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CHAPTER I 

 

INTRODUCTION TO DYNEIN AND DROSOPHILA GAMETOGENESIS 

 

Introduction 

Molecular motors travel along cytoskeletal tracts and perform an array of critical 

functions within cells. The myosin family of motors is responsible for actin-based 

motility and is best known for its roles in the regulation of muscle contraction, cell shape, 

and cell motility. Dynein and kinesin, on the other hand, are microtubule motors that 

transport cargo by traveling along the microtubule cytoskeleton. The majority of kinesin 

motors are involved in plus-end-directed transport, whereas dynein powers minus-end-

directed transport to mediate retrograde movement of its cargoes.  

The focus of my research has been to study the regulation of dynein during 

Drosophila spermatogenesis and oogenesis. In this chapter, I will provide an overview of 

dynein and its accessory factors with an emphasis on the LIS-1 accessory protein. I will 

further describe the function and regulation of dynein during Drosophila 

spermatogenesis. I will describe our lab’s previous work identifying Asunder as a novel 

regulator of dynein localization during Drosophila spermatogenesis. Finally, I will 

provide an overview of Drosophila oogenesis with emphasis on various patterning events 

that take place during this process. I will then highlight the critical roles played by dynein 

for proper progression through Drosophila oogenesis.  
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The Dynein Complex 

Two classes of dynein exist within cells. Axonemal dynein, which is found within 

cells containing cilia or flagella, provides the force for the beating of flagella (Gibbons 

and Rowe, 1965). More than 20 years after the discovery of axonemal dynein in 

Tetrahymena, cytoplasmic dynein was identified in neurons and shown to play a role in 

powering retrograde transport along microtubules (Paschal and Vallee, 1987). Two 

cytoplasmic dynein complexes have been identified: Cytoplasmic dynein 1, which is 

required for organelle transport and various mitotic events, and cytoplasmic dynein 2, 

which plays a role in intraflagellar transport (Cole, 2003; Vallee et al., 2004). My work is 

focused on cytoplasmic dynein 1 (hereafter referred to as dynein), which is the most 

common form of dynein and is present in all cells containing microtubules. 

Dynein is a large multimeric complex composed of six different subunits, which 

are named based on their relative molecular masses. These include the heavy chain 

containing the motor domain and five smaller subunits that form the base of the complex, 

including the intermediate chain, light intermediate chain, and three different light chains 

(Hook and Vallee, 2006; Pfister et al., 2006). Vertebrates have at least two genes 

encoding each of the subunits, whereas in Drosophila most of the subunits are encoded 

by single genes.  

The core of the dynein complex is composed of a dimer of the large ~500-kDa 

dynein heavy chain (Fig. 1.1). Each heavy chain contains a C-terminal AAA motor 

domain that is the site for ATP hydrolysis, which powers the movement of dynein on 

microtubules, as well as an N-terminal stem through which the heavy chain associates  
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Figure 1.1. The dynein complex. Cartoon depicting the structural model for the 
association of the cytoplasmic dynein complex subunits. A pair of dynein heavy chains 
contains the motor domain of the dynein complex. Dynein also associates with 
microtubules through a microtubule-binding domain in the heavy chain. Associated with 
the stem region of the heavy chain are dimers of dynein intermediate chains and light 
intermediate chains. Dimers of three light chain family members associate with the 
intermediate chain subunits and make up the rest of the dynein complex. Adapted from 
(Pfister et al., 2006). 
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with the other subunits of dynein (Vallee and Hook, 2006). The motor domain also 

contains a ‘stalk’ region through which dynein associates with microtubules.  

A dimer of the ~74-kDa intermediate chain is found associated with the stem of 

the heavy chains at the base of the dynein complex. The intermediate chain has also been 

found to directly bind dynein light chains and is predicted to target dynein to its 

intracellular cargo via its direct association with the p150/Glued subunit of the dynein 

adaptor protein, dynactin (Karki and Holzbaur, 1995; Ma et al., 1999; Paschal et al., 

1992; Pfister et al., 2006; Vaughan and Vallee, 1995). Therefore, intermediate chains 

appear to serve as a scaffold in the dynein complex. 

Also associated with the stem region of the heavy chain is a dimer of the ~50-60-

kDa dynein light intermediate chain. In contrast to other subunits, the light intermediate 

chain is unique to cytoplasmic dyneins, suggesting that its role is specific to intracellular 

transport (Mische et al., 2008). Additionally, the light intermediate chain has been shown 

to be required for maintaining the stability of the dynein complex as well as for proper 

progression through the spindle assembly checkpoint (Mische et al., 2008; Sivaram et al., 

2009). 

Dimers of three light chain families (Tctex1, Roadblock, and LC8) bind directly 

to the intermediate chain dimers and have been shown to cooperate in the binding of 

various intracellular cargoes (Pfister et al., 2006). Different light chain families have been 

shown to have unique cargo binding properties. Therefore, the specificity of dynein 

complexes of various subunit compositions for their cargoes appears to depend on the 

composition of their light chains (Chuang et al., 2001; Tai et al., 2001). Additionally, of 
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the three light chain families, the Tctex-1 family is the first to be found non-essential in 

Drosophila (Li et al., 2004).  

 

Dynein Function and Regulation 

Cytoplasmic dynein is essential for a wide variety of cellular processes. It is 

required for the transport of diverse cargoes including mRNA, protein, chromosomes, 

and membrane-bound organelles. Dynein also plays key roles in cell-cycle events, 

including nucleus-centrosome coupling, nuclear envelope breakdown, spindle 

assembly/positioning, and chromosome segregation (Gusnowski and Srayko, 2011; 

Hebbar et al., 2008; Huang et al., 2011; Salina et al., 2002; Splinter et al., 2010; Stuchell-

Brereton et al., 2011; Wainman et al., 2009). Additionally, dynein plays a role in 

developmental processes such as nuclear migration by powering the movement of nuclei 

along microtubule tracts (Xiang and Fischer, 2004).  

Because of the wide range of processes that require its activity, dynein undergoes 

multiple layers of regulation within the cell. Dynein appears to be primarily regulated by 

its subunit composition. Different dynein complexes are constructed from a combination 

of different subunit isoforms, and dynein complexes with different compositions have 

been shown to mediate distinct functions (Day et al., 2004; Ha et al., 2008; Jin et al., 

2007; Jin et al., 2009; Palmer et al., 2009; Sivaram et al., 2009). Dynein performs a 

variety of functions at different subcellular localizations. Dynein localizes to multiple 

subcellular sites during the cell cycle, such as the nuclear envelope, centrosomes, 

kinetochores, spindle microtubules, and the cell cortex (Dujardin and Vallee, 2002; 

Kiyomitsu and Cheeseman, 2012; Pfarr et al., 1990; Steuer et al., 1990; Tanenbaum et al., 
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2010). Additionally, dynein activity within the cell is also regulated by the 

phosphorylation states of its subunits as well its association with its various accessory 

factors (Dillman and Pfister, 1994; Gill et al., 1994; Hughes et al., 1995; Salata et al., 

2001; Vaughan et al., 2001; Whyte et al., 2008).  

 

Accessory Factors of Dynein 

The capacity of dynein to perform its various functions depends on its association 

with a myriad of accessory factors within the cell. Dynactin is the most well-known and 

vital accessory factor of dynein. The name “dynactin” or ‘dynein activator’ was coined 

based on its in vitro capacity to stimulate dynein-mediated vesicle transport, as depletion 

of dynactin from cells abolishes vesicle transport (Gill et al., 1991; Schroer and Sheetz, 

1991). Genetic studies in yeast, filamentous fungi, and Drosophila have since 

demonstrated that dynactin is essential for a majority, if not all, of the in vivo functions of 

dynein (Schroer, 1994; Schroer, 2004). In addition to its roles as a dynein adaptor, 

dynactin also performs dynein-independent functions within the cell (Blangy et al., 1997; 

Deacon et al., 2003; Quintyne and Schroer, 2002). 

Dynactin is also a large (~1.2 MDa) multi-subunit complex composed of 11 

unique subunits, some of which are present in more than one copy, such that each 

dynactin molecule comprises ~20 individual subunits (Fig. 1.2). The overall structure of 

dynactin can be divided into two units: the Arp1 rod and the projecting arm. The Arp1 

rod is the cargo-binding site of dynactin and is composed of the following proteins: Arp1, 

Arp11, p62, p25, p27, actin, and capZ α/β (Schroer, 2004). The three remaining dynactin 

subunits (p150Glued, dynamitin, and p24/22) constitute the projecting arm. Dynactin binds  
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Figure 1.2. The dynactin complex. Cartoon depicting the structural model for the 
association of the dynactin complex subunits. The current model for the structure of 
dynactin was generated using information obtained from structural analyses as well as 
studies of subunit interactions. The cargo-binding domain of dynactin, also known as the 
Arp1 rod domain, is made up of multiple Arp1 subunits, Arp11, actin, capZ, p62, p27 and 
p25. The projecting arm is a flexible and extendable structure composed of the remaining 
three dynactin subunits; p22/24, p50 (also known as dynamitin), and p150Glued. Dynactin 
binds to dynein as well as to microtubules through the subunits of the projecting arm. 
Adapted from (Schliwa and Woehlke, 2003).  
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microtubules and dynein through the p150Glued subunit (Karki and Holzbaur, 1995; 

Vaughan and Vallee, 1995; Vaughan et al., 2002; Waterman-Storer et al., 1995). The 

individual dynactin subunits are interdependent in that loss or overexpression of any of 

the subunits can lead to destabilization of the entire complex (Schroer, 2004). 

Dynactin, therefore, by virtue of its various subunits, directly interacts with 

microtubules, dynein intermediate chain, and the subcellular cargoes of dynein. Through 

these various interactions, dynactin supports the subcellular roles of dynein in two ways: 

first, by acting as an adaptor protein, mediating the association between dynein and its 

cargo, and second, by enhancing the processivity of dynein by increasing the time frame 

during which dynein molecules remain associated with microtubules (Culver-Hanlon et 

al., 2006; King and Schroer, 2000; Schroer, 2004).  

Recent evidence, however, has demonstrated that dynein performs some of its 

mitotic functions, such as chromosome alignment, spindle pole focusing, and force 

generation in the spindle, independently of dynactin (Raaijmakers et al., 2013). Dynein 

acts in concert with its other accessory factors, such as the Lis-1/NudE/NudEL complex, 

to perform these and other functions. The Lis-1/NudE/NudEL complex regulates dynein 

force production by acting as a “clutch” to increase attachment of dynein to microtubules 

and by promoting transport of high molecular weight cargo (Huang et al., 2012; 

McKenney et al., 2010; Ori-McKenney et al., 2011; Raaijmakers et al., 2013). In fact, 

dynactin and the Lis-1/NudE/NudEL complex compete to interact with the same site on 

the dynein intermediate chain, suggesting that different dynein complexes associate with 

different regulatory elements to perform distinct functions; Lis-1 binds to multiple 

subunits of dynein and binds to dynactin as well, however, suggesting that certain dynein 
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complexes can simultaneously associate with both dynactin and Lis-1 (Faulkner et al., 

2000; McKenney et al., 2011; Mesngon et al., 2006; Nyarko et al., 2012; Sasaki et al., 

2000; Smith et al., 2000). Dynein also interacts with proteins such as ZW10, hSpindly, 

CENP-F, and BICD2 to promote its targeting to various sites within the cell (Gassmann 

et al., 2008; Griffis et al., 2007; Raaijmakers et al., 2013; Raaijmakers et al., 2012; 

Splinter et al., 2010; Starr et al., 1998; Vergnolle and Taylor, 2007; Whyte et al., 2008).  

 

LIS1 

 Loss or mutation of a single copy of human Lissencephaly-1 (LIS1) causes type I 

lissencephaly (“smooth brain”) associated with the disruption of early migration patterns 

of neurons (Gambello et al., 2003; Hirotsune et al., 1998; Vallee and Tsai, 2006; 

Wynshaw-Boris, 2007). Individuals affected with lissencephaly display severe mental 

retardation, seizures, reduced muscle strength, and typically do not survive past early 

childhood. As a result of defects in neuronal migration, lissencephaly patients have 

reduced numbers of cells as well as cellular layers in the cerebral cortex (Reiner and 

Lombroso, 1998).  

 Neuronal migration can be divided into two steps. In the first step, the neuron 

extends leading processes towards specific sites in the nervous system. In the second 

step, called nucleokinesis, the nucleus and cytoplasmic organelles contained within the 

cell body travel along microtubule bundles towards the direction of motion (Tsai and 

Gleeson, 2005). Mouse models have demonstrated that disruption of Lis1 specifically 

interrupts the migration of nuclei through the leading processes (Gambello et al., 2003; 

Hirotsune et al., 1998; Tanaka et al., 2004; Tsai and Gleeson, 2005). Dynein is known to 
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play a major role in nuclear migration by promoting the interaction of the nucleus with 

microtubule arrays and microtubule organizing centers (Malone et al., 2003; Tanaka et 

al., 2004; Tsai and Gleeson, 2005). In fact, a recent study has shown that the apical 

migration of the nuclei of radial glial progenitor cells of the mouse brain is dependent on 

the recruitment of dynein to the nuclear envelope (Hu et al., 2013). Disruption of 

perinuclear dynein was found to cause a mitotic arrest, as these cells undergo mitosis 

only after the apical migration of the nucleus. These results strongly suggest that 

lissencephaly arises as a consequence of the disruption of dynein-mediated nuclear 

migration caused by reduced Lis1 copy number.  

 LIS1 appears to be essential for other cellular functions of dynein, as evidenced 

by the fact that mutations in LIS1 lead to defects in centrosome movements, nuclear 

envelope breakdown, spindle assembly, and chromosome segregation, all of which are 

regulated by dynein (Faulkner et al., 2000; Hebbar et al., 2008; Li et al., 2005; Tai et al., 

2002). LIS1 and dynein also colocalize at various sites within the cell such as the cell 

cortex, kinetochores, nuclear envelope, and spindle poles. The localizations of LIS1 and 

dynein have been shown to be interdependent; this dependence, however, appears to vary 

with the organism studied as well as the site to which they are localized (Cockell et al., 

2004; Coquelle et al., 2002; Lam et al., 2010; Lee et al., 2003; Siller et al., 2005; Zhang 

et al., 2003). 

 Similar to the core dynein subunits, LIS1 is dimeric. Each LIS1 polypeptide 

contains an N-terminal homodimerization domain and a C-terminal β-propeller domain 

characterized by the presence of several WD-repeat motifs (Tai et al., 2002; Tarricone et 

al., 2004). LIS1 has been shown to directly bind the dynein heavy and intermediate 
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chains as well as the dynamitin subunit of dynactin through its WD-repeat region and the 

binding of LIS1 enhances the motor activity of dynein (Faulkner et al., 2000; Mesngon et 

al., 2006; Sasaki et al., 2000; Smith et al., 2000). The NudE and NudEL proteins have 

been shown to further tether LIS1 to dynein in order to facilitate the transport of high-

load cargoes such as nuclei and centrosomes, and this function likely explains the 

observed defects in nuclear and neuronal migration when LIS-1 levels are reduced 

(McKenney et al., 2010).  

 

Meiosis 

 Accurate partitioning of cytoplasmic and genetic material is critical for successful 

cell division. There are two main forms of cell division in eukaryotes. Somatic cells 

typically undergo a canonical cell cycle with DNA synthesis during “S” phase, a mitotic 

“M” phase, and intervening gap phases (G1, which precedes S phase, and G2, which 

precedes M phase). Germ cells, however, undergo a unique form of cell division that 

involves one round of DNA replication followed by two consecutive rounds of nuclear 

division to allow the formation of haploid gametes (Miller et al., 2013). Meiosis is critical 

for sexual reproduction and forms the basis for genetic diversity as it permits the 

recombination of genomes from two individuals to produce offspring that differ 

genetically from both parents (Alberts et al., 2007).  

 The steps in mitotic and both meiotic divisions are similar in nature and are 

referred to by the same terms (prophase, metaphase, anaphase, telophase, and 

cytokinesis), although the chromosome alignment and separation in mitosis is more like 

that in meiosis II (Alberts et al., 2007). The first meiotic division follows interphase 
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during which DNA replication takes place in the premeiotic S phase. In meiosis I, 

however, the duplicated homologous chromosomes rather than the sister chromatids are 

joined together by means of a protein complex called the synaptonemal complex to form 

a structure called a bivalent. These bivalents undergo recombination and crossing over, 

where one or more fragments of the maternal chromatid are exchanged for the 

corresponding paternal chromatid by the production of double-stranded breaks in the 

DNA. At the end of meiosis I, these homologous chromosomes separate and are then 

segregated into two daughter cells. After a very brief (and sometimes absent) interphase, 

these cells progress through meiosis II, which takes place without any additional DNA 

replication. In meiosis II, similar to mitosis, the sister chromatids align at the metaphase 

plate, are pulled apart during anaphase II, and are segregated into two daughter cells such 

that the end products of both meiotic divisions are four haploid cells, each with either a 

single maternal or paternal copy of each chromosome. 

 Given the critical role of meiosis in reproduction, mistakes that occur during the 

meiotic divisions can have serious consequences. Errors of meiosis most commonly 

occur during the process of chromosome segregation (Alberts et al., 2007). Improper 

separation or nondisjunction of homologous chromosomes in meiosis I or of sister 

chromatids in meiosis II result in some haploid daughter cells lacking a certain 

chromosome while others have more than one copy of the same chromosome. Such 

defective divisions result in a condition called aneuploidy. Aneuploidy is the leading 

cause of fetal loss and birth defects (Hassold and Hunt, 2001). A surprisingly high 

number of human embryos (~20%) are produced with aneuploid gametes, however, only 

a small percent of these embryos survive (O'Connor, 2008). Aneuploidy involving the 
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sex chromosomes is generally much better tolerated than aneuploidy of the autosomal 

chromosomes, which is often associated with mental retardation and other severe defects. 

The occurrence of nondisjunction of homologous chromosomes during meiosis I in 

human females further increases with age as a result of the extended meiotic prophase I 

arrest in older human oocytes (Hassold and Chiu, 1985).  

 Since the beginning of the 20th century, Drosophila gametogenesis has been a 

very useful model system for studying the process of meiosis. For example, the 

chromosome theory of heredity was based on the analysis of atypical meiotic segregation 

in Drosophila ovaries (Bridges, 1916). Studies of Drosophila gametogenesis have 

provided key insights into various aspects of meiosis and the functions of a host of genes 

that are required during meiosis (Anderson, 1925; Boschi et al., 2006; Collins et al., 

2012; Herskowitz and Muller, 1954; Kracklauer et al., 2010; Lindsley and Sandler, 1977; 

Orr-Weaver, 1995; Sitaram et al., 2012; Wainman et al., 2009). 

 

Drosophila Spermatogenesis 

Drosophila spermatogenesis is an excellent system for studying the regulation of 

cell division. The stages of Drosophila spermatogenesis are well defined (Fig. 1.3) 

(Fuller, 1993). The hub cells at the apical tip of the testes are in contact with germline 

stem cells that are enclosed within a pair of somatic cyst progenitor cells. The germline 

stem cells divide asymmetrically to produce spermatogonial cells, each of which is 

enclosed by a pair of cyst cells, which are a product of cyst progenitor cell division. The 

spermatogonial cells undergo four rounds of synchronous mitotic divisions with 

incomplete cytokinesis to generate 16 primary spermatocytes. These 16 cells remain  
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Figure 1.3. Drosophila spermatogenesis. Cartoon depicting the various stages of 
Drosophila spermatogenesis. Germline stem cells divide asymmetrically to produce 
spermatogonial cells that undergo four rounds of mitosis with incomplete cytokinesis to 
produce 16-cell cysts of primary spermatocytes. Connections formed between cells as a 
result of incomplete cytokinesis are represented by red circles. Primary spermatocytes 
undergo an extended period of dramatic growth and gene expression and then divide 
meiotically to produce four round spermatids. Centrosomes of spermatocytes and basal 
bodies of spermatids are shown in green. These immature spermatids elongate and 
differentiate to form mature sperm.  
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interconnected by cytoplasmic bridges and enclosed within the two cyst cells throughout 

spermatogenesis. 

The 16 cells within a cyst then undergo premeiotic DNA replication followed by a 

prolonged G2 phase lasting up to 90 hours during which cell volume increases ~25-fold 

(Fuller, 1993). The primary spermatocytes then undergo meiosis I to yield 32-cell cysts 

of secondary spermatocytes. After a short-lived interphase II, the secondary 

spermatocytes undergo meiosis II to generate 64-cell cysts of haploid round spermatids.  

Spermatids undergo a complex process of differentiation to develop into mature 

sperm (Fuller, 1993). In early stages of spermatid differentiation, the mitochondrial mass 

undergoes a very striking and unique transformation. Two giant mitochondrial aggregates 

form from the fusion of individual mitochondria within each spermatid, and these two 

aggregates form multiple layers that interleave with each other and are wrapped to form a 

densely packed phase-dark sphere called the Nebenkern. In the elongation step that 

follows, the spermatids undergo dramatic changes in cell shape. Within the growing 

sperm tail, the spherical mitochondrial derivative unfurls and elongates with the flagellar 

axoneme that extends from the basal body. At the end of the late stages of spermatid 

elongation and maturation, individualization takes place along the entire length of the 

spermatid bundle. During this process, excess cytoplasm is expelled, and the connections 

between the spermatids within a cyst are lost, thereby leading to the formation of 

individualized spermatozoa. 

 Centrioles are generally dispensable for mitosis, but spermatocytes that lack 

centrioles form highly abnormal meiotic spindles and fail to initiate cytokinesis (Basto et 

al., 2006; Bettencourt-Dias et al., 2005). Centrioles are also required to form the sperm  
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Figure 1.4. Centrosome movements in Drosophila primary spermatocytes. 
Centrosomes (red) associate with the cell cortex in early G2 spermatocytes. At this stage, 
one of the centrioles organizes a primary cilium of unknown function. The centrosomes 
nucleate astral microtubules (green) and detach from the cell cortex at the G2-M 
transition and are found attached to the nucleus (blue) in prophase spermatocytes. They 
then move along the nuclear envelope and separate to opposite poles by the end of 
prophase to initiate the formation of the meiotic spindle. 
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axoneme. In Drosophila male meiosis, centrosomes undergo dramatic changes in position 

similar to centrosome movements observed in the mitotic cell cycle of polarized 

epithelial cells (Fig. 1.4) (Reinsch and Karsenti, 1994). In primary spermatocytes, 

centrosomes migrate to the cortex at the end of S phase. By late G2, the centrosomes 

nucleate astral microtubules, and by early prophase, they dissociate from the cortex and 

attach to the nuclear surface. As reported for mitosis, this attachment may promote early 

meiotic events such as microtubule-induced nuclear envelope breakdown and 

chromosome capture by spindle microtubules (Beaudouin et al., 2002; Salina et al., 

2002).  

 

Regulation of Dynein in Drosophila Spermatogenesis 

 Dynein is essential for proper progression through Drosophila spermatogenesis 

(Anderson et al., 2009; Li et al., 2004). Dynein displays a dynamic localization 

throughout spermatogenesis: it is dispersed uniformly throughout the cytoplasm during 

early and mid-G2, and it becomes enriched on the nuclear surface by the end of G2. 

Dynein accumulates at the centrosomes at prophase of meiosis I and II and is enriched at 

the spindle poles from prometaphase through the completion of telophase. Dynein is 

additionally observed at the kinetochores during prometaphase. At the end of the meiotic 

divisions, dynein localizes in the form of a hemispherical cap on the nuclear surface of 

immature spermatids.  

Perinuclear dynein is important for the proper movement of the centrosomes and 

their attachment to the nuclear membrane (Fuller, 1993; Reinsch and Gonczy, 1998). 

This anchored pool of dynein appears to promote stable attachment of nuclei and 
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centrosomes by mediating minus-end directed movement of nuclei along astral 

microtubules (Reinsch and Gonczy, 1998). Dynein mutation disrupts nucleus-centrosome 

attachments in Drosophila and C. elegans embryos (Gonczy et al., 1999; Robinson et al., 

1999). The dynein-mediated interaction between the nucleus and centrosomes is 

important for a variety of biological processes such as nuclear-envelope breakdown, 

nuclear positioning, and nuclear migration (Beaudouin et al., 2002; Morris, 2000; 

Reinsch and Gonczy, 1998; Salina et al., 2002).  

 Our lab has previously identified the Drosophila gene asunder (asun) as a critical 

regulator of dynein-dynactin localization and nucleus-centrosome coupling during 

spermatogenesis (Anderson et al., 2009). The attachment between nucleus and 

centrosomes is lost in the majority of asun primary spermatocytes, resulting in a strong 

prophase arrest. The spermatocytes that escape this arrest exhibit defects in meiotic 

spindle assembly, chromosome segregation, and cytokinesis. Additionally, a loss of 

nucleus-basal body coupling was observed in asun spermatids.  

 asun late G2 spermatocytes and spermatids have reduced perinuclear localization 

of dynein-dynactin, the earliest defect that we have observed in asun testes (Anderson et 

al., 2009). Combined with our understanding of the cellular roles of dynein motors, we 

hypothesized that all of the subsequent phenotypes observed in asun testes are a direct 

result of the loss of the perinuclear localization of dynein. This hypothesis was further 

corroborated by the dominant enhancement of the asun phenotype by the loss of single 

gene copies of certain dynein and dynactin subunits (Anderson et al., 2009).  

 The role of LIS-1 during Drosophila spermatogenesis has not been previously 

characterized. In Chapter II, I will describe my work in determining the role played by 
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Drosophila LIS-1 in regulating the localization of dynein-dynactin during 

spermatogenesis by characterizing the spermatogenesis defects associated with a 

hypomorphic allele of Lis-1. I will further describe my proposed model for the regulation 

of dynein localization and nucleus-centrosome coupling by cooperation between Lis-1 

and asun during Drosophila spermatogenesis.  

 

Drosophila Oogenesis 

 Drosophila oogenesis is a powerful model system for studying various aspects of 

cell and developmental biology. A typical ovary is made up of 16-18 independent “egg 

assembly lines” known as ovarioles (Bastock and St Johnston, 2008; Spradling, 1993). 

Each ovariole consists of a specialized anterior region, the germarium, and six to seven 

sequentially more mature egg chambers separated by interfollicular stalk cells (Spradling, 

1993). Within the germarium, the germline stem cells undergo asymmetric cell divisions 

that give rise to cystoblasts (Fig. 1.5). The cystoblasts undergo 4 rounds of mitotic 

divisions with incomplete cytokinesis to produce 16-cell cysts of germline cells. One 

germline cell within each cyst is specified to develop into the oocyte while the other 15 

germline cells develop into nurse cells. All the cells within a common cyst are 

interconnected by cytoplasmic bridges called ring canals. Two of the 16 cells within a 

cyst contain four ring canals; two cells contain three ring canals; four cells contain two 

ring canals; and the remaining eight cells have only one ring canal. The oocyte invariably 

develops from one of the two cells with four ring canals (de Cuevas et al., 1997). 

Individual egg chambers are formed when a cyst of germline cells separates from the  
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Figure 1.5. Drosophila oogenesis. Cartoon depicting the stages of Drosophila oogenesis. 
Within the germarium, germline stem cells (bright green) undergo asymmetric division to 
produce cystoblasts, which then divide mitotically four times with incomplete cytokinesis 
to produce 16-cell cysts. One of the 16 cells becomes specified to develop into the oocyte 
while the others form nurse cells. Each of the 16-cell cysts is enveloped by a single layer 
of follicle cells and detaches from the germarium to form an egg chamber. The 
development of the egg chambers into mature eggs is divided into 14 stages based on 
morphology. Adapted from (Ong and Tan, 2010; Roulier et al., 1998). 
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germarium, enveloped by a single layer of somatic follicle cells (Spradling, 1993). Wild-

type egg chambers are always oriented with the oocyte located at the posterior pole.  

 The development of the egg chambers into mature eggs has been divided into 14 

stages based on egg chamber morphology (Fig. 1.5) (Spradling, 1993). Stage 1 egg 

chambers are those formed immediately after separation from the germarium. These egg 

chambers gradually increase in size and undergo a wide variety of morphological 

changes. The final stage 14 egg chambers represent the mature eggs. By this stage, the 

oocyte comprises most of the volume of the egg chamber, and the nurse cells have 

degenerated. The development of a single germline stem cell to form a mature egg is a 

long process, taking roughly one week (Bastock and St Johnston, 2008).  

 The mature egg is a highly polarized structure. It is enveloped by the eggshell (or 

chorion), which is formed by the somatic follicle cells and characterized by several 

prominent features (Spradling, 1993). In the anterior of the chorion, a cone-shaped 

structure called the micropyle, which is formed by a group of 40-50 follicle cells, 

facilitates sperm entry prior to fertilization. Located in the dorsal-anterior region above 

the micropyle exist a pair of dorsal filaments (or appendages), each formed by a 

population of 150 follicle cells. The “paddle-shaped” distal region of each dorsal 

appendage supports gas exchange in eggs deposited under water. Found below the dorsal 

appendages is a structure known as the operculum, which serves as a larval “exit door” 

when the larva hatches from the egg. 
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Patterning Events during Drosophila Oogenesis 

 Determination of eggshell polarity depends on key patterning events that occur 

throughout Drosophila oogenesis (de Cuevas and Spradling, 1998; Lin and Spradling, 

1995). The determination of the future oocyte is the earliest event that provides 

asymmetry to the developing 16-cell cyst. This event is thought to occur by the first 

mitotic division within the germarium as a result of the asymmetric localization and 

distribution of a germline-specific membranous organelle called the fusome. 

 As the descendants of a single germline cell continue to divide mitotically, the 

fusome grows and branches asymmetrically into each daughter cell. By the time a 16-cell 

cyst is completed, the oldest cell within the cyst from which the other 15 cells developed 

retains the largest amount of fusomal material, while younger cells contain 

proportionately less fusome (de Cuevas and Spradling, 1998). As the future oocyte 

always contains more fusome material than its 15 sibling cells, it is thought that the 

distribution of the fusome provides the initial signal for the determination of the oocyte 

(de Cuevas and Spradling, 1998; Grieder et al., 2000; Lin and Spradling, 1995). In the 

germarium, the fusome architecture also dictates the organization of the microtubules 

within the cysts. Nurse cell centrosomes migrate into the future oocyte in a fusome-

dependent manner, thereby allowing a microtubule-organizing center (MTOC) to form in 

the posterior of the oocyte and adding another layer of asymmetry (Bolivar et al., 2001; 

Lin et al., 1994).  

 Microtubules originating from the MTOC in the posterior of the oocyte pass 

through cytoplasmic bridges into adjacent nurse cells and facilitate the transport of  
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Figure 1.6. Localization of patterning factors during Drosophila oogenesis. In early-
stage egg chambers, grk mRNA (red) and the oocyte nucleus (light blue) are both 
localized to the posterior of the oocyte. Grk signals to the posterior follicle cells (pink 
arrows) and initiates a signaling cascade. As a result of this signaling cascade, in late-
stage egg chambers, the anterior-posterior axis of the future embryo is established by 
localization of osk mRNA (orange) to the posterior of the oocyte and bcd mRNA (green) 
to the anterior of the oocyte. grk mRNA (red) and the oocyte nucleus (light blue) become 
localized to the anterior-dorsal region of the oocyte where Grk signals to the anterior-
dorsal follicle cells (pink arrows) to initiate a signaling cascade to establish the dorsal-
ventral axis of the future embryo. Dorsal is to the top; anterior is to the left.   
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maternal mRNAs and proteins from the nurse cells into the oocyte (Pokrywka and 

Stephenson, 1991; Theurkauf et al., 1992). The transport of key maternal mRNAs into 

the oocyte and their asymmetric localization within the oocyte is critical for proper 

polarization of the embryo (Becalska and Gavis, 2009). In particular, proper localization 

of oskar (osk) and nanos (nos) trancripts (to the posterior pole), bicoid (bcd) transcripts 

(to the anterior pole), and gurken (grk) transcripts (to the posterior initially and later to 

the anterior-dorsal region of the oocyte) is critical for proper establishment of the 

embryonic body axes (Fig. 1.6). grk mRNA is most critical as it is required in early egg 

chambers for the initiation of anterior-posterior patterning and in late stage egg chambers 

for the initiation of dorsal-ventral patterning. 

 Within the oocyte, in addition to the asymmetric localization of various mRNAs 

and proteins, the oocyte nucleus also exhibits dynamic localization. In early egg 

chambers, the oocyte nucleus is observed at the posterior of the oocyte with the MTOC 

located between the oocyte nucleus and the posterior pole of the oocyte. In stage 7 egg 

chambers, the posterior follicle cells produce an unknown signal that induces the 

microtubules nucleated by the MTOC to exert a force on the oocyte nucleus, thereby 

pushing it to the anterior-dorsal region of the oocyte (Zhao et al., 2012). This asymmetric 

positioning of the oocyte nucleus breaks the radial symmetry of the oocyte and, in 

conjunction with the anterior-dorsal localization of the grk mRNA, plays an important 

role in dorsal-ventral axis formation (Gonzalez-Reyes et al., 1995; Roth et al., 1995). 

 

 

 



 25 

Regulation of Dynein in Drosophila Oogenesis 

Dynein is essential for proper progression through oogenesis, and its localization 

is therefore strictly regulated. Similar to spermatogenesis, dynein exhibits dynamic 

changes in localization during oogenesis, and these changes correspond with specific 

stages of egg chambers. In the earliest stages of oogenesis, dynein first accumulates 

within the oocyte in germarium region 2b and remains within the oocyte throughout 

oogenesis (Li et al., 1994). Dynein begins to accumulate on the surface of the oocyte 

nucleus in newly formed egg chambers and remains enriched there in early to mid-stage 

egg chambers. When egg chambers reach stage 9 of oogenesis, the enrichment of dynein 

on the oocyte nuclear surface is lost, and dynein localizes to the posterior pole of the 

oocyte. Identical to its role in spermatogenesis, LIS-1 is required for the proper 

localization of dynein during Drosophila oogenesis (Swan et al., 1999).  

 Dynein is critical for proper patterning at various stages of oogenesis. Within the 

germarium, dynein has been shown to be required for maintaining the integrity of the 

fusome, as mutation of the dynein heavy chain results in the formation of a fusome with a 

highly fragmented architecture (Bolivar et al., 2001). As a consequence of the aberrant 

fusome formation, dynein mutants also exhibit defects in oocyte determination and 

centrosome migration (Bolivar et al., 2001; de Cuevas and Spradling, 1998; Lin and 

Spradling, 1995; McGrail and Hays, 1997; McKearin, 1997; Mische et al., 2008; Swan et 

al., 1999). 

 Dynein plays a major role in the transport of various mRNAs from the nurse cells 

into the oocyte (Becalska and Gavis, 2009; Clark et al., 2007; Mische et al., 2007). 

Additionally, after the establishment of the microtubule organizing center and formation 
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of a microtubule network within the oocyte, both families of microtubule motors, dynein 

and kinesin, are critical for the transport of certain mRNAs by mediating their movement 

along the microtubules to their specific sites within the oocyte (Becalska and Gavis, 

2009; Duncan and Warrior, 2002; Januschke et al., 2002). The localization of the osk 

mRNA to the posterior pole is thought to be primarily dependent on the microtubule plus-

end-directed kinesin-1, and the localization of the bcd mRNA to the anterior pole is 

thought to be primarily dynein-dependent (Becalska and Gavis, 2009; Brendza et al., 

2000; Cha et al., 2001; Duncan and Warrior, 2002; Januschke et al., 2002; Zimyanin et 

al., 2008). Localization of grk mRNA, which is required for the formation of both major 

axes, is also dependent on dynein (MacDougall et al., 2003; Rom et al., 2007; Swan et 

al., 1999). Dynein is also required for maintenance of the anterior-dorsal position of the 

oocyte nucleus in stage 10 egg chambers (Bolivar et al., 2001; Januschke et al., 2002; Lei 

and Warrior, 2000; McGrail and Hays, 1997; Schnorrer et al., 2000; Swan et al., 1999; 

Zhao et al., 2012). It is therefore clear that dynein plays a major role in the transport of 

molecules and structures to facilitate proper dorsal-ventral axis formation. 

 As mentioned earlier, asun is a critical regulator of dynein during Drosophila 

spermatogenesis (Anderson et al., 2009). ASUN has also been previously identified as an 

in vitro substrate of PNG kinase (Lee et al., 2005). pan gu (png) encodes a 

serine/threonine protein kinase expressed exclusively in the female germ line of 

Drosophila and maternally deposited within the egg (Fenger et al., 2000; Lee et al., 

2005). png was identified to be a critical regulator of the syncytial cell cycles of early 

embryogenesis in Drosophila (Shamanski and Orr-Weaver, 1991). Northern blot analysis 

of Drosophila tissues revealed that asun transcripts, while detected in the testes, are 
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present at much higher levels in ovaries and early embryos, suggesting that asun may 

play roles in oogenesis and/or embryogenesis (Stebbings et al., 1998). We were unable, 

however, to detect any significant defects in oogenesis or early embryogenesis in females 

homozygous for the f02815 allele of asun, the allele used in characterizing the male 

germline defects associated with mutation of asun (Anderson et al., 2009). We attributed 

the lack of defects in asunf02815 females to the hypomorphic nature of the f02815 allele.  

In Chapter III, I will describe my work in determining the role played by 

Drosophila ASUN in regulating dynein localization and function during oogenesis by 

characterizing females homozygous for a null allele of asun (asund93), thereby 

demonstrating that ASUN plays a conserved role in regulating the localization of dynein 

in Drosophila gametogenesis. Additionally, in Chapter IV, I will describe my preliminary 

results from a dominant enhancement screen to identify potential interactors of asun.   
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CHAPTER II 

 

REGULATION OF DYNEIN LOCALIZATION AND CENTROSOME POSITIONING 

BY Lis-1 AND asunder DURING DROSOPHILA SPERMATOGENESIS 

 

The contents of this chapter have been published (Sitaram et al., 2012) 

 

Introduction 

Dynein is a minus-end-directed microtubule motor that exists in two forms. 

Axonemal dynein promotes microtubule sliding for beating of cilia and flagella. 

Cytoplasmic dynein moves processively along microtubules and, in addition to organelle 

positioning and transport, plays key roles in cell cycle events, including nucleus-

centrosome coupling, nuclear envelope breakdown, spindle assembly/positioning, and 

chromosome segregation (Gusnowski and Srayko, 2011; Hebbar et al., 2008; Huang et 

al., 2011; Salina et al., 2002; Splinter et al., 2010; Stuchell-Brereton et al., 2011; 

Wainman et al., 2009). Dynein is a large complex composed of four subunit types: heavy 

(containing motor activity), light, intermediate, and light intermediate chains (Hook and 

Vallee, 2006; Susalka and Pfister, 2000).  

Dynactin and LIS1 are dynein accessory factors (King and Schroer, 2000; 

Mesngon et al., 2006). LIS1 directly binds several dynein and dynactin subunits through 

its C-terminal WD-repeat domain, and LIS1 binding enhances dynein motor activity 

(Faulkner et al., 2000; Mesngon et al., 2006; Sasaki et al., 2000; Smith et al., 2000; Tai et 

al., 2002). The importance of LIS1 for dynein function is evidenced by the fact that LIS1 
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mutants have defects in many dynein-dependent processes (Faulkner et al., 2000; Hebbar 

et al., 2008; Li et al., 2005; Tai et al., 2002).  

Loss or mutation of one copy of human LIS1 causes type I lissencephaly (“smooth 

brain”), a brain malformation disorder associated with neuronal migration defects 

(Gambello et al., 2003; Hirotsune et al., 1998; Vallee and Tsai, 2006; Wynshaw-Boris, 

2007). Neuronal migration requires proper migration and positioning of the nucleus 

(Malone et al., 2003; Tanaka et al., 2004; Tsai and Gleeson, 2005). Dynein plays a major 

role in regulating these processes by promoting interaction of the nucleus with 

microtubules and microtubule organizing centers. 

   The Drosophila homolog of human Lis1 plays key roles during neurogenesis and 

oogenesis, presumably via its regulation of dynein. Drosophila Lis-1 neuroblasts have 

defects in centrosome migration, bipolar spindle assembly, centrosomal attachment to 

spindles, and spindle checkpoint function (Siller and Doe, 2008; Siller et al., 2005). In 

Drosophila oocytes, Lis-1 regulates nuclear migration and positioning (Lei and Warrior, 

2000). A detailed characterization of the role of Lis-1 in Drosophila spermatogenesis, 

however, has not been reported.  

 Drosophila spermatogenesis is an ideal system for studying cell division. Meiotic 

spindles of spermatocytes are large and hence convenient for cytological analysis, relaxed 

checkpoints facilitate the study of cell cycle mutants, and alterations in the highly regular 

appearance of immature spermatids are diagnostic of meiotic division defects (Cenci et 

al., 1994; Rebollo and Gonzalez, 2000). The stages of Drosophila spermatogenesis are 

well defined (Fuller, 1993). Germline stem cells give rise to spermatogonia, which 

undergo four synchronous mitotic divisions with incomplete cytokinesis to generate 16-
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cell cysts of primary spermatocytes. After premeiotic S phase, primary spermatocytes 

enter G2, a prolonged growth period. Meiosis I yields 32-cell cysts of secondary 

spermatocytes, and meiosis II generates 64-cell cysts of haploid spermatids. Immature, 

round spermatids differentiate into mature sperm. A unique feature of spermatids in 

Drosophila and other insects involves formation of a multi-layered mitochondrial 

aggregate, the Nebenkern, which provides energy for beating of the sperm flagella.  

We previously identified asun as a regulator of dynein-dynactin localization 

during Drosophila spermatogenesis (Anderson et al., 2009). asun spermatocytes and 

spermatids show defects in nucleus-centrosome and nucleus-basal body coupling, 

respectively. Dynein mutation disrupts nucleus-centrosome attachments in Drosophila 

and C. elegans embryos (Gonczy et al., 1999; Robinson et al., 1999). A pool of dynein 

anchored at the nuclear surface is thought to promote stable interactions between the 

nucleus and centrosomes by mediating minus-end directed movement of the nucleus 

along astral microtubules (Reinsch and Gonczy, 1998). We observed reduction of 

perinuclear dynein in asun male germ cells that we hypothesize causes loss of nucleus-

centrosome and nucleus-basal body coupling (Anderson et al., 2009).  

Drosophila Lis-1 was previously reported to be required for male fertility, 

although its role in the male germ line has not been further characterized (Lei and 

Warrior, 2000). In this study, we have analyzed the role of Lis-1 during Drosophila 

spermatogenesis. We found that Lis-1 regulates centrosome positioning in spermatocytes 

and promotes attachments between the nucleus, basal body, and Nebenkern in 

spermatids. LIS-1 colocalizes with dynein-dynactin at the nuclear surface and spindle 

poles of male germ cells and is required for recruiting dynein-dynactin to these sites. We 
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provide evidence to support our model that Lis-1 and asun cooperate to regulate dynein 

localization and centrosome positioning during Drosophila spermatogenesis.     

 

Materials and Methods 

 

Drosophila stocks 

 y w was used as "wild-type" stock. Transgenic flies expressing β1-tubulin 

(product of βTub56D gene) fused at its C-terminal end to GFP and under control of the 

Ubi-p63E (ubiquitin) gene promoter were a gift from H. Oda and Y. Akiyama-Oda (JT 

Biohistory Research Hall, Osaka, Japan). Transgenic flies expressing GFP-PACT and 

DMN-GFP were gifts from J. Raff (University of Oxford, Oxford, UK) and T. Hays 

(University of Minnesota, Minneapolis, MN), respectively. Transgenic flies expressing 

GFP-ASUN were previously described (Anderson et al., 2009). tctex-1e155 was a gift from 

T. Hays. piggyBac insertion lines asunf02815 and f01662 were from the Exelixis Collection 

(Harvard Medical School, Boston, MA). Lis-1k11702, Df(2R)JP5, Df(3R)Exel6178, and 

piggyBac transposase were from Bloomington Stock Center (Indiana University, IN).  

 

Cherry-LIS-1 transgenic fly lines 

 cDNA encoding Drosophila LIS-1 (clone LD11219, Drosophila Gene Collection) 

with an N-terminal Cherry tag was subcloned into vector tv3 (gift from J. Brill, The 

Hospital for Sick Children, Toronto, Canada) for expression of Cherry-LIS-1 under 

control of the testes-specific β2-Tubulin promoter (Wong et al., 2005). Transgenic lines 
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were generated by P-element-mediated transformation via embryo injection (Rubin and 

Spradling, 1982).  

 

Generation of a null allele of asun 

 piggyBac insertion lines asunf02815 and f01662 were used to generate a two-gene 

(belphegor (bor) and asun) deletion line via FLP-mediated recombination of FRT sites in 

the transposons as previously described (Parks et al., 2004). A 4-kb genomic fragment 

containing bor and flanking regions (Fig. S9) was PCR-amplified from BAC clone 

BACR05P04 (Drosophila Genomics Resource Center, Indiana University, IN) and 

subcloned into pCaSpeR4. A stop codon was added to 5’ asun coding region, and a 

transgenic line was made using this construct. asund93 flies are homozygous for the bor 

asun two-gene deletion and bor transgene. 

 

Male fertility assay 

  Individual males (two days old) were placed in vials with five wild-type females 

(two days old) and allowed to mate for five days. The mean number of adult progeny 

eclosed per vial was determined (25 males tested per genotype). 

 

Cytological analysis of live and fixed testes 

Live and fixed testes cells were prepared for phase contrast or fluorescent 

microscopy as described (Anderson et al., 2009). Acetylated tubulin antibodies (6-11B-1, 

1:50, Sigma-Aldrich) were also used herein. Wild-type and mutant testes were isolated 

and prepared for microscopy in parallel and under identical conditions for all 
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experiments. Our designation of “late G2” and “prophase” primary spermatocytes 

corresponds to S5/S6 and M1a spermatocytes, respectively, in the staging system of 

Cenci et al (1994). We used four criteria to score primary spermatocytes as being in 

prophase: 1) well-separated centrosomes, 2) initiation of chromatin condensation (as 

evidenced by DAPI staining), 3) the presence of robust arrays of microtubules 

surrounding centrosomes (visualized by using the beta1-tubulin-GFP transgene), and 4) 

lack of appreciable nuclear envelope breakdown (as evidenced by clear demarcation 

between nucleus and cytoplasm when viewing beta1-tubulin-GFP in the cytoplasm) 

(Fuller, 1993; Rebollo et al., 2004). Confocal images were obtained with a Leica TCS 

SP5 confocal microscope and Leica Application Suite Advanced Fluorescence (LAS-AF) 

software using maximum-intensity projections of Z-stacks collected at 0.75 μm/step with 

a 63X objective. 

 

Immunoblotting 

Homogenized testes extracts from newly eclosed flies were analyzed by SDS-

PAGE (four testes pairs/lane) and immunoblotting using standard techniques. Primary 

antibodies were used as follows: dynein heavy chain (P1H4, 1:2000), dynein intermediate 

chain 1 (74.1, 1:1000, Santa Cruz), Dynamitin (1:250, BD Biosciences or ab56687, 

1:1000, Abcam), mCherry (1:500, Clontech), beta-tubulin (E7, 1:1000, Developmental 

Studies Hybridoma Bank), Cdk1 (PSTAIR, 1:1000, Upstate), and GAPDH (14C10, 

1:1000, Cell Signaling). HRP-conjugated secondary antibodies and chemiluminescence 

were used to detect primary antibodies. 
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Mammalian cell experiments 

 HeLa cells were maintained and transfected as described (Anderson et al., 2009). 

Plasmids for expression of N-terminally tagged versions of Drosophila ASUN and/or 

LIS-1 in cultured human cells were generated by subcloning into pCS2. For 

colocalization, HeLa cells were transfected with Cherry-LIS-1 and GFP-ASUN 

constructs using Lipofectamine 2000 (Invitrogen), treated with nocodazole (5 µg/ml) at 

24 hr, fixed 5 min at –20˚C with methanol, and mounted in ProLong Gold Antifade 

Reagent with DAPI (Invitrogen). Images were obtained using an Eclipse 80i microscope 

(Nikon) with Plano-Apo 100X objective. For coimmunoprecipitation, lysates of 

transfected HEK293 cells coexpressing HA-ASUN with c-Myc tag or c-Myc-tagged 

Drosophila LIS-1 were made in non-denaturing lysis buffer (50 mM Tris-Cl pH 7.4, 300 

mM NaCl, 5 mM EDTA, 1% Triton X-100). Lysates (500 µg) were incubated with anti-

c-Myc agarose beads (40 µl; Sigma) for 3 hours with shaking at 4˚C. Beads were washed 

3X in lysis buffer and boiled in 6X sample buffer. Samples were analyzed by SDS-PAGE 

and immunoblotting with c-Myc (9E10, 1:1000) and HA (CAS 12, 1:1000) antibodies. 

 

Results 

 

Lis-1 is required for spermatogenesis 

 To analyze the role of Lis-1 in Drosophila spermatogenesis, we obtained a male-

sterile allele, Lis-1k11702, with a P-element insertion in the 5’-UTR of Lis-1 (Fig. 2.1A) 

(Lei and Warrior, 2000). We found that homozygous and hemizygous Lis-1k11702 males 

uniformly failed to produce any progeny (Fig. 2.1B). Fertility of Lis-1k11702 males was  
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Figure 2.1. Lis-1k11702 males are sterile. (A) Lis-1 gene structure. Coding regions and 
UTRs are represented as filled and unfilled boxes, respectively, introns as thin lines, and 
transposon k11702 as a triangle. For simplicity, only one splice variant (transcript RA; 
www.flybase.org) is shown. (B) Bar graph of male fertility. Lis-1k11702 male sterility is 
fully reversed by precise P-element excision (“revertant”) or by transgenic rescue. (C) 
Testes and seminal vesicles dissected from males withheld from females for six days. 
Seminal vesicles of wild-type males are engorged with mature sperm, whereas flaccid 
seminal vesicles of Lis-1 males indicate failed spermatogenesis that is reversed by 
transgenic rescue. Arrowheads, seminal vesicles. Bar, 250 µm. Df(2R)JP5 (“Df”) and a 
transgenic line expressing Cherry-LIS-1 in male germ cells were used in B and C.  
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fully restored via transgenic expression of Cherry-tagged LIS-1 in male germ cells or by 

precise P-element excision; the former fully rescued all other Lis-1k11702 phenotypes 

presented herein (Fig. 2.1B; data not shown). To assess mature sperm production, we 

examined Lis-1k11702 seminal vesicles (Fig. 2.1C). Although the size and shape of Lis-

1k11702 testes appeared normal, seminal vesicles were empty, suggesting that Lis-1k11702 

male sterility results from disruption of spermatogenesis.  

 

Lis-1 spermatocytes have abnormal centrosome positioning and meiotic spindle 

formation 

We sought to determine the earliest stage at which spermatogenesis is disrupted in 

Lis-1k11702 testes. As in wild-type, we observed 16-cell cysts of primary spermatocytes in 

Lis-1k11702 testes (26/26 cysts scored), indicating successful completion of four rounds of 

spermatogonial divisions. Lis-1k11702 spermatocytes, however, exhibited profound defects 

in centrosome positioning and meiotic spindle structure.  

During the G2 growth phase of wild-type primary spermatocytes, centrosomes are 

anchored at the cell cortex; at G2/M, centrosomes migrate back toward the nucleus and 

begin to separate from each other (Fuller, 1993; Rebollo et al., 2004). Once reattached to 

the nuclear surface, centrosomes move to opposite poles during prophase. ~90% of Lis-

1k11702 prophase spermatocytes had centrosomes positioned at the cortex rather than the 

nuclear surface, presumably due to failure to break their cortical associations; wild-type 

cells rarely (<0.5%) showed this configuration (Figs 2.2A-M, 2.3). Cortical centrosomes 

of Lis-1k11702 prophase spermatocytes appeared to separate normally and undergo 

migration to opposite poles. >10% of Lis-1k11702 prophase spermatocytes had free  
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Figure 2.2. Defective centrosome positioning in Lis-1 spermatocytes. (A-L) 
Centrosomes normally at the nuclear surface (A,D,G,J) are cortical (B,E,H,K) or free 
(C,F,I,L) in Lis-1k11702 prophase I spermatocytes. (A-I) Spermatocytes expressing β-
tubulin-GFP (green) stained for γ-tubulin (red; centrosome marker). (A-C) Epifluorescent 
micrographs. DNA in blue. (D-I) XY projections (D-F) and corresponding XZ optical 
sections (G-I).  White bars mark positions of corresponding XZ optical sections. (J-L) 
Phase/fluorescence overlay images of spermatocytes expressing GFP-PACT (green; 
centriole marker). Red arrows and black arrowheads mark the surface of the nucleus 
(phase-light) and plasma membrane, respectively, of each cell. (M) Quantification of 
centrosome positioning defects in Lis-1 and asun prophase I spermatocytes expressing β-
tubulin-GFP and stained for γ-tubulin (>100 cells scored per genotype). Asterisks, 
p<0.0001 (Fisher’s exact test). (N-R) Centrosomes of metaphase (N-P) and telophase 
(Q,R) spindles are at the cortex (arrows) and often detached (arrowhead) in Lis-1k11702 but 
not wild-type spermatocytes. Bars, 10 µm. 
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Figure 2.3. Cortical centrosomes in Lis-1 spermatocytes. Lis-1k11702 prophase I 
spermatocyte stained for F-actin to mark the cortex (phalloidin; red) and γ-tubulin (blue) 
to mark centrosomes. Centrosomes that normally migrate to the nuclear surface at 
meiotic entry remain close to the cortex in Lis-1k11702 prophase I spermatocytes. Bars, 10 
µm. 
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centrosomes (unattached to the cortex or nuclear surface) similar to those of asun 

mutants, a phenotype observed in ~3% of wild-type cells (Anderson et al., 2009). ~60% 

of prophase spermatocytes heterozygous for Lis-1k11702 had either cortical or free 

centrosomes.  

In dividing Lis-1k11702 spermatocytes, meiotic spindles were typically associated 

with cortically positioned centrosomes (~95% vs. <2% for wild-type during metaphase; 

Fig. 2.2N-R). These observations suggest that cortical centrosomes present in Lis-1 

prophase I spermatocytes assemble meiotic spindles, although we have not excluded the 

possibility that spindles form normally in the mutants followed by pushing of 

centrosomes to the cortex during spindle elongation. Lis-1k11702 spindles were relatively 

long and wavy with occasional detachment of cortical centrosomes from spindle poles; 

centrosomal detachment from mitotic spindle poles has similarly been reported for Lis-1 

neuroblasts and early embryos (Robinson et al., 1999; Siller et al., 2005; Wojcik et al., 

2001). Despite defects in centrosome positioning and meiotic spindle structure, 

cytokinesis and chromosome segregation surprisingly did not appear to be grossly 

affected in Lis-1k11702 spermatocytes, as most round spermatids contained a single nucleus 

of uniform size (99%; 612/619 spermatids) (Fuller, 1993).  

We previously reported that asun is required for centrosome positioning in 

Drosophila spermatocytes (Anderson et al., 2009). Most asunf02815 spermatocytes arrest in 

prophase I with free centrosomes. We did not, however, find an increased fraction of Lis-

1k11702 spermatocytes in prophase (Fig. 2.4). Microtubules on the nuclear surface have 

been implicated in nuclear envelope breakdown at prophase exit (Beaudouin et al., 2002; 

Salina et al., 2002). We found an accumulation of microtubules (both total and  
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Figure 2.4. Staging of meiotic spermatocytes in Lis-1 testes. Bar graph shows 
percentages of primary spermatocytes in prophase (P), prometaphase (PM), metaphase 
(M), or anaphase/telophase (A/T) from Lis-1k11702 versus wild-type testes. >350 
spermatocytes were scored per genotype. 
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Figure 2.5. Normal pattern of microtubules on the nuclear surface of Lis-1, but not 
asun, spermatocytes. Prophase I spermatocytes expressing β-tubulin-GFP (green) 
stained for DNA (blue) and acetylated tubulin (red). Microtubules (both total and 
acetylated) observed on the nuclear surface of wild-type and Lis-1k11702 cells are absent 
from asunf02815 cells. Bar, 10 µm. 
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 acetylated) surrounding the nucleus of wild-type and Lis-1k11702 prophase spermatocytes 

that was absent in asunf02815 mutants (Fig. 2.5); this difference may explain the prophase 

arrest observed in asunf02815, but not Lis-1k11702, mutants. 

 

Lis-1 spermatids lack nucleus-Nebenkern-basal body attachments and have 

abnormal Nebenkern morphology 

Wild-type round spermatids contain a phase-light nucleus and a phase-dark 

mitochondrial aggregate (Nebenkern) of roughly equal size; both organelles associate 

with a centriole-derived basal body at the site of nucleus-Nebenkern linkage (Fig. 2.6A) 

(Fuller, 1993). Given the lack of nucleus-centrosome attachments in Lis-1 spermatocytes 

(Fig. 2.2), we assessed nucleus-basal body attachments in Lis-1 spermatids using male 

germline expression of GFP-tagged Pericentrin/AKAP450 centrosomal targeting (PACT) 

domain to label basal bodies (Martinez-Campos et al., 2004). We observed nucleus-basal 

body uncoupling in most Lis-1k11702 hemizygous spermatids (Fig. 2.6B-D). Furthermore, 

we frequently observed loss of Nebenkern-basal body and nucleus-Nebenkern 

attachments in Lis-1k11702 hemizygous spermatids (Fig. 2.6B-D). These results suggest that 

LIS-1 is required to maintain normal linkages between the nucleus, Nebenkern, and basal 

body during spermatogenesis. Nebenkerne of wild-type spermatids typically have a 

round, uniform shape (Fig. 2.6E). In Lis-1k11702 spermatids, however, we occasionally 

observed Nebenkerne with abnormal morphology (Fig. 2.6F-H). These findings suggest 

that LIS-1 plays a role in Nebenkern formation and/or maintenance.   

During spermatid elongation, the Nebenkern unfurls and elongates with the 

growing axoneme (Fuller, 1993). Because the basal body nucleates the axoneme, we 



 43 

 
 
Figure 2.6. Lis-1 spermatid defects. (A-C) Phase/fluorescence overlay images of round 
spermatids expressing GFP-PACT (green). Normal associations between the nucleus 
(phase-light), Nebenkern (phase-dark), and basal body (green) are lost in Lis-1k11702 

spermatids. (D) Quantification of coupling defects in Lis-1, tctex-1, and asun round 
spermatids observed in phase/fluorescence overlay micrographs. A given spermatid may 
have been scored as defective in more than one category (loss of nucleus-basal body 
(BB), nucleus-Nebenkern (Mito), and/or Nebenkern-basal body coupling). (E-G) Phase-
contrast images reveal abnormal Nebenkern morphology in Lis-1k11702 round spermatids. 
(H) Quantification of Nebenkern morphology defects in Lis-1 and tctex-1 spermatids. (I-
L) Elongating bundles of spermatids expressing GFP-PACT (green; I,J) or stained with 
phalloidin (red; marks individualization cones; K,L). DNA in blue. Lis-1k11702 bundles are 
disorganized compared to wild-type. Bars, 10 µm. Genotypes used for graphs: Lis-
1k11702/Df(2R)JP5, tctex-1e155/Df(3R)Exel6178, asunf02815/asund93 (>500 spermatids scored 
per genotype). Asterisks, p<0.0001 (Fisher’s exact test).  
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Figure 2.7. Mitochondria associate normally with sperm tails in elongating 
spermatids of Lis-1 testes. Overlaid images (fluorescence on phase-contrast) of 
elongating spermatids expressing β-tubulin-GFP (green). In wild-type spermatids, 
mitochondria (white arrowhead) unravel and elongate alongside the axoneme (arrow), 
which is nucleated by the basal body. Lis-1k11702 spermatids show normal association 
between mitochondria and the axoneme despite uncoupling of the basal body and nucleus 
(black arrowhead). Bar, 10 µm. 
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asked if Nebenkern-basal body uncoupling in Lis-1k11702 spermatids would affect this 

process. We found that the Nebenkern properly associated with the axoneme in early 

elongating Lis-1k11702 spermatids, suggesting that Nebenkern-basal body coupling is not 

essential for this process (Fig. 2.7) (Anderson et al., 2009; Inoue et al., 2004).   

 

Defects in late spermatogenesis in Lis-1 testes 

 Spermatids must undergo elongation and individualization to form functional 

sperm (Fuller, 1993). During elongation, nuclei and associated basal bodies are 

positioned at the proximal tips of growing spermatid bundles, and round nuclei acquire a 

needle-like shape (Fig. 2.6I). During individualization, actin investment cones move in 

unison along the axoneme length, resolving cytoplasmic bridges between spermatids 

formed in a common cyst (Fig. 2.6K). In Lis-1k11702 testes, however, we observed 

unattached round nuclei and basal bodies dispersed throughout the length of elongating 

spermatid bundles as well as sparse, disorganized investment cones (Fig. 2.6J,L). These 

results suggest that LIS-1 is required for positioning of spermatid nuclei within growing 

bundles. The random distribution of investment cones within elongating Lis-1k11702 

spermatid bundles may reflect loss of nuclear positioning, as investment cones are 

thought to originate at the nuclear surface (Texada et al., 2008).  

 

LIS-1 localization during spermatogenesis mirrors dynein-dynactin 

 Our results suggested roles for Lis-1 in the regulation of centrosome positioning, 

meiotic spindle assembly, nucleus-Nebenkern-basal body associations, Nebenkern  



 46 

 
 
 
Figure 2.8. Colocalization of LIS-1 and dynactin during male meiosis. (A-F) Wild-
type male germline cells coexpressing Cherry-LIS-1 (red, A1-F1; grayscale, A2-F2) and 
β-tubulin-GFP (green, A1-F1; grayscale, A3-F3). (A) Late G2 spermatocyte. (B) Late 
prophase I. (C) Metaphase I. (D) Telophase I. (E) Early prophase II. (F) Round 
spermatid. (G-L) Wild-type male germline cells show colocalization of Cherry-LIS-1 
(red, G1-L1; grayscale, G2-L2) and DMN-GFP (green, G1-L1; grayscale, G3-L3). (G) 
Late G2 spermatocyte. (H) Prophase I. (I) Prometaphase I. Inset shows colocalization of 
Cherry-LIS-1 and DMN-GFP at kinetochores (J) Metaphase I. (K) Telophase I. (L) 
Round spermatid. DNA in blue. Bars, 10 µm.  
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morphogenesis, and nuclear positioning during Drosophila spermatogenesis. To gain 

insight into how Lis-1 affects these processes, we examined the subcellular localization 

of LIS-1 during spermatogenesis using transgenic flies coexpressing Cherry-LIS-1 and β-

tubulin-GFP. LIS-1 is dispersed in the cytoplasm during early G2 with enrichment 

around the nucleus by late G2 (Fig. 2.8A; data not shown). Perinuclear LIS-1 becomes 

focused at centrosomes during prophase I and II (Fig. 2.8B,E). Throughout both meiotic 

divisions, LIS-1 concentrates at spindle poles (Fig. 2.8C,D; data not shown). In early 

spermatids, LIS-1 forms a hemispherical cap on the nuclear surface (Fig. 2.8F). Similar 

localizations have been reported for LIS-1 during mitosis; in contrast to these studies, 

however, we did not detect LIS-1 at the cortex during Drosophila male meiosis (Cockell 

et al., 2004; Coquelle et al., 2002; Faulkner et al., 2000; Li et al., 2005; Tai et al., 2002).  

Cherry-LIS-1 localization during Drosophila spermatogenesis is strikingly similar 

to that of dynein-dynactin, suggesting that LIS-1 and dynein-dynactin may colocalize at 

these sites (Anderson et al., 2009). We examined male germ cells coexpressing Cherry-

LIS-1 and GFP-tagged Dynamitin (DMN), the p50 subunit of dynactin, which colocalizes 

with dynein throughout spermatogenesis (McGrail and Hays, 1997; Wojcik et al., 2001). 

We found that LIS-1 colocalized with dynactin at the nuclear surface of G2 

spermatocytes and spermatids (Fig. 2.8G-L). In prometaphase spermatocytes, LIS-1 

colocalized with dynactin at kinetochores (Fig. 2.8I). These results are consistent with 

tight association between LIS-1 and dynein-dynactin complexes during Drosophila 

spermatogenesis, as has been reported in other systems (Faulkner et al., 2000; Mesngon 

et al., 2006; Sasaki et al., 2000; Smith et al., 2000; Tai et al., 2002).  
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Lis-1 male germ cells show loss of dynein-dynactin localization  

Although Lis-1 is an established regulator of dynein-dynactin, its mechanism of 

action is unclear. Localizations of LIS-1 and dynein-dynactin within cells have been 

shown in several cases to be dependent on each other, although their interdependency 

varies with the model system and subcellular sites (Cockell et al., 2004; Coquelle et al., 

2002; Lam et al., 2010; Lee et al., 2003). We examined localization of dynein-dynactin 

complexes in Lis-1k11702 male germ cells using antibodies against dynein heavy chain and 

transgenic expression of DMN-GFP (McGrail and Hays, 1997). Dynein-dynactin is 

normally enriched at the nuclear surface of G2 spermatocytes and round spermatids and 

at spindle poles of meiotic spermatocytes (Anderson et al., 2009; Li et al., 2004). We 

found a significant reduction in dynein-dynactin localization to these sites in Lis-1k11702 

testes (>95% of G2 spermatocytes and >80% of spermatids, >200 cells scored each; Figs 

2.9, 2.10). Immunoblotting revealed normal levels of core dynein-dynactin proteins in 

Lis-1k11702 testes, suggesting that decreased enrichment at these sites was not due to 

decreased stability of complex components (Fig. 2.11).  

 

tctex-1 male germ cells have Lis-1-like phenotypes  

 We hypothesized that the defects we observed in Lis-1k11702 male germ cells are a 

consequence of decreased dynein function. To test this hypothesis, we sought to assess 

spermatogenesis in dynein-dynactin mutants. Most null mutations in Drosophila dynein-

dynactin subunits are lethal, however, thus complicating an analysis of their roles during 

spermatogenesis. We used flies null for the Drosophila ortholog of Tctex-1, the 14-kDa 

dynein light chain, because they are viable but male sterile (Li et al., 2004).  
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Figure 2.9. Loss of dynein-dynactin localization in Lis-1 male germline cells. (A-H) 
Male germline cells stained for dynein heavy chain (green, A1-H1; grayscale, A2-H2) 
and PLP (red; centriole marker). (I-N) Male germline cells expressing DMN-GFP (green, 
I1-N1; grayscale, I2-N2). Lis-1k11702 cells have reduced dynein-dynactin localization 
relative to wild-type. Late G2 (A,E,I,L), prophase I (B,F), and telophase (C,G,J,M) 
spermatocytes and round spermatids (D,H,K,N) shown. DNA in blue. Bars, 10 µm. 
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Figure 2.10. Quantification of perinuclear dynein, dynactin, and LIS-1. Late G2 
spermatocytes or round spermatids in wild-type or mutant testes stained for dynein heavy 
chain or with transgenic expression of DMN-GFP or Cherry-LIS-1 were identified by 
fluorescence microscopy. The alleles used were Lis-1k11702, tctex-1e155/Df(3R)Exel6178, 
and asunf02815. Following image acquisition, the average intensity of the signal (dynein 
heavy chain, DMN-GFP, or Cherry-LIS-1) within a small rectangular region was 
sampled near the nuclear surface and in the surrounding cytoplasm using Adobe 
Photoshop, and the ratio of the intensities (perinuclear: cytoplasmic) was determined. 
Data are shown as scatter plots in which each dot represents the ratio obtained for one 
cell and horizontal lines represent mean ratios; for each plot, at least 15 cells from at least 
three testes pairs were scored per genotype. Statistical analysis was performed using an 
unpaired Student’s t-test. Asterisks mark mutants with significantly lower mean ratios 
compared to wild-type cells (p<0.0001). n.s. indicates that mean ratios were not 
significantly different from that of wild-type cells. 
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Figure 2.11. Normal levels of dynein-dynactin components in Lis-1 and tctex-1 testes. 
Immunoblots show wild-type levels of dynein heavy chain (DHC64C), dynein 
intermediate chain (DIC), and DMN (dynactin subunit) in extracts of Lis-1k11702 and tctex-
1 testes. Loading controls: α-tubulin, Cdk1, or GAPDH. 
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 In tctex-1 male germ cells (tctex-1e155/Df(3R)Exel6178 used in this study), we 

identified all Lis-1k11702 phenotypes described above, albeit to a lesser degree. Both 

cortical and free centrosomes were observed at higher rates in tctex-1 prophase 

spermatocytes (~14% and ~17%, respectively) compared to wild-type cells (<0.5% and 

~3%, respectively; p<0.001) (Fig. 2.12A-I). tctex-1 spermatids exhibited loss of wild-

type nucleus-basal body, nucleus-Nebenkern, and Nebenkern-basal body attachments and 

occasionally had Nebenkern shape defects (Figs 2.6D,H, 2.12J-L). We observed 

significant loss of dynein localization to the nuclear surface of tctex-1 G2 spermatocytes 

and spermatids (87% and 64% of cells, respectively; >200 cells scored each) and spindle 

poles during meiotic divisions (Figs 2.12M-R, 2.10). Another group previously reported 

nucleus-basal body coupling defects and reduced perinuclear dynein in tctex-1 spermatids 

(Li et al., 2004). We observed a less severe degree of reduction of perinuclear dynein in 

tctex-1 male germ cells compared to Lis-1k11702; this difference might explain the lower 

percentage of spermatocytes with centrosome positioning defects in tctex-1 vs Lis-1k11702 

testes (Fig. 2.10). Wild-type levels of core dynein-dynactin subunits were detected in 

tctex-1 testes by immunoblotting, suggesting that loss of dynein localization is not 

secondary to decreased levels of complex components (Fig. 2.11). 

Our phenotypic characterization of Lis-1k11702 male germ cells suggested that LIS-

1 is required for proper subcellular localization of dynein. To test for a reciprocal 

requirement, we assessed Cherry-LIS-1 localization in tctex-1 male germ cells. We found 

that tctex-1 spermatocytes and spermatids had wild-type levels of Cherry-LIS-1 on the 

nuclear surface (>200 of each cell type scored), suggesting that LIS-1 can be recruited to 

this site independent of dynein complexes (Figs 2.10, 2.13).  
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Figure 2.12. Dynein light chain mutant male germline cells exhibit Lis-1 phenotypes. 
(A-I) Prophase I spermatocytes expressing β-tubulin-GFP (green) stained for γ-tubulin 
(red). Roughly one-third of tctex-1 spermatocytes have cortical (B,E,H) or free (C,F,I) 
centrosomes (normally at nuclear surface; A,D,G). (A-C) Epifluorescent micrographs. 
DNA in blue. (D-I) XY projections (D-F) and corresponding XZ optical sections (G-I).  
White bars mark positions of corresponding XZ optical sections. (J,K) 
Phase/fluorescence overlay images of round spermatids expressing GFP-PACT (green) 
show wild-type nucleus-Nebenkern-basal body interactions that are lost in tctex-1 
mutants. (L) Phase-contrast image of tctex-1 spermatid with defective Nebenkern 
morphology. (M-R) Male germline cells stained for dynein heavy chain (red, MI-R1; 
grayscale, M2-R2) and DNA (blue). tctex-1 cells have reduced dynein localization 
relative to wild-type. Late G2 (M,P) and metaphase II (N,Q) spermatocytes and round 
spermatids (O,R) shown. Bars, 10 µm. 
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Figure 2.13. Normal LIS-1 localization in tctex-1 male germline cells. Male germline 
cells expressing Cherry-LIS-1 and DNA-stained. Cherry-LIS-1 localizes to the nuclear 
surface in late G2 spermatocytes and round spermatids from both wild-type and tctex-1 
testes. Bar, 10 µm. 
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Lis-1 dominantly enhances asun 

We previously identified asun as a regulator of dynein during Drosophila 

spermatogenesis (Anderson et al., 2009). Both asunf02815 (hypomorphic allele) and Lis-

1k11702 male germ cells both show loss of nucleus-centrosome and nucleus-basal body 

attachments, likely due to reduction of perinuclear dynein. Given these shared 

phenotypes, we questioned whether ASUN and LIS-1 might cooperate in regulating 

spermatogenesis. We tested for genetic interactions between asun and Lis-1 and found 

that the phenotype of asunf02815 males carrying a single copy of Lis-1k11702 was strongly 

enhanced; similar results were obtained using a deficiency that uncovers Lis-1 (Fig. 2.14; 

data not shown). The testes of these Lis-1k11702/+; asunf02815 males were small compared to 

Lis-1k11702/+ or asunf02815 males (Fig. 2.14A-C). The reduction in size ranged from mild to 

severe; an example of the latter is shown in Fig. 2.14C. Conversely, we did not detect 

dominant enhancement of Lis-1 by asun (data not shown).    

We found an extreme paucity of sperm bundles in Lis-1k11702/+; asunf02815 testes 

compared to asunf02815 testes, suggesting a block in spermatogenesis that would account 

for the reduced size of Lis-1k11702/+; asunf02815 testes (Fig. 2.14D,E). Although asunf02815 

testes contain an increased fraction of prophase I spermatocytes, cells at all stages of 

spermatogenesis can be readily identified (Anderson et al., 2009) (Fig. 2.14F). We 

observed a preponderance of late G2 primary spermatocytes in Lis-1k11702/+; asunf02815 

testes with very few cells beyond this stage of spermatogenesis, indicative of a severe G2 

block (Fig. 2.14G). This phenotype was more severe than meiotic phenotypes observed in 

male flies homozygous for Lis-1k11702 (no block), asunf02815 (prophase block), or a null 

allele of asun (prophase block, described below); thus, it does not appear to represent  
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Figure 2.14. Lis-1 dominantly enhances asun. (A-C) Phase-contrast images of whole 
testes show reduced size of Lis-1k11702/+;asunf02815 compared to asunf02815 and Lis-1k11702/+. 
Bar, 250 µm. (D,E) Higher magnification images show paucity of sperm bundles 
(arrowheads) in Lis-1k11702/+;asunf02815 testes compared to asunf02815. Bar, 50 µm. (F,G) 
Phase-contrast image shows asunf02815 male germ cells at various stages of 
spermatogenesis: G2 spermatocytes (white arrow), dividing spermatocytes (black arrow), 
round spermatids (white arrowhead), and sperm bundles (black arrowhead); most cells 
from Lis-1k11702/+;asunf02815 testes are G2 spermatocytes (white arrow). Bar, 10 µm.  
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merely an additive effect of the two alleles. These findings suggest that Lis-1 and asun 

cooperate in the regulation of Drosophila spermatogenesis.  

 

asun null phenotype 

In contrast to Lis-1k11702, we rarely observed cortical centrosomes in asunf02815 

prophase spermatocytes (Fig. 2.2M). Our previous studies suggested that asunf02815 is a 

hypomorphic allele (Anderson et al., 2009). We questioned whether lack of the cortical 

centrosome phenotype in asunf02815 spermatocytes might be due to low allele strength. To 

obtain a null allele of asun, we generated a two-gene deletion that removed most of the 

asun coding region and its entire neighboring gene, belphegor (bor) (Fig. 2.15A). bor is 

predicted to encode an ATPase of unknown function. Homozygous lethality of this 

deletion was rescued by a bor transgene, thus demonstrating that bor, but not asun, is 

essential for viability. Males homozygous for the two-gene deletion and carrying the bor 

transgene (referred to hereafter as asund93) were completely sterile. All asund93 

phenotypes reported herein were fully rescued via male germline-specific expression of 

GFP-ASUN, confirming that they were due to loss of asun (data not shown).  

Nucleus-centrosome uncoupling was more severe in asund93 than asunf02815 

prophase spermatocytes (Figs 2.2M, 2.15B-D). As for asunf02815, cortical centrosomes 

were rare in asund93 prophase spermatocytes, suggesting that centrosome detachment 

from the cortex during late G2 requires LIS-1 but not ASUN (Fig. 2.2M). As expected 

based on our study of asunf02815, perinuclear dynein-dynactin enrichment was greatly 

diminished in asund93 spermatocytes and spermatids (Figs 2.10, 2.15E,F; data not shown) 

(Anderson et al., 2009). asund93 round spermatids, which were scarce due to strong  
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Figure 2.15. The asun null phenotype. (A) Schematic diagram of the asun gene region. 
Coding regions and UTRs are represented as filled and unfilled boxes, respectively; 
introns as thin lines; and piggyBac transposons f01662 and f02815 as triangles. The 
breakpoints of a bor asun two-gene deletion (generated through FLP-mediated 
recombination of FRT sites within the transposons) and the design of the bor transgene 
used for rescue are shown. asund93 flies are homozygous for the bor asun two-gene 
deletion and the bor transgene. (B-D) Prophase I spermatocytes expressing β-tubulin-
GFP (green) and stained for DNA (blue). In wild-type spermatocytes (B), two 
centrosomes are attached to the nuclear surface. asund93 spermatocytes have two to four 
free centrosomes (C,D). (E,F) Late G2 spermatocytes stained for dynein heavy chain 
(red, E1,F1; grayscale, E2,F2) and DNA (blue). asund93 cells (F) have loss of perinuclear 
dynein relative to wild-type (E). (G,H) Phase/fluorescence overlay images of round 
spermatids expressing GFP-PACT (green; basal body marker). Each wild-type spermatid 
(G) has one Nebenkern (phase-dark) comparable in size to the nucleus (phase-light); the 
nucleus, Nebenkern, and basal body are all tightly associated. Each asund93 spermatid (H) 
has one large Nebenkern attached to several basal bodies and unattached, small nuclei. 
Bar, 10 µm. 
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prophase I arrest, contained multiple nuclei and four basal bodies, indicative of severe 

cytokinesis defects (99%; 99/100 cells) (Fig. 2.15G,H). asund93 spermatids exhibited 

nucleus-basal body and nucleus-Nebenkern coupling defects; in contrast to Lis-1k11702 

spermatids, however, Nebenkern-basal body coupling appeared normal (20/20 cells; Fig. 

2.15G,H). Most transheterozygous asund93/asunf02815 spermatids exhibited the same 

constellation of coupling defects as the null mutants (Fig. 2.6D).  

 

LIS-1 localization is ASUN-dependent  

Given shared spermatogenesis phenotypes and genetic interaction between Lis-1 

and asun, we questioned whether LIS-1 and ASUN might regulate each other’s 

localization. We expressed Cherry-LIS-1 in asunf02815 testes to assess the effects of 

decreased ASUN function on LIS-1 localization. We observed severe reduction of 

Cherry-LIS-1 on the nuclear surface of spermatocytes and spermatids and at spindle poles 

of dividing spermatocytes in asunf02815 testes (>97% of G2 spermatocytes and >80% of 

spermatids, >200 of each cell type scored; Figs 2.16, 2.10). Cherry-LIS-1 accumulation at 

these sites remains normal in males with mutation of a testes-specific beta-tubulin 

subunit, suggesting that its recruitment is not microtubule-dependent (data not shown) 

(Kemphues et al., 1982). We detected wild-type Cherry-LIS-1 levels in asunf02815 testes; 

thus, LIS-1 stability does not appear to require ASUN (Fig. 2.17). GFP-ASUN shows a 

wild-type localization pattern when expressed in Lis-1k11702 testes (intranuclear during 

early G2, appearing in cytoplasm during late G2), suggesting that LIS-1 is not 

reciprocally required for ASUN localization (Fig. 2.18) (Anderson et al., 2009). We infer  
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Figure 2.16. Loss of LIS-1 localization in asun male germline cells. Male germline 
cells expressing Cherry-LIS-1 (red, A1-F1; grayscale, A2-F2) and DNA-stained (blue). 
asun cells  have reduced Cherry-LIS-1 localization relative to wild-type. Late G2 (A,D) 
and metaphase I (B,E) spermatocytes and round spermatids (C,F) shown. Bars, 10 µm. 
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Figure 2.17. Normal LIS-1 levels in asun testes. Immunoblots using anti-Cherry 
antibodies show comparable levels of Cherry-tagged LIS-1 in extracts of wild-type vs. 
asunf02815 testes. Loading control: Tubulin. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

 

 
 

 
 
 
 
Figure 2.18. Normal ASUN localization in Lis-1 spermatocytes. GFP-ASUN 
expressed in Lis-1k11702 spermatocytes is nuclear in early G2 spermatocytes and 
cytoplasmic with slight perinuclear enrichment (arrow) in late G2 spermatocytes. Bar, 10 
µm. 
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Figure 2.19. LIS-1 and ASUN colocalize and coimmunoprecipitate. (A) 
Colocalization of Cherry-tagged Drosophila LIS-1 (A1; red in A3) and GFP-tagged 
Drosophila ASUN (A2; green in A3) in transfected HeLa cells. Bar, 10 µm.  (B) 
HEK293 cells were transfected with tagged Drosophila LIS-1 and ASUN expression 
plasmids as indicated. Myc (control) or Myc-LIS-1 was immunoprecipitated from lysates. 
Immunoblots of whole cell lysates (WCL) and Myc immunoprecipitates were probed 
using HA and Myc antibodies. Representative blot is shown on left, quantification on 
right (asterisk: p<0.001, paired Student’s t-test, n = 4 experiments, ImageJ analysis of 
band intensities).  
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that ASUN regulates localization of LIS-1 and dynein-dynactin, whereas LIS-1 regulates 

localization of dynein-dynactin but not ASUN.  

 

LIS-1 and ASUN colocalize and coimmunoprecipitate 

We hypothesized that LIS-1 and ASUN interact at the nuclear surface of late G2 

spermatocytes to recruit dynein-dynactin. Our efforts to demonstrate colocalization of 

LIS-1 and ASUN at the nuclear surface of spermatocytes, however, were complicated by 

the low frequency and weak accumulation of GFP-ASUN that we have observed at this 

site. We previously reported colocalization of endogenous dynein and GFP-tagged 

Drosophila ASUN at the nuclear surface of transfected, nocodazole-treated, cultured 

mammalian cells (Anderson et al., 2009). Taking a similar approach, we found that 74% 

of cotransfected cells with perinuclear localization of GFP-tagged Drosophila ASUN 

exhibited colocalization of Cherry-tagged Drosophila LIS-1 at this site (Fig. 2.19A; 

68/92 cells scored). Furthermore, we demonstrated coimmunoprecipitation of tagged 

versions of Drosophila LIS-1 and ASUN from cultured mammalian cells, suggesting 

LIS-1 and ASUN can exist within a common complex (Fig. 2.19B). 

 

Discussion and Future Directions 

Our analysis of a hypomorphic, male-sterile allele of Lis-1 revealed that Lis-1 

plays essential roles during Drosophila spermatogenesis. Our data suggest that loss of 

dynein function is the root cause of the defects that we observe in Lis-1k11702 testes, as 

mutation of the dynein light chain gene, tctex-1, phenocopies mutation of Lis-1. Based on 

their overlapping phenotypes in male germ cells, genetic interaction, colocalization, and 
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coimmunoprecipitation, we present a model in which Lis-1 and asun cooperate to 

regulate dynein localization during spermatogenesis. 

Our observations suggest that centrosomes of Lis-1 spermatocytes remain 

attached to the cell cortex and fail to migrate to the nuclear surface at entry into meiotic 

prophase. The phenotype of persistent cortical centrosomes during meiotic divisions has 

been characterized in abnormal spindles and nudE testes; Wainman et al also noted the 

presence of cortical centrosomes in Lis-1k11702 metaphase spermatocytes in their study of 

nudE mutants (Rebollo et al., 2004; Wainman et al., 2009). Dynein-dynactin and LIS-1 

localize to the cell periphery in lower eukaryotes and cultured mammalian cells as well as 

to the posterior cortex of Drosophila oocytes (Busson et al., 1998; Dujardin and Vallee, 

2002; Faulkner et al., 2000). We have not, however, detected enrichment of dynein-

dynactin or LIS-1 at the cortex of Drosophila spermatocytes. Cortical dynein has been 

implicated in regulation of mitotic spindle orientation in several systems, although the 

mechanism is not clear (Gusnowski and Srayko, 2011; Markus et al., 2009; Woodard et 

al., 2010). Our data suggest that dynein and LIS-1 are required in spermatocytes to 

release centrosomes from the cortex prior to meiotic entry.   

We showed that Lis-1 spermatocytes exhibit free centrosomes, albeit at a much 

lower frequency than the phenotype of cortical centrosomes. Detachment of centrosomes 

from the cortex of primary spermatocytes is an earlier step in male meiosis than 

reassociation of the centrosomes with the nuclear surface at G2/M; hence, a failure of 

centrosomes to detach from the cortex is likely to mask a subsequent failure of nucleus-

centrosome coupling. We found that LIS-1 colocalizes with dynein-dynactin at the 

nuclear surface, and localization of dynein-dynactin to this site is severely impaired in 
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Lis-1 spermatocytes and spermatids. Dynein-dynactin anchored at the nuclear surface has 

previously been implicated in mediating interactions between the nucleus and 

centrosomes during both mitotic and meiotic cell cycles (Anderson et al., 2009; Gonczy 

et al., 1999; Li et al., 2004; Malone et al., 2003; Robinson et al., 1999; Salina et al., 

2002). We propose that defects in nucleus-centrosome coupling in Lis-1 spermatocytes 

stem from disruption in localization of dynein-dynactin to the nuclear surface.  

Previous studies in other systems concerning the role of LIS1 in dynein-dynactin 

recruitment to the nuclear surface have yielded conflicting results. In C. elegans embryos, 

dynein-dynactin was reported to localize normally to this site in the absence of Lis-1 

(Cockell et al., 2004). In mammalian neural stem cells, however, Lis1 was shown to be 

required for recruitment of dynein to the nuclear surface at prophase entry (Hebbar et al., 

2008). Similarly, we observed severe reduction of perinuclear dynein-dynactin in 

Drosophila Lis-1 spermatocytes at meiotic onset, suggesting that Lis-1 is required for this 

process. Conversely, we found normal levels of Drosophila LIS-1 at the nuclear surface 

of tctex-1 spermatocytes; thus, dynein-dynactin does not appear to be reciprocally 

required for LIS-1 recruitment to this site. Our finding of reduced levels of dynein heavy 

chain on the nuclear surface of tctex-1 spermatocytes suggest that Tctex-1 light chain 

plays a specific role in localizing dynein complexes to the nuclear surface; alternatively, 

complex integrity may be compromised in tctex-1 mutants.     

We previously reported that asun regulates dynein localization during Drosophila 

spermatogenesis (Anderson et al., 2009). Our characterization of the hypomorphic Lis-

1k11702 allele and the null asund93 allele during Drosophila male meiosis reveals 

overlapping but distinct phenotypes. Lis-1k11702 spermatocytes exhibit two classes of 
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centrosome positioning defects: cortical (major phenotype) and free centrosomes (minor 

phenotype). In contrast, while most asund93 spermatocytes have free centrosomes, they do 

not share with Lis-1k11702 spermatocytes the phenotype of cortical centrosomes. These 

observations suggest that the role of asun in spermatocytes is limited to events at the 

nuclear surface, whereas Lis-1 additionally regulates cortical events. asund93 

spermatocytes undergo severe prophase arrest, possibly due to failure of astral 

microtubules of free centrosomes to promote nuclear envelope breakdown. In Lis-1k11702 

spermatocytes, however, meiosis apparently progresses on schedule despite cortical 

positioning of centrosomes. The high percentage of asund93 spermatids with increased 

numbers of variably sized nuclei, likely a consequence of cytokinesis and chromosome 

segregation defects, are also absent in Lis-1k11702 testes. These observations suggest that 

spindle formation and normal progression through male meiosis require centrosomes to 

be anchored, either to the nuclear surface or the cortex.  

Hypomorphic Lis-1k11702 and null asund93 round spermatids also show similarities 

and differences in their phenotypes. Both genes are required for recruitment of dynein-

dynactin to the nuclear surface; this pool of dynein likely mediates nucleus-basal body 

and nucleus-Nebenkern attachments, which are defective in both mutants. Genes 

encoding Spag4 (a SUN protein), Yuri Gagarin (a coiled-coil protein), and GLD2 (a 

poly(A) polymerase) are required for nucleus-basal body coupling in spermatids, 

although it is not known whether they interact with ASUN or LIS-1 in this process 

(Kracklauer et al., 2010; Sartain et al., 2011; Texada et al., 2008). Our studies suggest 

that Lis-1, but not asun, is required for proper shaping and Nebenkern-basal body 

association; these functions might be mediated by dynein/microtubules acting at the 
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Nebenkern surface. Nebenkerne are generated through fusion of mitochondria following 

Drosophila male meiosis (Fuller, 1993). Two Nebenkerne bodies are occasionally present 

in Lis-1 and tctex-1 spermatids, implicating dynein in regulation of mitochondrial 

aggregation at this stage. Together, these observations suggest that the role of asun in 

spermatids is limited to events at the nuclear surface, whereas Lis-1 plays additional roles 

in regulating Nebenkerne.   

Based on our studies of hypomorphic Lis-1k11702 and null asund93 mutant testes, we 

propose a model in which LIS-1 is required for several dynein-mediated processes during 

Drosophila spermatogenesis, and ASUN is required for the subset of these processes that 

involve the nuclear surface (Fig. 2.20). Both LIS-1 and ASUN promote recruitment of 

dynein-dynactin to the nuclear surface of spermatocytes and spermatids. The strong 

genetic interaction that we observe between Lis-1 and asun suggests that they cooperate 

in regulating dynein localization during spermatogenesis; our finding that LIS-1 

accumulation on the nuclear surface is lost in asun male germ cells provides further 

support for this notion. The observed colocalization and coimmunoprecipitation of LIS-1 

and ASUN suggest that they function within a shared complex to promote dynein-

dynactin recruitment to the nuclear surface. We did not detect interaction between 

Drosophila LIS-1 and ASUN proteins by in vitro binding or yeast two-hybrid assays, 

suggesting that their association may be mediated by another protein(s) rather than being 

direct (P.S. and L.A.L., unpublished observations). Future studies on the nature of the 

ASUN-LIS-1 interaction should help elucidate the mechanism by which dynein-dynactin 

localizes to the nuclear surface during spermatogenesis.  
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Figure 2.20. Cytoplasmic dynein-mediated processes in Drosophila spermatogenesis: 
differential requirements for LIS-1 and ASUN. See Discussion for details. 
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Several proteins that promote dynein recruitment and centrosomal tethering to the 

nuclear surface have been identified. In C. elegans embryos, the KASH-domain protein 

ZYG-12, which localizes to the outer nuclear membrane and binds the inner nuclear 

membrane protein SUN-1, is required for these events (Malone et al., 2003). Another 

KASH-domain protein, Syne/Nesprin-1/2, works in concert with SUN-1/2 to mediate 

nucleus-centrosome interactions during mammalian neuronal migration (Zhang et al., 

2009). Two additional pathways required for dynein recruitment to the nuclear surface at 

prophase have recently been identified in cultured mammalian cells. BicD2 binds dynein 

and anchors it to the nuclear envelope via its interaction with a nuclear pore complex 

protein, RanBP2 (Splinter et al., 2010). Similarly, CENP-F and NudE/EL act as a bridge 

between dynein and Nup133 (Bolhy et al., 2011). It has not yet been determined if 

mammalian LIS1 and ASUN function within these pathways or if they act via a parallel 

mechanism to promote dynein recruitment to the nuclear surface.  

Our finding that a single copy of Lis-1k11702 can drastically decrease the size of 

asunf02815 testes suggests potential roles for Lis-1 and asun in regulating division of male 

germline stem cells of Drosophila, as loss of cell proliferation can lead to reduction of 

testes size (Castrillon et al., 1993). Interestingly, Lis-1 has been reported to regulate 

germline stem cell renewal in Drosophila ovaries (Chen et al., 2010). Orientation of the 

cleavage plane during male germline stem cell division requires proper migration of 

centrosomes along the nuclear surface, and misorientation of the plane can lead to stem 

cell loss (Cheng et al., 2008; Yamashita et al., 2003; Yamashita et al., 2007). Given the 

importance of Lis-1 and asun in mediating nucleus-centrosome coupling in Drosophila 
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spermatocytes, it is possible that these genes also cooperate to regulate centrosomes 

during stem cell divisions in testes.  

In humans, the Lis-1 gene is dosage sensitive during brain development, as the 

disorder lissencephaly results from deletion or mutation of a single copy (Wynshaw-

Boris, 2007). Lis-1 spermatogenesis phenotypes reported herein were observed in flies 

homozygous for a hypomorphic Lis-1 allele; flies carrying one copy of this allele 

displayed many of the same phenotypes but to a lesser degree. These findings suggest 

that precise regulation of LIS-1 protein levels is essential for normal development in 

Drosophila. 

A requirement for Lis1 during spermatogenesis is conserved in mammals. 

Deletion of a testis-specific splicing variant of Lis1 in mice blocks spermiogenesis and 

prevents spermatid differentiation (Nayernia et al., 2003). LIS1 and dynein were shown 

to partially colocalize around wild-type spermatid nuclei, but dynein localization in Lis1 

testes was not assessed. It remains to be determined if the functions of LIS1 in 

mammalian spermatogenesis are mediated through dynein and if the ASUN homolog 

regulates LIS1 localization in this system. 
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CHAPTER III 

 

asunder IS REQUIRED FOR DYNEIN LOCALIZATION AND DORSAL FATE 

DETERMINATION DURING DROSOPHILA OOGENESIS 

 

The contents of this chapter have been submitted to the journal Developmental 

Biology (currently in revision). 

 

Introduction 

  Drosophila oogenesis is a powerful model system for studying various aspects of 

cell and developmental biology such as control of the cell cycle, axis formation, epithelial 

morphogenesis, cellular polarity, and cell fate determination. A wild-type Drosophila 

female has a pair of ovaries, each made up of 16 -18 independent “egg assembly lines” 

known as ovarioles (Bastock and St Johnston, 2008; Spradling, 1993). Each ovariole 

consists of a specialized anterior region (the germarium) where the progeny of germline 

and somatic stem cells are organized into distinct egg chambers. Each egg chamber 

consists of a cyst of 16 germ cells (15 nurse cells and 1 oocyte) interconnected by 

cytoplasmic bridges called ring canals and surrounded by a single layer of somatic 

follicle cells. The development of the egg chambers into mature eggs has been divided 

into 14 stages based on egg chamber morphology (Spradling, 1993). The polarity of the 

mature egg, formed at the end of oogenesis, is characterized by certain prominent 

structures: an anteriorly positioned, cone-shaped micropyle that facilitates sperm entry 
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prior to fertilization and, located above the micropyle, a pair of dorsal appendages that 

facilitate embryonic respiration.  

 Determination of eggshell polarity depends on key patterning events that occur 

during Drosophila oogenesis. Within the germarium, centrosomes migrate from the nurse 

cells into the future oocyte in a manner dependent on a branched cytoplasmic organelle 

called the fusome, which extends into all the germline cells within a cyst (Bolivar et al., 

2001; Lin et al., 1994). A microtubule-organizing center (MTOC) forms in the oocyte 

posterior; microtubules originating from this MTOC pass through cytoplasmic bridges 

into adjacent nurse cells and are required for transport of maternal mRNAs and proteins 

from the nurse cells into the oocyte (Pokrywka and Stephenson, 1991; Theurkauf et al., 

1992). Transport and asymmetric localization within the oocyte of oskar (osk), nanos 

(nos), bicoid (bcd), and gurken (grk) transcripts are critical for proper establishment of 

the embryonic body axes (Becalska and Gavis, 2009).  

 grk mRNA is localized to the posterior of the Drosophila oocyte prior to its 

translation to generate Gurken (Grk) protein, a TGFα-like ligand, which signals posterior 

follicle cells to adopt a posterior fate (Gonzalez-Reyes et al., 1995; Neuman-Silberberg 

and Schupbach, 1993). The posterior follicle cells in turn trigger reorganization of the 

microtubule cytoskeleton of the oocyte that promotes localization of bcd transcript to the 

anterior pole and osk and nos transcripts to the posterior pole, thus establishing the 

anterior-posterior axis of the embryo. This microtubule reorganization also results in 

migration of the oocyte nucleus to the anterior-dorsal region of the oocyte (Zhao et al., 

2012). grk mRNA, which associates with the oocyte nucleus, begins to accumulate in this 

region (Neuman-Silberberg and Schupbach, 1993). The resulting localized secretion of 
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Grk protein, which signals to overlying dorsal-anterior follicle cells, initiates a signaling 

cascade that ultimately establishes the dorsal-ventral axis of the embryo (Peri and Roth, 

2000; Sen et al., 1998; Van Buskirk and Schupbach, 1999; Wasserman and Freeman, 

1998).  

 The microtubule motors, dynein and kinesin, are critical for the transport of 

various mRNAs to their specific sites during Drosophila oogenesis (Becalska and Gavis, 

2009; Duncan and Warrior, 2002; Januschke et al., 2002). Localization of grk mRNA, 

which is required for the formation of both major axes, is dependent on the minus-end-

directed motor, dynein (MacDougall et al., 2003; Rom et al., 2007; Swan et al., 1999). 

Dynein is a large complex composed of four types of subunits: heavy, intermediate, light 

intermediate, and light chains (Hook and Vallee, 2006; Susalka and Pfister, 2000). 

Dynein regulates multiple cellular processes such as organelle transport, chromosome 

movements, nucleus-centrosome coupling, nuclear positioning, and spindle assembly 

(Anderson et al., 2009; Gusnowski and Srayko, 2011; Hebbar et al., 2008; Huang et al., 

2011; Jodoin et al., 2012; Salina et al., 2002; Sitaram et al., 2012; Splinter et al., 2010; 

Stuchell-Brereton et al., 2011; Wainman et al., 2009). During Drosophila oogenesis, 

dynein is required for maintenance of fusome integrity, centrosome migration, oocyte 

determination, migration of the oocyte nucleus, transport into the oocyte of various 

mRNAs and proteins that play critical roles in axis determination of the embryo, and 

localization of these mRNAs and proteins within the oocyte (Bolivar et al., 2001; 

Januschke et al., 2002; Lei and Warrior, 2000; McGrail and Hays, 1997; Schnorrer et al., 

2000; Swan et al., 1999).  
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  We previously identified asun as a critical regulator of dynein localization during 

Drosophila spermatogenesis (Anderson et al., 2009). Dynein enrichment on the nuclear 

surface of G2 spermatocytes and round spermatids is lost in asun testes; as a result, asun 

male germ cells exhibit defects in nucleus-centrosome and nucleus-basal body coupling. 

Northern blot analysis of Drosophila tissues revealed that asun transcripts, while detected 

in the testes, were present at much higher levels in ovaries and early embryos, suggesting 

that asun may play roles in oogenesis and/or embryogenesis (Stebbings et al., 1998). In 

this study, we investigate the role of asun during Drosophila oogenesis by characterizing 

the phenotypes of females homozygous for a null allele of asun (asund93). We provide 

evidence to show that, similar to its role in spermatogenesis, asun is required for 

regulating dynein localization and dynein-mediated processes such as nuclear 

positioning, centrosome migration, and dorsal-ventral patterning during Drosophila 

oogenesis. 

 

Materials and Methods 

 

Drosophila stocks 

y w was used as "wild-type" stock. asund93 and asunf02815 alleles were previously 

described (Anderson et al., 2009; Sitaram et al., 2012). png50 and png1058 were gifts from 

T. Orr-Weaver (Whitehead Institute, Cambridge, MA). 
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Transgenesis 

 A 3.6-kb genomic fragment containing asun and its flanking regions (Fig. 1A) 

was PCR-amplified from BAC clone BAC37I18 (Drosophila Genomics Resource Center, 

Indiana University, IN) and subcloned into modified pCaSpeR4 for expression of full-

length ASUN under control of its endogenous promoter (asun rescue construct). The 

following primers were used: 5’-GCA TGG CCG GCC ACT GCA CAA GAT T-3’ and 

5’-GAC TGG CGC GCC CCG AAG AAA AGT T-3’. Transgenic lines carrying 

P[asunFL] were generated by P-element-mediated transformation via embryo injection 

(Rubin and Spradling, 1982).  

 

Egg-laying assay 

  Females (2-4 days old) of each genotype tested were placed in a bottle with wild-

type males, fattened with wet yeast for two days, and transferred to egg-collection 

chambers (five females and five wild-type males per chamber; two chambers per 

genotype) at 25°C. The number of eggs laid by females in each collection chamber was 

counted each day up to five days. Statistical analysis of the average number of eggs laid 

per day by females of the indicated genotypes was performed using an unpaired Student’s 

t-test.  

 

Cytological analysis of fixed ovaries 

Ovaries were dissected and teased apart in Schneider’s Drosophila medium (Life 

Technologies, Carlsbad, CA), fixed for 18 minutes in phosphate-buffered saline (PBS) 

plus 4% formaldehyde, washed for 2 hours in PBS plus 0.1% Triton X-100 (PBT), 
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incubated for 3 hours in PBT plus 5% normal goat serum (PBT-NGT), and incubated 

overnight at 4°C in PBT-NGT containing primary antibodies. Ovaries were then washed 

for 2 hours in PBT, incubated for 4 hours in PBT-NGT containing fluorophore-

conjugated secondary antibodies, incubated in PBT plus 0.5 µg/ml DAPI for 6 minutes, 

washed for 2 hours in PBT, rinsed once in PBS, and mounted in Prolong Gold Antifade 

Reagent (Life Technologies). All steps were done at room temperature unless otherwise 

noted. For all experiments, ovaries from all genotypes tested were dissected in parallel 

and fixed/stained under identical conditions. For staining with anti-PLP antibody, the 

same protocol was followed except that ovaries were fixed with 100% methanol at -20°C 

for 10 minutes and rehydrated with decreasing concentrations of methanol in PBT before 

the first PBT wash. 

Primary antibodies directed against the following proteins were used: dynein 

heavy chain (P1H4, 1:120; gift from T. Hays, University of Minnesota, Minneapolis, 

MN), PLP (1:500; gift from J. Raff, University of Oxford, Oxford, UK), lamin 

(ADL67.10, 1:500, Developmental Studies Hybridoma Bank [DSHB], Iowa City, IA), α-

spectrin (3A9, 1:20, DSHB), and Gurken (1D12, 1:100, DSHB). Wide-field fluorescent 

images were obtained using an Eclipse 80i microscope (Nikon, Melville, NY) with Plan-

Fluor 40X objective (all micrographs presented unless otherwise indicated). Confocal 

images were obtained with a Leica TCS SP5 confocal microscope and Leica Application 

Suite Advanced Fluorescence (LAS-AF) software using maximum-intensity projections 

of Z-stacks collected at 0.75 μm/step with a 63X objective. Fisher’s exact test was used 

for statistical analyses of data. 
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Egg-chamber area analysis 

Ovaries were fixed in 4% formaldehyde in PBS and stained with Alexa Fluor 

phalloidin (Life Technologies) to mark actin at the cell membranes. A Leica TCS SP5 

confocal microscope was used to obtain images of optical sections of individual stage 

10B egg chambers such that the largest areas were obtained. Areas of total egg chambers 

(oocyte + nurse cells) and oocytes alone were calculated using ImageJ software (National 

Institutes of Health, Bethesda, MD). 20 egg chambers were imaged per genotype for the 

calculation of egg chamber and oocyte area. Stage 10B egg chambers were identified by 

their follicle cell morphology.  

 

Cytological analysis of fixed embryos 

Embryos (0-2 hours) were collected on grape plates, dechorionated in 50% 

bleach, and devitellinized by shaking in a solution of methanol and heptane (1:1). 

Embryos were then stained with 1 µg/ml propidium iodide plus 1 mg/ml RNase A in PBT 

for 20 minutes, washed thrice with PBT, once with 50% methanol in PBT, and thrice 

with 100% methanol. Embryos were cleared and mounted in clearing solution (2:1 benzyl 

benzoate:benzyl alcohol). Wide-field fluorescent images were obtained using an Eclipse 

80i microscope (Nikon) with Plan-Apo 20X objective. 

 

Whole-mount RNA in situ hybridization  

 Whole-mount enzymatic in situ hybridization was performed as previously 

described (Suter and Steward, 1991). Fluorescent in situ hybridization was performed 

following the same protocol with the following modifications: Cy3-conjugated 
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digoxigenin antibody (Jackson ImmunoResearch Laboratories, West Grove, PA) replaced 

alkaline phosphatase-conjugated digoxigenin antibody, and the development step was 

omitted. Digoxigenin-labeled RNA probes were synthesized by in vitro transcription 

using a digoxigenin RNA labeling kit (Roche Applied Science, Indianapolis, IN). 

Antisense probes were prepared using the following full-length cDNA clones: grk (gift 

from A. Page-McCaw, Vanderbilt University School of Medicine, Nashville TN), bcd, 

and osk (Drosophila Genomics Resource Center). No significant signal was observed in 

control experiments using sense probes. Fluorescent in situ hybridization images were 

obtained using a Zeiss Apotome mounted on an Axio ImagerM2 with a 20X/0.8 Plan-

Apochromat objective, and images were acquired with an AxioCam MRm camera (Zeiss, 

Thornwood, NY). Enzymatic in situ hybridization images were obtained using a Zeiss 

LumarV12 fluorescence stereomicroscope with a 1.5X Neolumar objective (zoomed to 

80X), and images were acquired with an AxioCam MRc camera (Zeiss).  

 

Immunoblotting 

Ovaries from newly eclosed females or embryos (0-2 hour) were homogenized in 

nondenaturing lysis buffer (50 mM Tris-Cl pH 7.4, 300 mM NaCl, 5 mM EDTA, 1% 

Triton X-100) and analyzed by SDS-PAGE (25 µg protein/lane) and immunoblotting 

using standard techniques. Primary antibodies were used as follows: anti-dynein heavy 

chain (P1H4, 1:2000), anti-dynein intermediate chain (74.1, 1:250, Santa Cruz), anti-

Cyclin B (F2F4, 1:100, DSHB), and anti-beta-tubulin (E7, 1:1000, DSHB). HRP-

conjugated secondary antibodies were used to detect primary antibodies by 

chemiluminescence.  



 80 

Results 

 

asun is required for oogenesis 

 To address whether asun plays a role in Drosophila oogenesis, we first tested the 

fertility of females homozygous for a null allele of asun (asund93) that we previously 

generated (Fig. 3.1A) (Sitaram et al., 2012). We found that asund93 females had a severely 

reduced egg-laying rate (average of <1 egg/day/female compared to 55 eggs/day/female 

for a control stock; Fig. 3.1B). Heterozygous asund93 females, however, exhibited egg-

laying rates comparable to that of control females, indicating that asun is a 

haplosufficient locus (Fig. 3.1B). To confirm that the egg-laying defect of asund93 females 

was a direct consequence of loss of asun function, we generated transgenic Drosophila 

lines (P[asunFL]) expressing full-length ASUN under control of its endogenous promoter 

(Fig. 3.1A). The egg-laying rate of asund93 females was restored nearly to control levels 

by introduction of the P[asunFL] transgene (Fig. 3.1B).  

  We then sought to determine if asund93 females had gross defects in oogenesis 

that could account for their reduced egg-laying rate. We dissected whole ovaries from 

two-day old female flies fattened by addition of wet yeast paste to their food. Ovaries 

isolated from a majority of asund93 females were considerably smaller in size than those 

isolated from wild-type females or asund93 females carrying the P[asunFL] transgene 

(herein referred to as “rescued asund93” line) (Fig. 3.1C-F). To test if the reduced size of 

asund93 ovaries was due to a decrease in egg chamber and/or oocyte size, we measured the 

area of stage 10B egg chambers and oocytes (as a representative stage) isolated from 

wild-type or asund93 females. We found no striking difference in stage 10B egg chamber  
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Figure 3.1. Reduced egg-laying rates and ovary size of asund93 females. (A) Schematic 
diagram of the asun gene region. Coding regions and UTRs are represented as filled and 
unfilled boxes, respectively, introns as thin lines, and piggyBac transposons f01662 and 
f02815 as triangles. Breakpoints of a bor asun two-gene deletion (generated through 
FLP-mediated recombination of FRT sites within the transposons) and design of a bor 
transgene are shown; as previously described, asund93 flies are homozygous for the bor 
asun two-gene deletion and bor transgene (Sitaram et al., 2012). Design of the full-length 
asun transgene (P[asunFL]) generated for this study is also shown. (B) Quantification of 
egg-laying rates for females of the indicated genotypes. Asterisks, p<0.0001. (C-F) 
Whole ovaries dissected from 2-day old fattened females of the indicated genotypes. 
Ovaries from asund93 females (D,E) are highly reduced in size compared to those from 
wild-type (C) or P[asunFL];asund93 rescue (F) females. Scale bar, 1 mm. (G) 
Quantification of the average area of stage 10B egg chambers and oocytes isolated from 
females of the indicated genotypes. 
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or oocyte area between these genotypes (Fig. 3.1G), suggesting that the reduction in 

asund93 ovary size might be due to defects in proper progression to later developmental 

stages of oogenesis.  

 Whereas individual ovarioles isolated from wild-type or rescued asund93 ovaries 

were clearly ordered by increasing stages of development (Fig. 3.2A,C), the arrangement 

of a majority of ovarioles isolated from asund93 ovaries was highly disorganized (Figs 

3.2B, 3.1E). Ovarioles from the larger asund93 ovaries typically contained early- and late-

stage egg chambers with a paucity of intermediate stages (for example, Fig. 3.2B shows 

an asund93 ovariole with two mature oocytes to the right immediately adjacent to a stage 5 

egg chamber). Thus, the mature oocytes that are occasionally produced by asund93 

females tend to accumulate within the ovaries. These findings suggest that, in addition to 

abnormal oogenesis, asund93 females have defects in related processes downstream of 

oogenesis such as ovulation, mating, sperm storage, fertilization, and/or egg laying (Sun 

and Spradling, 2013). We did not observe any overt differences, however, in the 

morphological appearance of the reproductive glands (parovaria, spermathecae, or 

seminal receptacles) of asund93 females compared to wild-type controls (Fig. 3.2D,E).  

 

asund93 egg chambers exhibit structural defects 

 We occasionally observed abnormal numbers of oocytes and nurse cells within 

asund93 egg chambers. Whereas wild-type egg chambers normally contain 15 nurse cells 

and one oocyte, we found that 20% of asund93 egg chambers (compared to <1% and <4% 

of wild-type and rescued asund93 egg chambers, respectively) contained an increased 

number of germ cells, possibly as a consequence of fusion of two or more egg chambers  
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Figure 3.2.  Defective ovulation with normal reproductive glands in asund93 females. 
(A-C) Micrographs of ovarioles isolated from fattened females of indicated genotypes. 
Mature eggs, right; germaria, left. Wild-type and rescued asund93 ovarioles (A and C, 
respectively) contain a linear sequence of egg chambers of increasing developmental 
stages. asund93 ovarioles (B) contain juxtaposed mature and early egg chambers with 
intermediate stages missing. Scale bar, 500 µm. (D,E) Phase-contrast images of female 
reproductive glands from wild-type and asund93 females. As in wild type (D), a seminal 
receptacle (black arrowhead), a pair of spermathecae (black arrows), and a pair of 
parovaria (white arrows) are present in asund93 (E) females. Scale bar, 200 µm. 
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Figure 3.3. Defects in the cellular composition and arrangement of asund93 egg 
chambers. (A,B) DAPI-stained stage 5 egg chambers from wild-type and asund93 ovaries 
(dorsal, top; anterior, left). Wild-type egg chambers (A) contain 15 polyploid nurse cells 
and 1 haploid oocyte. asund93 ovaries occasionally contain compound/fused egg chambers 
(B). White arrows, oocyte nuclei. (C) Quantification of fused egg chamber defect in 
ovaries of indicated genotypes (>250 chambers scored per genotype). Asterisks, 
p<0.0001. (D,E) DAPI-stained stage 10 egg chambers from wild-type and asund93 ovaries 
(dorsal, top; anterior, left). There is a clear boundary of follicle cells (white arrowhead) 
between the nurse cells and the oocyte in stage 10 wild-type egg chambers (D). Nurse 
cells occasionally extend past this boundary in asund93 stage 10 egg chambers (E). (F) 
Quantification of nurse cell-oocyte boundary defect in ovaries of indicated genotypes 
(>200 chambers scored per genotype). Single asterisk, p=0.0006; double asterisk, 
p<0.0001. Scale bars, 50 µm. 
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(Fig. 3.3A-C). Furthermore, we occasionally observed disruption of the follicle cell 

border that clearly demarcates nurse cells and the oocyte in wild-type egg chambers at or 

beyond stage 10 (Fig. 3.3D); in 10% of asund93 egg chambers at or beyond stage 10 

(compared to 1% and 2% of wild-type and rescued asund93 egg chambers, respectively), 

nurse cells appeared to protrude across this border and into the oocyte (Fig. 3.3E,F). 

 

asun-derived embryos do not phenocopy png mutants 

 ASUN was identified in an in vitro screen for substrates of the serine/threonine 

protein kinase encoded by pan gu (png), a critical regulator of the S-M cell cycles of 

early embryogenesis in Drosophila (Fenger et al., 2000; Lee et al., 2005; Shamanski and 

Orr-Weaver, 1991). Based on this association, we assessed asund93-derived embryos for 

the presence of png-like phenotypes. We found that asund93-derived embryos did not 

exhibit the giant nuclei phenotype that is characteristic of png-derived embryos (Fig. 

3.4A-D). Furthermore, we did not observe genetic interaction between png and asun: 

introduction of a single copy of asunf02815 into the png50 background failed to modify the 

png50 giant nuclei phenotype (Fig. 3.4E). PNG kinase mediates derepression of 

translation during early embryogenesis, thereby ensuring that Cyclin B levels are 

sufficiently high to promote mitotic entry (Fenger et al., 2000; Lee et al., 2001; Vardy 

and Orr-Weaver, 2007). In contrast, immunoblotting revealed normal levels of cyclin B 

in asund93-derived embryos, suggesting that ASUN is not required for this function (Fig. 

3.4F). We therefore concluded that ASUN does not function as a substrate of the PNG 

kinase during early embryogenesis in Drosophila. 
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asund93-derived embryos have dorsal-ventral patterning defects 

 While performing experiments with asund93-derived embryos, we noticed 

abnormalities in the appearance of the dorsal appendages, a pair of paddle-shaped 

eggshell structures located on the anterior-dorsal surface of the embryo that form as a 

result of normal dorsal-ventral patterning events (Schupbach, 1987; Spradling, 1993). We 

used a previously reported scheme for classifying dorsal appendage defects to 

characterize this phenotype in asund93-derived embryos (Fig. 3.5A) (Lei and Warrior, 

2000). Class I embryos have a pair of distinct dorsal appendages (wild-type appearance) 

that are positioned much closer to each other in class II embryos, fused at the base in 

class III embryos, and fused along their entire lengths in class IV embryos; class V 

embryos lack visible dorsal appendages. We found that a majority (54%) of asund93-

derived embryos had dorsal appendage defects (compared to 1% and 3% for wild-type 

and rescued asund93 embryos, respectively), including 23% in class V (Fig. 3.5B). These 

data suggest that asun is required for proper dorsal-ventral patterning of the Drosophila 

embryo. We also examined asund93-derived embryos for the presence of the micropyle, 

another eggshell structure located at the anterior end of the embryo that is required for 

sperm entry (Spradling, 1993). We found that a small fraction of asund93-derived embryos 

lacked a micropyle (6% compared to 1% in wild-type and asund93-derived embryos; Fig. 

3.6). 

 

grk mRNA localization is abnormal in asund93 oocytes 

 The dorsal appendage defects of asund93-derived embryos resemble those reported 

for embryos produced by females homozygous for a hypomorphic allele of the dynein  
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Figure 3.4. asund93-derived embryos do not exhibit the giant nuclei phenotype. (A-D) 
DNA-stained embryos (0-2 hour) from wild-type, png, or asund93 females. Embryos from 
wild-type (A) and asund93 (D) females exhibit a normal DNA staining pattern, unlike the 
giant nuclei phenotype observed in the strong (B) and weak (C) alleles of png. Scale bar, 
50 µm. (E) Quantification of embryos (0-2 hour) containing fewer than 5 nuclei (>350 
embryos scored per genotype). Asterisks, p<0.0001; n.s., not significant. (F) Immunoblot 
showing wild-type levels of Cyclin B in extracts of embryos (0-2 hour) from asund93 and 
rescued asund93 females. Cyclin B levels are reduced in png1058-derived embryos. Tubulin, 
loading control. 
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Figure 3.5. Ventralization of asund93-derived eggs. (A) Eggs laid by asund93 females. 
Anterior, top; dorsal side facing outward. Classification scheme for ventralized eggs is 
adapted from (Lei and Warrior, 2000). Class I eggs appear wild type with a pair of dorsal 
appendages in the anterior-dorsal region. Dorsal appendages in class II eggs are 
positioned abnormally close to each other. Class III and class IV eggs contain dorsal 
appendages that are partially fused at the base and completely fused along the length, 
respectively. Class V eggs lack dorsal appendages. Scale bar, 250 µm. (B) Quantification 
of dorsal appendage phenotypes in embryos from wild-type, asund93, and rescued asund93 

females (>200 embryos scored per genotype).  
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Figure 3.6. Lack of a micropyle is a low-penetrance phenotype of asun-derived 
embryos. (A,B) Phase-contrast images of whole embryos derived from wild-type (A) or 
asund93 (B) females. Anterior, left; dorsal, top. The micropyle (white arrow) is 
occasionally absent in embryos derived from asund93 females. Scale bar, 200 µm. (C) 
Quantification of wild-type and asund93-derived embryos lacking a micropyle (>200 
embryos scored per genotype). Asterisks, p<0.005. 
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Figure 3.7. Diffuse localization of grk transcripts in asund93 oocytes. (A-B) 
Fluorescent in situ hybridization of stage 9 egg chambers using grk probe (red). Dorsal, 
top; anterior, left. grk mRNA localization is tightly restricted to the anterior-dorsal region 
of the oocyte in wild-type egg chambers (A). In asund93 egg chambers, grk transcripts are 
more diffusely localized throughout the anterior oocyte (B). Scale bars, 50 µm.  (C) 
Quantification of abnormal gurken mRNA localization in wild-type, asund93, and rescued 
asund93 egg chambers (>100 chambers scored per genotype) by fluorescent in situ 
hybridization. Asterisks, p<0.0001.  
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Figure 3.8. Diffuse localization of grk transcripts in asund93 oocytes. (A-B) Enzymatic 
in situ hybridization of stage 9-10 egg chambers using grk probe (dorsal, up; anterior, 
left). grk mRNA localization is tightly restricted to the anterior-dorsal region of the 
oocyte in wild-type egg chambers (A). In asund93 egg chambers, grk transcripts are more 
diffusely localized throughout the anterior oocyte (B). Scale bars, 50 µm. (C) 
Quantification of diffusely localized gurken transcripts in wild-type, asund93, and rescued 
asund93 oocytes (>100 chambers scored per genotype) by enzymatic in situ hybridization. 
Asterisks, p<0.0001. 
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Figure 3.9. Localization of Grk protein in asund93 oocytes. Immunostaining of stage 10 
wild-type and asund93 egg chambers using Gurken antibody (red). DNA is in blue. 
Anterior, left; dorsal, top. Gurken protein localizes normally to the anterior-dorsal region 
of asund93 oocytes, but occasionally with a more diffuse pattern than that observed in 
wild-type oocytes. Scale bar, 50 µm. 
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Figure 3.10. Wild-type localizations of osk and bcd transcripts in asund93 oocytes. 
Fluorescent in situ hybridizations of stage 10 egg chambers using osk and bcd probes 
(dorsal, up; anterior, left). (A,B) Representative images showing normal localization of 
osk mRNA to the posterior pole of the oocyte in wild-type (A) and asund93 (B) egg 
chambers. (C,D) Representative images showing normal localization of bcd mRNA to the 
anterior region of the oocyte in wild-type (C) and asund93 (D) egg chambers. Scale bars, 
100 µm. (E,F) Quantification of properly localized osk (E) and bcd (F) transcripts in 
wild-type and asund93 egg oocytes (>100 chambers scored per sample). n.s., not 
significant.  
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accessory factor, Lis-1 (Lei and Warrior, 2000). The defect in dorsal-ventral patterning in 

Lis-1-derived embryos was attributed to loss of anterior-dorsal anchoring of grk mRNA 

in the oocyte. This asymmetric anchoring of gurken transcripts allows Grk, a TGFα-like 

protein that acts as a ligand, to asymmetrically activate the EGF receptor homolog, 

Torpedo/DER, specifically within the dorsal-anterior follicle cells (Neuman-Silberberg 

and Schupbach, 1993). Dynein light chain, a cargo-binding subunit of dynein, directly 

binds to grk mRNA and is required for its tight localization to the anterior-dorsal region 

of the oocyte (Rom et al., 2007).  

 To determine if the dorsal-ventral patterning defects observed in asund93 egg 

chambers could be due to a loss of dynein-mediated regulation of grk transcripts, we 

assessed the localization of grk mRNA using both enzymatic and fluorescent in situ 

hybridization methods. We consistently observed a loss of the tight anterior-dorsal 

localization of grk transcripts (in 42% and 45% of asund93 egg chambers by enzymatic 

and fluorescent in situ hybridization, respectively (compared to 4% and 6% of wild-type 

and rescued asund93 egg chambers, respectively), suggesting that the ventralization of 

asund93-derived embryos could be a consequence of loss of dynein regulation by ASUN 

(Figs 3.7, 3.8). In contrast, Grk protein appeared to localize normally to the anterior-

dorsal region of the oocyte in asund93 egg chambers, albeit occasionally in a more diffuse 

manner than what we observed in wild-type egg chambers (Fig. 3.9). We did not observe 

any defects, however, in the localization of osk or bcd transcripts, which encode anterior-

posterior patterning factors, in asund93 egg chambers (Fig. 3.10).  
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Dynein localization is disrupted in asund93 oocytes 

 We previously identified asun as a critical regulator of dynein localization in 

Drosophila spermatogenesis and in cultured mammalian cells (Anderson et al., 2009; 

Jodoin et al., 2012; Sitaram et al., 2012). To determine if asun performs the same 

function during Drosophila oogenesis, we examined the localization of dynein in asund93 

oocytes using antibodies against the dynein heavy chain. Dynein accumulates within the 

oocyte in region 2b of the germarium and remains there throughout oogenesis (Li et al., 

1994). In early egg chambers of wild-type females, dynein is enriched around the oocyte 

nucleus, and it localizes to the posterior pole of the oocyte in stage 9 chambers (Fig. 

3.11A,D). We observed a significant loss of dynein localization to these sites in >35% of 

asund93 egg chambers (compared to <1% and <3% of wild-type and rescued asund93 egg 

chambers, respectively; Fig. 3.11A-G). Immunoblotting revealed normal levels of dynein 

heavy and intermediate chains in asund93 ovaries, suggesting that the loss of dynein 

localization was not due to instability of core components of the complex (Fig. 3.11H).  

 

Nucleus-centrosome coupling and nuclear positioning are abnormal in asund93 

oocytes 

The dynein motor is required at multiple steps during Drosophila oogenesis, and 

its role in this system has been well characterized (Januschke et al., 2002; Lei and 

Warrior, 2000; McGrail and Hays, 1997; Schnorrer et al., 2000; Swan et al., 1999). 

Because we observed a loss of dynein localization in asund93 ovaries, we sought to 

determine if dynein-mediated processes (in addition to grk transcript localization) were 

disrupted. We observed oocyte nucleus-centrosome coupling defects in 18% of asund93  
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Figure 3.11. Loss of dynein localization and nucleus-centrosome coupling in asund93 
oocytes. (A-F) Stage 5 (A-C) and stage 9 (D-F) egg chambers stained for dynein heavy 
chain (green; grayscale in inset) and DNA (magenta). Dorsal, top; anterior, left. asund93 
oocytes (B,E) have reduced dynein localization relative to wild-type (A,D) or rescued 
asund93 (C,F) oocytes. (G) Quantification of loss of dynein localization in egg chambers 
of indicated genotypes (>200 chambers scored per genotype). Asterisks, p<0.0001. (H) 
Immunoblot showing wild-type levels of dynein heavy (DHC64C) and intermediate 
(Cdic) chains in extracts of asund93 ovaries. Loading control, tubulin. (I,J) Stage 10 egg 
chambers stained for lamin (green; nuclear envelope marker) and PLP (red; centriole 
marker) (enlarged insets shown below). Dorsal, top; anterior, left. Unlike wild-type 
oocytes (I), centrosomes are not tightly coupled to the nuclear envelope in asund93 oocytes 
(J). (K) Quantification of nucleus-centrosome coupling defect in ovaries of indicated 
genotypes  (>100 chambers scored for wild-type and asund93; >50 chambers scored for 
rescue). Single asterisk, p<0.05; double asterisk, p<0.0025. Scale bars, 20 µm. 



 97 

 

 
 
 
Figure 3.12. Loss of anterior-dorsal positioning of the oocyte nucleus in asund93 egg 
chambers. (A-F) Stage 9 (A-C) and stage 10 (D-F) egg chambers stained for lamin 
(green; nuclear envelope marker) and DNA (blue). Dorsal, top; anterior, left. Wild-type 
anterior-dorsal positioning of the oocyte nucleus (A,D) is observed in stage 9 asund93 
oocytes (B), but this positioning is not maintained in stage 10 asund93 oocytes (E). Scale 
bars, 50 µm. (G) Quantification of anterior-dorsal positioning of oocyte nucleus in wild-
type, asund93, and rescued asund93 stage 9 and 10 egg chambers (>100 chambers scored 
per genotype). Single asterisk, p<0.006; double asterisk, p<0.0001; n.s., not significant.  
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egg chambers (compared to 5% and 6% in wild-type and rescued asund93 egg chambers, 

respectively), suggesting that, similar to its role in male germ cells, Drosophila ASUN 

promotes dynein-mediated association between the nucleus and centrosomes during 

oogenesis (Fig. 3.11I-K).  

We next assessed the positioning of the oocyte nucleus in asund93 egg chambers. 

The oocyte nucleus, which normally migrates from the posterior of the oocyte to the 

future anterior-dorsal region in stage 7 egg chambers, is incorrectly positioned in the 

absence of dynein or its accessory factors (Januschke et al., 2002; Lei and Warrior, 2000; 

Swan et al., 1999). This phenotype has been attributed to a failure in the dynein-

dependent anchoring of the nucleus at the anterior-dorsal of the oocyte (Zhao et al., 

2012). We found that oocyte nuclei in stage 9 egg chambers from wild-type and asund93 

females were similarly positioned, suggesting that nuclear migration takes place normally 

in asund93 females (Fig. 3.12A-C,G). By stage 10, however, only 67% of asund93 egg 

chambers (compared to 94% of wild-type egg chambers) exhibited normal anterior-dorsal 

anchoring of the oocyte nucleus, suggesting that the attachment of the oocyte nucleus at 

that position is not maintained in the absence of ASUN; introduction of the genomic asun 

transgene into the asund93 background partially rescued this defect with 81% of these egg 

chambers containing a properly positioned oocyte nucleus (Fig. 3.12D-G). 

 

asund93 egg chambers exhibit defects in centrosome migration  

 At the end of the four mitotic germ cell divisions, centrosomes migrate from the 

nurse cells into the pro-oocyte in a manner dependent on a large cytoplasmic organelle 

called the fusome, which extends into all 16 cells within a cyst through the ring canals  
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Figure 3.13. Centrosome migration defects of asund93 germaria. (A-C) Projections of 
confocal sections of wild-type, asund93, and rescued asund93 germaria stained for spectrin 
(red; fusome marker) and PLP (green; centriole marker). Enlarged insets shown below. 
Anterior, top; dorsal, left. Within wild-type cysts, most centrosomes have migrated from 
the nurse cells into the oocyte (located at posterior of egg chamber) by stage 2b of the 
germarium (A, A’). Centrosomes do not properly migrate into the oocyte in asund93 
germaria and are found distributed throughout the entire cyst (B, B’). Centrosome 
migration occurs in rescued germaria but is delayed (C, C’). Scale bars, 20 µm. (D) 
Quantification of centrosome migration defects in wild-type, asund93, and rescued asund93 

germaria (>100 germaria scored per genotype). Asterisks, p<0.0001. 
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Figure 3.14. Reduced centrosome number in asund93 oocytes. (A,B) Stage 5 egg 
chambers stained for lamin (green; NE marker), PLP (red; centriole marker), and DNA 
(blue). Anterior, top; dorsal, right. Fewer centrosomes are associated with the oocyte 
nucleus in asund93 (B) than wild-type (A) egg chambers. Scale bar, 20 µm. (C) 
Quantification of reduced centrosome number in wild-type and asund93 ovaries (>40 
chambers scored per genotype). Asterisk, p<0.0001. 
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(Bolivar et al., 2001; Grieder et al., 2000). Mutation of dynein heavy chain has been 

reported to result in loss of fusome integrity and centrosome migration (Bolivar et al., 

2001; McGrail and Hays, 1997).  

We assessed asund93 germaria for fusome integrity and centrosome migration. We 

observed no obvious differences in fusome structure in wild-type and asund93 germaria 

(Fig. 3.13A,A’,B,B’). asund93 germaria, however, exhibited defects in centrosome 

migration. Most nurse cell centrosomes have migrated to the oocyte (located at the 

posterior of the egg chamber) by stage 2B in wild-type germaria (Fig. 3.13A,A’,D). 

Centrosome migration was disrupted in 67% of asund93 stage 3 germaria (compared to 

<2% in wild-type stage 3 germaria) with centrosomes still distributed throughout the cyst 

(Fig. 3.13B,B’,D). Centrosome migration was significantly restored in rescued asund93 

ovaries (with only 15% of their stage 3 germaria showing disruption of centrosome 

migration) (Fig. 3.13C,C’,D). The timing of this process, however, appeared to be 

delayed: in contrast to wild-type ovaries, most centrosomes were found scattered 

throughout stage 2B germaria of rescued asund93 ovaries (Fig. 3.13C’). Possibly as a 

result of the loss of centrosome migration in asund93 germaria, we observed a decreased 

number of centrosomes (fewer than five) associated with the oocyte nucleus in 42% of 

asund93 stage 5 egg chambers (compared to 8% of wild-type egg chambers; Fig. 3.14). 

 

Discussion and Future Directions 

 We report herein that asun is a critical regulator of Drosophila oogenesis. 

Drosophila females that are homozygous for a null allele of asun (asund93) have highly 

reduced egg-laying rates as a result of defects in oogenesis as well as in processes 
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downstream of oogenesis. We have focused in this study on characterizing the oogenesis 

defects in asund93 females and have found that eggs laid by these females are ventralized. 

This phenotype may be secondary to the improper localization of mRNA transcripts 

encoding the dorsal fate determinant, Grk, in asund93 oocytes. The dynein motor, which is 

required for transport of grk mRNA during Drosophila oogenesis, is also mislocalized in 

a significant fraction of asund93 oocytes. We have also determined that other reported 

dynein-mediated processes such as nuclear positioning, nucleus-centrosome coupling, 

and centrosome migration are also defective in asund93 egg chambers.  

 We previously identified ASUN as a regulator of dynein localization during 

Drosophila spermatogenesis and in cultured human cells (Anderson et al., 2009; Jodoin 

et al., 2012). Loss of ASUN in Drosophila spermatocytes results in the loss of 

perinuclear localization of dynein at the G2-M transition, leading to defects in coupling 

between the nucleus and centrosomes, spindle assembly, chromosome segregation, and 

cytokinesis during the meiotic divisions (Anderson et al., 2009). Similar defects were 

observed in mitotically dividing cultured human cells following siRNA-mediated down-

regulation of the human homologue of ASUN (Jodoin et al., 2012).   

 The role of dynein during Drosophila oogenesis has been well characterized. The 

dynein motor has been implicated in maintaining fusome integrity, centrosome migration, 

and oocyte determination within the germarium (Bolivar et al., 2001; McGrail and Hays, 

1997; Mische et al., 2008; Swan et al., 1999). Additionally, dynein is critical for the 

transport and normal localizations of various patterning factors throughout oogenesis as 

well as maintenance of the anterior-dorsal positioning of the oocyte nucleus in late-stage 
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egg chambers (Clark et al., 2007; Duncan and Warrior, 2002; Januschke et al., 2002; Lan 

et al., 2010; Lei and Warrior, 2000; Rom et al., 2007; Swan et al., 1999).  

We have observed disruption of several of these dynein-regulated processes in 

asund93 ovaries, likely as a result of the loss of dynein localization that occurs in the 

absence of ASUN. asund93 ovaries exhibit defects in centrosome migration, grk mRNA 

localization, and nuclear positioning. asund93 ovaries exhibit additional defects in the 

structure of the egg chamber and in the coupling between the oocyte nucleus and 

centrosomes. Dynein has been shown to facilitate nucleus-centrosome coupling in other 

systems, and fused egg chambers have been observed in Drosophila dynein light chain 

mutants; thus, these defects of asund93 egg chambers could potentially also be due to loss 

of dynein function (Anderson et al., 2009; Bolhy et al., 2011; Dick et al., 1996; Jodoin et 

al., 2012; Malone et al., 2003; Robinson et al., 1999; Sitaram et al., 2012; Splinter et al., 

2010).  

 All reported dynein-mediated processes occurring during Drosophila oogenesis, 

however, were not affected in asund93 ovaries. The fusome, a cytoplasmic organelle, is 

highly disorganized in ovaries that lack dynein or its accessory factor, LIS-1 (Bolivar et 

al., 2001; McGrail and Hays, 1997). The normal asymmetric distribution of the fusome 

within the different cells of a female germline cyst plays an important role in the 

determination of the future oocyte (de Cuevas and Spradling, 1998; Lin and Spradling, 

1995; McKearin, 1997). Not surprisingly, Drosophila lines mutant for dynein or LIS-1 

exhibit defects in oocyte determination (McGrail and Hays, 1997; Mische et al., 2008; 

Swan et al., 1999). We observed, however, that fusome structure within asund93 germaria 

was indistinguishable from that of wild-type females, and oocyte determination appeared 



 104 

to occur normally in asund93 ovaries (P.S. and L.A.L., unpublished observations). The 

migration of centrosomes from the nurse cells into the oocyte within the germaria is 

considered to be a fusome-dependent process (Bolivar et al., 2001; Grieder et al., 2000). 

Despite our observations of wild-type fusome structure in asund93 germaria, they exhibit 

defects in centrosome migration. This discrepancy suggests that either an additional 

factor required for centrosome migration is affected in asund93 mutants, the function (but 

not structure) of the fusome is compromised in asund93 germaria, or that the fusomes of 

asund93 germaria have subtle structural defects that we were unable to detect. 

 asund93-derived embryos exhibit defects in dorsal-ventral patterning. We found 

that the localization of grk mRNA to the anterior-dorsal region of the oocyte is lost in 

late-stage asund93 egg chambers, suggesting that the ventralization of asund93-derived eggs 

could be a consequence of this defect. Surprisingly, we only occasionally observed mild 

defects in the localization of the Grk protein in asund93 egg chambers. We speculate that 

our method of detecting Grk protein by immunofluorescence, which generates a strong 

signal, may have caused us to underestimate the severity of mislocalization of Grk 

protein in asund93 egg chambers. Alternatively, the function of the Grk protein could be 

compromised due to its dissociation from the oocyte nucleus as a result of nuclear 

mislocalization in late-stage asund93 egg chambers. Similar defects in the localization of 

grk mRNA as well as the dissociation between Grk protein and the oocyte nucleus have 

been reported in Drosophila females mutant for a dynein light chain (Rom et al., 2007). 

Furthermore, additional unknown defects within the signaling cascade activated by the 

Grk ligand might exist within the dorsal-anterior follicle cells in asund93 egg chambers 

that could contribute to the ventralization phenotype.  
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 The oogenesis defects reported herein for asund93 females appear to be only 

partially penetrant. Centrosome migration, the most penetrant ovarian phenotype that we 

observed (with 65% of germaria showing defects), occurs at a relatively early stage of 

oogenesis. The remaining defects reported in asund93 egg chambers and asund93-derived 

embryos had a maximum penetrance of ~50%, with some, such as the structural defects 

of egg chambers, occurring at a frequency of less than 20%. In contrast, the defects 

observed in asund93 testes are generally present at a higher frequency (Sitaram et al., 

2012). Additionally, we observed that females that are heterozygous for the null allele of 

asun as well as females that are homozygous for a weak allele of asun (asunf02815) do not 

exhibit any obvious defects in oogenesis, whereas spermatogenesis is severely 

compromised in asunf02815 males (P.S. and L.A.L., unpublished observations) (Anderson 

et al., 2009). Taken together, these data suggest that either ASUN plays a less critical role 

during Drosophila oogenesis in comparison to spermatogenesis and/or that other factors 

can better compensate for the loss of ASUN in this system. 

 ASUN was previously identified as an in vitro substrate of the PNG kinase (Lee et 

al., 2005). PNG has been reported to critically regulate the syncytial cell cycles during 

early embryogenesis in Drosophila by maintaining proper levels of Cyclin B (Fenger et 

al., 2000; Shamanski and Orr-Weaver, 1991). We observed no genetic interaction 

between asund93 and a weak allele of png. asund93-derived embryos did not exhibit the 

giant nuclei phenotype typical of embryos derived from png females, nor were Cyclin B 

levels reduced in asund93-derived embryos. These results suggest that either asun does not 

function as a substrate of PNG during Drosophila embryogenesis, or that the loss of asun 

can be compensated by some other factor during this developmental window. 
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ASUN has also been identified as a functional component of an evolutionarily 

conserved nuclear complex known as the Integrator in cultured mammalian cells (Chen et 

al., 2012; Malovannaya et al., 2010). Integrator, composed of at least 14 distinct subunits 

(including ASUN), mediates 3’-end processing of small nuclear RNAs (Baillat et al., 

2005; Chen and Wagner, 2010). We have recently determined that several Integrator 

subunits, like ASUN, are required in cultured human cells for recruitment of dynein 

motors to the nuclear envelope during mitosis (Jodoin et al., 2013). The nuclear 

localization of ASUN has been shown to be critical for perinuclear dynein recruitment in 

cultured human cells as well as during Drosophila spermatogenesis (Jodoin et al., 2013). 

Our current model for the role of ASUN in controlling dynein localization is that ASUN, 

in conjunction with other subunits of the Integrator complex, mediates the proper 

processing of a specific mRNA target encoding a critical regulator of dynein recruitment 

to the nuclear envelope in cultured human cells. The high degree of conservation between 

Drosophila ASUN and its human homologue, and our data showing that Drosophila 

ASUN can be used to rescue loss of mammalian ASUN and vice versa, makes it likely 

that Drosophila ASUN functions in a similar manner to regulate the localization of 

dynein during oogenesis and spermatogenesis (Anderson et al., 2009; Jodoin et al., 2012). 

 In addition to the defects in oogenesis that we report herein, the capacity of 

asund93 females to produce mature eggs that accumulate within the ovary suggests that 

these females also have defects downstream of oogenesis. Given that we have been able 

to ascribe a majority of the defects in asund93 mutants to disruption of dynein-mediated 

processes, it is possible that these downstream phenotypes of asund93 females may 

represent novel functions of dynein. Alternatively, these processes may be directly 
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regulated by ASUN or by a different target of the ASUN/Integrator complex. It would 

therefore be of importance in future studies to determine if ASUN functions as a 

component of the Integrator complex in this system and if so, to identify the targets of 

this complex required for normal progression through Drosophila oogenesis. 
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CHAPTER IV 

 

DOMINANT MODIFIER SCREEN TO IDENTIFY POTENTIAL INTERACTORS 

AND REGULATORS OF asun 

 

Introduction 

We have previously reported a role for asun in the fertility of Drosophila males 

(Anderson et al., 2009; Sitaram et al., 2012). asun spermatocytes undergo prophase arrest 

with defects in nucleus-centrosome coupling; cells that overcome this arrest also exhibit 

defects in meiotic spindle assembly, chromosome segregation, and cytokinesis. Similarly, 

defects in the attachment between the nucleus and basal body were observed in post-

meiotic stages of spermatogenesis in asun testes. We observed reduction of perinuclear 

dynein in asun male germ cells that we hypothesized causes loss of nucleus-centrosome 

and nucleus-basal body coupling. These data suggest that ASUN is a critical regulator of 

dynein localization during Drosophila spermatogenesis (Anderson et al., 2009; Sitaram et 

al., 2012). 

The mechanism by which ASUN regulates the localization of dynein is not well 

understood. During spermatogenesis and in cultured human cells, ASUN localization 

fluctuates between the nucleus and cytoplasm in a cell cycle-dependent manner 

(Anderson et al., 2009; Jodoin et al., 2012). Using a transgene expressing GFP-tagged 

ASUN, we were able to show that during Drosophila spermatogenesis, ASUN localizes 

within the nucleus of early to mid-G2 spermatocytes and within both the nucleus and 

cytoplasm of late G2 spermatocytes (Anderson et al., 2009). The cytoplasmic appearance 
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of ASUN coincides with the perinuclear enrichment of dynein, suggesting that this pool 

of ASUN may play a direct role in recruiting dynein to the nuclear surface during 

spermatogenesis.  

To help place ASUN within a molecular network, we sought to identify additional 

genes involved in the regulation of dynein localization during Drosophila 

spermatogenesis by screening for enhancement or suppression of a hypomorphic asun 

phenotype upon loss of one copy of other genes. This general approach, known as a 

dominant modifier genetic screen, has been used successfully to define molecular 

pathways, such as the Ras signaling pathway, in Drosophila (Therrien et al., 2000). 

The phenotype we chose to use for the dominant modifier screen was the multi-

nucleated spermatid phenotype of asun testes. Defective chromosome segregation and 

cytokinesis in asun testes can be easily identified by the morphological appearance of 

immature spermatids, which are the cells that are formed at the end of the second meiotic 

division. Wild-type spermatids have a very distinct appearance: they contain a phase-light 

nucleus and a phase-dark mitochondrial aggregate (the Nebenkern) of the same size. 

Secondary to aberrant meiotic divisions, ~66% of immature spermatids from testes 

homozygous for a weak allele of asun (asunf02815) contain one large, irregularly shaped 

Nebenkern and multiple smaller nuclei. We previously employed this phenotype in 

demonstrating genetic interaction between asun and components of dynein and dynactin 

complexes (Anderson et al., 2009). Loss of a single copy of genes encoding dynein heavy 

chain or the Glued subunit of dynactin enhanced the multi-nucleated phenotype of 

asunf02815. These data provide proof of principle that the screening phenotype is highly 
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sensitive and that additional components of ASUN-mediated dynein localization could 

potentially be identified by this screening approach.  

To perform the screen, we utilized a publicly available, predefined set of 

deficiency lines on the 2nd chromosome known as the “Bloomington Deficiency Kit for 

2”. Deficiency kits have been used successfully for dominant modifier screens in 

Drosophila (Lee et al., 2001). This kit covers almost the entirety of the 2nd chromosome 

with a minimum number of deletions, and all of these deletions are molecularly mapped. 

Each deficiency within this kit deletes a large number of genes, thereby making it 

feasible to screen all the genes located within ~98% of the second chromosome (nearly 

6000 euchromatic genes) with a minimum number of stocks and fly crosses. We chose to 

initiate the screen using deficiencies on the 2nd chromosome because asun is located on 

the third chromosome, so crosses to introduce a single copy of a given deficiency into the 

asunf02815 background are easier and faster for 2nd chromosome deficiencies than for 3rd 

chromosome deficiencies (which would require recombination). The use of chromosomal 

deficiencies on the X chromosome (most of which are hemizygous lethal) is complicated 

by our need to obtain male flies to assess a spermatogenesis phenotype. The 4th 

chromosome of Drosophila is relatively tiny and contains few genes, so it is rarely used 

in this type of genetic screen.  
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Materials and Methods 

 

Drosophila stocks 

 y w was used as "wild-type" stock. piggyBac insertion line asunf02815 was from the 

Exelixis Collection (Harvard Medical School, Boston, MA). The 2nd chromosome 

deficiency stocks were from Bloomington Stock Center (Indiana University, IN).  

 

Cytological analysis of live testes 

Live testes cells were prepared for phase-contrast microscopy as described 

(Anderson et al., 2009). Individual round spermatids from a minimum of six pairs of 

testes per genotype were classified as either mono-nucleated or multi-nucleated based on 

their appearance under a phase-contrast microscope. The percent of multi-nucleated 

spermatids was calculated for each genotype (>500 spermatids scored per genotype). 

Wild-type and mutant testes were isolated and prepared for microscopy under identical 

conditions for all experiments.  

 

Results 

 Our lab has previously described that <1% of spermatids from wild-type males 

are multi-nucleated, while ~67% of spermatids from asunf02815 males are multi-nucleated 

(Anderson et al., 2009). We re-examined this phenotype in our control fly stocks (y w and 

asunf02815) and were able to reproduce the previously reported results.   
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Table 4.1. Results of dominant modifier screen for asun interactors 

 

Bloomington 
stock # 

Chromosome region 
deleted 

% Multi-nucleated 
spermatids 

Modification of 
asun phenotype 

24958 21B7--21B8 67% n.s.a 

8673 21C2--21E2 68% n.s. 

24959 22D5--22E1 34% Suppressionb 

9610 23B7--23C3 85% Enhancementc 

23677 23F6--24A2 80% n.s. 

9600 24D4--24D8 38% n.s. 

9605 25B10--25C1 35% Suppression 

8835 25C1--25C4 68% n.s. 

8674 25C4--25C8 65% n.s. 

9560 25E5--25F3 87% Enhancement 

9615 26F1--27A2 70% n.s. 

23676 27D6--27F2 64% n.s. 

7807 28E1--28F1 32% Suppression 

9704 28E8--29B1 60% n.s. 

8836 28F5--29B1 35% Suppression 

9631 29D5--29F8 70% n.s. 

9715 30C7--30F2 65% n.s. 

9503 31B1--31D9 65% n.s. 

1469 31C--32E5 88% Enhancement 

9635 31D7--31D11 89% Enhancement 
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9637 31D7--31E1 68% n.s. 

9642 31F5--32B4 57% n.s. 

9641 32B1--32C1 53% n.s. 

9505 32C1--32C1 92% Enhancement 

9716 32C1--32F2 15% Suppression 

9718 32F2--33B6 99% Enhancement 

23152 34D1--34F1 64% n.s. 

7839 36E2--36E6 66% n.s. 

23156 36E3--36F2 90% Enhancement 

9508 36F5--36F10 85% Enhancement 

9510 40A5--40E5 57% n.s. 

32253 41F11--42A13 
(Estimated) 98% Enhancement 

24335 44A4--44F1 44A4--44C4 
(Estimated) 61% n.s. 

23665 45C4--45F4 30% Suppression 

23682 46B2--46C7 55% n.s. 

23686 46E1--46F3 94% Enhancement 

23666 46F1--47A9 76% n.s. 

9626 48C5--48E4 70% n.s. 

24929 48F1--49A1 98% Enhancement 

23688 49A4--49A10 80% n.s. 

24989 49B10--49E6 70% n.s. 

7871 49F1--49F10 70% n.s. 
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23169 49F4--50A13 85% Enhancement 

23690 50B6--50C18 58% n.s. 

24385 50C3--50F1 90% Enhancement 

24407 50C6--50D2 90% Enhancement 

7875 50D4--50E4 52% n.s. 

7876 50E4--50F6 52% n.s. 

24933 51C2--51D1 75% n.s. 

25078 53C1--53C6 71% n.s. 

7888 53C8--53D2 65% n.s. 

24356 53D14--54A1 53% n.s. 

9596 54B2--54B17 65% n.s. 

24379 54B16--54C3 60% n.s. 

7890 54C10--54D5 50% n.s. 

24371 54D2--54E9 99% Enhancement 

7893 55B9--55C1 75% n.s. 

27354 56D8--56D14 
(Estimated) 100% Enhancement 

30588 56E1--56F11 (Estimated) 58% n.s. 

7896 56F11--56F16 79% n.s. 

6609 56F12--57A4 2% Suppression 

24424 56F16--57B1 99% Enhancement 

26554 57A2--57B3 (Estimated) 80% n.s. 

30590 57D2--57D10 
(Estimated) 50% n.s. 
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26516 57D12--58A3 
(Estimated) 98% Enhancement 

25430 58A2--58F1 82% n.s. 

25431 58F3--59A1 94% Enhancement 

24380 60B8--60C4 81% n.s. 

27352 60C2--60D14 
(Estimated) 69% n.s. 

25441 60E11--60F2 68% n.s. 

24758 60F5--60F5 75% n.s. 
 

Single copies of 2nd chromosome deficiencies were introduced into the asunf02815 
background. Testes were dissected from flies heterozygous for the deficiency and 
homozygous for asunf02815, and the percent of multi-nucleated spermatids was determined. 
The percent of multi-nucleated spermatids was compared to that for testes homozygous 
for asunf02815 (the screening phenotype; ~67% multi-nucleated spermatids) to determine if 
the introduction of the deficiency in one copy enhanced or suppressed the asun 
phenotype. 
an.s.= not significant 
bSuppression ≤ 35% multi-nucleated spermatids 
cEnhancement ≥ 85% multi-nucleated spermatids 
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We sought to identify genes that could either enhance or suppress the multi-nucleated 

spermatid phenotype of asunf02815. Out of 190 deficiency lines available in the 

Bloomington 2nd chromosome deficiency kit, we were able to test 73 deficiencies, in 

single copy, for their capacity to enhance or suppress this phenotype by performing 

multi-generation crosses to introduce the deficiencies into the hypomorphic asun 

(asunf02815) background. We calculated the percent of multi-nucleated spermatids 

observed in males that were heterozygous for a 2nd chromosome deficiency and 

homozygous for the f02815 transposon insertion. 

 For our screen, we used an arbitrary cutoff of ≥85% multi-nucleated spermatids to 

define enhancement of the multi-nucleated spermatid phenotype and an arbitrary cutoff 

of ≤35% to define suppression of the phenotype. Using this scoring system, we 

determined that out of the 73 deficiencies screened, single copies of 22 deficiency lines 

had the capacity to enhance the asunf02815 phenotype, and 7 deficiency lines suppressed 

this phenotype. The list of deficiencies tested, the region of the 2nd chromosome deleted, 

and the percent of multi-nucleated spermatids observed for each deficiency are 

summarized in Table 4.1.  

 

Discussion and Future Directions 

We have performed the first step of a large-scale genetic screen to identify 

potential interactors of asun. We have tested 73 out of the 190 2nd chromosome 

deficiency lines for their capacity to modify the multi-nucleated phenotype of asun. We 

found that a total of 29 deficiency lines strongly modified the asun phenotype. We placed 

these deficiencies into one or more of five broad classes based on candidate genes 
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mapped to the deleted chromosomal regions (Tables 4.2, 4.3, 4.4, and 4.5). To make the 

classification simpler, different candidate genes uncovered by a single deficiency were 

used to place that deficiency chromosome within more than one class; however, if a 

given deficiency could be placed into more than one class based on a single candidate 

gene, we chose to place such a deficiency into whichever class would best fit the gene in 

question. 

The first class comprises those deficiencies in which one or more genes 

previously reported to play a role in spermatogenesis have been deleted (Table 4.2). Eight 

out of the 29 deficiencies obtained as hits from the screen lack at least one gene with 

known roles in spermatogenesis. Examples of such genes are no mitochondrial derivative 

(nmd) deleted in the deficiency line BL1469, mitoshell (mtsh) deleted in the deficiency 

line BL8836, and Peroxin 13 (Pex13) deleted in the deficiency line BL23169.  

The second class of deficiencies lack (in one copy) one or more genes that are 

related to the dynein motor or are involved in the various functions of dynein within the 

cell (Table 4.3). ASUN has been shown to be a critical regulator of dynein localization 

and nucleus-centrosome coupling in Drosophila spermatocytes and in cultured human 

cells; therefore, we would expect other proteins involved in this process to dominantly 

modify the asun phenotype (Anderson et al., 2009). Additionally, we have previously 

demonstrated that loss of single copies of genes encoding certain subunits of dynein or 

dynactin complexes can modify the asun phenotype. Fourteen out of the 29 hits belong to 

the second class, as each line lacks a single copy of at least one gene that could 

potentially be involved in the cellular functions of dynein. As ASUN regulates nucleus-

centrosome coupling by regulating dynein localization, we have included deficiencies  
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Table 4.2. Class 1 deficiencies: spermatogenesis regulators 

Candidate genes deleted Bloomington 
stock # Flybase ID Gene symbol Gene name 

FBgn0051989 Cap-D3 Chromosome associated protein D3 

FBgn0031715 tomb tombola 9560 

FBgn0031728 Hsp60C Hsp60C 

FBgn0011230 poe purity of essence 

FBgn0010287 Trf TBP-related factor 7807 

FBgn0261822 Bsg Basigin 

FBgn0005322 nmd no mitochondrial derivative 
1469 

FBgn0032269 w-cup world cup 

9716 FBgn0000287 salr spalt-related 

FBgn0261349 Mst36Fa Male-specific transcript 36Fa 
9508 

FBgn0086681 Mst36Fb Male-specific transcript 36Fb 

23169 FBgn0033812 Pex13 Peroxin 13 

25431 FBgn0034740 nsr novel spermatogenesis regulator 

8836 FBgn0262598 mtsh mitoshell 
 
This table includes deficiencies that dominantly modify the asunf02815 phenotype and lack 
one or more genes that are known to play a role in Drosophila spermatogenesis. The 
specific candidate genes within each deficiency have been listed.  
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Table 4.3. Class 2 deficiencies: genes related to the dynein motor and its cellular 
function 
 

Candidate genes deleted Bloomington 
stock # Flybase ID Gene symbol Gene name 

24959 FBgn0028570 robl22E Dynein light chain, roadblock-type 
9560 FBgn0002525 Lam Lamin 

FBgn0032243 Klp31E Kinesin-like protein at 31E 
FBgn0026431 Grip75 Grip75 
FBgn0027868 Nup107 Nucleoporin 107kD 
FBgn0021761 Nup154 Nucleoporin 154kD 
FBgn0262647 Nup160 Nucleoporin 160kD 
FBgn0040232 cmet CENP-meta 

1469 

FBgn0040233 cana CENP-ana 
FBgn0021761 Nup154 Nucleoporin 154kD 
FBgn0262647 Nup160 Nucleoporin 160kD 
FBgn0040232 cmet CENP-meta 

9716 

FBgn0040233 cana CENP-ana 
9505 FBgn0021761 Nup154 Nucleoporin 154kD 

FBgn0032368 spag4 sperm-associated antigen 4 
9718 

FBgn0032390 dgt2 dim γ-tubulin 2 
23156 FBgn0023096 btv beethoven 
23686 FBgn0265512 mlt mulet 
24929 FBgn0266111 ana3 anastral spindle 3 

FBgn0013765 cnn centrosomin 
23169 

FBgn0086757 cbs centrosomin's beautiful sister 
24385 FBgn0033912 RpS23 Ribosomal protein S23 
24371 FBgn0003545 sub subito 
27354 FBgn0003887 βTub56D β-Tubulin at 56D 
24424 FBgn0034530 Rcd6 Reduction in Cnn dots 6 
 
This table includes deficiencies that dominantly modify the asunf02815 phenotype and lack 
one or more genes that are related to the dynein motor or are involved in the various 
functions of dynein within the cell. The specific candidate genes within each deficiency 
have been listed.  
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that lack genes encoding nuclear envelope proteins or centrosomal proteins in this 

category. For example, the gene sperm-associated antigen 4 (spag4) encoding the 

Drosophila homolog of the mammalian SUN protein sperm-associated antigen 4, deleted 

in the deficiency line BL9718, has been shown to be required for spermatogenesis by 

facilitating dynein localization and nucleus-centrosome coupling (Kracklauer et al., 

2010). This is very similar to the role played by ASUN during spermatogenesis. 

Additionally, this category includes deficiency lines that uncover genes encoding dynein 

subunits (robl22E and btv), tubulin (βtub56D), lamin (lam), as well as several 

nucleoporins (Nup107, Nup160, and Nup154).  

The third class of deficiencies lack (in one copy) one or more genes involved in 

mRNA binding and/or processing (Table 4.4). Seven out of the 29 hits obtained from the 

screen belong to this category; examples include bancal (bl) deleted in the deficiency line 

BL24424 and the FLASH ortholog (FLASH) deleted in the deficiency line BL23169. We 

expected to find such hits because recent studies have identified ASUN as a functional 

component of the nuclear Integrator complex (Chen et al., 2012; Malovannaya et al., 

2010). Integrator is a nuclear complex that plays a crucial role in the 3’-end processing of 

small nuclear RNAs. Our lab has further demonstrated that, in addition to ASUN, several 

other components of the Integrator complex are required for dynein recruitment to the 

nuclear surface in cultured human cells (Jodoin et al., 2013). We also showed that the 

pool of ASUN localized within the nucleus is critical for the recruitment of dynein to the 

nuclear surface during Drosophila spermatogenesis and in cultured human cells. These 

data have led to our current model in which ASUN functions within the nuclear  
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Table 4.4. Class 3 deficiencies: genes involved in mRNA binding and/or processing 
 

Candidate genes deleted Bloomington 
stock # Flybase ID Gene symbol Gene name 

9610 FBgn0010263 rbp9 RNA-binding protein 9 

FBgn0014189 Hel25E Helicase at 25E 

FBgn0041719 snRNA:U4:25F  9560 

FBgn0024191 sip1 septin interacting protein 1 

1469 FBgn0067622 LSm4 Like Sm protein 4 

23169 FBgn0033806 FLASH FLASH ortholog 

FBgn0086895 pea peanuts 
24385 

FBgn0000662 fl(2)d female lethal d 

24407 FBgn0000662 fl(2)d female lethal d 

24424 FBgn0015907 bl bancal 
 
This table includes deficiencies that dominantly modify the asunf02815 phenotype and lack 
one or more genes that are involved in mRNA binding and/or processing. The specific 
candidate genes within each deficiency have been listed.  
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Table 4.5. Class 4 deficiencies: genes with moderate to high expression in testes 
 

Candidate genes deleted Bloomington 
stock # Flybase ID Gene symbol Gene name 

9635 FBgn0032219 Tsp42A  

32253 FBgn0033042 CG4995 Tetraspanin 42A 
 
This table includes deficiencies that dominantly modify the asunf02815 phenotype and lack 
one or more genes that moderate to high expression within the testes. The specific 
candidate genes within each deficiency have been listed. This category does not include 
deficiencies that are found within any of the first three categories. 
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Integrator complex to regulate the localization of dynein. According to this model, 

Integrator is required for the processing of snRNA that then plays a role in the splicing of 

one or more mRNA transcripts encoding a regulator(s) of dynein localization. Therefore, 

reduction of the levels of components of the spliceosome, or of proteins involved in other 

mRNA processing events, via reduction of their gene dosage, could conceivably lead to 

modification of the asun phenotype. None of the genes encoding known components of 

the Integrator complex, however, are deleted in the 73 deficiency lines tested in this 

preliminary screen thus explaining why we did not identify any of the components of the 

Integrator complex as candidate asun interactors. 

The fourth class of deficiencies lack (in one copy) one or more genes known to 

have moderate to high expression within the Drosophila testes, although there is little 

else known about their functions (Table 4.5). Two out of the 29 deficiencies - BL32253 

with Tetraspanin 42A (Tsp42A) deleted (in one copy) and BL9635 with CG4995 deleted 

(in one copy) – belong to this category. The deficiencies included in this category could 

not be placed in any of the first three categories. The final and fifth class includes those 

deficiencies for which we were unable to identify any obvious candidate genes of 

interest. Four out of the 29 deficiencies (BL9605, BL23665, BL6609, and BL26516) 

belonged to this category. These two categories of deficiencies would be most interesting 

to pursue further to identify novel proteins that play a role in spermatogenesis and/or are 

part of the molecular network of ASUN. 

One disadvantage of having performed the genetic screen by testing for 

modification of only one asun phenotype is that we might have missed those genes 

among the deficiencies tested that could dominantly modify a different asun phenotype. 
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The multi-nucleated phenotype that we used for the screen, however, is a phenotype 

observed at nearly the very end of spermatogenesis. Therefore, we are more likely to 

obtain a larger number of false positives from the screen as a result of haplo-insufficiency 

of the allele tested rather than being unable to identify all the genes that could potentially 

modify the asun phenotype.    

To follow up on the above-mentioned hits, firstly, we would have to confirm the 

genetic interaction by repeating the experiment and by determining if the deficiency line 

is haplo-insufficient. If a single copy of the chromosome deletion, in an otherwise wild-

type background, also exhibits a multi-nucleated spermatid phenotype, it is possible that 

the perceived genetic interaction is actually the result of an independent effect of the 

deficiency on spermatogenesis. After testing the hits from the screen for the absence of 

haplo-insufficiency, the next step would be to test smaller deficiencies (publicly available 

stocks from the Bloomington Stock Center) within the large genomic region deleted in 

the deficiency lines identified in our screen to narrow down the potential candidates. The 

ultimate goal would be to identify individual genes that dominantly modify the asunf02815 

phenotype. Any genes identified in this manner would then require further 

characterization to determine their molecular placement in ASUN-dependent processes.  
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CHAPTER V 

 

CONCLUDING REMARKS 

 

Summary 

Our lab previously characterized asun as a novel regulator of dynein localization 

in Drosophila spermatogenesis and in cultured human cells (Anderson et al., 2009; 

Jodoin et al., 2012). Male flies homozygous for the asunf02815 allele, which is predicted to 

encode a truncated version of the ASUN protein, are sterile (Anderson et al., 2009). asun 

spermatocytes and spermatids exhibit loss of perinuclear dynein resulting in nucleus-

centrosome coupling defects in spermatocytes and nucleus-basal body coupling defects in 

spermatids. As a result of the nucleus-centrosome coupling defects, asun spermatocytes 

undergo a prophase arrest, and spermatocytes that overcome this arrest exhibit defects in 

spindle formation and in further progression through meiosis. Similarly, siRNA-mediated 

knockdown of human ASUN in cultured human cells resulted in loss of perinuclear 

dynein and nucleus-centrosome coupling, indicating that this role of ASUN is conserved 

through phyla (Jodoin et al., 2012). 

During Drosophila spermatogenesis, we determined that the asun phenotype is 

dominantly enhanced by the introduction of a single mutant copy of a dynein accessory 

factor, Lis-1 (Sitaram et al., 2012). Human LIS1 was initially identified as the causative 

factor of the human brain disorder, Lissencephaly-1, when lost in one copy. Drosophila 

Lis-1 is essential for the viability of the fly. During Drosophila spermatogenesis, we 

observed that flies homozygous for a hypomorphic allele of Lis-1 (Lis-1k11702) are male 
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sterile. Lis-1 spermatocytes and spermatids exhibit loss of perinuclear dynein as well as 

the nucleus-centrosome and nucleus-basal body coupling defects observed in asun 

mutants. Lis-1 male germ cells also exhibit additional defects such as failure of 

centrosomes to detach from the cell cortex at the G2-M transition of meiosis and defects 

in the coupling of the Nebenkern with the nucleus and basal body. We also observed all 

of these Lis-1 defects in flies null for the dynein light chain, tctex-1, suggesting that Lis-1 

is required for all dynein-mediated processes, whereas asun is required only for a subset 

of dynein-mediated processes during Drosophila spermatogenesis. Additionally, we 

observed that ASUN is required for the perinuclear localization of LIS-1 and that the 

Drosophila homologs of LIS-1 and ASUN co-localize and co-immunoprecipitate in 

cultured human cells. These data, along with the data showing genetic interaction 

between Lis-1 and asun mentioned earlier, led us to propose a model in which Lis-1 and 

asun cooperate to regulate dynein localization and dynein-mediated processes during 

Drosophila spermatogenesis. 

Northern blot analysis of asun mRNA expression in Drosophila tissues revealed 

that, while asun is expressed within Drosophila testes, its expression is much higher in 

Drosophila ovaries and embryos (Stebbings et al., 1998). Additionally, ASUN was 

previously identified as an in vitro substrate of the PAN GU kinase, which is critical 

during the syncytial divisions of early embryogenesis (Lee et al., 2005). These data 

suggested that ASUN might play an important role during oogenesis and/or 

embryogenesis. We used flies carrying a null allele of asun (asund93) to determine 

whether ASUN is required for these processes. We observed no genetic interaction 

between asun and png, and asun-derived embryos did not exhibit the giant nuclei 
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phenotype that is characteristic of png-derived embryos, suggesting that asun may not 

function within the molecular network of png during early embryogenesis in Drosophila.  

We did, however, find that asun plays an essential role during Drosophila 

oogenesis. asund93 females have a highly reduced egg laying rate and more than half of 

the eggs laid by these females exhibit various degrees of ventralization. This 

ventralization is likely due to the mislocalization of mRNA transcripts encoding the 

dorsal fate determinant, Gurken, in asun egg chambers. Dynein has been previously 

implicated in the proper localization of gurken mRNA. We observed that the localization 

of dynein is disrupted in asun egg chambers, suggesting that this defect may be the root 

cause of the ventralization phenotype of asun-derived embryos. We also observed defects 

in other dynein-mediated processes such as centrosome migration, nucleus-centrosome 

coupling, and nuclear positioning in asun ovaries. Therefore, similar to its role in 

spermatogenesis, our studies have revealed that asun is required for dynein localization 

and dynein function during Drosophila oogenesis. 

 

Discussion and Future Directions 

ASUN has been identified as a functional component of the nuclear Integrator 

complex in a genome-wide RNAi screen performed in Drosophila S2 cells (Chen et al., 

2012). The Integrator plays a role in 3’-end processing of small nuclear RNAs (Chen and 

Wagner, 2010). Work in our lab has further determined that, in cultured human cells, the 

regulation of dynein localization by ASUN occurs through its role in the Integrator 

complex (Jodoin et al., 2013). The Integrator complex is conserved across phyla, 

although it has not yet been determined if Drosophila ASUN is a functional component 
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of the Integrator complex in vivo. Future experiments utilizing available mutants of 

additional components of the Drosophila Integrator complex would need to be performed 

to determine if, firstly, the results of the RNAi screen in Drosophila S2 cells indicating 

that ASUN is a component of this complex holds true for the organism, and, secondly, if 

the Drosophila Integrator complex is required for the localization of dynein during 

gametogenesis. We have shown in Drosophila that localization of ASUN within the 

nucleus of primary spermatocytes is critical for perinuclear accumulation of dynein 

during spermatogenesis (Jodoin et al., 2013). These data strengthen our hypothesis that 

ASUN may function as a component of the Integrator complex in Drosophila and that a 

nuclear function of this complex (most likely in RNA processing) is required for the 

regulation of dynein localization during Drosophila spermatogenesis. 

As the Integrator is a nuclear complex, the current model for its role in regulating 

cytoplasmic dynein in human cells is that Integrator is required for the proper 3’-end 

processing of snRNA, which in turn is required for the proper processing of one or more 

mRNA transcripts encoding key regulator(s) of dynein localization within the cytoplasm 

(Jodoin et al., 2013). Therefore, to obtain more information on how dynein is regulated 

by the Integrator complex within the cell, it would be critical to identify and characterize 

the target(s) of the complex involved in mediating dynein localization. If we find that the 

Integrator complex plays a role in regulating dynein localization in Drosophila, further 

characterization of any hits obtained from the genetic screen described in Chapter IV 

could potentially be useful in identifying such Integrator targets. As ASUN is a 

component of the Integrator complex, and because ASUN was the first identified 

component of the complex that regulates dynein localization, it stands to reason that any 
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target of the Integrator complex that plays a role in regulating dynein localization could 

potentially dominantly modify the asun phenotype. Therefore, one method we could use 

to identify the above mentioned target(s) of the Integrator complex would be to identify 

hits from the genetic screen that are found to be required for the regulation of the 

perinuclear localization of dynein during Drosophila spermatogenesis and to determine if 

the mRNA processing of the target(s) is affected in the absence of one or more Integrator 

components.  

ASUN exhibits a dynamic, cell cycle-dependent localization in Drosophila 

primary spermatocytes (Anderson et al., 2009). Using a transgene encoding GFP-tagged 

Drosophila ASUN, we demonstrated that in early G2 spermatocytes, ASUN is restricted 

to the nucleus, and in late G2 spermatocytes, ASUN first appears in the cytoplasm at 

approximately the same time as the enrichment of dynein on the nuclear surface. Based 

on this coincidence in the localizations of ASUN and dynein, we initially hypothesized 

that cytoplasmic ASUN was critical for the perinuclear localization of dynein. We 

performed experiments in which we restricted the localization of ASUN to either the 

nucleus or the cytoplasm by the addition of a strong exogenous nuclear localization 

sequence (NLS) or by mutating the endogenous NLS of ASUN, respectively (Jodoin et 

al., 2013). As mentioned earlier, we observed that the cytoplasmic-restricted form of 

ASUN failed to rescue the loss of dynein localization in asun mutants. This result 

suggests that nuclear ASUN plays an important role in dynein recruitment. This was 

further validated by the results obtained by the introduction of nuclear-restricted ASUN 

into the asun background, as nuclear ASUN fully rescued the asun phenotype. However, 

because we observed some leakage of the nuclear-restricted ASUN protein into the 
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cytoplasm, we cannot completely deny a possible role for cytoplasmic ASUN in 

regulating the localization of dynein. Additionally, the weak but conserved physical 

interaction that we observed between ASUN and LIS-1 would suggest that ASUN, in 

addition to functioning within the nucleus as a component of the Integrator complex, may 

also interact more directly with LIS-1 within the cytoplasm to regulate dynein. A new 

transgenic line, better capable of restricting ASUN to the nucleus (possibly by the 

addition of multiple strong exogenous nuclear localization sequences to the asun 

transgene), would have to be generated and tested to determine if cytoplasmic ASUN 

may play a minor role in regulating the localization of dynein during Drosophila 

spermatogenesis.  

In addition to the role of ASUN as a component of the Integrator complex, ASUN 

has also been previously identified as an in vitro substrate of the PNG kinase (Lee et al., 

2005). The PNG kinase is a serine/threonine kinase that ensures mitotic entry by 

maintaining Cyclin B levels during early embryogenesis in Drosophila (Fenger et al., 

2000; Lee et al., 2005; Shamanski and Orr-Weaver, 1991; Vardy and Orr-Weaver, 2007). 

We observed that asun-derived embryos expressed normal levels of Cyclin B and failed 

to exhibit the giant nuclei phenotype that is characteristic of png-derived embryos, 

suggesting that ASUN is not critical during early embryogenesis. However, ASUN could 

still be an in vivo substrate of PNG and perform non-essential functions within the 

embryo. It would therefore be interesting to perform biochemical experiments to test if 

ASUN is phosphorylated by PNG during Drosophila embryogenesis. 

asund93 females have a highly reduced egg laying rate, although a significant 

number of asun females accumulate mature eggs within their ovaries. This suggested that 
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these females have defects in processes downstream of oogenesis that facilitate the 

movement of mature eggs from the ovary, down the oviduct and out the vulva. Current 

research has not implicated dynein or its accessory proteins in processes downstream of 

oogenesis. Therefore, it would be very interesting to determine if the loss of egg laying in 

asun females is a result of dynein-dependent defects in processes such as ovulation, egg 

release from the ovary, sperm storage, and/or fertilization or if ASUN plays dynein-

independent roles in these processes. Our preliminary data suggest that the morphological 

appearance of the reproductive glands such as the parovaria glands and the spermathecae 

is similar to wild type in asun females. It would therefore be necessary to test the 

secretory cells of these glands for their capacity to release hormones that are required for 

proper activation and movement of the embryo down the oviduct. Our preliminary data 

also suggest that asun females mate normally and that motile sperm is stored within the 

seminal receptacle. It would therefore be of interest to determine if these females exhibit 

defects in the process of fertilization, as only half of the eggs laid by asun females 

undergo hatching. 

The localization of mRNA transcripts encoding the dorsal fate determinant, Grk, 

to the anterior-dorsal region of late stage egg chambers is defective in asun females, 

likely as a result of loss of dynein localization. The Grk protein, however, was found to 

generally localize properly to the anterior-dorsal region of the oocyte in a majority of 

asun egg chambers, although the association of Grk with the oocyte nucleus appears to be 

disrupted as a result of nuclear mispositioning in asun egg chambers. These observations 

could suggest that the activation of the dorsal-anterior follicle cells by Grk depends on its 

activation and/or association with the oocyte nucleus. It is therefore of important to test 



 132 

the activity of the Grk protein in asun egg chambers by observing the localization and 

activity of proteins activated and inhibited by Grk, such as Rhomboid and EGFR within 

the dorsal follicle cells and Pipe within the ventral follicle cells, respectively.  

Based on our current knowledge, ASUN performs several critical functions 

during mitosis in human cells and during gametogenesis in Drosophila, and it has been 

shown to be a functional component of the Integrator complex. Additionally, recent 

evidence from our lab has demonstrated that ASUN and other components of the 

Integrator complex are required for the formation of primary cilia in cultured human cells 

via a mechanism that is independent of dynein (unpublished observations; Jeanne Jodoin 

and Laura Lee). These findings indicate that ASUN regulates dynein-dependent as well 

as dynein-independent cellular activities. It is therefore of importance to obtain more 

information on the potential interactors of ASUN. We have initiated a dominant modifier 

screen in Drosophila to identify genes that enhance or suppress the asun phenotype. We 

have tested 73 out of 190 deficiencies on the 2nd chromosome using this approach. These 

experiments have so far provided us with a small number of hits to pursue. To get a 

complete picture of the interactions and functions of ASUN within the cell, the remaining 

deficiencies on the 2nd chromosome as well as deficiencies on the other two major 

chromosomes would need to be tested to complete the first stage of the screen. Any hits 

obtained from this screen could then be further pursued to identify individual genes that 

would represent potential components of the molecular network of ASUN. Genes 

identified by this screen could then be characterized to determine their function during 

the cell cycle and their potential association with ASUN.  
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Significance 

Dynein is an essential component of the cell. As mentioned in earlier chapters, 

dynein performs a myriad of functions ranging from the transport of cargo to various 

parts of the cell during interphase to the regulation of the rearrangement of microtubules 

and chromosomes during cell division. Loss of the majority of dynein components or 

accessory proteins or the disruption of the dynein complex would, in most cases, prove 

lethal to individual cells and the whole organism.  

Loss or disruption of dynein function has been shown to be the cause of several 

diseases. As mentioned earlier, loss of one copy of the dynein accessory factor, Lis1, 

leads to type 1 lissencephaly, a human brain disorder resulting from defects in neuronal 

migration, which is a dynein-dependent process. Dynein has also been implicated in 

several other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and 

Huntington’s disease (Moughamian and Holzbaur, 2011). Mutations in dynactin subunits 

also lead to neurodegenerative diseases such as Perry syndrome. 

Our lab has demonstrated using Drosophila as a model that the misregulation of 

dynein localization can lead to male and female sterility, as dynein plays several critical 

roles during Drosophila gametogenesis. A similar requirement for dynein and LIS-1 was 

observed during spermatogenesis in mice, as deletion of a testis-specific splicing variant 

of Lis1 in mice resulted in male sterility (Nayernia et al., 2003). Based on this 

conservation, it is likely that a subset of cases of sterility observed in humans could 

likewise be related to defects in cytoplasmic dynein function. 

For dynein to perform its functions, others and we have shown that the regulation 

of its subunit composition and its subcellular localization is critical. Multiple proteins 
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have so far been identified as regulators of dynein localization and function, although it is 

clear that this knowledge is not complete. It is therefore very important to obtain a more 

precise understanding of the functions of cytoplasmic dynein and the various mechanisms 

by which it is regulated within the cell.  
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