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CHAPTER I 

Introduction 

Liquid chromatography based tandem mass spectrometry (LC-MS/MS) has become 

dominant in large-scale identification of proteins in complex biological samples [1-2]. In 

tandem MS (MS/MS), particular ions (precursors) are selectively passed through the first 

mass analyzer to generate intact peptide ions in the gas phase by protonation. Then the 

mass-selected ions pass through a reaction region where they are activated to fall apart 

to produce fragment (product). The m/z values of the dissociation products are then 

recorded by the second mass analyzer. The resulting “MS/MS” spectrum consists only of 

product ions from the selected precursor [3]. The most common way to excite the 

precursor ion is energetic collisions with a nonreactive gas, such as helium, and is 

referred to as collision-induced (activated) dissociation (CID or CAD). Alternative peptide 

fragmentation methods such as higher-energy collision dissociation (HCD) have 

consistently achieved significance [4].  

Tandem MS relies highly on database search algorithms to identify peptides from 

tandem mass spectra where they enumerate peptides from the particular protein 

sequence database, predict their fragment ions, and match them to the experimental 

MS/MS spectra. It is widely accepted that the accuracy of the fragment prediction model 

plays an important role for database search algorithms [5]. The predicted theoretical 

spectrum must be sufficiently similar to the observed experimental spectrum in order for 

the identification to succeed. However, it is often difficult to make such predictions 

accurately due to the complex nature of peptide fragmentation. The most common 

model (Naïve model), introduced with Sequest [6], assumes that each peptide bond 

breaks with equal probability and each resulting fragment takes on all charges below 
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that of the precursor ion.  While this identification approach works well for most peptides, 

several peptides exhibit fragment ions that differ greatly from this ideal model, yielding 

low or insignificant scores, thus preventing automated positive identification [7]. Naïve 

model over-predicts the set of fragments expected for each peptide, especially for 

precursor peptides carrying more than two protons.  Because data-dependent methods 

isolate ions of a particular peptide prior to fragmentation, this over-prediction is tolerable.  

In data-independent sets, however, tandem mass spectra are crowded with the 

fragments of many peptides, leading to a heightened potential for false-positive matching. 

Secondly, for highly charged precursors, multiple fragments may be predicted at the 

same m/z, double-counting any “hits”. Lastly, as precursor charge increases, the rate of 

successful identification falls. Identifying peptides in data-independent sets will benefit 

substantially from fragmentation models that generate the set of ions most likely to be 

observed for each sequence.  

There are more advanced and complicated statistical fragmentation models that were 

introduced recently, which typically dealt with peak intensities or intensity ranks. Kapp et 

al [8] and Schutz et al [9] produced linear regression models for predicting fragment ion 

intensities. A kinetic model was described by Zhang [10, 11] to produce realistic MS/MS 

of a peptide sequence based on the classical theory of reaction kinetics and the mobile 

proton model of peptide fragmentation. Machine learning approaches were used by Elias 

et al [12] and Arnold et al [13] with a probabilistic decision tree to model the probability of 

observing the fragment ion intensity, conditioned on a number of different peptide and 

fragment attributes. In similar fashion, Frank et al [14] predicted the intensity ranks of 

observable peptide fragments. Machine learning approaches were found to be generally 

more accurate than kinetic models in predicting fragmentation spectra, and both models 

are significantly more accurate than the ad-hoc models [15]. However, the intensity-
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based prediction models can become less accurate and more computationally intensive 

with large peptides and higher charge states. For example, the machine learning models 

by Frank to predict peak ranks worked well for singly and doubly charged peptides, but 

produced lower performance in triply-charged peptides primarily because the dynamics 

of the fragmentation pathways in triply-charged peptides are more difficult to predict 

given these peptides are longer and contain more basic amino acids [14]. It would be 

even worse for CID and HCD MS/MS with charges +4 and +5 or higher. Secondly, all 

these models are computationally too intensive for on-the-fly use in database search 

algorithms that process millions of candidate sequences. For example, Elias modeled 

the probability of observing fragment ion intensity conditioned on 63 different peptide 

and fragment attributes. Kinetic model [10, 11] included 236 parameters for doubly 

charged peptides which were thought to be important. The complexity undermines the 

feasibility and transferability among different search engines. In database search, the 

software designer must always be mindful of impacts on running time. For example, 

although the ByOnic database algorithms implemented a machine learning 

fragmentation model, it has to use heuristic-based rules for predicting fragment ion ranks 

to reduce computational complexity [14]. Thirdly, the intensity-based models only works 

when the scoring function of database search algorithms include intensity as part of it. 

Popular search engines like Mascot do not include a scoring system that deals with 

theoretical fragment intensities, and thus would not benefit from these advanced models. 

Altogether, it is necessary to create simple, fast, effective, and transferable fragment 

prediction systems that can be routinely brought to bear in common database searching 

algorithms.  

The observed fragmentation pattern depends on various parameters including the amino 

acid composition and size of the peptide, excitation method, the charge state of the ion, 



4 

 

etc. [3]. According to the “mobile proton” model [16-18], the proton(s) added to a peptide 

upon excitation will migrate to various protonation sites prior to fragmentation provided 

they are not sequestered by a basic amino acid side chain, hence  amino acid 

composition (the absence or presence and type of a basic residue) plays deterministic 

roles on fragmentation efficiency. In this study, we created a new fragmentation model, 

Basophile, to accurately predict the charges of fragments based on the number of basic 

residues and the size of fragment for highly charged peptides. Complementary to CID 

model, we have alternative fragmentation strategies (HCD) to potentially improve 

identification of long, highly-charged peptides, and peptides containing multiple basic 

residues, since longer peptides containing one or more internal basic residues are poorly 

fragmented by CID [4].  Basophile was trained and tested with large collections of 

peptide-spectrum-matches (PSMs) aggregated from a variety of CID and HCD data 

sources, and has been implemented in MyriMatch software [19].For comparison, we 

have also implemented Protein Prospector’s prediction model (ppBasicity for short in this 

manuscript) [20] in MyriMatch. This model allows fragment to take on any charge state 

below that of precursor and up to the number of basic residues of that fragment. 

MyriMatch can be instructed at run time to apply a particular model (Naïve, Basophile or 

ppBasicity) for the database search. In contrast with more complicated fragmentation 

models, Basophile is fast, effective, and easily brought to bear in database search 

algorithms. 
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CHAPTER II 

Materials and Methods 

Data Sets  

We gathered a diverse collection of peptide fragmentation spectra (MS/MS) for training 

and testing the Basophile model. Table 1 summarizes the data sets used in this study. 

Detailed description of data protocols are listed below.  

Table 1. Data sets used in this study.  

 Data Species Instrument Enzyme Experiments 

Baso-NIST NIST-CID H. sapiens various ion trap 
principally 

trypsin 
703 

Baso-Yeast 

Yeast-Multi-trypsin* S. cerevisiae Orbitrap trypsin 6 

Yeast-Muti-chymo S. cerevisiae Orbitrap chymotrypsin 6 

Yeast-Multi-lysC S. cerevisiae Orbitrap lys-C 45 

Yeast-Multi-proK S. cerevisiae Orbitrap proteinase K 18 

Baso-HCD 

HCD-Orbitrap-Training M. musculus Orbitrap Velos trypsin 19 

HCD-Orbitrap-Training C. elegans Orbitrap Velos trypsin 12 

HCD-Orbitrap-Training E. coli Orbitrap Velos trypsin 5 

HCD-Orbitrap-Training C. griseus Orbitrap Velos trypsin 94 

Testing 

Yeast-CPTAC-CID(LTQ) S. cerevisiae LTQ trypsin 10 

Dicty-LTQ D. discoideum LTQ trypsin 10 

HCD-Orbitrap-Testing S. oneidensis Orbitrap Velos trypsin 59 

Other 
Yeast-CPTAC-

CID(ORBI) 
S. cerevisiae Orbitrap trypsin 18 

*: these data were used for training Basophile-Yeast and testing other Basophile models. 
 

1. NIST-CID. We downloaded the human ion trap library (on 11/29/2010) from the 

National Institutes of Standards and Technology (NIST) website http://peptide.nist.gov. 

This library contains representative CID-MS/MS spectra for 190,539 distinct peptides 

collected from human samples [21]. A majority (68%) of the candidates in the library are 

tryptic peptides. NIST-CID has a total of 165,499 distinct +2 peptides, 85,018 distinct +3 

peptides, and 30,475 distinct +4 peptides.  
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2. Yeast-Multi-Enzyme-CID (Vanderbilt University). Proteins from yeast whole cell 

lysates were mixed with 0.1 ml 100mM Ambic and then 0.1ml TFE. Samples were 

reduced with dithiothreitol (DTT) and alkylated with iodoacetamide (IAA). Protein mixture 

was apportioned into four aliquots and digested with one of the following enzymes: 

trypsin, chymotrypsin, lys-c, or proteinase-K (the individual data set was then named as 

Yeast-Multi-trypsin, Yeast-Multi-chymo, Yeast-Multi-lysC and Yeast-Multi-proK 

respectively). Then the digest was desalted with C18 SPE catridge and peptides were 

eluted with AcCN/H2O 80/20. The digest were then re-dissolved in 0.1 % Formic acid, 

and diluted to 200 ng/ul. 3ul of each digest was loaded into nanoLC/MS (ORBI) with 3 hr 

gradient LC profile. A total of 664,698 CID-MS/MS spectra were collected from all 

aliquots.  

3. HCD-Orbitrap-Training. A diverse collection of HCD MS/MS spectra was assembled 

by combining shotgun proteomics data from five different samples: M.musculus brain 

tissue, C. elegans cells, E. coli cells and C. griseus cells.  

1) E.Coli cells were analyzed at the Vanderbilt University’s Mass Spectrometry 

Research Center (Nashville, TN). Lyophilized E. coli cells (1mg dry weight, 

Sigma EC11303) were lysed by addition of 200uL 500mM Tris (pH 7.5) with 50% 

trifluoroethanol (TFE).  The E. coli lysate was reduced with 10mM tris(2-

carboxythyl)phosphine (TCEP), and Cys residues were carbamidomethylated 

with 25mM iodoacetamide. The lysate was then diluted 5-fold with 100mM Tris 

and digested with 10ug trypsin (proteomics-grade, Sigma) at 37°C overnight. 

Following digestion, peptides were desalted by solid-phase extraction (Sep-pak 

light C18 cartridge, Waters). First peptides were acidified by 2-fold dilution in 

0.1% TFA, the peptide solution was loaded via syringe onto a preconditioned 

C18 cartridge, the cartridge was washed with 0.1% TFA, and peptides were 
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eluted with 60% acetonitrile/0.1% TFA. Three sequential 500uL elutions were 

performed, and eluates were dried by speed-vac concentration.  E. coli peptides 

were reconstituted in 500uL 0.1% formic acid, generating a 2ug/uL solution. An 

aliquot of the desalted and concentrated digest was then diluted 1:15 in 0.1% 

formic acid, and this diluted solution was used for analysis via LC-coupled 

tandem mass spectrometry (LC-MS/MS). For five replicate experiments, 3uL 

(0.4ug) of E. coli digest was injected onto a capillary reverse phase analytical 

column (360µm O.D. x 100µm I.D.) using an Eksigent NanoLC Ultra HPLC and 

autosampler. The analytical column was packed with 20cm of C18 reverse phase 

material (Jupiter, 3 µm beads, 300Å, Phenomenox), directly into a laser-pulled 

emitter tip.  Peptides were gradient-eluted at a flow rate of 500nL/min, and the 

mobile phase solvents consisted of 0.1% formic acid, 99.9% water (solvent A) 

and 0.1% formic acid, 99.9% acetonitrile (solvent B).  The mobile phase gradient 

consisted of the following:  0-15 min, 2% B (during sample loading segment); 15-

60 min, 2-40% B; 60-68 min, 40-90% B; 68-72 min, 90% B; 72-75 min, 90-2% B; 

75-85 min, 2% B.  Gradient-eluted peptides were mass analyzed on an LTQ 

Orbitrap Velos mass spectrometer (Thermo Scientific), equipped with a 

nanoelectrospray ionization source. The instrument was operated using a data-

dependent method with dynamic exclusion enabled. Full scan (m/z 400-2000) 

spectra were acquired with the Orbitrap (resolution 60,000), and the top 8 most 

abundant ions in each MS scan were selected for fragmentation via higher-

energy collision induced dissociation (HCD). The precursor ions isolated for the 8 

HCD MS/MS spectra per duty cycle were selected in order of least to most 

abundant, and a minimum signal of 4x103 was required to trigger MS/MS. An 

AGC target of 4x104, a maximum ion injection time of 500msec, an isolation 

width of 2 m/z, and 30% normalized collision energy were used to generate HCD 
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MS/MS spectra. Dynamic exclusion settings included a repeat count of 1, the 

exclusion list size was set to 500, the exclusion duration time was 60sec, and an 

exclusion mass width of 10ppm relative to the reference mass was applied. 

Singly-protonated precursor ions or those with unassigned charge states were 

rejected for MS/MS analysis, and monoisotopic precursor selection was enabled. 

A total of 16,492 HCD MS/MS spectra were collected from all aliquots. 

2) C.elegans and M.musculus samples were analyzed at the National Institute of 

Biological Sciences (Beijing, China) [22]. C.griseus cells were analyzed at Johns 

Hopkins University (Richmond, WA) [23]. In brief, proteins from these samples 

were reduced with DTT, alkylated with IAA, and digested with trypsin. Peptide 

mixtures were subjected to replicate LC-MS/MS analyses using LTQ-Orbitrap 

mass spectrometers located at the respective institutions. A total of 211,788 HCD 

MS/MS spectra were collected from M.musculus, 105150 from C.elegans, and 

855,745 from C.griseus.  

4. Testing of Basophile and others 

1) Yeast-CPTAC-CID (Vanderbilt University). Yeast whole cell lysates were 

previously analyzed at Vanderbilt University as part of the Clinical Proteomic 

Technology Assessment for Cancer (CPTAC) initiative [24, 25]. In short, proteins 

were reduced with DTT, alkylated with IAA, and digested with trypsin. Peptide 

mixtures were subjected to either an LTQ (Yeast-CPTAC-CID(LTQ)) or an LTQ-

Orbitrap (Yeast-CPTAC-CID(ORBI)) mass spectrometer (Thermo-Fisher, 

Waltham, MA). A total of 262,568 and 42,478 CID-MS/MS were collected from 

LTQ and LTQ-Orbitrap analyses, respectively. 

2) Dicty-LTQ (Vanderbilt University): Dictyostelium cells (Ax3, racC-, and nlp/slp- 

cells) were cultured axenically in HL5 medium supplemented with 60 units of 
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penicillin and 60 mg of streptomycin per ml. Cells competent to chemotaxis 

toward cAMP (aggregation-competent cells) were obtained by pulsing cells in 

suspension (5 X 106 cells/ml) for 5 hrs with 30 nM cAMP. Cells were then lysed 

by passing through a 5 µm pore sized filter. This filtrate was then spun down at 

30,000 g for 45 minutes at 4ºC to generate the membrane and soluble fraction. 

Membrane pellets were dissolved in 0.5% n-Dodecyl-β-D-Maltopyranoside. 

Membrane proteins were precipitated by adding 1/4 Vol 100% TCA and washed 

two times with 100% acetone. Then the samples were reduced, alkylated, and 

analyzed on an LTQ-XL mass spectrometer. A total of 169,021 CID MS/MS 

spectra were collected from all aliquots. 

3) HCD-Orbitrap-Testing (Pacific Northwest National Laboratory). Shewanella 

oneidensis MR-1 samples were cultured in-house then digested with trypsin and 

analyzed by LC-FTICR using a fully automated, custom-built, four-column 

capillary LC system coupled online using an in-house manufactured ESI interface 

to an LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA). 

The capillary columns were made by slurry packing 3 µm Jupiter C18 bonded 

particles (Phenomenex, Torrence, CA) into a 35-cm long, 75- µm i.d. fused-silica 

capillary (Polymicro Technologies, Phoenix, AZ). Mobile phase A consisted of 0.1% 

formic acid in water and mobile phase B consisted of 0.1% formic acid in 

acetonitrile. Aliquots of each peptide sample were injected onto the reversed-

phase column for LC-MS analysis. Mobile phase A was maintained at 100% for 

20 min after which the composition was changed to 80% B over a 100 minute 

gradient. High mass accuracy spectra were collected via an orbitrap analyzer, 

and the six most intense peaks in the previous MS spectrum were then selected 

for high-resolution HCD MS/MS analysis. A total of 1,189,175 HCD MS/MS 

spectra were collected from all aliquots.  
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Peptide Identification pipeline 

Raw data produced by the mass spectrometers were transcoded into either mzML or 

mz5 format using the msConvert tool of the ProteoWizard library [26]. Database search 

engine, MyriMatch (v2.1.119) was used in this study. MyriMatch was configured to 

derive semi-tryptic peptides from the sequence database with the following variable 

modifications: carbamidomethylation of cysteine (+57.0125 Da), oxidization of 

methionine (+15.996 Da), and formation of pyro-glutamic acid from N- terminal 

glutamines (-17.0265 Da). The detailed settings are listed in table 2.  

Table 2. MyriMatch search configurations.  

FragmentationAutoRule =  true 
PrecursorMzToleranceRule = "auto" 
MonoPrecursorMzTolerance = "10 ppm" 
AvgPrecursorMzTolerance = "1.25 mz" 
FragmentMzTolerance = "0.5 mz" * 
PredictionModel  = "naive"#  
SpectrumListFilters = "peakPicking true 2-;chargeStatePredictor false 4 2 0.9" 
MonoisotopeAdjustmentSet = "[-1,2]" 
TicCutoffPercentage = 0.95 
MaxPeakCount = 150 
CleavageRules =  "trypsin" $ 
MaxMissedCleavages =  2 
MinTerminiCleavages =  1 
DynamicMods = "M ^ 15.994915 (Q * -17.026549" 
MaxDynamicMods = 3 
StaticMods = "C 57.021464" 
MaxResultRank = 2 
MinPeptideLength =  5 
UseSmartPlusThreeModel = false 
NumChargeStates = 4 
*:  set 0.5 mz for LTQ / ORBI searches, and 10 ppm for HCD searches 
#: qualified models are “naïve”, “basophile”, and “ppbasicity”. 
$: charge to appropriate digestion rules 
 

MyriMatch matched peaks between experimental and predicted MS/MS. Resulting 

PSMs were scored with three different systems: MVH, HGT, and RST. The MVH system 

segregates experimental peaks into three intensity classes and measures the point 

probability of matching a given combination of peaks by random chance using a 

multivariate hypergeometric distribution. The HGT system employs a hypergeometric 



 

distribution to measure the p

matches between the predicted and experimental MS/MS by random chance. The RST 

system ranks experimental MS/MS peaks by decreasing order of intensity, computes t

intensity rank sum of peak matches, and estimates the p

sum by random chance via a normal distribution. MyriMatch was configured to sort the 

PSMs using either the MVH point probability or a p

and RST scores via Fisher’s Method. The software produced peptide identifications in 

standard pepXML formatted files. The 

filter peptide identifications at a q

optimized combination of HGT and RST scores. The results were written into idpDB file, 

which is a SQL database file. Figure 1 summarizes the flow of Basophile. 

Figure 1. The flow chart of Basophile. 
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distribution to measure the p-value of obtaining more than the observed number of peak 

matches between the predicted and experimental MS/MS by random chance. The RST 

system ranks experimental MS/MS peaks by decreasing order of intensity, computes t

intensity rank sum of peak matches, and estimates the p-value of obtaining a better rank 

sum by random chance via a normal distribution. MyriMatch was configured to sort the 

PSMs using either the MVH point probability or a p-value derived from combining

and RST scores via Fisher’s Method. The software produced peptide identifications in 

standard pepXML formatted files. The IDPicker software (v3.0.433) [27] 

identifications at a q-value [28] of 2% using either MVH score or an 

optimized combination of HGT and RST scores. The results were written into idpDB file, 

which is a SQL database file. Figure 1 summarizes the flow of Basophile. 

The flow chart of Basophile. 
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Pattern of Charge Segregation Events for Highly Charged Peptides 

Basophile was trained to predict fragment charge segregation for highly charged 

precursors. Three different models were trained using high-quality peptide identifications 

derived from “NIST-CID”, “Yeast-Multi-Enzyme-CID”, and “HCD-Orbitrap-Training” data 

sets (Table 1) and named Basophile-NIST, Basophile-Yeast, Basophile-HCD 

accordingly. Evidence of observed fragment ions for a PSM can be grouped in terms of 

charge segregation. Peptide bonds close to the N-terminus produce longer y ions than b 

ions; similarly, y ions near the N-terminus are likely to contain more basic residues than 

b ions.  These two factors imply that y ions near the N-terminus compete more strongly 

for the protons that ionized the intact peptide. Conversely, when fragmentation occurs 

near the C-terminus, the b ions are longer and likely contain more basic residues. We 

separated the possible outcomes from charge segregation into regions of unambiguous 

and ambiguous charge segregations. For example, a +3 precursor can produce four 

unambiguous charge segregation outcomes: a triply-charged y ion(y+3), a doubly-

charged y ion and singly-charged b ion (b+1;y+2), a singly-charged y ion and doubly-

charged b ion (b+2;y+1), and a triply-charged b ion (b+3).  For some peptide bonds, 

behavior that bridges to adjacent outcomes may result; for example, a peptide bond may 

produce both singly and doubly-charged b and y ions.  For +3s, three ambiguous 

regions fall between the four unambiguous outcome regions. Because these outcomes 

are not all equally spaced for peptides, we opted to emphasize only the most common 

charge segregation outcomes in Basophile, as discussed below in “Constitution of 

Charge Segregation Events.” By this rule, Basophile would only allow fragments to retain 

charges less than that of precursor charges.   
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Ordinal Regression  

Ordinal regression is used to build models, generate predictions, and evaluate the 

importance of various predictor variables in cases where the dependent variable is 

ordinal in nature. The simplest ordinal data are those with two categories of outcome, 

Yes or No (for example), which can be analyzed by a binary logistic regression. We 

could imagine drawing a random number from a logistic distribution. If the number is 

above a threshold, the corresponding decision is a Yes, if it's less than the threshold, it's 

a No. In ordinal regression, we have more than 2 categories, and just like logistic 

regression, we then have multiple thresholds to distinguish one category from another. 

For example, in Figure 2 right panel, A, B, and C are ordered categories. We have two 

thresholds for two logistic regressions: one for “A or B”, and one for “B or C". 

Mathematically, this reduces to a set of logistic regressions with different intercepts.  

  
Figure 2. Threshold perspective of ordinal regression. The left panel is a logistic 
regression which deals with two categorical outcomes; the right panel is ordinal 
regression which decides among more than two categorical outcomes.  
 

Basophile based its prediction on the basicity of fragment ions on either side to compete 

for precursor charges. If we go through peptide bonds from N-terminus toward C-

terminus, b ions are getting longer and likely to contain more basic residues, y ions are 

getting shorter and likely to contain less basic residues, such that b ions are gaining 

ability to obtain charges, and y ions are losing ability to obtain charges. Under this 

assumption, charge segregation events with higher peptide bond numbers are likely to 

favor a higher charged b series. These charge segregation events are considered 



 

ordered in terms of peptide bond

fragment ion basicity, peptide charge segregation events, and the ordinal logit is 

exemplified in Figure 3. Ordinal logit is an increasing function that reflects N

terminal ion basicity and determines the charge segregation event for each peptide 

bond. Charge segregation event “+2 C

variables.  

 

Figure 3. Fragment Ion Basicity and Peptide Charge Segregation.
increases, the N-term Ion Basicity increases and C
sequence is the ordinal logit calculated from regression function, where bonds are divided into 
three regions by cutoff values (green and blue dotted lines): +2 C
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order for matches. IDPicker filtered the resulti
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selected the highest scoring MS/MS from each group for training.
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. Ordinal logit is an increasing function that reflects N

terminal ion basicity and determines the charge segregation event for each peptide 

bond. Charge segregation event “+2 C-term”, “Ambiguous”, and “+2 N-term” are ordered 

 

. Fragment Ion Basicity and Peptide Charge Segregation. As the peptide bond 
term Ion Basicity increases and C-term Ion Basicity decreases. Down below the 

sequence is the ordinal logit calculated from regression function, where bonds are divided into 
three regions by cutoff values (green and blue dotted lines): +2 C-term (b+1, y+2), +2 N
(b+2, y+1) and Ambiguous that takes both.  

Training of Basophile 

Peptides from raw MS/MS data (Yeast-Multi-Enzyme-CID and HCD-Orbitrap

were identified with MyriMatch software configured to use MVH score as primary sort 

order for matches. IDPicker filtered the resulting peptide identifications at 

ed by precursor charge state, peptide sequence and modifications

selected the highest scoring MS/MS from each group for training. 

The relationship of 

fragment ion basicity, peptide charge segregation events, and the ordinal logit is 

. Ordinal logit is an increasing function that reflects N- or C-

terminal ion basicity and determines the charge segregation event for each peptide 

term” are ordered 

As the peptide bond 
creases. Down below the 

sequence is the ordinal logit calculated from regression function, where bonds are divided into 
term (b+1, y+2), +2 N-term 

Orbitrap-Training) 

were identified with MyriMatch software configured to use MVH score as primary sort 

cations at 2% q-value. 

de sequence and modifications. We 
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Given a peptide bond, Basophile computes the log scaled odds (p/1-p) of observing a 

charge segregation event using an ordinal logistic regression function Log(p/1-p)=β1RN+ 

β2HN+ β3KN+ β4LN+ β5RC+ β6HC+ β7KC+ β8LC, where RN, HN, and KN are number of 

Arginine (Arg), Hisidine (His) and Lysine (Lys) residues in N-terminal fragment; RC,HC, 

and KC are number of Arg, His, and Lys residues in C-terminal fragment; LN and LC are 

number of other residuals at N- and C- terminus, respectively.  

Two training tables (one each for +3 and +4 precursors) were generated from the above 

PSMs of each data set by custom software (IDPDBReader). Each row of the table 

corresponds to a peptide bond in a PSM. The row summarizes the counts of residues 

(RN, HN, KN, RC, HC, KC, LN, and LC) for each peptide bond as well as the set of fragment 

ions observed in the MS/MS after removing noise peaks from the spectra using a 95% 

Total Ion Current (TIC) threshold filter [19]. Having located the set of fragment ions for a 

given bond from the MS/MS spectrum, the software maps the fragment evidence to an 

ordinal label to describe the charge segregation outcome region. For example, if y ions 

from a bond of a triply-charged peptide were observed in both singly and doubly-charged 

form, the software would map this bond to a charge ambiguity region where both termini 

were capable of attracting two of the three protons. Table 3 presents a complete list of 

charge segregation events and evidence of observed fragment ions monitored for +3 

and +4 precursors.  Table 4 presents a sample training table generated from triply 

charged PSMs. 
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Table 3. Charge segregation events for +3 and +4 peptides. 

peptide group segregation events evidence of fragment ions 

+3 peptides 

b+1;y+2 (b+1), ( y+2), (b+1, y+2) 

b+1,b+2;y+1,y+2 (b+1, y+1), ( b+2, y+2), (b+1, b+2, y+1), (b+1, b+2, y+2), 
(b+1, y+1, y+2), (b+2, y+1, y+2), (b+1, b+2, y+1, y+2) 

b+2;y+1 (b+2), (y+1), (b+2, y+1) 

+4 peptides 

b+1;y+3 (b+1), (y+3), (b+1, y+3) 

b+1,b+2;y+2,y+3 (b+1, y+2), (b+2,y+3), (b+1, b+2, y+2), (b+1, b+2, y+3), 
(b+1, y+2, y+3), (b+2, y+2, y+3), (b+1, b+2, y+2,y+3) 

b+2;y+2 (b+2), (y+2), (b+2, y+2) 
b+2,b+3;y+1,y+2 (b+2, y+1), (b+3, y+2), (b+2, b+3,y+1), (b+2, b+3,y+2), 

(b+2, y+1,y+2), (b+3, y+1,y+2), (b+2, b+3/y+1,y+2) 

b+3;y+1 (b+3), (y+1), (b+3, y+1) 

Table 4. Sample training table including two peptides from NIST-CID data set. 

data peptide Bond RN HN KN LN RC HC KC LC fragment 
events* 

ordinal 
label 

NIST 

ITEHMLSLTR 1 0 0 0 1 1 1 0 7 0010 1 
ITEHMLSLTR 2 0 0 0 2 1 1 0 6 0110 1 
ITEHMLSLTR 3 0 0 0 3 1 1 0 5 1010 2 
ITEHMLSLTR 4 0 1 0 3 1 0 0 5 1000 2 
ITEHMLSLTR 5 0 1 0 4 1 0 0 4 1100 2 
ITEHMLSLTR 6 0 1 0 5 1 0 0 3 1010 2 
ITEHMLSLTR 7 0 1 0 6 1 0 0 2 1000 3 
ITEHMLSLTR# 8 0 1 0 7 1 0 0 1 0000  
ITEHMLSLTR 9 0 1 0 8 1 0 0 0 1000 3 
KLALVVEGR 1 0 0 1 0 1 0 0 7 0100 1 
KLALVVEGR 2 0 0 1 1 1 0 0 6 0100 1 
KLALVVEGR# 3 0 0 1 2 1 0 0 5 0000  
KLALVVEGR 4 0 0 1 3 1 0 0 4 1100 2 
KLALVVEGR 5 0 0 1 4 1 0 0 3 1110 2 
KLALVVEGR 6 0 0 1 5 1 0 0 2 1100 2 
KLALVVEGR 7 0 0 1 6 1 0 0 1 1010 2 
KLALVVEGR 8 0 0 1 7 1 0 0 0 1000 3 

*: Four digits in this column represent existence (1) or non-existence (0) for a fragment type in the 
order of “y+1, b+1, y+2, b+2”. For example, “1010” means y+1 and y+2 fragments were observed. 
#: This peptide bond was deleted from training because no fragments were observed. 
 

We employed ordinal logistic regression to process each training table and derive an 

ordinal logit function for predicting fragment charge states from the fragment basicity. A 

five-fold cross-validation strategy was used to avoid over-fitting of the function to the 

data, and customized coding was imbedded in Basophile-Trainer (a customized R 

package, see Figure 1). The regression provided weights for the basicity calculation 

function and decision table to predict which segregation region best models a given 
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peptide bond. We then implemented these ordinal functions for +3 and +4 precursors in 

MyriMatch alongside the Naïve model. 

Testing the Prediction Efficacy of Basophile 

High resolution precursor and fragments in “HCD-Orbitrap-Testing” data set were utilized 

to measure the efficacy of Basophile charge segregation predictions. The MS/MS of +3 

were identified with MyriMatch database search engine configured to use Naïve model 

for prediction and MVH for results ranking. IDPicker filtered the resulting peptide 

identifications at a stringent 2% q-value. Another program inspected each PSM, 

independently recapitulated the fragment predictions using Naïve and Basophile models, 

matched the predicted fragments to experimental peaks, and assessed the number of 

fragment hits and misses by each fragment type and charge state.   
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CHPATER III 

Results and Discussion 

Algorithms for peptide identification rely upon simplistic models of fragmentation to 

determine which fragments should be observed for a given sequence. Naïve model, the 

conventional fragmentation algorithm integrated in popular search engines, assumes a 

uniform breakage and charge segregation. The purpose of Basophile is to develop a 

simple but far-reaching model of fragmentation for charge segregation in support of 

database search. This project employs counts of Arg, His, and Lys residues to either 

side of a peptide bond in order to determine the charges in which fragment ions may be 

expected from either terminus. 

Naïve model is problematic for highly charged peptides 

The Naïve model has a predilection to over-predict fragments expected for a peptide, 

especially if its precursor carries more than two protons. A CID +3 PSM fragment table 

under Naïve model is described in Figure 4, wherein 43% of predicted fragments were 

not observed. On average, 57% of predicted fragments Yeast-CPTAC-CID (ORBI) 

PSMs never matched. Over-prediction rates are worse for HCD-Orbitrap-Testing PSMs, 

with 74% of predicted fragments missing from the corresponding MS/MS scan. Over-

prediction increases the probability of peak matching by random chance because 

MS/MS of highly charged peptides are often crowded with peaks.  False matches, in turn 

reduce the discrimination of correct matches from incorrect matches. Also, multiple 

predicted fragments may fall into single m/z bin, making the search engine double count 

fragment matches. Panel B in Figure 4 reveals patterns of charge segregation. At 

peptide bonds close to N-term, (b+1;y+2) is the dominant fragment pair; At bonds close 

to C-term, (b+2;y+1) is the dominant pair.  Near the center of the peptide, the pattern of 
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charge segregation is typically ambiguous. This gradual change is the target of the 

Basophile model.  

 

Identification rates are correspondingly lower for highly charged peptides (Figure 5).  

Some of the reduced identification is attributable to less informative fragmentation 

patterns for triply and quadruply charged peptides; if a smaller fraction of peptide bonds 

 

 
Figure 4. Fragment-peak-matches for a typical CID +3 PSM of peptide 

“TLLEAIDAIEQPSRPTDKPLR”. All the short vertical lines (including long dashes and solid line) 
represent a predicted fragment ion in m/z (A) or per peptide bond (B) under Naïve model. Solid 
red lines indicate observed ones. The long blue dash lines on panel A indicate scan ranges of the 
MS/MS spectrum; the rectangles in doted blue lines on Panel B indicate that those ions are out of 
scan range.  
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is represented by fragment ions in the MS/MS, less information is available for 

discriminating good matches from random ones.  The use of fragmentation models that 

produce excessive fragment predictions, however, worsens matching further.  

 

Figure 5. MS/MS of Highly Charged Precursors Suffers from Low Identification Rates. 
MyriMatch identified peptides from the Yeast-CPTAC-CID (LTQ-Orbi) data set, which featured six 
technical replicates for each of three instruments. The Naïve model was employed to predict 
fragments for matching. IDPicker filtered the PSMs at 2% q-value. Filtered PSMs were 
segregated by precursor charge state and normalized by the total number of MS/MS acquired 
with that charge state. MS/MS identification rates dropped dramatically at higher charge states. 

Constitution of Charge Segregation Events 

The Naïve model predicts fragments that take on all the charges that are less than the 

precursor charge, but one fragment of the pair could possibly attract all the protons, 

leaving the other neutral [29,30]. For example, a +3 precursor can take four 

unambiguous charge segregation events as (b+3), (b+2;y+1), (b+1;y+2), (y+3) and three 

ambiguous ones in between. Attempting to model all seven possible outcomes fails 

because some of these outcomes are more than ten times more common than others.  

The rare cases have too little information to establish their boundaries properly. 

Examinations of fragments from identified CID and HCD MS/MS scans revealed the 
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most common charge segregation events for each precursor class. Figure 6 

summarizes the NIST-CID, Yeast-Multi-Enzyme-CID and HCD-Orbitrap-Training data 

sets. Doubly-charged precursors fragment in a manner similar to how the Naïve model 

would predict; with a high percentage of bonds producing two singly-charged fragments. 

Triply-charged precursors yield three main types of outcomes: doubly-charged N-

terminus, doubly-charged C-terminus, or a mix of the two. Quadruply-charged peptides 

demonstrate that more charges imply more possible outcomes. For a typical doubly 

charged tryptic peptides, many of the protonation sites are accessible in a narrow energy 

range, such that the distribution of fragment charges are more close to evenly distributed, 

producing singly charged b ion and y ion with likely equal probability in mass spectrum 

[3]. However, for highly charged cases like triply charged peptides, more likely one or 

more of the protonation sites is favored than others leading to sequestration of the 

added protons, thus some fragment types with particular charge states appear more in 

mass spectrum. Basophile training was limited to models of the three most common 

patterns for +3 (exemplified in Figure 3) and the five most common outcomes for +4 

peptides.  

Although all three training sources give similar patterns of charge segregation events, 

HCD-Orbitrap-Training was different from the others in that 36% of all bonds in +3 

peptides produced only singly-charged y ions.  Initially, these bonds were mapped to the 

event “b+2;y+1,” leading to a strong bias toward this segregation event. These bonds, 

however, could also potentially be mapped to the “b+1,y+2;y+2,b+1“ (ambiguous) or 

“b+2;y+1” categories. In order to associate these low-information bonds with appropriate 

categories, we developed an adjustment algorithm for +3 HCD peptides. In brief, ordinal 

labels were assigned, with “y+1 only” bonds left blank for each peptide. The algorithm 

then fills the blanks by forcing the list of bonds to a non-decreasing order (i.e. N-terminal 
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basicity category can only increase or stay the same as one moves toward the C-

terminus). The detailed algorithm is described below. Other fragment evidence sets such 

as “y+2 only”, “b+1 only”, and “b+2 only” did not cause trouble during HCD-Orbitrap-

Training as they did not trigger bias or comprise a significant fraction of events. A similar 

phenomenon was found for +4 peptides on HCD-Orbitrap-Training data set, and a 

similar adjustment was applied. 

HCD Adjustment Algorithm: For triply charged peptides, define ordinal label “b+1/y+2”, 

“b+1,y+2/y+2,b+1“ as “1”, “2”, and “3” respectively. This algorithm tries to trim the ordinal 

labels in a “non-decreasing order” heuristically by assigning “y+1 only” either label “2” or 

“3” through the following steps.  

1. List the ordinal categories by peptide bond except “y+1 only”.  

2. If the “y+1” only is in the middle of two solid ordinal categories, fill the blank based on 

the flanking ones. For example, if the flanking ones are “1” (upstream category) and “2” 

(downstream category), fill “2”. If the flanking labels suggest there is no way of judging 

this blank (for example, “2” and “1”), delete this row.  

3. Fill the blanks with “3” where the upstream category is “3” and there is no downstream 

one. For example, if the category list shows “11123- - - -“, we finish as “111233333”. 

4. With the partially finished bonds, calculate conditional probability p(label=2 | y+1 only) 

and p(label=3 | y+1 only) by using Bayesian theory. Triply charged scenario gives 0.5 for 

both. Fill the remaining blanks where they appear at the end of the peptide. For example, 

if the category list shows “11122- - - -“, we finish as “111222233”.
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Figure 6. Precursor Charge Segregation Events Observed for Basophile training Peptides. PSMs were segregated by charge state. Charge 
states of the observed N- and C-terminal fragments were assessed for all peptide bonds. Frequencies of precursor charge segregation events are 
summarized here. Label “others” include all ordinal categories which are less than 5% and any other fragment pattern that fail to fit any category. 
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Comparison of Basophile Models 

Three different Basophile models were trained with three diverse collections of PSMs: 

Basophile-NIST with NIST-CID, Basophile-Yeast with Yeast-Multi-Enzyme-CID, and 

Basophile-HCD with HCD-Orbitrap-Training. Peptides in these three data sets differ in 

the relative distribution of basic residues and also the dissociation method employed to 

acquire their MS/MS. Basophile-NIST model represents the most peptide sequences, 

but they are almost universally from trypsin digestion. Basophile-Yeast features varied 

digestions, but it has far less training power because all data stem from the relatively 

simple yeast proteome; The Basophile-HCD model differs from the other two models in 

different fragmentation means and far higher fragment mass accuracy, protecting 

against false positive matches. All models contain two ordinal regression functions, 

tailored to predict fragmentation spectra for +3 and +4 precursors, respectively.  

The standard error (SE) of regression coefficients for all +3 models was all ≤ 0.01. 

However, SEs for +4 Basophile-Yeast and Basophile-HCD models were larger than 

corresponding Basophile-NIST model, reflecting Basophile-NIST’ use of much larger 

spectral library for training. We chose the Basophile-NIST model as the preferred variant 

because of this reason. However, it is important to note that the values of coefficients 

derived from all three training sets followed the same order (Table 5). For instance, all 

three +3 regression functions have coefficient magnitudes of Arg > His > Lys > LN at the 

N-terminus, and Arg > Lys > His > LC at the C-terminus, indicating that coefficients of all 

models are similar but on a different scale.  
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Table 5. Coefficients of predictor variables by ordinal regression. RN, HN, KN and LN denote 
N-terminal Arg, His, Lys, and other residuals; RC, HC, KC and LC denote C-terminal counterparts; 
CutOff 1-4 denote threshold value between ordinal labels. 
+3 peptides   
model RN HN KN LN RC HC KC LC CutOff1 CutOff2   
NIST 1.42 1.31 1.13 0.42 -1.68 -0.90 -1.17 -0.50 -2.23 0.78   
Yeast 1.11 0.97 0.79 0.39 -1.09 -0.87 -0.88 -0.41 -1.78 1.56   
HCD 1.09 0.97 0.75 0.33 -1.53 -0.81 -1.08 -0.42 -3.68 2.03   
+4 peptides 
model RN HN KN LN RC HC KC LC CutOff1 CutOff2 CutOff3 CutOff4 
NIST 0.79 0.80 0.73 0.30 -0.82 -0.54 -0.62 -0.30 -4.26 -1.94 2.00 4.28 
Yeast 0.62 0.56 0.47 0.28 -0.69 -0.55 -0.62 -0.29 -4.25 -1.09 0.71 3.7 
HCD 0.77 0.77 0.59 0.30 -1.24 -0.77 -0.89 -0.36 -5.92 -2.96 0.09 4.38 

 

We performed 5-fold cross-validation tests and evaluated the performance of each of the 

classifiers (trained from training set) on the subset of the data set (testing set) to get a 

robust estimate of the prediction error rates in our models. In consideration that 

unambiguous category is subset of ambiguous one, we determined that it would be 

correct classification if the function predicts ambiguous category for an unambiguous 

category. For example, if Basophile predicts “b+1,b+2;y+1,y+2” for the peptide bond 

which produced evidence of observed ions supporting “b+1;y+2”, then it is a correct 

prediction. By this criteria, 5-fold cross validation on NIST-CID data sets gave 7.59%, 

7.63%, 7.73%, 7.65%, and 7.69% error rates in +3 identifications, and 15.67%, 15.83%, 

15.85%, 15.51%, and 15.64% error rates in +4 identifications. By comparison, HCD-

Orbitrap-training data set gave 8.56%, 8.67%, 8.65%, 8.60%, 8.58% error rates in +3 

identifications, and 15.68%, 15.71%, 15.72%, 16.23%, 15.70% error rates in +4 

identifications; Yeast-Multi-Enzyme-CID data set gave 9.88%, 9.73%, 10.05%, 9.87%, 

10.02% error rates in +3 identifications, and 18.31%, 18.69%, 17.36%, 17.68%, 18.27% 

error rates in +4 identifications. It is obvious that Basophile-NIST had best prediction on 

the testing subsets for +3 identifications, followed by Basophile-HCD, and then 

Basophile-Yeast. Basophile-NIST and Basophile-HCD had very comparable error rates 

on testing subsets, and both are significantly lower than Basophile-Yeast. As such, 

Basophile-NIST is potentially the best model out of the three. Coefficients and cutoff 
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values out of cross validation showed a very small variance. For example, NIST-CID 

showed variance of all coefficients and cutoff values exclusively less than 0.0001 for +3 

identifications.  

 

Figure 7. Comparison of Basophile models and Naïve model. For each LC-MS/MS 
experiment, the prediction model that produced the most identifications was given a "vote."  
Though the HCD-trained Basophile performed well in HCD data, Basophile-NIST performed well 
across the samples.  The Naive model was competitive only in HCD data, reflecting that false 
positive matching is a smaller detriment in such data. 

 

We compared the three Basophile models to Naïve model for peptide identification. To 

accomplish this, all trained models were implemented in the MyriMatch database search 

engine alongside the Naïve prediction model. Searches for each of the four prediction 

models were run separately on two LTQ data sets (Yeast-CPTAC-CID (LTQ) and Dicty-

LTQ), and one HCD data set (HCD-Orbitrap-Testing) with the standard MVH scorer. 

Figure 7 shows the number of files from the test data sets that "vote" for a particular 

prediction model by producing the most identified spectra at the same q-value. 

Basophile-NIST performed slightly better than Basophile-HCD, and both were 

significantly better than Basophile-Yeast. These results suggested that Basophile-NIST 
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was reasonably robust for modeling HCD fragmentation even though it was trained on 

CID spectra.   

Basophile Reduces Fragment Peak List Size 

The ability of Basophile-NIST to reduce the number of fragment predictions was 

compared to that of Naïve model. Figure 8 shows the number of fragments predicted 

and matched by the Naïve and Basophile-NIST models, grouped by fragment charge 

state. Compared to the Naïve model, Basophile-NIST reduced the number of fragment 

predictions by an average of 42% with only slight reductions in numbers of matched 

peaks. A majority of predicted y+1 fragments (70%) were observed, whereas only a 

small minority of the predicted b+2 fragments were matched (13%). This is not surprising 

because the HCD-Orbitrap-Testing data set was rich in tryptic peptides that do not 

produce large numbers of b+2 fragments; a data set that enriches peptides with N-

terminal basic residues might have matched more of these ions.  

In contrast to the SQID model [31], Basophile produces a Boolean output, stating a peak 

is present or absent, rather than a probability associated with matching an experimental 

fragment. However, it is completely possible to combine the orthogonal SQID and 

Basophile models into a hybrid system that will not only assess the precursor charge 

segregation for a peptide bond but also the likelihood of observing any fragments 

produced by dissociation of that bond. This method may also reduce the over-prediction 

further by erasing peptide bonds from the prediction. 

The reduction of predicted fragments may also prove beneficial to Selected Reaction 

Monitoring (SRM) experiments.  When an SRM is initially designed for an unobserved 

peptide, a researcher may attempt to monitor all possible fragments that would be 

produced for it, then reduce the set of fragments screened in further iterations of the 
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SRM assay [32].  The use of Basophile can reduce the size of the initial set of transitions, 

enabling fewer mass spectral experiments for the first iteration or enabling the screening 

of a broader collection of peptides in the same number of experiments. 

Processing times are frequently substantial since search algorithms process millions of 

potential peptide sequences, especially when protein databases come from a big 

proteome, even though this requirement is compromised nowadays by taking use of 

modern computational technologies such as multi-threading and computer clusters. 

Basophile naturally reduces the number of fragment ions by predicting a subset of Naïve 

model, thus reducing the number of peaks compared between experimental and 

theoretical MS/MS.  As a result, Basophile reduces search time. We recorded the time 

 

Figure 8. Basophile Improves Peak Prediction Accuracy.  Basophile reduces the number of 
fragments predicted for peptide sequences.  This reduction has a minimal impact on the number 
of matched ions for identified peptides, however.  For +3 tryptic peptides, the number of matched 
b+2 fragments lags behind other classes of fragments. 
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used for searches of Yeast-CPTAC-CID (LTQ) data set with MVH as the primary score. 

Searches were performed on 25 cluster nodes, each with two processor cores. In the ten 

LTQ files, searches using Naïve model took 42 minutes on average, while searches 

using Basophile took 30 minutes. Overprediction of fragments for peptides can 

contribute to the time required to search data sets.  

Effect of the Small, but More Accurate, Peak Lists on PSM Scoring 

Systems 

We tested whether the trained Basophile-NIST models could improve peptide 

identification using the MVH and HGT+RST score systems.  By reducing the number of 

predicted fragments, Basophile could lose identifications; by improving prediction 

accuracy, Basophile might reduce false positive matching and gain identifications. 

Figure 9 compares the number of +3 and +4 peptides identified in four testing data sets 

when MyriMatch was employing the Basophile-NIST and Naïve models for the search. 

For LTQ-CID data sets, Basophile-NIST consistently improved the +3 peptide 

identification over Naive models (p-value < 0.01). However, the Basophile-NIST model 

failed to improve the peptide identifications when analyzing HCD-Orbitrap spectra. It 

appeared that the high-resolution fragment masses of HCD MS/MS neutralized any 

advantage gained from accurate fragment prediction, abolishing false-positive matching. 

We tested this hypothesis by comparing the performance of the Basophile-NIST model 

on +4 precursor MS/MS present in the HCD-Orbitrap-Testing and Yeast-Multi-Enzyme-

trpsin data sets. All spectra were searched using the above mentioned protocol. 

Basophile-NIST did not significantly outperform Naïve on +4 MS/MS in both data sets (p-

value > 0.05).  
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Both MVH and HGT+RST scorer benefited from Basophile in LTQ data set for +3 

peptide identifications. The average improvement was 30% under HGT+RST system, 

and 20% under MVH system, indicating that HGT+RST system benefited more from 

reduced but more accurate predicted fragment list.  These findings reveal that fragment 

prediction models have a strong relationship with the PSM scoring systems that they 

support.  Models like Basophile may result in a spectrum being compared to some 

predictions that are dense with peaks and others that contain relatively few peaks.  If a 

scorer is designed to normalize away these differences by taking into account the 

density of the spectrum prediction (as is the case for the HGT model), it can benefit from 

more accurate predictions. In contrast, when a scorer tends to give higher scores on 

average to predictions that are denser in peaks (as is true for MVH), more accurate 

predictions may give less benefit.  
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Figure 9. Comparison of Basophile and Naïve models on +3 and +4 peptides identified. MyriMatch employed Basophile-NIST and Naïve 
models for the search. Reduced but more accurate peak list benefits both scorers by improved peptide identifications in low resolution data, but 
not in high resolution ones. 

Naive +3 Ids

B
as

op
hi

le
 +

3 
Id

s

Yeast-CPTAC-CID (LTQ)

0 100 200 300 400 500

0
10

0
30

0
50

0

HGT
MVH

No Effect

Naive +3 Ids

B
as

op
hi

le
 +

3 
Id

s

Dicty-LTQ

0 200 400 600 800 1000 1200

0
20

0
60

0
10

00

Naive +3 Ids

B
as

op
hi

le
 +

3 
Id

s

HCD-Orbitrap-Testing

0 1000 3000 5000 7000

0
20

00
40

00
60

00

Naive +4 Ids

B
as

op
hi

le
 +

4 
Id

s

Yeast-Multi-trypsin

0 50 100 150 200

0
50

10
0

15
0

20
0

HGT
MVH
No Effect

Naive +4 Ids

B
as

op
hi

le
 +

4 
Id

s
HCD-Orbitrap-Testing

0 500 1000 2000 3000

0
50

0
15

00
25

00



32 

 

Comparison of Peptides Under Naïve or Basophile 

In order to explore how the peptides identified by MyriMatch under Basophile predictions 

compare with those from MyriMatch with naïve fragment predictions, we tested on the 

Yeast-CPTAC-CID (LTQ) data set. Replicates within this data set showed very similar 

patterns of +3 peptide overlap, and summed up in Figure 10. A large fraction (2897 

summed distinct peptide) were found in intersection, while only a small fraction of 

peptide identified exclusively by either model (254 identifications for Naïve and 820 

identifications for Basophile). The sections of the Venn diagram were analyzed in term of 

peptide length and MVH value. In one raw file, peptides in the overlap section had an 

average MVH score of 46.96 under Naïve model and 52.68 under Basophile model. 

Peptides that were exclusive to either Naïve or Basophile showed much lower MVH 

values, averaging 37.05 and 39.01, respectively. However, the significant difference 

between these two groups is that Naïve tended to identify shorter peptides (average 

length was 9.9) than Basophile (average length was 16.1). By comparison, the average 

length of peptides in the overlap section was 14.6. The overall peptide MVH score and 

length comparison in the other nine files are summarized in Table 6. As such, Basophile 

was most useful in improving recovery of longer peptide sequences.  

 

Figure 10. Overlap of +3 peptide identifications from Naïve model and Basophile model. 
Yeast-CPTAC-CID (LTQ) data (10 raw files) was searched using Naïve and Basophile model with 
MVH as sort scorer. A majority of peptide identifications are in the intersection part. Each raw file 
was analyzed separately, and the final sums are represented in the Venn diagram.  
 

2897254 820
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Table 6. Comparison of Naïve / Basophile exclusive peptide identifications in nine raw files 
of Yeast-CPTAC-CID (LTQ) data set. “Model exclusive peptides” means peptide identifications 
that were identified only by that specific model.  
file Naïve mvh Naïve length Basophile mvh Basophile length 
1 39.63 10.8 44.15 14.9 
2 40.27 11.3 44.97 15.7 
3 40.37 12.6 45.06 14.0 
4 41.92 10.5 43.81 14.3 
5 37.52 11.8 43.36 14.8 
6 39.96 10.3 43.00 15.5 
7 38.15 11.1 41.98 14.4 
8 39.17 11.0 43.84 15.0 
9 43.16 12.5 43.87 14.5 
 

Comparison of +4 peptide identifications under two models was explored in HCD-

Orbitrap-Testing data set since LTQ data set did not give +4 peptides. Basophile gave 

peptide identifications with an average of 29.0 in length while Naïve gave 22.2 instead. 

Again, Basophile tended to identify longer peptide sequences. It makes sense since 

higher charged peptides tends to have longer peptide sequences than lower charged 

ones. 

Comparison of Basophile and ppBasicity models 

The prediction model introduced by Protein Prospector (ppBasicity) predicts fragment 

charge based on the count of basic residues contained in a fragment. Both Basophile 

and ppBasicity count on basic residues for prediction, but Basophile is more realistic 

because the weights attached to each basic residue comes from training, and Basophile 

also takes fragment length into consideration.   

Basophile-NIST model performed better than ppBasicity model when searching +3 

precursors (Figure 11). Basophile-NIST increased the +3 identification rates by 27% (p-

value < 0.001) and 36% (p-value < 0.01) compared to that of ppBasicity when using 

Yeast-CPTAC-CID (LTQ) and Dicty-LTQ data sets, respectively. However, Basophile-
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NIST did not out-perform ppBasicity when using +3 precursors from HCD-Orbitrap-

Testing data set and +4 precursors from all data sets (p-value>0.05).  
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Figure 11. Comparison of Basophile and ppBasicity model on +3 and +4 peptides identified. MyriMatch employed Basophile-NIST and 
ppBasicity model for the search. Basophile-NIST outperformed ppBasicity by improved peptide identifications on low resolution data on +3 
identifications, but failed otherwise. 
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CHAPTER IV 

Conclusion 

Basophile was designed to rapidly predict peptide fragmentation spectra (m/z values) 

from sequences that are being matched to MS/MS of +3 and +4 precursors. The model 

improves the specificity of predictions by reducing the number of unnecessary fragments 

that are routinely predicted for high charge state precursors. The reduction of fragments 

not only saves 25% of Naïve search time, but also potentially benefits SRM experiments 

by reducing the set of fragments screened in further iterations. By predicting fewer 

fragments, Basophile potentially could fail to match observed fragments; by increasing 

prediction accuracy, Basophile gains identifications by reducing false positive matching. 

Basophile balances the two forces, making significant improvements for +3 

identifications and achieving equivalent performance for +4 identifications compared with 

Naïve model. Basophile identifications features longer +3 and +4 peptides than Naïve 

model, which appear more frequently in higher changed peptides digested by trypsin. 

Basophile noticeably outperforms Protein Prospector’s prediction model consistently in 

+3 identifications. Basophile also achieves simplicity by solving the prediction problem 

with an ordinal regression equation that can be easily incorporated into existing 

database search software for shotgun proteomic identification.  

  



37 

 

References 

1. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003, 422:198–207.  

2. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by 

multidimensional protein identification technology. Nat Biotechnol. 2001, 19(3):242-247. 

3. Paizs B., Suhai S. Fragmentation pathways of protonated peptides. Mass Spectro. Rev. 2005, 

24:508-548.  

4. Guthals A, Bandeira N. Peptide identification by tandem mass spectrometry with alternate 

fragmentation modes. Mol. Cell Proteomics. 2012 May 17. [Epub ahead of print]  

5. Frank AM. Predicting intensity ranks of peptide fragment ions. J. Proteome. Res. 2009, 8(5): 

2226–2240.  

11. Sun S, Meyer-Arendt K, Eichelberger B, Brown R, Yen CY, Old WM, Pierce K, Cios KJ, Ahn 

NG, Resing KA. Improved validation of peptide MS/MS assignments using spectral intensity 

prediction. Mol. Cell. Proteomics. 2007, 6(1):1-17. 

6. Eng J, McCormack A, Yates J., III. An approach to correlate tandem mass-spectral data of 

peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 

5:976–989. 

[7]. Brancia FL, Butt A, Beynon RJ, Hubbard SJ, Gaskell SJ, Oliver SG. A combination of 

chemical derivatisation and improved bioinformatic tools optimises protein identification for 

proteomics. Electrophoresis. 2001, 22(3):552-559. 

8. Kapp EA, Schütz F, Reid GE, Eddes JS, Moritz RL, O'Hair RA, Speed TP, Simpson RJ. Mining 

a tandem mass spectrometry database to determine the trends and global factors influencing 

peptide fragmentation. Anal. Chem. 2003, 75(22):6251-6264. 

9. Schütz F, Kapp EA, Simpson RJ, Speed TP. Deriving statistical models for predicting peptide 

tandem MS product ion intensities.  Biochem. Soc. Trans. 2003, 31( 6):1479-1483.  

10. Zhang Z. Prediction of low-energy collision-Induced dissociation spectra of peptides. Anal. 

Chem. 2004, 76:3908–3922.  

11. Zhang Z. Prediction of low-energy collision-induced dissociation spectra of peptides with three 

or more charges. Anal. Chem. 2005, 77:6364–6373. 



38 

 

12. Elias JE, Gibbons FD, King OD, Roth FP, Gygi SP. Intensity-based protein identification by 

machine learning from a library of tandem mass spectra. Nat. Biotechnol. 2004 , 22(2):214-219.  

13. Arnold RJ, Jayasankar N, Aggarwal D, Tang H, Radivojac P. A machine learning approach to 

predicting peptide fragmentation spectra. Pac. Symp. Biocomput. 2006:219-230. 

[14]. Frank AM. Predicting intensity ranks of peptide fragment ions. J Proteome Res. 2009, 

8(5):2226-2240. 

15. Li S, Arnold RJ, Tang H, Radivojac P. On the accuracy and limits of peptide fragmentation 

spectrum prediction. Anal Chem. 2011, 83(3):790-6. 

16. Jones JL, Dongre AR, Somogyi A, Wysocki VH. Sequence dependence of peptide 

fragmentation efficiency curves determined by electrospray ionization/surface-induced 

dissociation mass spectrometry. J .Am. Chem. Soc. 1994, 116:8368–8369. 

17. Dongre´ AR, Jones JL, Somogyi A, Wysocki VH. Influence of peptide composition, gas-phase 

basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton 

model. J. Am. Chem. Soc. 1996, 118:8365–8374. 

18. Wysocki VH, Tsaprailis GT, Smith LL, Breci LA. Mobile and Localized Protons: A framework 

for understanding peptide dissociation. J. Mass Spectrom. 2000, 35:1399–1406.  

19. Tabb DL, Fernando CG, and Chambers MC. MyriMatch: highly accurate tandem mass 

spectral peptide identification by multivariate hypergeometric analysis. J. Proteome Res. 2007, 

6:654– 661  

20. Clauser KR, Baker PR, Burlingame AL. Role of accurate mass measurement (+/- 10 ppm) in 

protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 

1999, 71(14): 2871-2882.  

21. Dasari S, Chambers MC, Martinez MA, Carpenter KL, Ham AJ, Vega-Montoto LJ, Tabb DL. 

Pepitome: evaluating improved spectral library search for identification complementarity and 

quality assessment. J. Proteome Res. 2012, 11(3):1686-1695. 

22. Chi H, Sun RX, Yang B, Song CQ, Wang LH, Liu C, Fu Y, Yuan ZF, Wang HP, He SM, Dong 

MQ. pNovo: de novo peptide sequencing and identification using HCD spectra. J Proteome Res. 

2010, 9(5):2713-2724. 



39 

 

23. Baycin D, et al. Proteomic analysis of chinese hamster ovary (CHO) cells. Revision submitted 

to J. Proteome Res.  

24. Dasari S, Chambers MC, Slebos RJ, Zimmerman LJ, Ham AJ, Tabb DL. TagRecon: high-

throughput mutation identification through sequence tagging. J. Proteome Res. 2010, 9(4):1716-

1726.  

25. Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham AJ, Bunk DM, Kilpatrick LE, 

Billheimer DD, Blackman RK, Cardasis HL, Carr SA, Clauser KR, Jaffe JD, Kowalski KA, Neubert 

TA, Regnier FE, Schilling B, Tegeler TJ, Wang M, Wang P, Whiteaker JR, Zimmerman LJ, Fisher 

SJ, Gibson BW, Kinsinger CR, Mesri M, Rodriguez H, Stein SE, Tempst P, Paulovich AG, Liebler 

DC, Spiegelman C. Repeatability and reproducibility in proteomic identifications by liquid 

chromatography-tandem mass spectrometry. J. Proteome Res. 2010, 9(2):761-776. 

26. Kessner D, Chambers MC, Burke R, Agus D, Mallick P. ProteoWizard: Open Source Software 

for Rapid Proteomics Tools Development. Bioinformatics. 2008, 24(21):2534-2536.  

27. Holman JD, Ma ZQ, Tabb DL. Identifying proteomic LC-MS/MS data sets with Bumbershoot 

and IDPicker. Curr. Protoc. Bioinformatics. 2012, Chapter 13:Unit13.17. 

28. Käll L, Storey JD, MacCoss MJ, Noble WS. Posterior error probabilities and false discovery 

rates: two sides of the same coin. J. Proteome Res. 2008, 7(1):40-44. 

29. Paizs B, Suhai S. Towards understanding some ion intensity relationships for the tandem 

mass spectra of protonated peptides. Rapid Commun Mass Spectrom. 2002, 16(17):1699-1702. 

30. Paizs B, Suhai S. Towards understanding the tandem mass spectra of protonated 

oligopeptides. 1: mechanism of amide bond cleavage. J. Am. Soc. Mass Spectrom. 2004, 

15(1):103-113. 

31. Li W, Ji L, Goya J, Tan G, Wysocki VH. SQID: an intensity-incorporated protein identification 

algorithm for tandem mass spectrometry. J. Proteome Res. 2011, 10(4):1593-1602.  

32. Prakash A, Tomazela DM, Frewen B, Maclean B, Merrihew G, Peterman S, Maccoss MJ. 

Expediting the development of targeted SRM assays: using data from shotgun proteomics to 

automate method development. J. Proteome Res. 2009, 8(6):2733-2739. 


