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CHAPTER I

INTRODUCTION

Software Product-Lines (SPLs) are a technique for creatingsoftware applications com-

posed from reusable parts that can be re-targeted for different requirement sets. For ex-

ample, in the automotive domain, an SPL can be created that allows a car’s software to

provide Anti-lock Braking System (ABS) capabilities or simply standard braking. Each

unique configuration of an SPL is called avariant.

SPL variants cannot be constructed arbitrarily,e.g., a car cannot have both ABS and

standard braking software controllers. A key step in building an SPL is therefore creating

a model of the SPL’s variability and the constraints on variant configuration. An effec-

tive technique for capturing these configuration constraints isfeature modeling[82], which

documents SPL variability and configuration rules viafeatures. Each feature represents an

increment in product functionality. A feature model can capture different types of vari-

ability, ranging fromSPL variability(e.g., variations in customer requirements) tosoftware

variability (e.g., variations in software implementation) [98].

Figure I.1: Simple Feature Model for an Automobile

SPL variants can be specified as a selection or configuration of features. Feature models

of SPLs are arranged in a tree-like structure where each successively deeper level in the

tree corresponds to a more fine-grained configuration optionfor the product-line variant,

as shown by the feature model in Figure I.1. The parent-childand cross-tree relationships
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Figure I.2: Overview of Research Approach

capture the constraints that must be adhered to when selecting a group of features for a

variant.

Overview of Research Challenges

Although SPLs help to facilitate software reuse and lower development costs across

a number of software development projects, there is a significant amount of complexity

associated with the configuration of an SPL variant. The two key challenges that pervade

most SPL configuration activities are that:

• SPLs commonly have 1,000s of variable parts or features andan equal number of

associated constraints. Fully configuring a valid SPL variant can take several days or

months. Moreover, the complexity of configuring a variant makes variant derivation

a significant cost and burden for SPL developers.

• Variants need to be optimized for a specific set of requirements. Before SPLs were
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used, tightly-coupled and brittle software solutions weredeveloped for each require-

ment set. The key advantage of this approach was that the software was highly opti-

mized for the requirement set. In order to provide comparable cost and performance,

developers need to carefully configure SPL variants to optimize key properties, such

as cost.

In order to help improve the speed at which variants can be configured, decrease the

complexity of the manual variant derivation steps, and improve the optimality of variants,

methods are needed for automating and optimizing variant configuration. Automated vari-

ant construction mechanisms have a number of challenges to overcome, such as:

1. The optimization and automation mechanisms must supportsome level of human

interaction. There are certain steps in configuration, suchas translating verbal cus-

tomer specifications into feature selections, that cannot be automated. A key problem

is determining how to help optimize the manual modeling steps in the configuration

process.

2. Because some portion of most configurations will be entered manually, automation

mechanisms must be able to operate on and complete partial solutions. The automa-

tion mechanism cannot simply throw away the decisions made during the manual

modeling process.

3. Frequently, two partial configurations need to be integrated into a single and complete

solution. For example, two developers may make configuration decisions in parallel

and an automation mechanism needs to be able to take these twopartial specifications

and produce a complete configuration that incorporates the two sets of decisions and

resolves conflicts.

4. Because configuration is an extremely complex process, any automation mechanism

must support some form of automated debugging or diagnosis.Manual configuration
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steps may produce incompatible partial configurations, invalid full configurations,

or partial configurations for which there is no valid completion. If a configuration

cannot be completed, it will be extremely difficult for developers to figure out why

and how best to remedy the error. Thus, any automated configuration mechanism

must be able to provide automated diagnostics.

Overview of Research Approach

To help address the challenges of configuring good SPL variants, we propose a research

approach that uses constraint-based programming techniques to help model engineers cre-

ate optimal or good SPL variant configurations. The approachwe propose, as shown in

Figure I.2, uses constraint solving algorithmic techniques as follows:

1. Model Intelligence integrates a constraint solver with a modeling tool and usesvi-

sual queues to show developers the optimal ways of completing modeling actions.

For example, when a modeler initiates a connection between two modeling elements,

the constraint solver can solve a Constraint Satisfaction Problem (CSP) [77] repre-

senting the semantics of the connection and show the modelerthe optimal endpoint

by highlighting ideal connection endpoints.

2. Automated Configuration Integration techniques that take one or more configu-

rations specified in parallel by a group of developers and derive the values for the

intermediate configuration choices that need to be made to properly integrate the set

of partial configurations. For example, one developer may select the data access ob-

jects to manipulate persistent data in the application, another developer selects the

database type that will be used to store persistent data, andthe solver derives the

appropriate database driver and supporting libraries to allow the data access objects

to interact with the database.

3. Automated Configuration techniques to take a partially specified configuration and
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derive a valid and complete configuration from it. For example, a developer may

specify some number of configuration choices that are necessitated by customer re-

quirements and the solver will deduce values for the remaining configuration deci-

sions based on the configuration constraints of the SPL and the developer’s optimiza-

tion goals.

4. Automated Debuggingtechniques which provide developers with recommendations

on the optimal set of modifications that can be made to a flawed configuration to make

the configuration valid. For example, an automated debugging mechanism could

suggest the minimal number of configuration changes to make in order to bring an

invalid configuration to a valid state.

Overview of Research Contributions

Summary of Research Accomplishments:

1. 22 Accepted papers, 5 first author journal papers, 10 conference papers, 1 book chap-

ter, and 6 workshop publications, including one "best paper" award

2. Best Paper Award SPLC 2008 "Automated Diagnosis of Product-line Configuration

Errors in Feature Models" was selected as the best of 30 papers at SPLC 2008

My research on product-line configuration spans a number of areas in Software En-

gineering and Distributed Systems, including Model-driven and Aspect-oriented Software

Engineering, Software Product-lines for Distributed and Embedded Systems, Autonomic

Distributed Systems, and Component-based Distributed Systems. In each area, I have

combined new constraint and heuristic based configuration and optimization techniques

to produce novel systems. In each research endeavor, I have been keenly aware of the risk

of solving a complex problem at the expense of introducing another system development

complexity. Although I have separated modeling into its ownresearch area, I have com-

bined modeling with many of the other research areas to reduce the complexity of applying
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my contributions to the analysis, configuration, and optimization of distributed and embed-

ded systems. Table l.1 describes my key research contributions obtained from applying

SPL configuration techniques to a number of areas of softwareengineering and distributed

systems:

The remainder of this section describes my contributions for each research area in more

detail.

Constraint-based Modeling Guidance

Many current software systems are so large and complex that manually producing a

correct model of the system is extremely hard. For example, building a model of how soft-

ware components in an automobile are deployed to hardware components requires adhering

to a large number of complex non-functional constraints, such as resource limitations and

safety properties. Building an automotive software deployment model that satisfies these

complex constraint sets is extremely difficult. My researchon model-driven engineering

focuses on how constraint-solvers and inference engines can be used to help guide develop-

ers towards correct modeling solutions and automate the construction of complex models.

My primary contributions in this research area are:

Constraint-based modeling guidance[70, 150, 162]: We have developed and proto-

typed two different techniques that transform model instances into equivalent constraint

programming problems and use constraint-solvers to derivevalid ways of completing in-

dividual modeling actions. For both techniques, we have developed the constraint pro-

gramming paradigms and the modeling technologies to make the paradigms usable. The

translation techniques are performed on-the-fly as developers incrementally build mod-

els. developers are shown visual cues indicating the correct ways of completing individual

modeling actions, such as highlighting the valid endpointsfor a connection that a user is

creating. The modeling guidance techniques also allow users to partially construct models
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Research Area Primary Contributions Publications
Model-driven and Aspect-
Oriented Software Engineer-
ing

1. Modeling guidance us-
ing constraint solvers

2. Constraint-based
model weaving

[146], [162], [107],
[150], [70], [160][20],
[106]

Software Product-lines for
Distributed and Embedded
Systems

1. Automated constraint-
based configuration
of product-line vari-
ants with resource
constraints and opti-
mization

2. Diagnosis of product-
line configuration er-
rors

[161], [157], [149],
[156], [145], [153]

Autonomic Systems

1. Configuration healing
using constraint-
solvers

2. Modeling and simu-
lation of autonomic
component-based
systems

[163], [152], [155],
[159], [151]

Component-based Dis-
tributed Systems 1. Deployment and con-

figuration modeling
and automation

[144], [154], [147],
[106]

Table I.1: Summary of Research Accomplishments

and then use a constraint solver to autonomously complete a large number of modeling ac-

tions, such as creating a series of connections between model elements, to bring the model

to a valid state.
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Constraint-based model weaving[107, 146]: Our research approach created a tech-

nique, called constraint-based weaving, that maps model weaving to a constraint satisfac-

tion problem (CSP) and uses a constraint-solver to deduce the appropriate weaving strategy.

By mapping model weaving to a CSP and leveraging a constraintsolver, our technique (1)

generates solutions that are correct with respect to the weaving constraints, (2) can incor-

porate complex global weaving constraints, (3) can provideweaving solutions that are opti-

mal with respect to a weaving cost function, and (4) can eliminate manual effort that would

normally be required to specify pointcuts and maintain themas target models change.

Resource-constrained Software-product Line Variant Configuration for Distributed

and Embedded Systems

Research focus: Software Product-Lines (SPLs) are software architectures built on a

set of reusable components that can be reconfigured for different requirement sets. A key

requirement of an SPL is a specification of the variability inthe architecture and how the

points of variability affect each other. The most common method of documenting this vari-

ability is with a Feature Model. A feature model uses a tree-like structure to describe the

points of variability in an SPL and the possible values for the variability points. Feature

models can contain thousands of features and complex constraints making finding a good

or valid configuration hard. We have devised techniques for (1) automatically deriving

configurations that maximize a goal function with a constraint solver and (2) diagnosing

errors in feature model configurations. These techniques allow SPL developers to signif-

icantly reduce the complexity of both finding a good configuration and pinpointing errors

in manual configuration decisions. My primary contributions in this research area are:

Constraint-based automated configuration subject to resource constraints [145,

149, 153, 156, 161]: SPLs designed for systems with resourceconstraints, such as mobile

devices, create a unique challenge for automated product variant selection engines since
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deriving valid configurations subject to resource constraints is NP-Hard. Previously, au-

tomation techniques did not incorporate configuration resource consumption constraints

into variant selection and did not address how a SPL could be designed to improve auto-

mated variant selection speed. Through our research work, we have developed CSP and

knapsack-based configuration techniques whose input is (1)the requirements of SPL con-

struction and (2) the resources available to the configuration and whose output is the op-

timal SPL configuration that will fit into the resource limits. These techniques provide

automatic configuration selection based on configuration rules and resource constraints.

These techniques also ensure that the configuration is optimal with regard to a configurable

cost function.

CSP-based feature configuration error diagnosis[157]: Configuration of large fea-

ture models can involve multiple stages and participants, which makes it hard to avoid

conflicts and errors. Our research provided three contributions to debugging feature model

configurations: (1) we created a technique for transforminga flawed feature model configu-

ration into a CSP and showed how a constraint solver can derive the minimal set of feature

selection changes to fix an invalid configuration, (2) we created methods for using this

technique to automatically resolve conflicts between configuration participant decisions,

and (3) we conducted experiments that show that our technique scales to models with over

5,000 features, which is well beyond the size used to validate other automated techniques.

Model-based Healing in Distributed Autonomic Systems

Research focus: Developing and maintaining enterprise applications is hard, due in

part to their complexity and the impact of human operator error, which have shown to

be a significant contributor to distributed system repair and down time. The aim of auto-

nomic computing is to create distributed applications thathave the ability to self-manage,

self-heal, self-optimize, self-configure, and self-protect, thereby reducing human interac-

tion with the system to minimize down-time from operator error. Although the benefits
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of autonomic computing are significant, the pressures of limited development timeframes

and inherent/accidental complexities of large-scale software development have discouraged

the integration of sophisticated autonomic computing functionality into distributed appli-

cations. My primary contributions in this research area are:

Fine-grained component healing[163]: For each potential error state that an appli-

cation could enter, most existing MDE adaptation techniques require explicitly modeling

both the error state and the numerous actions to transition from the error state to a correct

state. For large enterprise applications, there are usually a significant number of poten-

tial error states and complex nuanced considerations (e.g.availability of other services,

database locks held, transaction states, etc.) that make itvery difficult to create a model

for application healing. Rather than explicitly modeling error states and recovery actions,

we developed a technique, called Refresh, thta uses featuremodels to capture the rules for

determining what is or is not a correct configuration/error state. Feature models provide

a mechanism for validating and deriving valid configurations without explicitly specifying

every recovery path. Our research has shown how 1) feature models can be used to identify

errors, 2) a constraint solver can be used to derive a new and valid application configura-

tion, and 3) the applicationŠs component container can be used to safely abort transactions,

release locks, and reboot the failed subsystem with the new valid configuration.

Domain-specific modeling techniques for autonomic systems[151,152,159]: To re-

duce the complexity of developing autonomic component-based systems, we developed a

modeling language and toolsuite, called J2EEML. J2EEML provides a high-level model-

ing notation that helps simplify the development of autonomic systems by providing no-

tations and abstractions that are aligned with autonomic computing, QoS, and EJB ter-

minology, rather than low-level features of operating systems, middleware platforms, and

third-generation programming languages. Our toolsuite also includes a customized imple-

mentation of the QSim algorithm that allows developers to perform model validation of key

autonomic design decisions related to continuous system properties.
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Automating the Deployment and Configuration of Component-based Distributed and

Embedded Systems

Research focus: Distributed real-time and embedded (DRE) systems are increasingly

being built using component-based technologies. Component technologies facilitate soft-

ware reuse across applications by allowing the dynamic assembly of applications at deploy-

ment time via configuration scripts. The late-binding properties of component technolo-

gies allow application developers to reuse existing software and reduce costs by leveraging

commercial-off-the-shelf (COTS) components. Application developers have traditionally

used tightly-coupled proprietary solutions to handle the tight requirements and resource

restrictions of DRE systems. Composing a component-based application from components

that are not specifically designed for the individual application poses a number of chal-

lenges. For example, highly specialized components can make assumptions, such as what

type of underlying operating system will be used, that reusable components cannot make.

These assumptions can help improve performance (e.g., using specialized APIs) at the cost

of reusability. Because DRE systems often operate in environments with little resource

slack, being unable to make these key assumptions makes it difficult to find a configura-

tion that meets the required timeliness, safety, and other non-functional properties. My

research has focused on automated techniques for dynamically configuring and optimizing

component-based applications that are subject to resourceconstraints. My primary contri-

bution in this research area is:

Dynamic constraint-based component configuration and optimization at applica-

tion launch [144, 154, 155]: At the heart of our research approach to solve the problems

associated with deploying and configuration component-based applications is a MDE tool

called Fresh. Fresh is designed to reduce the complexity of deriving a correct application

configuration and implementing the configuration in configuration scripts. Fresh simplifies

and improves the correctness of configuring DRE component-based applications by: (1)
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Capturing configuration rules through feature models, which describe application variabil-

ity in terms of differences in functionality; (2) Translating an application’s feature models

into a CSP and using a constraint solver to automatically derive a correct application config-

uration for a requirements set; (3) Facilitating configuration optimization for a requirements

set by providing a configurable cost function to the constraint solver to select optimal con-

figurations; and (4) Providing an XML configuration file annotation language that allows it

to directly inject configuration decisions into configuration scripts at application launch.

Dissertation Organization

Each chapter describes a single focus area, the unresolved challenges in the area, and

our solution or proposed solution to the challenges. The remainder of this dissertation is

organized as follows: Chapter II presents a taxonomy of existing research related to opti-

mizing the configuration of SPL variants; Chapter III explores the automated configuration

of SPL variants; Chapter IV delves into the integration of two partial EJB configurations;

Chapter V investigates the automated configuration of CorbaComponent Model (CCM) ap-

plications; Chapter VI presents a technique for optimizingand automating aspect weaving.

Chapter VII evaluates the optimization of manual modeling steps; Chapter VIII presents

an approach for automating and optimizing the healing of service configurations using fea-

ture models; Chapter IX presents a heuristic technique for solving large scale configuration

problems with resource constraints; Chapter X presents an approach to optimizing hard-

ware and software configuration in tandem; and Chapter XI presents our proposed solution

to debugging invalid configurations.
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CHAPTER II

RELATED WORK ON CONFIGURATION OPTIMIZATION

This chapter categorizes and examines existing research efforts related to optimizing

the configuration of SPL variants. The research is divided into categories based on: cus-

tomizing SPL variants based on hardware and other non-functional concerns; automated

configuration integration; automating the weaving of aspects, which are often used to help

implement SPLs; healing configurations when SPL componentsfail; and debugging SPL

configuration errors.

Customizing SPL Variants for Non-functional Concerns

A key challenge in SPL variants is determining how to customize a variant based on a

set of non-functional requirements. One area where variantcustomization is particularly

difficult is the customization of software for mobile devices, such as a cell phone. This

section examines existing research in the area of software customization for mobile devices.

In [93], Mannion et al present a method for specifying SPL compositional requirements

using first-order logic. Each feature is modeled as a booleanvariable and the selection

of a feature is tied to a number of logical implications. The logical implications define

the constraints imposed on the SPL when a particular featureis selected. The validity

of a variant can be checked by transforming its feature selection into a set of values for

these boolean variables and ensuring there are no contradictions. In [94], Mannion et al.

enhance this approach to allow valid product variants to be derived using SAT solvers.

The key limitation of this approach is that it is geared towards checking the correctness

of the SPL composition with respect to the feature model and not the correctness of the

composition with respect to other non-functional requirements. Although non-functional

requirements can be used to inform the construction of the feature model or augment the
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predicate logic as further boolean variables, the approachcannot handle integer properties,

such as cost. This limitation makes it difficult to perform optimization, such as cost or

memory minimization. Further discussion on these limitations versus a constraint-based

approach is available in [22].

A mapping from feature selection to a CSP is provided by Benavides et al. [22]. Many

of the research approaches in this dissertation use this same reduction but also extend it

with the capability to handle references and resource constraints. Resource constraints are

a key requirement type in mobile devices with limited capabilities. Constraint-based con-

figuration approaches, such as Benavides’, have exponential worst case time complexity.

Benavides et al. do not address how an SPL can be designed to avoid this worst case

behavior and ensure that automatic variant configuration ispossible.

In [88], Lemlouma et. al, present a framework for adapting and customizing content

before delivering it to a mobile device. Their strategy takes into account device preferences

and capabilities. The approach of customizing software is somewhat comparable in that

each attempts to deliver customized data to a device based onthe device’s capabilities and

preferences. A key limitation of Lemlouma’s approach is that it does not handle resource

constraints. Resource constraints are a critical factor when selecting software features for

a device with extremely limited hardware resources.

Many complex modeling tools are available for describing and solving combinatorial

constraint problems, such as those presented in [33, 40, 57,99, 129]. These modeling tools

provide mechanisms for describing domain-constraints, a set of knowledge, and finding so-

lutions to the constraints. These tools, however, do not provide a high-level mechanism to

capture non-functional requirements and SPL composition rules geared towards mobile de-

vices. These tools also do not dictate exactly how an SPL is modeled using constraint-based

programming. Benavides et al. [22] have laid out one approach to building a constraint-

based model of SPL configuration, but as we pointed out earlier, resource constraints and
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SPL design decisions to improve solving performance have not been investigated suffi-

ciently.

Integrating Partial SPL Configurations

Pure::variants[23] is a commercial tool that provides feature modeling capabilities.

Pure::variants allows developers to specify features and feature constraints, validate fea-

ture selections, and to derive required completions of a feature selection. Pure::variants

requires developers to manually specify how features from one feature model affect fea-

tures in another feature model. Pure::variants does not automate the synchronization of

feature models, which is an important capability for distributed development. The lack of

model synchronization and integration capabilities prevents developers from working in a

distributed fashion.

BigLever’s Software Gears[31] is another commercial feature modeling and software

variant management tool. Software Gears supports featuressimilar to Pure::variants includ-

ing: feature modeling, automated feature selection completion, and configuration injection.

Software Gears requires manually developed mappings between features. BigLever suffers

from the same drawbacks of Pure::variants in that it does notprovide mechanisms for syn-

chronizing and integration feature selections performed in parallel.

Various approaches [101, 120] have been devised to handle the complexity of config-

uring applications. Other techniques have also been proposed for variant configuration in

SPLs based on configuration rules for application components [133]. This related work

focuses on how a configuration problem can be formalized as a CSP. My work in this

dissertation extends many of these ideas, particularly those that describe a generic model

of configuration as a CSP [101]. With my work, however, modeling has been used to

make these techniques practical for industrial SPLs. Theseapproaches provide key build-

ing blocks of automated product configuration, but do not address the specific challenges

related to decentralized SPL configuration.
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Modeling Guidance Related Work

There are a plethora of technologies and standards available for building MDD tools.

This section explores some of the main frameworks, tools, and specifications that are avail-

able to develop model-driven processes for software systems.

Domain-independent modeling languages.On one end of the MDD tool spectrum are

Unified Modeling Language (UML) [58] based tools, such as IBM’s Rational Rose [115],

that focus on building UML and UML-profile [58] based models.When using UML, all

models and languages must be specializations of the UML language. UML provides a

single generic language to describe all domains. The advantage of the domain-independent

approach of UML-based tools is the increased interoperability between modeling platforms

that can be obtained by describing models using a single modeling language and the wide

acceptance of the language. New languages can be constructed on top of UML by defining

profiles, which are language extensions. UML is based on the MOF metamodel specified

by the OMG.

Domain-specific modeling languages.On the other end of the MDD tool spectrum are

domain-specific modeling language (DSML) [87] tools. In contrast to UML, DSML tools

do not necessarily share a common metamodel or language format. This freedom allows

DSMLs to have greater expressivity and handle domains (suchas warehouse management,

automotive design, and product line configuration), that contain concepts (such as spatial

attributes) that are not easily expressed and visualized using UML-based tools. The draw-

back of DSMLs, however, is that choosing a language generally ties a development process

not only to a specific way of representing the model but also generally to a specific tool.

Although the loss of interoperability can be problematic, transformations can be written to

convert between model formats and still achieve tool interoperability. In many cases, the

greater expressivity gained by using a DSML can greatly improve the usability of the MDD

tool.

Tools for building DSMLs.To build a DSML, a metamodeling language must be used to
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define the syntax of the language. A metamodel describes the rules that determine the cor-

rectness of a model instance and specifies the types that can be created in the language. The

OMG’s current standard is the Meta-Object Facility (MOF) [60] language. MOF provides

a metamodel language, similar to UML, that can be used to describe other new languages.

MOF itself is recursively defined using MOF. MOF is a specification and therefore is not

wedded to a particular tool infrastructure or language technology. Many DSMLs can be

described using MOF.

Another popular metamodeling language is the Eclipse Modeling Framework’s (EMF)

[30] Ecore language. Ecore has nearly identical language constructs to MOF but is a con-

crete implementation rather than a standard specification.Developers can describe DSMLs

using Ecore [30] and then leverage EMF to automatically generate Java data structures

to implement the DSML. EMF also possesses the capability to generate basic tree-based

graphical editing facilities for Eclipse that operate on the Java data structures produced by

EMF.

Complex diagram-like visualizations of EMF-based modeling languages can be devel-

oped using the Graphical Editor Framework (GEF) for Eclipse[30]. GEF provides the

fundamental patterns and abstractions for visualizing andinteracting with a model. Editors

can be developed using GEF that allow modelers to draw connections to create associations,

nest elements to develop containment relationships, and edit element attributes. GEF edi-

tors are based on the Model, View, Controller (MVC) pattern [61]. GEF, however, requires

complex graphical coding.

The Graphical Modeling Framework (GMF) [6], is higher levelframework, built on top

of GEF, that simplifies the development of graphical editors. GMF automates the construc-

tion of the controller portion of GEF editors and provides a set of reusable view classes.
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MVC controllers are developed using GMF by creating complexXML files that map el-

ements and their attributes to views in the model. GMF takes the XML mappings of ele-

ments to views and generates controllers that developers can use to synchronize the model

and view of the MDD tool automatically.

Even with the powerful development frameworks presented thus far, developing a visual

MDD tool requires significant effort. Meta-programmable modeling environments [87]

help alleviate this effort by allowing developers to specify the metamodel for a DSML vi-

sually. After the visual specification for the language is complete, the meta-programmable

modeling environment can automatically generate the appropriate code and configure itself

to provide graphical editing capabilities for the modelinglanguage.

Meta-programmable modeling environments also provide complex remoting, model

traversal, library, and other capabilities that are hard todevelop from scratch. Two examples

of these environments are the Generic Modeling Environment(GME) [87], which is a

Windows-based meta-programmable MDD tool, and the GenericEclipse Modeling System

(GEMS) [160], a part of the Eclipse Generative Modeling Technologies (GMT) project.

The main tradeoff in using meta-programmable modeling environments is that they tend to

provide less flexibility in the visualization of the model.

Many modeling techniques rely on a constraint specificationlanguage to provide cor-

rectness checking rules that are hard to concisely describeusing a graphical language. Cer-

tain types of constraints that specify conditions over multiple types of modeling elements,

not necessarily related through an interface or inheritance, are more naturally expressed

using a textual constraint specification language. The constraint language rules are run

against instances of the UML, EMF, or other models to ensure that domain constraints are

met. Constraint failures are returned to the modeler through the use of popup windows or

other visual mechanisms.
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The OMG Object Constraint Language (OCL) [140] is a standardconstraint speci-

fication for modeling technologies. OCL allows developers to specify invariants, pre-

conditions, and post-conditions on types in the modeling language. For example, the OCL

constraint:

context ECU

inv: self.hostedComponents->collect(x

| x.requiredRAM)->sum() < self.RAM

can be used to check that the sum of the RAM demands of the components hosted by an

electronic control unit (ECU) do not exceed the available RAM on the ECU. The first line

of the OCL rule defines the context or the type to which the OCL rule should be applied.

The second part of the rule, beginning with "inv," defines theinvariant condition for the

rule. When there is a change to a property of a modeling element of the context type, the

invariant conditions for the rules applicable to the element must be checked. Invariants that

do not hold after the modification are flagged as errors in the MDD tool.

OCL works well for localized constraints that check the correctness of the properties

of a single modeling element. As described earlier, however, the rule can only be used to

check the correctness of the state of a modeling element and not to derive valid states for

a modeling element, which is a process called backward chaining. In a modeling context,

backward chaining is a process whereby the MDD tool deduces correct modeling actions

based on the domain constraints. For example, if it were possible to use the above OCL

rule to backward chain, a MDD tool could not only determine whether or not an ECU was

in a correct state but also, given the current state of an ECU,produce a list of components

that could be hosted by the ECU without violating the rule.

For software systems with global constraints and large models, the inability of tradi-

tional modeling and constraint checking approaches, such as OCL, to not only flag errors

but deduce solutions limits the utility of model-based development approaches. Backward
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chaining (providing modeling guidance) becomes more important as domains become more

complex, and where it is thus harder to handcraft solutions.

Deriving Solutions that meet a global constraint.The increasing proliferation of DRE

systems is leading to the discovery of further hard modelingproblems. These domains all

tend to exhibit problems, such as scheduling with resource constraints, that are exponential

in complexity since they are different types of NP problems.A key challenge in developing

effective and scalable DSMLs and models for these domains isderiving the overall organi-

zation and architecture of MDD tools and software platformsthat can simultaneously meet

stringent resource, timing, or cost constraints.

Mobile devices are a domain that have become widely popular and typically exhibit

tight resource constraints that must be considered when designing software. Software de-

sign decisions, such as the CPU demand of the application, often have physical impacts on

the device as well. For example, the scheduling of and workload placed on the CPU can

affect the power consumed by the device. Poor scheduling or resource allocation decisions

can therefore limit battery life.

Determining the appropriate scheduling policies and application design decisions to

handle the resource constraints of mobile devices is critical. Without the proper decisions,

devices can have limited battery life and usability. Scheduling with resource constraints,

however, is an NP problem and thus cannot be solved manually for non-trivial problems.

Adhering to non-functional requirements. Another challenge of DRE systems is that

they often exhibit numerous types of non-functional QoS requirements that are hard to

handle manually. For example, in automotive development, an application may have com-

munication timing constraints on the real-time components(e.g., anti-lock braking control),

resource constraints on components (e.g., infotainment systems), and feature requirements

(e.g., parking assistance) [141]. In environments with this range of QoS requirements, a

correct design must solve numerous complex problems and solve them in a layered manner

so the solutions are compatible.
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For example, the placement of two components on particular ECUs may satisfy a tim-

ing constraint but cause a resource constraint failure for another component, such as the

infotainment system. Not only must modelers be able to solvenumerous types of individ-

ually challenging problems, therefore, but they must be able to find solutions that meet all

of the requirements.

Another area where complex constraints are common is in configuration management,

which is key in emerging software development paradigms, such as product-lines [98] and

feature modeling [81]. In these domains, applications are built from reusable software com-

ponents that interact through a common set of interfaces or framework. Applications are

assembled using existing software assets for specific requirement sets. For example, in mis-

sion critical avionics product lines, such as Boeing Bold Stroke [123], the correct software

component to update the heads-up display (HUD) is selected based on the timing, memory,

and other requirements of the particular airframe that the software is being deployed to.

Configuration-driven domains exhibit the same characteristics of computationally complex

constraints that drive overall system organization as other complex domains.

Debugging Related Work

In prior work [131], Trinidad et al. have shown how feature models can be trans-

formed into diagnosis CSPs and used to identifyfull mandatory features, void features, and

dead feature models[131]. Developers can use this diagnostic capability to identify fea-

ture models that do not accurately describe their products and to understand why not. The

techniques described in this dissertation build on this idea of using a CSP for automated

diagnosis. Whereas Trinidad focuses on diagnosing featuremodels that do not describe

their products, we build an alternate diagnosis model to identify conflicts in feature config-

urations. Moreover, we provide specific recommendations asto the minimal set of features

that can be selected or deselected to eliminate the error.
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Batory et al. [17] also investigated debugging techniques for feature models. Their tech-

niques focus on translating feature models into propositional logic and using SAT solvers

to automate configuration and verify correctness of configurations. In general, their work

touches on debugging feature models rather than individualconfigurations. The approach

in this dissertation focuses on another dimension of debugging, the ability to pinpoint errors

in individual configurations and to specify the minimal set of feature selections and dese-

lections to remove the error. Furthermore, propositional logic-based approaches do not typ-

ically provide maximization or minimization as primitive functions provided by the solver.

Since, the work in this dissertation uses a CSP-based approach, minimization/maximization

diagnosis functionality is built-in.

Mannion et al. [93] present a method for encoding feature models as propositional for-

mulas using first-order logic. These propositional formulas can then be used to check the

correctness of a configuration. Mannion, however, does not touch on how incorrect con-

figurations are debugged. In contrast, our work in this dissertation provides this capability

and can therefore recommend the minimal feature modifications to rectify the problem.

Pure::variants [23], Feature Modeling Plugin (FMP) [46], FeAture Model Analyser

(FAMA) [21], and Big Lever Software Gears [31] are tools developed to help developers

create correct configurations of SPL feature models. These tools enforce constraints on

modelers as the features are selected. None of these tools, however, addresses cases where

feature models with incorrect configurations are created and require debugging.
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CHAPTER III

AUTOMATED CONFIGURATION

Challenge Overview

This chapter motivates the need for automated configurationmechanisms that choose

application configurations on a user’s behalf. To illustrate the need for automated configu-

ration mechanisms, the dynamic provisioning of software for mobile phones is used as an

example. We show how our automated constraint-based configuration techniques address

the gaps in existing automated variant configuration research.

Introduction

The increasing popularity and abundance of mobile and embedded devices is bringing

the promise of pervasive computing closer to reality. A recent trend in mobile devices

that makes pervasive computing more realistic is the proliferation of services that allow

mobile devices to download software on-demand. Mobile phones, for example, can now

access web-based applications, such as google mail, or download custom applications from

services, such as Verizon’s “Get It Now.” Google delivers both a web-based interface to

google mail and an application that can be downloaded to a mobile phone.

In a pervasive computing environment, the ability to download software on-demand

will play a critical role in delivering custom services to users where and when they are

needed. For example, when a mobile device enters a retail store, software for browsing

back room inventory, displaying store circulars, and purchasing items can be downloaded

by the mobile device. When exiting the store, the device may be carried onto a train, in

which case applications for placing food orders, checking train schedules, and reserving

further tickets could be downloaded by the mobile device.
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Software product-lines (SPLs) [38] are a promising approach to help developers man-

age the complexity of the variability between mobile devices [14, 105, 165]. SPLs [38]

enable the development of a group of software packages that can be retargeted for differ-

ent requirement sets by leveraging common capabilities, patterns, and architectural styles.

The design of a SPL is typically guided by scope, commonality, and variability (SCV)

analysis [41]. SCV captures key characteristics of software product-lines, including their

(1) scope, which defines the domains and context of the SPL, (2)commonalities, which

describe the attributes that recur across all members of thefamily of products, and (3)vari-

abilities, which describe the attributes unique to the different members of the family of

products.

Using a SPL, developers can create software architectures that can be rapidly retargeted

to the capabilities of different mobile devices. In a pervasive environment, however, the

retargeting of a software application to produce a valid variant for a device must happen

online. When a device enters a particular context, such as a retail store, the application

provider service must very quickly deduce and create a variant for the device. With the

large array of device types and rapid development speed of new devices and capabilities, the

system will not be able to know about all device typesa priori. As devices enter a context,

their unique capabilities must be discovered and dealt withefficiently and correctly.

Current techniques for automating variant construction from component-based models

or feature models, such as those presented in [22, 93, 101, 121, 133], do not sufficiently

address various challenges of designing and implementing an automated approach to se-

lecting a product variant for a mobile device. One common capability lacking in each of

these approaches is the ability to consider resource consumption constraints, such as the

total available memory consumed by the features selected for the variant must be less than

256 kilobytes. Resource constraints are important for mobile devices since resources are

typically limited. Some resources, such as cellular network bandwidth, also have a mea-

surable cost associated with them and must be conserved.
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Another missing detail of these approaches is the architecture for how a device discov-

ery service would be used to characterize a device’s non-functional properties (such as OS,

total RAM, etc.) so that a variant can be selected for them. A variant selection engine

for mobile devices must have a way to interface with a discovery mechanism. Finally, to

provide fast feature selection engines (which aids dynamicsoftware delivery for mobile de-

vices) more research is needed on how SPL design decisions impact the speed of different

automation techniques.

To address these gaps in online mobile software variant selection engines, we have de-

veloped a tool calledScatterthat first captures the requirements of a SPL and the resources

of a mobile device and then quickly constructs a custom variant from a SPL for the device.

this chapter presents the architecture and functionality of Scatter and provides the following

contributions to research on custom application deployment in pervasive environments:

• We describe Scatter’s graphical requirement and resourcespecification mechanisms

and show how they facilitate the capture and analysis of a wide variety of requirement

types.

• We discuss how Scatter transforms requirement specifications into a format that can

be operated on by a constraint solver and how we extend existing constraint-based

automation approaches [22] to include resource constraints.

• We describe the automated variant selection engine, basedon a Constraint Logic

Programming Finite Domain (CLP(FD)) solver [77,134] and show how it can rapidly

produce both correct and optimal variants based on the requirements.

• We present data from experiments that show how SPL constraints impact variant

selection time for a constraint-based variant selection engine.

• We describe SPL design rules that we have gleaned from our experiments that help

to improve variant selection time when using a constraint-based approach.
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Challenges of Automated Variant Selection for Mobile Devices

The following are three key challenges associated with creating an automated variant

selector in a pervasive environment:

• Unknown device signatures.Although devices may share common communication

protocols and resource description schemas, a variant selection service will not know all

device signatures at design time. To provide on-demand variant selection when a new de-

vice is encountered, the selection mechanism must be fast. Moreover, devices may possess

different signatures. On the one extreme, a laptop may be carried onto a train with a rel-

atively powerful Intel Core Duo processor and a gigabyte or more of RAM. On the other

extreme, a Treo mobile phone may be discovered with a 312mhz XScale processor and

64mb of RAM. A variant selector must be able to handle these diverse device descriptions.

• Variant cost optimization. Each variant may have a cost associated with it. There

may be many valid variants that can be deployed and the variant selector must possess

the ability to choose the best variant based on a cost formula. For example, if the variant

selected is deployed to a device across a general packet radio service (GPRS) connection

that is billed for the total data transferred, it is crucial that this cost/benefit tradeoff be

analyzed when determining which variant to deploy. If one variant minimizes the amount

of data transferred over thousands or hundreds of thousandsof device deployments, it can

provide significant cost savings.

• Limited selection time. A variant selection may need to occur rapidly. On a train,

for instance, a variant selection engine may have tens of minutes or hours before the device

exits (although the traveler may become irritated if variant selection takes this long). In

a retail store, conversely, if customers cannot get a variant of a sales application quickly,

they may become frustrated and leave. To provide a truly seamless pervasive environment,

automated variant selection must happen rapidly. When combined with the challenge of not

knowing device signaturesa priori and the need for optimization, achieving quick selection

times is even harder.
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Capturing PLA and Mobile Device Requirements

Traditional processes of identifying valid PLA variants involve software developers

manually determining the software components that must be in a variant, the components to

configure, and how to compose and deploy the components. In addition to being infeasible

in a pervasive environment (where the target device signatures are not known ahead of time

and variant selection must be done on demand), such manual approaches are tedious and

error-prone and are a significant source of system downtime [50]. Manual approaches also

do not scale well and become impractical with the large solution spaces typical of PLAs.

One way to overcome the speed and correctness deficiencies ofmanual variant selection

is to capture a formal model of the PLA’s commonality and variability so that automation

can take place. In addition to capturing the composition rules for building variants, a model

is needed to analyze the non-functional requirements of a variant to avoid selecting variants

that are compositionally correct, but whose functional requirements fail due to being de-

ployed on incompatible or insufficient infrastructure. Figure III.1 shows the cycle of device

discovery, variant selection based on requirements, and variant deployment on a train.

Figure III.1: Selecting a Train Ticket Reservation Service for a Device

27



For example, a ticket reservation service for a train may require 1 megabyte of mem-

ory and 256 kilobits of data transfer over a GPRS connection.If the reservation service is

deployed to a device with insufficient free memory, it will not function properly even if it

adheres to the PLA compositional rules. To properly configure and select a variant dynam-

ically, therefore, both compositional and non-functionalrequirements must be considered

and matched against the target device.

Capturing and relating composition and non-functional requirements to a mobile device

is hard. The remainder of this section describes key challenges of building a compositional

and non-functional requirements model of a PLA and outlineshow our Scatter tool ad-

dresses them.

Solution Approach

The Scatter tool helps automate variant selection for mobile devices by providing:

1. A graphical modeling tool that defines a domain-specific modeling language (DSML)

for specifying variant composition rules via a Visio-like interface, as shown in Fig-

ure III.2. Scatter allows developers to visually model (1) the components of their

PLA, (2) the dependencies and composition rules of components, and (3) the non-

functional requirements of each component.

2. A compiler that converts the graphical models from the Scatter modeling tool into

both a Prolog knowledge base and a Constraint Satisfaction Problem (CSP) [77,134]

that can be operated on using a Prolog constraint solver. Scatter’s formulation of

the CSP is an extension of the model presented in [22], which includes resource

constraints between components or features.
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3. A remoting mechanism that allows a device discovery service to communicate dis-

covered devices to Scatter’s variant selection engine. Theremoting mechanism al-

lows the discovery service to report back key device non-functional properties, such

as OS, memory, and CPU speed.

4. A variant selection engine, based on a Prolog constraint solver, that can automatically

select a correct and optimal variant for a device. The Scatter selection engine feeds

the device specification, provided by a discovery service, and Prolog knowledge base

created by the Scatter compiler, to the constraint solver. The selection engine then

translates the results from the constraint solving back into configuration decisions for

the variant.

Scatter is implemented using the open-source Generic Eclipse Modeling System (GEMS) [151,

153], which is part of the Eclipse Generative Modeling Technologies (GMT) project. GEMS

provides a convenient way to define the metamodel,i.e., the visual syntax of the modeling

language. Based on the metamodel, GEMS automatically generates a graphical editor that

enforces the grammar specified in the metamodel. Scatter extends our previous work using

Role-based Object Constraints (ROCs) and Model Intelligence [106,148]. Models created

in Scatter are transformed via the ROCs infrastructure intoformats that can be operated on

by a constraint solver.

Scatter Graphical PLA Models

To facilitate the analysis of the variant solution space requires a formal grammar to

describe the structure, commonality, and variability (SCV) analysis of the PLA and its valid

configurations. This customization grammar can then be usedto automatically generate and

explore the variant solution space. Scatter provides a visual modeling tool for capturing the

SCV of a PLA, as seen in Figure III.2. This view allows developers to formalize which

components are available in the PLA, what applications can be constructed, and how each

application is composed. The components can be used as an abstraction to describe a
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PLA both on system structure [95] or using feature modeling [22, 81]. In our approach,

configurations of components or features can be modeled as variabilities using Scatter’s

SCV model.

To capture a formal definition of the PLA, the components on which it is based must

be modeled. TheComponentelement is the basic building block in the Scatter DSML that

represents an indivisible unit of functionality, such as a Java class or specific feature. For

instance, the various food ordering applications areComponentsin our train example.

Figure III.2: Scatter PLA Composition and Non-functional R equirements

Dependencies between components can be created by specifying a composition pred-

icate (Required, Exclusive OR, Cardinality, or Exclusion)and theComponentsto which

the predicate should be applied. For our train example, theFoodServicecomponent is con-

nected to the Exclusive OR predicate, which can be connectedto thefirst classandcoach

class menucomponents. This composition indicates that theFoodServicecomponent can

be deployed with exactly one of these menus. The same composition rule could also be

specified using theCardinaltypredicate by specifying that 1..1 of thefirst classandcoach

class menucomponents can be deployed with theFoodServicecomponent.

Componentdependencies can be constructed hierarchically from othercomponents

with dependencies to capture the compositional variability in a PLA. Components can
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also have composition rules with predicates that refer to arbitrary other components in

the model. This mechanism is identical to the concept of feature references [49]. To spec-

ify the compositional variability in the PLA, developers build ComponentandPredicate

graphs that show the dependencies and composition rules of the applications and their con-

stituent pieces.

By capturing PLA compositional variability, developers can formally specify how valid

variants are composed. With a formal specification of the variant construction rules, Scatter

can then automatically explore the variant solution space to discover all valid compositional

variants of the PLA for a given device.

Non-functional Requirements Capture

One challenge when building a tool to model a PLA’s non-functional requirements is

providing a mechanism that not only allows modelers to express a wide variety of constraint

types, but also captures them in a form that can be operated onby a constraint solver. At

one end of the spectrum are textual specifications, such as “this component should only

be deployed to devices located in the first-class cabin running Palm OS.” Although these

specifications are intuitive to produce and understand, they are imprecise in meaning and

require manual translation to the format expected by a constraint solver.

At the other end of the spectrum are the native formats, such as matrices representing

systems of linear equations or constraint networks, used byconstraint solvers to specify re-

quirements, such as required OS. These native constraint solver formats are easy to operate

on with a constraint solver. It is hard, however, to map theseformats back to the variant

selection for mobile devices, which makes it hard for application developers and quality

engineers to use.

Scatter provides a graphical modeling tool to address this challenge and allow devel-

opers to express requirements. To specify non-functional requirements, users drag-and-

drop requirements from the palette onto components. The child requirement elements of
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a component specify the non-functional requirements that must be satisfied by a device’s

resources. Each requirement has aName, Type, andValueattribute associated with it:

• TheNamespecifies the name of the resource on the device that it is restricting.

• TheTypespecifies the type of requirement, either ’>’, ’ <’, ’ =’, ’ =<’, ’ >=’, or ’−’.

• The Value indicates the target amount of the resource to which the constraint is being

applied.

For example, if a JVM with a version greater than 1.2 is needed, the requirement would

have the Name ’JVMVersion’, Type ’>’, and Value ’1.2’. For a Resource constraint, such

as the amount of memory consumed by a software component, the’−’ Type is used,e.g.,

if a component consumed 200kb of memory, the constraint would be Name ’RAM’, Type

’−’, and Value ’200’.

Scatter’s approach strikes a careful balance between expressivity and formalness out-

lined above by blending both the flexibility and intuitiveness of a textual approach with

the concrete meaning of a constraint solver format. The Namecan be any string and thus

modelers can create meaning by providing very descriptive names. The Type provides a

clear definition of how the constraint is compared to the resources available on a candidate

device. The Type also indicates exactly which constraint solver must be used to analyze

the constraint.

All types, except the ’-’ type, are local constraints governing the placement of one

component and are solved by an inferencing engine. These constraints are considered

local because their satisfaction is independent of the satisfaction of constraints for other

components. For example, if a component requires a specific OS, that constraint does not

restrict which other components it can be deployed with. If acomponent consumes a certain

amount of memory, however, its placement on a device will restrict the other components

that can be placed with it.

A key challenge in a pervasive environment is that variant selection must take into
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account requirements based on business and context data. For example, on a train, the first-

class and coach-class cabins may offer different meal services. In coach, travelers may

be able to pre-order food via a mobile phone application, butstill must physically go and

pickup the food. In first-class, however, train staff may be required to deliver food orders

to a traveler’s seat.

For first class, therefore, a variant that provides a component for notifying the ordering

system of where the traveler is sitting may be required whileit would not be required in

coach. Cabins may also offer different meal selections or meal prices, in which case the

variant selection must account for the location-based rules when selecting which menu to

deliver with the ordering service. This train variant selection scenario is shown in Fig-

ure III.3.

Figure III.3: Cabin Class Constraints for Train Menu Varian t Selection

At one extreme, a tool can limit the types of constraints thatcan be solved to a small

subset that is considered most important. At the other extreme, a tool can allow developers

to capture any type of constraint, but provide no guarantee of having a way of deducing

a variant that satisfies them. Capturing a wide variety of these types of non-functional

business and location-based constraints is hard.
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Scatter employs a strategy that focuses on allowing the datasources to change while the

types of constraints remain constant. This strategy allowsit to capture and solve a wide

variety of constraint types. For example, a modeler could specify the constraints:

JVMVersion > 1.2

WifiCapable = true

CabinClass = first

CPU - 100

RAM - 200

DisplayHResolution > 128

DisplayVResolution > 64

This specification mixes multiple different types of domainconstraints. A segment

of a Scatter requirements model showing these constraints is seen in Figure III.4. The

JVMVersionconstraint relates to the software stack on the device,CPU andRAMare re-

source consumption constraints,WifiCapableandDisplayXResolutionare hardware capa-

bility constraints, andCabinClassis a business/location based constraint.

Figure III.4: Capturing Mixed Non-functional Requirement Types in Scatter
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The restrictions imposed by the specification format are only on the types of compar-

isons that can be done and not on the data that the comparison is based upon. This freedom

in constraint specification allows Scatter’s variant selection to incorporate a large array of

datatypes that a device discovery service could provide. This setup allows other services

to pre-process the data used by the variant selector and thusallow it to operate on very

complex data sets.

For example, context processors based on GPS or RFID can calculate a device’s posi-

tion or type and correlate cabin class. Business-rule engines can calculate customer prior-

ities and provide business analysis. Scatter’s architecture thus holds constant the complex

portions of variant selection—the constraint solvers—while still allowing the incorporation

of new datatypes from a discovery service. For scenarios where other types of constraints

are needed, Scatter provides mechanisms for plugging in newtypes and solvers.

Discovery and Device Signatures

The non-functional properties of a device, such asJVMVersionandCabinClass, can be

used by the variant selection engine to select a variant onlyif values are provided for them.

The values for these variables can be obtained from a mobile device discovery service, as

shown in Figure III.5.

Scatter exposes a SOAP-based web service and a CORBA remoting mechanism for

remotely communicating device characterizations as they are discovered. The properties

of a device are reported back to Scatter as key/value pairs. The keys match the names of

the non-functional properties constrained by the non-functional requirements in the Scatter

graphical model. These constraints and key/value pairs areused by the variant selection

engine to filter the list of variants that can be deployed to a device.
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Figure III.5: Scatter Integration with a Discovery Service

Scatter Automated Variant Selector

Scatter provides an automated variant selector that leverages Prolog’s inferencing en-

gine and the Java Choco CLP(FD) constraint solver [2]. The Scatter solver uses a layered

solving approach to help reduce the combinatorial complexity of satisfying the resource

constraints. Scatter prunes the solution space using the SPL composition rules and the

local non-functional requirements so that only variants that can run on the target infras-

tructure are considered. The resource constraints are a form of bin-packing an NP-Hard

problem [39]. This layered pruning helps improve selectionspeed and enables more effi-

cient solving.

Layered Solution Space Pruning

Initially, the variant solution space contains many millions or more possible component

compositions. Solving the resource constraints is thus time consuming. To optimize this

search, Scatter first prunes the solution space by eliminating components that cannot be

deployed to the device because their non-functional requirements, such a JVMVersion or

CabinClass, are not met. After pruning away these components, Scatter evaluates the SPL
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composition rules to see if any components can no longer be deployed because one of

their dependencies has been pruned in the previous step. After pruning the solution space

using the SPL composition rules, the resource requirementsare considered. After solving

the resource constraints, Scatter is left with a drastically reduced number of deployment

solutions to select from. At this point, if there is more thanone valid variant remaining,

Scatter uses a branch and bound algorithm to iteratively tryand optimize a developer-

supplied cost function by searching the remaining valid solutions.

The first two phases of the solution space pruning use a constraint solver based on stan-

dard Prolog inferencing. A rule is specified that only allowsa component to be deployed

to a device, if for every local non-functional requirement on the component, a resource is

present that satisfies the requirement. For example, if aComponentrequires a JVMVersion

greater than 1.2, the targetDevicemust contain aResourcenamed JVMVersion with a value

greater that 1.2 or the component is pruned from the solutionspace and not considered.

Using CLP(FD) to Solve Resource Constraints

After performing this initial pruning of the solution space, the resource and SPL com-

position constraints are turned into an input for a CLP(FD) solver. The transformation is an

extension of the model proposed in [22] to include resource consumption constraints. The

model is also extended to allow for feature references.

A Constraint Satisfaction Problem (CSP) is a problem that involves finding a labeling

(a set of values) for a set of variables that adheres to a set oflabeling rules (constraints).

For example, with the constraint "X < Y", X = 3,Y = 4 is a correct labeling of the values

for X andY. Typically, the more variables and constraints that are involved in a CSP, the

more complex it is to find a correct labeling of the variables.

Selecting a a product variant can be reduced to a CSP. Scatterconstructs a set of vari-

ablesDC0 . . .DCn, with domain [0,1], to indicate whether or not the ith component is

present in a variant. A variant therefore becomes a binary string where theith position
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represents if theith component (or feature) is present. Satisfying the CSP for variant se-

lection is devising a labeling ofDC0 . . .DCn such that the composition rules of the feature

model are adhered to.

Resource consumption constraints are created by ensuring that the sum of the resource

demands of a binary string representing a variant do not exceed any resource bound on

the device (e.g.∑variant_component_resource_demands< device_resources). For each

Component Ci that is deployable in the SPL, a presence variableDCi, with domain [0,1]

is created to indicate whether or not theComponentis present in the chosen variant. For

every resource type in the model, such as CPU, the individualComponentdemands on that

resource,Ci(R), when multiplied by their prescence variables and summed cannot exceed

the available amount of that resource,Dvc(R), on theDevice.

If the presence variable is assigned 0, indicating the component is not in the variant,

the resource demand contributed by that component to the sumfalls to zero. The constraint

∑Ci(R)∗DCi < Dvc(R) is created to enforce this rule. Components that are not selected

by the solver, therefore, will haveDCi = 0 and will not add to the resource demands of the

variant.

The solver supports multiple types of composition relationships betweenComponents.

For eachComponent Cj thatCi depends on, Scatter creates the constraint:Ci > 0→Cj =

1. Scatter also supports a cardinality composition constraint that allows at leastMin and

at mostMax components from the dependencies to be present. The cardinality operator

creates the constraint:Ci > 0→∑Cj > Min,∑Cj < Max. The standard XOR dependencies

from the metamodel are modeled as a special case of cardinality whereMin/Max = 1.

Finally, the solver supports component exclusion. For eachComponent Cn that cannot

be present withCi , the constraintCi > 0 → Cn = 0 is created. The variables that can be

referred to by the constraints need not be direct children ofa component or feature and thus

are references.
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To support optimization, a variableCost(V) is defined using the user supplied cost func-

tion. For example,Cost(V) = DC1∗GPRSC1 +DC2 ∗GPRSC2+DC3 ∗GPRSC3 . . .DCn∗

GPRSCn could be used to specify the cost of a variant as the sum of the costs of transfer-

ring each component to the target device using a GPRS cellular data connection. This cost

function would attempt to minimize the size of the variant deployed within the resource

and SPL composition limits. Once the requirements have beentranslated into CLP(FD)

constraints, Scatter asks the CLP solver for a labeling of the variables that maximizes or

minimizes the variableCost(V), which allows the variant selector to choose components

that not only adhere to the compositional and resource constraints but that maximize the

value of the variant. The user therefore supplies a fitness criteria for selecting the best

variant from the population of valid solutions.

Results

A key question is how fast Scatter performs and whether or notonline variant selection

is possible. To test Scatter’s performance, we developed a series of progressively larger

SPL models to evaluate solution time. The tests focused solely on the time taken by Scatter

to derive a solution and did not involve deploying components. We also tested how various

properties of SPL composition and local non-functional constraints affected the solution

speed. Our tests were performed on an IBM T43 laptop, with an 1.86ghz Pentium M CPU

and 1 gigabyte of memory.

Note that optimization and satisfaction of resource constraints is an NP-Hard problem,

where it is always possible to play the role of an adversary and craft a problem instance

that provides exponential performance [39]. Constraint satisfaction and optimization al-

gorithms often perform well in practice, however, despite their theoretical worst-case per-

formance. One challenge when developing a SPL that needs to support online variant

selection is ensuring that the SPL does not induce worst-case performance of the selector.
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We therefore attempted to model realistic SPLs and to test Scatter’s performance and better

understand the effects of SPL design decisions.

Pure Resource Constraints

We first tested the brute force speed of Scatter when confronting SPLs with no local

non-functional or SPL composition requirements that couldprune the solution space. We

created models with 18, 21, 26, 30, 40, and 50Components. Our models were built in-

crementally, so each successively larger model contained all of the components from the

previous model. In each model, we ensured that not all of the components could be simul-

taneously supported by the device’s resources. Our device was initially allocated 100 units

of CPU and 16 megabytes of memory. Scatter’s performance results on this model can be

seen in Figure III.6.

Figure III.6: Scatter Performance on Pure Resource Constra ints

As can be seen from the large jump in time from the time to select a variant from 40 to

50 Components, solving for a variant does not scale well if resource constraints alone are

considered.
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Testing the Effect of Limited Resources

We next investigated how the tightness of the resource constraints affected solution

time. We incrementally increased the available CPU on the modeled device from 100 to

2,500 units for the 50 Component model. The results can be seen in Figure III.7.

Figure III.7: Scatter Performance as CPU Resources Expand o n Device

As shown in Figure III.7, expanding the CPU units from 100 to 500 units dramatically

dropped the time required to solve for a variant. Moreover, after increasing the CPU units

to 2,500, there was no increase in performance indicating that the tightness of the CPU

resource constraints were no longer the limiting bottleneck.

We then proceeded to increase the memory on the device while keeping 2,500 units of

CPU. The results are shown in Figure III.8.

Doubling the memory immediately halved the solution time. Doubling the memory

again to 128 megabytes provided little benefit since the initial doubling to 64 megabytes

made deployment of all of the components possible. As we had hypothesized initially, the

solution speed when pure resource constraints are considered is highly dependent on how

tight the resource constraints are.
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Figure III.8: Scatter Performance as Memory Resources Expa nd on Device

Testing the Effect of SPL Composition Constraints

Our next set of experiments evaluated how well the dependency constraints within a

SPL could filter the solution space and reduce solution time.We modified our models so

that theComponentscomposed sets of applications that should be deployed together. For

example, ourTrainTicketReservationServicewas paired with theTrainScheduleServiceand

other complementary components.

As with the first experiment III, we used our 50 component model as the initial baseline.

We first constructed a tree of dependencies that tied 10 components into an application set

that led the root of the tree, the reservation service, to only be deployed if all children

were deployed. Each level in the tree depended on the deployment of the layer beneath it.

The max depth of the tree was 5. We continued to create new dependencies between the

components to produce trees and see the effect. The results are shown in Figure III.9.

As can be seen from the results in Figure III.9, by adding dependencies between com-

ponents and creating a dependency tree, there was an immediate drop in selection time.
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Figure III.9: Scatter Performance as SPL Dependency Trees a re Introduced

This is presumably because it reduces the number of possiblecombinations of the compo-

nents that must be considered for a variant. Adding more dependencies to the model to add

other trees provided only a very small gain over the originallarge performance increase.

Results Analysis: Mobile SPL Design Strategies

Based on the results we collected from the experiments, we devised a set of mobile SPL

design rules to help improve variant selection performance. The remainder of this section

presents the lessons we learned from our results.

Exploit non-functional requirements Non-functional requirements can be used to fur-

ther increase the performance of Scatter. Each component with an unmet non-functional

requirement is completely eliminated from consideration.When SPL dependency trees are

present, this pruning can have a cascading effect that completely eliminates large num-

bers of components. One SPL construction rule based on non-functional requirements that

was particularly powerful and natural to implement in Scatter exploited the relative lack of

variation in packaging of a SPL variant.

43



Prune using low-granularity requirements The requirements with the lowest granularity

filter the largest numbers of variants. For example, when deploying variants, especially

from a SPL with high configuration-based variability, such as varying input parameters, the

disk footprint of various classes of variants can be used to greatly prune the solution space.

If a SPL with 50 components is composed of 5 Java Archive Resource (JAR) files, although

there are a large number of ways that the SPL can be composed, there are relatively few

valid combinations of the JAR files.

Many variants may also require common sets of these JAR files with various foot-

prints. These variants can be grouped based on their JAR configurations. For each group, a

non-functional requirement can be added to the components to ensure that a target Device

provide sufficient disk space or communication bandwidth toreceive the JARs. For small

devices that usually have little availabe disk space, whereresource constraints are tighter

and solving takes more time, large numbers of Components canbe pruned solely due to the

lack of packaging variability and need for disk space. This footprint-based strategy works

even if there are few functional SPL dependencies between components.

Limit resource tightness Due to the increased cost of finding a variant for small devices

where resources are more limited, we developed another design rule. To decrease the

difficulty of finding a deployment on small devices, SPL developers should provide lo-

cal non-functional constraints to immediately filter out unessential resource consumptive

Componentswhen the resource requirements of the deployableComponentsgreatly exceed

the available resources on the device. Although the cost function can be used to perform

this tradeoff analysis and filter theseComponentsduring optimization, this method is time

consuming. Filtering some components out ahead of time may lead to less optimal solu-

tions but it can greatly improve solution speed. Even by selecting only the least valued

components to exclude from consideration, performance canbe increased significantly.
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Create service classesAnother effective mechanism for pruning the solution spacewith

non-functional requirements is to provide various classesof service that divide the com-

ponents into broad categories. In our train example, for instance, by annotating numerous

Componentswith theCabinClassand other similar context-based requirements, the solu-

tion space can be quickly pruned to only search the correct class of service for the target

device. In general, the more non-functional requirements that can be specified, the quicker

Scatter can prune away invalid solutions and hone in on the correct configuration. More-

over, each non-functional requirement gives the solver more insight into how Components

are meant to be used and thus reduces the likelihood of unanticipated variants that fail.

From our experiments, we have seen that when a SPL for a mobiledevice is properly

specified with good constraints, Scatter can solve models involving 50 or fewer components

in seconds. This performance should be more than adequate for many pervasive environ-

ments, particularly when device signature and variants arecached to eliminate repetitive

solving for known solutions. In future work, we intend to test Scatter with larger models

and evaluate more characteristics of SPLs that can be used toreduce variant selection time.
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CHAPTER IV

AUTOMATED CONFIGURATION INTEGRATION IN JAVA

Challenge Overview

This chapter illustrates the need for automated configuration integration mechanisms,

which are techniques for taking two manually specified partial configurations and deriving

any intermediate configuration choices that need to be made to meld the two together. To

illustrate the challenges of configuration integration, the chapter utilizes examples from the

configuration of enterprise applications, such as enterprise Java applications.

Introduction

Enterprise applications are large-scale software programs, typically hosted on multiple

application servers, that perform complex business processes. Enterprise applications com-

monly support thousands or more simultaneous users and are often written using compo-

nent middleware, such as Enterprise Java Beans. Due to theirlarge number of components,

complicated XML-based configuration files, and complex interdependencies between com-

ponents, enterprise applications are often hard to configure.

Enterprise application configuration is typically a decentralized process. Multiple de-

velopment roles edit configuration files, install applications, and perform other configura-

tion steps to deploy an enterprise application. Each role usually operates semi-independently

from other roles and focuses on aspects of application configuration pertinent to require-

ments the role is responsible for. For example, database developers identify the best

database vendor, database schema, and database configuration parameters to use; com-

ponent developers determine what software components are needed to meet the functional

requirements for the application; and IT administrators install and configure application

servers on the appropriate nodes in data centers.
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The diverse configuration decisions made by each role outlined above constrain the

possible configuration decisions of other roles. For example, when database developers

choose a database, component developers must use the appropriate database driver for that

database. These configuration decisions are distributed across roles and configuration files

and must ultimately be integrated to create a complete and valid configuration. When in-

tegration takes place, each role often performs other configuration steps (such as installing

the correct database driver) necessitated by decisions made by other roles. This integration

process may require adding new components to adapt the application to its target envi-

ronment, loading extra libraries into the application server, or other types of configuration

steps.

It is hard to keep track of and analyze an enterprise application’s configuration decisions

(configuration state) since these decisions are enacted by multiple roles, involve hundreds

or more components, and are spread throughout numerous configuration files. Even after

the configuration state is collected, the complex interdependencies and implications of the

configuration decisions must be understood to check the validity of the configuration state

and derive further configuration steps to perform. Finally,after a complete configuration

for the application is derived, the configuration must be enacted by the multiple roles in

numerous configuration files.

Configuration errors related to functional requirements have been shown to be a major

contributor to enterprise application downtime and cost. In some studies, for example, mis-

configuration from manual processes has been shown to cause over 50% of all application

failures [50]. One approach to alleviating the complexity of configuring enterprise appli-

cations is to use model-driven development [125]. With a model-based approach, a model

of the application’s configuration rules and configuration state is first built. Configuration

artifacts, such as XML configuration files, are generated from the model. By creating a

model of application components and configuration requirements, algorithmic techniques
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(such as constraint solvers) can be used to check configuration correctness and derive valid

configurations.

Feature modeling[49, 81] is a promising modeling technique for representingthe con-

figuration state of enterprise applications. This technique can capture the configuration

dependencies between roles and non-functional requirements for enterprise applications.

Feature modeling provides a set of modeling formalisms thatdecompose an application

based on functional and non-functional variations and formalize the rules by which these

variabilities may be composed into an application variant.In the context of enterprise ap-

plications, feature modeling can be used to capture (1) whatconfiguration decisions must

be made to install an enterprise application, (2) what rolesare responsible for what configu-

ration steps (by having a separate feature model per role), (3) how each role’s configuration

steps affect other roles, and (4) how the target infrastructure and requirements limit the

valid configuration possibilities.

To configure an application with a feature model, development team members (such as

component developers, database developers, etc.) first identify a feature selection, which

is a group of desired functional capabilities that constitute a complete configuration of an

application and adhere to the constraints specified in the feature model. These partici-

pants must then determine what configuration actions, such as adding component IDs to

application XML descriptors or installing a specific database, are required to enable and/or

implement the functionality specified in the feature set. What we termfeature selectionis

also often calledproduct configuration[89]. To avoid confusion, we use the termappli-

cation configurationto denote editing XML files, installing application servers, and other

configuration related actions. Likewise, we definefeature selectionas the process of deter-

mining a valid set of configuration parameters (i.e., filling in variabilities) with respect to a

feature model’s constraints.

The challenge with using existing model-based approaches,including feature models,

for enterprise application configuration is that they oftenrequire a single large monolithic
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model of the system [22, 44, 52, 62, 101, 120]. Enterprise configuration decisions are often

spread across multiple files, developers, and hosts, however, so it is time consuming to

build and maintain accurate feature models. Moreover, the decentralization of enterprise

application configuration decisions makes it easy for monolithic models to drift out of sync

with the actual configuration state.

Some approaches advocate the use of multiple models [23, 31]that contain references

to each other. This multi-model organization better mirrors the decentralized structure of

enterprise application configuration and improves developer concurrency. The multi-model

approach, however, requires that each role manually specify how changes to other roles’

models affect elements in its own model. Manually specifying these effects is thus tedious

and error-prone.

This chapter describes how we created and applied an automated application configu-

ration tool calledFreshto configure enterprise Java applications. Our Fresh approach uses

a novel probe-based synchronization technique to allow each role to use its own feature

model, while also not requiring manual cross-model effect specification and synchroniza-

tion. Each probe is executable Java code that tests a property of the target environment

(such as what libraries have been installed) and updates a role’s feature model according to

the results of the test (such as disabling or enabling a corresponding feature). As each role

changes its feature selection and enacts changes on the application or target environment,

Fresh probes translate the changes into feature modifications in any affected models. Roles

synchronize models by describing how they affect and are affected by code and configura-

tion changes to the application and target environment.

Fresh combines its multi-model approach with a constraint solver to reduce the com-

plexity of enterprise application configuration. The key contribution of this chapter is show-

ing how Fresh simplifies enterprise application configuration by:

1. Automatically collecting the application’s distributed configuration state with probes,

e.g.determine the database installed, etc.
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2. Phrasing the completion of the application’s feature selection as a constraint satisfac-

tion problem.

3. Deriving any remaining required features by solving the constraint satisfaction prob-

lem with a constraint solver,e.g., if a database driver is not installed determine which

one is needed.

4. Rewriting the application’s configuration files to include any new required features

e.g., add the database driver to the application configuration.

Example Enterprise Java Application: Pet Store

As a reference architecture of an enterprise Java application, we use the J2EE Pet

Store application [9], which provides an example e-commerce site that allows customers

to search for and purchase pets over the Internet. Pet Store was developed originally to

showcase the benefits of J2EE technologies. Since its original release, nearly every major

J2EE application server has included a refactored version of Pet Store as an example appli-

cation. Microsoft has also reimplemented Pet Store (calledPet Shop) in .NET to highlight

the differences between J2EE and .NET.

Since Pet Store is widely known and demonstrates the features of enterprise Java, we

use it in this chapter to show the configuration challenges ofenterprise Java applications. To

show the application’s numerous points of variability we built a feature model of Pet Store

bundled with the Java Spring framework [79], which allows developers to create highly-

modular and configurable enterprise Java applications. In particular, Spring uses (1) factory

patterns [61] to instantiate and interconnect enterprise Java components (beans) and (2)

Java reflection to shield application components from details of the configuration process.

At launch, a factory is created and initialized using one or more XML configuration files,

which determine what components it constructs and how they are wired together. In the

process of constructing objects, the factory may associatecrosscutting aspect advice with
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them, generate dynamic proxies to perform remote invocations, load objects into a naming

service, or perform numerous other complex application configuration tasks.

We bounded the scope of the feature model presented in this chapter to a group of

features related to the data tier of Pet Store. For example, in the feature model shown

in Figure IV.1, the Pet Store can use either aCombinedDatabasesetup, where both order

and product data is stored in the same database, or aDualDatabasesetup where product

and order data are stored in separate databases. Depending on which setup is chosen, the

Pet Store’s application configuration files must be changed to include the appropriate Data

Access Objects (DAOs). If a DualDatabase setup is used, developers alter the Pet Store

configuration files to instruct Spring to instantiate and usetheJtaDAOsand wire them into

the application.

Jta

Libraries

JtaRef

JBoss Tomcat

ApplicationServer

Oracle MSSQL MySQL

DatabaseInstance

NonJtaDAOs

JtaRef

JtaDAOs

DataAccessObjects (DAOs)

DatabaseInstanceRef

CombinedDatabase

JtaDAOsRef DatabaseInstanceRef

[2..2]

DualDatabase

DatabaseConfiguration

ObjectPersistence

[1..∗]

DataTier

PetStore

Figure IV.1: Feature Model of the Features Related to the J2E E Pet Store’s Data Tier

The Complexity of Enterprise Java Feature Selection

In this section, we explore: (1) the varied participant roles involved in configuring a

Spring application and where their decisions are reflected in the application, (2) the com-

plex conflicting requirements and dependencies exposed by the roles, and (3) the difficulty

of deriving a feature set that adheres to all of the functional requirements and non-functional

requirements created by the roles.
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Dimensions of Configuration

By identifying the key roles involved in feature selection,we can illuminate the types of

requirements and preferences that will be involved and the points where they are likely to

conflict. Furthermore, we can determine where each role implements its decisions so that

they can be collected. For the majority of enterprise Java applications, the parties involved

in feature selection can be divided into roughly six roles: enterprise bean (component)

developer, web developer, client application developer, database developer, application as-

sembler, and IT administrator (application deployer and administrator) [96].

To implement feature selections from a model, these variousroles must rely on each

other to perform configuration steps to select values for different points of variability in

the application. These various configuration steps must be consistent with each other with

respect to the feature model constraints. Enterprise Java configuration can be viewed along

several broad dimensions:

1. Feature Configuration: A feature, component, or user requires a specific feature tobe

enabled, disabled, etc. The end user may require the component developer to enable

email notification of completed customer orders.

2. Attribute Configuration: A component or feature requires that the value of an at-

tribute on another component or feature adhere to a specific constraint. For example,

the component developer may require that the IT administrator install a Java Virtual

Machine with a version number greater than or equal to 1.5.

3. Local Addressing Configuration: A component used by one role needs to know the

address or unique identifier of another component in the application. For exam-

ple, the component developer needs to know the bean names (unique identifiers in a

Spring XML configuration file) of the DAOs created by another component devel-

oper.

4. Remote Addressing Configuration: A component used by one role needs to know the
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address or unique identifier of a remotely accessible component provided by another

role. For example, the Data Access Objects (DAOs) used by thecomponent devel-

oper need to know the table names created in the database by the database developer.

5. Application Configuration: A component used by one role needs another compo-

nent in the application instantiated. For example, the DAOsneed an instance of the

database driver instantiated.

6. Infrastructure Configuration: A component used by one role needs another process

outside the application installed, configured, and launched or a specific type of hard-

ware setup. A MessageDriven bean (a bean that receives Java Messaging Service

(JMS) messages) created by the component developer will require that a specific

messaging queue be installed, configured, and started by theIT administrator. The

DAOs used by the component developer require that the database developer install

certain tables into the database. The component developer’s Java Transaction API

(JTA) DAOs need the JTA libraries loaded into memory by the ITAdmin.

Challenges Produced by Competing Roles and Forces

Enterprise Java applications are prone to a number of commonconfiguration problems.

In ideal situations, these errors are easily identified by anapplication that fails to load into

its container. In more serious situations, these errors reflect subtle inconsistencies, such

as incorrect file permissions, that may be overlooked and could lead to failures, such as

security breaches.

There are four major types of configuration errors produced by the complexity of con-

figuring an enterprise Java product:

Problem 1 - Feature Selection ComplexityFunctional composition rules are not adhered

to when a feature set is selected because the large number of rules and features involved

makes it too combinatorially complex to manage manually. A further challenge of the
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feature selection process is that the decisions made by one role may spill over into the

decisions that need to be made by a second role and it is difficult to both foresee these

ripple effects and to enforce them.

Figure IV.2: Data Tier Feature Selection Forces and Their Ef fect on Various Roles

The Spring Pet Store, for example, offers the ability to use asingle or dual database

setup and either plain DAOs or JTA-enabled DAOs. As can be seen in Figure IV.2, if the

database developer chooses to use the dual database setup the component developer must

support transactions across multiple databases. This decision requires the use of JTA en-

abled DAOs. A side-effect of enabling the JTA DAOs is that thePet Store can no longer run

in a standard J2EE web container, such as Tomcat [28]. This requirement means that the

IT administrator must either use a full-blown J2EE Application Server, such as JBoss [55],

or configure the web-container with additional components to support JTA. In this case,

a decision made by the database developer ripples through the functional composition de-

cisions that must be made by multiple other roles. The numerous dependencies between

roles and features makes the feature selection process complex.

If the constraints are not adhered to across roles, these ripple effects can lead to the

selection of an invalid feature set. The more components that are in the application and the

more dependencies exist between developers, the harder it is to account for the side effects

of a feature selection.

Problem 2 - Incorrect Feature Selection ImplementationFeature selections may not be

implemented properly. After a feature set is selected, multiple configuration files must be

edited and various actions (e.g., starting processes, etc.) taken by the roles to enable the
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features. If the IT administrator, for example, does not edit the application server XML

configuration files properly to load the correct libraries ordoes not completely understand

the requirements or implications of the feature selection decisions, a non-functional variant

can be produced. The non-functional variant may fail to loadproperly into its container or

load correctly but function incorrectly.

As can be seen in Figure IV.3, to enable transaction support across databases with JTA,

the component developer must edit the application XML deployment descriptor to link in

an XML configuration file containing the JTA enabled DAOs. These DAOs must have

a reference to the DB Drivers provided by the database developer. Furthermore, the DB

Drivers need the correct port and URIs of the database instances. The IT administrator

must not only edit the web.xml descriptor of the applicationto load the DB Driver libraries

into the classpath but must also ensure that the descriptor references the appropriate XML

configuration files for the Pet Store. Finally, the IT administrator must install the extra JTA

Libraries into Tomcat. If any of these steps are performed improperly or are not consistent

with each other, the Pet Store will not function.

This example shows how feature selection involves the coordination of multiple roles

in the configuration process. Mistakes due to human error andmis-communication be-

tween roles are common in a configuration process. In some studies, misconfiguration

from manual processes has been shown to cause over 50% of all application failures [50].

For complex enterprise Java configuration tasks, manual processes are extremely tedious

and error-prone.

Problem 3 - Incorrect Information Flows Across RolesOften, roles misunderstand de-

cisions made by another role. The most costly and generally difficult to identify misun-

derstandings involve environmental properties (e.g., application server vendor, file permis-

sions, etc.). For example, the Pet Store provides both generic DAOs that use only standard

SQL mechanisms and DAOs for Oracle and MSSQL that use vendor-specific interfaces.

The standard SQL DAOs will load properly into the Pet Store without errors regardless
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Figure IV.3: Configuration Dependencies between Features a nd Roles for Data Tier
Configuration

of the database vendor. The Oracle SequenceDAO uses an Oracle-specific thread-safe se-

quence. Failing to use the Oracle SequenceDAO with an Oracledatabase would not prevent

the application from launching but could potentially causethread-safety problems, which

are notoriously difficult to diagnose [111]. A component developer can incorrectly believe

that the application is going to use a MySQL database insteadof an Oracle database and

cause a configuration problem that is both dangerous and hardto identify.

If the SQL SequenceDAO is selected by the component developer when an Oracle

database is present, which is a violation of the feature model composition rules, the mistake

will not be clearly visible until a runtime error occurs. Furthermore, the runtime error that

it will produce, a synchronization error, could be extremely difficult to diagnose and trace

back to the feature selection mistake. Finally, the mistakewill be identified only after any

damage, such as data corruption, is done.

Security is another type of decision where a misunderstanding will produce a flawed but

functional variant. Moreover, unlike misunderstandings that affect the visible functional

properties of an application, a missing security requirement may be detected only after it

has been exploited by an attacker and costly damage done. Thus, it is critical that these

types of misunderstandings that do not lead to discernibly flawed variant selections be

prevented.
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Problem 4 - Important Information Fails to Flow Across Roles The involvement of

multiple participants leads to situations where the decisions made by one or more par-

ticipants are not synchronized. In most development processes, each role operates inde-

pendently of other roles for significant periods of time. Synchronization of the decisions

between roles is performed during weekly project meetings,testing, or application installa-

tion. Thus, a significant amount of time exists between synchronization points of the roles.

If the decisions of the multiple parties are not in sync, the participants can select incompat-

ible feature sets. If the incompatibility is discovered, one or more roles may need to roll

back one or more potentially complex or costly decisions. Ifthe synchronization mistake

is not discovered, the application will not function properly.

Information may also fail to flow across roles because participants do not understand

what decisions impact other roles. In Figure IV.3, each roleneeds to understand where

its Venn Diagram’s realm of responsibility overlaps another role’s realm of responsibility.

In the Pet Store example, the IT administrator enacts decisions on the target infrastructure,

such as selecting the component container that will be used.The component developer may

not have access to the target infrastructure and thus may notbe aware that the IT adminis-

trator has selected a specific container. If the IT administrator selects and installs Tomcat

without JTA support as the application container for the PetStore and the component de-

veloper selects the JTA DAOs by adding them to the XML configuration file, a mismatch

can occur that leads to a non-functional variant.

Open Problems in Applying Existing Configuration Approaches

Although various approaches have been presented for dynamically configuring com-

ponent applications using feature models and other mechanisms, these approaches do not

address the configuration challenges inherent in the enterprise Java applications for some

combination of the following four reasons:
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Tightly-coupled Top-down Approaches: Many existing approaches advocate the use

of a tightly-coupled monolithic modeling approach where all configuration decisions are

made in a single large model at design-time. Enterprise Javadevelopment involves multiple

participants and thus makes synchronizing a single large model hard. The tight-coupling

between roles also limits developer concurrency and does not integrate well with common

development practices, such as extreme programming that focus on source code.

A further complication of tightly-coupled top-down modeling approaches are that they

require all of the relevant information for each role’s viewpoint be captured in a single

model. Capturing all of the information required for each viewpoint in both an intuitive

and usable manner is difficult. Additionally, a monolithic model potentially exposes partic-

ipants from each role to irrelevant details from other roles. Even though different types of

filtering mechanisms can be applied to limit what each viewpoint sees, these mechanisms

are complex to develop since the complexity of the model may make it very difficult to

predict which details are relevant and which are not.

Explicit Communication between Roles is Required: Current approaches require

that all decisions that a role makes that affect another rolemust explicitly be communicated

to the other role. Most approaches do not detail how this communication is accomplished.

First, explicitly communicating decisions across roles isproblematic because it is very

difficult for each role to anticipate which of its decisions will affect another role and what

role it will affect. These dependencies between the decisions of different roles can only be

enforced if they are explicitly stated, which is challenging. Even if each role can identify

which decisions affect other roles, the effect of these decisions must be evaluated from each

other roles’ viewpoint. Relating the affects of a role’s decisions to the features of another

role means that roles must relate features and decisions across viewpoints that they are not

familiar with, which is tedious and error-prone.

Not all Variabilities/Decisions are Captured in a Model: Existing approaches assume

that all decisions that are relevant to the configuration of the application are captured in the
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model. Approaches do not detail how this is accomplished. Documenting all decisions and

variabilities is not straight-forward. In some cases, a role may not deem that a variability is

important enough to its viewpoint to be included in the model. However, another viewpoint

may be affected by this undocumented variability. The complexity of the model and the

distinct separation of the roles’ viewpoints makes it hard for each role to understand if a

variability needs to be documented for another role’s sake.

Many development approaches, such as extreme programming,are focused on source

code. Documentation, such as a model, is updated to reflect the state of the source artifacts.

If a developer fails to document every source-level decision in the model, either because

they forget or do not understand how the changes map to the model, a dangerous disconnect

can occur that is not addressed by current approaches. Additionally, a development process

may need to interact with legacy or third-party software forwhich there is no clear model

nor way to produce a model. In this case, important decisions/variabilities are left out of

the model.

No Runtime Feedback: In enterprise Java applications, it is not desirable to deter-

mine all application related decisions at design-time. Forexample, the concept ofcloning

(determining the number of instances of a feature), is a design-time decision in most ap-

proaches. In enterprise Java applications, the application container normally manages an

object pool and dynamically changes the number of instances(clones) of the objects at

runtime. Many other types of decisions, such as load-balancing policies, are also better

determined dynamically at runtime.

Existing approaches do not account for how dynamic changes to the application that af-

fect the feature model can be identified and understood. If the container changes a runtime

policy, it is changing feature selections. If there is no wayto relate runtime changes back

to the feature model, the model becomes a design-time only artifact and none of the feature

decisions made by the application container or other runtime decisions can be constrained

or understood.
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No Configuration Injection : Existing tools do not provide a mechanism to inject their

configuration decisions from the model directly into the application. Instead, the tool de-

rives a correct configuration and a manual process must be used to acutally implement the

configuration (which is tedious and error-prone).

Solution Approach

The key to correctly configuring a Spring application’s components is to (1) construct a

coherent model of the feature decisions that have been made,(2) determine what variabil-

ities have been constrained, and (3) set values for the remaining component variabilities

that are consistent with the constrained variabilities. Wepropose that by executing a series

of Java probes at application launch to identify frozen variabilities, formalizing and solv-

ing a CSP of the configuration problem, and dynamically rewriting the application’s XML

configuration files, we can eliminate the problems we have outlined.

The following list sketches our proposed solution to each ofthese problems:

• Use Probes to Identify Constrained Variabilities: Probes can be used to auto-

mate the discovery of the decisions made by each role. We showthat probes can be

constructed to cover the wide dimensions of configuration previously listed. Auto-

matically identifying configuration decisions allows the feature selection process to

ensure that the selected feature set conforms to any points of variability that have

already been fixed. Probing of the environment also eliminates manual characteriza-

tion errors. Just as unit tests can be written to test functionality, probes can be created

for each feature to validate dependent features and properties.

• Formalize Configuration as a CSP and Use a Constraint Solver to Derive Val-

ues for the Final Un-constrained Variabilities: A constraint solver can handle the

combinatorial complexity and interdependencies of feature selection that a manual

process cannot address Problem 1. Furthermore, a constraint solver is guaranteed to
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produce a correct selection with regard to the constraints (if a correct configuration

exists). Although we do not provide a formal proof, we assertthat for any configura-

tion that could be deduced manually, a constraint solver canderive faster.

• Generate Configuration Files from a Feature Selection:A generative software de-

velopment process can be used to automatically generate correct configuration files

from the solution produced by the constraint solver. Our solution allows developers

to annotate their configuration files to show how features arebound to actual configu-

ration decisions. This allows the configuration engine to regenerate the configuration

files for the selected feature set.

The Fresh Prototype

To demonstrate our approach for automating the collection of feature modeling deci-

sions, phrasing a feature selection problem as a CSP, and using a constraint solver, we

developed a prototype automated feature selection engine for enterprise Java applications.

Our prototype is calledFreshand is based on the Spring framework [79]. Fresh allows

the application configuration participants to describe thefunctional requirements, non-

functional requirements, and a fitness function for choosing a configuration when multiple

solutions exist. Fresh leverages this information and the Choco CLP solver [2] to derive a

complete feature selection for a partially configured application. Finally, Fresh provides an

XML annotation language that can inject the feature selection decisions into XML config-

uration files.

Figure IV.4: Fresh Application Configuration Process
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Spring uses the factory [61] pattern to instantiate and wireenterprise Java components.

Spring makes extensive use of Java reflection and allows the application components to be

oblivious to the configuration process. At launch, a factoryis created and initialized using

one or more XML configuration files. The factory then uses the XML configuration files

to determine what objects it constructs and how they are wired together. In the process of

constructing objects, the factory may associate crosscutting aspect advice with them, gen-

erate dynamic proxies to perform remote invocations, load objects into a naming service,

or perform numerous other complex application configuration tasks.

The Fresh prototype is implemented as an extension to the standard factories provided

by Spring. When a Spring application factory attempts to load the application configura-

tion files, Fresh probes the environment, runs the constraint solver, and rewrites the con-

figuration files before they are returned to the Spring factory. Spring and the application

components are not aware of the process. Furthermore, the Fresh extension can be swapped

in and out of the application without affecting components or Spring.

As can be seen in Figure IV.4, in the first step of the Fresh configuration process, au-

tomated probes are run to aggregate the feature selection decisions of the roles into the

feature model. Second, the decisions and feature model roles are transformed into a CSP.

In the third step, Fresh uses the Java Choco solver to solve the CSP for a valid feature

set. In step four, the configuration files for the applicationare regenerated and in step five

control is passed to the Spring factory to initialize the application.

Fresh’s configuration file annotation language is based on XML comments and does not

interfere with the configuration directives. The annotations can be added to existing files

or removed from the application entirely without affectingit. Both the container extension

and the XML annotations allow Spring and the application components to be oblivious to

Fresh.

62



Using the Target Environment as a Common Language

As we outlined earlier, there are multiple limitations of existing techniques that pre-

vent them from being applied to enterprise Java applicationconfiguration. A key limitation

is that a configuration process must provide a way of relatinghow the actions of differ-

ent roles affect each other. Current approaches either attempt to use a single manually-

produced large model to formally capture these interactions or rely on manually creating

complex mappings across different models. The first approach suffers from the problems

of a complex top-down approach, while the second approach forces the roles to explicitly

specify complex cause and effect relationships across unfamiliar viewpoints.

Probing uses the target environment as alingua franca. Each role expresses how

changes in the target environment affect its model of the system. A probe checks a property

of the environment and maps the property to a change in a role’s model. For example, a

probe can be used to automatically detect if JTA is installedand update the JTA feature in

the component developer’s model accordingly.

The first benefit of this approach is that it avoids a monolithic top-down modeling ap-

proach (Problem 1). Each role can use a model that is intuitive to the role’s viewpoint. The

models of each role are synchronized when the probes are run.The probes determine the

changes that the roles have made to the target environment and update each role’s model to

reflect the configuration state. With this approach, each role maintains a model reflecting

its viewpoint and is not tightly-coupled to the models of other roles.

The second advantage is that the roles do not have to explicitly detail how changes in

their models map to changes in the models of another viewpoint (Problem 2). Instead,

each role specifies how changes to the target environment affect it. Since the mappings are

based on actual executable code, they provide much more wellunderstood semantics. The

mappings also do not require a participant in a role to understand another role’s viewpoint.

Each viewpoint maps its feature selections to changes in thetarget environment and each
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role’s probes translate the environment modifications intochanges in the role’s model. The

environment serves as the common language, as seen in FigureIV.5.

Figure IV.5: Synchronizing Role/Viewpoint Models through Probes

The third key attribute of the approach is that the probes do not differentiate between

human induced environmental changes and dynamic changes tothe environment from the

container or other runtime actors. The container becomes another participant that may

enact changes to the application at runtime. Since the probes are automated, they can be

reused at runtime to detect changes to each role’s feature model produced by the container.

Runtime processes can become roles that provide feedback tothe application eliminating

Problem 3.

Since the dissemination of information across roles is automated by the probes, the

approach can eliminate Problems 3 & 4. Automated probes are more reliable than human

inspection of the configuration and environment. Rather than pushing information to the

roles that are affected by environment changes, the probes pull the required information to

each role avoiding communication failures and misunderstanding.

Probes are similar to Unit Tests, such as JUnit tests. Each probe checks a specific set of

conditions and notifies the framework of the results of the tests. In JUnit, the tests report

error messages indicating that the code failed to perform asexpected. In Fresh, the probes
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report the state of the application configuration and environment. Both Unit Testing and

probing rely on developers writing correct tests of the conditions but can greatly improve

both the reliability of correctness testing (configurationcorrectness for probes) and the

efficiency of correctness testing. We assert that just as Unit Testing has been shown to be

an integral part of application correctness testing, probing should be a part of application

configuration.

Probing the Target Environment

The probes run by Fresh identify which features or components are present (e.g., is

JTA installed), what the values of different properties of the target infrastructure (e.g.,

application server vendor, OS, RAM, etc.) are, and what configuration steps have been

performed (e.g., does a specific JMS queue exist). The probes produce a seriesof values

for the variabilities in the model. For example, if JTA is installed, a probe may set the JTA

feature to enabled or the JTAVersion attribute.

Fresh uses a plug-in architecture to allow product developers to createcharacterization

classesthat can be packaged with an application and run by Fresh to automate environment

characterization. Each characterization class is a probe that is used to determine the value

of one or more of the variabilities in the model used for the configuration process. Before

Fresh performs its constraint-based feature selection, each characterization class is invoked.

A characterization class performs a test on the target environment and returns a list of

variable/value pairs representing characteristics of thetarget.

The values of the variables produced by characterization determine what points of prod-

uct variability have already been fixed by each role. Fresh then derives values for the other

variabilities to be correct with respect to these fixed points and the feature model con-

straints. The following list gives examples how configuration decisions from four com-

mon dimensions of configuration listed earlier can be discovered through characterization

classes:
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• Local/Remote Addressing Configuration: Local addressing configuration within Spring

XML configuration files is handled by Spring. For external addressing, such as JNDI

names or service URIs characterization classes can be created that attempt to resolve

the object and if it cannot be resolved, set the corresponding feature to disabled.

• Library Configuration: A characterization classes can attempt to resolve Classeson

which features depend using the Java Reflection API. For example, to test for JTA, a

characterization class can perform aClass.forName("javax.transaction.

Transaction"), which will throw an exception if JTA is not present. If the char-

acterization class catches ajava.lang.ClassNotFoundException excep-

tion, it indicates that JTA is not enabled.

• Attribute Configuration: A characterization class can obtain values for various at-

tributes from environmental context classes, such as java.lang.Runtime, ServletCon-

text, or ApplicationContext. These context classes can provide critical infrastrural

attributes such as JVM version, OS, RAM, etc. for the CSP variables. A charac-

terization class may also determine attribute values by instantiating one or more ap-

plication components and using getter methods or the Java Reflection API to obtain

member variable values.

• Infrastructure Configuration: Characterization classes can be used to test that spe-

cific infrastructural features are running. For example a class can be created that

attempts to connect and post a message to a required JMS queueor run a query

against a database table. If the queue does not exist or an exception is thrown the

feature variable for the queue can be set to disabled. Similarly, the database config-

uration can be checked by creating a class that obtains an instance of the DB driver

and attempts to perform queries to check that the tables are configured properly.

The above list is by no means exhaustive. Numerous other types of characterization

classes, such as running a CPU benchmark, can be used to obtain complex properties.
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In most cases, if the application is affected by a configuration decision, it can probe its

environment to determine the value of that point of configuration variability.

Class characterization allows the Fresh feature selectionengine to determine what vari-

abilities have been fixed in the product. After correctly determining what variable parts are

fixed, the constraint solver can select features to ensure the application functions properly

with respect to these fixed parts and the application requirements.

Feature Selection as Constraint Satisfaction

The first problem is that the configuration process is complexdue to the large number

of constraints and role viewpoints involved. Significant work has been done in applying

different algorithmic techniques to handling this complexity. The probing techniques that

we have described could potentially be used with any of thesealgorithmic approaches. For

Fresh, we chose to apply the extensive research and tools forConstraint Logic Program-

ming (CLP) [77] to manage this complexity.

Fresh transforms a feature model and set of non-functional requirements into a CSP.

The feature model and the non-functional requirements are specified through Fresh con-

figuration files which reside in the classpath of the Spring application. We extend the re-

duction of feature selection presented by Benavides et al. [22] to include cardinality-based

constraints, feature references, and resource consumption constraints. By building a for-

mal model of feature selection as a CSP [134], Fresh can use a constraint solver to 1) check

the correctness of a configuration and 2) derive valid valuesfor unconstrained variabilities

in a partially configured application. Using a constraint solver to perform both configura-

tion validation and completion eliminates problem 1. In this section, we show how Fresh

reduces feature selection to a constraint satisfaction problem.

A CSP is a problem that involves finding a labeling (a set of values) for a set of variables

that adheres to a set of labeling rules (constraints). For example, with the constraint "X <

Y", X = 3,Y = 4 is a correct labeling of the values forX andY. Typically, the more
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variables and constraints that are involved in a CSP, the more complex finding a correct

labeling of the variables is.

Selecting a feature set for a product can be reduced to a CSP. Fresh constructs a set of

variablesP0 . . .Pn, with domain[0,1], to indicate whether or not the ith feature is present in

a feature set. Thus, a feature set becomes a binary string where the ith position represents

if the ith feature is present. Satisfying the CSP for featureselection is devising a labeling

of P0 . . .Pn such that the composition rules of the feature model are adhered to.

The functional requirement rules for a feature model ensurethat only a coherent set

of features is selected. For example, in the Pet Store, if theJtaDAOsfeature is chosen,

the JTA feature must also be selected. To phrase this rule using our CSP model of feature

selection, we can say that if the JtaDAOs feature is represented by the variableP1 and the

JTA feature is represented by the variableP2, thenP1 = 1→ P2 = 1.

CSPs may incorporate constraints based on the conjuction ordisjunction of several

constraints on other features. One example of this is the extension to cardinality con-

straints on features proposed by Czarnecki et al. [49]. Their approach extends cardi-

nality constraints to include a sequence of intervals. For example, assume that the Pet

Store can use [1..2], or [4..4] different remoting mechanisms from the remoting feature

group. If the variableP0 represents the Pet Store, and the variablesP15. . .P18 repre-

sent the remoting features, we can transform this interval sequence into the constraint:

P0 = 1→ (∑Pt15. . .P18 > 0)∧ (∑Pt15. . .P18 ≤ 2)∨ (∑Pt15. . .P18 = 4).

The CSP model of feature selection can be extended with new requirement types by

translating these constraints into a CSP model. We define a resource consumption con-

straint that prevents a resource from being overconsumed bya chosen feature set. For

example, assume that the ith feature consumes an amount of RAM denoted by the variable

Prami. If the total amount of RAM available in the system is denotedby the variableRam,

we can create the constraint:∑(Pram0∗P0)+(Pram1∗P1)+ . . .(Pramn∗Pn)≤Ram. This

constraint limits the total memory consumed by the selectedfeature set to be less than or
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equal to the RAM available in the system. Thus, the CSP model is extensible and can

incorporate new requirement types between features as theyemerge.

One of the benefits of reducing feature selection to a CSP is that we can unify the

non-functional and functional requirements into a single logical model based on constraint

logic. Let’s assume that the DualDatabaseSupport feature and the JTADAOs are repre-

sented by the variablesP10 andP11 respectively. We can encode the rule that the Dual-

DatabaseFeature requires JTADAOs asP10 = 1 → P11 = 1. Assume that the developer

requires at least JTA version 1.01 for functional reasons. The IT Administrator, however,

requires a version number less than 1.03 because only versions up to that point have been

through the organization’s security and stability certification process for production envi-

ronments (a non-functional requirement). This non-functional constraint can be encoded

asP11 = 1→ (JTAVersion≥ 1.01)∧ (JTAVersion< 1.03).

TheJTAVersionvariable is a new variable introduced to store the version number of the

JTA version installed on the target host. The value of this variable can be populated from a

configuration file. For each infrastructural property that anon-functional requirement de-

pends on, a developer can introduce a corresponding variable into the CSP. If a requirement

depends on the response time of a component X, aComponentXResponseTimevariable

can be created. Any number of variables can be introduced to represent the target host and

component properties. By formalizing the feature selection problem as a CSP, there is now

a clear relationship between the selection of the DualDatabaseSupport feature,P10 = 1, and

its implications.

Aggregating Feature Models and Feature Requirements

At startup, one or more directories are provided to Fresh that contain the feature mod-

els for each role, non-functional requirements, and configuration mechanisms for the prod-

ucts. Fresh constructs its CSP by composing the feature models of each viewpoint and

the non-functional requirements it discovers. Adapters are used to load the feature model
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Figure IV.6: Cost of a Manual Approach to Configuration for th e Scenario

and non-functional requirements. By default, Fresh provides adapters for reading feature

models and non-functional requirements that use a syntax similar to cascading style-sheets.

Adapters can be plugged-in to read other formats, such as XMImodels produced by the

Eclipse Modeling Framework (EMF) [30].

Since specifying feature dependencies and constraints using CSP syntax is not ideal

for most development processes, we developed a Domain-Specific Language (DSL) for

specifying feature models and constraints. The feature modeling language, calledFeature

Styles, allows a product developer to specify the features in the model, the dependencies

between features, and the non-functional requirements associated with each feature. The

language uses a simple textual notation and is not difficult to grasp.

Fresh supports the following dependency rule types:

• Requiredfeatures that must be present for a feature to function properly. JTADAOs

requiresJTAEnabled.

• Excludedfeatures that cannot be present at the same time as a feature.OracleSupport

exludesSQLSequenceDAO.

• Cardinalityconstraints on required features. OrderRemoting requiresa user toselect

[1..*] of the features HessianRemoting, RMIRemoting, and BurlapRemoting.
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Product developers use these dependency rule types to buildcomplex feature models for

a product. Previously, we detailed how these rules are translated into a Constraint Satisfac-

tion Problem (CSP) [134] for a Java Constraint Logic Programming (CLP(X)) solver [77].

The solver uses these rules to guarantee that only compatible and coherent sets of features

are selected for a variant.

The non-functional requirement specification language of Feature Styles allows product

developers to leverage the characterization variables produced from the automated environ-

ment characterization. Each feature can be annotated with constraints based on the variable

names which must hold for the values assigned to the attributes of the target environment.

Fresh provides constraints based on conjunctions or disjunctions of>,<,=, ! =,=<,>=.

A feature can be annotated with any number of constraints on the attribute values.

Developers use these constraints to encode the non-functional requirements of the features.

As with the feature dependency rules, the constraints are encoded into the CSP provided to

the feature selection engine.

The full feature specification for the JtaDAOs is shown below:

JtaDAOs {

Requires: JTA, DatabaseDriver;

Excludes: NonJtaDAOs;

JTAVersion > 1.01;

JTAVersion < 1.03;

}

Results from Experiments with Fresh

To demonstrate the reduction in manual configuration complexity provided by Fresh,

we devised a realistic configuration scenario for the Pet Store example. In this scenario,

Pet Store has a base deployment descriptor (the out-of-the-box descriptor included with the

Spring Pet Store) that must be modified to install the Pet Store on Tomcat with an Oracle
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Database, Email Notification, and RMI Remoting. Pet Store isthen migrated to a new

target where it is hosted on JBoss with an MSSQL database, no RMI Remoting (to avoid

conflicts with the application server), and no Email Notification (email order notification is

handled by a new payment processing application when the customer’s credit card has been

charged). The results in this section show that Fresh’s automated configuration approach

can reduce the total number of steps required to configure an enterprise Java application by

72% and the total lines of XML code by 92%.

Testing Configuration Complexity

In the test scenario, we compute the configuration cost in lines of XML code that must

be changed. We assume that optional components, such as Email Notification’s Email

Advice, are not initially present in the deployment descriptor. When a role selects a feature

requiring a component, the component is added to the configuration files. Table IV.6 shows

the steps involved in configuring the Pet Store for the first deployment configuration.

As shown in Table IV.6 there are many steps, roles, and files involved. To migrate to

the second target environment, the roles must remove some ofthe initially chosen compo-

nents (e.g., Oracle Sequence DAO, Email Advice, Order Pointcut, etc.) and add other new

components (e.g., MSSQL Order DAO). The steps involved in the migration are shown in

Table IV.6.

Table IV.6 also shows that there are a significant number of steps and changes required

to migrate to the new setup. Each change in the target environment or desired feature set

will necessitate similar reconfiguration costs. Moreover,if the application is widely used,

the support team for each applicationinstancemust pay this configuration cost.

We then performed the same migration experiment using Fresh. Fresh required an

extra initial investment of building a basic feature model for the features from the migration

experiment. It also required the addition of comments to thePet Store’s XML configuration
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files that mapped features to XML configuration directives (so that the configuration files

could be regenerated). The initial Fresh configuration overhead is shown in Table IV.7.

Figure IV.7: Fresh Configuration Cost for the Scenario

Fresh requires an initial overhead of 33 lines of XML/Feature Model configuration.

This extra configuration code allows Fresh to (1) detect the database type used (inferred

from the data source driver class), (2) detect if a web container or application server is the

container (by checking for EJB-specific classes), and (3) add/remove XML configuration

directives for the components of enabled/disabled features, respectively. Although the ini-

tial cost of enabling Fresh is higher than a traditional manual approach, this price is paid

only once, rather than each time the application is deployed.

Table II shows the steps required for installing the Pet Store on the initial target with

Oracle and Tomcat. Only two configuration steps are required. First, the correct database

driver class is added to the configuration and then the desired feature set is specified as

Tomcat, Oracle, etc. Fresh performs all other XML configuration tasks, including deriving

a valid feature selection with respect to the desired features.

Table II also summarizes the steps required to perform the second migration to the

JBoss/MSSQL environment. Again, only two steps are required: setting the database driver

and updating the desired features. These two steps provide asignificant improvement over

the manual approach, where 26 lines of XML were changed for the same migration.
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Table IV.8 compares the totals for the manual vs. Fresh configuration approaches. Fresh

initially incurs a marginal configuration cost for buildinga feature model and annotating

the XML configuration files for the Pet Store. After the migration to the second target

environment, however, Fresh reduced the complexity of configuring the Pet Store by 9 lines

of XML configuration. Moreover, for each configuration, Fresh derived a valid feature set

based on the desired features specified by the roles. With a manual approach, this derivation

is not automated and can produce numerous types of errors. Incontrast, Fresh assures that

each configuration is correct by using a constraint solver toderive a configuration based on

the feature model constraints and constrained variabilities.

When the cost of configuring the Pet Store over 100 separate deployments is analyzed,

the benefits of the Fresh approach are amplified. At the minimum (assuming that each de-

ployment uses the default configuration), the manual approach requires 200 configuration

steps and 600 lines of XML changes. The total cost of the manual approach can be over

900 configuration steps and 2,600 lines of XML code, however,if the default configuration

is not used on each deployment, which we assume is common.

With Fresh, conversely, the total configuration steps are fixed at 209 and the total lines

of XML configuration at 233. At a minimum Fresh requires 62% less lines of XML con-

figuration changes and a maximum of 92% less. Step-wise, Fresh uses at most 4.5% more

steps but can also use 72% less total steps. As the number of deployments of the Pet Store

increases, Fresh’s development savings also increase. With increased numbers of deploy-

ments, the initial investment cost of Fresh becomes insignificant compared to the savings.

The intial cost paid to enable Fresh is incurred by the original application developers.

Applications are often developed by one group, yet have hundreds or thousands of instances

installed and maintained by other groups,e.g., testers and users. Moreover, the users often

perform the final configuration, such as choosing the database, OS/middleware version,

network configuration, etc. These users rarely possess the same intimate knowledge of

the application, so they are more likely to make errors or produce poor configurations.
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With Fresh, conversely, the initial developers can packagetheir intimate feature model,

non-functional requirement, and configuration knowledge with the application.

Since this expert configuration information is packaged with the application, users focus

on declaratively informing Fresh what they want, rather imperatively programming new

configurations to provide what they want. Application userscan therefore benefit from

the expert configuration knowledge of the original developers, which is much harder with

conventional manual approaches. Moreover, Fresh greatly reduces the configuration cost

for users since they do not pay the initial Fresh integrationcost, which is borne by the

original application developers.

Figure IV.8: Manual vs. Fresh Configuration Cost Totals

Fresh Performance Overhead

To determine the performance penalty for deriving a configuration with a constraint

solver and rewriting an application’s configuration files, we built a set of experiments to test

the startup time of Pet Store. We first devised several new feature models of increasingly

finer granularity to see how long application startup took with varying feature model sizes.

Feature models of 60, 80, and 100 features were created. The 60, 80, and 100 feature

models were actual feature models of the Pet Store. The 60 feature model did not account
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for features related to the web-tier of the Pet Store. The 80 feature model added features

for the web-tier and Spring’s Web Flow front end. The 100 feature model added features

for the alternate Apache Struts front-end of the Pet Store’sweb-tier.

Each test was built so that the feature set derived from Freshwould lead to an identical

application configuration,i.e., produce the same set of XML configuration directives. We

also reproduced this configuration statically in XML to launch without Fresh and derive

the overhead incurred by using Fresh. We launched Pet Store in Tomcat 6.0.9 using JDK

1.5.0_11 on an IBM Think Pad T-43 with a 1.86GHZ Pentium M processor, 1.5GB of

RAM, and Windows XP. We then tested the time needed to launch Pet Store within Tomcat

and configured it using Fresh with each feature model. The results were compared to the

static configuration launched in Tomcat without Fresh and are shown in Figure IV.9.

Figure IV.9: Pet Store Initialization Time in Tomcat

Figure IV.9 shows that using Fresh with a 60 feature model required an extra∼800ms

to launch vs. a static configuration. For 100 features, the total penalty was∼1,000ms. This

overhead should be acceptable for many enterprise Java application deployment scenarios

because it is only incurred once at application startup.
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CHAPTER V

AUTOMATED CONFIGURATION INTEGRATION FOR CORBA COMPONENT
MODEL APPLICATIONS

Introduction

Distributed real-time and embedded (DRE) systems are increasingly being built using

component-based technologies. Component technologies facilitate software reuse across

applications by allowing the dynamic assembly of applications at deployment time via con-

figuration scripts. The late-binding properties of component technologies allow application

developers to reuse existing software and reduce costs by leveraging commercial-off-the-

shelf (COTS) components.

Application developers have traditionally used tightly-coupled proprietary solutions to

handle the tight requirements and resource restrictions ofDRE systems. Composing a

component-based application from components that are not specifically designed for the

individual application poses a number of challenges. For example, highly specialized com-

ponents can make assumptions, such as the what type of underlying operation system will

be used, that reusable components cannot make. These assumptions can help improve per-

formance (e.g. using specialized APIs) at the cost of reusability. BecauseDRE systems

often operate in environments with little resource slack, being unable to make these key

assumptions makes it difficult to find a configuration that meets the required timeliness,

safety, and other non-functional properties.

A further challenge of configuring DRE systems is that the configuration process must

integrate the concerns of numerous participants divided into multiple roles, such as com-

ponent developers and hardware developers. Each role has a unique viewpoint on what it

considers the ideal solution. Thus, each role attempts to pull the solution in the direction
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that best meets the requirements it is responsible for, suchas power consumption or secu-

rity functionality. These multiple opposing viewpoints make it hard to find a configuration

that satisfies the requirements of each role simultaneously.

For example, in applications developed using the Lightweight CORBA Component

Model (CCM) [19, 138], component developers often prefer tohost the applications on

the most powerful processing hardware available and be allocated as much network band-

width as possible to make their realtime scheduling deadlines easier to meet. Hardware

developers, in contrast, will attempt to use the least powerful processors that are adequate

for the job to minimize power consumption, weight, and cost to make the system more

efficient. Component assemblers (the role that creates instances of components and wires

them together) will want to have the widest array of component types and implementa-

tions available to compose a solution. Testers and certification engineers, conversely, will

want to limit the number of possible application parts to reduce testing and verification

complexity.

Even after a configuration is found that satisfies the numerous/competing concerns of

the roles, implementing the configuration can be tedious anderror-prone. In particular,

multiple roles must coordinate and correctly edit configuration scripts required to assemble

the application. Component developers instruct componentassemblers on the port func-

tions and requirements. Component assemblers wire the components together and dictate

the CPU and memory requirements to application deployers (the role responsible for plac-

ing components on nodes). Deployers obtain the correct binaries from application pack-

agers and place them onto the appropriate nodes. Miscommunication between roles, subtle

mistakes in configuration scripts, and other hard-to-diagnose errors can allow configuration

errors to creep into applications and are thus a major contributor to application failure [50].
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This chapter extends our previous work [144] on simplifyingthe configuration of en-

terprise Java applications. We include new contributions that show how our original Java-

based approach can be generalized to other types of component-based systems. In par-

ticular, the chapter shows the complexity of configuring DREcomponent-based systems

through a Lightweight CCM avionics application. We demonstrate how the same chal-

lenges that plague enterprise Java configuration extend into DRE component-based systems

(and are possibly even more challenging). Moreover, the chapter presents results showing

that the same reductions in manual configuration effort we achieved applying Fresh to en-

terprise Java can be obtained by applying Fresh to Lightweight CCM.

At the heart of our approach is a model-driven engineering (MDE) tool calledFresh

that is designed to reduce the complexity of deriving a correct application configuration

and implementing the configuration in configuration scripts. Fresh simplifies and improves

the correctness of configuring DRE component-based applications by:

1. Capturing configuration rules through feature models, which describe application

variability in terms of differences in functionality.

2. Translating an application’s feature models into a constraint satisfaction problem

(CSP) and using a constraint solver to automatically derivea correct application con-

figuration for a requirements set,

3. Facilitating configuration optimization for a requirements set by providing a config-

urable cost function to the constraint solver to select optimal configurations, and

4. Providing an XML configuration file annotation language that allows it to inject con-

figuration decisions into configuration scripts directly and reduce configuration im-

plementation errors.

Fresh uses feature models [81] to describe the rules for configuring an application.

Feature modeling can be used to describe an application’s configuration rules in terms of
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variations in functionality. For example, an avionics mission computing application that

could be built using different satellite positioning systems could be described by feature

models in terms of its:

1. Variations in functional capabilities (e.g., GPS vs. Galileo satellite positioning sen-

sors),

2. Variations in non-functional properties (e.g., processor power consumption, weight,

etc.), and

3. Constraints between features (e.g., ARM binaries for the Galileo positioning sensor

require an ARM processor)

Feature modeling provides an intuitive model for describing application variability and has

been applied to a number of domains ranging from automobiles[108] to applications for

mobile phones [149]. Deriving a valid configuration from a feature model involves:

1. Selecting required features (e.g., Galileo),

2. Selecting features corresponding to the capabilities ofthe target platform (e.g., ARM),

and

3. Deriving any remaining features needed to create a complete and valid configuration

(e.g., ARM Galileo binaries)

Avionics Application Example of a DRE System

As a representative example of a component-based DRE system, we use the BasicSP

scenario, which is based on the Boeing Bold Stroke avionics mission computing plat-

form [126] shown in Figure V.1. The BasicSP application includes several Lightweight

CCM components. One component is an avionics navigational display that receives up-

dated airframe position coordinates from a positioning sensor. The rate generator com-

ponent sends out a periodic pulse that causes the positioning sensor to update its current
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Figure V.1: Architecture of the BasicSP Avionics Example

coordinates. Once the coordinates are updated, the positioning sensor sends a ready signal

to the display component to update its coordinates.

Lightweight CCM supports the deployment and configuration of components based on

XML configuration files. An emerging trend in the developmentof avionics systems is

to use component-based middleware along with a product-line architecture (PLA) [38]. A

PLA consists of a group of core assets, such as reusable software components and test

cases, and a set of rules for composing the assets into a product variant. When an applica-

tion for a new set of requirements is needed, an application variant is configured from the

reusable assets to meet the new requirement set. A PLA helps reduce development costs by

reusing existing core assets and codifying the process of correctly configuring assets into

an application variant.

The BasicSP product-line.To demonstrate the complexity of declaratively configuring

a set of assets into a variant, we created a product-line fromthe BasicSP example. The

modified BasicSP example includes multiple satellite-based positioning systems that can

be leveraged as the positioning sensor to provide the coordinates of the airframe. Moreover,

the product-line includes different variations in the processors that can be leveraged to run

the rate generator, positioning sensor, and display.

Configuring a variant from the BasicSP product-line involves several participants di-

vided into different roles [139]. For example, component developers are responsible for

producing software components, application assemblers composes software components
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into applications, application deployers determine whichprocessing units host which com-

ponents, and infrastructure developers determine what processing units are available in the

airframe. Each role has its own viewpoint and concerns regarding the properties of the

configuration. For example, component developers are focused on the functional aspects

of the components and their real-time scheduling, whereas infrastructure developers are

geared towards the weight, power consumption, and cost of the available processing units.

A valid BasicSP variant must integrate the concerns of each viewpoint into a function-

ing application. To codify the rules for configuring a propervariant, we produced feature

models that relate how the different points of application variability (such as the number

and types of processing units) affect each other (e.g., the available processing power will re-

strict the components that can be used). Feature modeling describes an application’s points

of variability in terms of variations in functional and non-functional capabilities. Moreover,

feature modeling provides a method of codifying the rules that restrict how selecting one

feature affects how other features can be selected.

An overview of the BasicSP feature modeling notation.Figure V.2 shows the feature

model for BasicSP. BasicSP requires theRate Gen, Position Sensor, andDisplay features,

which is denoted by the filled oval above each of these features. Moreover, BasicSP re-

quires one to three processors, which is denoted by the "[1..3]" cardinality label applied to

the Processor feature. Figure V.3 contains additional feature modeling notations. TheRate

Rate Gen

Satellite System

Position Sensor

5 CPU Units/Refresh

Display Processor

[1..3]

BasicSP

Figure V.2: Feature Model of BasicSP

feature requires exactly one (an XOR relationship) of the features20hz, 25hz, and30hz.

Finally, Figure V.6 contains the notation for optional features. Thex86 feature can (but is

not required to) include theGPSfeature, which is denoted by the unfilled oval.
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.01 CPU Units/Refresh

20hz 25hz 30hz

Rate

RateGen

Figure V.3: Feature Model of the RateGen

16m Accuracy 1.1 CPU Units/Refresh

GPS

35m Accuracy 0.8 CPU Units/Refresh

Galileo

Sat System

Figure V.4: Feature Model of the Available Satellite System s

25 CPU Units Weight 50 grams

x86

60 CPU Units Weight 75 grams

ARM

Processor

Figure V.5: Feature Model of the Processor Options for Basic SP

GPS Galileo Display RateGen x86 Ref

x86 Binaries

Display Galileo RateGen ARM Ref

ARM Binaries

Packages

Figure V.6: Feature Model of the Packaging Options for Basic SP

Challenges of Configuring Component-based Applications for DRE Systems

This section outlines the key challenges of configuring a component-based application

(such as BasicSP) for DRE systems (such as avionics mission computing). In general, it

is hard to configure component-based applications for DRE systems due to the numerous

competing concerns, such as balancing processor power consumption against required pro-

cessing power. This problem is exacerbated by the multiple roles and viewpoints in the

configuration process.
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Challenge 1: Configuration Complexity

Each configuration choice in a component-based applicationmay affect numerous other

decisions that can be made by other roles. In many cases, no formal documentation of

these cause/effect relationships exists. Even when semi-formal documentation, (e.g., fea-

ture models) exists, the large number of components, numerous cause/effect relationships,

and complex global constraints (e.g., limitations on available memory), make it hard to

derive a valid configuration manually.

In the BasicSP application, for example, selecting the GPS component has numerous

side effects on further configuration decisions. The total number of CPU Units consumed

per second cannot exceed the rated CPU Units per second of theprocessors. If the GPS

component is selected along with a RateGen at 25hz, the GPS component will consume

27.5 CPU Units on its host. This combination of a GPS at 25hz precludes using the x86

based processor.

The problem with the feature combination outlined above, however, is that there are

no binaries to run the GPS component on the ARM processor. Although the configuration

appears correct, a subtle combination of a resource constraint and a packaging limitation

(that may not be realized until deployment time) makes the combination invalid. These

long chains of cause/effect relationships are hard to predict and handle manually.

Challenge 2: Incorrect configuration implementation

Configuring a component-based application involves correctly editing numerous con-

figuration files (e.g., CCM XML deployment descriptors), preparing the target infrastruc-

ture (e.g., installing required libraries and starting supporting processes), and installing the

application’s own binaries on its target hosts. These configuration tasks are spread across

multiple roles participating in the application’s configuration. For example, the applica-

tion deployer will install the application’s binaries on the correct hosts and the application
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assembler will create the XML configuration files specifyinghow to connect components

together.

The BasicSP example uses multiple XML deployment descriptors, which provide stan-

dardized Lightweight CCM mechanisms to specify configuration directives. Numerous

changes must be made to BasicSP’s XML deployment descriptor, however, to change the

satellite system used as a position sensor. First, the specification of the component used

to implement the position sensor must be changed (performedby component assemblers).

The new implementation specification of the position sensormust also include the IDs of

its associated implementation artifacts (e.g., dynamic link libraries). The IDs for these ar-

tifacts are produced by component packagers. If the new position sensor uses a different

interface than the previous position sensor, the componentassembler must also update the

wiring of the components by changing the ports and facets involved in the position sensor’s

refresh signal, the display’s coordinates input, and the display’s refresh signal.

The numerous configuration activities that must be coordinated across the various par-

ticipating roles makes manual configuration of a component-based application tedious and

error-prone. Simple mistakes, such as packaging the application with binaries for the wrong

processor architecture, can cause the application to crashat launch. More subtle mistakes,

such as accidentally using the identifier for the 30hz RateGen instead of the 20hz RateGen,

will produce an application that launches correctly but fails under load. Figure V.7 shows

the multiple dependencies between roles responsible for configuring BasicSP. As shown in

this figure, coordinating multiple roles and executing a complex configuration is tricky.

Solution Approach: An Automated Configuration Engine for Li ghtweight CCM

Applications

This section describes theFreshconfiguration engine and how it addresses the chal-

lenges of configuring component-based applications for DREsystems.
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Figure V.7: Configuration Dependencies between Roles for Ba sicSP

Capturing Configuration Rules in Feature Models

One of the key steps towards correctly configuring a component-based application is to

capture the rules for configuring the application. Fresh uses feature models [81] to describe

the rules for configuring an application.

Fresh’s feature modeling language is implemented as both a textual Domain-Specific

Language (DSL) and a graphical modeling tool in Eclipse. Thegraphical modeling tool is

based on top of the Generic Eclipse Modeling System (GEMS) [107], which is an MDE

tool for rapidly creating diagram-based modeling tools from a metamodel.

Automating Configuration Derivation

In addition to providing an intuitive interface for documenting configuration rules, pre-

vious research [22] has demonstrated reductions from feature models to constraint satis-

faction problems (CSPs). Once a CSP formulation of a featuremodel has been obtained,

a constraint solver can be used to derive a correct application configuration. Using a con-

straint solver to derive an application solver addresses Challenge 1 by eliminating manual

derivation. Moreover, using a constraint solver to derive an application configuration has

the following benefits over a manual configuration process:

86



• The correctness of derived configurations is guaranteed with respect to application

constraints,

• The solver can identify if no valid solution exists that meets the requirements,

• A cost function can be used to select a configuration that optimizes key properties of

the solution,

• No manual effort is required to reconcile the complex cause/effect relationships de-

scribed, and

• The solver can find a solution that reconciles opposing viewpoints and concerns in-

volved in configuration (if such a solution exists).

A missing element of existing mechanisms for translating feature models into CSPs

and satisfiability problems [93], is that these approaches do not take into account resource

constraints, which are important in DRE systems. In previous work [144], we have ex-

tended the work in [22] to incorporate resource constraintsand show that it is feasible to

consider them for certain size problems. The exact upper bound on a feasible resource

problem varies from problem instance to problem instance but is typically not a limitation

of automated configuration from CSPs.

Configuration Injection

Along with the difficulty of deriving a valid configuration, we described the complex

coordination needed to implement a valid configuration in anapplication’s configuration

scripts. To help decrease the complexity of implementing a configuration, Fresh includes

an XML configuration file annotation language that can be usedto inject a derived config-

uration directly into an application’s configuration files.

Fresh’s configuration annotation language includes a number of annotations that can be

used to match an XML configuration file to a derived solution, including mechanisms for:
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1. Inserting different attribute values based on the selected feature set,

2. Removing configuration sections,

3. Conditionally inserting configuration sections based onthe selection of specific fea-

ture combination, and

4. Performing template-based duplication of configurationdirectives for specific feature

types.

Fresh’s annotation language is based on XML comments and does not change the struc-

ture or semantics of the original configuration language, ascan be seen in Figure V.8. If

the application must be configured without Fresh in certain circumstances, therefore, the

Fresh annotations need not be removed to configure the application normally. By auto-

matically injecting configuration decisions directly intoXML configuration scripts, Fresh

significantly reduces manual configuration effort, and configuration errors.

Figure V.8: Fresh XML Annotations

A final benefit of directly injecting configuration decisionsinto application configu-

ration files is that the bindings for each configuration decision can be unit tested. For

example, a unit test can be built to ensure that when the GPS component in BasicSP is se-

lected, the correct XML configuration directives in the component deployment descriptor

are produced. After validating the injection of each feature into the configuration files, ap-

plication developers can be certain that future configurations involving the tested features

will be implemented correctly.

With a manual configuration process, conversely, each time anew configuration is pro-

duced the configuration files must be checked to ensure that nomistakes are made. In
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some cases, an application may be delivered to customer who are responsible for properly

implementing a configuration, which they may not do correctly. Using Fresh’s automated

approach, in contrast, enables customers that receive an application to ensure it is config-

ured correctly to meet its requirements.

Empirical Results

To demonstrate the reduction in manual configuration complexity provided by Fresh,

this section evaluates a scenario in which the BasicSP example has the position sensor

changed from GPS to Galileo. In this scenario, BasicSP has a base deployment descriptor

(the out-of-the-box descriptor included with the CIAO Lightweight CCM container imple-

mentation) that must be modified to:

1. Add the required implementation of Galileo,

2. Create an instance of the Galileo component,

3. Connect the Galileo component to the RateGen and Display,and

4. Add Galileo to the deployment plan by specifying its servant, executor, and stub

along with their associated implementation artifacts.

The Galileo and GPS position sensors possess the same basic functionality but name

their ports/facets slightly differently. Thus, although the two can be swapped, their con-

nections and various deployment descriptor configuration lines must also be swapped. We

evaluate the reduction in manual configuration complexity in terms of the total lines of

configuration directives, total steps, possible points of where mistakes can be made, and

total roles that must be coordinated to acheive the swap. Although we assert that using a

constraint solver to derive configurations adds a mental complexity reduction, this cannot

be quantified readily and is thus not included in our results.

A key characteristic that we evaluate is the number of possible steps at which a con-

figuration error can occur. With a manual approach, each timea new configuration is
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produced, it must be tested to ensure that the configuration file producer has not made any

errors, which adds significant overhead. With the Fresh approach, conversely, the injection

of each feature into the configuration file can be unit tested.Once it is certified that Fresh

correctly injects each feature into the configuration files,therefore, Fresh is guaranteed to

produce a correct configuration.

As seen in the inital implementation section of Figure V.9, the base configuration file

for BasicSP contains 650 lines of configuration directives.Adding Fresh XML annotation

Figure V.9: Results of Configuring BasicSP with Fresh vs. a Ma nual Approach

directives, building a simple feature model of BasicSP, andcreating values to be injected
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into the configuration file by Fresh adds a total of 58 configuration directives. Fresh thus

adds∼8% to the total lines of configuration directives required for BasicSP.

Modifying the BasicSP configuration file to use Galileo requires removing the old GPS

implementation, connections, etc. As seen in the “Manual Configuration Steps to Use

Galileo” section in Figure V.9, a significant number of stepsand lines of configuration

directives are involved. At each step in the process, the role modifying the configuration

directives can make mistakes and introduce errors.

The “Fresh Configuration Steps to Use Galileo” section in Figure V.9 shows the total

lines of configuration directives to reconfigure the BasicSPconfiguration file with Fresh.

Fresh requires the addition of one configuration directive to enable the Galileo feature

and the execution of Fresh from the command line to regenerate the BasicSP deployment

descriptor.

The “Fresh Complexity Reduction Summary” section in FigureV.9, compares the total

manual configuration effort of the manual approach versus the Fresh approach. If the initial

overhead of setting up Fresh is included in the calculations, Fresh yields an 80% reduction

in the total lines of configuration directives. If the intialoverhead is not considered (for

cases where the application is configured by a customer), Fresh creates a 99.3% reduction

in total lines of configuration directives.

In the manual approach, if component assemblers decide to change to the Galileo com-

ponent, the component developers and deployment planners must be involved in updating

the deployment descriptor. With the Fresh approach, component developers and deploy-

ment planners initially encode their expertise into the configuration file as Fresh XML

annotations. Thus, each time application assemblers need to swap a component, Fresh uses

the XML annotations produced by the other two roles and does not require their involve-

ment. As can be seen in the “Fresh Complexity Reduction Summary” section in Figure V.9,

Fresh reduces the total roles involved in the change by two-thirds. Limiting the number of
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roles required to implement a change reduces the cost of coordinating the participants and

the chances of miscommunication.

Finally, as shown in the “Fresh Complexity Reduction Summary” section in Figure V.9,

Fresh reduces the total number of configuration steps that must be performed by 91.67%.

Moreover, each eliminated manual configuration step was a potential source of errors in

the process, so the overall number of steps where errors can be made are also reduced by

91.67%. Although an intial cost is incurred by adding Fresh configuration directives, it

allows for the configuration process to be unit-tested and certified. After the Fresh con-

figuration process is certified correct, there is a large reduction in the potential sources of

configuration errors, which are a major contributor to system downtime and failure [50].

92



CHAPTER VI

AUTOMATED ASPECT CONFIGURATION

Introduction

Developers of complex enterprise applications are faced with the daunting task of man-

aging not only numerous functional concerns, such as ensuring that the application prop-

erly executes key business logic, but also meeting challenging non-functional requirements,

such as end-to-end response time and security. Enterprise domain solutions have tradition-

ally been developed using large monolithic models that either provide a single view of

the system or a limited set of views [63]. The result of using alimited set of views to

build the system is that certain concerns are not cleanly separated by the dominant lines of

decomposition and are scattered throughout the system’s models.

Aspect-Oriented Modeling (AOM) [15, 53, 117] has emerged asa powerful method of

untangling and managing scattered concerns in large enterprise application models [59,65].

With AOM, any scattered concern can be extracted into its ownview. For example, caching

considerations of an application can be extracted into an aspect. Once caching is separated

into its own aspect, the cache sizes and types can be adjustedindependently of the applica-

tion components where the caches are applied. When a final composite solution model for

the application is produced, the various aspects are woven back into the solution model and

the numerous affected modeling elements are updated to reflect the independently modeled

concerns.

Although concerns can often be separated easily into their own aspects or views, it is

hard to correctly or optimally merge these concerns back into the solution model. Merging

the models is hard because there are typically numerous competing non-functional and

functional constraints, such as balancing encryption levels for security against end-to-end

performance, that must be balanced against each other without violating domain constraints

93



(such as maximum available bandwidth). Manual approaches for deriving solutions to these

types of constraints do not scale well.

Most current model weavers [25, 51, 65, 117, 136] rely on techniques, such as specify-

ing queries or patterns to match against model elements, that are ideal for matching advice

against methods and constructors in application code, but are not necessarily ideal for static

weaving problems. Many enterprise applications require developers to incorporate global

constraints into the weaving process that can only be solvedin a static weaving problem.

The techniques used to match against dynamic joinpoints, such as pattern matching, cannot

capture global constraints, such as resource constraints (e.g., total RAM consumed < avail-

able RAM), that are common in enterprise applications. Because global constraints are not

honored by the model weaver, developers are forced to expendsignificant effort manually

deriving weaving solutions that honor them.

When weavers cannot handle global constraints, optimization, or dependency-based

constraints, traditional model weaving becomes a manual four stage process, as shown in

Figure VI.1. The left-hand column shows the steps involved in model weaving problems

Figure VI.1: The Model Weaving Process
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with global constraints in general. The right-hand column shows how these steps manifest

themselves in the cache weaving example. First, the advice and joinpoint elements (e.g.,

caches and components) available in the solution model are identified in step 1. Second, as

shown in steps 2 and 3, because a weaver cannot handle global constraints or optimization,

developers manually determine which advice elements should be matched to which model

elements (e.g., the cache types, cache sizes, and the components to apply the caches to).

This second step requires substantial effort because it involves deriving a solution to a

complex set of global constraints.

In terms of deriving cache placements in an enterprise application, the second step

involves determining cache architectures that fit within the required memory budget and

respect the numerous dependency and exclusion constraintsbetween caches. After viable

cache architectures are identified, a developer must use theexpected request distribution

patterns and queueing theory to predict the optimal cache architecture. As the examples

show, even for a small set of caches and potential cache locations, the cache placement

process requires significant work.

In the third step, developers take this manually-derived solution and translate it into

pointcut definitions that match against model elements using regular expressions or queries

(e.g., a specification of how to insert the caching model elements into the models to imple-

ment the caching architecture). In some cases, the manuallyderived solution needs to be

translated into the pointcut specification languages of multiple model weavers so that the

architecture can be implemented in a set of heterogeneous models spanning multiple mod-

eling tools. The model weavers then take these final specifications and merge the models.

Each time the underlying solution models change (e.g., the available memory for caching

changes), the global constraints can cause the entire solution to change (e.g., the previ-

ously used caches no longer fit in the budgeted memory) and theentire three steps must be

repeated from scratch.

This chapter shows that the manual steps of deriving a weaving solution that meets the
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global application requirements (steps 2 and 3) can be automated in many cases by creating

a weaver capable of handling global constraints and optimization. Creating a weaver that

can honor these constraints and optimize weaving allows developers to translate the high-

level application requirements into pointcut specifications and optimization goals that can

be used by the weaver when producing a weaving solution. Finally, because the weaver

is responsible for deducing a weaving solution that meets the overall application require-

ments, as the individual solution models change, the weavercan automatically update the

global weaving solution and re-implement it on behalf of thedeveloper for multiple model

weaving platforms.

This chapter shows how model weaving can be mapped to a constraint satisfaction

problem (CSP) [40, 99, 134]. With a CSP formulation of a modelweaving problem, a

constraint solver can be used to derive a correct—and in somecases optimal—weaving so-

lution. Using a constraint solver to derive a correct weaving solution provides the following

key benefits to model weaving:

• It ensures that the solution is correct with respect to the various modeled functional

and non-functional weaving constraints.

• A constraint solver can honor global constraints when producing a solution and not

just local regular expression or query-based constraints.

• A constraint solver automates the deduction of the correctweaving and saves con-

siderable manual solution derivation effort.

• The weaving solution can automatically be updated by the solver when the core so-

lution models (and hence joinpoints) change.

• The solver can produce a platform-independent weaving solution (a symbolic weav-

ing solution that is not coupled to any specific pointcut language) where model trans-

formations [24,47] are applied to create a weaving solutionfor each required weaving

platform and
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• The solver can derive an optimal weaving solution (with respect to a cost function)

in many cases.

Case Study: The Java Pet Store

This chapter uses a case study based on Sun’s Java Pet Store [100] multi-tiered e-

commerce application. The Pet Store is a canonical e-commerce application for selling

pets. Customers can create accounts, browse the Pet Store’sproduct categories, products,

and individual product items (e.g., male adult Bulldog vs. female adult Bulldog).

The Pet Store application was implemented by Sun to showcasethe capabilities of the

various Java 2 Enterprise Edition frameworks [132]. The PetStore has since been re-

implemented or modified by multiple parties, including Microsoft (the .NET Pet Store) [8]

and the Java Spring Framework [10]. The Spring Framework’s version of the Pet Store

includes support for aspects via AspectJ [1] and Spring Interceptors and is hence the im-

plementation that we base our study on.

Middle-tier Caching in the Pet Store

Our case study focuses on implementing caching in the middle-tier (i.e., the persistent

data access layer) of the Pet Store through caching aspects.The business logic and views

in the Pet Store are relatively simple and thus the retrievaland storage of persistent data

is the major performance bottleneck. In performance tests that we ran on the Pet Store

using Apache JMeter [56], the average response time across 3,000 requests for viewing the

product categories was 3 times greater for a remotely hosteddatabase versus a remotely

hosted database with a local data cache (25% hit rate). The same tests also showed that

caching reduced the worst case response time for viewing product categories by a factor of

two.

Our experiments tested only a single middle-tier and back-end configuration of the Pet

Store. Many different configurations are possible. The Spring Pet Store can use a single
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database for product and order data or separate databases. Data access objects (DAOs) are

provided for four different database vendors. Choosing thecorrect way of weaving caches

into the middle-tier of the Pet Store requires considering the following factors:

• The workload characteristics or distributions of requesttypes, which determine what

data is most beneficial to cache [92]. For example, keeping the product information

in the cache that is most frequently requested will be most beneficial.

• The architecture of the back-end database servers providing product, account, and

order data to the application determines the cost of a query [90]. For example, in

a simple Pet Store deployment where the back-end database isco-located with the

Pet Store’s application server, queries will be less expensive than in an arrangement

where queries must be sent across a network to the database server.

• The hardware hosting the cache and the applications co-located with it will determine

the amount of memory available for caching product data. If the Pet Store is deployed

on small commodity servers with limited memory, large caches may be undesirable.

• The number of possible cache keys and sizes of the data associated with each cache

item will influence the expected cache hit rate and the penalty for having to transfer

a data set across the network from the database to the application server [102]. For

example, product categories with large numbers of productswill be more expensive

to serialize and transfer from the database than the information on a single product

item.

• The frequency that the data associated with the various middle-tier DAOs is updated

and the importance of up-to-date information will affect which items can be cached

and any required cache coherence schemes [102]. For example, product item avail-

ability is likely to change frequently, making product items less suitable to cache than

product categories that are unlikely to change.
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Modeling and Integrating Caches into the Pet Store

Aspect modeling can be used effectively to weave caches intothe Pet Store to adapt it

for changing request distribution patterns and back-end database configurations. We used

this scenario for our case study to show that although cachescan be woven into code and

models to adapt the Pet Store for a new environment, creatingand maintaining a cache

weaving solution that satisfies the Pet Store’s global application requirements takes signif-

icant manual effort due to the inability of model weavers to encode and automate weav-

ing with the global application constraints. Each time the global application requirements

change, the manually deduced global cache weaving solutionmust be updated. Updating

the global cache weaving solution involves a number of models and tools. Figure VI.2

shows the various models, code artifacts, and tools involved in implementing caching in

the Pet Store.

Figure VI.2: Models and Tools Involved in the Pet Store

1. Modeling platforms. We have implemented models of different parts of the Pet Store in

two different modeling tools: the Generic Eclipse ModelingSystem (GEMS) [160] and the

Generic Modeling Environment (GME) [87]. GME was chosen dueto its extensive sup-

port for different views, while GEMS was selected for its strengths inmodel intelligence,
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which was used for automating parts of the deployment modeling process. Using different

tools simplifies the derivation of the deployment plan and the understanding of the system

architecture but also requires some level of integration between the tools.

GEMS is a graphical modeling tool built on top of Eclipse [127] and the Eclipse Mod-

eling Framework (EMF) [29]. GEMS allows developers to use a Visio-like graphical in-

terface to specify metamodels and generate domain-specificmodeling language (DSML)

tools for Eclipse. In GEMS, a deployment modeling tool has been implemented to capture

the various deployment artifacts, such as required Java Archive Resources (JAR) files, and

their placement on application servers. Another Neat Tool (ANT) [72] build, configuration,

and deployment scripts can be generated from the GEMS deployment model.

GME [87] is another graphical modeling tool similar to GEMS that allows developers

to graphically specify a metamodel and generate a DSML editor. A modeling tool for

specifying the overall component architecture of the Pet Store has been implemented in

GME. The GME architecture model is used to capture the component types, the various

client types, back-end database architecture, and expected distribution of client requests to

the Pet Store. The GME architecture model is shown in Figure VI.3.

2. Model weaving tools.The caching aspect of the Pet Store is modeled separately from

the GEMS deployment model and GME architecture model. Each time the caching model

is updated, model weaving tools must be used to apply the new caching architecture to the

GEMS and GME models. For the GME models, the C-SAW [130] modelweaver is used

to merge the caching architecture into the architecture model. C-SAW relies on a series

of weaving definition files to perform the merger. Each manually derived global cache

weaving solution is implemented in C-SAW’s weaving definition files to apply to the GME

architecture models. Again, because we need two separate modeling tools to produce the

best possible deployment and architecture models, we must also utilize and integrate two

separate model weavers into the development process.

The deployment models in GEMS need to be updated via a model weaver, such as the
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Figure VI.3: GME Pet Store Architecture Model

Atlas Model Weaver (AMW) [51], which can interoperate with models based on EMF. With

AMW, developers specify two EMF models and a series of mergerdirectives (i.e., a weav-

ing specification). AMW produces a third merged EMF model from the two source models.

Each global cache weaving solution must also be implementedas a weaving specification

for AMW. Once the AMW specification is implemented, the cacheweaving solution can

be merged into the GEMS EMF-based deployment model to include any required JAR files

and cache configuration steps.

3. Code weaving tools.Finally, to apply the cache weaving solution to the legacy Pet Store

code, the Java cache advice implementations must be woven into the Pet Store’s middle-tier

objects using AspectJ [1], which is a framework for weaving advice into Java applications.

Although the Spring framework allows the application of AspectJ advice definitions to the

Pet Store, it requires that the Spring bean definition files for the Pet Store be updated to

include the new AspectJ pointcuts and advice specifications. A final third implementation

of the global cache weaving solution must be created and specified in terms of Spring bean

definitions and AspectJ pointcuts.

Overall, there are three separate tool chains that the Pet Store cache weaving solution

must be implemented in. First, C-SAW weaving specificationsmust be created to update

the GME architectural models. Second, AMW weaving specifications must be produced to
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update the GEMS deployment models. Finally, the weaving solution must be turned into

AspectJ advice/pointcut definitions for weaving the cachesinto the Pet Store at runtime.

Model Weaving Challenges

One of the primary limitations of applying existing model weavers to the Pet Store

case study is that existing model weaver pointcut specifications cannot encode global ap-

plication constraints, such as memory consumption constraints, and also cannot leverage

global constraints or dependency-based weaving rules to produce an overall global weav-

ing solution. Developers must instead document and derive asolution for the overall global

application constraints and implement the solution for each of the numerous modeling and

weaving platforms for the Pet Store. Moreover, each time theunderlying global applica-

tion constraints change (e.g., the memory available for caches is adjusted) the overall global

weaving solution must be recalculated and implemented in the numerous modeling tools

and platforms.

Differences Between Aspect Weavers and Model Weavers

To understand why model weavers do not currently support global constraints and how

this can be rectified, we first must evaluate aspect weavers atthe coding level, which have

influenced model weavers. Aspect weavers, such as AspectJ and HyperJ [7], face an inde-

terminate number of potential joinpoints (also referred toas joinpoint shadows[71]) that

will be passed through during application execution. For example, late-binding can be used

in a Java application to dynamically load and link in multiple libraries for different parts of

the application.

Each library may have hundreds or thousands of classes and numerous methods per

class (each a potential joinpoint). An aspect weaver cannotknow which classes and meth-

ods the execution path of the application will pass through before the process exits. The

weaver can therefore never ascertain the exact set of potential joinpoints that will be used
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ahead of time. Although the weaver may have knowledge of every joinpoint shadow, it will

not have knowledge of which are actually used at runtime. Model weaving, however, faces

a different situation than a runtime aspect weaver. The key differences are:

• Model weaving merges two models of finite and known size.

• Because models have no thread of execution, the weaver can ascertain exactly what

joinpoints are used by each model.

• Model weaving speed is less critical than aspect weaving speed at runtime and adding

additional seconds to the total weaving time is not unreasonable.

Because a model weaver has knowledge of the entire set of joinpoints used by the

models at its disposal it can perform a number of activities that are not possible with runtime

weaving where the entire used set of target joinpoints is notknown. For example, a model

weaver can incorporate global constraints into the weavingprocess. A runtime weaver

cannot honor global constraints because it cannot see the entire used joinpoint set at once.

To honor a global constraint, the weaver must be able to see the entire target joinpoint set

to avoid violating a global constraint.

Runtime aspect weaving involves a large number of potentialjoinpoints or joinpoint

shadows and is not well-suited for capturing and solving global application constraints as

part of the weaving process. When weaving must be performed on an extremely large set

of target joinpoints, the weaver must use a high-efficiency technique for matching advice

to joinpoints (every millisecond counts). The most common technique is to use a query

or regular expression that can be used to determine if a pointcut matches a joinpoint. The

queries and regular expressions are independent of each other, which allows the weaver to

quickly compare each pointcut to the potential joinpoints and determine matches.

If dependencies were introduced between the queries or expressions (e.g., only match

pointcut A if pointcut B or C do not match), the weaver would beforced to perform far

less efficient matching algorithms. Moreover, since the weaver could not know the entire
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joinpoint set passed through by the application’s execution thread ahead of time, it could

not honor a dependency, such as match pointcut A only if pointcuts B and C arenever

matched, because it cannot predict whether or not B and C willmatch in the future. Finally,

when dependencies are introduced, there is no longer necessarily a single correct solution.

Situations can arise where the weaver must either choose to apply A or to apply B and C.

Challenge 1: Existing Model Weaving Poinctut Specifications Cannot Encode Global

Application Constraints

Most model weavers, such as C-SAW, AMW, and the Motorola WEAVR [43], have

adopted the approach of runtime weavers and do not allow dependencies between point-

cuts or global constraints. Because the model weaver does not incorporate these types

of constraints, developers cannot encode the global application constraints into the weav-

ing specification. Figure VI.4 presents the manual refactoring steps (the first six steps) that

Figure VI.4: Solution Model Changes Cause Weaving Solution Updates

must be performed when the modeled distribution of request types to the Pet Store changes.

In the Pet Store case study, there are a number of dependencies and global constraints

that must be honored to find a correct weaving. We created caching advice implementations

that capture all product queries and implementations that are biased towards specific data

items, such as theFishCache. The biased cache is used when the majority of requests are

for a particular product type. TheFishCache and the generic product cache should be

mutually exclusive. The use of theFishCache is excluded if the percentage of requests
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for fish drops below 50%. Moreover, the generic product cachewill then become applicable

and must be applied.

A small change in the solution model can cause numerous significant ripple effects in

the global application constraints and hence weaving solution. This problem of changes

to the solution models of an applicaiton causing substantial refactoring of the weaving

solution is well-known [66]. The problem becomes even more complex, however, with the

global weaving solution where significant refactoring causes multiple implementations of

the weaving specification to change.

The problem with managing this ripple effect with existing model weavers is that both

the FishCache and the generic product cache have a pointcut that matches the same

model element, theProductDAO. With existing pointcut languages based on regular ex-

pressions or queries, there is no way to specify that only oneof the two pointcut definitions

should be matched to theProductDAO. The pointcut definitions only allow the devel-

oper to specify matching conditions based on joinpoint properties and not on the matching

success of other pointcuts.

Developers often need to restrict the overall cache selection to use less than a specified

amount of memory. For example, rather than having theFishCacheandGenericCache

be mutually exclusive, the two caches could be allowed to be applied if there is sufficient

memory available to support both. Requiring that the woven caches fit within a memory

budget is a resource constraint on the total memory consumedby the weaving solution and

relies on specifying a property over the entire weaving solution. Existing regular expression

and query-based pointcut languages usually do not capture these types of rules.

Another challenge of producing this weaving constraint on the memory consumed by

the caches is that it relies on properties of both the advice objects (e.g., the memory con-

sumed by the cache) and the joinpoint objects (e.g., the memory available to the hosting

object’s application server). Most model weaving pointcutlanguages allow specifying con-

ditions only against the properties of the target joinpoints and not over the advice elements
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associated with the pointcut. To circumvent this limitation, developers must manually add

up the memory consumed by the advice associated with the pointcut and encode it into the

pointcut specification’s query (e.g., find all elements hosted by an application server with

at least 30 MB of memory).

Challenge 2: Changes to the Solution Model Can Require Significant Refactoring of

the Weaving Solution

As the solution models of the application that determine theset of joinpoints change,

each manual step in Figure VI.4 may need to be repeated. The caching solution relies on

multiple solution models, such as the server request distribution model, the cache hit ratio

and service times model, and the PetStore software architecture model. A change in any of

these models can trigger a recalculation of the global weaving solution. Each recalculation

of the global weaving solution involves multiple complex caculations to determine the new

targets for caches. After the new cache targets are identified, the implementation of the

solution for each weaving platform, such as the C-SAW weaving definition files, must be

updated to reflect the new caching architecture.

For example, the correct weaving of caches into the Pet Storerequires considering

the back-end organization of the product database. If the database is hosted on a separate

server from the Pet Store’s application server, caching product information can significantly

improve performance. The cache weaving solution is no longer correct, however, if biased

caches are applied to various product types that are being retrieved from a remote database

and the database is co-hosted with the Pet Store’s application server. A developer must then

update the weaving solution to produce a new and correct solution for the updated solution

model.

As seen in Figure VI.5, not only are numerous manual steps required to update the

weaving solution when solution model changes occur, but each manual step can be com-

plex. For example, re-caculating the optimal placement of caches using a queueing model
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is non-trivial. Moreover, each manual step in the process isa potential source of errors that

can produce incorrect solutions and require repeating the process. The large numbers of

solution model changes that occur in enterprise development and the complexity of updat-

ing the weaving solution to respect global constraints, make manually updating a global

weaving solution hard.

Figure VI.5: Challenges of Updating a Weaving Solution

Challenge 3: Existing Model Weavers Cannot Leverage a Weaving Goal to Find an

Optimal Concern Merging Solution

Another challenge of encoding global application constraints into a weaving specifica-

tion is that global constraints create situations where there are multiple correct solutions.

Existing model weavers do not allow situations where there are multiple possible weaving

solutions. Because the weaver cannot choose between weaving solutions, developers must

manually deduce the correct and optimal solution to use.

Optimizing a solution bound by a set of global constraints isa computationally intensive

search process. Searching for an optimal solution involvesexploring the solution space

(the set of solutions that adhere to the global constraints)to determine the optimal solution.

This type of optimization search can sometimes be performedmanually with numerical

methods, such as the Simplex [109] method, but is typically hard. In particular, each time
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the solution models change, developers must manually derive a new optimal solution from

scratch.

For example, to optimize the allocation of caches to DAOs in the Pet Store, developers

must:

• Evaluate the back-end database configuration to determineif product, account, or

other data must be cached to reduce query latency.

• Derive from the cache deployment constraints what caches can be applied to the

system and in what combinations.

• Determine how much memory is available to the caches and howmemory constraints

restrict potential cache configurations.

• Exhaustively compare feasible caching architectures using queuing analysis to de-

rive the optimal allocation of caches to DAOs based on DAO service rates with and

without caching and with various cache hit rates.

It is hard to manually perform these complex calculations each time the solution models

change or caching constraints are modified.

CSP-based Model Weaving

To address the challenges described earlier, we have developedAspectScatter, which is

a static model weaver that can:

1. Transform a model weaving problem into a CSP and incorporate global constraints

and dependencies between pointcuts to address Challenge 1.

2. Using a constraint solver, automatically derive a weaving solution that is correct

with respect to a set of global constraints, eliminating theneed to manually update

the weaving solution when solution models change, as described in Challenge 2.
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3. Select an optimal weaving solution (when multiple solutions exist) with regard to a

function over the properties of the advice and joinpoints, allowing the weaver rather

than the developer to perform optimization, thereby addressing Challenge 3 from

Section VI.

4. Produce a platform-independent weaving model and transform it into multiple platform-

specific weaving solutions for AspectJ, C-SAW, and AMW through model trans-

formations, thus addressing the problems associated with maintaining the weaving

specification in multiple weaving platforms.

Figure VI.6 shows an overview of AspectScatter’s weaving approach. In Step 1, de-

Figure VI.6: Constraint-based Weaving Overview

velopers describe the advice, joinpoints, and weaving constraints to AspectScatter using

its domain-specific language (DSL) for specifying aspect weaving problems with global

constraints. In Step 2, AspectScatter transforms the DSL instance into a CSP and uses a

constraint solver to derive a guaranteed correct and, if needed, optimal weaving solution. In

Step 3, AspectScatter transforms the solution into a platform-independent weaving model.

Finally, in Step 4, model transformations are used to transform the platform-independent

weaving model into specific implementations, such as C-SAW weaving definition files, for

each target weaving platform.
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The remainder of this section presents a mapping from model weaving to a CSP. By

producing a CSP for model weaving, a constraint solver can beused to deduce a correct

and in many cases optimal solution to a weaving problem.

CSP Background

A CSP is a set of variables and a set of constraints over those variables. For example,

A < B < 100 is a CSP over the integer variablesA andB. A solution to a CSP is a set

of values for the variables (called a labeling) that adheresto the set of constraints. For

example,A = 10,B = 50 is a valid labeling (solution) of the example CSP.

Solutions to CSPs are obtained by usingconstraint solvers, which are automated tools

for finding CSP solutions. Constraint solvers build a graph of the variables and constraints

and apply techniques, such as arc-consistency, to find the ranges that variable values can

be set to. Search algorithms then traverse the constraint network to hone in on a valid or

optimal solution.

A constraint solver can also be used to derive a labeling of a CSP that maximizes or

minimizes a specific goal function (i.e., a function over the variables). For example, the

solver could be asked to maximize the goal functionA+B in our example CSP. A maximal

labeling of the variables with respect to this goal functionwould beA = 98,B = 99.

Mapping Cache Weaving to a CSP

Cache weaving can be used as a simple example of how a CSP can beused to solve a

weaving problem. In the following example, we make several assumptions, such as the hit

ratio for the caches being the same for both joinpoints, to simplify the problem for clarity.

Real weaving examples involving optimal caching or other types of global constraints are

substantially more difficult to solve manually and hence motivate our constraint solver

weaving solution.

Assume that there are two caches that can be woven into an application, denotedC1
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andC2. Furthermore, assume that there are two joinpoints that the caches can be applied

to, denotedJ1 andJ2. Let there be a total of 200K of memory available to the caches.

Furthermore, the two caches are mutually exclusive and cannot be applied to the same

joinpoint. Let the time required to service a request atJ1 be 10ms and the time atJ2 be

12ms.

Each cache hit onC1 requires 2ms to service and each cache hit onC2 requires 3ms.

All requests pass through bothJ1 andJ2 and the goal is to optimally match the caches to

joinpoints and set their sizes to minimize the total servicetime per request. The size of each

cache,C1sizeandC2size, determines the cache’s hit ratio. ForC1 the hit ratio isC1size/500

and forC2 the hit ratio isC2size/700. Let’s assume that cacheC1 is woven into joinpoint

J1 andC2 is woven into joinpointJ2, the service time per request can be calculated as

SvcTime= 2(C1size/500)+10(1−C1size/500)+3(C1size/700)+12(1−C1size/700)

With this formulation, we can derive the optimal sizes for the caches subject to the

global weaving constraint:

C1size+C2size< 200

The problem, however, is that we want to know not only the optimal cache size but also

where to weave the caches and the above formulation assumes that cacheC1 is assigned

to J1 andC2 to J2. Thus, instead we need to introduce variables into the service time

calculation to represent the joinpoint that each cache is actually applied to so that we do

not assume an architecture of how caches are applied to joinpoints. That is, we want to

deduce not only the cache sizes but also the best allocation of caches to joinpoints (the

caching architecture). Let the variableM jk have value 1 if thejth cacheCj is matched to
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joinpoint Jk and 0 otherwise. We can update our service time formula so that it does not

include a fixed assignment of caches to joinpoints:

SvcTime= 2(M11∗C1size/500)+3(M21∗C2size/700)+

10(1− ((M11∗C1size/500)+(M21∗C2size/700)))+

2(M12∗C1size/500)+3(M22∗C2size/700)+

12(1− ((M12∗C1size/500)+(M22∗C2size/700)))

The new formulation of the response time takes into account the different caches that

could be deployed at each joinpoint. For example, the service time at joinpointJ1 is defined

as:

J1SvcTime= 2(M11∗C1size/500)

+3(M21∗C2size/700)+

+10(1− ((M11∗C1size/500)+(M21∗C2size/500)))

In this formulation the variablesM11 andM21 are influencing the service time calcuation

by determining if a specific cache’s servicing information is included in the calculation. If

the cacheC1 is applied toJ1, thenM11 = 1 and the cache’s service time is included in the

calculation. If the cache is not woven intoJ1, thenM11 = 0, which zeros out the effect of

the cache atJ1 since:

J1SvcTime= 2(0) . . .10(1− (0+(M21∗C2size/500)))

Thus, by calculating the optimal values of theMi j variables, we are also calculating the

optimal way of assigning the caches (advice) to the joinpoints.
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To optimally weave the caches into the application, we need to derive a set of values

for the variables in the service time equation that minimizes its value. Furthermore, we

must derive a solution that not only minimizes the above equation’s value but respects the

constraints:

C1size+C2size< 200

(M11 = 1) ⇒ (M21 = 0)

(M21 = 1) ⇒ (M22 = 0)

because the cache sizes must add up to less than the alloted memory (200K) and both

caches cannot be applied to the same joinpoint.

When the constraint solver is invoked on the CSP, the output will be the values for

the Mi j variables. That is, for each Advice, i, and joinpoint, j, thesolver will output the

value of the variableMi j , which specifies if Advice,Ai , should be mapped to joinpoint,B j .

TheMi j variables can be viewed as a table where the rows represent the advice elements,

the columns represent the joinpoints, and the values (0 or 1)at each cell are the solver’s

solution as to whether or not a particular advice should be applied to a specific joinpoint.

Furthermore, any variables that do not have values set, suchas the cache sizes (C1sizeand

C2size), will have optimal values set by the constraint solver.

Even for this seemingly simple weaving problem, deriving what joinpoints the caches

should be applied to and how big each cache should be is not easy to do manually. However,

by creating this formulation of the weaving problems as a CSP, we can use a constraint

solver to derive the optimal solution on our behalf. The solution that the solver creates will

include not only the optimal cache sizes, but also which joinpoints each cache should be

applied to, which would be very difficult to derive manually.
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A General Mapping of Weaving to a CSP

Previously, we showed how a CSP could be used to solve a weaving problem involving

optimization and global constraints. This section presents a generalized mapping from a

weaving problem to a CSP so that the technique can be applied to arbitrary model weaving

problems with global constraints.

We define a solution to a model weaving problem as a mapping of elements from an

advice setα to a joinpoint setβ that adheres to a set of constraintsγ. To represent this

mapping as a CSP, we create a table—called theweaving table—where for each adviceAi

in α and joinpointB j in β , we define a cell (i.e., a variable in the CSP)Mi j . If the advice

Ai should be applied to the joinpointB j , thenMi j = 1 (meaning the table cell <i,j> has

value 1). IfAi should not be applied toB j , thenMi j = 0. The rules for building a weaving

solution are described to the constraint solver as constraints over theMi j variables. An

example weaving table where theProductsCache is applied to theProductDAO is

shown in Table 1.

ProductDAO ItemDAO
ProductsCache M00 = 1 M01 = 0
FishCache M10 = 0 M11 = 0

Table VI.1: An Example Weaving Table

Some weaving constraints are described purely in terms of the weaving table. For ex-

ample, Challenge 1 introduced the constraint that theFishCache should only be used

if the ProductsCache is not applied to any component. This constraint can be de-

fined in terms of a constraint over the weaving table. If theFishCache is A0 and the

ProductsCache is A1, then we can encode this constraint as for all joinpoints,j:

(
n

∑
j=0

M0 j > 0) → (
n

∑
j=0

M1 j = 0)
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Some examples of dependency constraints between advice elements that can be imple-

mented as CSP constraints on the weaving table are:

Advice0 requiresAdvice1 to always be applied to the same joinpoint:

∀B j ⊂ β ,(M0 j = 1) → (M1 j = 1)

Advice0 excludesAdvice1 from being applied to the same joinpoint:

∀B j ⊂ β ,(M0 j = 1) → (M1 j = 0)

Advice0 requires betweenMIN . . .MAX of Advice1 . . .Advicek at the same joinpoint:

∀B j ⊂ β ,(M0 j = 1) → (
k

∑
i=1

Mi j ≥ MIN)∧ (
k

∑
i=1

Mi j ≤ MAX)

Advice and Joinpoint Properties Tables

Other weaving constraints must take into account the properties of the advice and join-

point elements and cannot be defined purely in terms of the weaving table. To incorporate

constraints involving the properties of the advice and joinpoints, we create two additional

tables: theadvice properties tableandjoinpoint properties table. Each rowPi in the advice

properties table represents the properties of the advice elementAi . The columns of the

advice table represent the different property types. Thus,the cell <i,j>, represented by the

variablePAi j , containsAi ’s value for the property associated with thejth column. The join-

point properties table is constructed in the same fashion with the rows being the joinpoints

(i.e., each cell is denoted by the variablePTi j ). An example joinpoint properties table is

shown in Table 2.

Challenge 1 introduced the constraint that theFishCache should only be applied to

theProductDAO if more than 50% (the majority) of the requests to theProductDAO

are for fish. We can use the advice and joinpoint properties tables to encode this request
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%Fish Requests %Bird Requests
ProductDAO 65% (PT00 = 0.65) 20% (PT01 = 0.2)
ItemDAO 17% (PT10 = 0.17) 47% (PT11 = 0.47)

Table VI.2: An Example Joinpoint Properties Table

distribution constraint. Let the joinpoint properties table column at index 0 be associated

with the property for the percentage of requests that are forFish, as shown in the the

joinpoint properties table shown in Table 2. Moreover, letA1 be theFishCache and

B0 be theProductDAO. The example request distribution constraint can be encoded as

M10 → (PT00 > 50).

Global Constraints

In enterprise systems, global constraints are often neededto limit the amount of mem-

ory, bandwidth, or CPU consumed by a weaving solution. Global constraints can naturally

be incorporated into the CSP model as constraints involvingthe entire set of variables in the

weaving table. For example, the memory constraint on the total amount of RAM consumed

by the caches, described in Challenge 1, can be specified as a constraint on the weaving

and properties tables.

. . . RAM on Application
Server

ProductDAO . . . 1024K (PT05 = 1024)
. . . . . . . . .

Table VI.3: An Example Joinpoint Properties Table with Avai lable Memory

. . . RAM Consumed
ProductCache . . . 400K (PA04 = 400)
FishCache . . . 700K (PA14 = 700)

Table VI.4: An Example Advice Properties Table with RAM Cons umption
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Let the joinpoint property table column at index 5, as shown in Table 3, represent

the amount of free memory available on the hosting application server of each joinpoint.

Moreover, let the advice property table column at index 4, asshown in Table 4, contain the

amount of memory consumed by each cache. The memory consumption constraint can be

specified as:

∀B j ⊂ β ,(
n

∑
i=0

PAi4∗Mi j ) < PTj5

If an advice element is matched against a joinpoint, the correspondingMi j variable is set to

1 and the advice element’s memory consumption value,PAi4, is added to the total consumed

memory on the target application server. The constraint that the consumed memory be less

than the available memory is captured by the stipulation that this sum be< PTj5, which is

the total amount of free memory available on the joinpoint’sapplication server.

Joinpoint Feasibility Filtering with Regular Expressions and Queries

Some types of constraints, such as constraints that requirematching strings against

regular expressions, are more naturally represented usingexisting query and regular ex-

pression techniques. The CSP approach to model weaving can also incorporate these types

of constraint expressions. Regular expressions, queries,and other pointcut expressions that

do not have dependenices can be used as an initial filtering step to explicitly set zero values

for someMi j variables. The filtering step reduces the set of feasible joinpoints that the

solver must consider when producing a weaving solution.

For example, theFishCache should only be applied to DAOs with the naming con-

vention "Product*". This rule can be captured with an existing pointcut language and then

checked against all possible joinpoints, as shown in FigureVI.7. For each joinpoint, j, that

the pointcut does not match, the CSP variable,Mi j , for each advice element, i, associated

with the pointcut is set to 0. Layering existing dependency-free pointcut languages as fil-

ters on top of the CSP based weaver can help to increase the number of labeled variables

provided to the solver and thus reduce solving time.
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Figure VI.7: Joinpoint Feasibility Filtering

CSP-Weaving Benefits

Challenge 3 showed the need for the ability to incorporate a weaving goal to produce

an optimal weaving. Using a CSP model of a weaving problem, a weaving goal can be

specified as a function over theMi j , PAi j , andPTi j variables. Once the goal is defined in

terms of these variables, the solver can be used to derive a weaving solution that maximizes

the weaving goal. Moreover, the solver can set optimal values for attributes of the advice

elements, such as cache size.

Allowing developers to specify optimization goals for the weaver enables different

weaving solutions to be obtained that prioritize application concerns differently. For ex-

ample, the same Pet Store solution models can be used to derive caching solutions that

minimize response time at the expense of memory, balance response time and memory con-

sumption, or minimize the response time of particular user actions, such as adding items

to the shopping cart. To explore these various solution possibilities, developers update the

optimization function provided to AspectScatter and not the entire weaving solution cal-

culation process. With the manual optimization approachesrequired by existing model

weavers, it is typically too time-consuming to evaluate multiple solution alternatives.

Mapping aspect weaving to a CSP and using a constraint solverto derive a weaving so-

lution addresses Challenge 1. CSPs can naturally accomodate both dependency constraints

and complex global constraints, such as resource or scheduling constraints. With existing
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model weaving approaches developers manually identify anddocument solutions to the

global weaving constraints. With a CSP formulation of weaving, conversely, a constraint

solver can perform this task automatically as part of the weaving process.

Manual approaches to create a weaving solution for a set of constraints have numerous

points where errors can be introduced. When AspectScatter is used to derive a weaving

solution, the correctness of the resulting solution is assured with respect to the weaving

constraints. Moreover, in cases where there is no viable solution, AspectScatter will indi-

cate that weaving is not possible.

A further benefit of mapping an aspect weaving problem to a CSPis that extensive prior

research on CSPs can be applied to deriving aspect weaving solutions. Existing research

includes different approaches to finding solutions [84], incorporating soft constraints [122],

selecting optimal solutions or approximations in polynomial time [27, 54, 118], and han-

dling conflicting constraints. Conflict resolution has beensingled out in model weaving

research as a major challenge [164]. Numerous existing techniques for over-constrainted

systems [26,78,80,137] (i.e., CSPs with conflicting constraints), such as using higher-order

constraints, can be applied by mapping model weaving to a CSP.

The AspectScatter DSL

Manually translating an aspect weaving problem into a CSP using the mapping pre-

sented earlier is not ideal. A CSP model can accomodate global constraints and dependen-

cies but requires a complex mapping that must be performed correctly to produce a valid

solution. Working directly with the CSP variables to specify a weaving problem is akin to

writing assembly code as opposed to Java or C++ code.

AspectScatter provides a textual DSL for specifying weaving problems and can auto-

matically transform instances of the DSL into the equivalent CSP model for a constraint

solver. AspectScatter’s DSL allows developers to work at the advice/joinpoint level of

abstraction and still leverage a CSP and constraint solver for deriving a weaving solution.
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The CSP formulation of an aspect weaving problem is not specific to any one particular

type of joinpoint or advice. The construction and solving ofthe CSP is a mathematical

manipulation of symbols representing a set of joinpoints and advice. As such, the joinpoints

could potentially be Java method invocations or model elements. Later, we discuss how

these symbols are translated into platform-specific joinpoints and advice. For this section,

however, it is important to remember that we are only declaring and stating the symbols

and constraints that are used to build the mathematical CSP weaving problem.

For example, in the context of the cache weaving example, there are two different types

of platform-specific joinpoints. First, there are the joinpoints used by C-SAW, which are

types of model elements in a GME model. Second, there are AspectJ type joinpoints, which

are the invocation of various methods on the Java implementations of theProductDAO,

OrderDAO, etc. In the platform-independent model used by the CSP, thejoinpoint defini-

tionOrderDAO is merely a symbolic definition of a joinpoint. When the platform-specific

solution is translated into a platform-specific weaving solution,OrderDAO is mapped to

a model element in the GME model used by C-SAW and an invocation of a query method

on the Java implementation of theOrderDAO.

The basic format for an AspectScatter DSL instance is shown below:

ADVICE_1_ID

{

(DIRECTIVE;)*

}

...

ADVICE_N_ID

{

(DIRECTIVE;)*

}

JOINPOINT_1_ID

{

(VARIABLENAME=EXPRESSION;)*

}

...

JOINPOINT_N_ID
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{

(VARIABLENAME=EXPRESSION;)*

}

TheJOINPOINT declaration specifies a joinpoint, an elementB j ⊂ β , thatADVICE

elements can be matched against. TheJOINPOINT_ID is the identifier, such as "Order-

DAO," that is given as a symbolic name for the joinpoint. EachJOINPOINT element con-

tains one or more property declarations in the form ofVARIABLENAME=EXPRESSION.

The columns for the joinpoint properties table are created by traversing all of theJOINPOINT

declarations and creating columns for the set ofVARIABLENAMEs. The

EXPRESSION that aJOINPOINT specifies for aVARIABLENAME becomes the entry for

thatJOINPOINT’s row in the specifiedVARIABLENAME column,PTi j .

EachADVICE declaration specifies an advice element that can be matched against the

set ofJOINPOINT elements, an elementAi ⊂ α. TheDIRECTIVES within the advice

element specify the constraints that must be upheld by the weaving solution produced by

AspectScatter and the properties of theADVICE element (values for thePAi j variables).

The directives available in AspectScatter are shown in Table 5.

As an example, the AspectScatter ADVICE definitions:

GenericCache

{

Excludes:FishCache;

DefineVar:CacheSize;

}

FishCache

{

}

defines two advice elements calledGenericCache andFishCAche. TheDIRECTIVEs

within theGenericCache declaration (between "{..}") specify the constraints thatmust

be upheld by the joinpoint it is associated with and the properties the advice element de-

fines. TheGenericCache excludes the advice elementFishCache from being applied
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DIRECTIVE Applied To Description
Requires: ADVICE+ one or more other ADVICE elements Ensures that all of the

specified ADVICE elements are
applied to a JOINPOINT
if the enclosing ADVICE element is

Required: (true| f alse) an ADVICE element The enclosing ADVICE element
must be applied to at least
one JOINPOINT (if true).

Excludes: ADVICE+ one or more other ADVICE elements Ensures that none of the
specified ADVICE are
applied to the same JOINPOINT
as the enclosing ADVICE

Select: [MIN..MAX],ADV ICE+ a cardinality expression and
one or more other ADVICE Ensures that at least MIN

and at most MAX of the
specified ADVICE are
mapped to the same
JOINPOINT as the enclosing ADVICE

Target : CONSTRAINT an ADVICE element Requires that CONSTRAINT
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

Evaluate:
(ocl|groovy),
FILTER_EXPRESSION an ADVICE element Requires that FILTER_EXPRESSION

defined in OCL or Groovy
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

De f ineVar: VARIABLENAME
(= EXPRESSION)? a weaving problem Defines a variable.

The final value for
the variable is bound
by the weaver and
must cause the optional
EXPRESSION to evaluate
to true

De f ine: VARIABLENAME
= EXPRESSION a weaving problem Defines a variable

and sets a constant
value for it

Goal : (maximize|minimize),
VARIABLE_EXPRESSION a weaving problem Defines an expression over the

properties of ADVICE and
JOINPOINTS that should be
maximized or minimized by
the weaving

Table VI.5: AspectScatter DSL Directives
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EXPRESSION (CONSTANT|VARIABLE_EXPRESSION) An expression
(+|− |×)
(CONSTANT|VARIABLE_EXPRESSION)

CONSTRAINT (VARIABLE_EXPRESSION|CONSTANT) Defines a constraint that must hold
(< | > | = |! = | =< | >=) true in the final weaving solution.
(VARIABLE_EXPRESSION|CONSTANT)

VARIABLE_EXPRESSION (VARIABLE_V_EXPRESSION|CONSTANT) An expression over a set of variables
(+|− |×)
(VARIABLE_V_EXPRESSION|CONSTANT)

VARIABLE_V_EXPRESSION (Target|Source).VARIABLENAME The value of the specified defined
variable (VARIABLENAME)
on a ADVICE or JOINPOINT element.
Targetspecifies that the variable should
be resolved against the JOINPOINT
matched by the enclosing ADVICE.
Sourcespecifies that the variable
should be resolved
against the enclosing
ADVICE element.

Table VI.6: AspectScatter DSL Expressions

to the same joinpoint as theGenericCache. The GenericCache declaration also

specifies a property variable, calledCacheSize, that the weaver must determine a value

for.

Assume that theGenericCache is A2 and theFishCache is A1. The AspectScatter

specification would be transformed into: the mapping variables M20. . .M2n, the advice

property variablesPA20. . .PA2k, an advice property table column forCacheSize, and the

CSP constraint∀B j ⊂ β ,(M2 j = 1) → (M1 j = 0).

The final part of an AspectScatter DSL instance is an optionalset of global variable

definitions and an optimization goal. The global variable definitions are defined in an

element namedGlobals. Within theGlobals element, properties can be defined that

are not specific to a singleADVICE or JOINPOINT. Furthermore, theGoal directive key

word can be used within theGlobals element to define the function that the constraint

solver should attempt to maximize or minimize.
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The values for variables provided by the weaver are determined by labeling the CSP

for the weaving problem. For example, the global constraints for the Pet Store weaving

problem define the goal as the minimization of the response time of theItemDAO and

ProductDAO, as can be seen below:

Globals {

Define:TotalFish = 100;

Define:TotalBirds = 75;

Define:TotalOtherAnimals = 19;

Constraint:Sources.CacheSize.Sum < 1024;

Goal:minimize, ProductDAO.RequestPercentage * ProductDAO.ResponseTime +

ItemDAO.RequestPercentage * ItemDAO.ResponseTime;

}

EachDefine creates a variable in the CSP and sets its value. The variablecre-

ated by theDefine can then have a constraint bound to it. For example, the variable

TotalBirds is used in the constraint(∑n
j=0M0 j > 0) → (TotalBirds< 80). This simple

constraint states that the 0th advice element can only be applied to a joinpoint if there are

less than 80 birds.

TheConstraint directive adds a constraint to the CSP. In the example above,the

specification adds a constraint that the sum of the cache sizes must be less than 1024.

The statement "Sources.CacheSize.Sum" is a special AspectScatter language ex-

pression for obtaining a value from a properties table (the advice properties table), a column

(CacheSize), and an operation (summation). AssumingCacheSize is the 0th column

in the advice properties table, the statement adds the following constraint to the CSP:

∀B j ⊂ β ,(
n

∑
i=0

(Mi j ∗PAi0) < 1024)

Since no explicit values for each advice element’sCacheSize is set, these will be

variables that the solver will need to find values for as part of the CSP solving process.

Because the response times of the DAOs are dependent on the size of each cache, the

CacheSize variables will be set by the weaver to minimize response time. Developers
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can use the AspectScatter DSL to produce complex aspect weaving problems with both

global constraints and goals.

AspectScatter’s DSL also includes support for the filteringoperations described pre-

viously. Filters to restrict the potential joinpoints thatan advice element can be mapped

to can be defined using an Object Constraint Language (OCL) [140] or Groovy [83] lan-

guage expression that must hold true for the advice/joinpoint mapping (i.e., the choice of

expression language is up to the user). Filters are defined via theEvaluate directive. For

example, a Groovy constraint can be used to restrict the FishCache from being applied to

any order related DAOs via a regular expression constraint:

FishCache {

...

Evaluate:groovy,{!target.name.contains("Order")};

}

An OCL constraint could be used to further restrict the FishCache to only be applied to

DAOs that receive requests from a category listing page:

FishCache {

...

Evaluate:ocl,{target.requestsFrom->collect(x | x.name = ’ViewCategories.jsp’)->size() > 0};

}

The filter expressions defined viaEvaluate are used to preprocess the weaving CSP

and eliminate unwanted advice/joinpoint combinations.

AspectScatter Model Transformation Language

The result of solving the CSP is a platform-independent weaving solution that symbol-

ically defines which advice elements should be mapped to which joinpoints. This symbolic

weaving solution still needs to be translated into a platform-specific weaving model, such

as an AspectJ weaving specification. The platform-specific weaving specification can then

be executed to perform the actual code or model weaving.
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Each platform-independent weaving representation of the weaving solution can be trans-

formed into multiple platform-specific weaving solutions,such as AspectJ, C-SAW, or

AMW specific weaving specifications. Producing a platform-independent weaving model

of the solution and transforming it into implementations for specific tools allows As-

pectScatter to eliminate much of the significant manual effort required to synchronize mul-

tiple weaving specifications across a diverse set of models,modeling languages, and mod-

eling tools. For example, when the modeled request distribution changes for the Pet Store,

the C-SAW, AspectJ, and GEMS weaving specifications can automatically be re-generated

by AspectScatter, as shown in Step 4 of Figure VI.6.

AspectScatter’s platform-independent weaving model can be transformed into a platform-

specific model with a number of Java-based model transformation tools, such as ATL [85].

AspectScatter also includes a simple model transformationtool based on pointcut gener-

ation templates that can be used to create the platform-specific weaving model. In this

section, we show the use of the built-in transformation language in the context of the C-

SAW weaving definition files needed for the GME model.

C-SAW weaves the caching specification into the GME architecture according to a set

of weaving directives specified in a weaving definition file. The implementation of the C-

SAW weaving definition file that is used to merge caches into the architecture model is pro-

duced from the platform-independent weaving solution model. To transform the platform-

independent solution into a C-SAW weaving definition file, anAspectScatter model trans-

formation is applied to the solution to create C-SAWstrategiesto update model elements

with caches and C-SAWaspectsto deduce the elements to which the strategies should be

applied. For each cache inserted into the GME architecture model, two components must

be added to the C-SAW weaving definition file. First, theStrategyfor updating the GME

model to include the cache and connect it to the correct component must be created, as

shown below:

strategy ProductDAOAddGenericCache( ) {

declare parentModel : model;
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declare component, cache : atom;

parentModel := parent();

component := self;

cache := parentModel.addAtom("Cache", "GenericCacheForProductDAO");

parentModel.addConnection("CacheInstallation",cache,component);

}

A root Aspect andStrategy must also be created that matches the root element of

the GME model and invokes the weaving of the individual DAO caches. The root defini-

tions are shown below:

aspect RootAspect()

{

rootFolder().models()->AddCaches();

}

strategy AddCaches()

{

declare parentModel : model;

parentModel := self;

parentModel.atoms("Component")->select(m|m.name() == "ProductDAO")->ProductDAOAddGenericCache ( );

....

}

For each advice/joinpoint combination, theStrategy to weave in the cache must be

created. Moreover, for each advice/joinpoint combination, a weaving instruction must be

added to the rootAddCaches strategy to invoke the advice/joinpoint specific weaving

strategy.

To create the advice/joinpoint specific cache weaving strategy, an AspectScatter tem-

plate can be created, as follows:

#advice[*](for-each[list=targets]){#

strategy ${value}Add${advice}Cache( ) {

declare parentModel : model;

declare component, cache : atom;

parentModel := parent();

component := self;

cache := parentModel.addAtom("Cache", "${advice}CacheFor${value}");

parentModel.addConnection("CacheInstallation",cache,component);
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}

#}#

The template defines that for all advice elements matched against joinpoints

"advice[∗]", iterate over the joinpoints that each advice element is applied to

"for-each[list=targets]", and create a copy of the template code between "{#"

and "#}" for each target joinpoint. Moreover, each copy of the template has the name

of the advice element and target element inserted into the placeholders "${advice}" and

"${value}", respectively. The "${advice}" placeholder isfilled with the symbolic name of

the advice element from itsADVICE declaration in the AspectScatter DSL instance.

The "${value}" placeholder is the symbolic name of the joinpoint, also obtained from

its definition in the AspectScatter DSL instance, that the advice element has been mapped

to. The properties of an advice element can also be referred to using the placeholder

"${PROPERTYNAME}." For example, the propertyCacheSize of the advice element

could be referred to and inserted into the template by using the placeholder "${Cache-

Size}".

After deriving a weaving solution, AspectScatter uses the templates defined for C-SAW

to produce the final weaving solution for the GME model. Invoking the generated C-SAW

file inserts the caches into the appropriate points in the architecture diagram. A final woven

Pet Store architecture diagram in GME can be seen in Figure VI.8.

With existing weaving approaches, each time the global properties, such as request dis-

tributions change, developers must manually derive a new weaving solution. When the

properties of the solution models change, however, AspectScatter can automatically solve

for new weaving solutions, and then use model transformation to generate the platform-

specific weaving implementations, thereby addressing Challenge 2. The CSP formulation

of a weaving problem is based on the weaving constraints and not specific solution model

properties. As long as the constraint relationships do not change, AspectScatter can auto-

matically re-calculate the weaving solution and regenerate the weaving implementations.
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Figure VI.8: The GME Architecture Model with Caches Woven in by C-SAW

For example, if new request distributions are obtained, AspectScatter can re-calculate the

weaving solution to accomodate the new information. Automatically updating the weaving

solution as the solution model properties change can save substantial development effort

across multiple solution model refactorings.

Applying Constraint-based Weaving to the Java Pet Store

This section demonstrates the reduction in manual effort and complexity achieved by

applying AspectScatter to the Spring Java Pet Store to handle global constraints and gen-

erate platform-specific weaving implementations. For comparison, we also applied the

existing weaving platforms C-SAW and AspectJ to the same code base using a manual

weaving solution derivation process. The results documentthe manual effort required to

derive and implement a caching solution for the Pet Store’sItemDAO andProductDAO.
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Manual Complexity Overview

It is difficult to directly compare the manual effort required to execute two different

aspect weaving processes. The problem is that there is no wayof correlating the relative

difficulty of the individual tasks of each process. Furthermore, the relative difficulty of

tasks may change depending on the developer.

Although it is difficult to quantify the relative difficulty of the individual steps, we

can define functionsM(WP) andM′(WP) to calculate the total number of manual steps

required for each process as a function of the size of the weaving problem (WP) input.

That is, as more advice elements, joinpoints, and constraints are added to the weaving

problem, how is the number of manual steps of each process impacted? What we can show

is that one process exhibits a better algorithmic O bound forthe number of manual steps as

a function of the input size.

Let’s assume that each step in one process isE times harder than the steps in the second

process. This gives the formula:

E∗Mstep= M′
step

Even if there is some unknown coefficientE, representing the extra effort of each step in

the process yieldingM′(WP), if M′(WP) posseses a better O bound, then there must exist

an input,wpi ⊂WP(WP is sorted in ascending order based on size), for which:

E ∗M′(wpi) ≤ M(wpi)
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and for allwpx ⊂ (wpi+1 . . .wpn):

E ∗M′(wpx) < M(wpx)

Once the size of the weaving problem reaches sizewpi+1, even though the steps inM′ areE

times more complicated than the steps inM(WP), the faster rate of growth of the function

M(WP) makes it less efficient. If we can calculate O bounds for the number of manual

steps required by each process as a function of the size of theweaving problem, then we

can definitively show that for large enough problems, the process with the better O bound

will be better.

In order to compare the AspectScatter based approach to our original C-SAW and As-

pectJ approach, we provide an example weaving problem involving global constraints and

optimization. We apply each process to the problem to show the manual steps involved

in the two processes. Next, we calculate functionsM(WP) andM′(WP), for the tradi-

tional and AspectScatter processes respectively, and showthatM′(WP) exhibits a superior

O bound.

Experimental Setup

We evaluated both the manual effort required to use the existing weaving solutions to

implement a potentially non-optimal caching solution and the effort required to derive and

implement a guaranteed optimal caching solution. By comparing the two different pro-

cesses using existing weavers, we determined how much of themanual effort results from

supporting multiple weaving platforms and how much resultsfrom the solution deriva-

tion process. Both processes with existing tools were then compared to a process using

AspectScatter to evaluate the reduction in solution derivation complexity and solution im-

plementation effort provided by AspectScatter.
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Deriving and Implementing a Non-Optimal Caching Solution with Existing Weaving

Techniques

The results for applying existing weavers to derive and implement a non-optimal caching

solution are shown in Figure VI.9. Each individual manual set of steps is associated with

Figure VI.9: Manual Effort Required for Using Existing Mode l Weaving Techniques
Without Caching Optimization

an activity that corresponds to the process diagram shown inFigure VI.4. The results ta-

bles contain minimum and maximum values for the number of steps and lines of code.

The implementation of each step is dependent on the solutionchosen. The minimum value

assumes that only a single cache is woven into the Pet Store, whereas the maximum value

assumes every possible cache is used.

The top table in Figure VI.9 shows the effort required to produce the initial caching

solution and implementation for the Pet Store. In the first two steps, developers identify

and catalog the advice and joinpoint elements. Developers then pick a caching architecture

(which may or may not be good or optimal) that will be used to produce a weaving solu-

tion. In the next three steps, developers must implement theweaving solution as a C-SAW
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weaving definition file. Finally, developers must update theSpring bean definition file with

various directives to use AspectJ to weave the caches into the legacy Pet Store code base.

The bottom table in Figure VI.9 documents the steps requiredto update the caching

architecture and weaving implementation to incorporate a change in the distribution of

request types to the Pet Store. In the first step, the developer derives a new caching archi-

tecture. In the next 12 steps, developers remove any caches from the original C-SAW and

AspectJ implementations that are no longer used by the new solution and implement the

new caching solution using C-SAW and AspectJ.

Deriving and Implementing an Optimal Caching Solution with Existing Weaving Tech-

niques

Figure VI.10 presents the manual effort to derive and implement an optimal caching

solution for the Pet Store using existing weavers. The change in this experiment is that it

Figure VI.10: Manual Effort Required for Using Existing Mod el Weaving Techniques
With Caching Optimization

measures the manual effort required to derive an optimal solution for the Pet Store by calcu-

lating the Pet Store’s response time using each potential caching architecture and choosing

the optimal one. The steps for implementing the weaving solution are identical to those

from the results presented in Figure VI.9.

The steps labeledDerive Optimal Caching Strategyin Figure VI.10 presents the manual

optimal solution derivation effort incorporated into thisresult set. First, developers must
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enumerate and check the correctness according to the domainconstraints, or each potential

caching architecture for both theProductDAO andItemDAO. Developers must then enu-

merate and check the correctness of the overall caching architectures produced from each

unique combination ofProductDAO andItemDAO caching architectures. After deter-

mining the set of valid caching architectures, developers must use the Pet Store’s modeled

request distribution, memory constraints, and response time goals to derive the optimal

cache sizes and best possible response time of each caching architecture. Finally, develop-

ers select the optimal overall architecture and implement it using C-SAW and AspectJ.

As shown in Figure VI.11, refactoring the weaving solution to accomodate the solution

model change in request type distributions forces developers to repeat the entire process.

First, they must go back and perform the optimal solution derivation process again. After a

new result is obtained, the existing solution implementations in C-SAW and AspectJ must

be refactored to mirror the new caching structure.

Figure VI.11: Manual Effort Required for Using Existing Mod el Weaving Techniques to
Refactor Optimal Caching Architecture

Deriving and Implementing an Optimal Caching Solution using AspectScatter

Figure VI.12 contains the steps required to accomplish boththe initial implementation

of the Pet Store caching solution and the refactoring cost when the request distribution

changes. In steps 1 and 2, developers use AspectScatter’s DSL to specify the caches,
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Figure VI.12: Manual Effort Required for Using AspectScatt er With Caching Optimiza-
tion

joinpoints, and constraints for the weaving problem. Developers then define the weaving

goal, the response time of the application in terms of the properties of the joinpoints and

advice elements woven into a solution. The goal is later usedby AspectScatter to ensure

that the derived weaving solution is optimal.

The next two steps (3 and 4) require the developer to create a model transformation,

using AspectScatter’s transformation templates to specify how to transform the platform-

independent weaving solution into a C-SAW implementation.The approach thus represents

a higher-order transformation where C-SAW transformations are generated from more ab-

stract transformation rules. The subsequent three steps define a model transformation to

produce the AspectJ implementation. Finally, AspectScatter is invoked to deduce the opti-

mal solution and generate the C-SAW and AspectJ implementations.

The bottom of Table VI.12 presents the steps required to refactor the solution to acco-

modate the change in request distributions. Once the aspectweaving problem is defined

using AspectScatter’s DSL, the change in request distributions requires updating one or

both of the request distribution properties of the two joinpoints (i.e., theProductDAO
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andItemDAO) in the AspectScatter DSL instance. After the properties are updated, As-

pectScatter is invoked to recalculate the optimal caching architecture and regenerate the

C-SAW and AspectJ implementations using the previously defined model transformations.

Results Analysis and Comparison of Techniques

By comparing the initial number of lines of code (shown in Figures VI.9-VI.12) re-

quired to implement the caching solution using each of the three techniques, the initial cost

of defining an AspectScatter problem and solution model transformations can be derived.

AspectScatter initially requires 81 lines of code versus between 24 and 100 for the ap-

proach based on existing techniques. The number of lines of code required to implement

the initial weaving specification grows at a rate ofO(n), wheren is the number of advice

and joinpoint specifications, for both AspectScatter and existing approaches. The more

advice and joinpoint specifications, the larger each weaving specification needs to be.

The benefit of AspectScatter’s use of model transformationsbecomes most apparent

by comparing the refactoring results. AspectScatter only requires the developer to change

between 1-2 lines of code before invoking AspectScatter to regenerate the C-SAW and As-

pectJ implementations. Using the existing weaving approaches, the developer must change

between 24-200 lines of code. Moreover, this manual effort required by the existing ap-

proaches is incurredper solution model change. Thus, AspectScatter requires a constant or

O(1) number of changes per refactoring while existing approaches requireO(n) changes

per refactoring.

For a single aspect weaving problem without optimization that is implemented and

solved exactly once, both AspectScatter and the manual weaving approach exhibit roughly

O(n) growth in lines of code with respect to the size of the weavingproblem. The more

caches that need to be woven, the larger the weaving specifications have to be for both

processes. For a single weaving in this scenario, we cannot directly show that AspectScatter

provides an improvement since it has an equivalent big O bound.
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If we calculate the weaving cost overK refactorings, however, we see that AspectScatter

exhibits a bound ofO(2K +n) = O(K +n) lines of code. ApsectScatter requires an initial

setup cost ofO(n) lines of code and then each of theK refactorings requires manually

changing 1-2 lines of code. The manual approach requiresO(n) lines of code changes for

each of theK refactorings because the developer may have to completely rewrite all of the

joinpoint specifications. OverK refactorings, the manual process requiresO(Kn+ n) =

O(Kn) lines of code changes. Thus, AspectScatter provides a better bound,O(K + n) <

O(Kn) on the rate of growth of the lines of code changed over multiple refactorings.

When optimization is added to the scenarios, AspectScatter’s reduction in manual com-

plexity becomes much more pronounced. With existing approaches, each time the weaving

solution is implemented, the developer must calculate the optimal cache weaving architec-

ture. Letγ be the number of manual steps required to calculate the optimal cache weaving

architecture, then the cost of implementing the initial weaving solution with an existing ap-

proach isO(n+ γ). The developer must implement theO(n) lines of code for the weaving

specification and derive the optimal architecture.

Since we are doing a big O analysis, we will ignore any coefficients or differences in

difficulty between a step to implement a line of code and a stepin the derivation of the

optimal caching architecture. We will say thatn lines of code requiren manual steps to

implement. The next question is how the number of stepsγ grow as a function of the size

of the weaving problem. The caching optimization problem with constraints is an instance

of a mixed integer optimization problem, which is in NP, and thus has roughly exponential

complexity. Thus,γ = θn, whereθ is a constant

The overall complexity of the existing approach for the optimization scenario isO(n+

θn). Note, this complexity bound is for solving a single instance of the weaving prob-

lem. OverK refactorings, the complexity bound is even worse atO(n+K(n+θn)). With

AspectScatter, the solver performs the optimization step on the developer’s behalf and the

θn manual steps are eliminated. When optimization is includedand K refactorings are
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performed, AspectScatter shows a significantly better bound on manual complexity than

existing approaches:

O(n+K) < O(n+K(n+θn))

One might argue that a developer wouldn’t manually derive the optimal caching ar-

chitecture by hand but would instead use some automated tool. We note, however, that

this is essentially arguing for our approach, since we are using an external tool to derive

the caching architecture and then using code generation to automatically implement the

solution. Thus, even using an external tool would still require a developer to rewrite the

weaving specification after each refactoring and would alsoadd setup cost for specifying

the weaving problem for the external tool and translating the results back into a weaving

solution. Our approach automates all of these steps on behalf of the developer.

A final analysis worth looking at is the effect of the number ofweaving platforms on

the complexity of the weaving process. For both processes, the overhead of the initial setup

of the weaving solution is linearly dependent on the number of weaving platforms used. In

the experiments, AspectJ and C-SAW are used as the weaving platforms. GivenP weaving

platforms, both processes exhibit an initial setup complexity of O(Pn).

With existing processes, whenK refactorings are performed, the number of weaving

platforms impacts the complexity of each refactoring. Rather than simply incurringO(n)

complexity for each refactoring, developers incurO(Pn) per refactoring. This leads to

an overall complexity bound ofO(Pn+ KPn) for existing processes versus a bound of

O(Pn+ K) for AspectScatter. As we showed in the previous analyses, even for a single

weaving platform, such as just AspectJ, AspectScatter reduces complexity. However, when

numerous weaving platforms are used AspectScatter shows aneven further reduction in

complexity.
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Weaving Performance

There is no definitive rule to predict the time required to solve an arbitrary CSP. The

solution time is dependent on the types of constraints, the number of variables, the degree

of optimality required, and the initial variable values provided to the solver. Furthermore,

internally, the algorithms used by the solver and solver’s implementation language can also

significantly affect performance.

Our experience with AspectScatter indicated that the weaving process usually takes

10ms to a few seconds. For example, to solve a weaving probleminvolving the optimal

weaving of 6 caches that can be woven into any of 10 different components with fairly

tight memory constraints requires approximately 120ms on an Intel Core 2 Duo processor

with 2 gigabytes of memory. If a correct—but not necessarilyoptimal solution is needed—

the solving time is roughly 22ms. Doubling the available cache memory budget essentially

halves the optimal solution derivation time to 64ms. The same problem expanded to 12

caches and 10 components requires a range from 94ms to 2,302ms depending on the tight-

ness (ı.e., amount of slack memory) of the resource constraints.

In practice, we found that AspectScatter quickly solves most weaving problems. It is

easy to produce synthetic modeling problems with poor performance, but realistic model

weaving examples usually have relatively limited variability in the weaving process. For

example, although a caching aspect could theoretically be applied to any component in

an application, this behavior is rarely desired. Instead, developers normally have numerous

functional and other constraints that bound the solution space significantly. In the Pet Store,

for example, we restrict caching to the four key DAOs that form the core of the middle-tier.

In cases where developers do encounter a poorly performing problem instance, there are

a number of potential courses of action to remedy the situation. One approach is to relax

the constraints,e.g., allow the caches to use more memory. Developers can also improve

solving speed by accepting less optimal solutions,e.g., solving for a cache architecture
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that produces an average response time below a certain threshold rather than an optimal re-

sponse time. Finally, developers can try algorithmic changes, such as using different solu-

tion space search algorithms,e.g., simulated annealing [118], greedy randomized adaptive

search [118], and genetic algorithms [118].
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CHAPTER VII

MANUAL CONFIGURATION OPTIMIZATION

Challenge Overview

This chapter illuminates the challenges of modeling the configuration of software inten-

sive systems, motivates why manual approaches are not sufficient for these domains, and

shows how automated modeling guidance mechanisms are needed to help guide manual

modeling. The chapter evaluates the limitations of relatedwork in the area of modeling

guidance and demonstrates the current limitations. The chapter then presents an approach

to providing modelers with modeling guidance from a constraint solver. Specific emphasis

is placed on how modeling guidance can be used to reduce the complexity of modeling

software intensive systems. Finally, the chapter illustrates how a constraint solver can be

integrated into a graphical modeling tool.

Introduction

The complexity of modeling an arbitrary domain can be measured along the following

three axes:

1. Typical Model Size in Elements: Large Models are harder towork with using a

manual approach. Clearly, modeler are more apt to make mistakes managing̊Uand

much more likely to have trouble visualizing - a domain with hundreds of model

elements than one with dozens of model elements.

2. Degree of Global Constraint: Global constraints, such asresource constraints, that

are dependent on multiple modeling steps or the order of modeling steps make a do-

main much harder to work with. For example, a constraint requiring the deployment

of an ABS component to a single ECU at a certain distance from the perimeter of
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the car is relatively easy to solve. It is much harder to solveconstraints of an ABS

component requiring its deployment to two ECUs, both a minimum distance from

the outside of the car and a minimum distance from each other (for fault tolerance

guarantees).

3. Degree of Optimality Required: Optimality is hard to achieve with a manual mod-

eling approach. In many domains, such as manufacturing, a small increase in the

cost of a solution can lead to a dramatic increase in the overall cost of manufacturing

when the millions of units affected by the change are considered. Many solutions

must therefore be tried to find the best one. Domains that require optimal or good

answers are much more challenging to model.

The key reasons that manual modeling approaches do not scaleas modeling domains

become more complex are:

• When there are thousands, millions, billions, or more possible ways that a model can

be constructed and few correct ones, finding a valid solutionis hard.

• A valid solution may not be a good solution in these domains.Often, a modeler may

find a solution that is valid but is far from the optimal solution. Automation and nu-

merical methods, such as the Simplex method [109], are needed to efficiently search

the solution space and find good candidates. A human modeler cannot effectively

search a solution space manually once it grows past a certainmagnitude.

• For large models, manual construction methods, such as pointing and clicking to

intricately connect hundreds or more components, are tedious and error prone.

• Often, global constraints rely on so much information thatnot all of the relevant bits

of information can be seen at once. When not all of the information can be seen,

modelers cannot make an informed decision.
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Another difficulty of highly combinatorial domains is that although modelers may cre-

ate a model that satisfies the domain constraints, the model may be considered poor in

quality. For example, a modeler creating a deployment of components to ECUs could eas-

ily select a scheme that utilized far more ECUs than the true minimum number required to

host the set of components. For domains, such as automotive manufacturing, each model-

ing decision can have significant cost consequences for the final solution. For example, if

a model can be constructed that uses three fewer control units to host the car’s components

and consequently saves $100 in manufacturing costs, millions of dollars in overall cost re-

duction for all cars of this make that are manufactured can beachieved. In these cases, it is

crucial to not only find a correct solution but to find a cost effective one.

The difficulty of finding a good solution is that with large models and complex global

constraints, modelers are lucky to find any valid solution. Since finding a single solution is

incredibly challenging, it becomes infeasible or cost prohibitive to produce scores of valid

solutions and search for an optimal one. Even if the set of valid solutions is large, there are

numerous numerical methods to search for a solution with a given percentage of optimality.

These methods, however, all rely on the ability to generate large numbers of valid solutions

and are not possible without automation.

In domains with large models and intricate constraints, modelers must be able to see

hundreds of modeling moves into the future to satisfy a global constraint or optimize a cost.

The more localized a modelers decisions are and the less distant they peer into the future,

the less chance there is that a correct or good solution will be found. Good local decisions,

also known as "greedy decisions," do not necessarily produce a globally good decision.

For example, consider a simple model that determines the minimum number of ECUs

needed to host a set of components. Assume that there are two types of ECUs, one that costs

$10 and can host 2 components and another that costs $100 and can host 42 components.

If modelers are deploying using a myopic view and not peeringinto the future, they will

select many $10 ECUs and create a solution that costs $210, rather than looking ahead and
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choosing two $100 controllers for a final cost of $200. Makinga series of locally good

decisions may not produce the overall best decision.

Solution Approach

An MDD tool provides a visual language for a developer to build a solution specifica-

tion. An instance of a visual model contains modeling entities or elements, similar to OO

classes, and different visual queues (e.g. connections, containment) specifying relation-

ships between the elements. For example, a connection between a component and an ECU

specifies deployment in the automotive modeling example.

The key objective of a modeler is to add the right model entities and relationships be-

tween the entities so that they create a solution that meets the application requirements.

Modelers express relationships between entities by drawing connections between them,

placing entities within each other for containment, or other visual means. For each rela-

tionship that a modeler creates between entities, such as deployment, the modeler must

find the right source and target for the relationship so that the relationship satisfies any

constraints placed on it. In the example of deploying components to ECUs, the modeler

must only draw a connection from a component to an ECU that hasthe OS and resource

capabilities to support the component.

As has been shown, the large size of DRE models and their complex constraints can

make manually finding the right endpoints for these relationships, such as deployment,

infeasible. To address the scalability challenges of manual modeling approaches presented,

this section outlines how a constraint solver can be integrated with an MDD tool to help

automate the selection of endpoints for relationships between model entities.

In the context of modeling, a constraint solver is a tool thattakes as input one or more

model elements, a goal that the user is attempting to achieve, and a set of constraints that

must be adhered to while modifying the elements to reach the goal. As output, the con-

straint solver produces a new set of states for the model elements that achieves the desired
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goal while adhering to the specified constraints. For example, a set of components can

be provided to a constraint solver along with the deploymentrequirements (constraints) of

the components. The goal can then be set to "all components connected to an ECU." The

constraint solver will in turn produce a mapping of components to ECUs that satisfies the

deployment constraints.

The remainder of this section first outlines the different type of modeling assistance

that an MDD tool and integrated constraint solver can provide to a user. Next, the section

discusses how a user’s actions in an MDD tool can be translated into constraint satisfaction

problems (CSPs) so that a constraint solver can be used to automatically derive the correct

endpoints for the relationships the user wishes to create. Finally, the section illustrates an

architecture for integrating Prolog as a constraint solverinto an MDD tool.

Modeling Assistance

There are two types of constraint solver guidance that can beused to help modelers pro-

duce solutions in challenging domains: local guidance and batch processes. Local guidance

is a mechanism whereby the constraint solver is given a relationship and one endpoint of

the relationship and provides a list of valid model entitiesthat could serve as the other

endpoint for the relationship. One example is that a constraint solver could be provided a

deployment relationship and a component and return the valid ECUs that could be attached

to the other end of the connection. This type of local guidance for deploying components

is shown in Figure VII.1.

The second type of modeling guidance is for deriving endpoints for a group of rela-

tionships so that the group as a whole satisfies a global constraint. An example of a batch

process would be to connect each component to an ECU in a manner such that the no ECU

hosts more components than its resources can support. A batch process takes an overall

goal that the modeler is trying to achieve, such as all components connected to an ECU,
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Figure VII.1: Local Modeling Guidance

and creates a series of relationships on behalf of the user toaccomplish that goal. By of-

fering both local guidance and batch processes, a MDD tool can help users to accomplish

both small incremental refinements to a model and large goalscovering multiple modeling

steps.

Local Guidance

Local guidance helps modelers correctly complete a single modeling step. A single

modeling step is defined as the creation of one relationship between two modeling ele-

ments. Local guidance can be implemented as a visual queue that shows the modeler the

valid endpoints for a relationship that he or she is creating. For example, when a mod-

eler creates a connection from a component to an ECU to specify where a component is

deployed, the modeler must first click on the component modeling element to initiate the

connection. When the connection is initiated, the constraint solver can be used to solve for

the valid deployment locations for the component and the model elements corresponding

to these deployment locations can be highlighted in the model.

Challenges 3 & 4 can be addressed with local guidance. By identifying the model

elements that are valid target endpoints of the modeling action a user is performing, a mod-

eling tool can use visual queues (e.g. highlighting, filtering, etc.) to show the user only
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the information relevant to the action. Furthermore, the modeling tool can use the list of

valid targets to both help the modeler identify valid solutions (helping address challenge

1 of Key Challenges of Complex Domains) and to prevent the user from applying an ac-

tion to an invalid target endpoint (addressing challenge 3 of Key Challenges of Complex

Domains). With a traditional MDD approach, the correctnessof a user’s action is checked

after completion and thus the user may have to do and undo an action multiple times before

the correct target endpoint is found. By finding valid solutions before a modeler completes

a modeling action, the tool can preemptively constrain (e.g. veto modeling actions) what

modeling elements the action can be applied to and prevent tedious and error-prone manual

solution searching.

Local guidance can not only provide suggestions of correct endpoints of a relationship

but can provide rankings of the local optimality of each of the endpoints. For example,

deployment locations could be ranked by the resource slack available on them so that mod-

elers are led to choose deployment targets with sufficient free resources. This manner of

local guidance provides a greedy strategy to modeling guidance. At each step, modelers

are led towards a solution that provides the greatest immediate benefit to the model’s cor-

rectness.

Correct solutions to modeling transactions of a single modeling step can be found using

local guidance. In some cases, only considering single steptransactions will not produce a

solution that satisfies global constraints. For example, ifmodelers can add ECUs as needed

to deploy components to, local guidance can produce a solution that is correct with respect

to the constraints, although not necessarily optimal. If, however, ECUs cannot be added to

the model and the local strategy guides the modeler to a solution where no ECU has free

resources and several components are undeployed, the global constraints cannot be met.

Although a greedy strategy may not produce optimal results for certain types of CSPs,

such as bin-packing, in many cases these localized strategies can provide a lower bound on

the optimality of the final solution. With bin-packing, a First Fit Decreasing (FFD) [39]
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packing strategy that sorts items to be placed into bins by their size and non-deterministically

selects the first bin that can hold the item will guarantee that the solution never uses more

than 1.87 times as many bins as the optimal solution. Providing a lower bound on the qual-

ity of the solution that a modeler can produce can be extremely important in some domains,

such as automotive manufacturing, where you want to minimize risk or cost. Although not

guaranteed, a localized strategy may in fact arrive at an optimal or nearly optimal solution.

Moreover, local guidance is substantially less computationally complex than providing a

global maximum and can be implemented easily with a number ofthe approaches discussed

later in this section.

Batch Processes

Global constraints require the correct completion of numerous modeling steps and are

typically not amenable to user intervention. For global strategies, therefore, batch processes

guided by constraint solvers can be used to create multiple relationships to bring the model

into a correct state. The key differentiator between local guidance and a batch process is

that local guidance deals with modeling transactions involving a single relationship while

batch processes operate on modeling transactions containing two or more relationships.

The larger the number of relationships in the transaction, generally the more complicated

it is to complete.

One possible batch process for the component-to-ECU deployment tool could take each

component in the model and create a connection to an ECU in themodel to specify a

deployment location. Local guidance would produce a singledeployment connection for

a single component. By increasing the size of the modeling transaction to consider the

deployment locations of multiple components, the batch process can use the constraint

solver to guarantee that if a possible solution is found, it utilizes only the ECUs currently

in the model. By expanding the transaction size that the solver operates on, the batch
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process allows it to make model modifications that are not locally optimal, but lead to a

globally optimal or globally correct solution.

Batch processes help address challenges 1, 2, & 3. First, a batch process can correctly

complete large numbers of modeling actions on behalf of the user, eliminating tedious

and error-prone manual modeling (addressing challenge 3).Second, a constraint solver

can create both a correct and an optimal solution that can be enacted by a batch process

on behalf of the modeler (addressing challenge 1). By tuningthe parameters used by the

constraint solver, the modeler can guarantee both optimality and correctness (addressing

challenge 2).

Transforming Non-functional Requirements into Constraint Satisfaction Problems

To integrate local and batch process guidance from a constraint solver, a model and

the actions that modelers can perform on the model must be transformed into a series of

Constraint Satisfaction Problems (CSPs). This transformation allows the MDD tool to

translate the actions of users into queries for a constraintsolver. Valid satisfactions of

the CSPs correspond to correct ways of completing a modelingaction, such as creating a

connection.

A CSP is a set of variables and constraints over the values assigned to the variables. For

example, X < Y < 6 is a CSP with integer variables X and Y. Solving a CSP is finding a set

of values (a labeling) for the variables such that the constraints hold true. The labeling X

= 3, Y=4, is a correct labeling of X < Y < 6. A constraint solver takes a CSP as input and

produces a labeling (if one exists) of the variables. Solvers may also produce labelings that

attempt to maximize or minimize variables. For example, X = 4, Y =5, is a labeling that

maximizes the value of X.

For the deployment example, a deployment of a set of components to a set of ECUs can

be viewed as a binary matrix where the cell at row i and column jis 1 if and only if the ith

component is deployed to the jth ECU (and 0 otherwise). Each cell can be represented as an
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independent variable in a CSP. Thus, each variable Dij determines if the ith component is

deployed to the jth ECU. Finding a correct labeling of the values for the D variables creates

a deployment matrix that can be used to determine where components should be placed.

Assume that the ABS (anti-lock braking system) component and the WheelRPMs com-

ponents must be deployed to the same ECU. Also assume that theABS component must be

placed on an ECU at least 3 feet from the perimeter of the car. This series of deployment

constraints can be translated in a CSP model. Let the ABS component be the 0th compo-

nent and the WheelRPMs component be the 1st component. First, the constraint that the

ABS component be deployed to the same ECU as the WheelRPMs component is encoded

as (D0j = 1)→ (D1j = 1). Next, for each ECU, a constant Distj can be created to store the

distance of the jth ECU from the perimeter of the car. Using these constants, the constraint

on the placement of the ABS component relative to the perimeter of the car can be encoded

as (D0j = 1)→ (Distj ≥ 3). If this CSP is input into a constraint solver, the solver will label

the variables and produce a deployment matrix that is guaranteed to be correct with respect

to the deployment constraints.

A constraint solver can also be used to derive a solution witha certain degree of opti-

mality. Assume that N components need to be deployed to one ormore of M ECUs using

as few ECUs as possible. A new variable UsedECUs can be introduced to store the total

number of ECUs used by a solution. The constraint UsedECUs =∑Dij for all i from 0..N

and all j from 0..M. The solver can then be asked to produce a labeling of the variables Dij

that minimizes the variable UsedECUs. The solver will in turn produce a valid deployment

of the components to ECUs that also minimizes the total number of ECUs used.

Constraint solvers typically offer a number of solution optimization options. The op-

tions range from maximizing or minimizing a function to using a fast approximation al-

gorithm that guarantees a specific worst-case percentage ofoptimality. Depending on the

constraint solver settings used, a modeler can guarantee the optimality of a model or trade
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a certain percentage of model optimality for significantly reduced solving time. In con-

trast, a manual modeling approach provides no way to guarantee correctness, optimality, a

percentage of optimality, or a tradeoff between optimalityand solution time. For software

intensive systems where optimality is important, allowingmodelers to tune these parame-

ters is a key advantage of using a constraint solver-integrated modeling approach.

One goal of using a constraint solver is to produce better solutions than a human mod-

eler can create manually and to produce good solutions more reliably. When a solver uses

either optimal or approximation algorithms, the solver’s solution has a known and guaran-

teed worst case solution quality. In contrast, there is no guarantee on the solution quality

with a manual approach.

Figure VII.2: Transforming a Model into a Constraint Satisf action Problem

As shown in Figure VII.2, the non-functional requirements for the software system

must first be collected and documented (step 1). Each non-functional requirement must

then be translated into a CSP, such as a system of linear equations (step 2). At this point,

the data from the model, such as ECU distances to the car perimeter, are collected and

bound to variables in the CSP produced in the previous step (step 3). Next, the CSP with

some bound variables (such as resource demands) and some unbound variables (such as the

Dij variables in Figure VII.2) are input into the constraintsolver (step 4). The constraint
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solver then produces bindings for the unbound variables andmaps them back to changes in

the model (step 5).

A crucial element for creating the right translation from non-functional requirements to

a set of CSPs is the abstraction used to decompose the model into the variables and facts (i.e.

bound variables) that the CSPs operate on. For example, should ECU and component be

present in the formulation of the CSP to represent the bin-packing of the model’s resources?

The metamodel of a language provides the terminology and syntactic rules for a modeling

language. Since the metamodel contains a precise definitionof the relevant types in a

modeling language it is ideal for identifying the key concepts that the CSPs should use.

The metamodel of a modeling language can be viewed as a set of model entities and the

role-based relationships between them. By using this abstraction based on entities and

role-based relationships, a model can be conveniently decomposed for processing by a

constraint solver. The idea of relationships between elements is the same as the widely

used Resource Description Framework’s predicate / argument format.

The role-based relationships of an entity represent both its properties (such as available

CPU) and its associations (such as hosted components). Eachentity can be decomposed

into a unique ID and a set of role-based relationships associated with the ID. A requirement,

such as "a component is only deployed to an ECU with the correct OS" can be translated

into a CSP involving the Deployment, and OS relationships ofa component and ECU.

The variables of the CSP for this requirement would be the component and ECU that are

being associated through the Deployment relationship. Theconstraint would be that the

OS relationship of the component and the ECU had the same value (i.e. the same OS).

Associating Modeling Actions with the Constraint Solver

An important integration question is how/when to invoke theconstraint solver and what

CSPs and variable bindings should be passed to it. The goal isto use the constraint solver

to provide local guidance and batch processes to bind the endpoints of relationships in
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the model. A constraint solver requires a CSP, a set of unbound variables (e.g. unbound

endpoints), and a set of bound variables to produce a list of endpoints for relationships.

Thus, users’ actions and model state must be interpreted to find the correct CSPs, model

entities, and unbound endpoints to pass to the solver. By defining the right formal model

of the process by which users’ actions are interpreted and translated into input data for the

constraint solver, the integration process can be more cleanly defined. This section presents

a formal abstraction for a user’s interaction with a modeling tool and shows the point in the

formal specification at which the constraint solver can be integrated and used to automate

relationship endpoint binding decisions.

Modeling actions are transactions that take one or more elements of the model and mod-

ify the endpoints of the selected elements’ role-based relationships. Creating a deployment

connection takes a component (the source of the connection)and sets the endpoint of its

TargetECU relationship. A modeling action was defined as a transaction by the user that

takes a relationship and sets its source and target entities. More formally, a modeling action

is a function, action(X, R, E), that takes a model element X, arelationship of the element,

R, and produces an endpoint for that relationship E.

The goal of a traditional MDD tool is to take the input produced by the user, such

as mouse clicks, and translate them into the values for X, R, and E to update the model.

With a traditional MDD tool, the values for E are explicitly bound by modelers. A MDD

tool integrated with a constraint solver not only provides this traditional explicit binding

capability but also provides a constraint solver binding process, in which the constraint

solver deduces the proper endpoints for relationships on behalf of the modeler.

The GEF and EMF frameworks can be used to illustrate how X, R, and E are actually

implemented in a modeling framework. GEF provides an MVC framework for display-

ing and editing EMF models. In GEF, each possible user action, such as connecting two

elements with a line in the graphical model, is represented with a Command object. The

command object is a part of the Command Pattern (Gamma, 1995), which encapsulates
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actions that can affect a model in an object. When the user clicks on an element and then

presses the delete key, GEF constructs a DeleteCommand, sets the command’s argument to

be the element that was click on, and then calls the command’sexecute() method, which

deletes the element from the EMF model. When the user wishes to create a connection, the

user selects the connection tool from a tool palette. Selecting the connection tool causes

GEF to construct a ConnectionCommand. When the user clicks on the first element for the

connection, GEF passes the element to the ConnectionCommand as the source argument.

When the user clicks on the endpoint for the connection, GEF passes the command the

endpoint as the target argument and calls the command’s execute() method, which creates

the connection between the two elements. Tool implementerscreate Command objects to

specify how each possible user action is translated into changes of the underlying EMF

model.

With GEF’s command pattern, R is determined by the type of Command object that

GEF instantiates. In the deployment example, when the user selects the DeploymentCon-

nection tool, GEF creates a corresponding DeploymentConnectionCommand object. The

Command knows (because it is coded into the command object’sexecute method) that it is

modifying the TargetECU relationship of its source argument. The command also knows

that its source argument is the X variable in the action(X,R,E) function. Finally, the com-

mand knows that its target endpoint represents the E variable. Each Command object is

used to translate a graphical user action (e.g. adding a connection) into values for X, R, and

E. The Command is also responsible for modifying the R relationship between X and E in

its execute method. The execute() method of a DeploymentConnectionCommand is shown

in the Java code below:

public class DeploymentConnectionCommand extends Command{

....

//apply action(X,R,E)

public void execute() {

Component source = (Component)this.getSource(); //the X

ECU target = (ECU)this.getTarget(); //the E

//the R relationship (targetECU) between X and E is set here
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source.setTargetECU(target);

}

}

In the modified binding process for E, each relationship R is associated with a CSP

specifying what is considered a correct value for E. For example, a component could spec-

ify that a correct value for its TargetECU’s E value requiresthat the chosen E value and the

component both have the same OS type. When a user input is translated into values for X

and R, a constraint solver integrated MDD tool uses the CSP associated with R to automat-

ically derive values for E on behalf of the user. In Figure VII.2, the CSP was found in step

2, the values for X and R were produced in step 4 and the bindings for E were delivered by

the constraint solver in step 5. The modified modeling transaction process can be seen in

Figure VII.3.

Figure VII.3: A Diagram of a Modeling Transaction with a Cons traint Solver

In the first step, the user selects a tool or action that will beapplied to the model. The

tool determines the R value or relationship that will be modified by the user’s actions.

In the second step, the user clicks on a modeling element to initiate a connection and

hence modify a relationship in the underlying model. The element that the user clicks on

becomes the X value that will be passed to the constraint solver. In the third step, the

modeling environment looks up the correct CSP that must be satisfied by the endpoints of
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the relationship specified by the R value. The modeling environment then passes this CSP,

the X, and R values to the solver. The solver finds the endpoints that satisfy the CSP and

returns these endpoints as possible E values. Finally, the Evalues are presented graphically

to the user.

The GEF DeploymentConnectionCommand can be modified to incorporate this new

process by which the constraint solver chooses the value forE. The Command creation and

initial argument setting remains unchanged. However, after the source of the connection

has been set, the constraint solver can be invoked to solve for a value for E. If a value is

returned, the execute() method can be called immediately. The new DeploymentConnec-

tionCommand is:

public class DeploymentConnectionCommand extends Command{

....

public void setSource(Object obj) {

this.source = obj;

//the X

Component source = (Component)obj;

//call the solver to find valid values for E

List endpoints = this.solver.findEndpoints(source.getId(),

"targetECU");

//if there is only one possible value, go ahead and execute

if(endpoints.size() == 1){

setTarget(endpoints.get(0));

execute();

}

else if(endpoints.size() > 0) {

//otherwise, show the user valid E values by

//modifying their background color

for(Object obj : endpoints)

((ECU)obj).setBackgroundColor(Color.yellow);

}

else {

//notify the user that there are no

//possible deployment locations for the Component

source.setBackgroundColor(Color.red);

}

}

//apply action(X,R,E)

public void execute() {

Component source = (Component)this.getSource(); //the X

ECU target = (ECU)this.getTarget(); //the E
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//the R relationship (targetECU) between X and E is set here

source.setTargetECU(target);

}

}

In the modified DeploymentConnectionCommand, immediatelyafter GEF sets the source

of the connection, the command invokes the constraint solver to find valid endpoints. If

exactly one endpoint is found, the setTarget method is called with that endpoint and the

Command is executed. If more than one valid endpoint is found, each valid target has its

background color changed to yellow (a visual queue). If there is no possible deployment

location for the Component, its background color is changedto red.

In a traditional process, the user would be required to clickfirst on the source element,

decide on a valid deployment location for the source, and then click on the deployment

location. With the modified Command object, the object itself attempts to determine the

valid targets (E) using the constraint solver. The Command can then either automatically

complete the action on the user’s behalf, if there is exactlyone possible endpoint. If there is

more than one possible endpoint, the Command can highlight those endpoints for the user.

If no endpoints are found, the Command can notify the user by changing the Component’s

background color to red.

In many situations, the user will wish to find a valid endpointfor a specified R relation-

ship for every member of a set of modeling elements. For example, the user may wish to

select some or all of the Components and have the solver find a valid target ECU for every

Component such that no global deployment constraint, such as resource consumption, is

violated. Using the GEF framework, a new BatchDeploymentCommand can be created.

Just as with other GEF commands, the BatchDeploymentCommand can have a tool

palette entry associated with it that the user can select. When the user selects the corre-

sponding tool entry, the BatchDeploymentCommand is created. The batch command takes
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a group of modeling elements, which the user specifies through a group selection, and cre-

ates a connection for each member of the group to a valid ECU. The Java code for the

BatchDeploymentCommand is:

public class BatchDeploymentCommand extends Command{

....

public void execute() {

//the set of Xs

Component[] sources = (Component[])this.getSources();

//the solver deduces an E for each X

Object[] targets = this.solver.findValidTargets(sources,

"targetECU");

if(targets != null){

for(int i = 0; i < targets.length; i++) {

sources[i].setTargetECU((ECU)targets[i]);

}

}

}

}
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CHAPTER VIII

AUTOMATED CONFIGURATION HEALING

Introduction

Service-oriented architectures (SOAs) are emerging as a powerful mechanism to pro-

vide loose coupling and software reuse in enterprise applications. SOAs expose individual

reusable software applications or components as remotely accessible services that commu-

nicate using standardized message-oriented protocols, such as the Simple Object Access

Protocol (SOAP). The loose coupling provided by message-oriented communication and

standardized protocols allows applications to be rapidly composed from both newly devel-

oped custom components and from existing services.

Often, within a single organization or group of collaborating organizations, multiple

services are available that can accomplish a particular task. The redundancy in services

provides the potential to create applications that can healthemselves by failing over to

leverage similar services when a service in their service composition (i.e. the services used

by the application) fails. Failing over to another equivalent but not necessarily identical

service can create robust applications that can adapt to service failures and remain func-

tional.

Designing and implementing a mechanism to build self-healing service compositions is

a complex endeavor. Since software development projects already have low success rates

and high costs, building a service capable of healing is typically not feasible. Furthermore,

building adaptive mechanisms greatly increases the complexity of an application and can

be difficult to divorce from application code if the development of the adaptive mechanism

is not successful.

Model-driven engineering (MDE) provides a potential solution to managing the com-

plexity of developing adaptive services. In an MDE approach, high-level adaptive models
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are used to generate the complex adaptive code required to heal the application when ser-

vices fail. This approach allows much of the complex healingcode to be generated by

the MDE tool and in many cases, removed in needed. Numerous approaches have been

presented for building MDE models and platforms for enterprise applications but these

approaches tend to suffer from one or more of the following problems:

1. they require tight-coupling between application code and adaptation logic or frame-

works

2. they require significant development effort to explicitly model the numerous potential

error states and recovery paths from an error state to a correct state

3. they require extensive effort to develop the adaptation action implementations for a

realistic application

In this paper we present an MDE approach and toolset, calledRefresh, for designing

and implementing self-healing service compositions. Refresh is specifically designed for

healing a service composition when:

1. the application is implemented with a component-based technology

2. catastrophic failure is imminent

3. the application and any redundant instances in an application cluster cannot continue

functioning correctly in their current configuration

4. the application has alternate composable services, thatcould potentially be exploited

to avoid failure

For each potential error state that an application’s service composition could enter, most

existing MDE adaptation techniques require explicitly modeling both the error state and the

numerous actions to transition from the error state to a correct state. For large enterprise
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applications, there are usually a significant number of potential error states and complex

nuanced considerations (e.g.availability of other services, database locks held, transaction

states, etc.) that make it very difficult to create a model forservice composition healing.

Rather than explicitly modeling error states and recovery actions, Refresh usesFeature

Modelsto capture the rules for determining what is or is not a correct configuration/error

state.

AccountDAO OrderDAO ProductDAO ItemDAO

DAOs

Single

JTAPresentRef

Multiple

Datasources

JTAPresent JTANotPresent

JTA

PetStore

PetStoreServiceComposition

Figure VIII.1: Pet Store Service Composition Feature Model

Feature models describe an application in terms of points ofvariability and their affect

on each other. For example, in an e-commerce application, a feature might be a service

for accessing an order database. The order feature can have different sub-features, such

as different potential services that can serve as the order database access service. If one

particular order database access service is chosen, it excludes the other potential order

services from being used (it constrains the other features). If the chosen service fails, a new

feature selection can be derived that does not include the failed service’s feature.

To avoid the challenges and accidental complexities of bothmodeling all possible error

states and paths to correct states, Refresh uses an approachbased onmicro-rebooting[32].

When a failure, such as the inability to communicate with a dependent service, occurs, Re-

fresh 1) uses the application’s feature models to derive a new and valid service composition

from the currently available services and components; 2) uses the application’s component

container to shutdown the failing application subsystem (e.g. remote reference to a failed

service); 3) and restarts the application subsystem in the newly derived configuration (that
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points to a different service and includes any local components needed to communicate

with it).

Case Study: The Java Pet Store

To illustrate the complexity of applying existing MDE techniques to creating healing

applications, we present a case study based on Sun’s Java PetStore e-commerce appli-

cation [100]. The Pet Store provides a web-based storefrontfor selling pets. The store

includes multiple catetories of pets, products (e.g. Bulldog, Iguana), and individual prod-

uct items (e.g.Female Bulldog Puppy). Customers browse for pets and purchase different

items.

Sun and other parties use the Pet Store as a reference application to showcase various

frameworks, such as the Java 2 Enterprise Edition frameworks [132]. Because the Pet Store

is very widely known and can serve as a reference for comparing different technologies, the

Pet Store has been re-implemented in different programminglanguages and with different

frameworks. For example, Microsoft has created the .NET PetStore [8] and the Java Spring

Framework [10, 79] has created the Spring Pet Store. The Spring Framework’s version of

the Pet Store includes support for integrating web servicesand is the implementation we

have chosen for the case study.

Figure VIII.1, presents a high-level feature model of the features related to the Pet

Store’s data tier. Features are denoted by the various boxesin the diagram. The levels

of hierarchy represent subfeatures. For example, all PetStore instances haveDAOs, Data-

sources, andJTA as subfeatures (the filled circles at the top of the child features denote

required features). The Pet Store Java Transaction API (JTA) feature can either be present,

denoted when the childJTAPresentfeature is selected, or not present. A Feature can also

specify rules restricting the selection of other features if the feature is selected. For ex-

ample, the selection of theDatasources/Multiple features requires thatJTAPresentalso
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be selected. This requirement is denoted by theJTAPresentRefrequired feature reference

underMultiple.

HessianOrderServiceSOAPOrderServiceLocalOrderDAO BurlapOrderService

OrderDAO

Figure VIII.2: Feature Model of the J2EE Pet Store’s OrderDA O

The SpringFramework allows individual components in the Pet Store to be swapped

with proxies to remote services. Figure VIII.1 lists the various DAOs that are available

in the PetStore. Each of these DAOs can potentially be swapped for a remote service.

Figure VIII.2 shows the various options for the OrderDAO. Either the OrderDAO can be

implemented by a local component or it can be implemented as adynamically created

Java proxy to a SOAP, Burlap, Hessian, or RMI order service. The case study focuses

on failing over from the middle-tier DAOs to different remote services to demonstrate the

complexities of applying existing MDE techniques.

Challenges of Creating Self-healing Service Compositions

A very common approach to modeling application healing is tomodel the individual

error states that the application can enter and a recovery path (a sequence of recovery

actions) to return the application to a correct state. For example multiple MDE approaches

useState Chartsto capture the various error states of an application and thesequences of

recovery actions to return to a correct state. Enumerating each potential error state and each

recovery path can require significant modeling complexity.As we will show through the

rest of this section, even when an MDE tool can generate the majority of the self-healing

code for a service composition, the requirement to model andimplement recovery actions

places a heavy burden on developers.
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Challenge 1: Significant Modeling Complexity to Specify a Recovery Path from an

Arbitrary Error State to a Correct State

A healing model must use different error states for each implementation of a service

type or component type.The failure of the OrderDAO appears to be a fairly simple error

condition to model and specify a recovery path for, but it is not. The problem with modeling

each potential error state and recovery path is that the series of recovery actions that need

to be invoked is different for the local OrderDAO and remote service implementation. If

the local OrderDAO fails, it may simply need to be swapped foranother implementation. If

a remote service fails, it may be necessary to free resourcesthat were used by a connection

to it, such as memory used by caches or network ports.

The type of remote service that is being communicated with can also be important

to the recovery action. For example, different recovery paths will be needed to release

resources that were used by a connection to a SOAP-based web service as opposed to a

Hessian-based web service proxy. Thus, for each type of service or implementation of the

OrderDAO, separate error states and recovery paths are needed. Requiring separate error

states for each service implementation can cause the numberof error states to explode when

a real enterprise application is modeled.

If the Pet Store’s service composition is modeled using State Charts, as shown in Fig-

ure VIII.3, there are 4 different states for each DAO. Futhermore, there are 20 different

states needed to represent the potential services and components that can serve as the Pet

Store’s DAOs. Another property of this model worth noting isthat it does not yet include

any recovery logic. Instead, the model just includes some placeholder transitions from one

potential service to the next.

For every error state that the system needs to recover from, the model must explicitly

specify a recovery path.For each of the numerous error states that can be produced, as

described above, an individual recovery path must be definedto heal the service composi-

tion. For example not only do the failure of a Hessian and SOAP-based order service need
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Figure VIII.3: Pet Store Service Composition State Chart

to be modeled separately, but the series of recovery actionsattached to each also needs to

be modeled separately. As with error states, the number of recovery path specifications

produced for healing each component of an enterprise application can be large.

The Pet Store requires a number of recovery actions to take place in order to swap the

service used for a DAO. The various actions for swapping the OrderDAO to one of the re-

mote services is modeled in Figure VIII.4. First, to swap a DAO, a SpringHotSwappableTargetSource

(an object capable of swapping an active component in the application) must be obtained.

Next, any resources held by the old DAO implementation or DAOproxy to a remote ser-

vice must be released. After releasing resources, a new proxy to another remote service

can be created. Finally, the newly created proxy can be swapped into the application using

theHotSwappableTargetSource. Including the recovery paths in the model ups the

total number of states per DAO from 4 to 25.

Healing a local error may require evaluating the global application state. In the models

thus far, if the OrderDAO fails, it can be replaced with any ofthe potential viable order

services. If the Java Transaction API (JTA) is being used to manage transactions, the Pet

Store can fail over to any remote service and still provide proper transaction behavior.

If, however, JTA is not being used to manage transactions, the system can only provide

transactions across a single datasource, meaning that all of the DAOs must be accessing
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Figure VIII.4: OrderDAO Recovery Paths State Chart

the same database instance. Requiring the use of a single database instance prevents an

arbitrary service from being chosen. In the non-JTA situation, the service may only fail

over to a remote service if the service is accessing the same database instance as all other

referenced remote services.

An extension of the OrderDAO recovery State Chart to includethe JTA consideration

is show in Figure VIII.5. Each transition to the swap states now includes a guard to ensure

that swapping is allowed. A newGlobalSwapControllerhas been added to the model to

only allow swapping when either JTA is present or a single data source is being referenced

by the application’s service composition.

Challenge 2: Significant Complexity to Write Re-configuration Code that Can Bring

the System from an Arbitrary Error State to a Correct State.

Regardless of the MDE approach used for building the application healing mechanism,

developers must always implement the application-specificrecovery actions. This require-

ment parallels the development of enterprise applicationsand services, where despite the

frameworks used, developers are always required to implement the core business logic.
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Figure VIII.5: OrderDAO Recovery Paths State Chart when Acc ounting for JTA

Some specialized MDE tools may provide pre-built recovery actions for very specific do-

mains, but in general, nearly every MDE approach requires developers to write the recovery

actions.

For each path from an error state to a recovery state, complexrecovery logic must

be written. The more error states that are possible in the application, the more recovery

actions must be written by developers. These numerous recovery actions can be both ex-

pensive to develop and difficult to test - a potential problemwhen projects are already prone

to failure and cost overruns.

In the Pet Store application, there are four separate DAOs that can each be swapped

to one of four remote services to avoid failures. To implement a simple swapping mech-

anism in the Pet Store, the Spring framework provides numerous complex utility classes

for hotswapping components and connecting to remote services, such as Apache Axis web

services. Despite these numerous utility classes, to create an action to swap just the Or-

derDAO to one of the four remote services requires 77 lines ofJava code to implement the

swapping logic and 11 lines of XML code to enable and configurethe swapping action in
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the Pet Store. Although some level of refactoring and object-oriented design can be used

to share common logic across actions, implementing each action still requires significant

effort.

Challenge 3: Executing Arbitrary Recovery Actions in Arbit rary Error States can

have Numerous Unforeseen Side-effects.

Error states are often specified in such a way that the system as a whole can be in

numerous different states that all fall under the definitionof the same error state. For

example, when the OrderDAO fails, the Pet Store can have orders in progress, category

listings in progress, and numerous other nuanced conditions. Building a robust and correct

recovery action requires taking into account the side effects of the recovery action on the

complex overall state of the application.

For example, what will happen if the local OrderDAO is swapped with a remote service

during the submission of one or more customer orders? Can theorders potentially be left in

an inconsistent state in the database? Does the safety of theswap depend on whether or not

a local or JTA-based transaction mechanism is used? These complex nuanced questions are

not easy to answer and must be considered for each recovery action implementation. These

intricacies make developing a recovery action that will notlead to unforseen problems hard.

Modeling and Building Healing Adaptations with Refresh

By evaluating the challenges in Sections VIII-VIII, it is apparent that they stem from

two causes: 1) the requirement that every error state and recovery path must be explic-

itly modeled and 2) that developers must implement every complex recovery action. This

section describes our MDE toolset, calledRefresh, that eliminates these two sources of

substantial complexity.

Refresh uses feature models to capture the rules for what is acorrect system state, which

eliminates the need to explicitly model every error state (since each state can be checked
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for correctness on-demand). Second, rather than requiringcomplex recovery actions to be

implemented, Refresh uses the application’s component container to shutdown the applica-

tion, reconfigure its service composition, and restart the application in the new and correct

state. This reuse of standard container mechanisms for adaptation significantly reduces

healing development effort without sacrificing performance.

Overview of Refresh

Refresh is built around the concept of micro-rebooting. When an error is observed in

the application, Refresh uses the application’s componentcontainer to shutdown and reboot

the application’s components. Using the application container to shutdown the failed sub-

system takes milliseconds as opposed to the seconds required for a full application server

reboot. Since it is very likely that rebooting in the same configuration (e.g. referencing

the same failed remote service) will not fix the error, Refresh derives a new application

configuration and service composition from the application’s feature models that does not

contain the failed features (e.g.remote services).

The service composition dictates the remote services used by the application. The

application configuration determines any local component implementations, such a SOAP

messaging classes, needed to communicate and interact properly with the remote services.

After deriving the new application configuration and service composition, Refresh uses the

application container to reboot the application into the desired configuration. The overall

structure of Refresh is shown in Figure VIII.6.

Refresh interacts directly with the application container, as can be seen in Figure VIII.6.

During the initial and subsequent container booting processes, Refresh transparently inserts

application probesinto the application to observe the application components. Observa-

tions from the application components are sent back to anevent stream processorthat

runs queries against the application event data, such as exception events, to identify errors.

Whenever an application’s service composition needs to be healed,Environment probes
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Figure VIII.6: Refresh Structure

are used to determine available remote services and global application constraints, such as

whether or not JTA is present. Finally, Refresh includes afeature modelof the application

that dictates the rules for deriving a new application configuration and service composition

when the application needs to be healed and rebooted.

Refresh uses event stream processing [91], to run queries against the application’s event

data and identify feature failures. The initial implementation of Refresh, based on the

Spring Frameworks IoC container, uses the Esper event stream processor [4] for Java. Esper

is a high-performance event stream processor that is capable of handling 100,000 events a

second with 2,000 queries on a single dual-core CPU [3].

Each feature in the feature model that could potentially fail is associated with a group

of event stream queries. At runtime, when a query associatedwith a feature returns a result,

Refresh is notified that the associated feature has failed, as shown in Figure VIII.7. The data

and objects observed and analyzed by Refresh are determinedby the query specifications.

Once Refresh is notified of a feature failure, it has three main tasks: 1) to use the

container to shutdown the application’s components; 2) to use the application’s feature

model to derive a new application configuration and service composition; and 3) to use the
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Figure VIII.7: Error Propogation to Refresh

container to reboot the application in the new configuration. The sequence of events from

a feature failure notification to the rebooting of the container are shown in Figure VIII.8.

Figure VIII.8: Refresh Reconfiguration, Shutdown, and Laun ch Recovery Sequence

To derive a new configuration of the application does not include the failed feature, Re-

fresh transforms the feature selection problem into a constraint satisfaction problem (CSP)

using techniques that have been developed by us an others in prior work [22, 144, 149].

Once the feature selection problem is transformed into a CSP, a high-performance general

purpose constraint solver, such as ILog’s JSolver [35], Geocode [124], or Choco [20], is

used to derive a new set of features/configuration for the application.
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Once the new application configuration and service composition is derived, Refresh in-

vokes the container’s shutdown sequence to properly release resources, abort transactions,

and perform other critical activities. The new configuration is injected into the container

through programmatic calls or by regenerating the application’s configuration files [144].

After the configuration is injected into the container, the application is launched in the new

configuration without the failed service, as shown in FigureVIII.9.

Figure VIII.9: Refresh Launches the Application in the New C onfiguration

Solution 1: Use Feature Modeling to Capture the Rules for Deriving what is Consid-

ered a Correct State

Modeling each individual error state and recovery path is complex. Refresh uses feature

modeling to avoid requiring developers to model each individual error state and recovery

path. Feature modeling captures the rules–rather than individual error states and recovery

paths–for deriving what constitutes a correct applicationconfiguration and service compo-

sition. In terms of healing, feature modeling describes:

• the component or service types that are needed to compose the application
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Figure VIII.10: Deriving a new Service Composition from the Pet Store Feature Model

• the sets of components or services that can serve as the implementation of a service

type in the application’s composition

• the rules dictating the requirements, such as dependent libraries, required by each

component or service implementation

• the rules constraining how the choice of one service implementation restricts the

choices of other component or service implementations in the same application com-

position

When the failure of a feature is observed, Refresh uses the feature model of the ap-

plication to derive an alternate set of features for the application that does not include the

failed feature. For example, in the Pet Store, when theLocalOrderDAOfeature fails, Re-

fresh uses the feature model to derive an alternate feature selection for the Pet Store. In

the example shown in Figure VIII.10, Refresh chooses a new feature selection that uses the

HessianOrderDAOrather than the failedLocalOrderDAO.

Automated Feature Selection Using a Constraint Solver:The key to Refresh’s healing

capabilities is its ability to use a constraint solver to automatically derive a new feature

selection for the application. Prior work provides extensive details on the process for trans-

forming a feature selection problem into a constraint satisfaction problem (CSP), which is
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the input format of a constraint solver, and deriving a feature selection. In this section, we

briefly cover this mapping.

A constraint satisfaction problem is a series of variables and a set of constraints over the

variables. For example, "A+ B < C" is a constraint satisfaction problem over the integer

variablesA, B, andC. A constraint solver automatically derives a correct labeling (values

for the variables). The labeling "A = 1,B = 2,C = 4" is a correct labeling of the example

CSP.

A selection of features from a feature model can be represented by a set of integer

variables with domain 0 or 1. Each variable represents a unique feature from the feature

model. If the variable representing theHessianOrderServiceis represented by the variable

V1, thenV1 = 1 in a labeling of a feature selection CSP means that the feature is selected in

the solution. If the labeling containsV1 = 0, it implies that the feature is not selected in the

solution. The configuration of an application and its service composition is represented as

a set of these variables that denote which services and application components are enabled

in a configuration.

Rules dictating the proper composition of the services are specified as constraints over

theVi variables. For example, since only one ofHessianOrderServiceandSOAPOrderSer-

vicecan be used at a time by the Pet Store, a constraint can be used to capture this rule. Let,

V2 be the variable representing theSOAPOrderService. This rule is specified as the con-

straintV1 = 1→V2 = 0. As described in [144], complex rules, such as memory constraints,

can be described using a CSP.

When a feature is flagged as failed, Refresh adds a new constraint to the feature se-

lection process preventing the failed feature from being selected (e.g., Vi = 0). Refresh

then uses a the constraint solver to derive a new feature selection that can be used by the

application based on the environmental constraints (e.g. JTA vs. No JTA) and feature

model composition constraints (e.g., only one of the order services may be selected at a

time). When only standard feature modeling rules, like excludes, requires, cardinality, and
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attribute values are used to describe constraints, the solver can very quickly produce a cor-

rect solution [149]. More complex constraints, such as memory resource constraints, can

be added to augment standard feature modeling rules but require more care in the feature

model specification process to allow the solver to quickly derive a solution [149].

Eliminating Error State and Recovery Path Modeling Complexity: Because the new

feature selection is introduced into the application by shutting down the old references to

remote services and launching the new component configuration and service composition,

separate recovery actions are not needed. Furthermore, since feature models specify the

rules for deriving a correct/incorrect configuration and donot enumerate all possible error

configurations, they require significantly fewer modeling elements. The equivalent healing

behavior to the 111 state State Chart described earlier can be produced in Refresh using

a feature model with 33 features –a roughly 70% reduction in total model elements. The

feature models also have 33 connections versus the 102 connections for the State Chart.

Reusing the Component Container’s Shutdown/Configuration/Launch Mechanisms

for State Transitions

Sections VIII-VIII illustrated the complexity and large development burden of writing

recovery actions to heal an application by failing over to alternate services. Refresh at-

tacks the problem with a combination of code reuse and automation. Refresh reuses an

application container’s ability to shutdown an application’s components, reconfigure the

components (i.e. create the newly desired service composition), and launch the application

in the new state (i.e. transition the application into the new service composition state). By

reusing existing mechanisms that are well-tested and trusted by developers, the need to

write custom recovery actions is eliminated.

Second, since rebooting in the same application configuration with the same service

composition is unlikely to fix a failed reference to a service, Refresh automatically derives a

new and valid application configuration and service composition. This automated approach
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to deriving a new service composition from an application’sfeature model allows micro-

rebooting to be applied to service composition healing. Normally, with a manual recovery

action implementation process, developers would deduce the correct states to transition the

application into and implement the transition logic. Refresh’s automated derivation process

eliminates the need for a developer to: 1) determine where totransition to, 2) decide how

to accomplish the transition, and 3) implement the transition.

Container Rebooting-based Healing Reduces Potential Unintended Side-effects:A

key benefit of using the container’s built in component management mechanisms for state

transitions is that they are guaranteed to bring the non-persistent application state to the de-

sired correct state. This guarantee helps to resolve the problems outlined earler of having

to deal with the potential of unintended side-effects from recovery actions.

With Refresh, the application container shuts down components, which releases re-

sources and resets in-memory state, and then re-launches the application with a clean mem-

ory state. With recovery actions, there is the potential that one or more of the affects on

the application will have unforeseen consequences to the non-persistent in-memory ap-

plication state. These unforseen side-effects are not possible with a container rebooting

approach that resets non-persistent state.

A container rebooting approach does not eliminate the possibility that persistent ap-

plication state, such as database rows, will not be placed into an inconsistent state. The

approach does, however, have a number of properties that make this scenario far less likely

than a recovery action approach. First, all components typically mustimplement lifecycle

methods that are called by the container to manage the component. If a component does

not properly handle persistent state on shutdown, it is a flawin the implementation of the

component that could emerge–even if the application never uses healing mechanisms.

Second, most enterprise applications maintain the consistency of persistent applica-

tion state through transactions. Furthermore, most enterprise applications use container-

managed persistence APIs, such as JTA. Even the Non-JTA examples provided for the Pet
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Store still use an alternate container-managed persistence API that works across only a

single datasource. When the container is used to as the healing transition mechanism, any

transactions that are in process will be properly rolled back or committed by the container

during the healing of the application’s service composition.

Figure VIII.11: Comparing Implementation Effort for the He aling Pet Store

Applying Refresh to the Java Pet Store

To compare the development effort of including recovery actions into the Pet Store,

we implemented three versions of the Spring Pet Store that provided the ability to swap

failed DAOs with remote services and to swap from failed remote services to other remote

services (the modifications for the three implementations are available from [143]). One

implementation was produced using a purely manual approachthat used Spring’s proxying

and aspect infrastructure to implement the monitoring of the DAOs and SpringHotSwap-

pableTargetSourcesto swap remote services on-the-fly. The second implementation was

produced assuming an MDE tool was provided that could model the error states and re-

covery actions for the Pet Store and generate the required monitoring code and recovery

path logic but not the implementations of the recovery actions. We refer to this MDE ap-

proach as theMDE error state/recovery pathapproach. Finally, a third implementation was

produced using Refresh.
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Manual Implementation: The top table in Figure VIII.11 shows the results of the ini-

tial implementation efforts. The manual approach requiredimplementing two key classes

a ServiceSwappercapable of 1) looking up the Spring HotSwappableTargetSource for a

DAO; 2) connecting to a Hessian, Burlap, SOAP, or RMI remote service; and 3) swapping

in the new service for the failed component/service. As is shown in the results figure, the

class required 77 lines of code. The second class implemented was a Spring MethodInter-

ceptor that was used to monitor each invocation on a DAO or remote service for Exceptions

and call the appropriate ServiceSwapper when an Exception occurred. This class required

20 lines of code. Finally, the components were included in the Pet Store by adding them

to the XML configuration files for the Pet Store, which required adding 96 lines of XML

code.

MDE Error State / Recovery Path Implementation: The analysis for the MDE error

state/recovery path approach was based on a generic model ofthe minimum effort that

would be required for any MDE adaptation modeling tool and framework that did not

provide Spring-specific recovery action implementations.The models were built using

State Charts, since it is arguably the most widely used and mature state modeling language.

State Charts also have a number of powerful concepts, such asparallel states, which reduce

the total modeling complexity.

For the MDE implementation effort analysis, we measured only the lines of code re-

quired to implement the ServiceSwapper and to integrate theneeded ServiceSwappers into

the configuration files of the Pet Store. We assumed that all ofthe logic for choosing the

correct ServiceSwapper to execute, the implementation of the MethodInterceptor, and all

configuration code required to integrate the method interceptors and their dependent prox-

ies into the configuration file would be generated by the tool.Thus, our experiments were

measuring only the cost of modeling error states and recovery actions and implementing

them.

The MDE error state/recovery action approach used the StateCharts presented earlier.
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The full State Chart healing specification requires 111 states and 102 transitions between

states. As can be seen in Figure VIII.11, the MDE approach still requires 77 lines of code to

implement the ServiceSwapper recovery action but eliminates the 31 lines of code needed

to implement the recovery path execution logic and the 20 lines of code required for the

monitoring implementation. Furthermore, an MDE approach reduces the lines of XML

configuration code that must be added from 96 to 44.

Refresh Implementation: Finally, we implemented the swapping capabilties in the Pet

Store using Refresh. Refresh’s use of Feature models required a total of 33 model elements

(features) and 29 connections versus the MDE approach’s 111model elements (states) and

102 connections (transitions). Refresh also required 16 lines of code to specify the Esper

queries over the event stream of the Pet Store to map queries to the failure of one of the

Pet Store features. Refresh’s use of the container’s built-in shutdown/configuration/launch

mechanisms for healing, eliminated the need to implement the code for the ServiceSwap-

per.

Refresh automatically generates the required monitoring code for the Pet Store (this was

assumed for the other MDE approach as well). Refresh did require 23 more lines of code to

be modified in the configuration file of the Pet Store versus theother MDE approach. These

extra lines of configuration code are a result of adding the Refresh annotations dictating

how to dynamically modify the application’s configuration based on a feature selection.

Overall, the Refresh approach required 55% less implementation effort than the other MDE

approach and 60% less modeling effort.

Refresh Performance: We used Apache JMeter to simulate the concurrent access of 40

different customers to the Pet Store and the time required tocomplete 4,000 orders. We

simulated the failure of different DAOs to force Refresh to heal the Pet Store by swapping

remote services for the failed DAOs. After the DAOs were swapped to remote services,

we iteratively shutdown the services used by the Pet Store toforce the failover to alternate
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remote services. Over the tests, Refresh averaged 151ms from the time an exception in-

dicating a failure was observed until the Pet Store was reconfigured and rebooted with a

new service composition. These times were obtained by running the Pet Store on a 2.0ghz

Intel Core DUO on Windows XP with 2 gigabytes of RAM. The average time required by

the constraint solver to derive a new feature selection was 12ms. These times indicate that

Refresh can provide high-performance application healingwhile reducing modeling and

implementation effort.
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CHAPTER IX

SCALING CONFIGURATION AUTOMATION TO LARGE MODELS

This chapter focuses on the challenges associated with selecting feature sets subject to

resource constraints. For these types of configuration problems, current exact techniques,

such as CSP solvers, do not work. This chapter presents an approach for using heuristic

knapsack algorithms to automate feature model configuration.

Introduction

Choosing the correct set of architectural features for an application is hard because

even small numbers of design variables (i.e., small feature sets) can produce an exponential

number of design permutations. For example, the relativelysimple feature model shown in

Figure IX.2, contains 30 features that can be combined into 300 different distinct architec-

tures. Requirement specifications often try to meet certaingoals, such as maximizing face

recognition accuracy, that further complicates architectural feature choices.

Resource constraints, such as the maximum available memoryor total budget for a sys-

tem, also add significant complexity to the architectural design process. Finding an optimal

architectural variant that adheres to both the feature model constraints and a system’s re-

source constraints is an NP-hard problem [42]. The manual processes commonly used to

select architectural feature sets scale poorly for NP-hardproblems.

For large-scale systems—or in domains where optimization is critical—algorithmic

techniques are needed to help product-line engineers make informed architectural feature

selections. For example, developers can choose the features that are deemed critical for

the system or driven by physical concerns that are hard to quantify (such as camera types

and their arrangement). An algorithmic technique can then be used to make the remaining

architectural feature selections that maximize accuracy while not exceeding the remaining
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budgetary allocation. Moreover, developers may want to evaluate tradeoffs in architec-

tures,e.g., use a specific camera setup that minimizes memory consumption as opposed to

maximizing accuracy.

Existing algorithmic techniques for aiding developers in the selection of architectural

variants rely on exact methods, such as integer programming, that exhibit exponential time

complexity and poor scalability. Since industrial-size architectural feature models can con-

tain thousands of features, these exact techniques are impractical for providing algorithmic

architectural design guidance, such as automated architectural feature selection optimiza-

tion. With existing techniques, automated feature selection can take hours, days, or longer

depending on the problem size. For large problem sizes, thisslow solving time makes it

hard for developers to evaluate highly optimized design variations rapidly.

This chapter presents a polynomial time approximation algorithm, calledFiltered Carte-

sian Flattening, that can be used to derive an optimal architectural variantsubject to re-

source constraints. Using Filtered Cartesian Flattening,developers can quickly derive and

evaluate different architectural variants that both optimize varying system capabilities and

honor resource limitations. Moreover, each architecturalvariant can be derived in seconds

as opposed to the days, hours, or longer that would be required with an exact technique,

thereby allowing the evaluation of more architectural variants in a shorter time frame.

This chapter provides the following contributions to the study of applying the Filtered

Cartesian Flattening algorithm to assist developers in selecting SPL architectural variants:

1. We prove that optimally selecting architectural featuresets that adhere to resource

constraints is an NP-hard problem.

2. We present a polynomial time approximation algorithm foroptimizing the selection

of architectural variants subject to resource constraints.

3. We show how any arbitrary Multi-dimensional Multiple-choice Knapsack (MMKP)

algorithm [103,114,128] can be used as the final step in Filtered Cartesian Flattening,
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which allows for fine-grained control of tradeoffs between solution optimality and

solving speed.

4. We present empirical results from experiments performedon over 500,000 feature

model instances that show how Filtered Cartesian Flattening averages 92.56%+ op-

timality on feature models with 1,000 to 10,000 features.

5. We provide metrics that can be used to examine an architectural feature selection

problem instance and determine if Filtered Cartesian Flattening should be applied.

Overview of Feature Modeling

Feature modeling [82] is a modeling technique that describes the variability in an SPL

architecture with a set of architectural features arrangedin a tree structure. Each architec-

tural feature represents an increment in functionality or variation in the product architec-

ture. For example, Figure IX.1 shows a feature model describing the algorithmic variability

in a system for identifying faces [113] in images. Each box represents a feature. For ex-

ample, Linear Discriminant Analysis (LDA) is an algorithm [112] for recognizing faces in

images that is captured in theLDA feature.

Image Compression

Camera

Euclidean MahCosine

PCA

Euclidean IdaSoft

LDA

MAP ML

Bayesian

Face Recognition Alg. (Alg.)

[1..4]

Face Recognition System

Figure IX.1: Example Feature Model

A feature can (1) capture high-level variability, such as variations in end-user function-

ality, or (2) document low-level variabilities, such assoftware variability(e.g., variations

in software implementation) [98]. Each complete architectural variant of the SPL is de-

scribed as a set of selected features. For example, the feature model in Figure IX.1 shows
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how the feature set [Face Recognition System, Camera, Face Recognition

Alg, PCA, MahCosine] would constitute a complete and correct feature selection.

The constraints on what constitutes a valid feature selection are specified by the par-

ent child relationships in the tree. Every correct feature selection must include the root

feature of the tree. Moreover, if a feature is selected, the feature’s parent must also be

selected. A feature can have required sub-features indicating refinements to the feature.

For example,Face Recognition System has a required sub-feature calledFace

Recognition Alg. that must also be selected ifFace Recognition System is

selected. The required relationship is denoted by the filledoval aboveFace Recognition

Alg..

The parent child relationships can indicate variation points in the SPL architecture.

For example,LDA requires the selection of either of itsEuclidean or IdaSoft sub-

features, but not both. TheEuclidean andIdaSoft features form an exclusive-or

subgroup, called anXOR group, of the Linear Discriminant Analysis (LDA) feature that

allows the selection of only one of the two children. The exclusive-or is denoted with

the arc crossing over the connections betweenEuclidean, IdaSoft, and their parent

feature. Child features may also participate in aCardinality group, where any correct

selection of the child features must satisfy a cardinality expression.

Feature models can also specify a cardinality on the selection of a sub-feature. For

example, at least 1 and at most 4 instances of theCamera feature must be selected. An

unfilled oval above a feature indicates a completely optional sub-feature. For example, a

camera can optionally employImage Compression. Finally, a feature can refer to an-

other feature that it requires or excludes that is not a direct parent or child. These constraints

are calledcross-tree constraints.
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Motivating Example

A key need with SPL architectures is determining how to select a good set of archi-

tectural features for a requirement set. For example, givena face recognition system that

includes a variety of potential camera types, face recognition algorithms, image formats,

and camera zoom capabilities, what is the most accurate possible system that can be con-

structed with a given budget? The challenge is that with hundreds or thousands of archi-

tectural features—and a vastly larger number of architectural permutations—it is hard to

analyze the resource consumption and accuracy tradeoffs between different feature selec-

tions to find an optimal architectural variant.

Motivating Example

As a motivating example of the complexity of determining thebest set of architectural

features for a requirement set, we provide a more detailed example of the face recognition

system for identifying known cheaters in a casino. A small example feature model of the

face recognition system’s architectural features is shownin Figure IX.2. The system can

Euclidean MahCosine

PCA

Euclidean IdaSoft

LDA

MAP ML

Bayesian

Face Recognition Alg. (Alg.)

Low Medium High

JPEG

UncompressedZip

TIFF

Image Format (IF)

Wide Angle Camera (WAC)

200X 500X 1000X

Max Zoom

UncompressedZip

TIFF RAW

Image Format (IF)

Zoom Camera (ZC)

Face Recognition System

Figure IX.2: Face Recognition System Arch. Feature Model

leverage a variety of algorithms ranging from versions of Linear Discriminant Analysis

(LDA) to Bayesian networks. The system requires a wide anglecamera, but can be supple-

mented with a zoom camera to provide closer images of specificfaces in the environment.

Each camera can produce images in a variety of image formats ranging from lossy low

quality JPEG images to lossless RAW images from the camera’sCCD sensor.

Each variability point in the architecture, such as the typeof face recognition algorithm,
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affects the overall accuracy and resource consumption of the system. For example, when

higher resolution images are obtained by a camera, the overall accuracy of the system can

improve. Higher resolution images, however, consume more memory and require more

CPU time to process. Depending on the overall system requirements, therefore, choosing

higher resolution images to improve accuracy may or may not be possible, depending on

the available memory and the memory consumed by other features.

Table 1 captures example information on the accuracy provided—and resources consumed—

by some of the architectural features. Each feature is identified by the path through the

feature model to reach the feature. For example, the high resolution JPEGs feature is iden-

tified by WAC/IF/JPEG/High. The choice of architectural features is governed by the

overall goal of the system. In this example, we want to maximize face recognition accuracy

without exceeding the available memory, CPU, development budget, or development staff.

Our architectural goal and resource limits are shown in Table 2.

Arch. Feature Accuracy CPU Memory Cost Devel. Staff
WAC/IF/JPEG/High 0.10 8 1024 2 0
WAC/IF/JPEG/Low 0.03 2 128 2 0
...
ZC/IF/TIFF/Zip 0.13 16 256 30 1
...
Alg/LDA/Euclidean 0.85 112 2048 300 1
Alg/LDA/IdaSoft 0.84 97 1024 120 0

Table IX.1: Software Feature Resource Consumption, Cost, a nd Accuracy

Table 2 lists the architectural resource constraints and goal for the design of the system.

The first column lists the goal, which is to maximize the accuracy of the system. Each

subsequent column lists a resource, such as total system memory, and the amount of that

resource that is available for an architectural variant’s features to consume.
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Accuracy CPU Memory Cost Devel. Staff
Maximize ≤ 114 ≤ 4096 ≤ 330 ≤ 1

Table IX.2: Example Architectural Requirements: Maximize Accuracy Subject to Re-
source Constraints

Challenges of Feature Selection Problems with Resource Constraints

To make well-informed architectural decisions, developers need the ability to easily cre-

ate and evaluate different architecture variations tuned to maximize or minimize specific

system capabilities, such as minimizing total cost or required memory. Generating and

evaluating a range of architectures allows developers to gain insights into not only what

architectural variants optimize a particular system concern, but also other design aspects,

such as patterns that tend to lead to more or less optimal variants. The chief barrier to cre-

ating and evaluating a large set of optimized architecturalfeature models is that generating

highly optimized variants is computationally complex and time consuming.

Optimally selecting a set of architectural features subject to a set of resource constraints

is challenging because it is an NP-hard problem. To help understand why optimal feature

selection problems with resource constraints is NP-hard, we first need to formally define

these problems. An architectural feature selection problem with resource constraints is a

five-tuple composed of a set of features (F), a set of dependency constraints on the features

(C) defined by the arcs in the feature model graph, a function (Fr(i,j))that computes the

amount of thejth resource consumed by theith feature, a set of values or benefits associated

with each feature (Fv), and a list of the resource limits for the system (R):

P =< F,C,Fr(i, j),Fv,R>

The features (F) correspond to the the feature nodes in the feature model graph shown

in Figure IX.2, such asBayesian andLDA. The dependency constraints (C) correspond

to the arcs connecting the feature nodes, such asFace Recognition Alg is a required

sub-feature ofFacial Recognition System. The resource consumption function
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(Fr) corresponds to the values in columns 3-6 of Table 1, suchas the amount of memory

consumed by each feature. The feature values set (Fv) corresponds to the accuracy column

in Table 1. Finally, the resource limits set (R) correspondsto the resource limits captured

in columns 2-4 of Table 2.

We define the solution space to a feature selection problem with resource constraints

as a set of binary strings (S) where for any binary string (s⊂ S) the ith position is 1 if the

ith feature inF is selected and 0 otherwise. The subset of these solutions that are valid

(Vs⊂ S) is the set of solutions that satisfy all of the feature modelconstraints (1) and ad-

here to the resource limits (2):

Vs= {s⊂ S|

s→C, (1)

∀ j ⊂ R,(∑n
i=0si ∗Fr(i, j))≤ Rj} (2)

To prove that optimally selecting a set of architectural features subject to resource con-

straints is NP-hard, we show below how any instance of an NP-complete problem, the

Multi-dimensional Multiple-choice Knapsack Problem (MMKP), can be reduced to an in-

stance of this definition of the optimal feature selection problem with resource constraints.

A traditional knapsack problem is defined as a set of items with varying sizes and values

that we would like to put into a knapsack of limited size. The goal is to choose the optimal

set of items that fits into the knapsack while maximizing the sum of the items’ values. An

MMKP problem is a variation on the traditional knapsack problem where the items are

divided into sets and at most one item from each set must be placed into the knapsack. The

goal remains the same,i.e., to maximize the sum of the items’ values in the knapsack.

We provide a simple example of transforming an MMKP problem into a feature selec-

tion problem with resource constraints. Figure X.2 shows a simple MMKP problem with

six items divided into two sets. At most one one of the items A,B, and C can be in the

knapsack at a given time. Moreover, at most one of the items D,E, and F can be in the

sack.

188



Figure IX.3: A Multi-dimensional Multiple-choice Knapsac k Problem

To transform the MMKP problem into a feature selection problem with resource con-

straints, we create a feature model to represent the possible solutions to the MMKP prob-

lem, as shown in Figure IX.4. The generalized algorithm for converting an instance of an

A B C

Set 1

D E F

Set 2

MMKP Solution

Figure IX.4: A Feature Model of an MMKP Problem Instance

MMKP problem into an equivalent feature selection problem with resource constraints is

as follows:

1. Create a root feature denoting the MMKP solution,

2. For each set, create a mandatory sub-feature of the root feature,

3. For each set, add an XOR group of sub-features corresponding to the items in the set,

4. For each item, initialize its feature’s resource consumption value entries in the feature

properties table to the length, width, and height of the item,
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5. For each item, initialize its feature’s value entry in thefeature properties table, shown

in Table 3, to the item’s value, and

6. Set the total available resources to be the length, width,and height of the knapsack.

Feature Value Resource 1 (length)Resource 2 (width)Resource 3 (height)
A 5 2 2 5
B 9 1.5 1.5 10
C 6 1 3 7
D 2 1.5 1.5 5
E 11 1.5 1.5 5
F 8 1.5 4 7

Table IX.3: MMKP Feature Properties Table

Steps 1&2 define the sets (F) and (C) for our feature selection problem. Step 3 creates

a table, shown in Table 3, that can be used to define the function (Fr(i, j)) to calculate the

amount of each resource consumed by a feature. Step 4 initializes the set of values (Fv)

defining the value associated with selecting a feature. Finally, Step 5 creates the set of

available resources (R).

With this generalized algorithm, we can translate any instance of an MMKP problem

into an equivalent feature selection problem with resourceconstraints. Since any instance

of an MMKP problem can be reduced to an equivalent feature selection problem with

resource constraints, then feature selection problems with resource constraints must be

NP-hard. Any exact algorithm for solving feature selectionwith resource constraints will

thus have exponential time complexity.
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Filtered Cartesian Flattening

This section presents the Filtered Cartesian Flattening (Filtered Cartesian Flattening)

approximation technique for optimal feature selection subject to resource constraints. Fil-

tered Cartesian Flattening transforms an optimal feature selection problem with resource

constraints into an approximately equivalent MMKP problem, which is then solved using

an MMKP approximation algorithm. The MMKP problem is designed such that any cor-

rect answer to the MMKP problem is also a correct solution to the feature selection problem

(but not necessarily vice-versa). Filtered Cartesian Flattening allows developers to generate

highly optimal architectural variants algorithmically inpolynomial-time (roughly∼10s for

10,000 features), rather than in the exponential time of exact algorithmic techniques, such

as integer programming.

As shown below, Filtered Cartesian Flattening addresses the main challenge,i.e., the

difficulty of selecting a highly optimal feature selection in a short amount of time. The

key to Filtered Cartesian Flattening’s short solving timesis that it is a polynomial time

approximation algorithm that trades off some solution optimality for solving speed and

scalability.

The Filtered Cartesian Flattening algorithm, which we willdescribe in the following

subsections, is listed in the APPENDIX.

Step 1: Cutting the Feature Model Graph

The first step in Filtered Cartesian Flattening, detailed incode listing (2) of the AP-

PENDIX, is to begin the process of producing a number of independent MMKP sets. We

define a choice point as a place in an architectural feature model where a configuration

decision must be made (e.g., XOR Group, Optional Feature, etc.). A choice point,A, is

independent of another choice point,B, if the value chosen for choice pointA does not

affect the value chosen for choice pointB. An MMKP problem must be stated so that the

choice of an item from one set does not affect the choice of item in another set.
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For example, the choice point containingImage Compression in Figure IX.1 is

independent of the choice point containingMAP andML, i.e., whether or not image com-

pression is enabled does not affect the type ofBayesian algorithm chosen. The choice

point of the type of face recognition algorithm, which contains the featureBayesian,

is not independent of the choice point for the type of Bayesian algorithm (e.g., the XOR

group withMAP andML).

Filtered Cartesian Flattening groups choice points into sets that must be independent.

Each group will eventually produce one MMKP set. Starting from the root, a depth-first

search is performed to find each optional feature that has no ancestors that are choice points.

A cut is performed at each of these optional features with no choice point ancestors to

produce a new independent sub-tree, as shown in Figure IX.5.After these cuts are made,

if the sub-trees have cross-tree constraints, they may not yet be completely independent.

These cross-tree constraints are eliminated in Step 4.

Figure IX.5: Cutting to Create Independent Sub-trees

Step 2: Converting to XOR

Each MMKP set forms an XOR group of elements. Since MMKP does not support any

other relationship operators, such as cardinality, we mustconvert the configuration solution

space captured in each feature model sub-tree into an equivalent representation as a series

of partial configurations related through XOR. Since a feature model allows hierarchical

modeling and cardinality constraints, the conversion to XOR can require an exponential
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number of partial configurations for the XOR representation.1 The filtering process of

Filtered Cartesian Flattening is an approximation step that puts a polynomial bound on

the number of configuration permutations that are encoded into the XOR representation to

avoid this state explosion.

The first step in converting to XOR is to convert all Cardinality groups and optional

features into XOR groups. Cardinality groups are convertedto XOR by replacing the car-

dinality group with an XOR group containing all possible combinations of the cardinality

group’s elements that satisfy the cardinality expression.Since this conversion could create

an exponential number of elements, we bound the maximum number of elements that are

generated to a constant numberK. Rather than requiring exponential time, therefore, the

conversion can be performed in constant time.

The conversion of cardinality groups is one of the first stepswhere approximation oc-

curs. We define a filtering operation that chooses whichK elements from the possible

combinations of the cardinality group’s elements to add to the XOR group. All other ele-

ments are thrown away.

Any number of potential filtering options can be used. Our experiments evaluated a

number of filtering strategies, such as choosing theK highest valued items, a random group

of K items, and a group ofK items evenly distributed across the items’s range of resource

consumptions. The best results occurred when selecting theK items with the best ratio

of Value√
∑ rc2

i

, whererci is the amount of theith resource consumed by the partial configura-

tion. This sorting criteria has been used successfully by other MMKP algorithms [11]. An

example conversion withK = 3 and random selection of items is shown in Figure IX.6.

Individual features with cardinality expressions attached them are converted to XOR

using the same method. The feature is considered as a Cardinality group containingM

copies of the feature, whereM is the upper bound on the cardinality expression (e.g.[L..M]

or [M]). The conversion then proceeds identically to cardinality groups.

1This state explosion is similar to what happens when a State Chart with hierarchy is converted to its
equivalent Finite State Machine representation [67].
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Figure IX.6: Converting a Cardinality Group to an XOR Group w ith K=3 and Random
Selection

Optional features are converted to XOR groups by replacing the optional featureO

with a new required featureO′. O′ in turn, has two child features,O and /0 forming an

XOR group. O′ and /0 have zero weight and value. An example conversion is shown in

Figure IX.7.

Figure IX.7: Converting an Optional Feature into an XOR Grou p

Step 3: Flattening with Filtered Cartesian Products

For each independent sub-tree of features that now only haveXOR and required re-

lationships, an MMKP set needs to be produced. Each MMKP set needs to consist of

a number of partial configurations that could be produced from each sub-tree. To create

the partial configurations that constitute each MMKP set, weperform a series of recur-

sive flattening steps using filtered Cartesian products, as shown in code listing (4) in the

APPENDIX.

The procedureflatten takes a feature and recursively flattens its children into a

MMKP set that is returned as a list. The list is constructed such that each item represents

a complete and correct configuration of the feature and its descendants. The first step in
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the algorithm (5) simply takes a feature with no children andreturns a list containing that

feature,i.e., if the feature’s subtree contains only a single feature, the only valid config-

uration of that subtree is the single feature. The second step (6) merges the valid partial

configurations of two nested XOR groups into a single partialconfiguration by merging

their respective partial configuration sets into a single set. A visualization of this step is

shown in Figure IX.8.

Figure IX.8: Flattening an XOR Group

The third step (7) takes all required children of a feature and produces a partial config-

uration containing a filtered Cartesian product of the feature’s children,i.e., the step selects

a finite number of the valid configurations from the set of all possible permutations of the

child features’ configurations. A visualization of this step is shown in Figure IX.9. In code

Figure IX.9: A Cartesian Product of Required Children

listing (8) in the APPENDIX, the Cartesian product is filtered identically to the way filters

were used previously. The filter choosesK elements from the Cartesian product of the two

sets using a selection strategy. The experiments in Our results show that a value of K=400

produced a good blend of speed and optimality.

Once each independent sub-tree has been converted into a setof partial configurations,
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we must mark those sets that represent optional configuration choices. For each set that

does not include the root feature, we add an item /0 with zero weight and zero value in-

dicating that no features in the set are chosen. Either a partial configuration from the set

is selected or /0 (representing no selection) is chosen. This method is a standard MMKP

technique for handling situations where choosing an item from some sets is optional. Since

the root feature must always be chosen, a partial configuration from its sub-tree’s set must

also be chosen, so the /0 item is not added to its set.

Step 4: Handling Cross-tree Constraints

If any of the partial configurations in the MMKP sets contain cross-tree constraints,

these constraints must eliminated before the MMKP solver isused. There are two cases for

the cross-tree constraints that must be handled:

1. A partial configuration has a cross-tree constraint that refers to a feature in a sub-tree

other than the sub-tree that produced its containing MMKP set.

2. A partial configuration has a cross-tree constraint that refers to a feature within the

same sub-tree that produced its containing MMKP set.

The first case is handled by applying a series of filtered Cartesian products to each

series of two sets that is connected through one or more cross-tree constraints. During the

process of calculating the Cartesian product, when two partial configurations are chosen

from each of the two sets, the combination of the configurations is validated to ensure

that it does not violate any cross-tree exclusionary constraints. If the combination violates

a cross-tree excludes constraint, the combined configuration is not added to the filtered

Cartesian product of the two sets. In the case that a violation occurs, a constant number

of retries,w, can be performed to find an alternate pair of compatible configurations. If no

compatible pair is found withinw tries, K is decremented for that set, and the Cartesian

product continues.
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The second case is handled by checking the validity of each partial configuration that

contains one or more cross-tree constraints. Each of these partial configurations is checked

to ensure that it adheres to its cross-tree constraints. If the configuration is valid, no changes

are made. Invalid configurations are removed from their containing MMKP set. Cross-tree

constraints within the same sub-tree are always handled after cross-tree constraints between

sub-trees have been eliminated.

Step 5: MMKP Approximation

The first four steps produce an MMKP problem where each set contains items rep-

resenting potential partial configurations of different parts of the feature model. One set

contains partial configurations for the mandatory portionsof the feature model connected

to the root. The remaining sets contain partial configurations of the optional sub-trees of

the feature model.

The final steps in deriving an optimal architectural featureselection involve running an

existing MMKP approximation algorithm to select a group of partial configurations to form

the architectural feature selection and then to combine these partial configurations into a

complete architectural variant. For our implementation ofFiltered Cartesian Flattening, we

used a simple modification of the Modified Heuristic (M-HEU) algorithm [11] that puts

an upper limit on the number of upgrades and downgrades that can be performed. Since

Filtered Cartesian Flattening produces an MMKP problem, wecan use any other MMKP

approximation algorithm, such as the Convex Hull Heuristicalgorithm (C-HEU) [104],

which uses convex hulls to search the solution space. Depending on the algorithm chosen,

the solution optimality and solving time will vary.

The items in the MMKP sets are built by concatenating the partial configurations of

feature sub-trees during Cartesian products. With this arrangement, architectural feature

configuration solutions can readily be extracted from the MMKP solution since they consist
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of a partial configurations represented as a series of strings containing the labels of features

that should be selected.

Algorithmic Complexity

The algorithmic complexity of Filtered Cartesian Flattening’s constituent steps can be

decomposed as follows (wheren is the number of features):

• The first step in the Filtered Cartesian Flattening algorithm—cutting the tree—requires

O(n) time to traverse the tree and find the top-level optional features where cuts can

be made.

• The second step of the algorithm requires O(Kn∗S) steps, whereS is the time re-

quired to perform the filtering operation. Simple filtering operations, such as random

selection, add no additional algorithmic complexity. In these cases, at mostn sets

of K items must be created to convert the tree to XOR groups, yielding O(Kn). Our

experiments selected theK items with the best value to resource consumption ratio.

With this strategy, the sets must be sorted, yielding O(Kn∗nlogn).

• The third step in the algorithm requires flattening at mostn groups using filtered

Cartesian products, which yields a total time of O(Kn∗S).

• The fourth step in the algorithm requires producing filtered Cartesian products from

at mostn sets withw retries. Each configuration can be checked in O(clogn), where

c is the maximum number of cross-tree constraints in the feature model. The total

time to eliminate any cross-tree constraints between sets is O(wKn∗S∗clogn). The

final elimination of invalid configurations within individual sets requires O(cnlogn),

yielding a total time of O(wKn∗S∗clogn+cnlogn)

• The solving step incurs the algorithmic complexity of the MMKP approximation al-

gorithm chosen. With M-HEU, the algorithmic complexity is O(mn2(l −1)2), where
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m is the number of resource types,n is the number of sets, andl is maximum items

per set.

• The final step, extracting the feature selection, can be performed in O(n) time.

This analysis yields a total general algorithmic complexity of O(n+(Kn∗S)+ (Kn∗

S) + (wKn∗S) + MMKP+ n) = O(wKn∗S∗ clogn+ cnlogn+ MMKP). If there are no

cross-tree constraints, the complexity is reduced to O(Kn∗S+MMKP). Both algorithmic

complexities are polynomial, which means that Filtered Cartesian Flattening scales signif-

icantly better than exponential exact algorithms. The results show that this translates into a

significant decrease in running time compared to an exact algorithm.

Technique Benefits

Beyond the benefit of providing polynomial-time approximation for optimal feature

selection problems with resource constraints, Filtered Cartesian Flattening exhibits the fol-

lowing other desirable properties:

One-time Conversion to MMKP: The Filtered Cartesian Flattening flattening process

to create an MMKP problem need only be performed once per feature model. As long as

the structure and resource consumption characteristics ofthe features do not change, the

same MMKP problem representation can be used even when the resource allocations (we

merely update the knapsack size) or desired system propertyto maximize change.

Flexible Filtering and Solving Strategies:Due to the speed of the Filtered Cartesian

Flattening process, a number of different filtering strategies can be used and each resultant

MMKP problem stored and used for optimization. In fact, to produce the most optimal

results, a number of MMKP problems can be produced from each feature model and then

each MMKP problem solved with several different MMKP techniques, and the most opti-

mal solution produced can be used. Since there are multiple problem representations and
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multiple algorithms used to solve the problem, there is a much lower probability that all of

the representation/algorithm combinations will produce asolution with low optimality.

Flattening Parallelization: Another desirable property of Filtered Cartesian Flatten-

ing is that it is amenable to parallelization during the phase that populates the MMKP sets

with partial configurations. After each subtree is identified, the Filtered Cartesian Flatten-

ing flattening process for each subtree can be run in parallelon a number of independent

processors or processor cores.

Exact MMKP Algorithms Compatiblity: Finally, although we have focused on ap-

proximation algorithms for the MMKP phase of Filtered Cartesian Flattening, exact meth-

ods, such as integer programming, can be used to solve the MMKP problem. In this hybrid

scenario, Filtered Cartesian Flattening would produce an approximate representation of the

architectural feature model solution space using an MMKP problem and the exact optimal

MMKP answer would be obtained. Filtered Cartesian Flattening allows the use of a wide

variety of both Cartesian flattening strategies and MMKP algorithms to tailor solving time

and optimality.

Results

This section presents empirical results from experiments we performed to evaluate the

types of architectural feature selection problem instances on which Filtered Cartesian Flat-

tening performs well and those for which it does not. When using an approximation algo-

rithm, such as Filtered Cartesian Flattening, that does notguarantee an optimal answer a

key question is how close the algorithm can get to the optimalanswer. Another important

consideration is what problem instance characteristics lead to more/less optimal answers

from the algorithm. For example, if the algorithm attempts to derive an architectural variant

for the face recognition system, will a more optimal variantbe found when there is a larger

or smaller budget constraint?

200



We performed the following two sets of experiments to test the capabilities of Filtered

Cartesian Flattening:

• Effects of MMKP problem characteristics. Since Filtered Cartesian Flattening

uses an MMKP approximation algorithm as its final solving step, we first performed

experiments to determine which MMKP problem characteristics had the most signif-

icant impact on the MMKP approximation algorithm’s solution optimality.

• Effects of feature selection problem characteristics.Our next set of experiments

were designed to test which problem characteristics most influenced the entire Fil-

tered Cartesian Flattening technique’s solution optimality. These experiments also

included a large experiment that derived Filtered Cartesian Flattening’s average and

worst optimality on a set of 500,000 feature models.

All experiments used 8 dual processor 2.4ghz Intel Xenon nodes with 2 GB RAM

on Vanderbilt University’s ISISLab cluster (www.isislab.vanderbilt.edu). Each

node was loaded with Fedora Core 4. A total of two processes (one per processor) were

launched on each machine enabling us to generate and solve 16optimal feature selection

with resource constraints problems in parallel.

Testing MMKP Problem Characteristics

To determine the extent to which the various attributes of MMKP problems would affect

the ability of the solver to generate a highly optimal solution, we generated several MMKP

problems with a single parameter adjusted. These problems were then solved using the

MMKP approximation algorithm. Solutions were rated by their percentage of optimality

vs. the optimal solution (MMKPApproximationAnswer
OptimalAnswer ) (we used the problem generation tech-

nique devised by [11] to generate random MMKP problem instances for which we knew

the optimum answer). Our test problems included a mix of problems with a correlation

between value and total resource consumption and those without any correlation.
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MMKP problem instances can vary across a number of major axes. Problem instances

can have larger and smaller numbers of sets and items per set.The range of values and

resource consumption characteristics across the items canfollow different distributions.

We examined each of these MMKP problem attributes to determine which ones lead to the

generation of solutions with a higher degree of optimality.Each experiment was executed

thirty times and averaged to normalize the data.

First, we manipulated the total number of sets in an MMKP problem. The Filtered

Cartesian Flattening algorithm produces one set for each independent subtree in the feature

model. This experiment allowed us to test how feature modelswith a large number of inde-

pendent subtrees and hence a large number of MMKP sets would affect solution optimality.

Figure IX.10 shows that as the total number of sets was increased from 10 to 100, the solu-

tion optimality only varied a small amount, staying well above 95% optimal. These results

Figure IX.10: Total Number of Sets

are nearly identical to [11], where the M-HEU MMKP approximation algorithm, which

was the basis of our MMKP solver, produced solutions well above 98% optimal regardless

of the number of sets or items per set.

We next varied the number of items in each MMKP set. Figure IX.11 shows that an
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increase from 500 to 10,000 items per set has almost no affectthe optimality of the solu-

tion. Regardless of the number of items per set, the generated solution was well over 90%

Figure IX.11: Items per Set

optimal. Based on this data, we conclude that the number of sets and total items per set do

not significantly impact the optimality of the solution produced by the MMKP solver. This

result implies that architectural feature models for very large industrial systems will not be

problematic for the MMKP phase of Filtered Cartesian Flattening.

While the items per set and number of sets have little affect on the optimality of a

solution, the number of resources, and the amount of resources consumed by items were

found to negatively impact the ability of the solver to find a solution with high optimality.

Figure IX.12 shows the affect of raising the minimum amount of resources consumed by

an item. The optimality drops drastically as the minimum amount of resources consumed

by an item becomes a larger percentage of the total availableresources. For a solution to

maintain a forecasted optimality of over 80% percent, the minimum amount of resources

consumed by an item must be less than 10% percent of the total amount of available re-

sources. Increasing the minimum amount of resources consumed by an item causes more

items to consume a relatively large share of the total available resources.
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Figure IX.12: Minimum Resource Consumption per Item

The results from the experiment that gradually increased the minimum item resource

consumption led us to hypothesize that the MMKP solver will produce less optimal solu-

tions when the average item consumes a very large percentageof the available resources.

We performed another experiment where we (1) calculated a resource tightness metric that

measured the average resource consumption of the items and (2) estimated how many items

with the average resource consumption could fit into the available resource allocation,i.e.,

how many of the average sized items could be expected to fit into the knapsack. Our tight-

ness metric was calculated as:

√

R2
0+ . . .R2

m
√

(∑n
i=0 r(i,0)2+ . . . r(i,m)2)/n

wherem is the total number of resource types,Ri is the maximum available amount of the

ith resource, andr(i, j) is the amount of thejth resource consumed by theith item.

The results from the resource tightness experiment are shown in Figure IX.13. The

x-axis shows the estimated number of average sized items that are expected to fit into the

knapsack for a feature model with 50 sets. As shown in the figure, there is a dramatic

dropoff in optimality when less than 1.65 average sized items can fit in the knapsack. The

exact value for the tightness metric at which the dropoff occurs varies based on the number

of MMKP sets. With 100 sets, the value was∼1.83.
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Figure IX.13: Effect of Resource Constraint Tightness on MM KP Optimality

The fewer average items that can fit into the knapsack, the more likely the solver is

to make a mistake that will fill up the knapsack and widely missthe optimal value. This

result implies that the Filtered Cartesian Flattening algorithmic approach works well when

making are a relatively large number of finer-grained feature selection decisions. For ar-

chitectures with a few very coarse-grained decisions, a developer or exact technique [21] is

more likely to pick a more appropriate architectural variant.

Resource tightness also played a role in how the total numberof resource types affected

solution optimality. Figure IX.14 shows how the optimalityof solving problems with 50

sets was affected as the total number of resource types climbed from 2 to 95. For this

experiment, the tightness metric was kept above the 1.65 dropoff threshold. As can be seen,

the total number of resources had a relatively slight impactof approximately 5% on solution

optimality. The results in Figure IX.15, however, are quitedifferent. In the experiment that

produced Figure IX.15, the tightness metric was kept at a relatively constant 1.55,i.e.,

below the dropoff value. As shown by the results, the total number of resource types had a

significant impact on solution optimality.
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Figure IX.14: Total Number of Resources

Figure IX.15: Total Number of Resources
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Comparing Filtered Cartesian Flattening to CSP-based Feature Selection

Our initial tests with Filtered Cartesian Flattening compared its performance and op-

timality on small-scale feature selection problems to the Constraint Satisfaction Prob-

lem (CSP) based feature selection technique described in [22]. This technique uses a

general-purpose constraint solver to derive a feature selection. For these small scale-

problems, we tracked the time required for Filtered Cartesian Flattening to find a so-

lution vs. the CSP-based technique based on open-source Java Choco constraint solver

(choco-solver.net). For each solution, we compared Filtered Cartesian Flattening’s

answer to the guaranteed optimal answer generated by the CSP-based technique.

Figure IX.16 shows the time required for Filtered CartesianFlattening and the CSP-

based technique to find architectural variants in feature models with varying numbers of

XOR groups. The x-axis shows the number of XOR groups in the models and the y-axis

Figure IX.16: Comparison of Filtered Cartesian Flattening and CSP-based Feature Se-
lection Solving Times

displays the time required to find an architectural variant.The total features in each model

was∼3-10 times the number of XOR groups (the maximum size was< 140 features). Each

feature-model had a maximum of 10% of the features involved in a cross-tree constraint,

c≤ 0.1n. As shown in the figure, the CSP-based technique initially requires approximately

207



30ms to find a solution. The CSP technique’s time, however, quickly grows at an expo-

nential rate to over 198,000ms. In contrast, Filtered Cartesian Flattening required less than

1ms for every feature model.

Even though Filtered Cartesian Flattening ran substantially faster than the CSP-based

technique, it still provided a high level of optimality. Overall, the solutions generated by

Filtered Cartesian Flattening were 92% optimal compared to100% optimal for the CSP-

based technique. The Filtered Cartesian Flattening solution with the lowest optimality

was 80% optimal. Although Filtered Cartesian Flattening does not provide 100% optimal

results, it can be used to derive good architectural variants for architectures that are too

large to solve with an exact technique.

Filtered Cartesian Flattening Test Problem Generation

Due to the exponential time curve required to solve a featureselection problem using

an exact technique, it was not possible to solve large-scaleproblems using both Filtered

Cartesian Flattening and an exact technique. This section presents the problem generation

technique we used to create large-scale feature selection problems for which we knew

the optimal answer. This problem generation approach allowed us to generate extremely

large problems with a known optimal solution that were not feasible to solve with an exact

technique.

Filtered Cartesian Flattening problem instances vary based on the structural properties

of the feature model tree, such as the percentage of XOR groups, max depth, and maximum

number of children per feature. The MMKP properties tested,such as the resource tightness

of the problem, can also vary based on how features consume resources. We tested the

effect of these problem characteristics by both generatingproblem instances that exhibited

a specific characteristic and by performing post-mortem analysis on the results of solving

over 500,000 random Filtered Cartesian Flattening probleminstances. The post-mortem
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analysis determined the problem characteristics associated with the problem instances that

were solved with the worst optimality.

To create test data for the Filtered Cartesian Flattening technique, we generated ran-

dom feature models and then created random feature selection problems with resource

constraints from the feature models. For example, we first generated a feature model and

then assign each feature an amount of RAM, CPU, etc. that it consumed. Each feature was

also associated with a value. We then randomly generated a series of available resource

values and ask Filtered Cartesian Flattening to derive the feature selection that maximized

the sum of the value attributes while not exceeding the randomly generated available re-

sources. Finally, we compared the Filtered Cartesian Flattening answer to the optimum

answer. No models included any cross-tree constraints because there are no known meth-

ods for generating large feature selection problems that include cross-tree constraints and

have a known optimal solution.

In an effort to make the feature models as representative of real architectural feature

models as possible, we created models with a number of specific characteristics. For exam-

ple, developers with significant object-oriented development experience often create mod-

els where commonality is factored into parent features, identical to how an inheritance

hierarchy is built. Figure IX.2 shows a hierarchy used to categorize the various facial

recognition algorithms. SPL architectural analysis techniques, such asScope, Commonal-

ity, Variability Analysis[41] are used to derive these hierarchies.

Developers desires to provide a well structured hierarchy has two important ramifica-

tions for the feature model. First, feature models typically have a relatively limited number

of child features for each feature. Hierarchies are used to model a large number of child

features as subtrees rather than simply a long list of alternatives. Second, the actual fea-

tures that consume resources and provide value are most often the leaves of the feature

model. In the categorization of facial recognition algorithms shown in Figure IX.2, the

actual resource consumption and accuracy of the algorithm is not specifically known until
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reaching one of the leaves, such as Euclidean or MahCosine. To mirror these properties of

developer-created feature models, we limited the number ofchild features of a feature to

10 and heavily favored the association of resource consumption and value with the leaves

of the feature model.

We used a feature model generation infrastructure that we developed previously [158].

A key challenge was determining a way to randomly assign resource consumption values

and values to features such that we knew the exact optimum value for the ideal feature

selection. Moreover, we needed to ensure that the randomly generated problems would not

exhibit characteristics that would make them easily solvedby specific MMKP algorithms.

For example, if every feature in the optimum feature selection also had the highest value in

its selection set, the problem could be solved easily with a greedy algorithm.

To assign resource consumption values to features and generate random available re-

source allocations, we used a modified version of the algorithm in [11] to ensure that the

highest valued features were no more likely part of the optimal solution than any other fea-

ture. The steps to generate a feature selection problem withk different resource types and

n features were as follows:

1. Generate ak-dimensional vector,ra, containing random available allocations for the

k resource types,

2. Randomly generate a slack valuevs,

3. Randomly generate an optimum valuevopt,

4. For each top-level XOR group,q, in each independent sub-tree, randomly choose a

feature,fq j, to represent the optimal configuration and assign it valueoptq j = vopt,

5. For each optimal feature, assign it ak dimensional resource consumption vector,rq j,

such that the sum of the components of the optimal resource consumption vectors

exactly equal the available resource allocation vector,∑ rq j = ra,
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6. For each top-level XOR group memberfi that is not the optimal featurefq j in its

group either:

• assign the feature valuevi , wherevi < (optq j − vs) and randomly assign it a

resource consumption vector

• assign the feature valuevi , whereoptq j < vi < optq j +vs, and randomly assign

fi a resource consumption vector such that each component is greater than the

corresponding component inrq j. After each XOR group’s features are com-

pletely initialized, setvs = max(vi)− optq j, wheremax(vi) is the the highest

value of any item in the XOR group.

7. For each feature in a top-level XOR group, reset the available resources vector to

the feature’s resource consumption vector, reset the optimum value to the feature’s

value, and recursively apply the algorithm, treating the feature as the root of a new

sub-tree

Filtered Cartesian Flattening Optimality

After determining the key MMKP problem characteristics that influence the optimal-

ity of the MMKP phase of Filtered Cartesian Flattening, we ran a series of experiments

to evaluate the parameters that affect the feature model flattening phase. Figure IX.17

presents results illustrating how the percentage of features involved in XOR groups within

the feature model affects solution optimality. As shown in this figure, as the percentage of

features in XOR groups increases from 10% to 90% of features,there is a negligible impact

on optimality of the solutions produced by Filtered Cartesian Flattening.

We tested a wide range of other Filtered Cartesian Flattening properties, such as the

maximum depth and the maximum branching factor of the feature model tree, and saw
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Figure IX.17: Effect of Feature Model XOR Percentage on Filt ered Cartesian Flattening
Optimality

no impact on solution optimality. Other experiments included tests that assigned and dis-

tributed value and resource consumption to sub-trees in correlation to the size of the sub-

tree. We also experimented with feature models that evenly distributed value and resource

consumption across all features as opposed to clustering resource consumption and value

towards the leaves. The effect of different value ranges wasalso tested.

In each case, we observed no affect on solution optimality. The result graphs from

these experiments have been omitted for brevity. Our resource tightness metric had the

most significant impact on Filtered Cartesian Flattening solution optimality, just as it did

with MMKP approximation optimality.

Our largest experiment checked the range of solution optimalities produced by using

Filtered Cartesian Flattening to solve 450,000 optimal feature selection problems with re-

source constraints. The total number of features was set to 1,000, the XOR Group per-

centage to 50%,K = 2500, and the resource tightness metric was greater than 2.0for the

majority of the problem instances (well above the dropoff point). As shown in Figure IX.18,

the results are presented with a histogram showing the number of problem instances that

were solved with a given optimality. The overall average optimality across all instances

was 95.54%. The lowest solution optimality observed was 72%.
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Figure IX.18: A Histogram Showing the Number of Problems Sol ved with a Given Op-
timality from 450,000 Feature Models with 1,000 Features

Figure IX.19 presents data from solving approximately 8,000 feature selection prob-

lems with 10,000 features. Again, we used a filtering scheme with K = 2500 that chose the

Figure IX.19: A Histogram Showing the Number of Problems Sol ved with a Given Op-
timality from 8,000 Feature Models with 10,000 features
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K items with the best ratio of value to weight. The average optimality across all problem

instances was approximately 92.56%.

Across all feature model sizes (both 1,000 and 10,000 features), 90% of the problem

instances were solved with an optimality greater than∼91%. Moreover, 99% were solved

with an optimality greater than∼80%. These result cutoffs only hold when the tightness

metric is above the drop-off value.

An interesting result can be seen by comparing Figures IX.19and IX.18. As the num-

ber of features increases, the range of solution optimalities becomes much more tightly

clustered around the average solution optimality. Akbar’sresults [11] showed an increase

in M-HEU solution optimality as the number of sets and items per set increased. Our re-

sults showed a slight decrease of 3% in average solution optimality for Filtered Cartesian

Flattening as the total features increased from 1,000 to 10,000. We expect that the slight

decrease is a result of more potentially good partial configurations being filtered out during

the Filtered Cartesian Flattening Cartesian flattening phase.

Summary and Analysis of Experiment Results

From the data we obtained from our Filtered Cartesian Flattening experiments, we con-

firmed that the key predictor of MMKP solution optimality—resource tightness—was also

applicable to Filtered Cartesian Flattening problems. Forall experiments we ran, those

problems that were solved with less than 70% optimality had an average resource tightness

metric of 0.94, which is well below the dropoff point of roughly 1.65 that we observed for

50 sets. Moreover, the max tightness value for these problems was 1.67, which is right at

the edge of the dropoff.

Although a low value for the resource tightness metric indicates that a low optimality is

possible, it does not guarantee it. Some problems with tightness metrics below the drop-off

were solved with 100 or 90%+ optimality. Once the MMKP problem representation is pro-

duced, calculating the tightness metric is an O(n) operation. Due to the ease of calculating
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the resource tightness metric, developers should always use it to rule out problem instances

were Filtered Cartesian Flattening is unlikely to produce an 80-90%+ optimal solution.
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CHAPTER X

CONFIGURING HARDWARE AND SOFTWARE IN TANDEM

Introduction

Current trends and challenges. Increasing levels of programming abstraction, mid-

dleware, and other software advancements have expanded thescale and complexity of

software systems that we can develop. At the same time, the ballooning scale and com-

plexity have created a problem where systems are becoming solarge that their design and

development can no longer be optimized manually. Current large-scale systems can con-

tain an exponential number of potential design configurations and vast numbers of con-

straints ranging from security to performance requirements. Systems of this scale and

complexity—coupled with the increasing importance of non-functional characteristics [36]

(such as end-to-end response time)—are making software design processes increasingly

expensive [110].

Search-based software engineering [68, 69] is an emerging discipline that aims to de-

crease the cost of optimizing system design by using algorithmic search techniques, such as

genetic algorithms or simulated annealing, to automate thedesign search. In this paradigm,

rather than performing the search manually, designers iteratively produce a design by using

a search technique to find designs that optimize a specific system quality while adhering

to design constraints. Each time a new design is produced, designers can use the knowl-

edge they have gleaned from the new design solution to craft more precise constraints to

guide the next design search. Search-based software engineering has been applied to the

design of a number of software engineering aspects, rangingfrom generating test data [97]

to project management and staffing [13,16] to software security [37].

A common theme in domains where search-based software engineering is applied is

that the design solution space is so large and tightly constrained that the time required to
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find an optimal solution grows at an exponential rate with theproblem size. These vast and

constrained solutions spaces make it hard for designers to derive good solutions manually.

This chapter examines a common problem from the domain of distributed real-time and

embedded (DRE) systems that exhibits these complexity characteristics. The problem we

focus on is the need to derive a design that maximizes a specific system capability subject

to constraints on cost and the production and consumption ofresources, such as RAM, by

the hardware and software, respectively.

For example, when designing a satellite to earth’s magnetosphere [45], the goal may be

to maximize the accuracy of the sensor data processing algorithms on the satellite without

exceeding the development budget and hardware resources. Ideally, to maximize the capa-

bilities of the system for a given cost, system software and hardware should be designed in

tandem to produce a design with a precise fit between hardwarecapabilities and software

resource demands. The more precise the fit, the less budget isexpended on excess hardware

resource capacity.

A key problem in these design scenarios is that they create a complex cost-constrained

producer/consumer problem involving the software and hardware design. The hardware

design determines the resources, such as processing power and memory, that are available

to the software. Likewise, the hardware consumes a portion of the project budget and thus

reduces resources remaining for the software (assuming a fixed budget). The software also

consumes a portion of the budget and the resources produced by the hardware configura-

tion. The perceived value of system comes from the attributes of the software design,e.g.,

image processing accuracy in the satellite example. The intricate dependencies between the

hardware and software’s production and consumption of resources, cost, and value makes

the design solution space so large and complex that finding anoptimal and valid design

configuration is hard.

Solution approach→ Automated Solution Space Exploration.This chapter presents
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a heuristic search-based software engineering technique,called theAllocation-baSed Con-

figuration Exploration Technique(ASCENT), for solving cost-constrained hardware/software

producer/consumer co-design problems. ASCENT models these co-design problems as

two separate knapsack problems [75]. Since knapsack problems are NP-Hard [42], AS-

CENT uses heuristics to reduce the solution space size and iteratively search for near op-

timal designs by adjusting the budget allocations to software and hardware. In addition to

outputting the best design found, ASCENT also generates a data set representing the trends

it discovered in the solution space.

A key attribute of the ASCENT technique is that, in the process of solving, it generates

a large number of optimal design configurations that presenta wide view of the trends and

patterns in a system’s design solution space. This chapter shows how this wide view of

trends in the solution space can be used to iteratively search for near optimal co-design

solutions. Moreover, our empirical results show that ASCENT produces co-design config-

urations that average 95%+ optimal for problems with more than 7 points of variability in

each of the hardware and software design spaces.

Motivating Example

This section presents a satellite design example to motivate the need to expand search-

based software engineering techniques to encompass cost-constrained hardware/software

producer/consumer co-design problems. Designing satellites, such as the satellite for NASA’s

Magnetospheric Multiscale (MMS) mission [45], requires carefully balancing hardware/-

software design subject to tight budgets. Figure X.1 shows asatellite with a number of

possible variations in software and hardware design. For example, the software design

has a point of variability where a designer can select the resolution of the images that are

processed. Processing higher resolution images improves the accuracy but requires more

RAM and CPU cycles.

Another point of variability in the software design is the image processing algorithms
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Figure X.1: Software/Hardware Design Variability in a Sate llite

that can be used to identify characteristics of the images captured by the satellite’s cameras.

The algorithms each provide a distinct level of accuracy, while also consuming different

quantities of RAM and CPU cycles. The underlying hardware has a number of points of

variability that can be used to increase or decrease the RAM and CPU power to support the

resource demands of different image processing configurations. Each configuration option,

such as the chosen algorithm or RAM value, has a cost associated with it that subtracts

from the overall budget. A key question design question for the satellite is:what set of

hardware and software choices will fit a given budget and maximize the image processing

accuracy.

Many similar design problems involving the allocation of resources subject to a series

of design constraints have been modeled asMultidimensional Multiple-Choice Knapsack

Problems(MMKPs) [12, 74, 76]. A standard knapsack problem [75] is defined by a set of

items with varying sizes and values. The goal is to find the setof items that fits into a fixed

sized knapsack and that simultaneously maximizes the valueof the items in the knapsack.

An MMKP problem is a variation on a standard knapsack problemwhere the items are

divided into sets and at most one item from each set may be placed into the knapsack.

Figure X.2 shows an example MMKP problem where two sets contain items of different

sizes and values. At most one of the items A,B, and C can be put into the knapsack.
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Figure X.2: An Example MMKP Problem

Likewies, only one of the items D, E, and F can be put into the knapsack. The goal is to

find the combination of two items, where one item is chosen from each set, that fits into the

knapsack and maximizes the overall value. A number of resource related problems have

been modeled as MMKP problems where the sets are the points ofvariability in the design,

the items are the options for each point of variability, and the knapsack/item sizes are the

resources consumed by different design options [11,34,76,86,142].

The software and hardware design problems are hard to solve individually. Each design

problem consists of a number of design variability points that can be implemented by ex-

actly one design option, such as a specific image processing algorithm. Each design option

has an associated resource consumption, such as cost, and value associated with it. More-

over, the design options cannot be arbitrarily chosen because there is a limited amount of

each resource available to consume.

It is apparent that the description of the software design problem directly parallels the

definition of an MMKP problem. An MMKP set can be created for each point of variability

(e.g., Image Resolution and Algorithm). Each set can then be populated with the options

for its corresponding point of variability (e.g., High, Medium, Low for Image Resolution).

The items each have a size (cost) associated with them and there is a limited size knap-

sack (budget) that the items can fit into. Clearly, just selecting the optimal set of software

features subject to a maximum budget is an instance of the NP-Hard [42] MMKP problem.
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For the overall satellite design problem, we must contend with not one but two individ-

ual knapsack problems. One problem models the software design and the second problem

models the hardware design. We can model the satellite co-design problem using two

MMKP problems. The first of the two MMKP problems for the satellite design is its soft-

ware MMKP problem. The hardware design options are modeled in a separate MMKP

problem with each set containing the potential hardware options. An example mapping of

the software and hardware design problems to MMKP problems is shown in Figure X.3.

Figure X.3: Modeling the Satellite Design as Two MMKP Proble ms

We call this combined two problem MMKP model aMMKP co-design problem. With

this MMKP co-design model of the satellite, a design is reached by choosing one item

from each set (e.g., an Image Resolution, Algorithm, RAM value, and CPU) foreach prob-

lem. The correctness of the design can be validated by ensuring that exactly one item is

chosen from each set and that the items fit into their respective software and hardware

knapsacks. This definition, however, is still not sufficientto model the cost-constrained

hardware/software producer/consumer co-design problem since we have not accounted for
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the constraint on the total size of the two knapsacks or the production and consumption of

resources by hardware and software.

A correct solution must also uphold the constraint that the items chosen for the solution

to the software MMKP problem do not consume more resources, such as RAM, than are

produced by the items selected for the solution to the hardware MMKP problem. Moreover,

the cost of the entire selection of items must be less than thetotal development budget. We

know that solving the individual MMKP problems for the optimal hardware and software

design is NP-Hard but we must also determine how hard solvingthe combined co-design

problem is.

In this simple satellite example, there are 192 possible satellite configurations to con-

sider. For real industrial scale examples, there are a significantly larger number of possibil-

ities. For example, a system with design choices that can be modeled using 64 MMKP sets,

each with 2 items, will have 264 possible configurations. For systems of this scale, man-

ual solving methods are clearly not feasible, which motivesthe need for a search-based

software engineering technique.

MMKP Co-design Complexity

Below, we show that MMKP co-design problems are NP-Hard and in need of a search-

based software engineering technique. We are not aware of any approximation techniques

for solving MMKP co-design problems in polynomial time. This lack of approximation

algorithms—coupled with the poor scalability of exact solving techniques—hinders DRE

system designers’s abilities to optimize software and hardware in tandem.

To show that MMKP co-design problems are NP-Hard, we must build a formal defini-

tion of them. We can define an MMKP co-design problem,CoP, as an 8-tuple:

CoP=< Pr,Co,S1,S2,S,R,Uc(x,k),U p(x,k) >

where:

222



• Pr is the producer MMKP problem (e.g., the hardware choices).

• Co is the consumer MMKP problem (e.g., the software choices).

• S1 is the size of the producer,Pr, knapsack.

• S2 is the size of the consumer,Co, knapsack.

• R is the set of resource types (e.g., RAM, CPU, etc.) that can be produced and

consumed byPr andCo, respectively.

• S is the total allowed combined size of the two knapsacks forPr andCo (e.g., total

budget).

• Uc(x,k) is a function which calculates the amount of the resourcek ⊂ R consumed

by an itemx⊂Co (e.g., RAM consumed).

• U p(x, j) is a function which calculates the amount of the the resourcek⊂Rproduced

by an itemx⊂ Pr (e.g., RAM provided).

Let a solution to the MMKP co-design problem be defined as a 2-tuple,< p,c>, where

p⊂ Pr is the set of items chosen from the producer MMKP problem andc⊂Co is the set

of items chosen from the consumer MMKP problem. A visualization of a solution tuple is

shown in Figure X.4. We define the value of the solution as the sum of the values of the

elements in the consumer solution:

V =
j

∑
0

valueo f(c j)

where j is the total number of items inc, c j is the jth item inc, andvalueo f() is a function

that returns the value of an item in the consumer soution.

We require thatp andc are valid solutions toPr andCo, respectively. Forp andc to be

valid, exactly one item from each set inPr andCo must have been chosen. Moreover, the
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Figure X.4: Structure of an MMKP Co-design Problem

items must fit into the knapsacks forPr andCo. 1This constraint corresponds to Rule (2)

in Figure X.4 that each solution must fit into the budget for its respective knapsack.

The MMKP co-design problem adds two additional constraintson the solutionsp andc.

First, we require that the items inc do not consume more of any resource than is produced

by the items inp:

(∀k⊂ R),
j

∑
0

Uc(c j ,k) ≤
l

∑
0

U p(pl ,k)

where j is the total number of items inc, c j is the jth item in c, l is the total number of

items inp, andp j is the jth item in p. Visually, this means that the consumer solution can

fit into the producer solution’s resources as shown in Rule (1) in Figure X.4.

The second constraint onc andp is an interesting twist on traditional MMKP problems.

For a MMKP co-design problem, we do not know the exact sizes,S1,S2, of each knapsack.

Part of the problem is determining the sizes as well as the items for each knapsack. Since

we are bound by a total overall budget, we must ensure that thesizes of the knapsacks do

not exceed this budget:

S1+S2 ≤ S

This constraint on the overall budget corresponds to Rule (3) in Figure X.4.

To show that solving for an exact answer to the MMKP problem isNP-Hard, we will

1A more formal definition of MMKP solution correctness is available from [12].
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show that we can reduce any instance of the NP-completeknapsack decision problemto an

instance of the MMKP co-design problem. The knapsack decision problem asks if there is

a combination of items with value at leastV that can fit into the knapsack without exceeding

a cost constraint.

A knapsack problem can easily be converted to a MMKP problem as described by

Akbar et al. [12]. For each item, a set is created containing the item and the /0 item. The /0

item has no value and does not take up any space. Using this approach, a knapsack decision

problem,Kdp, can be converted to a MMKP decision problem,Mdp, where we ask if there

is a selection of items from the sets that has value at leastV.

To reduce the decision problem to an MMKP co-design problem,we can use the

MMKP decision problem as the consumer knapsack (Co = Mdp), set the producer knap-

sack to an MMKP problem with a single item with zero weight andvalue ( /0), and let our

set of produced and consumed resources,R, be empty,R= /0. Next, we can let the total

knapsack size budget be the size of the decision problem’s knapsack,S= sizeo f(Mdp).

The co-design solution, which is the maximization of the consumer knapsack solution

value, will also be the optimal answer for the decision problem,Mdp. We have thus setup

the co-design problem so that it is solving for a maximal answer toMdp without any addi-

tional producer/consumer constraints or knapsack size considerations. Since any instance

of the NP-complete knapsack decision problem can be reducedto an MMKP co-design

problem, the MMKP co-design problem must be NP-Hard.

Challenges of MMKP Co-design Problems

This section describes two key challenges to building an approximation algorithm to

solve MMKP co-design problems. The first challenge is that determining how to set the

budget allocations of the software and hardware is not straightforward since it involves

figuring out the precise size of the software and hardware knapsacks where the hardware

knapsack produces sufficient resources to support the optimal software knapsack solution
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(which itself is unknown). The second challenge is that the tight-coupling between pro-

ducer and consumer MMKP problems makes them hard to solve individually, thus moti-

vating the need for a heuristic to de-couple them.

Challenge 1: Undefined Producer/Consumer Knapsack Sizes

One challenge of the MMKP co-design problem is that the individual knapsack size

budget for each of the MMKP problems is not predetermined,i.e., we do not know how

much of the budget should be allocated to software versus hardware, as shown in Fig-

ure X.5. The only constraint is that the sum of the budgets must be less than or equal to

Figure X.5: Undefined Knapsack Sizes

the an overall total budget. Every pair of budget values for hardware and software results

in two new unique MMKP problems. Even minor transfers of capital from one problem

budget to the other can therefore completely alter the solution of the problem, resulting in

a new maximum value. Existing MMKP techniques assume that the exact desired size of

the knapsack is known.

There is currently no information to aid designers in determining the allocation of the

budgets. As a result, many designers may choose the allocation arbitrarily without realizing

the profound impact it may have. For example, a budget allocation of 75% software and
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25% software may result in a solution that, while valid, provides far less value and costs

considerably more than a solution with a budget allocation of 74% and 26% percent.

There are, however, trends in the solution optimality that can be determined by solv-

ing instances of the problem with unique sequential divisions of the total budget. These

trends can give the designer an idea of what budget divisionswill result in favorable sys-

tem designs. This data can also show which budget allocations to avoid. A key challenge

is figuring out how to shed light on these nuances in the solution space and present them to

designers.

Challenge 2: Tight-coupling Between the Producer/Consumer

Another key issue to contend with is how to rank the solutionsto the producer MMKP

problem. Per the definition of an MMKP co-design problem, theproducer solution does

not directly impart any value to the overall solution. The producer’s benefit to a solution

is its ability to make a good consumer solution viable. MMKP solvers must have a way of

ranking solutions and items. The problem, however, is that the value of a producer solution

or item cannot be calculated in isolation.

A consumer solution must already exist to calculate the value of a particular producer

solution. For example, whether or not 1,024 kilobytes of memory are beneficial to the

overall solution can only be ascertained by seeing if 1,024 kilobytes of memory are needed

by the consumer solution. If the consumer solution does not need this much memory, then

the memory produced by the item is not helpful. If the consumer solution is RAM starved,

the item is desperately needed. A visualization of the problem is shown in Figure X.6.

The inability to rank producer solutions in isolation of consumer solutions is problem-

atic because it creates a chicken and the egg problem. A validconsumer solution cannot be

chosen if we do not know what resources are available for it toconsume. At the same time,

we cannot rank the value of producer solutions without a consumer solution as a context.

This tight-coupling between the producer/consumer is a challenging problem.
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Figure X.6: Producer/Consumer MMKP Tight-coupling

The ASCENT Algorithm

This section presents our polynomial-time approximation algorithm, called theAllocation-

baSed Configuration ExploratioN Technique(ASCENT), for solving MMKP co-design

problems. The pseudo-code for the ASCENT algorithm is shownin Figure X.7 and ex-

plained throughout this section.

Producer/Consumer Knapsack Sizing

The first issue to contend with when solving an MMKP co-designproblem is Challenge

2, which involves determining how to allocate sizes to the individual knapsacks. ASCENT

addresses this problem by dividing the overall knapsack size budget into increments of size

D. The size increment is a parameter provided by the user. ASCENT then iteratively in-

creases the consumer’s budget allocation (knapsack size) from 0% of the total budget to

100% of the total budget in steps of sizeD. The incremental expansion of the producer’s

budget can be seen in thewhile loop in code listing (1) of Figure X.7 and the incremen-

tation ofConsumerBudget in code listing (8).

For example, if there is a total size budget of 100 and increments of size 10, ASCENT

firsts assign 0 to the consumer and 100 to the producer, 10 and 90, 80 and 20, and so forth

until 100% of the budget is assigned to the consumer. The allocation process is shown

in Figure X.8. ASCENT includes both the 0%,100% and 100%,0% budget allocations to
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MMKPProblem ConsumerMMKP
MMKPProblem ProducerMMKP
int StepSize
int ConsumerBudget = 0
int ProducerBudget = 100
int TotalBudget
Solution BestSolution
Solutions AllSolutions

while(ConsumerBudget <= TotalBudget) (1)
IdealizedSolution = solveMMKPCostOnly(ConsumerMMKP, (2)

ConsumerBudget)
double[] Ratios = calculateResourceRatios(IdealizedSolution) (3)

for each Item in ProducerMMKP (4)
for i = 0, i < Ratios.size, i++

Item.Value += Ratios[i] * Item.ProducedResourceValue[i]

ProducerBudget = TotalBudget - ConsumerBudget
HardwareSolution = (5)

solveMMKPCostOnly(ProducerMMKP,
ProducerBudget)

int[] AvailableResources = (6)
HardwareSolution.ProducedResourceValues.Sum

SoftwareSolution = (7)
solveMMKP(ProducerMMKP,

AvailableResources,
ConsumerBudget)

ConsumerBudget += StepSize (8)

Solution = Tuple<SoftwareSolution,
HardwareSolution>

Solutions.add(Solution) (9)
if(Solution.Value > BestSolution.Value)

BestSolution = Solution

Return BestSolution and Solutions (10)

Figure X.7: The ASCENT Algorithm

Figure X.8: Iteratively Allocating Budget to the Consumer K napsack
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handle cases where the optimal configuration includes producer or consumer items with

zero cost.

Ranking Producer Solutions

At each allocation iteration, ASCENT has a fixed set of sizes for the two knapsacks.

In each iteration, ASCENT must solve the coupling problem, which is: how do we rank

producer solutions without a consumer solution. After the coupling is loosened, ASCENT

can solve for a highly valued solution that fits the given knapsack size restrictions.

To break the tight-coupling between producer and consumer ordering, ASCENT em-

ploys a special heuristic. Once the knapsack size allocations are fixed, ASCENT solves for

a maximal consumer solution that only considers the currentsize constraint of its knapsack

and not produced/consumed resources. This step is shown in code listing (2) of Figure X.7.

The methodsolveMMKPCostOnly uses an arbitrary MMKP approximation algo-

rithm to find a solution that only considers the consumer’s budget. This approach is sim-

ilar to asking “what would the best possible solution look like if there were unlimited

produced/consumed resources.” Once ASCENT has this idealized consumer solution, it

calculates a metric for assigning a value to producer solutions.

The metric that ASCENT uses to assign value to producer itemsis: how valuable are the

resources of a producer item to the idealized consumer solution. This metric is calculated

by thecalculateResourceRatiosmethod call in code listing (3) of Figure X.7. We

calculate the value of a resource as the amount of the resource consumed by the ideal-

ized consumer solution divided by the sum of the total resources consumed by the overall

solution:

Vr =
∑ j

0Uc(c j ,k)

∑k
0∑ j

0Uc(c j ,k)

In code listing (4) of Figure X.7, the resource ratios (Vr values) are known and each item

in the producer MMKP problem is assigned a value by multiplying each of its provided
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resource values by the corresponding ratio and summing these values:

valueo f(pl) =
k

∑
0

(U p(pl ,k)∗Vk)

The overall solving workflow at each budget allocation ratiois shown in Figure X.9.

Figure X.9: ASCENT Solving Workflow at Each Budget Allocatio n Step

Solving the Individual MMKP Problems

Once sizes have been set for each knapsack and the valuation heuristic has been applied

to the producer MMKP problem, existing MMKP solving approaches can be applied. First,

the producer MMKP problem, with its new item values, is solved for an optimal solution,

as shown in code listing (5) of Figure X.7. We use thesolveMMKPCostOnly method

to solve the producer problem since it does not consume any resources other than budget.

In code listing (6), the consumer MMKP problem is then updated with constraints reflect-

ing the maximum available amount of each resource produced by the solution from the

producer MMKP problem. The consumer MMKP problem is then solved for an optimal

solution in code listing (7). The producer and consumer solutions are then combined into

the 2-tuple,< p,c > and saved in code listing (9).

In each iteration, ASCENT assigns sizes to the producer and consumer knapsacks and
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the solving process is repeated. A collection of the 2-tuplesolutions is compiled during the

process. The output of ASCENT, returned in code listing (10)of Figure X.7, is both the

2-tuple with the greatest value and the collection of 2-tuples. The overall solving approach

is shown in Figure X.10.

Figure X.10: ASCENT Solving Approach

The reason that the 2-tuples are saved and returned as part ofthe output is that they

provide valuable information on the trends in the solution space of the co-design problem.

Each 2-tuple contains a high-valued solution to the co-design problem at a particular ratio

of knapsack sizes. This data can be used to graph and visualize how the overall solution

value changes as a function of the ratio of knapsack sizes. This information can be used to

ascertain a number of useful solution space characteristics, such as determining how much

it costs to increase the value of a specific system property toa given level or finding the

design with the highest value per unit of cost.

Algorithmic Complexity

The overall algorithmic complexity of ASCENT can be broken down as follows:

1. there areT iterations of ASCENT

2. in each iteration there are 3 invocations to an MMKP approximation algorithm

3. in each iteration, values of at mostn producer items must be updated.
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This breakdown yields an algorithmic complexity of O(T(n+ MMKP)), where MMKP

is the algorithmic complexity of the chosen MMKP algorithm.With M-HEU (one of

the most accurate MMKP approximation algorithms [12]) the algorithmic complexity is

O(mn2(l −1)2), wherem is the number of resource types,n is the number of sets, andl is

maximum items per set. Our experiments usedT = 100 and found that it provided excellent

results. With our experimental setup that used M-HEU, the overall algorithmic complexity

was therefore O(100(mn2(l − 1)2 + n)). This algorithmic complexity is polynomial and

thus ASCENT should be able to scale up to very large problems,such as the co-design of

production satellite hardware and software.

Analysis of Empirical Results

This section presents empirical data we obtained from experiments using ASCENT

to solve MMKP co-design problems. The empirical results demonstrate that ASCENT

provides near optimal results. The results also show that ASCENT can not only provide

near optimal designs for the co-design problems, such as thesatellite example, but also

scale to the large problem sizes of a production satellite design. Moreover, we show that

the data sets generated by ASCENT—which contain high valuedsolutions at each budget

allocation—can be used to perform a number of important search-based software engineer-

ing studies on the co-design solution space.

Each experiment used a total of 100 budget iterations (T = 100). We also used the

M-HEU MMKP approximation algorithm as our MMKP solver. All experiments were

conducted on an Apple Powerbook with a 2.4 GHz Intel Core 2 Duoprocessor, 2 gigabyes

of RAM, running OS X version 10.4.11, and a 1.5 Java Virtual Machine (JVM) run in client

mode. The JVM was launched with a maximum heap size of 64mb (-Xmx=64m).
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MMKP Co-design Problem Generation

A key capability needed for the experiments was the ability to randomly generate

MMKP co-design problems for test data. For each problem, we also needed to calculate

how good ASCENT’s solution was as a percentage of the optimalsolution: valueo f(ASCENT Solution)
valueo f(OptimalSolution) .

For small problems with less than 7 sets per MMKP problem, we were able to use a branch-

and-bound linear programming (LP) [135] technique built ontop of the Java Choco con-

straint solver (choco-solver.net) to derive the optimal solution.

For larger scale problems the LP technique was simply not feasible, e.g., solutions

might take years to find. For larger problems, we developed a technique that randomly

generated MMKP co-design problems with a few carefully crafted constraints so we knew

the exact optimal answer. Others [12] have used this generalapproach, though with a

different problem generation technique.

Ideally, we would prefer to generate completely random problems to test ASCENT. We

our confident in the validity of this technique, however, fortwo reasons: (1) the trends we

observed from smaller problems with truly random data were identical to those we saw

in the data obtained from solving the generated problems and(2) the generated problems

randomly placed the optimal items and randomly assigned their value and size so that the

problems did not have a structure clearly amenable to the heuristics used by our MMKP

approximation algorithm. We did not use Akbar’s technique [12] because the problems it

generated were susceptible to a greedy strategy.

Our problem generation technique worked by creating two MMKP problems for which

we knew the exact optimal answer. First, we will discuss how we generated the individual

MMKP problems. LetSbe the set of MMKP sets for the problem,~R be aK-dimensional

vector describing the size of the knapsack,Ii j be thejth item of theith set,size(Ii j ,k) be the

kth component ofIi j ’s size vector~Szi j , andsize(S,k) be thekth component of the knapsack

size vector, the problem generation technique for each MMKPproblem worked as follows:

1. Randomly populate each set,s⊂ S, with a number of items
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2. Generate a random size,~R, for the knapsack

3. Randomly choose one item,Iopti ⊂ OptItemsfrom each set to be the optimal item.

Iopti is the optimal item in theith set.

4. Set the sizes of the items inOptItems, so that when added together they exactly

consume all of the space in the knapsack:

(∀k⊂ R),(
i

∑
0

size(Iopti,k)) = size(S,k)

5. Randomly generate a value,Vopti, for the optimal item,Iopti, in each set

6. Randomly generate a value delta variable,Vd < min(Vopti), wheremin(Vopti) is the

optimal item with the smallest value

7. Randomly set the size and values of the remaining non-optimal items in the sets so

that either:

• The item has a greater value than the optimal item in its set.In this case, each

component of the item’s size vector, is greater than the corresponding compo-

nent in the optimal item’s size vector:(∀k⊂ R),size(Iopti,k) < size(Ii j ,k)

• The item has a smaller value than the optimal item’s value minusVd, valueo f(Ii j ) <

Vopti −Vd. This constraint will be important in the next step. In this case, each

component of the item’s size vector is randomly generated.

At this point, we have a very random MMKP problem. What we haveto do is further

constrain the problem so that we can guarantee the items inOptItemsare truly the optimal

selection of items. LetMaxVi be the item with the highest value in theith set. We further

constrain the problem as follows:

For each itemMaxVi , we reset the values of the items (if needed) to ensure that the sum

of the differences between the max valued items in each set and the optimal item are less
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thanVd:
i

∑
0

(MaxVi −Vopti) < Vd

A visualization of this constraint is shown in Figure X.11.

Figure X.11: A Visualization of Vd

This new valuation of the items guarantees that the items inOptItemsare the optimal

items. We can prove this property by showing that if it does not hold, there is a contradic-

tion. Assume that there is some set of items,Ibetter, that fit into the knapsack and have a

higher value. LetVbi be the value of the better item to choose than the optimal itemin the

ith set. The sum of the values of the better items from each set must have a higher value

than the optimal items.

The itemsIbi ⊂ Ibetter must fit into the knapsack. We designed the problem so that

the optimal items exactly fit into the knapsack and that any item with a higher value than

an optimal item is also bigger. This design implies that at least one of the items inIbetter

is smaller and thus also has a smaller value,Vsmall, than the optimal item in its set (or

Ibetterwouldn’t fit). If there areQ sets in the MMKP problem, this implies that at most

Q−1 items inIbetterhave a larger value than the optimal item in their set, and thus:

VoptQ+
Q−1

∑
0

Vopti < Vsmall+
Q−1

∑
0

Vbi
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We explicitly revalued the items so that:

i

∑
0

(MaxVi −Vopti) < Vd

By subtracting the∑Q−1
0 Vopti from both sides, we get:

VoptQ < Vsmall+
Q−1

∑
0

(Vbi −Vopti)

the inequality will still hold if we substituteVd in for ∑Q−1
0 (Vbi −Vopti), becauseVd is

larger:

VoptQ < Vsmall+Vd

VoptQ−Vd < Vsmall

which is a contradicton of the rule that we enforced for smaller items: valueo f(Ii j ) <

Vopti −Vd

This problem generation technique creates MMKP problems with some important prop-

erties. First, the optimal item in each set will have a randomnumber of larger and smaller

valued items (or none) in its set. This property guarantees that a greedy strategy will not

necessarily do well on the problems.

Moreover, the optimal item may not have the best ratio of value/size. For example, an

item valued slightly smaller than the optimal item may consume significantly less space

because its size was randomly generated. Many MMKP approximation algorithms use the

value/size heuristic to choose items. Since there is no guarantee on how good the value/size

of the optimal item is, MMKP approximation algorithms will not automatically do well on

these problems.

To create an MMKP co-design problem where we know the optimalanswer, we gen-

erate a single MMKP problem with a known optimal answer and split it into two MMKP

problems to create the producer and consumer MMKP problems.To split the problem, two
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new MMKP problems are created. One MMKP problem receivesE of the sets from the

original problem and the other problem receives the remaining sets. The total knapsack

size for each problem is set to exactly the size required by the optimal items from its sets

to fit. The sum of the two knapsack sizes will equal the original knapsack size. Since the

overall knapsack size budget does not change, the original optimal items remain the overall

optimal solution.

Next, we generate a set of produced/consumed resource values for the two MMKP

problems. For the consumer problem, we randomly assign eachitem an amount of each

produced resourcek ⊂ R that the item consumes. LetTotalC(k) be the total amount of

the resourcek needed by the optimal consumer solution andVopt(p) be the optimal value

for the producer MMKP problem. We take the consumer problem and calculate a resource

production ratio,Rp(k), where

Rp(k) =
TotalC(k)
Vopt(p)

For each item,Ii j , in the producer problem, we assign it a production value forthe resource

k of: Produced(k) = Rp(k)∗valueo f(Ii j ).

The optimal items have the highest feasible total value based on the given budget and

the sum of their values times the resource production ratiosexactly equals the needed value

of each resourcek:

TotalC(k) =
TotalC(k)
Vopt(p)

∗
i

∑
0

Vopti

Any other set of items must have a smaller total value and consequently not provide suffi-

cient resources for the optimal set of consumer items. To complete the co-design problem,

we set the total knapsack size budget to the sum of the sizes ofthe two individual knap-

sacks.
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ASCENT Scalability and Optimality

Experiment 1: Comparing ASCENT scalability to an exact technique. When de-

signing a satellite it is critical that designers can gauge the accuracy of their design tech-

niques. Moreover, designers of a complicated satellite system need to know how different

design techniques scale and which technique to use for a given problem size. This first

set of experiments evalutes these questions for ASCENT and abranch-and-bound linear

programming (LP) co-design technique.

Although LP solvers can find optimal solutions to MMKP co-design problems they

have exponential time complexity. For large-scale co-design problems (such as designing

a complicated climate monitoring satellite) LP solvers thus quickly become incapable of

finding a solution in a reasonable time frame. We setup an experiment to compare the

scalability of ASCENT to an LP technique. We randomly generated a series of problems

ranging in size from 1 to 7 sets per hardware and software MMKPproblem. Each set had

10 items. We tracked and compared the solving time for ASCENTand the LP technique as

the number of sets grew. Figure X.12 presents the results from the experiment. As shown

Figure X.12: Solving Time for ASCENT vs. LP

by the results, ASCENT scales significantly better than an LP-based approach.

Experiment 2: Testing ASCENT’s solution optimality. Clearly, scalability alone

is not the only characteristic of a good approximation algorithm. A good approximation

algorithm must also provides very optimal results. We created an experiment to test the

accuracy of ASCENT’s solutions. We compared the value of ASCENT’s answer to the
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optimal answer,
valueo f(ASCENTSolution)
valueo f(OptimalSolution)

for 50 different MMKP co-design problem sizes with 3 items per set. For each size co-

design problem, we solved 50 different problem instances and averaged the results.

It is often suggested, due to the Central Limit Theorem [73],to use a sample size of 30

or larger to produce an approximately normal data distribution [64]. We chose a sample

size of 50 to remain well above this recommended minimum sample size. The largest

problems, with 50 sets per MMKP problem, would be the equivalent of a satellite with 50

points of software variability and an additional 50 points of hardware variability.

For problems with less than 7 sets per MMKP problem, we compared against the op-

timal answer produced with an LP solver. We chose a low numberof items per set to

decrease the time required by the LP solver and make the experiment feasible. For prob-

lems with more than 7 sets, which could not be solved in a timely manner with the LP

technique, we used our co-design problem generation technique. The problem generation

technique allowed us to create random MMKP co-design problems that we knew the exact

optimal answer for and could compare against ASCENT’s answer.

Figure X.13 shows the results of the experiment to test ASCENT’s solution value

verusus the optimal value over 50 MMKP co-design problem sizes. With 5 sets, ASCENT

Figure X.13: Solution Optimality vs Number of Sets
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produces answers that average 90% optimal. With 7 sets, the answers average∼95% op-

timal. Beyond 20 sets, the average optimality is∼98% and continues to improve. These

results are similar to MMKP approximation algorithms, suchas M-HEU, that also improve

with increasing numbers of sets [12]. We also found that increasing the number of items

per set also increased the optimality, which parallels the results for our solver M-HEU [12].

Experiment 3: Measuring ASCENT’s solution space snapshot accuracy. As part

of the solving process, ASCENT not only returns the optimal valued solution for a co-

design problem but it also produces a data set to graph the optimal answer at each budget

allocation. For the satellite example, the graph would showdesigners the design with

the highest image processing accuracy for each ratio of budget allocation to software and

hardware. We created an experiment to test how optimal each data point in this graph was.

For this experiment, we generated 100 co-design problems with less than 7 sets per

MMKP problem and compared ASCENT’s answer at each budget allocation to the opti-

mal answer derived using an LP technique (more sets improvesASCENT’s accuracy). For

problems with 7 sets divided into 98 different budget allocations, ASCENT finds the same,

optimal solution as the LP solver more than 85% of the time. Figure X.14 shows an exam-

ple that compares the solution space graph produced by ASCENT to a solution space graph

produced with an LP technique. The X-axis shows the percentage of the budget allocated to

Figure X.14: Solution Value vs. Budget Allocation

the software (consumer) MMKP problem. The Y-axis shows the total value of the MMKP
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co-design problem solution. The ASCENT solution space graph closely matches the actual

solution space graph produced with the LP technique.

Solution Space Snapshot Resolution

Experiment 4: Demonstrating the importance of solution space snapshot resolu-

tion. A complicated challenge of applying search-based softwareengineering to hardware/-

software co-design problems is that design decisions are rarely as straightforward as iden-

tifying the design configuration that maximizes a specific property. For example, if one

satellite configuration provides 98% of the accuracy of the most optimal configuration for

50% less cost, designers are likely to choose it. If designers have extensive experience

in hardware development, they may favor a solution that is marginally more expensive

but allocates more of the development to hardware, which they know well. Search-based

software engineering techniques should therefore allow designers to iteratively tease these

desired designs out of the solution space.

ASCENT has a number of capabilities beyond simply finding theoptimal solution for

a problem to help designers find desirable solutions. First,as we describe below, ASCENT

can be adjusted to produce different resolution images of the solution space by adjusting the

granularity of the budget allocation steps (e.g., make smaller and more allocation changes).

The granularity of the step size greatly impacts the resolution or detail that can be

seen in the solution space. To obtain the most accurate and informative solution space

image, a small step size should be used. Figure X.15(a) showsa solution space graph

generated through ASCENT using 10 allocation steps. The X-axis is the percentage of

budget allocated to software, the Y-axis is the total value of the solution. It appears that any

allocation of 30% or more of the budget to software will produce a satellite with optimal

image processing accuracy.

Figure X.15(b), however, shows the graph that results from solving the same problem

with a 20 allocation steps. It is important to note that whileallocating 30% or more of the
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(a) Low Resolution Solution Space Snapshot

(b) Medium Resolution Solution Space Snapshot

(c) High Resolution Solution Space Snapshot

Figure X.15: A Solution Space Graph at Varying Resolutions
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budget to software still results in an optimal solution, there is another point that was absent

from the previous graph. It can clearly be seen that an allocation of 15% of the budget for

software will also result in a near optimal solution, which is an unanticipated good solution

that favors hardware.

The importance of a small step size is further demonstrated in Figure X.15(c), which

was produced with 100 allocation steps. Both previous graphs also suggest that any allo-

cation of greater than 30% for software would result in an optimal satellite design. Fig-

ure X.15(c) shows that there are many pitfalls in the 70% to 99% range that must be

avoided. At these precise budget allocation points, there is not a good combination of

hardware and software that will produce a good solution.

This result may seem counter-intuitive. At these points, the previous good hardware

solution is too expensive, but a different more expensive software configuration with less

resource consumption to fit on the cheaper available hardware configurations is also not

within budget. If any of these software allocation percentages were chosen arbitrarily

without creating a high quality graph of the solution space,the designer could unknow-

ingly create a system that has 25% of the value for the same cost.

Solution Space Analysis with ASCENT

Although ASCENT’s ability to provide variable resolution solution space images is

important, its greatest value stems from the variety of questions that can be answered from

its output data. In the following results, we present representative solution space analyses

that can be performed with ASCENT’s output data.

Design analysis 1: Identifying low-cost viable designs.A common software engi-

neering scenario is that a design need not necessarily be optimal as long as it provides

a minimum required value or capability. For example, satellite designers want to find

the cheapest designs that provide the required level of image processing accuracy. Fig-

ure X.16(a) shows a graph that can be produced by taking the output data from ASCENT
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and graphing total actual solution cost as a function of budget allocation, rather than graph-

ing value as a function of budget allocation. This graph allows designers to ascertain key

low cost designs in the solution space and can be further filtered to eliminate any solutions

that do not meet a minimum value threshold. The resulting graph allows designers to find

the lowest cost satellite co-design solution with a given image processing accuracy.

Design analysis 2: Determining budget allocation ratios.An important question to

ask when designing a system is what budget allocations and solutions give the most value

per unit of cost. In terms of the satellite example, the question would be what design gives

the most accuracy for the money. Figure X.16(c) shows another set of ASCENT output

data that has been regraphed to showvalue
cost as a function of the percentage of the budget

allocated to software. It can clearly be seen that the designs with the best ratio of value to

cost assign more of the value to software. This graph can alsoeasily be filtered to eliminate

designs that do not provide a minimum level of value.

Design analysis 3: Finding designs that produce budget surpluses.Designers may

wish to know how the resource slack values, such as how much RAM is unused, with

different satellite designs. Another related question is how much of the budget will be left-

over for designs that provides a specified minimal level of image processing accuracy. We

can use the same ASCENT output data to graph the budget surplus at a range of allocation

values.

Figure X.16(d) shows the budget surplus from choosing various designs. The graph has

been filtered to adhere to a requirement that the solution provide a value of at least 1600.

Any data point with a value of less than 1600 has had its surplus set to 0. Looking at the

graph, we can see that the cheapest design that provides a value of at least 1,600 is found

with a budget allocation of 80% software and 20% hardware. This design has a value of

1,600 and produces budget savings of 37%.

Design analysis 4: Evaluating design upgrade/downgrade cost. In some situations,

designers may have a given solution and want to know how much it will cost or save to

245



(a) Solution Cost vs. Budget Allocation

(b) Solution Value vs. Budget Allocation

(c) Cost Effectiveness vs. Budget Allocation

(d) Budget Surplus vs. Budget Allocation

Figure X.16: Satellite Design Solution Space Analysis Grap hs
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upgrade or downgrade the solution to a different image processing accuracy. For example,

designers may be asked to provide a range of satellite options for their superiors that show

what level of image processing accuracy they can provide at anumber of price points. Fig-

ure X.17 depicts another view of the ASCENT data that shows how cost varies in relation

to the minimum required solution value. This graph shows that 5 cost units can finance a

Figure X.17: Cost of Increasing Solution Value

design with a value up to 900, but a design of a value of 1,000 units will cost at least 124

cost units. This information graph demonstrates the increased financial burden of requiring

a slightly higher valued design. Alternatively, if the necessary value of the system is near

the left edge of one of these plateaus, designers can make an informed decision on whether

the increased value justifies the significantly increased cost.

Summary of Empirical Results

The following is a summary of the empirical results presented above.

• ASCENT Produces Answers that are 98% Optimal:As seen from the results in

Figure X.13, ASCENT generates answers that average 98% optimal for problems with

a large number of sets in each MMKP problem. This result implies that ASCENT will

perform well on large-scale MMKP co-design problems, such as the design of a large and

complex satellite. Moreover, the larger the problem, the more accurate ASCENT’s results.
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Systems of this scale would be nearly impossible to optimizewithout the search-based

software engineering method provided by ASCENT.

• High Resolution Solution Space Snapshots Can Identify Near-optimal Alterna-

tive Solutions: Another important result is that we demonstrated that by capturing a high

resolution solution space snapshot we can identify unanticipated near optimal designs.

These unanticipated nearly optimal designs correspond to peaks in the solution space graph

at local maxima. In future work, we plan to develop algorithms that automatically increase

the solution space snapshot resolution at and around these local maxima. Solving the large

numbers of problems to produce a highly detailed solution space snapshot is too time-

consuming and error-prone to perform manually.

• ASCENT Output Data Can Answer Numerous Cost-based Design Questions to

Iteratively Improve Solution Design: Since many design criteria cannot be completely

formalized for a search solver, search-based software engineering should allow desigeners

to iteratively hone in on the solutions they desire. The results demonstrated that each run

of ASCENT allowed designers to answer key questions relatedto the allocation of budget

to hardware and software. For example, designers of a satellite could answer questions

such aswhat allocation of budget to hardware and software producesthe highest valued

solution. Designers can also answer other previously difficult questions related to how

expensive it is to produce a solution with a given optimality.
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CHAPTER XI

AUTOMATED CONFIGURATION DEBUGGING

Challenge Overview

This chapter investigates the problems that arise when invalid configurations are created

by modelers. Existing research has focused on ensuring thatfeatures chosen from feature

models are correct and consistent with the SPL and variant requirements. For example,

work has been done on using boolean circuit satisfiability techniques [93] or Constraint

Satisfaction Problems (CSPs) [22,144] to automate the derivation of a feature set that meets

a requirement set. Numerous tools have also been developed,such as Big Lever Software

Gears [31], Pure::variants [23], FeAture Model Analyser (FAMA) [21], and the Feature

Model Plug-in [46], to support the construction of feature models and correct selection of

feature configurations.

Introduction

Regardless of what tools and processes are used to configure SPL variants, however,

there is always the possibility that mistakes will occur. For example, large SPLs often

usestaged configuration[48, 49], where features are selected in multiple stages to form a

complete configuration iteratively, rather than choosing all features at once. At a late stage

in the configuration process, developers may realize that a critically needed feature cannot

be selected due to one or numerous decisions in some previousstages. It is hard to debug a

configuration to figure out how to change decisions in previous stages to make the critical

feature selectable [18].

Another challenging situation can arise when multiple participants are involved in the

feature selection process and their desired feature selections conflict. For example, hard-

ware developers for an automobile may desire a lower cost setof Electronic Control Units
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(ECUs) that cannot support the features needed by the software developer’s embedded

controller code. In these situations, methods are needed toevaluate and debug conflicts

between participants. Methods are also needed to recommendmodifications to the partici-

pants feature selections to make them compatible.

Although prior research has shown how to identify flawed configurations [17,93], con-

ventional debugging mechanisms cannot pinpoint configuration errors and identifying cor-

rective actions. More specifically, techniques are lackingthat can take an arbitrary flawed

configuration and produce the minimal set of feature selections and deselections to bring

the configuration to a valid state. This challenge focuses onaddressing these gaps in exist-

ing research.

Challenges of Debugging Feature Model Configurations

This section evaluates different challenges that arise in realistic configuration scenarios.

Challenge 1: Staged Configuration Errors

Staged configuration is a configuration process whereby developers iteratively select

features to reduce the variability in a feature model until avariant is constructed. Czar-

necki et al. [48, 49] use the context of software supply chains for embedded software in

automobiles to demonstrate the need for staged configuration. In the first stage, software

vendors provide software components that can be provided indifferent configurations to

actuate brakes, control infotainment systems, etc. In the second stage, hardware vendors of

the Electronic Control Units (ECUs) that the software runs on must provide ECUs with the

correct features and configuration to support the software components selected in the first

stage.

The challenge with staged configuration is that feature selection decisions made at some

point in time T have ramifications on the decisions made at all points in timeT ′ > T.

For example, it is possible for software vendors to choose a set of software component
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features for which there are no valid ECU configurations in the second configuration stage.

Identifying the fewest number of configuration modifications to remedy the error is hard

because there can be significant distance betweenT andT ′.

This challenge also appears in larger models, such as those for software to control

the automation of continuous casting in steel manufacture [116]. In large-scale models,

configuration mimics staged configuration since developerscannot immediately understand

the ramifications of their current decisions. At some later decision point, critical features

that developers need may no longer be selectable due to some previous choice. Again, it is

hard to identify the minimal set of configuration decisions to reverse in this scenario.

Challenge 2: Mediating Conflicts

In many situations the desired features and needs of multiple stakeholders involved

in configuring an SPL variant may conflict. For example, when configuring automotive

systems, software developers may want a series of software component configurations that

cannot be supported by the ECU configurations proposed by thehardware developers. To

each party, their individual needs are critical and finding the middle ground to integrate the

two is hard.

Another conflict scenario arises when configuration decisions made for an SPL variant

must be reconciled with constraints of the legacy environment in which it will run. For

example, when configuring automotive software for next year’s car model, a variant may

initially be configured to provide the most desired customerfeatures, such as digital in-

fotainment. New model cars are rarely complete redesigns, however, so developers must

determine out how to run new software configurations on existing ECU configurations from

previous models. If the new software configuration is not compatible with the legacy ECU

configuration, developers must derive the lowest cost set ofmodifications to either the new

software or the legacy ECU configuration.
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Challenge 3: Viewpoint-dependent Errors

The feature labeled as the source of an error in a feature model configuration may vary

depending on the viewpoint used to debug it. In the feature model shown in Figure XI.1, for

example, if a configuration is created that includes bothNon-ABS Controllerand1 Mbit/s

CAN Bus, either feature can be viewed as the feature that is the source of the error.

Figure XI.1: Simple Feature Model for an Automobile

If we debug the configuration from the viewpoint that software trumps ECU hardware

decisions, then the1 Mbit/s CAN Busfeature is the error. If we assume that ECU decisions

precede software, however, then theNon-ABS Controllerfeature is the error.

A feature model may therefore require debugging from multiple viewpoints since diag-

nosing the feature that causes an error in a feature model depends on the viewpoint used

to debug it. For small feature models, debugging from different viewpoints is relatively

simple. When feature models contain hundreds or thousands of features, the complexity of

diagnosing a configuration from multiple viewpoints increases greatly.

Solution Approach

Our solution approach, called Configuration Understandingand REmedy (CURE), is

based on creating automated SPL variant diagnosis tools. Developers can use these tools

to identify the minimal set of features to select or deselectto transform an invalid config-

uration into a valid configuration. Moreover, depending on the input provided to CURE,

a flawed configuration can be debugged from different viewpoints or conflicts between

multiple stakeholder decisions in a configuration process can be mediated.
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The key component of CURE is the application of a CSP-based error diagnostic tech-

nique. In prior work, Benavides et al. [22] have shown how feature models can be trans-

formed into CSPs to automate feature selection with a constraint solver [77]. Trinidad et

al. [131] subsequently described how to extend this CSP technique to identifyfull manda-

tory features, void features, and dead feature modelsusing Reiter’s theory of diagno-

sis [119]. This section presents an alternate diagnostic model for deriving the minimum

set of features that should be selected or deselected to eliminate a conflict in a feature

configuration.

Background: Feature Models and Configurations as CSPs

A CSP is a set of variables and a set of constraints over those variables. For example,

A+B≤ 3 is a CSP involving the integer variablesA andB. The goal of a constraint solver

is to find a validlabeling(set of variable values) that simultaneously satisfies all constraints

in the CSP. (A = 1, B = 2) is thus a valid labeling of the CSP.

To build the CSP for the error diagnosis technique, we construct a set of variables,F,

representing the features in the feature model. Each configuration of the feature model is

a set of values for these variables, where a value of 1 indicates the feature is present in the

configuration and a value of 0 indicates it is not present. More formally, a configuration is

a labeling ofF, such that for each variablefi ⊂ F, fi = 1 indicates that theith feature in

the feature model is selected in the configuration. Correspondingly, fi = 0 implies that the

feature is not selected.

Given an arbitrary configuration of a feature model as a labeling of theF variables,

developers need the ability to ensure the correctness of theconfiguration. To achieve this

constraint checking ability, each variablefi is associated with one or more constraints cor-

responding to the configuration rules in the feature model. For example, iff j is a required

subfeature offi , then the CSP would contain the constraint:fi = 1⇔ f j = 1.

Configuration rules from the feature model are captured in the constraint setC. For
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any given feature model configuration described by a labeling of F , the correctness of

the configuration can be determined by seeing if the labelingsatisfies all constraints inC.

A more detailed description of the steps for transforming a feature model to a CSP are

described in [22].

Configuration Diagnostic CSP

When diagnosing configuration conflicts, developers need a list of features that should

be selected or deselected to make an invalid configuration a valid configuration. The output

of CURE is this list of features to select and deselect, as shown in Figure XI.2.

Figure XI.2: Diagnostic Technique Architecture for CURE

In Step 1 of Figure XI.2, the rules of the feature model and thecurrent invalid config-

uration are transformed into a CSP. For example,o1 = 1 because theAutomobilefeature

is selected in the current invalid configuration. In Step 2, the solver derives a labeling of

the diagnostic CSP. Step 3 takes the output of the CSP labeling and transforms it into a

series of recommendations of features to select or deselectto turn the invalid configura-

tion into a valid configuration. Finally, in Step 4, the recommendations are applied to the
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invalid configuration to create a valid configuration where each variablefi equals 1 if the

corresponding feature is selected in the new and valid configuration. For example,f7 = 1,

meaning that the250 Kbit/s CAN Busis selected in the new valid configuration.

To enable the constraint solver to recommend features to select and deselect, two new

sets of recommendation variables,SandD, are introduced to capture the features that need

to be selected and deselected, respectively, to reach a valid configuration. For example, a

value of 1 for variablesi ⊂ S indicates that the featurefi should be added to the current

configuration. Similarly,di = 1 implies that the featurefi should be removed from the

configuration.

Thus, for each featurefi ⊂ F , there are variablessi ⊂ Sanddi ⊂ D. After the diagnosis

CSP is labeled, the values ofSandD serve as the output recommendations to the user as to

what features to add or remove from the current configuration, as shown in Table 1. This

table shows the complete inputs and outputs to diagnose the invalid configuration scenario

shown in Figure XI.2.

The next step is to allow developers to input their current configuration into the solver

for diagnosis. Rather than directly setting values for the variables inF, developers use

a special set of input variables called theobservations, which are contained in the set of

variablesO. For each featurefi present in the current flawed configuration,oi = 1; if fi is

not selected in the current invalid configuration,oi = 0. Table 1 shows how observations

capture the current invalid configuration provided as inputto the solver. Observations can

also be made for a correct configuration, in which case CURE will state that no changes

are needed. The rest of this chapter assumes that the observations represent an invalid

configuration.

To diagnose the CSP, we want to find an alternate but valid configuration of the feature

model and suggest a series of changes to the current invalid configuration to reach the valid

configuration. A valid configuration is a labeling of the variables inF (a configuration)
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Variables
Variable Ex-
planations

fi ⊂ F: feature variables for the
valid configuration that will be
transitioned to;oi ⊂ O: the fea-
tures selected (oi = 1) in the cur-
rent invalid configuration;si ⊂S:
features to select (si = 1) to reach
the valid configuration;di ⊂ D:
features to deselect (di = 1) to
reach the valid configuration

Inputs
Current Con-
fig.

o1 = 1,o2 = 1,o3 = 0,o4 =
1,o5 = 1,o6 = 1,o7 = 0

Feature
Model Rules

f1 = 1 ⇔ ( f2 = 1), f1 = 1 ⇔
( f5 = 1), f2 = 1 ⇒ ( f3 = 1)⊕
( f4 = 1), f5 = 1 ⇒ ( f6 = 1)⊕
( f7 = 1), ( f6 = 1)∨ ( f7 = 1) ⇒
( f5 = 1), ( f3 = 1)∨ ( f4 = 1) ⇒
( f2 = 1), f3 = 1⇒ ( f6 = 1), f4 =
1⇒ ( f7 = 1)

Diagnostic
Rules

( fi ⊂ F | {( fi = 1) ⇒ (oi = 1⊕
si = 1) ∧ (di = 0),( fi = 0) ⇒
(oi = 0⊕di = 1)∧ (si = 0)})

Outputs
Features to
Select

s1 = 0,s2 = 0,s3 = 0,s4 = 0,s5 =
0,s6 = 0,s7 = 1

Features to
Deselect

d1 = 0,d2 = 0,d3 = 0,d4 =
0,d5 = 0,d6 = 1,d7 = 0

New Valid
Config.

f1 = 1, f2 = 1, f3 = 0, f4 =
1, f5 = 1, f6 = 0, f7 = 1

Table XI.1: Diagnostic CSP Construction

such that all of the feature model constraints are satisfied.For each variablefi , the value

should be 1 if the feature is present in the new valid configuration that will be transitioned

to. If a feature is not in the new configuration,fi should equal 0.

We always requiref1 = 1 to ensure that the root feature is always selected. For void

feature models, there will be no valid solution and the solver will respond that no solu-

tion was found. CURE could be used to detect void feature models but it would be more

appropriate to use a technique designed for this purpose, such as [131].
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One key input to CURE is the CSP describing the set of all validfeature selections from

the feature model (the Feature Model Rules in Table 1). Sincethese valid feature selections

are described as constraints over the variables inF, a valid labeling of F will always yield

a valid feature selection. Once a valid labeling ofF is found, the goal is to determine how

to modify the labeling ofO to match the valid feature selection denoted by the labelingof

F.

First, a constraint must be introduced to model when a feature in the current invalid

configuration needs to be deselected to reach the correct configuration. If theithfeature

is included in the current configuration (oi = 1), but is not in the new valid configuration

( fi = 0), we want the solver to recommend that it be deselected (di = 1). For every fea-

ture, we introduce the following constraint to determine ifthe ith feature inO needs to be

deselected1:

( fi = 0) ⇒ (oi = 0⊕di = 1)∧ (si = 0)

If fi is not selected in the correct configuration (fi = 0), then either the feature was

also not selected in the current invalid configuration (oi = 0), or the feature needs to be

deselected (di = 1). Furthermore, if a feature is not needed in the valid configuration (fi =

0) then clearly it should not be a recommended selection (si = 0).

The solver must also recommend features to select. If theith feature is selected in the

correct and valid configurationfi = 1, and not selected in the current invalid configuration

(oi = 0), then it needs to be selected (si = 1). For each feature, we introduce the constraint:

( fi = 1) ⇒ (oi = 1⊕si = 1)∧ (di = 0)

If a feature is needed by the correct configuration (fi = 1), then either the feature was

present in the invalid configuration (oi = 1) or the feature was not present in the invalid

1The symbol "⊕" denotesexclusive or

257



configuration and needs to be selected (si = 1). Clearly, a feature should not be deselected

if fi = 1 and thusdi = 0.

The state of each feature,oi , in the current invalid configuration is compared against

the correct state of the feature,fi , in the valid feature configuration. The behavior of each

comparison can fall into four cases:

1. A feature is selected and does not need to be deselected.If the ith feature is in the

current invalid configuration (oi = 1), and also in the new valid configuration (fi = 1),

no changes need be made to it (si = 0, di = 0)

2. A feature is selected and needs to be deselected.If the ith feature is in the current

invalid configuration (oi = 1) but not in the new valid configuration (fi = 0), it must

be deselected (di = 1)

3. A feature is not selected and does not need to be selected.If the ith feature is

not in the current invalid configuration (oi = 0) and is also not needed in the new

configuration (fi = 0) it should remain unchanged (si = 0, di = 0)

4. A feature is not selected and needs to be selected.If the ith feature is not selected

in the current invalid configuration (oi = 0) but is present in the new correct configu-

ration (fi = 1), it must be selected (si = 1)

Optimal Diagnosis Method

The next step in the CURE diagnosis process is to use the solver to label the variables

and produce a series of recommendations. For any given configuration with a conflict, there

may be multiple possible ways to eliminate the problem. For example, in the automotive

example, the valid corrective actions were either (1) remove the1 Mbit/s CAN Busand

select the250 Kbit/s CAN Busor (1) remove theNon-ABS Controllerand select theABS

Controller. We must therefore tell the solver how to select which of the (many) possible

corrective solutions to suggest to developers.
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The most basic suggestion selection criteria developers can use to guide the solver’s di-

agnosis is to tell it to minimize the number of changes to maketo the current configuration,

i.e., prefer suggestions that require changing as few things as possible in the current invalid

configuration. To implement this approach, we solve for a CSPlabeling that minimizes the

sum of variables inS∪D, which is the total number of changes that the solution requires

the developer to make. By minizing this sum we therefore minimize the total number of

required changes.

Each labeling of the diagnostic CSP will produce two sets of features corresponding to

the features that should be selected (S) and deselected (D) to reach the new valid configu-

ration. Developers can ask the solver to cycle through the different potential labelings of

the diagnostic CSP to evaluate potential remedies. Furthermore, each new labeling (new

diagnosis) also causes the solver to backtrack and create new values forF, which allows

developers to evaluate not only the suggested modificationsbut the configuration that the

remedy will produce. Another way to further refine the guidance for the diagnosis is to

constrain the new state captured in the labeling ofF .

Table 1 shows a complete set of inputs and output suggestionsfor diagnosing the auto-

motive software example. If there are multiple labelings ofthe CSP, initially only one will

be returned. After the first solution has been found, however, the solver can much more

efficiently cycle through the other equally ranked sets of corrective suggestions.

Solution Extensibility and Benefits

This section presents different benefits of CURE and possible ways of extending it.

Bounding Diagnostic Method

Due to time constraints, it may not be possible to find the optimal number of changes

for extremely large feature models. In these cases, a more scalable approach is to attempt

to find any suggestion that requires fewer thanK changes or with a cost less thanK. Rather
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than directly asking for an optimal answer, we add the following constraint to the CSP and

ask the solver for any solution:

n

∑
i=1

si +di ≤ K

The sum of all variablessi ⊂ Sanddi ⊂ D represents the total number of feature selec-

tions and deselections that need to be made to reach the new valid configuration. Therefore,

the sum of both of these sets is the total number of modifications that must be made to the

original invalid configuration. The new constraint, ensures that the solver only accepts

diagnosis solutions that require the developer to makeK or fewer changes to the invalid

solution.

The solver is asked forany answer that meets the new constraints. In return, the

solver will provide a solution that is not necessarily perfect, but which fits our tolerance

for change. If no solution is found, we can incrementK by a factor and re-invoke the solver

or reassess our requirements. As earlier, searching for a bounded solution rather than an

optimal solution is significantly faster.

If the solver cannot find a diagnosis that makes fewer thanK modifications, it will state

that there is no valid solution that fits aK change budget.

Debugging from Different Viewpoints

As we discussed previously, we need the ability to debug the configuration from dif-

ferent viewpoints. Each viewpoint represents a set of features that the solver should avoid

suggesting to add or remove from the current configuration. For example, using the auto-

mobile scenario, the solver can debug the problem from the point of view that hardware

decisions trump software by telling the solver not to suggest selecting or deselecting any

hardware features.

Debugging from a viewpoint works by pre-assigning values for a subset of the variables

in F andO. For example, to force the featurefi currently in the configuration to remain
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Figure XI.3: Debugging from a Viewpoint

unaltered by the diagnosis, the valuesfi = 1 andoi = 1 are provided to the solver. Since

( fi = 1) ⇒ (oi = 1⊕si = 1)∧ (di = 0), pre-assigning these values will force the solver to

labelsi = 0 anddi = 0.

Figure XI.4: Constructing the Feature Selection Superset f or Conflict Mediation

To debug from a given point of view, for each featurefv, in that viewpoint, we first add

the constraints,fv = 1,ov = 1, sv = 0, anddv = 0, as shown in Figure XI.3. The solver then

derives a diagnosis that recommends alterations to other features in the configuration and

maintains the state of each featurefv. The CURE diagnostic model can therefore be used

to debug from different viewpoints and address Challenge 3.
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Pre-assigning values for variables inF andO can also be used to debug staged config-

uration errors from Challenge 1. With staged configuration errors, at some point in time

T ′, developers need to select a feature that is in conflict with one or more features selected

at timeT < T ′. To debug this type of conflict, developers pre-assign the desired (but cur-

rently unselectable) feature at timeT ′ the value of 1 for itsoi and fi variables. Developers

can also pre-assign values for one or more other features decisions from previous stages of

the configuration that must not be altered. The solver is theninvoked to find a configura-

tion that includes the desired feature atT ′ and minimizes the number of changes to feature

configuration decisions that were made at all points in timeT < T ′.

Cost Optimal Conflict Resolution

Conflicts can occur when multiple stakeholders in a configuration process pull the so-

lution in different directions. Debugging tools are therefore needed to mediate the conflict

in a cost conscious manner. For example, when a car’s software configuration is incom-

patible with the legacy ECU configuration, it is (probably) cheaper to change the software

configuration than to change the ECU configuration and the assembly process of the car.

The solver should therefore try to minimize the overall costof the changes.

We can extend the CSP model to perform cost-based feature selection and deselec-

tion optimization. First, we extend the CURE model to associate a cost variable,bi ⊂ B,

with each feature in the feature model. Each cost variable represents how expensive (or

conversely how beneficial) it is for the solver to recommend that the state of that feature

be changed. Before each invocation of the debugger, the stakeholders provide these cost

variables to guide the solver in its recommendations of features to select or deselect.

Next, we construct the superset of the features that the various stakeholders desire, as

shown in Figure XI.4. The superset represents the ideal, although incorrect, configuration

that the stakeholders would like to have. The goal is to find a way to reach a correct
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configuration from this superset of features that involves the lowest total cost for changes.

The superset is input to the solver as values for the variables inO.

Finally, we alter our original optimization goal so that thesolver will attempt to mini-

mize (or maximize) the cost of the features it suggests selecting or deselecting. We define a

global cost variableG and letG capture the sum of the costs of the changes that the solver

suggests:

G =
n

∑
i=1

(di ∗bi)+(si ∗bi)

G is thus equal to the sum of the costs of all features that the solver either recommends to

select or deselect. Rather than instructing the solver to minimize the sum ofS∪D, we ask

it to minimize or maximizeG.

The result of the labeling is a series of changes needed to reach a valid configuration that

optimally integrates the desires and decisions of the various stakeholders. Of course, one

particular stakeholder may have to incur more cost than another in the interest of reaching

a globally better solution. Further constraints, such as limiting the maximum difference

between the cost incurred by any two stakeholders, could also be added. The mediation

process can be tuned to provide numerous types of behavior byproviding different opti-

mization goals. This CSP diagnostic method enables CURE to address Challenge 2.

Empirical Results

Effective automated diagnostic methods should scale to handle feature models of pro-

duction systems. This section presents empirical results from experiments we performed

to evaluate the scalability of CURE. We compare the scalability of both CURE’s optimal

and bounding methods from Sections XI and XI.
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Experimental Platform

To perform our experiments, we used the implementation of CURE that is provided by

the Model Intelligence libraries from the Eclipse Foundation’s Generic Eclipse Modeling

System (GEMS) project [160]. Internally, the GEMS Model Intelligence implementation

of CURE uses the Java Choco Constraint Solver [2] to derive labelings of the diagnostic

CSP. The experiments were performed on a computer with an Intel Core DUO 2.4GHZ

CPU, 2 gigabytes of memory, Windows XP, and a version 1.6 JavaVirtual Machine (JVM).

The JVM was run in client mode using a heap size of 40 megabytes(-Xms40m) and a

maximum memory size of 256 megabytes (-Xmx256m).

A challenging aspect of the scalability analysis is that CSP-based techniques can vary in

solving time based on individual problem characteristics.In theory, CSP’s have exponential

worst case time complexity, but are often much faster in practice. To evaluate CURE,

therefore, it was necessary to apply it to as many models as possible. The key challenge

with this approach is that hundreds or thousands of real feature models are not readily

available and manually constructing them is impractical.

To provide the large numbers of feature models needed for ourexperiments, therefore,

we built a feature model generator that randomly creates feature models with the desired

branching and constraint characteristics. We also imbued the generator with the capability

to generate feature selections from a feature model and probabilistically insert a bounded

number of errors/conflicts into the configuration. The feature model generator and code for

these experiments is available in open-source form from [5].

From preliminary feasibility experiments we conducted, weobserved that the branch-

ing factor of the tree had little effect on the algorithm’s solving time. We also compared

diagnosis time using models with 0%, 10%, and 50% cross-treeconstraints and saw that

the each increment in the percentage of cross-tree constraints improved performance. For

example, with the optimal method and 1,000 feature models, the average diagnosis time

gradually decreased from 47 seconds with 0% cross-tree constraints to 36 seconds with
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50% cross-tree constraints. The key indicator of the solving complexity was the number of

XOR- or cardinality-based feature groups in a model. XOR andcardinality-based feature

groups are features that require the set of their selected children to satisfy a cardinality

constraint (the constraint is 1..1 for XOR).

For our tests, we limited the branching factor to at most five subfeatures per feature. We

also set the probability of XOR- or cardinality-based feature groups being generated to 1/3

at each feature with children. We chose 1/3 since most feature models we have encountered

contain more required and optional relationships than XOR-and cardinality-based feature

groups. The total number of cross-tree constraints was set at 10%. We also eliminated

all diagnosis results from void feature models, since void feature models produced faster

diagnostic times and would have skewed the results towards smaller solving times.

To generate feature selections with errors, we used a probability of 1/50 that any partic-

ular feature would be configured incorrectly. For each model, we bounded the total errors

at 5. In our initial experiments, the solving time was not affected by the number of errors in

a given feature model. Again, the prevalence of XOR- or cardinality-based feature groups

was the key determiner of solving time.

Bounding Method Scalability

First, we tested the scalability of the less computationally complex bounding diagnosis

method. The speed of the bounding technique allowed us to test 2,000 feature models at

each data point (2,000 different variations of each size feature model) and test the bound-

ing method’s scalability for feature models up to 500 features. With models above 500

features, we had to reduce the number of samples at each size to 200 models due to time

constraints. Although these samples are small, they demonstrate the general performance

of our technique. Moreover, the results of our experiments with feature models up to 500

features were nearly identical with sample sizes between 100 and 2,000 models.

Figure XI.5 shows the time required to diagnose feature models ranging in size from
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50 to 500 features using the bounded method. The figure captures the worst and average

solving time in the experiments. As seen from the results, our technique could diagnose

models with 500 features in an average of≈300ms.

The upper bound used for this experiment was a maximum of 10% feature selection

changes. When the feature bound was too tight for the diagnosis (i.e., more were needed to

reach a correct state) the solver quickly declared there wasno valid solution. We therefore

discarded all instances where the bound was too tight to avoid skewing the results towards

shorter solving times.

Figure XI.5 shows the results of testing the solving time of the bounding method on

feature models ranging in size from 500 to 5,000 features.

Figure XI.5: Diagnosis Time for Both Methods for Large Featu re Models

Models of this size were sufficient to demonstrate scalability for common production

systems. The results show that for a 5,000 feature model, theaverage diagnosis time was

≈ 50 seconds.

Another key variable we tested was how the tightness of the bound on the maximum

number of feature changes affected the solving time of the technique. We took a set of 200

feature models and applied varying bounds to see how the bound tightness affected solution

time. Figure XI.6 shows that tighter bounds produced fastersolution times. These results

indicate that tighter bounds allow the solver to discard infeasible solutions more quickly

and thus arrive at a solution faster.

266



Figure XI.6: 500 Feature Diagnosis Time with Bounding Metho d and Varying Bounds

Optimal Method Scalability

Next, we tested the scalability of the optimal diagnosis method using 2,000 samples

below 500 features and 200 samples for all larger models. Figure XI.5 shows the results

from feature models up to 500 features. At 500 features, the optimal method required an

average of∼1.5 seconds to produce a diagnosis. Figure XI.5 also shows the tests from

larger models ranging in size up to 5,000 features. For a model with 5,000 features, the

solver required an average of∼3 minutes per diagnosis.

Comparative Analysis of Optimal and Bounding Methods

Finally, we compared the scalability and quality of resultsproduced with the two meth-

ods. Figure XI.5 shows the bounding method performs and scales significantly better than

the optimal method. For feature models of up to 1,000 features, however, both techniques

take less than 5 seconds and the optimal method is the better choice. This result raises the

question of how much of a tradeoff in solution quality for speed is made when the bounding

method is used over the optimal method for larger models.

The bound that is chosen determines the quality of the solution that is produced by

the solver. The optimality of a diagnosis given by the bounding method is the number

of changes suggested by the bounding method,Bounded(S∪D), divided by the optimal

number of changes,Opt(S∪D), which yieldsBounded(S∪D)
Opt(S∪D) . Since the bounding method

uses the constraint(S∪D) ≤ K to ensure that at mostK changes are suggested, we can
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state the worst case optimality of the bounded method asKOpt(S∪D) . The closer our bound,

K, is to the true optimal number of changes to make, the better the diagnosis will be.

Since tighter bounds produce faster solving timesandbetter results, debuggers should

start with very small bounds and iteratively increase them upward as needed. One approach

is to layer an adaptive algorithm on top of the diagnosis algorithm to move the bound by

varying amounts each time the bound proves too tight. Another approach is to employ

binary search to home in on the ideal bound. We will investigate both techniques in future

work.

Debugging Scenarios

Staged configuration and viewpoint debugging (Challenges 1& 3) are special cases

of the technique where the solver is not allowed to modify theselection state of one or

more features (i.e., the viewpoint or the feature at timeT ′). Both of these special cases

of debugging actually reduce the search space by fixing values for one or more of the

CSP variables. For example, performing staged configuration debugging, which fixes the

value for one CSP variable, on a model with 1,000 features, reduced the optimal method’s

average solving time by≈ 2.5 seconds and the bounding method by≈ .1 seconds.

Cost-based conflict mediation (Challenge 2) performs identically to the standard diag-

nosis technique. Cost-based mediation merely introduces aseries of coefficients,bi ⊂ B

into the optimization goal. These coefficients do not increase solving time. Furthermore,

initiating the diagnosis method with the superset of the configuration participants’ desired

feature selections also did not impact performance.
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CHAPTER XII

CONCLUSION

There are a number of hard challenges related to the configuration of SPL variants

from feature models. Previously developers optimized and constructed software with an

emphasis on source code and a restricted set of requirements. In the SPL paradigm, config-

uration is the main mode of program construction and optimization is done by performing

a discriminating selection of components. Source-code focused development is primarily a

manual activity whereas configuration can be highly automated.

This dissertation has shown that CSP-based configuration techniques provide a number

of promising benefits for SPL construction. CSP configuration techniques can 1) perform

optimization, 2) perform automated debugging, 3) perform fast and flexibly enough to

serve as a healing mechanism, and 4) can guide manual modeling steps. In the future, as

SPLs become increasingly complex, CSP-based configurationtechniques will provide an

excellent option for reducing the complexity of SPL variantderivation.

The following is a summary of lessons learned from the research work presented in this

dissertation:

1. PLA composition and non-functional requirements can be used to efficiently prune

the variant selection space and provide good performance. There are many patterns of

requirements specification that can be used to optimize a PLAfor automated variant

selection. In future work, we intend to further explore these patterns.

2. Although Scatter can automate variant selection, it works best when a PLA is crafted

with performance in mind. An arbitrary PLA may or may not allow for rapid variant

selection. PLA’s that will be used in conjunction with an automated variant selector

should be carefully constructed to avoid poor performance.
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3. A key challenge of automating product variant selection is debugging mistakes in the

product-line’s specification. A simple mistake, such as a misplaced exclusion con-

straint between components, can cause variant selection tofail. Moreover, the failure

may only appear intermittently for certain device types andbe hard to identify during

testing. Even once it is discerned that there is a problem, identifying the source of

the problem can be extremely challenging (we have experienced this phenomenon).

4. More work must be done to understand how to merge and integrate the various infor-

mation sources that will provide device characterizations. Device characterizations

may come from customer databases, discovery services, and location services. Find-

ing the right transformations to correlate and utilize these diverse information streams

is important to provide customized and correct variant selection.

5. Developers normally focus on the functional variabilityin a product. Looking at

other aspects of variability, such as packaging variability, is important too. As we

have shown, although a product may have high functional variability, it can be sig-

nificantly less variable with respect to packaging or memoryfootprint. These non-

functional aspects can be exploited to reduce the complexity of automated variant

selection.

6. Fresh alleviates the problems described earlier by executing a series of Java probes

at application launch to identify constrained variabilities, formalizing and solving a

constraint satisfaction problem of the configuration problem, and dynamically rewrit-

ing the application’s XML configuration files. The information on functional and

non-functional properties collected by automated probingcan be treated as a con-

straint satisfaction problem and a correct application configuration derived by using

a constraint solver. Moreover, the constraint solver can produce a solution that is

correct with respect to both the feature model and the decisions made by the roles.
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7. Probes did not add significant complexity to Fresh’s automated configuration ap-

proach. An application typically requires a probe for each point of variability. In

some cases, a probe may be needed for each individual feature. In other cases, a

single probe can identify what features are enabled in an entire feature group. As

with unit test frameworks, such as JUnit, probes are relative straightforward to write.

Although unit tests can often comprise a substantial amountof code compared to the

application itself, this was not the case for probes.

8. Even if a full constraint-solver based solution is not deemed needed, using a configu-

ration probing infrastructure can be useful. Creating probes to ensure that individual

points of configuration are properly fixed can help improve the guarantees that an

application is installed and configured properly. Since application misconfiguration

contributes to a significant portion of application failures [50], developers should

consider the use of automated configuration checking.

9. Capturing and allowing the weaver to solve the global application constraints re-

quired to produce a weaving solution

10. Informing the weaver of the overall solution goals so that the weaver can derive the

best overall weaving solution with respect to a cost function and

11. Encoding using model transformations to automaticallygenerate implementations of

the global weaving solution for each required weaving platform.

12. CURE can scale to feature models with several thousand features.

13. The optimality of the diagnosis provided by the boundingmethod is determined by

how closeK is set to the true minimum number of features that need to be changed

to reach a valid state. Setting an accurate bound forK is not easy. In future work, we

plan to investigate different methods of honing the boundary used in the bounding

method.
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14. The same CSP can often be stated in multiple ways. Different formulations can yield

different performance characteristics. In future work, weintend to see if it is possible

to vary the diagnosis CSP formulation and show that the technique can scale to even

larger models while still providing reasonable runtimes.

The tools and techniques described in this dissertation areopen source and available

from http://www.eclipse.org/gmt/gems.
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APPENDIX A

LIST OF PUBLICATIONS

Research on Model Intelligence, Scatter, Refresh, and CUREhas led to the following

referred journal, conference, and workshop publications as well as book chapters.

Journal Publications

1. Jules White, Douglas C. Schmidt, Egon Wuchner, Andrey Nechypurenko, Automat-

ically Composing Reusable Software Components for Mobile Devices, Journal of

the Brazilian Computer Society Special Issue on Software Reuse, SciELO Brasil,

Volume 14, Number 1, pgs. 25-44, March, 2008

2. Jules White, Harrison Strowd, Douglas C. Schmidt, Creating Self-healing Service

Compositions with Feature Models & Microrebooting, International Journal of Busi-

ness Process Integration & Management (to appear)

3. Jules White, Douglas Schmidt, Aniruddha Gokhale, Simplifying Autonomic Enter-

prise Java Bean Applications via Model-driven Engineering& Simulation, Journal

of Software & Systems Modeling, Springer, Volume 7, Number 1, pgs. 3-23, May,

2007

Conference Publications

1. Jules White, David Benavides, Douglas C. Schmidt, Antonio Ruiz-Cortez, and Pablo

Trindad, Automated Diagnosis of Product-line Configuration Errors in Feature Mod-

els, Software Product Lines Conference, September, 2008, Limerick, Ireland

2. Jules White & Douglas C. Schmidt, Automated Configurationof Component-based

Distributed Real-time & Embedded Systems from Feature Models, Proceedings of

273



the 17th Annual Conference of the International Federationof Automatic Control,

Seoul, Korea, July 6-11, 2008.

3. Jules White, Douglas C. Schmidt, Egon Wuchner, Andrey Nechypurenko, Optimiz-

ing & Automating Product-Line Variant Selection for MobileDevices, 11th Annual

Software Product Line Conference (SPLC), Sept. 10-14, 2007, Kyoto, Japan

4. Jules White & Douglas C. Schmidt, Automated Configurationof Component-based

Distributed Real-time & Embedded Systems from Feature Models, Proceedings of

the 17th Annual Conference of the International Federationof Automatic Control,

Seoul, Korea, July 6-11, 2008.

5. Jules White, Krzysztof Czarnecki, Douglas C. Schmidt, Gunther Lenz, Christoph

Wienands, Egon Wuchner, & Ludger Fiege, Automated Model-based Configuration

of Enterprise Java Applications, EDOC 2007, October, 2007,Annapolis, Maryland

6. Jules White, Douglas C. Schmidt, Andrey Nechypurenko, Egon Wuchner, Model

Intelligence: an Approach to Modeling Guidance, UPGRADE Journal (to appear)

7. Andrey Nechypurenko, Egon Wuchner, Jules White, & Douglas C. Schmidt, Ap-

plication of Aspect-based Modeling & Weaving for Complexity Reduction in the

Development of Automotive Distributed Realtime Embedded Systems, Proceedings

of the Sixth International Conference on Aspect-Oriented Software Development,

Vancouver, British Columbia, March 12-16, 2007.

8. Jules White & Douglas C. Schmidt, Reducing Enterprise Product Line Architecture

Deployment Costs via Model-Driven Deployment & Configuration Testing, Poster

paper at the 13th Annual IEEE International Conference & Workshop on the Engi-

neering of Computer Based Systems (ECBS ’06), March 27th-30th, 2006, University

of Potsdam, Potsdam, Germany.
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9. Jules White, Douglas Schmidt, & Aniruddha Gokhale, Simplifying Autonomic En-

terprise Java Bean Applications via Model-driven Development: a Case Study, Pro-

ceedings of MODELS 2005, ACM/IEEE 8th International Conference on Model

Driven Engineering Languages & Systems, Half Moon Resort, Montego Bay, Ja-

maica, October 5-7, 2005. (Selected as a best paper)

10. Jules White, Douglas Schmidt, & Aniruddha Gokhale, The J3 Process for Building

Autonomic Enterprise Java Bean Systems, Proceedings of theInternational Confer-

ence on Autonomic Computing (ICAC 2005), Seattle, WA, June 2005 (short paper).

Book Chapters

1. Jules White, Andrey Nechypurenko, Egon Wuchner, & Douglas Schmidt, Reduc-

ing the Complexity of Designing & Optimizing Large-scale Systems by Integrating

Constraint Solvers with Graphical Modeling Tools, Designing Software-Intensive

Systems: Methods & Principles, edited by Dr. Pierre F. Tiako, Langston University,

Oklahoma, USA, (to appear)

Workshop Publications

1. Jules White, Douglas C. Schmidt, Sean Mulligan, The Generic Eclipse Modeling

System, Model-Driven Development Tool Implementer’s Forum, TOOLS ’07, June,

2007, Zurich Switzerland

2. Andrey Nechypurenko, Jules White, Egon Wuchner, & Douglas C. Schmidt, Apply-

ing Model Intelligence Frameworks for Deployment Problem in Real-time & Em-

bedded Systems, Proceedings of MARTES: Modeling & Analysisof Real-Time &

Embedded Systems to be held on October 2, 2006 in Genova, Italy in conjunction

with the 9th International Conference on Model Driven Engineering Languages &

Systems, MoDELS/UML 2006.
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3. Jules White, Andrey Nechypurenko, Egon Wuchner, & Douglas C. Schmidt, Intel-

ligence Frameworks for Assisting Modelers in Combinatorically Challenging Do-

mains, Proceedings of the Workshop on Generative Programming & Component En-

gineering for QoS Provisioning in Distributed Systems, October 23, 2006, Portland,

Oregon.

4. Jules White & Douglas Schmidt, Simplifying the Development of Product-line Cus-

tomization Tools via Model Driven Development, MODELS 2005workshop on

MDD for Software Product-lines: Fact or Fiction?, October 2, 2005, Jamaica.

Submitted Papers

1. Jules White, Jeff Gray, Douglas C. Schmidt, Constraint-based Model Weaving, IEEE

Transactions on Aspect-Oriented Programming

2. Jules White, Douglas C. Schmidt, Automating Deployment Planning with an Aspect

Weaver, IET Software Special Issue on Domain-specific Modeling Languages for

Aspect-Oriented Programming
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