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CHAPTER I 

 

BACKGROUND 

 

1.1 Outline 

 This thesis is about the formulation of new molecular dynamics (MD) forcefields 

to describe the interactions of water and solutes in aqueous environments, particularly the 

role of polarizability in forcefield transferability.  A forcefield is a mathematical function 

which describes the physical interaction between two or more molecular entities.  In 

general, the better the forcefield describes the true physical interaction, the more 

successfully it will be able to reproduce the actual behavior of a fluid composed of 

molecules.  The development of MD forcefields, where the interactions between 

molecules and evolution of the molecular motion is based on classical mechanics, are 

required for studying molecular systems which are either too large or complex to be 

practically simulated via ab initio methods or too expensive or impossible to do via an 

experimental investigation.  

 In this work, the systems described by the new forcefields will be compared to 

both experimental observations and ab initio calculations.  We will examine how the 

inclusion of polarization and the use of Gaussian distributions for electrostatic charges 

enhance the ability of the new forcefields to reproduce the physical properties of the 

systems, and how they differ from simpler models.  

The layout of this thesis begins as follow, it begins with an introduction to water 

and aqueous solutions and the importance of performing molecular simulations for the 

understanding of these systems.  Included is a summary of previous simulation studies 
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from the wider academic community of water and aqueous solutions.  The aim of Chapter 

II is to describe an assortment of techniques used in classical simulations and ab initio 

calculations which have been used in this thesis.  It is hoped that this introduction will 

show how these methods complement each other, and how assumptions are used to move 

from highly computationally expensive and accurate calculations to less computationally 

expensive calculations, while still retaining sufficient molecular interactions to produce 

scientifically meaningful results.  

 Chapter III and Chapter IV examine the effect of adding point polarizability to 

non-polar but polarizable solutes, and how this affects the solubility of simple solutes in 

bulk water and aqueous solutions.  Specifically, Chapter III focuses on a range of popular 

simple rigid models for water in bulk conditions.  Multiple water models are simulated in 

order to assess the ability of each water model to reproduce the bulk water behavior, and 

to investigate how the errors in the reproduction of the water solvent affect the solubility 

of non-polar solutes in aqueous solutions.  The excess chemical potential is calculated for 

a range of temperatures at 1 Bar.  Chapter IV investigates the effect of charged co-

solvents (ions) on the solubility of non-polar solutes.  The effect of the ions on the electric 

field and how it changes the solubility of the solutes, as the ion concentration increases at 

standard pressure and temperature are investigated. 

 Chapter V is a comparison between a recently developed classically-based water 

model (GCPM), which uses Gaussian distributed electrostatic charges and explicit 

polarizability, and ab initio Car-Parrinello molecular dynamics under a range of state 

conditions.  The objective is to examine the ability of the classical water model to 

reproduce the mean and distribution of the induced dipole moment of bulk water.  
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 Chapter VI shows the development of ion-water models to use with GCPM water.  

This shows that by using a polarizable ion forcefield, together with a polarizable model of 

water it is possible to reproduce the induced dipole moments for the ion compared to Car-

Parrinello simulations results, and the correct kosmotropic and chaotropes behavior of the 

ions in ion-water clusters.  We have also show the behavior of the ion and water structure 

at infinite dilution.  

 In Chapter VII, the intramolecular forcefield of the Thiol bond, between 

benzendithiolate (BDT) and gold clusters is investigated using various DFT functionals, 

are used to develop intramolecular bonding parameters.  The effect of the variance in the 

bonding parameters is assessed, by examining the resulting packing structure of a self-

assembled BDT monolayer bound to a gold surface.  Finally, in chapter VIII, the overall 

conclusions of this work and possible future directions will be presented. 

 

1.2 Water 

 Water is one of the most common substances on the Earth’s surface, and is the 

most important fluid for our existence.  All three phases are present in the natural 

environment, with liquid water covering approximately 70.8 percent of the earth1.  

Water's abnormal properties, are necessary for the existence of life, especially the ability 

of intracellular water to dissolve cellular constituents2.   In biological life forms, water is 

the solvent which allows transport of nutrients, the ability to break down proteins and 

carbohydrates for digestion and is important for the regulation of cellular volume3.  

Water's behavior around dissolved biomolecules contributes to the 'hydrophobic effect', 

which contributes to protein folding, and plays an important role in the specificity and 

affinity of protein and DNA interactions4.  Water molecules buried inside protein 
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molecules are so structurally important to the folding of proteins that is has been 

suggested that they should be included into protein structures5.  As water is so important 

in biological systems, the understanding of the behavior of water, its aqueous solutions 

and the behavior of small solutes dissolved in the aqueous solution is vital for 

understanding the interaction between aqueous solutions and other larger biological 

molecules6,7. 

 Water is a deceptively simple molecule comprised of two hydrogen atoms joined 

to a single oxygen atom.  The hydrogen atoms are proton donors and the 'lone electron 

pairs' on the oxygen are proton acceptors, resulting in the ability of each water molecule 

to have four strong hydrogen bonds in a tetrahedral orientation.  It is the formation of the 

hydrogen bonds that gives water its unique and unexpected properties.  Some of these 

properties include a density maximum at 40C, as well as relatively high melting and 

boiling points for its molecular weight8.  It has a high permanent dipole created from the 

electronegativity of the oxygen atom and the unsymmetrical nature of the angle between 

the hydrogen-oxygen bonds.  The high dipole and dielectric constant gives water the 

ability to stabilize and dissolve ionic and polar species, the strong non-ideality of aqueous 

electrolyte solutions, and the ability of water to cluster around solutes has been related to 

complex water-water and water-solute intermolecular interactions.   

 The ability to simulate liquids at room temperature was a relatively new tool in the 

field of condensed matter physics, when, in 1974, Stillinger and Rahman9 published 

simulations of the first widely used computer model for liquid water.  Since then 

countless water models have been developed in order to better represent water in classical 

molecular simulations.  Guillot10 provides a good review of models developed prior to 

2002.  Classical water models have three main components; molecular structure, short 



 5 

range interactions or van der Waals interactions, electrostatic interactions (partial charges) 

and, in addition to this, some models include explicit polarization which accounts for 

many body effects. 

 Most water models have a rigid structure, in which the bond length and angles 

between the atoms are fixed (Figure 1-1).  Rigid water models are normally set to the 

isolated gas phase geometry with a HOH angle of 104.520, or to the angle between the 

arms of a tetrahedral (two H arms and two arms for the lone electron pairs), with a HOH 

angle of 109.470.  Flexible models11-13 allow the atoms to act like springs, permitting 

intramolecular vibrations, added in order to reproduce the vibrational modes of the 

isolated molecule. 

 Short-range interaction potentials are used to account for the van der Waals forces 

acting on the molecule, consisting of dispersion attraction and short range repulsion.  In 

practice, for water models, the short range interactions are often only added to the oxygen 

atom, and include implicitly the van der Waals forces of the hydrogen atoms. 

 The charges on the water model are usually modeled as point charges, 

(corresponding to Dirac delta functions in charge density), with positive charges located 

at the hydrogen (H) atoms and a negative charge located on the oxygen (O) atom or at an  

offset a small distance along the HOH bisector.  This offset has been shown to be vital in 

reproducing the ice I structure upon freezing14.  The total charge of each molecule is zero, 

as water is an overall neutral molecule.  The magnitude of the charge is sometimes set to 

reproduce the isolated dipole of water15-21.  This is especially true for some polarizable 

models, since an induced dipole component is added to incorporate the effect of 

neighboring molecules.  For non-polarizable models, the fixed dipole moment is 

increased beyond the isolated molecular value to implicitly take into account induction 
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effects thus enhancing the accuracy of the model at the state conditions where the water 

model is designed to be applied, which is usually at ambient conditions, i.e. 298 K and 

1.01325 Bar.  The number of electrostatic charges used in a water model normally varies 

between three and five, but increasing the number of sites has not consistently meant that 

accuracy is improved22.  Recently there has been an increased awareness of the 

importance of higher multipoles, with the work of Abacal and Vega23, showed that there 

is a trend between the melting point of hexagonal ice (Ih or everyday ice) and the 

quadrupole of the water model. 

 Polarizability is the distortion of the electron distribution from its normal shape 

due to the electric fields imposed by neighboring molecules.  For water, the total dipole 

moment is increased from 1.855D24 for the isolated molecule to experimental values, 

from high-energy x-ray measurements of the structure, of 2.9±0.6D25 in liquid water at 

ambient conditions.  The inability to precisely measure the total dipole moment of liquid 

water experimentally means that the actual value for the mean total dipole moment is 

subject to constant debate.  Calculations the induced dipole moment using different ab 

initio methods unfortunately give different result.  Coutinho et al.26, report the total dipole 

moment of liquid water as 2.60 ± 0.14D, using a range of different quantum chemical 

calculations.  Consistent with this result, is the work of Tu and Laaksonen27 who report a 

value for the dipole moment of 2.65D, but it was higher than the work of Delle Site et 

al.28 who obtain 2.47D.  More importantly, Coutinho contended that the value of the total 

dipole moment of liquid water has an upper bound of 2.74D, due to the association 

between the with the water dipole moment and the dielectric constant29.  Contrary to 

Coutinho's conclusions,  Silvestrelli and Parrinello30, used maximally localized Wannier 

functions31 (Chapter V) to calculate the average total dipole moment of water of 
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2.95±0.05D, which is significantly higher than most other dipole moment calculation 

methods. 

 Nevertheless, this dramatic increase in the dipole moment between the isolated 

and condensed phases, needs to be accounted for if a model is going to be useful at both 

high and low water densities, and across a range of temperatures and heterogeneous 

solutions.  One way to achieve this is to include explicit polarization.  Unfortunately, 

polarization is a computationally intensive addition to water models, as it requires 

iteration over the entire system since the induced dipole moment on each molecule affects 

the induced dipole moment on all the other molecules.  This iterative procedure continues 

until a converged solution for the electrostatic field is found in a self-consistent manner, 

called a self-consistent field (SCF).  For this reason, explicit polarization is often 

excluded from simulations.  A common ad hoc method to include polarization is to add a 

flexible point charge tethered to the oxygen atom with a harmonic potential.  This is 

called a Drude particle with the technique called a Drude oscillator32,33.  This allows a 

point charge to move around, changing the dipole and the related electrostatic interactions.  

This method removes the requirement of calculating a SCF, saving computational time.  

Though highly efficient, Drude particles have the disadvantage that the Drude particle is 

confined to the molecular plane, whereas experimentally polarizability of a water 

molecule is nearly isotropic34.  
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Figure 1-1: Geometry of the GCPM molecule, a rigid molecule with an offset apex for 
the negative charge at point M.  The positive partial charges are centered on the 
hydrogen atoms. 
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1.3 Ions in aqueous solutions 

Introduction 

 Water's importance comes from its ability as a solvent, and as a medium for 

chemical reactions.  The aqueous solvation of ions plays an important role in chemical 

and biological systems.  In biological application, ions are used to control the osmotic 

gradients related to the transport of biochemicals35.  This is used to regulate the blood 

acidity, hydration and muscle functions.  Ions also allow the transport of current through 

aqueous media, as in, for example, lead-acid batteries.  

The effect of changing the ion concentration in aqueous solutions on the solubility 

of hydrophobic solutes in aqueous solution has been known for hundreds of years; with 

chemists using the addition of salt for the separation of chemicals.  Salting-out (or 

Salting-in) effects is the decrease (or increase) in the solubility of hydrophobic molecules 

due in the increases in ion concentration.  The mechanism for the salting-out effects is not 

well known, and there have been a number of mechanisms suggested in order to explain it.   

The first mechanism is based on how the water molecules form a hydration layer 

around dissolved electrolyte and non-electrolyte solutes36.  As water molecules prefer to 

surround an ion rather that a non-electrolyte solute, the more ions which are dissolved 

into the solution, the more water molecules will be involved in forming an ion hydration 

layer.  This will reduce the number of water molecules available to surround the non-

electrolyte solute.  As a result, the solubility of the solute in the solution decreases, and 

precipitation of the solute will occur. 

The second mechanism is based on the effect of the solute on the dielectric 

constant of the solvent37,38.  If the saturated solution has a greater dielectric constant than 

that of bulk water, then salting-in occurs.  Alternatively, if the saturated solution has a 
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lower dielectric constant than that of water, then salting-out occurs.  This theory works 

well for small ions, but fails for larger ones, as the structural effects of the solution are not 

taken into account.  The third is based on the internal pressure39,40, or packing structure of 

the solution.  The idea is based on the fact that a solute molecule occupies a volume in the 

solution, exerting a pressure on the solvent molecules.  If the volume of the solution 

decreases after the addition of ions, this pressure changes the ion-solvent interactions to 

be more repulsive, causing the solute to precipitate out.  Oppositely, if the volume of the 

solution increases, there is a salting-in effect as the ion-solvent interaction is more 

attractive.  For a good review, see Grover and Ryall41. 

The ranking of how much effect ions have on the stability and solubility of 

proteins is known as the Hofmeister series42.  Even though the Hofmeister series has been 

able to qualitatively explain the trends of protein in aqueous solutions, the ability to 

quantitatively describe the ion position in the Hofmeister series and its effect on a protein 

has not been obtained43.  A small subsection of the Hofmeister series is shown below,  

 +++++
>>>>

4

22
NHKNaMgCa  [1-1a] 

 !!!!!!
>>>>> SCNClOIBrClF

4
 [1-1b] 

where the ions on the left are kosmotropic (water structuring) and have a greater 

structuring effect on the solution  and they strengthen the hydrophobic effect more than 

those on the right, which are more chaotropic (water disrupting). 

Kosmotropes generally have small ionic radii, with multi-charged ions resulting 

with higher charge densities.  The ion forms strong hydrogen bonds with the surrounding 

water, increasing the amount of structuring in the water around the ion, for example, Li+, 
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Ca2+, Mg2+, F-44.  Most of the kosmotropes are cations, as they generally have a smaller 

ionic radius. 

Chaotropes, tend to have a larger ionic radius with a single charge, which will 

result in a lower charge density.  This leads to weaker ion-water interactions relative to 

the cohesive water-water interactions.  A chaotrope acts like a defect in the water 

structure compared to the pure water structure.  Examples of chaotropes are SCN-, ClO4
-, 

I-.  For proteins, kosmotropes at a high concentration will stabilize proteins, whereas 

chaotropes at high concentrations destabilize proteins45,46.  For a review of the Hofmeister 

effects see the work of Kunz et al60. 

 Ion solvation in aqueous solution has been the focus of a wide range of 

experimental and theoretical research.  In regard to computational chemistry and 

simulations, ionic solutions have been studied at both classical and ab initio levels.  

Reviews of aqueous solutions, including experimental characterization, are provided by 

Ohtaki and Radnai47, Soper48 and Rode et al.49. 

 The solvation of ions in water is strongly dependant on the ion's size, and the sign 

and magnitude of the charge of the ion.  Anions have a much more favorable free energy 

of hydration than that of a cation of the same size and charge magnitude50-52.  The most 

frequently used method for modeling ions in aqueous solutions is to use a point charge 

model with a short range van der Waals interaction, often represented by a Lennard-Jones 

potential53-56.  In more recent models, polarizability has been added to the ions, and it has 

been found to have a large effect on the nature of the ion-water interaction.  Many-body 

effects, i.e. polarizability, in both the water and ion models are required for surface 

phenomena to be correctly reproduced in simulations57,58. 
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Ions at the water/air interface 

 The behavior, stability and structure of ions at water interfaces are important 

given the role of interfaces between bulk water and biomolecules such as proteins, nucleic 

acids and membranes61-63.  Surface solvation occurs when the ion resides preferably at the 

edge of the water/air interface.  As a result, the second solvation shell preferentially starts 

to fill up before the first layer is completely full.  Jungwirth and Tobias64, showed that 

larger halide ions have a higher concentration of ions at the interface than in the bulk.  

This is in contrast what you would usually expect, as ions at the surface will increase the 

surface tension that will be unfavorable.  However, the large halide ions breaking the 

hydrogen bonding structure in the bulk solution has a greater energy penalty than the 

increase in the surface tension from the ions being at the surface.  As a result the larger 

ions preferentially move to the surface.  For large clusters, the large halide ions do enter 

the bulk phase due to the entropic energy.  Small cations in general are pulled in to the 

cluster, and undergo bulk solvation.  Many simulations of the surface solvation of ions 

have been conducted56,57,65-69.  Perara and Berkowitz66 first predicted that a Cl- anion 

solvated in a water cluster (up to 20 molecules) preferred surface solvation. There have 

been discrepancies between ab initio, classical simulations and experiments68,70 

concerning the number of water molecules required for bulk solvation to occur for halide 

ions.  Simulations by Herce et al.57, reported that the inclusion of polarizability is vital to 

reproduce the correct surface or bulk solvation behavior. 
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1.4 Experimental Methods 

 Experimental measurements are very important to molecular simulations as they 

can be used to verify the ability of the simulations to reproduce quantitatively the actual 

molecules behavior.  Below is a summary of some molecular properties which are 

frequently calculated via molecular simulations and how they are measured 

experimentally. 

Fluid structure 

 The structure of a fluid is the arrangement of the atoms around each other. The 

structure is often reported as a radial distribution function ( )rg
ij , which gives the 

probability of two atom types i  and type j  being separated by a certain distance r , 

relative to the expect number of atoms at the same distance for a uniform concentration 

with the macroscopic density ! .  When a fluid has no structure, i.e. an ideal gas, the 

( )rg  has a value of 1 for all values of r .  As a fluid becomes more structured or ordered 

there are larger deviations from the ideal gas (Figure 1-2).  For water at standard 

conditions, there is structuring for the first 6-7Å, or two hydration shells, as seen in the 

oxygen-oxygen radial distribution function, ( )rg
oo

. 

 The structure of water was first studied by x-ray crystallography.  X-rays are 

scattered by the electrons surrounding the nuclei47, where the angle of the deflection of x-

ray is compared to the straight trajectory.  The degree of deflection gives information of 

the structure of the material.  Using wide-angle X-ray scattering, the location of the nuclei 

separated by a distance similar to the X-ray wavelength (~1Å) can be determined, these 

distance are usually for determination intramolecular interactions.  By changing the 

distance between the sample to the detector, small-angle X-ray scattering (SAXS) can be 
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preformed.  Using the longer wavelengths, intermolecular separation distances can be 

measured.  By using X-ray scattering, it was discovered that water was bound in a 

tetrahedral structure, but it could not account for the lack of long-range order in the liquid.  

X-ray scattering on water was always going to be problematic, as the hydrogen atom has 

a small electron density and as a result, it has small scattering power. 

 This problem was solved by the advent of the neutron diffraction, where beams of 

neutrons are diffracted by the interactions with the nuclei of the atoms.  With a larger 

nucleus, there is a larger cross-area, resulting in more diffraction of the neutrons.  So 

unlike x-ray diffraction, where the electron density is fixed by the atom type, the atomic 

nuclei can be increase through the substitution of one isotrope to another heavier isotrope.  

In the case of water, a hydrogen atoms (1 a.u.) can be replaced with deuterium (2 a.u.), 

increasing ability to extract hydrogen and oxygen infomation.  With neutron diffraction, it 

is possible to determine the average orientation of water molecules around a central water 

molecule.  Due to there being two hydrogen's for every oxygen in a water molecule, the 

( )rgHH  peak is the most accurate, next being ( )rgOH  then the ( )rgOO .  Conversely, 

water models are compared to the ( )rgOO , first and often only the oxygen-oxygen 

correlation is compared.  A review of water structure from experiments and simulations is 

provide by Head-Gordon and Hura71 and ion solvation via neutron scattering by 

Enderby72. 

 

Dynamics 

 As molecular simulations describe dynamic systems, i.e. the motion of molecules 

over time, is of great importance.  Dynamic properties include self-diffusion, which is the 
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displacement a molecule goes through over time, rotational diffusion, and the rate of 

replacement of the first hydration shell, which is an indicator for how strong a molecule 

or ion, holds onto its boundary water layer.  A good review of the structure and dynamics 

of hydrated ions is provided by Ohtaki and Radnai47 

 

Solubility 

 Accurate solubility measurements are important for the calculations of the salting 

effects of hydrophobic molecules in aqueous solution and determination of the excess 

chemical potential.  As the solubility of hydrophobic molecules in aqueous solutions is 

very low, mass-spectrometry is used.  Mass-spectrometry turns the sample into ionized 

fragments, which are separated according to their masses by passing through an electric 

or magnetic field.  For ions of the same charge, the same amount of kinetic energy is 

transferred.  The larger the mass of the ion, the slower the ion moves, and by measuring 

the speed, the type of ion can be determined.  There are multiple variants of mass 

spectrometry, but in essence, the concentration is determined by the amount of each type 

of ions collected in each variant73. 

 

Vapor liquid equilibrium 

 Vapor liquid equilibrium (VLE) calculations require the use of accurate pressure, 

temperature and composition measurement techniques.  There are four main methods 

used.  In the first method, static type, a vessel of variable or constant volume is filled with 

each substance.  The temperature and pressure is adjusted to bring about a phase 

separation.  Stirrers are used to reach the equilibrium state, and samples are taken from 

each phase for gas chromatography (GC) or mass spectrometry analysis of the 
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composition.  The second method, the recirculation method is similar to the static but 

each phase has an outlet which is pumped into the other phase.  This allows for easy 

assess to the samples and rapid achievement of equilibrium.  Thirdly, there is the open 

continuous flow method, in which the components are pumped into a separating cell, at 

equilibrium conditions.  It is useful for mixtures with sensitive components, but requires a 

large amount of samples.  Lastly, the synthetic method, is when a known mixture is added 

into a cell the temperature and pressure adjusted until a homogenous phase is formed.  

Then the pressure and temperature is varied until the mixture forms a new phase.  This 

has the advantage that there is no sampling, but it is inaccurate as precise detection of 

phase transformation maybe difficult. 
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Figure 1-2: Radial distribution functions of water at 298K and 1atm, using neutron 
scattering from Soper74.  Blue triangles, is the gOO(r), Red squares is the gOH(r), Brown 
circles is gHH(r), 



 18 

References 

1 F. Franks, Water, A comprehensive Treatise. (Plenum Press, 1972). 

2 R. Cooke, I. D. Kuntz, Annual Review of Biophysics and Bioengineering 3, 95 
(1974). 

3 P. M. Wiggins, Microbiological Reviews 54 (4), 432 (1990). 

4 J. W. Schwabe, Current opinion in structural biology 7 (1), 126 (1997). 

5 U. Sreenivasan, P. J. Axelsen, Biochemistry 31, 12785 (1992). 

6 M. J. Tait, F. Franks, Nature 230, 91 (1971). 

7 P. E. Smith, B. M. Pettitt, Journal of Physical Chemistry 98 (39), 9700 (1994). 

8 B. Cabane and R. Vuilleumier, Comptes Rendus Geoscience 337 (1-2), 159 
(2005). 

9 F. H. Stillinger, A. Rahman, Journal of Chemical Physics 60 (4), 1545 (1974). 

10 B. Guillot, Journal of Molecular Liquids 101, 219 (2002). 

11 G. S. Fanourgakis and S. S. Xantheas, Journal of Physical Chemistry A 110 (11), 
4100 (2006). 

12 S. B. Zhu, S. Yao, J. B. Zhu, S. Singh, G. W. Robinson, Journal of Physical 
Chemistry 95 (16), 6211 (1991). 

13 Y. J. Wu, H. L. Tepper, and G. A. Voth, Journal of Chemical Physics 124 (2) 
(2006). 

14 E. Sanz, C. Vega, J. L. F. Abascal, L. G. MacDowell, Physical Review Letters 92 
(25), 255701 (2004). 

15 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L, Klein, 
Journal of Chemical Physics 79 (2), 926 (1983). 

16 P. Paricaud, M. Predota, A. A. Chialvo, P. T. Cummings, Journal of Chemical 
Physics 122 (24), 4511 (2005). 

17 G. Lamoureux, E Harder, L V. Vorobyov, B. Roux, A. D. MacKerell, Chemical 
Physics Letters 418, 245 (2006). 

18 H. A. Stern, F. Rittner, B. J. Berne, and R. A. Friesner, Journal of Chemical 
Physics 115 (5), 2237 (2001). 



 19 

19 P. J. van Maaren and D. van der Spoel, Journal of Physical Chemistry B 105 (13), 
2618 (2001). 

20 E. Rozners, J. Moulder, Journal of Molecular Structure: Theochem 712, 167 
(2004). 

21 H. Saint-Martin, J. Hernandez-Cobos, M. I. Bernal-Uruchurtu, I. Ortega-Blake, 
and H. J. C. Berendsen, Journal of Chemical Physics 113 (24), 10899 (2000). 

22 M. Lisal, I. Nezbeda, W. R. Smith, Journal of Physical Chemistry B 108, 7412 
(2004). 

23 J. L. F. Abascal, C. Vega, Physical Chemistry Chemical Physics 9, 2775 (2007). 

24 S. A. Clough, Y. Beers, G. P. Klein, Journal of Chemical Physics 59 (5), 2254 
(1973). 

25 Y. S. Badyal, M.-L. Saboungi, D. L. Price, S. D. Shastri, and D. R. Haeffner, 
Journal of Chemical Physics 112 (21), 9206 (2000). 

26 K. Coutinho, R. C. Guedes, B. J. Costa Cabral, S. Canuto, Chemical Physics 
Letters 369, 345 (2003). 

27 Y. Tu, A. Laaksonen, Chemical Physics Letters 329, 283 (2000). 

28 L. Delle Site, A. Alavi, R. M. Lynden-Bell, Molecular Physics 96 (11), 1683 
(1999). 

29 K. Watanabe, M. L. Klein, Chemical Physics 131 (2-3), 157 (1989). 

30 P. L. Silvestrelli, M. Parrinello, Journal of Chemical Physics 111 (8), 3572 (1999). 

31 N Marzari, D Vanderbilt, Physical Review B 56 (20), 12847 (1997). 

32 G. Lamoureux, B. Roux, A. D. MacKerell, Journal of Chemical Physics 119 (10), 
5185 (2003). 

33 P. Drude, The Theory of Optics. (Longmans, Green and Co., New York, 1902). 

34 T. A. Halgren, W. Damm, Current opinion in structural biology 11 (2), 236 (2001). 

35 D. D. F. Loo, E. M. Wright, and T. Zeuthen, Journal of Physiology-London 542 
(1), 53 (2002). 

36 J. E. Desnoyers, C. Jolicoeour, Modern Aspects of Electrochemistry. (Plenum 
Publishing Corp, New York, 1969). 

37 J. M. P. Debye, Z. Phys. Chem 25, 22 (1925). 



 20 

38 B. E. Conway, J. E. Desnoyers, A. C. Smith, Phil. Trans. Roy. Soc (London) 
A256, 389 (1964). 

39 G. Tammann, Z. Anorg. Allg. Chem 158, 1 (1926). 

40 W. F. McDevit, F. A. Long, Journal of the American Chemical Society 74, 1773 
(1952). 

41 P. K. Grover, R. L. Ryall, Chemical Reveiw 105 (1), 1 (2005). 

42 F. Hofmeister, Arch Exp. Pathol Pharmacol 24, 247 (1888). 

43 J. M. Broering, A. S. Bommarius, J. Phys. Chem. B 109, 20612 (2006). 

44 N. Muller, Journal of Solution Chemistry 17 (7), 661 (1988). 

45 M. G. Cacace, E. M. Landau, and J. J. Ramsden, Quarterly Reviews of Biophysics 
30 (3), 241 (1997). 

46 O. S. Lawal, Food Chemistry 95 (1), 101 (2006). 

47 H. Ohtaki, T. Radnai, Chemical Reveiw 93, 1157 (1993). 

48 A. K. Soper, Journal of Physics: Condensed Matter 9, 2717 (1997). 

49 B. M. Rode, C. F. Schwenk, A Tongraar, Journal of Molecular Liquids 110, 105 
(2004). 

50 S. Rajamani, T. Ghosh, S. Garde, Journal of Chemical Physics 120 (9), 4457 
(2003). 

51 J. C. Rasaiah, R. M. Lynden-Bell, Philosophical Transactions of the Royal Society 
of London A 359, 1545 (2001). 

52 R. M. Lynden-Bell, J. C. Rasaiah, J. P. Noworyta, Pure and Applied Chemistry 73 
(11), 1721 (2001). 

53 J. Chandrasekhar, D. C. Spellmeyer, and W. L. Jorgensen, Journal of the 
American Chemical Society 106 (4), 903 (1984). 

54 G. Palinkas, W. O. Riede, and K. Heinzinger, Zeitschrift Fur Naturforschung 
Section a-a Journal of Physical Sciences 32 (10), 1137 (1977). 

55 B. M. Pettitt and P. J. Rossky, Journal of Chemical Physics 84 (10), 5836 (1986). 

56 L. X. Dang, D. E. Smith, Journal of Chemical Physics 99 (9), 6950 (1993). 

57 D. H. Herce, L. Perera, T. A. Darden, C. Sagui, Journal of Chemical Physics 122, 
024513 (2005). 



 21 

58 P. B. Petersen, R. J. Saykally, Annual Review Physical Chemical 57, 333 (2006). 

59 M. Jonsson, M. Skepo, P. Linse, J. Phys. Chem. B 110, 8792 (2006). 

60 W. Kunz, P. Lo Nostro, B. W. Ninham, Curr Opin Colloid Interface Science 9, 1 
(2004). 

61 S. McLaughlin, Annual Review of Biophysics and Biophysical Chemistry 18, 113 
(1989). 

62 K. D. Collins, Biophysical Journal 72, 65 (1997). 

63 B. Honig, K. Sharp, and A. S. Yang, Journal of Physical Chemistry 97 (6), 1101 
(1993). 

64 P. Jungwirth and D. J. Tobias, Journal of Physical Chemistry B 105 (43), 10468 
(2001). 

65 C. W. Bauschlicher, S. R. Langhoff, H. Partridge, J. E. Rice, A. Komornicki, 
Journal of Chemical Physics 95 (7), 5142 (1991). 

66 L. Perera, M. L. Berkowitz, Journal of Chemical Physics 95 (3), 1954 (1991). 

67 L. Perera, M. L. Berkowitz, Journal of Chemical Physics 96 (11), 8288 (1992). 

68 L. X. Dang, B. C. Garrett, Journal of Chemical Physics 99 (4), 2972 (1993). 

69 L. Perera, M. L. Berkowitz, Journal of Chemical Physics 100 (4), 3085 (1994). 

70 G. Markovich, R. Giniger, M. Levin, O. Cheshnovsky, Journal of Chemical 
Physics 101 (11), 9344 (1994). 

71 T. Head-Gordon, G. Hura, Chemical Reveiw 120 (8), 2651 (2002). 

72 J. E. Enderby, Chemical Society Reviews, 159 (1995). 

73 J. T. Watson, Introduction to mass spectrometry. (Raven Press, New York, 1985). 

74 A. K. Soper, F. Bruni, M. A. Ricci, Journal of Chemical Physics 106 (1), 247 
(1996). 

 



 22 

CHAPTER II 
 

OVERVIEW OF SIMULATION METHODOLOGIES 

 

2.1 Classical Simulations 
Theory 

 Classical molecular dynamics (MD) simulations apply Newtonian mechanics to 

predict the motion of atoms in a system, thus leading to prediction for the behavior of the 

modeled species.  MD simulations are based on solving Newton's second law of motion, 
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where 
i

M is the mass of particle i , 
i
r
v  is the position in real space, the force ( )

ijij rF
v

 is 

calculated for the positions and orientations of the modeled particles relative to each other.  

By numerically integrating the above equation through a timestep t! , the velocities of 

each molecule can be obtained.  Integration of the new velocities obtain the new positions, 

starting the cycle over again with the determination of the forces associated with the new 

atomic positions.  As the mass for a given species is constant, differing models only have 

different representations for the force.  The differing complexities of different models, 

often at differing computational cost, are an attempt to improve the representation of the 

particle-particle interactions (i.e. forces) of the models to be consistent with the behavior 

of real molecules. 
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Classical forcefields 

 Most classical models contain similar methods for representing the van der Waals 

interactions and electrostatic interactions.  The attractive interactions arise from London 

forces, due to transient dipoles neighboring particles.  This is usually represented via a 

theoretically based 6!
r  term1.  As the particles become closer, the electron orbitals start to 

overlap.  As electrons of the same spin become close to each other, strong exchange 

forces repulse the two particles.  This is the basis of the Pauli exclusion principal2.  This 

force is exponential with respect to distance, but is often approximated with a 12!
r  term.  

Historically, the repulsive 12!
r  term was chosen because of simplification of the 

calculation of the second virial coefficient, see Figure 2-1.  In practice, it is frequently 

used despite it having no physical basis.  Combining these two terms yields the 12-6 

Lennard-Jones potential, 

 
( )

r
dr

dU
rF

rr
rU

LJ
LJ

ijij

ijLJ

ˆ)(

4

612

!=

"
"

#

$

%
%

&

'

""
#

$
%%
&

'
!""

#

$
%%
&

'
=

v

((
)

 [2-2] 

where 
LJ

U  is the energy and 
LJ
F  is the force between particle of type i  and a particle of 

type j , ij
!  is a measure of the diameter of the interaction between i  and j  particles.  ij

!  

is the mixed well depth and r  is the distance between particle i  and j .  The force is the 

negative differential of the energy with respect to position.  The method of creating LJ 

parameters for the interactions between different components, from pure components 

ii
!" ,  is often via combination rules.  Combining rules have very little physical basis for 

real molecules, and the most popular are the Lorentz-Berthelot3 combining rules. 
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Figure 2-1: (Blue) Approximation of the short range energy between particles.  Positive 
gradients correspond to attractive interactions, and negative gradients correspond to 
repulsive interactions. (Red) Electrostatic potential for oppositely charged ions, the 
gradient is always positive. 
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 To reduce computational time during molecular simulations, only molecules 

inside a chosen distance from each other (cut off radius) are used for calculating short 

range interactions for between particles.  At large distances, the combined effect of the 

van der Waals forces on a particle are often assumed to be negligible as these can be 

approximately cancelled out due to the particle being surrounding by a uniform density of 

particles outside the cutoff.  This is the homogenous solution assumption, and is based on 

the idea that two equal but opposite forces pushing against an object results in no change 

of velocity.  Even though these long range interactions would have little effect on the 

equations of motion they have a significant effect on the pressure and energy calculation. 

 Corrections of the long-range dispersions forces become non-trivial for 

multiphase simulations if the interface is outside the cut-off.  As a result there would be a 

net force pulling the interfacial molecules towards the denser phase.  To account for the 

energy excluded due to the use of a cut-off radius for a homogeneous solution, we use the 

expression, 
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where Rc is the cut off radius and ρ is the density of the bulk system.  This corresponds to 

assuming a uniform structure given by ( ) 1=rg , beyond the cut-off. 

 The electrostatic potential for point charges are calculated via,  
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where 
i
q  is the charge of particle i  and ij

r  is the distance between particle i  and j .  
0
!   

is the vacuum permittivity of free space.  As the electrostatic energy is proportional to 1!
r , 

the total electrostatic energy of a system does not decay to zero as the number of particles 

increase as 3
r .  Thus other methods are required to account for long range electrostatic 

interactions.  Below is a summary of the long range correction methods used in this thesis. 

 

Reaction field method 

 In the reaction field method4, the forces acting on a molecule are separated into 

two parts.  One is a short-range inner sphere, where the electrostatics are calculated via 

the Coulombic potential in equation 2-5, and the other with an outer dielectric continuum 

region, with a dielectric constant of 
s
! .  The effective pair potential for the electrostatics 

interactions is4, 
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where 
s
!  is the dielectric constant in the continuum, assumed to be equal to that of the 

fluid.  A problem with the reaction field method is that when a molecule crosses from the 

inner sphere to the outer region, there is a jump in the energy due to direct interactions 

within the inner sphere and in the reaction field contributions; as a result the energy is not 

exactly conserved.  The benefit of this method is that it has a low computational cost of 

order N where N is the number of molecules.  The computational efficiently, of a 

simulation technique is often reported, as how the computational costs increase with an 
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increasing number of molecules in a simulation.  Order N ( )NO , means the 

computational cost increase directly proportional to the number of molecules.  A direct 

calculation of all Coulombic interaction in the simulation cell would have a cost of ( )2NO , 

due to the sum, 

 ( )!!
>
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N

i

N

ij

ijij rUU  [2-7] 

 Problems with the reaction field method are that it tends to over-emphasize the 

continuum nature of a polar fluid.  Another is that the reaction field method requires that 

the outer dielectric of the continuum region be known.  As the dielectric constant of the 

fluid varies dramatically with the addition of other solutes, especially with the addition of 

ions, the reaction field method can be inaccurate for solutions, therefore, the reaction field 

method is used only in the simulation of pure water simulations.  In this thesis, it is used 

for the simulations of pure water described by the Gaussian charge polarizable model. 

 

Ewald summation 

 The Ewald sum method5 is a technique for efficiently summing the interactions 

between an ion and all of its periodic images. 
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when k  are the lattice vectors, i.e. the number of repeated cells away from the central cell 

and L  is the length of the simulation cell.  As this result is conditionally convergent, the 

Ewald sum method decomposes equation 2-8 into two rapidly convergent sums.  The first 

term is the point charges, with each charge surrounded by a Gaussian distribution of the 

same magnitude but with the opposite sign.  This makes the first term short-ranged and 
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therefore converges quickly.  The second term is a second set of Gaussian distributions, 

with an opposite sign to the first set.  The Fourier transform of the second term 

convergences, and therefore the summation is done in reciprocal space.  A self correction 

term is required for the self interaction between the point charge and its screening 

distribution.  More details can be found in Allen and Tildesley3. 

 The downside of the Ewald sum is that is scales to ( )5.1NO 6, resulting in a high 

computational cost for large systems.  Particle-Particle-Particle Mesh (PPPM)7 and 

Particle-Mesh Ewald (PME)8 summation methods are similar to Ewald but use fast 

Fourier transforms and scales as ( )NNO ln
6 with minimal deviation in results9.  The use 

of PPPM and PME are becoming increasingly common in packaged codes. 

 The fact that Ewald-summation-based methods duplicate the instantaneous dipole 

fluctuation instead of damping out in the infinite replicated system has been criticized, on 

the grounds that it tends to overemphasize the periodic nature of the fluid3,10. The Ewald 

sum is popular is package codes, and is used for the water simulations carried out in Car-

Parrinello MD11 and in LAMMPS12, and for the BDT-MD simulations on a gold surface.  

 

Wolf method 

 The Wolf method13 is based on neutralizing the charge in the volume surrounding 

a charged atom.  As a result, charges at long distance see a neutral volume, thus no 

interaction.  It employs a damping factor ! , to aid convergence, and a cutoff 
C
R .  The 

Wolf method is a fast long-range method, which has the same accuracy as the Ewald sum 

method14, but is of ( )NO  and can be included in the short range interaction calculations if 

a tabulated force interaction technique is used.  In this thesis, the Wolf method is used for 
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the calculations of the chemical potential for the solutes into water and aqueous systems.  

A description of the Wolf method, and the derivation of the equations for its application 

to water and solute forcefields, with and without Gaussian charges, is provided in 

Appendix A. 

 

 

2.2 Ab initio methods 
Background 

Ab initio methods differ from classical simulations as they are based on 

fundamental quantum mechanics, as opposed to empirically defined functions for the 

atomic interactions.  They require solving for the wavefunction, which contains all the 

information of the system.  It represents the probability amplitude, where the square is the 

electron probability density, i.e. the probability of an electron being found at a given 

position.  Integration of the system wavefunction over all space will result in the number 

of electrons contained in that space. 
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where !  is the wavefunction of a system, ( )zyx ,,!  is the probability density of finding 

an electron at a point and n  is the number of electrons in the system.  Ab initio 

calculations (time-independent) and simulations (time-dependent) are extremely useful 

since they can provide reliable predictions of properties and energies that are often too 

difficult and in some cases impossible to obtain experimentally. 

 Ab initio calculations allow for the computation of bonding energies and non-

bonded molecular interactions, useful in the creation of classically based potentials.  The 
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downside of ab initio calculations it that they require significantly more computational 

resources compared to classical simulations.  As a result such simulations are limited to 

very small systems and very short simulation times if time-dependent calculations are 

desired.  Below is a summary of ab initio methods. 

 

Hartree -Fock and Post-Hartree-Fock methods 

 The Hartree-Fock method15 (HF) is the central method for ab initio quantum 

chemistry calculations, where the wavefunction for an N-body system !  is assumed to 

approximate by a single Slate determinant, given by 
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where ( )
ji
x!  is the molecular wavefunction i  for particle j .  If any of the wavefunctions 

are the same, the system wavefunction !  is zero, satisfying the Pauli exclusion principle, 

that no two electrons can be at the same position at the same point of time. 

 The greatest assumption with the Hartree-Fock method is that electron correlation 

is ignored.  Electron correlation is the effect one electron has on the locations of other 

nearby electrons.  An uncorrelated system is where the probability for finding a given 

electron is independent to the locations of other electrons.  In reality, electrons are more 

closely correlated due to direct Coulombic repulsion of electrons.  For example, around 

electron i , there would be a local region of space that other electrons would avoid.  This 

space around an electron is called the Coulombic hole.  In HF, electrons are treated in an 

averaged way, resulting in a particular electron interacting with an electron cloud, 
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excluding the local electron-electron interaction.  A good review on electron correlation is 

presented by Knowles et al.16. 

 Dispersion forces (or van der Waals forces) come from the electron correlation 

interactions.  Thus, their correct calculation is extremely important for intermolecular 

interactions, especially in neutral molecules, where Coulombic interactions are not 

dominant.  Post-Hartree-Fock methods were developed to improve on the Hartree-Fock, 

by adding the effect of electron correlations.  The only post-Hartree-Fock method used in 

this thesis is Moller-Plesset perturbation method17. 

 Moller-Plesset perturbation method starts with Hartree-Fock method and adds in 

excited electron states (electrons moved into high energy orbital).  The addition of these 

excited state nn
!"  are treated as a perturbations from the lowest energy state, where the 

full wavefunction can be shown as 

 ...
2210
+!+!+!=! ""  [2-11] 

 For a second order level theory, (MP2), doubly-excited Slater determinants are 

added, where the doubly excited configuration "interact with" the ground configuration 

(HF).  There is no MP1 energy as there can not be a single-excited state. 

 
2MPHF

EEE +!  [2-12] 

 With regard to high levels of perturbation theory, Leininger et al.18, reported than the 

MPn energies and properties display rapid or slow convergence, monotonic or oscillatory 

decay, highly erratic or regular behavior, or early or late divergence, all depending on the 

chemical system or the choice of one-particle basis set.  Helgaker et al.19, stated that 

molecular properties calculated with MP3 and MP4 were not consistently better than 

those calculated using MP2.  Bearing this in mind, and the additional computational cost 
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for high levels of theory, all calculations were conducted at the MP2 level.  MP2 

calculations were carried out for the determination of the van der Waals forces for the 

ion-solute forcefield parameterization in chapter IV. 

 

Density functional theory 

 The Hartree-Fock method and perturbation theory are based on N-body 

wavefunctions (multiple electrons).  Density functional theory (DFT) replace the N-body 

wavefunction ( )
N
rrr ,...,,

21
! , which is a function of 3N variables (x, y, z for each atomic 

wavefunction) with an electronic density ( )r!  , which is a function of 3 variables (x, y, z 

for the system). The energy levels of the system are the eigenvalues of the 

Schrodinger equation  
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The first term, is from the kinetic energy of the system.  ( )
i
rV
v  is static external potential 

operator which is dependent on each system, and ( )
ji rrU
vv
,  an operator for the electron-

electron interactions.  The kinetic energy and ( )
ji rrU
vv
,  are system-independent operators.  

It was proposed by Kohn and Sham20 that  

 ( ) ( ) ( )
NNN
rrrrrrrdrdNr ,...,,,...,,... 21

*

211 !!= " "
vvv

#  [2-14] 

could be rearranged so that ( )( )rv!"=" .  Optimizing ( )rv!  to minimize the energy, 

results in the ground state wavefunction.  Therefore all of the properties of the ground 

state system can be calculated. 
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Exchange and correlation functionals  

 As an alternative to perturbation theory, for the electron corrections, DFT 

calculations makes used of functionals to account for the exchange energy and correlation 

energy.  The exchange energy is due to the additional attraction and repulsion of electrons 

with differing angular momentum, called the electron spin.  One could explain the 

exchange energy (albeit simplicity) with two electrons with the same angular momentum 

that are nearing each other.  As they become nearer, they become closer to violating the 

Pauli exclusion principle, that no two electrons can have the same four quantum numbers 

at the same time, this resulting in repulsion between the two electrons.  The space around 

an electron which repels electrons with similar angular momentum is called a Fermi hole.  

There is an attraction between two electrons with differing angular momentum, which is 

important for chemical bonding, as it allows both electrons to be localized in a 

intermolecular area, shielding the two positively charge nuclei from repulsion.  The 

exchange effects are approximately 10 times greater than that of electron correlation 

effects.  The correction 
XC
E  due to exchange and correlation effect is calculated via  

 ( ) ( )( ) ( )drrrrfE XCXC ! "=
vvv

### ,  [2-15] 

where XCf  is the exchange functional.  Five different functionals are used in this proposal, 

LDA21, BLYP22,23, B3LYP24,  PBE025 and X3LYP26.  Functionals are made with an 

exchange part and a correlation part, with one of the most common being the BLYP, 

made from the Becke's exchange22 and Lee, Yang and Parr's correlation functional 23.  

LDA (local density approximation) is the simplest approximation, as the electron 

exchange and correlation energy is only a function of the electron density at any point in 
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space ~ρ(r).  The generalized gradient approximation (GGA) uses both the electron 

density and the first differential of the electron density (gradient) that is ( )r!  and ( )r!" . 

 In 1993, hybrid functionals became available and are made from mixing different 

functionals together.   It was found that GGA functional over-binds and over-predicts 

bond lengths and Hartee-Fock (HF) under-binds and under-predicts bond lengths.  If HF 

is mixed with the GGA functionals, it was hoped that it will obtain properties between 

the respective methods.  The coefficients for a hydrid functional are empirically fitted to 

high level ab initio calculations, or highly accurate experimental data.  Both B3LYP and 

X3LYP are fitted to experimental data sets, and PBE0 is determined by using 

perturbation-theory.  The formula for the combination of their different functionals are  

B3LYP: 
ccxxx

LYPVWNBSHF 81.019.08872.08.02.0 ++++  

PBE0: 
cxxxx

PBEPWPBESHF ++++ 9175.075.025.0  

X3LYP: 
ccxxxx

LYPVWNPWBSHF 871.0129.091167.088542.0782.0218.0 +++++  

where, S, HF, PW, PBE, B88, VWN AND LYP correspond to, Slater27, Hartee-Fock15, 

Perdew-Wang9128, Perdew-Burke-Ernzerhof29, Becke's exchange22, Vosko-Wilk-Nusair 

8030 and Lee, Yang, Parr 8823 

 Multiple functionals have been developed and each functional is more accurate 

for different properties and different systems.  The most recent functional, X3LYP, is 

best for heats of formation, electron affinity and van der Waals attraction.  The hybrid 

B3LYP is better for the calculation of the electrostatics interactions, which are very 

important for forcefield development, and is close second to X3LPY for many properties.  

Comparison of the accuracy of the functionals can be found in the work of Xu and 

Goddard26. 
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Basis sets  

 Basis sets are a collection of functions which define a space in which a molecular 

system is solved.  They contain functions (basis functions) that explain the orbitals of the 

atom the particular basis sets was designed for.  A basis set can be described by,  

 !
=

=
N

j

F

jj

BS

i d
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""  [2-16] 

where BS

i
!  is the basis set of atom i , with is the sum of the basis functions F

j! .  The basis 

functions are added according to a coefficient jd .  The jd  parameters are fitted to Slater 

atomic orbitals27 which are not directly used due to computational difficulties. 

 Basis functions are mathematic expression used to describe atomic orbitals.  Basis 

functions used in this thesis are Gaussian-type atomic functions, which have a form 

similar to, 

 ( ) ( )2exp rrfAF

j !" #=
v  [2-17] 

where A  is a constant for the basis function, and ( )rf v  is a product of direction vectors.  

For example, for the 1s-orbital, in the x  direction 

 ( ) ( )2
4

3

exp
2

rxr
F

j !
"

!
# $%

&

'
(
)

*
=  [2-18] 

where !  is a constant parameter, x  is the ( )rf , r  is the distance away from the atomic 

nucleus.  A 'minimal' basis set contains only one basis function to describe each atomic 

orbital.  For example, the carbon atom has 5 orbitals, namely 1s, 2s, 2px, 2py, 2pz orbitals 

resulting in 5 basis functions for its 6 electrons.  For better representation of the orbitals, 

more functions can be added to represent each orbital.  Increasing the number of 

functions, increases the accuracy of the calculation but it also increases the computational 
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cost. By nomenclature convention, double zeta stands for 2 functions for each orbital and 

triple zeta for 3 functions, and so on.  

 As the valence (outer) orbitals have the greatest effect on the interatomic interactions, 

the core orbitals are often modeled with less basis functions compared to the valence 

electrons.  This is called a split-valence basis set, and it can have a dramatic reduction of 

the computational cost of the calculation, with minimal penalty in accuracy.  When there 

is a great number of electrons/orbitals in an atom, e.g. gold (79 electrons), a single 

function called an effective core potential (ECP), can approximate a number of the core 

electrons.  For this work, the ECP for gold accounted for 60 electrons. 

 Extra basis functions are added to the basis set for molecular systems where 

polarization has a sizeable effect.  For an s-orbital, 3 p-orbitals are added (px, py, pz) and 

for a p-orbital, the 5 d-orbitals are added (dxy +dyz +dxz +dx
2

-y
2+dz

2).  By nomenclature 

convention, an asterisk is added to the basis set's name (*) when extra polarization 

orbitals are adding to the basis set.  If polarization is going to be added to hydrogen atoms, 

two asterisks are added. 

 For molecular systems where the electrons are likely to be distributed further away 

from the nucleus, diffuse functions are added to more accurately represent the tail portion 

of the basis sets, e.g. a negatively charge ion like Br-, which has extra electron-electron 

repulsion.  By nomenclature convention, the addition of diffuse functions are represented 

with a plus sign (+), again if diffuse functions are added to hydrogen atoms, two plusses 

are used. 

 To choose which basis set to use is a trade-off between computational time verses 

accuracy.  A molecular dynamic simulation scales between ( )NO  and ( )2NO , where N is 
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the number of molecules, whereas ab initio methods scale to the ( )3NO  for plane wave 

calculations, ( )4NO  for DFT and ( )5NO  for MP2 where N is the number of functions.  

So for extended basis sets, the computational cost is immense.  For example, the 6-31G 

basis set for carbon contains 9 basis functions, 6-311++G(3df,3pd) basis set for carbon 

contains 45 basis functions, increasing the computations time up to 55 for MP2 

calculations.  Structure optimization runs, which are a series of single point energy 

calculations with small changes in the atomic location to calculate the lowest energy 

configuration, contain a high number of calculations.  Often a small basis set (e.g. 6-31G) 

is used to get a closer approximation to the higher level structure at a reduced 

computational cost, before using a more detailed basis set for higher accuracy.  

 

Basis set superposition error (BSSE) 

 When calculating the energy of two or more particles, a single species can use 

functions from the other nearby particles.  This virtually enables the species to increase 

the size of the basis set (available functions). This artificially increased basis set is called 

a 'mixed basis set'.  As the distance between the two species separate, this effect is 

reduced. The problem arises when the energy calculated from using a mixed basis set is 

compared with the energy of the isolated molecules using unmixed basis set.  As a result, 

the total interaction energy between the two species are artificially lowered energy.   

 In order to account for this via the counterpoise approach by Boys and Bernardi31, 

each configuration has to be recalculated twice using ghost orbitals for each of the species.  

Ghost orbitals are basis functions not accompanied by atoms, in this way there would be 

no effect of the neighboring nuclei or extra electrons on the species of interest, just the 
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available orbitals.  The error is subtracted a posteriori from the full uncorrected energy, 

as shown below, 

 (uncorrected) 
baabtot
EEEE !!=  [2-19] 

 (fully corrected) 
'' abbaabtot

EEEE !!=  [2-20] 

where 
tot
E  is the total interaction energy, 

ab
E  is the full calculation with both full a  and 

b  basis sets,  
ba

E
'

 is where molecule a , is using ghost orbitals from b .  Not correcting 

for the BSSE, will result in stronger interaction energies, leading to the development of 

overly attractive force fields.  Work from Kim et al.32 stated that even though the full 

counterpoise method yields a pure interaction energy, it often over-corrects and 

employing a half BSSE correction yields closer results to experiment.  The half BSSE 

correction has been used for the high-level theoretical studies of the water dimer by 

Schutz et al.33 

 

Partial charges 

 Calculating the partial charges of a system is one of the more complex properties 

to achieve.  The ability to calculate the partial charges on the atom contained in a 

molecule is required to calculate the magnitude of the different energy contributions to 

the total energy for a system.  There are two main ways for doing this described below.  

 The first method, derived by Mulliken34, is that the electron density is fitted to the 

wavefunction of the system, where   
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Here ( )r! , is the total electron density at location r  in a system of volume V , 
ii
P  is the 

electron density only surrounding nuclei, i , ijS  is the overlap integral, relating to the 

"sharing" of electrons between two nucleuses ji, .  ijP  is the electron density surrounding 

both nucleuses ji, ,  jZ  is the defined atomic charge at the nuclei, often the atomic 

number as the positive charge from the protons in the atomic nucleus,  
i
p  is the  

calculated electron population from Mulliken population analysis, in equation 2-21.  The 

result is 
i
q , the partial charge of the atom.  The problem with this method is that is it not 

always correct to divide the electron density equally between two different atomic sites.  

The atom with the greatest electronegativity draws the electron density closer to itself.  

Additionally with the Mulliken population analysis, an electron is always attributed (as 

least partially) to their host atom.  This can be erroneous for orbitals larger than s-type 

because an electron can have a long separation between itself and the host nuclei.  The 

Mulliken population analysis attributes electrons to the host atom when in reality; it will 

attain little effect from the distant electron.  

 The second way is using the electrostatic potential (ESP).  The electrostatic 

potential is the energy possessed by a unit positive charge at given point r , caused by the 

charge of the nuclei and the electrons of a molecule, 
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where Z , is the atomic charge of the nucleus at position 
i
R .  Partial charges are fitted at 

the nuclei to optimize the reproduction of the electrostatic potential surface.  If the 

charges are going to be used for a computational model, the partial charges do not change 

as a function of position, i.e. as a flexible molecule rotates.  In the restrictive ESP (RESP) 

method, constraints are added (in a logical manner) to reduce the number of variables. 

 In a simulation, the hydrogens on a methyl group (as an example) can freely 

rotate around the C-C bond, thus the charges according to ab initio calculations on the 

individual hydrogens will change.  Leaving a fixed charge on an individual hydrogen 

would be erroneous, as it rotates to a new configuration.  Setting the hydrogen atoms (on 

the same methyl group) to have the same charge would reduce this error, and the partial 

charge can be optimized for used with this constraint.  The effect of intramolecular 

electrostatic interaction has to be accounted for with the use of polarizability in the 

classical forcefield. 

 Work done by Tang et al.35, showed that partial charges calculated via ESP within 

DFT with a B3LYP functional on polar molecules, gave a better prediction of the isolated 

dipole moment than partial charges calculated via Mulliken population.  Mulliken 

charges are sensitive to basis set size, and unphysical charges can be calculated when an 

extended basis is used36.  One problem with ESP fitting is that if the charges are fitted to 

the electrostatic potential, calculated on a shell around the molecule, erroneous values 

will be produced if there is an atomic surface or buried atoms which are "sheltered" by 

closer atoms from the shell's surface.  The ab initio electrostatic potential implicitly 

includes polarization.  If partial charges are fitted to the electrostatic potential, there is an 
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induced dipole implicitly included, which must be extracted in order to calculate the true 

partial charge. 

 

Car-Parrinello molecular dynamics 

 In 1985, Car and Parrinello37 developed a method which coupled density 

functional theory with molecular dynamics.  Because of the large size differences 

between the nuclei of an atom and surrounding electrons, the nuclei can move classically 

and the electrons can then respond essentially instantaneously, remaining in the ground 

energy state, using fictitious dynamics.   The separation of the motion of the electrons and 

nuclei is known as the Born-Oppenheimer approximation38. 

 The second computational time saver follows the same lines as the effective core 

potentials, namely that all the non-valence orbitals are approximated with one function 

called a pseudopotential.  The valence electrons are calculated via planewave basis sets as 

opposed to a Gaussian based basis set, which is easier to calculate for systems with 

periodic boundary conditions.  A planewave basis set has the form 
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 !2mG =  [2-26] 

where k   is the location in Brillouin zone, (location in the central periodic box), G  is the 

reciprocal lattice vector, m  is the integer number of cell lengths away from the central 

cell.  Planewave basis sets also have the added benefit of avoiding BSSE, and are 

independent of atomic positions.  

 Dynamic equations of motion are solved for the ions with the inter-ionic forces 

computed from the valence electron density, which is solved for at the first time step 
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using DFT, i.e. electronic minimization.  For the additional steps, the electron density is 

solved by fictitious dynamics, using a fictitious mass for the electrons.  If the timestep is 

small, the electron density remains on the ground state, and the electronic wavefunction 

does not have to be solved via computationally expensive electronic minimization for 

each timestep.  The system in theory is adiabatic, but if the timestep is too large, there 

will be energy transfer between the electronic motion and the atomic motion, leading to 

erroneous simulations, as the electron density will leave the ground state.  At each time 

step, one calculates the electron density and the resulting forces and the electrostatic 

interaction between the ions (nuclei).  The nuclei move classically, using the forces 

computed from the electron density. 

 A downside of Car-Parrinello, shared with classical models, is that nuclei cannot 

undergo quantum phenomena such as proton tunneling.  CPMD11 has been described as a 

higher-level semi-empirical approach, due to its simplification of the quantum 

mechanics39.  There has been criticism of the accuracy of Car-Parrinello for ionic 

simulations when compared with structural data39.  In the case of water, a CPMD 

simulation consists of O and H ions with eight valence electrons per molecule.  The other 

two electrons (1s orbital for oxygen), are taken into account via a pseudopotential.  As 

polarization and other short range forces are taken into account automatically within the 

CPMD, this methodology provides useful data to compare to with the polarization 

included in polarizable classical models.  Ab initio Car-Parrinello calculations on water 

and simple ions have been conducted, resulting in the structure of the first two solvation 

shells and insight into the nature of the water-ion interaction.  Properties such as first 

water residence time and dipole moments have been computed. 



 43 

References 

1 J. D. S. D. A. McQuarrie, Statistical mechanics. (University Science Books, 
Sausalito, 2000). 

2 D. A. McQuarrie, J. D. Simon, Physical chemistry, A molecular approach. 
(University Science Books, Sausalito, 1997). 

3 M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids. (Clarendon 
press, Oxford, 1987). 

4 L. Onsage, Journal of the American Chemistry Society 58, 1486 (1936). 

5 P. P. Ewald, Ann. Phys. 64, 253 (1921). 

6 D. R. Wheeler, J. Newman, Chemical Physical Letters 366, 537 (2002). 

7 R. W. Hockney, Computer simulation using particles. (McGraw-Hill International 
Book Company, New York, 1981). 

8 D. Y. T. Darden, L. Pederson, Journal of Chemical Physics 98, 10089 (1993). 

9 B. A. Luty, M. E. Davis, I. G. Tironi, W. F. Vangusteren, Mol Sim 14, 11 (1994). 

10 J. M. G. Barthel, H. Krienk, W. Kunz, Physical Chemistry of Electrolyte Solutions. 
(Springer, 1998). 

11 Copyright IBM Corp 1990-2004 CPMD; 3.9.1 ed., (2004). 

12 S. J. Plimpton, J. Comp. Phys. 117, 1 (1995). 

13 D. Wolf, P. Keblinski. S.R. Phillpot, J. Eggebrecht, Journal of Chemical Physics 
110, 8254 (1999). 

14 Christopher J. Fennell, J. Daniel Gezelter, Journal of Chemical Physics 124, 
234104 (2006). 

15 F. Z. V. Fock, Physik 61, 126 (1930). 

16 P. Knowles, M. Schutz, H. Werner, in Modern Methods and Algorithms of 
Quantum Chemistry, edited by J. Grotendorst (Julich, 2000), Vol. 3, pp. 97. 

17 C. Moller, M. S. Plesset, Physical Review 46 (7), 618 (1934). 

18 M. L. Leininger, W. D. Allen, H. F. S. III, and C. D. Sherrill, The Journal of 
Chemical Physics 112 (21), 9213 (2000). 

19 T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory. (John 
Wiley & Sons Ltd, West Sussex, 2000). 



 44 

20 W. Kohn, L. J. Sham, Physical Review 140, A1133 (1965). 

21 S. H. Vosko, L. Wilk, M. Nusair, Canadian Journal of Physics 58 (8), 1200 (1980). 

22 A. D. Becke, Physical Review A 38 (6), 3098 (1988). 

23 C. Lee, W. Yang, R. G. Parr, Physical Review B 37 (2), 785 (1988). 

24 A. D. Becke, Journal of Chemical Physics 98, 1372 (1993). 

25 C. Adamo and V. Barone, Journal of Chemical Physics 110 (13), 6158 (1999). 

26 X. Xu and W. A. Goddard, Proceedings of the National Academy of Sciences of 
the United States of America 101 (9), 2673 (2004). 

27 J. C. Slater, Physical Review 36, 57 (1930). 

28 Y. Wang and J. P. Perdew, Physical Review B 44 (24), 13298 (1991). 

29 J. P. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters 77 (18), 3865 
(1996). 

30 S. H. Vosko, L. Wilk, and M. Nusair, Canadian Journal of Physics 58 (8), 1200 
(1980). 

31 S. F. Boys, F. Bernardi, Molecular Physics 19 (4), 553 (1970). 

32 K. S. Kim, P. Tarakeshwar, J. Y. Lee, Chemical Review 100, 4145 (2000). 

33 M. Schutz, S. Brdarski, P. O. Widmark, R. Lindh, F. Karlstrom, Journal of 
Chemical Physics 107, 4597 (1997). 

34 R. S. Mulliken, Journal of Chemical Physics 23, 1833 (1955). 

35 P. Tang, I. Zubryzcki, Y. Xu, J. Comp. Chem 22 (4), 436 (2001). 

36 J. D. Thompson, J. D. Xidos,T. M. Sonbuchner, C. J. Cramer, D.G. Truhlar, Phys 
Chem Comm 5, 117 (2002). 

37 R. Car, M. Parrinello, Physical Review Letters 55 (22), 2471 (1985). 

38 M. Born, R. Oppenheimer, Annalen der Physik 84, 457 (1927). 

39 B. M. Rode, C. F. Schwenk, A Tongraar, Journal of Molecular Liquids 110, 105 
(2004). 

 



 45 

CHAPTER III 

 

THE IMPORTANCE OF POLARIZABILITY IN THE MODELING OF SOLUBILITY:  
QUANTIFYING THE EFFECT OF SOLUTE POLARIZABILITY ON THE 

SOLUBILITY OF SMALL NON-POLAR SOLUTES  
IN POPULAR MODELS OF WATER 

 

3.1 Summary 

In recent work by Paschek (D. Paschek JCP 2004, 6674) and others (see H. 

Docherty et al. JCP 2006 074510) it has been suggested that, when coupled with a simple 

Lennard-Jones (LJ) model for various small non-polar solute molecules, the most 

common models of water (e.g. SPC/E and TIP4P) fail to reproduce quantitatively the 

solubility of small non-polar solute molecules in water due in part to failing to account for 

polarization of the solute molecule.  Given the importance of such systems as test-case 

prototype models of the solubility of proteins and biomolecules, in this work we 

investigate the impact of using a polarizable solute model with the SPC/E, TIP3P, TIP4P, 

TIP4P/Ew and TIP4P/2005 rigid water models.  Specifically we consider Ne, Ar, Kr, Xe 

and methane as solutes.  In all cases we observe that the use of a polarizable solute 

improves agreement between experiment and simulations, with the best agreement seen 

for the largest solutes, Kr, CH4 and Xe and the modern reparameterizations of the TIP4P 

model, i.e. the TIP4P/Ew and TIP4P/2005 models.  The research reported in this chapter 

has been published1.  
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3.2 Introduction 

Recently, methane-water interactions have been receiving increased attention as a 

result of an awareness of the increasing importance of methane hydrates, due both to their 

traditional importance in the petroleum industry, such as their role in the blockage of 

pipelines, as well as more recently for their importance as a source of energy2. For 

example, it is thought that the amount of methane stored in the form of hydrates, typically 

in deep seas, is many times greater than that currently available from traditional sources3,4. 

 Another reason for the intense interest in an accurate model for the solubility of 

methane in water is that this system may be considered a prototype for non-polar solutes 

in water as well as for longer alkanes and, currently of great interest, proteins5.  Thus, it is 

hoped that an improved understanding of the interactions of methane and water, and the 

causes of hydrophobic hydration, will lead to a greater understanding of protein folding 

and other interesting biological phenomena.  It is because of this importance that the 

solubility of methane in water has been subject to intense study involving experiments6, 

computational molecular simulations7 (both classical8 and quantum-mechanical9) as well 

as equations of state10. 

In terms of molecular simulations, the vast majority of investigations have made 

use of some form of rigid non-polarizable model of water, such as the highly popular 

SPC/E11, TIP3P12 and TIP4P12-14 variants.  Amongst the reasons for choosing these 

models are their relatively low computational costs, compared to flexible and polarizable 

water models, as well as the availability of complementary potentials when studying their 

interactions with other molecules. In addition to this, they have been, or are easily, 

incorporated into a number of freely available molecular simulation tools and potentials.  

With regard to simple non-polar solutes such as methane, a common choice is that of a 
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single Lennard-Jones interaction site15, which has been successfully used to reproduce 

and study much of the pure system behavior of these molecules. 

 However, despite the success of these models in reproducing the thermodynamic 

properties of pure systems, when combined with rigid non-polarizable water models they 

fail to reproduce well several important properties, such as the solubility of methane in 

water.  A contributing factor to this failure is that while in a pure non-polar solute phase 

(in which the local electric field is small) neglecting polarizability is a reasonable 

assumption, in an aqueous environment at atmospheric conditions, it is not16.  Regardless 

of this weakness, due to their ease of use, they remain the model of choice for most 

researchers. 

A major step forward in understanding the causes of the discrepancies in 

describing the solubility of non-polar molecules in water was recently made by Paschek17 

who compared the solubility of Ne, Ar, Xe and CH4 in five popular water models (SPC, 

SPCE, TIP3P, TIP4P, TIP5P) and noted two key considerations. Firstly he notes that the 

deviation of the models from the experimental solubility over a temperature range of 275-

375K corresponds to a similar trend in the deviation of the density of water, calculated 

with the models, over the same temperature range.  Paschek17 therefore suggests that, in 

order to obtain qualitative agreement with experimental values for the excess chemical 

potential in water at infinite dilution, it is necessary to use a water model capable of 

reproducing accurately the temperature dependence of the density of water. This 

hypothesis is supported by the work of Krouskop et al.18 who calculated the solubility of 

Ne, Ar, Xe and CH4 in TIP4P/Ew water, known to give a better description of the density 

of water then the models used by Paschek17, and observed an improvement in the 
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calculated excess chemical potential.  However, the agreement with experiment was still 

not qualitative, let alone quantitative.   

An even stronger confirmation of Paschek's hypothesis is the work of Docherty et 

al.19 who used the TIP4P/2005 model of Abascal and Vega13, which was specifically 

parameterized to accurately reproduce the density of water over a wide range of 

temperatures, including the region of density maximum.  In this work, they show that 

using the TIP4P/2005 model of water, with a simple Lennard-Jones model of methane 

(specifically that of Hirschfelder15) results in qualitative agreement with experimental 

solubility data. 

With regard to obtaining quantitative agreement, Paschek17 considered the effect 

of polarization of the solute on solubility and, focusing on xenon, showed that while 

polarizability may be neglected in pure systems, for these simple solutes in water 

polarizability plays an important, water-model-dependent role. In fact, Docherty et al.19 

used polarizability as justification for a deviation to the Lorentz-Berthelot combining 

rules in order to obtain quantitative agreement.  

In the rest of this work we consider the effect of solute polarizability on the 

solubility of small solutes in SPC/E, TIP3P, TIP4P, TIP4P/Ew and TIP4P/2005 water at 

infinite dilution.  Specifically, we examine the effect of using a point polarizability site on 

the solute as a method of obtaining quantitatively correct results for the chemical 

potential of methane and noble gases solvated in water.   



 49 

3.3 Computational method 
Water simulations 

In this work, we have calculated the excess chemical potential of the solutes in the 

water models in three stages.  In the first stage, for each model and temperature, we start 

with a random configuration (translational and orientational) of 256 water molecules in a 

cubic simulation box at the density predicted by the water model of interest for the 

conditions being considered (i.e. 1 Bar and temperatures of 275, 300, 325, 350 and 375K) 

obtained from previously published simulation data.  An equilibrated system was then 

obtained by performing 200,000 0.5fs timesteps (100ps) in a canonical ensemble (NVT) 

molecular dynamics simulation.  As a test of this equilibration technique, we have also 

considered a 350ps equilibration period and note that this leads to values of the chemical 

potential well within the error of our simulations. 

The second stage of our calculations involved the creation of 50,000 sample 

configurations for each water model and temperature at 1atm.  Starting with the 

equilibrated configurations from the first stage, we performed 5x106 timesteps of 0.8fs 

(4ns total), again in a cubic canonical ensemble, storing a sample configuration every 100 

timesteps for a total of 50,000 configurations.  Here we note that in obtaining these 

configurations for the pure water systems (stages 1 and 2), we have utilized the 

LAMMPS20 computational software to perform molecular dynamics simulations.  In all 

cases (i.e. for all models, both water and solutes), the cutoff in the Lennard-Jones 

interactions was 9Å with standard tail corrections applied. In addition to this, long-ranged 

Coulombic interactions were accounted for using the PPPM21 (particle-particle, particle-

mesh) technique.  It is worth noting that none of the models used in this work were 

parameterized using the PPPM method, rather they were parameterized using a standard 
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Ewald summation22.  However, the increasingly popular PPPM technique has been used 

in numerous studies involving these models, with the authors noting results in agreement 

with the standard Ewald summation technique23,24.  Also, while here we consider only 

small non-polar solutes, the goal of this line of research, in common with other workers, 

is the accurate modeling of the solvation of larger industrially and biologically important 

molecules.  The explicit simulation of such systems is inherently more computationally 

expensive, requiring the use of many times more water molecules than considered in this 

work, motivating the use of methods such as the PPPM technique.  For this, and other 

reasons, the PPPM methods is incorporated into many of the major molecular dynamics 

simulations software, which are becoming the tool of choice for many researchers.  Thus 

we consider our choice of method, when dealing with long-range charge interactions, to 

be consistent with the real-world uses of the models presented here and thus to be a fair 

and useful comparison. 

The third and final stage was the calculation of the chemical potential of the solute 

via the Widom insertion technique25 using in-house code (i.e. LAMMPS was not utilized 

for this stage of the calculations).  As noted below, in section 3.4 and Table 3-4, this code 

has been validated by reproducing literature values for non-polarizable solutes in various 

water models.  In the Widom method, the solute is randomly inserted into a known water 

configuration.  The excess chemical potential is related to the change in the internal 

energy of the system caused by the addition of a solute molecule by,   

 !
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where 
ex

µ  is the excess chemical potential, k  is the Boltzmann's constant, T  is the 

absolute temperature, and 
Solute

U  is the contribution to the system energy due to solute – 

water interactions 

 Pol

Solute

vdW

SoluteSolute
UUU +=  [3-2] 

vdW

Solute
U  is the contribution to the system energy due to solute – water short range 

interactions, including standard tail corrections, and Pol

Solute
U  is the contribution from the 

polarization of the solute due to the surrounding electric field. Here we have used 40,000 

attempted insertions for each of the 50,000 water configurations, resulting in 2 x 108 

insertions for every solute, in all the water models and at every temperature considered 

here.  Using this method, we estimate an accuracy in our calculated excess chemical 

potentials ranging from 0.1 kJ/mol for neon to 0.25 kJ/mol for xenon.  This is consistent 

with the work of others using similar techniques17,19. 

 

Water potentials 

We test five different water models, specifically the SPC/E11, TIP3P12, TIP4P12, 

TIP4P/200513 and TIP4P/Ew14 water models.  These are all popular rigid non-polarizable 

water models which have been used extensively.  Here we note that each of these models 

consist of a single Lennard-Jones site located at the centre of the oxygen together with a 

number of point charges to account for the  charged nature of the hydrogen and oxygen 

atoms.  The parameters for these models are shown in Table 1.  In addition, due to its 

importance in the calculation of the chemical potential, the difference between the density 

of water, as predicted by each of these models, and the experimental values at the 

conditions considered in this work are shown in Table 3-2. 
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Solute potentials 

For each solute molecule we have considered two models.  In the first model, the 

molecules are described by a single Lennard-Jones site.  In the second model, in addition 

to the Lennard-Jones site from model 1, the molecules have a polarizable site located at 

their centre of mass.  The magnitude of the polarizability is taken from experimental 

values26,27 and is shown, together with the Lennard-Jones parameters, in Table 3-3.  

The contribution to the system energy due to the polarizability of the solute 

molecule, Pol

Solute
U  is given by,  

 ( )2
2

1
EU

Pol

Solute

v
!"=  [3-3] 

where E
v

 is the electric field at the polarization site and !  is the polarizability of solute.  

The electric field at a given point in a system may be calculated by considering an 

imaginary point charge at the same location and calculating the force on the charge.  In 

this case the field is given by the equation 
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where F
v

 is the electric force and 
i
q  is the charge on the fictitious point charge.  For a 

system of charges, interacting via the Coulombic potential, the force on a charge 
i
q  due 

to all the other charges j
q  is given by  

 !"=
j

ij

ij

ji

i r
r

qq
F

vv

3
 [3-5] 

 Note that the Coulombic potential is a conditionally convergent sum and, as such, 

when performing simulations special care has to be taken to ensure these forces are 
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accurately represented.  In this work, we have accomplished this by means of the Wolf 

method28, which may be considered as a damped, truncated and shifted potential29, and as 

such requires minimal additional computational time.  For a review of this method, as 

well as evidence that its accuracy is similar to that of the standard Ewald sum technique, 

see the work of Fennell and Gezelter29 and Avendaño and Gil-Villegas30.  A summary of 

the equations and their derivations is given in Appendix A. 

 In the Wolf method, the force on a charged site may be written as equation 3-6a 

below, and thus the field at the point of polarizability by equation 3-6b below.  Notice 

that the field in equation 3-6b does not depend on the fictitious charge of the solute's 

polarizable site. 
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where 

C
R  is the truncation cut-off, and β is a damping parameter.   Following the work of 

Demontis et al.31 and Avendaño and Gil-Villegas30, we have chosen 
C
R  to be half of the 

simulation box length, and a corresponding β value of 
2
R
C

.   
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3.4 Results 

 Values for the chemical potential of Ne, Ar, Kr, Xe and CH4 are shown in Figures 

3-1 to 3-5.  In each case, (a) is for a non-polarizable solute and, (b) a polarizable solute.  

Firstly, as in the work of Paschek17 and Docherty et al.19, for the models used in this 

paper, we observe that the ability of the water models to capture qualitatively the effect of 

temperature on solubility is related to the ability of the model to reproduce the density of 

water over the same temperature range (comparison of Table 3-2 to Figures 3-1 to 3-5).  

However, what separates this work from that of Paschek17 is that, while he considered a 

polarizable model of xenon noting the magnitude of the change in the solubility for each 

water model, we answer the question, "is accounting for density and polarizability 

sufficient to successfully predict the solubility of simple non-polar solutes in common 

rigid non-polar water models?".  To this end we note that, in all cases, inclusion of the 

polarizability reduces the chemical potential, as expected.  Given that most of the water 

models tend to over-predict the chemical potential of theses solutes at ambient conditions, 

the inclusion of polarizability tends to lead to improved agreement with experiment. 

For the smaller and less polarizable molecules (Ne, Ar), the effect of a polarizable 

solute is relatively small (Figures 3-1 and 3-2) in comparison to the effect seen for the 

larger solutes (Kr, CH4, and Xe), which are quite dramatic (Figure 3-3 to 3-5).  Starting 

with the effect of polarizability on qualitative agreement with experimental values, in 

Tables 3-4 and 3-5, we present the ranges of the deviation in solubility for each solute and 

water model in a format similar to that of Krouskop et al.18. In Table 3-4, the values 

correspond to the case of a non-polarizable solute model and are in agreement with those 

published by Krouskop et al.18. 
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We note the improvement of the recent reparameterizations of the TIP4P model 

compared to the SPC/E, TIP3P and TIP4P models.  We also note, with caution due to 

statistical uncertainties in simulations, that in all cases the TIP4P/2005 model provides 

the best qualitative agreement.  Here we wish to highlight that this is in perfect agreement 

with the hypothesis and work of Paschek17, as well as the work of Krouskop et al.18. and 

Docherty et al.19, and confirms the relationship between density prediction and solubility 

since the TIP4P/2005 model provides a better, albeit only slightly, description of the 

density of water over the temperature range considered here.  In other words, it is logical 

that an improvement in the density leads to an improvement in solubility. 

In Table 3-5, the values correspond to the case of a polarizable solute model.  

Interestingly, rather that improving qualitative agreement, as one might have hoped, the 

inclusion of polarizability is detrimental.  Thus we conclude that, if a particular model is 

incapable of capturing the temperature dependence of the chemical potential, the use of 

an explicitly polarizable solute molecule will not improve the qualitative agreement.  This 

is particularly true of the TIP3P, TIP4P and SPC/E models, which show the greatest 

deviation from the experimental trend. 

Moving our focus to the consideration of quantitative agreement with experiment, 

we observe that inclusion of polarizability improves all the water models considered here.  

Of particular interest are the TIP4P/Ew and TIP4P/2005 models which show similar 

improvements and, once again, out perform the SPC/E, TIP3P and TIP4P models.  In fact, 

for the larger solutes considered here (i.e. Kr, CH4 and Xe) these models approach 

quantitative agreement with experiment when polarizability is included, although at the 

cost of reduced qualitative agreement. 
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It is worth noting that while Docherty et al19. achieved a similar level of accuracy 

for methane, it required a computationally expensive optimization of cross-interaction 

parameters to match experimental data.  Here we approach quantitative agreement in a 

purely predictive manner.  It is interesting to note that despite TIP3P's extensive use in 

the study of biomolecular and protein systems, in which hydrophobic hydration in 

considered to play a very important role, the TIP3P model in unable to correctly predict 

the solubility of methane.  However, it maybe of interest to many that when polarizability 

is included agreement with experiment is seen at 300K, albeit not at the other 

temperatures considered here.  
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Table 3-1: Rigid water model structure, electrostatic charge values and Lennard-
Jones potential parameters for the different water models 

 

 SPC/E TIP3P TIP4P TIP4P/Ew TIP4P/2005 

OH (Å) 1.000 0.9572 0.9572 0.9572 0.9572 

HOH (deg) 109.47 104.52 104.52 104.52 104.52 

ΟΜ (Å) 0.000 0.000 0.1500 0.1250 0.1546 

σ (Å) 3.1656 3.1506 3.1537 3.1644 3.1589 

ε (K) 78.181 76.546 77.941 81.910 93.240 

qh (e) 0.4238 0.4170 0.5200 0.52422 0.5564 

qo (e) -0.8476 -0.8340 -1.0400 -1.04844 -1.1128 

 

 

Table 3-2: Deviation from experimental density in g/cm3 at atmospheric pressure for the 
SPC/E, TIP3P, TIP4P, TIP4P/Ew, TIP4P/2005. 

 

 275K 300K 325K 350K 375K 

SPC/E 0.0092 0.0017 -0.0038 -0.0097 -0.0144 

TIP3P 0.0049 -0.0124 -0.0267 -0.0399 -0.0531 

TIP4P 0.0055 -0.0030 -0.0106 -0.0194 -0.0286 

TIP4P/Ew -0.0003 -0.0018 -0.004 -0.0067 -0.0106 

TIP4P/2005 -0.0002 0.0000 -0.006 -0.0027 -0.0036 
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Table 3-3: Solute Lennard-Jones potential parameters and polarizability (α), σ and ε from 
reference 17, and α from references 26,27 

 σ [Å] ε [K] α [Å3] 

Neon 3.035 18.6 0.40 

Argon 3.415 125 1.64 

Krypton 3.675 169 2.48 

Xenon 3.975 214.7 4.11 

Methane 3.730 147.5 2.56 

 

 

Table 3-4: Ranges of the deviation from experiment for the predicted solubility of non-
polarizable solute molecules (kJ/mol) 

 

 SPC/E TIP3P TIP4P TIP4P/EW TIP4P/2005 

Neon 1.17 2.46 1.59 0.74 0.52 

Argon 1.30 2.80 1.81 0.79 0.51 

Krypton 1.40 3.02 1.99 0.89 0.54 

Xenon 1.00 2.89 1.75 0.64 0.50 

Methane 1.26 2.92 1.87 0.74 0.39 
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Table 3-5: Ranges of the deviation from experiment for the predicted solubility of 
polarizable solute molecules (kJ/mol) 
 

 SPC/E TIP3P TIP4P TIP4P/EW TIP4P/2005 

Neon 1.29 2.55 1.70 0.87 0.62 

Argon 1.60 3.05 2.11 1.12 0.78 

Krypton 1.79 3.33 2.36 1.30 0.87 

Xenon 1.54 3.31 2.25 1.20 0.55 

Methane 1.65 3.24 2.25 1.15 0.73 
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Figure 3-1: Temperature dependence of the excess chemical potential of neon in water 
at infinite dilution for (a) A non-polarizable neon model and (b) A polarizable neon 
model. In both cases the solid line corresponds to experimental values17,32 and the 
symbols to simulated values. Specifically, diamonds TIP3P, circles TIP4P, triangles 
SPC/E, crosses TIP4P/Ew and squares TIP4P/2005. 

a) 

b) 
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Figure 3-2: Temperature dependence of the excess chemical potential of argon in 
water at infinite dilution for (a) A non-polarizable argon model and (b) A polarizable 
argon model. For explanation of symbols, see Figure 3-1.  

a) 

b) 
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Figure 3-3: Temperature dependence of the excess chemical potential of krypton in 
water at infinite dilution for (a) A non-polarizable krypton model and (b) A 
polarizable krypton model. For explanation of symbols, see Figure 3-1.  

a) 

b) 
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Figure 3-4: Temperature dependence of the excess chemical potential of xenon in 
water at infinite dilution for (a) A non-polarizable xenon model and (b) A polarizable 
Xenon model. For explanation of symbols, see Figure 3-1.  

a) 

b) 
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Figure 3-5: Temperature dependence of the excess chemical potential of methane in 
water at infinite dilution for (a) A non-polarizable methane model and (b) A 
polarizable Methane model. For explanation of symbols, see Figure 3-1.  

a) 

b) 
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3.5 Conclusions 

 Common rigid non-polarizable models of water coupled with single non-

polarizable Lennard-Jones site models are unable to quantitatively reproduce the 

temperature dependence of the solubility of simple non-polar solutes and, with the 

exception of TIP4P/2005, these models are also unable to capture the relationship 

qualitatively. 

At ambient conditions, these models tend to under-predict the solubility of these 

solutes.  Accounting for the polarizability of the solute molecule increases the predicted 

solubility of these simple non-polar solutes, improving the agreement with experiment.  

However, its effect on the temperature dependence of solubility is detrimental and, as 

such, the SPC/E, TIP3P and TIP4P, models still do not achieve qualitative or quantative 

agreement.  With regard to the TIP4P/Ew and TIP4P/2005 models, inclusion of 

polarizability leads to equally improved quantitative agreement.  However TIP4P/2005, 

which provides a better description of the density of water, provides a better qualitative 

description of the solubility for both the non-polarizable and polarizable solute models 

(Tables 3-4 and 3-5) in agreement with the hypothesis of Paschek17 and the work of 

Krouskop et al.18 and Docherty et al.19 

Thus we conclude that with the use of an explicitly polarizable solute, rigid non-

polar models of water, such as TIP4P/2005, approach quantitative and qualitative 

prediction of the solubility of simple non-polar solutes.  This means there is no need to 

"optimize" the mixing rules to experimental data and, one would hope, such a polarizable 

solute model is better able to describe any density dependence and effect of concentration, 

i.e, addition of other co-solutes, in particular, charged species. 
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Finally, this work highlights the importance of accounting for polarizability 

explicitly, especially in the development of transferable potentials, raising the question of 

how a polarizable water potential would perform.  Attempting to answer this question will 

be the focus of future work. 
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CHAPTER IV 

 

THE IMPORTANCE OF POLARIZABILITY IN THE MODELING OF SOLUBILITY:   
QUANTIFYING THE EFFECT OF CHARGED CO-SOLUTES ON THE 

SOLUBILITY OF SMALL NON-POLAR SOLUTES 

 

4.1 Summary 

In Chapter III, we demonstrated that by accounting for the polarizability of small 

non-polar solutes, in an explicit manner it is possible to approach quantitative agreement 

with experimental values of the excess chemical potential of the molecules in pure water.  

Here we have continued this line of research by considering the effects of charged co-

solutes on the explicit polarizability model for a variety of small non-polar solutes, 

development in the previous chapter.  In this chapter, we calculate the excess chemical 

potential, which is related to the solubility on the non-polar solute in the solution, and 

how the solubility of the hydrophobic solutes vary with changing ion concentration, i.e. 

salting-out/salting-in effects.  We have used the Setchenow parameter, as a measure of 

the salting-out effect on the solutions.  Given the importance of the small solutes as test-

case prototype models for the solubility and salting-out effects on proteins and 

biomolecules, in this work we investigate the impact of using a polarizable solute model 

with the TIP3P, TIP4P/Ew and TIP4P/2005 rigid non-polarizable water models along 

with non-polarizable point charge ion models.  Specifically we consider Ne, Ar, Kr, Xe 

and methane as solutes, and Na and Cl as ions. 

We have found that the addition of explicit polarizability to the solutes model 

decreases the excess chemical potential, but it failed to obtain quantative agreement with 
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experimental values.  It was also found that the explicit polarization had minimal effect 

on the Setchenow parameter and in turn, minimal effect on the salting-out effect.  Instead, 

we have shown that the over-prediction of the excess chemical potential was due to on 

over repulsive ion-solute interaction potential. 

 

4.2 Introduction 

 Following on from the work in Chapter III, where we have demonstrated that 

explicitly accounting for the polarizability of small non-polar solutes, it is possible to 

approach quantative agreement with experimental values of the excess chemical potential 

for the solute in pure water for a range of temperatures.  In this work we consider the 

related question of whether or not the addition of explicit polarizability on the solute 

model is sufficient to account for the qualitative and quantitative disagreement between 

experiment and simulation values for the modeling of the excess chemical potential for the 

solute in solutions containing charged co-solvents. 

 Understanding the solubility of hydrophobic compounds in aqueous solutions is 

important to traditional engineering situations such as the formation of hydrates in oil 

pipelines1,2 and, of the denaturing of proteins3-5.  The latter is currently the focus of 

intense research.  The effect of the addition of charged species into aqueous solution 

containing hydrophobic solutions is well known, but mechanism is still under debate.  The 

decrease in the solubility of hydrophobic compounds due to the addition of salt is known 

as salting-out.  Alternatively, if the solubility of the hydrophobic compounds increases it 

is known as salting-in.  Applications of salting-out effects include the separation of 
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proteins, based on the principle that hydrophobic proteins are less soluble at higher salt 

concentration.  Thus the ability to reproduce the correct behavior of the electrolytic 

solution is of importance to correctly understand the salting-out mechanism in biological 

systems.   

 The salting effect (i.e. salting-out and salting-in) follows what is known as a 

Hofmeister series6.  The Hofmeister series was developed from the differing effect of 

various ions on the solubility and the stability of proteins7,8.  The basis of the Hofmeister 

effect has been long thought to be due in part to the effect of the ions on the surround 

water structure9,10, i.e. the chaotropes and kosmotropes nature of the ions, but recently, 

this explanation has been challenged.  Zhang and Cremer11, concluded that changes in the 

bulk water structure and density will not explain specific ion effects seen in the 

Hofmeister series.  Their reasoning is based on there being a negligible change in the 

water structure around an ion after the second solvation shell, as revealed in the work of 

Omta et al.12.  As a result, they postulate that the Hofmeister effects are also partly caused 

by the direct interactions between the solute and the ions.  We are attempting to clarity 

these theories, by also looking the effect of different regions of the aqueous solution, and 

its individual contribution to the excess chemical potential.  For more details on the 

mechanisms on the salting-in and salting out, see chapter I. 

 In terms of modeling the salting-out of methane and other similar small solutes, 

Docherty et al.13 using the water model TIP4P/2005 with a NaCl model together with a 

methane-water potential developed to accurately reproduce experimental excess chemical 

potential in bulk water which implicitly including the effect polarization into the CH4-



 72 

H2O potential showed that the salting-out effect can be rationalized in terms of a single 

parameter, the packing fraction, highlighting the role of volume exclusion.  They proceed 

to show that even a model capable of reproducing accurately the solubility of methane in 

pure water is unable to capture the effect of salt concentration on the methane solubility, 

i.e. salting-out.  

 Given the importance of polarization of the solute molecule for the solubility of 

methane in pure water, they logically suggest that the observed over-prediction of the 

salting-out effect maybe due to neglecting the effect of the charged co-solvents 

contribution to the electric field. In this work we test this hypothesis using point 

polarizable models for a variety of solutes (Ne, Ar, Kr, Xe and CH4), and show that while 

polarizability plays a role in the salting-out effect, the dominant force is once again 

volume exclusion, more specifically, the direct solute-ion interaction. We show that 

accounting for explicit polarizability in the solute models, is insufficient to account for the 

discrepancy between simulation and experiment values for the excess chemical potential 

and the salting-out effects.  We will also demonstrate the importance of an accurate 

representation of the ion-water system, i.e. solute free, for accurately reproducing the 

experimental excess chemical potential. 

 

4.3 Theory 

 In studying the effect of the addition of salts on the solubility of hydrophobic 

molecules, the Setchenow coefficient is common indictor for the degree of salting-out.  

Setchenow parameter may be written as,  
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where, 0

Sol
x , 

Sol
x  are the solubility molar faction of the solute in the pure water and 

aqueous salt solution respectively, 
Salt
k  is the Setchenow coefficient and 

Salt
M  is the 

molarity of the aqueous solution.  It is worth noting that, while in this work we use 

molarity and molality, in the literature a variety of concentration scales appear to have 

been used, often without specification, making comparison difficult. 

 In terms of calculation the solubility in terms of the mole fraction, the solute's 

mole fraction is not the most intuitive, or easy to calculate directly from molecular 

simulations, so we would like to rephrase the Setchenow equation in terms of more easily 

accessible variables.  To start, the mole fraction 
Sol
x  can be related to the Henry's 

coefficient,  
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where,  
Sol

H  is the Henry's constant, and PySol  is the partial pressure of the solute in the 

gas phase.  Assuming that the solvent does not form a significant fraction of the vapor 

phase, which is a reasonable assumption for water and aqueous solutions at ambient 

condition, PPySol = , and will be the same for all ion concentrations and, thus, equation 

4-1 can be written in terms of the Henry's coefficients. 
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In turn, the Henry's coefficients can be determined from the excess chemical potential of 

the solute at infinite dilution 
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where 
B
k  is the Boltzmann constant, T  is the temperature and !  is the density of the 

solution.  As in previous work, we calculate the excess chemical potential using the 

Widom insertion method14 which can be expressed as  
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and the Setchenow coefficient may now be written in terms of a change in internal energy 

Sol
U , caused by the addition of a solute particle 
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The contribution of the solute to the internal energy of the system maybe considered as 

the sum of a van der Waals  and polarizability component. 

 Pol

Sol
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SolSol
UUU +=  [4-8] 

where vdW

Sol
U  is the energy due to the van der Waals interactions and Pol

Sol
U  is the 

contribution to the system energy from the polarizability of the solute molecule and is 

given by  
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where E
v

 is the electric field at the polarization site and !  is the polarizability of the 

solute.  For full details of the calculation of the electric field see Chapter III. 

 

4.4 Computational Method 

Methodology 

 Our calculation of the excess chemical potential of each solute in solutions of 

NaCl of varying concentration consisted of three stages.  In all stages, for all models and 

systems, interactions were truncated at 9Å and standard tail corrections applied.  In the 

first two steps, i.e. steps 1 and 2, simulations were performed using the LAMMPS15 

computational software with long-ranged Coulombic interactions calculated via the 

particle-particle, particle-mesh (PPPM)16 technique.  Finally, in step 3, we used our in-

house code that utilizes the Wolf method17 to account for the long-range nature of 

electrostatic interactions, i.e. the calculation of the electric field.  Following the work of 

Demontis et al.18, and Avendano and Gil-Villages19, in the Wolf method we choose a 

damping factor ( )!  of 
2
R
C

, where 
C
R  is the Coulombic truncation distance (9Å).  For 

an explanation of our use of the Wolf method, as all as a justification of the choice of the 

PPPM method in our LAMMPS simulations, we refer the reader to chapter III, and 

appendix A. 

 

Step one:  Aqueous solution simulations 

 In the first step of our calculations, the density, as predicted by each model at a 

variety of concentrations, was determined from isothermal-isobaric molecular dynamics 

simulations (NPT), at a pressure of 1 bar, and a temperature of 298K.  These simulations 
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consisted of 278 water molecules together with 1, 2, 5, 10, 20, 25 or 30 NaCl molecules, 

corresponding to concentrations of 0.200, 0.399, 0.998, 1.997, 2.995, 3.993, 4.992, 5.990 

mol/kg (mol of solute/kg solvent) molality respectively.  Starting with a randomly 

orientated and transitionally distributed configuration at a density close to experimental, 

each system was first subjected to a simulation period of 300ps with a time step of 0.5fs 

in order to obtain an equilibrated configuration.  A 1ns production run was then 

performed in which the mean density was calculated.  The densities for the solution are 

shown in Figure 4-1. 

 

Step two:  Generation of sample configurations 

 Starting with the final configuration from step 1, each system was adjusted in 

volume to the average density for each system (a minor adjustment) and subjected to an 

equilibration period of 5ps of constant volume, constant temperature molecular dynamics 

simulation (NVT) in order to relax the system following the volume change.  Sample 

configurations were then generated by performing 7ns of NVT molecular dynamics 

simulations, recording a configuration every 70fs for a total of 100,000 configurations for 

each water model and ion concentration.    

 

Step Three:  Calculation of the excess chemical potentials 

 The third and final stage was the calculation of the chemical potential of the solute 

via the Widom insertion technique14 using in-house code.  In this method, a phantom 

solute molecule is inserted 100,000 times into each configuration, resulting in 1010 

insertions for every water model and ion concentration. 
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4.4 Molecular models 

 In this section we describe in more detail the molecular models used for each of 

the species considered in this work, namely water, NaCl and solute molecules (Ne, Ar, Kr, 

Xe and CH4).  We begin by noting that all cross-species interactions are approximated 

using the Lorentz-Berthelot combining rules 
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Water potential  

 In this work we consider three popular models of water.  The TIP4P/Ew20 and 

TIP4P/200521 models are chosen due to their superior performance in predicting the 

solubility of small non-polar solutes in water (Chapter III).  In addition to these, the 

TIP3P22 model is evaluated due to its extensive use in the study of biological systems, in 

which polarizability and hydrophobic hydration are believed to play an important role.  

All of theses are rigid non-polarizable water models consisting of a single Lennard-Jones 

site located at the center of the oxygen, together with a number of point charges to 

account for the charged nature of the hydrogen and oxygen atoms. The parameters for 

these models are shown in Table 4-1. 

 

Co-solvent potential  

 Unpolarizable Na and Cl ions were modeled using the Smith and Dang23 potential 

models for ions, i.e. they are considered as dissociated ions, described by charged single-

site Lennard-Jones spheres.  This model was chosen as it has previous been shown to 

reproduce well a high level of accuracy for the density of NaCl solutions13.  The 

parameters for the ions are presented in Table 4-2. 
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 Solute potential 

 Following our previous work, we consider two models for the solute molecules.  

In the first, the molecules are described by a single Lennard-Jones site whilst, in the 

second, in addition to the Lennard-Jones site for the first model, the molecules have a 

polarizable site located at their center of mass.  The solute polarizability is taken from 

experimental values24,25, and is shown together with the Lennard-Jones parameters for 

each model in Table 4-2.  For more detail, refer to Chapter III. 
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Figure 4-1: Density of the aqueous systems as a function of NaCl ion concentration at 
298K and 1 bar for TIP4P/2005, TIP4P/Ew and TIP3P water models.  The solid line 
represents experiment densities26.  Squares are TIP4P-2005, triangles are TIP4P/Ew, and 
circles are TIP3P. 
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Table 4-1.  Lennard-Jones interaction potential parameters for the aqueous solution 
 

 TIP3P TIP4P/2005 TIP4P/Ew Na Cl 

σ 3.1506 3.1589 3.1644 2.35 4.40 

ε 76.546 93.240 81.910 65.42 50.32 

q qh   0.4170 

qo  -0.8340 

qh   0.5564 

qo  -1.1128 

qh   0.52422 

qo  -1.04844 

qi 1.0 qi -1.0 

 

 

Table 4-2.   Solute potential Lennard-Jones parameters and polarizability (α) 

 σ [Å] ε [K] α [Å3] 

Neon 3.035 18.6 0.40 

Argon 3.415 125 1.64 

Krypton 3.675 169 2.48 

Xenon 3.975 214.7 4.044 

Methane 3.730 147.5 2.56 
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4.6 Results 

Density 

 First, given the importance of the solution density for the solubility of 

hydrophobic molecules as shown in previous work27, as well as work by Paschek28 and 

Docherty et al.13, we test the ability of each water model to reproduce the density-

concentration relationship for NaCl solutions of varying concentration.  In Figure 4-1, we 

show the density as a function of ion concentration, predicted by the water models.  We 

note that TIP4P/2005 and TIP4P/Ew models provide essentially identical values and an 

excellent description of the density of NaCl solutions.  TIP3P, however, significantly 

under-predicts the densities of the solutions considered in this work.  Note that this will 

have a fairly dramatic effect on the solute solubility, which will be demonstrated later. 

   

Chemical potential 

 As in the previous chapter, we begin by showing the effect of polarizability on the 

excess chemical potential for each solute species considered.  In Figures 4-2 to 6, we have 

shown the excess chemical potential for the different solutes using both the polarizable 

and non-polarizable models.  As expected, the inclusion of explicit polarizability reduces 

the excess chemical potential, i.e. increases solubility, although it does not provide 

enough of a decrease to achieve quantitative agreement with experiment.  Interestingly, 

while the inclusion of explicit polarization improves quantative agreement of the 

temperature dependences of solubility at a cost of reduced qualitative agreement (chapter 

III) here we note an improvement of both qualitative and quantative agreement. 
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Salting-out effects 

 In Figures 4-7 to 11, the Setchenow coefficient is the gradient of the line as 

function of molarity, in accordance to equation 4-1.  The Setchenow coefficient is 

overestimated in each case.  The effect of explicitly accounting for polarizability is shown 

in Figure 4-9a and b.  As expected, the addition of explicitly point polarizability to the 

solute leads to a decrease in the chemical potential.  However, the decrease is not 

sufficient to obtain quantative agreement.  This of interest to a number of workers, 

Paschek and Docherty et al.13, who have suggested that the lack of accounting for explicit 

polarizable is the cause of the over-prediction of the Setchenow coefficient. 

 As a result, the Setchenow coefficient calculated with and without polarizability is 

essentially the same, with only a small decrease in the gradient as the ion concentration 

increases.  It is clear that the addition of polarizability is not the main contributing factor 

involved in the ability of the solute, water and ion system to reproduce the correct salting 

out behavior.  Given that this hypothesis is incorrect; the question is now, what causes the 

over-prediction in the Setchenow coefficient? 

 Our attention now comes back to the excluded volume of the system.  As the 

water-ion potential attains the correct density for the TIP4P/2005 and TIP4P/Ew models, 

and the water-solute potential approaches quantative agreement, our focus is on the ion-

solute potential.  We hypothesis, that the over-prediction of the Setchenow, and in turn, 

the over prediction of the excess chemical potential is due to the overly repulsive 

potential between the ion and solutes.  The reasons for this hypothesis are given below. 
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TIP3P 

 In Figure 4-1 we show that the TIP3P water model significantly under-predicts 

density of the solvent.  The TIP3P water model is the best at reproducing the excess 

chemical potential and the correct salting-out behavior.  However, this agreement is not 

due to a better description of the physics of the systems, rather, the agreement between 

TIP3P with experimental values is due to cancellation of errors.  As shown in the work of 

Paschek28, Docherty et al.29 and in Chapter III, the lower density of the solvent, relating 

to a lower packing density, and the energy between the solutes and the aqueous solution 

are further down the short-range repulsive wall.  This in turn leads to a decrease in the 

excess chemical potential.  Given that all of these models typically over-predict the 

excess chemical potential, any reduction leads to improved agreement with experiment.  

In Figure 4-12, we show the excess chemical potential for the TIP3P model obtained from 

simulations performed at the densities predicated by the TIP4P/Ew model of water.  

When the densities predicted by TIP4P/Ew are used; the predicted chemical potential is 

similar to the other models presented here.  This is typical of what was seen for all species 

and is in support of the idea that salting-out is excluded volume driven. 

 

Brake down the contribution to the excess chemical potential 

 In order to confirm our hypothesis, that the overly repulsive ion-solute potential is 

the cause of the over-prediction of the salting-out effects, we divided the solvent into 

three regions.  The first region is the first hydration layer, we defined as the volume 

between the ion locations and the first minima in the radical distribution function, the 

second region is the second hydration shell, which is between the first and second ion-

oxygen minima and the final region is the bulk water, which is any point outside the 
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second region.  The radical distribution function for Na-O and Cl-O are shown in Figure 

4-13 and 4-14 respectively.  As a single insertion point can occur in both a 1st and 2nd 

water layers due to multiple ions, we have defined that in this situation, it will be counted 

as being in the 1st water layer.  For this work, only the TIP4P/2005 water structure was 

studied.  Our objectives for studying the different solvent regions are to determine the 

nature of the fluid away from the ions, the excess chemical potential in each region and to 

look at the long range effect of the ion-solute potential. 

 The probability of the solutes being inserted to the different region is shown in 

Figure 4-15.  As the ion concentration increases, the probability of the inserting into the 

bulk region rapidity decreases, as the water molecules are being reallocated into the 

hydration regions.  The 2nd region increases quickly due it greater volume that the 1st 

hydration region.  After a molality around 2.0 mol/kg, the volume of the 2nd region 

decreases as the water molecules in the 2nd region are being reallocated into the 1st 

hydration region.  After a molality around 3.0 mol/kg, the volume of the bulk region is 

very small and does not contribute significantly to the system. 

 The density of each region of the system can be determined by counting the 

number of water molecules in each region and using a Monte Carlo sampling of space in 

the cell to determine the average volume of each region.  The effect of ion concentration 

on the localized density in units of g/cc of each region is shown in Figure 4-16.  We see 

that the local density of the first hydration layer increases as the ion concentration 

increases, due to the increase in the number of ions in each other hydration layer.  What is 

of interest is that the local density in the bulk region decreases from 0.997g/cc for pure 

water, to 0.941g/cc for a molality of 1.997 mol/kg.  At the same time, the density of the 

second hydration shell also has decreased from 1.00 g/cc for 0.200 mol/kg, to 0.871g/cc 



 85 

at the 5.99 mol/kg.  This shows for the both the 2nd hydration and the bulk regions that 

there is not an increase in the structure of the fluid away from the 1st hydration layer. 

 We begin assessing the separate regions by considering the excess chemical 

potential in the bulk region.  As an example, we have chosen the TIP4P/2005 water 

model with the non-polarizable krypton solute model.  The excess chemical potential 

dependence on the concentration for the separate regions is shown in Figure 4-17, which 

we note that the excess chemical potential for the bulk region is approximately constant at 

about 8 kJ/mol.  The excess chemical potential of both the 1st and 2nd hydration region 

increases linearity as the ion concentration increases. 

 The effect of the density on the excess chemical potential from both pure water, 

and bulk water in the aqueous solution is shown in Figure 4-18.  The pure water solvent 

has a significant reduction in the excess chemical potential due to a decrease in the 

density opposed to the bulk water solute where the excess chemical potential is constant.  

As the only difference in the two systems is the ion-solute interactions, so we can 

conclude that the ion-solute potential has a long range effect on the chemical potential, 

and that the ion-solute interaction increase the excess chemical potential. 

 The regional density of the second hydration layer also decreases as the ion 

concentration is increased.  Again, we would expect that the excess chemical potential 

will decrease but, the excess chemical potential increases.  This again we expect that this 

is due to the increasing amount of ions interacting with the solute, even if it is inserted 

outside the first hydration layer.  That is to say, at low concentration, the 2nd hydration 

shell surrounds only 1 ion, whereas at high concentrations, an increasing number of 

insertions will be into the second hydration layers containing two or more ions.  A similar 
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effect is seen for the first hydration energy, where the excess chemical potential also 

increases linearly as the ion concentration increases. 

 In regards to the increase in the overall excess chemical potential, this is caused 

the high proportion of the sampling occurring at the 1st hydration layers, which has a 

higher value compared to the 2nd hydration layer and the bulk.  As the excess chemical 

potential in the bulk is constant, the cause of the increase in the excess chemical potential 

can not be due to an increase in structuring or order in the bulk region. 
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Figure 4-2: NaCl, concentration dependence on the excess chemical potential of neon 
in aqueous solution at infinite dilution for (a) A non-polarizable neon model and (b) A 
polarizable neon model. Squares are for TIP4P/2005, triangles are for TIP4P/Ew, 
circles for TIP3P 
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Figure 4-3: NaCl, concentration dependence on the excess chemical potential of 
argon in aqueous solution at infinite dilution for (a) A non-polarizable argon model 
and (b) A polarizable argon model. For explanation of symbols, see Figure 4-2  
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Figure 4-4: NaCl, concentration dependence on the excess chemical potential of 
krypton in aqueous solution at infinite dilution for (a) A non-polarizable krypton 
model and (b) A polarizable krypton model. For explanation of symbols, see Figure 4-
2  
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Figure 4-5: NaCl, concentration dependence on the excess chemical potential of 
xenon in aqueous solution at infinite dilution for (a) A non-polarizable xenon model 
and (b) A polarizable xenon  model. For explanation of symbols, see Figure 4-2 
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Figure 4-6: NaCl, concentration dependence on the excess chemical potential of 
methane in aqueous solution at infinite dilution for (a) A non-polarizable methane 
model and (b) A polarizable methane model. For explanation of symbols, see Figure 
4-2  
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Figure 4-7: NaCl, concentration dependence on the Setchenow parameter of neon in 
aqueous solution at infinite dilution for different water models.  For explanation of 
symbols, see Figure 4-2  
 

 
 

Figure 4-8:  NaCl, concentration dependence on the Setchenow parameter of argon in 
aqueous solution at infinite dilution for different water models.  For explanation of 
symbols, see Figure 4-2  
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Figure 4-9a: NaCl, concentration dependence on the Setchenow parameter of krypton in 
aqueous solution at infinite dilution for different water models, without polarizability.  
For explanation of symbols, see Figure 4-2  
 

 
 

Figure 4-9b: NaCl, concentration dependence on the Setchenow parameter of 
polarizable krypton in aqueous solution at infinite dilution for different water models. 
with polarizability.  For explanation of symbols, see Figure 4-2  
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Figure 4-10: NaCl, concentration dependence on the Setchenow parameter of xenon 
in aqueous solution at infinite dilution for different water models.  For explanation of 
symbols, see Figure 4-2  

 

 
Figure 4-11: NaCl, concentration dependence of the Setchenow parameter of methane 
in aqueous solution at infinite dilution for different water models.  For explanation of 
symbols, see Figure 4-2  
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Figure 4-12: NaCl, concentration dependence of the excess chemical potential of argon in 
aqueous solution at infinite dilution.  With TIP3P at the same density of TIP4P/Ew, 
Squares are for TIP4P/2005, triangles are for TIP4P/Ew, circles for TIP3P 
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Figure 4-13: Sodium-oxygen radial distribution function of a range of NaCl 
concentrations. 
 

 

Figure 4-14: Chloride-oxygen radial distribution function of a range of NaCl 
concentrations. 
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Figure 4-15: Probability of the solute being inserted into a particular region, 1st 
hydration shell (triangles), 2nd hydration shell (squares), and the bulk (circles). 
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Figure 4-16: Regional densities for aqueous solution with varying concentration.1st 
hydration shell contains ions (triangles), 2nd hydration shell (squares), and the bulk 
(circles).  The total density on the solution (diamonds). 
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Figure 4-17: Excess chemical potential from the insertion of krypton into the different 
region individually.  1st hydration shell (triangles), 2nd hydration shell (squares), and the 
bulk (circles). 
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Figure 4-18: Effect of density on the excess chemical potential.  The black squares are the 
excess chemical potential from the bulk region on the ion-water simulations.  The hollow 
squares are from the excess chemical potential calculated from pure water simulations 
are artificial densities.  
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Figure 4-19: Diagram of the different region in the aqueous solution, where the bulk is 
blue, 1st hydration layer is white, and the 2nd hydration layer is gray.  The ions are 
represented as dots.  Top, at low density, the there is one ion in the centre of the two 
hydration layer.  Bottom, at the higher concentrations, there are multiple ion around each 
shell, contribution to high energy in the hydration shells.   
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4.7  Force field from ab initio calculations 

 Having shown that the over-prediction for the salting-out effect is due to the ion-

solute potential, it seam logical that the next step in attempting to correctly reproduce the 

salting-out effect is to development of improved solute-ion potential.   

 Perhaps the most obvious and straight forward method of accomplishing this 

would be to fit the solute-ion potential to experiment.  However, apart from being 

computationally costly, is requires experimental data which, even for a common molecule 

such as CH4 in NaCl solution, is very limited.   As an alternative to this, we have 

chosen to fit the ion-solute potentials to ab initio calculations as this requires no 

experimental data and, as such, is a fully predictive method.  

 In an attempt to more accurately model the overly repulsive potential, we choose 

to model, the new short-range interactions are calculated via the Buckingham exp-6 

potential,  
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which contains an exponential repulsive wall which is less steep than the 12!
r  of the 

Lennard-Jones.  ij
!  is the location of the minimum energy, the ij

!  is the minimum 

energy and  ij
!  controls the gradient of the repulsive wall.  The Buckingham exp-6 

potential obtains a better approximation of the potential wall, which is important for 

Monte Carlo simulations as the wall potential is frequently sampled.  The Buckingham 

exp-6 parameters ijijij
!"# ,,  are optimized to reproduce the ab initio MP2 energy for ion-

solute dimer, using a gradient descent optimization for the energy. 
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Force field development 

 For the refinement of the interactions between the solute and ions, the van der 

Waal interactions were fitted to ab initio calculations.  The fitting method is based on 

calculations of the dimer energies for a range of configurations, i.e. with the ion-solute 

separated at different distances.  In this work, the MP2 energy is calculated by using 

single point energy calculations at 40 different distances.  The point energies are 

calculated with the distances chosen for each molecule starting with an ion-solute 

separation approximately 0.6Å closer than the overall energy minima and then for an 

addition 3.3Å at an interval of 0.1Å.  The ab initio energy is made up from four 

components, as shown by,  

 
BSSEvdWPolelectroMP

UUUUU +++=
2

 [4-14] 

where 
electro

U  is the electrostatic energy, (zero, because the solute does not have a 

electrostatic charge), 
Pol

U  is the polarization energy.  
BSSE

U  is the basis set superposition 

error, and 
vdW

U  is the van der Waals energy.  Figure 4-20 shows an example of the 

parameterization, for the van der Waals energy interaction of Na+-Ne.   

 The polarizability in the parameterization stage is vital as there is no shielding 

from the electric field by other molecules, as would be the case in a condensed phase 

solution.  The ion-solute dimer has a very large electric field generated from the ion, and 

without the removal of the polarization effect, the van der Waal interaction will be highly 

overestimated because the van der Waal energy is calculated from the residue from the 

MP2 energy less all the other energy contributions.  The size of the polarization energy 

from been seen in Figure 4-20, which is for a solute is a small polarization.  The effect is 

greater of larger molecules with a higher polarizability.        
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For our study,  all the ab initio calculations were performed using the 

computational package NWCHEM30.  The 6-311++G(3df,3pd) basis set was used for the 

calculation of the Hartree-Fock energy, then added electron correlation effects to the MP2.  

basis set superposition error (BSSE) was corrected for via the half counterpoise 

method31,32.  For a summary of the ab initio methods, refer to Chapter II. 

    The values of the new ion-solute interaction potentials are shown in Table 4-3.  

As before, the electrostatic charges on the ions and solutes were still set to their 

respectively isolated value (+1e for Na+ and -1e for Cl-)  and the polarizability was set to 

the relevant experimental value24,25,28.  The parameters for the new ion-solute potentials 

are shown in Table 4-4.  All of the figures showing the parameterization are shown in 

Appendix B.  

 

Results from new potentials 

The new potentials were tested by comparing values for the excess chemical 

potential and the Setchenow coefficients to those calculated using the original parameters, 

as well as experiment.  Figure 4-21 to 23, shows the Setchenow coefficient for both the 

new and original potentials using both the TIP4P/2005 and TIP4P/Ew water models.  We 

note that for the argon and krypton solutes, shown in Figure 4-22 and 23 respectively, 

both show a significantly improvement over the Lennard-Jones parameters taken from the 

literature, shown in Table 4-2.  On the other hand, for neon, shown in Figure 4-21 had 

poor agreement.  Is was due to the fact that the Ne-Cl potential produced from the ab 

initio calculations obtains a more repulsive potential for distances greater than 3.1Å.  As a 

proof of concept, the new potential works exceeding well.  
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Table 4-3:   Solute potential exp-6 parameters and polarizability (α), from fitting to MP2 
point energies 

 

  σ [Å] ε [K] λ α [Å3] 

Neon Na+ 

Cl- 

2.833 

5.228 

142.666 

1.516 

12.765 

16.750 

0.40 

Argon Na+ 
Cl- 

3.414 
4.326 

161.691 
105.278 

12.783 
12.620 

1.64 

Krypton Na+ 

Cl- 

3.597 

4.597 

300.777 

59.927 

11.741 

13.904 

2.48 
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Figure 4-20: Neon-sodium, dimer energy from the ab initio MP2 point energy 
calculations.  Polarization energy, estimated van der Waals interaction and new exp-6  
potential fitted to the van der Waals component of the ab inito MP2 calculation.  The 
Dang-Hirshfielder potential generated from pure components and mixing rules are shown 
as a comparison. 
 

 

Figure 4-21: NaCl concentration dependence of the Setchenow parameter of neon in 
aqueous solution at infinite dilution comparing the effect of the different ion-solute 
forcefields.  Squares are for TIP4P/2005 and triangles for TIP4P/Ew.  The bottom 
two rows are the old potentials and the top two rows are the new potentials 
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. 
Figure 4-22: NaCl concentration dependence of the Setchenow parameter of argon in 
aqueous solution at infinite dilution comparing the effect of the different ion-solute 
forcefields.  Squares are for TIP4P/2005 and triangles for TIP4P/Ew.  The top two 
rows are the old potentials and the bottom to rows are the new potentials 

 

 
 
Figure 4-23: NaCl concentration dependence of the Setchenow parameter of krypton 
in aqueous solution at infinite dilution comparing the effect of the different ion-solute 
forcefield, Squares are for TIP4P/2005 and triangles for TIP4P/Ew.  The top two 
rows are the old potentials and the bottom to rows are the new potentials 
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4.8 Conclusions 

 In this chapter, we began by showing that, when coupled with common rigid 

molecules, single site non-polarizable models of small non-polar solutes fail to capture 

either qualitatively or quantatively the effect on solubility of the charged co-solvents.  

Given that in chapter III we showed that such models fail to reproduce the temperature 

dependence in pure water, this is unsurprising.  In fact, as shown in literature, these 

models over-predict the salting-out effects.  Following on from our working in chapter III, 

we investigate the common hypothesis that this over-prediction in due to not accounting 

for the polarization on the solute explicitly.  However, our investigation shows that 

polarization improves both the qualitative and quantitative agreement.  In regards to the 

salting-out effect, it is a subtle improvement and not sufficient to provide the desired 

agreement with experiment. 

 In evaluation these results, we note that TIP3P appears to give better description 

of these solutes in aqueous NaCl solutions, we show that the cause of this agreement is 

the models under-prediction of the solution density.  Furthermore, we demonstrate that if 

the solution density is fixed, all models used in this chapter provide similar values for the 

excess chemical potential, highlighting once again the importance of accurately 

reproducing the solvent density. 

 Turning our focus to the cause of the disagreement between experiments and 

simulations, we have considered the effect of salt on the structure of the fluid.  Dividing 

the system into three regions, 1st hydration layer, 2nd hydration layer and bulk with 

respects to the ion-oxygen distance, we found that the bulk density decreases with 

increasing ion concentration.  However, this does not result in a reduction in the excess 

chemical potential as would be expected from pure water results.  We also see a similar 
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situation with the 2nd hydration layer, as the density also goes down but the excess 

chemical potential goes up.  Given that the excess chemical potential in the bulk remains 

constant, underlying cause of salting-out can not be enhanced structure of the bulk fluid. 

 The 1st hydration layer shows an increase in the excess chemical potential as the 

ion concentration increases, so we conclude that the salting-out occurred because we 

replacing solute-water interactions with solute-ion interactions, which are less attractive.  

Thus we propose that the course of the over-prediction of salting-out by the model studied 

here is due to inappropriate ion-solute potentials. 

 As proof of this hypothesis we have developed now ion-solute potentials based 

upon ab initio calculations.  As such, these potentials are purely predictive and do not 

required experimental data which is often scares even for common molecules such as CH4.  

We compare the Setchenow coefficient using these new models with values obtained 

earlier in this work.  We note they provide better prediction of krypton and argon.  While 

we hoped for better agreement experiment, this models are pure predictive. 
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CHAPTER V 

 

HYDROGEN BONDING AND INDUCED DIPOLE MOMENTS IN WATER:  
PREDICTIONS FROM THE GAUSSIAN CHARGE POLARIZABLE MODEL AND 

CAR-PARRINELLO MOLECULAR DYNAMICS 
 
 
 

5.1 Summary 

 We compare a new classical water model, which features Gaussian charges and 

polarizability (GCPM) with ab initio Car-Parrinello simulations (CPMD).  We compare 

the total dipole moment, the total dipole moment distribution and degree of hydrogen 

bonding at ambient to supercritical conditions.  We also compare the total dipole moment 

calculated from both the electron density ('Bader' approach) and from the center of 

localized Wannier functions (WFC).  Compared to CPMD, we found that GCPM over-

predicts the dipole moment derived by the 'Bader' approach and under-predicts that 

obtained from the WFCs, but exhibits similar trends and distribution of values.  We also 

found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and 

has a similar structure.  The research reported in this chapter has been published1. 

 

5.2 Introduction 

 Water is an essential and ubiquitous component of our natural environment crucial 

to many chemical, biological and physical processes.  The importance of water has led to 

the development of many models for the interaction between water molecules (i.e. 

forcefields)2.  Many of these models, most of which are rigid and non-polarizable, 

reproduce a subset of the important physical properties of water.   
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Recently, the Gaussian charge polarizable model for water (GCPM) was 

introduced3.  This model has been shown to predict accurate structural, dielectric, 

thermodynamic and transport properties over the entire fluid range (including isolated 

dimers) as well as accurately reproducing the vapor-liquid equilibria.  Additionally, 

GCPM has recently been shown to reproduce both the second and third virial coefficients4.  

The isolated GCPM water molecule has been fixed to the experimental gas phase 

geometry5.  The center of negative charge (M) is located 0.27Å, along the θHOH bisector 

and the charges are set for the permanent dipole to equal the experimental value of 

1.855D6.  A point polarizable dipole is located at the center of mass of the molecule, and 

the polarizability is given by the experimental value (α = 1.44 Å3)7 

The accuracy of the GCPM suggest that it may be representing the properties of 

the water molecule faithfully, both in the low density (isolated and dimer) states and in the 

condensed liquid state.  To test the accuracy of the GCPM further, we present in this 

chapter comparisons of the GCPM predictions for the induce dipoles moment, quadruple 

moments and hydrogen bonding with results obtained from Car-Parrinello molecular 

dynamics8 (CPMD). 

CPMD simulations represent one of the most fundamental approaches to modeling 

condensed phases.  Simulations have been conducted at both standard9-11 and elevated  

conditions.12,13  Dynamic equations of motion are solved for the ions with the inter-ionic 

forces computed from the valence electron density, which is solved for at each time step 

using density functional theory.  In the case of water, a CPMD simulation consists of O 

and H ions and 8 valence electrons per molecule.  Ab initio simulations do not restrict the 

atoms into rigid molecules, allowing the atoms to move freely.  The ground state electron 

density calculated for the system is computed at each time step.  As polarization and other 
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short range forces are taken into account automatically within the CPMD, this provides 

useful data to compare to the polarization included in the GCPM model.  

Previous studies9,14 have shown that the bulk water structure can be described by  

CPMD.  Despite this success, CPMD remains too expensive computationally for the study 

of large and complex systems, since even for a relatively small (32-64 molecules) 

simulation, CPMD requires approximately 4-5 orders of magnitude greater computation 

time than an equivalent classical MD simulation. 

  Recent x-ray diffraction measurements15 have resulted in an estimate of the bulk 

water dipole of 2.9 ± 0.6D at ambient conditions.  However, ab initio results calculated 

using MP2 yield total dipole moments of 2.65D16 and 2.7D17,18. 

In order to calculate the effective dipole moments of water molecules from 

electron density data, the boundary of the water molecule has to be defined.  Laasonen et 

al.9 used a spherical volume centered at the center of charge of a water molecule with a 

radius half the average O-O intermolecular distance, determined from the radial 

distribution function.  The electron density contained within this volume was taken as 

being associated with the water molecule and the dipole computed accordingly, with the 

result that the average dipole moment µv  was found to be 2.66D at 300K and 1g/cc.  

Bader19 defines the extent of the molecule as the surface where the electron density flux is 

zero, which we shall refer to as the Bader approach.  Delle Site et al.20 used this definition 

and calculated a total dipole moment of 2.47D in a simulation containing 32 water 

molecules at 300K and 1g/cc.  We have adopted a similar philosophy in the results 

described below.  
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 However, defining a molecule via the partitioning of the bulk electron density has 

been criticized as yielding incorrect results in regards to the total dipole whenever there is 

significant molecular overlap21.  A solution to the lacking a formal definition of the 

molecular 'space' or volume has been proposed that uses maximally localized Wannier 

functions.22,23  Wannier functions are a set of orthogonal functions used to represent the 

real-space picture of localized orbitals.  As the Wannier functions are strongly non-unique, 

maximally-localized Wannier functions (MLWF)24,25 constrain then system to find the 

Wannier functions which minimize their distribution about their center.  The center of a 

MLWF can be thought of classically as the location of an electron pair.  This method was 

used by Silvestrelli and Parrinello,10 yielding a total dipole moment of 3.0D for bulk water 

at 318K and 1.0g/cc.  For comparison, in addition to the Bader approach, we also calculate 

the dipole and quadrupole moments using Wannier functions centers (WFC).  

 The effect of temperature on the induced water dipole has not been extensively 

studied. Gubskaya and Kusalik11, reporting the total molecular dipole moment between 

263 and 373K.  Only limited density dependence of the effective dipole moment has been 

reported.  In this paper, we will present comparisons of the effective dipole moments by 

CPMD as a function of density and temperature outside the two-phase region, and 

compare these with the predictions of the GCPM 

Another very important aspect of water structure is hydrogen bonding.  For 

example, the high melting and boiling point of water are due to the high degree of 

hydrogen-bonding at ambient pressure.  Likewise, the density maximum at 40C is the 

result of water freezing into a tetrahedral hydrogen-bonded network.  In order to calculate 

the degree of hydrogen bonding in a simulation, Mezei and Beveridge26 developed a 

geometric criterion for determining a hydrogen bond. Although other definitions (based on 
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energetic or combination energetic/geometric criteria) exist, the geometric definition of 

Mezei is preferred by us since it is easily implemented within CPMD, where the pair 

interaction energy is problematic to isolate.  Using the Mezei and Beveridge geometrical 

criterion, we compare the distribution of the number of the hydrogen bonds obtained from 

GCPM and CPMD simulations as a function of temperature and density. 

For a comparison to the GCPM and CPMD values for the dipole, we are using the 

simple rigid non-polarizable SPC/E27 water model with point charges on each atom.  

Given its simplicity compared to GCPM and CPMD, SPC/E water model gives accurate 

predictions for the structure, phase equilibria and dielectric constant, particularly at 

ambient conditions.  In this study, SPC/E is used as prototypical of the popular non-

polarizable, rigid model and is compared to GCPM and CPMD results.  Being non-

polarizable and inflexible, SPC/E has a constant dipole moment of 2.35D.  

 In this paper, we will first present our method for simulating the water systems, 

followed by the calculations of the dipole moment, quadruple moment and the extent of 

hydrogen bonding.  We conclude with discussion of the results. 

 

5.3 Simulation Details 

GCPM computational details  

The GCPM water simulations were conducted between the temperatures of 300 

and 1000 K and density of 0.1 and 1.0g/cc with 100K and 0.1g/cc intervals respectively.  

However, simulations were not performed in the two-phase vapor-liquid equilibrium 

region.  A constant number of molecules, constant volume and constant temperature (NVT) 

ensemble of 256 water molecules was used with an equilibration time of 100ps followed 
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by a 100ps production run where data on dipole moment and hydrogen bonding were 

collected for statistical analysis.  For these simulations, a 1.0fs timestep was used. 

In regards to the calculation of the dipole moment, at each time step the induced 

dipole was iterated over all the molecules until convergence, creating a self-consistent 

field (SCF).  The dipole moment was calculated from 

 ( )induced

i

perm

iii EE
vvvv

++= !µµ 0  [5-1] 

where 
i

µ
v  is the total dipole moment, 0

i

µ
v , is the permanent dipole moment for electrostatic 

charges, !  is the polarizability for water (1.44Å)7, perm

iE
v

 is the electric field caused from 

electrostatic charges, and induced

i
E
v

 is the electric field caused from the induced dipole. 

 

CPMD computational details 

The simulation was carried out with version 3.9.1 of the computational code 

CPMD28.  In each simulation, 32 water molecules were simulated in a periodic cubic cell 

with a temperature between 300 and 1000K and density of 1.0g/cc.  Initial samples were 

prepared by a 100ps initialization with an NVT ensemble using the GCPM at the same 

conditions.  Due to its agreement with experiment14, the Troullier-Martins type 

pseudopotentials29 and the gradient-corrected density functional BLYP 30,31 were used. 

The Kohn-Sham orbitals were expanded in a planewave basis set up to an energy 

cutoff of 70Ry, which has been shown to be accurate by the work of Silverstrelli and 

Parrinello10.  A fictious mass for the electrons of 600 a.u. was used in the thermosetting 

equation of motion.    Each simulation began with a 1ps relaxation run, involving 0.5ps 

simulation with velocity rescaling followed by 0.5ps with the temperature controlled with 

the Nose-Hoover thermostat.  A timestep of 0.1fs was used for all the simulations.  At 



 116 

each temperature and density, there was a 5.0ps production runs where the electron 

density of the system was outputted every 0.5ps and the WFCs were calculated every 1fs.  

For the simulations at 1.0g/cc, the temperature was set at 300, 500, 700 and 1000K and for 

the simulations at 0.6g/cc the temperature was at 700 and 1000K.  

In comparing the GCPM predictions with CPMD, we must keep in mind one 

limitation of the CPMD results.  The GCPM model has been constructed as a classical 

model for use in classical simulation and so fits experimental data directly.  This means 

that effects due to quantum dynamics in water that result in higher diffusivity, reduced 

hydrogen bonding, lower dielectric constant and a more relaxed structure32-36 have already 

been incorporated into the classical GCPM intermolecular potential implicitly.  By 

contrast, in CPMD simulations the dynamics is classical, but the interactions, derived 

from density functional theory applied to each configuration, have not been empirically 

adjusted to incorporate the effects of quantum dynamics.  Hence, if the quantum-corrected 

properties of the CPMD are expected to agree well with experiment, one should expect 

that CPMD will yield lower diffusivities, higher dielectric constants, higher degrees of 

hydrogen bonding and a more rigid structure than real water.  This has been confirmed 

with respect to lower diffusivities37 and enhanced structure37 and the degree of hydrogen 

bonding38. 

 

Isolated CPMD water molecule 

 A CPMD simulation of a single water molecule was carried out at 300K in a 12Å 

periodic cubic cell.  Statistics were taken over 10ps, with an electron density snapshot 

every 0.5ps and WFC calculated every 1fs.  The dipole was calculated using both the 

Bader approach and Wannier functions.  In the Bader approach, the dipole was calculated 
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by centering the box on the water molecule, using the box walls to define the limits of the 

molecule.  

 

Dipole moment calculations from electron density 

The electron density generated from the CPMD simulations was mapped onto a 

three-dimensional grid with a 0.09Å spacing in each direction.  In the Bader method 

(Figure 5-1 a, b), a boundary point of a water molecule was defined as the minimum in 

the electron density between two water molecules.  A numerical spline interpolation was 

used to find minima in the electron density, corresponding to points of zero electron flux.  

The electron density is only calculated from the valence electrons, i.e. the 1s electrons are 

included with the oxygen nucleus.  Integration over the molecule's space returns the 

number of valence electrons associated with that molecule.  In principle, there are 8 

valence electrons, six for the oxygen and 1 for each of the hydrogens.  The number of 

electrons found within the boundary defined by the zero-flux condition is 8 ± 1% which is 

in excellent agreement with the expected value.  The water dipole moment was then 

calculated from 

 !=
iv

r rdrqr
vvrr

)(µ  [5-2] 

where )(rq  is the electron density and 
i
v  is the volume around molecule i whose 

boundary is defined by the zero-electron-flux condition. 

 

Wannier functions 

In the WFC method (Figure 5-1c), the 8 valence electrons from each water 

molecule are divided into 4 double-occupied localized Wannier functions, each with a 
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charge of 2 electrons, concentrated at the WFCs.  The positive charge is located at the 

atom nuclei, with a charge equal to its number of valance electrons, i.e. 6e+ on the oxygen 

and 1e+ on each of the hydrogens. 

 

Quadrupole moment 

 The quadrupole moment of a water molecule is the next term in the multipole 

expansion of the electrostatic energy following the dipole moment39.  Like the total dipole 

moment, the quadrupole moment of water is also unknown for condensed water, as there 

has not been much investigation into the value of the quadrupole moment.  However, there 

has been limited investigation into effect of the quadrupole moment on the properties of 

water obtained using a variety of common models for water.  Abascal et al.40 have shown 

that quadrupole interactions play an important role in common water models, by 

comparing the magnitude of the quadruple moments of several rigid water models to the 

predicted melting temperature of ice.  Tu and Laaksonen,16 calculated the quadruple 

moments of water in liquid water by simulating 256 TIP3P molecules at 298K and a 

density of 0.997g/cc.  The electrostatic potential (ESP) of the configuration is solved as a 

point energy calculation using ab initio MP2 level of theory.  Finally the point charges are 

fitted to the electrostatic potential and determined the dipole and quadrupole moments. 

 The quadrupole moment for a molecule with discrete charges, for example using 

WFC, maybe calculated via,39 
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where, ijQ  is the traceless quadruple moment in the ij  direction,  
i
q  is the electrostatic 

charge at location i , 
i
x  is the distance vector i , i.e. zyx ,, .  r  is the distance from the 

charge site to the reference point.  The value of the quadrupole moment is dependant on 

the location the quadrupole is calculated relative too, i.e. where r  equals zero.  To be able 

to compare with Tu and Laaksonen16 the quadrupole moment was calculated using the at 

the center of mass of the water molecule as the reference point.  ij
!  is the Dirac function, 

where   
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 In calculating the quadrupole moment from integration of the electron density 

values obtained from the CPMD simulations, we used the same approach as for 

determination of the total dipole moment, i.e. 
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Hydrogen bonding 

 The criteria of a hydrogen bond defined by Mezei and Beveridge,26 has the 

distance between the oxygen atoms ROO ≤ 3.3Å , angles between the proton donor or the 

lone pair of electrons and the oxygens as θHOO, θLPOO ≤ 450 and the torsion between the 

proton and the lone pair as  θ ≤ 1800.  The location of the lone pair was taken as the 

inflection of the OH vectors and rotated 900.  The distance of the lone pair to the nuclei is 

not involved in the definition.  The number of hydrogen bonds was computed every 200fs 

over the 100ps production run for the GCPM and every 1.0fs, over a 5ps production run 

for CPMD. 
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Figure 5-1: Diagrams of the two different methods of calculating the total dipole moment 
from CPMD simulations.  a), Bader method the electron density around a water molecule 
in the XZ plane.  The dark region in the center has the highest electron density, which 
decreases as the distance away from the water atomic sites increases. b) Division of the 
electron density between molecules A and B, where the dotted line is the division of the 
electron density from the Bader method.  ( )r

i
!  is the electron from molecules i  

functional.  c) The centers of the Wannier functions (green) form a tetrahedral around the 
water molecule, with 1 center approximately on each of the OH bonds and the other 2 
around the locations of electrostatic minima.   
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5.4 Results 

Dipole moment 

In Figure 5-2, the total dipole moments of CPMD and GCPM water are compared 

at 300K, 500K, 700K and 1000K at a density of 1.0g/cc.  It can be seen that GCPM water 

results exhibit similar trends to the CPMD water results, with the GCPM results 

consistently 0.1 to 0.2 Debye higher in magnitude than the CPMD-Bader results and 0.2 to 

0.3 Debye lower than the CPMD-WFC results.  At a density of 0.6g/cc, the GCPM again 

predicts total dipoles that are 0.1 Debye above the CPMD-Bader results.  For lower 

temperatures at a density of 0.6g/cc, water enters a two-phase region and so we do not 

consider these states.  The CPMD-Bader result at 300K and 1.0 g/cc is consistent with that 

calculated by Delle Site et al.20 using essentially the same method for determining the 

effective dipole moment, validating our procedure.    

Since the total dipole moment for the water molecule fluctuates, the ability to 

reproduce the total dipole moment distribution is likely to be an important ingredient in 

developing an accurate model for water.  In Figure 5-3, we have plotted the dipole 

distribution for CPMD using both Bader and WFC methods together, with that obtained 

from GCPM at two state conditions, 300K and 700K, both at 1g/cc. 

The standard deviations at 300K and 1.0 g/cc were 0.22D, 0.30D and 0.19D for 

CPMD- Bader, CPMD-WFC and GCPM respectively.  At 700K and 1.0g/cc the standard 

deviations were 0.27D, 0.33D and 0.24D for CPMD-Bader, CPMD-WFC and GCPM 

respectively.  For a density of 0.6g/cc and 700K, the standard deviation were 0.23D, 

0.27D and 0.21D for CPMD- Bader, CPMD-WFC and GCPM respectively. 

The width of the distribution of the dipole was always found to be larger for the 

CPMD simulations, using either method, than for the GCPM simulations.  The narrower 
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distribution of GCPM could be due to the rigid nature of the model, i.e. neither the O-H 

bond length nor the HOH angle is able flex.  Flexing of the molecule enhances the 

occurrence of dipoles at the tails of the distribution.  This is consistent with the finding of 

Allesch41, who found a narrower total dipole moment distribution is obtained from a rigid 

molecule compared to the total dipole moment distributions from a freely moving 

molecule using Car-Parrinello simulations. 

In general, we find that the mean dipole moment calculated using the GCPM is 

bounded above by the WFC method and below by the Bader approach.  The one exception 

to this general observation is shown in Figure 5-4 where Boero et al.13 also simulated 

CPMD water in the supercritical regime at 653K for densities of 0.32 and 0.73g/cc.  These 

results suggests that at low density (0.32 g/cc) and high temperature (673 K) the GCPM 

prediction for the dipole moment may be higher than that obtained from the WFC method 

applied to CPMD by Boero et al.13.  However we note that the CPMD results are 

somewhat noisy at this state condition, so that this conclusion is at best tentative.  For the 

lower density of 0.32g/cc, both CPMD and GCPM have a maximum probability around 

2.06D, corresponding to the dipole moment of a water dimer (2.1D)18.  The multiple peaks 

of the CPMD curve at low density are likely due to insufficient simulation time, results in 

poor statistics.  For the higher density of 0.73g/cc, both GCPM and Boero et al. results 

have a similar maximum dipole value, but with GCPM having a smaller distribution.       

Since for GCPM it is relatively easy to determine the effective dipole moment over 

a broad range of temperature and densities, in Figure 5-5 we present these results.  It is 

clear from these results that the dipole moment calculated from the GCPM has a near-

linear relationship to the inverse temperature.  A similar trend was observed, over a 

smaller temperature difference by Gubskaya and Kusalik11. 
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Isolated water dipole 

The isolated water dipole was calculated from CPMD-Bader to be 1.84D, with a 

standard deviation of 0.06D, compared to experiment of 1.855D6, which corresponds to 

the value chosen for GCPM.  CPMD-WFC yielded a dipole of 1.86D, with a standard 

deviation of 0.08D.  Two conclusions can be inferred from this: first, that CPMD (using 

either method) yields a good prediction of the isolated water dipole; and second, CPMD 

and GCPM converge to the same value at lower densities (GCPM due to design).  

Consistent with this is the fact that the differences between CPMD and GCPM at the 

lower density of 0.6g/cc are less than the differences at 1.0g/cc  (Figure 5-3b, c). 

 

Quadrupole moment 

  As the zzQ  quadrupole moment is quite small, and the quadrupole is traceless, it 

has been suggested that a convenient measure of the strength of the quadrupole is TQ , the 

average magnitude of the quadrupole moment, defined by,  
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T

QQ
Q

!
=  [5-6] 

 
by Abascal and Vega42.  This reduces the quadrupole moment to a single value enabling 

easier comparison between results.  The values of the quadrupole moment of water 

calculated via CPMD, seen in Table 5-1, are in good agreement with published results 

which have been attained using similar methods10,20.  Calculation of the TQ  using WFCs 

obtained a high value for the traceless quadrupole moment compared to the integration of 

the electron density over the molecule volume, consistent with the fact that the dipole 

moment calculated via WFCs was also higher than using the Bader method. 



 124 

Also the results from Tu and Laakenson16 are closest to the result obtained via the Bader 

method, which is again consistent with the fact that the dipole moment is also the closest 

to the value obtained via the Bader method.  As the method used by Tu and Laakenson is 

significantly different to the Bader method, this starts to build a case for the true value of 

the quadrupole moment. 

 The quadrupole moment GCPM does not change, so is fixed as it isolated value.  

The quadrupole value for water is close to the experimental isolated values, but as it can 

not change, is significantly lower than the condensed phase values prediction from either 

method for CPMD of the results from Tu and Laakenson.  

      

Structure 

The radial distribution functions for GCPM and CPMD are shown in Figure 5-6 

for comparison.  Due to the small number of water molecules, the CPMD results do not 

extend beyond the second water shell.  The agreement of the CPMD results with GCPM 

results is very good; the latter in turn are in very good agreement with experiments3.  Note 

that CPMD predicts slightly enhanced structures (indicated by higher peaks) for water 

than GCPM, consistent with our discussion in Section 5.3 – that is, we expect CPMD to 

over-predict structure slightly compared to experiment. 

As can be seen from Figure 5-7, the degree of the hydrogen bonding in GCPM 

water is similar to that calculated via CPMD.  CPMD predicts a slightly more structured 

fluid as the temperature decreases, shown by a higher degree of hydrogen bonding.  This 

is consistent with our remarks in Section 5.3 concerning CPMD, in that we expect it to 

have a higher degree of hydrogen bonding compared to experiment. 
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Figure 5-2: Comparing the dipole moment of GCPM and CPMD water simulation at 1.0 
g/cc and 0.6g/cc. The GCPM results of 1 g/cc and 0.6 g/cc are shown as filled and hollow 
circles respectively with a dashed line.  The CPMD-Bader results at 1.0 g/cc and 0.6 g/cc 

are shown as filled triangles and diamonds respectively.  The CPMD-WFC results at 1 
g/cc are shown as crosses.  Note that the result by Delle Site et al.20 at ambient conditions 
is shown as an open square.  The (constant) SPC/E value is shown as a solid horizontal 
line.   
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Figure 5-3: Distributions of the dipole for water at 1 g/cc and temperatures (a) 300K, (b) 
700K. (c) 0.6 g/cc at 700K.  The CPMD-Bader results are shown as bars while the GCPM 
as smooth curves.  The CPMD-WFC results are shown as a dashed line.  For reference, 
the fixed dipole moment of the SPC/E model is shown as a single vertical line.   
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Figure 5-4:  Comparing dipole distribution at 0.32g/cc and 0.73g/cc and 653K for GCPM 
(triangles, solid 0.32 and hollow 0.73g/cc) and the data from Boero et al.13, (line, solid 
0.32 and dash 0.73g/cc).  The two vertical lines indicate the isolated water molecule value 
(1.85D) and the SPC/E value (2.35D) 
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Figure 5-5: GCPM water dipole moment as a function of inverse temperature for several 
densities, ranging from highest at the top to lowest at the bottom.   SPC/E is shown as a 
solid line at 2.35D   
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Figure 5-6:  Radial distribution function of GCPM and CPMD at 300 and 700K at  
1.0g/cc.  a) OO, b) OH, c) HH.  The GCPM results are shown as solid line and dotted line 
for 300 and 700K respectively.  The CPMD results are shown as 'x' and 'o' for 300 and 
700K respectively.   
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Figure 5-7: Hydrogen bonding as a function of temperature.  GCPM results of 1.0 and 
0.6g/cc are shown as filled and hollow circles  respectively.  The CPMD results at 1.0 and 
0.6g/cc are shown as filled triangles and diamonds respectively. 
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Table 5-1: Quadrupole moment of water [DÅ] 

 
zzQ  

xxQ  yyQ  TQ  

Isolated Molecule43 -0.13 2.63 -2.5 2.57 

TIP4P/200542 -0.1256 2.3597 -2.2341 2.92 

GCPM (isolated)3 -0.366 2.692 -2.355 2.49 

CPMD (Bader) 
CPMD20 

-0.20 (sd 0.33) 
-0.10 

2.86 (sd 0.37) 
2.77 

-2.66 (sd 0.18) 
-2.67 

2.76 
2.72 

CPMD (WFC) 
CPMD10 

-0.07 (sd 0.45) 
-0.22 

3.43 (sd 0.20) 
3.38 

-3.36 (sd 0.47) 
-3.16 

3.35 
3.27 

MD/MP216* 0.19±0.06 2.89±0.07 -2.70±0.17 2.80 

 
*  Results adjusted into the traceless quadrupole     ( )222

35.0 rrqrq !"
vv  
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5.4 Conclusion 

In this chapter, we have compared predictions for the dipole moment, quadrupole 

moment and hydrogen bonding from GCPM water to CPMD as a range of temperatures 

and densities.  In general, the agreement between the two models is very good.  

Specifically, we have shown that GCPM yields predictions of the total dipole moment and 

the total dipole moment distribution, for a range of temperatures and densities that are in 

good agreement with the CPMD results.  The GCPM values and are in fact bracketed by 

the values obtained from the two different methods from CPMD.  The distribution of the 

induced dipole moment as similar between all three methods of calculation, but the GCPM 

was consistently lower.  We expect that this is due to the rigid nature of the GCPM model, 

which prevents sampling at the extremes of the dipole moment distribution.  We conclude 

that given the variation in the dipole moment, the value predicted by GCPM is an accurate 

as the total dipole moment obtained from CPMD simulations.    

 As expected, the total water dipole moment calculated using both GCPM and 

CPMD decreases with increasing temperature in the fluid region.  We have shown that 

there is a near linear relationship between the dipole moment and inverse of the 

temperature. 

  The GCPM predicted a similar, but consistently slightly lower, degree of hydrogen 

bonding compared to GCPM over the whole range of state conditions studied.  Likewise, 

the water structure predicted by both models is in good agreement, with the CPMD 

slightly more structured than GCPM. 

 Both CPMD and GCPM exhibit the experimental value for the dipole moment of 

the isolated water molecule (in the case of GCPM, this is by construction). The value of 

the induced dipole moment using CPMD was highly dependant on the methods of 
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calculation.  Integration over the molecules electron density, (Bader method) on the 

molecular gave consistently lower results compared to the values calculated via maximally 

localized Wannier functions in the condensed phases.  For the isolated case, both methods 

converged to the experimental values of the isolated molecule. 

The quadrupole moment calculated by CPMD using the two different 

computational methods gave consistent values from other published values using similar 

methods.  Like for the calculation of the dipole moment, the quadrupole moment 

calculated by the WFC was larger than the quadrupole moment from the Bader method.  

The values obtained used the Bader method are similar to the results from Tu and 

Laaksonen16, even though it is obtained from significantly different calculation method.        
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CHAPTER VI 

 

EFFECT OF GAUSSIAN CHARGE AND POLARIZATION ON ION SOLVATION: 
BEHAVIOR OF A CHARGED SOLUTE AT INFINITE DILUTION AND IN 

CLUSTERS 
 
 
 

6.1 Summary 

 We developed a polarizable Gaussian-charge forcefield for monovalent ions to be 

used in conjunction with the Gaussian charged polarized model (GCPM) for water.  We 

found that the induced dipole moment and location of the ion in an ion-water cluster 

depended on whether the ion was a kosmotrope or a chaotropic.  We found that within the 

first hydration shell, the induced water dipole moment is influenced by the ion, and that 

the magnitude of the induced water dipole moment is related to the size and charge of the 

ion. We see that the water-ion orientation still exhibits the same classical effects seen is 

other classical water models, which is still stronger, that the orientation seen from ab 

initio simulations. 

 

6.2  Introduction 

This chapter examines the effect of using a Gaussian distribution for modeling the 

electrostatic interactions of simple ions in aqueous solution.  Previous polarizable 

classical water-ion models have been developed by Dang et al.1, using a polarizable water 

model (RPOL)2,3,  Lamoureux et al.4, using the polarizable water model (SWM4-DP)5, 

both parameterize the ion-water models to reproduce the binding energies of gas-phase 

monohydrates and for Lamourux et al. also using the hydration free energies in the bulk 

liquid. Carrillo-Tripp et al.6 developed a polarizable model for the hydration of Na+ and 
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K+ using ab initio calculations, using the polarizable and flexible water model 

(MCDHO)7.  

 As the ion particles are parameterized to specific water model, there is a lack of 

transferability of ion-water potentials between water models.  This is especially true given 

that the polarization can be accounted for using vastly different method.  For the either 

Drude oscillators8 used by Lamourux et al and Carrillo-Tripp el al. or polarization from 

the electric field, as used by Dang et al.  Due to these transferability issues, it was 

necessary for us parameterize the ion-water interactions to used with the GCPM water 

model. 

The Gaussian charge polarizable model for water (GCPM)9 has been shown to 

yield accurate structural, vapor-liquid equilibria, saturated vapor pressure and transport 

properties over the entire fluid range.  To accompany this accurate water model, a new 

model for ions is required, featuring polarizability and Gaussian charges to describe the 

electrostatic interactions. 

The first objective is to look at the effect of using Gaussian distribution to model 

the ion electrostatic charges.  We will do this by looking at differing widths of the 

Gaussian distribution, with differing size particles and differing magnitude and sign on 

the charge.  The second objective of this paper is to parameterize an ion-water model 

compatible with the GCPM representing the electrostatic charge using a Gaussian 

function.  Here we provide Gaussian parameters for the simple monovalent cations Li+, 

Na+, K+ and the anions F-, Cl- and Br-.  The Gaussian distribution parameters were fitted 

to ion-water cluster energies10-12, ab initio structure data13-18, and ionic radii19.  The third 

objective is in two parts.  First to study the behavior of the ions in water clusters, and 

second, to examine the behavior of the ion in the bulk water 
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Forcefield 

The model we propose has a positive Gaussian distribution for the cations, and a 

negative Gaussian distribution for the negative ions. The charge distribution ( )r
i

!  about 

a charge i  is modeled by  
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where, 
i

!  is the width of the Gaussian distribution about i, r is the distance from the 

center of the charge (nuclei of the ion) and 
i
q  is the magnitude of the charge  A point 

charge has a 
i

!  value of 0.  The electrostatic interaction energy between two charge 

distributions i and j is represented by 
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As these ion models are using polarizable, we will follow the same method as in the 

GCPM, which is via polarization due to the electric field.  As in the GCPM, the induced 

dipole moment is calculated from, 

 ( )piiii EE
vvvr

++= 00 !µµ  [6-3] 

where 
i

µ
v  is the induced dipole moment on the ion, !  is the ion's polarizability, 0

i
E
v

 is the 

permanent electric field, from the electrostatic charges on the water molecules, and p

iE
v

 is 

the induced electric field, from the dipole on neighboring molecules.  0

i
µ
v  is the 

permanent dipole moment is calculated from the electrostatic charges and geometry of the 

molecule.  For the simple ions, the permanent dipole moment has a value of 0.  The 

induced dipole moment is iterated over all the molecules (water plus ions) at every time 



 142 

step until convergence, creating a self-consistent field.  The polarizability parameters for 

the ions were taken from the experimental data of Pyper et al.20   

 From equation 6-2, one can see that the electrostatic ion-water interaction is 

reduced as the width of the Gaussian distribution is increased.  The magnitudes of the 

electrostatic charge on the ions are kept at their isolated values of +1e for the cation and -

1e for the anion.  

 As these are still classical models, charge transfer are not accounted for, even 

though a lower magnitude value for the electrostatic charges for ions in solutions would 

be more realistic.  The work of Tongarra and Rode21 using QM/MM simulations on 

hydrated anions obtained values for the electrostatic charges to be -0.94e ± 0.01e and -

0.89e ± 0.01e for F- and Cl- respectively.  Implicity accounting for the reduced charge has 

the effect of reducing the electrostatic interactions.  We hope to implicitly partially 

account for the effect of electron transfer through the use of Gaussian distributions, which 

reduces the electrostatic interactions on neighboring atoms.  

 

6.3  Effect of using a Gaussian charges for the electrostatic interactions 

 For the first objective, we assess the effect of the width of the Gaussian distribution 

for the electrostatic charges on the solvation free energy of the ion in water.  The effect of 

the width of the Gaussian distribution (Ω) for charged particle on the Helmholtz free 

energy of solvation was calculated for a range of atomic charges.  The electrostatic charge 

on the ions were varied between -2e and 2e, and the width of the Gaussian distribution 

varied between 0 (point charge) and 1.5Å.  The free energy is calculated using 

thermodynamic integration using the method of Beutler et al.22, by integrating along a 



 143 

reversible path from state 1 (bulk water with no ion-water interaction) to state 2 (infinite 

dilute ion-water solution, in a constant volume, and constant temperature ensemble, the 

Helmholtz free energy given by, 

 
Lat
Ad

d

dU
A !"=# $

=

=
%

%

%%

%

1

0

)(  [6-4] 

where λ is the Kirkwood's coupling parameter.  This parameter is defined so that 

( )0=!U  yields pure water simulation and ( )1=!U  corresponds to a simulation with a 

fully realized ion in the water.  
lat
A  is the energy from the ions being in a lattice due to 

the system having repeated images through the periodic boundary conditions.  This 

method was used by Lynden-Bell and Rasaiah23 for looking at hydrophobic to hydrophilic 

behavior of ions in solutions. 
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Figure 6-1: The effect of different widths for the charge distribution on the Helmholtz free 
energy of solvation as a function of ionic charges for particle sized approximately to (a) 
sodium  and (b) chlorine atoms. 



 145 

Simulation details 

 The Helmholtz free energy calculations were carried out in a simulation box 

contained 107 water molecules and 1 ion in an NVT ensemble in a simple periodic cubic 

cell.  The density was 1.0 gcc-1 and the temperature was set to 300K using a Gaussian 

isokinetic thermostat24.  A timestep of 0.5fs was used.  A 100ps equilibration period was 

conducted, starting from a lattice configuration, during which no statistics were recorded.  

Starting from the end of the equilibration period a 200ps production run was performed 

where statistics were recorded.   The long range corrections for electrostatics interactions 

were calculated via the reaction field method.  The Helmholtz free energy was determined 

by growing in the ion, using thermodynamic integration22, using 10 simulations 

corresponding to with a coupling parameter !  values of 0.1 to 1.0 in intervals of 0.1.  An 

identical simulation containing 255 water molecules and 1 ion was used to assess the 

effect of system size, since 107 water molecules is a relativity small system. 

 

Results 

 In Figure 6-1, the Helmholtz free energy is shown for particles of different 

electrostatic charge and differing widths for the Gaussian distribution.  Greater the 

magnitude of the free energy, (more negative the free energy) relates to an increase in the 

ability of the ion to be dissolved in the solvent.  The effect of changing the width of the 

Gaussian distribution (Ω) on the solvation energy of ions differs depending on the sign of 

the charge of the ion.  We have found that changing the width of the Gaussian distribution 

has a more dramatic effect on smaller, negative ions than the larger, positive ions.  In fact, 

as there was so little effect on the positive ions, for ion-water parameterization purposes, 

the width of the cation's Gaussian distribution might as well be set to a point charge.  The 
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asymmetric nature of the solvation energy due to the magnitude and sign of the charge is 

due to the asymmetric charge distribution in a water molecule23.  We also expect that this 

asymmetric nature of water is also responsible for the differing effect of the width of the 

Gaussian distribution.  

 

6.4 Parameterization with ion-water clusters 

 The second objective is to parameterize ion-water forcefield.  The ion-water 

forcefield was parameterized through fitting to experimental gas-phase enthalpies for 

small ion-water clusters from Dzidic and Kabarle10 for the alkali ions, Hiraoka et al.12 and 

Arshadi et al.11 for the halides ion, and to ion-water structural data13-18. 

 

Water model 

 The details of the GCPM water model have been presented by Paricaud et al.9  In 

summary, the negative charge (M) is set 0.27Å on the θHOH bisector and the permanent 

dipole is set to the experimental value of 1.855D.  The exp-6 potential were used by the 

pair interactions, centered on the oxygen atom or ion. The width of the Gaussian charge 

distribution, ΩM = 0.610Å and ΩH = 0.455Å, and the polarizability is equal to the 

experimental value of 1.44Å3. 

 

Simulation details for ion-water clusters 

To parameterize the potentials, we performed simulations of the water cluster 

energies.  The short-range interaction parameters and the width of the Gaussian 

distribution were determined from small ion-water clusters.  The enthalpy of the clusters 

were compared to experimental values of Dzidic and Kabarle10 for the alkali ions, 
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Hiraoka et al.12 and Arshadi et al.11  In order to parameterize the potentials, the water 

cluster energies calculations were performed on large 30x30x30Å3 cubic cells, containing 

one to six water molecules and the ion.  For each water-ion cluster, using the same code 

as in section 6-3, an equilibration period was performed for 250ps, followed by a 250ps 

production runs at 300K during which statistics were recorded.  In these cluster 

simulations, there was no long range electrostatics or short range energy corrections to be 

accounted for due the cutoff being larger that the size of the water cluster.  The cluster 

sizes varied from 1 to 6 water molecules.  The model parameters were adjusted until 

simulation energies were in agreement with experiment.  The fit to the experimental data 

is shown in figure 6-2.  The parameters are shown in Table 6-1. 

 Having obtained the potentials, the third objective is to investigate the behavior on 

the ion with water clusters.  Like in the parameterization stage, we preformed ion-water 

clusters simulations, but this time containing between one and 25 water molecules in a 

30x30x30Å3 cubic cell.  An equilibration period was performed for 250ps, followed by a 

250ps production run, at 300K. 

 

Simulation details for ion in bulk water solution 

 The second part of the third objective is to investigate the behavior of the ion in 

infinite dilution in bulk water.  Simulations of ions in bulk water were performed in a 

simulation box contained 255 water molecules and 1 ion in an NVT ensemble in a simple 

periodic cubic cell.  The density was 1.0 gcc-1 and the temperature was set to 300K.  A 

timestep of 0.5fs was used, and the 100 ps equilibration from a lattice was prior a 1 ns 

production run.  This was repeated 10 times from different starting configurations to 

obtain better statistics. 



 148 

 

-160

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10 12

Number of water molecules

E
n

e
rg

y
 [

k
C

a
l 

m
o

l
-1

]

Sim

Expt

a)  Fluoride

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10 12

Number of water molecules

E
n

e
rg

y
 [

k
C

a
l 

m
o

l
-1

]

Sim

Expt

b) Chloride

 

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10 12

Number of water molecules

E
n

e
rg

y
 [

k
C

a
l 

m
o

l
-1

]

Sim

Expt

c) Bromide

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8

Number of water molecules

E
n

e
rg

y
 [

k
C

a
l 

m
o

l
-1

]

Sim

Expt

d) Lithium

 

-120

-100

-80

-60

-40

-20

0

0 1 2 3 4 5 6 7 8 9

Number of water molecules

E
n

e
rg

y
 [

k
C

a
l 

m
o

l
-1

]

Sim

Expt

e) Sodium

-100

-80

-60

-40

-20

0

0 1 2 3 4 5 6 7 8 9

Number of water molecules

E
n

e
rg

y
 [

k
C

a
l 

m
o

l
-1

]

Sim

Expt

f) Potassium

 

 

Figure 6-2: Comparison of the enthalpy of the water-ion clusters. A) F-, b) Cl- c) Br-, d) 
Li+, e) Na+, f) K+.  Experimental data for taken from Hiraoka et al.12 and Arshadi et al.11 
for the halides ion, and Dzidic et al.10 for the alkali ions. 
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Table 6-1: Ion-water interaction parameters for Buckingham-six potential and the 
Gaussian charge distribution.  The polarizability constants are taken from Pyper et al.20 
 

i, j Sigma [Å] Wall depth 
ε [K] 

λ Ωi  [Å] αi  [Å3] 20 

O-O 3.69 110 12.75 0.61 1.444* 

Li-O 2.8985 104.88 12.75 0.00 0.0285 

Na-O 3.6004 46.90 12.75 0.00 0.1485 

K-O 3.9204 46.90 12.75 0.00 0.7912 

F-O 3.1808 66.33 12.75 0.8724 1.3100 

Cl-O 3.7196 104.88 12.75 1.1036 3.7565 

Br-O 3.8880 128.45 12.75 1.0909 5.0709 
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6.5 Results 

Induced dipoles moment in water-ion clusters 

 Herce et al.25, reported that the inclusion of explicit polarizability in both the 

water and ion models is vital when determining the location of the ion inside the water 

cluster.  As we have polarizable potentials for both the water and ion species, we expect 

that we should be able to reproduce the same phenomena.  The location of the ion in 

water clusters is dependant on the charge density of the ion and polarizability, where the 

smaller ions with a high charge density and lower polarizability, the kosmotropes e.g. F-, 

Li+, Na+ and K+ should undergo bulk solvation, i.e. the ion is surrounding by water 

molecules.  Alternatively, the larger ions with a lower charge density and higher 

polarizability, the chaotropes e.g. Cl- and Br-, should undergo surface solvation, i.e. the 

ion stays at the edge of the ion-water cluster. 

 In figure 6-3, we have defined the z-axis as the vector between the location of the 

center of mass of the cluster and the location of the ion.  Slicing the cluster in the xy plane, 

and plotting the location of the ion and the water molecules shows the position of the ion 

in the cluster.  The chaotropes are shown in Figure 6-3a, where the ion is located at the 

surface of the cluster, where both Cl- and Br- obtain a similar profile for their location in 

the clusters.  For the kosmotropes shown in Figure 6-3b, all the Li+, Na+, K+ and F- ions 

were located on the inside the water cluster.  These results are all consistent with the 

results from Herce et al.25 

 Given that polarizability is the reason given by Herce et al that the chaotropes 

exhibit the surface solvation, we investigated the mean dipole moment for both the water 

cluster and the ion.  Figure 6-4 shows the change in the mean dipole moment of the water 

cluster and for the induced ion as the water cluster increases in size.  The kosmotropes, in 
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Figures 6-4, a-d, all shown a similar tread, which is that the induced dipole moment of the 

ion is relatively high for the ion-water dimer and it decreases as the number of water 

molecules increase.  This is due to the water molecules surrounding the ions, pulling the 

electric field from the water molecules in multiple directions, which will have a canceling 

effect on the electric field at the ion.  Therefore, as the number of water molecules 

increase, the induced dipole moment on the ion decreases until it reaches the bulk 

solution dipole moment. 

 For the chaotropic ions shown in Figure 6-4 e-f, there is a significant change in the 

trend of the induced dipole moment of the ion.  In these cases, the ion in the ion-water 

dimer has a relativity low induced dipole moment, where the ion dipole moment increases 

as the number of water molecules in the cluster increase.  This is due to the water 

molecules not completely filling the first hydration layer before starting filling the second 

hydration layer.  This leads to the ion remaining at the edge of the water cluster.  The 

electric field generated from the water clusters increases as the number of water 

molecules increase, increasing the induced dipole on the ion. 

 The induced dipole moments of the water molecules show the same trend as the 

size of the cluster increases, regardless of the ion's nature.  The induced dipole moment 

for the water is the highest for the ion-water dimer cluster, then decreases as the induced 

as the water cluster increases in size. 
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Figure 6-3a and 6-3b:  Location of the ion with respect to the center of mass on the water 
ion clusters. Cl- and Br- (Top) and Li+, Na+, K+ and F- (Bottom).  The Z axis is defined as 
the vector between the center of mass and the ion.  The Z axis is cut in the slices in the XY 
plane.  These clusters contain 32 water molecules. 
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Figure 6-4: Effect of the water cluster size on the water and ion dipole moments.  Left axis, 
the induced dipole moment for water is circles (• ) and right axis, and the induced dipole 
moment for ion is triangles (). 
 



Table 6-2: Structure Properties for the GCPM and ion models from the radial distribution function, comparing to experiment. 

Ions G(r ) 1st max G(r ) 1st min G(r ) 2nd max G(r ) 2nd min CN 

Lithium 
IO: 7.83; 2.05Å; (1.90-2.28Å)* 
IH: 2.93; 2.65Å; (2.50-2.73Å)* 

IO: 0.13; 2.80Å 
IH: 0.50; 3.40Å 

IO: 1.49; 4.25Å 
IH: 1.27; 4.85Å 

IO: 0.87; 5.15Å 
IH: 0.92; 5.95Å 

4.24; (4-6)* 

Sodium 
IO: 4.23; 2.40Å; (2.40-2.50Å)* 

IH: 2.33; 2.95Å 

IO: 0.42; 3.25Å 

IH: 0.69; 3.85Å 

IO: 1.30; 4.45Å 

IH: 1.18; 5.15Å 

IO: 0.90; 5.40Å 

IH: 0.96; 6.20Å 
5.47; (4-8)* 

Potassium 
IO: 2.92; 2.65Å; (2.70-2.95Å)* 

IH: 2.02; 3.15Å 

IO: 0.64; 3.55Å 

IH: 0.78; 4.20Å 

IO: 1.18; 4.65Å 

IH: 1.12; 5.40Å 

IO: 0.92; 5.60Å 

IH: 0.99; 6.50Å 
6.51; (4-8)* 

Fluoride 
IO: 4.65; 2.40Å; (2.62-2.92Å)* 

IH: 5.34; 1.50Å 

IO: 0.41; 3.20Å 

IH: 0.53; 2.30Å 

IO: 1.30; 4.55Å 

IH: 1.53; 2.80Å 

IO: 0.89; 5.50Å 

IH: 0.87; 3.30Å 
5.57; (4-6)* 

Chloride 
IO: 3.07; 2.90Å; (3.10-3.45Å)* 

IH: 2.64; 2.00Å 

IO: 0.78; 3.75Å 

IH: 0.65; 2.65Å 

IO: 1.10; 4.90Å 

IH: 1.34; 3.30Å 

IO: 0.94; 5.85Å 

IH: 0.99; 3.85Å 
7.43; (4-8)* 

Bromide 
IO: 2.95; 3.05Å; (3.12-3.85Å)* 

IH: 2.48; 2.15Å 

IO: 0.83; 3.80Å 

IH: 0.56; 2.80Å 

IO: 1.09; 4.95Å 

IH: 1.37; 3.45Å 

IO: 0.94; 6.10Å 

IH: 0.96; 5.45Å 
7.46; (4.2-8)* 

 

CN, is the coordination number, the average number of water molecules in the first solvation shell.  
* Experimental results, shown in brackets, taken from ion-water review of Ohtaki and Radnai26 
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Figure 6-5: Radial distribution functions of Li+-water, Na+-water and K+-water, and the 
effect of the induced water dipole moment as a function of distance from the ion. 
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Figure 6-6: Radial distribution functions of F--water, Cl--water and Br--water, and the 
effect of the water dipole as a function of distance from the Ion.  The dipole moment is in 
terms of relative to the bulk dipole moment.  
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Induced dipole moment for water due to ionic species 

 The last objective of this chapter is to look at the behavior of ion at infinite 

dilution.  Following on from the induced dipole of the ion and water molecules in the 

clusters, we are going to look at the effect on the induce dipole moment on the ion and 

water molecules in a bulk solution.  Previous ab initio simulations for single charge 

cations have been found to have either a small or negligible effect on water dipole 

moment in the first solvation shell and no influence on the bulk water molecules.  The 

only stated influence on the first hydration layer is for cations ions with a very high 

charge density, i.e. Mg++ and Ca++, which has a noticeable effect of around 0.2-0.3D13-

18,27-29.  Given the uncertainty for the induced dipole moment from ab initio calculations 

in Chapter III for bulk solutions, let alone as a function of the solution structure, classical 

simulations due to their increased computational speed, can get a more detailed picture of 

how the induced dipole moment of water molecules is affected by the ion.  In Figure 6-5 

and 6, the ion-water structure is shown as the radial distribution function, and effect of 

the ion on the induced dipole of the water molecules as a function of separation from the 

ion are shown.  Figure 6-5 shows the cation ions, where lithium, the smallest cation with 

the highest charge density, showed a maximum of a 12 percent increase in the induced 

water dipole moment for water in the first hydration shell.    The ion influence on the 

surround water decreased as the charge density decreases.  For sodium, the simulations 

predict a 4 percent change, and for potassium ion a negligible effect is prediction on the 

surrounding water molecules.  The effect is short-ranged, as water molecules between the 

first and second hydration shell showing a decrease in the induced dipole moment.  

Carrillo-Tripp et al.6 reported a decrease in the first hydration shell in the induced dipole 

moment in the first hydration shell around a K+ ion relative to the bulk.  That same 
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conclusion could be applied to the results here, due to the large decrease in the induced 

dipole moment in the tail end of the first solvation shell, but in the our opinion, this in 

insignificant due to the variation the induced dipole moment relative to the bulk value.  

Likewise, with the halide ions, shown in Figure 6-6, the smallest ion with the 

highest charge density has the largest effect on the induced water dipole moment.  The 

fluorine ion had a maximum 6.5 per cent increase.  Chloride and bromide increased the 

water's dipole 3.5 percent increase. 

It was interesting to note that for all the ions, water's induced dipole moment 

oscillated, concurrently with the troughs and peaks in the water structure, where a high 

induced dipole moment present in the higher area of water concentration and a lower 

induced dipole moment in the spaces in between.  We expect that this is due to the water 

molecule breaking the fluid structure as the water molecules diffuses from one water 

layer to another.  During this transitional phase, the water structure is temporary broken, 

the decrease in the ordering decreases the electric field and therefore the induced dipole 

moment. 

 

Induced dipole moment for ions in bulk solution 

 The next step is to look at the ability of the ions in water solutions to reproduce 

the induce dipole moment of ion compared to values calculated via ab initio calculations.  

Like water, the induced dipole moments for the ions are also relatively unknown.   The 

calculated induced dipole moment and their standard deviation of dipole moment for the 

ions are shown in Table 6-3.  As a reference point, the standard deviation for the induced 

dipole moment in GCPM water is 0.19D30.  The values of the induced dipole moment of 

the anions are very similar to values calculated from ab initio simulations.  The induced 
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dipole moments of the cations calculated by the classical model are very small, so it is 

understandable that induced dipole moments are not reported using ab initio simulations. 

 

Water – ion tilting angle 

 Continuing with the structure on the ion-water solution, the next step is to look at 

the orientations of the water molecules surrounding the ion.  We have defined the tilting 

angle (θ) is defined as the angle between the HOH bisector vector and ion-oxygen vector, 

as shown in Figure 6-7.  Classical simulations tend to show that ions have a strong effect 

on the water orientation, while ab initio calculations show a softer attraction, with the 

water molecules showing a strong tendency to hydrogen bond with themselves not the 

ion16,31.  White16 showed in ab initio simulations for Na+ a plateau in the tilting angle 

between 180 and 120 degrees.  It is hoped that the used of Gaussian distributions for the 

charges will damping the neighboring ion-water electrostatic interactions, bring the ion-

water orientations closer to the ab initio predictions.   

 Figure 6-9a, shows the probability of the water molecules orienting around the 

cation's first hydration shell.  The water molecules in the first hydration layer are oriented 

around the cation in such a way that the oxygen atom is directly facing the ion, i.e. 

( )1!="Cos .  As expected, the probability on the water molecule's oxygen atoms 

pointing towards the ion decreases as the charge density of the ion decreases.  These 

results are still inline with the normal classical ion-water models observations.  Figure 6-

9b shows the probability of the water molecules orienting around the second hydration 

shell.  For a reference, the probability of a water molecules orienting around another 

water molecules is shown.  It is clear to see that the effect of the ions on the second 
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hydration shell orientation is the same as that for the water-water.  These results are in 

agreement to the observations of Carrillo-Tripp et al.6.  They show that the direct 

structure effects of the ion are limited to the first hydration shell, as the second shell is 

purely an artifact of the water-water interactions, not due to the ion interaction.      

 In Figure 6-10a, shows the probability of the water molecules orienting around 

the anion's first hydration shell.  The water molecules in the first hydration layer are 

oriented around the anion in such a way that the hydrogen atom is point towards the ion 

i.e. ( )50~! .  Therefore, for both the cations and anions, the softer tilting angle in the 

first hydration shell for Na+, K+, F- and Cl- from the ab initio simulations of Tongarra et 

al.21,31 are not reproduced.  We expect that the main cause for the cations is due to the 

fact that the GCPM water model has the lowest region for the electrostatic potential at the 

oxygen side of the hydrogen-oxygen bisector, i.e. still in the zx plane.  For real water, 

(and ab initio water) the electrostatic potential minima's are around the position of the 

"lone electron pairs".  The inclusion of the electrostatic minima should enhance the tilt, 

and leading to closer reproduction of the ab initio results. 

  

Autocorrelation functions of first water shells 

 As the orientation on the water molecules around the ion are similar to the previous 

classical simulations, the next question is whether the dynamically properties of the first 

hydration shell are changed.  The residence time of the first hydration shell is the length 

of time the original water molecules are present in the solvation shell before diffusing 

away.  The stronger the charge density of the ion, stronger the attraction between the 

water-ion molecules, thus longer the water molecules should be present in the first 
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hydration layer.  The residence time, ! , is obtained by fitting the correlation function to 

the exponential decay function, 

 ( ) ( )( )!
=

"
#

$
%
&

' (
)=

N

i

i

t
rtr

N
tR

1

exp0,,
1

)(
*

++   [6-5] 

where ( )tr
i
,!  is a Heaviside unit function, which equals 1 if the original water molecules 

are present in the first hydration shell, and 0 elsewhere.  N  is the average number of 

water molecules in the first hydration shell, which is computed using the 1st minima from 

the ion-water radial distribution functions (Figures 6-5, 6-6).  If a water molecule leaves 

the hydration shell, it is excluded from the original water molecules.  In the case of a 

water molecule moving out of the defined hydration shell temporarily and return without 

molecules entering the bulk water phase, it should not be excluded from the original 

hydration shell.  We accounted for this primitively with a 2ps grace period where the 

water molecules can exit the hydration layer and return without it being excluded from 

the original hydration layer molecules.  This approximation technique has been used by 

Impey et al.32. 

 Table 6-4 and 6-5 shows the residence time for the cation and anions respectively, 

and other published results.  As expected, the lithium ion has the longest residence time 

(τ = 17.10 ps), as it has the strongest attraction to the surrounding water molecules.  

Sodium and potassium ions have decreasing residence times (τ = 6.30 ps, τ = 4.79 ps 

respectively) as the charge density of the ions decreases.   The same trend is shown for 

the anions, with the fluoride ion obtaining the longest residence time (τ = 7.06 ps).  The 

chloride and bromide ions have decreasing residence times (τ = 4.79 ps, τ = 2.13 ps 

respectively).  One thing that is consistent, is that the residence times calculated by the 

new ion-water potentials, are lower than the residence times calculated via the other 
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classical simulation, yet still inside the residence times measure by experiment33.  This 

indictors a weaker attraction to the first hydration shell. 

 

Free energy of solvation 

   Results for the free energy of solvation are shown in Table 6-6.  The Helmholtz 

free energy calculated for the cations is in poor agreement compared with experiment.  

For the cations, the magnitude of the free energy of solvation is underestimated, 

corresponding to a less hydrophilic attraction.  On the other hand, anion solvation free 

energies are in reasonable good agreement with experimental values, although they did 

have a slight error on the side of greater hydrophilicity. 
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Table 6-3: Mean induced ion dipole in bulk water from molecular dynamics 

 This Work Ab initio  

Lithium 0.007D - 

Sodium 0.030D - 

Potassium 0.14D, (sd 0.04) - 

Fluoride 0.30D, (sd 0.05) 0.39D 13 

Chloride 0.90D, (sd 0.26) 0.80D 34 

Bromide 1.49D, (sd 0.41) 0.95D, (sd 0.80) 18 

 

 

 

 

 

 

Figure 6-7: Tilting angle, between the oxygen-ion vector and the oxygen-hydrogen 
bisector 
 

 
 

 

Ion 
θTilt 
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Figure 6-8a and 6-8b:  (Top) Tilting distribution of the first solvation shell water 
molecules surrounding lithium, sodium and potassium, and (Bottom) the tilting angle for 
the distribution of the second solvation shell of water  
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Figure 6-9a and 6-9b:  (Top) Tilting distribution of the first solvation shell water 
molecules surrounding fluoride, chloride and bromide, and (Bottom) the tilting 
distribution of the second solvation shell water molecules surrounding fluoride, chloride 
and bromide 
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Table 6-4: Mean residence time for the first hydration shell for cation [ps] 

Ion This 
Work 

Experiment33 Impey32 Obst35 Others 

Lithium 17.10 8-40 33.3 (278K) 41.4 25.536 

Sodium 6.30 5-30 9.9 (282K) 14.7 2937  

Potassium 4.79 3-10 4.8 (274K) 8.3  

   

 

Table 6-5: Mean residence time for the first hydration shell for anion [ps] 

Ion This 
Work 

Experiment33 Impey et al 32 Ab initio Smith37 

Fluoride 7.06 6-60 20.3 (278K) 16.013  

Chloride 4.79 3-10 4.5 (287K) 1217 12 

Bromide 2.13 2-7  19 ± 518  

 

This Work, (300K/255GCPM), Impey et al.32 (~Varied Temperature/64MCY), Obst and 

Bradaczek35 (300K/525TIP3P), Egorov et al36 (298K/SPC/E), Smith37 (300K/214RPOL) 
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Table 6-6: Free energy of solvation for ions at infinite dilution in GCPM bulk water 
All values are in units of kJ mol-1 
 

Ions This Work Expt 38 Friedman 39 Conway 40 

Lithium -318.1 -475   

Sodium -259.7 -365 -371 -372 

Potassium -225.0 -295 -298 -298 

Fluoride -468.4 -465 -394 -441 

Chloride -348.3 -340 -277 -324 

Bromide -337.5 -315 -263 -310 
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6.6 Conclusions 

 The effect of the Gaussian distribution on the electrostatic charges for the 

Helmholtz free energy showed an asymmetric nature with regards to the magnitude and 

sign of the charges.  The width of the Gaussian distribution has a limited effect for the 

cations compared to the anions.  Due to this, the cations were parameterized using a point 

charges. 

 In conclusion, we have developed classical ion-water potentials using Gaussian 

distributions for representing the anions' electrostatic charges and using polarizability for 

both the water and ion.  We used the new potentials to investigate the ion-water behavior 

in water clusters.  We have shown that the smaller ions, with a higher charge density 

undergo bulk solvation, i.e. brought into the center of the water cluster.  As a result, the 

induced dipole moment of the ion decreasing as the size of the cluster increases as the 

electric field water molecules is cancelled out by water molecules surrounding the ion. 

 The larger anions, with a lower charge density and higher polarizability undergo 

surface solvation, i.e. the ion is kept at the surface of the cluster.  As a result, the induced 

dipole moment of the ion increases as the size of the cluster increases.  This is due the 

increasing electric field cause by the water cluster, which is positioned on the edge of the 

ion.  This is in agreement with ab initio observations25. 

 In regards to the ions solvated in bulk water, we have investigated the structural 

and dynamical properties of the solution.  We have shown that there is a small effect of 

the ions on the induced water dipole moment in the 1st water solvation shell, but it only 

goes one solvation shell deep.  We have also shown good agreement for the induced 

dipole moment of the ions compared to ab initio simulations. 
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 The uses of GCPM as the water model still shows the same trends as other 

classical water models with regards to the ion-water orientation.  We expect that the 

development of the classical water model will required some form of acknowledgement 

of the electrostatic potential minima associated with lone pair electrons in order to 

reproduce the ion-water orientation exhibited in ab initio simulations.   

 The use of Gaussian charges in the water-ion interactions has shown that it can 

reduce the attachment of the ion to the surrounds water molecule.  This is shown by the 

lower residence times for the ions first hydration layer compared to other classical 

simulations. 
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CHAPTER VII 

 

CALIBRATION OF CHEMICAL BONDING BETWEEN BENZENEDITHIOLATE 
AND GOLD:  THE EFFECTS OF GEOMETRY AND SIZE OF GOLD CLUSTERS 

 
 
 

7.1 Summary 

 The effects of the geometry and size of gold clusters on the chemical bonding 

between benzenedithiolate (BDT) molecule and gold clusters have been evaluated for 

several different BDT-nAu complexes. The original potentials for the BDT-Au 

interactions have been developed based on BDT-1, 2 Au complexes (Y. S. Leng et al. 

Journal of Chemical Physics, 122, (24), 244721 2005).  Here we look at the effect of the 

geometry and size of the gold clusters on the chemical bonding and how it effects the 

parameterization of the bonding potentials.  Density functional theory (DFT) calculations 

are employed to parameterize the bond-stretching behavior between BDT and gold 

atoms. It was found that to some extent, the bonding curves depends on the gold cluster 

geometry.  However this variation in the bonding curves does not change molecular 

packing structure on Au (111) surface and only has minor effect on local bonding 

geometry.  The Mulliken charge distribution at the bonding interface (i.e. among bonded 

atoms) also does not show any impact on the global packing structure.  The research 

reported in this chapter has been published1. 

 

7.2 Introduction 

 The bonding and packing structure of organic self-assembled monolayers (SAMs) 

on metal surfaces or clusters are fundamental issues in many nanotechnology 
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applications, such as catalysis, structural materials, electronic materials, and the 

development of molecular electronics devices2.  Since the original suggestion3 that 

‘donor-bridge-acceptor’ (metal-molecule-metal) structure might be useful for 

constructing molecular electronic circuits and devices, many fundamental studies4-10 have 

been accomplished to find appropriate molecular wires. Self-assembled monolayers 

(SAMs) composed of many single-molecule devices are being conceived as candidates 

for such kind of molecular wires4.  Electron transport through single-molecule junctions 

is directly related to the local electronic structure of nanoscale region that involves the 

molecule and a number of metal atoms in proximity contacts. However, the difficulty in 

getting a thorough understanding to the problem lies in the unknown nature of the 

molecular bonding and the geometry of the SAMs packing structure.  Large-scale ab 

initio quantum mechanical calculations is quite computationally expensive, leaving 

classical molecular simulations is an alternative way to investigate this problem, provided 

that a good force field for the intermolecular potential and particularly the 

organic/metallic chemical bonding potentials are well developed. 

 For thiolate molecules adsorbed on Au (111) surface or clusters, recent ab initio 

density functional theory (DFT) calculations showed that sulfur head groups prefer to 

bind at bridge or bridge-like binding sites with a strong chemical bonding11-13, instead of 

the face centered cubic (fcc) hollow sites14.  DFT calculations for the binding between 

thiolate molecules and gold clusters also find that sulfur forms strong chemical bonds 

with only one or two gold atoms,15-18 corresponding to the ‘on-top’ or ‘on-bridge’ 

bonding on an extended gold surface.  The strong Au-S covalent bonding is indicated by 

the large concentration of electron density between S and bonded Au atoms12,13,18 and by 



 176 

the distinctly directional Au-S-C bond15.  Given the evidence of the very local chemical 

bonding between S and Au atoms, Leng et al.19, recently developed a series of chemical 

bonding potentials for BDT-1 ,2Au complexes based on DFT calculations.  Molecular 

dynamics (MD) and Monte Carlo (MC) simulations19,20 has demonstrated that the BDT 

SAMs have a well-ordered herringbone structure. When simulating the self-assembly of 

BDT molecules on Au (111) surface, the total interaction between BDT and Au (111) can 

be separated into two parts: the bonded interaction involving sulfur and one or two gold 

atoms and the non-bonded interaction between thiolate molecule and other gold atoms. 

The latter includes van der Waals interactions represented by the universal force field 

(UFF)21 and the electrostatic interactions. The partial charges are determined by 

Mulliken22 population analysis.  A fundamental question needed to be answered 

concerning the validity of the chemical bonding potentials, since the electronic structure 

of individual gold clusters may strongly depend on the geometry and size of clusters. 

When thiolate molecules come into contact with different gold clusters, we need to 

understand how the geometry and size of gold clusters influence the bonding curves. 

Leng et al.19 in a earlier study found that the dominant contribution to the local bonding 

comes from the bond stretching.  For this reason, this current study concentrates on the 

bond stretching behavior between BDT and a few different gold clusters. We then 

perform MD simulations using different BDT-Au chemical bonding potentials for the 

BDT binding on to the Au (111) surface. The general conclusion is that whereas the local 

bonding depends more or less on the geometry of Au clusters, this effect has much less 

impact on the BDT SAMs packing structure.  
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7.3. Computational details 

Density functional theory 

 All the ab initio calculations were performed by DFT using the NWChem 

package23 The Gaussian valence triple zeta basis set 6-311G24 is used for S, C and H 

atoms in BDT molecule and the effective core potential (CRENBL-ECP) and associated 

basis set25 is used for the Au atoms.  This is the same basis set used by Leng et al.19 and 

has been shown already to have satisfactory convergence.  To avoid spin multiplicity 

complications, this work is limited to closed shell system with singlet spin state. Figure 7-

1 shows the molecular models of neutral BDT-nAu complexes with n is the number on 

gold atoms in the clusters, i.e n = 3 and 7. Specifically, for BDT-3Au complex, three 

different bonding geometries are considered (Figure 7-1 a-c), which covers ‘on-top’ 

(BDT-3Au12) and ‘on-bridge’ (BDT-3Au21) cases. The linear monoatomic chain of Au 

cluster (BDT-3Au111) with one gold atom bonded with BDT (Figure 7-1c) is an extreme 

case26, which may correspond to the molecule-metal lead configuration in the 

measurements of conductance through single BDT molecules by scanning tunneling 

microscope technique27.  In the case of BDT-7Au complex (Figure 7-1d), we only 

consider the ‘on-top’ bonding configuration. The 7-Au cluster was initially optimized 

from a planar structure in the bulk by the classical tight-binding second-moment 

approximation (TB-SMA) potential28 and was further optimized by DFT using the 

NWChem package.  The geometry of this cluster is quite similar to the three-dimensional 

one found in recent extensive DFT calculations of gold clusters, but not the global 

minimum29.  For the correction due to the electron exchange and correlation energyies, 

three DFT functionals are used, firstly the local density approximation (LDA)30, secondly  
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the PBE031, which is a hybrid functional, which does not contain any adjustable 

parameters and thirdly, the X3LYP32, an extended hybrid, generalized gradient functional 

combined with Lee-Yang-Parr33 correlation functional.  The X3LYP combines both the 

B8834 and PW9135 functionals for the exchange energy.  For more details on functionals, 

refer to chapter II. 

 

Molecular dynamics 

 The molecular dynamics simulation details are based on the work of Leng et al36.  

The forcefield is based on the universal forcefield (UFF)21.  The total energy is based on 

sum of bonded and non-bonded interactions,  

 )( constrqqvdWinvtorsanglebondtot UUUUUUUU ++++++=  [7-1] 

where 
bond

U  is the linear bonded interactions, angleU  is the angle bending, 
tors

U  is the 

torsion,  
inv

U  is the inversion energy, 
vdW

U  is the contribution from the van der Waals 

forces, modeled by a 12-6 Lennard Jones potential and qqU  is the electrostatic 

interactions.  
constr

U  is the constraint potential for BDT molecule sliding along Au-Au 

direction in the case of on-bridge bonding.  Previous work by Leng et al19, BDT-2 Au 

(like BDT-3Au21, without the tail gold) complexes shows that the major bonding term is 

the bond stretching which largely controls the local bonding geometry.  

 

The bond stretching is modeled by a harmonic potential,  

 ( )2
2

1

ijijbond rrkU !=  [7-2] 
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where ijk  is the bond stretching force constant, and ij
r  is the equilibrium bond length.  

For the thiol bond, the newly parameterized bond stretching potential was used. The bond 

angle bending for atoms i  and k  bonded to atom j  with angle ! , is modeled by 

 ( )2
0

0

2
coscos

sin2
!!

!
"=

ijk

angle

k
U  [7-3] 

where ijkk  is the angle bending force constant, and 
o

!  is the equilibrium bond angle. 

 The torsion is the angle between the bonds between the atoms ji,  and atoms lk,  

perpendicular to the bond kj, .  The energy is calculated via 

 ( )!!! nnVU
otors
coscos1"=  [7-4] 

where !V  is the rotation barrier, n  is the periodicity of the potential and 
o
!  is the 

equilibrium angle.  The values used for the bond, angle and torsion potential are shown in 

Table 7-1.  Inversion energy is for an atom i  which is bonded to three other atoms, kji ,, .  

ijkl!  is the angle between the bond between atoms i  and l , and the plane defined by 

atoms kji ,, .  The inversion energy is calculated by 

 ( )ijklijklkU !! cos1"=  [7-5] 

The long-range columbic interactions where treated using the 3-D Ewald summation 

technique in 2-D, given by Yeh and Berkowitz37. 
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Table 7-1.  UFF Bonded Potential Parameters for BDT and gold 

Bond stretching rij (Å) kij (kcal/mol Å2) 

C-C 1.379 925.83 

C-H 1.085 708.61 

C-S 1.800 588.45 

S-H 1.429 438.3 
 

Angle bending θ0 (0) kijk (kcal/mol rad2) 

C-C-C 120 222.72 

C-C-H 120 114.23 

C-C-S 120 201.01 

C-S-H 92.1 102.16 
 

Torsion φ0 (
0) Vφ (kcal/mol) 

X-C-C-X 180 13.474 

X-C-S-X 90 3.9528 
 

Inversion ω0(
0) kIJKL 

 
0 6 
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Table 7-2 UFF Parameters for the Lennard-Jones 12-6 

Atom type Dii (kCal/mol) rii (Å) 

C 0.105 3.851 

H 0.044 2.886 

S 0.274 4.035 

Au 0.039 3.293 

 

 

Figure 7-1 Molecular geometries for different BDT-nAu (n = 3 and 7) complexes.  (a) 
3Au12, (b) 3Au21, (c) 3Au111, (d) 7Au. 
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7.4 Results 

 Our current study only focuses on the bond stretching behavior between BDT and 

gold clusters. Further calculations for BDT-3Au complex show that the angle bending 

curves are very similar to those for BDT-2Au complexes.  The deviations from 

equilibrium values of bond angle and torsion increase significantly due to intermolecular 

interactions of BDT SAMs on Au (111) surface19. 

 

The bond stretching curves 

 For BDT-3Au complexes, the Au-S distance and Au clusters were first optimized 

prior to DFT bond stretching energy calculations.  During the optimization, the BDT 

molecule is kept rigid.  For the ‘on-top’ bonding case (BDT-3Au12), the Au-S bond 

lengths from different DFT functionals are: 2.259 (LDA), 2.302 (PBE0), and 2.311Å 

(X3LYP), respectively. These values are comparable to other calculated results reported 

in the literature15,17, as well as the results in our previous calculations for BDT-1Au 

complex19. The bottom and side Au-Au distances are significantly less than the bulk 

value (2.877 Å). These values vary from 2.576 ~ 2.674 Å, depending on the DFT 

functional used. This is also true for the Au-Au distances in BDT-3Au21 and BDT-

3Au111 complexes, except the ‘on-bridge’ case (BDT-3Au21) where the upper Au-Au 

distance slightly increases to 2.759 (LDA) ~ 2.866 Å (X3LYP) due to the 2-fold 

coordination bonding between BDT and gold. The single Au-S bond length in this ‘on-

bridge’ bonding case increases substantially to 2.430 (LDA) ~ 2.499 Å (X3LYP), which 

is consistent with the results for small thiolate-gold clusters (2.420 ~ 2.583 Å) using 
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Gaussian 98 program16, but a little larger than those given by CPMD software package 

(2.352 ~ 2.392 Å)17.   

 Figure 7-2 shows the on-top bond stretching curves for BDT-3Au12 complex 

from the three DFT functionals. Compared with the results for BDT-1Au complex19, all 

the three DFT functionals give more consistent results with a little higher bonding 

energies. In contrast, the BDT-3Au111 stretching curves show a little more divergence 

(not shown here) with relatively low bonding energies (Table 7-3).  This shows that 

BDT-3Au12 is a more favorable bonding configuration.  
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Table 7-3: BDT-n Au on-top bond stretching potentials. The units of parameters E0, α  
and r0 are in kcal/mol, Å-1 and Å, respectively. 
 

Complex Parameter LDA PBE0 X3LYP Average Variation 
% 

BDT-1Au E0 20.11 34.54 25.58 26.74 54.0 

 α 2.157 2.242 2.505 2.301 15.1 

 r0
a 2.309 2.253 2.257 2.273 2.47 

BDT-3Au12 E0 47.95 51.29 48.94 49.39 6.76 

 α 1.823 1.667 1.671 1.720 9.07 

 r0 2.257 2.302 2.311 2.290 2.36 

BDT-3Au111 E0 22.74 14.34 12.49 16.52 62.0 

 α 1.999 2.159 2.134 2.097 7.63 

 r0 2.347 2.402 2.434 2.394 3.63 

BDT-7Au E0 21.53 22.58 18.20 20.77 16.03 

 α 2.057 2.237 2.266 2.187 9.56 

 r0 2.358 2.341 2.369 2.356 1.19 
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Table 7-4: BDT-n Au on-bridge bond stretching potentials. The units of parameters E0, α  
and r0 are in kcal/mol, Å-1 and Å, respectively. The parameters in parentheses are for the 
single bond Au-S Morse potentials. 
 

Complex Parameter LDA PBE0 X3LYP Average Variation % 

 BDT-2Au E0 20.99 
(9.298) 

74.18 
(29.35) 

75.25 
(27.44) 

56.8 
(22.03) 

95.5 
(91.0) 

 α 1.949 
(2.664) 

1.136 
(1.611) 

1.105 
(1.626) 

1.397 60.4 

 r0
a 1.905 

(2.387) 
1.982 

(2.449) 
2.000 

(2.462) 
1.962 4.84 

BDT-3Au21 E0 64.10 
(28.27) 

65.63 
(30.01) 

63.25 
(27.90) 

64.33 
(28.73) 

3.70 
(7.34) 

 α 1.302 
(1.787) 

1.162 
(1.618) 

1.152 
(1.594) 

1.205 12.4 

 r0
a 1.986 

(2.399) 
2.046 

(2.456) 
2.046 

(2.472) 
2.026 2.96 
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 For BDT-7Au complex, the on-top bond-stretching curve is based on the 

optimized 7Au cluster. Figure 7-3 shows that the three DFT functionals also yield more 

consistent bonding curves compared with those for BDT-1Au complex.  However, the 

bonding energy is comparably low. This indicates that the strength of BDT-Au chemical 

bonding depends more or less on the geometry and size of gold clusters.  We fit the bond-

stretching curves with a shifted Morse potential 

 ( ) 0

)()(

0 200 EeeEE
rrrr

str
+!=

!!!! ""
 [7-2] 

where r  is the distance between the sulfur atom and the gold atom, E0 is the bonding 

energy, i.e. the energy well-depth, !  is a parameter in Morse potential which control the 

shape and 
0
r  is the equilibrium bond length, i.e. the location of the minimum energy.  

These parameters for new BDT-nAu complexes, together with the results for BDT-1Au 

in previous work19, are listed in Table 7-3. Comparing with the isotropic Morse potential 

for thiolate molecules on Au(111) surface38, the current bonding energies between BDT 

molecule and Au clusters are still 1 ~ 4 times larger than the well depth of isotropic 

Morse potential (8.763 kcal/mol).  The average values and total variations (defined as the 

difference between the largest and the smallest values divided by the average value) of 

the fitted force field parameters from the three DFT functionals are also show in Table 7-

3. The largest variation is in the well-depth E0, however, for BDT-3Au12 and BDT-7Au 

complexes, the three DFT functionals give more consistent results.  Furthermore, the two 

hybrid functionals obtain similar binding energy, but the PBE0 consistently results in 

tighter bonding, shown by a deeper well depth, and smaller equilibrium bonding length. 

 Figure 7-4 shows the on-bridge bond stretching curves for BDT-3Au21 complex. 

Similar to the BDT-2Au complex19, the ‘bond’ is denoted by X-S where X is the mid-
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point between the upper 2 Au atoms (Figure 7-1b).  Here we see that the three DFT 

functionals also give more consistent results compared with the BDT-2Au results. The 

parameters for the Morse potential in this case are shown in Table 7-4.  By assuming that 

the bonding energy of individual BDT-Au bond is equal to the half of the total DFT 

energy, we refit the single Au-S bond energies and represent them in parentheses in the 

same table.  

 The Au-S bond lengths are already close to bonding length between thiolate 

bonded to the bridge or bridge-like sites on bulk gold surfaces.  Published results from 

planewave ab initio calculations of Thiol binding distance are 2.5511, 2.49~2.5612,39 

(depending on the coverage, where the bond length increases with higher percentage of 

surface coverage), and 2.5 Å40,41.  These numbers are also consistent with other results for 

small thiolate-gold clusters (2.42 ~ 2.58 Å)16.  From Tables 7-3 and 7-4 the average 

bonding energy data, a crude number of the single Au-S bond strength in BDT-nAu 

complex can be estimated as in the range of 10 ~ 50 kcal/mol, depending on the contact 

geometry between BDT molecules and Au clusters. 
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Figure 7-2: Comparisons of bond stretching curves for BDT-1Au and BDT-3Au on-top 
bonding from the LDA, PBE0 and X3LYP DFT functionals. 
 

 

 

Figure 7-3: Comparisons of bond stretching curves for BDT-1Au and BDT-7Au on-top 
bonding from the LDA, PBE0 and X3LYP DFT functionals. 
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Figure 7-4: Comparisons of bond stretching curves for BDT-2Au and BDT-21Au on-
bridge bonding from the LDA, PBE0 and X3LYP DFT functionals. 
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Figure 7-5: The pure chemical bonding potentials derived from the total DFT energies 
subtracting the electrostatic interactions between nonbonded atoms. (a) Top, is for the 
BDT on top of the Au atoms, and (b) Below, is for the BDT between two Au atoms.  These 
potentials for BDT-nAu (n = 1, 3 and 7) essentially show the same bonding behavior near 
the energy minima. Beyond the Au-S distance of 2.7~2.8Å the electrostatic interaction 
contributes significantly to the total DFT energy. This is particularly true for BDT-7Au 
complex. 
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The pure chemical bonding 

 The bond stretching curves obtained are based on the total DFT energy 

calculation that in principle includes all the bonded and non-bonded interactions between 

BDT molecules and gold clusters.  The net chemical bonding energy described in 

equation 7-1 is believed to be the main component of this total DFT energy, which in fact 

only involves the bonded atoms. To give a quantitative measurement of this ‘pure’ 

chemical bonding interaction, we should subtract the non-bonded component from the 

total DFT energy, i.e. 

 BindingNonBindingDFT UUU !+=  [7-3] 

where BindingU  is the energy associated with the chemical bond between the gold, ad 

sulfur and neighboring atoms.  Following the UFF forcefield method21 in which the 

interaction between atoms separated by more than two neighboring atoms are non-bonded 

and should be excluded from the total DFT energy (the 1-2 bond and 1-3 angle 

interaction exclusion).  The assumption that 1-4 interaction is taken as a non-bonded term 

comes from our early investigation in which we note that torsion barrier in Au-S-C-C 

bond as being very low19.  The BindingNonU !  energy is due to the van der Waals interactions 

and electrostatic energy between the other atoms in the BDT molecules not involved in 

the chemical bonding with the Au clusters.  Currently, DFT calculations does not include 

the van der Waals interaction properly13, therefore the only non-bonded component 

needed to be subtracted from the total DFT energy is the electrostatic interaction.  Figure 

7-5 shows the total DFT (the same as those in figure 7-2 and 7-3) and pure bond 

stretching curves for the on-top bonding case. Here we only present the results given by 

PBE0 functional. The other two functionals yield very similar phenomenon. Very 
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interestingly, the total and pure bond-stretching curves overlap remarkably well until the 

Au-S bond length reaches ~2.7 Å, beyond which the two curves begin to split. This 

suggests that the net chemical bonding dominates the local bonding property. 

Specifically, there is a significant jump down to the negative value in the pure bond- 

stretching curve of BDT-7Au, indicating that at this point the BDT molecule and 7-Au 

cluster is nonbonded. The overall information we obtained from this figure is that for all 

the three BDT-nAu (n = 1, 3, 7) complexes the Au-S bond lengths are quite close to each 

other and the pure chemical bonding property near equilibrium bond length can be 

described by the total DFT energy variations. However, at larger distance the main 

contribution to the total DFT bonding energy is from the electrostatic interactions 

between the BDT molecules and Au clusters. We keep in mind that the splitting point is 

only an qualitatively estimate since the Mulliken charge calculations depend on the basis 

set used and usually the atomic charge is not uniquely defined16,42. This bond rupture 

point at ~2.7 Å seems consistent with the Car-Parrinello MD simulation result of the 

break between thiolate molecule and gold dimmer during the mechanically pulling of the 

molecule away from a stepped gold surface43.  

 

Bond stretching potentials on packing structure 

 To evaluate the effect of bond stretching potential on the local bonding geometry 

and BDT SAMs packing structure, we investigate two extreme cases where the well 

depths of Morse bond stretching potential take the maximum and minimum as shown in 

Table 7-1. These correspond to X3LYP BDT-3Au111 (E0 = 12.49 kcal/mol) and PBE0 

BDT-3Au12 (E0 = 51.29 kcal/mol) cases. The equilibrium Au-S bond lengths are 2.434 
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and 2.302Å, respectively. The on-bridge bonding parameters are taken from the BDT-

3Au21 configuration. Atomic partial charges for the bonded atoms are simply taken from 

the ∠Au-S-C = 180° configuration where the bonded Au and S charges are quite different 

from those in the most probable configurations19. It turns out that this difference in charge 

reassignment has almost no effect on the BDT packing structure.  It was found that BDT 

molecules still keep the well-ordered herringbone structure as shown in Figure 7-6.  The 

probability distributions of the on-top bond length for the two extreme cases are shown in 

figure 7-7.  At room temperature (298K) the distribution curves for both ‘weak’ (X3LYP 

BDT-3Au111) and ‘strong’ (PBE0 BDT-3Au12) bonding potential are quite close to the 

corresponding Boltzmann distributions. 

 The packing structure of the BDT on the Au (111) surface, as predicted by MD 

simulations is shown in Figure 7-8.   The other difference we note from the MD 

simulation from the variation in the bonding potentials is the distance distributions 

between the S ad-atoms and the first-layer gold atoms.  The result from the strong 

bonding (PBE0 BDT-3Au12) still shows the first small peak at 2.3Å as observed by Leng 

et al.19 that represents a small amount of BDT-Au binding at the on-top site.  With the use 

of a weaker bonding potential, (X3LYP BDT-3Au111) the first small peak is totally 

disappeared.  The most significant adsorption peak corresponds to the Au-S distance at 

~2.5 Å, consistent with other theoretical investigations40. This indicates that when all the 

components of intermolecular interactions are considered, the Au-S bond length 

approaches the universal value of 2.5 Å. Obviously, most of these Au-S bond lengths 

come from the on-bridge or bridge-like bonding sites, but may also come from the on-top 

bonding sites if the actual on-top bonding energy is not so strong. The third small peak at 
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2.7-2.8 Å corresponds to the non-bonded Au-S distance between the bridge S atom and 

the third nearest Au atom around the hollow site. As we mentioned before, the total DFT 

bonding energies beyond this distance (Figure 7-5) are largely from the electrostatic 

intermolecular interactions. 
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Figure 7-6: Herringbone structure of the BDT molecules on the gold 111 surface 
predicted from molecular dynamic simulations.   
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Figure 7-7: The normalized probability distributions of Au-S bond stretching for the 
strong (PBE0-3Au12) and the weak (X3LYP-3Au111) bonding cases from MD 
simulations. The Boltzmann distributions are obtained based on individual bond-
stretching potentials. 
 

 

 

Figure 7-8: The normalized probability distributions of the Au-S distance between the S 
ad-atoms and the first-layer gold atoms for the strong (PBE0-3Au12) and the weak 
(X3LYP-3Au111) bonding cases from MD simulations.  
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7.5 Conclusions 

 We have investigated several BDT-nAu complexes to evaluate the Au-S chemical 

bonding properties. The bond stretching curve is fitted by the three-parameter Morse 

potential. We find that the bonding energy depends on the gold cluster size and 

geometries. For BDT-3Au complex, the bonding energy of Au-S single bond in the ‘top-

binding’ case can vary from 12.49 kcal/mol for a Au mono-atomic chain configuration to 

51.29 kcal/mol for a triangle Au cluster. However, for BDT-7Au complex, the Au-S 

single bond energy is approximately 20 kcal/mol and comparable to those in BDT-1Au 

complex.  Molecular dynamics simulations show that this variation in the bond energy 

has much less effect on the BDT SAMs packing structure and even has limited influence 

on the local bonding geometry.  The pure chemical bonding between the bonded atoms, 

i.e., the 1 or 2 bonded Au atoms and the bonded S and C atoms in BDT molecule has also 

been derived. Within the Au-S bonding distance, the net bonding potential overlaps with 

the total bonding curve. This suggests that the pure chemical bonding is dominant near 

local minimum and also validates our original suggestion that the BDT-Au interaction 

can be represented by the local chemical bonding which only involves 1-2 Au atoms and 

the far field non-bonded interaction described by the UFF force parameters. We have also 

found that the charge distribution among bonded atoms is not critical to the BDT SAMs 

structure. The current studies take a further step towards the development of a consistent 

force field for the large-scale molecular simulations of self-assembly of thiolate 

molecules on Au (111) surface. 
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CHAPTER VIII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1  Conclusions 

 In this work we have investigated the effect of including explicit polarization for 

the solute, water and ion forcefields.  We have also investigated intermolecular and 

intramolecular forcefield development from ab initio calculations.  Starting with chapter 

III, the importance of the inclusion of polarization into molecular forcefields was shown 

where using an explicitly polarization in the model for small hydrophobic solutes enabled 

us to reproduce the experimental excess chemical potential of the solutes in pure water for 

a range of temperatures.  It also showed that polarization did not affect the gradient of the 

excess chemical potential or, in other words, it did not significantly affect the qualitative 

agreement with experimental values. 

 In addition, this work shows that for pure systems where the effect of 

polarizability plays an insignificant role in their bulk fluid properties due to weak electric 

field strength, it is still necessary to consider the effect of polarization when these 

molecules are solvated in water, which has a strong electric field.  This leads us to suggest 

that in the development of transferable molecular potentials, inclusion with explicit 

polarization is essential. 

 The investigation of the role of polarizability is continued in chapter IV, where we 

show that the effects of polarizability on the excess chemical potential and the salting-out 

effect with the investigation of the effect of the explicit polarization on the solute 

forcefield in an aqueous solutions containing charged particles.  Accounting for 
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polarization explicitly in small hydrophobic solute models reduced the excess chemical 

potential of the solute in water, which improves the agreement with experiment.  

However, the addition of explicit polarizability to the solute model had very little effect 

on the salting-out effects, i.e. the decrease in the solubility of the solute from the addition 

of salts into the aqueous solution remained over-estimated.  We have shown that the ion-

solute forcefields are responsible for the inability of these potentials to accurately 

reproduce the correct salting-out effects, meaning that exclusion of polarizability is not 

the main cause as has been suggested by other workers.   

 We note that while the modern reparameterizations of the TIP4P model (i.e. 

TIP4P/2005 and TIP4P/Ew) provide significantly better predictions than TIP3P of the 

excess chemical potential in pure water shown in chapter III, for the case of a charged co-

solvent TIP3P obtains a better trend.  This is due to TIP3P underestimating the solution 

density, where TIP4P/2005 and TIP4P/Ew are in good agreement with experiment.  The 

importance of obtaining the correct density of solvent solution was thus reinforced and, 

additionally, it was noted that simulations at incorrect densities can give rise to a correct 

numerical results but via the wrong mechanism due to a cancellations of errors.  This 

could give rise to incorrect validation of results in many simulations if these system 

properties are left unchecked, including incorrect interpretations of the causes of salting-

out.   

 New solute-ion interaction parameters have been fitting to ab initio calculations, 

for the purpose of obtaining better agreement with experimental results.  The new 

interaction parameters obtained from these predictions work just as well, if not better, 

than those derived from the mixing rules of the pure species for the reproduction of the 

excess chemical potential.   
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 We have shown that explicit polarizability is important for the correct 

reproduction of the solubility of solutes in solution, the next step in the use of polarizable 

solutions.  Before investigations into polarizable solutions can be conducted, polarizable 

water models need to be developed and shown to be able to accurately reproduce the 

physical system.  From comparing molecular dynamics simulations of GCPM water to ab 

initio CPMD simulations of the water, in Chapter V, it was shown that polarization and, 

in particular, its inclusion in the Gaussian distributed polarizable model for water, was 

able to reproduce the total dipole moment and the distribution for the total dipole moment 

within the accuracy of the ab initio Car-Parrinello simulations.  We also saw that the 

method used to calculate the induced dipole moment from the Car-Parrinello simulation 

has a large effect on the value of the mean total dipole moment.   

 Chapter VI continued with the development of polarizable models, looking into 

the ion-water forcefields.  With the empirically parameterization of the ion-water 

interactions from ion-water cluster energy, for used with the GCPM water model, it was 

shown that with the inclusion of explicit polarizability, we achieved good agreement with 

ab initio simulations for the behavior of ion in water clusters, and ion in bulk solution.  

We have also been shown that we can get the correct kosmotropic and chaotropes 

behavior with regard to bulk or surface solvation.  We found that within the first 

hydration shell, the induced water dipole moment is influenced by the ion, and that the 

magnitude of the induced water dipole moment is related to the size and charge of the ion. 

However, the use of GCPM as the water model still shows the same trends as other 

classical models of water with regards to the ion-water orientation. 

 Following on from the used of ab initio calculation for the development of 

intermolecular forcefields, we have used ab initio DFT calculation for the development of 
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intramolecular bonding potentials.  The bonding potentials used to describe the surface 

chemistry between organic molecules and metallic surfaces is dependant on the shape and 

size of the clusters used to approximate the surface.  The variance in the bonding 

potentials has minimal effect on the structuring of a self-assembled monolayer of BDT on 

the gold surface was insensitivity to the variation in the possible bonding potentials. 

  

8.2 Recommendations for future work 

   As is the nature of research, in attempting to understand one problem several 

others are brought to light.  Unfortunately, there is never sufficient time to investigate all 

the things we might like and as such many of the interesting questions raised during this 

work remain unanswered.  Here we outline several of the most interesting ideas we 

believe would make productive area for future work.   

 In summary, in this work we showed that the explicit inclusion of polarizability in 

molecular models may have a dramatic effect on the predicted properties of small non-

polar solutes in aqueous solution.  It follows from this that explicit polarizability will also 

play an important role in the solvation of more complex biological molecules.  Given the 

available computational resources and their continued advanced in this field, the 

development of such models poses an appealing challenge.  

 Parameterization of molecular forcefields is not a trivial activity, especially as 

experimental data is limited for unique and complex molecules.  New methods of 

producing transferable forcefields are required and should be developed in the future to 

prevent having to parameterize new interaction potentials for every possible combination 

of molecules.  The development of interaction parameters directly from ab initio 



 205 

calculations has great promise and has the ability to avoid mixing rules, which have 

already been shown to be problematic. 

 The transferability of forcefields makes it possible for the forcefield to be used in 

a range of different situations.  In the work of Chapter III, we have shown that explicit 

polarizability is a key element in the development of transferable potentials. 

 The next step following Chapter III and IV is to investigate the effect of explicit 

polarization on the hydrophobic solute in polarizable aqueous solutions, and should be the 

focus of future work.  Following on from this work, a polarizable water model with 

polarizable ions and solute should continue to be developed.  Included is the use the better 

methods of handling the long range electrostatic interactions.  This will allow the ability 

to simulation systems away from pure water and infinite dilution, i.e. simulating 

concentrated solution, and multi-component mixtures. 

 From the inability of the GCPM-ion forcefields to correct reproduce the ion-water 

orientation in the first hydration layer in Chapter VI, the development of a classical water 

model with some form of acknowledgement of the electrostatic potential minima would 

be required to reproduce the ab initio results for the ion-water orientation.  We believed 

this is important for reproduction of the correct behavior of water in biological situations, 

especially due to the importance of the water's orientation for the folding of proteins.  The 

development of a water model which is fitted to the quadrupole moment, with a two 

negative charge points, separated in the y direction, has started to be developed.  This 

work should be continued in order to develop a water model with the correct ion-water 

structure as well the correct water-water structure. 

 The development of bonding potentials for organic molecules bonded to metallic 

surfaces from ab initio calculations of organic molecules with metallic clusters suffers 
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from convergence of the binding energies as the metallic cluster varies in size and 

geometry.  Even though, for the situation described in Chapter VII, where the variations 

in the pure binding energy and the resulting forcefields had minimal effect on the packing 

structure of the organic molecules on the gold surface.  Work has been done on the 

structural and electronic properties of gold clusters, and how the structure and average 

atomic energies vary with clusters size, but an understanding of how this affects bonding 

potentials has not been investigated.  Convergences of the binding energies or at least an 

understanding of why there are not convergent for small clusters, would be of great 

interest and should be studied further. 
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APPENDIX A 

 

MOLECULAR DYNAMICS ENERGY, FORCE EQUATIONS USING THE WOLF 
METHOD FOR LONG RANGE INTERACTIONS OVER GAUSSIAN CHARGE AND 

DIPOLES 
 

A1  The Wolf Method 

 Even though the electrostatics energy for a pair interaction decay to the 1!
r , when 

the number different interaction increase 3
r .  As a result, the total amount of electrostatic 

interaction increase to the 2
r , mean a simply truncation is erroneous.  In the Wolf 

method1, each electrostatic charges have an another equal but opposite neutralizing 

charge, or an image charge of opposite sign projected onto a truncated sphere (surface of 

the volume surrounding the charge i ).  Simply put, the Wolf method is a fancy type of 

truncated and shifting potential, so the 0=wolfU  at Rcr = . 

 

 ( ) ( )cshifted RUrUU !=  [A1-1] 

 

 The problem is that for molecular dynamic simulations, the forces are also 

required for the equation of motion.  Using the Wolf method directly, there is a 

discontinuity at Rcr = , making the energy conversation a problem.  To solve this 

problem, Fennel2 also shifted the force, so that the force also equals zero at Rcr = .  A 

force and energy shifted potential is shown below 
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where, ( )rU  is the energy potential for charge-charge, charge-dipole and dipole-dipole 

interactions.  Note the potential is not always only a function of distance, as the direction 

of the dipole moment are also important for charge-dipole interactions but for clarity the 

dipole direction has been omitted. 

 

A2  Derivation of the Wolf Method for a system point charges 

 The electrostatic potential for two point charges can be separated into two terms,  
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as 

 ( ) ( )xerfxerfc +=1  [A2-2] 

 

 The first term ( )xerfc  can be made to be the dominant contribution with the right 

value for ! , the Wolf damping parameter.   The second term ( )xerf  is normally small, 

but can be large if a large value of !  is chosen.  In order to exclude the second term, a 

correction is used; the self interaction term ( )ji =  is subtracted from the first term and 

added to the second term.  The second becomes small, and is considered a systemic error 

in using a damp potential.  As a self interaction has zero distance, we take the limit of 

when 0!
ij
r .  The self correction term is therefore, 
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The electrostatic interaction energy would therefore become. 
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 Third term is identical to the reciprocal-space energy in the Ewald sum.  This will 

be ignored, and used as a systematic error, from replacing the Coulombic potential by a 

damped potential.  As the Wolf method is a truncated, Coulombic potential, we much 

remove the energy of the neutralization sphere.  The total Coulombic energy using the 

Wolf method is shown below,  
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where the neutral

qqU  represents the charges neutralizing the charged volume.  The 

neutralization term is calculated by taking the is limit of qqU  as ij
r  tends to the cutoff 

c
R . 
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So the total electrostatic interaction energy using A2-5, A2-4 and A2-7 becomes, 
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A self interaction term can be extracted to ease molecular dynamic calculations as this 

term is constant, independent of the system molecular configuration and density. 
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A3  Derivation of the Wolf Method for Gaussian charges, using shift force potential 

 If the electrostatic charges are represented by a Gaussian distribution instead of a 

point charge, for example the GCPM.  A Gaussian charge is represented by,  
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where ( )r
iq

!  is the charge density, 
i

!  is the width of the Gaussian distribution (i.e. 

standard deviation of a normal curve), 
i
r  is the center of the charge site, and 

i
q  is the 

magnitude of the charge.  The electrostatic interaction energy 
jiQQ

U  between two charged 

Gaussian distributions is,                  (equation [A3-2]) 
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meaning that at every point of distribution i , at a distance '

i
r  from the center of charge 

i
r , 

interacts with every point of distribution j , at a distance '

j
r  from the center of charge j

r .  

This equation can be simplified down a useful form, 
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 In order to use the Wolf method of a systems contained Gaussian charges, all the 

electrostatic potentials have to be derived, using a similar method used in section A2.  In 

equation A1-2, the correct force potential is required for the calculation the potential.  To 

get around this, as the derivative of the potential at the cutoff is a constant, it can be 

solved for at the end.  The starting columbic potential for a system of Gaussian charges, 

using a shift force potential is  
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We define the ! , the combined width of the distributions, for clarity in the following 

equations.  The constant term will be solved later.  In order to minimize the self 

correction for the erf term (as it equation A2-6), the self-interaction term is calculated by 

taking the limit of 0!
ij
r .  Unlike the point charge case, as there is an error function due 

the Gaussian charges, so this term goes to zero. 
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The force shifted term can just be included fully into the first energy term. The resulting 

columbic energy (analog to equation A2-4) can be shown below. 
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where the Const  is defined as, 
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The total interaction energy is calculated by equation A2-4, where the neutral

qqU  is limit of 

qqU  as ij
r  tends to 

c
R , at the cutoff.  Where the potential is shifted, it is the equivalent to 

the neutralization of the ji,  interactions, but not ii,  self interactions which will be 

calculated independently to the shifting. 
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So the total electrostatic interaction energy becomes, for Gaussian charges using the Wolf 

method becomes, 
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A4 Gaussian charges and dipoles 

 The formula for the charge density of a Gaussian charge, or a s-Gaussian3 is  
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where 
i

i

!
=

2

1
" , 

i
!  is the width of the Gaussian distribution of the charge, and 

i
q  is 

the magnitude of the charge.  Integration of equation 3A, over all space, will obtain the 

magnitude 
i
q .  Figure A4-1 shows what a typical s-Gaussian looks like. 

 

Figure A4-1, Charge density for a spherical Gaussian of charge 1.22e, and Ωi of 1.4 Å 
A5 Gaussian Dipole 



 214 

The formula for the charge density of a Gaussian dipole, or a p-Gaussian3 is  
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Where the resulting charge densities can seen below in Figure A5-1, where the distance 

between the two peaks is 
i

!2 . Integration over the Gaussian Dipole would result in a 

zero charge as a dipole is neutral.  

 

 

Figure A5-1, Charge density for a p-Gaussian of dipole 5D and Ωi of 1.4 Å, where the 
dipole is only in the x direction 
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A6 Charge-Charge interactions (s-s type) 

 The uncorrected charge-charge interaction for long range interactions can be 

calculated from  
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=" , and !  is the Wolf damping parameter, set to 2/Rc, in 

accordance to the work of Demontis et al.4 and Avendaño and Gil-Villegas5
  

 So the Wolf charge-charge interaction less self correction from equation [A3-9] is 

below in equation [A6-2] 
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The electrostatic force due to a potential using the Wolf long-range correction is 
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A7 Charge-Dipole interactions (s-p type) 

 The uncorrected Charge-Dipole interaction potential for long range interactions 

can be calculated from,  
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Simply adding the Wolf damping factor ( )rerfc ! , as the self interactions are again zero 
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Using the Wolf regime will obtain equation A7-3 for the potential energy and equation 

A7-4 for the force.  There is no self neutralization term as a dipole is overall neutral (see 

section A5).  
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A8 Dipole-Dipole Interactions (p-p type) 

 

The uncorrected dipole-dipole interaction potential for long range interactions can be 

calculated from,  
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Excluding the Wolf correction was excludes as dipole-dipole potential interactions decay 

to 6!
r .6.  Therefore the force,  
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A9 Electrostatic Field 

 

The electrostatic field for a point charge 'i' acting at point 'j'  is  
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where E
v

 is the electrostatic field generated from the point charge i  at a point j .  

Likewise, for a electrostatic field from a Gaussian charge i  action at a spherical 

Gaussian j  is   
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Where the ij
!   term contain both the Gaussian distribution information of the charge 

generating the field i , and the Gaussian being effected by the field j .  At the limiting 

case, where Gaussian j  has an infinite width, i.e. 1<<
j

! , there is no net electric field on 

Gaussian j , as one would expect. 



 219 

As the UQQ using the Wolf method for long range electrostatic correction, is shown by 

equation 9A-3 
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This is used for the electric field between a s-Gaussian charge to the site of another s-

Gaussian. For the electric field between a s-Gaussian on to a p-Gaussian, i.e. Gaussian 

charge to an dipole, equation 9A-5 is shown below. 
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This is basis on the fact that we know the direction of the field form a single charge 

(radial), thus created a 1-diminional problem, and removes the dot product. 

 

For the electrostatic field generated from a p-Gaussian on to another p-Gaussian, i.e. 

dipole-dipole interactions.  ijT  is a tensors of the dipole positions and Gaussian 

distributions.  The electric field can be calculated from7  

 jij
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i TE µ
vvv

=  [9A-6] 
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where, 
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It can be shown that with equation 8A-1, and 9A-6, 
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resulting in an quicker calculation of the induced dipole-induced dipole interaction energy. 
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APPENDIX B 

 

PARAMETERIZATION OF THE SOLUTE-ION INTERACTION PARAMETERS FROM MP2 
CALCULATIONS 
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Figure B-1:  MP2 energy and its classical components for the dimer interaction between neon 
and the ions sodium (above) and chloride (below) The blue line is the corrected MP2 energy, The 
pink line is the polarization energy.  The residue is the MP2 van der Waals energy (squares).  
The exponential six is fitted to the MP2 vdW (red line).  For comparison, the LJ parameters from 
the pure species via mixing rules are green. 
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Figure B-2:  MP2 energy and its classical components for the dimer interaction between argon 
and the ions sodium (above) and chloride (below) The blue line is the corrected MP2 energy, The 
pink line is the polarization energy.  The residue is the MP2 van der Waals energy (squares).  
The exponential six is fitted to the MP2 vdW (red line).  For comparison, the LJ parameters from 
the pure species via mixing rules are green. 
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Figure B-3:  MP2 energy and its classical components for the dimer interaction between krypton 
and the ions sodium (above) and chloride (below) The Blue line is the corrected MP2 energy, 
The pink line is the polarization energy.  The residue is the MP2 van der Waals energy (squares).  
The exponential six is fitted to the MP2 vdW (red line).  For comparison, the LJ parameters from 
the pure species via mixing rules are green. 
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Figure B-4:  Fitted exponential six, short range interactions parameterized to the calculated MP2 
vdW energy for the dimer interaction between methane and the ions sodium (above) and chloride 
(below) for three different configurations.  Hydrogen towards the ion (Blue squares), ion in the 
void between three hydrogens (red squares) and ion in the void between two hydrogens (brown 
squares).  For comparison, the LJ parameters from the pure species via mixing rules are green. 

 


