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CHAPTER I 

 

INTRODUCTION 

 

Embryonic development involves precise regulation and coordination of multiple patterning 

events that are directed by a core set of signaling pathways, one of which is Nodal signaling.  

Essential to development, Nodal signaling participates in early embryonic patterning and body 

axis formation.  Nodal was first identified during a genetic screen of transgenic mice with 

retrovirally induced genetic mutations designed to identify genes required for embryonic 

development (Conlon et al., 1991).  Embryos harboring the 413-d insertional mutation failed to 

develop past gastrulation due to defects in cell lineage allocation and mesendoderm 

specification.  The 413-d insertion site was later identified to encode Nodal, so named for its 

expression in the node (Zhou et al., 1993).  Identification of Nodal homologs in other species 

made it clear that Nodal and its importance in germ layer specification, gastrulation, anterior-

posterior (A-P) axis formation, and left-right (L-R) patterning was highly conserved among 

vertebrates (Erter et al., 1998; Jones et al., 1995; Levin et al., 1995; Long et al., 2003; Sampath 

et al., 1998).  Nodal orthologs have even been identified in the non-chordate deuterostome sea 

urchin, where Nodal signaling patterns the oral and aboral axis, and the non-chordate species 

Lottia gigantea and Biomphalaria glabrata.  In these two species of snails, Nodal expression is 

linked to the chirality of the shell, with Nodal expressed on the right side of dextral (rightward 

shell coiling) species (L. gigantea) and on the left side of sinistral (leftward shell coiling) species 

(B. glabrata) (Grande and Patel, 2009).  While great strides have been made in deciphering the 

Nodal pathway over the past 20 years, many mysteries remain.  The work presented here 
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focuses on two under-studied aspects of Nodal signaling: the transcriptional repression of 

Nodal and the role of Nodal signaling as a morphogenetic cue during asymmetric 

morphogenesis. 

Nodal signaling pathway 

TGF-β superfamily ligands and receptors 

Nodal is a member of the transforming growth factor-β (TGF-β) superfamily, which consists of 

over 30 members including, in addition to Nodal, bone morphogenetic proteins (BMPs), growth 

and differentiation factors (GDFs), TGF-β proteins, Activin, Leftys, and anti-Müllerian hormone 

(AMH) (Shi and Massagué, 2003).  TGF-β superfamily ligands participate in an array of diverse 

processes in both the developing embryo and in adult homeostasis.  Specific processes 

regulated by TGF-β family members include differentiation, morphogenesis, cell proliferation 

and migration, apoptosis, and disease in both vertebrates and non-vertebrates alike (reviewed 

in Wu and Hill, 2009).  

TGF-β ligands are translated as proproteins, which are cleaved into a prodomain and mature 

ligand by SPC-class convertases (Furin and PACE4 cleave Nodal) (Constam and Robertson, 

2000).  Members of the TGF-β family are also characterized by the presence of multiple 

cysteines capable of forming intramolecular and intermolecular disulfide bounds.  Internal 

disulfide bounds form a cystine knot (3 disulfide bridges) in the mature ligand polypeptide, a 

hallmark of TGF-β ligands.  Intermolecular disulfide bridges support and stabilize the formation 

of dimers (Derynck and Miyazono, 2008).  Lefty proteins, however, only have six cysteines and 

are not able to form an intermolecular bridge and, therefore, exist only as monomers 
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(Moustakas and Heldin, 2009).  TGF-β family members primarily form homodimers; however, 

heterodimerization between Nodal and Gdf1 has been reported under conditions of 

overexpression in Xenopus embryos (Tanaka et al., 2007).  A Nodal-Gdf1 interaction is further 

suggested by the lack of Nodal expression in the LPM and defects in organ situs in Gdf1-/- 

embryos (Rankin et al., 2000).  In an assay for Nodal long-range activity, only lipofection of 

Nodal and Gdf1 expression vectors together, and not separately, into the R LPM of Gdf1-/- 

embryos restored Lefty1 expression in the midline, suggesting that Nodal-Gdf1 dimerization is 

required for long-range Nodal signaling during L-R patterning (Tanaka et al., 2007).   

TGF-β members are roughly divided by co-receptor interactions and downstream signal 

transducer activation into two subfamilies: BMP (encompassing GDFs and AMH) and TGF-

β/Activin/Nodal.  All TGF-β superfamily ligands interact with type I and type II serine/threonine 

kinase receptors, of which there are a total of twelve: seven type I receptors, and five type II 

receptors (Shi and Massagué, 2003).  The mammalian type I receptors are activin-like kinase 

receptor (ALK) 1-7.  For simplicity, the BMP subfamily is usually quoted as signaling through 

ALK1/2/3/6 while the TGF-β/Activin/Nodal subfamily signals through ALK4/5/7, with ALK4 and 

ALK7 being the primary receptors for Nodal (Moustakas and Heldin, 2009; Reissmann et al., 

2001).  Ligand and receptor pairings, however, are not this straightforward, as most type I 

receptors can bind ligands from either subfamily depending on the developmental/tissue 

context.  Binding to type II receptors is not as promiscuous, but some overlap does exist.   For 

example, Activin and Nodal specifically interact with the type II receptors ActRIIA and ActRIIB, 

which also bind members of the BMP subfamily ligands, although BMPs primarily signal through 

the type II receptor BMPRII.  In TGF-β/Activin/Nodal signaling receptor activation begins with 
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the binding of ligands to a pair of type II receptors.  This interaction then recruits dimerized 

type I receptors to the ligand-type II receptor complex, prompting phosphorylation and 

activation of the cytoplasmic kinase domain of the type I receptor by the type II receptor 

(Moustakas and Heldin, 2009).   

In order to fully engage the cell surface receptors, Nodal, but for some unknown reason not 

Activin, requires the aid of the epidermal growth factor-Cripto/FRL-1/Cryptic (EGF-CFC) co-

receptor family (Shen and Schier, 2000).  EGF-CFC co-receptors bind the type I receptor to 

facilitate binding between Nodal and the type I/II receptor complex (Yan et al., 2002; Yeo and 

Whitman, 2001).  The two EGF-CFC members in mouse, Cryptic and Cripto, display non-

overlapping expression patterns, with Cripto being expressed similar to Nodal in the epiblast 

(first uniform than proximal distal gradient, primitive streak) during gastrulation and A-P 

pattering.  Cryptic is also expressed in the primitive streak and axial mesoderm during 

gastrulation, but is later expressed in the node and then symmetrically in the lateral plate 

mesoderm (LPM) during stages of L-R patterning (Shen and Schier, 2000).  Disruption of Cripto 

causes defects in A-P patterning (Ding et al., 1998; Xu et al. 1999), while deletion of Cryptic 

causes L-R patterning defects (Gaio et al. 1999; Yan et al., 1999).  The requirement for a co-

receptor is conserved across vertebrate species as evidenced by the identification of one-eye-

pinhead in fish, FRL-1 in frog, and Cripto in chicken (Yeo and Whitman, 2001).   

Nodal signal transduction through Smads    

Activated type I receptors phosphorylate and activate Smads, the downstream signal 

transducers for the TGF-β superfamily.  There are three types of Smad proteins:  co-Smad 
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(Smad4), regulatory (R) Smads (Smad1/2/3/5/8), and inhibitory (I) Smads (Smad6/7).  Only R-

Smads contain the phosphorylatable C-terminal motif, SSXS.  Smads1/5/8 are considered the 

downstream effectors of the BMP subfamily and are only phosphorylated by type I receptors 

ALK1/2/3/6.  Smads2/3 are the downstream effector for the TGF-β/Activin/Nodal subfamily and 

are phosphorylated by ALK4/5/7 (reviewed in Attisano and Wrana, 2000).  Recruitment of 

Smad2/3 to the type I/II receptor complex is facilitated by SARA (Smad anchor for receptor 

activation).  SARA simultaneously binds unphosphorylated Smad2/3 and the cell membrane, 

bringing the R-Smads into close vicinity of the receptor complex.  Phosphorylation of the C-

terminal SSXS motif triggers SARA to release the now phosphorylated Smad (pSmad), which 

then forms a complex with the co-Smad, Smad4.  R- and co-Smads exist as a heterotrimeric 

complex consisting of two R-Smads and one Smad4.  This complex translocates to the nucleus 

where it can modify the open and closed state of chromatin by recruiting co-activators or 

repressors to the desired locus (Attisano and Wrana, 2000) (Fig. 1.1).  Activation of R-smads and 

formation of the R-Smad/Smad4 complex can be inhibited by the I-Smads, Smad6 and Smad7, 

which interfere with R-Smad-receptor and Smad-Smad interactions (Massagué et al., 2005).  

Smad7 can inhibit both TGF-β/Activin/Nodal and BMP subfamily receptors, while Smad6 is 

thought to be specific to BMP subfamily receptors (Attisano and Wrana, 2000). 

Smad interactions are mediated by two conserved domians, an N-terminal Mad-homology (MH) 

1 domain and a C-terminal MH2 domain.  These domains are separated by a less-conserved 

linker region, which contains phosphorylation and ubiquitin-binding sites that facilitate cross-

talk with other signaling pathways and degradation, respectively (Massagué et al., 2005).  The 

MH1 domain can bind directly to DNA and DNA-binding proteins.  It also contains a nuclear- 
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Fig. 1.1  TGF-β/Smad2/3 signaling pathway.  

Adapted from Attisano and Wrana, 2002. 
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localization sequence (NLS).  The MH2 domain mediates protein-protein interactions with the 

type I/II receptor complex, SARA, Smad4, transcription factors, and transcriptional co-factors 

(Attisano and Wrana, 2000). 

All Smads, with the exception of full-length Smad2, can bind DNA directly through the MH1 

domain, but they do so with low specificity and affinity.  Smads bind the canonical Smad-

binding element (SBE) sequence GTCT or its complement AGAC, but degenerate sequences 

(GNCN) can also be recognized.  The inability of full-length Smad2, the most abundant splice 

variant of Smad2, to bind DNA is due to an insertion in the MH1 domain encoded by exon 3.  A 

naturally occurring splice variant in which exon 3 is deleted has its DNA-binding ability restored.  

Because the SBE is common throughout the genome, and Smads weakly bind it, most Smads 

are recruited to specific regions of DNA through interactions with other transcription factors 

(reviewed in Massagué). 

Although both Smad2 and Smad3 are capable of transducing TGF-β/Activin/Nodal signaling 

from cell-surface receptors to the nucleus, it is unknown if they have an equal propensity to do 

so.  Global deletion of Smad2 (Waldrip et al., 1998) in the developing mouse embryo results in 

embryonic lethality caused by defects similar to, but definitively not as severe as those seen in 

embryos lacking Nodal (Conlon et al., 1994; Zhou et al., 1993).  Deletion of Smad3, however, 

does not result in developmental defects (Datto et al., 1999; Zhu et al., 1998), suggesting that 

either Smad2 compensates for loss of Smad3 during development, or that Smad3 is not a 

primary transducer of Nodal signaling.  Although these results suggest that Nodal primarily 

signals through Smad2, the ability of Smad3 to participate in Nodal signaling has not been fully 
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excluded.  Therefore, signal transduction of Foxh1-dependent Nodal signaling is assumed to 

occur through pSmad2 and pSmad3, which will be collectively referred to as “pSmad2”from 

here onward.   

In the nucleus, the pSmad2/Smad4 complex interacts with several binding partners in response 

to Nodal signaling.  Such partners include members of the Mix family, Mixer and Milk (Xenopus) 

and Bon (zebrafish), which are involved in mesendoderm induction , but this role may not be 

conserved as the mouse homolog, Mixl1, has not been shown to interact with pSmad2 

(Germain et al., 2000; Kunwar et al., 2003; Randall et al., 2002).  The first transcriptional partner 

identified for pSmad2 was Foxh1, and it remains the most well characterized transcription 

factor in Nodal signaling (Liu et al., 1999; Osada et al., 2000).  Formerly called FAST1 (forkhead 

activin signal transducer), Foxh1 was first identified in Xenopus because of its ability to bind to 

the activin response element (ARE) of the gene Mix.2, which is induced in response to Nodal 

signaling (or Activin signaling as a surrogate) during mesendoderm formation (Chen et al., 

1996).  Foxh1 belongs to the winged-helix family of transcription factors.  It consists of three 

domains: a winged-helix or forkhead box DNA binding domain, an Engrailed homology-1 (EH1) 

domain for facilitating interactions with the Groucho family of co-repressors, and a Smad 

interaction domain (SID) (Yaklichkin et al., 2007a) (see Fig. 5.3A).  Only the DNA-binding domain 

shows similarity to other winged-helix transcription factors (Liu et al., 1999). 

Together with pSmad2 and Smad4, Foxh1 forms the Activin response factor (ARF), which binds 

the Foxh1 consensus sequence TGT G/T T/G ATT contained within the ARE of all target genes 

(Attisano et al., 2001).  A similar cis-regulatory element termed the asymmetric enhancer (ASE) 
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is the mammalian equivalent of the frog ARE.  In the ARF, only pSmad2 directly binds Foxh1, an 

interaction facilitated through the MH2 domain and SID of pSmad2 and Foxh1, respectively.  

While Smad4 does not directly contact Foxh1, Smad4 DNA binding sites have been identified 

adjacent to the Foxh1-binding consensus sequence in the ARE of Goosecoid and Mix.2  in 

Xenopus (Chen et al., 1996), and also in the ASE of mouse Nodal and Lefty2 (Saijoh et al., 2000).  

Smad4-DNA interactions near Foxh1 binding sites are thought to help stabilize the ARF, but 

unlike Foxh1-pSmad2 binding, these interactions are not required for transcriptional activation 

of target genes (Labbé et al., 1998; Yeo et al., 1999).  Genes targeted by Nodal/Smad2/Foxh1 

signaling include Mix.2, Goosecoid, Foxa2, Nodal itself, Lefty2, and Pitx2 (Whitman, 2001).   

Much work has been done to elucidate the role of Foxh1 in the transcriptional activation of 

Nodal target genes through its interaction with pSmad2, but it has recently been proposed that 

Foxh1 may also repress transcription by interacting with co-repressors through the EH1 motif.  

This concept is discussed in more detail in Chapter V. 

Nodal signaling in development and adult homeostasis  

Germ layer specification, gastrulation, A-P axis formation 

Nodal is a key regulator of body axis formation and patterning in the developing vertebrate 

embryo.  Specifically, Nodal signaling is essential during two distinct developmental time points: 

(1) early patterning events that consist of germ layer specification, gastrulation, and anterior-

posterior (A-P) axis formation, and (2) a later patterning event that establishes left-right (L-R) 

asymmetry across the embryo (Lu et al., 2001; Schier and Shen, 1999).  Nodal was first 

identified during a screen of retrovirally-induced insertional mutations in mouse embryos to 
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identify novel genes essential for early development (Zhou et al., 1993).  Nodal-related proteins 

have since been identified in chick (Cnr1) (Levin et al., 1995), frog (Xnr1, 2, 3, 4, 5, 6) (Jones et 

al., 1995; Joseph and Melton 1997; Takahashi et al. 2000), and zebrafish (Squint, Cyclops, 

Southpaw) (Erter et al., 1998; Long et al., 2003; Sampath et al., 1998).  The presence of multiple 

Nodal paralogs in Xenopus and zebrafish is attributed to genome duplication events in these 

species.  These Nodal-related proteins have evolved different functional capacities during 

development, divvying the multiple activities performed by one mouse gene among the 

paralogs.  For example, in zebrafish, Squint and Cyclops are active during early patterning 

events, while Southpaw is the primary Nodal-related gene expressed during L-R specification.  

Similarly, in Xenopus, Xnr1, 2, 4, 5, 6 (note not Xnr3) are involved in germ layer formation and 

gastrulation, but only Xnr1 is expressed later, to then participate in the establishment of L-R 

asymmetry (reviewed in Schier, 2009).  The involvement of Xnr1 in early axis patterning, 

gastrulation, and L-R patterning makes it most like mouse Nodal.  Xnr3 does not function like 

the other Xnrs as it lacks mesoderm-inducing potential and specifies neural tissue in animal 

caps (Hansen et al., 1997).  Xnr3 activity may also promote morphogenesis, as Xnr3 expression 

in Xenopus animal pole cells resulted in the projection of tube-like extensions from the animal 

cap (Smith et al., 1995).  Because my thesis work was performed in both mouse and Xenopus, 

the developmental role of Nodal signaling in both of these species is briefly summarized below. 

Axis specification in mouse begins at embryonic day (E) 5.0 with the induction of Nodal 

expression in the epiblast by signals emanating from the adjacent extraembryonic ectoderm 

(ExE).  Nodal proprotein translated from Nodal transcripts in the epiblast can induce expression 

of the convertase Furin in the ExE, resulting in the cleavage and activation of the Nodal ligand in 
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the neighboring epiblast.  Nodal signaling then activates BMP4, also localized in the ExE, which 

activates Wnt3 in the epiblast.  Wnt signaling feeds back onto Nodal, activating its expression 

through the Wnt-responsive proximal epiblast enhancer (PEE).  This feedback between the 

epiblast and ExE, as well as the subsequent activation of a feed-forward loop through which 

Nodal induces its own expression, causes expansion of the Nodal expression territory 

throughout the epiblast.  In the tip of the epiblast, Nodal signals to the distal visceral endoderm 

(DVE), where it induces the expression of Lefty1 and Cerl, two feedback inhibitors of Nodal 

signaling.  The graded expression of Lefty1 and Cer1 terminate Nodal expression progressively 

from the tip of the epiblast toward the epiblast-ExE boundary, establishing a proximal-distal 

gradient of Nodal expression across the embryo, thus establishing the proximal-distal (P-D) axis 

(Fig. 1.2A).   

At E6.0, the cells constituting the DVE migrate to the future anterior side of the embryo where 

it establishes the anterior visceral endoderm (AVE) and continues to express Lefty1 and Cer1.  

This rotation further suppresses Nodal expression, restricting it to the proximal and future 

posterior side of the embryo, and is now understood as a critical role in establishing the A-P 

axis.  It is in this proximal-posterior region where Nodal signaling initiates the formation of the 

primitive streak, and the cells in this region are responsible for a pioneer role in commencing 

gastrulation.  As gastrulation proceeds, the primitive streak, while expressing Nodal, elongates 

to the distal tip of the embryo (Fig. 1.2A) as lateral epiblast cells migrate towards the streak, 

and undergo epithelial-to-mesenchymal transition (EMT).  The location of the ingression point, 

and the time elapsing before ingression occurs, determines the amount of exposure to Nodal 

signaling, and thus determines future germ-layer cell lineage.  Cells that ingress first through  
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Fig. 1.2  Nodal expression during development.  (A)  Nodal expression during gastrulation 

and A-P patterning in the mouse.  E5.0:  Nodal (blue) induced in epiblast by signals coming 

from extraembryonic tissue (green; ExE).  E5.5: Nodal amplifies itself by positive feedback 

loop, patterns visceral endoderm (VE).  E6.0:  Proximal-distal (P-D) polarity established by 

Nodal and VE signals (red).  E6.5:  Nodal regresses, patterns primitive streak; distal VE 

moves anteriorly as proximal epiblast moves posteriorly (arrows), establishing A-P axis.  (B)  

Nodal and Lefty expression in Xenopus during L-R patterning.  St. 18:  Xnr1 (frog Nodal) 

bilaterally expressed in posterior “L-R organizer.”  St 19/20:  Xnr1 induced in left lateral 

plate mesoderm (L LPM).  St. 23:  Xnr1, amplified by positive feedback loop, spreads 

through L LPM.  St. 25:  Expression shut down in anterior LPM by inhibitors and/or lack of 

tissue competence.  Adapted from Brennan et al., 2001 and Ohi and Wright, 2007. 
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the posterior end of the “early “streak are farthest from the most intense Nodal source and 

become extraembryonic tissue (chorion, visceral yolk SAC mesoderm, blood islands), while cells 

that ingress through the slightly “intermediate” streak become mesoderm (lateral plate, 

paraxial, and cardiac).  When the streak is more fully extended, cells entering through the most 

anterior streak give rise to midline axial mesendoderm tissues (notochord, node, prechordal 

plate, definitive endoderm).  With much experimental support, the current model is that the 

highest (most perdurant) levels of Nodal expression instruct the formation of endoderm and 

induce the expression of mesendodermal markers such as Goosecoid (Gsc).  Intermediate Nodal 

levels instruct the specific formation and fates of node cells, and the lower levels of Nodal 

expression induce mesoderm and the expression of the mesodermal marker Brachyury (T) 

(early patterning and gastrulation in mouse reviewed in Arnold and Robertson, 2009).  This 

dose-dependent response to Nodal signaling is further exemplified in Nodal null mutants and 

hypomorphs (Robertson, 2014).  As already discussed above, in Nodal null embryos, cells do not 

differentiate into mesoderm, leading to a failure in gastrulation and developmental arrest 

(Conlon et al., 1994; Zhou et al., 1993). The ability to induce mesoderm is still present in 

mutants with reduced Nodal expression, but definitive endoderm still fails to be specified 

(Norris et al., 2002; Vincent et al., 2003).  In addition to inducing the expression of Gsc and T, 

Nodal signaling also induces the expression of one of its principal feedback inhibitors, Lefty2.  

By E7.5, gastrulation has concluded, the A-P axis has been established, and Nodal expression 

becomes terminated in the embryo through inhibition by Lefty2.   

Early patterning events in Xenopus might be expected to show significant qualitative 

differences from mouse based simply upon the variation in developmental strategy.  In Xenopus 
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embryos, which develop outside the mother, the lack of extraembryonic tissue and multiple 

Nodal-related genes lead to differences in the earliest phases of Nodal induction.  Overall, 

however, the role of Nodal signaling in mesoderm induction and axial patterning is conserved.  

Expression of Xnrs in Xenopus is first initiated after the mid-blastula transition (the point at 

which zygotic transcription begins) by the maternally deposited T-box transcription factor VegT, 

the Tgf-β family member Vg1, and β-catenin.  Xnr5 and Xnr6 are the first Nodal-related genes to 

be expressed, followed by Xnr1, Xnr2, and Xnr4.  VegT and Vg1 are expressed vegetally, while 

nuclear β-catenin is found in a dorsal-ventral gradient (higher levels dorsally, across the entire 

animal-to-vegetal extent (Henry and Melton, 1998; Zhang et al., 1998).  The area of overlap of 

VegT, Vg1, and β-catenin is where the highest expression level of Xnrs is located.  This creates a 

dorsal-ventral gradient of Nodal signaling across the vegetal and marginal cells as seen by the 

localization pattern of pSmad2.  In the dorsal marginal zone, Nodal signaling induces dorsal 

mesoderm, or Spemann’s organizer, which secretes factors that further refine the dorsal-

ventral axis.  As in mouse, the level of Nodal signaling dictates cell lineage, with high levels of 

signaling in and near the organizer giving rise to dorsal mesoderm, intermediate levels give rise 

to lateral mesoderm, and low levels give rise to ventral mesoderm.   Again, different levels of 

Nodal signaling induce different mesendodermal markers, with high levels inducing the 

expression of Gsc in the organizer and lower levels inducing Xenopus Brachyury (xbra) 

(patterning of the early Xenopus embryos is reviewed in DeRobertis, et al., 2000).   
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Left-right patterning 

The second patterning event for which Nodal signaling is essential is L-R specification and 

asymmetric internal anatomy.  Visceral organs are asymmetric with respect to the midline (i.e. 

heart, stomach, pancreas), the number of appendages in paired organs (right lung has more 

lobes than the left), and/or looping of the organ (gut, developing heart tube).  These 

asymmetries are thought to in the packing of organs into the body cavity and for generating 

unidirectional blood flow.  Arrangement of visceral organs can diverge from normal situs solitus 

in three ways:  (1) isomerism where asymmetrical paired organs such as the lungs become 

symmetrical, (2) situs ambiguous where the position of one or more, but not all of the organs is 

flipped with respect to the midline, and (3) situs inversus totalis where the positioning of all 

visceral organs is the mirror image of situs solitus.  Although the magnitude of organ disruption 

is greater in situs inversus totalis, more clinical complications arise from isomerisms or 

heterotaxia, especially if the heart is affected, which presents more commonly with situs 

defects than other organs. 

There are four steps to the establishment of L-R asymmetry in vertebrates:  (1) initial breakage 

of bilateral symmetry, (2) transfer of L-R asymmetric signals from a specialized signaling 

structure, the L-R organizer, to the left lateral plate mesoderm (L LPM), (3) establishment and 

stabilization of side-specific gene domains in the L LPM, and (4) translation of genetic cues into 

tissue morphogenesis that promotes asymmetric organogenesis (covered in more detail in 

Chapter IV - Identifying and Characterizing Tissue Architecture Asymmetries in L vs. R LPM Prior 

to Gut Looping).  The mechanism by which symmetry is initially broken in the vertebrate 
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embryo remains controversial, and it is possible that different symmetry-breaking mechanisms 

have evolved in different species.  To date, the earliest break in L-R symmetry identified in most 

vertebrates centers around nodal flow, and is the most widely accepted theory for how 

symmetry is broken.  Nodal flow is produced in a structure found in all vertebrate model 

systems termed the L-R organizer (node in mouse and chick, gastrocoel roof plate (GRP) in frog, 

and Kupffer’s vesicle in fish).   Despite having a ciliated node, Nodal flow has not been detected 

in the chicken (Stephen et al., 2014), and, therefore, will not be discussed here.  The L-R 

organizer is composed of monociliated epithelial cells.  The cilia on these cells rotate clockwise 

with a two stroke motion (an effective stroke to the left away from the cell surface and 

rightward recovery stroke near the cell surface) around an axis that is tilted posteriorly by 40°.  

This motion combined, with the angle, produces a uniform leftward flow within the L-R 

organizer that can be visualized by the tracking the movement of small latex beads placed 

within the organizer (Okada et al., 2005).  Disruption of nodal flow, either due to defects in cilia 

or node formation, in frog, fish, and mouse leads to the loss or randomization of Nodal signaling 

in the LPM and subsequent defects in asymmetric organogenesis. 

Although it is well established that nodal flow is essential for L-R specification events occurring 

downstream of the L-R organizer, it is debatable as to whether nodal flow acts as the initial 

symmetry breaking step or if it is the downstream amplifier of an earlier, symmetry-breaking 

mechanism.  Work done primarily in frog [and from one lab] suggests that asymmetries in gap 

junction localization and serotonin distribution seen as early as the 4-cell stage may be the first 

break in symmetry.  Briefly, maternal mRNAs encoding H+/K+-ATPase ion pumps and connexins, 

which form gap junction channels, are reported to be asymmetrically localized to the ventral 
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and future right sides of early cleavage-stage embryos (Aw et al., 2010; Fukumoto et al, 2005; 

Levin et al., 2002).  In this theory, which has been termed the “ion-flux” model, asymmetrical 

localization of ion pumps and gap junctions facilitates the movement and accumulation of 

serotonin to right-side blastomeres, as seen by immunohistochemistry (Fukumoto et al., 2005).  

One mechanism by which asymmetrically localized serotonin is proposed to regulate L-R 

patterning is through modulation of epigenetic marks on the Xnr1 locus.  Serotonin was shown 

to co-immunoprecipitate with Mad3, a DNA binding protein capable of recruiting HDACs.  

Through this interaction and its asymmetric localization, serotonin is thought to recruit HDACs 

to the Xnr1 intronic asymmetric enhancer (frog equivalent of the mouse ASE) only on the right 

side of the blastula.  This is hypothesized to decrease acetylation at the intronic enhancer, 

leading to long-term repression of transcription in cells on the right side.  Furthermore, 

pharmacological interference with ion pump, gap junction, serotonin, and HDAC activities in the 

blastula leads to heterotaxia and situs inversus.  Despite these data, it is still unclear if the 

asymmetrical localization and actions of serotonin and ion channels/gap junctions in the early 

cleavage-stage embryo are the initial break in symmetry. Any role for ion pumps, gap junctions, 

and serotonin in L-R specification upstream of nodal flow in mammalian embryos has not been 

identified.  Also, immunohistochemistry staining showing asymmetric localization of early 

determinants, such as serotonin (Fukumoto et al., 2005), have not been successfully repeated.   

An alternative model for the role of these early determinants in the breakage of symmetry has 

been proposed.  Ion pumps and serotonin are important for maintaining canonical Wnt 

signaling in the blastula and gastrula.  Wnt signaling is an essential component of the 

specification process for superficial mesoderm, from which the GRP (left-right organizer) is 
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derived, and to initiate the expression of Foxj1, an essential factor in the formation of motile 

cilia, in the superficial mesoderm (i.e. GRP).  Additionally, gap junctions are proposed to have a 

fundamental role in transferring the L-R signal from the GRP/node to the L LPM (to be discussed 

further below).  These data argue against a role for serotonin and ion pumps/gap junctions in 

breaking symmetry independent of nodal flow.  Instead, it is suggested that these factors 

participate in the breakage of symmetry by ensuring the establishment of nodal flow through 

proper patterning of the GRP. 

After the completion of gastrulation and a brief attenuation of Nodal expression, Nodal 

expression reinitiates in the L-R organizer.  The mouse node is made up of pit cells that are 

monociliated with the motile cilia.  The pit cells are surrounded by crown cells, which have 

mainly immotile cilia.  Nodal is initially symmetrically expressed in the crown cells and then 

becomes biased towards the left.  This increase in expression on the left is established by 

members of the DAN/Cerberus family (Cerl2 in mouse and Coco in Xenopus).  Cerl2 is initially 

symmetric in the crown cells (Marques et al., 2004), but begins to adopt a rightward bias with 

the induction of nodal flow.  Degradation of Cerl2 mRNA in the left crown cells is further 

exacerbated by Wnt signaling (Nakamura et al., 2012).  Higher levels of Cerl2 in the right crown 

cells leads to greater inhibition of Nodal expression in these cells.  The small increase in Nodal 

expression in left crown cells is thought to promote the transfer of the Nodal signal from the 

node to the L LPM, and not the R LPM, by making leftward travel the pathway of least 

resistance.  Loss of Cerl2 expression in the node leads to randomization of Nodal expression in 

the LPM, demonstrating the importance of right-side inhibition of Nodal expression in the 

node.  Furthermore, Nodal expression in the node is required for the initiation of Nodal 
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signaling in the L LPM, as loss of Nodal expression in the node results in loss of Nodal 

expression in the L LPM.  Exactly what is transferred from the node to the L LPM and the 

mechanism by which it is transferred remains unclear, although several theories exist. 

The “two-cilia” model is the predominant theory as to how a L-R asymmetric signal is 

transferred from the node to the L LPM.  This model suggests that the non-motile cilia on the 

surrounding crown cells are mechanosensory and can sense either a build-up of an unknown 

chemical determinant or the mechanical forces (fluid pressure) generated by nodal flow.  

Support for the chemical determinant model comes from recent studies that localize the Ca2+ 

channel protein Polycystin-2 (Pkd2) to the crown-cell cilia, and show that Pkd2 deletion 

specifically from crown cells, and not pit cells, results in L-R patterning defects (Yoshiba et al, 

2012).  Detection of L-R differences in calcium signaling across the L-R organizer in mouse, frog, 

chick, and zebrafish, further supports the idea that the chemical determinant being sensed by 

the non-motile cilia is Ca2+.  It is proposed in frog, that the gap junction protein connexin 26 

(Cx26), which is expressed in endodermal cells adjacent to the GRP, helps transfer the Ca2+ 

signal from the sensory cells surrounding the left-right organizer to the adjacent endoderm.  

Calcium signaling has been associated with increased secretion of sulfated glycosaminoglycans 

(Beyer et al., 2012), components of the extracellular matrix (ECM) with which the Nodal ligand 

can bind (Marjoram and Wright, 2011; Oki et al., 2007) and are essential for the internal 

transfer of Nodal from the node to the L LPM (Oki et al., 2007).  In mouse, the connexin Cx43, 

which localizes to the gut endoderm, was found to be important for the establishment of Nodal 

signaling in the L LPM, most likely by facilitating the transfer an “asymmetric signal” from the 

node to the L LPM (Viotti et al., 2012).  Because essential components of Nodal signaling such 
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as Cryptic and Foxh1 are not expressed in the tissue between the node and the LPM, it is 

thought that the transfer of asymmetric signal is not through active Nodal signaling, but rather 

through transport of the Nodal ligand itself.  The data discussed so far allude to the possibility 

that mechanosensory cilia on crown cells detect an increase abundance of a chemical 

determinant, perhaps calcium, generated by nodal flow.  To the contrary, it was recently 

reported that only two motile cilia are needed to generate enough nodal flow to maintain 

proper asymmetrical expression of Nodal in the LPM.   The authors speculated that Nodal flow 

produced by two cilia, while slower than what would be seen in wild-type embryos, would still 

be capable of carrying molecules across the node.  However, the rate at which the molecules 

traverse the node and accumulate on its left side is expected to be greatly reduced compared 

to wild type, potentially affecting the timing of the transfer of L-R information from the node to 

the L LPM and causing L-R patterning defects.  Because no Nodal signaling phenotype was seen 

in embryos with only two functional node cilia, the authors state that their results support, but 

do not definitively prove, the mechanical force model (Shinohara et al., 2012).   

Once the L-R signal is transferred from the node, Nodal expression first appears in the L LPM by 

3-4 somites (stage 19/20 in frog).  Expression in the LPM is dynamic and transient, initiating in 

the posterior LPM adjacent to the node/GRP and then rapidly expanding throughout the L LPM. 

Expression is extinguished at the anterior boundary of the LPM by 6-8 somites in mouse or by 

stage 25 in frog, approximately 7-8 hours after first being initiated in the LPM (Fig. 1.2B) 

(Collignon et al., 1996; Lowe et al., 1996; Meno et al. 1996; Norris et al., 2002; Ohi and Wright, 

2007).  A principal regulatory influence of this dynamic expression pattern seems to be the self-

enhancement and lateral-inhibition (SELI) system.  SELI operates through a Nodal 
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autoregulatory and feedback loop.  Nodal enhances its own expression (a positive feed-forward 

loop) and rapidly initiates expression of its feedback antagonist Lefty2 (Nakamura et al., 2006), 

which thus mimics the expression of Nodal with a temporal delay.  Lefty2 inherently travels 

faster and farther than Nodal, and has greater stability, allowing it to shut off Nodal expression 

in the L LPM, as well as prevent the Nodal autoregulatory loop from fully initiating in the R LPM 

(Marjoram and Wright, 2011; Müller et al., 2012; Nakamura et al., 2006).  Also helping to 

restrict Nodal within the L LPM and prevent the initiation of its expression in the R LPM is 

Lefty1, which is expressed in the midline of the embryo. 

Aside from initiating the expression of itself and Lefty2, Nodal also promotes the expression of 

Pitx2, which encodes a transcription factor widely believed to operate as a principal effector of 

Nodal signaling.  Pitx2 has three isoforms of which only Pitx2c in involved in L-R patterning (for 

simplicity and matching current literature Pitx2c will be called Pitx2 from here on).  L-sided 

Pitx2 expression supersedes that of Nodal and Lefty2 in the LPM.  Pitx2 goes on to be expressed 

asymmetrically in the heart, stomach, intestine, and symmetrically in the head (Schweickert et 

al., 2000).  Establishment of PItx2 as a downstream target of Nodal and as a mediator between 

L-R signaling and asymmetric morphogenesis was cemented by its ability to alter organ situs 

without affecting Nodal expression when ectopically expressed in the R LPM (Campione et al., 

1999; Logan et al., 1998; Piedra et al., 1998; Ryan et al., 1998).  Experiments with Pitx2 revealed 

a progressive gene-dosage requirement in organ situs formation and L-R patterning:  lung and 

gut required the highest level of Pitx2 expression, followed by the heart, with the stomach 

requiring the least (Gage et al., 1999; Liu et al., 2001).  Exactly how Nodal signaling (acting 

through Pitx2) influences the alterations in LPM tissue architecture that support asymmetric 
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organogenesis is not known and will be discussed further in Chapter IV – Identifying and 

Characterizing Tissue Architecture Asymmetries in L vs. R LPM Prior to Gut Looping.  

ESCs, germ cells, cancer 

The role of Nodal signaling in development extends beyond axis formation and patterning.  In 

the mouse, Nodal is first expressed in the preimplantation embryo starting at E3.0 where it 

plays an important role in maintaining expression of the pluripotency factor Oct3/4 in the inner 

cell mass (James et al., 2005; Papanayotou et al., 2014).  A similar role is seen in human ESCs, in 

which low level Nodal signaling is essential for pluripotency and self-renewal.  Inhibition of 

Nodal signaling with small-molecule inhibitors directed against the ALK4/5/7 type I receptors 

led to reduced proliferation of ESCs and a decrease in markers of the undifferentiated state 

(reviewed in Watabe and Miyazono, 2009).  A similar requirement is seen in mouse epiblast 

stem cells (EpiSCs), but Nodal signaling does not seem to be essential for maintenance of the 

undifferentiated state in mESCs (James et al., 2005; Papanayotou et al., 2014).  As in the 

epiblast, Nodal signaling is required for ESCs in culture to differentiate into endoderm and 

mesoderm (Watabe and Miyazono, 2009). 

Recently, Nodal signaling has been implicated in the development of germ cells.  Multiple 

components of Nodal signaling (Nodal, Cripto, Lefty1/2) have been found to be expressed in XY, 

and not XX, germ cells in E12.5-14.5 mouse embryos.  Cripto is upregulated in the germ cells in 

response to FGF9, which is expressed by somatic cells of the testis.  In turn, Nodal signaling 

becomes activated and increases Nodal expression in germ cells through its positive 

feedforward loop.  Reduction of Nodal signaling causes premature differentiation of XY germ 
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cells.  Elevated levels of Cripto, Nodal, and Lefty1 have been detected in testicular germ cell 

tumors (TGCT).  These results led the authors to conclude that, similar to its role in ESCs and the 

early preimplantation embryo, Nodal signaling helps regulate timing of the transition from 

proliferation to differentiation (Spiller et al., 2012).  The role of Nodal signaling in germ cell 

development is pertinent to the Foxh1 mutant mouse line described in Chapter V, because 

mutant male mice are infertile under certain circumstances. 

Abnormal reactivation of Nodal has been found in various other cancers testicular germ cell 

tumors.  Nodal expression has been detected in prostate, breast, and endometrium cancers as 

well as in melanoma, where it seem to play a role in regulating plasticity, tumorigenicity, and 

growth.  In metastatic melanoma cells, Nodal transcription is thought to be triggered by Notch 

signaling, most likely through the NDE, the Notch-responsive enhancer that was described first 

for its ability to drive Nodal expression in the node during early embryogenesis.  Human 

metastatic melanoma cells do not express LEFTY, and the absence of this negative feedback 

suppressor further allows NODAL expression to go unchecked and to increase dramatically once 

expression is initiated (reviewed in Strizzi et al., 2012). 

Regulation of Nodal Signaling  

Nodal enhancers 

Much evidence supports the idea that proper embryonic patterning depends upon precisely 

orchestrated dynamic alterations in the level and spatial domains of Nodal ligand distribution.  

Because Nodal signaling must be so precisely titrated, it is likely that buffered regulatory 

systems were developed to provide pathway robustness while at the same time providing 
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rheostat-like level control.  Tissue-specific expression of Nodal is, in part, accomplished by the 

combinatorial action of five different cis-regulatory domains, or enhancers, that drive 

expression in the epiblast, node, and LPM (Adachi et al., 1999; Saijoh et al., 2005; Vincent et al., 

2003).  The PEE, LSE, and NDE enhancers are upstream of the Nodal transcriptional start site 

and the ASE lies in intron 1.  The proximal epiblast enhancer (PEE) is a Wnt-responsive enhancer 

that drives the initial ring of Nodal expression at the epiblast-ExE boundary and then eventually 

in the proximal-posterior region of the epiblast.  This initial activation of Nodal signaling then 

activates transcription through the ASE.  Transcription driven by this enhancer is Nodal and 

Foxh1-dependent.  Once this enhancer is activated, a feed-forward loop is established, and 

Nodal activates its own expression through the ASE.  This feed-forward loop causes the Nodal 

expression domain to expand to cover most of the epiblast and visceral endoderm, before fairly 

rapidly becoming restricted to the prospective posterior side, overlapping slightly with the 

expression domain driven from the PEE (Fig. 1.2A).  On the prospective posterior side, Nodal is 

expressed within the elongating primitive streak, becoming terminated by approximately E7.25.  

Starting around E7.5, the node-specific enhancer (NDE), a Notch-responsive and Foxh1-

independent enhancer, drives expression in the node.  At later stages, the ASE drives Nodal 

expression in only the L LPM (the detection of this function was what first led to its name 

“asymmetric enhancer”).  A second left-sided enhancer (LSE) has been identified that may also 

function in driving expression in the L LPM, although deletion of the LSE did not significantly 

alter Nodal expression in the LPM and caused no defects in L-R patterning (Saijoh et al., 2005).  

A fifth, recently identified enhancer termed the highly bound element (HBE) was found to 
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initiate Nodal expression in preimplantation embryos and embryonic stem cells (Papanayotou 

et al., 2014). 

Foxh1 

Foxh1 is a major transcription factor regulator of not only Nodal transcription, but also that of 

the Nodal downstream targets Lefty2 and Pitx2 (Norris et al., 2002; Saijoh et al., 2000; Shiratori 

et al., 2001).  Transcriptional activation by Foxh1 is currently modeled to depend upon 

interactions with pSmad2, which recruits potent co-activators to the locus and causes positive 

activation-type effects on the nearby chromatin structure (Massagué et al., 2005).  In mouse, 

the deletion of Foxh1 binding-sites within the ASE, or deletion of the whole ASE, leads to 

decreased Nodal expression in the epiblast and complete loss of Nodal, Lefty2, and Pitx2 

expression in the L LPM (Adachi et al., 1999; Norris and Robertson, 1999; Norris et al., 2002; 

Saijoh et al., 2000; Shiratori et al., 2001). Foxh1 binding sites play a conserved role in the ASE as 

deletion of these sites in the frog Xnr1 intronic ASE also attenuated Nodal signaling (Osada et 

al., 2000).  Similar loss of Nodal signaling phenotypes are seen when Foxh1 is globally deleted.  

The majority of Foxh1 null embryos fail to orient the A-P axis appropriately, elongate the 

primitive streak, or form a node; these major defects together cause embryonic lethality 

(Hoodless et al., 2001; Yamamoto et al., 2001).  Embryos in which Foxh1 was conditionally 

inactivated within the L LPM lacked left-sided LPM expression of Nodal, Lefty2, and Pitx2, and 

exhibited pulmonary right isomerism (Yamamoto et al., 2003).   These studies prove that Foxh1 

is an essential, positive regulator of Nodal signaling.  

 



26 
 

ECM interactions 

Because Nodal is thought to have many of the properties of the classical morphogen molecule, 

including the ability to travel long distances in embryonic tissue, its interaction with the ECM is 

another important regulator of Nodal signaling.  Physical interactions between Nodal and the 

ECM are thought to help shape the spatiotemporal dynamics of Nodal signaling. Studies in 

mouse have found that chondroitin sulfate proteoglycan (CSPG), a component of the ECM that 

is enriched around the notochord and ventral neural tube, is needed for the transfer of Nodal 

signal from the node to the LPM.  Mouse embryos cultured in the chemical xyloside, an 

inhibitor of CSPG synthesis, failed to express Nodal in the L LPM (Oki et al.; 2007).  In Xenopus, a 

CSPG gradient along the anterior-posterior axis appears to be important for the anterior-ward 

movement of Xnr1 along the L LPM (Marjoram and Wright, 2011).  In older experiments, 

treatment of Xenopus embryos with xyloside had been reported to lead to failure of the heart 

tube to loop (Yost, 1990).  More recent studies have shown that Xnr1 can travel outside the 

LPM into the endoderm of xyloside-treated embryos (Marjoram and Wright, 2011).  The 

alteration in Nodal localization may be the cause of the heart looping defects seen in the older 

study.  

Aims of Dissertation 

The overarching goal of my thesis was to dissect the spatiotemporal regulation of Nodal 

signaling and its role as a morphogenetic cue in the developing vertebrate embryo with three 

distinct, yet related, aims: (1) map the intracellular tissue registration of the Xnr1 expression in 

the LPM, (2) characterize tissue morphogenesis in the left and right LPM prior to and during gut 
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looping in Xenopus, and (3) dissect the role of Foxh1-Groucho interactions in regulating Nodal 

signaling.  The contribution of repressive transcriptional regulation to the control of Nodal 

signaling spatiotemporal dynamics, and how this precise control of Nodal signaling is translated 

into morphogenetic cues for asymmetric morphogenesis is unclear.  Attempts to answer these 

questions are hindered by the inability to detect endogenous Nodal and Lefty ligands.  Current 

detection methods of endogenous Nodal signaling are primarily by in situ hybridization analysis 

of Nodal, Lefty2, and Pitx2 expression.  It is not known how the Nodal expression pattern 

relates to its protein localization and if active signaling dynamics (perdurance, levels) mimic the 

transient dynamics of Nodal expression.  We generated antibodies against pSmad2 to 

characterize the spatiotemporal dynamics of active Nodal signaling.  Generation and 

characterization of this antibody is discussed in Chapter III.  

There is a large gap in our understanding of how Nodal signaling in the LPM initiates or directs 

chiral organ morphogenesis.  A previous graduate student in the lab had begun to characterize 

the tissue architecture of the LPM and noted possible asymmetries in the actin cytoskeleton 

between the R and L LPM, with increased F-actin contraction and bundling in the R LPM.  In 

Chapter IV, I verify this asymmetry and identify other ECM or tissue architectural components 

that potentially display L-R asymmetries in the LPM of Xenopus.  Our goal was to identify if 

conserved areas of tissue architecture asymmetries were present in the LPM, and if these areas 

coincided with regions in the LPM that have been exposed to Nodal signaling as determined by 

our Xnr1 expression mapping efforts carried out in aim 1 (Chapter III). 
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The transcriptional initiation of Nodal expression has been well studied; however, very little is 

known about how transcriptional repression of Nodal is mediated.  A recent study from our 

collaborator Dr. Dan Kessler at the University of Pennsylvania suggests that Foxh1 can function 

as a transcriptional switch, both initiating activating and repressing Nodal transcription in 

Xenopus.  The ability of Foxh1 to act as a repressor is conveyed through interactions with the 

Groucho family of co-repressors (Reid et al., 2014 in review).  In Chapter V, I describe the 

derivation and characterization of a mouse model in which the ability of Foxh1 to interact with 

Groucho proteins is disrupted, testing if the Foxh1 transcriptional switch is conserved in mouse 

and for the developmental consequences of removing Foxh1-Groucho—mediated repression.   
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Xenopus embryo manipulations 

Oocytes were obtained from Xenopus laevis females induced with approximately 600 units 

human chorionic gonadotropin (hCG).  Half of a Xenopus male testis was homogenized in 5 mL 

high salt modified Barth’s saline (HS MBS; 7 mL 0.1 M CaCl2, 4 mL 5 M NaCl, 889 mL H20, 100 mL 

10x MBS salts [880 mM NaCl, 10mM KCl, 50 mM HEPES, 25 mM NaHCO3], pH 7.8).  The testis 

slurry was dripped on to oocytes, which were then flooded with 0.1x MBS salts to activate 

sperm.  After at least 30 minutes, and once embryos had turned animal halves upward, 

embryos were dejellied in 1% thioglycolic acid in 1X Steinburg’s solution (SS) pH 6.0 with 

agitation for 1-2 minutes.  Embryos were subsequently cultured in 1X SS (58 mM NaCl, 0.67 mM 

KCl, 0.34 mM Ca(NO3)2⋅4H2O, 0.83 mM MgSO4⋅7H2O, 4.6 mM Tris, pH 7.4) until the onset of 

gastrulation (stage 10) when they were transferred to 0.1X SS.  

 

For injections, 1-4 cell-stage embryos were transferred to 5% Ficoll/1X SS and injected with 5-

10 nl of total RNA solution using a Narashige nitrogen-driven microinjector glass capillary 

needles.  Injected embryos were allowed to recover at room temperature in 5% Ficoll/1X SS 

until stage 8 and then transferred into 1x SS until the dorsal lip became evident, at which time 

embryos were collected and processed. 
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For animal cap assays, embryos were collected and injected as described above.  At stage 8, 

vitelline membranes were removed and caps were cut using a 400 µM Gastromaster tip.  Caps 

were cultured pigmented side down in 1X SS overnight at room temperature and assayed for 

elongation the next day.  

 
pSmad2 antibody purification and pSmad1 depletion 

Raw pSmad2 anti-serum (8.5 mL) was diluted to 15 mL with TBS Tween 20 (TBSTw).  Diluted 

pSmad2 anti-serum was mixed end-over-end with 1.5 mL of prepared pSmad2 matrix slurry 

(total of matrix used was 750 µL) for 2 hours at room temperature.  A 1:1 matrix slurry was 

prepared by mixing 1.5 mL pSmad2 matrix with 1.5 mL TBSTw.  Slurry was centrifuged in a 15 

mL Falcon tube at 500 rpm for 3 minutes at room temperature.  The supernatant was removed 

and the remaining pSmad2 matrix was washed with 10 mL TBSTw, turning end-over-end.  

Centrifugation and the TBSTw wash was repeated.  Supernatant was removed and the pSmad2 

matrix was resuspended in 3 mL TBSTw.  Using a Pasteur pipet, the anti-serum/matrix mixture 

was loaded into a 3 mL syringe that had been blocked with 5%BSA/TBSTw for 1 hour and 

plugged with glass wool at the tip.  The matrix was continuously washed with a total volume of 

15-20 mL TBSTw.  pSmad2 antibodies were eluted from the column with acid (0.15 M glycine 

pH 2.5) and base (0.1 M CAPS pH 11.5) washes.  Eight acid fractions, 0.5 mL each, were 

collected into 0.5 mL 2M Tris pH 8.0 (neutralizing buffer).  The same step was repeated for the 

base elution.  Fractions were tested for pSmad2 reactivity on slot blots.  The most reactive 

fractions were pooled (two pools were collected:  acid and base). 
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Both acid and base fractions were dialyzed.  Dialysis tubing (16 mm diameter, 25 mm flat width) 

was prepared by boiling in 2 L of 0.1 M sodium bicarbonate for 15 minutes, rinsing with distilled 

water, boiling in 2 L of 0.1 M sodium bicarbonate and 0.01 M EDTA for 15 minutes, and then 

rinsing in distilled water.  Tubing was cut into strips 4-5 cm in length.  One end of the tubing 

was clamped and the acid or base pools were loaded into the tubing with a Pasteur pipet, and 

then the other end of tubing was clamped.  Fractions were dialyzed in 2 L 1x TBS for 4 hours at 

4°C while slowly spinning.  Fractions were transferred to 4 L fresh 1x TBS overnight at 4°C with 

spinning.  After dialysis, all but 1 mL of the acid pool was aliquoted into 500 µL fractions plus 

10% glycerol and stored at -80°C.  The same was done for the base pool.  

pSmad2 cross-reactivity was depleted from the reserved 1 mL acid and base aliquots by 

incubating with 1 mL pSmad1 matrix slurry (0.5 mL matrix:0.5 mLTBSTw) plus 3.5 mL TBSTw.  

Mixture was turned end-over-end for 2 hours at room temperature.  Mixture was spun down at 

500 rpm for 3 minutes.  Supernatant was removed and the spin repeated.  Depleted affinity 

purified antibodies were stored at 4°C. 

 

Antibody labeling on Xenopus cryosections 

Embryos were fixed in 1xMEMFA (0.1 M MOPS pH 7.4, 2 mM EGTA, 1 mM MgSO4, 3.7% 

formaldehyde) for 2 hours at room temperature or overnight at 4°C.  They were then 

embedded in a mixture of melted 3% bacto agar/5% sucrose/PBS Tween 20.  Blocks were 

equilibrated in 30% sucrose/PBS Tween 20 overnight at 4°C, and then frozen on 2-Methyl 

Butane that was supper-chilled in liquid nitrogen.  Slides with cryosections were mounted into 

Sequenza slide racks.  Sections were rehydrated in 1x PBS for 1 hour at room temperature, 
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blocked (2% NDS, 2% 100 mg/mL BSA, PBS) at room temperature for 1 hour, and incubated 

overnight at 4°C in primary antibody diluted in block.  Sections were washed 6x5 minutes with 

1x PBS, incubated with secondary antibody for 2 hours at room temperature in block, washed 

again with 1x PBS, and mounted in ProLong Gold antifade reagent plus DAPI. 

 
Whole-mount immunolabeling (for Technovit embedding) 

Embryos (not exceeding 10-12 embryos/vial) were fixed in 1xMEMFA for 30-60 minutes at 

room temperature on a nutator, then transferred into Dent’s fix (4:1 methanol:DMSO) and 

stored at -20°C for at least two days.  Embryos were rehydrated with a MeOH series: 75%MeOH 

in 1xPBS with 0.1% Tween (PBSTw), 50% MeOH/PBSTw, 25% MeOH/PBSTw, and at least two 

washes with PBSTw.  Each wash was at least 5 minutes on a nutator at room temperature.  

Embryos were blocked with 500 µL 15% normal donkey serum (NDS) in PBSTw for 2 hours at 

room temperature on a nutator.  Embryos were incubated in primary antibody diluted in 500 µL 

15% NDS/PBSTw for 2 days at room temperature on a nutator (see Table 2.1 for compatible 

primary antibodies), then washed with PBSTw for at least 1.5-2 hours at room temperature on a 

nutator, changing out PBSTw multiple times (usually 8-10 washes).  Embryos were added to 

secondary antibody (fluorescently-labeled; 1/200, Jackson Immuno) diluted in 500 µL 15% 

NDS/PBSTw and incubated overnight at 4°C on a nutator.  Vials are covered to protect from 

light for rest of staining protocol and sectioning.  PBSTw washes done after primary antibody 

incubation were repeated.  Embryos were fixed in 500 µL 4% PFA for 30 minutes at room  
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Table 2.1  Antibodies compatible with whole-mount immunolabeling. 
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temperature on a nutator, and wash twice with PBSTw for 5 minutes each.  Embryos were 

either stored in PBSTw at 4°C or immediately processed for embedding in Technovit 7100. 

 

Technovit 7100 embedding and sectioning 

Dehydrate embryos with EtOH series:  25% EtOH/PBSTw, 50% EtOH/PBSTw, 75% EtOH/PBSTw, 

and 2 washes with 100% EtOH.  Each wash is at least 5 minutes on a nutator at room 

temperature.  Prepare Technovit 7100 infiltration mix according to package directions (1 g 

hardner I [powder]/100 mL Technovit liquid; usually makes 15-20 mL of infiltration mix, which 

can be stored at 4°C for up to one month).  Add 1:1 mixture of 100% EtOH:Technovit infiltration 

mix to embryos (500 µL total) for 1 hour at 4°C on a nutator.  Replace 1:1 EtOH:Technovit 

mixture with 500 µL 100% Technovit infiltration mix for 1 hour at 4°C on a nutator (can perform 

this and the previous equilibration step for 30 minutes each at room temperature when short 

on time).  Replace Technovit with fresh 500 µL aliquot of Technovit infiltration mix overnight at 

4°C on a nutator (embryos can be stored in this mix for up to 1 month at 4°C). 

To embed, take 1 embryo (tissues seem to tear more frequently during sectioning when more 

than 1 embryo is embedded in the same block) out of vial with a glass Pasteur pipette that has 

had the tip sawed off to increase boar diameter.  Place embryo in a plastic disposable 

embedding mold (7x7x5 mm – Fisher catalogue #22-363-552).  Remove excess liquid around 

embryo using p200 pipetman.  Mix Technovit infiltration mix with hardner II (1 mL hardner II/15 

mL Technovit infiltration mix).  This embedding mix only stays liquid for a few hours at 4°C 

before it starts to harden and polymerize, so only make enough for the number of embryos 
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being embedded (750-1000 µL/embryo).  Add enough embedding mix to cover embryo and fill 

the 7x7x5 mm mold (about 250 µL; return unused mix back to 4°C).  Once the Technovit begins 

to polymerize (15-30 minutes at room temperature depending on how fresh the embedding 

mix is –mix sitting at 4°C for some time will polymerize faster than mix just prepared), position 

embryo as desired with dissecting needle and hold until embryo is stationary (once the 

Technovit starts to polymerize, it usually takes a few minutes until the embryo will maintain its 

position without assistance).  Once stationary, add more embedding mix (500-750 µl) to the 

mold and position a plastic biopsy cassette (Fisher catalogue #15182702E), with the lid 

removed, on top of the mold so that the flat part of the cassette sits in the embedding mix and 

is flush against the embryo block.  Make sure no bubbles form between the block and cassette, 

as this will weaken the connection between the two and likely cause the block to snap off the 

cassette during sectioning.  Let harden overnight at room temperature, protected from light.  

To add rigidity to and minimize flexing of the biopsy cassette during sectioning, pour 

approximately 750 µL of Technovit 3040 (harder, yellow plastic; 2:1 powder:liquid) into the 

open back of the cassette; let harden for at least 10 minutes at room temperature.  Carefully 

pop specimen block attached to cassette out of the plastic embedding mold.  If the block does 

not release from the mold, cut the mold can away with a razor blade.  Allow block to dry at 

least one day before sectioning. 

Sectioning was done on a Leica RM2135 microtome outfitted with a universal cassette clamp 

and knife holder E, which holds disposable metal blades (fisher catalogue #22-030530).  Note:   

glass knives or tungsten carbide blades are recommended for resin sectioning; however, our 

microtome is not compatible with these options.  The angle of the knife was set to 2°.  Anything 
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greater than this causes the sections to rip and curl more frequently.  Technovit sections are 

placed into a room temperature water bath to expand and then are collected on to slides and 

dried on a slide warmer. 

 

Derivation of Foxh1LCA, Foxh1mEH1, and Foxh1F mice 

The Foxh1LCA, Foxh1F, and Foxh1mEH1 mouse lines were derived with help from Vanderbilt 

Transgenic Mouse/Embryonic Stem Cell Shared Resource (TMESCSR).  A 129S6 Foxh1LCA ES cell 

line was generated through homologous recombination of a targeting vector that was created 

by BAC recombineering with the BAC bMQ206P16 (BAC PAC Resources at C.H.O.R.I., Oakland, 

Ca.).  In short, DNA flanking the Foxh1 locus was subcloned from the BAC into pLCA.71.2272.  

The BAC and modified pLCA.71.2272 were recombined in recombinant-capable SW106 cells.  

pBS.DT-A was used to retrieve the modified Foxh1 locus from the BAC, creating the Foxh1LCA 

targeting vector which was then electroporated into 129 mESCs for homologous recombination 

with the endogenous Foxh1 locus.  Colonies surviving selection were screened by Southern 

blotting (described below) and karyotyped.  Five out of 317 colonies screened had correct 

targeting of the Foxh1 locus.  Foxh1LCA chimeras were generated to validate germline 

transmissibility of Foxh1LCA ES cell clones.  Exchange vectors for the Foxh1F and Foxh1mEH1 alleles 

were generated by subcloning the Foxh1 locus from the BAC into phygro66.2272.F.  Site-

directed mutagenesis was used to mutate the EH1 domain and/or add a FLAG tag.  

Recombinase-mediated cassette exchange (RMCE) between the Foxh1LCA ES cell clone 4B6 and 

exchange vectors was used to generate Foxh1F and Foxh1mEH1 ES cell lines. Colonies surviving 

selection were screened with PCR and karyotyped.  One clone for each line was injected into 
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C57BL/6 embryos for generation of chimeras.  Following the generation of founder mice for the 

Foxh1F and Foxh1mEH1 alleles, hygromycin resistance selection cassettes were excised by mating 

to mice with FLPe (Rodriguez et al., 2000). Flp-mediated deletion was confirmed with the 

primers 5’ AGC TGC CCA TTG TAG TAG C 3’ and 5’ CAA AGT GAG TTC CAG GAC A 3’. 

 

Southern Blotting 

Genomic DNA isolated from targeted ESCs was provided by the Vanderbilt TMESCSR for 

screening.  DNA was digested in a total volume of 60 µL with 4 µL BamHI overnight at 37°C.  An 

additional 2 µL of BamHI was added the following morning, and the digest was continued for 

two hours.  Digested DNA was run on a 0.8% NA agarose gel without ethidium bromide (EtBr) 

overnight between 30-35 V in 1x TBE buffer.  Transfer of DNA to zeta probe membrane and the 

subsequent processing of the membrane was done according to the lab’s genomic Southern 

blot protocol – July 1998 version.  Radioactive probes, approximately 500 base pairs in length, 

were prepared using the Prime-It Labeling kit (Agilent Technologies) with 32PdATP.  Radio-

labeled membranes were exposed to film for up to one week at -80°C.  The 5’ internal probe 

was amplified from BAC bMQ206P16 with the following primers: 5’ AAA AAA ATC GAT AGG 

GAG GTC TGG CCA ATC GTG 3’ and 5’ TAT AAG AAT TCT TAT GCT TTG AGA AAG GAT CGC CTC C 

3’.   Primers for the 3’ external probe: 5’ AAA AAA ATC GAT AGC CTT TGA GGA GGC CAA GTG 3’ 

and 5’ TAT AAG AAT TCG CCT GCA TCA CGG TTG GTT AC 3’.   
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Mouse husbandry 

Animal handling was approved by the Vanderbilt University Medical Center Institutional Animal 

Care and Use Committee.  Mice were purposefully maintained on a mixed ICR/129 background 

to minimize the chance that a potential phenotype is controlled by a genetic modifier.  Mice 

were maintained as homozygotes for the respective alleles.  Foxh1mEH1 and Foxh1F animals 

were genotyped by PCR (primers 5’ ACT TGG GAA ACC ACT TGG TC 3’ and 5’ TTG ACT CTT GAA 

CCT CCA GG 3’).  Experimental embryos resulted from crosses between mice homozygous for 

the Foxh1mEH1, Foxh1F, or wild-type Foxh1 allele. 

 

Microinjection of Foxh1 variants into Xenopus 

Plasmids for generating RNA in vitro were generated by inserting cDNAs encoding Foxh1F or 

Foxh1mEH1 into pCS2+ (from Dr. Dave Turner, University of Michigan).  An injection construct 

encoding Myc-tagged Xenopus Grg4 (MycGrg4) was a gift from Dr. Daniel Kessler, University of 

Pennsylvania.  Capped RNA was produced using the mMessage mMachine kit (Ambion).  RNA 

encoding Foxh1F or Foxh1mEH1 (2 ng) was injected alone or in combination with MycGrg4 (2 ng) 

into the animal caps of 1-2 cell Xenopus embryos.  Embryos were cultured in 1x SS until stage 

10, when they were frozen and stored at -20°C for use in co-immunoprecipitations (co-IPs).  

Embryos were staged according to (Nieuwkoop and Faber, 1967). 
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Foxh1-Groucho co-immunoprecipitation and immunoblotting 

Ten Xenopus embryos were used in each co-IP.  Embryos were homogenized 10 µL 

homogenization buffer per embryo (buffer: 20 mM Tris pH8.0, 2.0 mM EDTA, 5.0 mM EGTA, 

0.5% NP-40, 1x protease inhibitor cocktail [Roche]), incubated on ice 10 minutes, and 

centrifuged at 2,000 x g for 5 minutes at 4°C.  Centrifuged lysates were removed from the pellet 

and pellicle and incubated with 4 µg rabbit anti-Foxh1 (ab49133, Abcam) overnight at 4°C 

mixing end-over-end on a hematological mixer.  Lysate-antibody mixtures were then incubated 

with 50 µL magnetic Dynabeads Protein G (Life Technologies) for 4-5 hours at 4°C on a 

hematological mixer.  After incubation, beads were boiled in 4x sample reducing buffer (0.125 

M Tris-Cl pH6.8, 4% SDS, 20% v/v glycerol, 0.2 M DTT, 0.02% bromophenol blue) for 7 minutes.  

Samples were separated on NuPage 10% Bis-Tris gels (Life Technologies), transferred onto PVDF 

(0.45 µM, Millipore), and blocked with 7-10% non-fat dry milk dissolved in TBS-Tween (0.1%) 

for 30-45 minutes at room temperature.  Membranes were incubated with monoclonal mouse 

anti-FLAG M2 (1:3,000; 200472, Agilent Technologies) or rabbit anti-Myc (1:3,000; 06-549, 

Millipore) in blocking solution overnight at 4°C.  Membranes were washed with 0.1% TBS 

Tween 20 2x5 minutes, 1x10 minutes, and 1x15 minutes.  Specifically bound primary antibodies 

were detected with HRP-conjugated goat anti-mouse IgG1 (1:7,500; sc2969, Santa Cruz 

Biotechnology) or Clean-Blot IP detection reagent HRP (1:4,000; 21230, Thermo Scientific) for 

45 minutes at room temperature.  TBS Tween 20 washes were repeated.  Amersham ECL Prime 

western blotting detection reagent (GE Healthcare) was used for chemiluminescence and 

membranes were exposed to film (GenHunter) for various time periods. 
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pSmad immunoblotting 

Immunoblotting with the pSmad1 and pSmad2 antibodies was performed as described above 

except for the following differences.  Five Xenopus embryos per condition were homogenized 

with a motorized pestle in 50 µL homogenization buffer containing the phosphatase inhibitors 

NaF (100 mM), Calyculin A (20 nM), and sodium pyrophosphate (10 mM).  Approximately 20 µL 

of the lysate was used for western blotting.  Membranes were blocked in 5% BSA diluted in 

0.1% TBS Tween 20.  This solution was also used to dilute the primary and secondary 

antibodies.  HRP-conjugated goat anti-rabbit secondary antibody was used (1:5,000; Cell 

Signaling). 

 

Mouse in situ hybridizations 

Embryos were staged based on morphology according to (Downs and Davies, 1993).  Whole-

mount in situ hybridization was as described (Belo et al., 1997), except antibody was used at 

1:5,000, with DIG labeled Nodal, Lefty2, Pitx2, Foxh1, Otx2, Brachyury/T, Gsc, and Foxa2 RNA 

probes (probes were gifts from Trish Labosky and Yukio Saijoh).  All steps were carried out in 

24-well tissue culture dishes.  Embryos were kept in mesh baskets (Eppendorf tube, tip and cap 

removed, melted on to mesh of a transwell filter) to facilitate easy transfer from well-to-well.  

Embryos were prehybridized and hybridized at 68°C, in an incubator, for all probes.  Color 

reaction was done with BM Purple (Roche).  Developed embryos were imaged with a Leica 

M165 FC microscope. 
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qRT-PCR 

RNA was isolated from Xenopus animal caps (approximately 10) or E8.25 mouse embryos (1-6) 

using Trizol (Invitrogen) and RNA pellets were resuspended in 30 µL DEPC water.  DNA 

contamination was removed with the DNA-free kit (Ambion).  cDNA was synthesized with the 

iScript cDNA synthesis kit (Bio-Rad), and qRT-PCR performed using the SsoFast EvaGreen 

supermix (Bio-Rad). qRT-PCR was performed twice on each cDNA sample to determine ΔCT.  

qRT-PCR primers were as follows:  Gsc 5’ ACAACTGGAAGCACTGGA 3’ and 5’ 

TCTTATTCCAGAGGAACC 3’; xBra 5’ GGATCGTTATCACCTCTG 3’ and 5’ GTGTAGTCTGTAGCAGCA 

3’; Xnr1 5’ AGG AAG CAT CCC TTC CA 3’ and 5’ GGT ACA ACT TGA CCA CAC T 3’; Lefty2 5’ ACC 

AAA GTA CCC CTT GTC TC 3’ and 5’ GCG ATA TTG TCC ATT GTG CA 3’; Muscle actin 5’ GCT GAC 

AGA ATG CAG AAG 3’ and 5’ TTG CTT GGA GGA GTG TGT 3’; Epidermal keratin 5’ CAC CAG AAC 

ACA GAG TAC 3’ and 5’ CAA CCT TCC CAT CAA CCA 3’; ODC 5’ GGA GCT GCA AGT TGG AGA 3’ 

and 5’ TCA GTT GCC AGT GTG GTC 3’; mouse Nodal 5’ TGA GCC TCT ACC GAG ACC 3’ and 5’ ATG 

TCA ATG GTG AGT GGG C 3’; mouse Lefty2 5’ ACA AGT TGG TCC GTT TCG C 3’ and 5’ ACA TTC 

ATA CGT CAG GAA CCC 5’; mouse Pitx2 5’ AGG ACT CAT TTC ACT AGC CAG 3’ and 5’ AGC CAT 

TCT TGC ACA GCT C 3’; and GAPDH 5’ AAC TTT GGC ATT GTG GAA GG 3’ and 5’ GGA TGC AGG 

GAT GAT GTT CT 3’.      

 

Latex injections 

Ventricles of E15.5 embryos were injected with colored, liquid latex (Connecticut Valley 

Biological Supply) as described (Oh and Li, 1997), using the same microinjection setup used for 
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injecting Xenopus embryos.  Hearts were allowed to beat several times to help circulate the 

latex before fixing whole embryos in 4% paraformaldehyde at 4°C.  Embryos were imaged with 

a Leica M165 FC microscope. 

 

Whole-mount immunolabeling for YFP (detection of ASE-YFP transgene) 

Embryos were fixed in 4% PFA overnight, then transferred to a 1.5mL Eppendorf tube in which 

they were washed 3x5 minutes with wash buffer (0.02% PBS Tween 20, 2 % BSA from a 100 

mg/mL stock) at room temperature on a nutator.  Total volume of each wash was 1.2 - 1.5 mL.  

Embryos were permeabilized in permeabilization buffer (0.5% PBS Triton) at room temperature 

on a nutator.  Permeabilization times were 15 minutes for E8.25 embryos and 7.5 minutes for 

E6.5 embryos.  Embryos were washed 2x3 minutes with wash buffer at room temperature on a 

nutator.  Embryos were incubated overnight at 4°C in primary antibody, rabbit anti-GFP 

(1/500), diluted in antibody block (0.1% PBS Tween 20, 2% BSA).  The antibody solution was 

removed and 1 mL wash buffer was added to the embryos.  Embryos were allowed to settle and 

the buffer was removed.  Embryos were washed 4x10 minutes with wash buffer at room 

temperature on a nutator.  A fluorophore-conjugated secondary antibody was diluted (1/200, 

Jackson Immuno) in antibody block.  Embryos were incubated with the antibody at room 

temperature for 1 hour and 45 minutes on a nutator.  The antibody solution was removed and 

1 mL wash buffer was added.  Embryos were allowed to settle and the buffer was removed.  

Embryos were washed 2x10 minutes with wash buffer at room temperature on a nutator.  

Embroys were photographed immediately or stored in wash buffer at 4°C in the dark until they 

were photographed. 
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CHAPTER III 

MAPPING TISSUE REGISTRATION OF NODAL EXPRESSION IN XENOPUS 

 
Introduction 

Interpreting the Nodal signaling gradient 

Proper patterning of the vertebrate embryo is highly dependent on the ability of cells to 

accurately detect and interpret Nodal-signaling levels, which are sometimes very fine 

quantitative distinctions.  How a cell interprets its position within a morphogen gradient has 

been an intense area of focus in developmental biology for many years.  Adoption of a specific 

cell fate, in some contexts, could be the result of a simple binary decision dependent on 

whether a signaling source is sensed or not.  However, the importance of different levels of 

Nodal signaling in patterning multiple cell fates suggests that cells are not faced with such an 

easy “yes” or “no” question, but instead must interpret multiple factors such as perdurance and 

strength of signal before committing to a particular cell fate.   

Most of the knowledge regarding how cells sense the Nodal signaling gradient is extrapolated 

from experiments performed with Activin, a TGF-β superfamily member that has similar 

developmental functions to Nodal, but does not require the aid of a co-receptor and is easier to 

produce and purify.  Work primarily from the lab of Sir John Gurdon has suggested that cells 

respond to Nodal/Activin signaling through a ratchet-like process in which gene expression 

reflects the highest concentration of morphogen to which cells have been exposed, provided 

enough time is passed at this upper concentration.  In experiments where a bead coated in 1.5 
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nM Activin (a so-called “weak” bead) was sandwiched between two animal caps (tissue that is 

naïve to Nodal/Activin signaling), cells closest to the bead expressed brachyury (xbra).  Cells in 

animal caps sandwiching a bead coated in 15 nM Activin (“strong” signaling bead) expressed 

goosecoid (gsc) closest to the bead and xbra beyond the gsc-expressing cells.  When animal cap 

cells were first exposed to a weak bead for a set amount of time, and then a strong bead for an 

equivalent time frame, cells adopted an expression pattern seen with the high bead alone—gsc 

closest to the bead and xbra farther out (Gurdon et al., 1995).  Thus, cells continuously assay 

the ligand concentration in their environment and change their response (in this example, their 

gene expression output) over time to reflect the highest level of morphogen that was detected.  

Cells are, apparently, unable to ratchet-down their response to a lower level once exposed to a 

higher level of signal – at least over the timeframe of the experiments that have been 

performed so far (Gurdon et al., 1995). 

Experiments in which dissociated Xenopus animal cap or blastula cells were cultured with [35S]-

methionine and cysteine-labeled Activin showed that ligand concentration is determined by the 

number of occupied cell-surface receptors per cell, and that the absolute level of occupancy, 

not the ratio of unoccupied to occupied receptors, was most important when deciding cell fate 

outcome.  For example, one hundred molecules of bound [35S]Activin, occupying only 2% of the 

total receptors under wild-type conditions, was enough to activate expression of Xbra.  Only a 

slight increase, to three hundred molecules of [35S]Activin, or just 6% receptor occupation, was 

needed to change the expression output from xbra to gsc.  Overexpression of cell-surface 

receptors did not change the number of activin molecules needed to activate the respective 

gene outputs.  However, receptors bound ligands more quickly when there was a high ligand 
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concentration, and more slowly when the ligand concentration was low, indicating a dose-

dependent on-rate (Dyson and Gurdon, 1998). 

Type I and type II receptors do not have equal importance in determining the effect on cellular 

gene expression profile.  Embryos overexpressing the type I receptor ALK4 did not display 

altered gene expression patterns compared to uninjected control embryos when incubated 

with increasing amounts of activin.  However, overexpressing type II receptors changed gene 

expression in response to increasing activin concentrations, indicating that the type II receptor 

is the principal determinant in interpreting the level of the morphogen (Dyson and Gurdon, 

1998).  

Exposure of dissociated animal caps to activin for 10 minutes, followed by washes to remove 

excess unbound ligand, was enough time to activate gene expression, which still occurred three 

hours after ligand exposure, suggesting that cells “remember” the exposure and even the level 

of the activating signal (Bourillot et al., 2002; Jullien and Gurdon, 2005).  Studies done in cell 

lines suggest that this memory comes from the ability to internalize the active type I/II receptor 

complexes.  SARA, the anchor protein responsible for recruiting Smad2 to type I receptors for 

phosphorylation, also contains a FYVE domain, which is capable of associating with 

phospholipid-enriched EEA1 (early endosome antigen-1)-positive endosomes (Di Guglielmo et 

al., 2003).  The type I/II receptor complex and SARA have been observed to be internalized from 

the plasma membrane in clathrin-coated endocytic vesicles both in vitro and in Xenopus 

embryonic cells (Di Guglielmo et al., 2003; Jullien and Gurdon, 2005).   
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The internalization of the receptors is thought to prolong signaling in at least two ways.  First, it 

has been shown that receptors are capable of being internalized through a second pathway 

that is dependent on lipid-raft–caveolar internalization.  These lipid rafts also contain Smad7 

and the E3 ligase Smurf2, which mediate the ubiquitin-dependent degradation of the receptor 

complex (Di Guglielmo et al., 2003).  Clathrin-dependent internalization is thought to sequester 

the activin receptors from the degradation pathway, and prolong their activity.  Second, it has 

been shown that activin is internalized with SARA and the receptor complex in the endosomal 

compartments, and that impairment of ligand internalization inhibits gene induction in 

response to Activin signaling.  Encapsulation of the ligand and receptor into endosomal 

compartments may also stabilize their interaction with each other, and prolong signaling within 

the cell, even when extracellular ligand levels have dropped below the threshold for active 

signaling (Jullien and Gurdon, 2005).   

Signaling activity at the cell surface, or in ligand-receptor containing cytoplasmic vesicles, is 

proposed to be monitored by the nucleus through cytoplasmic shuttling of Smads (Inman et al., 

2002).  pSmad2 translocation to the nucleus occurs within twenty minutes of ligand binding to 

receptor complexes (Bourillot et al., 2002), and continuous receptor activity is required to 

maintain pSmad2 in the nucleus (Inman et al., 2002).  Even when extracellular ligand levels 

decrease, pSmad2 nuclear levels are maintained at the highest level of signaling observed by 

the cell (Bourillot et al., 2002), because of the internalization of the ligand-receptor complex 

that continues to phosphorylate Smad2 (Jullien and Gurdon, 2005).  In the nucleus, pSmad2 is 

dephosphorylated, leading to dissociation from Smad4.  Both Smad4 and unphosphorylated R-

Smads are then recycled back to the cytoplasm through independent processes.  If receptors 
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are still active, Smad2 is again phosphorylated and trafficked to the nucleus, repeating another 

round of cytoplasmic-nuclear shuttling.  If receptors are no longer active, Smad2 remains 

cytoplasmic and gene activation ceases.  This process can last for hours, as receptors must 

signal for 3-4 hours – at least in cell culture – in order to achieve maximal gene expression 

(Inman et al., 2002).   

Detection of active Nodal signaling 

Current methods for analyzing Nodal-signaling dynamics (duration, intensity, location) in vivo 

primarily rely on detecting the expression of Nodal or its targets Lefty2 and Pitx2.  It is not fully 

understood, however, if the spatiotemporal dynamics of Nodal expression equate to the 

signaling dynamics of the Nodal ligand.  Considering that Nodal is a morphogen, it would not be 

surprising if the spatial domain of the Nodal ligand exceeds the realm of its expression domain, 

or lasts and functions significantly longer than the expression detected by RNA in situ 

hybridization.  In fact, experiments in Xenopus showed that Activin is capable of traveling up to 

300 µm from its source (Gurdon et al., 1994), at a rate of 100 µm per hour (Gurdon and 

Bourillot, 2001).  The Nodal ligand itself can travel from a Nodal producing graft positioned in 

the L LPM of Xenopus, reaching the far anterior end of the LPM and the notochord.  In 

situations of tissue perturbation, Nodal takes additional routes into the endoderm and the R 

LPM (Marjoram and Wright, 2011).  In mouse mutants that conditionally lack Lefty2 in the LPM, 

Pitx2 is unregulated in the R LPM leading to randomized situs.  Importantly, because right-sided 

Nodal expression was not seen to occur in these mutants, the conclusion was made that the 

Nodal ligand travels beyond its expression domain to activate Nodal signaling in the R LPM 
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(Meno et al., 2001).  The potential of the Nodal ligand to travel outside the Nodal expression 

domain is further suggested in normal developmental conditions during which Nodal 

downstream targets Lefty1/2 are expressed in the midline where Nodal expression is not 

detected.   These data reinforce the notion that RNA expression patterns do not fully reflect the 

dynamics (perdurance, tissue penetration, range) of the translated protein, and that alternative 

detection methods need to be investigated in order to reach a more complete understanding of 

how the level and duration of Nodal signaling pattern different developmental fates during 

embryogenesis.  Clearly, sensitive reagents for detecting the endogenous Nodal ligand, and 

even differentiating its various forms within tissue (proprotein, cleaved active ligand, “old” 

inactive ligand in the process of clearance) would be useful tools.   

Attempts to design antibodies that recognize Nodal or Lefty have been far from successful.  The 

ligands are thought to be unstable and/or in low abundance.  It has been calculated that 

morphogens are active at concentrations as low as 10-9 to 10-11 M (Gurdon and Bourillot, 2001).  

Also, in general, antibodies cannot discern between the Nodal proprotein and the cleaved 

ligand, adding uncertainty as to whether or not what is being recognized is the active ligand.  

Although observing tagged Nodal ligands has yielded useful information regarding ligand 

dynamics, as demonstrated in Marjoram and Wright (2011), the placement of tags is usually in 

the ligand domain therefore leading again to the problem of not distinguishing active ligand, 

proprotein, or inactive dead (and clearing) protein.  In most of these experimental cases, tagged 

Nodal ligands were exogenously expressed, and not from the endogenous locus.  Although 

there were somewhat convincing arguments that the ligands were not expressed at very supra-

physiological levels, such analysis provides only a limited picture of what endogenous signaling 
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dynamics might look like across the embryo.  Despite our success with tagged ligands, we and 

others have found that tagging Nodal without disrupting its function is quite challenging, and 

often not intuitive or logical.  For these reasons, Nodal antibodies and tags leave open several 

distinct caveats regarding their ability to track ligand dynamics.  

An alternative method for detecting active Nodal signaling has been to assay the localization 

pattern of pSmad2, the downstream intracellular signal transducer.  Polyclonal antibodies 

against both pSmad2 and the BMP pathway signal transducer, pSmad1, have been generated 

by the lab of Peter ten Dijke and by commercial companies using his peptide design.  The 

antibodies were generated in rabbits against the last four amino acids of pSmad2 (KKK-

S[Sp]M[Sp]; [Sp] representing phosphorylated serine) and the last seven amino acids of pSmad1 

(KKK-NPIS[Sp]V[Sp]) (Persson et al., 1998).  The lysines (KKK) act as a spacer to move the 

haptenated epitope away from the carrier protein, increasing accessibility to the immune 

system during the immunization process.  Decreased or increased R-Smad phosphorylation was 

detected by both antibodies in Xenopus embryos in which TGF-β or BMP signaling had been 

inhibited or activated, suggesting specificity of the pSmad1 and pSmad2 antibodies (Faure et 

al., 2000).  However, the ability to replicate the endogenous staining patterns detected with the 

ten Dijke antibodies has been difficult.  Also, when used on E5.5-7.5 mouse embryos, the ten 

Dijke pSmad2 antibody detected nuclear pSmad2 randomly throughout embryonic and 

extraembryonic tissues (Chuva de Sousa Lopes et al., 2003).  During these stages, Nodal 

signaling is active in the primitive streak where it activates Nodal target genes (i.e. Brachyury, 

Lefty2) and patterns cells as they ingress the streak.  Therefore, the expected restriction of 

pSmad2 to the streak was not seen, calling into question the specificity of this antibody in vivo.  
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Also hindering the wide use of currently available phospho-Smad antibodies is that the ten 

Dijke antibodies are very limited in supply (they had to be affinity purified).  Commercial 

pSmad2 and pSmad1 antibodies suffer from high signal-to-noise and lack sensitivity, especially 

on embryonic tissue. 

Generation of pSmad2 and pSmad1 antibodies 

We proposed using pSmad2 localization as a read out for Nodal signaling in order to generate a 

spatiotemporal map of active Nodal signaling in the LPM during the various stages in which L-R 

patterning occurs, but the current reagents were not of high enough quality.  We therefore 

decided to generate our own pSmad2 and pSmad1 antibodies.  While our primary need was for 

a sensitive and reliable pSmad2 antibody, generating a pSmad1 antibody with the same novel 

design was expected to result in a higher quality antibody than currently available.  For 

example, because right-sided BMP signaling counters Nodal autoregulatory expression in the R 

LPM of multiple species (Lenhart et al., 2011; Mine et al., 2008; Ramsdell and Yost, 1999), a 

pSmad1 antibody could help visualize areas where such BMP-induced inhibition occurs. 

We contracted the production of the pSmad antibodies to “Abgent”, a company specializing in 

the production of phospho-antibodies and claiming proprietary technology to improve antigen 

presentation to the immune system.  To improve specificity, the length of the epitope for each 

R-Smad was increased to encompass the last nine amino acids of each protein, while preserving 

the native phosphoserine structure.  Rabbits were inoculated with the following peptides: KKK-

PSVRCS[Sp]M[Sp] for pSmad2 and CKKK-PHNPIS[Sp]V[Sp] for pSmad1.  The commonly used 

cross-linker glutaraldehyde is very reactive with thiol moieties such as those in cysteine, making 
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it undesirable to use for coupling the pSmad2 epitope, with the internal cysteine, to keyhole 

limpet hemocyanin (KLH), a carrier protein that increases the size of the antigen for an effective 

immune response.  To promote homogeneous coupling of the pSmad2 epitope through its N-

terminus and not internal residues, special haptenization chemistry (“hydralink”) was used for 

pSmad2.  This special coupling was also used to help extend the pSmad2 epitope away from 

KLH to improve recognition by the immune system.  pSmad1 had the additional N-terminal 

cysteine added for standard coupling with glutaraldehyde.  Repeated inoculations of rabbits 

with these KLH-coupled peptides over several months led to a high titer of phospho-peptide 

antibodies.  pSmad1 and pSmad2 antibodies were then peptide affinity-purified from the raw 

anti-sera by Abgent and provided to us for characterization.  

The overall goal was that, if it were to be specific and sensitive enough, the new pSmad2 

antibody could be used to generate spatiotemporal maps of active Nodal signaling during 

stages of L-R patterning in Xenopus.  The resulting activity maps would then be overlaid with 

Nodal expression, derived from in situ hybridization analysis.  From these mapping efforts, we 

hoped to gain insight into whether or not Smad2 activation was as transient as the Nodal 

posterior-to-anterior wave of expression, or longer lived, reflecting internalization of ligand-

receptor complexes thought to maintain signaling.  Furthermore, Nodal expression in the LPM 

is graded, with higher levels of expression seen dorsally, abutting the intermediate mesoderm, 

and at the leading anterior region of the expression domain.  It is not known if the level of 

Nodal signaling mimics this gradient.  The pSmad2 map could ascertain if signaling levels were 

uniform across the L LPM, or if there were regions in which cells experience higher (“hot spots”) 

or lower (“cold spots”) levels of signaling (Fig. 3.1).  Because Nodal has been shown to travel far 
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  Fig. 3.1  pSmad2 spatiotemporal mapping as a read out of active Nodal signaling.  pSmad2 

localization (circles) overlaid on Nodal expression (purple) at various stages during 

asymmetric gene expression in the L LPM.  (A) Smad2 activation may mimic the dynamics of 

Nodal expression, remaining localized with the Nodal expression domain and terminating 

with Nodal expression.  (B) Or, Smad2 activation could be farther-reaching and longer-

lasting than Nodal expression.  (C)  Smad2 activation may not be uniform across the L LPM.  

Instead there could be regions in which cells experience higher (circle clustering) or lower 

levels of Smad2 activation. 
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 and activate downstream targets outside of its RNA expression domain, pSmad2 

spatiotemporal maps would prove useful as to the ultimate range of influence of Nodal 

signaling, in the LPM and even beyond it.  Mapping many embryos during the stages of 

asymmetric Nodal expression would determine the reproducibility of pSmad2 localization.  

These spatiotemporal maps could then be correlated to specific reproducible alterations in LPM 

morphology associated with establishing differential L-R anatomy (discussed in Chapter IV) to 

gain further insight into how Nodal signaling in the LPM influences the overall asymmetric 

morphology of the viscera. 

Results  

Antibody cross-reactivity and affinity purification 

Much effort was put into characterizing the specificity of our newly generated pSmad1 and 

pSmad2 antibodies.  A slot-blot assay determined the degree of undesirable cross-reaction with 

the C-terminal regions of other phosphorylated or unphosphorylated R-Smads (Fig. 3.2).  

Various amounts (0.25 ng to 100 ng) of peptides corresponding to the last 9 amino acids of 

pSmad2, pSmad1, Smad1, or Smad2 (the same peptides used to inoculate rabbits) were applied 

to supported nitrocellulose using a vacuum manifold.  Membranes were then probed with 

either the pSmad1 or pSmad2 affinity-purified antibody.  The pSmad1 antibody detected as 

little as 5 ng of pSmad1 peptide and chemiluminescence intensity varied with peptide amount.  

No specific signal was detected for any amount of Smad1, Smad2, or pSmad2 peptide, 

suggesting that our pSmad1 antibody was specific to pSmad1 and not likely to cross-react with  
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Fig. 3.2  Abgent pSmad2 antibody cross-reacts with pSmad1.  Slot blot:  pSmad1 and 

pSmad2 peptides on nitrocellulose, probed with pSmad1 (upper panel) or pSmad2 

(lower panel) antibody.  pSmad2 recognition of the pSmad1 peptide boxed in blue. 
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pSmad2 or unphosphorylated R-Smads in vivo.  Similar to pSmad1, the pSmad2 antibody 

detected as little as 5 ng of pSmad2 peptide, with no unphosphorylated Smad1 or Smad2 

detected.  Unfortunately, cross-reactivity was seen with 25-100 ng of pSmad1 peptide (Fig. 3.2). 

Recognition of the pSmad1 peptide by pSmad2 antibody could result from two possibilities: (1) 

the peptide-affinity-purified sample from Abgent contained a heterogeneous mixture of 

antibodies recognizing pSmad1 and those recognizing pSmad2, or (2) a homogeneous antibody 

population was capable of recognizing both pSmad1 and pSmad2.  A peptide competition assay 

was used to discern between the two possibilities.  The pSmad2 antibody was incubated with a 

500-fold excess of soluble pSmad1 peptide, to bind any pSmad1-reactive antibody.  A slot-blot 

assay as described above tested for improved specificity of the pSmad1-blocked antibody 

mixture, and detection of pSmad1 peptide on the membrane was now reduced or eliminated 

(Fig. 3.3).  Detection of pSmad2 peptide was minimally diminished, suggesting that this 

improved-specificity, pSmad1-depleted antibody preparation could now be suitable for 

detecting pSmad2 within real tissue. 

From this small-scale test, I showed that pSmad1 cross-reactivity could be removed to produce 

a pSmad2-specific antibody.  Therefore, I decided to do a large-scale affinity purification of the 

pSmad2 antibody in house and deplete pSmad1 cross-reactivity from raw pSmad2 anti-serum 

(supplied by Abgent).  Antiserum was incubated with pSmad2 matrix (pSmad2 peptide 

covalently immobilized on agarose beads; supplied by Abgent, who made the matrix as part of 

their standard affinity purification method for phospho-peptide antibodies) to select pSmad2 

antibodies.  After incubation, captured pSmad2 antibodies were eluted with a series of acidic  
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Fig. 3.3  pSmad2 cross-reactivity with pSmad1 can be removed.  Anti-pSmad2 slot blot 

showing detection of various amounts of pSmad2 peptide (top row) or pSmad1 peptide 

(bottom row).  Incubation of pSmad2 antibody with 500-fold excess of pSmad1 peptide 

prior to immunoblotting removes pSmad1 cross-reactivity. 
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and basic step-elutions.  Acid and base fractions showing the highest reactivity with the 

pSmad2 peptide via slot blot were pooled (the acidic pool was kept separated from the basic 

pool), and dialyzed.  To deplete pSmad1 cross-reactivity from the pSmad2 antibody, the 

dialyzed acidic and basic fractions were incubated with pSmad1 matrix (also obtained from 

Abgent).  After incubation, the depleted antibody fractions were tested by slot-blot analysis to 

determine pSmad2 and pSmad1 reactivity.  While the base-eluted pool showed slightly less 

reactivity with the pSmad2 peptide as compared to the acid-eluted pool, the acid-eluted pool 

showed an undesired reactivity with pSmad1, which was absent from the base-eluted pool.  

Therefore, only the affinity-purified base-eluted pooled fractions were used in the remaining 

assays, described below, to determine the quality and usefulness of this new pSmad2 antibody 

preparation.  PLEASE NOTE: The “clean” base-eluted pool is henceforth referred to as “pSmad2 

antibody”, only for simplicity.  Because the affinity-purified pSmad1 antibody as directly 

supplied by Abgent did not show cross-reaction on the slot blot assay, it was used “as is” in the 

remaining assays and was not subjected to our own in-house affinity purification.  

Antibody specificity for western blotting 

The usefulness of these new pSmad1 and pSmad2 antibodies for immunoblotting was first 

tested on lysates collected from unmanipulated gastrula-stage Xenopus embryos.  On western 

blots, our pSmad2 antibody detected a doublet migrating between 55-60 kDa, the expected size 

of pSmad2 (Fig. 3.4A).  pSmad2 is proposed to run as a doublet because of the two naturally 

present differentially spliced isoforms, with full-length pSmad2 being the upper band of the 

doublet, and pSmad2Δexon3 being the lower band (Faure et al, 2000).  Our pSmad1 antibody 
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detected a single band also migrating between 55-60 kDa, although weakly (Fig. 3.4A).  High-

level activation of the Nodal pathway by co-injecting mRNAs encoding Xnr1 and Smad2 into 1-

cell Xenopus embryos for analysis at gastrulation showed a consistent increase in pSmad2 over 

uninjected embryos.  Similar results for the pSmad1 antibody were achieved by co-injecting 

Bmp4 and Smad1 (Fig. 3.4A).  In the presence of the inhibitor Noggin (BMP pathway) or the 

ALK4/5/7 receptor-blocking drug SB505124 (Nodal pathway), both the pSmad1 and pSmad2 

antibodies detected decreased or absent Smad1 and Smad2 phosphorylation, respectively (Fig. 

3.4A).  Pre-treatment of uninjected whole-embryo lysate samples with lambda phosphatase 

also resulted in the inability to detect Smad1 and Smad2 phosphorylation (Fig. 3.4B), further 

supporting the specificity of these antibodies. 

Although the gain- and loss-of-function assays showed that the 55-60 kDa bands were specific 

to the R-Smads, both antibodies also detected proteins of very different relative molecular 

weights.  This detection was variable and slightly dependent on lysate preparation (the type of 

homogenization buffer used), and the pSmad1 antibody detected more non-specific bands than 

the pSmad2 antibody.  Some of these bands are thought to correspond to yolk proteins 

(phosvitin at 35 kDa, lipovitellin 2 at 31 kDa, and lipovitellin 1 at 115 kDa).  Compared to 

commercially available antibodies (Cell Signaling, specifically), our pSmad2 antibody more 

cleanly detected pSmad2 on western blots, but our pSmad1 antibody did not, and in fact would 

not be preferred over commercially available antibodies for immunoblotting.  Also of note, it 

appeared that the ability of the pSmad1 antibody to detect pSmad1 via immunoblotting 

declined with the age of the antibody.  It worked well and cleanly when first received from  
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A 

B 

Fig. 3.4  Antibodies recognize phosphorylation motifs of pSmad1 and 

pSmad2 on western blots.  (A) Gain- and loss-of-function assays confirm 

that the 60 kDa band (arrow) detected by the pSmad1 and pSmad2 

antibodies are specific to pSmad1 and pSmad2, respectively.  (B) Addition 

of lambda phosphatase (LPP) to Xenopus lysates prevents detection of the 

60 kDa band by the pSmad1 and pSmad2 antibodies, confirming that the 

antibodies recognize the C-terminal phosphorylation motif of Smad1 and 

Smad2.  The bank running at approximately 36 kDa is the yolk protein 

phosvitin. 
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Abgent, but declined with later use, even with aliquoted storage at -80°C and limited freeze-

thaw cycling.    

Antibody specificity for immunohistochemistry  

Previously published immunolocalization patterns for pSmad2 show a gradient of pSmad2 

across the marginal and vegetal cells of a bisected stage 9 Xenopus embryo, with greater 

pSmad2 localization dorsally and little to no localization in the animal cap and ventral half.  By 

stage 10.5, in the middle of the gastrulation process, pSmad2 localization is reported as more 

symmetric across the dorsal-ventral axis.  pSmad1 exhibits the opposite pattern, starting out 

symmetric across the dorsal-ventral axis in the marginal and vegetal cells, then becoming 

localized in a ventral-to-dorsal gradient as gastrulation begins.  Unlike pSmad2, pSmad1 was 

also detected in animal cap cells (Faure et al, 2000; Schohl and Fagotto, 2002).  With our 

phospho-Smad antibodies, pSmad1 and pSmad2 were detected symmetrically across the 

dorsal-ventral axis in both blastula- and gastrula-stage embryos (Fig. 3.5A-C).  Also, pSmad2 was 

detected in the animal cap cells at these stages (Fig 3.5A-C).  The more widespread detection of 

pSmad localization by our antibodies, if specific, could imply that these new reagents are more 

sensitive and capable of detecting low-level phosphorylation that has been missed by the 

currently available commercial reagents. 

Gain- and loss-of-function experiments were performed on Xenopus embryos to determine if 

the immunolocalization with our pSmad2 antibody was indeed specific to pSmad2.  One-cell 

Xenopus embryos were injected with mRNA encoding a dominant-negative (kinase-deficient) 
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Fig. 3.5  pSmad2 antibody reactivity lost when Nodal signaling inhibited in gastrulas.  (A-C) 

pSmad2 immunodetection on cryosections of unmanipulated stage 10.5 embryos, showing 

widespread pSmad2 localization.  (D-I) pSmad2 immunodetection on SB505124-treated embryos 

lacking Nodal signaling. Boxed regions in (B,E,H) are shown in (C,F,I).  Asterisks in (E,H) mark 

decreased or absent blastocoel cavity.  D, dorsal; V, ventral. 
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ALK4 that is incapable of phosphorylating Smad2, and were allowed to develop until the dorsal 

lip became visible (approximately stage 10.5).  Analysis of pSmad2 localization by 

immunofluorescence on 14 µm thick cryosections showed that the localization pattern was 

unchanged in injected embryos compared to uninjected control embryos.  When overexpressed 

at high enough concentrations, dominant-negative ALK4 can block all TGF-β signaling, as 

indicated by the lack of xbra expression in injected embryos (Cha et al., 2006), possibly by 

outcompeting other type I receptors for the type II receptors.  Therefore, this result suggested 

that the pSmad2 antibody may not be specific on tissue.  Additional Nodal-signaling loss-of-

function experiments were performed with SB505124 to further test antibody specificity.  

Embryos were incubated in 200 μM or 400 µM SB505124 from the 4-cell stage to early 

gastrulation, at which point embryos were collected and processed as in the ALK4 experiment.  

At these concentrations, recognition of pSmad2 by the antibody was greatly reduced or absent 

in drug-treated embryos (Fig. 3.5D-I).  However, the embryos did not appear healthy (failing cell 

divisions were apparent, a much smaller blastocoel cavity), calling into question whether the 

lack of antibody reactivity was related to the impending death of the embryo.  Also, Nodal 

pathway activation by injecting mRNA encoding Xnr1 and Smad2 did not cause a reproducible 

or detectable increase in pSmad2 immunolocalization compared to controls.   

Because the primary purpose of making these antibodies was to map active Nodal signaling 

during stages of L-R patterning, specificity of the antibody was also characterized on early 

tailbud-stage embryos (stages 18-27) when Xnr1 and Lefty2 are expressed in the L LPM.  A 

nuclear immunodetection signal was detected broadly within all tissue types – mesoderm, 

endoderm, and ectoderm – with no obvious difference in pSmad2 localization or signal intensity 
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Fig. 3.6  pSmad2 antibody is not specific for pSmad2 in Xenopus tailbuds.  (A,C) pSmad2 

immunolabeling on cryosections of stage 22 Xenopus embryos.  Fibronectin demarcates the 

LPM.  Signal is detected widely throughout the LPM and endoderm of DMSO control embryos.  

Localization of this signal is unchanged in SB505124-treated embryos.  (C) Higher magnification 

images of the LPM.  No differences in signal localization are seen between the L and R LPM.  (B) 

Xnr1 (Xenopus Nodal homolog) in situ hybridization analysis on control and treated embryos 

confirming that Nodal signaling in blocked by SB505124 treatment.  Arrow points to Xnr1 

expression in L LPM of controls.  L, left; R, right. 
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 between L and R LPM (Fig. 3.6A,C).  Previously published reports are consistent with my 

observation, describing the presence of pSmad2 in multiple tissues outside of the LPM 

(somites, most likely caused by signaling from TGF-β ligands) (Schohl and Fagotto, 2002).  

However, in embryos in which Nodal signaling was inhibited—either by SB505124 drug 

treatment, or by cropping neurula-stage embryos to remove the posterior bilateral Xnr1 

expression domain, preventing initiation of asymmetric L LPM Xnr1 expression (Ohi and Wright, 

2007)—the pattern of pSmad2 immunodetection in the L LPM remained indistinguishable from 

unmanipulated embryos (Fig. 3.6A,C).  No differences between the L and R LPM were observed 

in manipulated or control embryos (Fig. 3.6C).  In situ RNA hybridization analysis confirmed the 

absence of Xnr1 expression in the L LPM of manipulated embryos, indicating that the drug 

treatment and posterior-cropping had each effectively abolished Nodal signaling (Fig. 3.6B). 

Similar loss- and gain-of-function analyses were done for the pSmad1 antibody with gastrula-

stage embryos.  Loss-of-function experiments to test for specificity of the immunodetection 

signal by injecting Noggin mRNA failed to cause a reduction or loss of pSmad1 nuclear 

immunofluorescence in treated embryos.  Embryos were also treated with 0.5 µM or 10 µM 

concentrations of the BMP-specific small molecule inhibitor DMH1 (a gift courtesy of Dr. 

Charles Hong, Vanderbilt).  At these concentrations, embryos exhibited a typical and expected 

dorsalized phenotype, with a bent axis and posterior truncation.  Although this morphology 

would suggest that DMH1 had a developmental and specific effect on BMP signaling, the 

pSmad1 immunolocalization signal was unchanged.  For comparison, we requested and 

obtained pSmad1 antibodies (one from rabbit, another from guinea pig) generated by Drs. Ed 

Laufer and Tom Jessell (Columbia University).  Both antibodies detected a ventral-to-dorsal 
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  Fig. 3.7  pSmad2 antibody is not specific for pSmad1.  pSmad1 immunolabeling on cryosections of 

stage 10.5 embryos that were (A-C) uninjected or (D-F) injected with 2 ng RNA encoding Noggin to 

block BMP signaling.  (A,B) Laufer pSmad1 antibodies show expected ventral-dorsal  gradient 

localization.  (C) Our antibody symmetric signal.  (D,E) pSmad1 immunodetection with Laufer pSmad1 

antibodies is lost or greatly reduced in injected embryos, (F) while our antibody still shows symmetric 

signal.  
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 gradient of pSmad1 across the marginal and vegetal cells of cryosectioned gastrula-stage 

embryos (Fig. 3.7A,B).  Pathway inactivation by the expression of mRNA encoding Noggin (2 ng) 

was confirmed by the loss of pSmad1 detection, with a cleaner inhibition detected by the 

guinea pig antibody compared to the rabbit antibody (Fig. 3.7D,E).  However, on nearby serial 

cryosections from the exact same Noggin-injected embryo, the immunofluorescence signal with 

our pSmad1 antibody was equivalent to uninjected controls (Fig. 3.7F).  From these analyses, 

we concluded that our pSmad1 antibody was, for unknown reasons, detecting epitopes 

unrelated to BMP signaling, and we decided not to proceed with further characterization of the 

antibody using tailbud-stage embryos. 

Discussion 

The goal of chapter was to generate a spatiotemporal map of Nodal signaling dynamics in 

Xenopus during stages of L-R patterning, which occurs between stages 18-27, in order to better 

understand how the Xnr1 expression wave could be functionally registered by the L LPM – as a 

link to the future asymmetric tissue reorganizations that result in the final differential L-R 

anatomy.  In other words, we would have liked to combine this map with the studies being 

performed in Chapter IV (“Identifying and characterizing tissue architecture asymmetries in the 

L vs. R LPM prior to and during organ looping”), which look to identify the initiating tissue 

architecture asymmetries in the L and R LPM that underlie the larger and more coordinated 

movements of asymmetric morphogenesis.  For example, if reproducible “hot” or “cold” spots 

for pSmad2 localization existed within the LPM, which could be reproducibly mapped, then 

future experiments could involve their potential tracing, for example either by injection of a 
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vital dye or fluorescent dextran, to see if these regions correspond to regions that initiate 

asymmetric and perhaps focal alterations in tissue architecture at later stages.  Such analysis 

would help us better understand the instructive role that Nodal signaling plays in dictating the 

chirality of the visceral organs.  Unfortunately, we concluded from the characterization of the 

pSmad2 antibody described above, that this new antibody was not specific or sensitive enough 

for this endeavor.  Although the goal of this project is still considered valuable and worth 

pursuing, the project was reprioritized in order to focus on the other studies discussed in 

Chapters IV and V. 

Reasons for lack of pSmad1 and pSmad2 antibody specificity 

It is difficult to determine why either antibody was not specific.  The epitope(s) detected by our 

pSmad1 and pSmad2 antibodies seemed clearly nuclear, as expected for active pSmad1 or 

pSmad2.  It is unlikely that these antibodies are exceptionally sensitive and capable of detecting 

a basal level of Smad phosphorylation that occurs in every cell, as this would still be expected to 

be eliminated by pathway inhibition using drugs or other loss-of-function manipulations.  Also, 

if the antibody was specific enough to discriminate between low, basal levels of 

phosphorylation and increased phosphorylation as a response to active signaling, it would be 

expected that staining intensity in the nuclei would be variable, but it was not. The presence of 

immunodetection signal in tissues where Nodal signaling is thought not to occur, such as in 

animal cap cells and throughout the embryo (epidermis, endoderm, somites) at tailbud stages, 

also suggests a lack of specificity in our pSmad2 antibody.  Even though some TGF-β ligands are 

present in the notochord and somites, the sheer expanse of “pSmad2” localization detected 
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with this antibody, and the inability to alter the localization pattern in response to inactivating 

not just Nodal signaling, but the entire arm of the TGF-β/Activin/Nodal pathway, suggests that 

this staining is not reflective of TGF-β signaling. 

The pSmad2/Smad4 complex is thought to be partially stabilized by an interaction between the 

C-terminal phosphorylation motif of pSmad2 and a phosphoserine-binding region in the MH2 

domain of both pSmad2 and Smad4 (Wu et al., 2001; Wrana, 2002).  Formation of the 

pSmad2/Smad4 complex may therefore hinder detection of the phospho-motif by burying the 

C-terminus of pSmad2 within another Smad.  This could be one explanation as to why current 

antibodies detect pSmad2 on western blots, when proteins are denatured before 

immunoblotting, but detect it inconsistently on tissue.  Our antibodies may have also been 

nonspecific due to some inherent flaw in the design of the epitope that we are unaware of, or 

certain species (rabbit vs. guinea pig) may have a better immune response to the pSmad 

epitopes. 

Alternative methods 

Bimolecular fluorescence complementation (BiFC) has been used to visualize nuclear 

accumulation of the Smad complex in frog, and the Nodal gradient during mesendoderm 

induction in fish (Saka et al., 2007; Harvey and Smith, 2009).  BiFC involves fusing an N-terminal 

fragment of VENUS, a variant of enhanced yellow fluorescent protein (EYFP), to the N-terminus 

of Smad4 and a C-terminal fragment of VENUS to the N-terminus of Smad2.  These VENUS 

portions reassemble and fluoresce when pSmad2 and Smad4 bind each other (Harvey and 

Smith, 2009).  The use of a fluorescent reporter can be problematic in Xenopus embryos, as the 
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cells are packed with yolk platelets that have broad-spectrum autofluorescence and interfere 

with detection of a fluorescent reporter signal.  Although it may not be impossible to fully 

eliminate fluorescence from yolk platelets, there are regions within the UV spectrum where 

yolk autofluorescence is less strong, and using reporters that emit at these wavelengths could 

overcome or minimize the interference from yolk.  One concern with this idea is that VENUS 

fluorescence may not be as long-lived as the pSmad2/Smad4 complex, preventing us from 

accurately depicting the duration of Nodal signaling.  Another major caveat to this technique is 

that the Smad-VENUS constructs are usually expressed exogenously in the embryo.  

Exogenously introduced Smad2 must compete with endogenous Smad2 for phosphorylation 

and it could superactivate the Nodal pathway just by its very presence.   

To gain a more accurate picture of endogenous Nodal signaling, it may be possible to express 

the Smad-VENUS constructs from the native Smad loci in Xenopus.  In recent years, the use of 

transgenic frogs has increased in the community, as well as the techniques that support the 

generation and use of these animals.  Genome editing techniques such as CRISPr/Cas (clustered 

regularly interspaced short palindromic repeats-associated/CRISPr associated), TALENs 

(transcription activator-like effector nucleases), and zinc-finger endonucleases have all been 

used to generate transgenic frogs (Blitz et al., 2013; Lei et al., 2012; Nakayama et al., 2013; 

Young and Harland, 2012).  In the future it may be worth pursuing the generation of frogs that 

express the Smad-VENUS fusion proteins from the endogenous Smad loci using Xenopus 

tropicalis, which has the distinct advantages of being diploid and having a shorter generation 

time (4 months compared to 1-2 years in laevis).  
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CHAPTER IV 

 

IDENTIFYING AND CHARACTERIZING TISSUE ARCHITECTURE ASYMMETRIES IN L VS. R LPM 
PRIOR TO GUT LOOPING 

 

Introduction 

During stages of asymmetric gene expression, Nodal signals within the lateral plate mesoderm 

(LPM), which eventually gives rise to tissues of the heart, and the smooth muscle and 

mesenchyme that help pattern the overlying endoderm of the gut (Chalmers and Slack, 1998; 

Deimling and Drysdale, 2011; Mclin et al., 2009).  High-resolution studies of Xenopus LPM 

architecture performed by a former graduate student in the lab, Lindsay Marjoram, showed 

that the LPM consists of two, closely apposed, cell layers that give rise to the future somatic 

(boarders epidermis) and splanchnic (boarders endoderm) epithelial layers, both of which are 

one cell-layer thick (Marjoram and Wright, 2011).  Later in development, when the coelom 

begins to form, the somatic and splanchnic layers separate, with the splanchnic layer giving rise 

to the visceral mesoderm that encompasses the gut endoderm (Mclin et al., 2009).  During the 

peak period of L-sided Nodal expression (stage 23), the cells within the LPM undergo 

differential shape changes, with somatic cells becoming more squamous and splanchnic cells 

more columnar.  These cell-shape differences occur in both the L and R LPM and persist into 

organ-looping stages.  After asymmetric Nodal expression ceases (stage 25), the LPM 

undergoes a symmetrical A-to-P epithelialization event lasting through stage 34 (the latest 

stage analyzed), which is just prior to the start of gut looping (Marjoram and Wright, 2011).   
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During gut looping, the L and R LPM contribute equally to the gut, but distinctly localize to 

different regions within the first two loops formed.  L LPM cells localize to concave surfaces 

(normally on the left) of loops and R LPM cells localize to the convex surfaces (normally on the 

right).  R-sided misexpression of Pitx2 causes ectopic concavities to form in the gut (Muller et 

al., 2003).  This study and many others suggest that Nodal signaling in the LPM acts as a 

morphogenetic cue that somehow triggers asymmetric architectural changes in the LPM that 

are essential for establishing proper laterality and morphology of the visceral organs.    What 

these architectural changes are, how they become initiated, and how they guide asymmetric 

organogenesis are open-ended questions in the field.  While both the heart and gut undergo 

asymmetric looping that is dependent upon Nodal signaling, development of the vertebrate 

heart is well documented and will not be discussed here.  The processes driving chiral gut 

looping (which is also linked to the positioning of the liver and pancreas that bud off the gut), 

on the other hand, are only just beginning to be understood and are the focus of this chapter.    

Pitx2 as an effector of Nodal signaling 

In the frog, approximately 24 hours elapse between the end of asymmetric Xnr1 expression 

(stage 25) and the start of asymmetric gut morphogenesis (stage 38).  Little is known about 

what happens during this time period in terms of the initial architectural changes occurring 

within the LPM and how Nodal signaling influences these early changes.  During this 24-hour 

time window, Pitx2, which encodes a transcription factor that is the only primary effector of 

Nodal signaling identified to date, continues to be expressed after the termination of Nodal and 

Lefty2 expression, and is present in the tubular heart and gut.  Furthermore, Pitx2 localizes to 
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areas of tissue displacement such as the greater curvature (left side) of the stomach and the 

left sides of loops in the gut (Campione et al., 1999).  The association of Pitx2 expression with 

areas of tissue displacement suggests that Pitx2 may help elicit the cellular changes needed for 

tissue morphogenesis.  

Misexpression studies demonstrated the ability of ectopic Pitx2 to alter organ situs, and 

suggested that Pitx2 serves as a mediator between L-R signaling and asymmetric 

morphogenesis (Campione et al., 1999; Logan et al., 1998; Ryan et al., 1998).  Not only is there 

a general dependency of correct visceral organ situs on Pitx2 expression, but each organ 

appears to have a differential requirement for Pitx2 as proven by genetic dosage experiments in 

the mouse.  Mice heterozygous for Pitx2 (which express approximately half the level of Pitx2 

compared to wild-type mice) display a less severe phenotype than mice carrying a hypomorphic 

Pitx2 allele (over Pitx2 null allele) that expresses 37% of the level of Pitx2 found in wild-type 

mice.  Pulmonary right isomerism was seen in all Pitx2 mutants regardless of the level of Pitx2.  

In contrast, the severity of heart and gut defects varied according to the level of Pitx2.  The 

duodenum failed to loop at all in approximately 15% of hypomorphic embryos, and an 

additional third had reversed rotation.  By comparison, three-fourths of Pitx2 null embryos 

showed complete lack of duodenal looping.  Duodenal looping was restored in Pitx2 

heterozygotes, but the direction of rotation remained affected and at least 80% of the embryos 

displaying reversed gut rotation.  Similar dosage effects were seen on atrial development.  Pitx2 

nulls had septal and valve defects, and a single atrium.  While the septal and valve defects 

persisted in Pitx2 heterozygotes and hypomorphs, the atria seemed to develop normally (Gage 

et al., 1999; Liu et al., 2001).  Although these studies cemented Pitx2 as a major regulator of 
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asymmetric organ situs, they did not address how Pitx2 may be regulating tissue 

morphogenesis.  

Potential mechanisms driving LPM architecture changes 

Insight into how Pitx2 might drive changes in architecture of the LPM tissue was first gleaned 

from HeLa cell culture studies with Pitx2a:  one of 3 transcripts from the locus, which is non-

asymmetrically expressed, but encodes a bicoid-type homeodomain transcription factor similar 

to Pitx2c (the asymmetrically localized Nodal effector; PItx2 isoforms only have last two exons 

in common) (Schweickert et al., 2000).  Pitx2a strengthened homotypic cell-cell adhesions, with 

increased N-cadherin and β-catenin.  Rho GTPases Rac1 and RhoA were also activated, causing 

substantial induction of actin reorganization and cells to adopt a spread morphology (Wei and 

Adelstein, 2002).  Ectopic expression of Pitx2a in the R LPM of chick embryos was able to 

randomize heart looping, the same activity seen with ectopic expression of Pitx2c.  Both Pitx2c 

and a isoforms have identical C-terminal regions, where the transactivation domain is located, 

and plausibly Pitx2c and Pitx2a function similarly in instructing altered cell architecture (Yu et 

al., 2001). 

Studies in chick and frog correlate the spatiotemporal pattern of Pitx2 expression with distinct 

physical and molecular asymmetries between the L and R LPM, further strengthening the case 

for Pitx2 as an effector of cell and tissue architecture.  In frog, Pitx2 expression is associated 

with concave surfaces of the gastroduodenal loop (the first loop formed) and the midgut loop 

(the second loop to form) (Muller et al., 2003).  Gut asymmetry has been focused on in seminal 

studies of the asymmetric movement of the midgut in the chicken embryo (Davis et al., 2008; 
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Kurpios et al., 2008).  In this region, cells of the left of the midgut dorsal mesentery (DM) differ 

in numerous ways from those on the right, resulting in the relatively rapid development of an 

overall leftward tilt of the gut.  Cells of the coloemic epithelium are columnar on the left but 

cuboidal on the right, N-cadherin is asymmetrically expressed preferentially in left DM cells, and 

mesenchymal cells are packed together in a more condensed fashion on the left.   

These differences are linked to L-R asymmetry in ECM composition and cell-cell adhesion.  For 

example, hyaluronic acid, a large space-filling component of the ECM that often surrounds cells 

and disrupts close cell-cell adhesions, is found more in the loosely packed R-side DM.  

Introducing ectopic Pitx2 or N-cadherin on the right side reduces HA production, leading to a 

relative compaction (compared to normal) of the right-side mesenchyme (Davis et al., 2008; 

Kurpios et al., 2008).  Furthermore, scanning electron microscopy showed that closely abutted 

left-side mesenchymal cells have relatively tight membrane connections, while the looser-

packed right-sided cells have filopodial connections.  In addition to increased N-cadherin on the 

left-side DM, α-catenin, important for formation and stabilization of adherens junctions, is also 

at higher levels on the left (Welsh et al., 2013).     

The use of laser capture on the L and R DM of chicken embryos during gut tilting revealed 

differential expression of Wnt pathway regulators.  Genes encoding inhibitors of Wnt signaling 

such as Sfrp1 and Sfrp2 (Secreted frizzled-related protein 1 and 2, which prevent Wnt ligands 

from interacting with Frizzled receptors) were elevated in the right DM, while complementary 

upregulation of positive regulators of Wnt signaling, such as Frizzled4 and Daam2, was detected 

in the left DM.  Daam2 encodes a formin that regulates actin dynamics and the formation of 
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adherens junctions through partnerships with N-cadherin and α-catenin.  Predicted Pitx2 

binding sites were found in the cis-regulatory regions of Fzd4 and Daam2.  Ectopic R-sided 

expression of Pitx2 resulted in symmetric expression of Daam2 across the DM.  These findings 

suggest that regulators of Wnt signaling, such as Daam2, are targets of Pitx2.  Importantly, 

nuclear β-catenin did not localize to either side of the DM, strongly indicating that Pitx2 

activates non-canonical Wnt signaling on the left side of the DM to effect tissue architectural 

changes (Welsh et al., 2013). 

These studies also suggest that N-cadherin is a potential target of Pitx2 that is capable of 

effecting change on the LPM tissue architecture.  N-cadherin has been linked to remodeling of 

the actin cytoskeleton to drive morphogenesis in other systems.  In Xenopus, N- and E-

cadherins play actin-assembly roles in neural and non-neural ectoderm, respectively 

(Nandadasa et al., 2009).  In chick lens-fiber cells, the maturation of N-cadherin junctions 

precedes organization of the cortical actin cytoskeleton.  Blockage of N-cadherin junctions in 

this system led to decreased association of α-catenin with N-cadherin, blocked organization of 

actin, and prevented cell elongation (Leonard et al., 2011), which reflects cellular behavior seen 

on the (N-cadherin non-expressing) R-side of the chick DM (Davis et al., 2008; Kurpios et al., 

2008; Welsh et al., 2013).  In the mouse, N-cadherin, in cooperation with the cytoskeletal 

protein Shroom3, has been shown to regulate cell shape asymmetry in the DM – as in the 

chicken, the mouse DM shows a L-sided columnar, and R-sided cuboidal epithelium – by 

increasing apical F-actin and Myosin II in the left DM (Plageman Jr. et al., 2011).  Myosin II has 

also been implicated in the L-R asymmetric development of the anterior midgut in the fruit fly 
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D. melanogaster, a species that has no Nodal homolog, and this gut morphogenesis process is 

also tightly dependent upon the actin cytoskeleton (Okumura et al., 2010). 

Characterizing LPM tissue architecture before gut looping  

The studies described above begin to address the general mechanisms of asymmetric 

organogenesis by identifying molecular and architectural asymmetries within the looping gut, 

and hint towards a role for Nodal signaling – largely acting through Pitx2 – in this process.  

However, those studies have a narrow focus, analyzing after the start of asymmetric 

morphogenesis, and are only directed at a limited region of the gut – the midgut.  Also, The 

degree to which this DM of the chicken midgut is a model for gut looping in other organisms 

that have differing gut architecture is not known. 

We wanted to expand upon these studies by characterizing the cell shape, ECM, and 

cytoskeletal characteristics for the entire length of the R and L LPM that flanks the gut 

endoderm, and focused on the period prior to the actual initiation of gut looping in Xenopus.  

By analyzing the changes in LPM tissue architecture between stages 25 (when Nodal is last 

seen) and 38, we were hoping to gain insight into how small alterations in L and R LPM 

architecture, which form before the large-scale movement of the actual tissue, potentially 

complement each other to synergistically guide looping of the gut. 

Because most of the factors identified as asymmetrically localized in regions of gut bending act 

either indirectly or directly on the actin cytoskeleton, a previous graduate student initiated this 

project by first characterizing actin cytoskeleton dynamics in the L and R LPM by labeling the 

cytoskeletal component F-actin with phalloidin.  Increased F-actin labeling in the R LPM 
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compared to the L LPM was detected starting at stage 35 and persisting through at least stage 

43.  Interestingly, the preference in phalloidin-labeling was not uniform along the A-P axis of 

the R LPM, but appeared focally more concentrated in specific locations.  Further analysis at 

higher magnification suggested that the increased relative labeling with phalloidin was 

associated with increased bundling of actin filaments on the right side.  The thickening of actin 

filaments implies that cells in the R LPM are undergoing active constriction, and therefore that 

the F-actin foci may be one potential mark of future sites of tissue morphogenesis.   The R-sided 

increases in F-actin labeling intensity became symmetrical or reversed in manipulations that 

dominantly altered L-R asymmetry by ectopic R-sided Nodal expression, indicating a potential 

instructive link between Nodal signaling and actin cytoarchitecture (Marjoram and Wright, 

unpublished).  

My goal when I inherited this project was to confirm these initial findings on F-actin and to 

expand the study by determining the cell shape and additional cytoskeletal characteristics of 

the L and R LPM.  Specifically, I wanted to identify alterations that pre-empted tissue 

movements of the gut and that were asymmetric between the L and R LPM, with the idea that 

such alterations are instrumental in guiding directional looping of the gut.  Any identified 

variation in tissue architecture between the L and R LPM would be quantified and mapped 

along the A-P and D-V axes.  Using fate mapping, cells that compose these architectural points 

of interest would then be labeled and followed through stages of gut looping to investigate 

where they localize within the looping gut (i.e. concave, convex, linear regions).  This analysis 

would provide insight into how architectural changes in the LPM influence tissue 

morphogenesis in the underlying gut endoderm.  Identification of tissue architecture 
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asymmetries between the L and R LPM would lead to additional studies in which Nodal is 

inhibited or ectopically expressed in the R LPM to determine if these differences result from 

asymmetric Nodal signaling.   In this chapter, I describe also my development of a Technovit 

resin embedding technique that excellently preserves tissue architecture, thus increasing the 

resolution at which we can study LPM architecture.  This chapter is considered a ‘work in 

progress’ report, as the studies had to be terminated/truncated in favor of the Foxh1 study 

described in Chapter V.  However, it can be preliminarily concluded that architectural 

asymmetries do exist between the L and R LPM, and that these asymmetries are potentially 

linked to Nodal signaling.   

Results    

F-actin and -1 integrin have increased localization in R LPM 

To confirm the increased bundling of F-actin in the R LPM, cryosections of Xenopus embryos 

stage 35-41 were labeled with phalloidin and imaged via confocal microscopy (Fig. 4.1).  

Fluorescent intensity of phalloidin labeling within the boundaries of the LPM was calculated 

using ImageJ and presented as a quotient of the percentage of R LPM area labeled by phalloidin 

over the percentage of labeled L LPM area.  A quotient of one indicates that the tissue area 

containing phalloidin-labeled F-actin is equivalent between L and R LPM, and a value greater or 

less than one reflects it being greater in the R LPM or L LPM, respectively.  Sections, 10 µm 

thick, containing LPM were analyzed every 80-100 µM along the A-P axis of the embryo 

(approximately 8-10 sections/embryo).  Eleven out of 14 embryos analyzed at various stages 
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Fig. 4.1  F-actin and β-1 integrin have increased localization in R LPM.  

Cryosections of a stage 39 Xenopus embryo labeled for F-actin (phalloidin; 

green), β-1 integrin (red), laminin (blue), and DAPI (DNA; white).  LPM is 

demarcated by laminin in the “Merge” and by the dashed red lines in the 

phalloidin and β-integrin single channels.  
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Fig. 4.2  F-actin and β-1 integrin staining intensity ratios.  Plots of the percentage 

of R LPM area labeled for F-actin or β-1 integrin over the percentage of the L LPM 

area labeled in stage 39 embryos.  Values greater than 1 indicate that the R LPM 

had more labeling and values less than 1 indicate that the L LPM had more label.  

X-axis represents distance along the A-P axis (“1” more anterior and “12” more 

posterior.  The majority of values plotted were greater than 1. 



81 
 

showed greater F-actin labeling intensity in the R LPM, confirming the preliminary results (Fig. 

4.2).  The nature of F-actin localization in this assay, for example if it was focal or diffuse, was 

not investigated.  A similar analysis was performed for β-1 integrin, a transmembrane protein 

that mediates cell adhesion to the ECM and other cells.  Preliminary results showed that 10/13 

embryos, at various stages, generally had greater β-1 integrin localization within the R LPM 

compared to the L LPM (Fig. 4.1; Fig. 4.2).  Further analysis would be needed to determine if 

this increase was uniform along the A-P axis of the LPM or if, like F-actin, the increases were 

focal. 

Whole-mount immunolabeling and Technovit 7100 embedding protocol 

During these analyses it became apparent that cryosectioning of embryos did not fully preserve 

tissue architecture and that valuable information on the exact cell shape, localization of 

cytoskeletal/ECM components—important in this case because of the potential for small 

differences between the L and R sides having an instructive effect—was potentially being lost or 

distorted.  Across all of the embryonic stages that I was analyzing, cells are filled with yolk 

platelets, which become crystalline and brittle under the processing for cryosectioning.  This 

makes Xenopus tissue prone to tearing during sectioning, distorting cell boundaries or even 

resulting in substantial loss of tissue (Fig. 4.3A).  To circumvent this issue, I began to optimize a 

recently published protocol (Kurth et al., 2012), never before used in the Wright lab, for the 

whole-mount immunofluorescent labeling and then embedding and sectioning of Xenopus 

embryos using Technovit 7100.  Technovit 7100 is a plastic-like resin that hardens at room 
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  Fig. 4.3  Tissue architecture preservation with Technovit embedding.  (A) Comparison of 

tissue architecture between an immunolabeled cryosection and a whole-mount 

immunolabeled embryo embedded and sectioned in Technovit.   (B,C) Examples of tissue 

preservation with Technovit sections.  (B) Stage 23 embryo whole-mount immunolabeled 

for E-cadherin (green) and laminin (red), and stained for DNA (DAPI; blue).  (C) Stage 33/34 

embryos whole-mount immunolabeled for β-1 integrin (green) and stained for DNA. 
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 temperature and therefore avoids any freezing of the embryos.  Unlike cryosectioning, 

Technovit 7100 immaculately preserves tissue architecture with little or no ripping of the 

section (Fig. 4.3).  Whole-mount immunostaining prior to embedding is required with Technovit 

7100 as the densely infiltrated resin can mask antigens, preventing their recognition by 

antibodies (note, however, that DNA can still be detected on Technovit 7100 sections using 

prepared mounting medium containing DAPI).  I optimized the published protocol for maximum 

antibody penetration and for use with a microtome equipped with the standard metal blade 

instead of the recommended glass knife.  Detailed protocols for whole-mount 

immunofluorescent labeling and embedding of Xenopus embryos in Technovit 7100 can be 

found in Chapter II – Materials and Methods.  

Antibodies compatible with whole-mount immunolabeling and Technovit 7100 embedding 

include those against β-1 integrin, β-catenin, E-cadherin, chondroitin sulfate proteoglycan 

(CSPG), fibronectin, laminin and to a lesser extent C-cadherin (Fig. 4.3B,C).  No signal was 

detected with phalloidin, as a detector of F-actin, possibly because of the use of the methanol-

based Dent’s fixative prior to staining.  Because methanol disrupts actin, it is not recommended 

for the detection of F-actin.  A caveat to embedding in Technovit 7100 is the almost perfect 

preservation of yolk platelets, which autofluoresce and can sometimes interfere with signal 

emitted by fluorescently tagged antibodies.  At lower magnifications (10x, 20x), this 

autofluorescence minimally interferes with the signal of interest, but at higher magnifications, 

such as 40x and beyond, yolk autofluorescence sometimes overpowers the real signal.  This 

problem is somewhat offset by the increased cellular resolution afforded by Technovit 7100 

sections, so that enlargement of images taken at a lower magnification might still result in 
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significant gains and more accurate estimations of cell shape or other parameters compared to 

other methods.   

Imaging Xenopus embryos in whole mount 

The observation that the increase in F-actin within the R LPM was focal along the A-P axis led to 

the hypothesis that the F-actin foci might function as “pioneer centers” for the local initiation of 

progressive alterations in regional tissue architecture.  The general idea was that determining if 

the location of these foci was reproducible along the A-P and D-V axes, comparing multiple 

embryos of the same stage, could signify an importance in tissue morphogenesis, such as 

marking future points of initiating looping or bending one way or the other.  Because it is 

extremely difficult to register multiple sections against each other, and reconstruct such three-

dimensional information, I pursued immunolabeling and imaging embryos in whole mount.   

Because phalloidin-based F-actin detection is not compatible with the whole-mount 

immunolabeling protocol for Technovit 7100, I worked to devise a different method.  Embryos 

were fixed in the formaldehyde-based fixative MEMFA, and bisected along the ventral midline.  

The epidermis was carefully peeled away as an attempt to expose the LPM, with the aim of 

improving antibody access to these interior tissue layers.  The outer, pigmented layer of 

epidermis peeled away quite easily and cleanly, but it was uncertain if the newly exposed 

surface was the inner epidermal layer or the true outside of the LPM.  Embryo halves were then 

incubated with fluorescently tagged phalloidin, cleared in BABB (1:2 benzyl alcohol:benzyl 

benzoate), mounted on a depression slide, and imaged using an Axio CamMRm-fitted ApoTome 

Zeiss microscope.   
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While I was able to detect the F-actin in whole mount using this method (Fig. 4.4), several 

problems were encountered.  First, the LPM is a curved tissue layer, and it cannot be flattened 

into a single plane for quantitative analysis of the entire LPM layer.  A way of flattening the LPM 

without breaking the tissue would lead to an easier investigation of the LPM architecture, but 

even then, there are concerns over the undesired stretching or compression of specific cellular 

shapes.  Second, I was unable to determine how deep the fluorescent phalloidin penetrated 

into the tissue with this rather crude labeling method.  Little to no permeabilization of the 

tissue was done, and I could not determine from the whole-mount analysis which tissue layers 

(epidermis, somatic or splanchnic LPM, endoderm) were in fact being labeled.  Also, identifying 

the epidermal-LPM and LPM-endodermal boundaries in whole mount is difficult compared to 

transverse sections.  In the future, labeling of laminin or fibronectin in the same whole mount 

while carrying out the F-actin analysis might demarcate the LPM boundaries and aid in setting 

limits for confocal z-stack analysis and three-dimensional (3-D) reconstruction using, for 

example, the Imaris or Volocity image-rendering applications.  Regardless of these problems, 

points of intense F-actin labeling were identified (Fig. 4.5B), suggesting that some future 

refinement of the protocol could lead to an accurate mapping of cells with enriched F-actin foci 

through the LPM. 

Another possibility is that 3-D reconstructions of thick transverse sections could be used to map 

F-actin foci and other characteristics such as cell shape and volume.  Unfortunately, 3-D 

reconstructions of Technovit sections are not very useful as the thickest section obtained is 

approximately 20 µm, and would provide little information about cell volume as very few cells 

would be included in the Z-plane.  Experimenting with different embedding materials, I found  
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Fig. 4.4  Whole-mount labeling of F-actin with phalloidin.  (A) Schematic showing the 

orientation and location of the tissue in (B) within the embryo.  (B) Labeling of F-actin in 

what is presumed to be L LPM.  Arrows point to areas of increased labeling, possibly 

representing F-actin contraction or bundling. 
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that embedding embryos in 15% fish gelatin led to a much better preserved tissue architecture 

compared to bacto agar (agar being originally used for embedding embryos for cryosectioning), 

and cryosections of at least 60 µm could be collected.  These thicker sections could permit 

collection of accurately registered z-stacks and final 3-D rendering of the LPM.  One drawback 

with imaging thicker Xenopus tissue is the amount of yolk autofluorescence under confocal 

illumination, which reduced the clarity of the desired signal and limited the depth of the z-

stacks, so that I was only able to collect total z-stack thicknesses of 12–17 µm.  To increase the 

depth of focus, the use of two-photon microscopy was considered, but this was not 

aggressively pursued.  In very preliminary use, I decided that it did not seem to result in a 

dramatically increased depth of field.     

Discussion 

The goal of this chapter was to identify and characterize any tissue architectural asymmetries 

between the L and R LPM, with the hope of better understanding how Nodal signaling is 

translated into the specific morphogenetic cues that drive asymmetric organogenesis.   The 

initial characterization of LPM architecture prior to, during, and immediately following the 

asymmetric expression of Nodal was done by a previous graduate student.  Through thorough 

analysis, she was able to identify the timing of LPM apicobasal polarization and the first 

appearance of cell-shape differences between the somatic and splanchnic layers, which were 

described in the Introduction to this chapter.  She also identified potential L-R differences in the 

organization of the actin cytoskeleton that preceded gut looping.   

I began by confirming the R-sided increase in F-actin labeling intensity.  I also preliminarily 

found that β-1 integrin, like F-actin, appeared enriched in the R LPM over the L LPM.  Integrins 
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are important for cell-cell and cell-ECM interactions; therefore, seeing an increase in β-1 

integrin is not all too surprising as this supports the theory that cells in the R LPM may be in the 

process of contracting to become smaller, leading to the introduction of concavities in the gut.  

In order to make accurate interpretations about LPM tissue architecture, we needed high-

quality and high-resolution images.  My major contribution to this project was the 

establishment of a whole-mount immunolabeling and Technovit embedding protocol that 

immaculately preserved embryonic tissue architecture.  This protocol will be useful in further 

characterizing LPM architecture and in addressing the points discussed below, which because of 

time constraints and my drastically shifted focus to the mouse Foxh1 project, I could not pursue 

further. 

R-sided cellular contractility differs from other vertebrates 

Because F-actin characteristics are altered in the R LPM, it might be expected that adherens 

junctions, which connect to the actin cytoskeleton, and the cell-adhesion proteins (cadherins, 

catenins) associated with these junctions, would also show (focal) unilateral enrichment in the 

R LPM.  High-resolution (100x) confocal images of the R LPM suggested that the increase in F-

actin labeling represented a thickening or contraction of actin filaments.  Based on these data, 

we would predict R LPM cells with contracting F-actin might start to become more compact in 

shape and volume, with their direct counterpart cells that lie in the L LPM being more spread 

and loosely packed.  Within a restricted A-P domain, a complementary pattern of right-sided 

contracting actin bundles and tightly abutted cells  and left-sided cells that are more disperse 

with thinner, diffuse actin filaments might produce an overall push-pull influence, across the 
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nascent gut tube, beginning to direct asymmetric gut coiling.  In this context, regions with 

distinct L-R differences in cell shape or other architectural features could be the active driver of 

gut looping/bending, and areas without any L-R distinction would be relatively passive, either 

forming linear tube regions, or being pulled mechanically by the actively moving regions of the 

gut tube. 

It was surprising that the thickened F-actin bundles and increased β-1 integrin were found in 

the right, not left, LPM.  This observation opposes previous findings in chicken and mouse in 

which Pitx2 expression on the left was correlated with increased cell-cell contact, cell 

condensation, and increased deposition of ECM components in left DM cells.  Given the 

different architecture of mammalian and avian guts compared to that of Xenopus—in the later 

endoderm is flanked by LPM, which provides a rigid support encircling the gut endoderm, while 

the former the DM “hangs” the gut tube from the dorsal side of the body—it is possible that 

different mechanisms have evolved to direct looping. 

This species-variance idea is exemplified in zebrafish, which has an LPM structure yet again 

different from that of the mouse, chicken, or frog, in which the asymmetric migration of the 

LPM has been proposed to drive chiral gut looping.  The LPM of fish forms a U-like structure on 

either side of the gut, and the L LPM becomes positioned slightly more dorsal to the endoderm 

and the R LPM slightly more ventrolateral.  This asymmetry in “vertical LPM positioning” only 

exists in regions where looping occurs.  In straight regions, both L and R LPM are positioned 

equivalently dorsal to the endoderm.  As the LPM grows toward the endoderm, the 
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asymmetrical localization forces directional movement of the gut tube (Horne-Badovinac et al., 

2003).  

The role of endoderm in shaping the gut 

It has been suggested that one mechanism for introducing concavities in the developing 

Xenopus gut is left vs. right differential elongation of the LPM.  While both the L and R LPM 

elongate during the beginning stages of gut looping, the R LPM does slightly faster, reaching a 

length almost twice that of the L LPM by stage 43 (approximately 24 hours after gut looping is 

first visible) (Muller et al., 2003).  Differences in cell proliferation and death are not detected 

between the L and R LPM.  Instead, this elongation is in part thought to be due to radial 

intercalation of endoderm cells during the formation of the gut lumen (stages 40-45) (Chalmers 

and Slack, 2000).  Muller et al. noted left-right differences in endodermal thickness during gut 

looping.  In Technovit sections of stage 35/36 (just prior to gut looping initiation) embryos, I 

also observed asymmetries in endoderm thickness, with the left-side endoderm being thicker 

than the right (Fig. 4.5).  The increased thickness on the left may translate into decreased 

surface area on the left, and a thinner endoderm layer on the right may translate into increased 

surface area.  Therefore, cells in the R LPM would have to become more spread in order t0 

maintain coverage of the increasing endodermal surface area, leading to an increased 

elongation rate in the R LPM compared to the L LPM.  It remains to be seen if differential 

elongation of the left vs. right LPM is linked to asymmetric Nodal signaling.  In Xenopus, strong 

expression of Lefty2, a downstream target of Nodal signaling, is seen within the left dorsal 

anterior endoderm, suggesting that the endoderm can respond to Nodal signaling (Cheng et al., 
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Fig. 4.5  L-R asymmetries in endoderm thickness.  Technovit section of a 

stage 35/36 embryo whole-mount immunolabeled for β-1 integrin 

(green).  DNA is labeled with DAPI (blue).  Left endodermis thicker than 

right endoderm, as denoted by the brackets.  L, left; R, right. 



92 
 

 2000).  So far, a possible instructive role for Nodal signaling in gut looping has only been 

studied in the very first loops to form, which are located in the anterior region of the gut (Davis 

et al., 2008; Liu et al., 2001; Muller et al., 2003).  Nodal signaling in the anterior endoderm at 

early stages may be occurring, and thus imparting asymmetric morphogenetic cues, in the 

endodermal regions that make up these loops in later development. It will be interesting to see 

if mechanisms driving tissue morphogenesis in the LPM, like those seen in the chicken, are 

linked to mechanisms controlling the structural differences in the endoderm, or if there are 

parallel pathways in the LPM and endoderm that both control gut tube chirality.  It will also be 

interesting to investigate if Nodal signaling is only required for directing tissue morphogenesis 

in the most anterior loops, with subsequent loops forming via other mechanisms, or if Nodal 

signaling can alter tissue architecture in all loops.  Possible ways to address these questions will 

be discussed in Chapter VI – Summary and Future Directions. 
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CHAPTER V 

 

DISRUPTING FOXH1-GROUCHO INTERACTION REVEALS ROBUSTNESS OF NODAL-BASED 
EMBRYONIC PATTERNING 

 

Introduction 

Foxh1 is essential to the initiation and maintenance of the Nodal autoregulatory circuit by 

which Nodal signaling initiates the expression of Nodal itself, its feedback inhibitor Lefty2, and 

the homeodomain transcription factor Pitx2, an important effector of Nodal signaling (Norris et 

al., 2002; Saijoh et al., 2000; Shiratori et al., 2001).  As noted in the Introduction of the 

dissertation, Foxh1 binds conserved sequences in the asymmetric enhancer (ASE; named for its 

ability to drive expression on the left but not right side of the embryo), which is present in all 

three Nodal autoregulatory circuit genes (Nodal, Lefty2, Pitx2) (Meno et al., 2001; Saijoh et al., 

1999; Saijoh et al., 2000; Shiratori et al., 2001).  The ASE, along with another enhancer, drives 

Nodal expression during early patterning events and then initiates the expression of Nodal, 

Lefty2, and Pitx2 solely within the left lateral plate mesoderm (L LPM) during L-R patterning 

(Adachi et al., 1999; Norris and Robertson, 1999; Saijoh et al., 1999; Shiratori et al., 2001).  

Deletion of the Foxh1 binding-sites, or deletion of the ASE as a whole in mouse, leads to 

decreased Nodal expression in the epiblast and complete loss of Nodal, Lefty2, and Pitx2 

expression in the L LPM (Adachi et al., 1999; Norris and Robertson, 1999; Norris et al., 2002; 

Saijoh et al., 2000; Shiratori et al., 2001).  Foxh1 binding sites play a conserved role in the ASE as 

deletion of these sites also attenuated Nodal signaling in other species (Osada et al., 2000). 

Furthermore, the majority of embryos with a global deletion of Foxh1 fail to orient the A-P axis 
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appropriately, elongate the primitive streak, or form a node; together these defects cause 

embryonic lethality (Hoodless et al., 2001; Yamamoto et al., 2001).  Embryos in which Foxh1 

was conditionally inactivated within the L LPM failed to express Nodal, Lefty2, and Pitx2 in that 

tissue and exhibited right isomerism (Yamamoto et al., 2003).   

The ability of Foxh1 to promote transcription of Nodal, Lefty2, and Pitx2 arises from its 

interaction with the pSmad2/Smad4 complex, which binds the Smad interaction domain (SID) 

on the C-terminus of Foxh1 (Chen et al., 1997; Weisberg et al., 1998).  In addition to the SID, 

Foxh1 contains another more N-terminally located co-factor interaction motif called the 

Engrailed homology-1 (EH1) motif, which is an 8 amino-acid sequence recognized and bound by 

the Groucho/Groucho-related-gene/Transducin-like enhancer of split (Gro/Grg/TLE) family of 

co-repressors (Yaklichkin et al., 2007a).  The Gro/Grg/TLE protein family comprises four full-

length members (TLE1-4 in human and originally termed Grg1-4 in mouse, which is the 

nomenclature used henceforth), each containing a conserved C-terminal WD-repeat domain 

(Fig. 5.3B) that mediates interactions with transcription factors by recognizing two classes of 

motifs:  the full EH1 or a smaller tetrapeptide (WRPW).  It is currently unclear as to the direct 

mode by which Grg proteins repress transcription, but likely multiple mechanisms are used, and 

dependent on biological context.  One reported mechanism is the recruitment of histone 

deacetylases (HDACs) to Groucho-bound loci, to promote a closed chromatin conformation 

(Jennings and Ish-Horowicz, 2008). 

The presence of both the EH1 motif and SID suggests that Foxh1 acts as a transcriptional switch, 

toggling between active and repressive states of transcription by switching between 
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pSmad2/Smad4 and Grg (Fig. 5.1).  This is an attractive mechanism for rapid and precise 

transcriptional control of Nodal signaling, which underlies the dynamic expression of Nodal in 

both the epiblast and L LPM (described in detail in the Introduction).  During stages of L-R 

patterning in mouse, Foxh1, as well as Grg3 and Grg4, are expressed bilaterally in the LPM 

(Koop et al., 1996; Leon and Lobe, 1997; Weisberg et al., 1998).  Colocalization of the proposed 

switch components in the R LPM, which does not express Nodal but is competent to respond to 

Nodal signaling (Ohi and Wright, 2007; Yamamoto et al., 2003), as well as in the L LPM which 

expresses Nodal under fast spatiotemporal control, further supports the idea that Foxh1 may 

be a transcriptional switch and thus participates in repressing Nodal transcription.  The 

bifunctionality of Foxh1, conveyed by interchangeable binding of pSmad2 and Grg, may 

facilitate rapid and precise tailoring of transcript levels to varying thresholds of external 

instructive signals, as compared to regulatory mechanisms that use distinct transcriptional 

activation and repression complexes (Cinnamon and Paroush, 2008).   

Recent work in Xenopus fits the proposal that FoxH1 is a transcriptional switch with respect to 

regulating Nodal expression, and with pSmad2 and Grg4, respectively, acting as co-activator 

and co-repressor.  Overexpression of Grg4 in Xenopus embryos strongly reduced Nodal-

dependent transcriptional activation, and chromatin-immunoprecipitation (ChIP) showed Grg4 

occupancy at the Nodal ASE that was dependent on the EH1 motif of FoxH1.  ASE occupancy by 

Grg4 was greatly decreased with Nodal or Smad2 overexpression (D. S. Kessler, personal 

communication).  These results suggest that pSmad2 displaces Grg4 in response to Nodal 

signaling, with complementary Grg4 displacement of pSmad2 causing transcriptional 

repression. 
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  Fig. 5.1  Model of Foxh1 transcriptional switching.  (A) Foxh1 activates transcription of 

Nodal, and potentially other ASE-containing genes, through interactions with the co-

activator pSmad2/Smad4 complex (red and purple rectangles).  Foxh1 becomes a repressor 

of transcription by binding members of the Groucho co-repressor family, represented here 

by Grg4 (orange circle).  (B) Co-factor switching may occur through direct-competitive 

interaction for binding space on Foxh1.  (C) Or, other unidentified modulators (gray circle) 

may remove the Foxh1-bound co-factor, opening up binding space on Foxh1 for the 

incoming co-factor.   
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Transcriptional switching has been documented to control target gene transcription for other 

developmental signaling pathways such as Notch and Wnt (Bray and Furriols, 2001; Daniels and 

Weis, 2005).  For Wnt signaling, β-catenin and Grg co-repressors have overlapping binding 

domains on Tcf/Lef and compete with each other for occupancy at the locus (Daniels and Weis, 

2005).  The EH1 motif and SID do not overlap in Foxh1 and it is not known if pSmad2 and Grg 

show direct steric competition in the complete transcriptional complex.  Alternatively, unknown 

components of the transcriptional complex might promote removal of pSmad2/Smad4 and/or 

Grg, leading to a mutual interference model that is highly dependent upon levels of the 

activator or the repressor (Fig. 5.1). 

Knowledge about mechanisms regulating transcriptional repression of Nodal expression is 

greatly lacking.  To determine if Foxh1 is conserved as a transcriptional switch and to identify 

the developmental consequences of removing the Foxh1-Grg repression arm of this switch, we 

developed a novel mouse model (Foxh1mEH1) in which the interaction between Foxh1 and Grg is 

greatly perturbed.  Manipulations made to the Foxh1mEH1 locus were carefully controlled for, by 

deriving a control line carrying identical insertions while maintaining a wild-type EH1 motif.  

This study is the first in mouse to address the role of Foxh1 as a transcriptional repressor of 

Nodal expression.  Our findings support the idea that the embryo has evolved a robust and 

potentially diverse set of mechanisms to control Nodal signaling levels and ensure successful 

germ-layer development and embryonic patterning.  
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Results 

Construction of Foxh1LCA 

BAC recombineering and gene targeting were used to generate a loxed cassette acceptor (LCA) 

allele of the Foxh1 locus in ES cells (Fig. 5.2).  The Foxh1LCA allele easily allows for the insertion 

of Foxh1 variant alleles into the endogenous Foxh1 locus through the highly efficient method of 

recombinase-mediated cassette exchange (RMCE).  Using the LCA and RMCE, multiple mouse 

lines carrying different modifications to the Foxh1 locus can be derived without BAC 

recombineering, which can be time consuming and inefficient.  Analysis of Foxh1 genomic 

organization across multiple species helped to avoid areas of conservation and locate the least 

disruptive points for inserting variant lox sites into the Foxh1 locus.  Foxh1 and its neighboring 

gene Kifc2, a kinesin superfamily member expressed exclusively in neural tissue, are reported to 

share an overlapping 3’ untranslated region (UTR) (Liu et al., 1999) (Fig. 5.2).  Kifc2-/- mice have 

no apparent phenotype, suggesting that Kifc2 is dispensable for normal development and 

behavior in the mouse (Yang et al., 2001).  Because Kifc2 is dispensable, a Lox2272 site was 

placed within its 3’ UTR.   

Injection of the Foxh1 targeting vector into ESCs was performed by the Vanderbilt Transgenic 

Mouse/ESC Shared Resource (TMESCSR).  Correct targeting of the Foxh1 locus was verified by 

Southern blot analysis of BamHI-digested genomic DNA with two probes, a 3’ probe external to 

the 3’ homology arm and a 5’ probe that had to be derived from within the 5’ homology arm 

because of a repetitive short interspersed nuclear element (SINE) just outside the homology 

arm (Fig. 5.2, Fig. 5.3C).  Out of the 317 colonies screened, five clones were identified for having 
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Fig. 5.2  Strategy for Foxh1 engineering.  A Foxh1 lox cassette acceptor (LCA) allele 

(Foxh1LCA) was generated by homologous recombination.  After testing for germline 

competence, the Foxh1mEH1 allele was exchanged into the Foxh1LCA using recombinase-

mediated cassette exchange (RMCE).  Chimeras were then derived by blastocyst injection of 

ES cells undergoing precise exchange, and the residual hygromycin-resistance cassette was 

excised by crossing the Foxh1mEH1 chimeras with mice carrying Flpase under direction of 

human ACTB promoter.  The Foxh1F control line was generated similarly, using an identical 

exchange vector, except that the EH1 motif was not mutated (not shown). 
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Fig. 5.3  Gene targeting and manipulation of Foxh1 EH1 domain. (A) The locations of FLAG 

tag (green), forkhead DNA-binding domain (gray), EH1 motif (red), and Smad-interacting 

domain (blue) in wild-type and variant Foxh1 proteins.  Numbers denote amino acid 

position.  Altered EH1 amino acids in Foxh1mEH1 are in red.  (B) Schematic showing the five 

domains comprising long Groucho proteins. Adapted from Jennings and Ish-Horowicz, 2008.  

(C) Southern blot analysis showing correct targeting of Foxh1 locus in three independent 

mESC clonal cell lines heterozygous for Foxh1LCA allele.  (D) PCR analysis of offspring derived 

from Foxh1mEH1 chimeras detects two bands, 428 bp and 374 bp, for the Foxh1mEH1 and wild-

type Foxh1 alleles, respectively. 
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 correctly targeted the Foxh1 locus.  Three of these clones were expanded and karyotyped.  

Two clones showing strongest evidence of being normal (most spreads with 40 chromosomes: 

clone 4B6, 80% and clone 4A4, 47.62% normal) were injected into C57BL/6-derived blastocysts 

in order to generate chimeric mice.  The injections resulted in eight chimeras, all from clone 

4B6.  Five were females estimated as 80% or less chimeric (based on coat color) and three were 

males estimated to be 100% chimeric.  One male died before being released from TMESCR.  

Southern blotting and PCR analysis confirmed Foxh1LCA germline transmission from the two 

surviving male chimeras that were crossed with Black Swiss females (Fig. 5.3D).  Embryos 

homozygous for the Foxh1LCA allele resembled Foxh1-/- embryos (data not shown), further 

verifying that wild-type Foxh1 was correctly targeted and replaced. 

Derivation of Foxh1mEH1/mEH1 mice 

In an effort to disrupt binding between Foxh1 and Grg co-repressors, we mutated the Foxh1 

EH1 motif, FSIKSLLG.  Before mutating the motif in mouse, three different EH1 mutations (eight 

amino-acid deletion [ΔEH1], AAAAAALG [6xAla], or ESIKSLLG [F>E]) were tested for their effect 

on the production and stability of Foxh1.  Western blot analyses on lysates collected from 

Xenopus embryos injected with RNA encoding the Foxh1 variants confirmed that the EH1 

mutations did not destabilize or over stabilize Foxh1 (Fig. 5.4A).  I also assayed the 

mesendoderm-inducing and Grg-binding potential of each Foxh1 variant to confirm that the 

EH1 mutation prevented binding to Grg co-repressors, but did not alter the activator function of 

Foxh1.  RNA encoding Foxh1ΔEH1, Foxh16xAla, Foxh1F>E, or wild-type Foxh1 was injected into the 

animal region of 1-cell Xenopus embryos.  The injected embryos were cultured until the start of 
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Fig. 5.4  Characterization of Foxh1 FLAG-tagged and EH1 variants.  (A) Foxh1 EH1 variants 

with a C-terminal FLAG tag (denoted by superscript “F”) show decreased protein stability 

over variants with a N-terminal FLAG tag as seen on an anti-FLAG western blot of lysates 

from Xenopus embryos injected  with equivalent amounts of RNA encoding the Foxh1 

variants or wild-type (no tag, no EH1 mutation) Foxh1.  The EH1 mutations do not greatly 

alter Foxh1 protein stability.  (B) The EH1 mutations do not inhibit the mesoderm inducing 

function of Foxh1 as assayed by elongation of animal caps cut from Xenopus embryos 

injected with 1 ng RNA encoding the Foxh1 EH1 variants.  However, the 6xAla mutation did 

not induce animal cap elongation as effectively or reproducibly as the F>E and ΔEH1 

mutation. 
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 gastrulation, when animal caps were cut, cultured overnight, and assessed next day for their 

elongation, as a measure of the induction of mesendoderm and other tissues that undergo 

convergent extension.  Compared to caps from uninjected embryos that rounded up and 

became atypical epidermis, caps from all injection conditions had elongated (Fig. 5.4B), 

indicating activation of mesendoderm-inducing pathways, which are currently held to be 

initiated by threshold-dependent Nodal signaling (see, for example, Jones et al., 1995).  

Although, Foxh16xAla animal caps elongated, they did so less reproducibly than the other two 

Foxh1 EH1 variant-expressing caps.  Therefore, only Foxh1F>E and Foxh1ΔEH1 were further 

characterized.  Quantitative real-time PCR (qRT-PCR) analysis of the Foxh1ΔEH1, Foxh1F>E, and 

wild-type Foxh1 “induced” animal caps showed increased relative expression levels of the 

mesendodermal markers Brachyury (xbra) and Goosecoid (gsc), as well as the mesodermal 

derivative Muscle actin, compared to control caps from uninjected embryos.  Conversely, these 

animal caps had decreased relative expression of the ectodermal marker Epidermal keratin 

compared to uninjected controls (Fig. 5.5).  Results of the animal cap and qRT-PCR assays 

concluded that the EH1 mutations did not compromise the ability of Foxh1 to facilitate 

mesendoderm induction. 

To verify that the EH1 mutations disrupted Foxh1-Grg binding, co-immunoprecipitation (co-IP) 

assays were performed with homogenized Xenopus gastrula embryos that had been injected at 

the 1-cell stage with RNA encoding the Foxh1 variants alone, or in combination with Myc-

tagged Xenopus Grg4 (MycGrg4).  Xenopus Grg4 is highly homologous to mouse Grg4 (100% 

homology over domain known to bind EH1), eliminating concerns that the Xenopus (Grg4) and 

mouse (Foxh1 variants) proteins would not interact because they are from different species. 
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Fig. 5.5  EH1 mutations do not impair Foxh1-facilitated mesendoderm induction.  Results of 

qRT-PCR analysis performed on stage 16/17-equivalent animal caps cut from Xenopus 

embryos injected with RNA encoding the frog Nodal homolog Xnr1 (positive control) or 

Foxh1 N-terminally FLAG-tagged EH1 variants.  The EH1 mutations do not disrupt the ability 

of Foxh1 to facilitate mesendoderm induction as seen by the increase in mesendodermal 

markers xbra and gsc, and the mesoderm derivative muscle actin.  The ectodermal marker 

epidermal keratin was decreased in these animal caps.  All expression levels are relative to 

animal caps cut from uninjected control embryos (n = one biological replicate). 
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  Optimization of the co-IP conditions was complicated by non-specific adherence of MycGrg4 to 

the protein A/G agarose-based beads (to which a FLAG antibody was conjugated) originally 

used for the IP.  This caused significant amounts of MycGrg4 to immunoprecipitate in the 

absence of Foxh1 or an IP antibody.  Switching from agarose-based beads to magnetic beads 

abolished the non-specific binding.   

I also encountered a problem where the IP antibody heavy chain (~50 kDa) would mask Foxh1 

(~45 kDa) on a western blot if both the IP and the primary immunoblotting antibodies were 

raised in the same species.  I eventually found a combination of antibodies that could be used 

together when immunoprecipitating Foxh1 and blotting for MycGrg4.  Unfortunately, Foxh1 still 

became masked by the IP antibody heavy chain when immunoprecipitating MycGrg4 and 

blotting for Foxh1.  Therefore, co-IPs could only be performed in one “direction.”  Because 

optimizing co-IP conditions took longer than anticipated, we decided to proceed with RMCE 

without the interaction data.  

We chose to submit the Foxh1F>E variant (referred to as Foxh1mEH1 henceforth) for RMCE 

because it altered only one residue and seemed less likely to cause a local or global disruption 

of protein conformation or stability compared to deleting 8 residues in the ΔEH1 variant.  This 

minimal mutation has been shown to fully disrupt interactions between EH1-motif-containing 

proteins and Grg co-repressors in numerous species (Jennings et al., 2006; Jiménez et al., 1999; 

Yaklichkin et al., 2007b).  Jennings et al. published high-resolution crystal structures of the 

human Goosecoid (GSC) EH1 motif bound with the WD-repeat domain of the Grg1 human 

homolog, TLE1.  The paper identified the residues involved in stabilizing the helical 
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conformation of the EH1 motif, and those that physically interact with TLE1.  When a single 

TLE1 residue that interacts with the phenylalanine (F) in the EH1 was mutated, the authors 

detected complete loss of the EH1-TLE1 interaction.  Also, the phenylalanine is 100% conserved 

in all EH1 motifs of vertebrate Fox proteins (Yaklichkin et al., 2007a), suggesting the importance 

of phenylalanine in the primary position.   

Once optimized, co-IP assays showed that the ability of MycGrg4 to co-IP with Foxh1mEH1 was 

prominently reduced compared to the wild-type Foxh1 control, indicating that the EH1 

mutation greatly disrupted Foxh1-Grg4 physical interactions (n = 3 independent injection 

experiments and western blots; Fig. 5.6).  It must be noted that there was discrepancy in the 

results of the co-IP assays, with some experiments detecting no interaction between Foxh1mEH1 

and Grg4 and others showing a greatly reduced interaction.  These assays were performed in 

Xenopus under overexpression conditions.  It is possible that the residual binding is an artifact 

of this overexpression, or that Grg4 interacts indirectly with Foxh1 through an unidentified 

complex. Foxh1 does not appear to contain other known Grg binding sites.  I tried to preform 

co-IPs with endogenous levels of protein from mouse embryos (E8.25), but was not successful 

in being able to routinely and reliably pulldown or detect the Foxh1 variants in mouse.  This was 

most likely due to a low abundance of protein at E8.25, and it could not be determined if the 

FLAG and Foxh1 antibodies specifically detected the FLAG-tagged Foxh1 proteins in mouse.  For 

example, the FLAG antibody detected the same 45 kDa band (expected molecular weight for 

FLAG-tagged Foxh1) in lysates from wild-type and Foxh1F or Foxh1F.F>E embryos (data not 

shown). 
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Fig. 5.6  EH1 mutation (F>E) disrupts Foxh1-Grg interaction.  (A,B) Protein lysates isolated 

from gastrula-stage Xenopus embryos injected with RNA encoding Xenopus MycGrg4 (2 ng) 

and mouse Foxh1F or Foxh1mEH1 (2 ng) were subjected to anti-Foxh1 pulldown.  Proteins 

were detected via western-blot analysis with anti-Myc or anti-FLAG.  Two separate 

experiments are shown to accurately represent the variable results seen with this assay.  (A) 

Greatly reduced ability of Foxh1mEH1 to co-immunoprecipitate with MycGrg4 compared to 

control Foxh1F.  Three minute exposure shown.  (B) Separate co-IP analysis confirming that 

the Foxh1mEH1 - MycGrg4 interaction is disrupted.  Thirty second exposure shown.  A 10 

minute exposure still detects no band in the Foxh1mEH1 + MycGrg4 lane, while the 

Foxh1mEH1 pulldown band is overexposed (data not shown).  Foxh1mEH1 appears to have 

immunoprecipitated less efficiently than Foxh1F; however, an abundant amount of 

Foxh1mEH1 was still pulled down and is predicted to be enough to co-IP with mycGrg4 if an 

interaction existed.   
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Given the high conservation of the WD-repeat domain among Grg family members (Chen and 

Courey, 2000), this mutation will likely disrupts potential interactions with other Grg proteins.  

Based on published in situ hybridization expression patterns, Grg3 and Grg4 are the most likely 

candidates to function in the transcriptional switch because they, like Foxh1, are expressed 

symmetrically within the LPM during stages of asymmetric Nodal signaling (Koop et al., 1996; 

Leon and Lobe, 1997; Weisberg et al., 1998).  A single FLAG tag was also added to Foxh1mEH1 to 

aid in detecting Foxh1mEH1 protein over wild-type Foxh1, and to facilitate future chromatin-

binding and target gene studies (Fig. 5.3A).  As with the EH1 mutation, I characterized whether 

or not the addition and position (N-terminus vs. C-terminus) of the FLAG tag affected the 

stability or mesendoderm-inducing potential of wild-type Foxh1.   Western blot analysis with a 

FLAG antibody detected higher levels of N-terminally FLAG-tagged Foxh1 compared to C-

terminally FLAG-tagged Foxh1 in lysates of Xenopus embryos injected with RNA encoding either 

Foxh1 variant (Fig. 5.4A).  This result suggests that the C-terminal tag location may destabilize 

or decrease the translational efficiency of Foxh1.  To help determine if the C-terminal tag 

destabilized Foxh1, or if the N-terminal tag over-stabilized Foxh1, I wanted to compare the 

stability of these variants to the production and stability of untagged Foxh1.  Unfortunately, the 

Foxh1 antibody was not specific enough to permit this experiment (data not shown).   

Animal cap elongation assays and qRT-PCR analysis, performed as described above, showed 

that both FLAG-tagged Foxh1 proteins caused animal cap elongation and induced expression of 

Gsc, Xbra, and Muscle actin at levels equivalent to that of untagged Foxh1.  Therefore, the FLAG 
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tag location was concluded to not alter the mesendoderm-inducing function of Foxh1.  The N-

terminus was tagged because N-terminally FLAG-tagged Foxh1 appeared more stable and this 

location positioned the tag away from the more C-terminally located EH1 motif and SID, 

hopefully limiting any potential for interference with Grg or p-Smad2/Smad4 binding.  A control 

line, Foxh1F, identical to Foxh1mEH1 except for containing a wild-type EH1 motif, was constructed 

in parallel, for the most rigorous testing that any abnormal phenotype observed in Foxh1mEH1 

mice was in fact a consequence of the EH1 mutation rather than the presence of the FLAG tag 

or residual exogenous sequences (Lox, FRT, or restriction enzyme sites) inserted into the Foxh1 

locus that remained after gene engineering (Fig. 5.3A; Fig. 5.2).  The Foxh1mEH1 and Foxh1F 

RMCE replacement constructs were electroporated into the Foxh1LCA mESC line, and correctly 

recombined clonal cell lines were injected into C57BL/6 blastocysts to generate Foxh1mEH1 and 

Foxh1F chimeras.  The FRT-flanked hygromycin resistance (hygroR) cassette, which was used to 

select for RMCE events, was removed from the Foxh1 locus by mating chimeras to mice 

carrying FlpE, the enzyme responsible for recombining FRT sites.  Mice homozygous for the 

Foxh1mEH1 or Foxh1F allele were born at Mendelian ratio, survived to adulthood, and bred 

normally.  The Foxh1 expression pattern was unchanged in Foxh1F/F and Foxh1mEH1/mEH1 

embryos compared to wild-type embryos, indicating that the EH1 mutation and FLAG tag did 

not disrupt Foxh1 transcription (Fig. 5.7).  Foxh1F/F embryos were molecularly and 

morphologically identical to wild type.  Therefore, Foxh1F/F and wild-type animals were used 

interchangeably as control embryos. 

  



110 
 

 

  

Fig. 5.7  Addition of FLAG tag and EH1 mutation did not alter Foxh1 expression.  (A-D) 

Whole-mount in situ hybridization analysis of Foxh1 expression in (A,B) E8.0 control 

compared to (C,D) Foxh1mEH1/mEH1 embryos.  Foxh1 expression was equivalent in level and 

distribution in Foxh1mEH1/mEH1 and control embryos.  Embryo orientations:  (A,C) Anterior 

views.  (B,D) Lateral views.  Scale bars:  200 µm.  A, anterior; L, left; P, posterior; R, right. 
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Gastrulation and A-P patterning are unaffected in Foxh1mEH1/mEH1 embryos 

Since Foxh1-dependent Nodal signaling is essential for proper gastrulation and A-P patterning, 

E6.75-7.25 Foxh1mEH1/mEH1 embryos were analyzed for defects in cell-lineage allocation and axis 

orientation. Previously characterized Nodal gain-of-function mutants, such as Lefty2-/- embryos, 

present with an expanded primitive streak and excess mesoderm (Meno et al., 1999).  If Foxh1-

Grg–mediated repression is an important negative regulator of Nodal signaling at this stage, 

loss of the Grg interaction would be expected to cause increased and/or prolonged Nodal 

signaling within the epiblast, resulting in defects similar to those seen in Lefty2-/- embryos.  

However, Foxh1mEH1/mEH1 embryos appeared morphologically normal (Fig. 5.8; see Table 5.1 for 

n values).  Any size difference between wild-type and Foxh1mEH1/mEH1 embryos is attributed to 

the size and stage variation routinely seen within and between litters at these early 

developmental stages (Downs and Davies, 1993).  The morphological observations were 

confirmed molecularly by in situ hybridization analyses of Nodal, its downstream targets, and 

early patterning genes.  No spatial or temporal defects in the expression of Nodal (Fig. 5.8A,B) 

or its downstream target Lefty2 (Fig. 5.8C,D) were observed.  Otx2 expression, which begins in 

the visceral endoderm and shifts anteriorly to mark the anterior ectoderm as gastrulation 

progresses (Zakin et al., 2000), was not altered in mutant embryos, suggesting that regionalized 

lineage allocation was normal in these embryos (Fig. 5.8G,H).  Additionally, expression of the 

mesoderm and primitive-streak markers, and targets of Foxh1-dependent transcription, 

Brachyury/T and Goosecoid were unaffected in Foxh1mEH1/mEH1 embryos, confirming that the 

primitive streak was correctly patterned (Fig. 5.8E,F,I,J).  Finally, the definitive endoderm 

marker Foxa2, whose expression is dependent on Foxh1 (Hoodless et al., 2001) and is disrupted 
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  Table 5.1  Number of embryos analyzed for each experiment. 
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Fig. 5.8  A-P patterning and gastrulation were unaffected in Foxh1mEH1/mEH1 

embryos.  Expression of multiple A-P patterning genes was examined by whole-

mount in situ hybridization in control (ctrl represents wild-type or Foxh1F/F) or 

Foxh1mEH1/mEH1 (mut) E6.75-E7.25 embryos.  The expression patterns of Nodal (A,B), 

Lefty2 (C,D), Brachyury/T (E,F), Otx2 (G,H), and Gsc (I,J) were similar between control 

and Foxh1mEH1/mEH1 embryos.   Red and blue lines mark representative location of 

extraembryonic tissue and embryo proper, respectively, in (A) E6.75 and (C) E7.25 

embryos.  Hash marks denote definitive endoderm.  (K,L) Foxa2 expression was 

unaffected in Foxh1mEH1/mEH1, confirming midline (arrowhead) integrity in mutant 

embryos.  Black and red lines outline headfolds and foregut pocket, respectively.  

Embryo orientations: (A-J) Lateral views.  (K-L) Anterior views.  Scale bars:  200 µm.  

A, anterior; L, left; P, posterior; R, right. 
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 in both loss- and gain-of-function Nodal mutants (Perea-Gomez et al., 2002; Vincent et al., 

2003), was clearly expressed in the axial midline of early somite mutant embryos (Fig. 5.8K,L).  

Combined, these results show that early cell specification and patterning were not altered in 

Foxh1mEH1/mEH1 embryos, and that Foxh1-Grg–mediated repression is not a primary regulator of 

Nodal signaling at this stage. 

   
L-R patterning is unaffected in Foxh1mEH1/mEH1 embryos 
 

We next investigated if Foxh1-Grg–mediated repression regulates Nodal signaling during stages 

of L-R patterning.  As discussed in the Introduction, Nodal expression, as well as that of Lefty2 

and Pitx2, is strikingly left-sided, quickly moving through the L LPM in a dynamic posterior-to-

anterior wave of expression (Collignon et al., 1996; Lowe et al., 1996; Meno et al., 1996; Ohi 

and Wright, 2007).  Bilateral expression of Foxh1, Smad2/4, and Groucho co-repressors in the 

LPM (Koop et al., 1996; Leon and Lobe, 1997; Waldrip et al., 1998; Weisberg et al., 1998) 

suggests that Foxh1 transcriptional switching may regulate the spatiotemporal expression of 

Nodal circuit genes by initiating their expression in the L LPM and suppressing it in the R LPM.  If 

the Foxh1-Grg repression arm negatively regulated Nodal signaling, it was predicted that 

disrupting this interaction would result in premature, prolonged, and/or R-sided expression of 

Nodal and its downstream targets. In all Foxh1mEH1/mEH1 embryos assayed, Nodal was solely L-

sided, and not detected in the L LPM prior to 2-3 somites or beyond 8 somites (Fig. 5.9A,B).  As 

expected, Nodal expression in the node, which is controlled by a Foxh1-independent enhancer, 

was not altered (data not shown).  In accordance with Nodal expression, no spatial or temporal 

defects were detected in Lefty2 and Pitx2 expression (Fig. 5.9C-F).  From these results we 
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Fig. 5.9  Expression of L-R patterning genes was unaffected in Foxh1mEH1/mEH1 

embryos.  (A-F) Whole-mount in situ hybridization analysis of L-R patterning 

genes (A,B) Nodal, (C,D) Lefty2, and (E,F) Pitx2 in the left LPM of control or 

Foxh1mEH1/mEH1 embryos at E8.25.  No aberrant expression of L-R patterning 

genes was detected in mutant embryos.  Black and red arrowheads indicate 

midline and LPM, respectively.  Embryos orientations: (A-F) anterior views.  

Scale bars:  200 µm.  L, left; R, right. 
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 conclude that loss of Foxh1-Grg–mediated repression during L-R patterning can be overcome 

without compromising development.  

 
Foxh1mEH1/mEH1 embryos display normal L-R situs 

 
Nodal signaling (Nodal, Lefty2, Pitx2) in the L LPM directs proper placement and anatomy of the 

visceral organs (Nakamura and Hamada, 2012).  Alterations in Nodal expression, and thus 

signaling, such as right-sided or bilateral expression, can lead to multiple heart abnormalities, 

pulmonary isomerism, intestinal malrotation, and misplacement of visceral organs with respect 

to the midline.  Heart abnormalities commonly observed in Nodal signaling mutants include 

dextrocardia, reversed heart looping, transposition of the great arteries, and ventricular 

septation (Bisgrove and Yost, 2001).  Analysis of heart morphology and placement in 

mutantE9.5-10.5 embryos revealed, in all embryos analyzed, stereotypically normal rightward 

looping and correct cardiac positioning left of midline (Fig. 5.10A,B).  Functional assessment of 

heart morphology for septal and vessel-transposition defects was done by injecting blue and 

yellow liquid latex, respectively, into the left and right ventricles of E15.5 Foxh1mEH1/mEH1 

embryos to highlight the vasculature and aid in detecting cardiovascular defects.  As seen in 

wild-type embryos, the pulmonary trunk passed ventrally to the aorta in all Foxh1mEH1/mEH1 

embryos analyzed, indicating no transposition of the great arteries.  Also, no ventricular 

septations were identified, as mixing of the yellow and blue latexes was not observed in the 

ventricles of these embryos (Fig. 5.10C,D).  Overall morphology of visceral organs (lungs, liver, 

gut, stomach) appeared normal in Foxh1mEH1/mEH1 embryos (Fig. 5.10E-H).  These results 

corroborate our early findings that showed no molecular defects in L-R patterning.  Together, 
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Fig. 5.10  Internal organ situs and morphology was normal in Foxh1mEH1/mEH1 embryos.  

(A,B) Normal dextral looping of the heart was observed in E10.5 Foxh1mEH1/mEH1 

embryos.  (C,D) Different colors of liquid latex were injected into the right (yellow) and 

left (blue) ventricles of E15.5 control and Foxh1mEH1/mEH1 embryos to highlight potential 

defects in ventricular septation, formation and positioning of the great arteries and 

aortic arch.  No latex mixing, which would have indicated septation defects, was 

observed in Foxh1mEH1/mEH1embryos.  Also, the pulmonary trunk (yellow arrowhead) 

always appeared ventral to the aorta (blue arrowhead), and aortic branching was 

equivalent to control embryos.   (E-H) Overall organ placement and morphology was 

unaffected in Foxh1mEH1/mEH1 embryos at E15.5.  Embryo orientations: (A-E, G) Ventral 

views.  (F, H) Dorsal views.  Scale bars:  (A,B) 500 µm; (C-H) 1 mm.  H, heart; I, intestine; 

K, kidney; L, left; Li, liver; Lu, lung; LV; left ventricle; OT, outflow tract; RV, right 

ventricle; St, stomach; T, thymus. 



118 
 

 these data show that major disruption of the Foxh1-Grg interaction alone does not alter Nodal 

signaling in the mouse, and that, possibly, the role Foxh1-Grg–mediated repression plays in 

regulating Nodal transcription is masked by a highly buffered regulatory system, which 

compensates for its loss in an effort to maintain the spatiotemporal dynamics of Nodal 

signaling. 

Discussion 

This is the first study to use a precise amino acid alteration to address the role of Foxh1-Grg–

mediated repression in regulating Nodal signaling during early mouse development. We altered 

the endogenous Foxh1 locus so that our experiments were performed under endogenous levels 

of gene and protein expression, rather than in an overexpression context, providing the most 

rigorous way to assay the direct influence of Grg-based repression acting through Foxh1 on 

Nodal signaling.  The minor modifications made to create the Foxh1mEH1 allele were carefully 

controlled for by the parallel construction of the “wild-type” Foxh1F allele (noting that both 

proteins also contained an N-terminal FLAG tag).  We conclude that the blocked interaction 

between Foxh1 and Grg can be accommodated by adaptable gene regulatory mechanisms, such 

that there are no major effects on Nodal signaling at the level of target gene readout, or overall 

body axis formation, anterior-posterior or left-right patterning.  Our results suggest that there is 

substantial robustness in the mechanisms that have evolved to stabilize Nodal regulatory 

systems and lead to successful germ-layer development and embryonic patterning. 
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Buffered regulatory system potentially compensates for loss of Foxh1-Grg–mediated repression 

Cell fate determination is qualitatively influenced by the level and duration of Nodal signaling.  

Experiments in Xenopus embryos showed that higher Nodal/Activin signaling induced the 

mesendoderm marker gsc, while lower levels induced the pan-mesodermal marker xbra (Agius 

et al., 2000; Gurdon et al., 1994; Jones et al., 1995).  Dose-dependent responses also control 

mouse development (Robertson, 2014).  In Nodal null embryos, little mesodermal 

differentiation occurs and there is subsequent failure to gastrulate, causing developmental 

arrest (Conlon et al., 1994; Zhou et al., 1993).  Mesoderm induction is restored in mutants with 

reduced Nodal expression, but definitive endoderm is still absent (Norris et al., 2002; Vincent et 

al., 2003).  Left-right patterning also depends upon the level of the Nodal signaling component 

Pitx2, a transcriptional effector that is essential for asymmetric organogenesis (Nakamura and 

Hamada, 2012).  Experiments with Pitx2 revealed a progressive gene-dosage requirement in 

organ formation and L-R patterning:  lung and gut required the highest level of Pitx2 expression, 

followed by the heart, with the stomach requiring the least (Gage et al., 1999; Liu et al., 2001).  

Because proper embryonic patterning depends upon the precise titration of Nodal signaling, it 

is likely that buffered regulatory systems were developed to provide stability but also rheostat-

like level control.  The employment of such a system may be one explanation for the lack of 

phenotype in FoxhmEH1/mEH1 embryos. 

Tissue-specific expression of Nodal is, in part, regulated by five different enhancers that drive 

expression in the epiblast, node, and LPM (Adachi et al., 1999; Papanayotou et al., 2014; Saijoh 

et al., 2005; Vincent et al., 2003).  The dynamic expression in the epiblast and LPM is also 
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strongly affected by a self-enhancement and lateral-inhibition (SELI) system through which 

Nodal enhances its own expression with a positive feed-forward loop that activates the ASE.  

Nodal then rapidly initiates expression of its feedback antagonist Lefty2 (Nakamura et al., 

2006).  Lefty2 molecules, which have an inherent ability to travel faster and farther than Nodal, 

and have greater stability, help terminate Nodal expression in the L LPM, as well as prevent the 

Nodal autoregulatory loop from fully initiating in the R LPM (Marjoram and Wright, 2011; 

Müller et al., 2012; Nakamura et al., 2006).  Lefty2 inhibits Nodal signaling by either binding 

directly to the Nodal dimer, or competitively blocking access to the obligate EGF-CFC co-

receptors (Chen and Shen, 2004).  Such inhibition by Lefty2 prevents phosphorylation and 

prevents Smad2 shuttling to the nucleus, shutting down Foxh1-dependent transcription of 

target genes. 

We speculate that the Nodal locus could be more “open” in Foxh1mEH1/mEH1 embryos because of 

impaired interaction with Grg co-repressors.  However, attenuation of Smad2 phosphorylation 

by Lefty2 inhibition at the cell surface should still occur in mutant embryos, dampening the 

potential over-activation of Nodal expression.  Thus Lefty2 would be an especially important 

component of the buffered regulatory system that compensates for the reduction/loss of 

Foxh1-Grg–mediated repression in Foxh1mEH1 mutant mice, preventing a mutant phenotype.  

Original studies in Xenopus suggesting that Foxh1 represses Nodal transcription (D. S. Kessler, 

personal communication) may have overcome this degree of buffering by overexpressing 

mutant Foxh1, unlike in this study with Foxh1mEH1 being expressed from the endogenous locus.   
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The existence of a system that exerts meticulous control over Nodal signaling is suggested by 

the multiple Nodal signaling loss- and gain-of-function mutations that display incomplete 

penetrance or variable expressivity. For example, the severity of defects in Foxh1-/- embryos 

varies greatly, from completely failed development of the embryo proper, to a less severe 

phenotype without midline structures (Hoodless et al., 2001; Yamamoto et al., 2001).  Similarly, 

embryos lacking the co-receptor Cryptic have numerous defects in asymmetric organogenesis, 

but the specific organs affected differ among mutant embryos (Yan et al., 1999).  Incomplete 

penetrance is seen in embryos that lack Lefty2 in the LPM, with two-thirds of the animals dying 

a few days after birth from cardiac defects, which were not detected in mutants that survived 

to adulthood (Meno et al., 2001).  Homozygous mutations in the Nodal antagonists Lefty1 and 

Cerl alone do not cause defects in gastrulation (Meno et al., 1998; Simpson et al., 1999), but the 

double homozygous Lefty1-/-;Cerl-/- mutants are 100% embryonic lethal (Perea-Gomez et al., 

2002).  These results demonstrate that loss of a single negative regulator of Nodal signaling can 

be compensated for, and that removal of additional members of the buffered regulatory 

system is required to manifest an abnormal phenotype.   

Therefore, it is possible that this new Foxh1mEH1/mEH1 condition represents a sensitized state in 

which relatively subtle manipulation of other components of the buffered system could reveal 

patterning defects.  Future experiments could test how the loss of Foxh1-Grg–mediated 

repression is compensated.  For example, loss of Lefty2 in the Foxh1mEH1 background may yield 

patterning deficits that remain hidden under disruption of only the Foxh1-Grg interaction.  

Introducing a Foxh1 null allele (Foxh1mEH1/-) may also sensitize mice to the EH1 mutation by 

further reducing the potential of the Foxh1-Grg interaction, and produce a mutant phenotype.  
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While our Foxh1mEH1 amino-acid alteration removes a residue that is essential for tight Grg 

interaction (Jennings et al., 2006), we must remain open to the possibility that the primary 

explanation for the lack of abnormal phenotype is that some low-level Foxh1mEH1-Grg 

association is sufficient to effect substantial repression of Nodal transcription.  The strength of 

the data indicating the importance of the phenylalanine residue for Grg interaction strongly 

suggest that any residual Grg binding might occur not through the highly disrupted EH1 motif, 

but indirectly through some other member of the as-yet-uncharacterized transcriptional 

complex.  An even simpler interpretation is that Grg-mediated repression of Nodal signaling is 

not conserved in the mouse.  The sensitization experiments described above are pertinent and 

use our findings here as the foundation.  In addition, experiments investigating the type of 

epigenetic repression marks present at the Nodal locus in Foxh1mEH1 mutant embryos compared 

to control embryos could help determine the extent of repression that remains in Foxh1mEH1 

embryos.  

Epigenetic regulation of Nodal signaling 

The epigenetic landscape provides critical input onto a gene’s transcriptional state, but almost 

nothing is known about such landscape alterations at the Nodal locus during development, or 

the degree to which epigenetic modifications contribute to Nodal signaling regulation.  It is well 

documented that pSmad2/Smad4 recruits the co-activators p300 and CREB binding protein 

(CBP), which use their intrinsic histone acetyltransferase activity to promote an open-chromatin 

conformation (Attisano and Wrana, 2000). The ability of Foxh1 to interact with factors that 

recruit HDACs, which are capable of reversing the pSmad2/Smad4-founded markings, further 
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supports Foxh1 transcriptional switching as a plausible epigenetic mode of modulating Nodal 

signaling.  

Recent studies report roles for histone acetylation and methylation in the positive and negative 

regulation of Nodal signaling in mouse ESCs and in embryos.  In mouse ESCs, Nodal-Smad2/3 

signaling recruits Jmjd3, a H3k27me3-specific demethylase, to Nodal target-genes to counteract 

the repressive effect of Polycomb repressive complex 2 (PRC2) (Dahle et al., 2010).  On the 

other hand, studies in Medaka fish report physical interaction of Foxh1with the PRC2 histone-

modifier Ezh1, with Ezh1 knockdown producing bilateral Nodal expression and L-R patterning 

defects (Arai et al., 2010).  Because PRC2 can be recruited by Grg co-repressors (Patel et al., 

2012), Foxh1, through interaction with Grg, could initiate longer-term transcriptional 

repression.  Also, others have already implied that HDACs could be part of the repression 

mechanism for Nodal expression in the R LPM (Carneiro et al., 2011). 

Understanding whether or not the Nodal locus remains poised or repressed during time points 

when Nodal is not expressed may provide insight into the flexible regulation of Nodal signaling 

during embryogenesis, and the specific levels of signaling that transcriptionally activate the 

various sets of downstream targets.  We also speculate that the Grg-mediated long-term 

repression of Nodal expression might be essential in preventing neoplastic reactivation of the 

Nodal signaling pathway.  The Foxh1F line will be useful for studying the epigenetic regulation 

occurring at the Nodal locus, and other ASE-containing loci, as well as for identifying novel 

targets of Foxh1. 
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CHAPTER VI 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary  

Nodal signaling is a highly conserved pathway in vertebrate development that is required for 

gastrulation, anterior-posterior (A-P) patterning, and the derivation of left-right (L-R) 

asymmetry.  Since the discovery of Nodal almost 20 years ago, much has been learned about its 

regulation and function in development.  Particular topics of intense research have included 

identifying the molecular components of the Nodal signaling pathway, the mechanisms that 

drive Nodal expression, the factors that regulate ligand dynamics, and understanding how 

Nodal regulates cell-fate determination and patterning.  Despite reaching such a significant 

level of understanding in a relatively short time period, certain equivalently important aspects 

of Nodal signaling regulation and function still represent mysteries.  In identifying mechanisms 

that drive Nodal expression, primary emphasis was placed on understanding the activation of 

Nodal transcription during development.  Little work has been done to understand the role that 

transcriptional repression of Nodal has in the overall negative regulation of Nodal signaling.  

Instead, much of our knowledge on how Nodal signaling is attenuated in the embryo comes 

from work detailing how the Nodal ligand is blocked from activating cell-surface receptors, 

often by the use of extracellular inhibitors that physically interact with Nodal and prevent 

function.  In terms of embryonic patterning, it is still unknown how Nodal signaling in the left 

lateral plate mesoderm (L LPM) establishes and directs the individual asymmetric 

morphogenetic programs of multiple organ anlagen. 
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Therefore, the aims of my thesis research were established to help move us to a better 

understanding of three basic aspects of Nodal signaling:  (1) how cells in the L LPM interpret 

Nodal signaling dynamics (i.e. duration, levels) during stages of asymmetric gene expression, (2) 

how Nodal signaling in the L LPM influences tissue architecture prior to gut looping, and (3) 

how Nodal is negatively regulated (repressed, or prevented from over-activity) at the 

transcriptional level.  In order to understand how active Nodal signaling dynamics relate to 

those of the Nodal expression pattern in the L LPM, one of my goals was to generate a 

spatiotemporal map of pSmad2 localization across the LPM of Xenopus embryos during stages 

of asymmetric gene expression.  Knowing the location, duration, and levels of active Nodal 

signaling in the LPM, using pSmad2 as the active readout, could provide insight into how Nodal 

signaling becomes a morphogenetic cue.  For example, pSmad2 localization patterns might 

have revealed that not all cells experience the same level of signaling, and that the level of 

signaling experienced determines which cells actively engage in tissue morphogenesis (i.e. 

undergo cell shape, ECM remodeling) and those that do not, the latter becoming ‘follower’ cells 

after the pioneer cells initiate tissue morphogenetic movements.  

To generate such a precise map of pSmad2 localization, a specific and sensitive antibody was 

needed.  However, none of the currently available antibodies fit these criteria.  Therefore, we 

generated a new antibody against pSmad2.  Unfortunately, my characterization studies, 

detailed in Chapter III, revealed that the antibody did not specifically recognize pSmad2 on 

tissue sections of Xenopus tailbud-stage embryos.  From this, we concluded that the antibody 

could not be used to generate a spatiotemporal map of Nodal signaling.  I, therefore, strongly 

deprioritized the project in order to focus on other aspects of my thesis.  For this reason, I do 
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not discuss the future directions of this project below, because I already included some 

potential alternative methods for detecting active Nodal signaling in frog in the Discussion 

section of Chapter III. 

Current studies in the chicken and frog have begun to address the general mechanisms of 

asymmetric organogenesis by identifying molecular and architectural asymmetries occurring 

within the gut mesoderm.  Although seminal, these studies in fact have rather a narrow focus, 

beginning analysis after the start of asymmetric morphogenesis, and characterizing only a 

limited region of the gut—the midgut.  In Chapter IV, I described how I was aiming to expand 

on these studies by characterizing potential changes in the LPM architecture (cell shape, ECM 

and cytoskeletal composition) during the time period between the end of asymmetric Nodal 

expression (stage 25) and the first time of noticeable, incipient gut looping in Xenopus (stage 

38).  I also wanted to investigate how Nodal signaling is linked to these changes, and how these 

architectural changes guide the direction of gut looping.   

This project was initiated by a previous graduate student in the lab, Lindsay Marjoram.  In her 

preliminary findings, she detected tighter bundling and more contracted F-actin in the R LPM 

compared to the L LPM.  I confirmed her results and identified a potential asymmetry in the 

localization of β-1 integrin, in which there was more intense immunodetection in the R vs. L 

LPM (Fig. 4.1; Fig. 4.2).  The caution here is that additional analysis of more embryos will be 

needed to determine if the asymmetric localization is reproducible and then find a way to 

quantify the difference, and understand, again, if it is focal or more widespread across the LPM.  

My biggest contribution to this project was the optimization of a whole-mount immunolabeling 
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and Technovit sectioning protocol that had not been used yet by the lab (detailed in Materials 

and Methods; Chapter II).  Previously, the lab analyzed LPM architecture by immunolabeling 

cryosections of Xenopus embryos.  This technique often resulted in large chunks of missing 

tissue and distorted (that is, compressed or stretched) tissue architecture.  With the new 

whole-mount immunolabeling and Technovit embedding/sectioning protocol, tissue 

architecture was immaculately preserved (Fig. 4.3).  The improvement in tissue preservation 

would greatly enhance our ability to obtain high-resolution images of, and identify changes in, 

cell morphology and architecture within the LPM and underlying endoderm that give rise to the 

gut.  Also, being able to perform whole-mount immunolabeling on Xenopus embryos would 

allow us to pursue 3-D rendering of LPM tissue architecture, which was not possible with our 

previous cryosectioning method due to poor tissue architecture quality and registration 

problems with putting whole 3-D images into place from multiple sections. 

The bulk of my thesis work, as detailed in Chapter V, focused on identifying whether or not the 

transcription factor Foxh1 acts as a transcriptional repressor of Nodal expression.  It is well 

established that Foxh1 is necessary for the initiation of Nodal, Lefty2, and Pitx2 expression in 

response to Nodal signaling.  Unpublished work from our collaborator, Dr. Dan Kessler at the 

University of Pennsylvania, suggests that Foxh1 could regulate Nodal expression by acting as a 

transcriptional switch.  In this type of regulatory mode, Foxh1 toggles between positive and 

negative transcriptional activity by switching between binding partners – the pSmad2 activator 

and Groucho co-repressor, respectively (Fig. 5.1).  To test the conservation of the Foxh1 

transcriptional switch in mouse, and to determine the consequences of its removal, I derived a 
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mouse line in which the Groucho binding motif, the Engrailed-homology 1 (EH1) motif, of Foxh1 

was mutated to prevent binding with Groucho (Grg) co-repressors. 

I began by constructing a loxed-cassette acceptor allele (LCA) of the Foxh1 locus.  The Foxh1LCA 

allowed the insertion of variant Foxh1 protein-encoding sequences into the endogenous locus.  

Two alleles were created:  Foxh1mEH1, which encoded an N-terminally FLAG-tagged Foxh1 with a 

single amino acid (F-to-E) substitution in the EH1, and Foxh1F, which is identical to Foxh1mEH1 

except for its wild-type EH1 motif.  Molecular and morphological analyses found no Nodal 

signaling or embryonic patterning defects in Foxh1mEH1/mEH1 embryos (Figs. 5.8-5.10), and these 

mice survived to adulthood.  The absence of a mutant phenotype could have, in principle, 

several explanations.  First, some of the co-immunoprecipitation assays, on the surface, suggest 

that the F-to-E substitution does not always cause the complete abolition of Foxh1mEH1 and Grg 

interaction (Fig. 5.6).  Although we argue against this possibility (see Chapter V for details, but 

primarily we think it reflects the heterologous and overexpression conditions of the assay), it is 

difficult to rule out completely the explanation that the little interaction remaining was 

sufficient to effect substantial repression of Nodal transcription.  Second, it is possible that 

Foxh1-Grg–mediated repression is not conserved, and unlike in Xenopus tissue, does not 

regulate Nodal signaling in mouse.  Finally, we prefer the idea that Nodal signaling is regulated 

by a highly buffered system capable of compensating for the loss of the Foxh1-Groucho 

interaction and maintaining normal spatiotemporal dynamics of Nodal signaling in mutant 

mice.  Experiments that can distinguish between these possibilities have been devised and are 

discussed in detail below.  Also discussed below are additional experiments and tools that could 
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help us gain a deeper understanding of how the spatiotemporal dynamics of Nodal 

transcription are epigenetically regulated during embryonic development.     

Chapter IV Future Directions 

Mapping F-actin foci 

The presence of L-R differences in the actin cytoskeleton between the L and R LPM in Xenopus 

may be significant with regard to asymmetric gut looping considering studies in fly, chicken, and 

mouse have noted an increase in actin cytoskeleton regulators in regions of the gut undergoing 

active looping.  Furthermore, the increase in F-actin bundling that we have observed in the R 

LPM was not uniform along the A-P axis, but seemed more focal.  The focal nature of increased 

F-actin bundling/tightening supports the hypothesis that these F-actin foci might mark future 

sites of cell-architectural rearrangements, such as constriction, which could lead to incipient 

bending of the gut.  Before a conclusion can be made about their potential role in gut looping, it 

must first be determined if the F-actin foci appear reproducibly in the same locations along the 

A-P and D-V axes in embryos of the same stage.  General conservation of the locations of F-

actin foci across different embryos would further indicate the importance and a possible 

instructive role in tissue morphogenesis of the LPM.  I speculate that mapping of the foci will 

eventually be achievable by analyzing the actin cytoskeleton in whole mounts.  As discussed in 

the Results section of Chapter IV, methods for labeling and imaging embryos in whole mount 

still need to be finessed, but initial attempts showed promise.     

If F-actin foci in the R LPM appear reproducible in their location along the A-P and D-V axes, it 

may be possible to trace the cells near the foci to determine if they become incorporated into 
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specific concavity or convexity regions of the gut.  In a method similar to that performed by 

Muller et al. (2003) to determine the contribution of specific regions of the LPM at stage 23 to 

gut-derived organs at stage 45/46, fluorescent dyes or dextrans could be injected into regions 

of the LPM that have been reproducibly pre-determined to contain F-actin foci (from the 

whole-mount mapping proposed above).  Embryos would then be analyzed during stages of gut 

looping to determine where labeled cells localize in the mesoderm (concavity, convexity, linear 

region) surrounding the gut endoderm (Fig. 6.1). 

Identifying additional LPM architecture asymmetries 

The identification of L-R asymmetries in the actin cytoskeleton within the LPM between stages 

35-43 provides a launching point for the identification of other cytoskeletal or ECM 

components, which connect to the actin cytoskeleton, that also display asymmetric 

characteristics.  For example, adherens junctions link directly to actin, and the adherens 

junction component α-catenin has been shown to be increased on the left of the gut bending in 

chicken (Welsh et al., 2013).  Catenins help connect the cadherin family of transmembrane 

proteins to the actin cytoskeleton, which in turn promote cell-cell adhesion by binding with 

other cadherins, such as N-cadherin, on neighboring cells.  Given its importance in influencing 

tissue architecture changes in the chicken dorsal mesentery and in multiple other systems 

(Davis et al., 2008; Kurpios et al., 2008; Leonard et al., 2011; Plageman Jr. et al., 2011; Welsh et 

al., 2013), determining the localization pattern of N-cadherin in the LPM has been an interest of 

the Wright lab for some time.  Unfortunately, multiple antibodies against N-cadherin had been 

tested in the lab and none showed reactivity in Xenopus.  Towards the end of my work on this 
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Fig. 6.1  Schematic of tissue architecture tracing experiment.  Regions of LPM tissue 

containing architectural features of interest (circles), such as F-actin foci, will be mapped 

along the A-P axis to determine if the features localize to the same regions in every embryo.  

If so, these regions of the embryo can then be injected with a fluorescent dye or dextran 

(filled-in circle) to determine if these cells localize to regions of active gut looping at later 

stages. 
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 project, I obtained possible signal with a rabbit anti-N-cadherin antibody (Abcam) when used 

for whole-mount immunolabeling of a stage 23 embryo.  Although the specificity of the 

localization pattern was not certain as a confounding signal was detected in the nucleus in 

addition to cell borders.  It is possible that with further optimization it would be able to 

investigate if asymmetries in N-cadherin localization exist between the L and R LPM. 

A major determinant for the importance of the observed asymmetries in LPM cytoskeleton 

architecture in shaping the gut is whether or not they actually lead to defined inductions in cell 

shape change.  For example, increased deposition of ECM and cytoskeleton components in the 

chicken dorsal mesentery cause increased cell-cell adhesion, increased tissue condensation, 

and promote adoption of a columnar cell shape (Davis et al., 2008; Kurpios et al., 2008).  The 

use of Technovit 7100 greatly enhances the feasibility of characterizing cell morphology given 

its accurate preservation of cell architecture.  Cell shape within the L and R LPM would be 

assayed in stages preceding actual gut looping by whole-mount immunolabeling Xenopus 

embryos with antibodies against E-cadherin, β-1 integrin, and β-catenin, all of which demarcate 

cell boundaries in the endoderm and LPM.  Using fate mapping described above, F-actin foci or 

cells with increased adherens junctions could be labeled and followed further along in 

embryogenesis to determine if alterations in the cytoskeletons lead to cell-shape changes.  For 

example, it would be interesting to investigate if the columnar architecture of splanchnic 

mesoderm cells is maintained in regions near F-actin foci, and if cells adopt a more squamous 

architecture in regions of the R LPM where such foci are absent. 
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In addition to characterizing the physical changes occurring to LPM tissue architecture and how 

these changes influence gut chirality, we also need to know what lies upstream of the physical 

changes.  The recent identification of an upregulation in Wnt signaling components and formins 

(Daam2) in the left dorsal mesentery of chicken and mouse (Welsh et al., 2013) provides an 

interesting starting point.  The lack of nuclear β-catenin and changes in the cytoskeleton 

suggested that non-canonical Wnt signaling was activated in the left dorsal mesentery (Welsh 

et al., 2013).  It could be worth investigating the expression of Wnt signaling components and 

effectors (Daam1/2), especially those belonging to the planar cell polarity (PCP) pathway, via in 

situ hybridization in the LPM of Xenopus.   

Another pertinent pathway to investigate is the Rho GTPase signaling pathway.  When Pitx2a 

was misexpressed in HeLa cells, the Rho GTPases Rac1 and RhoA were activated, causing 

changes in the actin cytoskeleton and increasing cell-cell adhesion (Wei and Adelstein, 2002).  

Daam2, a Wnt effector, has also been suggested to activate Rho GTPases (Welsh et al., 2013).  

Unfortunately, the currently available antibodies against Rac1 and RhoA do not work on 

Xenopus tissue.  Several years ago, the Nascone-Yoder lab published a caged Rockout-derivative 

that allowed for the spatiotemporal control of Rho kinase in live Xenopus embryos (Morckel et 

al., 2011).  Caged Rockout consists of a photolabile caging group attached to the small-molecule 

inhibitor of Rho kinase, Rockout.  When caged Rockout is exposed to a short pulse of UV light of 

30-120 seconds, Rockout becomes uncaged and free to repress Rho kinase.  Xenopus embryos 

take up caged Rockout through simple diffusion when incubated in a solution.  Embryos in 

which caged Rockout was UV-activated on the right side between stages 35-39 displayed 
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reversed midgut curvature and disorganization of the normal columnar epithelial architecture 

when analyzed at stage 45/46 (Morckel et al., 2011).    

This technique could be used to investigate the importance of Rho GTPases in the regulation of 

the actin cytoskeleton in LPM.  In Morckel et al. (2011), uncaging of Rockout was done at stages 

just prior to, or immediately following, the first visual sign of gut looping, and embryos were 

not analyzed until later stages of gut looping.  I propose, therefore, treating embryos with 

caged Rockout at various, earlier stages following asymmetric Nodal expression and analyzing 

before stage 38.  Such manipulations could help determine if and when Rho GTPase signaling 

has a role in initiating rearrangements of the actin cytoskeleton in the LPM. 

Connecting Nodal signaling to changes in LPM architecture 

A primary goal of my project here was to learn how Nodal signaling influences the observed 

tissue architecture asymmetries in the LPM.  To determine if Nodal signaling could alter actin 

cytoskeleton architecture, in experiments performed by Lindsay Marjoram , a Nodal-expressing 

tissue graft was placed in the right LPM of a stage 17 Xenopus embryo, and F-actin was 

subsequently analyzed by labeling with fluorescently conjugated phalloidin at stage 38.  

Increases in F-actin labeling intensity were detected in the left LPM, to a level equaling that in 

the right LPM of unmanipulated embryos.  Analysis at higher magnification showed that the 

increase in labeling was reflective of increased F-actin bundling and contraction.  Interestingly, 

no changes in F-actin bundling or contraction were detected on the right LPM, the side 

receiving the Nodal-producing graft (Marjoram and Wright, unpublished data).  It was expected 

that F-actin characteristics on the right would have mimicked those in the L LPM of an 
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unmanipulated embryo (that is: diffuse, relaxed) when exposed to Nodal, if there was a reversal 

of the normal situation.  These results suggest that actin cytoskeleton dynamics, at least in the L 

LPM, may be responsive to Nodal signaling.  However, the results are preliminary and must be 

repeated before any instructive role for Nodal signaling in altering actin cytoskeleton dynamics 

could be deduced.  

In the experimental setup used above, endogenous Nodal signaling was still able to occur in the 

L LPM.  A cleaner experiment, in my view, would be to first eliminate Nodal signaling in the LPM 

by posteriorly cropping of the embryos at stage 17 to remove the first inductive signals from 

the L-R organizer, and thereby preventing any L-sided Nodal expression.  A Nodal expressing 

graft could then be placed in the R LPM of these embryos to initiate Nodal signaling only on the 

right.  This manipulation could determine if Nodal signaling instructs F-actin to become more 

diffuse and not as tightly bundled on the left, compared to the right – that is, the instruction 

passed by Nodal would be to become more relaxed and not as contracted in cell shape.  

Alternatively, actin cytoskeleton characteristics could be analyzed in normal, ungrafted 

embryos that completely lacked asymmetric Nodal expression, either as a result of posterior 

cropping or by treatment with the ALK4/5/7 inhibitor SB505124.  It would be expected that, if 

Nodal signaling affects actin cytoskeleton dynamics, F-actin in the L and R LPM would become 

equivalent, remaining equally constricted and tightly bundled as seen in the right-sided non-

Nodal-expressing LPM of normal embryos.  However, ectopic Nodal signaling could still fail to 

alter actin cytoskeleton dynamics on the right, while dynamics on the left respond to loss of 

Nodal signaling, as was seen in preliminary experiments.   This could signify that additional, 
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unidentified pathways, and which are absent from the right-side LPM, cooperate with Nodal 

signaling in the L LPM to cause F-actin to become more diffuse and loosely bundled.  

Another avenue to investigate is whether or not changes in endoderm architecture (i.e. 

thickness) or length are major contributors to chiral formation of the gut, and if differences 

between the left and right endoderm are dependent on Nodal signaling.  It has been reported 

that Pitx2 overexpression in Xenopus causes shortened gut tubes (Muller et al., 2003), 

suggesting that Pitx2 can slow the rate of gut tube elongation.  The changing thickness of the 

underlying endoderm, which in Xenopus is composed of large yolky cells essentially acting as 

relatively solid ‘blocks’ of tissue, may also influence the rate of LPM elongation.  Cells in the 

endoderm undergo radial intercalation as the gut lumen forms, causing the endoderm to 

lengthen (Chalmers and Slack, 2000).  My own Technovit sections of stage 35/36 embryos 

showed increased thickening of the endoderm on the left compared to the right (Fig. 4.5), an 

observation that was noted by others (Muller et al. 2003).  It is possible that the difference in 

thickness is due to asymmetry in either the rate of radial intercalation, being faster on the right 

than the left, or the number of cells that intercalate on the right versus the left.  It could be 

imagined that such asymmetry would cause endoderm on the right to become slightly thinner 

and more elongated along the A-P axis compared to on the left.  The LPM would then have to 

asymmetrically increase its length, most likely through cell shape changes or spreading, to 

maintain coverage of the endoderm, resulting in a longer R LPM than L LPM.  Differential rates 

of LPM elongation have already been shown in Xenopus, with the R LPM lengthening faster 

than the L LPM (Muller et al., 2003).  Shortened guts in Pitx2 overexpression embryos and the 

observation of asymmetries in gut thickness suggest that Nodal signaling may also affect the 
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endoderm.  The gain- and loss-of-function assays used to manipulate actin cytoskeleton 

dynamics could also be used to determine if Nodal signaling affects the thickness of the 

endoderm.  It may also be possible that Nodal signaling works in parallel with pathways in the 

endoderm, which function to control intercalation dynamics and/or endoderm thickness, to 

direct gut looping.  

It is thought that the use of differential elongation as part of the mechanism to drive gut 

looping is not relevant in higher vertebrates because the mouse and chicken gut tube appear 

symmetric in cross-section (Welsh et al., 2013), and the gut endoderm is not rigidly supported 

on either side, by LPM, as it is in Xenopus.  Although there are likely species-specific variations 

in the mechanisms that control gut looping, and embryonic development as a whole, it is 

important to continue studies like this one and those investigating Nodal ligand properties in 

the Xenopus model system.  Such studies should not be looked at as just providing information 

about a specific process in Xenopus, but should instead be seen as contributing to the overall 

fundamental understanding of morphogen dynamics and tissue morphogenesis.   

Chapter V Future Directions 

Determining why Foxh1mEH1/mEH1 mice do not have patterning defects 

There are three possibilities as for why Foxh1mEH1/mEH1 mice did not display a phenotype: 1) the 

Foxh1 transcriptional-switch mechanism is not conserved, 2) the EH1 mutation does not fully 

disrupt Foxh1-Grg binding, or 3) components of a buffered regulatory system can compensate 

for loss of Foxh1-Grg–mediated repression.  I first wanted to test if the loss of Foxh1-Grg–

mediated repression was being compensated for by a buffered regulatory system by reducing 
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the levels of a presumed major contributor to the system, Lefty2, in the Foxh1mEH1/mEH1 

background.  To do this, I obtained the Lefty2ΔASE mouse line from Dr. Yukio Saijoh at the 

University of Utah.  The Lefty2ΔASE allele lacks the asymmetric enhancer (ASE) of Lefty2, thus 

preventing Lefty2 expression in the LPM.  We chose the Lefty2ΔASE allele over the Lefty2 null 

allele because, unlike the null, it is not embryonic lethal.  Lefty2-/- embryos die because of 

gastrulation defects (Meno et al., 1999), preventing analysis of L-R patterning in these embryos.  

Lefty2ΔASE/ΔASE embryos bypass gastrulation defects because the enhancer responsible for 

driving Lefty2 expression at this stage is unaffected by the ASE deletion.  Lefty2ΔASE/+ appear 

phenotypically normal comparable to wild-type mice, while two-thirds of Lefty2ΔASE/ΔASE mice 

die shortly after birth because of heart defects.  The other one-third survives to adulthood with 

no detectable heart defects (Meno et al., 2001).  Breeding ΔASE mice to mEH1 would test for a 

sensitization of the Foxh1mEH1/mEH1 background to alterations in Nodal signaling, either in the 

heterozygous or homozygous condition for ΔASE.  

So far, however, Foxh1mEH1/mEH1;Lefty2ΔASE/+ embryos at E15.5 show no defects in organ situs or 

morphology, although because these experiments were begun towards the end of my thesis 

research period, the number of these embryos is low (n = 2).  Because most Nodal signaling 

mutants display incomplete penetrance or variable expressivity (see Chapter V for further 

details), more embryos and stages need to be analyzed before conclusions can be drawn.  It is 

possible that Foxh1mEH1/mEH1 mice may need to crossed to Lefty2ΔASE/ΔASE mice before a mutant 

phenotype is seen.  In this situation, we would look for enhancement of the Lefty2ΔASE/ΔASE 

phenotype, which would suggest synergy between the mEH1 mutation and loss of Lefty2.  For 

example, there might be embryonic lethality (Lefty2ΔASE/ΔASE pups die just after birth), fewer 



139 
 

mice might survive to adulthood without defects, and/or there could be an increase in the 

severity of situs defects.  If an increase in the severity of the Lefty2ΔASE/ΔASE phenotype were not 

observed, the lack of any sensitization in the mEH1 condition could provide even stronger 

evidence that Foxh1-Grg–mediated repression is not important in regulating Nodal signaling.   

It has also been suggested that a Foxh1 null allele could be introduced into the Foxh1mEH1 

background (to create Foxh1mEH1/- animals) as another test of a sensitized condition, this time 

by reducing the level of Grg binding—here we are assuming that the Foxh1-Grg interaction is 

not fully disrupted in Foxh1mEH1/mEH1 mice—and reducing the activator functions in the 

Foxh1mEh1 protein.  It is uncertain if a null plus EH1 mutation will result in a mutant phenotype, 

as both Foxh1+/- (Hoodless et al., 2001; Yamamoto et al., 2001) and Foxh1mEH1/mEH1 animals are 

normal. 

In principle, analyzing Groucho mutant mice for gastrulation or L-R patterning defects could be 

a complementary way of addressing the function of Grg-mediated repression in the regulation 

of Nodal signaling.  Grg4/Tle4 null mice were just recently reported (Wheat et al., 2014).  The 

authors made a conditional Grg4fl allele, and inactivated it in all tissues using β-actin:Cre.  This 

“global null” had defective hematopoiesis and bone development, but no “obvious organ 

abnormalities.”  The Groucho domain (WD-repeats domain) that is largely responsible for Fox 

or other protein interactions via binding to the EH1 motif is highly conserved (>80% amino-acid 

sequence identity) among Groucho family members (Jennings and Ish-Horowicz, 2008).  Several 

Grg members are expressed during gastrulation and L-R patterning when Nodal signaling is 

active, raising the possibility that Grg proteins function redundantly and that no Nodal signaling 
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defects would exist in single Grg knockouts.  To my knowledge, Grg double, triple, or quadruple 

knockouts have not been reported.   

Epigenetic control of Nodal transcription 

Recent work has begun to uncover the type of epigenetic marks that exist at the Nodal locus in 

embryonic stem cells (ESCs; mouse and human) and how such marking compares to those in 

differentiated lineages such as endoderm.  However, very little is known about the epigenetic 

markings at the Nodal locus in the embryo during A-P axis formation, gastrulation and L-R 

patterning.  Identifying the types of active and repressive marks at the Nodal locus at various 

developmental stages could provide deeper insight into how Nodal expression is 

spatiotemporally regulated in such a dynamic fashion.  Analyzing the epigenetic marking could 

also serve as another way to investigate whether or not Foxh1-Grg–mediated repression has a 

role in regulating Nodal transcription.  Below, I focus only on describing experiments that will 

help identify the types of active and repressive marks associated with the Nodal locus ASE, as 

the Nodal enhancer is bound by Foxh1. 

To facilitate such an investigation, I obtained a fluorescent reporter of Foxh1-dependent Nodal 

signaling, which was generated in the lab of Jérôme Collignon (Université Paris-Diderot, France).  

The reporter consists of the Nodal ASE sequence linked to a destabilized eYFP (Granier et al., 

2011), and ASE activation causes YFP expression (Fig. 6.2).  Because Nodal, Lefty2, and Pitx2 all 

have an ASE, YFP will be produced in a cell when any of these three genes are transcribed, 

therefore, the transgene represents Nodal signaling as a whole, and is not just a read out of 

Nodal transcription.  This is exemplified by symmetrical YFP expression in the head 
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Fig. 6.2  ASE-YFP transgene expression in E8.25 embryos.  (A) Immunolabeling 

for YFP in a whole-mount E8.25 embryo.  YFP localization is seen in the L LPM 

and the head fold (arrow).  (B) Schematic shows sectional plane (line) of the 

cryosection to the left.  YFP localizes to the L LPM and not the R LPM.  (A) Left 

lateral view.  A, anterior; L, left; P, posterior; R, right. 
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 mesenchyme, where symmetrical Pitx2 expression is observed (Ryan et al., 1998).  With this 

tool, cells actively undergoing Nodal signaling (YFP+) can be separated from non-signaling cells 

(YFP-) by flow sorting of cells from mouse embryonic tissues dissected during stages of Nodal 

signaling (i.e. E5.5-7.25, E8.25).  Wild-type YFP+ and YFP- populations, as well as Foxh1mEH1/mEH1 

YFP+ populations, would then be analyzed via chromatin immunoprecipitation (ChIP) to 

determine the types of active or repressive marks on the ASE, and results compared between 

various tissues.  If both wild-type and Foxh1mEH1/mEH1 YFP+ populations share the same 

epigenetic markings, it could imply the Foxh1-Grg–mediated repression is not disrupted in 

mEH1 mutant embryos, or that it is not a conserved regulator of the epigenetic state of the 

Nodal locus in mouse.  If different markings were to be observed between the two cell 

populations, we would have evidence that the Foxh1-Grg interaction is disrupted, but is 

functionally compensated for by a component of the buffered regulatory system.  For example, 

the buffered system could offset the loss of epigenetic repression at the Nodal locus by 

inhibiting nuclear translocation of the co-activator pSmad2.  These analyses could be extended 

to Lefty2 and Pitx2 to determine if Foxh1-Grg–mediated repression is involved in their 

epigenetic regulation. 

Infertility and thymus growth defects in Foxh1mEH1/mEH1 mice 

Although defects in embryogenesis were not detected in Foxh1mEH1/mEH1 mice, some adult mice 

displayed abnormalities not seen in Foxh1F/F control (“F” refers to FLAG tag) or wild-type 

animals.  For example, Foxh1mEH1/mEH1 males homozygous for the ASE-YFP transgene 

(Foxh1mEH1/mEH1;ASE-YFP/ASE-YFP) are presumed infertile.  Because the genomic insertion site of 
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the ASE-YFP transgene has not been mapped, locus specific primers cannot be designed and 

transgene homozygosity is determined by crossing the mouse in question with a wild-type 

mate.  If all pups from this cross have the ASE-YFP transgene, the non-wild-type parent can be 

considered transgene-homozygous.  A total of four Foxh1mEH1/mEH1 males carrying the transgene 

have been tested for transgene homozygosity.  Foxh1mEH1/mEH1 male mice carrying the transgene 

always produce offspring with and without the transgene (n = 2/2; each male mated at least 

four times), indicating that these males are heterozygous for the transgene.  Therefore, I am 

proposing that the infertile Foxh1mEH1/mEH1 mutant male mice carrying the ASE-YFP transgene 

are transgene-homozygous (n = 2/2; one mated twice, the other mated six times without 

impregnating females).  Males of the following genotypes are all fertile:  Foxh1mEH1/mEH1, 

Foxh1mEH1/+;ASE-YFP/ASE-YFP, Foxh1mEH1/mEH1;ASE-YFP/+, Foxh1+/Foxh1+;ASE-YFP/ASE-YFP, 

Foxh1F/F, and Foxh1F/F;ASE-YFP/ASE-YFP.  Nodal was recently discovered to regulate germ-cell 

potency during testis development (Spiller et al., 2012), as reviewed in the introduction to this 

thesis (Chapter I).  It is possible that the ASE-YFP transgene insertion disrupts a gene that 

synergizes with the Foxh1mEH1 mutation to disrupt specification of male germ cells.  Male germ-

cell development will need to be analyzed in these embryos.  To date, no other defects have 

been identified in the presumed Foxh1mEH1/mEH1;ASE-YFP/ASE-YFP males.  The fertility of 

Foxh1mEH1/mEH1;ASE-YFP/ASE-YFP females has not yet been studied in detail.  If 

Foxh1mEH1/mEH1;ASE-YFP/ASE-YFP male infertility arises from disruption of germ-cell maturation, 

females should be unaffected, as Nodal signaling occurs only in the XY germline (Spiller et al., 

2012).   
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Some Foxh1mEH1/mEH1 mice have died prematurely from a very enlarged thymus.  Prior to death 

or euthanasia, mice presented with weight loss, ruffled fur, and labored breathing.  In total, six 

Foxh1mEH1/mEH1 mice died between 2-4 months of age.  Three mice were autopsied and found to 

have a grossly enlarged thymus that completely eclipsed the lungs and heart (Fig. 6.3A), with 

cause of death likely being internal strangulation from the thymus occupying most of the chest 

cavity, restricting lung inflation.  In healthy animals of this age, the thymus is a bilobed organ 

positioned just anterior of the heart, typically only obscuring the aortic arch.  One of the 

enlarged thymi, along with the attached heart and lungs, was collected for histological analysis.  

The enlarged thymus did not have morphologically defined lobes, and hematoxylin and eosin 

staining on a small portion of this tissue did not detect the expected distinct tissue architecture 

of capsule, medulla, and cortex.  Instead, the tissue was composed of fairly homogeneous fields 

of small, rounded cells with little cytoplasm (Fig. 6.3B).   

We currently think that the enlarged thymi represent tumors of some sort, although the 

analysis is still ongoing.  We first tested if the tissue was a thymoma derived from thymic 

epithelium, but none of the ‘overgrown tissue’ was positive for any markers of the thymic 

epithelium, such as CD205 and keratin-14 (Fig. 6.3C).  We sent paraffin and cryosections of the 

enlarged thymus to Nancy Manley (University of Georgia, Athens), an expert in parathyroid and 

thymus development, to further analyze this tissue.  Her lab is in the process of immunolabeling 

for additional informative proteins such as CD45 (marking all hematopoietically derived cells), 

Ikaros (lymphocytes), CD4 (helper T cells), CD8 (cytotoxic T cells), PDGFRa (capsule), and CD31 

(vasculature).  
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Fig. 6.3  Foxh1mEH1/mEH1 mice have enlarged thymi.  (A) Enlarged thymus in a female 

Foxh1mEH1/mEH1 mouse.  The thymus completely eclipses the heart and lungs, which are 

normally visible in a wild-type mouse.  (B) H&E staining on paraffin sections of a normal-sized 

thymus from a Foxh1mEH1/mEH1 mouse and a piece of the enlarged thymus.  Typical thymic 

architecture is lost in the enlarged thymus (staining by Jeff Duryea).  (C) Immunostaining for 

UEA1 (endothelial cells) and Keratin14 (thymic epithelium).  The normal-sized thymus stains 

with both markers, while tissue from the enlarged thymus does not (staining by Caroline 

Wiser).  This suggests that the enlarged thymus is not a thymoma, a tumor originating from the 

thymic epithelial cells.   
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A thymoma is just one example of thymic neoplasia.  Hyperplasia, thymic carcinoma, 

thymolipoma, and lymphomas can all present with an enlarged thymus.  True thymic 

hyperplasia is an increase in the size of the thymus, but the overall structure is preserved 

(Strollo et al., 1999).  The enlarged mutant thymus is most likely not hyperplasia, as the 

structural organization of the thymus is lost.  It is also most likely not thymolipoma, which is a 

slow-growing benign neoplasm that is encapsulated and contains adipose tissue (Strollo et al., 

1999).  Hematoxylin and eosin staining did not detect adipose tissue in sections of the enlarged 

mutant thymus.  Thymic carcinoma arises from the epithelium of the thymus and outwardly 

resembles a thymoma.  However, like the enlarged mutant thymus, a carcinoma is not 

encapsulated, and it is identified by the absence of normal histologic and immunohistochemical 

characteristics of thymic epithelial cells (Goldstein et al., 2014; Strollo et al., 1999).   It is also 

possible that the enlargement of the thymus is due to a lymphoma.  Primary mediastinal large 

B-cell lymphoma typically occurs in young adult females.  It is thought to arise from thymic 

medullary B cells, which present as large-to-medium cells with indistinct borders.  The thymus is 

also not encapsulated in this condition.  Another lymphoma, lymphoblastic lymphoma, is 

unencapsulated and contains small immature lymphoblastic T cells.  This condition is more 

common in males. 

Based on these histological and morphological descriptions, the enlarged thymi from 

Foxh1mEH1/mEH1 mice most resemble thymic carcinoma or lymphoma.  The additional 

immunohistochemical analyses being performed by Dr. Manley’s lab will help determine if the 

cells comprising the enlarged thymus are T or B cells.  However, from the initial hematoxylin 

and eosin analysis, these cells appear small with little cytoplasm, suggesting that these cells 
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may be T cells.  Also, several of these thymic neoplasms (i.e. carcinoma and lymphoma) result in 

metastases to other organs like the lungs (Strollo et al., 1999).  Therefore, it could be useful to 

analyze the lungs from the Foxh1 mutant animal for metastatic lesions (lungs were collected 

with the enlarged thymus).  This will help determine if the thymic growth is cancerous or 

benign, and potentially pinpoint a condition.  

So far, only the Foxh1mEH1/mEH1 females have been found with an enlarged thymus.  It is not 

known if this correlation is significant, or coincidental because my mouse colony has many 

more females than males.  Of the three mice autopsied, two were siblings and the third from a 

distinct litter had a sibling that died around 2-3 months of age, but was not autopsied.  Two 

additional Foxh1mEH1/mEH1 females, both siblings in another litter, died unexpectedly at 3-4 

months of age, but were quickly disposed of by Division of Animal Care technicians, preventing 

analysis.  Although the enlarged thymus phenotype could therefore have potentially occurred 

in only six mice so far, I have not witnessed any unexpected deaths at these ages (2-4 months) 

in Foxh1F/F mice, or any other genotype in my mouse colony, which carried an average of 45 

cages for the past three years.  The appearance of this phenotype in siblings suggests some 

form of genetic underpinning.  Its absence in Foxh1F/F mice, which have essentially the same 

mixed background as Foxh1mEH1/mEH1 mice, suggests that the phenotype is specifically coupled 

to their Foxh1mEH1/mEH1 status. 

To my knowledge, Nodal signaling has not been implicated in thymus development.  Other 

members of the TGF-β superfamily, primarily the TGF-β ligands themselves, are thought to have 

important roles in differentiation and proliferation of T-cells (reviewed in Licona-Limón and 
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Soldevila, 2007).  In addition, expression of Activin, ALK4, Smad2, Smad3, and Smad4 has been 

described in the developing thymus and in thymocytes from adult mice (Licona et al., 2006), but 

much work is still needed to elucidate the function of Activin signaling in the thymus.  It is 

possible that Nodal has a yet-unidentified function in the thymus, or that Foxh1 functions 

independently of Nodal, perhaps within the highly related Activin-signaling pathway.  The 

potential role for Grg proteins in thymus development/homeostasis is also still emerging.  The 

recent characterization of Grg4-/- mice revealed thymic atrophy and a reduced number of 

lymphocytes (Wheat et al., 2014).  This phenotype differs from what is seen in Foxh1mEH1/mEH1 

mice (atrophy vs. enlargement).  It is possible that multiple Grg co-repressors are involved in 

thymus development and that they function in different pathways.  Therefore, Foxh1 may be 

interacting with Grgs other than Grg4 in the thymus (mEH1 mutation should disrupt binding 

with all Grg proteins).  A primary level of analysis would include in situ hybridization analysis on 

sections of the enlarged thymus to determine if Foxh1 and Nodal circuit members (Nodal, 

Lefty2, and Pitx2) are expressed in comparison to wild-type thymus. 

Also, it is plausible that mutations in additional genes in the Foxh1mEH1/mEH1 background are 

contributing to the enlarged thymus phenotype.  Since only 2-3% of Foxh1mEH1/mEH1 mice have 

this defect, the gene(s) may act as a modifier of Foxh1/Nodal signaling function, or could even 

function independent of Foxh1.  Whole exome sequencing could be used to determine if and 

what other genetic lesions exist in enlarged Foxh1mEH1/mEH1 thymi, in addition to the EH1 

mutation, compared to wild-type thymi.  Comparison to Foxh1F/F thymi may also be beneficial 

in determining if additional point mutations were introduced into the genome during RMCE in 

ESCs, prior to the generation of chimeras.    
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It is interesting to speculate as to why Foxh1mEH1/mEH1 mice have thymus defects and apparently 

infertility issues, but not in A-P axis formation, gastrulation, or L-R patterning.  It is possible that 

Nodal signaling may not be as heavily buffered in these tissues as it is in embryonic tissue 

patterning and body axis formation.  For example, in metastatic melanoma cells, Lefty2 is not 

expressed, and Nodal signaling goes unchecked (reviewed in Strizzi et al., 2012).  Therefore, the 

loss of Foxh1-Grg–mediated repression may be less easily compensated for in the thymus and 

male germline.   

Characterization of novel Foxh1 hypomorphs 

During my analysis of Foxh1mEH1/mEH1 mice, we discovered that one Foxh1mEH1/mEH1 embryo still 

carrying the hygromycinR (hygroR) cassette (Foxh1mEH1+hygro/mEH1+hygro) displayed bilateral Nodal 

expression at E8.25 (Fig. 6.4A,B).  Further analysis revealed that Foxh1mEH1+hygro/mEH1+hygro 

embryos and those homozygous for the wild-type Foxh1F allele but still containing a hygroR 

cassette (Foxh1F+hygro/F+hygro), phenotypically resembled the least severe phenotype observed in 

Foxh1-/- embryos at E9.5 (Hoodless et al., 2001; Yamamoto et al., 2001).  These embryos had 

underdeveloped anterior structures, fused heads, enlarged pericardiums, and delayed turning 

(n = 3/3 of Foxh1F+hygro/F+hygro embryos; n = 3/4 Foxh1mEH1+hygro/mEH1+hygro embryos) (Fig 6.4C-E).  

Because one Foxh1 mutant hygroR-containing embryo appeared morphologically normal at 

E9.5, I analyzed embryo morphology at E15.5 to determine how late into development these 

embryos could survive and if they exhibited abnormal L-R asymmetry.  The single 

Foxh1mEH1+hygro/mEH1+hygro embryo recovered at this stage was reabsorbing and the single 

Foxh1F+hygro/F+hygro embryo was severely holoprosencephalic, with a large ‘proboscis’ and a single 
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Fig. 6.4  Insertion of hygromycinR cassette in Foxh1 locus disrupts embryonic development.  

(A,B) Nodal expression in a Foxh1mEH1+hygro/mEH1+hygro E8.25 embryo.  Ectopic R-sided 

expression is seen within the R LPM (red arrows).  (C-E) E9.5 morphology of a (C) wild-type 

embryo, (D) Foxh1mEH1+hygro/mEH1+hygro embryo, and a (E) Foxh1F+hygro/F+hygro embryos.  Mutant 

embryos display underdeveloped anterior structure and delayed turning, among other 

defects. (A) anterior view; (B) posterior view; (C-D) left lateral views.  L, left; R, right. 

mEH1 + hygro 
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 eye field directly below it (Fig 6.5A).  Further analysis of this embryo revealed right pulmonary 

isomerism and an abnormal heart (Fig. 6.5B-D).  No animal homozygous for the Foxh1mEH1+hygro 

or Foxh1F+hygro allele has been born; therefore, it is assumed that these alleles cause embryonic 

lethality. 

These defects, as well as those seen at stage E9.5, are classic indicators of decreased levels of 

Nodal signaling.  However, the bilateral Nodal expression seen in one of the E8.25 embryos (n = 

1/1) can be attributed to increased Nodal signaling associated with the loss of inhibitors 

(i.e.Lefty1-/-), defects in the midline thereby allowing right-sided development of Nodal 

expression, or defects in cilia-based flow at the node, which can randomize or cause bilaterally 

symmetric Nodal expression.  Despite the low number of cases so far analyzed, taking the 

results together, however, is somewhat suggestive of defects in Nodal signaling during 

gastrulation, which affect the patterning of the anterior primitive streak and its derivatives such 

as the node and prechordal plate.  The lack of proper specification of these tissues then affects 

L-R patterning.  Cyclopia, which is most commonly associated with defects in Shh signaling, 

could be caused by reduced and abnormal specification of the prechordal plate and midline 

tissues where Shh is normally expressed during development (for a review of 

holoprosencephaly mouse models, see Hayhurst and McConnell, 2003).  Additional sectional 

and in situ hybridization analyses of Shh in E8.25 embryos will be needed to determine the 

cause of holoprosencephaly in the Foxh1 hygroR-containing hypomorphs.  

The presence of the hygroR cassette upstream of the Foxh1 transcriptional start site likely 

creates a fairly strong hypomorphic allele with reduced capacity to activate downstream target 
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Fig. 6.5  Foxh1F+hygro/F+hygro E15.5 embryo displays holoprosencephaly and situs defects.  

(A) Left lateral view of a Foxh1F+hygro/F+hygro embryo with severe holoprosencephaly.  A 

presumed single eye field is located directly below a large proboscis.  (B-D) This embryo 

also had (B) abnormal positioning and morphology of the heart (asterisk), in addition to 

(C,D) right pulmonary isomerism.  (C) The right lung has four lobes as usual, but the (D) 

left lung had multiple lobes, at least three could be distinguished.  A left, wild-type lung 

has one lobe.  Red dashed lines outline the individual lobes.   
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 genes of Nodal signaling (i.e. Nodal, Lefty2, Pitx2).  My preliminary in situ hybridization analysis 

detected lower Foxh1 expression levels in E8.0 Foxh1mEH1+hygro/mEH1+hygro embryos compared to 

heterozygotes or wild-type embryos of the same stage.  This result needs to be confirmed with 

qRT-PCR to quantify the degree of reduction.  Expression levels of Nodal and its downstream 

targets in embryos homozygous for the Foxh1mEH1 and Foxh1F hypomorphic alleles would also 

need to be determined.     

We are currently testing if partial release of genetic repression—that there could be a “more 

positively functioning” Foxh1 when it carries the EH1 mutation—can partially compensate for a 

reduced level of Foxh1 expression from the Foxh1mEH1 hygroR-containing hypomorphic allele.  In 

this situation, Nodal signaling levels might be restored and lead to a less severe phenotype 

compared to the Foxh1F hygroR-containing hypomorphic allele.  This comparison would require 

precise measurement of Nodal circuit gene levels by qRT-PCR.  To my knowledge, very little is 

known about the regulation of Foxh1 expression, and further investigation would be needed to 

determine how the hygroR cassette causes the hypomorphic condition, perhaps by disrupting a 

currently unidentified cis-regulatory region (interestingly, this region is not conserved among 

vertebrates), or interfering with more fundamental aspects of the transcriptional machinery 

(Fig. 6.6).  Analysis of promoter occupancy by components of the transcriptional-initiation 

complex, or determining the location of important cis-regulatory elements could distinguish 

between these two scenarios. 
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Fig. 6.6  HygromycinR cassette inserted into non-conserved region of Foxh1 locus.  

Genomic region between the transcriptional start sites of Foxh1 and its 5’ neighboring gene 

(gray box) is shown in multiple species.  Pink shading represents conserved non-coding 

regions between mouse and the species shown.  The green line is the insertion site of the 

hygroR cassette. 
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