incapable of effective system adaptation

in the case of major fluctuations, such as loss of one or more nodes in the system. Even

with the addition of an intelligent resource allocation scheme, system performance and

utility may suffer unnecessarily during major fluctuationsin resource availability. In con-

trast, IPAC’s planner has knowledge of system componentfunctionalityand desired mis-

sion goals. As a result, it can perform more effective systemadaptation in the face of major

fluctuations, such as the loss of a system node.

136

CHAPTER VI

CASE STUDY: SEAMONSTER SENSOR-WEB

In this chapter, we first presents an overview of the SEAMONSTER sensor-web sys-

tem [28]. We use this system as a case study to showcase the resource management chal-

lenges of large scale open DRE systems. We then describe how we applied RACE to ad-

dresses these challenges. We conclude this chapter by presenting an empirical evaluation

of the performance of the system when it was operated with RACE.

VI.1 SEAMONSTER Sensor-web Overview

Sensor-webs [25] are large scale open DRE systems consisting of several interacting

subsystems and enable the study of scientific and environmental activities, such as weather

monitoring/forecasting, ecosystem monitoring, and monitoring of earth’s geological activ-

ities, in real-time. Sensor-webs also facilitate the real-time analysis and recovery of large

volumes of collected scientific data.

One such sensor-web is the SEAMONSTER sensor-web [28]. Currently, the primary

focus of SEAMONSTER sensor-web is to monitor geological activities occurring in the

Lemon Creek watershed near Juneau, Alaska. The objective ofthis sensor-web is to mon-

itor and collect data regarding glacier dynamics and mass balance, watershed hydrology,

coastal marine ecology, and human impact/hazards in and around the Lemon Creek wa-

tershed. The collected data is used to study the correlationbetween hydrology, glacier

velocity, and temperature variation at the Lemon Creek watershed.

The SEAMONSTER sensor-web is comprised of multiple groups of sensors that are

deployed “in the field” and collect data of scientific interest. The data collected by multiple

sensor groups are relayed to a cluster of servers via both wired and wireless network for

processing, correlation, and analysis. These data processing applications are built atop the

137

Component-Integrated ACE ORB(CIAO) [81] andDeployment and Configuration Engine

(DAnCE) [27] QoS-enabled component middleware platform.

Scientific data collected by the sensors are passed to data processing applications that

execute at the server cluster. Data processing applications may be added or removed to/-

from the server cluster during normal operation. The resource utilization by these applica-

tions can not be accurately characterizeda priori as it depends on the input workload of

these applications, which in turn is affected by a plethora of environmental conditions and

activities. For example, during nominal operation of the SEAMONSTER sensor web, only

a subset of the sensors are operational (primarily for baseline monitoring of the Lemon

Creek Glacier and Lemon Creek watershed area). Therefore, the input workload of the

applications processing the collected data is minimal. However, when evidence is detected

that the glacial lake on Lemon Creek Glacier is draining, most or all of the sensors in the

sensor web transition to an operational state and much larger quantities of sensor data are

collected to allow in-depth analysis of the effects of the lake draining through the glacier

into Lemon Creek. During this event, input workload of the data processing applications

are significantly higher than during normal operation.

VI.2 Adaptive Resource Management Requirements of the SEAMONSTER

Sensor-web

As discussed in SectionIII.1.2, the use of QoS-enabled component middleware to de-

velop open DRE systems, such as the SEAMONSTER sensor-web, can significantly im-

prove the design, development, evolution, and maintenanceof these systems. However,

when such systems are built in the absence of a adaptive resource frameworks, several key

requirements remain unresolved. To motivate the need for RACE, this section presents

the key resource and QoS management requirements that we addressed while building the

SEAMONSTER sensor-web.

138

VI.2.1 Requirement 1: Online Resource Allocation To Data Processing Applications

Data processing applications executing in the server cluster areresource sensitive, i.e.,

QoS of the sensor-web is affected significantly if an application does not receive the re-

quired CPU time and network bandwidth within bounded delay.Moreover, in open DRE

systems like the SEAMONSTER sensor-web, input workload affects utilization of system

resources and QoS of applications. Utilization of system resources and QoS of applications

may therefore vary significantly from their estimated values.

A resource management framework therefore needs to monitorthe current utilization of

system resources and allocate resources in a timely fashionto applications such that their

resource requirements are met using resource allocation algorithms such as PBFD [24].

SectionVI.3.1 describes how RACE performs on-line resource allocation toapplication

components to addresses this requirement.

VI.2.2 Requirement 2: Enabling the Sensor-web to Dynamically Adapt to Fluctua-

tions in Input Workload

When applications are deployed and initialized, resourcesare allocated to application

components based on theestimatedresource utilization and estimated/current availability

of system resources. In open DRE systems, however,actualresource utilization of applica-

tions might be significantly different than their estimatedvalues. Moreover, for applications

executing in these systems, the relation between input workload, resource utilization, and

QoS cannot be characterizeda priori.

An adaptive resource management framework therefore needsto provide monitors that

track system resource utilization, as well as QoS of applications, at run-time. Although

some QoS properties (such as accuracy, precision, and fidelity of the produced output)

are application-specific, certain QoS (such asend-to-end latencyand throughput) can be

tracked by the framework transparently to the application.However, customization and

139

configuration of the framework with domain specific monitors(both platform specific re-

source monitors and application specific QoS monitors) should be possible. In addition,

the framework needs to enable the system toadaptto dynamic changes, such as variations

in operational conditions and/or input workload. SectionVI.3.2 demonstrates how RACE

performs system adaptation and utilization of system resources are maintained within the

specified utilization set-point set-point(s) to address this requirement.

VI.3 Addressing SEAMONSTER Requirements Using RACE

We now describe how RACE was applied to the SEAMONSTER sensor-web described

in SectionVI.1 and show how it addressed key resource allocation and adaptive resource

management requirements that we identified in SectionVI.2.

VI.3.1 Addressing Requirement 1: Online Resource Allocation

First, RACE’s, using itsInputAdapter, parses the metadata that describes the ap-

plication to obtain the resource requirement(s) of components that make up the application.

TheCentral Monitor obtains system resource utilization/availability information for

RACE’s Resource Monitors, and using this information along with theestimated

resource requirement of application components captured in application’s metadata, the

Allocators map components onto nodes in the system domain based on runtime re-

source availability.

RACE’sInputAdapter,Central Monitor, andAllocators coordinate with

one another to allocate resources to applications executing in open DRE systems, thereby

addressing the resource allocation requirement for open DRE systems identified in Sec-

tion VI.2.1.

140

VI.3.2 Addressing Requirement 2: Runtime System Adaptation

Allocation algorithms supported by RACE’sAllocators allocate resources to com-

ponents based on current system resource utilization and component’s estimated resource

requirements. In open DRE systems, however, there is often no accuratea priori knowledge

of input workload and the relationship between input workload and resource requirements

of an application.

To address this requirement, RACE’s control architecture employs a feedback loop to

manage system resource and application QoS and ensures (1) QoS requirements of appli-

cations are met at all times and (2) system stability by maintaining utilization of system

resources below their specified utilization set-points. RACE’s control architecture features

a feedback loop that consists of three main components:Monitors, Controllers,

andEffectors.

Monitors are associated with system resources and QoS of the applications and pe-

riodically update theController with the current resource utilization and QoS of ap-

plications currently running in the system. TheController implements a particular

control algorithm such as EUCON [52], DEUCON [83], HySUCON [41], and FMUF [18],

and computes the adaptations decisions for each (or a set of)application(s) to achieve

the desired system resource utilization and QoS.Effectors modify system parameters,

which include resource allocation to components, execution rates of applications, and OS/-

middleware/network QoS setting of components, to achieve the controller recommended

adaptation.

RACE’s monitoring framework,Controllers, andEffectors coordinate with

one another and the aforementioned entities of RACE to ensure (1) QoS requirements of

applications are met and (2) utilization of system resources are maintained within the spec-

ified utilization set-point set-point(s), thereby addressing the requirements associated with

runtime end-to-end QoS management identified in SectionVI.2.2. We empirically validate

this in SectionVI.4.

141

VI.4 Performance Results and Analysis

This section presents the design and results of experimentsthat evaluate the adaptive

resource management capabilities of RACE in the context of the SEAMONSTER sensor-

web. This section also validates our claims in SectionVI.3 that RACE performs effective

end-to-end adaptation and yield a predictable and scalableDRE system under varying op-

erating conditions and input workload.

VI.4.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed1 at Vanderbilt University,

which is a cluster consisting of 56 IBM blades powered by Emulab software2. Each blade

node contains two 2.8 GHz Intel Xeon processors, 1 GB physical memory, 1GHz Ether-

net network interface, and 40 GB hard drive. The Redhat Fedora Core release 4 OS with

real-time preemption patches [56] was used on all nodes.

We used five blade nodes for the experiments to emulate the server cluster of our proto-

type SEAMONSTER sensor-web. Our middleware platform was CIAO 0.5.10, which is an

open-source QoS-enabled component middleware that implements the OMG Lightweight

CORBA Component Model (CCM) [57] and Deployment and Configuration [61] specifi-

cations.

VI.4.2 System Implementation and Experiment Design

Data processing application that executed on our prototypeSEAMONSTER sensor-

web can be classified as (1) glacier dynamics monitoring, (2)watershed hydrology analy-

sis, and (3) coastal marine ecology analysis applications.These applications were periodic

(i.e., applications contained a timer component that periodically triggered the collection,

filtration, and analysis of science data) and the execution rate of these applications could

1http://www.dre.vanderbilt.edu/ISISlab
2http://www.emulab.net

142

http://www.dre.vanderbilt.edu/ISISlab
http://www.emulab.net

be modified at runtime. Table31 summarizes the number of lines of C++ code of various

entities in our CIAO middleware, RACE, and our implementation of the data processing

applications that executed on the prototype SEAMONSTER sensor-web, which were mea-

sured using SLOCCount3.

Entity Total Lines of Source Code
Data processing applications 18,574

RACE framework 157,253
CIAO middleware 511,378

Table 31: Lines of Source Code for Various System Elements

As described in SectionVI.1, the SEAMONSTER sensor-web is subjected fluctua-

tions in application workload. To validate our claim that RACE enables the autonomous

operation of open DRE systems, such as the SEAMONSTER sensor-web, by performing

effective end-to-end adaptation, we evaluated performance of our prototype SEAMON-

STER sensor-web performance when application workloads were varied at runtime. Our

experiment compares the performance of the system that is subjected to fluctuations input

workload when the system is operated with and without RACE. As execution rates of appli-

cations that executed in this system could be dynamically modified at runtime, RACE was

configured to employ the EUCON [52] control algorithm to compute system adaptation

decisions.

VI.4.3 Evaluation of RACE’s Adaptive Resource Management Capabilities

In this experiment input workload to data processing applications were varied at run-

time. This experiment demonstrates the adaptive resource management capabilities of

RACE under varying input workload. We compare the performance of the system when

it was operated with and without RACE. We use deadline miss ratio, average application

3http://www.dwheeler.com/sloccount

143

http://www.dwheeler.com/sloccount

throughput and system resource utilization as metrics to empirically compare the perfor-

mance of the system under each service configuration.

VI.4.3.1 Experiment Configuration

Application Exec. Rate (Hz) Net Estimated Component Average Resource Util.
Min Max Init. Resource Util. 1 2 3 4 5

1 15 155 60 0.3 0.15 0.1 0.05 0 0
2 35 165 85 0.1 0.05 0.05 0 0 0
3 10 140 50 0.5 0.2 0.1 0.1 0.05 0.05
4 30 170 80 0.3 0.25 0.05 0 0 0
5 35 180 90 0.45 0.2 0.1 0.1 0.05 0
6 10 140 65 0.35 0.15 0.1 0.05 0.05 0
7 35 170 95 0.35 0.25 0.05 0.05 0 0

Table 32: Application Configuration

At time T = 0, the system was initialized the applications specified in Table32 to per-

form glacier dynamics monitoring, watershed hydrology analysis, and coastal marine ecol-

ogy analysis. Upon initialization, applications execute at their initialization rate specified

in Table32. Each applicationsŠ end-to-end deadline is defined asdi = ni/r i(k), whereni is

the number of components in applicationTi andr i(k) is the execution rate of applicationTi

in thekth sampling period. Each end-to-end deadline is evenly divided into sub-deadlines

for its components. The resultant sub-deadline of each component equals its period, 1/r(k).

All application/components meet their deadlines/sub-deadlines if the schedulable utiliza-

tion bound of RMS [42] is used as the utilization set-point and is enforced on all the nodes.

The sampling period of the controller was set at 2 seconds andthe utilization set-point

for each node was selected to be 0.7, which is slightly lower than RMS utilization bound.

Table33summarizes the variation of input workload as a function of time. When the input

workload was low, medium, and high, the corresponding resource utilization by applica-

tion components were their corresponding best case, average case, and worst case values,

respectively.

144

Sampling Period Input Workload
0 - 50 Low

50 - 150 Medium
150 - 250 High
250 - 350 Medium
350 - 400 Low

Table 33: Input Workload as a Function of Time

VI.4.3.2 Analysis of Experiment Results

When RACE is available to the system it dynamically modifies the execution rates of

applications within the bounds[min,max] specified in Table32 to ensure that the resource

utilization on each node converges to the specified set-point of 0.7, despite fluctuations in

input workload. When the system operated without RACE, however, applications execute

at their initialization rate specified in Table32.

Figure49a, Figure50a, and Table33 show the execution of the system when RACE is

employed. During 0≤T ≤100, when the input workload is low, the controller increases the

execution rates of applications such that the processor utilization on each node converges to

the desired set-point of 0.7. This behavior ensures effective utilization of system resources.

When RACE is not used, however, Figures49band50bshow that the applications execute

at a constant rate (initialization rate) and system resources are severely underutilized.

When input workload is increased from low to medium, atT = 100s, the corresponding

increase in the processor utilization can be seen in Figure49. Figures49aand50ashow

that when RACE is used, although the processor utilization increased above the set-point,

within a few sampling periods the controller restored the processor utilization to the desired

set-point of 0.7 by dynamically reducing the execution rates of applications. The deadline

miss ratio for the entire duration of the experiment was observed to be 0.005 and 0.0184

when the system was operated with and without RACE, respectively. Finally, Figure49b

shows that without RACE, the processor utilization was below the set-point for all the

nodes in the system, except for node 5.

At T = 300s, the input workload was further increased from medium to high. As a

145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
ro

ce
ss

or
 U

til
iz

at
io

n
Sampling period (2 sec)

Set-point
Proc 1

Proc 2
Proc 3

Proc 4
Proc 5

(a) With RACE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
ro

ce
ss

or
 U

til
iz

at
io

n

Sampling period (2 sec)

Set-point
Proc 1

Proc 2
Proc 3

Proc 4
Proc 5

(b) Without RACE

Figure 49: Comparison of Processor Utilizations

result, the processor utilization on all the nodes increased, which is shown in Figure49.

Figures49aand50bshow that RACE was again able to dynamically modify the application

execution rates to ensure that the utilization converged tothe desired set-point. Figure49b

shows that without RACE, the processor utilization on most of the nodes in the system was

significantly higher than the was at the set-point under highworkload conditions.

At T = 500s, when the input workload was reduced from high to medium, from Fig-

ure 49 it can be seen that the processor utilization on all the nodesdecreased. With the

system was operated with RACE, however, RACE restored the processor utilization to the

146

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400
E

xe
cu

tio
n

R
at

e(
H

z)
Sampling period (2 sec)

App1
App2

App3
App4

App5
App6

App7

(a) With RACE

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

E
xe

cu
tio

n
R

at
e(

H
z)

Sampling period (2 sec)

App1
App2

App3
App4

App5
App6

App7

(b) Without RACE

Figure 50: Comparison of Application Execution Rates

desired set-point of 0.7 within a few sampling periods. Without RACE, processor utiliza-

tion for all nodes except node 5 remained significantly lowerthan the set-point. Similarly,

at T = 700s, the input workload was further reduced from medium to low, and Figure49

shows another decrease in processor utilization across allnodes. When the system featured

RACE, processor utilization again returned to the desired set-point within a few sampling

periods. Without RACE, processor utilization remained even further below the set-point.

Figure49 shows that system resources are either significantly underutilized or over-

utilized when operating without RACE, but are near the set-point when RACE is used.

147

Underutilization and/or over-utilization of system resources results in reduced QoS, which

is evident from Table34, showing the overall system QoS.4 In contrast, when the system

featured RACE, the application execution rates were dynamically modified to ensure uti-

lization on all the nodes converged to the set-point, resulting in more effective utilization

of system resources and higher QoS.

Application Average Throughput (Hz)
With RACE Without RACE

1 110.326 59.930
2 160.891 84.903
3 60.532 45.964
4 133.894 76.909
5 124.232 89.599
6 21.476 63.2362
7 37.264 94.896

Entire System 92.660 74.445

Table 34: Comparison of System QoS

VI.4.3.3 Summary

This experiment compared system performance during input workload fluctuations when

the system was operated with and without RACE. The results show how RACE (1) ensures

system resources are not over-utilized, (2) improves overall system QoS, and (3) enables

the system to adapt to drifts/fluctuations in utilization ofsystem resources byfine-tuning

application parameters.

4In this system, overall QoS is defined as the total throughputfor all active applications.

148

CHAPTER VII

CONCLUDING REMARKS

Open distributed real-time and embedded (DRE) systems require end-to-end QoS en-

forcement from their underlying operating platforms to operate correctly. These systems

often run in environments where resource availability is subject to dynamic change. To

meet end-to-end QoS in these dynamic environments, DRE systems can benefit from adap-

tive resource management architectures that monitors system resources, performs efficient

application workload management, and enables efficient resource provisioning for execut-

ing applications. Resource management mechanisms based oncontrol-theoretic techniques

are emerging as a promising solution to handle the challenges of applications with stringent

end-to-end QoS executing in DRE systems. These mechanisms enable adaptive resource

management capabilities in open DRE systems and adapt gracefully to fluctuation in re-

source availability and application resource requirementat runtime.

To address key resource management challenges of open DRE systems, this disserta-

tion presented adaptive resource management algorithms, architectures, and frameworks

for large-scale DRE systems. ChapterII described HiDRA, which is a hierarchical dis-

tributed resource management architecture based on control-theoretic techniques that pro-

vides adaptive resource management, such as resource monitoring and application adapta-

tion, that are key to supporting open DRE systems. ChapterII also presented an evaluation

of the performance of HiDRA using a representative target tracking DRE system imple-

mented using RT-CORBA and composed of two types of system resources (computational

power at the receiver and wireless network bandwidth) and three applications (UAV data

sender/receiver pairs).

ChapterIII described RACE, which is an adaptive resource management framework

that provides end-to-end adaptation and resource management for open DRE systems built

149

atop QoS-enabled component middleware. ChapterIII also demonstrated how RACE helps

resolve key resource and QoS management challenges associated with DRE systems. Fi-

nally, ChaptersIV, V, and VI presented three representative DRE system case studies

where we successfully applied RACE. These chapters detailed the adaptive resource man-

agement challenges of each DRE system and presented an empirical evaluation of adaptive

resource management capabilities of RACE in the context of each DRE system.

VII.1 Lessons Learned

We now summarize the lessons learned from our work on adaptive resource manage-

ment algorithms, architectures, and frameworks for DRE systems.

VII.1.1 Adaptive Resource Management Algorithms and Architectures

The lessons learned by applying HiDRA to our target trackingsystem thus far include:

• HiDRA’s Control-theoretic approaches yielded in anadaptiveresource management

architecture that can gracefully handle fluctuations in resource availability and/or

demand for open DRE systems.

• The formalisms presented in the chapter form the foundation for a resource manage-

ment framework based on control-theoretic principles thatcan be used to perform

system stability analysis and obtain theoretical assurance about system performance.

• Developing applications in which parameters can be fine-tuned to modify the ap-

plication operation and utilization of system resources helps achieve higher QoS of

applications and enables HiDRA to maintain system resourceutilization within de-

sired bounds.

150

VII.1.2 Adaptive Resource Management Frameworks

The lessons learned in building RACE and applying it three DRE system thus far in-

clude:

• Challenges involved in developing open DRE systems.Achieving end-to-end QoS

in open DRE systems requires adaptive resource management of system resources,

as well as integration of a range of real-time capabilities.QoS-enabled middleware,

such as CIAO/DAnCE, along with the support of DSMLs and tools, such as PICML,

provide an integrated platform for building such systems and are emerging as an op-

erating platform for these systems. Although CIAO/DAnCE and PICML alleviate

many challenges in building DRE systems, they do not addresses the adaptive re-

source management challenges and requirements of open DRE systems. Adaptive

resource management solutions are therefore needed to ensure QoS requirements of

applications executing atop these systems are met.

• Decoupling middleware and resource management algorithms. Implementing

adaptive resource management algorithms within the middleware tightly couples the

resource management algorithms within particular middleware platforms. This cou-

pling makes it hard to enhance the algorithms without redeveloping significant por-

tions of the middleware. Adaptive resource management frameworks, such as RACE,

alleviate the tight coupling between resource management algorithms and middle-

ware platforms and improve flexibility.

• Design of a framework determines its performance and applicability. The de-

sign of key modules and entities of the resource management framework determines

the scalability, and therefore the applicability, of the framework. To apply a frame-

work like RACE to a wide range of open DRE system, it must scaleas the number

of nodes and application in the system grows. Our empirical studies on the scala-

bility of RACE showed that structuring and designing key modules of RACE (e.g.,

151

monitors and effectors) in a hierarchical fashion not only significantly improves the

performance of RACE, but also improves its scalability.

• Need for configuring/customizing the adaptive resource management frame-

work with domain specific monitors. Utilization of system resources, such as

CPU, memory, and network bandwidth, and system performance, such as latency

and throughput, can be measured in a generic fashion across various system domains.

In open DRE systems, however, the need to measure utilization of domain-specific

resources, such as battery utilization, and application-specific QoS metrics, such as

the fidelity of the collected plasma data, might occur. Domain-specific customization

and configuration of an adaptive resource management framework, such as RACE,

should therefore be possible. RACE supports domain-specific customization of its

Monitors. In future work, we will empirically evaluate the ease of integration of

these domain-specific resource entities.

• Need for selecting an appropriate control algorithm to manage system perfor-

mance.The control algorithm that aController implements relies on certain sys-

tem parameters that can be fine-tuned/modified at runtime to achieve effective system

adaptation. For example, FMUF relies on fine-tuning operating system priorities of

processes hosting application components to achieve desired system adaptation; EU-

CON relies on fine-tuning execution rates of end-to-end applications to achieve the

same. The applicability of a control algorithm to a specific domain/scenario is there-

fore determined by the availability of these runtime configurable system parameters.

Moreover, the responsiveness of a control algorithm and theController in restor-

ing the system performance metrics to their desired values determines the applicabil-

ity of a Controller to a specific domain/scenario. During system design time a

Controller should be selected that is appropriate for the system domain/scenario.

152

RACE

RACE

Node Node Node

Resource Group

RACE

Node Node Node

Resource Group

RACE

Node Node Node

Resource Group

System Domain

Figure 51: Hierarchical Composition of RACE

• Need for distributed/decentralized adaptive resource management. It is easier

to design, analyze, and implementcentralizedadaptive resource management algo-

rithms that manage an entire system than it is to design, analyze, and implement

decentralizedadaptive resource management algorithms. As a the size of a system

grows, however, centralized algorithms can become bottlenecks since the computa-

tion time of these algorithms can scale exponentially as thenumber of end-to-end

applications increases. One way to alleviate these bottlenecks is to partition system

resources intoresource groupsand employ hierarchical adaptive resource manage-

ment, as shown in Figure51. In our future work we plan to enhance RACE so that a

local instance of the framework can manage resource allocation, QoS configuration,

and runtime adaption within a resource group, whereas aglobal instance can be used

to manage the resources and performance of the entire system.

VII.2 Future Research Directions

Based on our experience in designing and developing adaptive resource management

algorithms, architectures, and frameworks for DRE systems, we now present some future

research directions. Our views and ideas on future researchdirections are summarized

below.

• Decentralized and/or decoupled resource management algorithms and archi-

tectures. Our solutions to manage resources in DRE systems are built upon the

153

assumption that a centralizedfeedback lane– communication channel between mon-

itors, centralized controller, and effectors – is always open and available. Although

this is a reasonable assumption for a significantly large number of DRE systems, this

assumption does not hold true for certain flavors of DRE systems where the availabil-

ity of a communication channel between various pieces of thesystem is intermittent.

Therefore, to broaden the applicability of adaptive resource management solutions,

future research is necessary to design and develop adaptiveresource management

solutions that minimize the reliance on a centralized feedback lane. To address this

challenge, one potential approach would involve the designand development of adap-

tive resource management solutions that (1) are decentralized and/or decoupled and

(2) employ multiple individual/local feedback lanes in contrast to existing solutions

that a employ centralized controller and rely heavily on thecentralized feedback lane.

• Techniques that enable the coordinated and simultaneous operation of multiple

resource management solutions.Adaptation in open DRE systems can be per-

formed at the various levels. These levels of adaptation include (1) thesystem level,

e.g., where applications can be deployed/removed end-to-end to/from the system,

(2) theapplication structure level, e.g., where components (or assemblies of compo-

nents) associated with one or more applications executing in the system can be added,

modified, and/or removed, (3) theresource level, e.g., where resources can be applied

to application components to ensure their timely completion, and (4) theapplication

parameter level, e.g., where configurable parameters (if any) of application compo-

nents can be tuned. These adaptation levels are interrelated since they directly or

indirectly impact system resource utilization and end-to-end QoS, which affects mis-

sion success. Adaptations at various levels must thereforebe performed in a stable

andcoordinatedfashion. In ChapterV we presented anintegratedadaptive resource

management architecture that performed system adaption atthese levels in a coordi-

nated fashion. However, in ultra large-scale systems [38], a single integrated resource

154

management solution cannot be employed to manage the entiresystem, primarily due

to scalability and reliability concerns. Therefore, future research is needed to design

and develop techniques that enable the simultaneous operation of multiple resource

management solutions in a coordinated and stable fashion.

• Techniques that enable the certification of adaptive resource management so-

lutions. In the past, certification has been performed extensively inthe domains of

pharmaceuticals, health-care, automobile production, manufacturing, and assembly.

Certification has not been widespread in the field of softwaredevelopment because

the software industry is relatively young compared to otherindustries. However,

recently since DRE systems are being used in many mission critical domains, cer-

tification orverification and validation[37] of such systems is gaining momentum.

In order to certify the system that can be deployed in hostileenvironments, accurate

a priori knowledge of the system behavior (system performance (QoS)and resource

utilization) is required, and system behavior must meet thespecified requirements.

However, when adaptive resource management solutions are employed in a system,

determining the behavior of the systema priori accurately is extremely difficult, if

not impossible. Therefore, currently, the use of adaptive resource management so-

lutions in mission critical DRE systems is minimal. Future research is necessary to

study and develop new verification and validation techniques that enable the certifi-

cation of adaptive resource management solutions, and thereby enabling the use of

adaptive resource management solutions in mission critical systems.

155

APPENDIX A

LIST OF PUBLICATIONS

Our research on HiDRA and RACE has lead to the following journal, conference and

workshop publications.

A.1 Refereed Journal Publications

1. Nishanth Shankaran, Nilabja Roy, Douglas C. Schmidt, Yingming Chen, Xeno-

fon Koutsoukous, and Chenyang Lu, “The Design and Performance Evaluation of

an Adaptive Resource-management Framework for Distributed Real-time Embed-

ded Systems”,EURASIP Journal on Embedded Systems (EURASIP JES): SpecialIs-

sue on Operating System Support for Embedded Real-Time Applications, Edited by

Michael Gonzalez, 2008.

2. Nishanth Shankaran, Xenofon Koutsoukos, Chenyang Lu, Douglas C. Schmidt, and

Yuan Xue, “Hierarchical Control of Multiple Resources in Distributed Real-time and

Embedded Systems”,the Springer Real-time Systems Journal, Volume 39, Numbers

1-3, August, 2008, pages 237-282.

A.2 Refereed Conference Publications

1. Nilabja Roy, John S. Kinnebrew, Nishanth Shankaran, Gautam Biswas, and Douglas

C. Schmidt, “Toward Effective Multi-capacity Resource Allocation in Distributed

Real-time and Embedded Systems”,The 11th IEEE International Symposium on

Object/Component/Service-oriented Real-time Distributed Computing, May 5-7 2007,

Orlando, Florida.

2. Nishanth Shankaran, Douglas C. Schmidt, Yingming Chen, Xenofon Koutsoukous,

156

and Chenyang Lu, “The Design and Performance of ConfigurableComponent Mid-

dleware for End-to-End Adaptation of Distributed Real-time Embedded Systems”,

The 10th IEEE International Symposium on Object/Component/Service-oriented Real-

time Distributed Computing, May 7-9 2007, Santorini Island, Greece.

3. Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran, Anirud-

dha Gokhale, and Douglas C. Schmidt, “QUICKER: A Model-driven QoS Map-

ping Tool”, The 10th IEEE International Symposium on Object/Component/Service-

oriented Real-time Distributed Computing, May 7-9 2007, Santorini Island, Greece.

4. John S. Kinnebrew, Ankit Gupta, Nishanth Shankaran, Gautam Biswas, and Douglas

C. Schmidt, “A Decision-Theoretic Planner with Dynamic Component Reconfigu-

ration for Distributed Real-Time Applications”,The 8th International Symposium

on Autonomous Decentralized Systems (ISADS 2007), Sedona, Arizona, Wednesday

March 21 - Friday March 23, 2007.

5. Dipa Suri, Adam Howell, Douglas C. Schmidt, Gautam Biswas, John Kinnebrew,

Will Otte, and Nishanth Shankaran, “A Multi-agent Architecture for Smart Sensing in

the NASA Sensor Web”,The 2007 IEEE Aerospace Conference, Big Sky, Montana,

March 3-10, 2007.

6. Nilabja Roy, Nishanth Shankaran, and Douglas C. Schmidt,“Bulls-Eye: A Resource

Provisioning Service for Enterprise Distributed Real-time and Embedded Systems”,

Proceedings of the International Symposium on DistributedObjects and Applications

(DOA), Montpellier, France, Oct 30 - Nov 1, 2006.

7. John Kinnebrew, Nishanth Shankaran, Gautam Biswas, and Douglas Schmidt, “A

Decision-Theoretic Planner with Dynamic Component Reconfiguration for Distributed

Real-Time Applications”, poster paper at theTwenty-First National Conference on

Artificial Intelligence, Boston, Massachusetts, July 16-20, 2006.

157

8. Nishanth Shankaran, Xenofon Koutsoukos, Chenyang Lu, Douglas C. Schmidt, and

Yuan Xue, “Hierarchical Control of Multiple Resources in Distributed Real-time and

Embedded Systems”,Proceedings of the 18th Euromicro Conference on Real-Time

Systems (ECRTS 06), Dresden, Germany, July 5-7, 2006.

9. Dipa Suri, Adam Howell, Nishanth Shankaran, John Kinnebrew, Will Otte, Douglas

C. Schmidt, and Gautam Biswas, “Onboard Processing using the Adaptive Network

Architecture”,Proceedings of the Sixth annual NASA Earth Science Technology Con-

ference, College Park, MD, June 27-29, 2006.

10. Nishanth Shankaran, Jaiganesh Balasubramanian, Douglas C. Schmidt, Gautam Biswas,

Patrick Lardieri, Ed Mulholland, and Tom Damiano, “A Framework for (Re)Deploying

Components in Distributed Real-time and Embedded Systems”, poster paper at the

Dependable and Adaptive Distributed Systems, Track of the 21st ACM Symposium

on Applied Computing, Dijon, France, April 23-27, 2006.

11. Nishanth Shankaran, Raymond Klefsatd, “ZEUS: A CORBA Framework for Ser-

vice Location and Creation”,Proceedings of the 2004 International Symposium on

Applications and the Internet (SAINT), Tokyo Japan, January 26-30, 2004.

A.3 Refereed Workshop Publications

1. Nishanth Shankaran, John S. Kinnebrew, Xenofon D. Koutsoukos, Chenyang Lu,

Douglas C. Schmidt, and Gautam Biswas, “Towards an Integrated Planning and

Adaptive Resource Management Architecture for Distributed Real-time Embedded

Systems”,Proceedings of the Workshop on Adaptive and Reconfigurable Embedded

Systems (APRES)at the14th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, St. Louis, MO, United States, April 22 - April 24, 2008.

2. John S. Kinnebrew, Nishanth Shankaran, Gautam Biswas, and Douglas C. Schmidt,

158

“A Decision-Theoretic Planner with Dynamic Component Reconfiguration for Dis-

tributed Real-time and Embedded Systems,”Proceedings of the Workshop on Arti-

ficial Intelligence for Space Applications at IJCAI 2007, Hyderabad, India, January

6-12, 2007.

3. John M. Slaby and Nishanth Shankaran, “Software Distribution in Ultra Large-scale

Systems,”Proceedings of the ACM OOPSLA 2006 Workshop on Ultra-Large-Scale

Systems, Portland, Oregon, October 26, 2006.

4. Nishanth Shankaran, Xenofon Koutsoukos, Douglas C. Schmidt, and Aniruddha

Gokhale, “Evaluating Adaptive Resource Management for Distributed Real-Time

Embedded Systems,”Proceedings of the 4th Workshop on Adaptive and Reflective

Middleware, Grenoble, France, November 28, 2005.

159

REFERENCES

[1] IEEE Std 802.11-1997 Information Technology – Telecommunications and Informa-
tion Exchange Between Systems – Local and Metropolitan AreaNetworks – Specific
requirements – Part 11: Wireless Lan Medium Access Control (MAC) And Physical
Layer (PHY) Specifications. IEEE Computer Society, 345 E. 47th St, New York, NY
10017, USA, Nov 1997.

[2] Tarek F. Abdelzaher, John Stankovic, Chengyang Lu, Ronghua Zhang, and Ying Lu.
Feedback Performance Control in Software Services.IEEE: Control Systems, 23(3):
74–90, June 2003.

[3] Luca Abeni and Giorgio Buttazzo. Hierarchical QoS Management for Time Sensitive
Applications. InThe Proceedings of the Seventh Real-Time Technology and Appli-
cations Symposium (RTAS), page 63, Washington, DC, USA, 2001. IEEE Computer
Society.

[4] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gábor Karsai. Composing domain-specific design environ-
ments.Computer, 34(11):44–51, 2001. ISSN 0018-9162. doi: http://dx.doi.org/10.
1109/2.963443.

[5] Anne Thomas, Patricia Seybold Group. Enterprise JavaBeans Technology.
java.sun.com/products/ejb/white_paper.html, December1998. Prepared for Sun Mi-
crosystems, Inc.

[6] Karl Johan Astrom and Bjorn Wittenmark.Computer-Controlled Systems: Theory
and Design, Second Edition. Prentice-Hall, Englewood Cliffs, NJ, 1990.

[7] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time
scheduling: The deadline monotonic approach. InProceedings 8th IEEE Workshop
on Real-Time Operating Systems and Software, Atalanta, 1991.

[8] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A platform-independent component modeling
language for distributed real-time and embedded systems. In RTAS ’05: Proceedings
of the 11th IEEE Real Time on Embedded Technology and Applications Symposium,
pages 190–199, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2302-1. doi: http://dx.doi.org/10.1109/RTAS.2005.4.

[9] Giuseppe Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordina-
tion Function.IEEE Journal on Selected Areas in Communications, 18(1-2):535–547,
Mar 2000. ISSN 0733-8716.

[10] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr, David Hardin,
and Mark Turnbull.The Real-time Specification for Java. Addison-Wesley, 2000.

160

[11] Stuart A. Boyer. Supervisory Control and Data Acquisition. ISA, 1993. ISBN
1556172109.

[12] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A Dynamic Quality of Service Mid-
dleware Agent for Mediating Application Resource Usage. InRTSS ’98: Proceedings
of the IEEE Real-Time Systems Symposium, page 307, Washington, DC, USA, 1998.
IEEE Computer Society. ISBN 0-8186-9212-X.

[13] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic
Integrated Scheduling of Hard Real-Time, Soft Real-Time and Non-Real-Time Pro-
cesses. InProceedings of the 24th IEEE International Real-Time Systems Symposium
(RTSS ’03), page 396, Washington, DC, USA, 2003. IEEE Computer Society. ISBN
0-7695-2044-8.

[14] Owen Brown and Paul Eremenko. Fractionated Space Architectures: A Vision for
Responsive Space. InProceedings of the 4th Responsive Space Conference, Los An-
geles, CA, 2006. American Institute of Aeronautics & Astronautics.

[15] Kevin Bryan, Lisa C. DiPippo, Victor Fay-Wolfe, Matthew Murphy, Jiangyin Zhang,
Douglas Niehaus, David T. Fleeman, David W. Juedes, Chang Liu, Lonnie R. Welch,
and Christopher D. Gill. Integrated CORBA Scheduling and Resource Management
for Distributed Real-Time Embedded Systems. InRTAS ’05: Proceedings of the 11th
IEEE Real Time on Embedded Technology and Applications Symposium, pages 375–
384, Washington, DC, USA, 2005. IEEE Computer Society. ISBN0-7695-2302-1.
doi: dx.doi.org/10.1109/RTAS.2005.30.

[16] Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching.Int.
J. High Perform. Comput. Appl., 14(4):317–329, 2000. ISSN 1094-3420. doi: dx.doi.
org/10.1177/109434200001400404.

[17] Rolf Carlson. High-Security SCADA LDRD Final Report. Technical report, Ad-
vanced Information and Control Systems Department, SandiaNational Laboratories,
Albuquerque, New Mexico, USA, April 2002.

[18] Yingming Chen and Chenyang Lu. Flexible Maximum Urgency First Scheduling
for Distributed Real-Time Systems. Technical Report WUCSE-2006-55, Washington
University in St. Louis, October 2006.

[19] David Corman. WSOA-Weapon Systems Open Architecture Demonstration-Using
Emerging Open System Architecture Standards to Enable Innovative Techniques for
Time Critical Target (TCT) Prosecution. InDASC’2001, October 2001.

[20] David Corman, Jeanna Gossett, and Dennis Noll. Experiences in a Distributed Real-
time Avionics Domain. InProceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISORC), Washington, D.C., April 2002.
IEEE/IFIP.

161

[21] CORPORATE Computer Science and Telecommunications Board. Keeping the U.S.
Computer Industry Competitive: Systems Integration. National Academy Press,
Washington, DC, USA, 1992. ISBN 0-309-04544-4.

[22] Tommaso Cucinotta, Luigi Palopoli, Luca Marzario, Giuseppe Lipari, and Luca
Abeni. Adaptive Reservations in a Linux Environment. InIEEE Real-Time and
Embedded Technology and Applications Symposium, pages 238–245, 2004.

[23] S. Curtis. The Magnetospheric Multiscale Mission...Resolving Fundamental Pro-
cesses in Space Plasmas.NASA STI/Recon Technical Report N, pages 48257–+, De-
cember 1999.

[24] Dionisio de Niz and Raj Rajkumar. Partitioning Bin-Packing Algorithms for Dis-
tributed Real-time Systems.International Journal of Embedded Systems, 2(3):196–
208, 2006.

[25] K.A. Delin and S.P. Jackson. Sensor Web for In Situ Exploration of Gaseous Biosig-
natures. 2000.

[26] Frank Dellaert and Chuck Thorpe. Robust Car Tracking Using Kalman Filtering and
Bayesian Templates. InConference on Intelligent Transportation Systems, 1997.

[27] Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt, and
Aniruddha Gokhale. DAnCE: A QoS-enabled Component Deployment and Con-
figuration Engine. InProceedings of the 3rd Working Conference on Component
Deployment (CD 2005), pages 67–82, Grenoble, France, November 2005.

[28] D. R. Fatland, M. J. Heavner, E. Hood, and C. Connor. The SEAMONSTER Sensor
Web: Lessons and Opportunities after One Year.AGU Fall Meeting Abstracts, pages
A3+, December 2007.

[29] John D. Fernandez and Andres E. Fernandez. SCADA Systems: Vulnerabilities and
Remediation.J. Comput. Small Coll., 20(4):160–168, 2005.

[30] David Fleeman, Matthew Gillen, A. Lenharth, M. Delaney, Lonnie R. Welch,
David W. Juedes, and Chang Liu. Quality-Based Adaptive Resource Management
Architecture (QARMA): A CORBA Resource Management Service. In 18th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2004). IEEE Com-
puter Society, 2004.

[31] G. F. Franklin, J. D. Powell, and M. Workman.Digital Control of Dynamic Systems,
3rd edition. Addition-Wesley, 1997.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
1995.

162

[33] Christopher D. Gill.Flexible Scheduling in Middleware for Distributed Rate-Based
Real-time Applications. PhD thesis, Department of Computer Science, Washington
University, St. Louis, 2002.

[34] M. González Harbour, J. J. Gutiérrez García, J. C. Palencia Gutiérrez, and J. M. Drake
Moyano. MAST: Modeling and Analysis Suite for Real Time Applications. InPro-
ceedings of the 13th Euromicro Conference on Real-Time Systems (ECRTS ’01), page
125, Washington, DC, USA, 2001. IEEE Computer Society.

[35] John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh Prasad.
Cadena: An Integrated Development, Analysis, and Verification Environment for
Component-based Systems. InProceedings of the 25th International Conference on
Software Engineering, pages 160–172, Portland, OR, May 2003.

[36] Gavin Holland, Nitin Vaidya, and Paramvir Bahl. A Rate-Adaptive MAC Pro-
tocol for Multi-Hop Wireless Networks. InMobiCom ’01: Proceedings of the
7th Annual International Conference on Mobile Computing and Networking, pages
236–251, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-422-3. doi:
doi.acm.org/10.1145/381677.381700.

[37] IEEE Computer Society.Std-1012 1998: IEEE Standard for Software Verification
and Validation. New York, 1998.

[38] Software Engineering Institute. Ultra-Large-Scale Systems: Software Challenge of
the Future. Technical report, Carnegie Mellon University,Pittsburgh, PA, USA, Jun
2006.

[39] John Kinnebrew, Nishanth Shankaran, Gautam Biswas, and Douglas Schmidt. A
Decision-Theoretic Planner with Dynamic Component Reconguration for Distributed
Real-Time Applications. InPoster paper at the Twenty-First National Conference on
Artificial Intelligence, Boston, MA, July 2006.

[40] Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G. Shin. Improving Scalabil-
ity of Task Allocation and Scheduling in Large Distributed Real-time Systems using
Shared Buffers. InProceedings of the 9th Real-time/Embedded Technology and Ap-
plications Symposium (RTAS 2003), Washington, DC, May 2003. IEEE.

[41] Xenofon Koutsoukos, Radhika Tekumalla, BalachandranNatarajan, and Chenyang
Lu. Hybrid Supervisory Control of Real-time Systems. InIEEE Real-time and Em-
bedded Technology and Applications Symposium, San Francisco, California, March
2005. IEEE Computer Society.

[42] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. InRTSS ’89: Proceedings of the IEEE
Real-Time Systems Symposium, pages 166–171, Washington, DC, USA, 1989. IEEE
Computer Society. doi: 10.1109/REAL.1989.63567.

163

[43] Baochun Li and Klara Nahrstedt. A Control-based Middleware Framework for QoS
Adaptations.IEEE Journal on Selected Areas in Communications, 17(9):1632–1650,
September 1999.

[44] Giuseppe Lipari, Gerardo Lamastra, and Luca Abeni. Task Synchronization in
Reservation-Based Real-Time Systems.IEEE Trans. Computers, 53(12):1591–1601,
2004.

[45] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-time Environment.JACM, 20(1):46–61, January 1973.

[46] Jane W. S. Liu.Real-time Systems. Prentice Hall, New Jersey, 2000.

[47] Jane W.S. Liu, Juan Redondo, Zhong Deng, Too Tia, Riccardo Bettati, Ami Silber-
man, Matthew Storch, Rhan Ha, and Wei Shih. PERTS: A Prototyping Environment
for Real-Time Systems. Technical report, Champaign, IL, USA, 1993.

[48] M. Lopez S., S. Armando Alfonzo G., J. Perez O., J.G. Gonzalez S., and A. Montes R.
A metamodel to carry out reverse engineering of c++ code intouml sequence dia-
grams. Electronics, Robotics and Automotive Mechanics Conference, 2006, 2:331–
336, Sept. 2006. doi: 10.1109/CERMA.2006.100.

[49] Joseph P. Loyall, Richard E. Schantz, David Corman, James L. Paunicka, and
Sylvester Fernandez. A Distributed Real-Time Embedded Application for Surveil-
lance, Detection, and Tracking of Time Critical Targets. InIEEE Real-Time and Em-
bedded Technology and Applications Symposium, pages 88–97, San Francisco, CA,
2005.

[50] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms. Real-Time Syst., 23
(1-2):85–126, 2002.

[51] Chenyang Lu, Xiaorui Wang, and Christopher Gill. Feedback Control Real-time
Scheduling in ORB Middleware. InProceedings of the 9th IEEE Real-time and Em-
bedded Technology and Applications Symposium (RTAS), pages 37–48, Washington,
DC, May 2003.

[52] Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos. Feedback Utilization Control
in Distributed Real-time Systems with End-to-End Tasks.IEEE Trans. on Par. and
Dist. Sys., 16(6):550–561, 2005. ISSN 1045-9219. doi: dx.doi.org/10.1109/TPDS.
2005.73.

[53] Prakash Manghwani, Joseph Loyall, Praveen Sharma, Matthew Gillen, and Jianming
Ye. End-to-End Quality of Service Management for Distributed Real-Time Embedded
Applications. In18th International Parallel and Distributed Processing Symposium
(IPDPS 2005), volume 03, Los Alamitos, CA, USA, 2005.

164

[54] Pau Marti, Caixue Lin, Scott A. Brandt, Manel Velasco, and Josep M. Fuertes. Op-
timal State Feedback Based Resource Allocation for Resource-Constrained Control
Tasks. InProceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS’04), pages 161–172, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2247-5. doi: dx.doi.org/10.1109/REAL.2004.39.

[55] D. Mills. The Network Time Protocol. InRFC 1059. Network Working Group, 1988.

[56] Ingo Molnar. Linux with Real-time Pre-emption Patches.
http://www.kernel.org/pub/linux/kernel/projects/rt/, Sep
2006.

[57] Light Weight CORBA Component Model Revised Submission. Object Management
Group, OMG Document realtime/03-05-05 edition, May 2003.

[58] Object Management Group.The Common Object Request Broker: Architecture and
Specification, Revision 2.6. Object Management Group, December 2001.

[59] Common Object Request Broker Architecture Version 1.3. Object Management
Group, OMG Document formal/2004-03-12 edition, March 2004.

[60] CORBA Components. Object Management Group, OMG Document formal/2002-06-
65 edition, June 2002.

[61] Deployment and Configuration Adopted Submission. Object Management Group,
OMG Document mars/03-05-08 edition, July 2003.

[62] Object Management Group.Real-time CORBA Specification. Object Management
Group, OMG Document formal/05-01-04 edition, August 2002.

[63] Moonju Park and Yookun Cho. Feasibility Analysis of Hard Real-Time Periodic
Tasks. J. Syst. Softw., 73(1):89–100, 2004. ISSN 0164-1212. doi: dx.doi.org/10.
1016/S0164-1212(02)00236-X.

[64] Binoy Ravindran, Lonnie Welch, and Behrooz Shirazi. Resource Management Mid-
dleware for Dynamic, Dependable Real-Time Systems.Real-Time Syst., 20(2):183–
196, 2001. ISSN 0922-6443. doi: dx.doi.org/10.1023/A:1008141921230.

[65] Richard Schantz, Joseph Loyall, Michael Atighetchi, and Partha Pal. Packaging Qual-
ity of Service Control Behaviors for Reuse. InProceedings of the5th IEEE Inter-
national Symposium on Object-Oriented Real-time Distributed Computing (ISORC),
pages 375–385, Crystal City, VA, April/May 2002.

[66] Douglas C. Schmidt and Stephen D. Huston.C++ Network Programming, Volume
2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, Reading, Mas-
sachusetts, 2002.

165

http://www.kernel.org/pub/linux/kernel/projects/rt/

[67] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee.The Design and Per-
formance of Real-time Object Request Brokers.Computer Communications, 21(4):
294–324, April 1998.

[68] Douglas C. Schmidt, Rick Schantz, Mike Masters, JosephCross, David Sharp, and
Lou DiPalma. Towards Adaptive and Reflective Middleware forNetwork-Centric
Combat Systems. InCrossTalk - The Journal of Defense Software Engineering, pages
10–16, Hill AFB, Utah, USA, nov 2001. Software Technology Support Center.

[69] Samarth H. Shah, Kai Chen, and Klara Nahrstedt. DynamicBandwidth Management
for Single-hop Ad Hoc Wireless Networks.Mob. Netw. Appl., 10(1-2):199–217, 2005.
ISSN 1383-469X. doi: doi.acm.org/10.1145/1046430.1046445.

[70] Nishanth Shankaran, Xenofon Koutsoukos, Chenyang Lu,Douglas C. Schmidt, and
Yuan Xue. Hierarchical Control of Multiple Resources in Distributed Real-time and
Embedded Systems. InProceedings of the Euromicro Conference on Real-Time Sys-
tems (ECRTS 06), Dresden, Germany, July 2006.

[71] Praveen Kaushik Sharma, Joseph P. Loyall, George T. Heineman, Richard E. Schantz,
Richard Shapiro, and Gary Duzan. Component-based dynamic qos adaptations in
distributed real-time and embedded systems. InCoopIS/DOA/ODBASE (2), pages
1208–1224, Agia Napa, Cyprus, 2004. Springer.

[72] David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. Proceedings of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

[73] David C. Sharp, Edward Pla, Kenn R. Luecke, and Ricardo J. Hassan II. Evaluating
Real-time Java for Mission-Critical Large-Scale EmbeddedSystems. InIEEE Real-
time and Embedded Technology and Applications Symposium, Washington, DC, May
2003. IEEE Computer Society.

[74] John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, Chenyang Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. VEST: An Aspect-Based Composition Tool for
Real-Time Systems. InRTAS ’03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, page 58, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1956-3.

[75] David B. Stewart and Pradeep K. Khosla. Real-time Scheduling of Sensor-Based
Control Systems. In W. Halang and K. Ramamritham, editors,Real-time Program-
ming. Pergamon Press, Tarrytown, NY, 1992.

[76] SUN. Java Remote Method Invocation (RMI) Specification.
java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html,
2002.

166

java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

[77] Sun Microsystems. Enterprise JavaBeans Specification.
java.sun.com/products/ejb/docs.html, August 2001.

[78] Dipa Suri, Adam Howell, Nishanth Shankaran, John Kinnebrew, Will Otte, Dou-
glas C. Schmidt, and Gautam Biswas. Onboard Processing using the Adaptive Net-
work Architecture. InProceedings of the Sixth Annual NASA Earth Science Technol-
ogy Conference, College Park, MD, June 2006.

[79] G. K. Wallace. The JPEG Still Image Compression Standard. Communications of the
ACM, 34(4):30–44, April 1991.

[80] Nanbor Wang and Christopher Gill. Improving real-timesystem configuration via a
qos-aware corba component model. InHICSS ’04: Proceedings of the Proceedings of
the 37th Annual Hawaii International Conference on System Sciences (HICSS’04) -
Track 9, page 90273.2, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2056-1.

[81] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Balachan-
dran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill. QoS-
enabled Middleware. In Qusay Mahmoud, editor,Middleware for Communications,
pages 131–162. Wiley and Sons, New York, 2004.

[82] Xiaorui Wang, HuangMing Huang, Venkita Subramonian, Chenyang Lu, and Christo-
pher Gill. CAMRIT: Control-based Adaptive Middleware for Real-time Image Trans-
mission. InProc. of the 10th IEEE Real-time and Embedded Tech. and Applications
Symp. (RTAS), Toronto, Canada, May 2004.

[83] Xiaorui Wang, Dong Jia, Chenyang Lu, and Xenofon Koutsoukos. Decentralized
utilization control in distributed real-time systems. InRTSS ’05: Proceedings of the
26th IEEE International Real-Time Systems Symposium, pages 133–142, Washington,
DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2490-7. doi: dx.doi.org/10.
1109/RTSS.2005.15.

[84] Xiaorui Wang, Chenyang Lu, and Xenofon Koutsoukos. Enhancing the Robustness of
Distributed Real-Time Middleware via End-to-End Utilization Control. InRTSS ’05:
Proceedings of the 26th IEEE International Real-Time Systems Symposium, pages
189–199, Washington, DC, USA, 2005. IEEE Computer Society.ISBN 0-7695-2490-
7. doi: dx.doi.org/10.1109/RTSS.2005.20.

[85] Greg Welch and Gary Bishop. An introduction to the Kalman Filter: Course 8. In
Computer Graphics, Annual Conference on Computer Graphicsand Interactive Tech-
niques, Los Angeles, CA, USA, August 2001. SIGGRAPH, ACM Press, Addison-
Wesley Publishing Company.

[86] L. R. Welch, B. A. Shirazi, B. Ravindran, and C. Bruggeman. DeSiDeRaTa: QoS
Management Technology for Dynamic, Scalable, Dependable Real-time Systems. In

167

IFACs 15th Workshop on Distributed Computer Control Systems (DCCS98). IFAC,
September 1998.

[87] Brian White and Jay Lepreau et al. An Integrated Experimental Environment for Dis-
tributed Systems and Networks. InProceedings of the Fifth Symposium on Operating
Systems Design and Implementation, pages 255–270, Boston, MA, December 2002.
USENIX Association.

[88] Victor Fay Wolfe, Lisa C. DiPippo, Ramachandra Bethmagalkar, Gregory Cooper,
Russell Johnston, Peter Kortmann, Ben Watson, and Steven Wohlever. RapidSched:
Static Scheduling and Analysis for Real-Time CORBA. InWORDS ’99: Proceed-
ings of the Fourth International Workshop on Object-Oriented Real-Time Depend-
able Systems, page 34, Washington, DC, USA, 1999. IEEE Computer Society.ISBN
0-7695-0101-X.

[89] Ann Wollrath, Roger Riggs, and Jim Waldo. A DistributedObject Model for the Java
System.USENIX Computing Systems, 9(4):265–290, November/December 1996.

[90] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for
Quality of Service for CORBA Objects.Theory and Practice of Object Systems, 3(1):
1–20, 1997.

168

	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Evolution of Middleware Technology
	Distributed Object Computing (DOC) Middleware
	QoS-enabled DOC Middleware
	Conventional Component Middleware
	QoS-enabled Component Middleware

	Overview of Research Challenges
	Research Approach
	Research Contributions
	Dissertation Organization

	Adaptive Resource Management Algorithms and Architectures
	Case Study: Target Tracking DRE System
	Related Research
	Unresolved Challenges
	The Hierarchical Distributed Resource-management Architecture (HiDRA)
	Control Design and Analysis
	Problem Formulation
	Stability Analysis

	Performance Results and Analysis
	Hardware and Software Testbed
	Target Tracking DRE System Implementation
	Experiment Configuration
	Experiment 1 : Constant Bandwidth Availability and Constant Workload
	Experiment 2: Decoupled Independent Feedback Control Loops
	Experiment 3: Constant Bandwidth Availability and Varying Workload
	Experiment 4 : Varying Bandwidth Availability and Constant Workload
	Experiment 5: Varying Bandwidth Availability and Varying Workload
	Summary

	Summary

	Adaptive Resource Management Frameworks
	Related Research
	Conventional and QoS-enabled DOC Middleware
	Conventional and QoS-enabled Component Middleware
	Unresolved Challenges

	Structure and Functionality of RACE
	Empirical Results and Analysis
	Hardware and Software Testbed
	Evaluation of RACE's Scalability
	Summary of Experimental Analysis

	Summary

	Case Study: Magnetospheric Multi-scale Mission DRE System
	MMS Mission System Overview
	Adaptive Resource Management Requirements of the MMS Mission System
	Requirement 1: Resource Allocation To Applications
	Requirement 2: Configuring Platform-specific QoS Parameters
	Requirement 3: Enabling Dynamic System Adaptation and Ensuring QoS Requirements are Met

	Addressing MMS Mission Requirements Using RACE
	Addressing Requirement 1: Resource Allocation to Applications
	Addressing Requirement 2: Configuring Platform-specific QoS Parameters
	Addressing Requirement 3: Monitoring End-to-end QoS and Ensuring QoS Requirements are Met

	Empirical Results and Analysis
	Hardware and Software Testbed
	MMS DRE System Implementation
	Evaluation of RACE's Adaptive Resource Management Capabilities
	Summary of Experimental Analysis

	Case Study: Configurable Space Mission Systems
	CSM System Overview
	Challenges Associated with the Autonomous Operation of a CSM System
	Challenge 1: Dynamic Addition and Modifications of Mission Goals
	Challenge 2: Adapting to Fluctuations in Input Workload, Application Resource Utilization, and Resource Availability
	Challenge 3: Adapting to Complete or Partial Loss of System Resources

	Addressing CSM System Challenges
	Addressing Challenge 1: Dynamic Addition and Modification of Mission Goals
	Addressing Challenge 2: Adapting to Fluctuations in Input Workload and Application Resource Utilization
	Addressing Challenge 3: Adapting to Complete or Partial Loss of System Resources

	Performance Results and Analysis
	Hardware and Software Testbed
	Prototype CSM System Implementation
	Experiment Design
	Experiment 1: Addition of Goals at Runtime
	Experiment 2: Varying Input Workload
	Experiment 3: Varying Resource Availability

	Case Study: SEAMONSTER Sensor-web
	SEAMONSTER Sensor-web Overview
	Adaptive Resource Management Requirements of the SEAMONSTER Sensor-web
	Requirement 1: Online Resource Allocation To Data Processing Applications
	Requirement 2: Enabling the Sensor-web to Dynamically Adapt to Fluctuations in Input Workload

	Addressing SEAMONSTER Requirements Using RACE
	Addressing Requirement 1: Online Resource Allocation
	Addressing Requirement 2: Runtime System Adaptation

	Performance Results and Analysis
	Hardware and Software Testbed
	System Implementation and Experiment Design
	Evaluation of RACE's Adaptive Resource Management Capabilities

	Concluding Remarks
	Lessons Learned
	Adaptive Resource Management Algorithms and Architectures
	Adaptive Resource Management Frameworks

	Future Research Directions

	List of Publications
	Refereed Journal Publications
	Refereed Conference Publications
	Refereed Workshop Publications

	REFERENCES

